xref: /openbmc/linux/fs/ext4/super.c (revision eb039161)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"	/* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57 
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61 
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 			     unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 					struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 				   struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 		       const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 					    unsigned int journal_inum);
85 
86 /*
87  * Lock ordering
88  *
89  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90  * i_mmap_rwsem (inode->i_mmap_rwsem)!
91  *
92  * page fault path:
93  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94  *   page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_sem
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103  *   i_mmap_rwsem (w) -> page lock
104  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105  *   transaction start -> i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110  *   transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 static int ext4_verify_csum_type(struct super_block *sb,
144 				 struct ext4_super_block *es)
145 {
146 	if (!ext4_has_feature_metadata_csum(sb))
147 		return 1;
148 
149 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151 
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 				   struct ext4_super_block *es)
154 {
155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
156 	int offset = offsetof(struct ext4_super_block, s_checksum);
157 	__u32 csum;
158 
159 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160 
161 	return cpu_to_le32(csum);
162 }
163 
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 				       struct ext4_super_block *es)
166 {
167 	if (!ext4_has_metadata_csum(sb))
168 		return 1;
169 
170 	return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172 
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176 
177 	if (!ext4_has_metadata_csum(sb))
178 		return;
179 
180 	es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182 
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 	void *ret;
186 
187 	ret = kmalloc(size, flags | __GFP_NOWARN);
188 	if (!ret)
189 		ret = __vmalloc(size, flags, PAGE_KERNEL);
190 	return ret;
191 }
192 
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 	void *ret;
196 
197 	ret = kzalloc(size, flags | __GFP_NOWARN);
198 	if (!ret)
199 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 	return ret;
201 }
202 
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 			       struct ext4_group_desc *bg)
205 {
206 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210 
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 			       struct ext4_group_desc *bg)
213 {
214 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218 
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 			      struct ext4_group_desc *bg)
221 {
222 	return le32_to_cpu(bg->bg_inode_table_lo) |
223 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226 
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 			       struct ext4_group_desc *bg)
229 {
230 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234 
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 			      struct ext4_group_desc *bg)
237 {
238 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242 
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 			      struct ext4_group_desc *bg)
245 {
246 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250 
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 			      struct ext4_group_desc *bg)
253 {
254 	return le16_to_cpu(bg->bg_itable_unused_lo) |
255 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258 
259 void ext4_block_bitmap_set(struct super_block *sb,
260 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266 
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
271 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274 
275 void ext4_inode_table_set(struct super_block *sb,
276 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282 
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 				  struct ext4_group_desc *bg, __u32 count)
285 {
286 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290 
291 void ext4_free_inodes_set(struct super_block *sb,
292 			  struct ext4_group_desc *bg, __u32 count)
293 {
294 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298 
299 void ext4_used_dirs_set(struct super_block *sb,
300 			  struct ext4_group_desc *bg, __u32 count)
301 {
302 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306 
307 void ext4_itable_unused_set(struct super_block *sb,
308 			  struct ext4_group_desc *bg, __u32 count)
309 {
310 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314 
315 
316 static void __save_error_info(struct super_block *sb, const char *func,
317 			    unsigned int line)
318 {
319 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320 
321 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 	if (bdev_read_only(sb->s_bdev))
323 		return;
324 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 	es->s_last_error_time = cpu_to_le32(get_seconds());
326 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 	es->s_last_error_line = cpu_to_le32(line);
328 	if (!es->s_first_error_time) {
329 		es->s_first_error_time = es->s_last_error_time;
330 		strncpy(es->s_first_error_func, func,
331 			sizeof(es->s_first_error_func));
332 		es->s_first_error_line = cpu_to_le32(line);
333 		es->s_first_error_ino = es->s_last_error_ino;
334 		es->s_first_error_block = es->s_last_error_block;
335 	}
336 	/*
337 	 * Start the daily error reporting function if it hasn't been
338 	 * started already
339 	 */
340 	if (!es->s_error_count)
341 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 	le32_add_cpu(&es->s_error_count, 1);
343 }
344 
345 static void save_error_info(struct super_block *sb, const char *func,
346 			    unsigned int line)
347 {
348 	__save_error_info(sb, func, line);
349 	ext4_commit_super(sb, 1);
350 }
351 
352 /*
353  * The del_gendisk() function uninitializes the disk-specific data
354  * structures, including the bdi structure, without telling anyone
355  * else.  Once this happens, any attempt to call mark_buffer_dirty()
356  * (for example, by ext4_commit_super), will cause a kernel OOPS.
357  * This is a kludge to prevent these oops until we can put in a proper
358  * hook in del_gendisk() to inform the VFS and file system layers.
359  */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 	struct inode *bd_inode = sb->s_bdev->bd_inode;
363 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364 
365 	return bdi->dev == NULL;
366 }
367 
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 	struct super_block		*sb = journal->j_private;
371 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
372 	int				error = is_journal_aborted(journal);
373 	struct ext4_journal_cb_entry	*jce;
374 
375 	BUG_ON(txn->t_state == T_FINISHED);
376 
377 	ext4_process_freed_data(sb, txn->t_tid);
378 
379 	spin_lock(&sbi->s_md_lock);
380 	while (!list_empty(&txn->t_private_list)) {
381 		jce = list_entry(txn->t_private_list.next,
382 				 struct ext4_journal_cb_entry, jce_list);
383 		list_del_init(&jce->jce_list);
384 		spin_unlock(&sbi->s_md_lock);
385 		jce->jce_func(sb, jce, error);
386 		spin_lock(&sbi->s_md_lock);
387 	}
388 	spin_unlock(&sbi->s_md_lock);
389 }
390 
391 /* Deal with the reporting of failure conditions on a filesystem such as
392  * inconsistencies detected or read IO failures.
393  *
394  * On ext2, we can store the error state of the filesystem in the
395  * superblock.  That is not possible on ext4, because we may have other
396  * write ordering constraints on the superblock which prevent us from
397  * writing it out straight away; and given that the journal is about to
398  * be aborted, we can't rely on the current, or future, transactions to
399  * write out the superblock safely.
400  *
401  * We'll just use the jbd2_journal_abort() error code to record an error in
402  * the journal instead.  On recovery, the journal will complain about
403  * that error until we've noted it down and cleared it.
404  */
405 
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 	if (sb->s_flags & MS_RDONLY)
409 		return;
410 
411 	if (!test_opt(sb, ERRORS_CONT)) {
412 		journal_t *journal = EXT4_SB(sb)->s_journal;
413 
414 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 		if (journal)
416 			jbd2_journal_abort(journal, -EIO);
417 	}
418 	if (test_opt(sb, ERRORS_RO)) {
419 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 		/*
421 		 * Make sure updated value of ->s_mount_flags will be visible
422 		 * before ->s_flags update
423 		 */
424 		smp_wmb();
425 		sb->s_flags |= MS_RDONLY;
426 	}
427 	if (test_opt(sb, ERRORS_PANIC)) {
428 		if (EXT4_SB(sb)->s_journal &&
429 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 			return;
431 		panic("EXT4-fs (device %s): panic forced after error\n",
432 			sb->s_id);
433 	}
434 }
435 
436 #define ext4_error_ratelimit(sb)					\
437 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
438 			     "EXT4-fs error")
439 
440 void __ext4_error(struct super_block *sb, const char *function,
441 		  unsigned int line, const char *fmt, ...)
442 {
443 	struct va_format vaf;
444 	va_list args;
445 
446 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 		return;
448 
449 	if (ext4_error_ratelimit(sb)) {
450 		va_start(args, fmt);
451 		vaf.fmt = fmt;
452 		vaf.va = &args;
453 		printk(KERN_CRIT
454 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 		       sb->s_id, function, line, current->comm, &vaf);
456 		va_end(args);
457 	}
458 	save_error_info(sb, function, line);
459 	ext4_handle_error(sb);
460 }
461 
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 			unsigned int line, ext4_fsblk_t block,
464 			const char *fmt, ...)
465 {
466 	va_list args;
467 	struct va_format vaf;
468 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
469 
470 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471 		return;
472 
473 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 	es->s_last_error_block = cpu_to_le64(block);
475 	if (ext4_error_ratelimit(inode->i_sb)) {
476 		va_start(args, fmt);
477 		vaf.fmt = fmt;
478 		vaf.va = &args;
479 		if (block)
480 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 			       "inode #%lu: block %llu: comm %s: %pV\n",
482 			       inode->i_sb->s_id, function, line, inode->i_ino,
483 			       block, current->comm, &vaf);
484 		else
485 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 			       "inode #%lu: comm %s: %pV\n",
487 			       inode->i_sb->s_id, function, line, inode->i_ino,
488 			       current->comm, &vaf);
489 		va_end(args);
490 	}
491 	save_error_info(inode->i_sb, function, line);
492 	ext4_handle_error(inode->i_sb);
493 }
494 
495 void __ext4_error_file(struct file *file, const char *function,
496 		       unsigned int line, ext4_fsblk_t block,
497 		       const char *fmt, ...)
498 {
499 	va_list args;
500 	struct va_format vaf;
501 	struct ext4_super_block *es;
502 	struct inode *inode = file_inode(file);
503 	char pathname[80], *path;
504 
505 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506 		return;
507 
508 	es = EXT4_SB(inode->i_sb)->s_es;
509 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 	if (ext4_error_ratelimit(inode->i_sb)) {
511 		path = file_path(file, pathname, sizeof(pathname));
512 		if (IS_ERR(path))
513 			path = "(unknown)";
514 		va_start(args, fmt);
515 		vaf.fmt = fmt;
516 		vaf.va = &args;
517 		if (block)
518 			printk(KERN_CRIT
519 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 			       "block %llu: comm %s: path %s: %pV\n",
521 			       inode->i_sb->s_id, function, line, inode->i_ino,
522 			       block, current->comm, path, &vaf);
523 		else
524 			printk(KERN_CRIT
525 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 			       "comm %s: path %s: %pV\n",
527 			       inode->i_sb->s_id, function, line, inode->i_ino,
528 			       current->comm, path, &vaf);
529 		va_end(args);
530 	}
531 	save_error_info(inode->i_sb, function, line);
532 	ext4_handle_error(inode->i_sb);
533 }
534 
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536 			      char nbuf[16])
537 {
538 	char *errstr = NULL;
539 
540 	switch (errno) {
541 	case -EFSCORRUPTED:
542 		errstr = "Corrupt filesystem";
543 		break;
544 	case -EFSBADCRC:
545 		errstr = "Filesystem failed CRC";
546 		break;
547 	case -EIO:
548 		errstr = "IO failure";
549 		break;
550 	case -ENOMEM:
551 		errstr = "Out of memory";
552 		break;
553 	case -EROFS:
554 		if (!sb || (EXT4_SB(sb)->s_journal &&
555 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 			errstr = "Journal has aborted";
557 		else
558 			errstr = "Readonly filesystem";
559 		break;
560 	default:
561 		/* If the caller passed in an extra buffer for unknown
562 		 * errors, textualise them now.  Else we just return
563 		 * NULL. */
564 		if (nbuf) {
565 			/* Check for truncated error codes... */
566 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 				errstr = nbuf;
568 		}
569 		break;
570 	}
571 
572 	return errstr;
573 }
574 
575 /* __ext4_std_error decodes expected errors from journaling functions
576  * automatically and invokes the appropriate error response.  */
577 
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 		      unsigned int line, int errno)
580 {
581 	char nbuf[16];
582 	const char *errstr;
583 
584 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585 		return;
586 
587 	/* Special case: if the error is EROFS, and we're not already
588 	 * inside a transaction, then there's really no point in logging
589 	 * an error. */
590 	if (errno == -EROFS && journal_current_handle() == NULL &&
591 	    (sb->s_flags & MS_RDONLY))
592 		return;
593 
594 	if (ext4_error_ratelimit(sb)) {
595 		errstr = ext4_decode_error(sb, errno, nbuf);
596 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
597 		       sb->s_id, function, line, errstr);
598 	}
599 
600 	save_error_info(sb, function, line);
601 	ext4_handle_error(sb);
602 }
603 
604 /*
605  * ext4_abort is a much stronger failure handler than ext4_error.  The
606  * abort function may be used to deal with unrecoverable failures such
607  * as journal IO errors or ENOMEM at a critical moment in log management.
608  *
609  * We unconditionally force the filesystem into an ABORT|READONLY state,
610  * unless the error response on the fs has been set to panic in which
611  * case we take the easy way out and panic immediately.
612  */
613 
614 void __ext4_abort(struct super_block *sb, const char *function,
615 		unsigned int line, const char *fmt, ...)
616 {
617 	struct va_format vaf;
618 	va_list args;
619 
620 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
621 		return;
622 
623 	save_error_info(sb, function, line);
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
628 	       sb->s_id, function, line, &vaf);
629 	va_end(args);
630 
631 	if ((sb->s_flags & MS_RDONLY) == 0) {
632 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
633 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
634 		/*
635 		 * Make sure updated value of ->s_mount_flags will be visible
636 		 * before ->s_flags update
637 		 */
638 		smp_wmb();
639 		sb->s_flags |= MS_RDONLY;
640 		if (EXT4_SB(sb)->s_journal)
641 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
642 		save_error_info(sb, function, line);
643 	}
644 	if (test_opt(sb, ERRORS_PANIC)) {
645 		if (EXT4_SB(sb)->s_journal &&
646 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
647 			return;
648 		panic("EXT4-fs panic from previous error\n");
649 	}
650 }
651 
652 void __ext4_msg(struct super_block *sb,
653 		const char *prefix, const char *fmt, ...)
654 {
655 	struct va_format vaf;
656 	va_list args;
657 
658 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
659 		return;
660 
661 	va_start(args, fmt);
662 	vaf.fmt = fmt;
663 	vaf.va = &args;
664 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
665 	va_end(args);
666 }
667 
668 #define ext4_warning_ratelimit(sb)					\
669 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
670 			     "EXT4-fs warning")
671 
672 void __ext4_warning(struct super_block *sb, const char *function,
673 		    unsigned int line, const char *fmt, ...)
674 {
675 	struct va_format vaf;
676 	va_list args;
677 
678 	if (!ext4_warning_ratelimit(sb))
679 		return;
680 
681 	va_start(args, fmt);
682 	vaf.fmt = fmt;
683 	vaf.va = &args;
684 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
685 	       sb->s_id, function, line, &vaf);
686 	va_end(args);
687 }
688 
689 void __ext4_warning_inode(const struct inode *inode, const char *function,
690 			  unsigned int line, const char *fmt, ...)
691 {
692 	struct va_format vaf;
693 	va_list args;
694 
695 	if (!ext4_warning_ratelimit(inode->i_sb))
696 		return;
697 
698 	va_start(args, fmt);
699 	vaf.fmt = fmt;
700 	vaf.va = &args;
701 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
702 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
703 	       function, line, inode->i_ino, current->comm, &vaf);
704 	va_end(args);
705 }
706 
707 void __ext4_grp_locked_error(const char *function, unsigned int line,
708 			     struct super_block *sb, ext4_group_t grp,
709 			     unsigned long ino, ext4_fsblk_t block,
710 			     const char *fmt, ...)
711 __releases(bitlock)
712 __acquires(bitlock)
713 {
714 	struct va_format vaf;
715 	va_list args;
716 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
717 
718 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
719 		return;
720 
721 	es->s_last_error_ino = cpu_to_le32(ino);
722 	es->s_last_error_block = cpu_to_le64(block);
723 	__save_error_info(sb, function, line);
724 
725 	if (ext4_error_ratelimit(sb)) {
726 		va_start(args, fmt);
727 		vaf.fmt = fmt;
728 		vaf.va = &args;
729 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
730 		       sb->s_id, function, line, grp);
731 		if (ino)
732 			printk(KERN_CONT "inode %lu: ", ino);
733 		if (block)
734 			printk(KERN_CONT "block %llu:",
735 			       (unsigned long long) block);
736 		printk(KERN_CONT "%pV\n", &vaf);
737 		va_end(args);
738 	}
739 
740 	if (test_opt(sb, ERRORS_CONT)) {
741 		ext4_commit_super(sb, 0);
742 		return;
743 	}
744 
745 	ext4_unlock_group(sb, grp);
746 	ext4_handle_error(sb);
747 	/*
748 	 * We only get here in the ERRORS_RO case; relocking the group
749 	 * may be dangerous, but nothing bad will happen since the
750 	 * filesystem will have already been marked read/only and the
751 	 * journal has been aborted.  We return 1 as a hint to callers
752 	 * who might what to use the return value from
753 	 * ext4_grp_locked_error() to distinguish between the
754 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
755 	 * aggressively from the ext4 function in question, with a
756 	 * more appropriate error code.
757 	 */
758 	ext4_lock_group(sb, grp);
759 	return;
760 }
761 
762 void ext4_update_dynamic_rev(struct super_block *sb)
763 {
764 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
765 
766 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
767 		return;
768 
769 	ext4_warning(sb,
770 		     "updating to rev %d because of new feature flag, "
771 		     "running e2fsck is recommended",
772 		     EXT4_DYNAMIC_REV);
773 
774 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
775 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
776 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
777 	/* leave es->s_feature_*compat flags alone */
778 	/* es->s_uuid will be set by e2fsck if empty */
779 
780 	/*
781 	 * The rest of the superblock fields should be zero, and if not it
782 	 * means they are likely already in use, so leave them alone.  We
783 	 * can leave it up to e2fsck to clean up any inconsistencies there.
784 	 */
785 }
786 
787 /*
788  * Open the external journal device
789  */
790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
791 {
792 	struct block_device *bdev;
793 	char b[BDEVNAME_SIZE];
794 
795 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
796 	if (IS_ERR(bdev))
797 		goto fail;
798 	return bdev;
799 
800 fail:
801 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
802 			__bdevname(dev, b), PTR_ERR(bdev));
803 	return NULL;
804 }
805 
806 /*
807  * Release the journal device
808  */
809 static void ext4_blkdev_put(struct block_device *bdev)
810 {
811 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
812 }
813 
814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
815 {
816 	struct block_device *bdev;
817 	bdev = sbi->journal_bdev;
818 	if (bdev) {
819 		ext4_blkdev_put(bdev);
820 		sbi->journal_bdev = NULL;
821 	}
822 }
823 
824 static inline struct inode *orphan_list_entry(struct list_head *l)
825 {
826 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
827 }
828 
829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 {
831 	struct list_head *l;
832 
833 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
834 		 le32_to_cpu(sbi->s_es->s_last_orphan));
835 
836 	printk(KERN_ERR "sb_info orphan list:\n");
837 	list_for_each(l, &sbi->s_orphan) {
838 		struct inode *inode = orphan_list_entry(l);
839 		printk(KERN_ERR "  "
840 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
841 		       inode->i_sb->s_id, inode->i_ino, inode,
842 		       inode->i_mode, inode->i_nlink,
843 		       NEXT_ORPHAN(inode));
844 	}
845 }
846 
847 #ifdef CONFIG_QUOTA
848 static int ext4_quota_off(struct super_block *sb, int type);
849 
850 static inline void ext4_quota_off_umount(struct super_block *sb)
851 {
852 	int type;
853 
854 	/* Use our quota_off function to clear inode flags etc. */
855 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
856 		ext4_quota_off(sb, type);
857 }
858 #else
859 static inline void ext4_quota_off_umount(struct super_block *sb)
860 {
861 }
862 #endif
863 
864 static void ext4_put_super(struct super_block *sb)
865 {
866 	struct ext4_sb_info *sbi = EXT4_SB(sb);
867 	struct ext4_super_block *es = sbi->s_es;
868 	int aborted = 0;
869 	int i, err;
870 
871 	ext4_unregister_li_request(sb);
872 	ext4_quota_off_umount(sb);
873 
874 	flush_workqueue(sbi->rsv_conversion_wq);
875 	destroy_workqueue(sbi->rsv_conversion_wq);
876 
877 	if (sbi->s_journal) {
878 		aborted = is_journal_aborted(sbi->s_journal);
879 		err = jbd2_journal_destroy(sbi->s_journal);
880 		sbi->s_journal = NULL;
881 		if ((err < 0) && !aborted)
882 			ext4_abort(sb, "Couldn't clean up the journal");
883 	}
884 
885 	ext4_unregister_sysfs(sb);
886 	ext4_es_unregister_shrinker(sbi);
887 	del_timer_sync(&sbi->s_err_report);
888 	ext4_release_system_zone(sb);
889 	ext4_mb_release(sb);
890 	ext4_ext_release(sb);
891 
892 	if (!(sb->s_flags & MS_RDONLY) && !aborted) {
893 		ext4_clear_feature_journal_needs_recovery(sb);
894 		es->s_state = cpu_to_le16(sbi->s_mount_state);
895 	}
896 	if (!(sb->s_flags & MS_RDONLY))
897 		ext4_commit_super(sb, 1);
898 
899 	for (i = 0; i < sbi->s_gdb_count; i++)
900 		brelse(sbi->s_group_desc[i]);
901 	kvfree(sbi->s_group_desc);
902 	kvfree(sbi->s_flex_groups);
903 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
904 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
905 	percpu_counter_destroy(&sbi->s_dirs_counter);
906 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
907 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
908 #ifdef CONFIG_QUOTA
909 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
910 		kfree(sbi->s_qf_names[i]);
911 #endif
912 
913 	/* Debugging code just in case the in-memory inode orphan list
914 	 * isn't empty.  The on-disk one can be non-empty if we've
915 	 * detected an error and taken the fs readonly, but the
916 	 * in-memory list had better be clean by this point. */
917 	if (!list_empty(&sbi->s_orphan))
918 		dump_orphan_list(sb, sbi);
919 	J_ASSERT(list_empty(&sbi->s_orphan));
920 
921 	sync_blockdev(sb->s_bdev);
922 	invalidate_bdev(sb->s_bdev);
923 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
924 		/*
925 		 * Invalidate the journal device's buffers.  We don't want them
926 		 * floating about in memory - the physical journal device may
927 		 * hotswapped, and it breaks the `ro-after' testing code.
928 		 */
929 		sync_blockdev(sbi->journal_bdev);
930 		invalidate_bdev(sbi->journal_bdev);
931 		ext4_blkdev_remove(sbi);
932 	}
933 	if (sbi->s_ea_inode_cache) {
934 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
935 		sbi->s_ea_inode_cache = NULL;
936 	}
937 	if (sbi->s_ea_block_cache) {
938 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
939 		sbi->s_ea_block_cache = NULL;
940 	}
941 	if (sbi->s_mmp_tsk)
942 		kthread_stop(sbi->s_mmp_tsk);
943 	brelse(sbi->s_sbh);
944 	sb->s_fs_info = NULL;
945 	/*
946 	 * Now that we are completely done shutting down the
947 	 * superblock, we need to actually destroy the kobject.
