xref: /openbmc/linux/fs/ext4/super.c (revision e657c18a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 
49 #include "ext4.h"
50 #include "ext4_extents.h"	/* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59 
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 				   struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 
88 /*
89  * Lock ordering
90  *
91  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92  * i_mmap_rwsem (inode->i_mmap_rwsem)!
93  *
94  * page fault path:
95  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96  *   page lock -> i_data_sem (rw)
97  *
98  * buffered write path:
99  * sb_start_write -> i_mutex -> mmap_sem
100  * sb_start_write -> i_mutex -> transaction start -> page lock ->
101  *   i_data_sem (rw)
102  *
103  * truncate:
104  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106  *   i_data_sem (rw)
107  *
108  * direct IO:
109  * sb_start_write -> i_mutex -> mmap_sem
110  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 /*
144  * This works like sb_bread() except it uses ERR_PTR for error
145  * returns.  Currently with sb_bread it's impossible to distinguish
146  * between ENOMEM and EIO situations (since both result in a NULL
147  * return.
148  */
149 struct buffer_head *
150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
151 {
152 	struct buffer_head *bh = sb_getblk(sb, block);
153 
154 	if (bh == NULL)
155 		return ERR_PTR(-ENOMEM);
156 	if (buffer_uptodate(bh))
157 		return bh;
158 	ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
159 	wait_on_buffer(bh);
160 	if (buffer_uptodate(bh))
161 		return bh;
162 	put_bh(bh);
163 	return ERR_PTR(-EIO);
164 }
165 
166 static int ext4_verify_csum_type(struct super_block *sb,
167 				 struct ext4_super_block *es)
168 {
169 	if (!ext4_has_feature_metadata_csum(sb))
170 		return 1;
171 
172 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
173 }
174 
175 static __le32 ext4_superblock_csum(struct super_block *sb,
176 				   struct ext4_super_block *es)
177 {
178 	struct ext4_sb_info *sbi = EXT4_SB(sb);
179 	int offset = offsetof(struct ext4_super_block, s_checksum);
180 	__u32 csum;
181 
182 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
183 
184 	return cpu_to_le32(csum);
185 }
186 
187 static int ext4_superblock_csum_verify(struct super_block *sb,
188 				       struct ext4_super_block *es)
189 {
190 	if (!ext4_has_metadata_csum(sb))
191 		return 1;
192 
193 	return es->s_checksum == ext4_superblock_csum(sb, es);
194 }
195 
196 void ext4_superblock_csum_set(struct super_block *sb)
197 {
198 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
199 
200 	if (!ext4_has_metadata_csum(sb))
201 		return;
202 
203 	es->s_checksum = ext4_superblock_csum(sb, es);
204 }
205 
206 void *ext4_kvmalloc(size_t size, gfp_t flags)
207 {
208 	void *ret;
209 
210 	ret = kmalloc(size, flags | __GFP_NOWARN);
211 	if (!ret)
212 		ret = __vmalloc(size, flags, PAGE_KERNEL);
213 	return ret;
214 }
215 
216 void *ext4_kvzalloc(size_t size, gfp_t flags)
217 {
218 	void *ret;
219 
220 	ret = kzalloc(size, flags | __GFP_NOWARN);
221 	if (!ret)
222 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
223 	return ret;
224 }
225 
226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
227 			       struct ext4_group_desc *bg)
228 {
229 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
230 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
232 }
233 
234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
235 			       struct ext4_group_desc *bg)
236 {
237 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
238 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
240 }
241 
242 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
243 			      struct ext4_group_desc *bg)
244 {
245 	return le32_to_cpu(bg->bg_inode_table_lo) |
246 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
247 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
248 }
249 
250 __u32 ext4_free_group_clusters(struct super_block *sb,
251 			       struct ext4_group_desc *bg)
252 {
253 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
254 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
255 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
256 }
257 
258 __u32 ext4_free_inodes_count(struct super_block *sb,
259 			      struct ext4_group_desc *bg)
260 {
261 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
262 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
263 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
264 }
265 
266 __u32 ext4_used_dirs_count(struct super_block *sb,
267 			      struct ext4_group_desc *bg)
268 {
269 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
270 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
271 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
272 }
273 
274 __u32 ext4_itable_unused_count(struct super_block *sb,
275 			      struct ext4_group_desc *bg)
276 {
277 	return le16_to_cpu(bg->bg_itable_unused_lo) |
278 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
279 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
280 }
281 
282 void ext4_block_bitmap_set(struct super_block *sb,
283 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
284 {
285 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
286 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
288 }
289 
290 void ext4_inode_bitmap_set(struct super_block *sb,
291 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
292 {
293 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
294 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
296 }
297 
298 void ext4_inode_table_set(struct super_block *sb,
299 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
300 {
301 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
302 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
303 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
304 }
305 
306 void ext4_free_group_clusters_set(struct super_block *sb,
307 				  struct ext4_group_desc *bg, __u32 count)
308 {
309 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
310 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
311 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
312 }
313 
314 void ext4_free_inodes_set(struct super_block *sb,
315 			  struct ext4_group_desc *bg, __u32 count)
316 {
317 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
318 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
319 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
320 }
321 
322 void ext4_used_dirs_set(struct super_block *sb,
323 			  struct ext4_group_desc *bg, __u32 count)
324 {
325 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
326 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
327 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
328 }
329 
330 void ext4_itable_unused_set(struct super_block *sb,
331 			  struct ext4_group_desc *bg, __u32 count)
332 {
333 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
334 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
335 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
336 }
337 
338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
339 {
340 	time64_t now = ktime_get_real_seconds();
341 
342 	now = clamp_val(now, 0, (1ull << 40) - 1);
343 
344 	*lo = cpu_to_le32(lower_32_bits(now));
345 	*hi = upper_32_bits(now);
346 }
347 
348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
349 {
350 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
351 }
352 #define ext4_update_tstamp(es, tstamp) \
353 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
354 #define ext4_get_tstamp(es, tstamp) \
355 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
356 
357 static void __save_error_info(struct super_block *sb, const char *func,
358 			    unsigned int line)
359 {
360 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
361 
362 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
363 	if (bdev_read_only(sb->s_bdev))
364 		return;
365 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
366 	ext4_update_tstamp(es, s_last_error_time);
367 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
368 	es->s_last_error_line = cpu_to_le32(line);
369 	if (!es->s_first_error_time) {
370 		es->s_first_error_time = es->s_last_error_time;
371 		es->s_first_error_time_hi = es->s_last_error_time_hi;
372 		strncpy(es->s_first_error_func, func,
373 			sizeof(es->s_first_error_func));
374 		es->s_first_error_line = cpu_to_le32(line);
375 		es->s_first_error_ino = es->s_last_error_ino;
376 		es->s_first_error_block = es->s_last_error_block;
377 	}
378 	/*
379 	 * Start the daily error reporting function if it hasn't been
380 	 * started already
381 	 */
382 	if (!es->s_error_count)
383 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
384 	le32_add_cpu(&es->s_error_count, 1);
385 }
386 
387 static void save_error_info(struct super_block *sb, const char *func,
388 			    unsigned int line)
389 {
390 	__save_error_info(sb, func, line);
391 	ext4_commit_super(sb, 1);
392 }
393 
394 /*
395  * The del_gendisk() function uninitializes the disk-specific data
396  * structures, including the bdi structure, without telling anyone
397  * else.  Once this happens, any attempt to call mark_buffer_dirty()
398  * (for example, by ext4_commit_super), will cause a kernel OOPS.
399  * This is a kludge to prevent these oops until we can put in a proper
400  * hook in del_gendisk() to inform the VFS and file system layers.
401  */
402 static int block_device_ejected(struct super_block *sb)
403 {
404 	struct inode *bd_inode = sb->s_bdev->bd_inode;
405 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
406 
407 	return bdi->dev == NULL;
408 }
409 
410 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
411 {
412 	struct super_block		*sb = journal->j_private;
413 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
414 	int				error = is_journal_aborted(journal);
415 	struct ext4_journal_cb_entry	*jce;
416 
417 	BUG_ON(txn->t_state == T_FINISHED);
418 
419 	ext4_process_freed_data(sb, txn->t_tid);
420 
421 	spin_lock(&sbi->s_md_lock);
422 	while (!list_empty(&txn->t_private_list)) {
423 		jce = list_entry(txn->t_private_list.next,
424 				 struct ext4_journal_cb_entry, jce_list);
425 		list_del_init(&jce->jce_list);
426 		spin_unlock(&sbi->s_md_lock);
427 		jce->jce_func(sb, jce, error);
428 		spin_lock(&sbi->s_md_lock);
429 	}
430 	spin_unlock(&sbi->s_md_lock);
431 }
432 
433 static bool system_going_down(void)
434 {
435 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
436 		|| system_state == SYSTEM_RESTART;
437 }
438 
439 /* Deal with the reporting of failure conditions on a filesystem such as
440  * inconsistencies detected or read IO failures.
441  *
442  * On ext2, we can store the error state of the filesystem in the
443  * superblock.  That is not possible on ext4, because we may have other
444  * write ordering constraints on the superblock which prevent us from
445  * writing it out straight away; and given that the journal is about to
446  * be aborted, we can't rely on the current, or future, transactions to
447  * write out the superblock safely.
448  *
449  * We'll just use the jbd2_journal_abort() error code to record an error in
450  * the journal instead.  On recovery, the journal will complain about
451  * that error until we've noted it down and cleared it.
452  */
453 
454 static void ext4_handle_error(struct super_block *sb)
455 {
456 	if (test_opt(sb, WARN_ON_ERROR))
457 		WARN_ON_ONCE(1);
458 
459 	if (sb_rdonly(sb))
460 		return;
461 
462 	if (!test_opt(sb, ERRORS_CONT)) {
463 		journal_t *journal = EXT4_SB(sb)->s_journal;
464 
465 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
466 		if (journal)
467 			jbd2_journal_abort(journal, -EIO);
468 	}
469 	/*
470 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
471 	 * could panic during 'reboot -f' as the underlying device got already
472 	 * disabled.
473 	 */
474 	if (test_opt(sb, ERRORS_RO) || system_going_down()) {
475 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
476 		/*
477 		 * Make sure updated value of ->s_mount_flags will be visible
478 		 * before ->s_flags update
479 		 */
480 		smp_wmb();
481 		sb->s_flags |= SB_RDONLY;
482 	} else if (test_opt(sb, ERRORS_PANIC)) {
483 		if (EXT4_SB(sb)->s_journal &&
484 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
485 			return;
486 		panic("EXT4-fs (device %s): panic forced after error\n",
487 			sb->s_id);
488 	}
489 }
490 
491 #define ext4_error_ratelimit(sb)					\
492 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
493 			     "EXT4-fs error")
494 
495 void __ext4_error(struct super_block *sb, const char *function,
496 		  unsigned int line, const char *fmt, ...)
497 {
498 	struct va_format vaf;
499 	va_list args;
500 
501 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
502 		return;
503 
504 	trace_ext4_error(sb, function, line);
505 	if (ext4_error_ratelimit(sb)) {
506 		va_start(args, fmt);
507 		vaf.fmt = fmt;
508 		vaf.va = &args;
509 		printk(KERN_CRIT
510 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
511 		       sb->s_id, function, line, current->comm, &vaf);
512 		va_end(args);
513 	}
514 	save_error_info(sb, function, line);
515 	ext4_handle_error(sb);
516 }
517 
518 void __ext4_error_inode(struct inode *inode, const char *function,
519 			unsigned int line, ext4_fsblk_t block,
520 			const char *fmt, ...)
521 {
522 	va_list args;
523 	struct va_format vaf;
524 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
525 
526 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
527 		return;
528 
529 	trace_ext4_error(inode->i_sb, function, line);
530 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
531 	es->s_last_error_block = cpu_to_le64(block);
532 	if (ext4_error_ratelimit(inode->i_sb)) {
533 		va_start(args, fmt);
534 		vaf.fmt = fmt;
535 		vaf.va = &args;
536 		if (block)
537 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
538 			       "inode #%lu: block %llu: comm %s: %pV\n",
539 			       inode->i_sb->s_id, function, line, inode->i_ino,
540 			       block, current->comm, &vaf);
541 		else
542 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
543 			       "inode #%lu: comm %s: %pV\n",
544 			       inode->i_sb->s_id, function, line, inode->i_ino,
545 			       current->comm, &vaf);
546 		va_end(args);
547 	}
548 	save_error_info(inode->i_sb, function, line);
549 	ext4_handle_error(inode->i_sb);
550 }
551 
552 void __ext4_error_file(struct file *file, const char *function,
553 		       unsigned int line, ext4_fsblk_t block,
554 		       const char *fmt, ...)
555 {
556 	va_list args;
557 	struct va_format vaf;
558 	struct ext4_super_block *es;
559 	struct inode *inode = file_inode(file);
560 	char pathname[80], *path;
561 
562 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
563 		return;
564 
565 	trace_ext4_error(inode->i_sb, function, line);
566 	es = EXT4_SB(inode->i_sb)->s_es;
567 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
568 	if (ext4_error_ratelimit(inode->i_sb)) {
569 		path = file_path(file, pathname, sizeof(pathname));
570 		if (IS_ERR(path))
571 			path = "(unknown)";
572 		va_start(args, fmt);
573 		vaf.fmt = fmt;
574 		vaf.va = &args;
575 		if (block)
576 			printk(KERN_CRIT
577 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
578 			       "block %llu: comm %s: path %s: %pV\n",
579 			       inode->i_sb->s_id, function, line, inode->i_ino,
580 			       block, current->comm, path, &vaf);
581 		else
582 			printk(KERN_CRIT
583 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
584 			       "comm %s: path %s: %pV\n",
585 			       inode->i_sb->s_id, function, line, inode->i_ino,
586 			       current->comm, path, &vaf);
587 		va_end(args);
588 	}
589 	save_error_info(inode->i_sb, function, line);
590 	ext4_handle_error(inode->i_sb);
591 }
592 
593 const char *ext4_decode_error(struct super_block *sb, int errno,
594 			      char nbuf[16])
595 {
596 	char *errstr = NULL;
597 
598 	switch (errno) {
599 	case -EFSCORRUPTED:
600 		errstr = "Corrupt filesystem";
601 		break;
602 	case -EFSBADCRC:
603 		errstr = "Filesystem failed CRC";
604 		break;
605 	case -EIO:
606 		errstr = "IO failure";
607 		break;
608 	case -ENOMEM:
609 		errstr = "Out of memory";
610 		break;
611 	case -EROFS:
612 		if (!sb || (EXT4_SB(sb)->s_journal &&
613 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
614 			errstr = "Journal has aborted";
615 		else
616 			errstr = "Readonly filesystem";
617 		break;
618 	default:
619 		/* If the caller passed in an extra buffer for unknown
620 		 * errors, textualise them now.  Else we just return
621 		 * NULL. */
622 		if (nbuf) {
623 			/* Check for truncated error codes... */
624 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
625 				errstr = nbuf;
626 		}
627 		break;
628 	}
629 
630 	return errstr;
631 }
632 
633 /* __ext4_std_error decodes expected errors from journaling functions
634  * automatically and invokes the appropriate error response.  */
635 
636 void __ext4_std_error(struct super_block *sb, const char *function,
637 		      unsigned int line, int errno)
638 {
639 	char nbuf[16];
640 	const char *errstr;
641 
642 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
643 		return;
644 
645 	/* Special case: if the error is EROFS, and we're not already
646 	 * inside a transaction, then there's really no point in logging
647 	 * an error. */
648 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
649 		return;
650 
651 	if (ext4_error_ratelimit(sb)) {
652 		errstr = ext4_decode_error(sb, errno, nbuf);
653 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
654 		       sb->s_id, function, line, errstr);
655 	}
656 
657 	save_error_info(sb, function, line);
658 	ext4_handle_error(sb);
659 }
660 
661 /*
662  * ext4_abort is a much stronger failure handler than ext4_error.  The
663  * abort function may be used to deal with unrecoverable failures such
664  * as journal IO errors or ENOMEM at a critical moment in log management.
665  *
666  * We unconditionally force the filesystem into an ABORT|READONLY state,
667  * unless the error response on the fs has been set to panic in which
668  * case we take the easy way out and panic immediately.
669  */
670 
671 void __ext4_abort(struct super_block *sb, const char *function,
672 		unsigned int line, const char *fmt, ...)
673 {
674 	struct va_format vaf;
675 	va_list args;
676 
677 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
678 		return;
679 
680 	save_error_info(sb, function, line);
681 	va_start(args, fmt);
682 	vaf.fmt = fmt;
683 	vaf.va = &args;
684 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
685 	       sb->s_id, function, line, &vaf);
686 	va_end(args);
687 
688 	if (sb_rdonly(sb) == 0) {
689 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
690 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
691 		/*
692 		 * Make sure updated value of ->s_mount_flags will be visible
693 		 * before ->s_flags update
694 		 */
695 		smp_wmb();
696 		sb->s_flags |= SB_RDONLY;
697 		if (EXT4_SB(sb)->s_journal)
698 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
699 		save_error_info(sb, function, line);
700 	}
701 	if (test_opt(sb, ERRORS_PANIC)) {
702 		if (EXT4_SB(sb)->s_journal &&
703 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
704 			return;
705 		panic("EXT4-fs panic from previous error\n");
706 	}
707 }
708 
709 void __ext4_msg(struct super_block *sb,
710 		const char *prefix, const char *fmt, ...)
711 {
712 	struct va_format vaf;
713 	va_list args;
714 
715 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
716 		return;
717 
718 	va_start(args, fmt);
719 	vaf.fmt = fmt;
720 	vaf.va = &args;
721 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
722 	va_end(args);
723 }
724 
725 #define ext4_warning_ratelimit(sb)					\
726 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
727 			     "EXT4-fs warning")
728 
729 void __ext4_warning(struct super_block *sb, const char *function,
730 		    unsigned int line, const char *fmt, ...)
