1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 87 88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 89 static struct file_system_type ext2_fs_type = { 90 .owner = THIS_MODULE, 91 .name = "ext2", 92 .mount = ext4_mount, 93 .kill_sb = kill_block_super, 94 .fs_flags = FS_REQUIRES_DEV, 95 }; 96 MODULE_ALIAS_FS("ext2"); 97 MODULE_ALIAS("ext2"); 98 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 99 #else 100 #define IS_EXT2_SB(sb) (0) 101 #endif 102 103 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 115 static int ext4_verify_csum_type(struct super_block *sb, 116 struct ext4_super_block *es) 117 { 118 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 119 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 120 return 1; 121 122 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 123 } 124 125 static __le32 ext4_superblock_csum(struct super_block *sb, 126 struct ext4_super_block *es) 127 { 128 struct ext4_sb_info *sbi = EXT4_SB(sb); 129 int offset = offsetof(struct ext4_super_block, s_checksum); 130 __u32 csum; 131 132 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 133 134 return cpu_to_le32(csum); 135 } 136 137 static int ext4_superblock_csum_verify(struct super_block *sb, 138 struct ext4_super_block *es) 139 { 140 if (!ext4_has_metadata_csum(sb)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144 } 145 146 void ext4_superblock_csum_set(struct super_block *sb) 147 { 148 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 149 150 if (!ext4_has_metadata_csum(sb)) 151 return; 152 153 es->s_checksum = ext4_superblock_csum(sb, es); 154 } 155 156 void *ext4_kvmalloc(size_t size, gfp_t flags) 157 { 158 void *ret; 159 160 ret = kmalloc(size, flags | __GFP_NOWARN); 161 if (!ret) 162 ret = __vmalloc(size, flags, PAGE_KERNEL); 163 return ret; 164 } 165 166 void *ext4_kvzalloc(size_t size, gfp_t flags) 167 { 168 void *ret; 169 170 ret = kzalloc(size, flags | __GFP_NOWARN); 171 if (!ret) 172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 173 return ret; 174 } 175 176 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 177 struct ext4_group_desc *bg) 178 { 179 return le32_to_cpu(bg->bg_block_bitmap_lo) | 180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 181 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 182 } 183 184 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 185 struct ext4_group_desc *bg) 186 { 187 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 189 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 190 } 191 192 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 193 struct ext4_group_desc *bg) 194 { 195 return le32_to_cpu(bg->bg_inode_table_lo) | 196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 197 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 198 } 199 200 __u32 ext4_free_group_clusters(struct super_block *sb, 201 struct ext4_group_desc *bg) 202 { 203 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 204 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 205 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 206 } 207 208 __u32 ext4_free_inodes_count(struct super_block *sb, 209 struct ext4_group_desc *bg) 210 { 211 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 212 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 213 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 214 } 215 216 __u32 ext4_used_dirs_count(struct super_block *sb, 217 struct ext4_group_desc *bg) 218 { 219 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 220 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 221 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 222 } 223 224 __u32 ext4_itable_unused_count(struct super_block *sb, 225 struct ext4_group_desc *bg) 226 { 227 return le16_to_cpu(bg->bg_itable_unused_lo) | 228 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 229 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 230 } 231 232 void ext4_block_bitmap_set(struct super_block *sb, 233 struct ext4_group_desc *bg, ext4_fsblk_t blk) 234 { 235 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 237 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 238 } 239 240 void ext4_inode_bitmap_set(struct super_block *sb, 241 struct ext4_group_desc *bg, ext4_fsblk_t blk) 242 { 243 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 245 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 246 } 247 248 void ext4_inode_table_set(struct super_block *sb, 249 struct ext4_group_desc *bg, ext4_fsblk_t blk) 250 { 251 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 253 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 254 } 255 256 void ext4_free_group_clusters_set(struct super_block *sb, 257 struct ext4_group_desc *bg, __u32 count) 258 { 259 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 260 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 261 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 262 } 263 264 void ext4_free_inodes_set(struct super_block *sb, 265 struct ext4_group_desc *bg, __u32 count) 266 { 267 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 268 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 269 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 270 } 271 272 void ext4_used_dirs_set(struct super_block *sb, 273 struct ext4_group_desc *bg, __u32 count) 274 { 275 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 276 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 277 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 278 } 279 280 void ext4_itable_unused_set(struct super_block *sb, 281 struct ext4_group_desc *bg, __u32 count) 282 { 283 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 284 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 285 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 286 } 287 288 289 static void __save_error_info(struct super_block *sb, const char *func, 290 unsigned int line) 291 { 292 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 293 294 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 295 if (bdev_read_only(sb->s_bdev)) 296 return; 297 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 298 es->s_last_error_time = cpu_to_le32(get_seconds()); 299 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 300 es->s_last_error_line = cpu_to_le32(line); 301 if (!es->s_first_error_time) { 302 es->s_first_error_time = es->s_last_error_time; 303 strncpy(es->s_first_error_func, func, 304 sizeof(es->s_first_error_func)); 305 es->s_first_error_line = cpu_to_le32(line); 306 es->s_first_error_ino = es->s_last_error_ino; 307 es->s_first_error_block = es->s_last_error_block; 308 } 309 /* 310 * Start the daily error reporting function if it hasn't been 311 * started already 312 */ 313 if (!es->s_error_count) 314 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 315 le32_add_cpu(&es->s_error_count, 1); 316 } 317 318 static void save_error_info(struct super_block *sb, const char *func, 319 unsigned int line) 320 { 321 __save_error_info(sb, func, line); 322 ext4_commit_super(sb, 1); 323 } 324 325 /* 326 * The del_gendisk() function uninitializes the disk-specific data 327 * structures, including the bdi structure, without telling anyone 328 * else. Once this happens, any attempt to call mark_buffer_dirty() 329 * (for example, by ext4_commit_super), will cause a kernel OOPS. 330 * This is a kludge to prevent these oops until we can put in a proper 331 * hook in del_gendisk() to inform the VFS and file system layers. 332 */ 333 static int block_device_ejected(struct super_block *sb) 334 { 335 struct inode *bd_inode = sb->s_bdev->bd_inode; 336 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 337 338 return bdi->dev == NULL; 339 } 340 341 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 342 { 343 struct super_block *sb = journal->j_private; 344 struct ext4_sb_info *sbi = EXT4_SB(sb); 345 int error = is_journal_aborted(journal); 346 struct ext4_journal_cb_entry *jce; 347 348 BUG_ON(txn->t_state == T_FINISHED); 349 spin_lock(&sbi->s_md_lock); 350 while (!list_empty(&txn->t_private_list)) { 351 jce = list_entry(txn->t_private_list.next, 352 struct ext4_journal_cb_entry, jce_list); 353 list_del_init(&jce->jce_list); 354 spin_unlock(&sbi->s_md_lock); 355 jce->jce_func(sb, jce, error); 356 spin_lock(&sbi->s_md_lock); 357 } 358 spin_unlock(&sbi->s_md_lock); 359 } 360 361 /* Deal with the reporting of failure conditions on a filesystem such as 362 * inconsistencies detected or read IO failures. 363 * 364 * On ext2, we can store the error state of the filesystem in the 365 * superblock. That is not possible on ext4, because we may have other 366 * write ordering constraints on the superblock which prevent us from 367 * writing it out straight away; and given that the journal is about to 368 * be aborted, we can't rely on the current, or future, transactions to 369 * write out the superblock safely. 370 * 371 * We'll just use the jbd2_journal_abort() error code to record an error in 372 * the journal instead. On recovery, the journal will complain about 373 * that error until we've noted it down and cleared it. 374 */ 375 376 static void ext4_handle_error(struct super_block *sb) 377 { 378 if (sb->s_flags & MS_RDONLY) 379 return; 380 381 if (!test_opt(sb, ERRORS_CONT)) { 382 journal_t *journal = EXT4_SB(sb)->s_journal; 383 384 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 385 if (journal) 386 jbd2_journal_abort(journal, -EIO); 387 } 388 if (test_opt(sb, ERRORS_RO)) { 389 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 390 /* 391 * Make sure updated value of ->s_mount_flags will be visible 392 * before ->s_flags update 393 */ 394 smp_wmb(); 395 sb->s_flags |= MS_RDONLY; 396 } 397 if (test_opt(sb, ERRORS_PANIC)) 398 panic("EXT4-fs (device %s): panic forced after error\n", 399 sb->s_id); 400 } 401 402 #define ext4_error_ratelimit(sb) \ 403 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 404 "EXT4-fs error") 405 406 void __ext4_error(struct super_block *sb, const char *function, 407 unsigned int line, const char *fmt, ...) 408 { 409 struct va_format vaf; 410 va_list args; 411 412 if (ext4_error_ratelimit(sb)) { 413 va_start(args, fmt); 414 vaf.fmt = fmt; 415 vaf.va = &args; 416 printk(KERN_CRIT 417 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 418 sb->s_id, function, line, current->comm, &vaf); 419 va_end(args); 420 } 421 save_error_info(sb, function, line); 422 ext4_handle_error(sb); 423 } 424 425 void __ext4_error_inode(struct inode *inode, const char *function, 426 unsigned int line, ext4_fsblk_t block, 427 const char *fmt, ...) 428 { 429 va_list args; 430 struct va_format vaf; 431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 432 433 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 434 es->s_last_error_block = cpu_to_le64(block); 435 if (ext4_error_ratelimit(inode->i_sb)) { 436 va_start(args, fmt); 437 vaf.fmt = fmt; 438 vaf.va = &args; 439 if (block) 440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 441 "inode #%lu: block %llu: comm %s: %pV\n", 442 inode->i_sb->s_id, function, line, inode->i_ino, 443 block, current->comm, &vaf); 444 else 445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 446 "inode #%lu: comm %s: %pV\n", 447 inode->i_sb->s_id, function, line, inode->i_ino, 448 current->comm, &vaf); 449 va_end(args); 450 } 451 save_error_info(inode->i_sb, function, line); 452 ext4_handle_error(inode->i_sb); 453 } 454 455 void __ext4_error_file(struct file *file, const char *function, 456 unsigned int line, ext4_fsblk_t block, 457 const char *fmt, ...) 458 { 459 va_list args; 460 struct va_format vaf; 461 struct ext4_super_block *es; 462 struct inode *inode = file_inode(file); 463 char pathname[80], *path; 464 465 es = EXT4_SB(inode->i_sb)->s_es; 466 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 467 if (ext4_error_ratelimit(inode->i_sb)) { 468 path = file_path(file, pathname, sizeof(pathname)); 469 if (IS_ERR(path)) 470 path = "(unknown)"; 471 va_start(args, fmt); 472 vaf.fmt = fmt; 473 vaf.va = &args; 474 if (block) 475 printk(KERN_CRIT 476 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 477 "block %llu: comm %s: path %s: %pV\n", 478 inode->i_sb->s_id, function, line, inode->i_ino, 479 block, current->comm, path, &vaf); 480 else 481 printk(KERN_CRIT 482 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 483 "comm %s: path %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 current->comm, path, &vaf); 486 va_end(args); 487 } 488 save_error_info(inode->i_sb, function, line); 489 ext4_handle_error(inode->i_sb); 490 } 491 492 const char *ext4_decode_error(struct super_block *sb, int errno, 493 char nbuf[16]) 494 { 495 char *errstr = NULL; 496 497 switch (errno) { 498 case -EIO: 499 errstr = "IO failure"; 500 break; 501 case -ENOMEM: 502 errstr = "Out of memory"; 503 break; 504 case -EROFS: 505 if (!sb || (EXT4_SB(sb)->s_journal && 506 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 507 errstr = "Journal has aborted"; 508 else 509 errstr = "Readonly filesystem"; 510 break; 511 default: 512 /* If the caller passed in an extra buffer for unknown 513 * errors, textualise them now. Else we just return 514 * NULL. */ 515 if (nbuf) { 516 /* Check for truncated error codes... */ 517 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 518 errstr = nbuf; 519 } 520 break; 521 } 522 523 return errstr; 524 } 525 526 /* __ext4_std_error decodes expected errors from journaling functions 527 * automatically and invokes the appropriate error response. */ 528 529 void __ext4_std_error(struct super_block *sb, const char *function, 530 unsigned int line, int errno) 531 { 532 char nbuf[16]; 533 const char *errstr; 534 535 /* Special case: if the error is EROFS, and we're not already 536 * inside a transaction, then there's really no point in logging 537 * an error. */ 538 if (errno == -EROFS && journal_current_handle() == NULL && 539 (sb->s_flags & MS_RDONLY)) 540 return; 541 542 if (ext4_error_ratelimit(sb)) { 543 errstr = ext4_decode_error(sb, errno, nbuf); 544 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 545 sb->s_id, function, line, errstr); 546 } 547 548 save_error_info(sb, function, line); 549 ext4_handle_error(sb); 550 } 551 552 /* 553 * ext4_abort is a much stronger failure handler than ext4_error. The 554 * abort function may be used to deal with unrecoverable failures such 555 * as journal IO errors or ENOMEM at a critical moment in log management. 556 * 557 * We unconditionally force the filesystem into an ABORT|READONLY state, 558 * unless the error response on the fs has been set to panic in which 559 * case we take the easy way out and panic immediately. 560 */ 561 562 void __ext4_abort(struct super_block *sb, const char *function, 563 unsigned int line, const char *fmt, ...) 564 { 565 va_list args; 566 567 save_error_info(sb, function, line); 568 va_start(args, fmt); 569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 570 function, line); 571 vprintk(fmt, args); 572 printk("\n"); 573 va_end(args); 574 575 if ((sb->s_flags & MS_RDONLY) == 0) { 576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 577 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 578 /* 579 * Make sure updated value of ->s_mount_flags will be visible 580 * before ->s_flags update 581 */ 582 smp_wmb(); 583 sb->s_flags |= MS_RDONLY; 584 if (EXT4_SB(sb)->s_journal) 585 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 586 save_error_info(sb, function, line); 587 } 588 if (test_opt(sb, ERRORS_PANIC)) 589 panic("EXT4-fs panic from previous error\n"); 590 } 591 592 void __ext4_msg(struct super_block *sb, 593 const char *prefix, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 599 return; 600 601 va_start(args, fmt); 602 vaf.fmt = fmt; 603 vaf.va = &args; 604 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 605 va_end(args); 606 } 607 608 #define ext4_warning_ratelimit(sb) \ 609 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 610 "EXT4-fs warning") 611 612 void __ext4_warning(struct super_block *sb, const char *function, 613 unsigned int line, const char *fmt, ...) 614 { 615 struct va_format vaf; 616 va_list args; 617 618 if (!ext4_warning_ratelimit(sb)) 619 return; 620 621 va_start(args, fmt); 622 vaf.fmt = fmt; 623 vaf.va = &args; 624 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 625 sb->s_id, function, line, &vaf); 626 va_end(args); 627 } 628 629 void __ext4_warning_inode(const struct inode *inode, const char *function, 630 unsigned int line, const char *fmt, ...) 631 { 632 struct va_format vaf; 633 va_list args; 634 635 if (!ext4_warning_ratelimit(inode->i_sb)) 636 return; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 642 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 643 function, line, inode->i_ino, current->comm, &vaf); 644 va_end(args); 645 } 646 647 void __ext4_grp_locked_error(const char *function, unsigned int line, 648 struct super_block *sb, ext4_group_t grp, 649 unsigned long ino, ext4_fsblk_t block, 650 const char *fmt, ...) 651 __releases(bitlock) 652 __acquires(bitlock) 653 { 654 struct va_format vaf; 655 va_list args; 656 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 657 658 es->s_last_error_ino = cpu_to_le32(ino); 659 es->s_last_error_block = cpu_to_le64(block); 660 __save_error_info(sb, function, line); 661 662 if (ext4_error_ratelimit(sb)) { 663 va_start(args, fmt); 664 vaf.fmt = fmt; 665 vaf.va = &args; 666 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 667 sb->s_id, function, line, grp); 668 if (ino) 669 printk(KERN_CONT "inode %lu: ", ino); 670 if (block) 671 printk(KERN_CONT "block %llu:", 672 (unsigned long long) block); 673 printk(KERN_CONT "%pV\n", &vaf); 674 va_end(args); 675 } 676 677 if (test_opt(sb, ERRORS_CONT)) { 678 ext4_commit_super(sb, 0); 679 return; 680 } 681 682 ext4_unlock_group(sb, grp); 683 ext4_handle_error(sb); 684 /* 685 * We only get here in the ERRORS_RO case; relocking the group 686 * may be dangerous, but nothing bad will happen since the 687 * filesystem will have already been marked read/only and the 688 * journal has been aborted. We return 1 as a hint to callers 689 * who might what to use the return value from 690 * ext4_grp_locked_error() to distinguish between the 691 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 692 * aggressively from the ext4 function in question, with a 693 * more appropriate error code. 694 */ 695 ext4_lock_group(sb, grp); 696 return; 697 } 698 699 void ext4_update_dynamic_rev(struct super_block *sb) 700 { 701 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 702 703 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 704 return; 705 706 ext4_warning(sb, 707 "updating to rev %d because of new feature flag, " 708 "running e2fsck is recommended", 709 EXT4_DYNAMIC_REV); 710 711 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 712 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 713 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 714 /* leave es->s_feature_*compat flags alone */ 715 /* es->s_uuid will be set by e2fsck if empty */ 716 717 /* 718 * The rest of the superblock fields should be zero, and if not it 719 * means they are likely already in use, so leave them alone. We 720 * can leave it up to e2fsck to clean up any inconsistencies there. 721 */ 722 } 723 724 /* 725 * Open the external journal device 726 */ 727 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 728 { 729 struct block_device *bdev; 730 char b[BDEVNAME_SIZE]; 731 732 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 733 if (IS_ERR(bdev)) 734 goto fail; 735 return bdev; 736 737 fail: 738 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 739 __bdevname(dev, b), PTR_ERR(bdev)); 740 return NULL; 741 } 742 743 /* 744 * Release the journal device 745 */ 746 static void ext4_blkdev_put(struct block_device *bdev) 747 { 748 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 749 } 750 751 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 752 { 753 struct block_device *bdev; 754 bdev = sbi->journal_bdev; 755 if (bdev) { 756 ext4_blkdev_put(bdev); 757 sbi->journal_bdev = NULL; 758 } 759 } 760 761 static inline struct inode *orphan_list_entry(struct list_head *l) 762 { 763 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 764 } 765 766 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 767 { 768 struct list_head *l; 769 770 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 771 le32_to_cpu(sbi->s_es->s_last_orphan)); 772 773 printk(KERN_ERR "sb_info orphan list:\n"); 774 list_for_each(l, &sbi->s_orphan) { 775 struct inode *inode = orphan_list_entry(l); 776 printk(KERN_ERR " " 777 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 778 inode->i_sb->s_id, inode->i_ino, inode, 779 inode->i_mode, inode->i_nlink, 780 NEXT_ORPHAN(inode)); 781 } 782 } 783 784 static void ext4_put_super(struct super_block *sb) 785 { 786 struct ext4_sb_info *sbi = EXT4_SB(sb); 787 struct ext4_super_block *es = sbi->s_es; 788 int i, err; 789 790 ext4_unregister_li_request(sb); 791 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 792 793 flush_workqueue(sbi->rsv_conversion_wq); 794 destroy_workqueue(sbi->rsv_conversion_wq); 795 796 if (sbi->s_journal) { 797 err = jbd2_journal_destroy(sbi->s_journal); 798 sbi->s_journal = NULL; 799 if (err < 0) 800 ext4_abort(sb, "Couldn't clean up the journal"); 801 } 802 803 ext4_es_unregister_shrinker(sbi); 804 del_timer_sync(&sbi->s_err_report); 805 ext4_release_system_zone(sb); 806 ext4_mb_release(sb); 807 ext4_ext_release(sb); 808 ext4_xattr_put_super(sb); 809 810 if (!(sb->s_flags & MS_RDONLY)) { 811 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 812 es->s_state = cpu_to_le16(sbi->s_mount_state); 813 } 814 if (!