948 	 */
949 	kobject_put(&sbi->s_kobj);
950 	wait_for_completion(&sbi->s_kobj_unregister);
951 	if (sbi->s_chksum_driver)
952 		crypto_free_shash(sbi->s_chksum_driver);
953 	kfree(sbi->s_blockgroup_lock);
954 	kfree(sbi);
955 }
956 
957 static struct kmem_cache *ext4_inode_cachep;
958 
959 /*
960  * Called inside transaction, so use GFP_NOFS
961  */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964 	struct ext4_inode_info *ei;
965 
966 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967 	if (!ei)
968 		return NULL;
969 
970 	ei->vfs_inode.i_version = 1;
971 	spin_lock_init(&ei->i_raw_lock);
972 	INIT_LIST_HEAD(&ei->i_prealloc_list);
973 	spin_lock_init(&ei->i_prealloc_lock);
974 	ext4_es_init_tree(&ei->i_es_tree);
975 	rwlock_init(&ei->i_es_lock);
976 	INIT_LIST_HEAD(&ei->i_es_list);
977 	ei->i_es_all_nr = 0;
978 	ei->i_es_shk_nr = 0;
979 	ei->i_es_shrink_lblk = 0;
980 	ei->i_reserved_data_blocks = 0;
981 	ei->i_reserved_meta_blocks = 0;
982 	ei->i_allocated_meta_blocks = 0;
983 	ei->i_da_metadata_calc_len = 0;
984 	ei->i_da_metadata_calc_last_lblock = 0;
985 	spin_lock_init(&(ei->i_block_reservation_lock));
986 #ifdef CONFIG_QUOTA
987 	ei->i_reserved_quota = 0;
988 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
989 #endif
990 	ei->jinode = NULL;
991 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
992 	spin_lock_init(&ei->i_completed_io_lock);
993 	ei->i_sync_tid = 0;
994 	ei->i_datasync_tid = 0;
995 	atomic_set(&ei->i_unwritten, 0);
996 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
997 	return &ei->vfs_inode;
998 }
999 
1000 static int ext4_drop_inode(struct inode *inode)
1001 {
1002 	int drop = generic_drop_inode(inode);
1003 
1004 	trace_ext4_drop_inode(inode, drop);
1005 	return drop;
1006 }
1007 
1008 static void ext4_i_callback(struct rcu_head *head)
1009 {
1010 	struct inode *inode = container_of(head, struct inode, i_rcu);
1011 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1012 }
1013 
1014 static void ext4_destroy_inode(struct inode *inode)
1015 {
1016 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1017 		ext4_msg(inode->i_sb, KERN_ERR,
1018 			 "Inode %lu (%p): orphan list check failed!",
1019 			 inode->i_ino, EXT4_I(inode));
1020 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1021 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1022 				true);
1023 		dump_stack();
1024 	}
1025 	call_rcu(&inode->i_rcu, ext4_i_callback);
1026 }
1027 
1028 static void init_once(void *foo)
1029 {
1030 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1031 
1032 	INIT_LIST_HEAD(&ei->i_orphan);
1033 	init_rwsem(&ei->xattr_sem);
1034 	init_rwsem(&ei->i_data_sem);
1035 	init_rwsem(&ei->i_mmap_sem);
1036 	inode_init_once(&ei->vfs_inode);
1037 }
1038 
1039 static int __init init_inodecache(void)
1040 {
1041 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1042 					     sizeof(struct ext4_inode_info),
1043 					     0, (SLAB_RECLAIM_ACCOUNT|
1044 						SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1045 					     init_once);
1046 	if (ext4_inode_cachep == NULL)
1047 		return -ENOMEM;
1048 	return 0;
1049 }
1050 
1051 static void destroy_inodecache(void)
1052 {
1053 	/*
1054 	 * Make sure all delayed rcu free inodes are flushed before we
1055 	 * destroy cache.
1056 	 */
1057 	rcu_barrier();
1058 	kmem_cache_destroy(ext4_inode_cachep);
1059 }
1060 
1061 void ext4_clear_inode(struct inode *inode)
1062 {
1063 	invalidate_inode_buffers(inode);
1064 	clear_inode(inode);
1065 	dquot_drop(inode);
1066 	ext4_discard_preallocations(inode);
1067 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1068 	if (EXT4_I(inode)->jinode) {
1069 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1070 					       EXT4_I(inode)->jinode);
1071 		jbd2_free_inode(EXT4_I(inode)->jinode);
1072 		EXT4_I(inode)->jinode = NULL;
1073 	}
1074 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1075 	fscrypt_put_encryption_info(inode, NULL);
1076 #endif
1077 }
1078 
1079 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1080 					u64 ino, u32 generation)
1081 {
1082 	struct inode *inode;
1083 
1084 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1085 		return ERR_PTR(-ESTALE);
1086 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1087 		return ERR_PTR(-ESTALE);
1088 
1089 	/* iget isn't really right if the inode is currently unallocated!!
1090 	 *
1091 	 * ext4_read_inode will return a bad_inode if the inode had been
1092 	 * deleted, so we should be safe.
1093 	 *
1094 	 * Currently we don't know the generation for parent directory, so
1095 	 * a generation of 0 means "accept any"
1096 	 */
1097 	inode = ext4_iget_normal(sb, ino);
1098 	if (IS_ERR(inode))
1099 		return ERR_CAST(inode);
1100 	if (generation && inode->i_generation != generation) {
1101 		iput(inode);
1102 		return ERR_PTR(-ESTALE);
1103 	}
1104 
1105 	return inode;
1106 }
1107 
1108 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1109 					int fh_len, int fh_type)
1110 {
1111 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1112 				    ext4_nfs_get_inode);
1113 }
1114 
1115 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1116 					int fh_len, int fh_type)
1117 {
1118 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1119 				    ext4_nfs_get_inode);
1120 }
1121 
1122 /*
1123  * Try to release metadata pages (indirect blocks, directories) which are
1124  * mapped via the block device.  Since these pages could have journal heads
1125  * which would prevent try_to_free_buffers() from freeing them, we must use
1126  * jbd2 layer's try_to_free_buffers() function to release them.
1127  */
1128 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1129 				 gfp_t wait)
1130 {
1131 	journal_t *journal = EXT4_SB(sb)->s_journal;
1132 
1133 	WARN_ON(PageChecked(page));
1134 	if (!page_has_buffers(page))
1135 		return 0;
1136 	if (journal)
1137 		return jbd2_journal_try_to_free_buffers(journal, page,
1138 						wait & ~__GFP_DIRECT_RECLAIM);
1139 	return try_to_free_buffers(page);
1140 }
1141 
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1144 {
1145 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1146 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1147 }
1148 
1149 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1150 							void *fs_data)
1151 {
1152 	handle_t *handle = fs_data;
1153 	int res, res2, credits, retries = 0;
1154 
1155 	/*
1156 	 * Encrypting the root directory is not allowed because e2fsck expects
1157 	 * lost+found to exist and be unencrypted, and encrypting the root
1158 	 * directory would imply encrypting the lost+found directory as well as
1159 	 * the filename "lost+found" itself.
1160 	 */
1161 	if (inode->i_ino == EXT4_ROOT_INO)
1162 		return -EPERM;
1163 
1164 	res = ext4_convert_inline_data(inode);
1165 	if (res)
1166 		return res;
1167 
1168 	/*
1169 	 * If a journal handle was specified, then the encryption context is
1170 	 * being set on a new inode via inheritance and is part of a larger
1171 	 * transaction to create the inode.  Otherwise the encryption context is
1172 	 * being set on an existing inode in its own transaction.  Only in the
1173 	 * latter case should the "retry on ENOSPC" logic be used.
1174 	 */
1175 
1176 	if (handle) {
1177 		res = ext4_xattr_set_handle(handle, inode,
1178 					    EXT4_XATTR_INDEX_ENCRYPTION,
1179 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1180 					    ctx, len, 0);
1181 		if (!res) {
1182 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1183 			ext4_clear_inode_state(inode,
1184 					EXT4_STATE_MAY_INLINE_DATA);
1185 			/*
1186 			 * Update inode->i_flags - e.g. S_DAX may get disabled
1187 			 */
1188 			ext4_set_inode_flags(inode);
1189 		}
1190 		return res;
1191 	}
1192 
1193 	res = dquot_initialize(inode);
1194 	if (res)
1195 		return res;
1196 retry:
1197 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1198 				     &credits);
1199 	if (res)
1200 		return res;
1201 
1202 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1203 	if (IS_ERR(handle))
1204 		return PTR_ERR(handle);
1205 
1206 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1207 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1208 				    ctx, len, 0);
1209 	if (!res) {
1210 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1211 		/* Update inode->i_flags - e.g. S_DAX may get disabled */
1212 		ext4_set_inode_flags(inode);
1213 		res = ext4_mark_inode_dirty(handle, inode);
1214 		if (res)
1215 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1216 	}
1217 	res2 = ext4_journal_stop(handle);
1218 
1219 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1220 		goto retry;
1221 	if (!res)
1222 		res = res2;
1223 	return res;
1224 }
1225 
1226 static bool ext4_dummy_context(struct inode *inode)
1227 {
1228 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1229 }
1230 
1231 static unsigned ext4_max_namelen(struct inode *inode)
1232 {
1233 	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1234 		EXT4_NAME_LEN;
1235 }
1236 
1237 static const struct fscrypt_operations ext4_cryptops = {
1238 	.key_prefix		= "ext4:",
1239 	.get_context		= ext4_get_context,
1240 	.set_context		= ext4_set_context,
1241 	.dummy_context		= ext4_dummy_context,
1242 	.is_encrypted		= ext4_encrypted_inode,
1243 	.empty_dir		= ext4_empty_dir,
1244 	.max_namelen		= ext4_max_namelen,
1245 };
1246 #else
1247 static const struct fscrypt_operations ext4_cryptops = {
1248 	.is_encrypted		= ext4_encrypted_inode,
1249 };
1250 #endif
1251 
1252 #ifdef CONFIG_QUOTA
1253 static const char * const quotatypes[] = INITQFNAMES;
1254 #define QTYPE2NAME(t) (quotatypes[t])
1255 
1256 static int ext4_write_dquot(struct dquot *dquot);
1257 static int ext4_acquire_dquot(struct dquot *dquot);
1258 static int ext4_release_dquot(struct dquot *dquot);
1259 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1260 static int ext4_write_info(struct super_block *sb, int type);
1261 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1262 			 const struct path *path);
1263 static int ext4_quota_on_mount(struct super_block *sb, int type);
1264 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1265 			       size_t len, loff_t off);
1266 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1267 				const char *data, size_t len, loff_t off);
1268 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1269 			     unsigned int flags);
1270 static int ext4_enable_quotas(struct super_block *sb);
1271 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1272 
1273 static struct dquot **ext4_get_dquots(struct inode *inode)
1274 {
1275 	return EXT4_I(inode)->i_dquot;
1276 }
1277 
1278 static const struct dquot_operations ext4_quota_operations = {
1279 	.get_reserved_space	= ext4_get_reserved_space,
1280 	.write_dquot		= ext4_write_dquot,
1281 	.acquire_dquot		= ext4_acquire_dquot,
1282 	.release_dquot		= ext4_release_dquot,
1283 	.mark_dirty		= ext4_mark_dquot_dirty,
1284 	.write_info		= ext4_write_info,
1285 	.alloc_dquot		= dquot_alloc,
1286 	.destroy_dquot		= dquot_destroy,
1287 	.get_projid		= ext4_get_projid,
1288 	.get_inode_usage	= ext4_get_inode_usage,
1289 	.get_next_id		= ext4_get_next_id,
1290 };
1291 
1292 static const struct quotactl_ops ext4_qctl_operations = {
1293 	.quota_on	= ext4_quota_on,
1294 	.quota_off	= ext4_quota_off,
1295 	.quota_sync	= dquot_quota_sync,
1296 	.get_state	= dquot_get_state,
1297 	.set_info	= dquot_set_dqinfo,
1298 	.get_dqblk	= dquot_get_dqblk,
1299 	.set_dqblk	= dquot_set_dqblk,
1300 	.get_nextdqblk	= dquot_get_next_dqblk,
1301 };
1302 #endif
1303 
1304 static const struct super_operations ext4_sops = {
1305 	.alloc_inode	= ext4_alloc_inode,
1306 	.destroy_inode	= ext4_destroy_inode,
1307 	.write_inode	= ext4_write_inode,
1308 	.dirty_inode	= ext4_dirty_inode,
1309 	.drop_inode	= ext4_drop_inode,
1310 	.evict_inode	= ext4_evict_inode,
1311 	.put_super	= ext4_put_super,
1312 	.sync_fs	= ext4_sync_fs,
1313 	.freeze_fs	= ext4_freeze,
1314 	.unfreeze_fs	= ext4_unfreeze,
1315 	.statfs		= ext4_statfs,
1316 	.remount_fs	= ext4_remount,
1317 	.show_options	= ext4_show_options,
1318 #ifdef CONFIG_QUOTA
1319 	.quota_read	= ext4_quota_read,
1320 	.quota_write	= ext4_quota_write,
1321 	.get_dquots	= ext4_get_dquots,
1322 #endif
1323 	.bdev_try_to_free_page = bdev_try_to_free_page,
1324 };
1325 
1326 static const struct export_operations ext4_export_ops = {
1327 	.fh_to_dentry = ext4_fh_to_dentry,
1328 	.fh_to_parent = ext4_fh_to_parent,
1329 	.get_parent = ext4_get_parent,
1330 };
1331 
1332 enum {
1333 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1334 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1335 	Opt_nouid32, Opt_debug, Opt_removed,
1336 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1337 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1338 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1339 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1340 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1341 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1342 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1343 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1344 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1345 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1346 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1347 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1348 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1349 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1350 	Opt_dioread_nolock, Opt_dioread_lock,
1351 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1352 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1353 };
1354 
1355 static const match_table_t tokens = {
1356 	{Opt_bsd_df, "bsddf"},
1357 	{Opt_minix_df, "minixdf"},
1358 	{Opt_grpid, "grpid"},
1359 	{Opt_grpid, "bsdgroups"},
1360 	{Opt_nogrpid, "nogrpid"},
1361 	{Opt_nogrpid, "sysvgroups"},
1362 	{Opt_resgid, "resgid=%u"},
1363 	{Opt_resuid, "resuid=%u"},
1364 	{Opt_sb, "sb=%u"},
1365 	{Opt_err_cont, "errors=continue"},
1366 	{Opt_err_panic, "errors=panic"},
1367 	{Opt_err_ro, "errors=remount-ro"},
1368 	{Opt_nouid32, "nouid32"},
1369 	{Opt_debug, "debug"},
1370 	{Opt_removed, "oldalloc"},
1371 	{Opt_removed, "orlov"},
1372 	{Opt_user_xattr, "user_xattr"},
1373 	{Opt_nouser_xattr, "nouser_xattr"},
1374 	{Opt_acl, "acl"},
1375 	{Opt_noacl, "noacl"},
1376 	{Opt_noload, "norecovery"},
1377 	{Opt_noload, "noload"},
1378 	{Opt_removed, "nobh"},
1379 	{Opt_removed, "bh"},
1380 	{Opt_commit, "commit=%u"},
1381 	{Opt_min_batch_time, "min_batch_time=%u"},
1382 	{Opt_max_batch_time, "max_batch_time=%u"},
1383 	{Opt_journal_dev, "journal_dev=%u"},
1384 	{Opt_journal_path, "journal_path=%s"},
1385 	{Opt_journal_checksum, "journal_checksum"},
1386 	{Opt_nojournal_checksum, "nojournal_checksum"},
1387 	{Opt_journal_async_commit, "journal_async_commit"},
1388 	{Opt_abort, "abort"},
1389 	{Opt_data_journal, "data=journal"},
1390 	{Opt_data_ordered, "data=ordered"},
1391 	{Opt_data_writeback, "data=writeback"},
1392 	{Opt_data_err_abort, "data_err=abort"},
1393 	{Opt_data_err_ignore, "data_err=ignore"},
1394 	{Opt_offusrjquota, "usrjquota="},
1395 	{Opt_usrjquota, "usrjquota=%s"},
1396 	{Opt_offgrpjquota, "grpjquota="},
1397 	{Opt_grpjquota, "grpjquota=%s"},
1398 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1399 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1400 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1401 	{Opt_grpquota, "grpquota"},
1402 	{Opt_noquota, "noquota"},
1403 	{Opt_quota, "quota"},
1404 	{Opt_usrquota, "usrquota"},
1405 	{Opt_prjquota, "prjquota"},
1406 	{Opt_barrier, "barrier=%u"},
1407 	{Opt_barrier, "barrier"},
1408 	{Opt_nobarrier, "nobarrier"},
1409 	{Opt_i_version, "i_version"},
1410 	{Opt_dax, "dax"},
1411 	{Opt_stripe, "stripe=%u"},
1412 	{Opt_delalloc, "delalloc"},
1413 	{Opt_lazytime, "lazytime"},
1414 	{Opt_nolazytime, "nolazytime"},
1415 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1416 	{Opt_nodelalloc, "nodelalloc"},
1417 	{Opt_removed, "mblk_io_submit"},
1418 	{Opt_removed, "nomblk_io_submit"},
1419 	{Opt_block_validity, "block_validity"},
1420 	{Opt_noblock_validity, "noblock_validity"},
1421 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1422 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1423 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1424 	{Opt_auto_da_alloc, "auto_da_alloc"},
1425 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1426 	{Opt_dioread_nolock, "dioread_nolock"},
1427 	{Opt_dioread_lock, "dioread_lock"},
1428 	{Opt_discard, "discard"},
1429 	{Opt_nodiscard, "nodiscard"},
1430 	{Opt_init_itable, "init_itable=%u"},
1431 	{Opt_init_itable, "init_itable"},
1432 	{Opt_noinit_itable, "noinit_itable"},
1433 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1434 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1435 	{Opt_nombcache, "nombcache"},
1436 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1437 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1438 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1439 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1440 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1441 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1442 	{Opt_err, NULL},
1443 };
1444 
1445 static ext4_fsblk_t get_sb_block(void **data)
1446 {
1447 	ext4_fsblk_t	sb_block;
1448 	char		*options = (char *) *data;
1449 
1450 	if (!options || strncmp(options, "sb=", 3) != 0)
1451 		return 1;	/* Default location */
1452 
1453 	options += 3;
1454 	/* TODO: use simple_strtoll with >32bit ext4 */
1455 	sb_block = simple_strtoul(options, &options, 0);
1456 	if (*options && *options != ',') {
1457 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1458 		       (char *) *data);
1459 		return 1;
1460 	}
1461 	if (*options == ',')
1462 		options++;
1463 	*data = (void *) options;
1464 
1465 	return sb_block;
1466 }
1467 
1468 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1469 static const char deprecated_msg[] =
1470 	"Mount option \"%s\" will be removed by %s\n"
1471 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1472 
1473 #ifdef CONFIG_QUOTA
1474 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1475 {
1476 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1477 	char *qname;
1478 	int ret = -1;
1479 
1480 	if (sb_any_quota_loaded(sb) &&
1481 		!sbi->s_qf_names[qtype]) {
1482 		ext4_msg(sb, KERN_ERR,
1483 			"Cannot change journaled "
1484 			"quota options when quota turned on");
1485 		return -1;
1486 	}
1487 	if (ext4_has_feature_quota(sb)) {
1488 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1489 			 "ignored when QUOTA feature is enabled");
1490 		return 1;
1491 	}
1492 	qname = match_strdup(args);
1493 	if (!qname) {
1494 		ext4_msg(sb, KERN_ERR,
1495 			"Not enough memory for storing quotafile name");
1496 		return -1;
1497 	}
1498 	if (sbi->s_qf_names[qtype]) {
1499 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1500 			ret = 1;
1501 		else
1502 			ext4_msg(sb, KERN_ERR,
1503 				 "%s quota file already specified",
1504 				 QTYPE2NAME(qtype));
1505 		goto errout;
1506 	}
1507 	if (strchr(qname, '/')) {
1508 		ext4_msg(sb, KERN_ERR,
1509 			"quotafile must be on filesystem root");
1510 		goto errout;
1511 	}
1512 	sbi->s_qf_names[qtype] = qname;
1513 	set_opt(sb, QUOTA);
1514 	return 1;
1515 errout:
1516 	kfree(qname);
1517 	return ret;
1518 }
1519 
1520 static int clear_qf_name(struct super_block *sb, int qtype)
1521 {
1522 
1523 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1524 
1525 	if (sb_any_quota_loaded(sb) &&
1526 		sbi->s_qf_names[qtype]) {
1527 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1528 			" when quota turned on");
1529 		return -1;
1530 	}
1531 	kfree(sbi->s_qf_names[qtype]);
1532 	sbi->s_qf_names[qtype] = NULL;
1533 	return 1;
1534 }
1535 #endif
1536 
1537 #define MOPT_SET	0x0001
1538 #define MOPT_CLEAR	0x0002
1539 #define MOPT_NOSUPPORT	0x0004
1540 #define MOPT_EXPLICIT	0x0008
1541 #define MOPT_CLEAR_ERR	0x0010
1542 #define MOPT_GTE0	0x0020
1543 #ifdef CONFIG_QUOTA
1544 #define MOPT_Q		0
1545 #define MOPT_QFMT	0x0040
1546 #else
1547 #define MOPT_Q		MOPT_NOSUPPORT
1548 #define MOPT_QFMT	MOPT_NOSUPPORT
1549 #endif
1550 #define MOPT_DATAJ	0x0080
1551 #define MOPT_NO_EXT2	0x0100
1552 #define MOPT_NO_EXT3	0x0200
1553 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1554 #define MOPT_STRING	0x0400
1555 
1556 static const struct mount_opts {
1557 	int	token;
1558 	int	mount_opt;
1559 	int	flags;
1560 } ext4_mount_opts[] = {
1561 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1562 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1563 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1564 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1565 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1566 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1567 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568 	 MOPT_EXT4_ONLY | MOPT_SET},
1569 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1570 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1571 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1572 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1573 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1574 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1575 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1576 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1577 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1579 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1580 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1581 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1582 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1583 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1584 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1585 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1586 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1587 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1588 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1589 	 MOPT_NO_EXT2},
1590 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1591 	 MOPT_NO_EXT2},
1592 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1593 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1594 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1595 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1596 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1597 	{Opt_commit, 0, MOPT_GTE0},
1598 	{Opt_max_batch_time, 0, MOPT_GTE0},
1599 	{Opt_min_batch_time, 0, MOPT_GTE0},
1600 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1601 	{Opt_init_itable, 0, MOPT_GTE0},
1602 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1603 	{Opt_stripe, 0, MOPT_GTE0},
1604 	{Opt_resuid, 0, MOPT_GTE0},
1605 	{Opt_resgid, 0, MOPT_GTE0},
1606 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1608 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1609 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1610 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1611 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1612 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1613 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1614 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1615 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1616 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1617 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1618 #else
1619 	{Opt_acl, 0, MOPT_NOSUPPORT},
1620 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1621 #endif
1622 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1623 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1624 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1625 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1626 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1627 							MOPT_SET | MOPT_Q},
1628 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1629 							MOPT_SET | MOPT_Q},
1630 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1631 							MOPT_SET | MOPT_Q},
1632 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1633 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1634 							MOPT_CLEAR | MOPT_Q},
1635 	{Opt_usrjquota, 0, MOPT_Q},
1636 	{Opt_grpjquota, 0, MOPT_Q},
1637 	{Opt_offusrjquota, 0, MOPT_Q},
1638 	{Opt_offgrpjquota, 0, MOPT_Q},
1639 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1640 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1641 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1642 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1643 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1644 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1645 	{Opt_err, 0, 0}
1646 };
1647 
1648 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1649 			    substring_t *args, unsigned long *journal_devnum,
1650 			    unsigned int *journal_ioprio, int is_remount)
1651 {
