1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "mballoc.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ext4.h> 52 53 struct proc_dir_entry *ext4_proc_root; 54 static struct kset *ext4_kset; 55 56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 57 unsigned long journal_devnum); 58 static int ext4_commit_super(struct super_block *sb, int sync); 59 static void ext4_mark_recovery_complete(struct super_block *sb, 60 struct ext4_super_block *es); 61 static void ext4_clear_journal_err(struct super_block *sb, 62 struct ext4_super_block *es); 63 static int ext4_sync_fs(struct super_block *sb, int wait); 64 static const char *ext4_decode_error(struct super_block *sb, int errno, 65 char nbuf[16]); 66 static int ext4_remount(struct super_block *sb, int *flags, char *data); 67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 68 static int ext4_unfreeze(struct super_block *sb); 69 static void ext4_write_super(struct super_block *sb); 70 static int ext4_freeze(struct super_block *sb); 71 72 73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 74 struct ext4_group_desc *bg) 75 { 76 return le32_to_cpu(bg->bg_block_bitmap_lo) | 77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 79 } 80 81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 82 struct ext4_group_desc *bg) 83 { 84 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 87 } 88 89 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 90 struct ext4_group_desc *bg) 91 { 92 return le32_to_cpu(bg->bg_inode_table_lo) | 93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 95 } 96 97 __u32 ext4_free_blks_count(struct super_block *sb, 98 struct ext4_group_desc *bg) 99 { 100 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 103 } 104 105 __u32 ext4_free_inodes_count(struct super_block *sb, 106 struct ext4_group_desc *bg) 107 { 108 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 111 } 112 113 __u32 ext4_used_dirs_count(struct super_block *sb, 114 struct ext4_group_desc *bg) 115 { 116 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 119 } 120 121 __u32 ext4_itable_unused_count(struct super_block *sb, 122 struct ext4_group_desc *bg) 123 { 124 return le16_to_cpu(bg->bg_itable_unused_lo) | 125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 127 } 128 129 void ext4_block_bitmap_set(struct super_block *sb, 130 struct ext4_group_desc *bg, ext4_fsblk_t blk) 131 { 132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 135 } 136 137 void ext4_inode_bitmap_set(struct super_block *sb, 138 struct ext4_group_desc *bg, ext4_fsblk_t blk) 139 { 140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 143 } 144 145 void ext4_inode_table_set(struct super_block *sb, 146 struct ext4_group_desc *bg, ext4_fsblk_t blk) 147 { 148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 151 } 152 153 void ext4_free_blks_set(struct super_block *sb, 154 struct ext4_group_desc *bg, __u32 count) 155 { 156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 159 } 160 161 void ext4_free_inodes_set(struct super_block *sb, 162 struct ext4_group_desc *bg, __u32 count) 163 { 164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 167 } 168 169 void ext4_used_dirs_set(struct super_block *sb, 170 struct ext4_group_desc *bg, __u32 count) 171 { 172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 175 } 176 177 void ext4_itable_unused_set(struct super_block *sb, 178 struct ext4_group_desc *bg, __u32 count) 179 { 180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 183 } 184 185 186 /* Just increment the non-pointer handle value */ 187 static handle_t *ext4_get_nojournal(void) 188 { 189 handle_t *handle = current->journal_info; 190 unsigned long ref_cnt = (unsigned long)handle; 191 192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 193 194 ref_cnt++; 195 handle = (handle_t *)ref_cnt; 196 197 current->journal_info = handle; 198 return handle; 199 } 200 201 202 /* Decrement the non-pointer handle value */ 203 static void ext4_put_nojournal(handle_t *handle) 204 { 205 unsigned long ref_cnt = (unsigned long)handle; 206 207 BUG_ON(ref_cnt == 0); 208 209 ref_cnt--; 210 handle = (handle_t *)ref_cnt; 211 212 current->journal_info = handle; 213 } 214 215 /* 216 * Wrappers for jbd2_journal_start/end. 217 * 218 * The only special thing we need to do here is to make sure that all 219 * journal_end calls result in the superblock being marked dirty, so 220 * that sync() will call the filesystem's write_super callback if 221 * appropriate. 222 */ 223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 224 { 225 journal_t *journal; 226 227 if (sb->s_flags & MS_RDONLY) 228 return ERR_PTR(-EROFS); 229 230 /* Special case here: if the journal has aborted behind our 231 * backs (eg. EIO in the commit thread), then we still need to 232 * take the FS itself readonly cleanly. */ 233 journal = EXT4_SB(sb)->s_journal; 234 if (journal) { 235 if (is_journal_aborted(journal)) { 236 ext4_abort(sb, __func__, "Detected aborted journal"); 237 return ERR_PTR(-EROFS); 238 } 239 return jbd2_journal_start(journal, nblocks); 240 } 241 return ext4_get_nojournal(); 242 } 243 244 /* 245 * The only special thing we need to do here is to make sure that all 246 * jbd2_journal_stop calls result in the superblock being marked dirty, so 247 * that sync() will call the filesystem's write_super callback if 248 * appropriate. 249 */ 250 int __ext4_journal_stop(const char *where, handle_t *handle) 251 { 252 struct super_block *sb; 253 int err; 254 int rc; 255 256 if (!ext4_handle_valid(handle)) { 257 ext4_put_nojournal(handle); 258 return 0; 259 } 260 sb = handle->h_transaction->t_journal->j_private; 261 err = handle->h_err; 262 rc = jbd2_journal_stop(handle); 263 264 if (!err) 265 err = rc; 266 if (err) 267 __ext4_std_error(sb, where, err); 268 return err; 269 } 270 271 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 272 struct buffer_head *bh, handle_t *handle, int err) 273 { 274 char nbuf[16]; 275 const char *errstr = ext4_decode_error(NULL, err, nbuf); 276 277 BUG_ON(!ext4_handle_valid(handle)); 278 279 if (bh) 280 BUFFER_TRACE(bh, "abort"); 281 282 if (!handle->h_err) 283 handle->h_err = err; 284 285 if (is_handle_aborted(handle)) 286 return; 287 288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 289 caller, errstr, err_fn); 290 291 jbd2_journal_abort_handle(handle); 292 } 293 294 /* Deal with the reporting of failure conditions on a filesystem such as 295 * inconsistencies detected or read IO failures. 296 * 297 * On ext2, we can store the error state of the filesystem in the 298 * superblock. That is not possible on ext4, because we may have other 299 * write ordering constraints on the superblock which prevent us from 300 * writing it out straight away; and given that the journal is about to 301 * be aborted, we can't rely on the current, or future, transactions to 302 * write out the superblock safely. 303 * 304 * We'll just use the jbd2_journal_abort() error code to record an error in 305 * the journal instead. On recovery, the journal will compain about 306 * that error until we've noted it down and cleared it. 307 */ 308 309 static void ext4_handle_error(struct super_block *sb) 310 { 311 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 312 313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 315 316 if (sb->s_flags & MS_RDONLY) 317 return; 318 319 if (!test_opt(sb, ERRORS_CONT)) { 320 journal_t *journal = EXT4_SB(sb)->s_journal; 321 322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 323 if (journal) 324 jbd2_journal_abort(journal, -EIO); 325 } 326 if (test_opt(sb, ERRORS_RO)) { 327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 328 sb->s_flags |= MS_RDONLY; 329 } 330 ext4_commit_super(sb, 1); 331 if (test_opt(sb, ERRORS_PANIC)) 332 panic("EXT4-fs (device %s): panic forced after error\n", 333 sb->s_id); 334 } 335 336 void ext4_error(struct super_block *sb, const char *function, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 va_start(args, fmt); 342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 343 vprintk(fmt, args); 344 printk("\n"); 345 va_end(args); 346 347 ext4_handle_error(sb); 348 } 349 350 static const char *ext4_decode_error(struct super_block *sb, int errno, 351 char nbuf[16]) 352 { 353 char *errstr = NULL; 354 355 switch (errno) { 356 case -EIO: 357 errstr = "IO failure"; 358 break; 359 case -ENOMEM: 360 errstr = "Out of memory"; 361 break; 362 case -EROFS: 363 if (!sb || (EXT4_SB(sb)->s_journal && 364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 365 errstr = "Journal has aborted"; 366 else 367 errstr = "Readonly filesystem"; 368 break; 369 default: 370 /* If the caller passed in an extra buffer for unknown 371 * errors, textualise them now. Else we just return 372 * NULL. */ 373 if (nbuf) { 374 /* Check for truncated error codes... */ 375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 376 errstr = nbuf; 377 } 378 break; 379 } 380 381 return errstr; 382 } 383 384 /* __ext4_std_error decodes expected errors from journaling functions 385 * automatically and invokes the appropriate error response. */ 386 387 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 388 { 389 char nbuf[16]; 390 const char *errstr; 391 392 /* Special case: if the error is EROFS, and we're not already 393 * inside a transaction, then there's really no point in logging 394 * an error. */ 395 if (errno == -EROFS && journal_current_handle() == NULL && 396 (sb->s_flags & MS_RDONLY)) 397 return; 398 399 errstr = ext4_decode_error(sb, errno, nbuf); 400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 401 sb->s_id, function, errstr); 402 403 ext4_handle_error(sb); 404 } 405 406 /* 407 * ext4_abort is a much stronger failure handler than ext4_error. The 408 * abort function may be used to deal with unrecoverable failures such 409 * as journal IO errors or ENOMEM at a critical moment in log management. 410 * 411 * We unconditionally force the filesystem into an ABORT|READONLY state, 412 * unless the error response on the fs has been set to panic in which 413 * case we take the easy way out and panic immediately. 414 */ 415 416 void ext4_abort(struct super_block *sb, const char *function, 417 const char *fmt, ...) 418 { 419 va_list args; 420 421 va_start(args, fmt); 422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 423 vprintk(fmt, args); 424 printk("\n"); 425 va_end(args); 426 427 if (test_opt(sb, ERRORS_PANIC)) 428 panic("EXT4-fs panic from previous error\n"); 429 430 if (sb->s_flags & MS_RDONLY) 431 return; 432 433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 435 sb->s_flags |= MS_RDONLY; 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (EXT4_SB(sb)->s_journal) 438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 439 } 440 441 void ext4_msg (struct super_block * sb, const char *prefix, 442 const char *fmt, ...) 443 { 444 va_list args; 445 446 va_start(args, fmt); 447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 448 vprintk(fmt, args); 449 printk("\n"); 450 va_end(args); 451 } 452 453 void ext4_warning(struct super_block *sb, const char *function, 454 const char *fmt, ...) 455 { 456 va_list args; 457 458 va_start(args, fmt); 459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 460 sb->s_id, function); 461 vprintk(fmt, args); 462 printk("\n"); 463 va_end(args); 464 } 465 466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 467 const char *function, const char *fmt, ...) 468 __releases(bitlock) 469 __acquires(bitlock) 470 { 471 va_list args; 472 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 473 474 va_start(args, fmt); 475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 476 vprintk(fmt, args); 477 printk("\n"); 478 va_end(args); 479 480 if (test_opt(sb, ERRORS_CONT)) { 481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 483 ext4_commit_super(sb, 0); 484 return; 485 } 486 ext4_unlock_group(sb, grp); 487 ext4_handle_error(sb); 488 /* 489 * We only get here in the ERRORS_RO case; relocking the group 490 * may be dangerous, but nothing bad will happen since the 491 * filesystem will have already been marked read/only and the 492 * journal has been aborted. We return 1 as a hint to callers 493 * who might what to use the return value from 494 * ext4_grp_locked_error() to distinguish beween the 495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 496 * aggressively from the ext4 function in question, with a 497 * more appropriate error code. 498 */ 499 ext4_lock_group(sb, grp); 500 return; 501 } 502 503 void ext4_update_dynamic_rev(struct super_block *sb) 504 { 505 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 506 507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 508 return; 509 510 ext4_warning(sb, __func__, 511 "updating to rev %d because of new feature flag, " 512 "running e2fsck is recommended", 513 EXT4_DYNAMIC_REV); 514 515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 518 /* leave es->s_feature_*compat flags alone */ 519 /* es->s_uuid will be set by e2fsck if empty */ 520 521 /* 522 * The rest of the superblock fields should be zero, and if not it 523 * means they are likely already in use, so leave them alone. We 524 * can leave it up to e2fsck to clean up any inconsistencies there. 525 */ 526 } 527 528 /* 529 * Open the external journal device 530 */ 531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 532 { 533 struct block_device *bdev; 534 char b[BDEVNAME_SIZE]; 535 536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 537 if (IS_ERR(bdev)) 538 goto fail; 539 return bdev; 540 541 fail: 542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 543 __bdevname(dev, b), PTR_ERR(bdev)); 544 return NULL; 545 } 546 547 /* 548 * Release the journal device 549 */ 550 static int ext4_blkdev_put(struct block_device *bdev) 551 { 552 bd_release(bdev); 553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 554 } 555 556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 557 { 558 struct block_device *bdev; 559 int ret = -ENODEV; 560 561 bdev = sbi->journal_bdev; 562 if (bdev) { 563 ret = ext4_blkdev_put(bdev); 564 sbi->journal_bdev = NULL; 565 } 566 return ret; 567 } 568 569 static inline struct inode *orphan_list_entry(struct list_head *l) 570 { 571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 572 } 573 574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 575 { 576 struct list_head *l; 577 578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 579 le32_to_cpu(sbi->s_es->s_last_orphan)); 580 581 printk(KERN_ERR "sb_info orphan list:\n"); 582 list_for_each(l, &sbi->s_orphan) { 583 struct inode *inode = orphan_list_entry(l); 584 printk(KERN_ERR " " 585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 586 inode->i_sb->s_id, inode->i_ino, inode, 587 inode->i_mode, inode->i_nlink, 588 NEXT_ORPHAN(inode)); 589 } 590 } 591 592 static void ext4_put_super(struct super_block *sb) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 struct ext4_super_block *es = sbi->s_es; 596 int i, err; 597 598 flush_workqueue(sbi->dio_unwritten_wq); 599 destroy_workqueue(sbi->dio_unwritten_wq); 600 601 lock_super(sb); 602 lock_kernel(); 603 if (sb->s_dirt) 604 ext4_commit_super(sb, 1); 605 606 ext4_release_system_zone(sb); 607 ext4_mb_release(sb); 608 ext4_ext_release(sb); 609 ext4_xattr_put_super(sb); 610 if (sbi->s_journal) { 611 err = jbd2_journal_destroy(sbi->s_journal); 612 sbi->s_journal = NULL; 613 if (err < 0) 614 ext4_abort(sb, __func__, 615 "Couldn't clean up the journal"); 616 } 617 if (!