731 {
732 	struct va_format vaf;
733 	va_list args;
734 
735 	if (!ext4_warning_ratelimit(sb))
736 		return;
737 
738 	va_start(args, fmt);
739 	vaf.fmt = fmt;
740 	vaf.va = &args;
741 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
742 	       sb->s_id, function, line, &vaf);
743 	va_end(args);
744 }
745 
746 void __ext4_warning_inode(const struct inode *inode, const char *function,
747 			  unsigned int line, const char *fmt, ...)
748 {
749 	struct va_format vaf;
750 	va_list args;
751 
752 	if (!ext4_warning_ratelimit(inode->i_sb))
753 		return;
754 
755 	va_start(args, fmt);
756 	vaf.fmt = fmt;
757 	vaf.va = &args;
758 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
759 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
760 	       function, line, inode->i_ino, current->comm, &vaf);
761 	va_end(args);
762 }
763 
764 void __ext4_grp_locked_error(const char *function, unsigned int line,
765 			     struct super_block *sb, ext4_group_t grp,
766 			     unsigned long ino, ext4_fsblk_t block,
767 			     const char *fmt, ...)
768 __releases(bitlock)
769 __acquires(bitlock)
770 {
771 	struct va_format vaf;
772 	va_list args;
773 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
774 
775 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
776 		return;
777 
778 	trace_ext4_error(sb, function, line);
779 	es->s_last_error_ino = cpu_to_le32(ino);
780 	es->s_last_error_block = cpu_to_le64(block);
781 	__save_error_info(sb, function, line);
782 
783 	if (ext4_error_ratelimit(sb)) {
784 		va_start(args, fmt);
785 		vaf.fmt = fmt;
786 		vaf.va = &args;
787 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
788 		       sb->s_id, function, line, grp);
789 		if (ino)
790 			printk(KERN_CONT "inode %lu: ", ino);
791 		if (block)
792 			printk(KERN_CONT "block %llu:",
793 			       (unsigned long long) block);
794 		printk(KERN_CONT "%pV\n", &vaf);
795 		va_end(args);
796 	}
797 
798 	if (test_opt(sb, WARN_ON_ERROR))
799 		WARN_ON_ONCE(1);
800 
801 	if (test_opt(sb, ERRORS_CONT)) {
802 		ext4_commit_super(sb, 0);
803 		return;
804 	}
805 
806 	ext4_unlock_group(sb, grp);
807 	ext4_commit_super(sb, 1);
808 	ext4_handle_error(sb);
809 	/*
810 	 * We only get here in the ERRORS_RO case; relocking the group
811 	 * may be dangerous, but nothing bad will happen since the
812 	 * filesystem will have already been marked read/only and the
813 	 * journal has been aborted.  We return 1 as a hint to callers
814 	 * who might what to use the return value from
815 	 * ext4_grp_locked_error() to distinguish between the
816 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
817 	 * aggressively from the ext4 function in question, with a
818 	 * more appropriate error code.
819 	 */
820 	ext4_lock_group(sb, grp);
821 	return;
822 }
823 
824 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
825 				     ext4_group_t group,
826 				     unsigned int flags)
827 {
828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
829 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
830 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
831 	int ret;
832 
833 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
834 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
835 					    &grp->bb_state);
836 		if (!ret)
837 			percpu_counter_sub(&sbi->s_freeclusters_counter,
838 					   grp->bb_free);
839 	}
840 
841 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
842 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
843 					    &grp->bb_state);
844 		if (!ret && gdp) {
845 			int count;
846 
847 			count = ext4_free_inodes_count(sb, gdp);
848 			percpu_counter_sub(&sbi->s_freeinodes_counter,
849 					   count);
850 		}
851 	}
852 }
853 
854 void ext4_update_dynamic_rev(struct super_block *sb)
855 {
856 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
857 
858 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
859 		return;
860 
861 	ext4_warning(sb,
862 		     "updating to rev %d because of new feature flag, "
863 		     "running e2fsck is recommended",
864 		     EXT4_DYNAMIC_REV);
865 
866 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
867 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
868 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
869 	/* leave es->s_feature_*compat flags alone */
870 	/* es->s_uuid will be set by e2fsck if empty */
871 
872 	/*
873 	 * The rest of the superblock fields should be zero, and if not it
874 	 * means they are likely already in use, so leave them alone.  We
875 	 * can leave it up to e2fsck to clean up any inconsistencies there.
876 	 */
877 }
878 
879 /*
880  * Open the external journal device
881  */
882 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
883 {
884 	struct block_device *bdev;
885 	char b[BDEVNAME_SIZE];
886 
887 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
888 	if (IS_ERR(bdev))
889 		goto fail;
890 	return bdev;
891 
892 fail:
893 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
894 			__bdevname(dev, b), PTR_ERR(bdev));
895 	return NULL;
896 }
897 
898 /*
899  * Release the journal device
900  */
901 static void ext4_blkdev_put(struct block_device *bdev)
902 {
903 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
904 }
905 
906 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
907 {
908 	struct block_device *bdev;
909 	bdev = sbi->journal_bdev;
910 	if (bdev) {
911 		ext4_blkdev_put(bdev);
912 		sbi->journal_bdev = NULL;
913 	}
914 }
915 
916 static inline struct inode *orphan_list_entry(struct list_head *l)
917 {
918 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
919 }
920 
921 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
922 {
923 	struct list_head *l;
924 
925 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
926 		 le32_to_cpu(sbi->s_es->s_last_orphan));
927 
928 	printk(KERN_ERR "sb_info orphan list:\n");
929 	list_for_each(l, &sbi->s_orphan) {
930 		struct inode *inode = orphan_list_entry(l);
931 		printk(KERN_ERR "  "
932 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
933 		       inode->i_sb->s_id, inode->i_ino, inode,
934 		       inode->i_mode, inode->i_nlink,
935 		       NEXT_ORPHAN(inode));
936 	}
937 }
938 
939 #ifdef CONFIG_QUOTA
940 static int ext4_quota_off(struct super_block *sb, int type);
941 
942 static inline void ext4_quota_off_umount(struct super_block *sb)
943 {
944 	int type;
945 
946 	/* Use our quota_off function to clear inode flags etc. */
947 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
948 		ext4_quota_off(sb, type);
949 }
950 
951 /*
952  * This is a helper function which is used in the mount/remount
953  * codepaths (which holds s_umount) to fetch the quota file name.
954  */
955 static inline char *get_qf_name(struct super_block *sb,
956 				struct ext4_sb_info *sbi,
957 				int type)
958 {
959 	return rcu_dereference_protected(sbi->s_qf_names[type],
960 					 lockdep_is_held(&sb->s_umount));
961 }
962 #else
963 static inline void ext4_quota_off_umount(struct super_block *sb)
964 {
965 }
966 #endif
967 
968 static void ext4_put_super(struct super_block *sb)
969 {
970 	struct ext4_sb_info *sbi = EXT4_SB(sb);
971 	struct ext4_super_block *es = sbi->s_es;
972 	int aborted = 0;
973 	int i, err;
974 
975 	ext4_unregister_li_request(sb);
976 	ext4_quota_off_umount(sb);
977 
978 	destroy_workqueue(sbi->rsv_conversion_wq);
979 
980 	if (sbi->s_journal) {
981 		aborted = is_journal_aborted(sbi->s_journal);
982 		err = jbd2_journal_destroy(sbi->s_journal);
983 		sbi->s_journal = NULL;
984 		if ((err < 0) && !aborted)
985 			ext4_abort(sb, "Couldn't clean up the journal");
986 	}
987 
988 	ext4_unregister_sysfs(sb);
989 	ext4_es_unregister_shrinker(sbi);
990 	del_timer_sync(&sbi->s_err_report);
991 	ext4_release_system_zone(sb);
992 	ext4_mb_release(sb);
993 	ext4_ext_release(sb);
994 
995 	if (!sb_rdonly(sb) && !aborted) {
996 		ext4_clear_feature_journal_needs_recovery(sb);
997 		es->s_state = cpu_to_le16(sbi->s_mount_state);
998 	}
999 	if (!sb_rdonly(sb))
1000 		ext4_commit_super(sb, 1);
1001 
1002 	for (i = 0; i < sbi->s_gdb_count; i++)
1003 		brelse(sbi->s_group_desc[i]);
1004 	kvfree(sbi->s_group_desc);
1005 	kvfree(sbi->s_flex_groups);
1006 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1007 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1008 	percpu_counter_destroy(&sbi->s_dirs_counter);
1009 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1010 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1011 #ifdef CONFIG_QUOTA
1012 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1013 		kfree(get_qf_name(sb, sbi, i));
1014 #endif
1015 
1016 	/* Debugging code just in case the in-memory inode orphan list
1017 	 * isn't empty.  The on-disk one can be non-empty if we've
1018 	 * detected an error and taken the fs readonly, but the
1019 	 * in-memory list had better be clean by this point. */
1020 	if (!list_empty(&sbi->s_orphan))
1021 		dump_orphan_list(sb, sbi);
1022 	J_ASSERT(list_empty(&sbi->s_orphan));
1023 
1024 	sync_blockdev(sb->s_bdev);
1025 	invalidate_bdev(sb->s_bdev);
1026 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1027 		/*
1028 		 * Invalidate the journal device's buffers.  We don't want them
1029 		 * floating about in memory - the physical journal device may
1030 		 * hotswapped, and it breaks the `ro-after' testing code.
1031 		 */
1032 		sync_blockdev(sbi->journal_bdev);
1033 		invalidate_bdev(sbi->journal_bdev);
1034 		ext4_blkdev_remove(sbi);
1035 	}
1036 
1037 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1038 	sbi->s_ea_inode_cache = NULL;
1039 
1040 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1041 	sbi->s_ea_block_cache = NULL;
1042 
1043 	if (sbi->s_mmp_tsk)
1044 		kthread_stop(sbi->s_mmp_tsk);
1045 	brelse(sbi->s_sbh);
1046 	sb->s_fs_info = NULL;
1047 	/*
1048 	 * Now that we are completely done shutting down the
1049 	 * superblock, we need to actually destroy the kobject.
1050 	 */
1051 	kobject_put(&sbi->s_kobj);
1052 	wait_for_completion(&sbi->s_kobj_unregister);
1053 	if (sbi->s_chksum_driver)
1054 		crypto_free_shash(sbi->s_chksum_driver);
1055 	kfree(sbi->s_blockgroup_lock);
1056 	fs_put_dax(sbi->s_daxdev);
1057 	kfree(sbi);
1058 }
1059 
1060 static struct kmem_cache *ext4_inode_cachep;
1061 
1062 /*
1063  * Called inside transaction, so use GFP_NOFS
1064  */
1065 static struct inode *ext4_alloc_inode(struct super_block *sb)
1066 {
1067 	struct ext4_inode_info *ei;
1068 
1069 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1070 	if (!ei)
1071 		return NULL;
1072 
1073 	inode_set_iversion(&ei->vfs_inode, 1);
1074 	spin_lock_init(&ei->i_raw_lock);
1075 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1076 	spin_lock_init(&ei->i_prealloc_lock);
1077 	ext4_es_init_tree(&ei->i_es_tree);
1078 	rwlock_init(&ei->i_es_lock);
1079 	INIT_LIST_HEAD(&ei->i_es_list);
1080 	ei->i_es_all_nr = 0;
1081 	ei->i_es_shk_nr = 0;
1082 	ei->i_es_shrink_lblk = 0;
1083 	ei->i_reserved_data_blocks = 0;
1084 	ei->i_da_metadata_calc_len = 0;
1085 	ei->i_da_metadata_calc_last_lblock = 0;
1086 	spin_lock_init(&(ei->i_block_reservation_lock));
1087 	ext4_init_pending_tree(&ei->i_pending_tree);
1088 #ifdef CONFIG_QUOTA
1089 	ei->i_reserved_quota = 0;
1090 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1091 #endif
1092 	ei->jinode = NULL;
1093 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1094 	spin_lock_init(&ei->i_completed_io_lock);
1095 	ei->i_sync_tid = 0;
1096 	ei->i_datasync_tid = 0;
1097 	atomic_set(&ei->i_unwritten, 0);
1098 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1099 	return &ei->vfs_inode;
1100 }
1101 
1102 static int ext4_drop_inode(struct inode *inode)
1103 {
1104 	int drop = generic_drop_inode(inode);
1105 
1106 	trace_ext4_drop_inode(inode, drop);
1107 	return drop;
1108 }
1109 
1110 static void ext4_i_callback(struct rcu_head *head)
1111 {
1112 	struct inode *inode = container_of(head, struct inode, i_rcu);
1113 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1114 }
1115 
1116 static void ext4_destroy_inode(struct inode *inode)
1117 {
1118 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1119 		ext4_msg(inode->i_sb, KERN_ERR,
1120 			 "Inode %lu (%p): orphan list check failed!",
1121 			 inode->i_ino, EXT4_I(inode));
1122 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1123 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1124 				true);
1125 		dump_stack();
1126 	}
1127 	call_rcu(&inode->i_rcu, ext4_i_callback);
1128 }
1129 
1130 static void init_once(void *foo)
1131 {
1132 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1133 
1134 	INIT_LIST_HEAD(&ei->i_orphan);
1135 	init_rwsem(&ei->xattr_sem);
1136 	init_rwsem(&ei->i_data_sem);
1137 	init_rwsem(&ei->i_mmap_sem);
1138 	inode_init_once(&ei->vfs_inode);
1139 }
1140 
1141 static int __init init_inodecache(void)
1142 {
1143 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1144 				sizeof(struct ext4_inode_info), 0,
1145 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1146 					SLAB_ACCOUNT),
1147 				offsetof(struct ext4_inode_info, i_data),
1148 				sizeof_field(struct ext4_inode_info, i_data),
1149 				init_once);
1150 	if (ext4_inode_cachep == NULL)
1151 		return -ENOMEM;
1152 	return 0;
1153 }
1154 
1155 static void destroy_inodecache(void)
1156 {
1157 	/*
1158 	 * Make sure all delayed rcu free inodes are flushed before we
1159 	 * destroy cache.
1160 	 */
1161 	rcu_barrier();
1162 	kmem_cache_destroy(ext4_inode_cachep);
1163 }
1164 
1165 void ext4_clear_inode(struct inode *inode)
1166 {
1167 	invalidate_inode_buffers(inode);
1168 	clear_inode(inode);
1169 	dquot_drop(inode);
1170 	ext4_discard_preallocations(inode);
1171 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1172 	if (EXT4_I(inode)->jinode) {
1173 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1174 					       EXT4_I(inode)->jinode);
1175 		jbd2_free_inode(EXT4_I(inode)->jinode);
1176 		EXT4_I(inode)->jinode = NULL;
1177 	}
1178 	fscrypt_put_encryption_info(inode);
1179 }
1180 
1181 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1182 					u64 ino, u32 generation)
1183 {
1184 	struct inode *inode;
1185 
1186 	/*
1187 	 * Currently we don't know the generation for parent directory, so
1188 	 * a generation of 0 means "accept any"
1189 	 */
1190 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1191 	if (IS_ERR(inode))
1192 		return ERR_CAST(inode);
1193 	if (generation && inode->i_generation != generation) {
1194 		iput(inode);
1195 		return ERR_PTR(-ESTALE);
1196 	}
1197 
1198 	return inode;
1199 }
1200 
1201 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1202 					int fh_len, int fh_type)
1203 {
1204 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1205 				    ext4_nfs_get_inode);
1206 }
1207 
1208 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1209 					int fh_len, int fh_type)
1210 {
1211 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1212 				    ext4_nfs_get_inode);
1213 }
1214 
1215 static int ext4_nfs_commit_metadata(struct inode *inode)
1216 {
1217 	struct writeback_control wbc = {
1218 		.sync_mode = WB_SYNC_ALL
1219 	};
1220 
1221 	trace_ext4_nfs_commit_metadata(inode);
1222 	return ext4_write_inode(inode, &wbc);
1223 }
1224 
1225 /*
1226  * Try to release metadata pages (indirect blocks, directories) which are
1227  * mapped via the block device.  Since these pages could have journal heads
1228  * which would prevent try_to_free_buffers() from freeing them, we must use
1229  * jbd2 layer's try_to_free_buffers() function to release them.
1230  */
1231 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1232 				 gfp_t wait)
1233 {
1234 	journal_t *journal = EXT4_SB(sb)->s_journal;
1235 
1236 	WARN_ON(PageChecked(page));
1237 	if (!page_has_buffers(page))
1238 		return 0;
1239 	if (journal)
1240 		return jbd2_journal_try_to_free_buffers(journal, page,
1241 						wait & ~__GFP_DIRECT_RECLAIM);
1242 	return try_to_free_buffers(page);
1243 }
1244 
1245 #ifdef CONFIG_FS_ENCRYPTION
1246 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1247 {
1248 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1249 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1250 }
1251 
1252 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1253 							void *fs_data)
1254 {
1255 	handle_t *handle = fs_data;
1256 	int res, res2, credits, retries = 0;
1257 
1258 	/*
1259 	 * Encrypting the root directory is not allowed because e2fsck expects
1260 	 * lost+found to exist and be unencrypted, and encrypting the root
1261 	 * directory would imply encrypting the lost+found directory as well as
1262 	 * the filename "lost+found" itself.
1263 	 */
1264 	if (inode->i_ino == EXT4_ROOT_INO)
1265 		return -EPERM;
1266 
1267 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1268 		return -EINVAL;
1269 
1270 	res = ext4_convert_inline_data(inode);
1271 	if (res)
1272 		return res;
1273 
1274 	/*
1275 	 * If a journal handle was specified, then the encryption context is
1276 	 * being set on a new inode via inheritance and is part of a larger
1277 	 * transaction to create the inode.  Otherwise the encryption context is
1278 	 * being set on an existing inode in its own transaction.  Only in the
1279 	 * latter case should the "retry on ENOSPC" logic be used.