1652 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1653 	const struct mount_opts *m;
1654 	kuid_t uid;
1655 	kgid_t gid;
1656 	int arg = 0;
1657 
1658 #ifdef CONFIG_QUOTA
1659 	if (token == Opt_usrjquota)
1660 		return set_qf_name(sb, USRQUOTA, &args[0]);
1661 	else if (token == Opt_grpjquota)
1662 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1663 	else if (token == Opt_offusrjquota)
1664 		return clear_qf_name(sb, USRQUOTA);
1665 	else if (token == Opt_offgrpjquota)
1666 		return clear_qf_name(sb, GRPQUOTA);
1667 #endif
1668 	switch (token) {
1669 	case Opt_noacl:
1670 	case Opt_nouser_xattr:
1671 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1672 		break;
1673 	case Opt_sb:
1674 		return 1;	/* handled by get_sb_block() */
1675 	case Opt_removed:
1676 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1677 		return 1;
1678 	case Opt_abort:
1679 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1680 		return 1;
1681 	case Opt_i_version:
1682 		sb->s_flags |= MS_I_VERSION;
1683 		return 1;
1684 	case Opt_lazytime:
1685 		sb->s_flags |= MS_LAZYTIME;
1686 		return 1;
1687 	case Opt_nolazytime:
1688 		sb->s_flags &= ~MS_LAZYTIME;
1689 		return 1;
1690 	}
1691 
1692 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1693 		if (token == m->token)
1694 			break;
1695 
1696 	if (m->token == Opt_err) {
1697 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1698 			 "or missing value", opt);
1699 		return -1;
1700 	}
1701 
1702 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1703 		ext4_msg(sb, KERN_ERR,
1704 			 "Mount option \"%s\" incompatible with ext2", opt);
1705 		return -1;
1706 	}
1707 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1708 		ext4_msg(sb, KERN_ERR,
1709 			 "Mount option \"%s\" incompatible with ext3", opt);
1710 		return -1;
1711 	}
1712 
1713 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1714 		return -1;
1715 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1716 		return -1;
1717 	if (m->flags & MOPT_EXPLICIT) {
1718 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1719 			set_opt2(sb, EXPLICIT_DELALLOC);
1720 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1721 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1722 		} else
1723 			return -1;
1724 	}
1725 	if (m->flags & MOPT_CLEAR_ERR)
1726 		clear_opt(sb, ERRORS_MASK);
1727 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1728 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1729 			 "options when quota turned on");
1730 		return -1;
1731 	}
1732 
1733 	if (m->flags & MOPT_NOSUPPORT) {
1734 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1735 	} else if (token == Opt_commit) {
1736 		if (arg == 0)
1737 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1738 		sbi->s_commit_interval = HZ * arg;
1739 	} else if (token == Opt_debug_want_extra_isize) {
1740 		sbi->s_want_extra_isize = arg;
1741 	} else if (token == Opt_max_batch_time) {
1742 		sbi->s_max_batch_time = arg;
1743 	} else if (token == Opt_min_batch_time) {
1744 		sbi->s_min_batch_time = arg;
1745 	} else if (token == Opt_inode_readahead_blks) {
1746 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1747 			ext4_msg(sb, KERN_ERR,
1748 				 "EXT4-fs: inode_readahead_blks must be "
1749 				 "0 or a power of 2 smaller than 2^31");
1750 			return -1;
1751 		}
1752 		sbi->s_inode_readahead_blks = arg;
1753 	} else if (token == Opt_init_itable) {
1754 		set_opt(sb, INIT_INODE_TABLE);
1755 		if (!args->from)
1756 			arg = EXT4_DEF_LI_WAIT_MULT;
1757 		sbi->s_li_wait_mult = arg;
1758 	} else if (token == Opt_max_dir_size_kb) {
1759 		sbi->s_max_dir_size_kb = arg;
1760 	} else if (token == Opt_stripe) {
1761 		sbi->s_stripe = arg;
1762 	} else if (token == Opt_resuid) {
1763 		uid = make_kuid(current_user_ns(), arg);
1764 		if (!uid_valid(uid)) {
1765 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1766 			return -1;
1767 		}
1768 		sbi->s_resuid = uid;
1769 	} else if (token == Opt_resgid) {
1770 		gid = make_kgid(current_user_ns(), arg);
1771 		if (!gid_valid(gid)) {
1772 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1773 			return -1;
1774 		}
1775 		sbi->s_resgid = gid;
1776 	} else if (token == Opt_journal_dev) {
1777 		if (is_remount) {
1778 			ext4_msg(sb, KERN_ERR,
1779 				 "Cannot specify journal on remount");
1780 			return -1;
1781 		}
1782 		*journal_devnum = arg;
1783 	} else if (token == Opt_journal_path) {
1784 		char *journal_path;
1785 		struct inode *journal_inode;
1786 		struct path path;
1787 		int error;
1788 
1789 		if (is_remount) {
1790 			ext4_msg(sb, KERN_ERR,
1791 				 "Cannot specify journal on remount");
1792 			return -1;
1793 		}
1794 		journal_path = match_strdup(&args[0]);
1795 		if (!journal_path) {
1796 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1797 				"journal device string");
1798 			return -1;
1799 		}
1800 
1801 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1802 		if (error) {
1803 			ext4_msg(sb, KERN_ERR, "error: could not find "
1804 				"journal device path: error %d", error);
1805 			kfree(journal_path);
1806 			return -1;
1807 		}
1808 
1809 		journal_inode = d_inode(path.dentry);
1810 		if (!S_ISBLK(journal_inode->i_mode)) {
1811 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1812 				"is not a block device", journal_path);
1813 			path_put(&path);
1814 			kfree(journal_path);
1815 			return -1;
1816 		}
1817 
1818 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1819 		path_put(&path);
1820 		kfree(journal_path);
1821 	} else if (token == Opt_journal_ioprio) {
1822 		if (arg > 7) {
1823 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1824 				 " (must be 0-7)");
1825 			return -1;
1826 		}
1827 		*journal_ioprio =
1828 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1829 	} else if (token == Opt_test_dummy_encryption) {
1830 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1831 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1832 		ext4_msg(sb, KERN_WARNING,
1833 			 "Test dummy encryption mode enabled");
1834 #else
1835 		ext4_msg(sb, KERN_WARNING,
1836 			 "Test dummy encryption mount option ignored");
1837 #endif
1838 	} else if (m->flags & MOPT_DATAJ) {
1839 		if (is_remount) {
1840 			if (!sbi->s_journal)
1841 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1842 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1843 				ext4_msg(sb, KERN_ERR,
1844 					 "Cannot change data mode on remount");
1845 				return -1;
1846 			}
1847 		} else {
1848 			clear_opt(sb, DATA_FLAGS);
1849 			sbi->s_mount_opt |= m->mount_opt;
1850 		}
1851 #ifdef CONFIG_QUOTA
1852 	} else if (m->flags & MOPT_QFMT) {
1853 		if (sb_any_quota_loaded(sb) &&
1854 		    sbi->s_jquota_fmt != m->mount_opt) {
1855 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1856 				 "quota options when quota turned on");
1857 			return -1;
1858 		}
1859 		if (ext4_has_feature_quota(sb)) {
1860 			ext4_msg(sb, KERN_INFO,
1861 				 "Quota format mount options ignored "
1862 				 "when QUOTA feature is enabled");
1863 			return 1;
1864 		}
1865 		sbi->s_jquota_fmt = m->mount_opt;
1866 #endif
1867 	} else if (token == Opt_dax) {
1868 #ifdef CONFIG_FS_DAX
1869 		ext4_msg(sb, KERN_WARNING,
1870 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1871 			sbi->s_mount_opt |= m->mount_opt;
1872 #else
1873 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1874 		return -1;
1875 #endif
1876 	} else if (token == Opt_data_err_abort) {
1877 		sbi->s_mount_opt |= m->mount_opt;
1878 	} else if (token == Opt_data_err_ignore) {
1879 		sbi->s_mount_opt &= ~m->mount_opt;
1880 	} else {
1881 		if (!args->from)
1882 			arg = 1;
1883 		if (m->flags & MOPT_CLEAR)
1884 			arg = !arg;
1885 		else if (unlikely(!(m->flags & MOPT_SET))) {
1886 			ext4_msg(sb, KERN_WARNING,
1887 				 "buggy handling of option %s", opt);
1888 			WARN_ON(1);
1889 			return -1;
1890 		}
1891 		if (arg != 0)
1892 			sbi->s_mount_opt |= m->mount_opt;
1893 		else
1894 			sbi->s_mount_opt &= ~m->mount_opt;
1895 	}
1896 	return 1;
1897 }
1898 
1899 static int parse_options(char *options, struct super_block *sb,
1900 			 unsigned long *journal_devnum,
1901 			 unsigned int *journal_ioprio,
1902 			 int is_remount)
1903 {
1904 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1905 	char *p;
1906 	substring_t args[MAX_OPT_ARGS];
1907 	int token;
1908 
1909 	if (!options)
1910 		return 1;
1911 
1912 	while ((p = strsep(&options, ",")) != NULL) {
1913 		if (!*p)
1914 			continue;
1915 		/*
1916 		 * Initialize args struct so we know whether arg was
1917 		 * found; some options take optional arguments.
1918 		 */
1919 		args[0].to = args[0].from = NULL;
1920 		token = match_token(p, tokens, args);
1921 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1922 				     journal_ioprio, is_remount) < 0)
1923 			return 0;
1924 	}
1925 #ifdef CONFIG_QUOTA
1926 	/*
1927 	 * We do the test below only for project quotas. 'usrquota' and
1928 	 * 'grpquota' mount options are allowed even without quota feature
1929 	 * to support legacy quotas in quota files.
1930 	 */
1931 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1932 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1933 			 "Cannot enable project quota enforcement.");
1934 		return 0;
1935 	}
1936 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1937 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1938 			clear_opt(sb, USRQUOTA);
1939 
1940 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1941 			clear_opt(sb, GRPQUOTA);
1942 
1943 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1944 			ext4_msg(sb, KERN_ERR, "old and new quota "
1945 					"format mixing");
1946 			return 0;
1947 		}
1948 
1949 		if (!sbi->s_jquota_fmt) {
1950 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1951 					"not specified");
1952 			return 0;
1953 		}
1954 	}
1955 #endif
1956 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1957 		int blocksize =
1958 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1959 
1960 		if (blocksize < PAGE_SIZE) {
1961 			ext4_msg(sb, KERN_ERR, "can't mount with "
1962 				 "dioread_nolock if block size != PAGE_SIZE");
1963 			return 0;
1964 		}
1965 	}
1966 	return 1;
1967 }
1968 
1969 static inline void ext4_show_quota_options(struct seq_file *seq,
1970 					   struct super_block *sb)
1971 {
1972 #if defined(CONFIG_QUOTA)
1973 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1974 
1975 	if (sbi->s_jquota_fmt) {
1976 		char *fmtname = "";
1977 
1978 		switch (sbi->s_jquota_fmt) {
1979 		case QFMT_VFS_OLD:
1980 			fmtname = "vfsold";
1981 			break;
1982 		case QFMT_VFS_V0:
1983 			fmtname = "vfsv0";
1984 			break;
1985 		case QFMT_VFS_V1:
1986 			fmtname = "vfsv1";
1987 			break;
1988 		}
1989 		seq_printf(seq, ",jqfmt=%s", fmtname);
1990 	}
1991 
1992 	if (sbi->s_qf_names[USRQUOTA])
1993 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1994 
1995 	if (sbi->s_qf_names[GRPQUOTA])
1996 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1997 #endif
1998 }
1999 
2000 static const char *token2str(int token)
2001 {
2002 	const struct match_token *t;
2003 
2004 	for (t = tokens; t->token != Opt_err; t++)
2005 		if (t->token == token && !strchr(t->pattern, '='))
2006 			break;
2007 	return t->pattern;
2008 }
2009 
2010 /*
2011  * Show an option if
2012  *  - it's set to a non-default value OR
2013  *  - if the per-sb default is different from the global default
2014  */
2015 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2016 			      int nodefs)
2017 {
2018 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2019 	struct ext4_super_block *es = sbi->s_es;
2020 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2021 	const struct mount_opts *m;
2022 	char sep = nodefs ? '\n' : ',';
2023 
2024 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2025 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2026 
2027 	if (sbi->s_sb_block != 1)
2028 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2029 
2030 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2031 		int want_set = m->flags & MOPT_SET;
2032 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2033 		    (m->flags & MOPT_CLEAR_ERR))
2034 			continue;
2035 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2036 			continue; /* skip if same as the default */
2037 		if ((want_set &&
2038 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2039 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2040 			continue; /* select Opt_noFoo vs Opt_Foo */
2041 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2042 	}
2043 
2044 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2045 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2046 		SEQ_OPTS_PRINT("resuid=%u",
2047 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2048 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2049 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2050 		SEQ_OPTS_PRINT("resgid=%u",
2051 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2052 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2053 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2054 		SEQ_OPTS_PUTS("errors=remount-ro");
2055 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2056 		SEQ_OPTS_PUTS("errors=continue");
2057 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2058 		SEQ_OPTS_PUTS("errors=panic");
2059 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2060 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2061 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2062 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2063 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2064 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2065 	if (sb->s_flags & MS_I_VERSION)
2066 		SEQ_OPTS_PUTS("i_version");
2067 	if (nodefs || sbi->s_stripe)
2068 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2069 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2070 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2071 			SEQ_OPTS_PUTS("data=journal");
2072 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2073 			SEQ_OPTS_PUTS("data=ordered");
2074 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2075 			SEQ_OPTS_PUTS("data=writeback");
2076 	}
2077 	if (nodefs ||
2078 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2079 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2080 			       sbi->s_inode_readahead_blks);
2081 
2082 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2083 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2084 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2085 	if (nodefs || sbi->s_max_dir_size_kb)
2086 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2087 	if (test_opt(sb, DATA_ERR_ABORT))
2088 		SEQ_OPTS_PUTS("data_err=abort");
2089 
2090 	ext4_show_quota_options(seq, sb);
2091 	return 0;
2092 }
2093 
2094 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2095 {
2096 	return _ext4_show_options(seq, root->d_sb, 0);
2097 }
2098 
2099 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2100 {
2101 	struct super_block *sb = seq->private;
2102 	int rc;
2103 
2104 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2105 	rc = _ext4_show_options(seq, sb, 1);
2106 	seq_puts(seq, "\n");
2107 	return rc;
2108 }
2109 
2110 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2111 			    int read_only)
2112 {
2113 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2114 	int res = 0;
2115 
2116 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2117 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2118 			 "forcing read-only mode");
2119 		res = MS_RDONLY;
2120 	}
2121 	if (read_only)
2122 		goto done;
2123 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2124 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2125 			 "running e2fsck is recommended");
2126 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2127 		ext4_msg(sb, KERN_WARNING,
2128 			 "warning: mounting fs with errors, "
2129 			 "running e2fsck is recommended");
2130 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2131 		 le16_to_cpu(es->s_mnt_count) >=
2132 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2133 		ext4_msg(sb, KERN_WARNING,
2134 			 "warning: maximal mount count reached, "
2135 			 "running e2fsck is recommended");
2136 	else if (le32_to_cpu(es->s_checkinterval) &&
2137 		(le32_to_cpu(es->s_lastcheck) +
2138 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2139 		ext4_msg(sb, KERN_WARNING,
2140 			 "warning: checktime reached, "
2141 			 "running e2fsck is recommended");
2142 	if (!sbi->s_journal)
2143 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2144 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2145 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2146 	le16_add_cpu(&es->s_mnt_count, 1);
2147 	es->s_mtime = cpu_to_le32(get_seconds());
2148 	ext4_update_dynamic_rev(sb);
2149 	if (sbi->s_journal)
2150 		ext4_set_feature_journal_needs_recovery(sb);
2151 
2152 	ext4_commit_super(sb, 1);
2153 done:
2154 	if (test_opt(sb, DEBUG))
2155 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2156 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2157 			sb->s_blocksize,
2158 			sbi->s_groups_count,
2159 			EXT4_BLOCKS_PER_GROUP(sb),
2160 			EXT4_INODES_PER_GROUP(sb),
2161 			sbi->s_mount_opt, sbi->s_mount_opt2);
2162 
2163 	cleancache_init_fs(sb);
2164 	return res;
2165 }
2166 
2167 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2168 {
2169 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2170 	struct flex_groups *new_groups;
2171 	int size;
2172 
2173 	if (!sbi->s_log_groups_per_flex)
2174 		return 0;
2175 
2176 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2177 	if (size <= sbi->s_flex_groups_allocated)
2178 		return 0;
2179 
2180 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2181 	new_groups = kvzalloc(size, GFP_KERNEL);
2182 	if (!new_groups) {
2183 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2184 			 size / (int) sizeof(struct flex_groups));
2185 		return -ENOMEM;
2186 	}
2187 
2188 	if (sbi->s_flex_groups) {
2189 		memcpy(new_groups, sbi->s_flex_groups,
2190 		       (sbi->s_flex_groups_allocated *
2191 			sizeof(struct flex_groups)));
2192 		kvfree(sbi->s_flex_groups);
2193 	}
2194 	sbi->s_flex_groups = new_groups;
2195 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2196 	return 0;
2197 }
2198 
2199 static int ext4_fill_flex_info(struct super_block *sb)
2200 {
2201 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2202 	struct ext4_group_desc *gdp = NULL;
2203 	ext4_group_t flex_group;
2204 	int i, err;
2205 
2206 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2207 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2208 		sbi->s_log_groups_per_flex = 0;
2209 		return 1;
2210 	}
2211 
2212 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2213 	if (err)
2214 		goto failed;
2215 
2216 	for (i = 0; i < sbi->s_groups_count; i++) {
2217 		gdp = ext4_get_group_desc(sb, i, NULL);
2218 
2219 		flex_group = ext4_flex_group(sbi, i);
2220 		atomic_add(ext4_free_inodes_count(sb, gdp),
2221 			   &sbi->s_flex_groups[flex_group].free_inodes);
2222 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2223 			     &sbi->s_flex_groups[flex_group].free_clusters);
2224 		atomic_add(ext4_used_dirs_count(sb, gdp),
2225 			   &sbi->s_flex_groups[flex_group].used_dirs);
2226 	}
2227 
2228 	return 1;
2229 failed:
2230 	return 0;
2231 }
2232 
2233 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2234 				   struct ext4_group_desc *gdp)
2235 {
2236 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2237 	__u16 crc = 0;
2238 	__le32 le_group = cpu_to_le32(block_group);
2239 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2240 
2241 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2242 		/* Use new metadata_csum algorithm */
2243 		__u32 csum32;
2244 		__u16 dummy_csum = 0;
2245 
2246 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2247 				     sizeof(le_group));
2248 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2249 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2250 				     sizeof(dummy_csum));
2251 		offset += sizeof(dummy_csum);
2252 		if (offset < sbi->s_desc_size)
2253 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2254 					     sbi->s_desc_size - offset);
2255 
2256 		crc = csum32 & 0xFFFF;
2257 		goto out;
2258 	}
2259 
2260 	/* old crc16 code */
2261 	if (!ext4_has_feature_gdt_csum(sb))
2262 		return 0;
2263 
2264 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2265 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2266 	crc = crc16(crc, (__u8 *)gdp, offset);
2267 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2268 	/* for checksum of struct ext4_group_desc do the rest...*/
2269 	if (ext4_has_feature_64bit(sb) &&
2270 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2271 		crc = crc16(crc, (__u8 *)gdp + offset,
2272 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2273 				offset);
2274 
2275 out:
2276 	return cpu_to_le16(crc);
2277 }
2278 
2279 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2280 				struct ext4_group_desc *gdp)
2281 {
2282 	if (ext4_has_group_desc_csum(sb) &&
2283 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2284 		return 0;
2285 
2286 	return 1;
2287 }
2288 
2289 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2290 			      struct ext4_group_desc *gdp)
2291 {
2292 	if (!ext4_has_group_desc_csum(sb))
2293 		return;
2294 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2295 }
2296 
2297 /* Called at mount-time, super-block is locked */
2298 static int ext4_check_descriptors(struct super_block *sb,
2299 				  ext4_fsblk_t sb_block,
2300 				  ext4_group_t *first_not_zeroed)
2301 {
2302 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2303 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2304 	ext4_fsblk_t last_block;
2305 	ext4_fsblk_t block_bitmap;
2306 	ext4_fsblk_t inode_bitmap;
2307 	ext4_fsblk_t inode_table;
2308 	int flexbg_flag = 0;
2309 	ext4_group_t i, grp = sbi->s_groups_count;
2310 
2311 	if (ext4_has_feature_flex_bg(sb))
2312 		flexbg_flag = 1;
2313 
2314 	ext4_debug("Checking group descriptors");
2315 
2316 	for (i = 0; i < sbi->s_groups_count; i++) {
2317 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2318 
2319 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2320 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2321 		else
2322 			last_block = first_block +
2323 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2324 
2325 		if ((grp == sbi->s_groups_count) &&
2326 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2327 			grp = i;
2328 
2329 		block_bitmap = ext4_block_bitmap(sb, gdp);
2330 		if (block_bitmap == sb_block) {
2331 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332 				 "Block bitmap for group %u overlaps "
2333 				 "superblock", i);
2334 		}
2335 		if (block_bitmap < first_block || block_bitmap > last_block) {
2336 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 			       "Block bitmap for group %u not in group "
2338 			       "(block %llu)!", i, block_bitmap);
2339 			return 0;
2340 		}
2341 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2342 		if (inode_bitmap == sb_block) {
2343 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 				 "Inode bitmap for group %u overlaps "
2345 				 "superblock", i);
2346 		}
2347 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2348 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2349 			       "Inode bitmap for group %u not in group "
2350 			       "(block %llu)!", i, inode_bitmap);
2351 			return 0;
2352 		}
2353 		inode_table = ext4_inode_table(sb, gdp);
2354 		if (inode_table == sb_block) {
2355 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2356 				 "Inode table for group %u overlaps "
2357 				 "superblock", i);
2358 		}
2359 		if (inode_table < first_block ||
2360 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2361 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2362 			       "Inode table for group %u not in group "
2363 			       "(block %llu)!", i, inode_table);
2364 			return 0;
2365 		}
2366 		ext4_lock_group(sb, i);
2367 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2368 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2369 				 "Checksum for group %u failed (%u!=%u)",
2370 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2371 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2372 			if (!(sb->s_flags & MS_RDONLY)) {
2373 				ext4_unlock_group(sb, i);
2374 				return 0;
2375 			}
2376 		}
2377 		ext4_unlock_group(sb, i);
2378 		if (!flexbg_flag)
2379 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2380 	}
2381 	if (NULL != first_not_zeroed)
2382 		*first_not_zeroed = grp;
2383 	return 1;
2384 }
2385 
2386 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2387  * the superblock) which were deleted from all directories, but held open by
2388  * a process at the time of a crash.  We walk the list and try to delete these
2389  * inodes at recovery time (only with a read-write filesystem).