(sb->s_flags & MS_RDONLY)) { 618 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 619 es->s_state = cpu_to_le16(sbi->s_mount_state); 620 ext4_commit_super(sb, 1); 621 } 622 if (sbi->s_proc) { 623 remove_proc_entry(sb->s_id, ext4_proc_root); 624 } 625 kobject_del(&sbi->s_kobj); 626 627 for (i = 0; i < sbi->s_gdb_count; i++) 628 brelse(sbi->s_group_desc[i]); 629 kfree(sbi->s_group_desc); 630 if (is_vmalloc_addr(sbi->s_flex_groups)) 631 vfree(sbi->s_flex_groups); 632 else 633 kfree(sbi->s_flex_groups); 634 percpu_counter_destroy(&sbi->s_freeblocks_counter); 635 percpu_counter_destroy(&sbi->s_freeinodes_counter); 636 percpu_counter_destroy(&sbi->s_dirs_counter); 637 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 638 brelse(sbi->s_sbh); 639 #ifdef CONFIG_QUOTA 640 for (i = 0; i < MAXQUOTAS; i++) 641 kfree(sbi->s_qf_names[i]); 642 #endif 643 644 /* Debugging code just in case the in-memory inode orphan list 645 * isn't empty. The on-disk one can be non-empty if we've 646 * detected an error and taken the fs readonly, but the 647 * in-memory list had better be clean by this point. */ 648 if (!list_empty(&sbi->s_orphan)) 649 dump_orphan_list(sb, sbi); 650 J_ASSERT(list_empty(&sbi->s_orphan)); 651 652 invalidate_bdev(sb->s_bdev); 653 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 654 /* 655 * Invalidate the journal device's buffers. We don't want them 656 * floating about in memory - the physical journal device may 657 * hotswapped, and it breaks the `ro-after' testing code. 658 */ 659 sync_blockdev(sbi->journal_bdev); 660 invalidate_bdev(sbi->journal_bdev); 661 ext4_blkdev_remove(sbi); 662 } 663 sb->s_fs_info = NULL; 664 /* 665 * Now that we are completely done shutting down the 666 * superblock, we need to actually destroy the kobject. 667 */ 668 unlock_kernel(); 669 unlock_super(sb); 670 kobject_put(&sbi->s_kobj); 671 wait_for_completion(&sbi->s_kobj_unregister); 672 kfree(sbi->s_blockgroup_lock); 673 kfree(sbi); 674 } 675 676 static struct kmem_cache *ext4_inode_cachep; 677 678 /* 679 * Called inside transaction, so use GFP_NOFS 680 */ 681 static struct inode *ext4_alloc_inode(struct super_block *sb) 682 { 683 struct ext4_inode_info *ei; 684 685 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 686 if (!ei) 687 return NULL; 688 689 ei->vfs_inode.i_version = 1; 690 ei->vfs_inode.i_data.writeback_index = 0; 691 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 692 INIT_LIST_HEAD(&ei->i_prealloc_list); 693 spin_lock_init(&ei->i_prealloc_lock); 694 /* 695 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 696 * therefore it can be null here. Don't check it, just initialize 697 * jinode. 698 */ 699 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 700 ei->i_reserved_data_blocks = 0; 701 ei->i_reserved_meta_blocks = 0; 702 ei->i_allocated_meta_blocks = 0; 703 ei->i_delalloc_reserved_flag = 0; 704 spin_lock_init(&(ei->i_block_reservation_lock)); 705 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list); 706 ei->cur_aio_dio = NULL; 707 708 return &ei->vfs_inode; 709 } 710 711 static void ext4_destroy_inode(struct inode *inode) 712 { 713 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 714 ext4_msg(inode->i_sb, KERN_ERR, 715 "Inode %lu (%p): orphan list check failed!", 716 inode->i_ino, EXT4_I(inode)); 717 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 718 EXT4_I(inode), sizeof(struct ext4_inode_info), 719 true); 720 dump_stack(); 721 } 722 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 723 } 724 725 static void init_once(void *foo) 726 { 727 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 728 729 INIT_LIST_HEAD(&ei->i_orphan); 730 #ifdef CONFIG_EXT4_FS_XATTR 731 init_rwsem(&ei->xattr_sem); 732 #endif 733 init_rwsem(&ei->i_data_sem); 734 inode_init_once(&ei->vfs_inode); 735 } 736 737 static int init_inodecache(void) 738 { 739 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 740 sizeof(struct ext4_inode_info), 741 0, (SLAB_RECLAIM_ACCOUNT| 742 SLAB_MEM_SPREAD), 743 init_once); 744 if (ext4_inode_cachep == NULL) 745 return -ENOMEM; 746 return 0; 747 } 748 749 static void destroy_inodecache(void) 750 { 751 kmem_cache_destroy(ext4_inode_cachep); 752 } 753 754 static void ext4_clear_inode(struct inode *inode) 755 { 756 ext4_discard_preallocations(inode); 757 if (EXT4_JOURNAL(inode)) 758 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 759 &EXT4_I(inode)->jinode); 760 } 761 762 static inline void ext4_show_quota_options(struct seq_file *seq, 763 struct super_block *sb) 764 { 765 #if defined(CONFIG_QUOTA) 766 struct ext4_sb_info *sbi = EXT4_SB(sb); 767 768 if (sbi->s_jquota_fmt) 769 seq_printf(seq, ",jqfmt=%s", 770 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 771 772 if (sbi->s_qf_names[USRQUOTA]) 773 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 774 775 if (sbi->s_qf_names[GRPQUOTA]) 776 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 777 778 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 779 seq_puts(seq, ",usrquota"); 780 781 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 782 seq_puts(seq, ",grpquota"); 783 #endif 784 } 785 786 /* 787 * Show an option if 788 * - it's set to a non-default value OR 789 * - if the per-sb default is different from the global default 790 */ 791 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 792 { 793 int def_errors; 794 unsigned long def_mount_opts; 795 struct super_block *sb = vfs->mnt_sb; 796 struct ext4_sb_info *sbi = EXT4_SB(sb); 797 struct ext4_super_block *es = sbi->s_es; 798 799 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 800 def_errors = le16_to_cpu(es->s_errors); 801 802 if (sbi->s_sb_block != 1) 803 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 804 if (test_opt(sb, MINIX_DF)) 805 seq_puts(seq, ",minixdf"); 806 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 807 seq_puts(seq, ",grpid"); 808 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 809 seq_puts(seq, ",nogrpid"); 810 if (sbi->s_resuid != EXT4_DEF_RESUID || 811 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 812 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 813 } 814 if (sbi->s_resgid != EXT4_DEF_RESGID || 815 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 816 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 817 } 818 if (test_opt(sb, ERRORS_RO)) { 819 if (def_errors == EXT4_ERRORS_PANIC || 820 def_errors == EXT4_ERRORS_CONTINUE) { 821 seq_puts(seq, ",errors=remount-ro"); 822 } 823 } 824 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 825 seq_puts(seq, ",errors=continue"); 826 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 827 seq_puts(seq, ",errors=panic"); 828 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 829 seq_puts(seq, ",nouid32"); 830 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 831 seq_puts(seq, ",debug"); 832 if (test_opt(sb, OLDALLOC)) 833 seq_puts(seq, ",oldalloc"); 834 #ifdef CONFIG_EXT4_FS_XATTR 835 if (test_opt(sb, XATTR_USER) && 836 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 837 seq_puts(seq, ",user_xattr"); 838 if (!test_opt(sb, XATTR_USER) && 839 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 840 seq_puts(seq, ",nouser_xattr"); 841 } 842 #endif 843 #ifdef CONFIG_EXT4_FS_POSIX_ACL 844 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 845 seq_puts(seq, ",acl"); 846 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 847 seq_puts(seq, ",noacl"); 848 #endif 849 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 850 seq_printf(seq, ",commit=%u", 851 (unsigned) (sbi->s_commit_interval / HZ)); 852 } 853 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 854 seq_printf(seq, ",min_batch_time=%u", 855 (unsigned) sbi->s_min_batch_time); 856 } 857 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 858 seq_printf(seq, ",max_batch_time=%u", 859 (unsigned) sbi->s_min_batch_time); 860 } 861 862 /* 863 * We're changing the default of barrier mount option, so 864 * let's always display its mount state so it's clear what its 865 * status is. 866 */ 867 seq_puts(seq, ",barrier="); 868 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 869 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 870 seq_puts(seq, ",journal_async_commit"); 871 if (test_opt(sb, NOBH)) 872 seq_puts(seq, ",nobh"); 873 if (test_opt(sb, I_VERSION)) 874 seq_puts(seq, ",i_version"); 875 if (!test_opt(sb, DELALLOC)) 876 seq_puts(seq, ",nodelalloc"); 877 878 879 if (sbi->s_stripe) 880 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 881 /* 882 * journal mode get enabled in different ways 883 * So just print the value even if we didn't specify it 884 */ 885 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 886 seq_puts(seq, ",data=journal"); 887 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 888 seq_puts(seq, ",data=ordered"); 889 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 890 seq_puts(seq, ",data=writeback"); 891 892 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 893 seq_printf(seq, ",inode_readahead_blks=%u", 894 sbi->s_inode_readahead_blks); 895 896 if (test_opt(sb, DATA_ERR_ABORT)) 897 seq_puts(seq, ",data_err=abort"); 898 899 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 900 seq_puts(seq, ",noauto_da_alloc"); 901 902 ext4_show_quota_options(seq, sb); 903 904 return 0; 905 } 906 907 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 908 u64 ino, u32 generation) 909 { 910 struct inode *inode; 911 912 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 913 return ERR_PTR(-ESTALE); 914 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 915 return ERR_PTR(-ESTALE); 916 917 /* iget isn't really right if the inode is currently unallocated!! 918 * 919 * ext4_read_inode will return a bad_inode if the inode had been 920 * deleted, so we should be safe. 921 * 922 * Currently we don't know the generation for parent directory, so 923 * a generation of 0 means "accept any" 924 */ 925 inode = ext4_iget(sb, ino); 926 if (IS_ERR(inode)) 927 return ERR_CAST(inode); 928 if (generation && inode->i_generation != generation) { 929 iput(inode); 930 return ERR_PTR(-ESTALE); 931 } 932 933 return inode; 934 } 935 936 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 937 int fh_len, int fh_type) 938 { 939 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 940 ext4_nfs_get_inode); 941 } 942 943 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 944 int fh_len, int fh_type) 945 { 946 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 947 ext4_nfs_get_inode); 948 } 949 950 /* 951 * Try to release metadata pages (indirect blocks, directories) which are 952 * mapped via the block device. Since these pages could have journal heads 953 * which would prevent try_to_free_buffers() from freeing them, we must use 954 * jbd2 layer's try_to_free_buffers() function to release them. 955 */ 956 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 957 gfp_t wait) 958 { 959 journal_t *journal = EXT4_SB(sb)->s_journal; 960 961 WARN_ON(PageChecked(page)); 962 if (!page_has_buffers(page)) 963 return 0; 964 if (journal) 965 return jbd2_journal_try_to_free_buffers(journal, page, 966 wait & ~__GFP_WAIT); 967 return try_to_free_buffers(page); 968 } 969 970 #ifdef CONFIG_QUOTA 971 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 972 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 973 974 static int ext4_write_dquot(struct dquot *dquot); 975 static int ext4_acquire_dquot(struct dquot *dquot); 976 static int ext4_release_dquot(struct dquot *dquot); 977 static int ext4_mark_dquot_dirty(struct dquot *dquot); 978 static int ext4_write_info(struct super_block *sb, int type); 979 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 980 char *path, int remount); 981 static int ext4_quota_on_mount(struct super_block *sb, int type); 982 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 983 size_t len, loff_t off); 984 static ssize_t ext4_quota_write(struct super_block *sb, int type, 985 const char *data, size_t len, loff_t off); 986 987 static const struct dquot_operations ext4_quota_operations = { 988 .initialize = dquot_initialize, 989 .drop = dquot_drop, 990 .alloc_space = dquot_alloc_space, 991 .reserve_space = dquot_reserve_space, 992 .claim_space = dquot_claim_space, 993 .release_rsv = dquot_release_reserved_space, 994 .get_reserved_space = ext4_get_reserved_space, 995 .alloc_inode = dquot_alloc_inode, 996 .free_space = dquot_free_space, 997 .free_inode = dquot_free_inode, 998 .transfer = dquot_transfer, 999 .write_dquot = ext4_write_dquot, 1000 .acquire_dquot = ext4_acquire_dquot, 1001 .release_dquot = ext4_release_dquot, 1002 .mark_dirty = ext4_mark_dquot_dirty, 1003 .write_info = ext4_write_info, 1004 .alloc_dquot = dquot_alloc, 1005 .destroy_dquot = dquot_destroy, 1006 }; 1007 1008 static const struct quotactl_ops ext4_qctl_operations = { 1009 .quota_on = ext4_quota_on, 1010 .quota_off = vfs_quota_off, 1011 .quota_sync = vfs_quota_sync, 1012 .get_info = vfs_get_dqinfo, 1013 .set_info = vfs_set_dqinfo, 1014 .get_dqblk = vfs_get_dqblk, 1015 .set_dqblk = vfs_set_dqblk 1016 }; 1017 #endif 1018 1019 static const struct super_operations ext4_sops = { 1020 .alloc_inode = ext4_alloc_inode, 1021 .destroy_inode = ext4_destroy_inode, 1022 .write_inode = ext4_write_inode, 1023 .dirty_inode = ext4_dirty_inode, 1024 .delete_inode = ext4_delete_inode, 1025 .put_super = ext4_put_super, 1026 .sync_fs = ext4_sync_fs, 1027 .freeze_fs = ext4_freeze, 1028 .unfreeze_fs = ext4_unfreeze, 1029 .statfs = ext4_statfs, 1030 .remount_fs = ext4_remount, 1031 .clear_inode = ext4_clear_inode, 1032 .show_options = ext4_show_options, 1033 #ifdef CONFIG_QUOTA 1034 .quota_read = ext4_quota_read, 1035 .quota_write = ext4_quota_write, 1036 #endif 1037 .bdev_try_to_free_page = bdev_try_to_free_page, 1038 }; 1039 1040 static const struct super_operations ext4_nojournal_sops = { 1041 .alloc_inode = ext4_alloc_inode, 1042 .destroy_inode = ext4_destroy_inode, 1043 .write_inode = ext4_write_inode, 1044 .dirty_inode = ext4_dirty_inode, 1045 .delete_inode = ext4_delete_inode, 1046 .write_super = ext4_write_super, 1047 .put_super = ext4_put_super, 1048 .statfs = ext4_statfs, 1049 .remount_fs = ext4_remount, 1050 .clear_inode = ext4_clear_inode, 1051 .show_options = ext4_show_options, 1052 #ifdef CONFIG_QUOTA 1053 .quota_read = ext4_quota_read, 1054 .quota_write = ext4_quota_write, 1055 #endif 1056 .bdev_try_to_free_page = bdev_try_to_free_page, 1057 }; 1058 1059 static const struct export_operations ext4_export_ops = { 1060 .fh_to_dentry = ext4_fh_to_dentry, 1061 .fh_to_parent = ext4_fh_to_parent, 1062 .get_parent = ext4_get_parent, 1063 }; 1064 1065 enum { 1066 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1067 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1068 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1069 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1070 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1071 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1072 Opt_journal_update, Opt_journal_dev, 1073 Opt_journal_checksum, Opt_journal_async_commit, 1074 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1075 Opt_data_err_abort, Opt_data_err_ignore, 1076 