1280 	 */
1281 
1282 	if (handle) {
1283 		res = ext4_xattr_set_handle(handle, inode,
1284 					    EXT4_XATTR_INDEX_ENCRYPTION,
1285 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1286 					    ctx, len, 0);
1287 		if (!res) {
1288 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1289 			ext4_clear_inode_state(inode,
1290 					EXT4_STATE_MAY_INLINE_DATA);
1291 			/*
1292 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1293 			 * S_DAX may be disabled
1294 			 */
1295 			ext4_set_inode_flags(inode);
1296 		}
1297 		return res;
1298 	}
1299 
1300 	res = dquot_initialize(inode);
1301 	if (res)
1302 		return res;
1303 retry:
1304 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1305 				     &credits);
1306 	if (res)
1307 		return res;
1308 
1309 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1310 	if (IS_ERR(handle))
1311 		return PTR_ERR(handle);
1312 
1313 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1314 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1315 				    ctx, len, 0);
1316 	if (!res) {
1317 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1318 		/*
1319 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1320 		 * S_DAX may be disabled
1321 		 */
1322 		ext4_set_inode_flags(inode);
1323 		res = ext4_mark_inode_dirty(handle, inode);
1324 		if (res)
1325 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1326 	}
1327 	res2 = ext4_journal_stop(handle);
1328 
1329 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1330 		goto retry;
1331 	if (!res)
1332 		res = res2;
1333 	return res;
1334 }
1335 
1336 static bool ext4_dummy_context(struct inode *inode)
1337 {
1338 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1339 }
1340 
1341 static const struct fscrypt_operations ext4_cryptops = {
1342 	.key_prefix		= "ext4:",
1343 	.get_context		= ext4_get_context,
1344 	.set_context		= ext4_set_context,
1345 	.dummy_context		= ext4_dummy_context,
1346 	.empty_dir		= ext4_empty_dir,
1347 	.max_namelen		= EXT4_NAME_LEN,
1348 };
1349 #endif
1350 
1351 #ifdef CONFIG_QUOTA
1352 static const char * const quotatypes[] = INITQFNAMES;
1353 #define QTYPE2NAME(t) (quotatypes[t])
1354 
1355 static int ext4_write_dquot(struct dquot *dquot);
1356 static int ext4_acquire_dquot(struct dquot *dquot);
1357 static int ext4_release_dquot(struct dquot *dquot);
1358 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1359 static int ext4_write_info(struct super_block *sb, int type);
1360 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1361 			 const struct path *path);
1362 static int ext4_quota_on_mount(struct super_block *sb, int type);
1363 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1364 			       size_t len, loff_t off);
1365 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1366 				const char *data, size_t len, loff_t off);
1367 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1368 			     unsigned int flags);
1369 static int ext4_enable_quotas(struct super_block *sb);
1370 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1371 
1372 static struct dquot **ext4_get_dquots(struct inode *inode)
1373 {
1374 	return EXT4_I(inode)->i_dquot;
1375 }
1376 
1377 static const struct dquot_operations ext4_quota_operations = {
1378 	.get_reserved_space	= ext4_get_reserved_space,
1379 	.write_dquot		= ext4_write_dquot,
1380 	.acquire_dquot		= ext4_acquire_dquot,
1381 	.release_dquot		= ext4_release_dquot,
1382 	.mark_dirty		= ext4_mark_dquot_dirty,
1383 	.write_info		= ext4_write_info,
1384 	.alloc_dquot		= dquot_alloc,
1385 	.destroy_dquot		= dquot_destroy,
1386 	.get_projid		= ext4_get_projid,
1387 	.get_inode_usage	= ext4_get_inode_usage,
1388 	.get_next_id		= ext4_get_next_id,
1389 };
1390 
1391 static const struct quotactl_ops ext4_qctl_operations = {
1392 	.quota_on	= ext4_quota_on,
1393 	.quota_off	= ext4_quota_off,
1394 	.quota_sync	= dquot_quota_sync,
1395 	.get_state	= dquot_get_state,
1396 	.set_info	= dquot_set_dqinfo,
1397 	.get_dqblk	= dquot_get_dqblk,
1398 	.set_dqblk	= dquot_set_dqblk,
1399 	.get_nextdqblk	= dquot_get_next_dqblk,
1400 };
1401 #endif
1402 
1403 static const struct super_operations ext4_sops = {
1404 	.alloc_inode	= ext4_alloc_inode,
1405 	.destroy_inode	= ext4_destroy_inode,
1406 	.write_inode	= ext4_write_inode,
1407 	.dirty_inode	= ext4_dirty_inode,
1408 	.drop_inode	= ext4_drop_inode,
1409 	.evict_inode	= ext4_evict_inode,
1410 	.put_super	= ext4_put_super,
1411 	.sync_fs	= ext4_sync_fs,
1412 	.freeze_fs	= ext4_freeze,
1413 	.unfreeze_fs	= ext4_unfreeze,
1414 	.statfs		= ext4_statfs,
1415 	.remount_fs	= ext4_remount,
1416 	.show_options	= ext4_show_options,
1417 #ifdef CONFIG_QUOTA
1418 	.quota_read	= ext4_quota_read,
1419 	.quota_write	= ext4_quota_write,
1420 	.get_dquots	= ext4_get_dquots,
1421 #endif
1422 	.bdev_try_to_free_page = bdev_try_to_free_page,
1423 };
1424 
1425 static const struct export_operations ext4_export_ops = {
1426 	.fh_to_dentry = ext4_fh_to_dentry,
1427 	.fh_to_parent = ext4_fh_to_parent,
1428 	.get_parent = ext4_get_parent,
1429 	.commit_metadata = ext4_nfs_commit_metadata,
1430 };
1431 
1432 enum {
1433 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1434 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1435 	Opt_nouid32, Opt_debug, Opt_removed,
1436 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1437 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1438 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1439 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1440 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1441 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1442 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1443 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1444 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1445 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1446 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1447 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1448 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1449 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1450 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1451 	Opt_dioread_nolock, Opt_dioread_lock,
1452 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1453 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1454 };
1455 
1456 static const match_table_t tokens = {
1457 	{Opt_bsd_df, "bsddf"},
1458 	{Opt_minix_df, "minixdf"},
1459 	{Opt_grpid, "grpid"},
1460 	{Opt_grpid, "bsdgroups"},
1461 	{Opt_nogrpid, "nogrpid"},
1462 	{Opt_nogrpid, "sysvgroups"},
1463 	{Opt_resgid, "resgid=%u"},
1464 	{Opt_resuid, "resuid=%u"},
1465 	{Opt_sb, "sb=%u"},
1466 	{Opt_err_cont, "errors=continue"},
1467 	{Opt_err_panic, "errors=panic"},
1468 	{Opt_err_ro, "errors=remount-ro"},
1469 	{Opt_nouid32, "nouid32"},
1470 	{Opt_debug, "debug"},
1471 	{Opt_removed, "oldalloc"},
1472 	{Opt_removed, "orlov"},
1473 	{Opt_user_xattr, "user_xattr"},
1474 	{Opt_nouser_xattr, "nouser_xattr"},
1475 	{Opt_acl, "acl"},
1476 	{Opt_noacl, "noacl"},
1477 	{Opt_noload, "norecovery"},
1478 	{Opt_noload, "noload"},
1479 	{Opt_removed, "nobh"},
1480 	{Opt_removed, "bh"},
1481 	{Opt_commit, "commit=%u"},
1482 	{Opt_min_batch_time, "min_batch_time=%u"},
1483 	{Opt_max_batch_time, "max_batch_time=%u"},
1484 	{Opt_journal_dev, "journal_dev=%u"},
1485 	{Opt_journal_path, "journal_path=%s"},
1486 	{Opt_journal_checksum, "journal_checksum"},
1487 	{Opt_nojournal_checksum, "nojournal_checksum"},
1488 	{Opt_journal_async_commit, "journal_async_commit"},
1489 	{Opt_abort, "abort"},
1490 	{Opt_data_journal, "data=journal"},
1491 	{Opt_data_ordered, "data=ordered"},
1492 	{Opt_data_writeback, "data=writeback"},
1493 	{Opt_data_err_abort, "data_err=abort"},
1494 	{Opt_data_err_ignore, "data_err=ignore"},
1495 	{Opt_offusrjquota, "usrjquota="},
1496 	{Opt_usrjquota, "usrjquota=%s"},
1497 	{Opt_offgrpjquota, "grpjquota="},
1498 	{Opt_grpjquota, "grpjquota=%s"},
1499 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1500 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1501 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1502 	{Opt_grpquota, "grpquota"},
1503 	{Opt_noquota, "noquota"},
1504 	{Opt_quota, "quota"},
1505 	{Opt_usrquota, "usrquota"},
1506 	{Opt_prjquota, "prjquota"},
1507 	{Opt_barrier, "barrier=%u"},
1508 	{Opt_barrier, "barrier"},
1509 	{Opt_nobarrier, "nobarrier"},
1510 	{Opt_i_version, "i_version"},
1511 	{Opt_dax, "dax"},
1512 	{Opt_stripe, "stripe=%u"},
1513 	{Opt_delalloc, "delalloc"},
1514 	{Opt_warn_on_error, "warn_on_error"},
1515 	{Opt_nowarn_on_error, "nowarn_on_error"},
1516 	{Opt_lazytime, "lazytime"},
1517 	{Opt_nolazytime, "nolazytime"},
1518 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1519 	{Opt_nodelalloc, "nodelalloc"},
1520 	{Opt_removed, "mblk_io_submit"},
1521 	{Opt_removed, "nomblk_io_submit"},
1522 	{Opt_block_validity, "block_validity"},
1523 	{Opt_noblock_validity, "noblock_validity"},
1524 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1525 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1526 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1527 	{Opt_auto_da_alloc, "auto_da_alloc"},
1528 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1529 	{Opt_dioread_nolock, "dioread_nolock"},
1530 	{Opt_dioread_lock, "dioread_lock"},
1531 	{Opt_discard, "discard"},
1532 	{Opt_nodiscard, "nodiscard"},
1533 	{Opt_init_itable, "init_itable=%u"},
1534 	{Opt_init_itable, "init_itable"},
1535 	{Opt_noinit_itable, "noinit_itable"},
1536 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1537 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1538 	{Opt_nombcache, "nombcache"},
1539 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1540 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1541 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1542 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1543 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1544 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1545 	{Opt_err, NULL},
1546 };
1547 
1548 static ext4_fsblk_t get_sb_block(void **data)
1549 {
1550 	ext4_fsblk_t	sb_block;
1551 	char		*options = (char *) *data;
1552 
1553 	if (!options || strncmp(options, "sb=", 3) != 0)
1554 		return 1;	/* Default location */
1555 
1556 	options += 3;
1557 	/* TODO: use simple_strtoll with >32bit ext4 */
1558 	sb_block = simple_strtoul(options, &options, 0);
1559 	if (*options && *options != ',') {
1560 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1561 		       (char *) *data);
1562 		return 1;
1563 	}
1564 	if (*options == ',')
1565 		options++;
1566 	*data = (void *) options;
1567 
1568 	return sb_block;
1569 }
1570 
1571 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1572 static const char deprecated_msg[] =
1573 	"Mount option \"%s\" will be removed by %s\n"
1574 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1575 
1576 #ifdef CONFIG_QUOTA
1577 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1578 {
1579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1580 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1581 	int ret = -1;
1582 
1583 	if (sb_any_quota_loaded(sb) && !old_qname) {
1584 		ext4_msg(sb, KERN_ERR,
1585 			"Cannot change journaled "
1586 			"quota options when quota turned on");
1587 		return -1;
1588 	}
1589 	if (ext4_has_feature_quota(sb)) {
1590 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1591 			 "ignored when QUOTA feature is enabled");
1592 		return 1;
1593 	}
1594 	qname = match_strdup(args);
1595 	if (!qname) {
1596 		ext4_msg(sb, KERN_ERR,
1597 			"Not enough memory for storing quotafile name");
1598 		return -1;
1599 	}
1600 	if (old_qname) {
1601 		if (strcmp(old_qname, qname) == 0)
1602 			ret = 1;
1603 		else
1604 			ext4_msg(sb, KERN_ERR,
1605 				 "%s quota file already specified",
1606 				 QTYPE2NAME(qtype));
1607 		goto errout;
1608 	}
1609 	if (strchr(qname, '/')) {
1610 		ext4_msg(sb, KERN_ERR,
1611 			"quotafile must be on filesystem root");
1612 		goto errout;
1613 	}
1614 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1615 	set_opt(sb, QUOTA);
1616 	return 1;
1617 errout:
1618 	kfree(qname);
1619 	return ret;
1620 }
1621 
1622 static int clear_qf_name(struct super_block *sb, int qtype)
1623 {
1624 
1625 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1626 	char *old_qname = get_qf_name(sb, sbi, qtype);
1627 
1628 	if (sb_any_quota_loaded(sb) && old_qname) {
1629 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1630 			" when quota turned on");
1631 		return -1;
1632 	}
1633 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1634 	synchronize_rcu();
1635 	kfree(old_qname);
1636 	return 1;
1637 }
1638 #endif
1639 
1640 #define MOPT_SET	0x0001
1641 #define MOPT_CLEAR	0x0002
1642 #define MOPT_NOSUPPORT	0x0004
1643 #define MOPT_EXPLICIT	0x0008
1644 #define MOPT_CLEAR_ERR	0x0010
1645 #define MOPT_GTE0	0x0020
1646 #ifdef CONFIG_QUOTA
1647 #define MOPT_Q		0
1648 #define MOPT_QFMT	0x0040
1649 #else
1650 #define MOPT_Q		MOPT_NOSUPPORT
1651 #define MOPT_QFMT	MOPT_NOSUPPORT
1652 #endif
1653 #define MOPT_DATAJ	0x0080
1654 #define MOPT_NO_EXT2	0x0100
1655 #define MOPT_NO_EXT3	0x0200
1656 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1657 #define MOPT_STRING	0x0400
1658 
1659 static const struct mount_opts {
1660 	int	token;
1661 	int	mount_opt;
1662 	int	flags;
1663 } ext4_mount_opts[] = {
1664 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1665 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1666 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1667 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1668 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1669 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1670 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1671 	 MOPT_EXT4_ONLY | MOPT_SET},
1672 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1673 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1674 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1675 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1676 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1677 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1678 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1679 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1680 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1681 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1682 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1683 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1684 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1685 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1686 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1687 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1688 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1689 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1690 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1691 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1692 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1693 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1694 	 MOPT_NO_EXT2},
1695 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1696 	 MOPT_NO_EXT2},
1697 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1698 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1699 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1700 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1701 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1702 	{Opt_commit, 0, MOPT_GTE0},
1703 	{Opt_max_batch_time, 0, MOPT_GTE0},
1704 	{Opt_min_batch_time, 0, MOPT_GTE0},
1705 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1706 	{Opt_init_itable, 0, MOPT_GTE0},
1707 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1708 	{Opt_stripe, 0, MOPT_GTE0},
1709 	{Opt_resuid, 0, MOPT_GTE0},
1710 	{Opt_resgid, 0, MOPT_GTE0},
1711 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1712 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1713 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1714 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1715 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1716 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1717 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1718 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1719 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1720 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1721 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1722 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1723 #else
1724 	{Opt_acl, 0, MOPT_NOSUPPORT},
1725 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1726 #endif
1727 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1728 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1729 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1730 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1731 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1732 							MOPT_SET | MOPT_Q},
1733 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1734 							MOPT_SET | MOPT_Q},
1735 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1736 							MOPT_SET | MOPT_Q},
1737 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1738 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1739 							MOPT_CLEAR | MOPT_Q},
1740 	{Opt_usrjquota, 0, MOPT_Q},
1741 	{Opt_grpjquota, 0, MOPT_Q},
1742 	{Opt_offusrjquota, 0, MOPT_Q},
1743 	{Opt_offgrpjquota, 0, MOPT_Q},
1744 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1745 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1746 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1747 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1748 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1749 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1750 	{Opt_err, 0, 0}
1751 };
1752 
1753 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1754 			    substring_t *args, unsigned long *journal_devnum,
1755 			    unsigned int *journal_ioprio, int is_remount)
1756 {
1757 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1758 	const struct mount_opts *m;
1759 	kuid_t uid;
1760 	kgid_t gid;
1761 	int arg = 0;
1762 
1763 #ifdef CONFIG_QUOTA
1764 	if (token == Opt_usrjquota)
1765 		return set_qf_name(sb, USRQUOTA, &args[0]);
1766 	else if (token == Opt_grpjquota)
1767 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1768 	else if (token == Opt_offusrjquota)
1769 		return clear_qf_name(sb, USRQUOTA);
1770 	else if (token == Opt_offgrpjquota)
1771 		return clear_qf_name(sb, GRPQUOTA);
1772 #endif
1773 	switch (token) {
1774 	case Opt_noacl:
1775 	case Opt_nouser_xattr:
1776 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1777 		break;
1778 	case Opt_sb:
1779 		return 1;	/* handled by get_sb_block() */
1780 	case Opt_removed:
1781 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1782 		return 1;
1783 	case Opt_abort:
1784 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1785 		return 1;
1786 	case Opt_i_version:
1787 		sb->s_flags |= SB_I_VERSION;
1788 		return 1;
1789 	case Opt_lazytime:
1790 		sb->s_flags |= SB_LAZYTIME;
1791 		return 1;
1792 	case Opt_nolazytime:
1793 		sb->s_flags &= ~SB_LAZYTIME;
1794 		return 1;
1795 	}
1796 
1797 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1798 		if (token == m->token)
1799 			break;
1800 
1801 	if (m->token == Opt_err) {
1802 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1803 			 "or missing value", opt);
1804 		return -1;
1805 	}
1806 
1807 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1808 		ext4_msg(sb, KERN_ERR,
1809 			 "Mount option \"%s\" incompatible with ext2", opt);
1810 		return -1;
1811 	}
1812 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1813 		ext4_msg(sb, KERN_ERR,
1814 			 "Mount option \"%s\" incompatible with ext3", opt);
1815 		return -1;
1816 	}
1817 
1818 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1819 		return -1;
1820 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1821 		return -1;
1822 	if (m->flags & MOPT_EXPLICIT) {
1823 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1824 			set_opt2(sb, EXPLICIT_DELALLOC);
1825 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1826 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1827 		} else
1828 			return -1;
1829 	}
1830 	if (m->flags & MOPT_CLEAR_ERR)
1831 		clear_opt(sb, ERRORS_MASK);
1832 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1833 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1834 			 "options when quota turned on");
1835 		return -1;
1836 	}
1837 
1838 	if (m->flags & MOPT_NOSUPPORT) {
1839 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1840 	} else if (token == Opt_commit) {
1841 		if (arg == 0)
1842 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1843 		sbi->s_commit_interval = HZ * arg;
1844 	} else if (token == Opt_debug_want_extra_isize) {
1845 		sbi->s_want_extra_isize = arg;
1846 	} else if (token == Opt_max_batch_time) {
1847 		sbi->s_max_batch_time = arg;
1848 	} else if (token == Opt_min_batch_time) {
1849 		sbi->s_min_batch_time = arg;
1850 	} else if (token == Opt_inode_readahead_blks) {
1851 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1852 			ext4_msg(sb, KERN_ERR,
1853 				 "EXT4-fs: inode_readahead_blks must be "
1854 				 "0 or a power of 2 smaller than 2^31");
1855 			return -1;
1856 		}
1857 		sbi->s_inode_readahead_blks = arg;
1858 	} else if (token == Opt_init_itable) {
1859 		set_opt(sb, INIT_INODE_TABLE);
1860 		if (!args->from)
1861 			arg = EXT4_DEF_LI_WAIT_MULT;
1862 		sbi->s_li_wait_mult = arg;
1863 	} else if (token == Opt_max_dir_size_kb) {
1864 		sbi->s_max_dir_size_kb = arg;
1865 	} else if (token == Opt_stripe) {
1866 		sbi->s_stripe = arg;
1867 	} else if (token == Opt_resuid) {
1868 		uid = make_kuid(current_user_ns(), arg);
1869 		if (!uid_valid(uid)) {
1870 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1871 			return -1;
1872 		}
1873 		sbi->s_resuid = uid;
1874 	} else if (token == Opt_resgid) {
1875 		gid = make_kgid(current_user_ns(), arg);
1876 		if (!gid_valid(gid)) {
1877 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1878 			return -1;
1879 		}
1880 		sbi->s_resgid = gid;
1881 	} else if (token == Opt_journal_dev) {
1882 		if (is_remount) {