2390  *
2391  * In order to keep the orphan inode chain consistent during traversal (in
2392  * case of crash during recovery), we link each inode into the superblock
2393  * orphan list_head and handle it the same way as an inode deletion during
2394  * normal operation (which journals the operations for us).
2395  *
2396  * We only do an iget() and an iput() on each inode, which is very safe if we
2397  * accidentally point at an in-use or already deleted inode.  The worst that
2398  * can happen in this case is that we get a "bit already cleared" message from
2399  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2400  * e2fsck was run on this filesystem, and it must have already done the orphan
2401  * inode cleanup for us, so we can safely abort without any further action.
2402  */
2403 static void ext4_orphan_cleanup(struct super_block *sb,
2404 				struct ext4_super_block *es)
2405 {
2406 	unsigned int s_flags = sb->s_flags;
2407 	int ret, nr_orphans = 0, nr_truncates = 0;
2408 #ifdef CONFIG_QUOTA
2409 	int i;
2410 #endif
2411 	if (!es->s_last_orphan) {
2412 		jbd_debug(4, "no orphan inodes to clean up\n");
2413 		return;
2414 	}
2415 
2416 	if (bdev_read_only(sb->s_bdev)) {
2417 		ext4_msg(sb, KERN_ERR, "write access "
2418 			"unavailable, skipping orphan cleanup");
2419 		return;
2420 	}
2421 
2422 	/* Check if feature set would not allow a r/w mount */
2423 	if (!ext4_feature_set_ok(sb, 0)) {
2424 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2425 			 "unknown ROCOMPAT features");
2426 		return;
2427 	}
2428 
2429 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2430 		/* don't clear list on RO mount w/ errors */
2431 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2432 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2433 				  "clearing orphan list.\n");
2434 			es->s_last_orphan = 0;
2435 		}
2436 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2437 		return;
2438 	}
2439 
2440 	if (s_flags & MS_RDONLY) {
2441 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2442 		sb->s_flags &= ~MS_RDONLY;
2443 	}
2444 #ifdef CONFIG_QUOTA
2445 	/* Needed for iput() to work correctly and not trash data */
2446 	sb->s_flags |= MS_ACTIVE;
2447 	/* Turn on quotas so that they are updated correctly */
2448 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2449 		if (EXT4_SB(sb)->s_qf_names[i]) {
2450 			int ret = ext4_quota_on_mount(sb, i);
2451 			if (ret < 0)
2452 				ext4_msg(sb, KERN_ERR,
2453 					"Cannot turn on journaled "
2454 					"quota: error %d", ret);
2455 		}
2456 	}
2457 #endif
2458 
2459 	while (es->s_last_orphan) {
2460 		struct inode *inode;
2461 
2462 		/*
2463 		 * We may have encountered an error during cleanup; if
2464 		 * so, skip the rest.
2465 		 */
2466 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2467 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2468 			es->s_last_orphan = 0;
2469 			break;
2470 		}
2471 
2472 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2473 		if (IS_ERR(inode)) {
2474 			es->s_last_orphan = 0;
2475 			break;
2476 		}
2477 
2478 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2479 		dquot_initialize(inode);
2480 		if (inode->i_nlink) {
2481 			if (test_opt(sb, DEBUG))
2482 				ext4_msg(sb, KERN_DEBUG,
2483 					"%s: truncating inode %lu to %lld bytes",
2484 					__func__, inode->i_ino, inode->i_size);
2485 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2486 				  inode->i_ino, inode->i_size);
2487 			inode_lock(inode);
2488 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2489 			ret = ext4_truncate(inode);
2490 			if (ret)
2491 				ext4_std_error(inode->i_sb, ret);
2492 			inode_unlock(inode);
2493 			nr_truncates++;
2494 		} else {
2495 			if (test_opt(sb, DEBUG))
2496 				ext4_msg(sb, KERN_DEBUG,
2497 					"%s: deleting unreferenced inode %lu",
2498 					__func__, inode->i_ino);
2499 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2500 				  inode->i_ino);
2501 			nr_orphans++;
2502 		}
2503 		iput(inode);  /* The delete magic happens here! */
2504 	}
2505 
2506 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2507 
2508 	if (nr_orphans)
2509 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2510 		       PLURAL(nr_orphans));
2511 	if (nr_truncates)
2512 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2513 		       PLURAL(nr_truncates));
2514 #ifdef CONFIG_QUOTA
2515 	/* Turn quotas off */
2516 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2517 		if (sb_dqopt(sb)->files[i])
2518 			dquot_quota_off(sb, i);
2519 	}
2520 #endif
2521 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2522 }
2523 
2524 /*
2525  * Maximal extent format file size.
2526  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2527  * extent format containers, within a sector_t, and within i_blocks
2528  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2529  * so that won't be a limiting factor.
2530  *
2531  * However there is other limiting factor. We do store extents in the form
2532  * of starting block and length, hence the resulting length of the extent
2533  * covering maximum file size must fit into on-disk format containers as
2534  * well. Given that length is always by 1 unit bigger than max unit (because
2535  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2536  *
2537  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2538  */
2539 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2540 {
2541 	loff_t res;
2542 	loff_t upper_limit = MAX_LFS_FILESIZE;
2543 
2544 	/* small i_blocks in vfs inode? */
2545 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2546 		/*
2547 		 * CONFIG_LBDAF is not enabled implies the inode
2548 		 * i_block represent total blocks in 512 bytes
2549 		 * 32 == size of vfs inode i_blocks * 8
2550 		 */
2551 		upper_limit = (1LL << 32) - 1;
2552 
2553 		/* total blocks in file system block size */
2554 		upper_limit >>= (blkbits - 9);
2555 		upper_limit <<= blkbits;
2556 	}
2557 
2558 	/*
2559 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2560 	 * by one fs block, so ee_len can cover the extent of maximum file
2561 	 * size
2562 	 */
2563 	res = (1LL << 32) - 1;
2564 	res <<= blkbits;
2565 
2566 	/* Sanity check against vm- & vfs- imposed limits */
2567 	if (res > upper_limit)
2568 		res = upper_limit;
2569 
2570 	return res;
2571 }
2572 
2573 /*
2574  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2575  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2576  * We need to be 1 filesystem block less than the 2^48 sector limit.
2577  */
2578 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2579 {
2580 	loff_t res = EXT4_NDIR_BLOCKS;
2581 	int meta_blocks;
2582 	loff_t upper_limit;
2583 	/* This is calculated to be the largest file size for a dense, block
2584 	 * mapped file such that the file's total number of 512-byte sectors,
2585 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2586 	 *
2587 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2588 	 * number of 512-byte sectors of the file.
2589 	 */
2590 
2591 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2592 		/*
2593 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2594 		 * the inode i_block field represents total file blocks in
2595 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2596 		 */
2597 		upper_limit = (1LL << 32) - 1;
2598 
2599 		/* total blocks in file system block size */
2600 		upper_limit >>= (bits - 9);
2601 
2602 	} else {
2603 		/*
2604 		 * We use 48 bit ext4_inode i_blocks
2605 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2606 		 * represent total number of blocks in
2607 		 * file system block size
2608 		 */
2609 		upper_limit = (1LL << 48) - 1;
2610 
2611 	}
2612 
2613 	/* indirect blocks */
2614 	meta_blocks = 1;
2615 	/* double indirect blocks */
2616 	meta_blocks += 1 + (1LL << (bits-2));
2617 	/* tripple indirect blocks */
2618 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2619 
2620 	upper_limit -= meta_blocks;
2621 	upper_limit <<= bits;
2622 
2623 	res += 1LL << (bits-2);
2624 	res += 1LL << (2*(bits-2));
2625 	res += 1LL << (3*(bits-2));
2626 	res <<= bits;
2627 	if (res > upper_limit)
2628 		res = upper_limit;
2629 
2630 	if (res > MAX_LFS_FILESIZE)
2631 		res = MAX_LFS_FILESIZE;
2632 
2633 	return res;
2634 }
2635 
2636 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2637 				   ext4_fsblk_t logical_sb_block, int nr)
2638 {
2639 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2640 	ext4_group_t bg, first_meta_bg;
2641 	int has_super = 0;
2642 
2643 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2644 
2645 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2646 		return logical_sb_block + nr + 1;
2647 	bg = sbi->s_desc_per_block * nr;
2648 	if (ext4_bg_has_super(sb, bg))
2649 		has_super = 1;
2650 
2651 	/*
2652 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2653 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2654 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2655 	 * compensate.
2656 	 */
2657 	if (sb->s_blocksize == 1024 && nr == 0 &&
2658 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2659 		has_super++;
2660 
2661 	return (has_super + ext4_group_first_block_no(sb, bg));
2662 }
2663 
2664 /**
2665  * ext4_get_stripe_size: Get the stripe size.
2666  * @sbi: In memory super block info
2667  *
2668  * If we have specified it via mount option, then
2669  * use the mount option value. If the value specified at mount time is
2670  * greater than the blocks per group use the super block value.
2671  * If the super block value is greater than blocks per group return 0.
2672  * Allocator needs it be less than blocks per group.
2673  *
2674  */
2675 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2676 {
2677 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2678 	unsigned long stripe_width =
2679 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2680 	int ret;
2681 
2682 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2683 		ret = sbi->s_stripe;
2684 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2685 		ret = stripe_width;
2686 	else if (stride && stride <= sbi->s_blocks_per_group)
2687 		ret = stride;
2688 	else
2689 		ret = 0;
2690 
2691 	/*
2692 	 * If the stripe width is 1, this makes no sense and
2693 	 * we set it to 0 to turn off stripe handling code.
2694 	 */
2695 	if (ret <= 1)
2696 		ret = 0;
2697 
2698 	return ret;
2699 }
2700 
2701 /*
2702  * Check whether this filesystem can be mounted based on
2703  * the features present and the RDONLY/RDWR mount requested.
2704  * Returns 1 if this filesystem can be mounted as requested,
2705  * 0 if it cannot be.
2706  */
2707 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2708 {
2709 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2710 		ext4_msg(sb, KERN_ERR,
2711 			"Couldn't mount because of "
2712 			"unsupported optional features (%x)",
2713 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2714 			~EXT4_FEATURE_INCOMPAT_SUPP));
2715 		return 0;
2716 	}
2717 
2718 	if (readonly)
2719 		return 1;
2720 
2721 	if (ext4_has_feature_readonly(sb)) {
2722 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2723 		sb->s_flags |= MS_RDONLY;
2724 		return 1;
2725 	}
2726 
2727 	/* Check that feature set is OK for a read-write mount */
2728 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2729 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2730 			 "unsupported optional features (%x)",
2731 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2732 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2733 		return 0;
2734 	}
2735 	/*
2736 	 * Large file size enabled file system can only be mounted
2737 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2738 	 */
2739 	if (ext4_has_feature_huge_file(sb)) {
2740 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2741 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2742 				 "cannot be mounted RDWR without "
2743 				 "CONFIG_LBDAF");
2744 			return 0;
2745 		}
2746 	}
2747 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2748 		ext4_msg(sb, KERN_ERR,
2749 			 "Can't support bigalloc feature without "
2750 			 "extents feature\n");
2751 		return 0;
2752 	}
2753 
2754 #ifndef CONFIG_QUOTA
2755 	if (ext4_has_feature_quota(sb) && !readonly) {
2756 		ext4_msg(sb, KERN_ERR,
2757 			 "Filesystem with quota feature cannot be mounted RDWR "
2758 			 "without CONFIG_QUOTA");
2759 		return 0;
2760 	}
2761 	if (ext4_has_feature_project(sb) && !readonly) {
2762 		ext4_msg(sb, KERN_ERR,
2763 			 "Filesystem with project quota feature cannot be mounted RDWR "
2764 			 "without CONFIG_QUOTA");
2765 		return 0;
2766 	}
2767 #endif  /* CONFIG_QUOTA */
2768 	return 1;
2769 }
2770 
2771 /*
2772  * This function is called once a day if we have errors logged
2773  * on the file system
2774  */
2775 static void print_daily_error_info(unsigned long arg)
2776 {
2777 	struct super_block *sb = (struct super_block *) arg;
2778 	struct ext4_sb_info *sbi;
2779 	struct ext4_super_block *es;
2780 
2781 	sbi = EXT4_SB(sb);
2782 	es = sbi->s_es;
2783 
2784 	if (es->s_error_count)
2785 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2786 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2787 			 le32_to_cpu(es->s_error_count));
2788 	if (es->s_first_error_time) {
2789 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2790 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2791 		       (int) sizeof(es->s_first_error_func),
2792 		       es->s_first_error_func,
2793 		       le32_to_cpu(es->s_first_error_line));
2794 		if (es->s_first_error_ino)
2795 			printk(KERN_CONT ": inode %u",
2796 			       le32_to_cpu(es->s_first_error_ino));
2797 		if (es->s_first_error_block)
2798 			printk(KERN_CONT ": block %llu", (unsigned long long)
2799 			       le64_to_cpu(es->s_first_error_block));
2800 		printk(KERN_CONT "\n");
2801 	}
2802 	if (es->s_last_error_time) {
2803 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2804 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2805 		       (int) sizeof(es->s_last_error_func),
2806 		       es->s_last_error_func,
2807 		       le32_to_cpu(es->s_last_error_line));
2808 		if (es->s_last_error_ino)
2809 			printk(KERN_CONT ": inode %u",
2810 			       le32_to_cpu(es->s_last_error_ino));
2811 		if (es->s_last_error_block)
2812 			printk(KERN_CONT ": block %llu", (unsigned long long)
2813 			       le64_to_cpu(es->s_last_error_block));
2814 		printk(KERN_CONT "\n");
2815 	}
2816 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2817 }
2818 
2819 /* Find next suitable group and run ext4_init_inode_table */
2820 static int ext4_run_li_request(struct ext4_li_request *elr)
2821 {
2822 	struct ext4_group_desc *gdp = NULL;
2823 	ext4_group_t group, ngroups;
2824 	struct super_block *sb;
2825 	unsigned long timeout = 0;
2826 	int ret = 0;
2827 
2828 	sb = elr->lr_super;
2829 	ngroups = EXT4_SB(sb)->s_groups_count;
2830 
2831 	for (group = elr->lr_next_group; group < ngroups; group++) {
2832 		gdp = ext4_get_group_desc(sb, group, NULL);
2833 		if (!gdp) {
2834 			ret = 1;
2835 			break;
2836 		}
2837 
2838 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2839 			break;
2840 	}
2841 
2842 	if (group >= ngroups)
2843 		ret = 1;
2844 
2845 	if (!ret) {
2846 		timeout = jiffies;
2847 		ret = ext4_init_inode_table(sb, group,
2848 					    elr->lr_timeout ? 0 : 1);
2849 		if (elr->lr_timeout == 0) {
2850 			timeout = (jiffies - timeout) *
2851 				  elr->lr_sbi->s_li_wait_mult;
2852 			elr->lr_timeout = timeout;
2853 		}
2854 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2855 		elr->lr_next_group = group + 1;
2856 	}
2857 	return ret;
2858 }
2859 
2860 /*
2861  * Remove lr_request from the list_request and free the
2862  * request structure. Should be called with li_list_mtx held
2863  */
2864 static void ext4_remove_li_request(struct ext4_li_request *elr)
2865 {
2866 	struct ext4_sb_info *sbi;
2867 
2868 	if (!elr)
2869 		return;
2870 
2871 	sbi = elr->lr_sbi;
2872 
2873 	list_del(&elr->lr_request);
2874 	sbi->s_li_request = NULL;
2875 	kfree(elr);
2876 }
2877 
2878 static void ext4_unregister_li_request(struct super_block *sb)
2879 {
2880 	mutex_lock(&ext4_li_mtx);
2881 	if (!ext4_li_info) {
2882 		mutex_unlock(&ext4_li_mtx);
2883 		return;
2884 	}
2885 
2886 	mutex_lock(&ext4_li_info->li_list_mtx);
2887 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2888 	mutex_unlock(&ext4_li_info->li_list_mtx);
2889 	mutex_unlock(&ext4_li_mtx);
2890 }
2891 
2892 static struct task_struct *ext4_lazyinit_task;
2893 
2894 /*
2895  * This is the function where ext4lazyinit thread lives. It walks
2896  * through the request list searching for next scheduled filesystem.
2897  * When such a fs is found, run the lazy initialization request
2898  * (ext4_rn_li_request) and keep track of the time spend in this
2899  * function. Based on that time we compute next schedule time of
2900  * the request. When walking through the list is complete, compute
2901  * next waking time and put itself into sleep.
2902  */
2903 static int ext4_lazyinit_thread(void *arg)
2904 {
2905 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2906 	struct list_head *pos, *n;
2907 	struct ext4_li_request *elr;
2908 	unsigned long next_wakeup, cur;
2909 
2910 	BUG_ON(NULL == eli);
2911 
2912 cont_thread:
2913 	while (true) {
2914 		next_wakeup = MAX_JIFFY_OFFSET;
2915 
2916 		mutex_lock(&eli->li_list_mtx);
2917 		if (list_empty(&eli->li_request_list)) {
2918 			mutex_unlock(&eli->li_list_mtx);
2919 			goto exit_thread;
2920 		}
2921 		list_for_each_safe(pos, n, &eli->li_request_list) {
2922 			int err = 0;
2923 			int progress = 0;
2924 			elr = list_entry(pos, struct ext4_li_request,
2925 					 lr_request);
2926 
2927 			if (time_before(jiffies, elr->lr_next_sched)) {
2928 				if (time_before(elr->lr_next_sched, next_wakeup))
2929 					next_wakeup = elr->lr_next_sched;
2930 				continue;
2931 			}
2932 			if (down_read_trylock(&elr->lr_super->s_umount)) {
2933 				if (sb_start_write_trylock(elr->lr_super)) {
2934 					progress = 1;
2935 					/*
2936 					 * We hold sb->s_umount, sb can not
2937 					 * be removed from the list, it is
2938 					 * now safe to drop li_list_mtx
2939 					 */
2940 					mutex_unlock(&eli->li_list_mtx);
2941 					err = ext4_run_li_request(elr);
2942 					sb_end_write(elr->lr_super);
2943 					mutex_lock(&eli->li_list_mtx);
2944 					n = pos->next;
2945 				}
2946 				up_read((&elr->lr_super->s_umount));
2947 			}
2948 			/* error, remove the lazy_init job */
2949 			if (err) {
2950 				ext4_remove_li_request(elr);
2951 				continue;
2952 			}
2953 			if (!progress) {
2954 				elr->lr_next_sched = jiffies +
2955 					(prandom_u32()
2956 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2957 			}
2958 			if (time_before(elr->lr_next_sched, next_wakeup))
2959 				next_wakeup = elr->lr_next_sched;
2960 		}
2961 		mutex_unlock(&eli->li_list_mtx);
2962 
2963 		try_to_freeze();
2964 
2965 		cur = jiffies;
2966 		if ((time_after_eq(cur, next_wakeup)) ||
2967 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2968 			cond_resched();
2969 			continue;
2970 		}
2971 
2972 		schedule_timeout_interruptible(next_wakeup - cur);
2973 
2974 		if (kthread_should_stop()) {
2975 			ext4_clear_request_list();
2976 			goto exit_thread;
2977 		}
2978 	}
2979 
2980 exit_thread:
2981 	/*
2982 	 * It looks like the request list is empty, but we need
2983 	 * to check it under the li_list_mtx lock, to prevent any
2984 	 * additions into it, and of course we should lock ext4_li_mtx
2985 	 * to atomically free the list and ext4_li_info, because at
2986 	 * this point another ext4 filesystem could be registering
2987 	 * new one.