(sb->s_flags & MS_RDONLY)) 815 ext4_commit_super(sb, 1); 816 817 if (sbi->s_proc) { 818 remove_proc_entry("options", sbi->s_proc); 819 remove_proc_entry(sb->s_id, ext4_proc_root); 820 } 821 kobject_del(&sbi->s_kobj); 822 823 for (i = 0; i < sbi->s_gdb_count; i++) 824 brelse(sbi->s_group_desc[i]); 825 kvfree(sbi->s_group_desc); 826 kvfree(sbi->s_flex_groups); 827 percpu_counter_destroy(&sbi->s_freeclusters_counter); 828 percpu_counter_destroy(&sbi->s_freeinodes_counter); 829 percpu_counter_destroy(&sbi->s_dirs_counter); 830 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 831 brelse(sbi->s_sbh); 832 #ifdef CONFIG_QUOTA 833 for (i = 0; i < EXT4_MAXQUOTAS; i++) 834 kfree(sbi->s_qf_names[i]); 835 #endif 836 837 /* Debugging code just in case the in-memory inode orphan list 838 * isn't empty. The on-disk one can be non-empty if we've 839 * detected an error and taken the fs readonly, but the 840 * in-memory list had better be clean by this point. */ 841 if (!list_empty(&sbi->s_orphan)) 842 dump_orphan_list(sb, sbi); 843 J_ASSERT(list_empty(&sbi->s_orphan)); 844 845 sync_blockdev(sb->s_bdev); 846 invalidate_bdev(sb->s_bdev); 847 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 848 /* 849 * Invalidate the journal device's buffers. We don't want them 850 * floating about in memory - the physical journal device may 851 * hotswapped, and it breaks the `ro-after' testing code. 852 */ 853 sync_blockdev(sbi->journal_bdev); 854 invalidate_bdev(sbi->journal_bdev); 855 ext4_blkdev_remove(sbi); 856 } 857 if (sbi->s_mb_cache) { 858 ext4_xattr_destroy_cache(sbi->s_mb_cache); 859 sbi->s_mb_cache = NULL; 860 } 861 if (sbi->s_mmp_tsk) 862 kthread_stop(sbi->s_mmp_tsk); 863 sb->s_fs_info = NULL; 864 /* 865 * Now that we are completely done shutting down the 866 * superblock, we need to actually destroy the kobject. 867 */ 868 kobject_put(&sbi->s_kobj); 869 wait_for_completion(&sbi->s_kobj_unregister); 870 if (sbi->s_chksum_driver) 871 crypto_free_shash(sbi->s_chksum_driver); 872 kfree(sbi->s_blockgroup_lock); 873 kfree(sbi); 874 } 875 876 static struct kmem_cache *ext4_inode_cachep; 877 878 /* 879 * Called inside transaction, so use GFP_NOFS 880 */ 881 static struct inode *ext4_alloc_inode(struct super_block *sb) 882 { 883 struct ext4_inode_info *ei; 884 885 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 886 if (!ei) 887 return NULL; 888 889 ei->vfs_inode.i_version = 1; 890 spin_lock_init(&ei->i_raw_lock); 891 INIT_LIST_HEAD(&ei->i_prealloc_list); 892 spin_lock_init(&ei->i_prealloc_lock); 893 ext4_es_init_tree(&ei->i_es_tree); 894 rwlock_init(&ei->i_es_lock); 895 INIT_LIST_HEAD(&ei->i_es_list); 896 ei->i_es_all_nr = 0; 897 ei->i_es_shk_nr = 0; 898 ei->i_es_shrink_lblk = 0; 899 ei->i_reserved_data_blocks = 0; 900 ei->i_reserved_meta_blocks = 0; 901 ei->i_allocated_meta_blocks = 0; 902 ei->i_da_metadata_calc_len = 0; 903 ei->i_da_metadata_calc_last_lblock = 0; 904 spin_lock_init(&(ei->i_block_reservation_lock)); 905 #ifdef CONFIG_QUOTA 906 ei->i_reserved_quota = 0; 907 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 908 #endif 909 ei->jinode = NULL; 910 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 911 spin_lock_init(&ei->i_completed_io_lock); 912 ei->i_sync_tid = 0; 913 ei->i_datasync_tid = 0; 914 atomic_set(&ei->i_ioend_count, 0); 915 atomic_set(&ei->i_unwritten, 0); 916 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 917 #ifdef CONFIG_EXT4_FS_ENCRYPTION 918 ei->i_crypt_info = NULL; 919 #endif 920 return &ei->vfs_inode; 921 } 922 923 static int ext4_drop_inode(struct inode *inode) 924 { 925 int drop = generic_drop_inode(inode); 926 927 trace_ext4_drop_inode(inode, drop); 928 return drop; 929 } 930 931 static void ext4_i_callback(struct rcu_head *head) 932 { 933 struct inode *inode = container_of(head, struct inode, i_rcu); 934 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 935 } 936 937 static void ext4_destroy_inode(struct inode *inode) 938 { 939 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 940 ext4_msg(inode->i_sb, KERN_ERR, 941 "Inode %lu (%p): orphan list check failed!", 942 inode->i_ino, EXT4_I(inode)); 943 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 944 EXT4_I(inode), sizeof(struct ext4_inode_info), 945 true); 946 dump_stack(); 947 } 948 call_rcu(&inode->i_rcu, ext4_i_callback); 949 } 950 951 static void init_once(void *foo) 952 { 953 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 954 955 INIT_LIST_HEAD(&ei->i_orphan); 956 init_rwsem(&ei->xattr_sem); 957 init_rwsem(&ei->i_data_sem); 958 inode_init_once(&ei->vfs_inode); 959 } 960 961 static int __init init_inodecache(void) 962 { 963 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 964 sizeof(struct ext4_inode_info), 965 0, (SLAB_RECLAIM_ACCOUNT| 966 SLAB_MEM_SPREAD), 967 init_once); 968 if (ext4_inode_cachep == NULL) 969 return -ENOMEM; 970 return 0; 971 } 972 973 static void destroy_inodecache(void) 974 { 975 /* 976 * Make sure all delayed rcu free inodes are flushed before we 977 * destroy cache. 978 */ 979 rcu_barrier(); 980 kmem_cache_destroy(ext4_inode_cachep); 981 } 982 983 void ext4_clear_inode(struct inode *inode) 984 { 985 invalidate_inode_buffers(inode); 986 clear_inode(inode); 987 dquot_drop(inode); 988 ext4_discard_preallocations(inode); 989 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 990 if (EXT4_I(inode)->jinode) { 991 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 992 EXT4_I(inode)->jinode); 993 jbd2_free_inode(EXT4_I(inode)->jinode); 994 EXT4_I(inode)->jinode = NULL; 995 } 996 #ifdef CONFIG_EXT4_FS_ENCRYPTION 997 if (EXT4_I(inode)->i_crypt_info) 998 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 999 #endif 1000 } 1001 1002 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1003 u64 ino, u32 generation) 1004 { 1005 struct inode *inode; 1006 1007 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1008 return ERR_PTR(-ESTALE); 1009 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1010 return ERR_PTR(-ESTALE); 1011 1012 /* iget isn't really right if the inode is currently unallocated!! 1013 * 1014 * ext4_read_inode will return a bad_inode if the inode had been 1015 * deleted, so we should be safe. 1016 * 1017 * Currently we don't know the generation for parent directory, so 1018 * a generation of 0 means "accept any" 1019 */ 1020 inode = ext4_iget_normal(sb, ino); 1021 if (IS_ERR(inode)) 1022 return ERR_CAST(inode); 1023 if (generation && inode->i_generation != generation) { 1024 iput(inode); 1025 return ERR_PTR(-ESTALE); 1026 } 1027 1028 return inode; 1029 } 1030 1031 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1032 int fh_len, int fh_type) 1033 { 1034 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1035 ext4_nfs_get_inode); 1036 } 1037 1038 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1039 int fh_len, int fh_type) 1040 { 1041 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1042 ext4_nfs_get_inode); 1043 } 1044 1045 /* 1046 * Try to release metadata pages (indirect blocks, directories) which are 1047 * mapped via the block device. Since these pages could have journal heads 1048 * which would prevent try_to_free_buffers() from freeing them, we must use 1049 * jbd2 layer's try_to_free_buffers() function to release them. 1050 */ 1051 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1052 gfp_t wait) 1053 { 1054 journal_t *journal = EXT4_SB(sb)->s_journal; 1055 1056 WARN_ON(PageChecked(page)); 1057 if (!page_has_buffers(page)) 1058 return 0; 1059 if (journal) 1060 return jbd2_journal_try_to_free_buffers(journal, page, 1061 wait & ~__GFP_WAIT); 1062 return try_to_free_buffers(page); 1063 } 1064 1065 #ifdef CONFIG_QUOTA 1066 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1067 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1068 1069 static int ext4_write_dquot(struct dquot *dquot); 1070 static int ext4_acquire_dquot(struct dquot *dquot); 1071 static int ext4_release_dquot(struct dquot *dquot); 1072 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1073 static int ext4_write_info(struct super_block *sb, int type); 1074 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1075 struct path *path); 1076 static int ext4_quota_off(struct super_block *sb, int type); 1077 static int ext4_quota_on_mount(struct super_block *sb, int type); 1078 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1079 size_t len, loff_t off); 1080 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1081 const char *data, size_t len, loff_t off); 1082 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1083 unsigned int flags); 1084 static int ext4_enable_quotas(struct super_block *sb); 1085 1086 static struct dquot **ext4_get_dquots(struct inode *inode) 1087 { 1088 return EXT4_I(inode)->i_dquot; 1089 } 1090 1091 static const struct dquot_operations ext4_quota_operations = { 1092 .get_reserved_space = ext4_get_reserved_space, 1093 .write_dquot = ext4_write_dquot, 1094 .acquire_dquot = ext4_acquire_dquot, 1095 .release_dquot = ext4_release_dquot, 1096 .mark_dirty = ext4_mark_dquot_dirty, 1097 .write_info = ext4_write_info, 1098 .alloc_dquot = dquot_alloc, 1099 .destroy_dquot = dquot_destroy, 1100 }; 1101 1102 static const struct quotactl_ops ext4_qctl_operations = { 1103 .quota_on = ext4_quota_on, 1104 .quota_off = ext4_quota_off, 1105 .quota_sync = dquot_quota_sync, 1106 .get_state = dquot_get_state, 1107 .set_info = dquot_set_dqinfo, 1108 .get_dqblk = dquot_get_dqblk, 1109 .set_dqblk = dquot_set_dqblk 1110 }; 1111 #endif 1112 1113 static const struct super_operations ext4_sops = { 1114 .alloc_inode = ext4_alloc_inode, 1115 .destroy_inode = ext4_destroy_inode, 1116 .write_inode = ext4_write_inode, 1117 .dirty_inode = ext4_dirty_inode, 1118 .drop_inode = ext4_drop_inode, 1119 .evict_inode = ext4_evict_inode, 1120 .put_super = ext4_put_super, 1121 .sync_fs = ext4_sync_fs, 1122 .freeze_fs = ext4_freeze, 1123 .unfreeze_fs = ext4_unfreeze, 1124 .statfs = ext4_statfs, 1125 .remount_fs = ext4_remount, 1126 .show_options = ext4_show_options, 1127 #ifdef CONFIG_QUOTA 1128 .quota_read = ext4_quota_read, 1129 .quota_write = ext4_quota_write, 1130 .get_dquots = ext4_get_dquots, 1131 #endif 1132 .bdev_try_to_free_page = bdev_try_to_free_page, 1133 }; 1134 1135 static const struct export_operations ext4_export_ops = { 1136 .fh_to_dentry = ext4_fh_to_dentry, 1137 .fh_to_parent = ext4_fh_to_parent, 1138 .get_parent = ext4_get_parent, 1139 }; 1140 1141 enum { 1142 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1143 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1144 Opt_nouid32, Opt_debug, Opt_removed, 1145 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1146 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1147 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1148 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1149 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1150 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1151 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1152 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1153 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1154 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1155 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1156 Opt_lazytime, Opt_nolazytime, 1157 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1158 Opt_inode_readahead_blks, Opt_journal_ioprio, 1159 Opt_dioread_nolock, Opt_dioread_lock, 1160 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1161 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1162 }; 1163 1164 static const match_table_t tokens = { 1165 {Opt_bsd_df, "bsddf"}, 1166 {Opt_minix_df, "minixdf"}, 1167 {Opt_grpid, "grpid"}, 1168 {Opt_grpid, "bsdgroups"}, 1169 {Opt_nogrpid, "nogrpid"}, 1170 {Opt_nogrpid, "sysvgroups"}, 1171 {Opt_resgid, "resgid=%u"}, 1172 {Opt_resuid, "resuid=%u"}, 1173 {Opt_sb, "sb=%u"}, 1174 {Opt_err_cont, "errors=continue"}, 1175 {Opt_err_panic, "errors=panic"}, 1176 {Opt_err_ro, "errors=remount-ro"}, 1177 {Opt_nouid32, "nouid32"}, 1178 {Opt_debug, "debug"}, 1179 {Opt_removed, "oldalloc"}, 1180 {Opt_removed, "orlov"}, 1181 {Opt_user_xattr, "user_xattr"}, 1182 {Opt_nouser_xattr, "nouser_xattr"}, 1183 {Opt_acl, "acl"}, 1184 {Opt_noacl, "noacl"}, 1185 {Opt_noload, "norecovery"}, 1186 {Opt_noload, "noload"}, 1187 {Opt_removed, "nobh"}, 1188 {Opt_removed, "bh"}, 1189 {Opt_commit, "commit=%u"}, 1190 {Opt_min_batch_time, "min_batch_time=%u"}, 1191 {Opt_max_batch_time, "max_batch_time=%u"}, 1192 {Opt_journal_dev, "journal_dev=%u"}, 1193 {Opt_journal_path, "journal_path=%s"}, 1194 {Opt_journal_checksum, "journal_checksum"}, 1195 {Opt_nojournal_checksum, "nojournal_checksum"}, 1196 {Opt_journal_async_commit, "journal_async_commit"}, 1197 {Opt_abort, "abort"}, 1198 {Opt_data_journal, "data=journal"}, 1199 {Opt_data_ordered, "data=ordered"}, 1200 {Opt_data_writeback, "data=writeback"}, 1201 {Opt_data_err_abort, "data_err=abort"}, 1202 {Opt_data_err_ignore, "data_err=ignore"}, 1203 {Opt_offusrjquota, "usrjquota="}, 1204 {Opt_usrjquota, "usrjquota=%s"}, 1205 {Opt_offgrpjquota, "grpjquota="}, 1206 {Opt_grpjquota, "grpjquota=%s"}, 1207 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1208 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1209 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1210 {Opt_grpquota, "grpquota"}, 1211 {Opt_noquota, "noquota"}, 1212 {Opt_quota, "quota"}, 1213 {Opt_usrquota, "usrquota"}, 1214 {Opt_barrier, "barrier=%u"}, 1215 {Opt_barrier, "barrier"}, 1216 {Opt_nobarrier, "nobarrier"}, 1217 {Opt_i_version, "i_version"}, 1218 {Opt_dax, "dax"}, 1219 {Opt_stripe, "stripe=%u"}, 1220 {Opt_delalloc, "delalloc"}, 1221 {Opt_lazytime, "lazytime"}, 1222 {Opt_nolazytime, "nolazytime"}, 1223 {Opt_nodelalloc, "nodelalloc"}, 1224 {Opt_removed, "mblk_io_submit"}, 1225 {Opt_removed, "nomblk_io_submit"}, 1226 {Opt_block_validity, "block_validity"}, 1227 {Opt_noblock_validity, "noblock_validity"}, 1228 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1229 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1230 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1231 {Opt_auto_da_alloc, "auto_da_alloc"}, 1232 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1233 {Opt_dioread_nolock, "dioread_nolock"}, 1234 {Opt_dioread_lock, "dioread_lock"}, 1235 {Opt_discard, "discard"}, 1236 {Opt_nodiscard, "nodiscard"}, 1237 {Opt_init_itable, "init_itable=%u"}, 1238 {Opt_init_itable, "init_itable"}, 1239 {Opt_noinit_itable, "noinit_itable"}, 1240 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1241 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1242 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1243 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1244 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1245 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1246 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1247 {Opt_err, NULL}, 1248 }; 1249 1250 static ext4_fsblk_t get_sb_block(void **data) 1251 { 1252 ext4_fsblk_t sb_block; 1253 char *options = (char *) *data; 1254 1255 if (!options || strncmp(options, "sb=", 3) != 0) 1256 return 1; /* Default location */ 1257 1258 options += 3; 1259 /* TODO: use simple_strtoll with >32bit ext4 */ 1260 sb_block = simple_strtoul(options, &options, 0); 1261 if (*options && *options != ',') { 1262 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1263 (char *) *data); 1264 return 1; 1265 } 1266 if (*options == ',') 1267 options++; 1268 *data = (void *) options; 1269 1270 return sb_block; 1271 } 1272 1273 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1274 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1275 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1276 1277 #ifdef CONFIG_QUOTA 1278 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1279 { 1280 struct ext4_sb_info *sbi = EXT4_SB(sb); 1281 char *qname; 1282 int ret = -1; 1283 1284 if (sb_any_quota_loaded(sb) && 1285 !sbi->s_qf_names[qtype]) { 1286 ext4_msg(sb, KERN_ERR, 1287 "Cannot change journaled " 1288 "quota options when quota turned on"); 1289 return -1; 1290 } 1291 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1292 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1293 "when QUOTA feature is enabled"); 1294 return -1; 1295 } 1296 qname = match_strdup(args); 1297 if (!qname) { 1298 ext4_msg(sb, KERN_ERR, 1299 "Not enough memory for storing quotafile name"); 1300 return -1; 1301 } 1302 if (sbi->s_qf_names[qtype]) { 1303 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1304 ret = 1; 1305 else 1306 ext4_msg(sb, KERN_ERR, 1307 "%s quota file already specified", 1308 QTYPE2NAME(qtype)); 1309 goto errout; 1310 } 1311 if (strchr(qname, '/')) { 1312 ext4_msg(sb, KERN_ERR, 1313 "quotafile must be on filesystem root"); 1314 goto errout; 1315 } 1316 sbi->s_qf_names[qtype] = qname; 1317 set_opt(sb, QUOTA); 1318 return 1; 1319 errout: 1320 kfree(qname); 1321 return ret; 1322 } 1323 1324 static int clear_qf_name(struct super_block *sb, int qtype) 1325 { 1326 1327 struct ext4_sb_info *sbi = EXT4_SB(sb); 1328 1329 if (sb_any_quota_loaded(sb) && 1330 sbi->s_qf_names[qtype]) { 1331 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1332 " when quota turned on"); 1333 return -1; 1334 } 1335 kfree(sbi->s_qf_names[qtype]); 1336 sbi->s_qf_names[qtype] = NULL; 1337 return 1; 1338 } 1339 #endif 1340 1341 #define MOPT_SET 0x0001 1342 #define MOPT_CLEAR 0x0002 1343 #define MOPT_NOSUPPORT 0x0004 1344 #define MOPT_EXPLICIT 0x0008 1345 #define MOPT_CLEAR_ERR 0x0010 1346 #define MOPT_GTE0 0x0020 1347 #ifdef CONFIG_QUOTA 1348 #define MOPT_Q 0 1349 #define MOPT_QFMT 0x0040 1350 #else 1351 #define MOPT_Q MOPT_NOSUPPORT 1352 #define MOPT_QFMT MOPT_NOSUPPORT 1353 #endif 1354 #define MOPT_DATAJ 0x0080 1355 #define MOPT_NO_EXT2 0x0100 1356 #define MOPT_NO_EXT3 0x0200 1357 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1358 #define MOPT_STRING 0x0400 1359 1360 static const struct mount_opts { 1361 int token; 1362 int mount_opt; 1363 int flags; 1364 } ext4_mount_opts[] = { 1365 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1366 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1367 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1368 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1369 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1370 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1371 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1372 MOPT_EXT4_ONLY | MOPT_SET}, 1373 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1374 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1375 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1376 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1377 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1378 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1379 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1380 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1381 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1382 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1383 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1384 MOPT_EXT4_ONLY | MOPT_SET}, 1385 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1386 EXT4_MOUNT_JOURNAL_CHECKSUM), 1387 MOPT_EXT4_ONLY | MOPT_SET}, 1388 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1389 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1390 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1391 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1392 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1393 MOPT_NO_EXT2 | MOPT_SET}, 1394 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1395 MOPT_NO_EXT2 | MOPT_CLEAR}, 1396 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1397 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1398 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1399 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1400 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1401 {Opt_commit, 0, MOPT_GTE0}, 1402 {Opt_max_batch_time, 0, MOPT_GTE0}, 1403 {Opt_min_batch_time, 0, MOPT_GTE0}, 1404 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1405 {Opt_init_itable, 0, MOPT_GTE0}, 1406 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1407 {Opt_stripe, 0, MOPT_GTE0}, 1408 {Opt_resuid, 0, MOPT_GTE0}, 1409 {Opt_resgid, 0, MOPT_GTE0}, 1410 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1411 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1412 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1413 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1414 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1415 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1416 MOPT_NO_EXT2 | MOPT_DATAJ}, 1417 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1418 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1419 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1420 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1421 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1422 #else 1423 {Opt_acl, 0, MOPT_NOSUPPORT}, 1424 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1425 #endif 1426 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1427 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1428 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1429 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1430 MOPT_SET | MOPT_Q}, 1431 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1432 MOPT_SET | MOPT_Q}, 1433 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1434 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1435 {Opt_usrjquota, 0, MOPT_Q}, 1436 {Opt_grpjquota, 0, MOPT_Q}, 1437 {Opt_offusrjquota, 0, MOPT_Q}, 1438 {Opt_offgrpjquota, 0, MOPT_Q}, 1439 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1440 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1441 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1442 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1443 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1444 {Opt_err, 0, 0} 1445 }; 1446 1447 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1448 substring_t *args, unsigned long *journal_devnum, 1449 unsigned int *journal_ioprio, int is_remount) 1450 { 1451 struct ext4_sb_info *sbi = EXT4_SB(sb); 1452 const struct mount_opts *m; 1453 kuid_t uid; 1454 kgid_t gid; 1455 int arg = 0; 1456 1457 #ifdef CONFIG_QUOTA 1458 if (token == Opt_usrjquota) 1459 return set_qf_name(sb, USRQUOTA, &args[0]); 1460 else if (token == Opt_grpjquota) 1461 return set_qf_name(sb, GRPQUOTA, &args[0]); 1462 else if (token == Opt_offusrjquota) 1463 return clear_qf_name(sb, USRQUOTA); 1464 else if (token == Opt_offgrpjquota) 1465 return