1883 			ext4_msg(sb, KERN_ERR,
1884 				 "Cannot specify journal on remount");
1885 			return -1;
1886 		}
1887 		*journal_devnum = arg;
1888 	} else if (token == Opt_journal_path) {
1889 		char *journal_path;
1890 		struct inode *journal_inode;
1891 		struct path path;
1892 		int error;
1893 
1894 		if (is_remount) {
1895 			ext4_msg(sb, KERN_ERR,
1896 				 "Cannot specify journal on remount");
1897 			return -1;
1898 		}
1899 		journal_path = match_strdup(&args[0]);
1900 		if (!journal_path) {
1901 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1902 				"journal device string");
1903 			return -1;
1904 		}
1905 
1906 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1907 		if (error) {
1908 			ext4_msg(sb, KERN_ERR, "error: could not find "
1909 				"journal device path: error %d", error);
1910 			kfree(journal_path);
1911 			return -1;
1912 		}
1913 
1914 		journal_inode = d_inode(path.dentry);
1915 		if (!S_ISBLK(journal_inode->i_mode)) {
1916 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1917 				"is not a block device", journal_path);
1918 			path_put(&path);
1919 			kfree(journal_path);
1920 			return -1;
1921 		}
1922 
1923 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1924 		path_put(&path);
1925 		kfree(journal_path);
1926 	} else if (token == Opt_journal_ioprio) {
1927 		if (arg > 7) {
1928 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1929 				 " (must be 0-7)");
1930 			return -1;
1931 		}
1932 		*journal_ioprio =
1933 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1934 	} else if (token == Opt_test_dummy_encryption) {
1935 #ifdef CONFIG_FS_ENCRYPTION
1936 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1937 		ext4_msg(sb, KERN_WARNING,
1938 			 "Test dummy encryption mode enabled");
1939 #else
1940 		ext4_msg(sb, KERN_WARNING,
1941 			 "Test dummy encryption mount option ignored");
1942 #endif
1943 	} else if (m->flags & MOPT_DATAJ) {
1944 		if (is_remount) {
1945 			if (!sbi->s_journal)
1946 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1947 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1948 				ext4_msg(sb, KERN_ERR,
1949 					 "Cannot change data mode on remount");
1950 				return -1;
1951 			}
1952 		} else {
1953 			clear_opt(sb, DATA_FLAGS);
1954 			sbi->s_mount_opt |= m->mount_opt;
1955 		}
1956 #ifdef CONFIG_QUOTA
1957 	} else if (m->flags & MOPT_QFMT) {
1958 		if (sb_any_quota_loaded(sb) &&
1959 		    sbi->s_jquota_fmt != m->mount_opt) {
1960 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1961 				 "quota options when quota turned on");
1962 			return -1;
1963 		}
1964 		if (ext4_has_feature_quota(sb)) {
1965 			ext4_msg(sb, KERN_INFO,
1966 				 "Quota format mount options ignored "
1967 				 "when QUOTA feature is enabled");
1968 			return 1;
1969 		}
1970 		sbi->s_jquota_fmt = m->mount_opt;
1971 #endif
1972 	} else if (token == Opt_dax) {
1973 #ifdef CONFIG_FS_DAX
1974 		ext4_msg(sb, KERN_WARNING,
1975 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1976 		sbi->s_mount_opt |= m->mount_opt;
1977 #else
1978 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1979 		return -1;
1980 #endif
1981 	} else if (token == Opt_data_err_abort) {
1982 		sbi->s_mount_opt |= m->mount_opt;
1983 	} else if (token == Opt_data_err_ignore) {
1984 		sbi->s_mount_opt &= ~m->mount_opt;
1985 	} else {
1986 		if (!args->from)
1987 			arg = 1;
1988 		if (m->flags & MOPT_CLEAR)
1989 			arg = !arg;
1990 		else if (unlikely(!(m->flags & MOPT_SET))) {
1991 			ext4_msg(sb, KERN_WARNING,
1992 				 "buggy handling of option %s", opt);
1993 			WARN_ON(1);
1994 			return -1;
1995 		}
1996 		if (arg != 0)
1997 			sbi->s_mount_opt |= m->mount_opt;
1998 		else
1999 			sbi->s_mount_opt &= ~m->mount_opt;
2000 	}
2001 	return 1;
2002 }
2003 
2004 static int parse_options(char *options, struct super_block *sb,
2005 			 unsigned long *journal_devnum,
2006 			 unsigned int *journal_ioprio,
2007 			 int is_remount)
2008 {
2009 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2010 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2011 	substring_t args[MAX_OPT_ARGS];
2012 	int token;
2013 
2014 	if (!options)
2015 		return 1;
2016 
2017 	while ((p = strsep(&options, ",")) != NULL) {
2018 		if (!*p)
2019 			continue;
2020 		/*
2021 		 * Initialize args struct so we know whether arg was
2022 		 * found; some options take optional arguments.
2023 		 */
2024 		args[0].to = args[0].from = NULL;
2025 		token = match_token(p, tokens, args);
2026 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2027 				     journal_ioprio, is_remount) < 0)
2028 			return 0;
2029 	}
2030 #ifdef CONFIG_QUOTA
2031 	/*
2032 	 * We do the test below only for project quotas. 'usrquota' and
2033 	 * 'grpquota' mount options are allowed even without quota feature
2034 	 * to support legacy quotas in quota files.
2035 	 */
2036 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2037 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2038 			 "Cannot enable project quota enforcement.");
2039 		return 0;
2040 	}
2041 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2042 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2043 	if (usr_qf_name || grp_qf_name) {
2044 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2045 			clear_opt(sb, USRQUOTA);
2046 
2047 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2048 			clear_opt(sb, GRPQUOTA);
2049 
2050 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2051 			ext4_msg(sb, KERN_ERR, "old and new quota "
2052 					"format mixing");
2053 			return 0;
2054 		}
2055 
2056 		if (!sbi->s_jquota_fmt) {
2057 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2058 					"not specified");
2059 			return 0;
2060 		}
2061 	}
2062 #endif
2063 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2064 		int blocksize =
2065 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2066 
2067 		if (blocksize < PAGE_SIZE) {
2068 			ext4_msg(sb, KERN_ERR, "can't mount with "
2069 				 "dioread_nolock if block size != PAGE_SIZE");
2070 			return 0;
2071 		}
2072 	}
2073 	return 1;
2074 }
2075 
2076 static inline void ext4_show_quota_options(struct seq_file *seq,
2077 					   struct super_block *sb)
2078 {
2079 #if defined(CONFIG_QUOTA)
2080 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2081 	char *usr_qf_name, *grp_qf_name;
2082 
2083 	if (sbi->s_jquota_fmt) {
2084 		char *fmtname = "";
2085 
2086 		switch (sbi->s_jquota_fmt) {
2087 		case QFMT_VFS_OLD:
2088 			fmtname = "vfsold";
2089 			break;
2090 		case QFMT_VFS_V0:
2091 			fmtname = "vfsv0";
2092 			break;
2093 		case QFMT_VFS_V1:
2094 			fmtname = "vfsv1";
2095 			break;
2096 		}
2097 		seq_printf(seq, ",jqfmt=%s", fmtname);
2098 	}
2099 
2100 	rcu_read_lock();
2101 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2102 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2103 	if (usr_qf_name)
2104 		seq_show_option(seq, "usrjquota", usr_qf_name);
2105 	if (grp_qf_name)
2106 		seq_show_option(seq, "grpjquota", grp_qf_name);
2107 	rcu_read_unlock();
2108 #endif
2109 }
2110 
2111 static const char *token2str(int token)
2112 {
2113 	const struct match_token *t;
2114 
2115 	for (t = tokens; t->token != Opt_err; t++)
2116 		if (t->token == token && !strchr(t->pattern, '='))
2117 			break;
2118 	return t->pattern;
2119 }
2120 
2121 /*
2122  * Show an option if
2123  *  - it's set to a non-default value OR
2124  *  - if the per-sb default is different from the global default
2125  */
2126 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2127 			      int nodefs)
2128 {
2129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 	struct ext4_super_block *es = sbi->s_es;
2131 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2132 	const struct mount_opts *m;
2133 	char sep = nodefs ? '\n' : ',';
2134 
2135 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2136 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2137 
2138 	if (sbi->s_sb_block != 1)
2139 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2140 
2141 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2142 		int want_set = m->flags & MOPT_SET;
2143 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2144 		    (m->flags & MOPT_CLEAR_ERR))
2145 			continue;
2146 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2147 			continue; /* skip if same as the default */
2148 		if ((want_set &&
2149 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2150 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2151 			continue; /* select Opt_noFoo vs Opt_Foo */
2152 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2153 	}
2154 
2155 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2156 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2157 		SEQ_OPTS_PRINT("resuid=%u",
2158 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2159 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2160 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2161 		SEQ_OPTS_PRINT("resgid=%u",
2162 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2163 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2164 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2165 		SEQ_OPTS_PUTS("errors=remount-ro");
2166 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2167 		SEQ_OPTS_PUTS("errors=continue");
2168 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2169 		SEQ_OPTS_PUTS("errors=panic");
2170 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2171 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2172 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2173 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2174 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2175 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2176 	if (sb->s_flags & SB_I_VERSION)
2177 		SEQ_OPTS_PUTS("i_version");
2178 	if (nodefs || sbi->s_stripe)
2179 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2180 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2181 			(sbi->s_mount_opt ^ def_mount_opt)) {
2182 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2183 			SEQ_OPTS_PUTS("data=journal");
2184 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2185 			SEQ_OPTS_PUTS("data=ordered");
2186 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2187 			SEQ_OPTS_PUTS("data=writeback");
2188 	}
2189 	if (nodefs ||
2190 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2191 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2192 			       sbi->s_inode_readahead_blks);
2193 
2194 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2195 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2196 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2197 	if (nodefs || sbi->s_max_dir_size_kb)
2198 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2199 	if (test_opt(sb, DATA_ERR_ABORT))
2200 		SEQ_OPTS_PUTS("data_err=abort");
2201 	if (DUMMY_ENCRYPTION_ENABLED(sbi))
2202 		SEQ_OPTS_PUTS("test_dummy_encryption");
2203 
2204 	ext4_show_quota_options(seq, sb);
2205 	return 0;
2206 }
2207 
2208 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2209 {
2210 	return _ext4_show_options(seq, root->d_sb, 0);
2211 }
2212 
2213 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2214 {
2215 	struct super_block *sb = seq->private;
2216 	int rc;
2217 
2218 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2219 	rc = _ext4_show_options(seq, sb, 1);
2220 	seq_puts(seq, "\n");
2221 	return rc;
2222 }
2223 
2224 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2225 			    int read_only)
2226 {
2227 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2228 	int err = 0;
2229 
2230 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2231 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2232 			 "forcing read-only mode");
2233 		err = -EROFS;
2234 	}
2235 	if (read_only)
2236 		goto done;
2237 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2238 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2239 			 "running e2fsck is recommended");
2240 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2241 		ext4_msg(sb, KERN_WARNING,
2242 			 "warning: mounting fs with errors, "
2243 			 "running e2fsck is recommended");
2244 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2245 		 le16_to_cpu(es->s_mnt_count) >=
2246 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2247 		ext4_msg(sb, KERN_WARNING,
2248 			 "warning: maximal mount count reached, "
2249 			 "running e2fsck is recommended");
2250 	else if (le32_to_cpu(es->s_checkinterval) &&
2251 		 (ext4_get_tstamp(es, s_lastcheck) +
2252 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2253 		ext4_msg(sb, KERN_WARNING,
2254 			 "warning: checktime reached, "
2255 			 "running e2fsck is recommended");
2256 	if (!sbi->s_journal)
2257 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2258 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2259 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2260 	le16_add_cpu(&es->s_mnt_count, 1);
2261 	ext4_update_tstamp(es, s_mtime);
2262 	if (sbi->s_journal)
2263 		ext4_set_feature_journal_needs_recovery(sb);
2264 
2265 	err = ext4_commit_super(sb, 1);
2266 done:
2267 	if (test_opt(sb, DEBUG))
2268 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2269 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2270 			sb->s_blocksize,
2271 			sbi->s_groups_count,
2272 			EXT4_BLOCKS_PER_GROUP(sb),
2273 			EXT4_INODES_PER_GROUP(sb),
2274 			sbi->s_mount_opt, sbi->s_mount_opt2);
2275 
2276 	cleancache_init_fs(sb);
2277 	return err;
2278 }
2279 
2280 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2281 {
2282 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2283 	struct flex_groups *new_groups;
2284 	int size;
2285 
2286 	if (!sbi->s_log_groups_per_flex)
2287 		return 0;
2288 
2289 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2290 	if (size <= sbi->s_flex_groups_allocated)
2291 		return 0;
2292 
2293 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2294 	new_groups = kvzalloc(size, GFP_KERNEL);
2295 	if (!new_groups) {
2296 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2297 			 size / (int) sizeof(struct flex_groups));
2298 		return -ENOMEM;
2299 	}
2300 
2301 	if (sbi->s_flex_groups) {
2302 		memcpy(new_groups, sbi->s_flex_groups,
2303 		       (sbi->s_flex_groups_allocated *
2304 			sizeof(struct flex_groups)));
2305 		kvfree(sbi->s_flex_groups);
2306 	}
2307 	sbi->s_flex_groups = new_groups;
2308 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2309 	return 0;
2310 }
2311 
2312 static int ext4_fill_flex_info(struct super_block *sb)
2313 {
2314 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2315 	struct ext4_group_desc *gdp = NULL;
2316 	ext4_group_t flex_group;
2317 	int i, err;
2318 
2319 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2320 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2321 		sbi->s_log_groups_per_flex = 0;
2322 		return 1;
2323 	}
2324 
2325 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2326 	if (err)
2327 		goto failed;
2328 
2329 	for (i = 0; i < sbi->s_groups_count; i++) {
2330 		gdp = ext4_get_group_desc(sb, i, NULL);
2331 
2332 		flex_group = ext4_flex_group(sbi, i);
2333 		atomic_add(ext4_free_inodes_count(sb, gdp),
2334 			   &sbi->s_flex_groups[flex_group].free_inodes);
2335 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2336 			     &sbi->s_flex_groups[flex_group].free_clusters);
2337 		atomic_add(ext4_used_dirs_count(sb, gdp),
2338 			   &sbi->s_flex_groups[flex_group].used_dirs);
2339 	}
2340 
2341 	return 1;
2342 failed:
2343 	return 0;
2344 }
2345 
2346 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2347 				   struct ext4_group_desc *gdp)
2348 {
2349 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2350 	__u16 crc = 0;
2351 	__le32 le_group = cpu_to_le32(block_group);
2352 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2353 
2354 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2355 		/* Use new metadata_csum algorithm */
2356 		__u32 csum32;
2357 		__u16 dummy_csum = 0;
2358 
2359 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2360 				     sizeof(le_group));
2361 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2362 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2363 				     sizeof(dummy_csum));
2364 		offset += sizeof(dummy_csum);
2365 		if (offset < sbi->s_desc_size)
2366 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2367 					     sbi->s_desc_size - offset);
2368 
2369 		crc = csum32 & 0xFFFF;
2370 		goto out;
2371 	}
2372 
2373 	/* old crc16 code */
2374 	if (!ext4_has_feature_gdt_csum(sb))
2375 		return 0;
2376 
2377 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2378 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2379 	crc = crc16(crc, (__u8 *)gdp, offset);
2380 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2381 	/* for checksum of struct ext4_group_desc do the rest...*/
2382 	if (ext4_has_feature_64bit(sb) &&
2383 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2384 		crc = crc16(crc, (__u8 *)gdp + offset,
2385 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2386 				offset);
2387 
2388 out:
2389 	return cpu_to_le16(crc);
2390 }
2391 
2392 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2393 				struct ext4_group_desc *gdp)
2394 {
2395 	if (ext4_has_group_desc_csum(sb) &&
2396 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2397 		return 0;
2398 
2399 	return 1;
2400 }
2401 
2402 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2403 			      struct ext4_group_desc *gdp)
2404 {
2405 	if (!ext4_has_group_desc_csum(sb))
2406 		return;
2407 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2408 }
2409 
2410 /* Called at mount-time, super-block is locked */
2411 static int ext4_check_descriptors(struct super_block *sb,
2412 				  ext4_fsblk_t sb_block,
2413 				  ext4_group_t *first_not_zeroed)
2414 {
2415 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2416 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2417 	ext4_fsblk_t last_block;
2418 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2419 	ext4_fsblk_t block_bitmap;
2420 	ext4_fsblk_t inode_bitmap;
2421 	ext4_fsblk_t inode_table;
2422 	int flexbg_flag = 0;
2423 	ext4_group_t i, grp = sbi->s_groups_count;
2424 
2425 	if (ext4_has_feature_flex_bg(sb))
2426 		flexbg_flag = 1;
2427 
2428 	ext4_debug("Checking group descriptors");
2429 
2430 	for (i = 0; i < sbi->s_groups_count; i++) {
2431 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2432 
2433 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2434 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2435 		else
2436 			last_block = first_block +
2437 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2438 
2439 		if ((grp == sbi->s_groups_count) &&
2440 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2441 			grp = i;
2442 
2443 		block_bitmap = ext4_block_bitmap(sb, gdp);
2444 		if (block_bitmap == sb_block) {
2445 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2446 				 "Block bitmap for group %u overlaps "
2447 				 "superblock", i);
2448 			if (!sb_rdonly(sb))
2449 				return 0;
2450 		}
2451 		if (block_bitmap >= sb_block + 1 &&
2452 		    block_bitmap <= last_bg_block) {
2453 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2454 				 "Block bitmap for group %u overlaps "
2455 				 "block group descriptors", i);
2456 			if (!sb_rdonly(sb))
2457 				return 0;
2458 		}
2459 		if (block_bitmap < first_block || block_bitmap > last_block) {
2460 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2461 			       "Block bitmap for group %u not in group "
2462 			       "(block %llu)!", i, block_bitmap);
2463 			return 0;
2464 		}
2465 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2466 		if (inode_bitmap == sb_block) {
2467 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2468 				 "Inode bitmap for group %u overlaps "
2469 				 "superblock", i);
2470 			if (!sb_rdonly(sb))
2471 				return 0;
2472 		}
2473 		if (inode_bitmap >= sb_block + 1 &&
2474 		    inode_bitmap <= last_bg_block) {
2475 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2476 				 "Inode bitmap for group %u overlaps "
2477 				 "block group descriptors", i);
2478 			if (!sb_rdonly(sb))
2479 				return 0;
2480 		}
2481 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2482 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2483 			       "Inode bitmap for group %u not in group "
2484 			       "(block %llu)!", i, inode_bitmap);
2485 			return 0;
2486 		}
2487 		inode_table = ext4_inode_table(sb, gdp);
2488 		if (inode_table == sb_block) {
2489 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2490 				 "Inode table for group %u overlaps "
2491 				 "superblock", i);
2492 			if (!sb_rdonly(sb))
2493 				return 0;
2494 		}
2495 		if (inode_table >= sb_block + 1 &&
2496 		    inode_table <= last_bg_block) {
2497 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2498 				 "Inode table for group %u overlaps "
2499 				 "block group descriptors", i);
2500 			if (!sb_rdonly(sb))
2501 				return 0;
2502 		}
2503 		if (inode_table < first_block ||
2504 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2505 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2506 			       "Inode table for group %u not in group "
2507 			       "(block %llu)!", i, inode_table);
2508 			return 0;
2509 		}
2510 		ext4_lock_group(sb, i);
2511 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2512 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2513 				 "Checksum for group %u failed (%u!=%u)",
2514 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2515 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2516 			if (!sb_rdonly(sb)) {
2517 				ext4_unlock_group(sb, i);
2518 				return 0;
2519 			}
2520 		}
2521 		ext4_unlock_group(sb, i);
2522 		if (!flexbg_flag)
2523 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2524 	}
2525 	if (NULL != first_not_zeroed)
2526 		*first_not_zeroed = grp;
2527 	return 1;
2528 }
2529 
2530 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2531  * the superblock) which were deleted from all directories, but held open by
2532  * a process at the time of a crash.  We walk the list and try to delete these
2533  * inodes at recovery time (only with a read-write filesystem).