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1077 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1078 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, 1079 Opt_usrquota, Opt_grpquota, Opt_i_version, 1080 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1081 Opt_block_validity, Opt_noblock_validity, 1082 Opt_inode_readahead_blks, Opt_journal_ioprio 1083 }; 1084 1085 static const match_table_t tokens = { 1086 {Opt_bsd_df, "bsddf"}, 1087 {Opt_minix_df, "minixdf"}, 1088 {Opt_grpid, "grpid"}, 1089 {Opt_grpid, "bsdgroups"}, 1090 {Opt_nogrpid, "nogrpid"}, 1091 {Opt_nogrpid, "sysvgroups"}, 1092 {Opt_resgid, "resgid=%u"}, 1093 {Opt_resuid, "resuid=%u"}, 1094 {Opt_sb, "sb=%u"}, 1095 {Opt_err_cont, "errors=continue"}, 1096 {Opt_err_panic, "errors=panic"}, 1097 {Opt_err_ro, "errors=remount-ro"}, 1098 {Opt_nouid32, "nouid32"}, 1099 {Opt_debug, "debug"}, 1100 {Opt_oldalloc, "oldalloc"}, 1101 {Opt_orlov, "orlov"}, 1102 {Opt_user_xattr, "user_xattr"}, 1103 {Opt_nouser_xattr, "nouser_xattr"}, 1104 {Opt_acl, "acl"}, 1105 {Opt_noacl, "noacl"}, 1106 {Opt_noload, "noload"}, 1107 {Opt_nobh, "nobh"}, 1108 {Opt_bh, "bh"}, 1109 {Opt_commit, "commit=%u"}, 1110 {Opt_min_batch_time, "min_batch_time=%u"}, 1111 {Opt_max_batch_time, "max_batch_time=%u"}, 1112 {Opt_journal_update, "journal=update"}, 1113 {Opt_journal_dev, "journal_dev=%u"}, 1114 {Opt_journal_checksum, "journal_checksum"}, 1115 {Opt_journal_async_commit, "journal_async_commit"}, 1116 {Opt_abort, "abort"}, 1117 {Opt_data_journal, "data=journal"}, 1118 {Opt_data_ordered, "data=ordered"}, 1119 {Opt_data_writeback, "data=writeback"}, 1120 {Opt_data_err_abort, "data_err=abort"}, 1121 {Opt_data_err_ignore, "data_err=ignore"}, 1122 {Opt_offusrjquota, "usrjquota="}, 1123 {Opt_usrjquota, "usrjquota=%s"}, 1124 {Opt_offgrpjquota, "grpjquota="}, 1125 {Opt_grpjquota, "grpjquota=%s"}, 1126 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1127 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1128 {Opt_grpquota, "grpquota"}, 1129 {Opt_noquota, "noquota"}, 1130 {Opt_quota, "quota"}, 1131 {Opt_usrquota, "usrquota"}, 1132 {Opt_barrier, "barrier=%u"}, 1133 {Opt_barrier, "barrier"}, 1134 {Opt_nobarrier, "nobarrier"}, 1135 {Opt_i_version, "i_version"}, 1136 {Opt_stripe, "stripe=%u"}, 1137 {Opt_resize, "resize"}, 1138 {Opt_delalloc, "delalloc"}, 1139 {Opt_nodelalloc, "nodelalloc"}, 1140 {Opt_block_validity, "block_validity"}, 1141 {Opt_noblock_validity, "noblock_validity"}, 1142 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1143 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1144 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1145 {Opt_auto_da_alloc, "auto_da_alloc"}, 1146 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1147 {Opt_err, NULL}, 1148 }; 1149 1150 static ext4_fsblk_t get_sb_block(void **data) 1151 { 1152 ext4_fsblk_t sb_block; 1153 char *options = (char *) *data; 1154 1155 if (!options || strncmp(options, "sb=", 3) != 0) 1156 return 1; /* Default location */ 1157 1158 options += 3; 1159 /* TODO: use simple_strtoll with >32bit ext4 */ 1160 sb_block = simple_strtoul(options, &options, 0); 1161 if (*options && *options != ',') { 1162 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1163 (char *) *data); 1164 return 1; 1165 } 1166 if (*options == ',') 1167 options++; 1168 *data = (void *) options; 1169 1170 return sb_block; 1171 } 1172 1173 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1174 1175 static int parse_options(char *options, struct super_block *sb, 1176 unsigned long *journal_devnum, 1177 unsigned int *journal_ioprio, 1178 ext4_fsblk_t *n_blocks_count, int is_remount) 1179 { 1180 struct ext4_sb_info *sbi = EXT4_SB(sb); 1181 char *p; 1182 substring_t args[MAX_OPT_ARGS]; 1183 int data_opt = 0; 1184 int option; 1185 #ifdef CONFIG_QUOTA 1186 int qtype, qfmt; 1187 char *qname; 1188 #endif 1189 1190 if (!options) 1191 return 1; 1192 1193 while ((p = strsep(&options, ",")) != NULL) { 1194 int token; 1195 if (!*p) 1196 continue; 1197 1198 token = match_token(p, tokens, args); 1199 switch (token) { 1200 case Opt_bsd_df: 1201 clear_opt(sbi->s_mount_opt, MINIX_DF); 1202 break; 1203 case Opt_minix_df: 1204 set_opt(sbi->s_mount_opt, MINIX_DF); 1205 break; 1206 case Opt_grpid: 1207 set_opt(sbi->s_mount_opt, GRPID); 1208 break; 1209 case Opt_nogrpid: 1210 clear_opt(sbi->s_mount_opt, GRPID); 1211 break; 1212 case Opt_resuid: 1213 if (match_int(&args[0], &option)) 1214 return 0; 1215 sbi->s_resuid = option; 1216 break; 1217 case Opt_resgid: 1218 if (match_int(&args[0], &option)) 1219 return 0; 1220 sbi->s_resgid = option; 1221 break; 1222 case Opt_sb: 1223 /* handled by get_sb_block() instead of here */ 1224 /* *sb_block = match_int(&args[0]); */ 1225 break; 1226 case Opt_err_panic: 1227 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1228 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1229 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1230 break; 1231 case Opt_err_ro: 1232 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1233 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1234 set_opt(sbi->s_mount_opt, ERRORS_RO); 1235 break; 1236 case Opt_err_cont: 1237 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1238 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1239 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1240 break; 1241 case Opt_nouid32: 1242 set_opt(sbi->s_mount_opt, NO_UID32); 1243 break; 1244 case Opt_debug: 1245 set_opt(sbi->s_mount_opt, DEBUG); 1246 break; 1247 case Opt_oldalloc: 1248 set_opt(sbi->s_mount_opt, OLDALLOC); 1249 break; 1250 case Opt_orlov: 1251 clear_opt(sbi->s_mount_opt, OLDALLOC); 1252 break; 1253 #ifdef CONFIG_EXT4_FS_XATTR 1254 case Opt_user_xattr: 1255 set_opt(sbi->s_mount_opt, XATTR_USER); 1256 break; 1257 case Opt_nouser_xattr: 1258 clear_opt(sbi->s_mount_opt, XATTR_USER); 1259 break; 1260 #else 1261 case Opt_user_xattr: 1262 case Opt_nouser_xattr: 1263 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1264 break; 1265 #endif 1266 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1267 case Opt_acl: 1268 set_opt(sbi->s_mount_opt, POSIX_ACL); 1269 break; 1270 case Opt_noacl: 1271 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1272 break; 1273 #else 1274 case Opt_acl: 1275 case Opt_noacl: 1276 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1277 break; 1278 #endif 1279 case Opt_journal_update: 1280 /* @@@ FIXME */ 1281 /* Eventually we will want to be able to create 1282 a journal file here. For now, only allow the 1283 user to specify an existing inode to be the 1284 journal file. */ 1285 if (is_remount) { 1286 ext4_msg(sb, KERN_ERR, 1287 "Cannot specify journal on remount"); 1288 return 0; 1289 } 1290 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1291 break; 1292 case Opt_journal_dev: 1293 if (is_remount) { 1294 ext4_msg(sb, KERN_ERR, 1295 "Cannot specify journal on remount"); 1296 return 0; 1297 } 1298 if (match_int(&args[0], &option)) 1299 return 0; 1300 *journal_devnum = option; 1301 break; 1302 case Opt_journal_checksum: 1303 break; /* Kept for backwards compatibility */ 1304 case Opt_journal_async_commit: 1305 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1306 break; 1307 case Opt_noload: 1308 set_opt(sbi->s_mount_opt, NOLOAD); 1309 break; 1310 case Opt_commit: 1311 if (match_int(&args[0], &option)) 1312 return 0; 1313 if (option < 0) 1314 return 0; 1315 if (option == 0) 1316 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1317 sbi->s_commit_interval = HZ * option; 1318 break; 1319 case Opt_max_batch_time: 1320 if (match_int(&args[0], &option)) 1321 return 0; 1322 if (option < 0) 1323 return 0; 1324 if (option == 0) 1325 option = EXT4_DEF_MAX_BATCH_TIME; 1326 sbi->s_max_batch_time = option; 1327 break; 1328 case Opt_min_batch_time: 1329 if (match_int(&args[0], &option)) 1330 return 0; 1331 if (option < 0) 1332 return 0; 1333 sbi->s_min_batch_time = option; 1334 break; 1335 case Opt_data_journal: 1336 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1337 goto datacheck; 1338 case Opt_data_ordered: 1339 data_opt = EXT4_MOUNT_ORDERED_DATA; 1340 goto datacheck; 1341 case Opt_data_writeback: 1342 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1343 datacheck: 1344 if (is_remount) { 1345 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1346 != data_opt) { 1347 ext4_msg(sb, KERN_ERR, 1348 "Cannot change data mode on remount"); 1349 return 0; 1350 } 1351 } else { 1352 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1353 sbi->s_mount_opt |= data_opt; 1354 } 1355 break; 1356 case Opt_data_err_abort: 1357 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1358 break; 1359 case Opt_data_err_ignore: 1360 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1361 break; 1362 #ifdef CONFIG_QUOTA 1363 case Opt_usrjquota: 1364 qtype = USRQUOTA; 1365 goto set_qf_name; 1366 case Opt_grpjquota: 1367 qtype = GRPQUOTA; 1368 set_qf_name: 1369 if (sb_any_quota_loaded(sb) && 1370 !sbi->s_qf_names[qtype]) { 1371 ext4_msg(sb, KERN_ERR, 1372 "Cannot change journaled " 1373 "quota options when quota turned on"); 1374 return 0; 1375 } 1376 qname = match_strdup(&args[0]); 1377 if (!qname) { 1378 ext4_msg(sb, KERN_ERR, 1379 "Not enough memory for " 1380 "storing quotafile name"); 1381 return 0; 1382 } 1383 if (sbi->s_qf_names[qtype] && 1384 strcmp(sbi->s_qf_names[qtype], qname)) { 1385 ext4_msg(sb, KERN_ERR, 1386 "%s quota file already " 1387 "specified", QTYPE2NAME(qtype)); 1388 kfree(qname); 1389 return 0; 1390 } 1391 sbi->s_qf_names[qtype] = qname; 1392 if (strchr(sbi->s_qf_names[qtype], '/')) { 1393 ext4_msg(sb, KERN_ERR, 1394 "quotafile must be on " 1395 "filesystem root"); 1396 kfree(sbi->s_qf_names[qtype]); 1397 sbi->s_qf_names[qtype] = NULL; 1398 return 0; 1399 } 1400 set_opt(sbi->s_mount_opt, QUOTA); 1401 break; 1402 case Opt_offusrjquota: 1403 qtype = USRQUOTA; 1404 goto clear_qf_name; 1405 case Opt_offgrpjquota: 1406 qtype = GRPQUOTA; 1407 clear_qf_name: 1408 if (sb_any_quota_loaded(sb) && 1409 sbi->s_qf_names[qtype]) { 1410 ext4_msg(sb, KERN_ERR, "Cannot change " 1411 "journaled quota options when " 1412 "quota turned on"); 1413 return 0; 1414 } 1415 /* 1416 * The space will be released later when all options 1417 * are confirmed to be correct 1418 */ 1419 sbi->s_qf_names[qtype] = NULL; 1420 break; 1421 case Opt_jqfmt_vfsold: 1422 qfmt = QFMT_VFS_OLD; 1423 goto set_qf_format; 1424 case Opt_jqfmt_vfsv0: 1425 qfmt = QFMT_VFS_V0; 1426 set_qf_format: 1427 if (sb_any_quota_loaded(sb) && 1428 sbi->s_jquota_fmt != qfmt) { 1429 ext4_msg(sb, KERN_ERR, "Cannot change " 1430 "journaled quota options when " 1431 "quota turned on"); 1432 return 0; 1433 } 1434 sbi->s_jquota_fmt = qfmt; 1435 break; 1436 case Opt_quota: 1437 case Opt_usrquota: 1438 set_opt(sbi->s_mount_opt, QUOTA); 1439 set_opt(sbi->s_mount_opt, USRQUOTA); 1440 break; 1441 case Opt_grpquota: 1442 set_opt(sbi->s_mount_opt, QUOTA); 1443 set_opt(sbi->s_mount_opt, GRPQUOTA); 1444 break; 1445 case Opt_noquota: 1446 if (sb_any_quota_loaded(sb)) { 1447 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1448 "options when quota turned on"); 1449 return 0; 1450 } 1451 clear_opt(sbi->s_mount_opt, QUOTA); 1452 clear_opt(sbi->s_mount_opt, USRQUOTA); 1453 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1454 break; 1455 #else 1456 case Opt_quota: 1457 case Opt_usrquota: 1458 case Opt_grpquota: 1459 ext4_msg(sb, KERN_ERR, 1460 "quota options not supported"); 1461 break; 1462 case Opt_usrjquota: 1463 case Opt_grpjquota: 1464 case Opt_offusrjquota: 1465 case Opt_offgrpjquota: 1466 case Opt_jqfmt_vfsold: 1467 case Opt_jqfmt_vfsv0: 1468 ext4_msg(sb, KERN_ERR, 1469 "journaled quota options not supported"); 1470 break; 1471 case Opt_noquota: 1472 break; 1473 #endif 1474 case Opt_abort: 1475 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1476 break; 1477 case Opt_nobarrier: 1478 clear_opt(sbi->s_mount_opt, BARRIER); 1479 break; 1480 case Opt_barrier: 1481 if (match_int(&args[0], &option)) { 1482 set_opt(sbi->s_mount_opt, BARRIER); 1483 break; 1484 } 1485 if (option) 1486 set_opt(sbi->s_mount_opt, BARRIER); 1487 else 1488 clear_opt(sbi->s_mount_opt, BARRIER); 1489 break; 1490 case Opt_ignore: 1491 break; 1492 case Opt_resize: 1493 if (!is_remount) { 1494 ext4_msg(sb, KERN_ERR, 1495 "resize option only available " 1496 "for remount"); 1497 return 0; 1498 } 1499 if (match_int(&args[0], &option) != 0) 1500 return 0; 1501 *n_blocks_count = option; 1502 break; 1503 case Opt_nobh: 1504 set_opt(sbi->s_mount_opt, NOBH); 1505 break; 1506 case Opt_bh: 1507 clear_opt(sbi->s_mount_opt, NOBH); 1508 break; 1509 case Opt_i_version: 1510 set_opt(sbi->s_mount_opt, I_VERSION); 1511 sb->s_flags |= MS_I_VERSION; 1512 break; 1513 case Opt_nodelalloc: 1514 clear_opt(sbi->s_mount_opt, DELALLOC); 1515 break; 1516 case Opt_stripe: 1517 if (match_int(&args[0], &option)) 1518 return 0; 1519 if (option < 0) 1520 return 0; 1521 sbi->s_stripe = option; 1522 break; 1523 case Opt_delalloc: 1524 set_opt(sbi->s_mount_opt, DELALLOC); 1525 break; 1526 case Opt_block_validity: 1527 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1528 break; 1529 case Opt_noblock_validity: 1530 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1531 break; 1532 case Opt_inode_readahead_blks: 1533 if (match_int(&args[0], &option)) 1534 return 0; 1535 if (option < 0 || option > (1 << 30)) 1536 return 0; 1537 if (!is_power_of_2(option)) { 1538 ext4_msg(sb, KERN_ERR, 1539 "EXT4-fs: inode_readahead_blks" 1540 " must be a power of 2"); 1541 return 0; 1542 } 1543 sbi->s_inode_readahead_blks = option; 1544 break; 1545 case Opt_journal_ioprio: 1546 if (match_int(&args[0], &option)) 1547 return 0; 1548 if (option < 0 || option > 7) 1549 break; 1550 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1551 option); 1552 break; 1553 case Opt_noauto_da_alloc: 1554 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1555 break; 1556 case Opt_auto_da_alloc: 1557 if (match_int(&args[0], &option)) { 1558 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1559 break; 1560 } 1561 if (option) 1562 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1563 else 1564 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1565 break; 1566 default: 1567 ext4_msg(sb, KERN_ERR, 1568 "Unrecognized mount option \"%s\" " 1569 "or missing value", p); 1570 return 0; 1571 } 1572 } 1573 #ifdef CONFIG_QUOTA 1574 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1575 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1576 sbi->s_qf_names[USRQUOTA]) 1577 clear_opt(sbi->s_mount_opt, USRQUOTA); 1578 1579 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1580 sbi->s_qf_names[GRPQUOTA]) 1581 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1582 1583 if ((sbi->s_qf_names[USRQUOTA] && 1584 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1585 (sbi->s_qf_names[GRPQUOTA] && 1586 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1587 ext4_msg(sb, KERN_ERR, "old and new quota " 1588 "format mixing"); 1589 return 0; 1590 } 1591 1592 if (!sbi->s_jquota_fmt) { 1593 ext4_msg(sb, KERN_ERR, "journaled quota format " 1594 "not specified"); 1595 return 0; 1596 } 1597 } else { 1598 if (sbi->s_jquota_fmt) { 1599 ext4_msg(sb, KERN_ERR, "journaled quota format " 1600 "specified with no journaling " 1601 "enabled"); 1602 return 0; 1603 } 1604 } 1605 #endif 1606 return 