2988 	 */
2989 	mutex_lock(&ext4_li_mtx);
2990 	mutex_lock(&eli->li_list_mtx);
2991 	if (!list_empty(&eli->li_request_list)) {
2992 		mutex_unlock(&eli->li_list_mtx);
2993 		mutex_unlock(&ext4_li_mtx);
2994 		goto cont_thread;
2995 	}
2996 	mutex_unlock(&eli->li_list_mtx);
2997 	kfree(ext4_li_info);
2998 	ext4_li_info = NULL;
2999 	mutex_unlock(&ext4_li_mtx);
3000 
3001 	return 0;
3002 }
3003 
3004 static void ext4_clear_request_list(void)
3005 {
3006 	struct list_head *pos, *n;
3007 	struct ext4_li_request *elr;
3008 
3009 	mutex_lock(&ext4_li_info->li_list_mtx);
3010 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3011 		elr = list_entry(pos, struct ext4_li_request,
3012 				 lr_request);
3013 		ext4_remove_li_request(elr);
3014 	}
3015 	mutex_unlock(&ext4_li_info->li_list_mtx);
3016 }
3017 
3018 static int ext4_run_lazyinit_thread(void)
3019 {
3020 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3021 					 ext4_li_info, "ext4lazyinit");
3022 	if (IS_ERR(ext4_lazyinit_task)) {
3023 		int err = PTR_ERR(ext4_lazyinit_task);
3024 		ext4_clear_request_list();
3025 		kfree(ext4_li_info);
3026 		ext4_li_info = NULL;
3027 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3028 				 "initialization thread\n",
3029 				 err);
3030 		return err;
3031 	}
3032 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3033 	return 0;
3034 }
3035 
3036 /*
3037  * Check whether it make sense to run itable init. thread or not.
3038  * If there is at least one uninitialized inode table, return
3039  * corresponding group number, else the loop goes through all
3040  * groups and return total number of groups.
3041  */
3042 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3043 {
3044 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3045 	struct ext4_group_desc *gdp = NULL;
3046 
3047 	for (group = 0; group < ngroups; group++) {
3048 		gdp = ext4_get_group_desc(sb, group, NULL);
3049 		if (!gdp)
3050 			continue;
3051 
3052 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3053 			break;
3054 	}
3055 
3056 	return group;
3057 }
3058 
3059 static int ext4_li_info_new(void)
3060 {
3061 	struct ext4_lazy_init *eli = NULL;
3062 
3063 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3064 	if (!eli)
3065 		return -ENOMEM;
3066 
3067 	INIT_LIST_HEAD(&eli->li_request_list);
3068 	mutex_init(&eli->li_list_mtx);
3069 
3070 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3071 
3072 	ext4_li_info = eli;
3073 
3074 	return 0;
3075 }
3076 
3077 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3078 					    ext4_group_t start)
3079 {
3080 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3081 	struct ext4_li_request *elr;
3082 
3083 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3084 	if (!elr)
3085 		return NULL;
3086 
3087 	elr->lr_super = sb;
3088 	elr->lr_sbi = sbi;
3089 	elr->lr_next_group = start;
3090 
3091 	/*
3092 	 * Randomize first schedule time of the request to
3093 	 * spread the inode table initialization requests
3094 	 * better.
3095 	 */
3096 	elr->lr_next_sched = jiffies + (prandom_u32() %
3097 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3098 	return elr;
3099 }
3100 
3101 int ext4_register_li_request(struct super_block *sb,
3102 			     ext4_group_t first_not_zeroed)
3103 {
3104 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 	struct ext4_li_request *elr = NULL;
3106 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3107 	int ret = 0;
3108 
3109 	mutex_lock(&ext4_li_mtx);
3110 	if (sbi->s_li_request != NULL) {
3111 		/*
3112 		 * Reset timeout so it can be computed again, because
3113 		 * s_li_wait_mult might have changed.
3114 		 */
3115 		sbi->s_li_request->lr_timeout = 0;
3116 		goto out;
3117 	}
3118 
3119 	if (first_not_zeroed == ngroups ||
3120 	    (sb->s_flags & MS_RDONLY) ||
3121 	    !test_opt(sb, INIT_INODE_TABLE))
3122 		goto out;
3123 
3124 	elr = ext4_li_request_new(sb, first_not_zeroed);
3125 	if (!elr) {
3126 		ret = -ENOMEM;
3127 		goto out;
3128 	}
3129 
3130 	if (NULL == ext4_li_info) {
3131 		ret = ext4_li_info_new();
3132 		if (ret)
3133 			goto out;
3134 	}
3135 
3136 	mutex_lock(&ext4_li_info->li_list_mtx);
3137 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3138 	mutex_unlock(&ext4_li_info->li_list_mtx);
3139 
3140 	sbi->s_li_request = elr;
3141 	/*
3142 	 * set elr to NULL here since it has been inserted to
3143 	 * the request_list and the removal and free of it is
3144 	 * handled by ext4_clear_request_list from now on.
3145 	 */
3146 	elr = NULL;
3147 
3148 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3149 		ret = ext4_run_lazyinit_thread();
3150 		if (ret)
3151 			goto out;
3152 	}
3153 out:
3154 	mutex_unlock(&ext4_li_mtx);
3155 	if (ret)
3156 		kfree(elr);
3157 	return ret;
3158 }
3159 
3160 /*
3161  * We do not need to lock anything since this is called on
3162  * module unload.
3163  */
3164 static void ext4_destroy_lazyinit_thread(void)
3165 {
3166 	/*
3167 	 * If thread exited earlier
3168 	 * there's nothing to be done.
3169 	 */
3170 	if (!ext4_li_info || !ext4_lazyinit_task)
3171 		return;
3172 
3173 	kthread_stop(ext4_lazyinit_task);
3174 }
3175 
3176 static int set_journal_csum_feature_set(struct super_block *sb)
3177 {
3178 	int ret = 1;
3179 	int compat, incompat;
3180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3181 
3182 	if (ext4_has_metadata_csum(sb)) {
3183 		/* journal checksum v3 */
3184 		compat = 0;
3185 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3186 	} else {
3187 		/* journal checksum v1 */
3188 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3189 		incompat = 0;
3190 	}
3191 
3192 	jbd2_journal_clear_features(sbi->s_journal,
3193 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3194 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3195 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3196 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3197 		ret = jbd2_journal_set_features(sbi->s_journal,
3198 				compat, 0,
3199 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3200 				incompat);
3201 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3202 		ret = jbd2_journal_set_features(sbi->s_journal,
3203 				compat, 0,
3204 				incompat);
3205 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3206 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3207 	} else {
3208 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3209 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3210 	}
3211 
3212 	return ret;
3213 }
3214 
3215 /*
3216  * Note: calculating the overhead so we can be compatible with
3217  * historical BSD practice is quite difficult in the face of
3218  * clusters/bigalloc.  This is because multiple metadata blocks from
3219  * different block group can end up in the same allocation cluster.
3220  * Calculating the exact overhead in the face of clustered allocation
3221  * requires either O(all block bitmaps) in memory or O(number of block
3222  * groups**2) in time.  We will still calculate the superblock for
3223  * older file systems --- and if we come across with a bigalloc file
3224  * system with zero in s_overhead_clusters the estimate will be close to
3225  * correct especially for very large cluster sizes --- but for newer
3226  * file systems, it's better to calculate this figure once at mkfs
3227  * time, and store it in the superblock.  If the superblock value is
3228  * present (even for non-bigalloc file systems), we will use it.
3229  */
3230 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3231 			  char *buf)
3232 {
3233 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3234 	struct ext4_group_desc	*gdp;
3235 	ext4_fsblk_t		first_block, last_block, b;
3236 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3237 	int			s, j, count = 0;
3238 
3239 	if (!ext4_has_feature_bigalloc(sb))
3240 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3241 			sbi->s_itb_per_group + 2);
3242 
3243 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3244 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3245 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3246 	for (i = 0; i < ngroups; i++) {
3247 		gdp = ext4_get_group_desc(sb, i, NULL);
3248 		b = ext4_block_bitmap(sb, gdp);
3249 		if (b >= first_block && b <= last_block) {
3250 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3251 			count++;
3252 		}
3253 		b = ext4_inode_bitmap(sb, gdp);
3254 		if (b >= first_block && b <= last_block) {
3255 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3256 			count++;
3257 		}
3258 		b = ext4_inode_table(sb, gdp);
3259 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3260 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3261 				int c = EXT4_B2C(sbi, b - first_block);
3262 				ext4_set_bit(c, buf);
3263 				count++;
3264 			}
3265 		if (i != grp)
3266 			continue;
3267 		s = 0;
3268 		if (ext4_bg_has_super(sb, grp)) {
3269 			ext4_set_bit(s++, buf);
3270 			count++;
3271 		}
3272 		j = ext4_bg_num_gdb(sb, grp);
3273 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3274 			ext4_error(sb, "Invalid number of block group "
3275 				   "descriptor blocks: %d", j);
3276 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3277 		}
3278 		count += j;
3279 		for (; j > 0; j--)
3280 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3281 	}
3282 	if (!count)
3283 		return 0;
3284 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3285 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3286 }
3287 
3288 /*
3289  * Compute the overhead and stash it in sbi->s_overhead
3290  */
3291 int ext4_calculate_overhead(struct super_block *sb)
3292 {
3293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3294 	struct ext4_super_block *es = sbi->s_es;
3295 	struct inode *j_inode;
3296 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3297 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3298 	ext4_fsblk_t overhead = 0;
3299 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3300 
3301 	if (!buf)
3302 		return -ENOMEM;
3303 
3304 	/*
3305 	 * Compute the overhead (FS structures).  This is constant
3306 	 * for a given filesystem unless the number of block groups
3307 	 * changes so we cache the previous value until it does.
3308 	 */
3309 
3310 	/*
3311 	 * All of the blocks before first_data_block are overhead
3312 	 */
3313 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3314 
3315 	/*
3316 	 * Add the overhead found in each block group
3317 	 */
3318 	for (i = 0; i < ngroups; i++) {
3319 		int blks;
3320 
3321 		blks = count_overhead(sb, i, buf);
3322 		overhead += blks;
3323 		if (blks)
3324 			memset(buf, 0, PAGE_SIZE);
3325 		cond_resched();
3326 	}
3327 
3328 	/*
3329 	 * Add the internal journal blocks whether the journal has been
3330 	 * loaded or not
3331 	 */
3332 	if (sbi->s_journal && !sbi->journal_bdev)
3333 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3334 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3335 		j_inode = ext4_get_journal_inode(sb, j_inum);
3336 		if (j_inode) {
3337 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3338 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3339 			iput(j_inode);
3340 		} else {
3341 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3342 		}
3343 	}
3344 	sbi->s_overhead = overhead;
3345 	smp_wmb();
3346 	free_page((unsigned long) buf);
3347 	return 0;
3348 }
3349 
3350 static void ext4_set_resv_clusters(struct super_block *sb)
3351 {
3352 	ext4_fsblk_t resv_clusters;
3353 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3354 
3355 	/*
3356 	 * There's no need to reserve anything when we aren't using extents.
3357 	 * The space estimates are exact, there are no unwritten extents,
3358 	 * hole punching doesn't need new metadata... This is needed especially
3359 	 * to keep ext2/3 backward compatibility.
3360 	 */
3361 	if (!ext4_has_feature_extents(sb))
3362 		return;
3363 	/*
3364 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3365 	 * This should cover the situations where we can not afford to run
3366 	 * out of space like for example punch hole, or converting
3367 	 * unwritten extents in delalloc path. In most cases such
3368 	 * allocation would require 1, or 2 blocks, higher numbers are
3369 	 * very rare.
3370 	 */
3371 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3372 			 sbi->s_cluster_bits);
3373 
3374 	do_div(resv_clusters, 50);
3375 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3376 
3377 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3378 }
3379 
3380 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3381 {
3382 	char *orig_data = kstrdup(data, GFP_KERNEL);
3383 	struct buffer_head *bh;
3384 	struct ext4_super_block *es = NULL;
3385 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3386 	ext4_fsblk_t block;
3387 	ext4_fsblk_t sb_block = get_sb_block(&data);
3388 	ext4_fsblk_t logical_sb_block;
3389 	unsigned long offset = 0;
3390 	unsigned long journal_devnum = 0;
3391 	unsigned long def_mount_opts;
3392 	struct inode *root;
3393 	const char *descr;
3394 	int ret = -ENOMEM;
3395 	int blocksize, clustersize;
3396 	unsigned int db_count;
3397 	unsigned int i;
3398 	int needs_recovery, has_huge_files, has_bigalloc;
3399 	__u64 blocks_count;
3400 	int err = 0;
3401 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3402 	ext4_group_t first_not_zeroed;
3403 
3404 	if ((data && !orig_data) || !sbi)
3405 		goto out_free_base;
3406 
3407 	sbi->s_blockgroup_lock =
3408 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3409 	if (!sbi->s_blockgroup_lock)
3410 		goto out_free_base;
3411 
3412 	sb->s_fs_info = sbi;
3413 	sbi->s_sb = sb;
3414 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3415 	sbi->s_sb_block = sb_block;
3416 	if (sb->s_bdev->bd_part)
3417 		sbi->s_sectors_written_start =
3418 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3419 
3420 	/* Cleanup superblock name */
3421 	strreplace(sb->s_id, '/', '!');
3422 
3423 	/* -EINVAL is default */
3424 	ret = -EINVAL;
3425 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3426 	if (!blocksize) {
3427 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3428 		goto out_fail;
3429 	}
3430 
3431 	/*
3432 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3433 	 * block sizes.  We need to calculate the offset from buffer start.
3434 	 */
3435 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3436 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3437 		offset = do_div(logical_sb_block, blocksize);
3438 	} else {
3439 		logical_sb_block = sb_block;
3440 	}
3441 
3442 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3443 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3444 		goto out_fail;
3445 	}
3446 	/*
3447 	 * Note: s_es must be initialized as soon as possible because
3448 	 *       some ext4 macro-instructions depend on its value
3449 	 */
3450 	es = (struct ext4_super_block *) (bh->b_data + offset);
3451 	sbi->s_es = es;
3452 	sb->s_magic = le16_to_cpu(es->s_magic);
3453 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3454 		goto cantfind_ext4;
3455 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3456 
3457 	/* Warn if metadata_csum and gdt_csum are both set. */
3458 	if (ext4_has_feature_metadata_csum(sb) &&
3459 	    ext4_has_feature_gdt_csum(sb))
3460 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3461 			     "redundant flags; please run fsck.");
3462 
3463 	/* Check for a known checksum algorithm */
3464 	if (!ext4_verify_csum_type(sb, es)) {
3465 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3466 			 "unknown checksum algorithm.");
3467 		silent = 1;
3468 		goto cantfind_ext4;
3469 	}
3470 
3471 	/* Load the checksum driver */
3472 	if (ext4_has_feature_metadata_csum(sb) ||
3473 	    ext4_has_feature_ea_inode(sb)) {
3474 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3475 		if (IS_ERR(sbi->s_chksum_driver)) {
3476 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3477 			ret = PTR_ERR(sbi->s_chksum_driver);
3478 			sbi->s_chksum_driver = NULL;
3479 			goto failed_mount;
3480 		}
3481 	}
3482 
3483 	/* Check superblock checksum */
3484 	if (!ext4_superblock_csum_verify(sb, es)) {
3485 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3486 			 "invalid superblock checksum.  Run e2fsck?");
3487 		silent = 1;
3488 		ret = -EFSBADCRC;
3489 		goto cantfind_ext4;
3490 	}
3491 
3492 	/* Precompute checksum seed for all metadata */
3493 	if (ext4_has_feature_csum_seed(sb))
3494 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3495 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3496 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3497 					       sizeof(es->s_uuid));
3498 
3499 	/* Set defaults before we parse the mount options */
3500 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3501 	set_opt(sb, INIT_INODE_TABLE);
3502 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3503 		set_opt(sb, DEBUG);
3504 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3505 		set_opt(sb, GRPID);
3506 	if (def_mount_opts & EXT4_DEFM_UID16)
3507 		set_opt(sb, NO_UID32);
3508 	/* xattr user namespace & acls are now defaulted on */
3509 	set_opt(sb, XATTR_USER);
3510 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3511 	set_opt(sb, POSIX_ACL);
3512 #endif
3513 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3514 	if (ext4_has_metadata_csum(sb))
3515 		set_opt(sb, JOURNAL_CHECKSUM);
3516 
3517 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3518 		set_opt(sb, JOURNAL_DATA);
3519 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3520 		set_opt(sb, ORDERED_DATA);
3521 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3522 		set_opt(sb, WRITEBACK_DATA);
3523 
3524 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3525 		set_opt(sb, ERRORS_PANIC);
3526 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3527 		set_opt(sb, ERRORS_CONT);
3528 	else
3529 		set_opt(sb, ERRORS_RO);
3530 	/* block_validity enabled by default; disable with noblock_validity */
3531 	set_opt(sb, BLOCK_VALIDITY);
3532 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3533 		set_opt(sb, DISCARD);
3534 
3535 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3536 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3537 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3538 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3539 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3540 
3541 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3542 		set_opt(sb, BARRIER);
3543 
3544 	/*
3545 	 * enable delayed allocation by default
3546 	 * Use -o nodelalloc to turn it off
3547 	 */
3548 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3549 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3550 		set_opt(sb, DELALLOC);
3551 
3552 	/*
3553 	 * set default s_li_wait_mult for lazyinit, for the case there is
3554 	 * no mount option specified.
3555 	 */
3556 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3557 
3558 	if (sbi->s_es->s_mount_opts[0]) {
3559 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3560 					      sizeof(sbi->s_es->s_mount_opts),
3561 					      GFP_KERNEL);
3562 		if (!s_mount_opts)
3563 			goto failed_mount;
3564 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3565 				   &journal_ioprio, 0)) {
3566 			ext4_msg(sb, KERN_WARNING,
3567 				 "failed to parse options in superblock: %s",
3568 				 s_mount_opts);
3569 		}
3570 		kfree(s_mount_opts);
3571 	}
3572 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3573 	if (!parse_options((char *) data, sb, &journal_devnum,
3574 			   &journal_ioprio, 0))
3575 		goto failed_mount;
3576 
3577 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3578 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3579 			    "with data=journal disables delayed "
3580 			    "allocation and O_DIRECT support!\n");
3581 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3582 			ext4_msg(sb, KERN_ERR, "can't mount with "
3583 				 "both data=journal and delalloc");
3584 			goto failed_mount;
3585 		}
3586 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3587 			ext4_msg(sb, KERN_ERR, "can't mount with "
3588 				 "both data=journal and dioread_nolock");
3589 			goto failed_mount;
3590 		}
3591 		if (test_opt(sb, DAX)) {
3592 			ext4_msg(sb, KERN_ERR, "can't mount with "
3593 				 "both data=journal and dax");
3594 			goto failed_mount;
3595 		}
3596 		if (ext4_has_feature_encrypt(sb)) {
3597 			ext4_msg(sb, KERN_WARNING,
3598 				 "encrypted files will use data=ordered "
3599 				 "instead of data journaling mode");
3600 		}
3601 		if (test_opt(sb, DELALLOC))
3602 			clear_opt(sb, DELALLOC);
3603 	} else {
3604 		sb->s_iflags |= SB_I_CGROUPWB;
3605 	}
3606 
3607 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3608 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3609 
3610 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3611 	    (ext4_has_compat_features(sb) ||
3612 	     ext4_has_ro_compat_features(sb) ||
3613 	     ext4_has_incompat_features(sb)))
3614 		ext4_msg(sb, KERN_WARNING,
3615 		       "feature flags set on rev 0 fs, "
3616 		       "running e2fsck is recommended");
3617 
3618 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3619 		set_opt2(sb, HURD_COMPAT);
3620 		if (ext4_has_feature_64bit(sb)) {
3621 			ext4_msg(sb, KERN_ERR,
3622 				 "The Hurd can't support 64-bit file systems");
3623 			goto failed_mount;
3624 		}
3625 
3626 		/*
3627 		 * ea_inode feature uses l_i_version field which is not
3628 		 * available in HURD_COMPAT mode.