2534  *
2535  * In order to keep the orphan inode chain consistent during traversal (in
2536  * case of crash during recovery), we link each inode into the superblock
2537  * orphan list_head and handle it the same way as an inode deletion during
2538  * normal operation (which journals the operations for us).
2539  *
2540  * We only do an iget() and an iput() on each inode, which is very safe if we
2541  * accidentally point at an in-use or already deleted inode.  The worst that
2542  * can happen in this case is that we get a "bit already cleared" message from
2543  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2544  * e2fsck was run on this filesystem, and it must have already done the orphan
2545  * inode cleanup for us, so we can safely abort without any further action.
2546  */
2547 static void ext4_orphan_cleanup(struct super_block *sb,
2548 				struct ext4_super_block *es)
2549 {
2550 	unsigned int s_flags = sb->s_flags;
2551 	int ret, nr_orphans = 0, nr_truncates = 0;
2552 #ifdef CONFIG_QUOTA
2553 	int quota_update = 0;
2554 	int i;
2555 #endif
2556 	if (!es->s_last_orphan) {
2557 		jbd_debug(4, "no orphan inodes to clean up\n");
2558 		return;
2559 	}
2560 
2561 	if (bdev_read_only(sb->s_bdev)) {
2562 		ext4_msg(sb, KERN_ERR, "write access "
2563 			"unavailable, skipping orphan cleanup");
2564 		return;
2565 	}
2566 
2567 	/* Check if feature set would not allow a r/w mount */
2568 	if (!ext4_feature_set_ok(sb, 0)) {
2569 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2570 			 "unknown ROCOMPAT features");
2571 		return;
2572 	}
2573 
2574 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2575 		/* don't clear list on RO mount w/ errors */
2576 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2577 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2578 				  "clearing orphan list.\n");
2579 			es->s_last_orphan = 0;
2580 		}
2581 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2582 		return;
2583 	}
2584 
2585 	if (s_flags & SB_RDONLY) {
2586 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2587 		sb->s_flags &= ~SB_RDONLY;
2588 	}
2589 #ifdef CONFIG_QUOTA
2590 	/* Needed for iput() to work correctly and not trash data */
2591 	sb->s_flags |= SB_ACTIVE;
2592 
2593 	/*
2594 	 * Turn on quotas which were not enabled for read-only mounts if
2595 	 * filesystem has quota feature, so that they are updated correctly.
2596 	 */
2597 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2598 		int ret = ext4_enable_quotas(sb);
2599 
2600 		if (!ret)
2601 			quota_update = 1;
2602 		else
2603 			ext4_msg(sb, KERN_ERR,
2604 				"Cannot turn on quotas: error %d", ret);
2605 	}
2606 
2607 	/* Turn on journaled quotas used for old sytle */
2608 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2609 		if (EXT4_SB(sb)->s_qf_names[i]) {
2610 			int ret = ext4_quota_on_mount(sb, i);
2611 
2612 			if (!ret)
2613 				quota_update = 1;
2614 			else
2615 				ext4_msg(sb, KERN_ERR,
2616 					"Cannot turn on journaled "
2617 					"quota: type %d: error %d", i, ret);
2618 		}
2619 	}
2620 #endif
2621 
2622 	while (es->s_last_orphan) {
2623 		struct inode *inode;
2624 
2625 		/*
2626 		 * We may have encountered an error during cleanup; if
2627 		 * so, skip the rest.
2628 		 */
2629 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2630 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2631 			es->s_last_orphan = 0;
2632 			break;
2633 		}
2634 
2635 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2636 		if (IS_ERR(inode)) {
2637 			es->s_last_orphan = 0;
2638 			break;
2639 		}
2640 
2641 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2642 		dquot_initialize(inode);
2643 		if (inode->i_nlink) {
2644 			if (test_opt(sb, DEBUG))
2645 				ext4_msg(sb, KERN_DEBUG,
2646 					"%s: truncating inode %lu to %lld bytes",
2647 					__func__, inode->i_ino, inode->i_size);
2648 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2649 				  inode->i_ino, inode->i_size);
2650 			inode_lock(inode);
2651 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2652 			ret = ext4_truncate(inode);
2653 			if (ret)
2654 				ext4_std_error(inode->i_sb, ret);
2655 			inode_unlock(inode);
2656 			nr_truncates++;
2657 		} else {
2658 			if (test_opt(sb, DEBUG))
2659 				ext4_msg(sb, KERN_DEBUG,
2660 					"%s: deleting unreferenced inode %lu",
2661 					__func__, inode->i_ino);
2662 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2663 				  inode->i_ino);
2664 			nr_orphans++;
2665 		}
2666 		iput(inode);  /* The delete magic happens here! */
2667 	}
2668 
2669 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2670 
2671 	if (nr_orphans)
2672 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2673 		       PLURAL(nr_orphans));
2674 	if (nr_truncates)
2675 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2676 		       PLURAL(nr_truncates));
2677 #ifdef CONFIG_QUOTA
2678 	/* Turn off quotas if they were enabled for orphan cleanup */
2679 	if (quota_update) {
2680 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2681 			if (sb_dqopt(sb)->files[i])
2682 				dquot_quota_off(sb, i);
2683 		}
2684 	}
2685 #endif
2686 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2687 }
2688 
2689 /*
2690  * Maximal extent format file size.
2691  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2692  * extent format containers, within a sector_t, and within i_blocks
2693  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2694  * so that won't be a limiting factor.
2695  *
2696  * However there is other limiting factor. We do store extents in the form
2697  * of starting block and length, hence the resulting length of the extent
2698  * covering maximum file size must fit into on-disk format containers as
2699  * well. Given that length is always by 1 unit bigger than max unit (because
2700  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2701  *
2702  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2703  */
2704 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2705 {
2706 	loff_t res;
2707 	loff_t upper_limit = MAX_LFS_FILESIZE;
2708 
2709 	/* small i_blocks in vfs inode? */
2710 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2711 		/*
2712 		 * CONFIG_LBDAF is not enabled implies the inode
2713 		 * i_block represent total blocks in 512 bytes
2714 		 * 32 == size of vfs inode i_blocks * 8
2715 		 */
2716 		upper_limit = (1LL << 32) - 1;
2717 
2718 		/* total blocks in file system block size */
2719 		upper_limit >>= (blkbits - 9);
2720 		upper_limit <<= blkbits;
2721 	}
2722 
2723 	/*
2724 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2725 	 * by one fs block, so ee_len can cover the extent of maximum file
2726 	 * size
2727 	 */
2728 	res = (1LL << 32) - 1;
2729 	res <<= blkbits;
2730 
2731 	/* Sanity check against vm- & vfs- imposed limits */
2732 	if (res > upper_limit)
2733 		res = upper_limit;
2734 
2735 	return res;
2736 }
2737 
2738 /*
2739  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2740  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2741  * We need to be 1 filesystem block less than the 2^48 sector limit.
2742  */
2743 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2744 {
2745 	loff_t res = EXT4_NDIR_BLOCKS;
2746 	int meta_blocks;
2747 	loff_t upper_limit;
2748 	/* This is calculated to be the largest file size for a dense, block
2749 	 * mapped file such that the file's total number of 512-byte sectors,
2750 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2751 	 *
2752 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2753 	 * number of 512-byte sectors of the file.
2754 	 */
2755 
2756 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2757 		/*
2758 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2759 		 * the inode i_block field represents total file blocks in
2760 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2761 		 */
2762 		upper_limit = (1LL << 32) - 1;
2763 
2764 		/* total blocks in file system block size */
2765 		upper_limit >>= (bits - 9);
2766 
2767 	} else {
2768 		/*
2769 		 * We use 48 bit ext4_inode i_blocks
2770 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2771 		 * represent total number of blocks in
2772 		 * file system block size
2773 		 */
2774 		upper_limit = (1LL << 48) - 1;
2775 
2776 	}
2777 
2778 	/* indirect blocks */
2779 	meta_blocks = 1;
2780 	/* double indirect blocks */
2781 	meta_blocks += 1 + (1LL << (bits-2));
2782 	/* tripple indirect blocks */
2783 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2784 
2785 	upper_limit -= meta_blocks;
2786 	upper_limit <<= bits;
2787 
2788 	res += 1LL << (bits-2);
2789 	res += 1LL << (2*(bits-2));
2790 	res += 1LL << (3*(bits-2));
2791 	res <<= bits;
2792 	if (res > upper_limit)
2793 		res = upper_limit;
2794 
2795 	if (res > MAX_LFS_FILESIZE)
2796 		res = MAX_LFS_FILESIZE;
2797 
2798 	return res;
2799 }
2800 
2801 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2802 				   ext4_fsblk_t logical_sb_block, int nr)
2803 {
2804 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2805 	ext4_group_t bg, first_meta_bg;
2806 	int has_super = 0;
2807 
2808 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2809 
2810 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2811 		return logical_sb_block + nr + 1;
2812 	bg = sbi->s_desc_per_block * nr;
2813 	if (ext4_bg_has_super(sb, bg))
2814 		has_super = 1;
2815 
2816 	/*
2817 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2818 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2819 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2820 	 * compensate.
2821 	 */
2822 	if (sb->s_blocksize == 1024 && nr == 0 &&
2823 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2824 		has_super++;
2825 
2826 	return (has_super + ext4_group_first_block_no(sb, bg));
2827 }
2828 
2829 /**
2830  * ext4_get_stripe_size: Get the stripe size.
2831  * @sbi: In memory super block info
2832  *
2833  * If we have specified it via mount option, then
2834  * use the mount option value. If the value specified at mount time is
2835  * greater than the blocks per group use the super block value.
2836  * If the super block value is greater than blocks per group return 0.
2837  * Allocator needs it be less than blocks per group.
2838  *
2839  */
2840 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2841 {
2842 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2843 	unsigned long stripe_width =
2844 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2845 	int ret;
2846 
2847 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2848 		ret = sbi->s_stripe;
2849 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2850 		ret = stripe_width;
2851 	else if (stride && stride <= sbi->s_blocks_per_group)
2852 		ret = stride;
2853 	else
2854 		ret = 0;
2855 
2856 	/*
2857 	 * If the stripe width is 1, this makes no sense and
2858 	 * we set it to 0 to turn off stripe handling code.
2859 	 */
2860 	if (ret <= 1)
2861 		ret = 0;
2862 
2863 	return ret;
2864 }
2865 
2866 /*
2867  * Check whether this filesystem can be mounted based on
2868  * the features present and the RDONLY/RDWR mount requested.
2869  * Returns 1 if this filesystem can be mounted as requested,
2870  * 0 if it cannot be.
2871  */
2872 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2873 {
2874 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2875 		ext4_msg(sb, KERN_ERR,
2876 			"Couldn't mount because of "
2877 			"unsupported optional features (%x)",
2878 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2879 			~EXT4_FEATURE_INCOMPAT_SUPP));
2880 		return 0;
2881 	}
2882 
2883 	if (readonly)
2884 		return 1;
2885 
2886 	if (ext4_has_feature_readonly(sb)) {
2887 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2888 		sb->s_flags |= SB_RDONLY;
2889 		return 1;
2890 	}
2891 
2892 	/* Check that feature set is OK for a read-write mount */
2893 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2894 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2895 			 "unsupported optional features (%x)",
2896 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2897 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2898 		return 0;
2899 	}
2900 	/*
2901 	 * Large file size enabled file system can only be mounted
2902 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2903 	 */
2904 	if (ext4_has_feature_huge_file(sb)) {
2905 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2906 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2907 				 "cannot be mounted RDWR without "
2908 				 "CONFIG_LBDAF");
2909 			return 0;
2910 		}
2911 	}
2912 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2913 		ext4_msg(sb, KERN_ERR,
2914 			 "Can't support bigalloc feature without "
2915 			 "extents feature\n");
2916 		return 0;
2917 	}
2918 
2919 #ifndef CONFIG_QUOTA
2920 	if (ext4_has_feature_quota(sb) && !readonly) {
2921 		ext4_msg(sb, KERN_ERR,
2922 			 "Filesystem with quota feature cannot be mounted RDWR "
2923 			 "without CONFIG_QUOTA");
2924 		return 0;
2925 	}
2926 	if (ext4_has_feature_project(sb) && !readonly) {
2927 		ext4_msg(sb, KERN_ERR,
2928 			 "Filesystem with project quota feature cannot be mounted RDWR "
2929 			 "without CONFIG_QUOTA");
2930 		return 0;
2931 	}
2932 #endif  /* CONFIG_QUOTA */
2933 	return 1;
2934 }
2935 
2936 /*
2937  * This function is called once a day if we have errors logged
2938  * on the file system
2939  */
2940 static void print_daily_error_info(struct timer_list *t)
2941 {
2942 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2943 	struct super_block *sb = sbi->s_sb;
2944 	struct ext4_super_block *es = sbi->s_es;
2945 
2946 	if (es->s_error_count)
2947 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2948 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2949 			 le32_to_cpu(es->s_error_count));
2950 	if (es->s_first_error_time) {
2951 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2952 		       sb->s_id,
2953 		       ext4_get_tstamp(es, s_first_error_time),
2954 		       (int) sizeof(es->s_first_error_func),
2955 		       es->s_first_error_func,
2956 		       le32_to_cpu(es->s_first_error_line));
2957 		if (es->s_first_error_ino)
2958 			printk(KERN_CONT ": inode %u",
2959 			       le32_to_cpu(es->s_first_error_ino));
2960 		if (es->s_first_error_block)
2961 			printk(KERN_CONT ": block %llu", (unsigned long long)
2962 			       le64_to_cpu(es->s_first_error_block));
2963 		printk(KERN_CONT "\n");
2964 	}
2965 	if (es->s_last_error_time) {
2966 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2967 		       sb->s_id,
2968 		       ext4_get_tstamp(es, s_last_error_time),
2969 		       (int) sizeof(es->s_last_error_func),
2970 		       es->s_last_error_func,
2971 		       le32_to_cpu(es->s_last_error_line));
2972 		if (es->s_last_error_ino)
2973 			printk(KERN_CONT ": inode %u",
2974 			       le32_to_cpu(es->s_last_error_ino));
2975 		if (es->s_last_error_block)
2976 			printk(KERN_CONT ": block %llu", (unsigned long long)
2977 			       le64_to_cpu(es->s_last_error_block));
2978 		printk(KERN_CONT "\n");
2979 	}
2980 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2981 }
2982 
2983 /* Find next suitable group and run ext4_init_inode_table */
2984 static int ext4_run_li_request(struct ext4_li_request *elr)
2985 {
2986 	struct ext4_group_desc *gdp = NULL;
2987 	ext4_group_t group, ngroups;
2988 	struct super_block *sb;
2989 	unsigned long timeout = 0;
2990 	int ret = 0;
2991 
2992 	sb = elr->lr_super;
2993 	ngroups = EXT4_SB(sb)->s_groups_count;
2994 
2995 	for (group = elr->lr_next_group; group < ngroups; group++) {
2996 		gdp = ext4_get_group_desc(sb, group, NULL);
2997 		if (!gdp) {
2998 			ret = 1;
2999 			break;
3000 		}
3001 
3002 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3003 			break;
3004 	}
3005 
3006 	if (group >= ngroups)
3007 		ret = 1;
3008 
3009 	if (!ret) {
3010 		timeout = jiffies;
3011 		ret = ext4_init_inode_table(sb, group,
3012 					    elr->lr_timeout ? 0 : 1);
3013 		if (elr->lr_timeout == 0) {
3014 			timeout = (jiffies - timeout) *
3015 				  elr->lr_sbi->s_li_wait_mult;
3016 			elr->lr_timeout = timeout;
3017 		}
3018 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3019 		elr->lr_next_group = group + 1;
3020 	}
3021 	return ret;
3022 }
3023 
3024 /*
3025  * Remove lr_request from the list_request and free the
3026  * request structure. Should be called with li_list_mtx held
3027  */
3028 static void ext4_remove_li_request(struct ext4_li_request *elr)
3029 {
3030 	struct ext4_sb_info *sbi;
3031 
3032 	if (!elr)
3033 		return;
3034 
3035 	sbi = elr->lr_sbi;
3036 
3037 	list_del(&elr->lr_request);
3038 	sbi->s_li_request = NULL;
3039 	kfree(elr);
3040 }
3041 
3042 static void ext4_unregister_li_request(struct super_block *sb)
3043 {
3044 	mutex_lock(&ext4_li_mtx);
3045 	if (!ext4_li_info) {
3046 		mutex_unlock(&ext4_li_mtx);
3047 		return;
3048 	}
3049 
3050 	mutex_lock(&ext4_li_info->li_list_mtx);
3051 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3052 	mutex_unlock(&ext4_li_info->li_list_mtx);
3053 	mutex_unlock(&ext4_li_mtx);
3054 }
3055 
3056 static struct task_struct *ext4_lazyinit_task;
3057 
3058 /*
3059  * This is the function where ext4lazyinit thread lives. It walks
3060  * through the request list searching for next scheduled filesystem.