clear_qf_name(sb, GRPQUOTA); 1466 #endif 1467 switch (token) { 1468 case Opt_noacl: 1469 case Opt_nouser_xattr: 1470 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1471 break; 1472 case Opt_sb: 1473 return 1; /* handled by get_sb_block() */ 1474 case Opt_removed: 1475 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1476 return 1; 1477 case Opt_abort: 1478 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1479 return 1; 1480 case Opt_i_version: 1481 sb->s_flags |= MS_I_VERSION; 1482 return 1; 1483 case Opt_lazytime: 1484 sb->s_flags |= MS_LAZYTIME; 1485 return 1; 1486 case Opt_nolazytime: 1487 sb->s_flags &= ~MS_LAZYTIME; 1488 return 1; 1489 } 1490 1491 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1492 if (token == m->token) 1493 break; 1494 1495 if (m->token == Opt_err) { 1496 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1497 "or missing value", opt); 1498 return -1; 1499 } 1500 1501 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1502 ext4_msg(sb, KERN_ERR, 1503 "Mount option \"%s\" incompatible with ext2", opt); 1504 return -1; 1505 } 1506 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1507 ext4_msg(sb, KERN_ERR, 1508 "Mount option \"%s\" incompatible with ext3", opt); 1509 return -1; 1510 } 1511 1512 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1513 return -1; 1514 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1515 return -1; 1516 if (m->flags & MOPT_EXPLICIT) 1517 set_opt2(sb, EXPLICIT_DELALLOC); 1518 if (m->flags & MOPT_CLEAR_ERR) 1519 clear_opt(sb, ERRORS_MASK); 1520 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1521 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1522 "options when quota turned on"); 1523 return -1; 1524 } 1525 1526 if (m->flags & MOPT_NOSUPPORT) { 1527 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1528 } else if (token == Opt_commit) { 1529 if (arg == 0) 1530 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1531 sbi->s_commit_interval = HZ * arg; 1532 } else if (token == Opt_max_batch_time) { 1533 sbi->s_max_batch_time = arg; 1534 } else if (token == Opt_min_batch_time) { 1535 sbi->s_min_batch_time = arg; 1536 } else if (token == Opt_inode_readahead_blks) { 1537 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1538 ext4_msg(sb, KERN_ERR, 1539 "EXT4-fs: inode_readahead_blks must be " 1540 "0 or a power of 2 smaller than 2^31"); 1541 return -1; 1542 } 1543 sbi->s_inode_readahead_blks = arg; 1544 } else if (token == Opt_init_itable) { 1545 set_opt(sb, INIT_INODE_TABLE); 1546 if (!args->from) 1547 arg = EXT4_DEF_LI_WAIT_MULT; 1548 sbi->s_li_wait_mult = arg; 1549 } else if (token == Opt_max_dir_size_kb) { 1550 sbi->s_max_dir_size_kb = arg; 1551 } else if (token == Opt_stripe) { 1552 sbi->s_stripe = arg; 1553 } else if (token == Opt_resuid) { 1554 uid = make_kuid(current_user_ns(), arg); 1555 if (!uid_valid(uid)) { 1556 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1557 return -1; 1558 } 1559 sbi->s_resuid = uid; 1560 } else if (token == Opt_resgid) { 1561 gid = make_kgid(current_user_ns(), arg); 1562 if (!gid_valid(gid)) { 1563 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1564 return -1; 1565 } 1566 sbi->s_resgid = gid; 1567 } else if (token == Opt_journal_dev) { 1568 if (is_remount) { 1569 ext4_msg(sb, KERN_ERR, 1570 "Cannot specify journal on remount"); 1571 return -1; 1572 } 1573 *journal_devnum = arg; 1574 } else if (token == Opt_journal_path) { 1575 char *journal_path; 1576 struct inode *journal_inode; 1577 struct path path; 1578 int error; 1579 1580 if (is_remount) { 1581 ext4_msg(sb, KERN_ERR, 1582 "Cannot specify journal on remount"); 1583 return -1; 1584 } 1585 journal_path = match_strdup(&args[0]); 1586 if (!journal_path) { 1587 ext4_msg(sb, KERN_ERR, "error: could not dup " 1588 "journal device string"); 1589 return -1; 1590 } 1591 1592 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1593 if (error) { 1594 ext4_msg(sb, KERN_ERR, "error: could not find " 1595 "journal device path: error %d", error); 1596 kfree(journal_path); 1597 return -1; 1598 } 1599 1600 journal_inode = d_inode(path.dentry); 1601 if (!S_ISBLK(journal_inode->i_mode)) { 1602 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1603 "is not a block device", journal_path); 1604 path_put(&path); 1605 kfree(journal_path); 1606 return -1; 1607 } 1608 1609 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1610 path_put(&path); 1611 kfree(journal_path); 1612 } else if (token == Opt_journal_ioprio) { 1613 if (arg > 7) { 1614 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1615 " (must be 0-7)"); 1616 return -1; 1617 } 1618 *journal_ioprio = 1619 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1620 } else if (token == Opt_test_dummy_encryption) { 1621 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1622 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1623 ext4_msg(sb, KERN_WARNING, 1624 "Test dummy encryption mode enabled"); 1625 #else 1626 ext4_msg(sb, KERN_WARNING, 1627 "Test dummy encryption mount option ignored"); 1628 #endif 1629 } else if (m->flags & MOPT_DATAJ) { 1630 if (is_remount) { 1631 if (!sbi->s_journal) 1632 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1633 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1634 ext4_msg(sb, KERN_ERR, 1635 "Cannot change data mode on remount"); 1636 return -1; 1637 } 1638 } else { 1639 clear_opt(sb, DATA_FLAGS); 1640 sbi->s_mount_opt |= m->mount_opt; 1641 } 1642 #ifdef CONFIG_QUOTA 1643 } else if (m->flags & MOPT_QFMT) { 1644 if (sb_any_quota_loaded(sb) && 1645 sbi->s_jquota_fmt != m->mount_opt) { 1646 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1647 "quota options when quota turned on"); 1648 return -1; 1649 } 1650 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1651 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1652 ext4_msg(sb, KERN_ERR, 1653 "Cannot set journaled quota options " 1654 "when QUOTA feature is enabled"); 1655 return -1; 1656 } 1657 sbi->s_jquota_fmt = m->mount_opt; 1658 #endif 1659 #ifndef CONFIG_FS_DAX 1660 } else if (token == Opt_dax) { 1661 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1662 return -1; 1663 #endif 1664 } else { 1665 if (!args->from) 1666 arg = 1; 1667 if (m->flags & MOPT_CLEAR) 1668 arg = !arg; 1669 else if (unlikely(!(m->flags & MOPT_SET))) { 1670 ext4_msg(sb, KERN_WARNING, 1671 "buggy handling of option %s", opt); 1672 WARN_ON(1); 1673 return -1; 1674 } 1675 if (arg != 0) 1676 sbi->s_mount_opt |= m->mount_opt; 1677 else 1678 sbi->s_mount_opt &= ~m->mount_opt; 1679 } 1680 return 1; 1681 } 1682 1683 static int parse_options(char *options, struct super_block *sb, 1684 unsigned long *journal_devnum, 1685 unsigned int *journal_ioprio, 1686 int is_remount) 1687 { 1688 struct ext4_sb_info *sbi = EXT4_SB(sb); 1689 char *p; 1690 substring_t args[MAX_OPT_ARGS]; 1691 int token; 1692 1693 if (!options) 1694 return 1; 1695 1696 while ((p = strsep(&options, ",")) != NULL) { 1697 if (!*p) 1698 continue; 1699 /* 1700 * Initialize args struct so we know whether arg was 1701 * found; some options take optional arguments. 1702 */ 1703 args[0].to = args[0].from = NULL; 1704 token = match_token(p, tokens, args); 1705 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1706 journal_ioprio, is_remount) < 0) 1707 return 0; 1708 } 1709 #ifdef CONFIG_QUOTA 1710 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1711 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1712 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1713 "feature is enabled"); 1714 return 0; 1715 } 1716 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1717 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1718 clear_opt(sb, USRQUOTA); 1719 1720 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1721 clear_opt(sb, GRPQUOTA); 1722 1723 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1724 ext4_msg(sb, KERN_ERR, "old and new quota " 1725 "format mixing"); 1726 return 0; 1727 } 1728 1729 if (!sbi->s_jquota_fmt) { 1730 ext4_msg(sb, KERN_ERR, "journaled quota format " 1731 "not specified"); 1732 return 0; 1733 } 1734 } 1735 #endif 1736 if (test_opt(sb, DIOREAD_NOLOCK)) { 1737 int blocksize = 1738 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1739 1740 if (blocksize < PAGE_CACHE_SIZE) { 1741 ext4_msg(sb, KERN_ERR, "can't mount with " 1742 "dioread_nolock if block size != PAGE_SIZE"); 1743 return 0; 1744 } 1745 } 1746 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1747 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1748 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1749 "in data=ordered mode"); 1750 return 0; 1751 } 1752 return 1; 1753 } 1754 1755 static inline void ext4_show_quota_options(struct seq_file *seq, 1756 struct super_block *sb) 1757 { 1758 #if defined(CONFIG_QUOTA) 1759 struct ext4_sb_info *sbi = EXT4_SB(sb); 1760 1761 if (sbi->s_jquota_fmt) { 1762 char *fmtname = ""; 1763 1764 switch (sbi->s_jquota_fmt) { 1765 case QFMT_VFS_OLD: 1766 fmtname = "vfsold"; 1767 break; 1768 case QFMT_VFS_V0: 1769 fmtname = "vfsv0"; 1770 break; 1771 case QFMT_VFS_V1: 1772 fmtname = "vfsv1"; 1773 break; 1774 } 1775 seq_printf(seq, ",jqfmt=%s", fmtname); 1776 } 1777 1778 if (sbi->s_qf_names[USRQUOTA]) 1779 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1780 1781 if (sbi->s_qf_names[GRPQUOTA]) 1782 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1783 #endif 1784 } 1785 1786 static const char *token2str(int token) 1787 { 1788 const struct match_token *t; 1789 1790 for (t = tokens; t->token != Opt_err; t++) 1791 if (t->token == token && !strchr(t->pattern, '=')) 1792 break; 1793 return t->pattern; 1794 } 1795 1796 /* 1797 * Show an option if 1798 * - it's set to a non-default value OR 1799 * - if the per-sb default is different from the global default 1800 */ 1801 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1802 int nodefs) 1803 { 1804 struct ext4_sb_info *sbi = EXT4_SB(sb); 1805 struct ext4_super_block *es = sbi->s_es; 1806 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1807 const struct mount_opts *m; 1808 char sep = nodefs ? '\n' : ','; 1809 1810 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1811 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1812 1813 if (sbi->s_sb_block != 1) 1814 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1815 1816 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1817 int want_set = m->flags & MOPT_SET; 1818 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1819 (m->flags & MOPT_CLEAR_ERR)) 1820 continue; 1821 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1822 continue; /* skip if same as the default */ 1823 if ((want_set && 1824 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1825 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1826 continue; /* select Opt_noFoo vs Opt_Foo */ 1827 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1828 } 1829 1830 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1831 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1832 SEQ_OPTS_PRINT("resuid=%u", 1833 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1834 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1835 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1836 SEQ_OPTS_PRINT("resgid=%u", 1837 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1838 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1839 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1840 SEQ_OPTS_PUTS("errors=remount-ro"); 1841 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1842 SEQ_OPTS_PUTS("errors=continue"); 1843 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1844 SEQ_OPTS_PUTS("errors=panic"); 1845 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1846 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1847 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1848 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1849 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1850 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1851 if (sb->s_flags & MS_I_VERSION) 1852 SEQ_OPTS_PUTS("i_version"); 1853 if (nodefs || sbi->s_stripe) 1854 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1855 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1856 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1857 SEQ_OPTS_PUTS("data=journal"); 1858 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1859 SEQ_OPTS_PUTS("data=ordered"); 1860 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1861 SEQ_OPTS_PUTS("data=writeback"); 1862 } 1863 if (nodefs || 1864 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1865 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1866 sbi->s_inode_readahead_blks); 1867 1868 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1869 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1870 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1871 if (nodefs || sbi->s_max_dir_size_kb) 1872 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1873 1874 ext4_show_quota_options(seq, sb); 1875 return 0; 1876 } 1877 1878 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1879 { 1880 return _ext4_show_options(seq, root->d_sb, 0); 1881 } 1882 1883 static int options_seq_show(struct seq_file *seq, void *offset) 1884 { 1885 struct super_block *sb = seq->private; 1886 int rc; 1887 1888 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1889 rc = _ext4_show_options(seq, sb, 1); 1890 seq_puts(seq, "\n"); 1891 return rc; 1892 } 1893 1894 static int options_open_fs(struct inode *inode, struct file *file) 1895 { 1896 return single_open(file, options_seq_show, PDE_DATA(inode)); 1897 } 1898 1899 static const struct file_operations ext4_seq_options_fops = { 1900 .owner = THIS_MODULE, 1901 .open = options_open_fs, 1902 .read = seq_read, 1903 .llseek = seq_lseek, 1904 .release = single_release, 1905 }; 1906 1907 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1908 int read_only) 1909 { 1910 struct ext4_sb_info *sbi = EXT4_SB(sb); 1911 int res = 0; 1912 1913 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1914 ext4_msg(sb, KERN_ERR, "revision level too high, " 1915 "forcing read-only mode"); 1916 res = MS_RDONLY; 1917 } 1918 if (read_only) 1919 goto done; 1920 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1921 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1922 "running e2fsck is recommended"); 1923 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1924 ext4_msg(sb, KERN_WARNING, 1925 "warning: mounting fs with errors, " 1926 "running e2fsck is recommended"); 1927 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1928 le16_to_cpu(es->s_mnt_count) >= 1929 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1930 ext4_msg(sb, KERN_WARNING, 1931 "warning: maximal mount count reached, " 1932 "running e2fsck is recommended"); 1933 else if (le32_to_cpu(es->s_checkinterval) && 1934 (le32_to_cpu(es->s_lastcheck) + 1935 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1936 ext4_msg(sb, KERN_WARNING, 1937 "warning: checktime reached, " 1938 "running e2fsck is recommended"); 1939 if (!sbi->s_journal) 1940 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1941 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1942 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1943 le16_add_cpu(&es->s_mnt_count, 1); 1944 es->s_mtime = cpu_to_le32(get_seconds()); 1945 ext4_update_dynamic_rev(sb); 1946 if (sbi->s_journal) 1947 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1948 1949 ext4_commit_super(sb, 1); 1950 done: 1951 if (test_opt(sb, DEBUG)) 1952 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1953 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1954 sb->s_blocksize, 1955 sbi->s_groups_count, 1956 EXT4_BLOCKS_PER_GROUP(sb), 1957 EXT4_INODES_PER_GROUP(sb), 1958 sbi->s_mount_opt, sbi->s_mount_opt2); 1959 1960 cleancache_init_fs(sb); 1961 return res; 1962 } 1963 1964 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1965 { 1966 struct ext4_sb_info *sbi = EXT4_SB(sb); 1967 struct flex_groups *new_groups; 1968 int size; 1969 1970 if (!sbi->s_log_groups_per_flex) 1971 return 0; 1972 1973 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1974 if (size <= sbi->s_flex_groups_allocated) 1975 return 0; 1976 1977 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1978 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1979 if (!new_groups) { 1980 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1981 size / (int) sizeof(struct flex_groups)); 1982 return -ENOMEM; 1983 } 1984 1985 if (sbi->s_flex_groups) { 1986 memcpy(new_groups, sbi->s_flex_groups, 1987 (sbi->s_flex_groups_allocated * 1988 sizeof(struct flex_groups))); 1989 kvfree(sbi->s_flex_groups); 1990 } 1991 sbi->s_flex_groups = new_groups; 1992 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1993 return 0; 1994 } 1995 1996 static int ext4_fill_flex_info(struct super_block *sb) 1997 { 1998 struct ext4_sb_info *sbi = EXT4_SB(sb); 1999 struct ext4_group_desc *gdp = NULL; 2000 ext4_group_t flex_group; 2001 int i, err; 2002 2003 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2004 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2005 sbi->s_log_groups_per_flex = 0; 2006 return 1; 2007 } 2008 2009 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2010 if (err) 2011 goto failed; 2012 2013 for (i = 0; i < sbi->s_groups_count; i++) { 2014 gdp = ext4_get_group_desc(sb, i, NULL); 2015 2016 flex_group = ext4_flex_group(sbi, i); 2017 atomic_add(ext4_free_inodes_count(sb, gdp), 2018 &sbi->s_flex_groups[flex_group].free_inodes); 2019 atomic64_add(ext4_free_group_clusters(sb, gdp), 2020 &sbi->s_flex_groups[flex_group].free_clusters); 2021 atomic_add(ext4_used_dirs_count(sb, gdp), 2022 &sbi->s_flex_groups[flex_group].used_dirs); 2023 } 2024 2025 return 1; 2026 failed: 2027 return 0; 2028 } 2029 2030 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2031 struct ext4_group_desc *gdp) 2032 { 2033 int offset; 2034 __u16 crc = 0; 2035 __le32 le_group = cpu_to_le32(block_group); 2036 2037 if (ext4_has_metadata_csum(sbi->s_sb)) { 2038 /* Use new metadata_csum algorithm */ 2039 __le16 save_csum; 2040 __u32 csum32; 2041 2042 save_csum = gdp->bg_checksum; 2043 gdp->bg_checksum = 0; 2044 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2045 sizeof(le_group)); 2046 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2047 sbi->s_desc_size); 2048 gdp->bg_checksum = save_csum; 2049 2050 crc = csum32 & 0xFFFF; 2051 goto out; 2052 } 2053 2054 /* old crc16 code */ 2055 if (!(sbi->s_es->s_feature_ro_compat & 2056 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2057 return 0; 2058 2059 offset = offsetof(struct ext4_group_desc, bg_checksum); 2060 2061 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2062 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2063 crc = crc16(crc, (__u8 *)gdp, offset); 2064 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2065 /* for checksum of struct ext4_group_desc do the rest...*/ 2066 if ((sbi->s_es->s_feature_incompat & 2067 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2068 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2069 crc = crc16(crc, (__u8 *)gdp + offset, 2070 le16_to_cpu(sbi->s_es->s_desc_size) - 2071 offset); 2072 2073 out: 2074 return cpu_to_le16(crc); 2075 } 2076 2077 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2078 struct ext4_group_desc *gdp) 2079 { 2080 if (ext4_has_group_desc_csum(sb) && 2081 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2082 block_group, gdp))) 2083 return 0; 2084 2085 return 1; 2086 } 2087 2088 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2089 struct ext4_group_desc *gdp) 2090 { 2091 if (!ext4_has_group_desc_csum(sb)) 2092 return; 2093 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2094 } 2095 2096 /* Called at mount-time, super-block is locked */ 2097 static int ext4_check_descriptors(struct super_block *sb, 2098 ext4_group_t *first_not_zeroed) 2099 { 2100 struct ext4_sb_info *sbi = EXT4_SB(sb); 2101 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2102 ext4_fsblk_t last_block; 2103 ext4_fsblk_t block_bitmap; 2104 ext4_fsblk_t inode_bitmap; 2105 ext4_fsblk_t inode_table; 2106 int flexbg_flag = 0; 2107 ext4_group_t i, grp = sbi->s_groups_count; 2108 2109 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2110 flexbg_flag = 1; 2111 2112 ext4_debug("Checking group descriptors"); 2113 2114 for (i = 0; i < sbi->s_groups_count; i++) { 2115 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2116 2117 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2118 last_block = ext4_blocks_count(sbi->s_es) - 1; 2119 else 2120 last_block = first_block + 2121 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2122 2123 if ((grp == sbi->s_groups_count) && 2124 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2125 grp = i; 2126 2127 block_bitmap = ext4_block_bitmap(sb, gdp); 2128 if (block_bitmap < first_block || block_bitmap > last_block) { 2129 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2130 "Block bitmap for group %u not in group " 2131 "(block %llu)!", i, block_bitmap); 2132 return 0; 2133 } 2134 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2135 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2136 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2137 "Inode bitmap for group %u not in group " 2138 "(block %llu)!", i, inode_bitmap); 2139 return 0; 2140 } 2141 inode_table = ext4_inode_table(sb, gdp); 2142 if (inode_table < first_block || 2143 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2144 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2145 "Inode table for group %u not in group " 2146 "(block %llu)!", i, inode_table); 2147 return 0; 2148 } 2149 ext4_lock_group(sb, i); 2150 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2151 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2152 "Checksum for group %u failed (%u!=%u)", 2153 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2154 gdp)), le16_to_cpu(gdp->bg_checksum)); 2155 if (!