3629 		 */
3630 		if (ext4_has_feature_ea_inode(sb)) {
3631 			ext4_msg(sb, KERN_ERR,
3632 				 "ea_inode feature is not supported for Hurd");
3633 			goto failed_mount;
3634 		}
3635 	}
3636 
3637 	if (IS_EXT2_SB(sb)) {
3638 		if (ext2_feature_set_ok(sb))
3639 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3640 				 "using the ext4 subsystem");
3641 		else {
3642 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3643 				 "to feature incompatibilities");
3644 			goto failed_mount;
3645 		}
3646 	}
3647 
3648 	if (IS_EXT3_SB(sb)) {
3649 		if (ext3_feature_set_ok(sb))
3650 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3651 				 "using the ext4 subsystem");
3652 		else {
3653 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3654 				 "to feature incompatibilities");
3655 			goto failed_mount;
3656 		}
3657 	}
3658 
3659 	/*
3660 	 * Check feature flags regardless of the revision level, since we
3661 	 * previously didn't change the revision level when setting the flags,
3662 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3663 	 */
3664 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3665 		goto failed_mount;
3666 
3667 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3668 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3669 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3670 		ext4_msg(sb, KERN_ERR,
3671 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3672 			 blocksize, le32_to_cpu(es->s_log_block_size));
3673 		goto failed_mount;
3674 	}
3675 	if (le32_to_cpu(es->s_log_block_size) >
3676 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3677 		ext4_msg(sb, KERN_ERR,
3678 			 "Invalid log block size: %u",
3679 			 le32_to_cpu(es->s_log_block_size));
3680 		goto failed_mount;
3681 	}
3682 
3683 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3684 		ext4_msg(sb, KERN_ERR,
3685 			 "Number of reserved GDT blocks insanely large: %d",
3686 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3687 		goto failed_mount;
3688 	}
3689 
3690 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3691 		err = bdev_dax_supported(sb, blocksize);
3692 		if (err)
3693 			goto failed_mount;
3694 	}
3695 
3696 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3697 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3698 			 es->s_encryption_level);
3699 		goto failed_mount;
3700 	}
3701 
3702 	if (sb->s_blocksize != blocksize) {
3703 		/* Validate the filesystem blocksize */
3704 		if (!sb_set_blocksize(sb, blocksize)) {
3705 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3706 					blocksize);
3707 			goto failed_mount;
3708 		}
3709 
3710 		brelse(bh);
3711 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3712 		offset = do_div(logical_sb_block, blocksize);
3713 		bh = sb_bread_unmovable(sb, logical_sb_block);
3714 		if (!bh) {
3715 			ext4_msg(sb, KERN_ERR,
3716 			       "Can't read superblock on 2nd try");
3717 			goto failed_mount;
3718 		}
3719 		es = (struct ext4_super_block *)(bh->b_data + offset);
3720 		sbi->s_es = es;
3721 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3722 			ext4_msg(sb, KERN_ERR,
3723 			       "Magic mismatch, very weird!");
3724 			goto failed_mount;
3725 		}
3726 	}
3727 
3728 	has_huge_files = ext4_has_feature_huge_file(sb);
3729 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3730 						      has_huge_files);
3731 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3732 
3733 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3734 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3735 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3736 	} else {
3737 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3738 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3739 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3740 		    (!is_power_of_2(sbi->s_inode_size)) ||
3741 		    (sbi->s_inode_size > blocksize)) {
3742 			ext4_msg(sb, KERN_ERR,
3743 			       "unsupported inode size: %d",
3744 			       sbi->s_inode_size);
3745 			goto failed_mount;
3746 		}
3747 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3748 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3749 	}
3750 
3751 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3752 	if (ext4_has_feature_64bit(sb)) {
3753 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3754 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3755 		    !is_power_of_2(sbi->s_desc_size)) {
3756 			ext4_msg(sb, KERN_ERR,
3757 			       "unsupported descriptor size %lu",
3758 			       sbi->s_desc_size);
3759 			goto failed_mount;
3760 		}
3761 	} else
3762 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3763 
3764 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3765 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3766 
3767 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3768 	if (sbi->s_inodes_per_block == 0)
3769 		goto cantfind_ext4;
3770 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3771 	    sbi->s_inodes_per_group > blocksize * 8) {
3772 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3773 			 sbi->s_blocks_per_group);
3774 		goto failed_mount;
3775 	}
3776 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3777 					sbi->s_inodes_per_block;
3778 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3779 	sbi->s_sbh = bh;
3780 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3781 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3782 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3783 
3784 	for (i = 0; i < 4; i++)
3785 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3786 	sbi->s_def_hash_version = es->s_def_hash_version;
3787 	if (ext4_has_feature_dir_index(sb)) {
3788 		i = le32_to_cpu(es->s_flags);
3789 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3790 			sbi->s_hash_unsigned = 3;
3791 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3792 #ifdef __CHAR_UNSIGNED__
3793 			if (!(sb->s_flags & MS_RDONLY))
3794 				es->s_flags |=
3795 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3796 			sbi->s_hash_unsigned = 3;
3797 #else
3798 			if (!(sb->s_flags & MS_RDONLY))
3799 				es->s_flags |=
3800 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3801 #endif
3802 		}
3803 	}
3804 
3805 	/* Handle clustersize */
3806 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3807 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3808 	if (has_bigalloc) {
3809 		if (clustersize < blocksize) {
3810 			ext4_msg(sb, KERN_ERR,
3811 				 "cluster size (%d) smaller than "
3812 				 "block size (%d)", clustersize, blocksize);
3813 			goto failed_mount;
3814 		}
3815 		if (le32_to_cpu(es->s_log_cluster_size) >
3816 		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3817 			ext4_msg(sb, KERN_ERR,
3818 				 "Invalid log cluster size: %u",
3819 				 le32_to_cpu(es->s_log_cluster_size));
3820 			goto failed_mount;
3821 		}
3822 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3823 			le32_to_cpu(es->s_log_block_size);
3824 		sbi->s_clusters_per_group =
3825 			le32_to_cpu(es->s_clusters_per_group);
3826 		if (sbi->s_clusters_per_group > blocksize * 8) {
3827 			ext4_msg(sb, KERN_ERR,
3828 				 "#clusters per group too big: %lu",
3829 				 sbi->s_clusters_per_group);
3830 			goto failed_mount;
3831 		}
3832 		if (sbi->s_blocks_per_group !=
3833 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3834 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3835 				 "clusters per group (%lu) inconsistent",
3836 				 sbi->s_blocks_per_group,
3837 				 sbi->s_clusters_per_group);
3838 			goto failed_mount;
3839 		}
3840 	} else {
3841 		if (clustersize != blocksize) {
3842 			ext4_warning(sb, "fragment/cluster size (%d) != "
3843 				     "block size (%d)", clustersize,
3844 				     blocksize);
3845 			clustersize = blocksize;
3846 		}
3847 		if (sbi->s_blocks_per_group > blocksize * 8) {
3848 			ext4_msg(sb, KERN_ERR,
3849 				 "#blocks per group too big: %lu",
3850 				 sbi->s_blocks_per_group);
3851 			goto failed_mount;
3852 		}
3853 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3854 		sbi->s_cluster_bits = 0;
3855 	}
3856 	sbi->s_cluster_ratio = clustersize / blocksize;
3857 
3858 	/* Do we have standard group size of clustersize * 8 blocks ? */
3859 	if (sbi->s_blocks_per_group == clustersize << 3)
3860 		set_opt2(sb, STD_GROUP_SIZE);
3861 
3862 	/*
3863 	 * Test whether we have more sectors than will fit in sector_t,
3864 	 * and whether the max offset is addressable by the page cache.
3865 	 */
3866 	err = generic_check_addressable(sb->s_blocksize_bits,
3867 					ext4_blocks_count(es));
3868 	if (err) {
3869 		ext4_msg(sb, KERN_ERR, "filesystem"
3870 			 " too large to mount safely on this system");
3871 		if (sizeof(sector_t) < 8)
3872 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3873 		goto failed_mount;
3874 	}
3875 
3876 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3877 		goto cantfind_ext4;
3878 
3879 	/* check blocks count against device size */
3880 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3881 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3882 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3883 		       "exceeds size of device (%llu blocks)",
3884 		       ext4_blocks_count(es), blocks_count);
3885 		goto failed_mount;
3886 	}
3887 
3888 	/*
3889 	 * It makes no sense for the first data block to be beyond the end
3890 	 * of the filesystem.
3891 	 */
3892 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3893 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3894 			 "block %u is beyond end of filesystem (%llu)",
3895 			 le32_to_cpu(es->s_first_data_block),
3896 			 ext4_blocks_count(es));
3897 		goto failed_mount;
3898 	}
3899 	blocks_count = (ext4_blocks_count(es) -
3900 			le32_to_cpu(es->s_first_data_block) +
3901 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3902 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3903 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3904 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3905 		       "(block count %llu, first data block %u, "
3906 		       "blocks per group %lu)", sbi->s_groups_count,
3907 		       ext4_blocks_count(es),
3908 		       le32_to_cpu(es->s_first_data_block),
3909 		       EXT4_BLOCKS_PER_GROUP(sb));
3910 		goto failed_mount;
3911 	}
3912 	sbi->s_groups_count = blocks_count;
3913 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3914 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3915 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3916 		   EXT4_DESC_PER_BLOCK(sb);
3917 	if (ext4_has_feature_meta_bg(sb)) {
3918 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3919 			ext4_msg(sb, KERN_WARNING,
3920 				 "first meta block group too large: %u "
3921 				 "(group descriptor block count %u)",
3922 				 le32_to_cpu(es->s_first_meta_bg), db_count);
3923 			goto failed_mount;
3924 		}
3925 	}
3926 	sbi->s_group_desc = kvmalloc(db_count *
3927 					  sizeof(struct buffer_head *),
3928 					  GFP_KERNEL);
3929 	if (sbi->s_group_desc == NULL) {
3930 		ext4_msg(sb, KERN_ERR, "not enough memory");
3931 		ret = -ENOMEM;
3932 		goto failed_mount;
3933 	}
3934 
3935 	bgl_lock_init(sbi->s_blockgroup_lock);
3936 
3937 	/* Pre-read the descriptors into the buffer cache */
3938 	for (i = 0; i < db_count; i++) {
3939 		block = descriptor_loc(sb, logical_sb_block, i);
3940 		sb_breadahead(sb, block);
3941 	}
3942 
3943 	for (i = 0; i < db_count; i++) {
3944 		block = descriptor_loc(sb, logical_sb_block, i);
3945 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3946 		if (!sbi->s_group_desc[i]) {
3947 			ext4_msg(sb, KERN_ERR,
3948 			       "can't read group descriptor %d", i);
3949 			db_count = i;
3950 			goto failed_mount2;
3951 		}
3952 	}
3953 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3954 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3955 		ret = -EFSCORRUPTED;
3956 		goto failed_mount2;
3957 	}
3958 
3959 	sbi->s_gdb_count = db_count;
3960 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3961 	spin_lock_init(&sbi->s_next_gen_lock);
3962 
3963 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3964 		(unsigned long) sb);
3965 
3966 	/* Register extent status tree shrinker */
3967 	if (ext4_es_register_shrinker(sbi))
3968 		goto failed_mount3;
3969 
3970 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3971 	sbi->s_extent_max_zeroout_kb = 32;
3972 
3973 	/*
3974 	 * set up enough so that it can read an inode
3975 	 */
3976 	sb->s_op = &ext4_sops;
3977 	sb->s_export_op = &ext4_export_ops;
3978 	sb->s_xattr = ext4_xattr_handlers;
3979 	sb->s_cop = &ext4_cryptops;
3980 #ifdef CONFIG_QUOTA
3981 	sb->dq_op = &ext4_quota_operations;
3982 	if (ext4_has_feature_quota(sb))
3983 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3984 	else
3985 		sb->s_qcop = &ext4_qctl_operations;
3986 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3987 #endif
3988 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3989 
3990 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3991 	mutex_init(&sbi->s_orphan_lock);
3992 
3993 	sb->s_root = NULL;
3994 
3995 	needs_recovery = (es->s_last_orphan != 0 ||
3996 			  ext4_has_feature_journal_needs_recovery(sb));
3997 
3998 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3999 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4000 			goto failed_mount3a;
4001 
4002 	/*
4003 	 * The first inode we look at is the journal inode.  Don't try
4004 	 * root first: it may be modified in the journal!
4005 	 */
4006 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4007 		err = ext4_load_journal(sb, es, journal_devnum);
4008 		if (err)
4009 			goto failed_mount3a;
4010 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4011 		   ext4_has_feature_journal_needs_recovery(sb)) {
4012 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4013 		       "suppressed and not mounted read-only");
4014 		goto failed_mount_wq;
4015 	} else {
4016 		/* Nojournal mode, all journal mount options are illegal */
4017 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4018 			ext4_msg(sb, KERN_ERR, "can't mount with "
4019 				 "journal_checksum, fs mounted w/o journal");
4020 			goto failed_mount_wq;
4021 		}
4022 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4023 			ext4_msg(sb, KERN_ERR, "can't mount with "
4024 				 "journal_async_commit, fs mounted w/o journal");
4025 			goto failed_mount_wq;
4026 		}
4027 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4028 			ext4_msg(sb, KERN_ERR, "can't mount with "
4029 				 "commit=%lu, fs mounted w/o journal",
4030 				 sbi->s_commit_interval / HZ);
4031 			goto failed_mount_wq;
4032 		}
4033 		if (EXT4_MOUNT_DATA_FLAGS &
4034 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4035 			ext4_msg(sb, KERN_ERR, "can't mount with "
4036 				 "data=, fs mounted w/o journal");
4037 			goto failed_mount_wq;
4038 		}
4039 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4040 		clear_opt(sb, JOURNAL_CHECKSUM);
4041 		clear_opt(sb, DATA_FLAGS);
4042 		sbi->s_journal = NULL;
4043 		needs_recovery = 0;
4044 		goto no_journal;
4045 	}
4046 
4047 	if (ext4_has_feature_64bit(sb) &&
4048 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4049 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4050 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4051 		goto failed_mount_wq;
4052 	}
4053 
4054 	if (!set_journal_csum_feature_set(sb)) {
4055 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4056 			 "feature set");
4057 		goto failed_mount_wq;
4058 	}
4059 
4060 	/* We have now updated the journal if required, so we can
4061 	 * validate the data journaling mode. */
4062 	switch (test_opt(sb, DATA_FLAGS)) {
4063 	case 0:
4064 		/* No mode set, assume a default based on the journal
4065 		 * capabilities: ORDERED_DATA if the journal can
4066 		 * cope, else JOURNAL_DATA
4067 		 */
4068 		if (jbd2_journal_check_available_features
4069 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4070 			set_opt(sb, ORDERED_DATA);
4071 		else
4072 			set_opt(sb, JOURNAL_DATA);
4073 		break;
4074 
4075 	case EXT4_MOUNT_ORDERED_DATA:
4076 	case EXT4_MOUNT_WRITEBACK_DATA:
4077 		if (!jbd2_journal_check_available_features
4078 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4079 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4080 			       "requested data journaling mode");
4081 			goto failed_mount_wq;
4082 		}
4083 	default:
4084 		break;
4085 	}
4086 
4087 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4088 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4089 		ext4_msg(sb, KERN_ERR, "can't mount with "
4090 			"journal_async_commit in data=ordered mode");
4091 		goto failed_mount_wq;
4092 	}
4093 
4094 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4095 
4096 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4097 
4098 no_journal:
4099 	if (!test_opt(sb, NO_MBCACHE)) {
4100 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4101 		if (!sbi->s_ea_block_cache) {
4102 			ext4_msg(sb, KERN_ERR,
4103 				 "Failed to create ea_block_cache");
4104 			goto failed_mount_wq;
4105 		}
4106 
4107 		if (ext4_has_feature_ea_inode(sb)) {
4108 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4109 			if (!sbi->s_ea_inode_cache) {
4110 				ext4_msg(sb, KERN_ERR,
4111 					 "Failed to create ea_inode_cache");
4112 				goto failed_mount_wq;
4113 			}
4114 		}
4115 	}
4116 
4117 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4118 	    (blocksize != PAGE_SIZE)) {
4119 		ext4_msg(sb, KERN_ERR,
4120 			 "Unsupported blocksize for fs encryption");
4121 		goto failed_mount_wq;
4122 	}
4123 
4124 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4125 	    !ext4_has_feature_encrypt(sb)) {
4126 		ext4_set_feature_encrypt(sb);
4127 		ext4_commit_super(sb, 1);
4128 	}
4129 
4130 	/*
4131 	 * Get the # of file system overhead blocks from the
4132 	 * superblock if present.
4133 	 */
4134 	if (es->s_overhead_clusters)
4135 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4136 	else {
4137 		err = ext4_calculate_overhead(sb);
4138 		if (err)
4139 			goto failed_mount_wq;
4140 	}
4141 
4142 	/*
4143 	 * The maximum number of concurrent works can be high and
4144 	 * concurrency isn't really necessary.  Limit it to 1.
4145 	 */
4146 	EXT4_SB(sb)->rsv_conversion_wq =
4147 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4148 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4149 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4150 		ret = -ENOMEM;
4151 		goto failed_mount4;
4152 	}
4153 
4154 	/*
4155 	 * The jbd2_journal_load will have done any necessary log recovery,
4156 	 * so we can safely mount the rest of the filesystem now.
4157 	 */
4158 
4159 	root = ext4_iget(sb, EXT4_ROOT_INO);
4160 	if (IS_ERR(root)) {
4161 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4162 		ret = PTR_ERR(root);
4163 		root = NULL;
4164 		goto failed_mount4;
4165 	}
4166 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4167 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4168 		iput(root);
4169 		goto failed_mount4;
4170 	}
4171 	sb->s_root = d_make_root(root);
4172 	if (!sb->s_root) {
4173 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4174 		ret = -ENOMEM;
4175 		goto failed_mount4;
4176 	}
4177 
4178 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4179 		sb->s_flags |= MS_RDONLY;
4180 
4181 	/* determine the minimum size of new large inodes, if present */
4182 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4183 	    sbi->s_want_extra_isize == 0) {
4184 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4185 						     EXT4_GOOD_OLD_INODE_SIZE;
4186 		if (ext4_has_feature_extra_isize(sb)) {
4187 			if (sbi->s_want_extra_isize <
4188 			    le16_to_cpu(es->s_want_extra_isize))
4189 				sbi->s_want_extra_isize =
4190 					le16_to_cpu(es->s_want_extra_isize);
4191 			if (sbi->s_want_extra_isize <
4192 			    le16_to_cpu(es->s_min_extra_isize))
4193 				sbi->s_want_extra_isize =
4194 					le16_to_cpu(es->s_min_extra_isize);
4195 		}
4196 	}
4197 	/* Check if enough inode space is available */
4198 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4199 							sbi->s_inode_size) {
4200 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4201 						       EXT4_GOOD_OLD_INODE_SIZE;
4202 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4203 			 "available");
4204 	}
4205 
4206 	ext4_set_resv_clusters(sb);
4207 
4208 	err = ext4_setup_system_zone(sb);
4209 	if (err) {
4210 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4211 			 "zone (%d)", err);
4212 		goto failed_mount4a;
4213 	}
4214 
4215 	ext4_ext_init(sb);
4216 	err = ext4_mb_init(sb);
4217 	if (err) {
4218 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4219 			 err);
4220 		goto failed_mount5;
4221 	}
4222 
4223 	block = ext4_count_free_clusters(sb);
4224 	ext4_free_blocks_count_set(sbi->s_es,
4225 				   EXT4_C2B(sbi, block));
4226 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4227 				  GFP_KERNEL);
4228 	if (!err) {
4229 		unsigned long freei = ext4_count_free_inodes(sb);
4230 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4231 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4232 					  GFP_KERNEL);
4233 	}
4234 	if (!err)
4235 		err = percpu_counter_init(&sbi->s_dirs_counter,
4236 					  ext4_count_dirs(sb), GFP_KERNEL);
4237 	if (!err)
4238 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4239 					  GFP_KERNEL);
4240 	if (!err)
4241 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4242 
4243 	if (err) {
4244 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4245 		goto failed_mount6;
4246 	}
4247 
4248 	if (ext4_has_feature_flex_bg(sb))
4249 		if (!ext4_fill_flex_info(sb)) {
4250 			ext4_msg(sb, KERN_ERR,
4251 			       "unable to initialize "
4252 			       "flex_bg meta info!");
4253 			goto failed_mount6;
4254 		}
4255 
4256 	err = ext4_register_li_request(sb, first_not_zeroed);
4257 	if (err)
4258 		goto failed_mount6;
4259 
4260 	err = ext4_register_sysfs(sb);
4261 	if (err)
4262 		goto failed_mount7;
4263 
4264 #ifdef CONFIG_QUOTA
4265 	/* Enable quota usage during mount. */
4266 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4267 		err = ext4_enable_quotas(sb);
4268 		if (err)
4269 			goto failed_mount8;
4270 	}
4271 #endif  /* CONFIG_QUOTA */
4272 
4273 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4274 	ext4_orphan_cleanup(sb, es);
4275 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4276 	if (needs_recovery) {
4277 		ext4_msg(sb, KERN_INFO, "recovery complete");
4278 		ext4_mark_recovery_complete(sb, es);
4279 	}
4280 	if (EXT4_SB(sb)->s_journal) {
4281 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4282 			descr = " journalled data mode";
4283 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4284 			descr = " ordered data mode";
4285 		else
4286 			descr = " writeback data mode";
4287 	} else
4288 		descr = "out journal";
4289 
4290 	if (test_opt(sb, DISCARD)) {
4291 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4292 		if (!blk_queue_discard(q))
4293 			ext4_msg(sb, KERN_WARNING,
4294 				 "mounting with \"discard\" option, but "
4295 				 "the device does not support discard");
4296 	}
4297 
4298 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4299 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4300 			 "Opts: %.*s%s%s", descr,
4301 			 (int) sizeof(sbi->s_es->s_mount_opts),
4302 			 sbi->s_es->s_mount_opts,
4303 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4304 
4305 	if (es->s_error_count)
4306 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4307 
4308 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4309 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4310 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4311 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4312 
4313 	kfree(orig_data);
4314 	return 0;
4315 
4316 cantfind_ext4:
4317 	if (!silent)
4318 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4319 	goto failed_mount;
4320 
4321 #ifdef CONFIG_QUOTA
4322 failed_mount8:
4323 	ext4_unregister_sysfs(sb);
4324 #endif
4325 failed_mount7:
4326 	ext4_unregister_li_request(sb);
4327 failed_mount6:
4328 	ext4_mb_release(sb);
4329 	if (sbi->s_flex_groups)
4330 		kvfree(sbi->s_flex_groups);
4331 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4332 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4333 	percpu_counter_destroy(&sbi->s_dirs_counter);
4334 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4335 failed_mount5:
4336 	ext4_ext_release(sb);
4337 	ext4_release_system_zone(sb);
4338 failed_mount4a:
4339 	dput(sb->s_root);
4340 	sb->s_root = NULL;
4341 failed_mount4:
4342 	ext4_msg(sb, KERN_ERR, "mount failed");
4343 	if (EXT4_SB(sb)->rsv_conversion_wq)
4344 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4345 failed_mount_wq:
4346 	if (sbi->s_ea_inode_cache) {
4347 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4348 		sbi->s_ea_inode_cache = NULL;
4349 	}
4350 	if (sbi->s_ea_block_cache) {
4351 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4352 		sbi->s_ea_block_cache = NULL;
4353 	}
4354 	if (sbi->s_journal) {
4355 		jbd2_journal_destroy(sbi->s_journal);
4356 		sbi->s_journal = NULL;
4357 	}
4358 failed_mount3a:
4359 	ext4_es_unregister_shrinker(sbi);
4360 failed_mount3:
4361 	del_timer_sync(&sbi->s_err_report);
4362 	if (sbi->s_mmp_tsk)
4363 		kthread_stop(sbi->s_mmp_tsk);
4364 failed_mount2:
4365 	for (i = 0; i < db_count; i++)
4366 		brelse(sbi->s_group_desc[i]);
4367 	kvfree(sbi->s_group_desc);
4368 failed_mount:
4369 	if (sbi->s_chksum_driver)
4370 		crypto_free_shash(sbi->s_chksum_driver);
4371 #ifdef CONFIG_QUOTA
4372 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4373 		kfree(sbi->s_qf_names[i]);
4374 #endif
4375 	ext4_blkdev_remove(sbi);
4376 	brelse(bh);
4377 out_fail:
4378 	sb->s_fs_info = NULL;
4379 	kfree(sbi->s_blockgroup_lock);
4380 out_free_base:
4381 	kfree(sbi);
4382 	kfree(orig_data);
4383 	return err ? err : ret;
4384 }
4385 
4386 /*
4387  * Setup any per-fs journal parameters now.  We'll do this both on
4388  * initial mount, once the journal has been initialised but before we've
4389  * done any recovery; and again on any subsequent remount.