3061  * When such a fs is found, run the lazy initialization request
3062  * (ext4_rn_li_request) and keep track of the time spend in this
3063  * function. Based on that time we compute next schedule time of
3064  * the request. When walking through the list is complete, compute
3065  * next waking time and put itself into sleep.
3066  */
3067 static int ext4_lazyinit_thread(void *arg)
3068 {
3069 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3070 	struct list_head *pos, *n;
3071 	struct ext4_li_request *elr;
3072 	unsigned long next_wakeup, cur;
3073 
3074 	BUG_ON(NULL == eli);
3075 
3076 cont_thread:
3077 	while (true) {
3078 		next_wakeup = MAX_JIFFY_OFFSET;
3079 
3080 		mutex_lock(&eli->li_list_mtx);
3081 		if (list_empty(&eli->li_request_list)) {
3082 			mutex_unlock(&eli->li_list_mtx);
3083 			goto exit_thread;
3084 		}
3085 		list_for_each_safe(pos, n, &eli->li_request_list) {
3086 			int err = 0;
3087 			int progress = 0;
3088 			elr = list_entry(pos, struct ext4_li_request,
3089 					 lr_request);
3090 
3091 			if (time_before(jiffies, elr->lr_next_sched)) {
3092 				if (time_before(elr->lr_next_sched, next_wakeup))
3093 					next_wakeup = elr->lr_next_sched;
3094 				continue;
3095 			}
3096 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3097 				if (sb_start_write_trylock(elr->lr_super)) {
3098 					progress = 1;
3099 					/*
3100 					 * We hold sb->s_umount, sb can not
3101 					 * be removed from the list, it is
3102 					 * now safe to drop li_list_mtx
3103 					 */
3104 					mutex_unlock(&eli->li_list_mtx);
3105 					err = ext4_run_li_request(elr);
3106 					sb_end_write(elr->lr_super);
3107 					mutex_lock(&eli->li_list_mtx);
3108 					n = pos->next;
3109 				}
3110 				up_read((&elr->lr_super->s_umount));
3111 			}
3112 			/* error, remove the lazy_init job */
3113 			if (err) {
3114 				ext4_remove_li_request(elr);
3115 				continue;
3116 			}
3117 			if (!progress) {
3118 				elr->lr_next_sched = jiffies +
3119 					(prandom_u32()
3120 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3121 			}
3122 			if (time_before(elr->lr_next_sched, next_wakeup))
3123 				next_wakeup = elr->lr_next_sched;
3124 		}
3125 		mutex_unlock(&eli->li_list_mtx);
3126 
3127 		try_to_freeze();
3128 
3129 		cur = jiffies;
3130 		if ((time_after_eq(cur, next_wakeup)) ||
3131 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3132 			cond_resched();
3133 			continue;
3134 		}
3135 
3136 		schedule_timeout_interruptible(next_wakeup - cur);
3137 
3138 		if (kthread_should_stop()) {
3139 			ext4_clear_request_list();
3140 			goto exit_thread;
3141 		}
3142 	}
3143 
3144 exit_thread:
3145 	/*
3146 	 * It looks like the request list is empty, but we need
3147 	 * to check it under the li_list_mtx lock, to prevent any
3148 	 * additions into it, and of course we should lock ext4_li_mtx
3149 	 * to atomically free the list and ext4_li_info, because at
3150 	 * this point another ext4 filesystem could be registering
3151 	 * new one.
3152 	 */
3153 	mutex_lock(&ext4_li_mtx);
3154 	mutex_lock(&eli->li_list_mtx);
3155 	if (!list_empty(&eli->li_request_list)) {
3156 		mutex_unlock(&eli->li_list_mtx);
3157 		mutex_unlock(&ext4_li_mtx);
3158 		goto cont_thread;
3159 	}
3160 	mutex_unlock(&eli->li_list_mtx);
3161 	kfree(ext4_li_info);
3162 	ext4_li_info = NULL;
3163 	mutex_unlock(&ext4_li_mtx);
3164 
3165 	return 0;
3166 }
3167 
3168 static void ext4_clear_request_list(void)
3169 {
3170 	struct list_head *pos, *n;
3171 	struct ext4_li_request *elr;
3172 
3173 	mutex_lock(&ext4_li_info->li_list_mtx);
3174 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3175 		elr = list_entry(pos, struct ext4_li_request,
3176 				 lr_request);
3177 		ext4_remove_li_request(elr);
3178 	}
3179 	mutex_unlock(&ext4_li_info->li_list_mtx);
3180 }
3181 
3182 static int ext4_run_lazyinit_thread(void)
3183 {
3184 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3185 					 ext4_li_info, "ext4lazyinit");
3186 	if (IS_ERR(ext4_lazyinit_task)) {
3187 		int err = PTR_ERR(ext4_lazyinit_task);
3188 		ext4_clear_request_list();
3189 		kfree(ext4_li_info);
3190 		ext4_li_info = NULL;
3191 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3192 				 "initialization thread\n",
3193 				 err);
3194 		return err;
3195 	}
3196 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3197 	return 0;
3198 }
3199 
3200 /*
3201  * Check whether it make sense to run itable init. thread or not.
3202  * If there is at least one uninitialized inode table, return
3203  * corresponding group number, else the loop goes through all
3204  * groups and return total number of groups.
3205  */
3206 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3207 {
3208 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3209 	struct ext4_group_desc *gdp = NULL;
3210 
3211 	if (!ext4_has_group_desc_csum(sb))
3212 		return ngroups;
3213 
3214 	for (group = 0; group < ngroups; group++) {
3215 		gdp = ext4_get_group_desc(sb, group, NULL);
3216 		if (!gdp)
3217 			continue;
3218 
3219 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3220 			break;
3221 	}
3222 
3223 	return group;
3224 }
3225 
3226 static int ext4_li_info_new(void)
3227 {
3228 	struct ext4_lazy_init *eli = NULL;
3229 
3230 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3231 	if (!eli)
3232 		return -ENOMEM;
3233 
3234 	INIT_LIST_HEAD(&eli->li_request_list);
3235 	mutex_init(&eli->li_list_mtx);
3236 
3237 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3238 
3239 	ext4_li_info = eli;
3240 
3241 	return 0;
3242 }
3243 
3244 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3245 					    ext4_group_t start)
3246 {
3247 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3248 	struct ext4_li_request *elr;
3249 
3250 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3251 	if (!elr)
3252 		return NULL;
3253 
3254 	elr->lr_super = sb;
3255 	elr->lr_sbi = sbi;
3256 	elr->lr_next_group = start;
3257 
3258 	/*
3259 	 * Randomize first schedule time of the request to
3260 	 * spread the inode table initialization requests
3261 	 * better.
3262 	 */
3263 	elr->lr_next_sched = jiffies + (prandom_u32() %
3264 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3265 	return elr;
3266 }
3267 
3268 int ext4_register_li_request(struct super_block *sb,
3269 			     ext4_group_t first_not_zeroed)
3270 {
3271 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3272 	struct ext4_li_request *elr = NULL;
3273 	ext4_group_t ngroups = sbi->s_groups_count;
3274 	int ret = 0;
3275 
3276 	mutex_lock(&ext4_li_mtx);
3277 	if (sbi->s_li_request != NULL) {
3278 		/*
3279 		 * Reset timeout so it can be computed again, because
3280 		 * s_li_wait_mult might have changed.
3281 		 */
3282 		sbi->s_li_request->lr_timeout = 0;
3283 		goto out;
3284 	}
3285 
3286 	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3287 	    !test_opt(sb, INIT_INODE_TABLE))
3288 		goto out;
3289 
3290 	elr = ext4_li_request_new(sb, first_not_zeroed);
3291 	if (!elr) {
3292 		ret = -ENOMEM;
3293 		goto out;
3294 	}
3295 
3296 	if (NULL == ext4_li_info) {
3297 		ret = ext4_li_info_new();
3298 		if (ret)
3299 			goto out;
3300 	}
3301 
3302 	mutex_lock(&ext4_li_info->li_list_mtx);
3303 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3304 	mutex_unlock(&ext4_li_info->li_list_mtx);
3305 
3306 	sbi->s_li_request = elr;
3307 	/*
3308 	 * set elr to NULL here since it has been inserted to
3309 	 * the request_list and the removal and free of it is
3310 	 * handled by ext4_clear_request_list from now on.
3311 	 */
3312 	elr = NULL;
3313 
3314 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3315 		ret = ext4_run_lazyinit_thread();
3316 		if (ret)
3317 			goto out;
3318 	}
3319 out:
3320 	mutex_unlock(&ext4_li_mtx);
3321 	if (ret)
3322 		kfree(elr);
3323 	return ret;
3324 }
3325 
3326 /*
3327  * We do not need to lock anything since this is called on
3328  * module unload.
3329  */
3330 static void ext4_destroy_lazyinit_thread(void)
3331 {
3332 	/*
3333 	 * If thread exited earlier
3334 	 * there's nothing to be done.
3335 	 */
3336 	if (!ext4_li_info || !ext4_lazyinit_task)
3337 		return;
3338 
3339 	kthread_stop(ext4_lazyinit_task);
3340 }
3341 
3342 static int set_journal_csum_feature_set(struct super_block *sb)
3343 {
3344 	int ret = 1;
3345 	int compat, incompat;
3346 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3347 
3348 	if (ext4_has_metadata_csum(sb)) {
3349 		/* journal checksum v3 */
3350 		compat = 0;
3351 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3352 	} else {
3353 		/* journal checksum v1 */
3354 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3355 		incompat = 0;
3356 	}
3357 
3358 	jbd2_journal_clear_features(sbi->s_journal,
3359 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3360 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3361 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3362 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3363 		ret = jbd2_journal_set_features(sbi->s_journal,
3364 				compat, 0,
3365 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3366 				incompat);
3367 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3368 		ret = jbd2_journal_set_features(sbi->s_journal,
3369 				compat, 0,
3370 				incompat);
3371 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3372 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3373 	} else {
3374 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3375 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3376 	}
3377 
3378 	return ret;
3379 }
3380 
3381 /*
3382  * Note: calculating the overhead so we can be compatible with
3383  * historical BSD practice is quite difficult in the face of
3384  * clusters/bigalloc.  This is because multiple metadata blocks from
3385  * different block group can end up in the same allocation cluster.
3386  * Calculating the exact overhead in the face of clustered allocation
3387  * requires either O(all block bitmaps) in memory or O(number of block
3388  * groups**2) in time.  We will still calculate the superblock for
3389  * older file systems --- and if we come across with a bigalloc file
3390  * system with zero in s_overhead_clusters the estimate will be close to
3391  * correct especially for very large cluster sizes --- but for newer
3392  * file systems, it's better to calculate this figure once at mkfs
3393  * time, and store it in the superblock.  If the superblock value is
3394  * present (even for non-bigalloc file systems), we will use it.
3395  */
3396 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3397 			  char *buf)
3398 {
3399 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3400 	struct ext4_group_desc	*gdp;
3401 	ext4_fsblk_t		first_block, last_block, b;
3402 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3403 	int			s, j, count = 0;
3404 
3405 	if (!ext4_has_feature_bigalloc(sb))
3406 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3407 			sbi->s_itb_per_group + 2);
3408 
3409 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3410 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3411 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3412 	for (i = 0; i < ngroups; i++) {
3413 		gdp = ext4_get_group_desc(sb, i, NULL);
3414 		b = ext4_block_bitmap(sb, gdp);
3415 		if (b >= first_block && b <= last_block) {
3416 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3417 			count++;
3418 		}
3419 		b = ext4_inode_bitmap(sb, gdp);
3420 		if (b >= first_block && b <= last_block) {
3421 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3422 			count++;
3423 		}
3424 		b = ext4_inode_table(sb, gdp);
3425 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3426 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3427 				int c = EXT4_B2C(sbi, b - first_block);
3428 				ext4_set_bit(c, buf);
3429 				count++;
3430 			}
3431 		if (i != grp)
3432 			continue;
3433 		s = 0;
3434 		if (ext4_bg_has_super(sb, grp)) {
3435 			ext4_set_bit(s++, buf);
3436 			count++;
3437 		}
3438 		j = ext4_bg_num_gdb(sb, grp);
3439 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3440 			ext4_error(sb, "Invalid number of block group "
3441 				   "descriptor blocks: %d", j);
3442 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3443 		}
3444 		count += j;
3445 		for (; j > 0; j--)
3446 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3447 	}
3448 	if (!count)
3449 		return 0;
3450 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3451 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3452 }
3453 
3454 /*
3455  * Compute the overhead and stash it in sbi->s_overhead
3456  */
3457 int ext4_calculate_overhead(struct super_block *sb)
3458 {
3459 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3460 	struct ext4_super_block *es = sbi->s_es;
3461 	struct inode *j_inode;
3462 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3463 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3464 	ext4_fsblk_t overhead = 0;
3465 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3466 
3467 	if (!buf)
3468 		return -ENOMEM;
3469 
3470 	/*
3471 	 * Compute the overhead (FS structures).  This is constant
3472 	 * for a given filesystem unless the number of block groups
3473 	 * changes so we cache the previous value until it does.
3474 	 */
3475 
3476 	/*
3477 	 * All of the blocks before first_data_block are overhead
3478 	 */
3479 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3480 
3481 	/*
3482 	 * Add the overhead found in each block group
3483 	 */
3484 	for (i = 0; i < ngroups; i++) {
3485 		int blks;
3486 
3487 		blks = count_overhead(sb, i, buf);
3488 		overhead += blks;
3489 		if (blks)
3490 			memset(buf, 0, PAGE_SIZE);
3491 		cond_resched();
3492 	}
3493 
3494 	/*
3495 	 * Add the internal journal blocks whether the journal has been
3496 	 * loaded or not
3497 	 */
3498 	if (sbi->s_journal && !sbi->journal_bdev)
3499 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3500 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3501 		j_inode = ext4_get_journal_inode(sb, j_inum);
3502 		if (j_inode) {
3503 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3504 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3505 			iput(j_inode);
3506 		} else {
3507 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3508 		}
3509 	}
3510 	sbi->s_overhead = overhead;
3511 	smp_wmb();
3512 	free_page((unsigned long) buf);
3513 	return 0;
3514 }
3515 
3516 static void ext4_set_resv_clusters(struct super_block *sb)
3517 {
3518 	ext4_fsblk_t resv_clusters;
3519 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3520 
3521 	/*
3522 	 * There's no need to reserve anything when we aren't using extents.
3523 	 * The space estimates are exact, there are no unwritten extents,
3524 	 * hole punching doesn't need new metadata... This is needed especially
3525 	 * to keep ext2/3 backward compatibility.
3526 	 */
3527 	if (!ext4_has_feature_extents(sb))
3528 		return;
3529 	/*
3530 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3531 	 * This should cover the situations where we can not afford to run
3532 	 * out of space like for example punch hole, or converting
3533 	 * unwritten extents in delalloc path. In most cases such
3534 	 * allocation would require 1, or 2 blocks, higher numbers are
3535 	 * very rare.