1; 1607 } 1608 1609 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1610 int read_only) 1611 { 1612 struct ext4_sb_info *sbi = EXT4_SB(sb); 1613 int res = 0; 1614 1615 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1616 ext4_msg(sb, KERN_ERR, "revision level too high, " 1617 "forcing read-only mode"); 1618 res = MS_RDONLY; 1619 } 1620 if (read_only) 1621 return res; 1622 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1623 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1624 "running e2fsck is recommended"); 1625 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1626 ext4_msg(sb, KERN_WARNING, 1627 "warning: mounting fs with errors, " 1628 "running e2fsck is recommended"); 1629 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1630 le16_to_cpu(es->s_mnt_count) >= 1631 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1632 ext4_msg(sb, KERN_WARNING, 1633 "warning: maximal mount count reached, " 1634 "running e2fsck is recommended"); 1635 else if (le32_to_cpu(es->s_checkinterval) && 1636 (le32_to_cpu(es->s_lastcheck) + 1637 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1638 ext4_msg(sb, KERN_WARNING, 1639 "warning: checktime reached, " 1640 "running e2fsck is recommended"); 1641 if (!sbi->s_journal) 1642 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1643 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1644 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1645 le16_add_cpu(&es->s_mnt_count, 1); 1646 es->s_mtime = cpu_to_le32(get_seconds()); 1647 ext4_update_dynamic_rev(sb); 1648 if (sbi->s_journal) 1649 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1650 1651 ext4_commit_super(sb, 1); 1652 if (test_opt(sb, DEBUG)) 1653 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1654 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1655 sb->s_blocksize, 1656 sbi->s_groups_count, 1657 EXT4_BLOCKS_PER_GROUP(sb), 1658 EXT4_INODES_PER_GROUP(sb), 1659 sbi->s_mount_opt); 1660 1661 return res; 1662 } 1663 1664 static int ext4_fill_flex_info(struct super_block *sb) 1665 { 1666 struct ext4_sb_info *sbi = EXT4_SB(sb); 1667 struct ext4_group_desc *gdp = NULL; 1668 ext4_group_t flex_group_count; 1669 ext4_group_t flex_group; 1670 int groups_per_flex = 0; 1671 size_t size; 1672 int i; 1673 1674 if (!sbi->s_es->s_log_groups_per_flex) { 1675 sbi->s_log_groups_per_flex = 0; 1676 return 1; 1677 } 1678 1679 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1680 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1681 1682 /* We allocate both existing and potentially added groups */ 1683 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1684 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1685 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1686 size = flex_group_count * sizeof(struct flex_groups); 1687 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1688 if (sbi->s_flex_groups == NULL) { 1689 sbi->s_flex_groups = vmalloc(size); 1690 if (sbi->s_flex_groups) 1691 memset(sbi->s_flex_groups, 0, size); 1692 } 1693 if (sbi->s_flex_groups == NULL) { 1694 ext4_msg(sb, KERN_ERR, "not enough memory for " 1695 "%u flex groups", flex_group_count); 1696 goto failed; 1697 } 1698 1699 for (i = 0; i < sbi->s_groups_count; i++) { 1700 gdp = ext4_get_group_desc(sb, i, NULL); 1701 1702 flex_group = ext4_flex_group(sbi, i); 1703 atomic_add(ext4_free_inodes_count(sb, gdp), 1704 &sbi->s_flex_groups[flex_group].free_inodes); 1705 atomic_add(ext4_free_blks_count(sb, gdp), 1706 &sbi->s_flex_groups[flex_group].free_blocks); 1707 atomic_add(ext4_used_dirs_count(sb, gdp), 1708 &sbi->s_flex_groups[flex_group].used_dirs); 1709 } 1710 1711 return 1; 1712 failed: 1713 return 0; 1714 } 1715 1716 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1717 struct ext4_group_desc *gdp) 1718 { 1719 __u16 crc = 0; 1720 1721 if (sbi->s_es->s_feature_ro_compat & 1722 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1723 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1724 __le32 le_group = cpu_to_le32(block_group); 1725 1726 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1727 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1728 crc = crc16(crc, (__u8 *)gdp, offset); 1729 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1730 /* for checksum of struct ext4_group_desc do the rest...*/ 1731 if ((sbi->s_es->s_feature_incompat & 1732 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1733 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1734 crc = crc16(crc, (__u8 *)gdp + offset, 1735 le16_to_cpu(sbi->s_es->s_desc_size) - 1736 offset); 1737 } 1738 1739 return cpu_to_le16(crc); 1740 } 1741 1742 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1743 struct ext4_group_desc *gdp) 1744 { 1745 if ((sbi->s_es->s_feature_ro_compat & 1746 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1747 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1748 return 0; 1749 1750 return 1; 1751 } 1752 1753 /* Called at mount-time, super-block is locked */ 1754 static int ext4_check_descriptors(struct super_block *sb) 1755 { 1756 struct ext4_sb_info *sbi = EXT4_SB(sb); 1757 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1758 ext4_fsblk_t last_block; 1759 ext4_fsblk_t block_bitmap; 1760 ext4_fsblk_t inode_bitmap; 1761 ext4_fsblk_t inode_table; 1762 int flexbg_flag = 0; 1763 ext4_group_t i; 1764 1765 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1766 flexbg_flag = 1; 1767 1768 ext4_debug("Checking group descriptors"); 1769 1770 for (i = 0; i < sbi->s_groups_count; i++) { 1771 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1772 1773 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1774 last_block = ext4_blocks_count(sbi->s_es) - 1; 1775 else 1776 last_block = first_block + 1777 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1778 1779 block_bitmap = ext4_block_bitmap(sb, gdp); 1780 if (block_bitmap < first_block || block_bitmap > last_block) { 1781 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1782 "Block bitmap for group %u not in group " 1783 "(block %llu)!", i, block_bitmap); 1784 return 0; 1785 } 1786 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1787 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1788 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1789 "Inode bitmap for group %u not in group " 1790 "(block %llu)!", i, inode_bitmap); 1791 return 0; 1792 } 1793 inode_table = ext4_inode_table(sb, gdp); 1794 if (inode_table < first_block || 1795 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1796 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1797 "Inode table for group %u not in group " 1798 "(block %llu)!", i, inode_table); 1799 return 0; 1800 } 1801 ext4_lock_group(sb, i); 1802 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1803 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1804 "Checksum for group %u failed (%u!=%u)", 1805 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1806 gdp)), le16_to_cpu(gdp->bg_checksum)); 1807 if (!(sb->s_flags & MS_RDONLY)) { 1808 ext4_unlock_group(sb, i); 1809 return 0; 1810 } 1811 } 1812 ext4_unlock_group(sb, i); 1813 if (!flexbg_flag) 1814 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1815 } 1816 1817 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1818 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1819 return 1; 1820 } 1821 1822 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1823 * the superblock) which were deleted from all directories, but held open by 1824 * a process at the time of a crash. We walk the list and try to delete these 1825 * inodes at recovery time (only with a read-write filesystem). 1826 * 1827 * In order to keep the orphan inode chain consistent during traversal (in 1828 * case of crash during recovery), we link each inode into the superblock 1829 * orphan list_head and handle it the same way as an inode deletion during 1830 * normal operation (which journals the operations for us). 1831 * 1832 * We only do an iget() and an iput() on each inode, which is very safe if we 1833 * accidentally point at an in-use or already deleted inode. The worst that 1834 * can happen in this case is that we get a "bit already cleared" message from 1835 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1836 * e2fsck was run on this filesystem, and it must have already done the orphan 1837 * inode cleanup for us, so we can safely abort without any further action. 1838 */ 1839 static void ext4_orphan_cleanup(struct super_block *sb, 1840 struct ext4_super_block *es) 1841 { 1842 unsigned int s_flags = sb->s_flags; 1843 int nr_orphans = 0, nr_truncates = 0; 1844 #ifdef CONFIG_QUOTA 1845 int i; 1846 #endif 1847 if (!es->s_last_orphan) { 1848 jbd_debug(4, "no orphan inodes to clean up\n"); 1849 return; 1850 } 1851 1852 if (bdev_read_only(sb->s_bdev)) { 1853 ext4_msg(sb, KERN_ERR, "write access " 1854 "unavailable, skipping orphan cleanup"); 1855 return; 1856 } 1857 1858 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1859 if (es->s_last_orphan) 1860 jbd_debug(1, "Errors on filesystem, " 1861 "clearing orphan list.\n"); 1862 es->s_last_orphan = 0; 1863 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1864 return; 1865 } 1866 1867 if (s_flags & MS_RDONLY) { 1868 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1869 sb->s_flags &= ~MS_RDONLY; 1870 } 1871 #ifdef CONFIG_QUOTA 1872 /* Needed for iput() to work correctly and not trash data */ 1873 sb->s_flags |= MS_ACTIVE; 1874 /* Turn on quotas so that they are updated correctly */ 1875 for (i = 0; i < MAXQUOTAS; i++) { 1876 if (EXT4_SB(sb)->s_qf_names[i]) { 1877 int ret = ext4_quota_on_mount(sb, i); 1878 if (ret < 0) 1879 ext4_msg(sb, KERN_ERR, 1880 "Cannot turn on journaled " 1881 "quota: error %d", ret); 1882 } 1883 } 1884 #endif 1885 1886 while (es->s_last_orphan) { 1887 struct inode *inode; 1888 1889 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1890 if (IS_ERR(inode)) { 1891 es->s_last_orphan = 0; 1892 break; 1893 } 1894 1895 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1896 vfs_dq_init(inode); 1897 if (inode->i_nlink) { 1898 ext4_msg(sb, KERN_DEBUG, 1899 "%s: truncating inode %lu to %lld bytes", 1900 __func__, inode->i_ino, inode->i_size); 1901 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1902 inode->i_ino, inode->i_size); 1903 ext4_truncate(inode); 1904 nr_truncates++; 1905 } else { 1906 ext4_msg(sb, KERN_DEBUG, 1907 "%s: deleting unreferenced inode %lu", 1908 __func__, inode->i_ino); 1909 jbd_debug(2, "deleting unreferenced inode %lu\n", 1910 inode->i_ino); 1911 nr_orphans++; 1912 } 1913 iput(inode); /* The delete magic happens here! */ 1914 } 1915 1916 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1917 1918 if (nr_orphans) 1919 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1920 PLURAL(nr_orphans)); 1921 if (nr_truncates) 1922 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1923 PLURAL(nr_truncates)); 1924 #ifdef CONFIG_QUOTA 1925 /* Turn quotas off */ 1926 for (i = 0; i < MAXQUOTAS; i++) { 1927 if (sb_dqopt(sb)->files[i]) 1928 vfs_quota_off(sb, i, 0); 1929 } 1930 #endif 1931 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1932 } 1933 1934 /* 1935 * Maximal extent format file size. 1936 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1937 * extent format containers, within a sector_t, and within i_blocks 1938 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1939 * so that won't be a limiting factor. 1940 * 1941 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1942 */ 1943 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1944 { 1945 loff_t res; 1946 loff_t upper_limit = MAX_LFS_FILESIZE; 1947 1948 /* small i_blocks in vfs inode? */ 1949 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1950 /* 1951 * CONFIG_LBDAF is not enabled implies the inode 1952 * i_block represent total blocks in 512 bytes 1953 * 32 == size of vfs inode i_blocks * 8 1954 */ 1955 upper_limit = (1LL << 32) - 1; 1956 1957 /* total blocks in file system block size */ 1958 upper_limit >>= (blkbits - 9); 1959 upper_limit <<= blkbits; 1960 } 1961 1962 /* 32-bit extent-start container, ee_block */ 1963 res = 1LL << 32; 1964 res <<= blkbits; 1965 res -= 1; 1966 1967 /* Sanity check against vm- & vfs- imposed limits */ 1968 if (res > upper_limit) 1969 res = upper_limit; 1970 1971 return res; 1972 } 1973 1974 /* 1975 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1976 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1977 * We need to be 1 filesystem block less than the 2^48 sector limit. 1978 */ 1979 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1980 { 1981 loff_t res = EXT4_NDIR_BLOCKS; 1982 int meta_blocks; 1983 loff_t upper_limit; 1984 /* This is calculated to be the largest file size for a dense, block 1985 * mapped file such that the file's total number of 512-byte sectors, 1986 * including data and all indirect blocks, does not exceed (2^48 - 1). 1987 * 1988 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 1989 * number of 512-byte sectors of the file. 1990 */ 1991 1992 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1993 /* 1994 * !has_huge_files or CONFIG_LBDAF not enabled implies that 1995 * the inode i_block field represents total file blocks in 1996 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 1997 */ 1998 upper_limit = (1LL << 32) - 1; 1999 2000 /* total blocks in file system block size */ 2001 upper_limit >>= (bits - 9); 2002 2003 } else { 2004 /* 2005 * We use 48 bit ext4_inode i_blocks 2006 * With EXT4_HUGE_FILE_FL set the i_blocks 2007 * represent total number of blocks in 2008 * file system block size 2009 */ 2010 upper_limit = (1LL << 48) - 1; 2011 2012 } 2013 2014 /* indirect blocks */ 2015 meta_blocks = 1; 2016 /* double indirect blocks */ 2017 meta_blocks += 1 + (1LL << (bits-2)); 2018 /* tripple indirect blocks */ 2019 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2020 2021 upper_limit -= meta_blocks; 2022 upper_limit <<= bits; 2023 2024 res += 1LL << (bits-2); 2025 res += 1LL << (2*(bits-2)); 2026 res += 1LL << (3*(bits-2)); 2027 res <<= bits; 2028 if (res > upper_limit) 2029 res = upper_limit; 2030 2031 if (res > MAX_LFS_FILESIZE) 2032 res = MAX_LFS_FILESIZE; 2033 2034 return res; 2035 } 2036 2037 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2038 ext4_fsblk_t logical_sb_block, int nr) 2039 { 2040 struct ext4_sb_info *sbi = EXT4_SB(sb); 2041 ext4_group_t bg, first_meta_bg; 2042 int has_super = 0; 2043 2044 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2045 2046 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2047 nr < first_meta_bg) 2048 return logical_sb_block + nr + 1; 2049 bg = sbi->s_desc_per_block * nr; 2050 if (ext4_bg_has_super(sb, bg)) 2051 has_super = 1; 2052 2053 return (has_super + ext4_group_first_block_no(sb, bg)); 2054 } 2055 2056 /** 2057 * ext4_get_stripe_size: Get the stripe size. 2058 * @sbi: In memory super block info 2059 * 2060 * If we have specified it via mount option, then 2061 * use the mount option value. If the value specified at mount time is 2062 * greater than the blocks per group use the super block value. 2063 * If the super block value is greater than blocks per group return 0. 2064 * Allocator needs it be less than blocks per group. 