4390  */
4391 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4392 {
4393 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4394 
4395 	journal->j_commit_interval = sbi->s_commit_interval;
4396 	journal->j_min_batch_time = sbi->s_min_batch_time;
4397 	journal->j_max_batch_time = sbi->s_max_batch_time;
4398 
4399 	write_lock(&journal->j_state_lock);
4400 	if (test_opt(sb, BARRIER))
4401 		journal->j_flags |= JBD2_BARRIER;
4402 	else
4403 		journal->j_flags &= ~JBD2_BARRIER;
4404 	if (test_opt(sb, DATA_ERR_ABORT))
4405 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4406 	else
4407 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4408 	write_unlock(&journal->j_state_lock);
4409 }
4410 
4411 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4412 					     unsigned int journal_inum)
4413 {
4414 	struct inode *journal_inode;
4415 
4416 	/*
4417 	 * Test for the existence of a valid inode on disk.  Bad things
4418 	 * happen if we iget() an unused inode, as the subsequent iput()
4419 	 * will try to delete it.
4420 	 */
4421 	journal_inode = ext4_iget(sb, journal_inum);
4422 	if (IS_ERR(journal_inode)) {
4423 		ext4_msg(sb, KERN_ERR, "no journal found");
4424 		return NULL;
4425 	}
4426 	if (!journal_inode->i_nlink) {
4427 		make_bad_inode(journal_inode);
4428 		iput(journal_inode);
4429 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4430 		return NULL;
4431 	}
4432 
4433 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4434 		  journal_inode, journal_inode->i_size);
4435 	if (!S_ISREG(journal_inode->i_mode)) {
4436 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4437 		iput(journal_inode);
4438 		return NULL;
4439 	}
4440 	return journal_inode;
4441 }
4442 
4443 static journal_t *ext4_get_journal(struct super_block *sb,
4444 				   unsigned int journal_inum)
4445 {
4446 	struct inode *journal_inode;
4447 	journal_t *journal;
4448 
4449 	BUG_ON(!ext4_has_feature_journal(sb));
4450 
4451 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4452 	if (!journal_inode)
4453 		return NULL;
4454 
4455 	journal = jbd2_journal_init_inode(journal_inode);
4456 	if (!journal) {
4457 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4458 		iput(journal_inode);
4459 		return NULL;
4460 	}
4461 	journal->j_private = sb;
4462 	ext4_init_journal_params(sb, journal);
4463 	return journal;
4464 }
4465 
4466 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4467 				       dev_t j_dev)
4468 {
4469 	struct buffer_head *bh;
4470 	journal_t *journal;
4471 	ext4_fsblk_t start;
4472 	ext4_fsblk_t len;
4473 	int hblock, blocksize;
4474 	ext4_fsblk_t sb_block;
4475 	unsigned long offset;
4476 	struct ext4_super_block *es;
4477 	struct block_device *bdev;
4478 
4479 	BUG_ON(!ext4_has_feature_journal(sb));
4480 
4481 	bdev = ext4_blkdev_get(j_dev, sb);
4482 	if (bdev == NULL)
4483 		return NULL;
4484 
4485 	blocksize = sb->s_blocksize;
4486 	hblock = bdev_logical_block_size(bdev);
4487 	if (blocksize < hblock) {
4488 		ext4_msg(sb, KERN_ERR,
4489 			"blocksize too small for journal device");
4490 		goto out_bdev;
4491 	}
4492 
4493 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4494 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4495 	set_blocksize(bdev, blocksize);
4496 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4497 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4498 		       "external journal");
4499 		goto out_bdev;
4500 	}
4501 
4502 	es = (struct ext4_super_block *) (bh->b_data + offset);
4503 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4504 	    !(le32_to_cpu(es->s_feature_incompat) &
4505 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4506 		ext4_msg(sb, KERN_ERR, "external journal has "
4507 					"bad superblock");
4508 		brelse(bh);
4509 		goto out_bdev;
4510 	}
4511 
4512 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4513 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4514 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4515 		ext4_msg(sb, KERN_ERR, "external journal has "
4516 				       "corrupt superblock");
4517 		brelse(bh);
4518 		goto out_bdev;
4519 	}
4520 
4521 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4522 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4523 		brelse(bh);
4524 		goto out_bdev;
4525 	}
4526 
4527 	len = ext4_blocks_count(es);
4528 	start = sb_block + 1;
4529 	brelse(bh);	/* we're done with the superblock */
4530 
4531 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4532 					start, len, blocksize);
4533 	if (!journal) {
4534 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4535 		goto out_bdev;
4536 	}
4537 	journal->j_private = sb;
4538 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4539 	wait_on_buffer(journal->j_sb_buffer);
4540 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4541 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4542 		goto out_journal;
4543 	}
4544 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4545 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4546 					"user (unsupported) - %d",
4547 			be32_to_cpu(journal->j_superblock->s_nr_users));
4548 		goto out_journal;
4549 	}
4550 	EXT4_SB(sb)->journal_bdev = bdev;
4551 	ext4_init_journal_params(sb, journal);
4552 	return journal;
4553 
4554 out_journal:
4555 	jbd2_journal_destroy(journal);
4556 out_bdev:
4557 	ext4_blkdev_put(bdev);
4558 	return NULL;
4559 }
4560 
4561 static int ext4_load_journal(struct super_block *sb,
4562 			     struct ext4_super_block *es,
4563 			     unsigned long journal_devnum)
4564 {
4565 	journal_t *journal;
4566 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4567 	dev_t journal_dev;
4568 	int err = 0;
4569 	int really_read_only;
4570 
4571 	BUG_ON(!ext4_has_feature_journal(sb));
4572 
4573 	if (journal_devnum &&
4574 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4575 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4576 			"numbers have changed");
4577 		journal_dev = new_decode_dev(journal_devnum);
4578 	} else
4579 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4580 
4581 	really_read_only = bdev_read_only(sb->s_bdev);
4582 
4583 	/*
4584 	 * Are we loading a blank journal or performing recovery after a
4585 	 * crash?  For recovery, we need to check in advance whether we
4586 	 * can get read-write access to the device.
4587 	 */
4588 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4589 		if (sb->s_flags & MS_RDONLY) {
4590 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4591 					"required on readonly filesystem");
4592 			if (really_read_only) {
4593 				ext4_msg(sb, KERN_ERR, "write access "
4594 					"unavailable, cannot proceed");
4595 				return -EROFS;
4596 			}
4597 			ext4_msg(sb, KERN_INFO, "write access will "
4598 			       "be enabled during recovery");
4599 		}
4600 	}
4601 
4602 	if (journal_inum && journal_dev) {
4603 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4604 		       "and inode journals!");
4605 		return -EINVAL;
4606 	}
4607 
4608 	if (journal_inum) {
4609 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4610 			return -EINVAL;
4611 	} else {
4612 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4613 			return -EINVAL;
4614 	}
4615 
4616 	if (!(journal->j_flags & JBD2_BARRIER))
4617 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4618 
4619 	if (!ext4_has_feature_journal_needs_recovery(sb))
4620 		err = jbd2_journal_wipe(journal, !really_read_only);
4621 	if (!err) {
4622 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4623 		if (save)
4624 			memcpy(save, ((char *) es) +
4625 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4626 		err = jbd2_journal_load(journal);
4627 		if (save)
4628 			memcpy(((char *) es) + EXT4_S_ERR_START,
4629 			       save, EXT4_S_ERR_LEN);
4630 		kfree(save);
4631 	}
4632 
4633 	if (err) {
4634 		ext4_msg(sb, KERN_ERR, "error loading journal");
4635 		jbd2_journal_destroy(journal);
4636 		return err;
4637 	}
4638 
4639 	EXT4_SB(sb)->s_journal = journal;
4640 	ext4_clear_journal_err(sb, es);
4641 
4642 	if (!really_read_only && journal_devnum &&
4643 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4644 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4645 
4646 		/* Make sure we flush the recovery flag to disk. */
4647 		ext4_commit_super(sb, 1);
4648 	}
4649 
4650 	return 0;
4651 }
4652 
4653 static int ext4_commit_super(struct super_block *sb, int sync)
4654 {
4655 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4656 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4657 	int error = 0;
4658 
4659 	if (!sbh || block_device_ejected(sb))
4660 		return error;
4661 	/*
4662 	 * If the file system is mounted read-only, don't update the
4663 	 * superblock write time.  This avoids updating the superblock
4664 	 * write time when we are mounting the root file system
4665 	 * read/only but we need to replay the journal; at that point,
4666 	 * for people who are east of GMT and who make their clock
4667 	 * tick in localtime for Windows bug-for-bug compatibility,
4668 	 * the clock is set in the future, and this will cause e2fsck
4669 	 * to complain and force a full file system check.
4670 	 */
4671 	if (!(sb->s_flags & MS_RDONLY))
4672 		es->s_wtime = cpu_to_le32(get_seconds());
4673 	if (sb->s_bdev->bd_part)
4674 		es->s_kbytes_written =
4675 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4676 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4677 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4678 	else
4679 		es->s_kbytes_written =
4680 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4681 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4682 		ext4_free_blocks_count_set(es,
4683 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4684 				&EXT4_SB(sb)->s_freeclusters_counter)));
4685 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4686 		es->s_free_inodes_count =
4687 			cpu_to_le32(percpu_counter_sum_positive(
4688 				&EXT4_SB(sb)->s_freeinodes_counter));
4689 	BUFFER_TRACE(sbh, "marking dirty");
4690 	ext4_superblock_csum_set(sb);
4691 	if (sync)
4692 		lock_buffer(sbh);
4693 	if (buffer_write_io_error(sbh)) {
4694 		/*
4695 		 * Oh, dear.  A previous attempt to write the
4696 		 * superblock failed.  This could happen because the
4697 		 * USB device was yanked out.  Or it could happen to
4698 		 * be a transient write error and maybe the block will
4699 		 * be remapped.  Nothing we can do but to retry the
4700 		 * write and hope for the best.
4701 		 */
4702 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4703 		       "superblock detected");
4704 		clear_buffer_write_io_error(sbh);
4705 		set_buffer_uptodate(sbh);
4706 	}
4707 	mark_buffer_dirty(sbh);
4708 	if (sync) {
4709 		unlock_buffer(sbh);
4710 		error = __sync_dirty_buffer(sbh,
4711 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4712 		if (error)
4713 			return error;
4714 
4715 		error = buffer_write_io_error(sbh);
4716 		if (error) {
4717 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4718 			       "superblock");
4719 			clear_buffer_write_io_error(sbh);
4720 			set_buffer_uptodate(sbh);
4721 		}
4722 	}
4723 	return error;
4724 }
4725 
4726 /*
4727  * Have we just finished recovery?  If so, and if we are mounting (or
4728  * remounting) the filesystem readonly, then we will end up with a
4729  * consistent fs on disk.  Record that fact.
4730  */
4731 static void ext4_mark_recovery_complete(struct super_block *sb,
4732 					struct ext4_super_block *es)
4733 {
4734 	journal_t *journal = EXT4_SB(sb)->s_journal;
4735 
4736 	if (!ext4_has_feature_journal(sb)) {
4737 		BUG_ON(journal != NULL);
4738 		return;
4739 	}
4740 	jbd2_journal_lock_updates(journal);
4741 	if (jbd2_journal_flush(journal) < 0)
4742 		goto out;
4743 
4744 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4745 	    sb->s_flags & MS_RDONLY) {
4746 		ext4_clear_feature_journal_needs_recovery(sb);
4747 		ext4_commit_super(sb, 1);
4748 	}
4749 
4750 out:
4751 	jbd2_journal_unlock_updates(journal);
4752 }
4753 
4754 /*
4755  * If we are mounting (or read-write remounting) a filesystem whose journal
4756  * has recorded an error from a previous lifetime, move that error to the
4757  * main filesystem now.
4758  */
4759 static void ext4_clear_journal_err(struct super_block *sb,
4760 				   struct ext4_super_block *es)
4761 {
4762 	journal_t *journal;
4763 	int j_errno;
4764 	const char *errstr;
4765 
4766 	BUG_ON(!ext4_has_feature_journal(sb));
4767 
4768 	journal = EXT4_SB(sb)->s_journal;
4769 
4770 	/*
4771 	 * Now check for any error status which may have been recorded in the
4772 	 * journal by a prior ext4_error() or ext4_abort()
4773 	 */
4774 
4775 	j_errno = jbd2_journal_errno(journal);
4776 	if (j_errno) {
4777 		char nbuf[16];
4778 
4779 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4780 		ext4_warning(sb, "Filesystem error recorded "
4781 			     "from previous mount: %s", errstr);
4782 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4783 
4784 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4785 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4786 		ext4_commit_super(sb, 1);
4787 
4788 		jbd2_journal_clear_err(journal);
4789 		jbd2_journal_update_sb_errno(journal);
4790 	}
4791 }
4792 
4793 /*
4794  * Force the running and committing transactions to commit,
4795  * and wait on the commit.
4796  */
4797 int ext4_force_commit(struct super_block *sb)
4798 {
4799 	journal_t *journal;
4800 
4801 	if (sb->s_flags & MS_RDONLY)
4802 		return 0;
4803 
4804 	journal = EXT4_SB(sb)->s_journal;
4805 	return ext4_journal_force_commit(journal);
4806 }
4807 
4808 static int ext4_sync_fs(struct super_block *sb, int wait)
4809 {
4810 	int ret = 0;
4811 	tid_t target;
4812 	bool needs_barrier = false;
4813 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4814 
4815 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4816 		return 0;
4817 
4818 	trace_ext4_sync_fs(sb, wait);
4819 	flush_workqueue(sbi->rsv_conversion_wq);
4820 	/*
4821 	 * Writeback quota in non-journalled quota case - journalled quota has
4822 	 * no dirty dquots
4823 	 */
4824 	dquot_writeback_dquots(sb, -1);
4825 	/*
4826 	 * Data writeback is possible w/o journal transaction, so barrier must
4827 	 * being sent at the end of the function. But we can skip it if
4828 	 * transaction_commit will do it for us.
4829 	 */
4830 	if (sbi->s_journal) {
4831 		target = jbd2_get_latest_transaction(sbi->s_journal);
4832 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4833 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4834 			needs_barrier = true;
4835 
4836 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4837 			if (wait)
4838 				ret = jbd2_log_wait_commit(sbi->s_journal,
4839 							   target);
4840 		}
4841 	} else if (wait && test_opt(sb, BARRIER))
4842 		needs_barrier = true;
4843 	if (needs_barrier) {
4844 		int err;
4845 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4846 		if (!ret)
4847 			ret = err;
4848 	}
4849 
4850 	return ret;
4851 }
4852 
4853 /*
4854  * LVM calls this function before a (read-only) snapshot is created.  This
4855  * gives us a chance to flush the journal completely and mark the fs clean.
4856  *
4857  * Note that only this function cannot bring a filesystem to be in a clean
4858  * state independently. It relies on upper layer to stop all data & metadata
4859  * modifications.
4860  */
4861 static int ext4_freeze(struct super_block *sb)
4862 {
4863 	int error = 0;
4864 	journal_t *journal;
4865 
4866 	if (sb->s_flags & MS_RDONLY)
4867 		return 0;
4868 
4869 	journal = EXT4_SB(sb)->s_journal;
4870 
4871 	if (journal) {
4872 		/* Now we set up the journal barrier. */
4873 		jbd2_journal_lock_updates(journal);
4874 
4875 		/*
4876 		 * Don't clear the needs_recovery flag if we failed to
4877 		 * flush the journal.
4878 		 */
4879 		error = jbd2_journal_flush(journal);
4880 		if (error < 0)
4881 			goto out;
4882 
4883 		/* Journal blocked and flushed, clear needs_recovery flag. */
4884 		ext4_clear_feature_journal_needs_recovery(sb);
4885 	}
4886 
4887 	error = ext4_commit_super(sb, 1);
4888 out:
4889 	if (journal)
4890 		/* we rely on upper layer to stop further updates */
4891 		jbd2_journal_unlock_updates(journal);
4892 	return error;
4893 }
4894 
4895 /*
4896  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4897  * flag here, even though the filesystem is not technically dirty yet.
4898  */
4899 static int ext4_unfreeze(struct super_block *sb)
4900 {
4901 	if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4902 		return 0;
4903 
4904 	if (EXT4_SB(sb)->s_journal) {
4905 		/* Reset the needs_recovery flag before the fs is unlocked. */
4906 		ext4_set_feature_journal_needs_recovery(sb);
4907 	}
4908 
4909 	ext4_commit_super(sb, 1);
4910 	return 0;
4911 }
4912 
4913 /*
4914  * Structure to save mount options for ext4_remount's benefit
4915  */
4916 struct ext4_mount_options {
4917 	unsigned long s_mount_opt;
4918 	unsigned long s_mount_opt2;
4919 	kuid_t s_resuid;
4920 	kgid_t s_resgid;
4921 	unsigned long s_commit_interval;
4922 	u32 s_min_batch_time, s_max_batch_time;
4923 #ifdef CONFIG_QUOTA
4924 	int s_jquota_fmt;
4925 	char *s_qf_names[EXT4_MAXQUOTAS];
4926 #endif
4927 };
4928 
4929 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4930 {
4931 	struct ext4_super_block *es;
4932 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4933 	unsigned long old_sb_flags;
4934 	struct ext4_mount_options old_opts;
4935 	int enable_quota = 0;
4936 	ext4_group_t g;
4937 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4938 	int err = 0;
4939 #ifdef CONFIG_QUOTA
4940 	int i, j;
4941 #endif
4942 	char *orig_data = kstrdup(data, GFP_KERNEL);
4943 
4944 	/* Store the original options */
4945 	old_sb_flags = sb->s_flags;
4946 	old_opts.s_mount_opt = sbi->s_mount_opt;
4947 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4948 	old_opts.s_resuid = sbi->s_resuid;
4949 	old_opts.s_resgid = sbi->s_resgid;
4950 	old_opts.s_commit_interval = sbi->s_commit_interval;
4951 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4952 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4953 #ifdef CONFIG_QUOTA
4954 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4955 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4956 		if (sbi->s_qf_names[i]) {
4957 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4958 							 GFP_KERNEL);
4959 			if (!old_opts.s_qf_names[i]) {
4960 				for (j = 0; j < i; j++)
4961 					kfree(old_opts.s_qf_names[j]);
4962 				kfree(orig_data);
4963 				return -ENOMEM;
4964 			}
4965 		} else
4966 			old_opts.s_qf_names[i] = NULL;
4967 #endif
4968 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4969 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4970 
4971 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4972 		err = -EINVAL;
4973 		goto restore_opts;
4974 	}
4975 
4976 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4977 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4978 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4979 			 "during remount not supported; ignoring");
4980 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4981 	}
4982 
4983 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4984 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4985 			ext4_msg(sb, KERN_ERR, "can't mount with "
4986 				 "both data=journal and delalloc");
4987 			err = -EINVAL;
4988 			goto restore_opts;
4989 		}
4990 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4991 			ext4_msg(sb, KERN_ERR, "can't mount with "
4992 				 "both data=journal and dioread_nolock");
4993 			err = -EINVAL;
4994 			goto restore_opts;
4995 		}
4996 		if (test_opt(sb, DAX)) {
4997 			ext4_msg(sb, KERN_ERR, "can't mount with "
4998 				 "both data=journal and dax");
4999 			err = -EINVAL;
5000 			goto restore_opts;
5001 		}
5002 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5003 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5004 			ext4_msg(sb, KERN_ERR, "can't mount with "
5005 				"journal_async_commit in data=ordered mode");
5006 			err = -EINVAL;
5007 			goto restore_opts;
5008 		}
5009 	}
5010 
5011 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5012 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5013 		err = -EINVAL;
5014 		goto restore_opts;
5015 	}
5016 
5017 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5018 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5019 			"dax flag with busy inodes while remounting");
5020 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5021 	}
5022 
5023 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5024 		ext4_abort(sb, "Abort forced by user");
5025 
5026 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5027 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5028 
5029 	es = sbi->s_es;
5030 
5031 	if (sbi->s_journal) {
5032 		ext4_init_journal_params(sb, sbi->s_journal);
5033 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5034 	}
5035 
5036 	if (*flags & MS_LAZYTIME)
5037 		sb->s_flags |= MS_LAZYTIME;
5038 
5039 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
5040 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5041 			err = -EROFS;
5042 			goto restore_opts;
5043 		}
5044 
5045 		if (*flags & MS_RDONLY) {
5046 			err = sync_filesystem(sb);
5047 			if (err < 0)
5048 				goto restore_opts;
5049 			err = dquot_suspend(sb, -1);
5050 			if (err < 0)
5051 				goto restore_opts;
5052 
5053 			/*
5054 			 * First of all, the unconditional stuff we have to do
5055 			 * to disable replay of the journal when we next remount
5056 			 */
5057 			sb->s_flags |= MS_RDONLY;
5058 
5059 			/*
5060 			 * OK, test if we are remounting a valid rw partition
5061 			 * readonly, and if so set the rdonly flag and then
5062 			 * mark the partition as valid again.
5063 			 */
5064 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5065 			    (sbi->s_mount_state & EXT4_VALID_FS))
5066 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5067 
5068 			if (sbi->s_journal)
5069 				ext4_mark_recovery_complete(sb, es);
5070 		} else {
5071 			/* Make sure we can mount this feature set readwrite */
5072 			if (ext4_has_feature_readonly(sb) ||
5073 			    !ext4_feature_set_ok(sb, 0)) {
5074 				err = -EROFS;
5075 				goto restore_opts;
5076 			}
5077 			/*
5078 			 * Make sure the group descriptor checksums
5079 			 * are sane.  If they aren't, refuse to remount r/w.
5080 			 */
5081 			for (g = 0; g < sbi->s_groups_count; g++) {
5082 				struct ext4_group_desc *gdp =
5083 					ext4_get_group_desc(sb, g, NULL);
5084 
5085 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5086 					ext4_msg(sb, KERN_ERR,
5087 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5088 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5089 					       le16_to_cpu(gdp->bg_checksum));
5090 					err = -EFSBADCRC;
5091 					goto restore_opts;
5092 				}
5093 			}
5094 
5095 			/*
5096 			 * If we have an unprocessed orphan list hanging
5097 			 * around from a previously readonly bdev mount,
5098 			 * require a full umount/remount for now.