3536 	 */
3537 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3538 			 sbi->s_cluster_bits);
3539 
3540 	do_div(resv_clusters, 50);
3541 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3542 
3543 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3544 }
3545 
3546 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3547 {
3548 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3549 	char *orig_data = kstrdup(data, GFP_KERNEL);
3550 	struct buffer_head *bh;
3551 	struct ext4_super_block *es = NULL;
3552 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3553 	ext4_fsblk_t block;
3554 	ext4_fsblk_t sb_block = get_sb_block(&data);
3555 	ext4_fsblk_t logical_sb_block;
3556 	unsigned long offset = 0;
3557 	unsigned long journal_devnum = 0;
3558 	unsigned long def_mount_opts;
3559 	struct inode *root;
3560 	const char *descr;
3561 	int ret = -ENOMEM;
3562 	int blocksize, clustersize;
3563 	unsigned int db_count;
3564 	unsigned int i;
3565 	int needs_recovery, has_huge_files, has_bigalloc;
3566 	__u64 blocks_count;
3567 	int err = 0;
3568 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3569 	ext4_group_t first_not_zeroed;
3570 
3571 	if ((data && !orig_data) || !sbi)
3572 		goto out_free_base;
3573 
3574 	sbi->s_daxdev = dax_dev;
3575 	sbi->s_blockgroup_lock =
3576 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3577 	if (!sbi->s_blockgroup_lock)
3578 		goto out_free_base;
3579 
3580 	sb->s_fs_info = sbi;
3581 	sbi->s_sb = sb;
3582 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3583 	sbi->s_sb_block = sb_block;
3584 	if (sb->s_bdev->bd_part)
3585 		sbi->s_sectors_written_start =
3586 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3587 
3588 	/* Cleanup superblock name */
3589 	strreplace(sb->s_id, '/', '!');
3590 
3591 	/* -EINVAL is default */
3592 	ret = -EINVAL;
3593 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3594 	if (!blocksize) {
3595 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3596 		goto out_fail;
3597 	}
3598 
3599 	/*
3600 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3601 	 * block sizes.  We need to calculate the offset from buffer start.
3602 	 */
3603 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3604 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3605 		offset = do_div(logical_sb_block, blocksize);
3606 	} else {
3607 		logical_sb_block = sb_block;
3608 	}
3609 
3610 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3611 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3612 		goto out_fail;
3613 	}
3614 	/*
3615 	 * Note: s_es must be initialized as soon as possible because
3616 	 *       some ext4 macro-instructions depend on its value
3617 	 */
3618 	es = (struct ext4_super_block *) (bh->b_data + offset);
3619 	sbi->s_es = es;
3620 	sb->s_magic = le16_to_cpu(es->s_magic);
3621 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3622 		goto cantfind_ext4;
3623 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3624 
3625 	/* Warn if metadata_csum and gdt_csum are both set. */
3626 	if (ext4_has_feature_metadata_csum(sb) &&
3627 	    ext4_has_feature_gdt_csum(sb))
3628 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3629 			     "redundant flags; please run fsck.");
3630 
3631 	/* Check for a known checksum algorithm */
3632 	if (!ext4_verify_csum_type(sb, es)) {
3633 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3634 			 "unknown checksum algorithm.");
3635 		silent = 1;
3636 		goto cantfind_ext4;
3637 	}
3638 
3639 	/* Load the checksum driver */
3640 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3641 	if (IS_ERR(sbi->s_chksum_driver)) {
3642 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3643 		ret = PTR_ERR(sbi->s_chksum_driver);
3644 		sbi->s_chksum_driver = NULL;
3645 		goto failed_mount;
3646 	}
3647 
3648 	/* Check superblock checksum */
3649 	if (!ext4_superblock_csum_verify(sb, es)) {
3650 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3651 			 "invalid superblock checksum.  Run e2fsck?");
3652 		silent = 1;
3653 		ret = -EFSBADCRC;
3654 		goto cantfind_ext4;
3655 	}
3656 
3657 	/* Precompute checksum seed for all metadata */
3658 	if (ext4_has_feature_csum_seed(sb))
3659 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3660 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3661 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3662 					       sizeof(es->s_uuid));
3663 
3664 	/* Set defaults before we parse the mount options */
3665 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3666 	set_opt(sb, INIT_INODE_TABLE);
3667 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3668 		set_opt(sb, DEBUG);
3669 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3670 		set_opt(sb, GRPID);
3671 	if (def_mount_opts & EXT4_DEFM_UID16)
3672 		set_opt(sb, NO_UID32);
3673 	/* xattr user namespace & acls are now defaulted on */
3674 	set_opt(sb, XATTR_USER);
3675 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3676 	set_opt(sb, POSIX_ACL);
3677 #endif
3678 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3679 	if (ext4_has_metadata_csum(sb))
3680 		set_opt(sb, JOURNAL_CHECKSUM);
3681 
3682 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3683 		set_opt(sb, JOURNAL_DATA);
3684 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3685 		set_opt(sb, ORDERED_DATA);
3686 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3687 		set_opt(sb, WRITEBACK_DATA);
3688 
3689 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3690 		set_opt(sb, ERRORS_PANIC);
3691 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3692 		set_opt(sb, ERRORS_CONT);
3693 	else
3694 		set_opt(sb, ERRORS_RO);
3695 	/* block_validity enabled by default; disable with noblock_validity */
3696 	set_opt(sb, BLOCK_VALIDITY);
3697 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3698 		set_opt(sb, DISCARD);
3699 
3700 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3701 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3702 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3703 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3704 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3705 
3706 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3707 		set_opt(sb, BARRIER);
3708 
3709 	/*
3710 	 * enable delayed allocation by default
3711 	 * Use -o nodelalloc to turn it off
3712 	 */
3713 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3714 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3715 		set_opt(sb, DELALLOC);
3716 
3717 	/*
3718 	 * set default s_li_wait_mult for lazyinit, for the case there is
3719 	 * no mount option specified.
3720 	 */
3721 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3722 
3723 	if (sbi->s_es->s_mount_opts[0]) {
3724 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3725 					      sizeof(sbi->s_es->s_mount_opts),
3726 					      GFP_KERNEL);
3727 		if (!s_mount_opts)
3728 			goto failed_mount;
3729 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3730 				   &journal_ioprio, 0)) {
3731 			ext4_msg(sb, KERN_WARNING,
3732 				 "failed to parse options in superblock: %s",
3733 				 s_mount_opts);
3734 		}
3735 		kfree(s_mount_opts);
3736 	}
3737 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3738 	if (!parse_options((char *) data, sb, &journal_devnum,
3739 			   &journal_ioprio, 0))
3740 		goto failed_mount;
3741 
3742 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3743 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3744 			    "with data=journal disables delayed "
3745 			    "allocation and O_DIRECT support!\n");
3746 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3747 			ext4_msg(sb, KERN_ERR, "can't mount with "
3748 				 "both data=journal and delalloc");
3749 			goto failed_mount;
3750 		}
3751 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3752 			ext4_msg(sb, KERN_ERR, "can't mount with "
3753 				 "both data=journal and dioread_nolock");
3754 			goto failed_mount;
3755 		}
3756 		if (test_opt(sb, DAX)) {
3757 			ext4_msg(sb, KERN_ERR, "can't mount with "
3758 				 "both data=journal and dax");
3759 			goto failed_mount;
3760 		}
3761 		if (ext4_has_feature_encrypt(sb)) {
3762 			ext4_msg(sb, KERN_WARNING,
3763 				 "encrypted files will use data=ordered "
3764 				 "instead of data journaling mode");
3765 		}
3766 		if (test_opt(sb, DELALLOC))
3767 			clear_opt(sb, DELALLOC);
3768 	} else {
3769 		sb->s_iflags |= SB_I_CGROUPWB;
3770 	}
3771 
3772 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3773 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3774 
3775 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3776 	    (ext4_has_compat_features(sb) ||
3777 	     ext4_has_ro_compat_features(sb) ||
3778 	     ext4_has_incompat_features(sb)))
3779 		ext4_msg(sb, KERN_WARNING,
3780 		       "feature flags set on rev 0 fs, "
3781 		       "running e2fsck is recommended");
3782 
3783 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3784 		set_opt2(sb, HURD_COMPAT);
3785 		if (ext4_has_feature_64bit(sb)) {
3786 			ext4_msg(sb, KERN_ERR,
3787 				 "The Hurd can't support 64-bit file systems");
3788 			goto failed_mount;
3789 		}
3790 
3791 		/*
3792 		 * ea_inode feature uses l_i_version field which is not
3793 		 * available in HURD_COMPAT mode.
3794 		 */
3795 		if (ext4_has_feature_ea_inode(sb)) {
3796 			ext4_msg(sb, KERN_ERR,
3797 				 "ea_inode feature is not supported for Hurd");
3798 			goto failed_mount;
3799 		}
3800 	}
3801 
3802 	if (IS_EXT2_SB(sb)) {
3803 		if (ext2_feature_set_ok(sb))
3804 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3805 				 "using the ext4 subsystem");
3806 		else {
3807 			/*
3808 			 * If we're probing be silent, if this looks like
3809 			 * it's actually an ext[34] filesystem.
3810 			 */
3811 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3812 				goto failed_mount;
3813 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3814 				 "to feature incompatibilities");
3815 			goto failed_mount;
3816 		}
3817 	}
3818 
3819 	if (IS_EXT3_SB(sb)) {
3820 		if (ext3_feature_set_ok(sb))
3821 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3822 				 "using the ext4 subsystem");
3823 		else {
3824 			/*
3825 			 * If we're probing be silent, if this looks like
3826 			 * it's actually an ext4 filesystem.
3827 			 */
3828 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3829 				goto failed_mount;
3830 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3831 				 "to feature incompatibilities");
3832 			goto failed_mount;
3833 		}
3834 	}
3835 
3836 	/*
3837 	 * Check feature flags regardless of the revision level, since we
3838 	 * previously didn't change the revision level when setting the flags,
3839 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3840 	 */
3841 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3842 		goto failed_mount;
3843 
3844 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3845 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3846 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3847 		ext4_msg(sb, KERN_ERR,
3848 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3849 			 blocksize, le32_to_cpu(es->s_log_block_size));
3850 		goto failed_mount;
3851 	}
3852 	if (le32_to_cpu(es->s_log_block_size) >
3853 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3854 		ext4_msg(sb, KERN_ERR,
3855 			 "Invalid log block size: %u",
3856 			 le32_to_cpu(es->s_log_block_size));
3857 		goto failed_mount;
3858 	}
3859 	if (le32_to_cpu(es->s_log_cluster_size) >
3860 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3861 		ext4_msg(sb, KERN_ERR,
3862 			 "Invalid log cluster size: %u",
3863 			 le32_to_cpu(es->s_log_cluster_size));
3864 		goto failed_mount;
3865 	}
3866 
3867 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3868 		ext4_msg(sb, KERN_ERR,
3869 			 "Number of reserved GDT blocks insanely large: %d",
3870 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3871 		goto failed_mount;
3872 	}
3873 
3874 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3875 		if (ext4_has_feature_inline_data(sb)) {
3876 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3877 					" that may contain inline data");
3878 			goto failed_mount;
3879 		}
3880 		if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3881 			ext4_msg(sb, KERN_ERR,
3882 				"DAX unsupported by block device.");
3883 			goto failed_mount;
3884 		}
3885 	}
3886 
3887 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3888 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3889 			 es->s_encryption_level);
3890 		goto failed_mount;
3891 	}
3892 
3893 	if (sb->s_blocksize != blocksize) {
3894 		/* Validate the filesystem blocksize */
3895 		if (!sb_set_blocksize(sb, blocksize)) {
3896 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3897 					blocksize);
3898 			goto failed_mount;
3899 		}
3900 
3901 		brelse(bh);
3902 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3903 		offset = do_div(logical_sb_block, blocksize);
3904 		bh = sb_bread_unmovable(sb, logical_sb_block);
3905 		if (!bh) {
3906 			ext4_msg(sb, KERN_ERR,
3907 			       "Can't read superblock on 2nd try");
3908 			goto failed_mount;
3909 		}
3910 		es = (struct ext4_super_block *)(bh->b_data + offset);
3911 		sbi->s_es = es;
3912 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3913 			ext4_msg(sb, KERN_ERR,
3914 			       "Magic mismatch, very weird!");
3915 			goto failed_mount;
3916 		}
3917 	}
3918 
3919 	has_huge_files = ext4_has_feature_huge_file(sb);
3920 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3921 						      has_huge_files);
3922 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3923 
3924 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3925 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3926 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3927 	} else {
3928 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3929 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3930 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3931 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3932 				 sbi->s_first_ino);
3933 			goto failed_mount;
3934 		}
3935 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3936 		    (!is_power_of_2(sbi->s_inode_size)) ||
3937 		    (sbi->s_inode_size > blocksize)) {
3938 			ext4_msg(sb, KERN_ERR,
3939 			       "unsupported inode size: %d",
3940 			       sbi->s_inode_size);
3941 			goto failed_mount;
3942 		}
3943 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3944 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3945 	}
3946 
3947 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3948 	if (ext4_has_feature_64bit(sb)) {
3949 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3950 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3951 		    !is_power_of_2(sbi->s_desc_size)) {
3952 			ext4_msg(sb, KERN_ERR,
3953 			       "unsupported descriptor size %lu",
3954 			       sbi->s_desc_size);
3955 			goto failed_mount;
3956 		}
3957 	} else
3958 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3959 
3960 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3961 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3962 
3963 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3964 	if (sbi->s_inodes_per_block == 0)
3965 		goto cantfind_ext4;
3966 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3967 	    sbi->s_inodes_per_group > blocksize * 8) {
3968 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3969 			 sbi->s_blocks_per_group);
3970 		goto failed_mount;
3971 	}
3972 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3973 					sbi->s_inodes_per_block;
3974 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3975 	sbi->s_sbh = bh;
3976 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3977 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3978 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3979 
3980 	for (i = 0; i < 4; i++)
3981 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3982 	sbi->s_def_hash_version = es->s_def_hash_version;
3983 	if (ext4_has_feature_dir_index(sb)) {
3984 		i = le32_to_cpu(es->s_flags);
3985 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3986 			sbi->s_hash_unsigned = 3;
3987 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3988 #ifdef __CHAR_UNSIGNED__
3989 			if (!sb_rdonly(sb))
3990 				es->s_flags |=
3991 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3992 			sbi->s_hash_unsigned = 3;
3993 #else
3994 			if (!sb_rdonly(sb))
3995 				es->s_flags |=
3996 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3997 #endif
3998 		}
3999 	}
4000 
4001 	/* Handle clustersize */
4002 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4003 	has_bigalloc = ext4_has_feature_bigalloc(sb);
4004 	if (has_bigalloc) {
4005 		if (clustersize < blocksize) {
4006 			ext4_msg(sb, KERN_ERR,
4007 				 "cluster size (%d) smaller than "
4008 				 "block size (%d)", clustersize, blocksize);
4009 			goto failed_mount;
4010 		}
4011 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4012 			le32_to_cpu(es->s_log_block_size);
4013 		sbi->s_clusters_per_group =
4014 			le32_to_cpu(es->s_clusters_per_group);
4015 		if (sbi->s_clusters_per_group > blocksize * 8) {
4016 			ext4_msg(sb, KERN_ERR,
4017 				 "#clusters per group too big: %lu",
4018 				 sbi->s_clusters_per_group);
4019 			goto failed_mount;
4020 		}
4021 		if (sbi->s_blocks_per_group !=
4022 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4023 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4024 				 "clusters per group (%lu) inconsistent",
4025 				 sbi->s_blocks_per_group,
4026 				 sbi->s_clusters_per_group);
4027 			goto failed_mount;
4028 		}
4029 	} else {
4030 		if (clustersize != blocksize) {
4031 			ext4_msg(sb, KERN_ERR,
4032 				 "fragment/cluster size (%d) != "
4033 				 "block size (%d)", clustersize, blocksize);
4034 			goto failed_mount;
4035 		}
4036 		if (sbi->s_blocks_per_group > blocksize * 8) {
4037 			ext4_msg(sb, KERN_ERR,
4038 				 "#blocks per group too big: %lu",
4039 				 sbi->s_blocks_per_group);
4040 			goto failed_mount;
4041 		}
4042 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4043 		sbi->s_cluster_bits = 0;
4044 	}
4045 	sbi->s_cluster_ratio = clustersize / blocksize;
4046 
4047 	/* Do we have standard group size of clustersize * 8 blocks ? */
4048 	if (sbi->s_blocks_per_group == clustersize << 3)
4049 		set_opt2(sb, STD_GROUP_SIZE);
4050 
4051 	/*
4052 	 * Test whether we have more sectors than will fit in sector_t,
4053 	 * and whether the max offset is addressable by the page cache.
4054 	 */
4055 	err = generic_check_addressable(sb->s_blocksize_bits,
4056 					ext4_blocks_count(es));
4057 	if (err) {
4058 		ext4_msg(sb, KERN_ERR, "filesystem"
4059 			 " too large to mount safely on this system");
4060 		if (sizeof(sector_t) < 8)
4061 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4062 		goto failed_mount;
4063 	}
4064 
4065 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4066 		goto cantfind_ext4;
4067 
4068 	/* check blocks count against device size */
4069 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4070 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4071 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4072 		       "exceeds size of device (%llu blocks)",
4073 		       ext4_blocks_count(es), blocks_count);
4074 		goto failed_mount;
4075 	}
4076 
4077 	/*
4078 	 * It makes no sense for the first data block to be beyond the end
4079 	 * of the filesystem.