(sb->s_flags & MS_RDONLY)) { 2156 ext4_unlock_group(sb, i); 2157 return 0; 2158 } 2159 } 2160 ext4_unlock_group(sb, i); 2161 if (!flexbg_flag) 2162 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2163 } 2164 if (NULL != first_not_zeroed) 2165 *first_not_zeroed = grp; 2166 return 1; 2167 } 2168 2169 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2170 * the superblock) which were deleted from all directories, but held open by 2171 * a process at the time of a crash. We walk the list and try to delete these 2172 * inodes at recovery time (only with a read-write filesystem). 2173 * 2174 * In order to keep the orphan inode chain consistent during traversal (in 2175 * case of crash during recovery), we link each inode into the superblock 2176 * orphan list_head and handle it the same way as an inode deletion during 2177 * normal operation (which journals the operations for us). 2178 * 2179 * We only do an iget() and an iput() on each inode, which is very safe if we 2180 * accidentally point at an in-use or already deleted inode. The worst that 2181 * can happen in this case is that we get a "bit already cleared" message from 2182 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2183 * e2fsck was run on this filesystem, and it must have already done the orphan 2184 * inode cleanup for us, so we can safely abort without any further action. 2185 */ 2186 static void ext4_orphan_cleanup(struct super_block *sb, 2187 struct ext4_super_block *es) 2188 { 2189 unsigned int s_flags = sb->s_flags; 2190 int nr_orphans = 0, nr_truncates = 0; 2191 #ifdef CONFIG_QUOTA 2192 int i; 2193 #endif 2194 if (!es->s_last_orphan) { 2195 jbd_debug(4, "no orphan inodes to clean up\n"); 2196 return; 2197 } 2198 2199 if (bdev_read_only(sb->s_bdev)) { 2200 ext4_msg(sb, KERN_ERR, "write access " 2201 "unavailable, skipping orphan cleanup"); 2202 return; 2203 } 2204 2205 /* Check if feature set would not allow a r/w mount */ 2206 if (!ext4_feature_set_ok(sb, 0)) { 2207 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2208 "unknown ROCOMPAT features"); 2209 return; 2210 } 2211 2212 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2213 /* don't clear list on RO mount w/ errors */ 2214 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2215 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2216 "clearing orphan list.\n"); 2217 es->s_last_orphan = 0; 2218 } 2219 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2220 return; 2221 } 2222 2223 if (s_flags & MS_RDONLY) { 2224 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2225 sb->s_flags &= ~MS_RDONLY; 2226 } 2227 #ifdef CONFIG_QUOTA 2228 /* Needed for iput() to work correctly and not trash data */ 2229 sb->s_flags |= MS_ACTIVE; 2230 /* Turn on quotas so that they are updated correctly */ 2231 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2232 if (EXT4_SB(sb)->s_qf_names[i]) { 2233 int ret = ext4_quota_on_mount(sb, i); 2234 if (ret < 0) 2235 ext4_msg(sb, KERN_ERR, 2236 "Cannot turn on journaled " 2237 "quota: error %d", ret); 2238 } 2239 } 2240 #endif 2241 2242 while (es->s_last_orphan) { 2243 struct inode *inode; 2244 2245 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2246 if (IS_ERR(inode)) { 2247 es->s_last_orphan = 0; 2248 break; 2249 } 2250 2251 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2252 dquot_initialize(inode); 2253 if (inode->i_nlink) { 2254 if (test_opt(sb, DEBUG)) 2255 ext4_msg(sb, KERN_DEBUG, 2256 "%s: truncating inode %lu to %lld bytes", 2257 __func__, inode->i_ino, inode->i_size); 2258 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2259 inode->i_ino, inode->i_size); 2260 mutex_lock(&inode->i_mutex); 2261 truncate_inode_pages(inode->i_mapping, inode->i_size); 2262 ext4_truncate(inode); 2263 mutex_unlock(&inode->i_mutex); 2264 nr_truncates++; 2265 } else { 2266 if (test_opt(sb, DEBUG)) 2267 ext4_msg(sb, KERN_DEBUG, 2268 "%s: deleting unreferenced inode %lu", 2269 __func__, inode->i_ino); 2270 jbd_debug(2, "deleting unreferenced inode %lu\n", 2271 inode->i_ino); 2272 nr_orphans++; 2273 } 2274 iput(inode); /* The delete magic happens here! */ 2275 } 2276 2277 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2278 2279 if (nr_orphans) 2280 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2281 PLURAL(nr_orphans)); 2282 if (nr_truncates) 2283 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2284 PLURAL(nr_truncates)); 2285 #ifdef CONFIG_QUOTA 2286 /* Turn quotas off */ 2287 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2288 if (sb_dqopt(sb)->files[i]) 2289 dquot_quota_off(sb, i); 2290 } 2291 #endif 2292 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2293 } 2294 2295 /* 2296 * Maximal extent format file size. 2297 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2298 * extent format containers, within a sector_t, and within i_blocks 2299 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2300 * so that won't be a limiting factor. 2301 * 2302 * However there is other limiting factor. We do store extents in the form 2303 * of starting block and length, hence the resulting length of the extent 2304 * covering maximum file size must fit into on-disk format containers as 2305 * well. Given that length is always by 1 unit bigger than max unit (because 2306 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2307 * 2308 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2309 */ 2310 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2311 { 2312 loff_t res; 2313 loff_t upper_limit = MAX_LFS_FILESIZE; 2314 2315 /* small i_blocks in vfs inode? */ 2316 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2317 /* 2318 * CONFIG_LBDAF is not enabled implies the inode 2319 * i_block represent total blocks in 512 bytes 2320 * 32 == size of vfs inode i_blocks * 8 2321 */ 2322 upper_limit = (1LL << 32) - 1; 2323 2324 /* total blocks in file system block size */ 2325 upper_limit >>= (blkbits - 9); 2326 upper_limit <<= blkbits; 2327 } 2328 2329 /* 2330 * 32-bit extent-start container, ee_block. We lower the maxbytes 2331 * by one fs block, so ee_len can cover the extent of maximum file 2332 * size 2333 */ 2334 res = (1LL << 32) - 1; 2335 res <<= blkbits; 2336 2337 /* Sanity check against vm- & vfs- imposed limits */ 2338 if (res > upper_limit) 2339 res = upper_limit; 2340 2341 return res; 2342 } 2343 2344 /* 2345 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2346 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2347 * We need to be 1 filesystem block less than the 2^48 sector limit. 2348 */ 2349 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2350 { 2351 loff_t res = EXT4_NDIR_BLOCKS; 2352 int meta_blocks; 2353 loff_t upper_limit; 2354 /* This is calculated to be the largest file size for a dense, block 2355 * mapped file such that the file's total number of 512-byte sectors, 2356 * including data and all indirect blocks, does not exceed (2^48 - 1). 2357 * 2358 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2359 * number of 512-byte sectors of the file. 2360 */ 2361 2362 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2363 /* 2364 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2365 * the inode i_block field represents total file blocks in 2366 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2367 */ 2368 upper_limit = (1LL << 32) - 1; 2369 2370 /* total blocks in file system block size */ 2371 upper_limit >>= (bits - 9); 2372 2373 } else { 2374 /* 2375 * We use 48 bit ext4_inode i_blocks 2376 * With EXT4_HUGE_FILE_FL set the i_blocks 2377 * represent total number of blocks in 2378 * file system block size 2379 */ 2380 upper_limit = (1LL << 48) - 1; 2381 2382 } 2383 2384 /* indirect blocks */ 2385 meta_blocks = 1; 2386 /* double indirect blocks */ 2387 meta_blocks += 1 + (1LL << (bits-2)); 2388 /* tripple indirect blocks */ 2389 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2390 2391 upper_limit -= meta_blocks; 2392 upper_limit <<= bits; 2393 2394 res += 1LL << (bits-2); 2395 res += 1LL << (2*(bits-2)); 2396 res += 1LL << (3*(bits-2)); 2397 res <<= bits; 2398 if (res > upper_limit) 2399 res = upper_limit; 2400 2401 if (res > MAX_LFS_FILESIZE) 2402 res = MAX_LFS_FILESIZE; 2403 2404 return res; 2405 } 2406 2407 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2408 ext4_fsblk_t logical_sb_block, int nr) 2409 { 2410 struct ext4_sb_info *sbi = EXT4_SB(sb); 2411 ext4_group_t bg, first_meta_bg; 2412 int has_super = 0; 2413 2414 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2415 2416 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2417 nr < first_meta_bg) 2418 return logical_sb_block + nr + 1; 2419 bg = sbi->s_desc_per_block * nr; 2420 if (ext4_bg_has_super(sb, bg)) 2421 has_super = 1; 2422 2423 /* 2424 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2425 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2426 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2427 * compensate. 2428 */ 2429 if (sb->s_blocksize == 1024 && nr == 0 && 2430 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2431 has_super++; 2432 2433 return (has_super + ext4_group_first_block_no(sb, bg)); 2434 } 2435 2436 /** 2437 * ext4_get_stripe_size: Get the stripe size. 2438 * @sbi: In memory super block info 2439 * 2440 * If we have specified it via mount option, then 2441 * use the mount option value. If the value specified at mount time is 2442 * greater than the blocks per group use the super block value. 2443 * If the super block value is greater than blocks per group return 0. 2444 * Allocator needs it be less than blocks per group. 2445 * 2446 */ 2447 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2448 { 2449 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2450 unsigned long stripe_width = 2451 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2452 int ret; 2453 2454 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2455 ret = sbi->s_stripe; 2456 else if (stripe_width <= sbi->s_blocks_per_group) 2457 ret = stripe_width; 2458 else if (stride <= sbi->s_blocks_per_group) 2459 ret = stride; 2460 else 2461 ret = 0; 2462 2463 /* 2464 * If the stripe width is 1, this makes no sense and 2465 * we set it to 0 to turn off stripe handling code. 2466 */ 2467 if (ret <= 1) 2468 ret = 0; 2469 2470 return ret; 2471 } 2472 2473 /* sysfs supprt */ 2474 2475 struct ext4_attr { 2476 struct attribute attr; 2477 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2478 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2479 const char *, size_t); 2480 union { 2481 int offset; 2482 int deprecated_val; 2483 } u; 2484 }; 2485 2486 static int parse_strtoull(const char *buf, 2487 unsigned long long max, unsigned long long *value) 2488 { 2489 int ret; 2490 2491 ret = kstrtoull(skip_spaces(buf), 0, value); 2492 if (!ret && *value > max) 2493 ret = -EINVAL; 2494 return ret; 2495 } 2496 2497 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2498 struct ext4_sb_info *sbi, 2499 char *buf) 2500 { 2501 return snprintf(buf, PAGE_SIZE, "%llu\n", 2502 (s64) EXT4_C2B(sbi, 2503 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2504 } 2505 2506 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2507 struct ext4_sb_info *sbi, char *buf) 2508 { 2509 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2510 2511 if (!sb->s_bdev->bd_part) 2512 return snprintf(buf, PAGE_SIZE, "0\n"); 2513 return snprintf(buf, PAGE_SIZE, "%lu\n", 2514 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2515 sbi->s_sectors_written_start) >> 1); 2516 } 2517 2518 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2519 struct ext4_sb_info *sbi, char *buf) 2520 { 2521 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2522 2523 if (!sb->s_bdev->bd_part) 2524 return snprintf(buf, PAGE_SIZE, "0\n"); 2525 return snprintf(buf, PAGE_SIZE, "%llu\n", 2526 (unsigned long long)(sbi->s_kbytes_written + 2527 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2528 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2529 } 2530 2531 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2532 struct ext4_sb_info *sbi, 2533 const char *buf, size_t count) 2534 { 2535 unsigned long t; 2536 int ret; 2537 2538 ret = kstrtoul(skip_spaces(buf), 0, &t); 2539 if (ret) 2540 return ret; 2541 2542 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2543 return -EINVAL; 2544 2545 sbi->s_inode_readahead_blks = t; 2546 return count; 2547 } 2548 2549 static ssize_t sbi_ui_show(struct ext4_attr *a, 2550 struct ext4_sb_info *sbi, char *buf) 2551 { 2552 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2553 2554 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2555 } 2556 2557 static ssize_t sbi_ui_store(struct ext4_attr *a, 2558 struct ext4_sb_info *sbi, 2559 const char *buf, size_t count) 2560 { 2561 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2562 unsigned long t; 2563 int ret; 2564 2565 ret = kstrtoul(skip_spaces(buf), 0, &t); 2566 if (ret) 2567 return ret; 2568 *ui = t; 2569 return count; 2570 } 2571 2572 static ssize_t es_ui_show(struct ext4_attr *a, 2573 struct ext4_sb_info *sbi, char *buf) 2574 { 2575 2576 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2577 a->u.offset); 2578 2579 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2580 } 2581 2582 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2583 struct ext4_sb_info *sbi, char *buf) 2584 { 2585 return snprintf(buf, PAGE_SIZE, "%llu\n", 2586 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2587 } 2588 2589 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2590 struct ext4_sb_info *sbi, 2591 const char *buf, size_t count) 2592 { 2593 unsigned long long val; 2594 int ret; 2595 2596 if (parse_strtoull(buf, -1ULL, &val)) 2597 return -EINVAL; 2598 ret = ext4_reserve_clusters(sbi, val); 2599 2600 return ret ? ret : count; 2601 } 2602 2603 static ssize_t trigger_test_error(struct ext4_attr *a, 2604 struct ext4_sb_info *sbi, 2605 const char *buf, size_t count) 2606 { 2607 int len = count; 2608 2609 if (!capable(CAP_SYS_ADMIN)) 2610 return -EPERM; 2611 2612 if (len && buf[len-1] == '\n') 2613 len--; 2614 2615 if (len) 2616 ext4_error(sbi->s_sb, "%.*s", len, buf); 2617 return count; 2618 } 2619 2620 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2621 struct ext4_sb_info *sbi, char *buf) 2622 { 2623 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2624 } 2625 2626 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2627 static struct ext4_attr ext4_attr_##_name = { \ 2628 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2629 .show = _show, \ 2630 .store = _store, \ 2631 .u = { \ 2632 .offset = offsetof(struct ext4_sb_info, _elname),\ 2633 }, \ 2634 } 2635 2636 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2637 static struct ext4_attr ext4_attr_##_name = { \ 2638 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2639 .show = _show, \ 2640 .store = _store, \ 2641 .u = { \ 2642 .offset = offsetof(struct ext4_super_block, _elname), \ 2643 }, \ 2644 } 2645 2646 #define EXT4_ATTR(name, mode, show, store) \ 2647 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2648 2649 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2650 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2651 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2652 2653 #define EXT4_RO_ATTR_ES_UI(name, elname) \ 2654 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2655 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2656 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2657 2658 #define ATTR_LIST(name) &ext4_attr_##name.attr 2659 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2660 static struct ext4_attr ext4_attr_##_name = { \ 2661 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2662 .show = sbi_deprecated_show, \ 2663 .u = { \ 2664 .deprecated_val = _val, \ 2665 }, \ 2666 } 2667 2668 EXT4_RO_ATTR(delayed_allocation_blocks); 2669 EXT4_RO_ATTR(session_write_kbytes); 2670 EXT4_RO_ATTR(lifetime_write_kbytes); 2671 EXT4_RW_ATTR(reserved_clusters); 2672 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2673 inode_readahead_blks_store, s_inode_readahead_blks); 2674 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2675 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2676 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2677 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2678 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2679 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2680 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2681 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2682 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2683 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2684 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2685 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2686 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2687 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2688 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2689 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2690 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2691 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2692 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2693 2694 static struct attribute *ext4_attrs[] = { 2695 ATTR_LIST(delayed_allocation_blocks), 2696 ATTR_LIST(session_write_kbytes), 2697 ATTR_LIST(lifetime_write_kbytes), 2698 ATTR_LIST(reserved_clusters), 2699 ATTR_LIST(inode_readahead_blks), 2700 ATTR_LIST(inode_goal), 2701 ATTR_LIST(mb_stats), 2702 ATTR_LIST(mb_max_to_scan), 2703 ATTR_LIST(mb_min_to_scan), 2704 ATTR_LIST(mb_order2_req), 2705 ATTR_LIST(mb_stream_req), 2706 ATTR_LIST(mb_group_prealloc), 2707 ATTR_LIST(max_writeback_mb_bump), 2708 ATTR_LIST(extent_max_zeroout_kb), 2709 ATTR_LIST(trigger_fs_error), 2710 ATTR_LIST(err_ratelimit_interval_ms), 2711 ATTR_LIST(err_ratelimit_burst), 2712 ATTR_LIST(warning_ratelimit_interval_ms), 2713 ATTR_LIST(warning_ratelimit_burst), 2714 ATTR_LIST(msg_ratelimit_interval_ms), 2715 ATTR_LIST(msg_ratelimit_burst), 2716 ATTR_LIST(errors_count), 2717 ATTR_LIST(first_error_time), 2718 ATTR_LIST(last_error_time), 2719 NULL, 2720 }; 2721 2722 /* Features this copy of ext4 supports */ 2723 EXT4_INFO_ATTR(lazy_itable_init); 2724 EXT4_INFO_ATTR(batched_discard); 2725 EXT4_INFO_ATTR(meta_bg_resize); 2726 EXT4_INFO_ATTR(encryption); 2727 2728 static struct attribute *ext4_feat_attrs[] = { 2729 ATTR_LIST(lazy_itable_init), 2730 ATTR_LIST(batched_discard), 2731 ATTR_LIST(meta_bg_resize), 2732 ATTR_LIST(encryption), 2733 NULL, 2734 }; 2735 2736 static ssize_t ext4_attr_show(struct kobject *kobj, 2737 struct attribute *attr, char *buf) 2738 { 2739 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2740 s_kobj); 2741 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2742 2743 return a->show ? a->show(a, sbi, buf) : 0; 2744 } 2745 2746 static ssize_t ext4_attr_store(struct kobject *kobj, 2747 struct attribute *attr, 2748 const char *buf, size_t len) 2749 { 2750 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2751 s_kobj); 2752 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2753 2754 return a->store ? a->store(a, sbi, buf, len) : 0; 2755 } 2756 2757 static void ext4_sb_release(struct kobject *kobj) 2758 { 2759 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2760 s_kobj); 2761 complete(&sbi->s_kobj_unregister); 2762 } 2763 2764 static const struct sysfs_ops ext4_attr_ops = { 2765 .show = ext4_attr_show, 2766 .store = ext4_attr_store, 2767 }; 2768 2769 static struct kobj_type ext4_ktype = { 2770 .default_attrs = ext4_attrs, 2771 .sysfs_ops = &ext4_attr_ops, 2772 .release = ext4_sb_release, 2773 }; 2774 2775 static void ext4_feat_release(struct kobject *kobj) 2776 { 2777 complete(&ext4_feat->f_kobj_unregister); 2778 } 2779 2780 static ssize_t ext4_feat_show(struct kobject *kobj, 2781 struct attribute *attr, char *buf) 2782 { 2783 return snprintf(buf, PAGE_SIZE, "supported\n"); 2784 } 2785 2786 /* 2787 * We can not use ext4_attr_show/store because it relies on the kobject 2788 * being embedded in the ext4_sb_info structure which is definitely not 2789 * true in this case. 2790 */ 2791 static const struct sysfs_ops ext4_feat_ops = { 2792 .show = ext4_feat_show, 2793 .store = NULL, 2794 }; 2795 2796 static struct kobj_type ext4_feat_ktype = { 2797 .default_attrs = ext4_feat_attrs, 2798 .sysfs_ops = &ext4_feat_ops, 2799 .release = ext4_feat_release, 2800 }; 2801 2802 /* 2803 * Check whether this filesystem can be mounted based on 2804 * the features present and the RDONLY/RDWR mount requested. 