5099 			 */
5100 			if (es->s_last_orphan) {
5101 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5102 				       "remount RDWR because of unprocessed "
5103 				       "orphan inode list.  Please "
5104 				       "umount/remount instead");
5105 				err = -EINVAL;
5106 				goto restore_opts;
5107 			}
5108 
5109 			/*
5110 			 * Mounting a RDONLY partition read-write, so reread
5111 			 * and store the current valid flag.  (It may have
5112 			 * been changed by e2fsck since we originally mounted
5113 			 * the partition.)
5114 			 */
5115 			if (sbi->s_journal)
5116 				ext4_clear_journal_err(sb, es);
5117 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5118 			if (!ext4_setup_super(sb, es, 0))
5119 				sb->s_flags &= ~MS_RDONLY;
5120 			if (ext4_has_feature_mmp(sb))
5121 				if (ext4_multi_mount_protect(sb,
5122 						le64_to_cpu(es->s_mmp_block))) {
5123 					err = -EROFS;
5124 					goto restore_opts;
5125 				}
5126 			enable_quota = 1;
5127 		}
5128 	}
5129 
5130 	/*
5131 	 * Reinitialize lazy itable initialization thread based on
5132 	 * current settings
5133 	 */
5134 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5135 		ext4_unregister_li_request(sb);
5136 	else {
5137 		ext4_group_t first_not_zeroed;
5138 		first_not_zeroed = ext4_has_uninit_itable(sb);
5139 		ext4_register_li_request(sb, first_not_zeroed);
5140 	}
5141 
5142 	ext4_setup_system_zone(sb);
5143 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5144 		ext4_commit_super(sb, 1);
5145 
5146 #ifdef CONFIG_QUOTA
5147 	/* Release old quota file names */
5148 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5149 		kfree(old_opts.s_qf_names[i]);
5150 	if (enable_quota) {
5151 		if (sb_any_quota_suspended(sb))
5152 			dquot_resume(sb, -1);
5153 		else if (ext4_has_feature_quota(sb)) {
5154 			err = ext4_enable_quotas(sb);
5155 			if (err)
5156 				goto restore_opts;
5157 		}
5158 	}
5159 #endif
5160 
5161 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5162 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5163 	kfree(orig_data);
5164 	return 0;
5165 
5166 restore_opts:
5167 	sb->s_flags = old_sb_flags;
5168 	sbi->s_mount_opt = old_opts.s_mount_opt;
5169 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5170 	sbi->s_resuid = old_opts.s_resuid;
5171 	sbi->s_resgid = old_opts.s_resgid;
5172 	sbi->s_commit_interval = old_opts.s_commit_interval;
5173 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5174 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5175 #ifdef CONFIG_QUOTA
5176 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5177 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5178 		kfree(sbi->s_qf_names[i]);
5179 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5180 	}
5181 #endif
5182 	kfree(orig_data);
5183 	return err;
5184 }
5185 
5186 #ifdef CONFIG_QUOTA
5187 static int ext4_statfs_project(struct super_block *sb,
5188 			       kprojid_t projid, struct kstatfs *buf)
5189 {
5190 	struct kqid qid;
5191 	struct dquot *dquot;
5192 	u64 limit;
5193 	u64 curblock;
5194 
5195 	qid = make_kqid_projid(projid);
5196 	dquot = dqget(sb, qid);
5197 	if (IS_ERR(dquot))
5198 		return PTR_ERR(dquot);
5199 	spin_lock(&dq_data_lock);
5200 
5201 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5202 		 dquot->dq_dqb.dqb_bsoftlimit :
5203 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5204 	if (limit && buf->f_blocks > limit) {
5205 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5206 		buf->f_blocks = limit;
5207 		buf->f_bfree = buf->f_bavail =
5208 			(buf->f_blocks > curblock) ?
5209 			 (buf->f_blocks - curblock) : 0;
5210 	}
5211 
5212 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5213 		dquot->dq_dqb.dqb_isoftlimit :
5214 		dquot->dq_dqb.dqb_ihardlimit;
5215 	if (limit && buf->f_files > limit) {
5216 		buf->f_files = limit;
5217 		buf->f_ffree =
5218 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5219 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5220 	}
5221 
5222 	spin_unlock(&dq_data_lock);
5223 	dqput(dquot);
5224 	return 0;
5225 }
5226 #endif
5227 
5228 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5229 {
5230 	struct super_block *sb = dentry->d_sb;
5231 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5232 	struct ext4_super_block *es = sbi->s_es;
5233 	ext4_fsblk_t overhead = 0, resv_blocks;
5234 	u64 fsid;
5235 	s64 bfree;
5236 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5237 
5238 	if (!test_opt(sb, MINIX_DF))
5239 		overhead = sbi->s_overhead;
5240 
5241 	buf->f_type = EXT4_SUPER_MAGIC;
5242 	buf->f_bsize = sb->s_blocksize;
5243 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5244 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5245 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5246 	/* prevent underflow in case that few free space is available */
5247 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5248 	buf->f_bavail = buf->f_bfree -
5249 			(ext4_r_blocks_count(es) + resv_blocks);
5250 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5251 		buf->f_bavail = 0;
5252 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5253 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5254 	buf->f_namelen = EXT4_NAME_LEN;
5255 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5256 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5257 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5258 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5259 
5260 #ifdef CONFIG_QUOTA
5261 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5262 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5263 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5264 #endif
5265 	return 0;
5266 }
5267 
5268 /* Helper function for writing quotas on sync - we need to start transaction
5269  * before quota file is locked for write. Otherwise the are possible deadlocks:
5270  * Process 1                         Process 2
5271  * ext4_create()                     quota_sync()
5272  *   jbd2_journal_start()                  write_dquot()
5273  *   dquot_initialize()                         down(dqio_mutex)
5274  *     down(dqio_mutex)                    jbd2_journal_start()
5275  *
5276  */
5277 
5278 #ifdef CONFIG_QUOTA
5279 
5280 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5281 {
5282 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5283 }
5284 
5285 static int ext4_write_dquot(struct dquot *dquot)
5286 {
5287 	int ret, err;
5288 	handle_t *handle;
5289 	struct inode *inode;
5290 
5291 	inode = dquot_to_inode(dquot);
5292 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5293 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5294 	if (IS_ERR(handle))
5295 		return PTR_ERR(handle);
5296 	ret = dquot_commit(dquot);
5297 	err = ext4_journal_stop(handle);
5298 	if (!ret)
5299 		ret = err;
5300 	return ret;
5301 }
5302 
5303 static int ext4_acquire_dquot(struct dquot *dquot)
5304 {
5305 	int ret, err;
5306 	handle_t *handle;
5307 
5308 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5309 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5310 	if (IS_ERR(handle))
5311 		return PTR_ERR(handle);
5312 	ret = dquot_acquire(dquot);
5313 	err = ext4_journal_stop(handle);
5314 	if (!ret)
5315 		ret = err;
5316 	return ret;
5317 }
5318 
5319 static int ext4_release_dquot(struct dquot *dquot)
5320 {
5321 	int ret, err;
5322 	handle_t *handle;
5323 
5324 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5325 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5326 	if (IS_ERR(handle)) {
5327 		/* Release dquot anyway to avoid endless cycle in dqput() */
5328 		dquot_release(dquot);
5329 		return PTR_ERR(handle);
5330 	}
5331 	ret = dquot_release(dquot);
5332 	err = ext4_journal_stop(handle);
5333 	if (!ret)
5334 		ret = err;
5335 	return ret;
5336 }
5337 
5338 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5339 {
5340 	struct super_block *sb = dquot->dq_sb;
5341 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5342 
5343 	/* Are we journaling quotas? */
5344 	if (ext4_has_feature_quota(sb) ||
5345 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5346 		dquot_mark_dquot_dirty(dquot);
5347 		return ext4_write_dquot(dquot);
5348 	} else {
5349 		return dquot_mark_dquot_dirty(dquot);
5350 	}
5351 }
5352 
5353 static int ext4_write_info(struct super_block *sb, int type)
5354 {
5355 	int ret, err;
5356 	handle_t *handle;
5357 
5358 	/* Data block + inode block */
5359 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5360 	if (IS_ERR(handle))
5361 		return PTR_ERR(handle);
5362 	ret = dquot_commit_info(sb, type);
5363 	err = ext4_journal_stop(handle);
5364 	if (!ret)
5365 		ret = err;
5366 	return ret;
5367 }
5368 
5369 /*
5370  * Turn on quotas during mount time - we need to find
5371  * the quota file and such...
5372  */
5373 static int ext4_quota_on_mount(struct super_block *sb, int type)
5374 {
5375 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5376 					EXT4_SB(sb)->s_jquota_fmt, type);
5377 }
5378 
5379 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5380 {
5381 	struct ext4_inode_info *ei = EXT4_I(inode);
5382 
5383 	/* The first argument of lockdep_set_subclass has to be
5384 	 * *exactly* the same as the argument to init_rwsem() --- in
5385 	 * this case, in init_once() --- or lockdep gets unhappy
5386 	 * because the name of the lock is set using the
5387 	 * stringification of the argument to init_rwsem().
5388 	 */
5389 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5390 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5391 }
5392 
5393 /*
5394  * Standard function to be called on quota_on
5395  */
5396 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5397 			 const struct path *path)
5398 {
5399 	int err;
5400 
5401 	if (!test_opt(sb, QUOTA))
5402 		return -EINVAL;
5403 
5404 	/* Quotafile not on the same filesystem? */
5405 	if (path->dentry->d_sb != sb)
5406 		return -EXDEV;
5407 	/* Journaling quota? */
5408 	if (EXT4_SB(sb)->s_qf_names[type]) {
5409 		/* Quotafile not in fs root? */
5410 		if (path->dentry->d_parent != sb->s_root)
5411 			ext4_msg(sb, KERN_WARNING,
5412 				"Quota file not on filesystem root. "
5413 				"Journaled quota will not work");
5414 	}
5415 
5416 	/*
5417 	 * When we journal data on quota file, we have to flush journal to see
5418 	 * all updates to the file when we bypass pagecache...
5419 	 */
5420 	if (EXT4_SB(sb)->s_journal &&
5421 	    ext4_should_journal_data(d_inode(path->dentry))) {
5422 		/*
5423 		 * We don't need to lock updates but journal_flush() could
5424 		 * otherwise be livelocked...
5425 		 */
5426 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5427 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5428 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5429 		if (err)
5430 			return err;
5431 	}
5432 
5433 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5434 	err = dquot_quota_on(sb, type, format_id, path);
5435 	if (err) {
5436 		lockdep_set_quota_inode(path->dentry->d_inode,
5437 					     I_DATA_SEM_NORMAL);
5438 	} else {
5439 		struct inode *inode = d_inode(path->dentry);
5440 		handle_t *handle;
5441 
5442 		/*
5443 		 * Set inode flags to prevent userspace from messing with quota
5444 		 * files. If this fails, we return success anyway since quotas
5445 		 * are already enabled and this is not a hard failure.
5446 		 */
5447 		inode_lock(inode);
5448 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5449 		if (IS_ERR(handle))
5450 			goto unlock_inode;
5451 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5452 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5453 				S_NOATIME | S_IMMUTABLE);
5454 		ext4_mark_inode_dirty(handle, inode);
5455 		ext4_journal_stop(handle);
5456 	unlock_inode:
5457 		inode_unlock(inode);
5458 	}
5459 	return err;
5460 }
5461 
5462 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5463 			     unsigned int flags)
5464 {
5465 	int err;
5466 	struct inode *qf_inode;
5467 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5468 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5469 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5470 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5471 	};
5472 
5473 	BUG_ON(!ext4_has_feature_quota(sb));
5474 
5475 	if (!qf_inums[type])
5476 		return -EPERM;
5477 
5478 	qf_inode = ext4_iget(sb, qf_inums[type]);
5479 	if (IS_ERR(qf_inode)) {
5480 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5481 		return PTR_ERR(qf_inode);
5482 	}
5483 
5484 	/* Don't account quota for quota files to avoid recursion */
5485 	qf_inode->i_flags |= S_NOQUOTA;
5486 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5487 	err = dquot_enable(qf_inode, type, format_id, flags);
5488 	iput(qf_inode);
5489 	if (err)
5490 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5491 
5492 	return err;
5493 }
5494 
5495 /* Enable usage tracking for all quota types. */
5496 static int ext4_enable_quotas(struct super_block *sb)
5497 {
5498 	int type, err = 0;
5499 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5500 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5501 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5502 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5503 	};
5504 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5505 		test_opt(sb, USRQUOTA),
5506 		test_opt(sb, GRPQUOTA),
5507 		test_opt(sb, PRJQUOTA),
5508 	};
5509 
5510 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5511 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5512 		if (qf_inums[type]) {
5513 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5514 				DQUOT_USAGE_ENABLED |
5515 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5516 			if (err) {
5517 				ext4_warning(sb,
5518 					"Failed to enable quota tracking "
5519 					"(type=%d, err=%d). Please run "
5520 					"e2fsck to fix.", type, err);
5521 				return err;
5522 			}
5523 		}
5524 	}
5525 	return 0;
5526 }
5527 
5528 static int ext4_quota_off(struct super_block *sb, int type)
5529 {
5530 	struct inode *inode = sb_dqopt(sb)->files[type];
5531 	handle_t *handle;
5532 	int err;
5533 
5534 	/* Force all delayed allocation blocks to be allocated.
5535 	 * Caller already holds s_umount sem */
5536 	if (test_opt(sb, DELALLOC))
5537 		sync_filesystem(sb);
5538 
5539 	if (!inode || !igrab(inode))
5540 		goto out;
5541 
5542 	err = dquot_quota_off(sb, type);
5543 	if (err || ext4_has_feature_quota(sb))
5544 		goto out_put;
5545 
5546 	inode_lock(inode);
5547 	/*
5548 	 * Update modification times of quota files when userspace can
5549 	 * start looking at them. If we fail, we return success anyway since
5550 	 * this is not a hard failure and quotas are already disabled.
5551 	 */
5552 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5553 	if (IS_ERR(handle))
5554 		goto out_unlock;
5555 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5556 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5557 	inode->i_mtime = inode->i_ctime = current_time(inode);
5558 	ext4_mark_inode_dirty(handle, inode);
5559 	ext4_journal_stop(handle);
5560 out_unlock:
5561 	inode_unlock(inode);
5562 out_put:
5563 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5564 	iput(inode);
5565 	return err;
5566 out:
5567 	return dquot_quota_off(sb, type);
5568 }
5569 
5570 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5571  * acquiring the locks... As quota files are never truncated and quota code
5572  * itself serializes the operations (and no one else should touch the files)
5573  * we don't have to be afraid of races */
5574 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5575 			       size_t len, loff_t off)
5576 {
5577 	struct inode *inode = sb_dqopt(sb)->files[type];
5578 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5579 	int offset = off & (sb->s_blocksize - 1);
5580 	int tocopy;
5581 	size_t toread;
5582 	struct buffer_head *bh;
5583 	loff_t i_size = i_size_read(inode);
5584 
5585 	if (off > i_size)
5586 		return 0;
5587 	if (off+len > i_size)
5588 		len = i_size-off;
5589 	toread = len;
5590 	while (toread > 0) {
5591 		tocopy = sb->s_blocksize - offset < toread ?
5592 				sb->s_blocksize - offset : toread;
5593 		bh = ext4_bread(NULL, inode, blk, 0);
5594 		if (IS_ERR(bh))
5595 			return PTR_ERR(bh);
5596 		if (!bh)	/* A hole? */
5597 			memset(data, 0, tocopy);
5598 		else
5599 			memcpy(data, bh->b_data+offset, tocopy);
5600 		brelse(bh);
5601 		offset = 0;
5602 		toread -= tocopy;
5603 		data += tocopy;
5604 		blk++;
5605 	}
5606 	return len;
5607 }
5608 
5609 /* Write to quotafile (we know the transaction is already started and has
5610  * enough credits) */
5611 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5612 				const char *data, size_t len, loff_t off)
5613 {
5614 	struct inode *inode = sb_dqopt(sb)->files[type];
5615 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5616 	int err, offset = off & (sb->s_blocksize - 1);
5617 	int retries = 0;
5618 	struct buffer_head *bh;
5619 	handle_t *handle = journal_current_handle();
5620 
5621 	if (EXT4_SB(sb)->s_journal && !handle) {
5622 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5623 			" cancelled because transaction is not started",
5624 			(unsigned long long)off, (unsigned long long)len);
5625 		return -EIO;
5626 	}
5627 	/*
5628 	 * Since we account only one data block in transaction credits,
5629 	 * then it is impossible to cross a block boundary.
5630 	 */
5631 	if (sb->s_blocksize - offset < len) {
5632 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5633 			" cancelled because not block aligned",
5634 			(unsigned long long)off, (unsigned long long)len);
5635 		return -EIO;
5636 	}
5637 
5638 	do {
5639 		bh = ext4_bread(handle, inode, blk,
5640 				EXT4_GET_BLOCKS_CREATE |
5641 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5642 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5643 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5644 	if (IS_ERR(bh))
5645 		return PTR_ERR(bh);
5646 	if (!bh)
5647 		goto out;
5648 	BUFFER_TRACE(bh, "get write access");
5649 	err = ext4_journal_get_write_access(handle, bh);
5650 	if (err) {
5651 		brelse(bh);
5652 		return err;
5653 	}
5654 	lock_buffer(bh);
5655 	memcpy(bh->b_data+offset, data, len);
5656 	flush_dcache_page(bh->b_page);
5657 	unlock_buffer(bh);
5658 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5659 	brelse(bh);
5660 out:
5661 	if (inode->i_size < off + len) {
5662 		i_size_write(inode, off + len);
5663 		EXT4_I(inode)->i_disksize = inode->i_size;
5664 		ext4_mark_inode_dirty(handle, inode);
5665 	}
5666 	return len;
5667 }
5668 
5669 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5670 {
5671 	const struct quota_format_ops	*ops;
5672 
5673 	if (!sb_has_quota_loaded(sb, qid->type))
5674 		return -ESRCH;
5675 	ops = sb_dqopt(sb)->ops[qid->type];
5676 	if (!ops || !ops->get_next_id)
5677 		return -ENOSYS;
5678 	return dquot_get_next_id(sb, qid);
5679 }
5680 #endif
5681 
5682 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5683 		       const char *dev_name, void *data)
5684 {
5685 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5686 }
5687 
5688 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5689 static inline void register_as_ext2(void)
5690 {
5691 	int err = register_filesystem(&ext2_fs_type);
5692 	if (err)
5693 		printk(KERN_WARNING
5694 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5695 }
5696 
5697 static inline void unregister_as_ext2(void)
5698 {
5699 	unregister_filesystem(&ext2_fs_type);
5700 }
5701 
5702 static inline int ext2_feature_set_ok(struct super_block *sb)
5703 {
5704 	if (ext4_has_unknown_ext2_incompat_features(sb))
5705 		return 0;
5706 	if (sb->s_flags & MS_RDONLY)
5707 		return 1;
5708 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5709 		return 0;
5710 	return 1;
5711 }
5712 #else
5713 static inline void register_as_ext2(void) { }
5714 static inline void unregister_as_ext2(void) { }
5715 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5716 #endif
5717 
5718 static inline void register_as_ext3(void)
5719 {
5720 	int err = register_filesystem(&ext3_fs_type);
5721 	if (err)
5722 		printk(KERN_WARNING
5723 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5724 }
5725 
5726 static inline void unregister_as_ext3(void)
5727 {
5728 	unregister_filesystem(&ext3_fs_type);
5729 }
5730 
5731 static inline int ext3_feature_set_ok(struct super_block *sb)
5732 {
5733 	if (ext4_has_unknown_ext3_incompat_features(sb))
5734 		return 0;
5735 	if (!ext4_has_feature_journal(sb))
5736 		return 0;
5737 	if (sb->s_flags & MS_RDONLY)
5738 		return 1;
5739 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5740 		return 0;
5741 	return 1;
5742 }
5743 
5744 static struct file_system_type ext4_fs_type = {
5745 	.owner		= THIS_MODULE,
5746 	.name		= "ext4",
5747 	.mount		= ext4_mount,
5748 	.kill_sb	= kill_block_super,
5749 	.fs_flags	= FS_REQUIRES_DEV,
5750 };
5751 MODULE_ALIAS_FS("ext4");
5752 
5753 /* Shared across all ext4 file systems */
5754 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5755 
5756 static int __init ext4_init_fs(void)
5757 {
5758 	int i, err;
5759 
5760 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5761 	ext4_li_info = NULL;
5762 	mutex_init(&ext4_li_mtx);
5763 
5764 	/* Build-time check for flags consistency */
5765 	ext4_check_flag_values();
5766 
5767 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5768 		init_waitqueue_head(&ext4__ioend_wq[i]);
5769 
5770 	err = ext4_init_es();
5771 	if (err)
5772 		return err;
5773 
5774 	err = ext4_init_pageio();
5775 	if (err)
5776 		goto out5;
5777 
5778 	err = ext4_init_system_zone();
5779 	if (err)
5780 		goto out4;
5781 
5782 	err = ext4_init_sysfs();
5783 	if (err)
5784 		goto out3;
5785 
5786 	err = ext4_init_mballoc();
5787 	if (err)
5788 		goto out2;
5789 	err = init_inodecache();
5790 	if (err)
5791 		goto out1;
5792 	register_as_ext3();
5793 	register_as_ext2();
5794 	err = register_filesystem(&ext4_fs_type);
5795 	if (err)
5796 		goto out;
5797 
5798 	return 0;
5799 out:
5800 	unregister_as_ext2();
5801 	unregister_as_ext3();
5802 	destroy_inodecache();
5803 out1:
5804 	ext4_exit_mballoc();
5805 out2:
5806 	ext4_exit_sysfs();
5807 out3:
5808 	ext4_exit_system_zone();
5809 out4:
5810 	ext4_exit_pageio();
5811 out5:
5812 	ext4_exit_es();
5813 
5814 	return err;
5815 }
5816 
5817 static void __exit ext4_exit_fs(void)
5818 {
5819 	ext4_destroy_lazyinit_thread();
5820 	unregister_as_ext2();
5821 	unregister_as_ext3();
5822 	unregister_filesystem(&ext4_fs_type);
5823 	destroy_inodecache();
5824 	ext4_exit_mballoc();
5825 	ext4_exit_sysfs();
5826 	ext4_exit_system_zone();
5827 	ext4_exit_pageio();
5828 	ext4_exit_es();
5829 }
5830 
5831 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5832 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5833 MODULE_LICENSE("GPL");
5834 module_init(ext4_init_fs)
5835 module_exit(ext4_exit_fs)
5836