2065 * 2066 */ 2067 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2068 { 2069 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2070 unsigned long stripe_width = 2071 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2072 2073 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2074 return sbi->s_stripe; 2075 2076 if (stripe_width <= sbi->s_blocks_per_group) 2077 return stripe_width; 2078 2079 if (stride <= sbi->s_blocks_per_group) 2080 return stride; 2081 2082 return 0; 2083 } 2084 2085 /* sysfs supprt */ 2086 2087 struct ext4_attr { 2088 struct attribute attr; 2089 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2090 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2091 const char *, size_t); 2092 int offset; 2093 }; 2094 2095 static int parse_strtoul(const char *buf, 2096 unsigned long max, unsigned long *value) 2097 { 2098 char *endp; 2099 2100 while (*buf && isspace(*buf)) 2101 buf++; 2102 *value = simple_strtoul(buf, &endp, 0); 2103 while (*endp && isspace(*endp)) 2104 endp++; 2105 if (*endp || *value > max) 2106 return -EINVAL; 2107 2108 return 0; 2109 } 2110 2111 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2112 struct ext4_sb_info *sbi, 2113 char *buf) 2114 { 2115 return snprintf(buf, PAGE_SIZE, "%llu\n", 2116 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2117 } 2118 2119 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2120 struct ext4_sb_info *sbi, char *buf) 2121 { 2122 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2123 2124 return snprintf(buf, PAGE_SIZE, "%lu\n", 2125 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2126 sbi->s_sectors_written_start) >> 1); 2127 } 2128 2129 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2130 struct ext4_sb_info *sbi, char *buf) 2131 { 2132 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2133 2134 return snprintf(buf, PAGE_SIZE, "%llu\n", 2135 sbi->s_kbytes_written + 2136 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2137 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2138 } 2139 2140 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2141 struct ext4_sb_info *sbi, 2142 const char *buf, size_t count) 2143 { 2144 unsigned long t; 2145 2146 if (parse_strtoul(buf, 0x40000000, &t)) 2147 return -EINVAL; 2148 2149 if (!is_power_of_2(t)) 2150 return -EINVAL; 2151 2152 sbi->s_inode_readahead_blks = t; 2153 return count; 2154 } 2155 2156 static ssize_t sbi_ui_show(struct ext4_attr *a, 2157 struct ext4_sb_info *sbi, char *buf) 2158 { 2159 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2160 2161 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2162 } 2163 2164 static ssize_t sbi_ui_store(struct ext4_attr *a, 2165 struct ext4_sb_info *sbi, 2166 const char *buf, size_t count) 2167 { 2168 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2169 unsigned long t; 2170 2171 if (parse_strtoul(buf, 0xffffffff, &t)) 2172 return -EINVAL; 2173 *ui = t; 2174 return count; 2175 } 2176 2177 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2178 static struct ext4_attr ext4_attr_##_name = { \ 2179 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2180 .show = _show, \ 2181 .store = _store, \ 2182 .offset = offsetof(struct ext4_sb_info, _elname), \ 2183 } 2184 #define EXT4_ATTR(name, mode, show, store) \ 2185 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2186 2187 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2188 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2189 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2190 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2191 #define ATTR_LIST(name) &ext4_attr_##name.attr 2192 2193 EXT4_RO_ATTR(delayed_allocation_blocks); 2194 EXT4_RO_ATTR(session_write_kbytes); 2195 EXT4_RO_ATTR(lifetime_write_kbytes); 2196 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2197 inode_readahead_blks_store, s_inode_readahead_blks); 2198 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2199 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2200 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2201 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2202 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2203 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2204 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2205 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2206 2207 static struct attribute *ext4_attrs[] = { 2208 ATTR_LIST(delayed_allocation_blocks), 2209 ATTR_LIST(session_write_kbytes), 2210 ATTR_LIST(lifetime_write_kbytes), 2211 ATTR_LIST(inode_readahead_blks), 2212 ATTR_LIST(inode_goal), 2213 ATTR_LIST(mb_stats), 2214 ATTR_LIST(mb_max_to_scan), 2215 ATTR_LIST(mb_min_to_scan), 2216 ATTR_LIST(mb_order2_req), 2217 ATTR_LIST(mb_stream_req), 2218 ATTR_LIST(mb_group_prealloc), 2219 ATTR_LIST(max_writeback_mb_bump), 2220 NULL, 2221 }; 2222 2223 static ssize_t ext4_attr_show(struct kobject *kobj, 2224 struct attribute *attr, char *buf) 2225 { 2226 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2227 s_kobj); 2228 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2229 2230 return a->show ? a->show(a, sbi, buf) : 0; 2231 } 2232 2233 static ssize_t ext4_attr_store(struct kobject *kobj, 2234 struct attribute *attr, 2235 const char *buf, size_t len) 2236 { 2237 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2238 s_kobj); 2239 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2240 2241 return a->store ? a->store(a, sbi, buf, len) : 0; 2242 } 2243 2244 static void ext4_sb_release(struct kobject *kobj) 2245 { 2246 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2247 s_kobj); 2248 complete(&sbi->s_kobj_unregister); 2249 } 2250 2251 2252 static struct sysfs_ops ext4_attr_ops = { 2253 .show = ext4_attr_show, 2254 .store = ext4_attr_store, 2255 }; 2256 2257 static struct kobj_type ext4_ktype = { 2258 .default_attrs = ext4_attrs, 2259 .sysfs_ops = &ext4_attr_ops, 2260 .release = ext4_sb_release, 2261 }; 2262 2263 /* 2264 * Check whether this filesystem can be mounted based on 2265 * the features present and the RDONLY/RDWR mount requested. 2266 * Returns 1 if this filesystem can be mounted as requested, 2267 * 0 if it cannot be. 2268 */ 2269 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2270 { 2271 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2272 ext4_msg(sb, KERN_ERR, 2273 "Couldn't mount because of " 2274 "unsupported optional features (%x)", 2275 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2276 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2277 return 0; 2278 } 2279 2280 if (readonly) 2281 return 1; 2282 2283 /* Check that feature set is OK for a read-write mount */ 2284 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2285 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2286 "unsupported optional features (%x)", 2287 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2288 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2289 return 0; 2290 } 2291 /* 2292 * Large file size enabled file system can only be mounted 2293 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2294 */ 2295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2296 if (sizeof(blkcnt_t) < sizeof(u64)) { 2297 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2298 "cannot be mounted RDWR without " 2299 "CONFIG_LBDAF"); 2300 return 0; 2301 } 2302 } 2303 return 1; 2304 } 2305 2306 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2307 __releases(kernel_lock) 2308 __acquires(kernel_lock) 2309 { 2310 struct buffer_head *bh; 2311 struct ext4_super_block *es = NULL; 2312 struct ext4_sb_info *sbi; 2313 ext4_fsblk_t block; 2314 ext4_fsblk_t sb_block = get_sb_block(&data); 2315 ext4_fsblk_t logical_sb_block; 2316 unsigned long offset = 0; 2317 unsigned long journal_devnum = 0; 2318 unsigned long def_mount_opts; 2319 struct inode *root; 2320 char *cp; 2321 const char *descr; 2322 int ret = -EINVAL; 2323 int blocksize; 2324 unsigned int db_count; 2325 unsigned int i; 2326 int needs_recovery, has_huge_files; 2327 __u64 blocks_count; 2328 int err; 2329 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2330 2331 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2332 if (!sbi) 2333 return -ENOMEM; 2334 2335 sbi->s_blockgroup_lock = 2336 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2337 if (!sbi->s_blockgroup_lock) { 2338 kfree(sbi); 2339 return -ENOMEM; 2340 } 2341 sb->s_fs_info = sbi; 2342 sbi->s_mount_opt = 0; 2343 sbi->s_resuid = EXT4_DEF_RESUID; 2344 sbi->s_resgid = EXT4_DEF_RESGID; 2345 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2346 sbi->s_sb_block = sb_block; 2347 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2348 sectors[1]); 2349 2350 unlock_kernel(); 2351 2352 /* Cleanup superblock name */ 2353 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2354 *cp = '!'; 2355 2356 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2357 if (!blocksize) { 2358 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2359 goto out_fail; 2360 } 2361 2362 /* 2363 * The ext4 superblock will not be buffer aligned for other than 1kB 2364 * block sizes. We need to calculate the offset from buffer start. 2365 */ 2366 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2367 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2368 offset = do_div(logical_sb_block, blocksize); 2369 } else { 2370 logical_sb_block = sb_block; 2371 } 2372 2373 if (!(bh = sb_bread(sb, logical_sb_block))) { 2374 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2375 goto out_fail; 2376 } 2377 /* 2378 * Note: s_es must be initialized as soon as possible because 2379 * some ext4 macro-instructions depend on its value 2380 */ 2381 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2382 sbi->s_es = es; 2383 sb->s_magic = le16_to_cpu(es->s_magic); 2384 if (sb->s_magic != EXT4_SUPER_MAGIC) 2385 goto cantfind_ext4; 2386 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2387 2388 /* Set defaults before we parse the mount options */ 2389 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2390 if (def_mount_opts & EXT4_DEFM_DEBUG) 2391 set_opt(sbi->s_mount_opt, DEBUG); 2392 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2393 set_opt(sbi->s_mount_opt, GRPID); 2394 if (def_mount_opts & EXT4_DEFM_UID16) 2395 set_opt(sbi->s_mount_opt, NO_UID32); 2396 #ifdef CONFIG_EXT4_FS_XATTR 2397 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2398 set_opt(sbi->s_mount_opt, XATTR_USER); 2399 #endif 2400 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2401 if (def_mount_opts & EXT4_DEFM_ACL) 2402 set_opt(sbi->s_mount_opt, POSIX_ACL); 2403 #endif 2404 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2405 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2406 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2407 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2408 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2409 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2410 2411 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2412 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2413 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2414 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2415 else 2416 set_opt(sbi->s_mount_opt, ERRORS_RO); 2417 2418 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2419 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2420 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2421 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2422 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2423 2424 set_opt(sbi->s_mount_opt, BARRIER); 2425 2426 /* 2427 * enable delayed allocation by default 2428 * Use -o nodelalloc to turn it off 2429 */ 2430 set_opt(sbi->s_mount_opt, DELALLOC); 2431 2432 if (!parse_options((char *) data, sb, &journal_devnum, 2433 &journal_ioprio, NULL, 0)) 2434 goto failed_mount; 2435 2436 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2437 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2438 2439 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2440 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2441 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2442 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2443 ext4_msg(sb, KERN_WARNING, 2444 "feature flags set on rev 0 fs, " 2445 "running e2fsck is recommended"); 2446 2447 /* 2448 * Check feature flags regardless of the revision level, since we 2449 * previously didn't change the revision level when setting the flags, 2450 * so there is a chance incompat flags are set on a rev 0 filesystem. 2451 */ 2452 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 2453 goto failed_mount; 2454 2455 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2456 2457 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2458 blocksize > EXT4_MAX_BLOCK_SIZE) { 2459 ext4_msg(sb, KERN_ERR, 2460 "Unsupported filesystem blocksize %d", blocksize); 2461 goto failed_mount; 2462 } 2463 2464 if (sb->s_blocksize != blocksize) { 2465 /* Validate the filesystem blocksize */ 2466 if (!sb_set_blocksize(sb, blocksize)) { 2467 ext4_msg(sb, KERN_ERR, "bad block size %d", 2468 blocksize); 2469 goto failed_mount; 2470 } 2471 2472 brelse(bh); 2473 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2474 offset = do_div(logical_sb_block, blocksize); 2475 bh = sb_bread(sb, logical_sb_block); 2476 if (!bh) { 2477 ext4_msg(sb, KERN_ERR, 2478 "Can't read superblock on 2nd try"); 2479 goto failed_mount; 2480 } 2481 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2482 sbi->s_es = es; 2483 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2484 ext4_msg(sb, KERN_ERR, 2485 "Magic mismatch, very weird!"); 2486 goto failed_mount; 2487 } 2488 } 2489 2490 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2491 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2492 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2493 has_huge_files); 2494 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2495 2496 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2497 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2498 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2499 } else { 2500 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2501 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2502 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2503 (!is_power_of_2(sbi->s_inode_size)) || 2504 (sbi->s_inode_size > blocksize)) { 2505 ext4_msg(sb, KERN_ERR, 2506 "unsupported inode size: %d", 2507 sbi->s_inode_size); 2508 goto failed_mount; 2509 } 2510 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2511 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2512 } 2513 2514 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2515 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2516 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2517 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2518 !is_power_of_2(sbi->s_desc_size)) { 2519 ext4_msg(sb, KERN_ERR, 2520 "unsupported descriptor size %lu", 2521 sbi->s_desc_size); 2522 goto failed_mount; 2523 } 2524 } else 2525 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2526 2527 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2528 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2529 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2530 goto cantfind_ext4; 2531 2532 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2533 if (sbi->s_inodes_per_block == 0) 2534 goto cantfind_ext4; 2535 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2536 sbi->s_inodes_per_block; 2537 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2538 sbi->s_sbh = bh; 2539 sbi->s_mount_state = le16_to_cpu(es->s_state); 2540 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2541 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2542 2543 for (i = 0; i < 4; i++) 2544 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2545 sbi->s_def_hash_version = es->s_def_hash_version; 2546 i = le32_to_cpu(es->s_flags); 2547 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2548 sbi->s_hash_unsigned = 3; 2549 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2550 #ifdef __CHAR_UNSIGNED__ 2551 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2552 sbi->s_hash_unsigned = 3; 2553 #else 2554 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2555 #endif 2556 sb->s_dirt = 1; 2557 } 2558 2559 if (sbi->s_blocks_per_group > blocksize * 8) { 2560 ext4_msg(sb, KERN_ERR, 2561 "#blocks per group too big: %lu", 2562 sbi->s_blocks_per_group); 2563 goto failed_mount; 2564 } 2565 if (sbi->s_inodes_per_group > blocksize * 8) { 2566 ext4_msg(sb, KERN_ERR, 2567 "#inodes per group too big: %lu", 2568 sbi->s_inodes_per_group); 2569 goto failed_mount; 2570 } 2571 2572 /* 2573 * Test whether we have more sectors than will fit in sector_t, 2574 * and whether the max offset is addressable by the page cache. 