2805 * Returns 1 if this filesystem can be mounted as requested, 2806 * 0 if it cannot be. 2807 */ 2808 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2809 { 2810 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2811 ext4_msg(sb, KERN_ERR, 2812 "Couldn't mount because of " 2813 "unsupported optional features (%x)", 2814 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2815 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2816 return 0; 2817 } 2818 2819 if (readonly) 2820 return 1; 2821 2822 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) { 2823 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2824 sb->s_flags |= MS_RDONLY; 2825 return 1; 2826 } 2827 2828 /* Check that feature set is OK for a read-write mount */ 2829 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2830 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2831 "unsupported optional features (%x)", 2832 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2833 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2834 return 0; 2835 } 2836 /* 2837 * Large file size enabled file system can only be mounted 2838 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2839 */ 2840 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2841 if (sizeof(blkcnt_t) < sizeof(u64)) { 2842 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2843 "cannot be mounted RDWR without " 2844 "CONFIG_LBDAF"); 2845 return 0; 2846 } 2847 } 2848 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2849 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2850 ext4_msg(sb, KERN_ERR, 2851 "Can't support bigalloc feature without " 2852 "extents feature\n"); 2853 return 0; 2854 } 2855 2856 #ifndef CONFIG_QUOTA 2857 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2858 !readonly) { 2859 ext4_msg(sb, KERN_ERR, 2860 "Filesystem with quota feature cannot be mounted RDWR " 2861 "without CONFIG_QUOTA"); 2862 return 0; 2863 } 2864 #endif /* CONFIG_QUOTA */ 2865 return 1; 2866 } 2867 2868 /* 2869 * This function is called once a day if we have errors logged 2870 * on the file system 2871 */ 2872 static void print_daily_error_info(unsigned long arg) 2873 { 2874 struct super_block *sb = (struct super_block *) arg; 2875 struct ext4_sb_info *sbi; 2876 struct ext4_super_block *es; 2877 2878 sbi = EXT4_SB(sb); 2879 es = sbi->s_es; 2880 2881 if (es->s_error_count) 2882 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2883 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2884 le32_to_cpu(es->s_error_count)); 2885 if (es->s_first_error_time) { 2886 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2887 sb->s_id, le32_to_cpu(es->s_first_error_time), 2888 (int) sizeof(es->s_first_error_func), 2889 es->s_first_error_func, 2890 le32_to_cpu(es->s_first_error_line)); 2891 if (es->s_first_error_ino) 2892 printk(": inode %u", 2893 le32_to_cpu(es->s_first_error_ino)); 2894 if (es->s_first_error_block) 2895 printk(": block %llu", (unsigned long long) 2896 le64_to_cpu(es->s_first_error_block)); 2897 printk("\n"); 2898 } 2899 if (es->s_last_error_time) { 2900 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2901 sb->s_id, le32_to_cpu(es->s_last_error_time), 2902 (int) sizeof(es->s_last_error_func), 2903 es->s_last_error_func, 2904 le32_to_cpu(es->s_last_error_line)); 2905 if (es->s_last_error_ino) 2906 printk(": inode %u", 2907 le32_to_cpu(es->s_last_error_ino)); 2908 if (es->s_last_error_block) 2909 printk(": block %llu", (unsigned long long) 2910 le64_to_cpu(es->s_last_error_block)); 2911 printk("\n"); 2912 } 2913 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2914 } 2915 2916 /* Find next suitable group and run ext4_init_inode_table */ 2917 static int ext4_run_li_request(struct ext4_li_request *elr) 2918 { 2919 struct ext4_group_desc *gdp = NULL; 2920 ext4_group_t group, ngroups; 2921 struct super_block *sb; 2922 unsigned long timeout = 0; 2923 int ret = 0; 2924 2925 sb = elr->lr_super; 2926 ngroups = EXT4_SB(sb)->s_groups_count; 2927 2928 sb_start_write(sb); 2929 for (group = elr->lr_next_group; group < ngroups; group++) { 2930 gdp = ext4_get_group_desc(sb, group, NULL); 2931 if (!gdp) { 2932 ret = 1; 2933 break; 2934 } 2935 2936 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2937 break; 2938 } 2939 2940 if (group >= ngroups) 2941 ret = 1; 2942 2943 if (!ret) { 2944 timeout = jiffies; 2945 ret = ext4_init_inode_table(sb, group, 2946 elr->lr_timeout ? 0 : 1); 2947 if (elr->lr_timeout == 0) { 2948 timeout = (jiffies - timeout) * 2949 elr->lr_sbi->s_li_wait_mult; 2950 elr->lr_timeout = timeout; 2951 } 2952 elr->lr_next_sched = jiffies + elr->lr_timeout; 2953 elr->lr_next_group = group + 1; 2954 } 2955 sb_end_write(sb); 2956 2957 return ret; 2958 } 2959 2960 /* 2961 * Remove lr_request from the list_request and free the 2962 * request structure. Should be called with li_list_mtx held 2963 */ 2964 static void ext4_remove_li_request(struct ext4_li_request *elr) 2965 { 2966 struct ext4_sb_info *sbi; 2967 2968 if (!elr) 2969 return; 2970 2971 sbi = elr->lr_sbi; 2972 2973 list_del(&elr->lr_request); 2974 sbi->s_li_request = NULL; 2975 kfree(elr); 2976 } 2977 2978 static void ext4_unregister_li_request(struct super_block *sb) 2979 { 2980 mutex_lock(&ext4_li_mtx); 2981 if (!ext4_li_info) { 2982 mutex_unlock(&ext4_li_mtx); 2983 return; 2984 } 2985 2986 mutex_lock(&ext4_li_info->li_list_mtx); 2987 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2988 mutex_unlock(&ext4_li_info->li_list_mtx); 2989 mutex_unlock(&ext4_li_mtx); 2990 } 2991 2992 static struct task_struct *ext4_lazyinit_task; 2993 2994 /* 2995 * This is the function where ext4lazyinit thread lives. It walks 2996 * through the request list searching for next scheduled filesystem. 2997 * When such a fs is found, run the lazy initialization request 2998 * (ext4_rn_li_request) and keep track of the time spend in this 2999 * function. Based on that time we compute next schedule time of 3000 * the request. When walking through the list is complete, compute 3001 * next waking time and put itself into sleep. 3002 */ 3003 static int ext4_lazyinit_thread(void *arg) 3004 { 3005 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3006 struct list_head *pos, *n; 3007 struct ext4_li_request *elr; 3008 unsigned long next_wakeup, cur; 3009 3010 BUG_ON(NULL == eli); 3011 3012 cont_thread: 3013 while (true) { 3014 next_wakeup = MAX_JIFFY_OFFSET; 3015 3016 mutex_lock(&eli->li_list_mtx); 3017 if (list_empty(&eli->li_request_list)) { 3018 mutex_unlock(&eli->li_list_mtx); 3019 goto exit_thread; 3020 } 3021 3022 list_for_each_safe(pos, n, &eli->li_request_list) { 3023 elr = list_entry(pos, struct ext4_li_request, 3024 lr_request); 3025 3026 if (time_after_eq(jiffies, elr->lr_next_sched)) { 3027 if (ext4_run_li_request(elr) != 0) { 3028 /* error, remove the lazy_init job */ 3029 ext4_remove_li_request(elr); 3030 continue; 3031 } 3032 } 3033 3034 if (time_before(elr->lr_next_sched, next_wakeup)) 3035 next_wakeup = elr->lr_next_sched; 3036 } 3037 mutex_unlock(&eli->li_list_mtx); 3038 3039 try_to_freeze(); 3040 3041 cur = jiffies; 3042 if ((time_after_eq(cur, next_wakeup)) || 3043 (MAX_JIFFY_OFFSET == next_wakeup)) { 3044 cond_resched(); 3045 continue; 3046 } 3047 3048 schedule_timeout_interruptible(next_wakeup - cur); 3049 3050 if (kthread_should_stop()) { 3051 ext4_clear_request_list(); 3052 goto exit_thread; 3053 } 3054 } 3055 3056 exit_thread: 3057 /* 3058 * It looks like the request list is empty, but we need 3059 * to check it under the li_list_mtx lock, to prevent any 3060 * additions into it, and of course we should lock ext4_li_mtx 3061 * to atomically free the list and ext4_li_info, because at 3062 * this point another ext4 filesystem could be registering 3063 * new one. 3064 */ 3065 mutex_lock(&ext4_li_mtx); 3066 mutex_lock(&eli->li_list_mtx); 3067 if (!list_empty(&eli->li_request_list)) { 3068 mutex_unlock(&eli->li_list_mtx); 3069 mutex_unlock(&ext4_li_mtx); 3070 goto cont_thread; 3071 } 3072 mutex_unlock(&eli->li_list_mtx); 3073 kfree(ext4_li_info); 3074 ext4_li_info = NULL; 3075 mutex_unlock(&ext4_li_mtx); 3076 3077 return 0; 3078 } 3079 3080 static void ext4_clear_request_list(void) 3081 { 3082 struct list_head *pos, *n; 3083 struct ext4_li_request *elr; 3084 3085 mutex_lock(&ext4_li_info->li_list_mtx); 3086 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3087 elr = list_entry(pos, struct ext4_li_request, 3088 lr_request); 3089 ext4_remove_li_request(elr); 3090 } 3091 mutex_unlock(&ext4_li_info->li_list_mtx); 3092 } 3093 3094 static int ext4_run_lazyinit_thread(void) 3095 { 3096 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3097 ext4_li_info, "ext4lazyinit"); 3098 if (IS_ERR(ext4_lazyinit_task)) { 3099 int err = PTR_ERR(ext4_lazyinit_task); 3100 ext4_clear_request_list(); 3101 kfree(ext4_li_info); 3102 ext4_li_info = NULL; 3103 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3104 "initialization thread\n", 3105 err); 3106 return err; 3107 } 3108 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3109 return 0; 3110 } 3111 3112 /* 3113 * Check whether it make sense to run itable init. thread or not. 3114 * If there is at least one uninitialized inode table, return 3115 * corresponding group number, else the loop goes through all 3116 * groups and return total number of groups. 3117 */ 3118 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3119 { 3120 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3121 struct ext4_group_desc *gdp = NULL; 3122 3123 for (group = 0; group < ngroups; group++) { 3124 gdp = ext4_get_group_desc(sb, group, NULL); 3125 if (!gdp) 3126 continue; 3127 3128 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3129 break; 3130 } 3131 3132 return group; 3133 } 3134 3135 static int ext4_li_info_new(void) 3136 { 3137 struct ext4_lazy_init *eli = NULL; 3138 3139 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3140 if (!eli) 3141 return -ENOMEM; 3142 3143 INIT_LIST_HEAD(&eli->li_request_list); 3144 mutex_init(&eli->li_list_mtx); 3145 3146 eli->li_state |= EXT4_LAZYINIT_QUIT; 3147 3148 ext4_li_info = eli; 3149 3150 return 0; 3151 } 3152 3153 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3154 ext4_group_t start) 3155 { 3156 struct ext4_sb_info *sbi = EXT4_SB(sb); 3157 struct ext4_li_request *elr; 3158 3159 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3160 if (!elr) 3161 return NULL; 3162 3163 elr->lr_super = sb; 3164 elr->lr_sbi = sbi; 3165 elr->lr_next_group = start; 3166 3167 /* 3168 * Randomize first schedule time of the request to 3169 * spread the inode table initialization requests 3170 * better. 3171 */ 3172 elr->lr_next_sched = jiffies + (prandom_u32() % 3173 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3174 return elr; 3175 } 3176 3177 int ext4_register_li_request(struct super_block *sb, 3178 ext4_group_t first_not_zeroed) 3179 { 3180 struct ext4_sb_info *sbi = EXT4_SB(sb); 3181 struct ext4_li_request *elr = NULL; 3182 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3183 int ret = 0; 3184 3185 mutex_lock(&ext4_li_mtx); 3186 if (sbi->s_li_request != NULL) { 3187 /* 3188 * Reset timeout so it can be computed again, because 3189 * s_li_wait_mult might have changed. 3190 */ 3191 sbi->s_li_request->lr_timeout = 0; 3192 goto out; 3193 } 3194 3195 if (first_not_zeroed == ngroups || 3196 (sb->s_flags & MS_RDONLY) || 3197 !test_opt(sb, INIT_INODE_TABLE)) 3198 goto out; 3199 3200 elr = ext4_li_request_new(sb, first_not_zeroed); 3201 if (!elr) { 3202 ret = -ENOMEM; 3203 goto out; 3204 } 3205 3206 if (NULL == ext4_li_info) { 3207 ret = ext4_li_info_new(); 3208 if (ret) 3209 goto out; 3210 } 3211 3212 mutex_lock(&ext4_li_info->li_list_mtx); 3213 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3214 mutex_unlock(&ext4_li_info->li_list_mtx); 3215 3216 sbi->s_li_request = elr; 3217 /* 3218 * set elr to NULL here since it has been inserted to 3219 * the request_list and the removal and free of it is 3220 * handled by ext4_clear_request_list from now on. 3221 */ 3222 elr = NULL; 3223 3224 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3225 ret = ext4_run_lazyinit_thread(); 3226 if (ret) 3227 goto out; 3228 } 3229 out: 3230 mutex_unlock(&ext4_li_mtx); 3231 if (ret) 3232 kfree(elr); 3233 return ret; 3234 } 3235 3236 /* 3237 * We do not need to lock anything since this is called on 3238 * module unload. 3239 */ 3240 static void ext4_destroy_lazyinit_thread(void) 3241 { 3242 /* 3243 * If thread exited earlier 3244 * there's nothing to be done. 3245 */ 3246 if (!ext4_li_info || !ext4_lazyinit_task) 3247 return; 3248 3249 kthread_stop(ext4_lazyinit_task); 3250 } 3251 3252 static int set_journal_csum_feature_set(struct super_block *sb) 3253 { 3254 int ret = 1; 3255 int compat, incompat; 3256 struct ext4_sb_info *sbi = EXT4_SB(sb); 3257 3258 if (ext4_has_metadata_csum(sb)) { 3259 /* journal checksum v3 */ 3260 compat = 0; 3261 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3262 } else { 3263 /* journal checksum v1 */ 3264 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3265 incompat = 0; 3266 } 3267 3268 jbd2_journal_clear_features(sbi->s_journal, 3269 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3270 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3271 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3272 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3273 ret = jbd2_journal_set_features(sbi->s_journal, 3274 compat, 0, 3275 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3276 incompat); 3277 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3278 ret = jbd2_journal_set_features(sbi->s_journal, 3279 compat, 0, 3280 incompat); 3281 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3282 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3283 } else { 3284 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3285 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3286 } 3287 3288 return ret; 3289 } 3290 3291 /* 3292 * Note: calculating the overhead so we can be compatible with 3293 * historical BSD practice is quite difficult in the face of 3294 * clusters/bigalloc. This is because multiple metadata blocks from 3295 * different block group can end up in the same allocation cluster. 3296 * Calculating the exact overhead in the face of clustered allocation 3297 * requires either O(all block bitmaps) in memory or O(number of block 3298 * groups**2) in time. We will still calculate the superblock for 3299 * older file systems --- and if we come across with a bigalloc file 3300 * system with zero in s_overhead_clusters the estimate will be close to 3301 * correct especially for very large cluster sizes --- but for newer 3302 * file systems, it's better to calculate this figure once at mkfs 3303 * time, and store it in the superblock. If the superblock value is 3304 * present (even for non-bigalloc file systems), we will use it. 3305 */ 3306 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3307 char *buf) 3308 { 3309 struct ext4_sb_info *sbi = EXT4_SB(sb); 3310 struct ext4_group_desc *gdp; 3311 ext4_fsblk_t first_block, last_block, b; 3312 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3313 int s, j, count = 0; 3314 3315 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3316 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3317 sbi->s_itb_per_group + 2); 3318 3319 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3320 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3321 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3322 for (i = 0; i < ngroups; i++) { 3323 gdp = ext4_get_group_desc(sb, i, NULL); 3324 b = ext4_block_bitmap(sb, gdp); 3325 if (b >= first_block && b <= last_block) { 3326 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3327 count++; 3328 } 3329 b = ext4_inode_bitmap(sb, gdp); 3330 if (b >= first_block && b <= last_block) { 3331 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3332 count++; 3333 } 3334 b = ext4_inode_table(sb, gdp); 3335 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3336 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3337 int c = EXT4_B2C(sbi, b - first_block); 3338 ext4_set_bit(c, buf); 3339 count++; 3340 } 3341 if (i != grp) 3342 continue; 3343 s = 0; 3344 if (ext4_bg_has_super(sb, grp)) { 3345 ext4_set_bit(s++, buf); 3346 count++; 3347 } 3348 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3349 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3350 count++; 3351 } 3352 } 3353 if (!count) 3354 return 0; 3355 return EXT4_CLUSTERS_PER_GROUP(sb) - 3356 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3357 } 3358 3359 /* 3360 * Compute the overhead and stash it in sbi->s_overhead 3361 */ 3362 int ext4_calculate_overhead(struct super_block *sb) 3363 { 3364 struct ext4_sb_info *sbi = EXT4_SB(sb); 3365 struct ext4_super_block *es = sbi->s_es; 3366 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3367 ext4_fsblk_t overhead = 0; 3368 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3369 3370 if (!buf) 3371 return -ENOMEM; 3372 3373 /* 3374 * Compute the overhead (FS structures). This is constant 3375 * for a given filesystem unless the number of block groups 3376 * changes so we cache the previous value until it does. 3377 */ 3378 3379 /* 3380 * All of the blocks before first_data_block are overhead 3381 */ 3382 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3383 3384 /* 3385 * Add the overhead found in each block group 3386 */ 3387 for (i = 0; i < ngroups; i++) { 3388 int blks; 3389 3390 blks = count_overhead(sb, i, buf); 3391 overhead += blks; 3392 if (blks) 3393 memset(buf, 0, PAGE_SIZE); 3394 cond_resched(); 3395 } 3396 /* Add the internal journal blocks as well */ 3397 if (sbi->s_journal && !sbi->journal_bdev) 3398 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3399 3400 sbi->s_overhead = overhead; 3401 smp_wmb(); 3402 free_page((unsigned long) buf); 3403 return 0; 3404 } 3405 3406 3407 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3408 { 3409 ext4_fsblk_t resv_clusters; 3410 3411 /* 3412 * There's no need to reserve anything when we aren't using extents. 3413 * The space estimates are exact, there are no unwritten extents, 3414 * hole punching doesn't need new metadata... This is needed especially 3415 * to keep ext2/3 backward compatibility. 3416 */ 3417 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3418 return 0; 3419 /* 3420 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3421 * This should cover the situations where we can not afford to run 3422 * out of space like for example punch hole, or converting 3423 * unwritten extents in delalloc path. In most cases such 3424 * allocation would require 1, or 2 blocks, higher numbers are 3425 * very rare. 3426 */ 3427 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3428 EXT4_SB(sb)->s_cluster_bits; 3429 3430 do_div(resv_clusters, 50); 3431 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3432 3433 return resv_clusters; 3434 } 3435 3436 3437 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3438 { 3439 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3440 sbi->s_cluster_bits; 3441 3442 if (count >= clusters) 3443 return -EINVAL; 3444 3445 atomic64_set(&sbi->s_resv_clusters, count); 3446 return 0; 3447 } 3448 3449 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3450 { 3451 char *orig_data = kstrdup(data, GFP_KERNEL); 3452 struct buffer_head *bh; 3453 struct ext4_super_block *es = NULL; 3454 struct ext4_sb_info *sbi; 3455 ext4_fsblk_t block; 3456 ext4_fsblk_t sb_block = get_sb_block(&data); 3457 ext4_fsblk_t logical_sb_block; 3458 unsigned long offset = 0; 3459 unsigned long journal_devnum = 0; 3460 unsigned long def_mount_opts; 3461 struct inode *root; 3462 const char *descr; 3463 int ret = -ENOMEM; 3464 int blocksize, clustersize; 3465 unsigned int db_count; 3466 unsigned int i; 3467 int needs_recovery, has_huge_files, has_bigalloc; 3468 __u64 blocks_count; 3469 int err = 0; 3470 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3471 ext4_group_t first_not_zeroed; 3472 3473 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3474 if (!sbi) 3475 goto out_free_orig; 3476 3477 sbi->s_blockgroup_lock = 3478 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3479 if (!sbi->s_blockgroup_lock) { 3480 kfree(sbi); 3481 goto out_free_orig; 3482 } 3483 sb->s_fs_info = sbi; 3484 sbi->s_sb = sb; 3485 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3486 sbi->s_sb_block = sb_block; 3487 if (sb->s_bdev->bd_part) 3488 sbi->s_sectors_written_start = 3489 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3490 3491 /* Cleanup superblock name */ 3492 strreplace(sb->s_id, '/', '!'); 3493 3494 /* -EINVAL is default */ 3495 ret = -EINVAL; 3496 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3497 if (!blocksize) { 3498 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3499 goto out_fail; 3500 } 3501 3502 /* 3503 * The ext4 superblock will not be buffer aligned for other than 1kB 3504 * block sizes. We need to calculate the offset from buffer start. 3505 */ 3506 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3507 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3508 offset = do_div(logical_sb_block, blocksize); 3509 } else { 3510 logical_sb_block = sb_block; 3511 } 3512 3513 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3514 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3515 goto out_fail; 3516 } 3517 /* 3518 * Note: s_es must be initialized as soon as possible because 3519 * some ext4 macro-instructions depend on its value 3520 */ 3521 es = (struct ext4_super_block *) (bh->b_data + offset); 3522 sbi->s_es = es; 3523 sb->s_magic = le16_to_cpu(es->s_magic); 3524 if (sb->s_magic != EXT4_SUPER_MAGIC) 3525 goto cantfind_ext4; 3526 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3527 3528 /* Warn if metadata_csum and gdt_csum are both set. */ 3529 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3530 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3531 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3532 ext4_warning(sb, "metadata_csum and uninit_bg are " 3533 "redundant flags; please run fsck."); 3534 3535 /* Check for a known checksum algorithm */ 3536 if (!ext4_verify_csum_type(sb, es)) { 3537 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3538 "unknown checksum algorithm."); 3539 silent = 1; 3540 goto cantfind_ext4; 3541 } 3542 3543 /* Load the checksum driver */ 3544 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3545 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3546 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3547 if (IS_ERR(sbi->s_chksum_driver)) { 3548 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3549 ret = PTR_ERR(sbi->s_chksum_driver); 3550 sbi->s_chksum_driver = NULL; 3551 goto failed_mount; 3552 } 3553 } 3554 3555 /* Check superblock checksum */ 3556 if (!ext4_superblock_csum_verify(sb, es)) { 3557 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3558 "invalid superblock checksum. Run e2fsck?"); 3559 silent = 1; 3560 goto cantfind_ext4; 3561 } 3562 3563 /* Precompute checksum seed for all metadata */ 3564 if (ext4_has_metadata_csum(sb)) 3565 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3566 sizeof(es->s_uuid)); 3567 3568 /* Set defaults before we parse the mount options */ 3569 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3570 set_opt(sb, INIT_INODE_TABLE); 3571 if (def_mount_opts & EXT4_DEFM_DEBUG) 3572 set_opt(sb, DEBUG); 3573 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3574 set_opt(sb, GRPID); 3575 if (def_mount_opts & EXT4_DEFM_UID16) 3576 set_opt(sb, NO_UID32); 3577 /* xattr user namespace & acls are now defaulted on */ 3578 set_opt(sb, XATTR_USER); 3579 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3580 set_opt(sb, POSIX_ACL); 3581 #endif 3582 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3583 if (ext4_has_metadata_csum(sb)) 3584 set_opt(sb, JOURNAL_CHECKSUM); 3585 3586 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3587 set_opt(sb, JOURNAL_DATA); 3588 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3589 set_opt(sb, ORDERED_DATA); 3590 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3591 set_opt(sb, WRITEBACK_DATA); 3592 3593 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3594 set_opt(sb, ERRORS_PANIC); 3595 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3596 set_opt(sb, ERRORS_CONT); 3597 else 3598 set_opt(sb, ERRORS_RO); 3599 /* block_validity enabled by default; disable with noblock_validity */ 3600 set_opt(sb, BLOCK_VALIDITY); 3601 if (def_mount_opts & EXT4_DEFM_DISCARD) 3602 set_opt(sb, DISCARD); 3603 3604 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3605 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3606 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3607 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3608 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3609 3610 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3611 set_opt(sb, BARRIER); 3612 3613 /* 3614 * enable delayed allocation by default 3615 * Use -o nodelalloc to turn it off 3616 */ 3617 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3618 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3619 set_opt(sb, DELALLOC); 3620 3621 /* 3622 * set default s_li_wait_mult for lazyinit, for the case there is 3623 * no mount option specified. 3624 */ 3625 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3626 3627 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3628 &journal_devnum, &journal_ioprio, 0)) { 3629 ext4_msg(sb, KERN_WARNING, 3630 "failed to parse options in superblock: %s", 3631 sbi->s_es->s_mount_opts); 3632 } 3633 sbi->s_def_mount_opt = sbi->s_mount_opt; 3634 if (!parse_options((char *) data, sb, &journal_devnum, 3635 &journal_ioprio, 0)) 3636 goto failed_mount; 3637 3638 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3639 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3640 "with data=journal disables delayed " 3641 "allocation and O_DIRECT support!\n"); 3642 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3643 ext4_msg(sb, KERN_ERR, "can't mount with " 3644 "both data=journal and delalloc"); 3645 goto failed_mount; 3646 } 3647 if (test_opt(sb, DIOREAD_NOLOCK)) { 3648 ext4_msg(sb, KERN_ERR, "can't mount with " 3649 "both data=journal and dioread_nolock"); 3650 goto failed_mount; 3651 } 3652 if (test_opt(sb, DAX)) { 3653 ext4_msg(sb, KERN_ERR, "can't mount with " 3654 "both data=journal and dax"); 3655 goto failed_mount; 3656 } 3657 if (test_opt(sb, DELALLOC)) 3658 clear_opt(sb, DELALLOC); 3659 } else { 3660 sb->s_iflags |= SB_I_CGROUPWB; 3661 } 3662 3663 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3664 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3665 3666 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3667 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3668 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3669 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3670 ext4_msg(sb, KERN_WARNING, 3671 "feature flags set on rev 0 fs, " 3672 "running e2fsck is recommended"); 3673 3674 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3675 set_opt2(sb, HURD_COMPAT); 3676 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3677 EXT4_FEATURE_INCOMPAT_64BIT)) { 3678 ext4_msg(sb, KERN_ERR, 3679 "The Hurd can't support 64-bit file systems"); 3680 goto failed_mount; 3681 } 3682 } 3683 3684 if (IS_EXT2_SB(sb)) { 3685 if (ext2_feature_set_ok(sb)) 3686 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3687 "using the ext4 subsystem"); 3688 else { 3689 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3690 "to feature incompatibilities"); 3691 goto failed_mount; 3692 } 3693 } 3694 3695 if (IS_EXT3_SB(sb)) { 3696 if (ext3_feature_set_ok(sb)) 3697 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3698 "using the ext4 subsystem"); 3699 else { 3700 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3701 "to feature incompatibilities"); 3702 goto failed_mount; 3703 } 3704 } 3705 3706 /* 3707 * Check feature flags regardless of the revision level, since we 3708 * previously didn't change the revision level when setting the flags, 3709 * so there is a chance incompat flags are set on a rev 0 filesystem. 3710 */ 3711 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3712 goto failed_mount; 3713 3714 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3715 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3716 blocksize > EXT4_MAX_BLOCK_SIZE) { 3717 ext4_msg(sb, KERN_ERR, 3718 "Unsupported filesystem blocksize %d", blocksize); 3719 goto failed_mount; 3720 } 3721 3722 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3723 if (blocksize != PAGE_SIZE) { 3724 ext4_msg(sb, KERN_ERR, 3725 "error: unsupported blocksize for dax"); 3726 goto failed_mount; 3727 } 3728 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3729 ext4_msg(sb, KERN_ERR, 3730 "error: device does not support dax"); 3731 goto failed_mount; 3732 } 3733 } 3734 3735 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) && 3736 es->s_encryption_level) { 3737 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3738 es->s_encryption_level); 3739 goto failed_mount; 3740 } 3741 3742 if (sb->s_blocksize != blocksize) { 3743 /* Validate the filesystem blocksize */ 3744 if (!sb_set_blocksize(sb, blocksize)) { 3745 ext4_msg(sb, KERN_ERR, "bad block size %d", 3746 blocksize); 3747 goto failed_mount; 3748 } 3749 3750 brelse(bh); 3751 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3752 offset = do_div(logical_sb_block, blocksize); 3753 bh = sb_bread_unmovable(sb, logical_sb_block); 3754 if (!bh) { 3755 ext4_msg(sb, KERN_ERR, 3756 "Can't read superblock on 2nd try"); 3757 goto failed_mount; 3758 } 3759 es = (struct ext4_super_block *)(bh->b_data + offset); 3760 sbi->s_es = es; 3761 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3762 ext4_msg(sb, KERN_ERR, 3763 "Magic mismatch, very weird!"); 3764 goto failed_mount; 3765 } 3766 } 3767 3768 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3769 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3770 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3771 has_huge_files); 3772 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3773 3774 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3775 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3776 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3777 } else { 3778 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3779 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3780 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3781 (!is_power_of_2(sbi->s_inode_size)) || 3782 (sbi->s_inode_size > blocksize)) { 3783 ext4_msg(sb, KERN_ERR, 3784 "unsupported inode size: %d", 3785 sbi->s_inode_size); 3786 goto failed_mount; 3787 } 3788 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3789 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3790 } 3791 3792 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3793 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3794 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3795 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3796 !is_power_of_2(sbi->s_desc_size)) { 3797 ext4_msg(sb, KERN_ERR, 3798 "unsupported descriptor size %lu", 3799 sbi->s_desc_size); 3800 goto failed_mount; 3801 } 3802 } else 3803 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3804 3805 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3806 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3807 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3808 goto cantfind_ext4; 3809 3810 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3811 if (sbi->s_inodes_per_block == 0) 3812 goto cantfind_ext4; 3813 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3814 sbi->s_inodes_per_block; 3815 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3816 sbi->s_sbh = bh; 3817 sbi->s_mount_state = le16_to_cpu(es->s_state); 3818 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3819 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3820 3821 for (i = 0; i < 4; i++) 3822 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3823 sbi->s_def_hash_version = es->s_def_hash_version; 3824 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3825 i = le32_to_cpu(es->s_flags); 3826 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3827 sbi->s_hash_unsigned = 3; 3828 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3829 #ifdef __CHAR_UNSIGNED__ 3830 if (!(sb->s_flags & MS_RDONLY)) 3831 es->s_flags |= 3832 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3833 sbi->s_hash_unsigned = 3; 3834 #else 3835 if (!(sb->s_flags & MS_RDONLY)) 3836 es->s_flags |= 3837 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3838 #endif 3839 } 3840 } 3841 3842 /* Handle clustersize */ 3843 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3844 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3845 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3846 if (has_bigalloc) { 3847 if (clustersize < blocksize) { 3848 ext4_msg(sb, KERN_ERR, 3849 "cluster size (%d) smaller than " 3850 "block size (%d)", clustersize, blocksize); 3851 goto failed_mount; 3852 } 3853 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3854 le32_to_cpu(es->s_log_block_size); 3855 sbi->s_clusters_per_group = 3856 le32_to_cpu(es->s_clusters_per_group); 3857 if (sbi->s_clusters_per_group > blocksize * 8) { 3858 ext4_msg(sb, KERN_ERR, 3859 "#clusters per group too big: %lu", 3860 sbi->s_clusters_per_group); 3861 goto failed_mount; 3862 } 3863 if (sbi->s_blocks_per_group != 3864 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3865 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3866 "clusters per group (%lu) inconsistent", 3867 sbi->s_blocks_per_group, 3868 sbi->s_clusters_per_group); 3869 goto failed_mount; 3870 } 3871 } else { 3872 if (clustersize != blocksize) { 3873 ext4_warning(sb, "fragment/cluster size (%d) != " 3874 "block size (%d)", clustersize, 3875 blocksize); 3876 clustersize = blocksize; 3877 } 3878 if (sbi->s_blocks_per_group > blocksize * 8) { 3879 ext4_msg(sb, KERN_ERR, 3880 "#blocks per group too big: %lu", 3881 sbi->s_blocks_per_group); 3882 goto failed_mount; 3883 } 3884 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3885 sbi->s_cluster_bits = 0; 3886 } 3887 sbi->s_cluster_ratio = clustersize / blocksize; 3888 3889 if (sbi->s_inodes_per_group > blocksize * 8) { 3890 ext4_msg(sb, KERN_ERR, 3891 "#inodes per group too big: %lu", 3892 sbi->s_inodes_per_group); 3893 goto failed_mount; 3894 } 3895 3896 /* Do we have standard group size of clustersize * 8 blocks ? */ 3897 if (sbi->s_blocks_per_group == clustersize << 3) 3898 set_opt2(sb, STD_GROUP_SIZE); 3899 3900 /* 3901 * Test whether we have more sectors than will fit in sector_t, 3902 * and whether the max offset is addressable by the page cache. 3903 */ 3904 err = generic_check_addressable(sb->s_blocksize_bits, 3905 ext4_blocks_count(es)); 3906 if (err) { 3907 ext4_msg(sb, KERN_ERR, "filesystem" 3908 " too large to mount safely on this system"); 3909 if (sizeof(sector_t) < 8) 3910 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3911 goto failed_mount; 3912 } 3913 3914 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3915 goto cantfind_ext4; 3916 3917 /* check blocks count against device size */ 3918 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3919 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3920 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3921 "exceeds size of device (%llu blocks)", 3922 ext4_blocks_count(es), blocks_count); 3923 goto failed_mount; 3924 } 3925 3926 /* 3927 * It makes no sense for the first data block to be beyond the end 3928 * of the filesystem. 3929 */ 3930 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3931 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3932 "block %u is beyond end of filesystem (%llu)", 3933 le32_to_cpu(es->s_first_data_block), 3934 ext4_blocks_count(es)); 3935 goto failed_mount; 3936 } 3937 blocks_count = (ext4_blocks_count(es) - 3938 le32_to_cpu(es->s_first_data_block) + 3939 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3940 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3941 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3942 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3943 "(block count %llu, first data block %u, " 3944 "blocks per group %lu)", sbi->s_groups_count, 3945 ext4_blocks_count(es), 3946 le32_to_cpu(es->s_first_data_block), 3947 EXT4_BLOCKS_PER_GROUP(sb)); 3948 goto failed_mount; 3949 } 3950 sbi->s_groups_count = blocks_count; 3951 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3952 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3953 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3954 EXT4_DESC_PER_BLOCK(sb); 3955 sbi->s_group_desc = ext4_kvmalloc(db_count * 3956 sizeof(struct buffer_head *), 3957 GFP_KERNEL); 3958 if (sbi->s_group_desc == NULL) { 3959 ext4_msg(sb, KERN_ERR, "not enough memory"); 3960 ret = -ENOMEM; 3961 goto failed_mount; 3962 } 3963 3964 if (ext4_proc_root) 3965 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3966 3967 if (sbi->s_proc) 3968 proc_create_data("options", S_IRUGO, sbi->s_proc, 3969 &ext4_seq_options_fops, sb); 3970 3971 bgl_lock_init(sbi->s_blockgroup_lock); 3972 3973 for (i = 0; i < db_count; i++) { 3974 block = descriptor_loc(sb, logical_sb_block, i); 3975 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3976 if (!sbi->s_group_desc[i]) { 3977 ext4_msg(sb, KERN_ERR, 3978 "can't read group descriptor %d", i); 3979 db_count = i; 3980 goto failed_mount2; 3981 } 3982 } 3983 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3984 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3985 goto failed_mount2; 3986 } 3987 3988 sbi->s_gdb_count = db_count; 3989 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3990 spin_lock_init(&sbi->s_next_gen_lock); 3991 3992 setup_timer(&sbi->s_err_report, print_daily_error_info, 3993 (unsigned long) sb); 3994 3995 /* Register extent status tree shrinker */ 3996 if (ext4_es_register_shrinker(sbi)) 3997 goto failed_mount3; 3998 3999 sbi->s_stripe = ext4_get_stripe_size(sbi); 4000 sbi->s_extent_max_zeroout_kb = 32; 4001 4002 /* 4003 * set up enough so that it can read an inode 4004 */ 4005 sb->s_op = &ext4_sops; 4006 sb->s_export_op = &ext4_export_ops; 4007 sb->s_xattr = ext4_xattr_handlers; 4008 #ifdef CONFIG_QUOTA 4009 sb->dq_op = &ext4_quota_operations; 4010 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 4011 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4012 else 4013 sb->s_qcop = &ext4_qctl_operations; 4014 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4015 #endif 4016 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4017 4018 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4019 mutex_init(&sbi->s_orphan_lock); 4020 4021 sb->s_root = NULL; 4022 4023 needs_recovery = (es->s_last_orphan != 0 || 4024 EXT4_HAS_INCOMPAT_FEATURE(sb, 4025 EXT4_FEATURE_INCOMPAT_RECOVER)); 4026 4027 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 4028 !(sb->s_flags & MS_RDONLY)) 4029 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4030 goto failed_mount3a; 4031 4032 /* 4033 * The first inode we look at is the journal inode. Don't try 4034 * root first: it may be modified in the journal! 4035 */ 4036 if (!test_opt(sb, NOLOAD) && 4037 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4038 if (ext4_load_journal(sb, es, journal_devnum)) 4039 goto failed_mount3a; 4040 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 4041 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4042 ext4_msg(sb, KERN_ERR, "required journal recovery " 4043 "suppressed and not mounted read-only"); 4044 goto failed_mount_wq; 4045 } else { 4046 clear_opt(sb, DATA_FLAGS); 4047 sbi->s_journal = NULL; 4048 needs_recovery = 0; 4049 goto no_journal; 4050 } 4051 4052 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 4053 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4054 JBD2_FEATURE_INCOMPAT_64BIT)) { 4055 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4056 goto failed_mount_wq; 4057 } 4058 4059 if (!set_journal_csum_feature_set(sb)) { 4060 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4061 "feature set"); 4062 goto failed_mount_wq; 4063 } 4064 4065 /* We have now updated the journal if required, so we can 4066 * validate the data journaling mode. */ 4067 switch (test_opt(sb, DATA_FLAGS)) { 4068 case 0: 4069 /* No mode set, assume a default based on the journal 4070 * capabilities: ORDERED_DATA if the journal can 4071 * cope, else JOURNAL_DATA 4072 */ 4073 if (jbd2_journal_check_available_features 4074 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4075 set_opt(sb, ORDERED_DATA); 4076 else 4077 set_opt(sb, JOURNAL_DATA); 4078 break; 4079 4080 case EXT4_MOUNT_ORDERED_DATA: 4081 case EXT4_MOUNT_WRITEBACK_DATA: 4082 if (!jbd2_journal_check_available_features 4083 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4084 ext4_msg(sb, KERN_ERR, "Journal does not support " 4085 "requested data journaling mode"); 4086 goto failed_mount_wq; 4087 } 4088 default: 4089 break; 4090 } 4091 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4092 4093 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4094 4095 no_journal: 4096 if (ext4_mballoc_ready) { 4097 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4098 if (!sbi->s_mb_cache) { 4099 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4100 goto failed_mount_wq; 4101 } 4102 } 4103 4104 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || 4105 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) && 4106 (blocksize != PAGE_CACHE_SIZE)) { 4107 ext4_msg(sb, KERN_ERR, 4108 "Unsupported blocksize for fs encryption"); 4109 goto failed_mount_wq; 4110 } 4111 4112 if (DUMMY_ENCRYPTION_ENABLED(sbi) && 4113 !(sb->s_flags & MS_RDONLY) && 4114 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) { 4115 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT); 4116 ext4_commit_super(sb, 1); 4117 } 4118 4119 /* 4120 * Get the # of file system overhead blocks from the 4121 * superblock if present. 4122 */ 4123 if (es->s_overhead_clusters) 4124 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4125 else { 4126 err = ext4_calculate_overhead(sb); 4127 if (err) 4128 goto failed_mount_wq; 4129 } 4130 4131 /* 4132 * The maximum number of concurrent works can be high and 4133 * concurrency isn't really necessary. Limit it to 1. 4134 */ 4135 EXT4_SB(sb)->rsv_conversion_wq = 4136 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4137 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4138 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4139 ret = -ENOMEM; 4140 goto failed_mount4; 4141 } 4142 4143 /* 4144 * The jbd2_journal_load will have done any necessary log recovery, 4145 * so we can safely mount the rest of the filesystem now. 4146 */ 4147 4148 root = ext4_iget(sb, EXT4_ROOT_INO); 4149 if (IS_ERR(root)) { 4150 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4151 ret = PTR_ERR(root); 4152 root = NULL; 4153 goto failed_mount4; 4154 } 4155 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4156 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4157 iput(root); 4158 goto failed_mount4; 4159 } 4160 sb->s_root = d_make_root(root); 4161 if (!sb->s_root) { 4162 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4163 ret = -ENOMEM; 4164 goto failed_mount4; 4165 } 4166 4167 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4168 sb->s_flags |= MS_RDONLY; 4169 4170 /* determine the minimum size of new large inodes, if present */ 4171 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4172 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4173 EXT4_GOOD_OLD_INODE_SIZE; 4174 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4175 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4176 if (sbi->s_want_extra_isize < 4177 le16_to_cpu(es->s_want_extra_isize)) 4178 sbi->s_want_extra_isize = 4179 le16_to_cpu(es->s_want_extra_isize); 4180 if (sbi->s_want_extra_isize < 4181 le16_to_cpu(es->s_min_extra_isize)) 4182 sbi->s_want_extra_isize = 4183 le16_to_cpu(es->s_min_extra_isize); 4184 } 4185 } 4186 /* Check if enough inode space is available */ 4187 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4188 sbi->s_inode_size) { 4189 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4190 EXT4_GOOD_OLD_INODE_SIZE; 4191 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4192 "available"); 4193 } 4194 4195 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4196 if (err) { 4197 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4198 "reserved pool", ext4_calculate_resv_clusters(sb)); 4199 goto failed_mount4a; 4200 } 4201 4202 err = ext4_setup_system_zone(sb); 4203 if (err) { 4204 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4205 "zone (%d)", err); 4206 goto failed_mount4a; 4207 } 4208 4209 ext4_ext_init(sb); 4210 err = ext4_mb_init(sb); 4211 if (err) { 4212 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4213 err); 4214 goto failed_mount5; 4215 } 4216 4217 block = ext4_count_free_clusters(sb); 4218 ext4_free_blocks_count_set(sbi->s_es, 4219 EXT4_C2B(sbi, block)); 4220 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4221 GFP_KERNEL); 4222 if (!err) { 4223 unsigned long freei = ext4_count_free_inodes(sb); 4224 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4225 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4226 GFP_KERNEL); 4227 } 4228 if (!err) 4229 err = percpu_counter_init(&sbi->s_dirs_counter, 4230 ext4_count_dirs(sb), GFP_KERNEL); 4231 if (!err) 4232 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4233 GFP_KERNEL); 4234 if (err) { 4235 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4236 goto failed_mount6; 4237 } 4238 4239 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4240 if (!ext4_fill_flex_info(sb)) { 4241 ext4_msg(sb, KERN_ERR, 4242 "unable to initialize " 4243 "flex_bg meta info!"); 4244 goto failed_mount6; 4245 } 4246 4247 err = ext4_register_li_request(sb, first_not_zeroed); 4248 if (err) 4249 goto failed_mount6; 4250 4251 sbi->s_kobj.kset = ext4_kset; 4252 init_completion(&sbi->s_kobj_unregister); 4253 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4254 "%s", sb->s_id); 4255 if (err) 4256 goto failed_mount7; 4257 4258 #ifdef CONFIG_QUOTA 4259 /* Enable quota usage during mount. */ 4260 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4261 !