2575 */ 2576 if ((ext4_blocks_count(es) > 2577 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) || 2578 (ext4_blocks_count(es) > 2579 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) { 2580 ext4_msg(sb, KERN_ERR, "filesystem" 2581 " too large to mount safely on this system"); 2582 if (sizeof(sector_t) < 8) 2583 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 2584 ret = -EFBIG; 2585 goto failed_mount; 2586 } 2587 2588 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2589 goto cantfind_ext4; 2590 2591 /* check blocks count against device size */ 2592 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2593 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2594 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2595 "exceeds size of device (%llu blocks)", 2596 ext4_blocks_count(es), blocks_count); 2597 goto failed_mount; 2598 } 2599 2600 /* 2601 * It makes no sense for the first data block to be beyond the end 2602 * of the filesystem. 2603 */ 2604 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2605 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2606 "block %u is beyond end of filesystem (%llu)", 2607 le32_to_cpu(es->s_first_data_block), 2608 ext4_blocks_count(es)); 2609 goto failed_mount; 2610 } 2611 blocks_count = (ext4_blocks_count(es) - 2612 le32_to_cpu(es->s_first_data_block) + 2613 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2614 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2615 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2616 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2617 "(block count %llu, first data block %u, " 2618 "blocks per group %lu)", sbi->s_groups_count, 2619 ext4_blocks_count(es), 2620 le32_to_cpu(es->s_first_data_block), 2621 EXT4_BLOCKS_PER_GROUP(sb)); 2622 goto failed_mount; 2623 } 2624 sbi->s_groups_count = blocks_count; 2625 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 2626 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 2627 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2628 EXT4_DESC_PER_BLOCK(sb); 2629 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2630 GFP_KERNEL); 2631 if (sbi->s_group_desc == NULL) { 2632 ext4_msg(sb, KERN_ERR, "not enough memory"); 2633 goto failed_mount; 2634 } 2635 2636 #ifdef CONFIG_PROC_FS 2637 if (ext4_proc_root) 2638 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2639 #endif 2640 2641 bgl_lock_init(sbi->s_blockgroup_lock); 2642 2643 for (i = 0; i < db_count; i++) { 2644 block = descriptor_loc(sb, logical_sb_block, i); 2645 sbi->s_group_desc[i] = sb_bread(sb, block); 2646 if (!sbi->s_group_desc[i]) { 2647 ext4_msg(sb, KERN_ERR, 2648 "can't read group descriptor %d", i); 2649 db_count = i; 2650 goto failed_mount2; 2651 } 2652 } 2653 if (!ext4_check_descriptors(sb)) { 2654 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2655 goto failed_mount2; 2656 } 2657 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2658 if (!ext4_fill_flex_info(sb)) { 2659 ext4_msg(sb, KERN_ERR, 2660 "unable to initialize " 2661 "flex_bg meta info!"); 2662 goto failed_mount2; 2663 } 2664 2665 sbi->s_gdb_count = db_count; 2666 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2667 spin_lock_init(&sbi->s_next_gen_lock); 2668 2669 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2670 ext4_count_free_blocks(sb)); 2671 if (!err) { 2672 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2673 ext4_count_free_inodes(sb)); 2674 } 2675 if (!err) { 2676 err = percpu_counter_init(&sbi->s_dirs_counter, 2677 ext4_count_dirs(sb)); 2678 } 2679 if (!err) { 2680 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2681 } 2682 if (err) { 2683 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2684 goto failed_mount3; 2685 } 2686 2687 sbi->s_stripe = ext4_get_stripe_size(sbi); 2688 sbi->s_max_writeback_mb_bump = 128; 2689 2690 /* 2691 * set up enough so that it can read an inode 2692 */ 2693 if (!test_opt(sb, NOLOAD) && 2694 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2695 sb->s_op = &ext4_sops; 2696 else 2697 sb->s_op = &ext4_nojournal_sops; 2698 sb->s_export_op = &ext4_export_ops; 2699 sb->s_xattr = ext4_xattr_handlers; 2700 #ifdef CONFIG_QUOTA 2701 sb->s_qcop = &ext4_qctl_operations; 2702 sb->dq_op = &ext4_quota_operations; 2703 #endif 2704 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2705 mutex_init(&sbi->s_orphan_lock); 2706 mutex_init(&sbi->s_resize_lock); 2707 2708 sb->s_root = NULL; 2709 2710 needs_recovery = (es->s_last_orphan != 0 || 2711 EXT4_HAS_INCOMPAT_FEATURE(sb, 2712 EXT4_FEATURE_INCOMPAT_RECOVER)); 2713 2714 /* 2715 * The first inode we look at is the journal inode. Don't try 2716 * root first: it may be modified in the journal! 2717 */ 2718 if (!test_opt(sb, NOLOAD) && 2719 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2720 if (ext4_load_journal(sb, es, journal_devnum)) 2721 goto failed_mount3; 2722 if (!(sb->s_flags & MS_RDONLY) && 2723 EXT4_SB(sb)->s_journal->j_failed_commit) { 2724 ext4_msg(sb, KERN_CRIT, "error: " 2725 "ext4_fill_super: Journal transaction " 2726 "%u is corrupt", 2727 EXT4_SB(sb)->s_journal->j_failed_commit); 2728 if (test_opt(sb, ERRORS_RO)) { 2729 ext4_msg(sb, KERN_CRIT, 2730 "Mounting filesystem read-only"); 2731 sb->s_flags |= MS_RDONLY; 2732 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2733 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2734 } 2735 if (test_opt(sb, ERRORS_PANIC)) { 2736 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2737 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2738 ext4_commit_super(sb, 1); 2739 goto failed_mount4; 2740 } 2741 } 2742 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2743 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2744 ext4_msg(sb, KERN_ERR, "required journal recovery " 2745 "suppressed and not mounted read-only"); 2746 goto failed_mount4; 2747 } else { 2748 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2749 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2750 sbi->s_journal = NULL; 2751 needs_recovery = 0; 2752 goto no_journal; 2753 } 2754 2755 if (ext4_blocks_count(es) > 0xffffffffULL && 2756 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2757 JBD2_FEATURE_INCOMPAT_64BIT)) { 2758 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2759 goto failed_mount4; 2760 } 2761 2762 jbd2_journal_set_features(sbi->s_journal, 2763 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2764 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 2765 jbd2_journal_set_features(sbi->s_journal, 0, 0, 2766 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2767 else 2768 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2769 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2770 2771 /* We have now updated the journal if required, so we can 2772 * validate the data journaling mode. */ 2773 switch (test_opt(sb, DATA_FLAGS)) { 2774 case 0: 2775 /* No mode set, assume a default based on the journal 2776 * capabilities: ORDERED_DATA if the journal can 2777 * cope, else JOURNAL_DATA 2778 */ 2779 if (jbd2_journal_check_available_features 2780 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2781 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2782 else 2783 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2784 break; 2785 2786 case EXT4_MOUNT_ORDERED_DATA: 2787 case EXT4_MOUNT_WRITEBACK_DATA: 2788 if (!jbd2_journal_check_available_features 2789 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2790 ext4_msg(sb, KERN_ERR, "Journal does not support " 2791 "requested data journaling mode"); 2792 goto failed_mount4; 2793 } 2794 default: 2795 break; 2796 } 2797 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2798 2799 no_journal: 2800 2801 if (test_opt(sb, NOBH)) { 2802 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2803 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2804 "its supported only with writeback mode"); 2805 clear_opt(sbi->s_mount_opt, NOBH); 2806 } 2807 } 2808 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 2809 if (!EXT4_SB(sb)->dio_unwritten_wq) { 2810 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 2811 goto failed_mount_wq; 2812 } 2813 2814 /* 2815 * The jbd2_journal_load will have done any necessary log recovery, 2816 * so we can safely mount the rest of the filesystem now. 2817 */ 2818 2819 root = ext4_iget(sb, EXT4_ROOT_INO); 2820 if (IS_ERR(root)) { 2821 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2822 ret = PTR_ERR(root); 2823 goto failed_mount4; 2824 } 2825 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2826 iput(root); 2827 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2828 goto failed_mount4; 2829 } 2830 sb->s_root = d_alloc_root(root); 2831 if (!sb->s_root) { 2832 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2833 iput(root); 2834 ret = -ENOMEM; 2835 goto failed_mount4; 2836 } 2837 2838 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2839 2840 /* determine the minimum size of new large inodes, if present */ 2841 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2842 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2843 EXT4_GOOD_OLD_INODE_SIZE; 2844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2845 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2846 if (sbi->s_want_extra_isize < 2847 le16_to_cpu(es->s_want_extra_isize)) 2848 sbi->s_want_extra_isize = 2849 le16_to_cpu(es->s_want_extra_isize); 2850 if (sbi->s_want_extra_isize < 2851 le16_to_cpu(es->s_min_extra_isize)) 2852 sbi->s_want_extra_isize = 2853 le16_to_cpu(es->s_min_extra_isize); 2854 } 2855 } 2856 /* Check if enough inode space is available */ 2857 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2858 sbi->s_inode_size) { 2859 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2860 EXT4_GOOD_OLD_INODE_SIZE; 2861 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2862 "available"); 2863 } 2864 2865 if (test_opt(sb, DELALLOC) && 2866 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2867 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2868 "requested data journaling mode"); 2869 clear_opt(sbi->s_mount_opt, DELALLOC); 2870 } 2871 2872 err = ext4_setup_system_zone(sb); 2873 if (err) { 2874 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2875 "zone (%d)\n", err); 2876 goto failed_mount4; 2877 } 2878 2879 ext4_ext_init(sb); 2880 err = ext4_mb_init(sb, needs_recovery); 2881 if (err) { 2882 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2883 err); 2884 goto failed_mount4; 2885 } 2886 2887 sbi->s_kobj.kset = ext4_kset; 2888 init_completion(&sbi->s_kobj_unregister); 2889 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2890 "%s", sb->s_id); 2891 if (err) { 2892 ext4_mb_release(sb); 2893 ext4_ext_release(sb); 2894 goto failed_mount4; 2895 }; 2896 2897 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2898 ext4_orphan_cleanup(sb, es); 2899 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2900 if (needs_recovery) { 2901 ext4_msg(sb, KERN_INFO, "recovery complete"); 2902 ext4_mark_recovery_complete(sb, es); 2903 } 2904 if (EXT4_SB(sb)->s_journal) { 2905 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2906 descr = " journalled data mode"; 2907 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2908 descr = " ordered data mode"; 2909 else 2910 descr = " writeback data mode"; 2911 } else 2912 descr = "out journal"; 2913 2914 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2915 2916 lock_kernel(); 2917 return 0; 2918 2919 cantfind_ext4: 2920 if (!silent) 2921 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2922 goto failed_mount; 2923 2924 failed_mount4: 2925 ext4_msg(sb, KERN_ERR, "mount failed"); 2926 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 2927 failed_mount_wq: 2928 ext4_release_system_zone(sb); 2929 if (sbi->s_journal) { 2930 jbd2_journal_destroy(sbi->s_journal); 2931 sbi->s_journal = NULL; 2932 } 2933 failed_mount3: 2934 if (sbi->s_flex_groups) { 2935 if (is_vmalloc_addr(sbi->s_flex_groups)) 2936 vfree(sbi->s_flex_groups); 2937 else 2938 kfree(sbi->s_flex_groups); 2939 } 2940 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2941 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2942 percpu_counter_destroy(&sbi->s_dirs_counter); 2943 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2944 failed_mount2: 2945 for (i = 0; i < db_count; i++) 2946 brelse(sbi->s_group_desc[i]); 2947 kfree(sbi->s_group_desc); 2948 failed_mount: 2949 if (sbi->s_proc) { 2950 remove_proc_entry(sb->s_id, ext4_proc_root); 2951 } 2952 #ifdef CONFIG_QUOTA 2953 for (i = 0; i < MAXQUOTAS; i++) 2954 kfree(sbi->s_qf_names[i]); 2955 #endif 2956 ext4_blkdev_remove(sbi); 2957 brelse(bh); 2958 out_fail: 2959 sb->s_fs_info = NULL; 2960 kfree(sbi->s_blockgroup_lock); 2961 kfree(sbi); 2962 lock_kernel(); 2963 return ret; 2964 } 2965 2966 /* 2967 * Setup any per-fs journal parameters now. We'll do this both on 2968 * initial mount, once the journal has been initialised but before we've 2969 * done any recovery; and again on any subsequent remount. 