(sb->s_flags & MS_RDONLY)) { 4262 err = ext4_enable_quotas(sb); 4263 if (err) 4264 goto failed_mount8; 4265 } 4266 #endif /* CONFIG_QUOTA */ 4267 4268 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4269 ext4_orphan_cleanup(sb, es); 4270 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4271 if (needs_recovery) { 4272 ext4_msg(sb, KERN_INFO, "recovery complete"); 4273 ext4_mark_recovery_complete(sb, es); 4274 } 4275 if (EXT4_SB(sb)->s_journal) { 4276 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4277 descr = " journalled data mode"; 4278 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4279 descr = " ordered data mode"; 4280 else 4281 descr = " writeback data mode"; 4282 } else 4283 descr = "out journal"; 4284 4285 if (test_opt(sb, DISCARD)) { 4286 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4287 if (!blk_queue_discard(q)) 4288 ext4_msg(sb, KERN_WARNING, 4289 "mounting with \"discard\" option, but " 4290 "the device does not support discard"); 4291 } 4292 4293 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4294 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4295 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4296 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4297 4298 if (es->s_error_count) 4299 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4300 4301 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4302 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4303 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4304 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4305 4306 kfree(orig_data); 4307 return 0; 4308 4309 cantfind_ext4: 4310 if (!silent) 4311 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4312 goto failed_mount; 4313 4314 #ifdef CONFIG_QUOTA 4315 failed_mount8: 4316 kobject_del(&sbi->s_kobj); 4317 #endif 4318 failed_mount7: 4319 ext4_unregister_li_request(sb); 4320 failed_mount6: 4321 ext4_mb_release(sb); 4322 if (sbi->s_flex_groups) 4323 kvfree(sbi->s_flex_groups); 4324 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4325 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4326 percpu_counter_destroy(&sbi->s_dirs_counter); 4327 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4328 failed_mount5: 4329 ext4_ext_release(sb); 4330 ext4_release_system_zone(sb); 4331 failed_mount4a: 4332 dput(sb->s_root); 4333 sb->s_root = NULL; 4334 failed_mount4: 4335 ext4_msg(sb, KERN_ERR, "mount failed"); 4336 if (EXT4_SB(sb)->rsv_conversion_wq) 4337 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4338 failed_mount_wq: 4339 if (sbi->s_journal) { 4340 jbd2_journal_destroy(sbi->s_journal); 4341 sbi->s_journal = NULL; 4342 } 4343 failed_mount3a: 4344 ext4_es_unregister_shrinker(sbi); 4345 failed_mount3: 4346 del_timer_sync(&sbi->s_err_report); 4347 if (sbi->s_mmp_tsk) 4348 kthread_stop(sbi->s_mmp_tsk); 4349 failed_mount2: 4350 for (i = 0; i < db_count; i++) 4351 brelse(sbi->s_group_desc[i]); 4352 kvfree(sbi->s_group_desc); 4353 failed_mount: 4354 if (sbi->s_chksum_driver) 4355 crypto_free_shash(sbi->s_chksum_driver); 4356 if (sbi->s_proc) { 4357 remove_proc_entry("options", sbi->s_proc); 4358 remove_proc_entry(sb->s_id, ext4_proc_root); 4359 } 4360 #ifdef CONFIG_QUOTA 4361 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4362 kfree(sbi->s_qf_names[i]); 4363 #endif 4364 ext4_blkdev_remove(sbi); 4365 brelse(bh); 4366 out_fail: 4367 sb->s_fs_info = NULL; 4368 kfree(sbi->s_blockgroup_lock); 4369 kfree(sbi); 4370 out_free_orig: 4371 kfree(orig_data); 4372 return err ? err : ret; 4373 } 4374 4375 /* 4376 * Setup any per-fs journal parameters now. We'll do this both on 4377 * initial mount, once the journal has been initialised but before we've 4378 * done any recovery; and again on any subsequent remount. 4379 */ 4380 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4381 { 4382 struct ext4_sb_info *sbi = EXT4_SB(sb); 4383 4384 journal->j_commit_interval = sbi->s_commit_interval; 4385 journal->j_min_batch_time = sbi->s_min_batch_time; 4386 journal->j_max_batch_time = sbi->s_max_batch_time; 4387 4388 write_lock(&journal->j_state_lock); 4389 if (test_opt(sb, BARRIER)) 4390 journal->j_flags |= JBD2_BARRIER; 4391 else 4392 journal->j_flags &= ~JBD2_BARRIER; 4393 if (test_opt(sb, DATA_ERR_ABORT)) 4394 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4395 else 4396 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4397 write_unlock(&journal->j_state_lock); 4398 } 4399 4400 static journal_t *ext4_get_journal(struct super_block *sb, 4401 unsigned int journal_inum) 4402 { 4403 struct inode *journal_inode; 4404 journal_t *journal; 4405 4406 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4407 4408 /* First, test for the existence of a valid inode on disk. Bad 4409 * things happen if we iget() an unused inode, as the subsequent 4410 * iput() will try to delete it. */ 4411 4412 journal_inode = ext4_iget(sb, journal_inum); 4413 if (IS_ERR(journal_inode)) { 4414 ext4_msg(sb, KERN_ERR, "no journal found"); 4415 return NULL; 4416 } 4417 if (!journal_inode->i_nlink) { 4418 make_bad_inode(journal_inode); 4419 iput(journal_inode); 4420 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4421 return NULL; 4422 } 4423 4424 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4425 journal_inode, journal_inode->i_size); 4426 if (!S_ISREG(journal_inode->i_mode)) { 4427 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4428 iput(journal_inode); 4429 return NULL; 4430 } 4431 4432 journal = jbd2_journal_init_inode(journal_inode); 4433 if (!journal) { 4434 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4435 iput(journal_inode); 4436 return NULL; 4437 } 4438 journal->j_private = sb; 4439 ext4_init_journal_params(sb, journal); 4440 return journal; 4441 } 4442 4443 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4444 dev_t j_dev) 4445 { 4446 struct buffer_head *bh; 4447 journal_t *journal; 4448 ext4_fsblk_t start; 4449 ext4_fsblk_t len; 4450 int hblock, blocksize; 4451 ext4_fsblk_t sb_block; 4452 unsigned long offset; 4453 struct ext4_super_block *es; 4454 struct block_device *bdev; 4455 4456 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4457 4458 bdev = ext4_blkdev_get(j_dev, sb); 4459 if (bdev == NULL) 4460 return NULL; 4461 4462 blocksize = sb->s_blocksize; 4463 hblock = bdev_logical_block_size(bdev); 4464 if (blocksize < hblock) { 4465 ext4_msg(sb, KERN_ERR, 4466 "blocksize too small for journal device"); 4467 goto out_bdev; 4468 } 4469 4470 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4471 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4472 set_blocksize(bdev, blocksize); 4473 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4474 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4475 "external journal"); 4476 goto out_bdev; 4477 } 4478 4479 es = (struct ext4_super_block *) (bh->b_data + offset); 4480 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4481 !(le32_to_cpu(es->s_feature_incompat) & 4482 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4483 ext4_msg(sb, KERN_ERR, "external journal has " 4484 "bad superblock"); 4485 brelse(bh); 4486 goto out_bdev; 4487 } 4488 4489 if ((le32_to_cpu(es->s_feature_ro_compat) & 4490 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4491 es->s_checksum != ext4_superblock_csum(sb, es)) { 4492 ext4_msg(sb, KERN_ERR, "external journal has " 4493 "corrupt superblock"); 4494 brelse(bh); 4495 goto out_bdev; 4496 } 4497 4498 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4499 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4500 brelse(bh); 4501 goto out_bdev; 4502 } 4503 4504 len = ext4_blocks_count(es); 4505 start = sb_block + 1; 4506 brelse(bh); /* we're done with the superblock */ 4507 4508 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4509 start, len, blocksize); 4510 if (!journal) { 4511 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4512 goto out_bdev; 4513 } 4514 journal->j_private = sb; 4515 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4516 wait_on_buffer(journal->j_sb_buffer); 4517 if (!buffer_uptodate(journal->j_sb_buffer)) { 4518 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4519 goto out_journal; 4520 } 4521 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4522 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4523 "user (unsupported) - %d", 4524 be32_to_cpu(journal->j_superblock->s_nr_users)); 4525 goto out_journal; 4526 } 4527 EXT4_SB(sb)->journal_bdev = bdev; 4528 ext4_init_journal_params(sb, journal); 4529 return journal; 4530 4531 out_journal: 4532 jbd2_journal_destroy(journal); 4533 out_bdev: 4534 ext4_blkdev_put(bdev); 4535 return NULL; 4536 } 4537 4538 static int ext4_load_journal(struct super_block *sb, 4539 struct ext4_super_block *es, 4540 unsigned long journal_devnum) 4541 { 4542 journal_t *journal; 4543 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4544 dev_t journal_dev; 4545 int err = 0; 4546 int really_read_only; 4547 4548 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4549 4550 if (journal_devnum && 4551 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4552 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4553 "numbers have changed"); 4554 journal_dev = new_decode_dev(journal_devnum); 4555 } else 4556 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4557 4558 really_read_only = bdev_read_only(sb->s_bdev); 4559 4560 /* 4561 * Are we loading a blank journal or performing recovery after a 4562 * crash? For recovery, we need to check in advance whether we 4563 * can get read-write access to the device. 4564 */ 4565 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4566 if (sb->s_flags & MS_RDONLY) { 4567 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4568 "required on readonly filesystem"); 4569 if (really_read_only) { 4570 ext4_msg(sb, KERN_ERR, "write access " 4571 "unavailable, cannot proceed"); 4572 return -EROFS; 4573 } 4574 ext4_msg(sb, KERN_INFO, "write access will " 4575 "be enabled during recovery"); 4576 } 4577 } 4578 4579 if (journal_inum && journal_dev) { 4580 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4581 "and inode journals!"); 4582 return -EINVAL; 4583 } 4584 4585 if (journal_inum) { 4586 if (!(journal = ext4_get_journal(sb, journal_inum))) 4587 return -EINVAL; 4588 } else { 4589 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4590 return -EINVAL; 4591 } 4592 4593 if (!(journal->j_flags & JBD2_BARRIER)) 4594 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4595 4596 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4597 err = jbd2_journal_wipe(journal, !really_read_only); 4598 if (!err) { 4599 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4600 if (save) 4601 memcpy(save, ((char *) es) + 4602 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4603 err = jbd2_journal_load(journal); 4604 if (save) 4605 memcpy(((char *) es) + EXT4_S_ERR_START, 4606 save, EXT4_S_ERR_LEN); 4607 kfree(save); 4608 } 4609 4610 if (err) { 4611 ext4_msg(sb, KERN_ERR, "error loading journal"); 4612 jbd2_journal_destroy(journal); 4613 return err; 4614 } 4615 4616 EXT4_SB(sb)->s_journal = journal; 4617 ext4_clear_journal_err(sb, es); 4618 4619 if (!really_read_only && journal_devnum && 4620 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4621 es->s_journal_dev = cpu_to_le32(journal_devnum); 4622 4623 /* Make sure we flush the recovery flag to disk. */ 4624 ext4_commit_super(sb, 1); 4625 } 4626 4627 return 0; 4628 } 4629 4630 static int ext4_commit_super(struct super_block *sb, int sync) 4631 { 4632 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4633 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4634 int error = 0; 4635 4636 if (!sbh || block_device_ejected(sb)) 4637 return error; 4638 if (buffer_write_io_error(sbh)) { 4639 /* 4640 * Oh, dear. A previous attempt to write the 4641 * superblock failed. This could happen because the 4642 * USB device was yanked out. Or it could happen to 4643 * be a transient write error and maybe the block will 4644 * be remapped. Nothing we can do but to retry the 4645 * write and hope for the best. 4646 */ 4647 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4648 "superblock detected"); 4649 clear_buffer_write_io_error(sbh); 4650 set_buffer_uptodate(sbh); 4651 } 4652 /* 4653 * If the file system is mounted read-only, don't update the 4654 * superblock write time. This avoids updating the superblock 4655 * write time when we are mounting the root file system 4656 * read/only but we need to replay the journal; at that point, 4657 * for people who are east of GMT and who make their clock 4658 * tick in localtime for Windows bug-for-bug compatibility, 4659 * the clock is set in the future, and this will cause e2fsck 4660 * to complain and force a full file system check. 4661 */ 4662 if (!(sb->s_flags & MS_RDONLY)) 4663 es->s_wtime = cpu_to_le32(get_seconds()); 4664 if (sb->s_bdev->bd_part) 4665 es->s_kbytes_written = 4666 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4667 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4668 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4669 else 4670 es->s_kbytes_written = 4671 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4672 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4673 ext4_free_blocks_count_set(es, 4674 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4675 &EXT4_SB(sb)->s_freeclusters_counter))); 4676 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4677 es->s_free_inodes_count = 4678 cpu_to_le32(percpu_counter_sum_positive( 4679 &EXT4_SB(sb)->s_freeinodes_counter)); 4680 BUFFER_TRACE(sbh, "marking dirty"); 4681 ext4_superblock_csum_set(sb); 4682 mark_buffer_dirty(sbh); 4683 if (sync) { 4684 error = __sync_dirty_buffer(sbh, 4685 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4686 if (error) 4687 return error; 4688 4689 error = buffer_write_io_error(sbh); 4690 if (error) { 4691 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4692 "superblock"); 4693 clear_buffer_write_io_error(sbh); 4694 set_buffer_uptodate(sbh); 4695 } 4696 } 4697 return error; 4698 } 4699 4700 /* 4701 * Have we just finished recovery? If so, and if we are mounting (or 4702 * remounting) the filesystem readonly, then we will end up with a 4703 * consistent fs on disk. Record that fact. 4704 */ 4705 static void ext4_mark_recovery_complete(struct super_block *sb, 4706 struct ext4_super_block *es) 4707 { 4708 journal_t *journal = EXT4_SB(sb)->s_journal; 4709 4710 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4711 BUG_ON(journal != NULL); 4712 return; 4713 } 4714 jbd2_journal_lock_updates(journal); 4715 if (jbd2_journal_flush(journal) < 0) 4716 goto out; 4717 4718 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4719 sb->s_flags & MS_RDONLY) { 4720 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4721 ext4_commit_super(sb, 1); 4722 } 4723 4724 out: 4725 jbd2_journal_unlock_updates(journal); 4726 } 4727 4728 /* 4729 * If we are mounting (or read-write remounting) a filesystem whose journal 4730 * has recorded an error from a previous lifetime, move that error to the 4731 * main filesystem now. 4732 */ 4733 static void ext4_clear_journal_err(struct super_block *sb, 4734 struct ext4_super_block *es) 4735 { 4736 journal_t *journal; 4737 int j_errno; 4738 const char *errstr; 4739 4740 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4741 4742 journal = EXT4_SB(sb)->s_journal; 4743 4744 /* 4745 * Now check for any error status which may have been recorded in the 4746 * journal by a prior ext4_error() or ext4_abort() 4747 */ 4748 4749 j_errno = jbd2_journal_errno(journal); 4750 if (j_errno) { 4751 char nbuf[16]; 4752 4753 errstr = ext4_decode_error(sb, j_errno, nbuf); 4754 ext4_warning(sb, "Filesystem error recorded " 4755 "from previous mount: %s", errstr); 4756 ext4_warning(sb, "Marking fs in need of filesystem check."); 4757 4758 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4759 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4760 ext4_commit_super(sb, 1); 4761 4762 jbd2_journal_clear_err(journal); 4763 jbd2_journal_update_sb_errno(journal); 4764 } 4765 } 4766 4767 /* 4768 * Force the running and committing transactions to commit, 4769 * and wait on the commit. 4770 */ 4771 int ext4_force_commit(struct super_block *sb) 4772 { 4773 journal_t *journal; 4774 4775 if (sb->s_flags & MS_RDONLY) 4776 return 0; 4777 4778 journal = EXT4_SB(sb)->s_journal; 4779 return ext4_journal_force_commit(journal); 4780 } 4781 4782 static int ext4_sync_fs(struct super_block *sb, int wait) 4783 { 4784 int ret = 0; 4785 tid_t target; 4786 bool needs_barrier = false; 4787 struct ext4_sb_info *sbi = EXT4_SB(sb); 4788 4789 trace_ext4_sync_fs(sb, wait); 4790 flush_workqueue(sbi->rsv_conversion_wq); 4791 /* 4792 * Writeback quota in non-journalled quota case - journalled quota has 4793 * no dirty dquots 4794 */ 4795 dquot_writeback_dquots(sb, -1); 4796 /* 4797 * Data writeback is possible w/o journal transaction, so barrier must 4798 * being sent at the end of the function. But we can skip it if 4799 * transaction_commit will do it for us. 4800 */ 4801 if (sbi->s_journal) { 4802 target = jbd2_get_latest_transaction(sbi->s_journal); 4803 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4804 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4805 needs_barrier = true; 4806 4807 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4808 if (wait) 4809 ret = jbd2_log_wait_commit(sbi->s_journal, 4810 target); 4811 } 4812 } else if (wait && test_opt(sb, BARRIER)) 4813 needs_barrier = true; 4814 if (needs_barrier) { 4815 int err; 4816 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4817 if (!ret) 4818 ret = err; 4819 } 4820 4821 return ret; 4822 } 4823 4824 /* 4825 * LVM calls this function before a (read-only) snapshot is created. This 4826 * gives us a chance to flush the journal completely and mark the fs clean. 4827 * 4828 * Note that only this function cannot bring a filesystem to be in a clean 4829 * state independently. It relies on upper layer to stop all data & metadata 4830 * modifications. 4831 */ 4832 static int ext4_freeze(struct super_block *sb) 4833 { 4834 int error = 0; 4835 journal_t *journal; 4836 4837 if (sb->s_flags & MS_RDONLY) 4838 return 0; 4839 4840 journal = EXT4_SB(sb)->s_journal; 4841 4842 if (journal) { 4843 /* Now we set up the journal barrier. */ 4844 jbd2_journal_lock_updates(journal); 4845 4846 /* 4847 * Don't clear the needs_recovery flag if we failed to 4848 * flush the journal. 4849 */ 4850 error = jbd2_journal_flush(journal); 4851 if (error < 0) 4852 goto out; 4853 4854 /* Journal blocked and flushed, clear needs_recovery flag. */ 4855 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4856 } 4857 4858 error = ext4_commit_super(sb, 1); 4859 out: 4860 if (journal) 4861 /* we rely on upper layer to stop further updates */ 4862 jbd2_journal_unlock_updates(journal); 4863 return error; 4864 } 4865 4866 /* 4867 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4868 * flag here, even though the filesystem is not technically dirty yet. 4869 */ 4870 static int ext4_unfreeze(struct super_block *sb) 4871 { 4872 if (sb->s_flags & MS_RDONLY) 4873 return 0; 4874 4875 if (EXT4_SB(sb)->s_journal) { 4876 /* Reset the needs_recovery flag before the fs is unlocked. */ 4877 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4878 } 4879 4880 ext4_commit_super(sb, 1); 4881 return 0; 4882 } 4883 4884 /* 4885 * Structure to save mount options for ext4_remount's benefit 4886 */ 4887 struct ext4_mount_options { 4888 unsigned long s_mount_opt; 4889 unsigned long s_mount_opt2; 4890 kuid_t s_resuid; 4891 kgid_t s_resgid; 4892 unsigned long s_commit_interval; 4893 u32 s_min_batch_time, s_max_batch_time; 4894 #ifdef CONFIG_QUOTA 4895 int s_jquota_fmt; 4896 char *s_qf_names[EXT4_MAXQUOTAS]; 4897 #endif 4898 }; 4899 4900 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4901 { 4902 struct ext4_super_block *es; 4903 struct ext4_sb_info *sbi = EXT4_SB(sb); 4904 unsigned long old_sb_flags; 4905 struct ext4_mount_options old_opts; 4906 int enable_quota = 0; 4907 ext4_group_t g; 4908 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4909 int err = 0; 4910 #ifdef CONFIG_QUOTA 4911 int i, j; 4912 #endif 4913 char *orig_data = kstrdup(data, GFP_KERNEL); 4914 4915 /* Store the original options */ 4916 old_sb_flags = sb->s_flags; 4917 old_opts.s_mount_opt = sbi->s_mount_opt; 4918 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4919 old_opts.s_resuid = sbi->s_resuid; 4920 old_opts.s_resgid = sbi->s_resgid; 4921 old_opts.s_commit_interval = sbi->s_commit_interval; 4922 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4923 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4924 #ifdef CONFIG_QUOTA 4925 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4926 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4927 if (sbi->s_qf_names[i]) { 4928 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4929 GFP_KERNEL); 4930 if (!old_opts.s_qf_names[i]) { 4931 for (j = 0; j < i; j++) 4932 kfree(old_opts.s_qf_names[j]); 4933 kfree(orig_data); 4934 return -ENOMEM; 4935 } 4936 } else 4937 old_opts.s_qf_names[i] = NULL; 4938 #endif 4939 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4940 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4941 4942 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4943 err = -EINVAL; 4944 goto restore_opts; 4945 } 4946 4947 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4948 test_opt(sb, JOURNAL_CHECKSUM)) { 4949 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4950 "during remount not supported; ignoring"); 4951 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4952 } 4953 4954 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4955 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4956 ext4_msg(sb, KERN_ERR, "can't mount with " 4957 "both data=journal and delalloc"); 4958 err = -EINVAL; 4959 goto restore_opts; 4960 } 4961 if (test_opt(sb, DIOREAD_NOLOCK)) { 4962 ext4_msg(sb, KERN_ERR, "can't mount with " 4963 "both data=journal and dioread_nolock"); 4964 err = -EINVAL; 4965 goto restore_opts; 4966 } 4967 if (test_opt(sb, DAX)) { 4968 ext4_msg(sb, KERN_ERR, "can't mount with " 4969 "both data=journal and dax"); 4970 err = -EINVAL; 4971 goto restore_opts; 4972 } 4973 } 4974 4975 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4976 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4977 "dax flag with busy inodes while remounting"); 4978 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4979 } 4980 4981 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4982 ext4_abort(sb, "Abort forced by user"); 4983 4984 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4985 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4986 4987 es = sbi->s_es; 4988 4989 if (sbi->s_journal) { 4990 ext4_init_journal_params(sb, sbi->s_journal); 4991 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4992 } 4993 4994 if (*flags & MS_LAZYTIME) 4995 sb->s_flags |= MS_LAZYTIME; 4996 4997 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4998 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4999 err = -EROFS; 5000 goto restore_opts; 5001 } 5002 5003 if (*flags & MS_RDONLY) { 5004 err = sync_filesystem(sb); 5005 if (err < 0) 5006 goto restore_opts; 5007 err = dquot_suspend(sb, -1); 5008 if (err < 0) 5009 goto restore_opts; 5010 5011 /* 5012 * First of all, the unconditional stuff we have to do 5013 * to disable replay of the journal when we next remount 5014 */ 5015 sb->s_flags |= MS_RDONLY; 5016 5017 /* 5018 * OK, test if we are remounting a valid rw partition 5019 * readonly, and if so set the rdonly flag and then 5020 * mark the partition as valid again. 5021 */ 5022 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5023 (sbi->s_mount_state & EXT4_VALID_FS)) 5024 es->s_state = cpu_to_le16(sbi->s_mount_state); 5025 5026 if (sbi->s_journal) 5027 ext4_mark_recovery_complete(sb, es); 5028 } else { 5029 /* Make sure we can mount this feature set readwrite */ 5030 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5031 EXT4_FEATURE_RO_COMPAT_READONLY) || 5032 !ext4_feature_set_ok(sb, 0)) { 5033 err = -EROFS; 5034 goto restore_opts; 5035 } 5036 /* 5037 * Make sure the group descriptor checksums 5038 * are sane. If they aren't, refuse to remount r/w. 5039 */ 5040 for (g = 0; g < sbi->s_groups_count; g++) { 5041 struct ext4_group_desc *gdp = 5042 ext4_get_group_desc(sb, g, NULL); 5043 5044 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5045 ext4_msg(sb, KERN_ERR, 5046 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5047 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 5048 le16_to_cpu(gdp->bg_checksum)); 5049 err = -EINVAL; 5050 goto restore_opts; 5051 } 5052 } 5053 5054 /* 5055 * If we have an unprocessed orphan list hanging 5056 * around from a previously readonly bdev mount, 5057 * require a full umount/remount for now. 5058 */ 5059 if (es->s_last_orphan) { 5060 ext4_msg(sb, KERN_WARNING, "Couldn't " 5061 "remount RDWR because of unprocessed " 5062 "orphan inode list. Please " 5063 "umount/remount instead"); 5064 err = -EINVAL; 5065 goto restore_opts; 5066 } 5067 5068 /* 5069 * Mounting a RDONLY partition read-write, so reread 5070 * and store the current valid flag. (It may have 5071 * been changed by e2fsck since we originally mounted 5072 * the partition.) 5073 */ 5074 if (sbi->s_journal) 5075 ext4_clear_journal_err(sb, es); 5076 sbi->s_mount_state = le16_to_cpu(es->s_state); 5077 if (!ext4_setup_super(sb, es, 0)) 5078 sb->s_flags &= ~MS_RDONLY; 5079 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 5080 EXT4_FEATURE_INCOMPAT_MMP)) 5081 if (ext4_multi_mount_protect(sb, 5082 le64_to_cpu(es->s_mmp_block))) { 5083 err = -EROFS; 5084 goto restore_opts; 5085 } 5086 enable_quota = 1; 5087 } 5088 } 5089 5090 /* 5091 * Reinitialize lazy itable initialization thread based on 5092 * current settings 5093 */ 5094 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5095 ext4_unregister_li_request(sb); 5096 else { 5097 ext4_group_t first_not_zeroed; 5098 first_not_zeroed = ext4_has_uninit_itable(sb); 5099 ext4_register_li_request(sb, first_not_zeroed); 5100 } 5101 5102 ext4_setup_system_zone(sb); 5103 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5104 ext4_commit_super(sb, 1); 5105 5106 #ifdef CONFIG_QUOTA 5107 /* Release old quota file names */ 5108 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5109 kfree(old_opts.s_qf_names[i]); 5110 if (enable_quota) { 5111 if (sb_any_quota_suspended(sb)) 5112 dquot_resume(sb, -1); 5113 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5114 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5115 err = ext4_enable_quotas(sb); 5116 if (err) 5117 goto restore_opts; 5118 } 5119 } 5120 #endif 5121 5122 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5123 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5124 kfree(orig_data); 5125 return 0; 5126 5127 restore_opts: 5128 sb->s_flags = old_sb_flags; 5129 sbi->s_mount_opt = old_opts.s_mount_opt; 5130 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5131 sbi->s_resuid = old_opts.s_resuid; 5132 sbi->s_resgid = old_opts.s_resgid; 5133 sbi->s_commit_interval = old_opts.s_commit_interval; 5134 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5135 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5136 #ifdef CONFIG_QUOTA 5137 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5138 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5139 kfree(sbi->s_qf_names[i]); 5140 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5141 } 5142 #endif 5143 kfree(orig_data); 5144 return err; 5145 } 5146 5147 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5148 { 5149 struct super_block *sb = dentry->d_sb; 5150 struct ext4_sb_info *sbi = EXT4_SB(sb); 5151 struct ext4_super_block *es = sbi->s_es; 5152 ext4_fsblk_t overhead = 0, resv_blocks; 5153 u64 fsid; 5154 s64 bfree; 5155 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5156 5157 if (!test_opt(sb, MINIX_DF)) 5158 overhead = sbi->s_overhead; 5159 5160 buf->f_type = EXT4_SUPER_MAGIC; 5161 buf->f_bsize = sb->s_blocksize; 5162 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5163 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5164 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5165 /* prevent underflow in case that few free space is available */ 5166 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5167 buf->f_bavail = buf->f_bfree - 5168 (ext4_r_blocks_count(es) + resv_blocks); 5169 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5170 buf->f_bavail = 0; 5171 buf->f_files = le32_to_cpu(es->s_inodes_count); 5172 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5173 buf->f_namelen = EXT4_NAME_LEN; 5174 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5175 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5176 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5177 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5178 5179 return 0; 5180 } 5181 5182 /* Helper function for writing quotas on sync - we need to start transaction 5183 * before quota file is locked for write. Otherwise the are possible deadlocks: 5184 * Process 1 Process 2 5185 * ext4_create() quota_sync() 5186 * jbd2_journal_start() write_dquot() 5187 * dquot_initialize() down(dqio_mutex) 5188 * down(dqio_mutex) jbd2_journal_start() 5189 * 5190 */ 5191 5192 #ifdef CONFIG_QUOTA 5193 5194 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5195 { 5196 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5197 } 5198 5199 static int ext4_write_dquot(struct dquot *dquot) 5200 { 5201 int ret, err; 5202 handle_t *handle; 5203 struct inode *inode; 5204 5205 inode = dquot_to_inode(dquot); 5206 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5207 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5208 if (IS_ERR(handle)) 5209 return PTR_ERR(handle); 5210 ret = dquot_commit(dquot); 5211 err = ext4_journal_stop(handle); 5212 if (!ret) 5213 ret = err; 5214 return ret; 5215 } 5216 5217 static int ext4_acquire_dquot(struct dquot *dquot) 5218 { 5219 int ret, err; 5220 handle_t *handle; 5221 5222 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5223 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5224 if (IS_ERR(handle)) 5225 return PTR_ERR(handle); 5226 ret = dquot_acquire(dquot); 5227 err = ext4_journal_stop(handle); 5228 if (!ret) 5229 ret = err; 5230 return ret; 5231 } 5232 5233 static int ext4_release_dquot(struct dquot *dquot) 5234 { 5235 int ret, err; 5236 handle_t *handle; 5237 5238 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5239 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5240 if (IS_ERR(handle)) { 5241 /* Release dquot anyway to avoid endless cycle in dqput() */ 5242 dquot_release(dquot); 5243 return PTR_ERR(handle); 5244 } 5245 ret = dquot_release(dquot); 5246 err = ext4_journal_stop(handle); 5247 if (!ret) 5248 ret = err; 5249 return ret; 5250 } 5251 5252 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5253 { 5254 struct super_block *sb = dquot->dq_sb; 5255 struct ext4_sb_info *sbi = EXT4_SB(sb); 5256 5257 /* Are we journaling quotas? */ 5258 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5259 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5260 dquot_mark_dquot_dirty(dquot); 5261 return ext4_write_dquot(dquot); 5262 } else { 5263 return dquot_mark_dquot_dirty(dquot); 5264 } 5265 } 5266 5267 static int ext4_write_info(struct super_block *sb, int type) 5268 { 5269 int ret, err; 5270 handle_t *handle; 5271 5272 /* Data block + inode block */ 5273 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5274 if (IS_ERR(handle)) 5275 return PTR_ERR(handle); 5276 ret = dquot_commit_info(sb, type); 5277 err = ext4_journal_stop(handle); 5278 if (!ret) 5279 ret = err; 5280 return ret; 5281 } 5282 5283 /* 5284 * Turn on quotas during mount time - we need to find 5285 * the quota file and such... 5286 */ 5287 static int ext4_quota_on_mount(struct super_block *sb, int type) 5288 { 5289 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5290 EXT4_SB(sb)->s_jquota_fmt, type); 5291 } 5292 5293 /* 5294 * Standard function to be called on quota_on 5295 */ 5296 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5297 struct path *path) 5298 { 5299 int err; 5300 5301 if (!test_opt(sb, QUOTA)) 5302 return -EINVAL; 5303 5304 /* Quotafile not on the same filesystem? */ 5305 if (path->dentry->d_sb != sb) 5306 return -EXDEV; 5307 /* Journaling quota? */ 5308 if (EXT4_SB(sb)->s_qf_names[type]) { 5309 /* Quotafile not in fs root? */ 5310 if (path->dentry->d_parent != sb->s_root) 5311 ext4_msg(sb, KERN_WARNING, 5312 "Quota file not on filesystem root. " 5313 "Journaled quota will not work"); 5314 } 5315 5316 /* 5317 * When we journal data on quota file, we have to flush journal to see 5318 * all updates to the file when we bypass pagecache... 5319 */ 5320 if (EXT4_SB(sb)->s_journal && 5321 ext4_should_journal_data(d_inode(path->dentry))) { 5322 /* 5323 * We don't need to lock updates but journal_flush() could 5324 * otherwise be livelocked... 5325 */ 5326 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5327 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5328 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5329 if (err) 5330 return err; 5331 } 5332 5333 return dquot_quota_on(sb, type, format_id, path); 5334 } 5335 5336 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5337 unsigned int flags) 5338 { 5339 int err; 5340 struct inode *qf_inode; 5341 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5342 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5343 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5344 }; 5345 5346 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5347 5348 if (!qf_inums[type]) 5349 return -EPERM; 5350 5351 qf_inode = ext4_iget(sb, qf_inums[type]); 5352 if (IS_ERR(qf_inode)) { 5353 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5354 return PTR_ERR(qf_inode); 5355 } 5356 5357 /* Don't account quota for quota files to avoid recursion */ 5358 qf_inode->i_flags |= S_NOQUOTA; 5359 err = dquot_enable(qf_inode, type, format_id, flags); 5360 iput(qf_inode); 5361 5362 return err; 5363 } 5364 5365 /* Enable usage tracking for all quota types. */ 5366 static int ext4_enable_quotas(struct super_block *sb) 5367 { 5368 int type, err = 0; 5369 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5370 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5371 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5372 }; 5373 5374 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5375 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5376 if (qf_inums[type]) { 5377 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5378 DQUOT_USAGE_ENABLED); 5379 if (err) { 5380 ext4_warning(sb, 5381 "Failed to enable quota tracking " 5382 "(type=%d, err=%d). Please run " 5383 "e2fsck to fix.", type, err); 5384 return err; 5385 } 5386 } 5387 } 5388 return 0; 5389 } 5390 5391 static int ext4_quota_off(struct super_block *sb, int type) 5392 { 5393 struct inode *inode = sb_dqopt(sb)->files[type]; 5394 handle_t *handle; 5395 5396 /* Force all delayed allocation blocks to be allocated. 5397 * Caller already holds s_umount sem */ 5398 if (test_opt(sb, DELALLOC)) 5399 sync_filesystem(sb); 5400 5401 if (!inode) 5402 goto out; 5403 5404 /* Update modification times of quota files when userspace can 5405 * start looking at them */ 5406 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5407 if (IS_ERR(handle)) 5408 goto out; 5409 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5410 ext4_mark_inode_dirty(handle, inode); 5411 ext4_journal_stop(handle); 5412 5413 out: 5414 return dquot_quota_off(sb, type); 5415 } 5416 5417 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5418 * acquiring the locks... As quota files are never truncated and quota code 5419 * itself serializes the operations (and no one else should touch the files) 5420 * we don't have to be afraid of races */ 5421 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5422 size_t len, loff_t off) 5423 { 5424 struct inode *inode = sb_dqopt(sb)->files[type]; 5425 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5426 int offset = off & (sb->s_blocksize - 1); 5427 int tocopy; 5428 size_t toread; 5429 struct buffer_head *bh; 5430 loff_t i_size = i_size_read(inode); 5431 5432 if (off > i_size) 5433 return 0; 5434 if (off+len > i_size) 5435 len = i_size-off; 5436 toread = len; 5437 while (toread > 0) { 5438 tocopy = sb->s_blocksize - offset < toread ? 5439 sb->s_blocksize - offset : toread; 5440 bh = ext4_bread(NULL, inode, blk, 0); 5441 if (IS_ERR(bh)) 5442 return PTR_ERR(bh); 5443 if (!bh) /* A hole? */ 5444 memset(data, 0, tocopy); 5445 else 5446 memcpy(data, bh->b_data+offset, tocopy); 5447 brelse(bh); 5448 offset = 0; 5449 toread -= tocopy; 5450 data += tocopy; 5451 blk++; 5452 } 5453 return len; 5454 } 5455 5456 /* Write to quotafile (we know the transaction is already started and has 5457 * enough credits) */ 5458 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5459 const char *data, size_t len, loff_t off) 5460 { 5461 struct inode *inode = sb_dqopt(sb)->files[type]; 5462 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5463 int err, offset = off & (sb->s_blocksize - 1); 5464 int retries = 0; 5465 struct buffer_head *bh; 5466 handle_t *handle = journal_current_handle(); 5467 5468 if (EXT4_SB(sb)->s_journal && !handle) { 5469 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5470 " cancelled because transaction is not started", 5471 (unsigned long long)off, (unsigned long long)len); 5472 return -EIO; 5473 } 5474 /* 5475 * Since we account only one data block in transaction credits, 5476 * then it is impossible to cross a block boundary. 5477 */ 5478 if (sb->s_blocksize - offset < len) { 5479 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5480 " cancelled because not block aligned", 5481 (unsigned long long)off, (unsigned long long)len); 5482 return -EIO; 5483 } 5484 5485 do { 5486 bh = ext4_bread(handle, inode, blk, 5487 EXT4_GET_BLOCKS_CREATE | 5488 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5489 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5490 ext4_should_retry_alloc(inode->i_sb, &retries)); 5491 if (IS_ERR(bh)) 5492 return PTR_ERR(bh); 5493 if (!bh) 5494 goto out; 5495 BUFFER_TRACE(bh, "get write access"); 5496 err = ext4_journal_get_write_access(handle, bh); 5497 if (err) { 5498 brelse(bh); 5499 return err; 5500 } 5501 lock_buffer(bh); 5502 memcpy(bh->b_data+offset, data, len); 5503 flush_dcache_page(bh->b_page); 5504 unlock_buffer(bh); 5505 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5506 brelse(bh); 5507 out: 5508 if (inode->i_size < off + len) { 5509 i_size_write(inode, off + len); 5510 EXT4_I(inode)->i_disksize = inode->i_size; 5511 ext4_mark_inode_dirty(handle, inode); 5512 } 5513 return len; 5514 } 5515 5516 #endif 5517 5518 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5519 const char *dev_name, void *data) 5520 { 5521 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5522 } 5523 5524 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5525 static inline void register_as_ext2(void) 5526 { 5527 int err = register_filesystem(&ext2_fs_type); 5528 if (err) 5529 printk(KERN_WARNING 5530 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5531 } 5532 5533 static inline void unregister_as_ext2(void) 5534 { 5535 unregister_filesystem(&ext2_fs_type); 5536 } 5537 5538 static inline int ext2_feature_set_ok(struct super_block *sb) 5539 { 5540 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5541 return 0; 5542 if (sb->s_flags & MS_RDONLY) 5543 return 1; 5544 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5545 return 0; 5546 return 1; 5547 } 5548 #else 5549 static inline void register_as_ext2(void) { } 5550 static inline void unregister_as_ext2(void) { } 5551 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5552 #endif 5553 5554 static inline void register_as_ext3(void) 5555 { 5556 int err = register_filesystem(&ext3_fs_type); 5557 if (err) 5558 printk(KERN_WARNING 5559 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5560 } 5561 5562 static inline void unregister_as_ext3(void) 5563 { 5564 unregister_filesystem(&ext3_fs_type); 5565 } 5566 5567 static inline int ext3_feature_set_ok(struct super_block *sb) 5568 { 5569 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5570 return 0; 5571 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5572 return 0; 5573 if (sb->s_flags & MS_RDONLY) 5574 return 1; 5575 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5576 return 0; 5577 return 1; 5578 } 5579 5580 static struct file_system_type ext4_fs_type = { 5581 .owner = THIS_MODULE, 5582 .name = "ext4", 5583 .mount = ext4_mount, 5584 .kill_sb = kill_block_super, 5585 .fs_flags = FS_REQUIRES_DEV, 5586 }; 5587 MODULE_ALIAS_FS("ext4"); 5588 5589 static int __init ext4_init_feat_adverts(void) 5590 { 5591 struct ext4_features *ef; 5592 int ret = -ENOMEM; 5593 5594 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5595 if (!ef) 5596 goto out; 5597 5598 ef->f_kobj.kset = ext4_kset; 5599 init_completion(&ef->f_kobj_unregister); 5600 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5601 "features"); 5602 if (ret) { 5603 kfree(ef); 5604 goto out; 5605 } 5606 5607 ext4_feat = ef; 5608 ret = 0; 5609 out: 5610 return ret; 5611 } 5612 5613 static void ext4_exit_feat_adverts(void) 5614 { 5615 kobject_put(&ext4_feat->f_kobj); 5616 wait_for_completion(&ext4_feat->f_kobj_unregister); 5617 kfree(ext4_feat); 5618 } 5619 5620 /* Shared across all ext4 file systems */ 5621 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5622 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5623 5624 static int __init ext4_init_fs(void) 5625 { 5626 int i, err; 5627 5628 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5629 ext4_li_info = NULL; 5630 mutex_init(&ext4_li_mtx); 5631 5632 /* Build-time check for flags consistency */ 5633 ext4_check_flag_values(); 5634 5635 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5636 mutex_init(&ext4__aio_mutex[i]); 5637 init_waitqueue_head(&ext4__ioend_wq[i]); 5638 } 5639 5640 err = ext4_init_es(); 5641 if (err) 5642 return err; 5643 5644 err = ext4_init_pageio(); 5645 if (err) 5646 goto out7; 5647 5648 err = ext4_init_system_zone(); 5649 if (err) 5650 goto out6; 5651 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5652 if (!ext4_kset) { 5653 err = -ENOMEM; 5654 goto out5; 5655 } 5656 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5657 5658 err = ext4_init_feat_adverts(); 5659 if (err) 5660 goto out4; 5661 5662 err = ext4_init_mballoc(); 5663 if (err) 5664 goto out2; 5665 else 5666 ext4_mballoc_ready = 1; 5667 err = init_inodecache(); 5668 if (err) 5669 goto out1; 5670 register_as_ext3(); 5671 register_as_ext2(); 5672 err = register_filesystem(&ext4_fs_type); 5673 if (err) 5674 goto out; 5675 5676 return 0; 5677 out: 5678 unregister_as_ext2(); 5679 unregister_as_ext3(); 5680 destroy_inodecache(); 5681 out1: 5682 ext4_mballoc_ready = 0; 5683 ext4_exit_mballoc(); 5684 out2: 5685 ext4_exit_feat_adverts(); 5686 out4: 5687 if (ext4_proc_root) 5688 remove_proc_entry("fs/ext4", NULL); 5689 kset_unregister(ext4_kset); 5690 out5: 5691 ext4_exit_system_zone(); 5692 out6: 5693 ext4_exit_pageio(); 5694 out7: 5695 ext4_exit_es(); 5696 5697 return err; 5698 } 5699 5700 static void __exit ext4_exit_fs(void) 5701 { 5702 ext4_exit_crypto(); 5703 ext4_destroy_lazyinit_thread(); 5704 unregister_as_ext2(); 5705 unregister_as_ext3(); 5706 unregister_filesystem(&ext4_fs_type); 5707 destroy_inodecache(); 5708 ext4_exit_mballoc(); 5709 ext4_exit_feat_adverts(); 5710 remove_proc_entry("fs/ext4", NULL); 5711 kset_unregister(ext4_kset); 5712 ext4_exit_system_zone(); 5713 ext4_exit_pageio(); 5714 ext4_exit_es(); 5715 } 5716 5717 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5718 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5719 MODULE_LICENSE("GPL"); 5720 module_init(ext4_init_fs) 5721 module_exit(ext4_exit_fs) 5722