2970 */ 2971 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2972 { 2973 struct ext4_sb_info *sbi = EXT4_SB(sb); 2974 2975 journal->j_commit_interval = sbi->s_commit_interval; 2976 journal->j_min_batch_time = sbi->s_min_batch_time; 2977 journal->j_max_batch_time = sbi->s_max_batch_time; 2978 2979 spin_lock(&journal->j_state_lock); 2980 if (test_opt(sb, BARRIER)) 2981 journal->j_flags |= JBD2_BARRIER; 2982 else 2983 journal->j_flags &= ~JBD2_BARRIER; 2984 if (test_opt(sb, DATA_ERR_ABORT)) 2985 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2986 else 2987 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2988 spin_unlock(&journal->j_state_lock); 2989 } 2990 2991 static journal_t *ext4_get_journal(struct super_block *sb, 2992 unsigned int journal_inum) 2993 { 2994 struct inode *journal_inode; 2995 journal_t *journal; 2996 2997 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2998 2999 /* First, test for the existence of a valid inode on disk. Bad 3000 * things happen if we iget() an unused inode, as the subsequent 3001 * iput() will try to delete it. */ 3002 3003 journal_inode = ext4_iget(sb, journal_inum); 3004 if (IS_ERR(journal_inode)) { 3005 ext4_msg(sb, KERN_ERR, "no journal found"); 3006 return NULL; 3007 } 3008 if (!journal_inode->i_nlink) { 3009 make_bad_inode(journal_inode); 3010 iput(journal_inode); 3011 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3012 return NULL; 3013 } 3014 3015 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3016 journal_inode, journal_inode->i_size); 3017 if (!S_ISREG(journal_inode->i_mode)) { 3018 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3019 iput(journal_inode); 3020 return NULL; 3021 } 3022 3023 journal = jbd2_journal_init_inode(journal_inode); 3024 if (!journal) { 3025 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3026 iput(journal_inode); 3027 return NULL; 3028 } 3029 journal->j_private = sb; 3030 ext4_init_journal_params(sb, journal); 3031 return journal; 3032 } 3033 3034 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3035 dev_t j_dev) 3036 { 3037 struct buffer_head *bh; 3038 journal_t *journal; 3039 ext4_fsblk_t start; 3040 ext4_fsblk_t len; 3041 int hblock, blocksize; 3042 ext4_fsblk_t sb_block; 3043 unsigned long offset; 3044 struct ext4_super_block *es; 3045 struct block_device *bdev; 3046 3047 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3048 3049 bdev = ext4_blkdev_get(j_dev, sb); 3050 if (bdev == NULL) 3051 return NULL; 3052 3053 if (bd_claim(bdev, sb)) { 3054 ext4_msg(sb, KERN_ERR, 3055 "failed to claim external journal device"); 3056 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3057 return NULL; 3058 } 3059 3060 blocksize = sb->s_blocksize; 3061 hblock = bdev_logical_block_size(bdev); 3062 if (blocksize < hblock) { 3063 ext4_msg(sb, KERN_ERR, 3064 "blocksize too small for journal device"); 3065 goto out_bdev; 3066 } 3067 3068 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3069 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3070 set_blocksize(bdev, blocksize); 3071 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3072 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3073 "external journal"); 3074 goto out_bdev; 3075 } 3076 3077 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3078 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3079 !(le32_to_cpu(es->s_feature_incompat) & 3080 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3081 ext4_msg(sb, KERN_ERR, "external journal has " 3082 "bad superblock"); 3083 brelse(bh); 3084 goto out_bdev; 3085 } 3086 3087 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3088 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3089 brelse(bh); 3090 goto out_bdev; 3091 } 3092 3093 len = ext4_blocks_count(es); 3094 start = sb_block + 1; 3095 brelse(bh); /* we're done with the superblock */ 3096 3097 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3098 start, len, blocksize); 3099 if (!journal) { 3100 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3101 goto out_bdev; 3102 } 3103 journal->j_private = sb; 3104 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3105 wait_on_buffer(journal->j_sb_buffer); 3106 if (!buffer_uptodate(journal->j_sb_buffer)) { 3107 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3108 goto out_journal; 3109 } 3110 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3111 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3112 "user (unsupported) - %d", 3113 be32_to_cpu(journal->j_superblock->s_nr_users)); 3114 goto out_journal; 3115 } 3116 EXT4_SB(sb)->journal_bdev = bdev; 3117 ext4_init_journal_params(sb, journal); 3118 return journal; 3119 3120 out_journal: 3121 jbd2_journal_destroy(journal); 3122 out_bdev: 3123 ext4_blkdev_put(bdev); 3124 return NULL; 3125 } 3126 3127 static int ext4_load_journal(struct super_block *sb, 3128 struct ext4_super_block *es, 3129 unsigned long journal_devnum) 3130 { 3131 journal_t *journal; 3132 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3133 dev_t journal_dev; 3134 int err = 0; 3135 int really_read_only; 3136 3137 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3138 3139 if (journal_devnum && 3140 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3141 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3142 "numbers have changed"); 3143 journal_dev = new_decode_dev(journal_devnum); 3144 } else 3145 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3146 3147 really_read_only = bdev_read_only(sb->s_bdev); 3148 3149 /* 3150 * Are we loading a blank journal or performing recovery after a 3151 * crash? For recovery, we need to check in advance whether we 3152 * can get read-write access to the device. 3153 */ 3154 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3155 if (sb->s_flags & MS_RDONLY) { 3156 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3157 "required on readonly filesystem"); 3158 if (really_read_only) { 3159 ext4_msg(sb, KERN_ERR, "write access " 3160 "unavailable, cannot proceed"); 3161 return -EROFS; 3162 } 3163 ext4_msg(sb, KERN_INFO, "write access will " 3164 "be enabled during recovery"); 3165 } 3166 } 3167 3168 if (journal_inum && journal_dev) { 3169 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3170 "and inode journals!"); 3171 return -EINVAL; 3172 } 3173 3174 if (journal_inum) { 3175 if (!(journal = ext4_get_journal(sb, journal_inum))) 3176 return -EINVAL; 3177 } else { 3178 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3179 return -EINVAL; 3180 } 3181 3182 if (!(journal->j_flags & JBD2_BARRIER)) 3183 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3184 3185 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3186 err = jbd2_journal_update_format(journal); 3187 if (err) { 3188 ext4_msg(sb, KERN_ERR, "error updating journal"); 3189 jbd2_journal_destroy(journal); 3190 return err; 3191 } 3192 } 3193 3194 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3195 err = jbd2_journal_wipe(journal, !really_read_only); 3196 if (!err) 3197 err = jbd2_journal_load(journal); 3198 3199 if (err) { 3200 ext4_msg(sb, KERN_ERR, "error loading journal"); 3201 jbd2_journal_destroy(journal); 3202 return err; 3203 } 3204 3205 EXT4_SB(sb)->s_journal = journal; 3206 ext4_clear_journal_err(sb, es); 3207 3208 if (journal_devnum && 3209 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3210 es->s_journal_dev = cpu_to_le32(journal_devnum); 3211 3212 /* Make sure we flush the recovery flag to disk. */ 3213 ext4_commit_super(sb, 1); 3214 } 3215 3216 return 0; 3217 } 3218 3219 static int ext4_commit_super(struct super_block *sb, int sync) 3220 { 3221 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3222 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3223 int error = 0; 3224 3225 if (!sbh) 3226 return error; 3227 if (buffer_write_io_error(sbh)) { 3228 /* 3229 * Oh, dear. A previous attempt to write the 3230 * superblock failed. This could happen because the 3231 * USB device was yanked out. Or it could happen to 3232 * be a transient write error and maybe the block will 3233 * be remapped. Nothing we can do but to retry the 3234 * write and hope for the best. 3235 */ 3236 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3237 "superblock detected"); 3238 clear_buffer_write_io_error(sbh); 3239 set_buffer_uptodate(sbh); 3240 } 3241 /* 3242 * If the file system is mounted read-only, don't update the 3243 * superblock write time. This avoids updating the superblock 3244 * write time when we are mounting the root file system 3245 * read/only but we need to replay the journal; at that point, 3246 * for people who are east of GMT and who make their clock 3247 * tick in localtime for Windows bug-for-bug compatibility, 3248 * the clock is set in the future, and this will cause e2fsck 3249 * to complain and force a full file system check. 3250 */ 3251 if (!(sb->s_flags & MS_RDONLY)) 3252 es->s_wtime = cpu_to_le32(get_seconds()); 3253 es->s_kbytes_written = 3254 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3255 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3256 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3257 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3258 &EXT4_SB(sb)->s_freeblocks_counter)); 3259 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3260 &EXT4_SB(sb)->s_freeinodes_counter)); 3261 sb->s_dirt = 0; 3262 BUFFER_TRACE(sbh, "marking dirty"); 3263 mark_buffer_dirty(sbh); 3264 if (sync) { 3265 error = sync_dirty_buffer(sbh); 3266 if (error) 3267 return error; 3268 3269 error = buffer_write_io_error(sbh); 3270 if (error) { 3271 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3272 "superblock"); 3273 clear_buffer_write_io_error(sbh); 3274 set_buffer_uptodate(sbh); 3275 } 3276 } 3277 return error; 3278 } 3279 3280 /* 3281 * Have we just finished recovery? If so, and if we are mounting (or 3282 * remounting) the filesystem readonly, then we will end up with a 3283 * consistent fs on disk. Record that fact. 3284 */ 3285 static void ext4_mark_recovery_complete(struct super_block *sb, 3286 struct ext4_super_block *es) 3287 { 3288 journal_t *journal = EXT4_SB(sb)->s_journal; 3289 3290 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3291 BUG_ON(journal != NULL); 3292 return; 3293 } 3294 jbd2_journal_lock_updates(journal); 3295 if (jbd2_journal_flush(journal) < 0) 3296 goto out; 3297 3298 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3299 sb->s_flags & MS_RDONLY) { 3300 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3301 ext4_commit_super(sb, 1); 3302 } 3303 3304 out: 3305 jbd2_journal_unlock_updates(journal); 3306 } 3307 3308 /* 3309 * If we are mounting (or read-write remounting) a filesystem whose journal 3310 * has recorded an error from a previous lifetime, move that error to the 3311 * main filesystem now. 3312 */ 3313 static void ext4_clear_journal_err(struct super_block *sb, 3314 struct ext4_super_block *es) 3315 { 3316 journal_t *journal; 3317 int j_errno; 3318 const char *errstr; 3319 3320 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3321 3322 journal = EXT4_SB(sb)->s_journal; 3323 3324 /* 3325 * Now check for any error status which may have been recorded in the 3326 * journal by a prior ext4_error() or ext4_abort() 3327 */ 3328 3329 j_errno = jbd2_journal_errno(journal); 3330 if (j_errno) { 3331 char nbuf[16]; 3332 3333 errstr = ext4_decode_error(sb, j_errno, nbuf); 3334 ext4_warning(sb, __func__, "Filesystem error recorded " 3335 "from previous mount: %s", errstr); 3336 ext4_warning(sb, __func__, "Marking fs in need of " 3337 "filesystem check."); 3338 3339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3340 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3341 ext4_commit_super(sb, 1); 3342 3343 jbd2_journal_clear_err(journal); 3344 } 3345 } 3346 3347 /* 3348 * Force the running and committing transactions to commit, 3349 * and wait on the commit. 3350 */ 3351 int ext4_force_commit(struct super_block *sb) 3352 { 3353 journal_t *journal; 3354 int ret = 0; 3355 3356 if (sb->s_flags & MS_RDONLY) 3357 return 0; 3358 3359 journal = EXT4_SB(sb)->s_journal; 3360 if (journal) 3361 ret = ext4_journal_force_commit(journal); 3362 3363 return ret; 3364 } 3365 3366 static void ext4_write_super(struct super_block *sb) 3367 { 3368 lock_super(sb); 3369 ext4_commit_super(sb, 1); 3370 unlock_super(sb); 3371 } 3372 3373 static int ext4_sync_fs(struct super_block *sb, int wait) 3374 { 3375 int ret = 0; 3376 tid_t target; 3377 struct ext4_sb_info *sbi = EXT4_SB(sb); 3378 3379 trace_ext4_sync_fs(sb, wait); 3380 flush_workqueue(sbi->dio_unwritten_wq); 3381 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 3382 if (wait) 3383 jbd2_log_wait_commit(sbi->s_journal, target); 3384 } 3385 return ret; 3386 } 3387 3388 /* 3389 * LVM calls this function before a (read-only) snapshot is created. This 3390 * gives us a chance to flush the journal completely and mark the fs clean. 3391 */ 3392 static int ext4_freeze(struct super_block *sb) 3393 { 3394 int error = 0; 3395 journal_t *journal; 3396 3397 if (sb->s_flags & MS_RDONLY) 3398 return 0; 3399 3400 journal = EXT4_SB(sb)->s_journal; 3401 3402 /* Now we set up the journal barrier. */ 3403 jbd2_journal_lock_updates(journal); 3404 3405 /* 3406 * Don't clear the needs_recovery flag if we failed to flush 3407 * the journal. 3408 */ 3409 error = jbd2_journal_flush(journal); 3410 if (error < 0) { 3411 out: 3412 jbd2_journal_unlock_updates(journal); 3413 return error; 3414 } 3415 3416 /* Journal blocked and flushed, clear needs_recovery flag. */ 3417 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3418 error = ext4_commit_super(sb, 1); 3419 if (error) 3420 goto out; 3421 return 0; 3422 } 3423 3424 /* 3425 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3426 * flag here, even though the filesystem is not technically dirty yet. 3427 */ 3428 static int ext4_unfreeze(struct super_block *sb) 3429 { 3430 if (sb->s_flags & MS_RDONLY) 3431 return 0; 3432 3433 lock_super(sb); 3434 /* Reset the needs_recovery flag before the fs is unlocked. */ 3435 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3436 ext4_commit_super(sb, 1); 3437 unlock_super(sb); 3438 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3439 return 0; 3440 } 3441 3442 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3443 { 3444 struct ext4_super_block *es; 3445 struct ext4_sb_info *sbi = EXT4_SB(sb); 3446 ext4_fsblk_t n_blocks_count = 0; 3447 unsigned long old_sb_flags; 3448 struct ext4_mount_options old_opts; 3449 ext4_group_t g; 3450 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3451 int err; 3452 #ifdef CONFIG_QUOTA 3453 int i; 3454 #endif 3455 3456 lock_kernel(); 3457 3458 /* Store the original options */ 3459 lock_super(sb); 3460 old_sb_flags = sb->s_flags; 3461 old_opts.s_mount_opt = sbi->s_mount_opt; 3462 old_opts.s_resuid = sbi->s_resuid; 3463 old_opts.s_resgid = sbi->s_resgid; 3464 old_opts.s_commit_interval = sbi->s_commit_interval; 3465 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3466 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3467 #ifdef CONFIG_QUOTA 3468 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3469 for (i = 0; i < MAXQUOTAS; i++) 3470 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3471 #endif 3472 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3473 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3474 3475 /* 3476 * Allow the "check" option to be passed as a remount option. 3477 */ 3478 if (!parse_options(data, sb, NULL, &journal_ioprio, 3479 &n_blocks_count, 1)) { 3480 err = -EINVAL; 3481 goto restore_opts; 3482 } 3483 3484 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 3485 ext4_abort(sb, __func__, "Abort forced by user"); 3486 3487 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3488 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3489 3490 es = sbi->s_es; 3491 3492 if (sbi->s_journal) { 3493 ext4_init_journal_params(sb, sbi->s_journal); 3494 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3495 } 3496 3497 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3498 n_blocks_count > ext4_blocks_count(es)) { 3499 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 3500 err = -EROFS; 3501 goto restore_opts; 3502 } 3503 3504 if (*flags & MS_RDONLY) { 3505 /* 3506 * First of all, the unconditional stuff we have to do 3507 * to disable replay of the journal when we next remount 3508 */ 3509 sb->s_flags |= MS_RDONLY; 3510 3511 /* 3512 * OK, test if we are remounting a valid rw partition 3513 * readonly, and if so set the rdonly flag and then 3514 * mark the partition as valid again. 3515 */ 3516 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3517 (sbi->s_mount_state & EXT4_VALID_FS)) 3518 es->s_state = cpu_to_le16(sbi->s_mount_state); 3519 3520 if (sbi->s_journal) 3521 ext4_mark_recovery_complete(sb, es); 3522 } else { 3523 /* Make sure we can mount this feature set readwrite */ 3524 if (!ext4_feature_set_ok(sb, 0)) { 3525 err = -EROFS; 3526 goto restore_opts; 3527 } 3528 /* 3529 * Make sure the group descriptor checksums 3530 * are sane. If they aren't, refuse to remount r/w. 3531 */ 3532 for (g = 0; g < sbi->s_groups_count; g++) { 3533 struct ext4_group_desc *gdp = 3534 ext4_get_group_desc(sb, g, NULL); 3535 3536 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3537 ext4_msg(sb, KERN_ERR, 3538 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3539 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3540 le16_to_cpu(gdp->bg_checksum)); 3541 err = -EINVAL; 3542 goto restore_opts; 3543 } 3544 } 3545 3546 /* 3547 * If we have an unprocessed orphan list hanging 3548 * around from a previously readonly bdev mount, 3549 * require a full umount/remount for now. 3550 */ 3551 if (es->s_last_orphan) { 3552 ext4_msg(sb, KERN_WARNING, "Couldn't " 3553 "remount RDWR because of unprocessed " 3554 "orphan inode list. Please " 3555 "umount/remount instead"); 3556 err = -EINVAL; 3557 goto restore_opts; 3558 } 3559 3560 /* 3561 * Mounting a RDONLY partition read-write, so reread 3562 * and store the current valid flag. (It may have 3563 * been changed by e2fsck since we originally mounted 3564 * the partition.) 3565 */ 3566 if (sbi->s_journal) 3567 ext4_clear_journal_err(sb, es); 3568 sbi->s_mount_state = le16_to_cpu(es->s_state); 3569 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3570 goto restore_opts; 3571 if (!ext4_setup_super(sb, es, 0)) 3572 sb->s_flags &= ~MS_RDONLY; 3573 } 3574 } 3575 ext4_setup_system_zone(sb); 3576 if (sbi->s_journal == NULL) 3577 ext4_commit_super(sb, 1); 3578 3579 #ifdef CONFIG_QUOTA 3580 /* Release old quota file names */ 3581 for (i = 0; i < MAXQUOTAS; i++) 3582 if (old_opts.s_qf_names[i] && 3583 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3584 kfree(old_opts.s_qf_names[i]); 3585 #endif 3586 unlock_super(sb); 3587 unlock_kernel(); 3588 return 0; 3589 3590 restore_opts: 3591 sb->s_flags = old_sb_flags; 3592 sbi->s_mount_opt = old_opts.s_mount_opt; 3593 sbi->s_resuid = old_opts.s_resuid; 3594 sbi->s_resgid = old_opts.s_resgid; 3595 sbi->s_commit_interval = old_opts.s_commit_interval; 3596 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3597 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3598 #ifdef CONFIG_QUOTA 3599 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3600 for (i = 0; i < MAXQUOTAS; i++) { 3601 if (sbi->s_qf_names[i] && 3602 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3603 kfree(sbi->s_qf_names[i]); 3604 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3605 } 3606 #endif 3607 unlock_super(sb); 3608 unlock_kernel(); 3609 return err; 3610 } 3611 3612 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3613 { 3614 struct super_block *sb = dentry->d_sb; 3615 struct ext4_sb_info *sbi = EXT4_SB(sb); 3616 struct ext4_super_block *es = sbi->s_es; 3617 u64 fsid; 3618 3619 if (test_opt(sb, MINIX_DF)) { 3620 sbi->s_overhead_last = 0; 3621 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3622 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3623 ext4_fsblk_t overhead = 0; 3624 3625 /* 3626 * Compute the overhead (FS structures). This is constant 3627 * for a given filesystem unless the number of block groups 3628 * changes so we cache the previous value until it does. 3629 */ 3630 3631 /* 3632 * All of the blocks before first_data_block are 3633 * overhead 3634 */ 3635 overhead = le32_to_cpu(es->s_first_data_block); 3636 3637 /* 3638 * Add the overhead attributed to the superblock and 3639 * block group descriptors. If the sparse superblocks 3640 * feature is turned on, then not all groups have this. 3641 */ 3642 for (i = 0; i < ngroups; i++) { 3643 overhead += ext4_bg_has_super(sb, i) + 3644 ext4_bg_num_gdb(sb, i); 3645 cond_resched(); 3646 } 3647 3648 /* 3649 * Every block group has an inode bitmap, a block 3650 * bitmap, and an inode table. 3651 */ 3652 overhead += ngroups * (2 + sbi->s_itb_per_group); 3653 sbi->s_overhead_last = overhead; 3654 smp_wmb(); 3655 sbi->s_blocks_last = ext4_blocks_count(es); 3656 } 3657 3658 buf->f_type = EXT4_SUPER_MAGIC; 3659 buf->f_bsize = sb->s_blocksize; 3660 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3661 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3662 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3663 ext4_free_blocks_count_set(es, buf->f_bfree); 3664 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3665 if (buf->f_bfree < ext4_r_blocks_count(es)) 3666 buf->f_bavail = 0; 3667 buf->f_files = le32_to_cpu(es->s_inodes_count); 3668 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3669 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3670 buf->f_namelen = EXT4_NAME_LEN; 3671 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3672 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3673 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3674 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3675 3676 return 0; 3677 } 3678 3679 /* Helper function for writing quotas on sync - we need to start transaction 3680 * before quota file is locked for write. Otherwise the are possible deadlocks: 3681 * Process 1 Process 2 3682 * ext4_create() quota_sync() 3683 * jbd2_journal_start() write_dquot() 3684 * vfs_dq_init() down(dqio_mutex) 3685 * down(dqio_mutex) jbd2_journal_start() 3686 * 3687 */ 3688 3689 #ifdef CONFIG_QUOTA 3690 3691 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3692 { 3693 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3694 } 3695 3696 static int ext4_write_dquot(struct dquot *dquot) 3697 { 3698 int ret, err; 3699 handle_t *handle; 3700 struct inode *inode; 3701 3702 inode = dquot_to_inode(dquot); 3703 handle = ext4_journal_start(inode, 3704 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3705 if (IS_ERR(handle)) 3706 return PTR_ERR(handle); 3707 ret = dquot_commit(dquot); 3708 err = ext4_journal_stop(handle); 3709 if (!ret) 3710 ret = err; 3711 return ret; 3712 } 3713 3714 static int ext4_acquire_dquot(struct dquot *dquot) 3715 { 3716 int ret, err; 3717 handle_t *handle; 3718 3719 handle = ext4_journal_start(dquot_to_inode(dquot), 3720 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3721 if (IS_ERR(handle)) 3722 return PTR_ERR(handle); 3723 ret = dquot_acquire(dquot); 3724 err = ext4_journal_stop(handle); 3725 if (!ret) 3726 ret = err; 3727 return ret; 3728 } 3729 3730 static int ext4_release_dquot(struct dquot *dquot) 3731 { 3732 int ret, err; 3733 handle_t *handle; 3734 3735 handle = ext4_journal_start(dquot_to_inode(dquot), 3736 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3737 if (IS_ERR(handle)) { 3738 /* Release dquot anyway to avoid endless cycle in dqput() */ 3739 dquot_release(dquot); 3740 return PTR_ERR(handle); 3741 } 3742 ret = dquot_release(dquot); 3743 err = ext4_journal_stop(handle); 3744 if (!ret) 3745 ret = err; 3746 return ret; 3747 } 3748 3749 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3750 { 3751 /* Are we journaling quotas? */ 3752 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3753 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3754 dquot_mark_dquot_dirty(dquot); 3755 return ext4_write_dquot(dquot); 3756 } else { 3757 return dquot_mark_dquot_dirty(dquot); 3758 } 3759 } 3760 3761 static int ext4_write_info(struct super_block *sb, int type) 3762 { 3763 int ret, err; 3764 handle_t *handle; 3765 3766 /* Data block + inode block */ 3767 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3768 if (IS_ERR(handle)) 3769 return PTR_ERR(handle); 3770 ret = dquot_commit_info(sb, type); 3771 err = ext4_journal_stop(handle); 3772 if (!ret) 3773 ret = err; 3774 return ret; 3775 } 3776 3777 /* 3778 * Turn on quotas during mount time - we need to find 3779 * the quota file and such... 3780 */ 3781 static int ext4_quota_on_mount(struct super_block *sb, int type) 3782 { 3783 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3784 EXT4_SB(sb)->s_jquota_fmt, type); 3785 } 3786 3787 /* 3788 * Standard function to be called on quota_on 3789 */ 3790 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3791 char *name, int remount) 3792 { 3793 int err; 3794 struct path path; 3795 3796 if (!test_opt(sb, QUOTA)) 3797 return -EINVAL; 3798 /* When remounting, no checks are needed and in fact, name is NULL */ 3799 if (remount) 3800 return vfs_quota_on(sb, type, format_id, name, remount); 3801 3802 err = kern_path(name, LOOKUP_FOLLOW, &path); 3803 if (err) 3804 return err; 3805 3806 /* Quotafile not on the same filesystem? */ 3807 if (path.mnt->mnt_sb != sb) { 3808 path_put(&path); 3809 return -EXDEV; 3810 } 3811 /* Journaling quota? */ 3812 if (EXT4_SB(sb)->s_qf_names[type]) { 3813 /* Quotafile not in fs root? */ 3814 if (path.dentry->d_parent != sb->s_root) 3815 ext4_msg(sb, KERN_WARNING, 3816 "Quota file not on filesystem root. " 3817 "Journaled quota will not work"); 3818 } 3819 3820 /* 3821 * When we journal data on quota file, we have to flush journal to see 3822 * all updates to the file when we bypass pagecache... 3823 */ 3824 if (EXT4_SB(sb)->s_journal && 3825 ext4_should_journal_data(path.dentry->d_inode)) { 3826 /* 3827 * We don't need to lock updates but journal_flush() could 3828 * otherwise be livelocked... 3829 */ 3830 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3831 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3832 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3833 if (err) { 3834 path_put(&path); 3835 return err; 3836 } 3837 } 3838 3839 err = vfs_quota_on_path(sb, type, format_id, &path); 3840 path_put(&path); 3841 return err; 3842 } 3843 3844 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3845 * acquiring the locks... As quota files are never truncated and quota code 3846 * itself serializes the operations (and noone else should touch the files) 3847 * we don't have to be afraid of races */ 3848 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3849 size_t len, loff_t off) 3850 { 3851 struct inode *inode = sb_dqopt(sb)->files[type]; 3852 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3853 int err = 0; 3854 int offset = off & (sb->s_blocksize - 1); 3855 int tocopy; 3856 size_t toread; 3857 struct buffer_head *bh; 3858 loff_t i_size = i_size_read(inode); 3859 3860 if (off > i_size) 3861 return 0; 3862 if (off+len > i_size) 3863 len = i_size-off; 3864 toread = len; 3865 while (toread > 0) { 3866 tocopy = sb->s_blocksize - offset < toread ? 3867 sb->s_blocksize - offset : toread; 3868 bh = ext4_bread(NULL, inode, blk, 0, &err); 3869 if (err) 3870 return err; 3871 if (!bh) /* A hole? */ 3872 memset(data, 0, tocopy); 3873 else 3874 memcpy(data, bh->b_data+offset, tocopy); 3875 brelse(bh); 3876 offset = 0; 3877 toread -= tocopy; 3878 data += tocopy; 3879 blk++; 3880 } 3881 return len; 3882 } 3883 3884 /* Write to quotafile (we know the transaction is already started and has 3885 * enough credits) */ 3886 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3887 const char *data, size_t len, loff_t off) 3888 { 3889 struct inode *inode = sb_dqopt(sb)->files[type]; 3890 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3891 int err = 0; 3892 int offset = off & (sb->s_blocksize - 1); 3893 int tocopy; 3894 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3895 size_t towrite = len; 3896 struct buffer_head *bh; 3897 handle_t *handle = journal_current_handle(); 3898 3899 if (EXT4_SB(sb)->s_journal && !handle) { 3900 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3901 " cancelled because transaction is not started", 3902 (unsigned long long)off, (unsigned long long)len); 3903 return -EIO; 3904 } 3905 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3906 while (towrite > 0) { 3907 tocopy = sb->s_blocksize - offset < towrite ? 3908 sb->s_blocksize - offset : towrite; 3909 bh = ext4_bread(handle, inode, blk, 1, &err); 3910 if (!bh) 3911 goto out; 3912 if (journal_quota) { 3913 err = ext4_journal_get_write_access(handle, bh); 3914 if (err) { 3915 brelse(bh); 3916 goto out; 3917 } 3918 } 3919 lock_buffer(bh); 3920 memcpy(bh->b_data+offset, data, tocopy); 3921 flush_dcache_page(bh->b_page); 3922 unlock_buffer(bh); 3923 if (journal_quota) 3924 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3925 else { 3926 /* Always do at least ordered writes for quotas */ 3927 err = ext4_jbd2_file_inode(handle, inode); 3928 mark_buffer_dirty(bh); 3929 } 3930 brelse(bh); 3931 if (err) 3932 goto out; 3933 offset = 0; 3934 towrite -= tocopy; 3935 data += tocopy; 3936 blk++; 3937 } 3938 out: 3939 if (len == towrite) { 3940 mutex_unlock(&inode->i_mutex); 3941 return err; 3942 } 3943 if (inode->i_size < off+len-towrite) { 3944 i_size_write(inode, off+len-towrite); 3945 EXT4_I(inode)->i_disksize = inode->i_size; 3946 } 3947 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3948 ext4_mark_inode_dirty(handle, inode); 3949 mutex_unlock(&inode->i_mutex); 3950 return len - towrite; 3951 } 3952 3953 #endif 3954 3955 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3956 const char *dev_name, void *data, struct vfsmount *mnt) 3957 { 3958 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3959 } 3960 3961 static struct file_system_type ext4_fs_type = { 3962 .owner = THIS_MODULE, 3963 .name = "ext4", 3964 .get_sb = ext4_get_sb, 3965 .kill_sb = kill_block_super, 3966 .fs_flags = FS_REQUIRES_DEV, 3967 }; 3968 3969 static int __init init_ext4_fs(void) 3970 { 3971 int err; 3972 3973 err = init_ext4_system_zone(); 3974 if (err) 3975 return err; 3976 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 3977 if (!ext4_kset) 3978 goto out4; 3979 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3980 err = init_ext4_mballoc(); 3981 if (err) 3982 goto out3; 3983 3984 err = init_ext4_xattr(); 3985 if (err) 3986 goto out2; 3987 err = init_inodecache(); 3988 if (err) 3989 goto out1; 3990 err = register_filesystem(&ext4_fs_type); 3991 if (err) 3992 goto out; 3993 return 0; 3994 out: 3995 destroy_inodecache(); 3996 out1: 3997 exit_ext4_xattr(); 3998 out2: 3999 exit_ext4_mballoc(); 4000 out3: 4001 remove_proc_entry("fs/ext4", NULL); 4002 kset_unregister(ext4_kset); 4003 out4: 4004 exit_ext4_system_zone(); 4005 return err; 4006 } 4007 4008 static void __exit exit_ext4_fs(void) 4009 { 4010 unregister_filesystem(&ext4_fs_type); 4011 destroy_inodecache(); 4012 exit_ext4_xattr(); 4013 exit_ext4_mballoc(); 4014 remove_proc_entry("fs/ext4", NULL); 4015 kset_unregister(ext4_kset); 4016 exit_ext4_system_zone(); 4017 } 4018 4019 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4020 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4021 MODULE_LICENSE("GPL"); 4022 module_init(init_ext4_fs) 4023 module_exit(exit_ext4_fs) 4024