4080 	 */
4081 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4082 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4083 			 "block %u is beyond end of filesystem (%llu)",
4084 			 le32_to_cpu(es->s_first_data_block),
4085 			 ext4_blocks_count(es));
4086 		goto failed_mount;
4087 	}
4088 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4089 	    (sbi->s_cluster_ratio == 1)) {
4090 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4091 			 "block is 0 with a 1k block and cluster size");
4092 		goto failed_mount;
4093 	}
4094 
4095 	blocks_count = (ext4_blocks_count(es) -
4096 			le32_to_cpu(es->s_first_data_block) +
4097 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4098 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4099 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4100 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4101 		       "(block count %llu, first data block %u, "
4102 		       "blocks per group %lu)", sbi->s_groups_count,
4103 		       ext4_blocks_count(es),
4104 		       le32_to_cpu(es->s_first_data_block),
4105 		       EXT4_BLOCKS_PER_GROUP(sb));
4106 		goto failed_mount;
4107 	}
4108 	sbi->s_groups_count = blocks_count;
4109 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4110 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4111 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4112 	    le32_to_cpu(es->s_inodes_count)) {
4113 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4114 			 le32_to_cpu(es->s_inodes_count),
4115 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4116 		ret = -EINVAL;
4117 		goto failed_mount;
4118 	}
4119 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4120 		   EXT4_DESC_PER_BLOCK(sb);
4121 	if (ext4_has_feature_meta_bg(sb)) {
4122 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4123 			ext4_msg(sb, KERN_WARNING,
4124 				 "first meta block group too large: %u "
4125 				 "(group descriptor block count %u)",
4126 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4127 			goto failed_mount;
4128 		}
4129 	}
4130 	sbi->s_group_desc = kvmalloc_array(db_count,
4131 					   sizeof(struct buffer_head *),
4132 					   GFP_KERNEL);
4133 	if (sbi->s_group_desc == NULL) {
4134 		ext4_msg(sb, KERN_ERR, "not enough memory");
4135 		ret = -ENOMEM;
4136 		goto failed_mount;
4137 	}
4138 
4139 	bgl_lock_init(sbi->s_blockgroup_lock);
4140 
4141 	/* Pre-read the descriptors into the buffer cache */
4142 	for (i = 0; i < db_count; i++) {
4143 		block = descriptor_loc(sb, logical_sb_block, i);
4144 		sb_breadahead(sb, block);
4145 	}
4146 
4147 	for (i = 0; i < db_count; i++) {
4148 		block = descriptor_loc(sb, logical_sb_block, i);
4149 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4150 		if (!sbi->s_group_desc[i]) {
4151 			ext4_msg(sb, KERN_ERR,
4152 			       "can't read group descriptor %d", i);
4153 			db_count = i;
4154 			goto failed_mount2;
4155 		}
4156 	}
4157 	sbi->s_gdb_count = db_count;
4158 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4159 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4160 		ret = -EFSCORRUPTED;
4161 		goto failed_mount2;
4162 	}
4163 
4164 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4165 
4166 	/* Register extent status tree shrinker */
4167 	if (ext4_es_register_shrinker(sbi))
4168 		goto failed_mount3;
4169 
4170 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4171 	sbi->s_extent_max_zeroout_kb = 32;
4172 
4173 	/*
4174 	 * set up enough so that it can read an inode
4175 	 */
4176 	sb->s_op = &ext4_sops;
4177 	sb->s_export_op = &ext4_export_ops;
4178 	sb->s_xattr = ext4_xattr_handlers;
4179 #ifdef CONFIG_FS_ENCRYPTION
4180 	sb->s_cop = &ext4_cryptops;
4181 #endif
4182 #ifdef CONFIG_QUOTA
4183 	sb->dq_op = &ext4_quota_operations;
4184 	if (ext4_has_feature_quota(sb))
4185 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4186 	else
4187 		sb->s_qcop = &ext4_qctl_operations;
4188 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4189 #endif
4190 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4191 
4192 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4193 	mutex_init(&sbi->s_orphan_lock);
4194 
4195 	sb->s_root = NULL;
4196 
4197 	needs_recovery = (es->s_last_orphan != 0 ||
4198 			  ext4_has_feature_journal_needs_recovery(sb));
4199 
4200 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4201 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4202 			goto failed_mount3a;
4203 
4204 	/*
4205 	 * The first inode we look at is the journal inode.  Don't try
4206 	 * root first: it may be modified in the journal!
4207 	 */
4208 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4209 		err = ext4_load_journal(sb, es, journal_devnum);
4210 		if (err)
4211 			goto failed_mount3a;
4212 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4213 		   ext4_has_feature_journal_needs_recovery(sb)) {
4214 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4215 		       "suppressed and not mounted read-only");
4216 		goto failed_mount_wq;
4217 	} else {
4218 		/* Nojournal mode, all journal mount options are illegal */
4219 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4220 			ext4_msg(sb, KERN_ERR, "can't mount with "
4221 				 "journal_checksum, fs mounted w/o journal");
4222 			goto failed_mount_wq;
4223 		}
4224 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4225 			ext4_msg(sb, KERN_ERR, "can't mount with "
4226 				 "journal_async_commit, fs mounted w/o journal");
4227 			goto failed_mount_wq;
4228 		}
4229 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4230 			ext4_msg(sb, KERN_ERR, "can't mount with "
4231 				 "commit=%lu, fs mounted w/o journal",
4232 				 sbi->s_commit_interval / HZ);
4233 			goto failed_mount_wq;
4234 		}
4235 		if (EXT4_MOUNT_DATA_FLAGS &
4236 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4237 			ext4_msg(sb, KERN_ERR, "can't mount with "
4238 				 "data=, fs mounted w/o journal");
4239 			goto failed_mount_wq;
4240 		}
4241 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4242 		clear_opt(sb, JOURNAL_CHECKSUM);
4243 		clear_opt(sb, DATA_FLAGS);
4244 		sbi->s_journal = NULL;
4245 		needs_recovery = 0;
4246 		goto no_journal;
4247 	}
4248 
4249 	if (ext4_has_feature_64bit(sb) &&
4250 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4251 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4252 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4253 		goto failed_mount_wq;
4254 	}
4255 
4256 	if (!set_journal_csum_feature_set(sb)) {
4257 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4258 			 "feature set");
4259 		goto failed_mount_wq;
4260 	}
4261 
4262 	/* We have now updated the journal if required, so we can
4263 	 * validate the data journaling mode. */
4264 	switch (test_opt(sb, DATA_FLAGS)) {
4265 	case 0:
4266 		/* No mode set, assume a default based on the journal
4267 		 * capabilities: ORDERED_DATA if the journal can
4268 		 * cope, else JOURNAL_DATA
4269 		 */
4270 		if (jbd2_journal_check_available_features
4271 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4272 			set_opt(sb, ORDERED_DATA);
4273 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4274 		} else {
4275 			set_opt(sb, JOURNAL_DATA);
4276 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4277 		}
4278 		break;
4279 
4280 	case EXT4_MOUNT_ORDERED_DATA:
4281 	case EXT4_MOUNT_WRITEBACK_DATA:
4282 		if (!jbd2_journal_check_available_features
4283 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4284 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4285 			       "requested data journaling mode");
4286 			goto failed_mount_wq;
4287 		}
4288 	default:
4289 		break;
4290 	}
4291 
4292 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4293 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4294 		ext4_msg(sb, KERN_ERR, "can't mount with "
4295 			"journal_async_commit in data=ordered mode");
4296 		goto failed_mount_wq;
4297 	}
4298 
4299 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4300 
4301 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4302 
4303 no_journal:
4304 	if (!test_opt(sb, NO_MBCACHE)) {
4305 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4306 		if (!sbi->s_ea_block_cache) {
4307 			ext4_msg(sb, KERN_ERR,
4308 				 "Failed to create ea_block_cache");
4309 			goto failed_mount_wq;
4310 		}
4311 
4312 		if (ext4_has_feature_ea_inode(sb)) {
4313 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4314 			if (!sbi->s_ea_inode_cache) {
4315 				ext4_msg(sb, KERN_ERR,
4316 					 "Failed to create ea_inode_cache");
4317 				goto failed_mount_wq;
4318 			}
4319 		}
4320 	}
4321 
4322 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4323 	    (blocksize != PAGE_SIZE)) {
4324 		ext4_msg(sb, KERN_ERR,
4325 			 "Unsupported blocksize for fs encryption");
4326 		goto failed_mount_wq;
4327 	}
4328 
4329 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4330 	    !ext4_has_feature_encrypt(sb)) {
4331 		ext4_set_feature_encrypt(sb);
4332 		ext4_commit_super(sb, 1);
4333 	}
4334 
4335 	/*
4336 	 * Get the # of file system overhead blocks from the
4337 	 * superblock if present.
4338 	 */
4339 	if (es->s_overhead_clusters)
4340 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4341 	else {
4342 		err = ext4_calculate_overhead(sb);
4343 		if (err)
4344 			goto failed_mount_wq;
4345 	}
4346 
4347 	/*
4348 	 * The maximum number of concurrent works can be high and
4349 	 * concurrency isn't really necessary.  Limit it to 1.
4350 	 */
4351 	EXT4_SB(sb)->rsv_conversion_wq =
4352 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4353 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4354 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4355 		ret = -ENOMEM;
4356 		goto failed_mount4;
4357 	}
4358 
4359 	/*
4360 	 * The jbd2_journal_load will have done any necessary log recovery,
4361 	 * so we can safely mount the rest of the filesystem now.
4362 	 */
4363 
4364 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4365 	if (IS_ERR(root)) {
4366 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4367 		ret = PTR_ERR(root);
4368 		root = NULL;
4369 		goto failed_mount4;
4370 	}
4371 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4372 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4373 		iput(root);
4374 		goto failed_mount4;
4375 	}
4376 	sb->s_root = d_make_root(root);
4377 	if (!sb->s_root) {
4378 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4379 		ret = -ENOMEM;
4380 		goto failed_mount4;
4381 	}
4382 
4383 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4384 	if (ret == -EROFS) {
4385 		sb->s_flags |= SB_RDONLY;
4386 		ret = 0;
4387 	} else if (ret)
4388 		goto failed_mount4a;
4389 
4390 	/* determine the minimum size of new large inodes, if present */
4391 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4392 	    sbi->s_want_extra_isize == 0) {
4393 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4394 						     EXT4_GOOD_OLD_INODE_SIZE;
4395 		if (ext4_has_feature_extra_isize(sb)) {
4396 			if (sbi->s_want_extra_isize <
4397 			    le16_to_cpu(es->s_want_extra_isize))
4398 				sbi->s_want_extra_isize =
4399 					le16_to_cpu(es->s_want_extra_isize);
4400 			if (sbi->s_want_extra_isize <
4401 			    le16_to_cpu(es->s_min_extra_isize))
4402 				sbi->s_want_extra_isize =
4403 					le16_to_cpu(es->s_min_extra_isize);
4404 		}
4405 	}
4406 	/* Check if enough inode space is available */
4407 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4408 							sbi->s_inode_size) {
4409 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4410 						       EXT4_GOOD_OLD_INODE_SIZE;
4411 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4412 			 "available");
4413 	}
4414 
4415 	ext4_set_resv_clusters(sb);
4416 
4417 	err = ext4_setup_system_zone(sb);
4418 	if (err) {
4419 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4420 			 "zone (%d)", err);
4421 		goto failed_mount4a;
4422 	}
4423 
4424 	ext4_ext_init(sb);
4425 	err = ext4_mb_init(sb);
4426 	if (err) {
4427 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4428 			 err);
4429 		goto failed_mount5;
4430 	}
4431 
4432 	block = ext4_count_free_clusters(sb);
4433 	ext4_free_blocks_count_set(sbi->s_es,
4434 				   EXT4_C2B(sbi, block));
4435 	ext4_superblock_csum_set(sb);
4436 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4437 				  GFP_KERNEL);
4438 	if (!err) {
4439 		unsigned long freei = ext4_count_free_inodes(sb);
4440 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4441 		ext4_superblock_csum_set(sb);
4442 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4443 					  GFP_KERNEL);
4444 	}
4445 	if (!err)
4446 		err = percpu_counter_init(&sbi->s_dirs_counter,
4447 					  ext4_count_dirs(sb), GFP_KERNEL);
4448 	if (!err)
4449 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4450 					  GFP_KERNEL);
4451 	if (!err)
4452 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4453 
4454 	if (err) {
4455 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4456 		goto failed_mount6;
4457 	}
4458 
4459 	if (ext4_has_feature_flex_bg(sb))
4460 		if (!ext4_fill_flex_info(sb)) {
4461 			ext4_msg(sb, KERN_ERR,
4462 			       "unable to initialize "
4463 			       "flex_bg meta info!");
4464 			goto failed_mount6;
4465 		}
4466 
4467 	err = ext4_register_li_request(sb, first_not_zeroed);
4468 	if (err)
4469 		goto failed_mount6;
4470 
4471 	err = ext4_register_sysfs(sb);
4472 	if (err)
4473 		goto failed_mount7;
4474 
4475 #ifdef CONFIG_QUOTA
4476 	/* Enable quota usage during mount. */
4477 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4478 		err = ext4_enable_quotas(sb);
4479 		if (err)
4480 			goto failed_mount8;
4481 	}
4482 #endif  /* CONFIG_QUOTA */
4483 
4484 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4485 	ext4_orphan_cleanup(sb, es);
4486 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4487 	if (needs_recovery) {
4488 		ext4_msg(sb, KERN_INFO, "recovery complete");
4489 		ext4_mark_recovery_complete(sb, es);
4490 	}
4491 	if (EXT4_SB(sb)->s_journal) {
4492 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4493 			descr = " journalled data mode";
4494 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4495 			descr = " ordered data mode";
4496 		else
4497 			descr = " writeback data mode";
4498 	} else
4499 		descr = "out journal";
4500 
4501 	if (test_opt(sb, DISCARD)) {
4502 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4503 		if (!blk_queue_discard(q))
4504 			ext4_msg(sb, KERN_WARNING,
4505 				 "mounting with \"discard\" option, but "
4506 				 "the device does not support discard");
4507 	}
4508 
4509 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4510 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4511 			 "Opts: %.*s%s%s", descr,
4512 			 (int) sizeof(sbi->s_es->s_mount_opts),
4513 			 sbi->s_es->s_mount_opts,
4514 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4515 
4516 	if (es->s_error_count)
4517 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4518 
4519 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4520 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4521 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4522 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4523 
4524 	kfree(orig_data);
4525 	return 0;
4526 
4527 cantfind_ext4:
4528 	if (!silent)
4529 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4530 	goto failed_mount;
4531 
4532 #ifdef CONFIG_QUOTA
4533 failed_mount8:
4534 	ext4_unregister_sysfs(sb);
4535 #endif
4536 failed_mount7:
4537 	ext4_unregister_li_request(sb);
4538 failed_mount6:
4539 	ext4_mb_release(sb);
4540 	if (sbi->s_flex_groups)
4541 		kvfree(sbi->s_flex_groups);
4542 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4543 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4544 	percpu_counter_destroy(&sbi->s_dirs_counter);
4545 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4546 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4547 failed_mount5:
4548 	ext4_ext_release(sb);
4549 	ext4_release_system_zone(sb);
4550 failed_mount4a:
4551 	dput(sb->s_root);
4552 	sb->s_root = NULL;
4553 failed_mount4:
4554 	ext4_msg(sb, KERN_ERR, "mount failed");
4555 	if (EXT4_SB(sb)->rsv_conversion_wq)
4556 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4557 failed_mount_wq:
4558 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4559 	sbi->s_ea_inode_cache = NULL;
4560 
4561 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4562 	sbi->s_ea_block_cache = NULL;
4563 
4564 	if (sbi->s_journal) {
4565 		jbd2_journal_destroy(sbi->s_journal);
4566 		sbi->s_journal = NULL;
4567 	}
4568 failed_mount3a:
4569 	ext4_es_unregister_shrinker(sbi);
4570 failed_mount3:
4571 	del_timer_sync(&sbi->s_err_report);
4572 	if (sbi->s_mmp_tsk)
4573 		kthread_stop(sbi->s_mmp_tsk);
4574 failed_mount2:
4575 	for (i = 0; i < db_count; i++)
4576 		brelse(sbi->s_group_desc[i]);
4577 	kvfree(sbi->s_group_desc);
4578 failed_mount:
4579 	if (sbi->s_chksum_driver)
4580 		crypto_free_shash(sbi->s_chksum_driver);
4581 #ifdef CONFIG_QUOTA
4582 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4583 		kfree(sbi->s_qf_names[i]);
4584 #endif
4585 	ext4_blkdev_remove(sbi);
4586 	brelse(bh);
4587 out_fail:
4588 	sb->s_fs_info = NULL;
4589 	kfree(sbi->s_blockgroup_lock);
4590 out_free_base:
4591 	kfree(sbi);
4592 	kfree(orig_data);
4593 	fs_put_dax(dax_dev);
4594 	return err ? err : ret;
4595 }
4596 
4597 /*
4598  * Setup any per-fs journal parameters now.  We'll do this both on
4599  * initial mount, once the journal has been initialised but before we've
4600  * done any recovery; and again on any subsequent remount.
4601  */
4602 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4603 {
4604 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4605 
4606 	journal->j_commit_interval = sbi->s_commit_interval;
4607 	journal->j_min_batch_time = sbi->s_min_batch_time;
4608 	journal->j_max_batch_time = sbi->s_max_batch_time;
4609 
4610 	write_lock(&journal->j_state_lock);
4611 	if (test_opt(sb, BARRIER))
4612 		journal->j_flags |= JBD2_BARRIER;
4613 	else
4614 		journal->j_flags &= ~JBD2_BARRIER;
4615 	if (test_opt(sb, DATA_ERR_ABORT))
4616 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4617 	else
4618 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4619 	write_unlock(&journal->j_state_lock);
4620 }
4621 
4622 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4623 					     unsigned int journal_inum)
4624 {
4625 	struct inode *journal_inode;
4626 
4627 	/*
4628 	 * Test for the existence of a valid inode on disk.  Bad things
4629 	 * happen if we iget() an unused inode, as the subsequent iput()
4630 	 * will try to delete it.
4631 	 */
4632 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4633 	if (IS_ERR(journal_inode)) {
4634 		ext4_msg(sb, KERN_ERR, "no journal found");
4635 		return NULL;
4636 	}
4637 	if (!journal_inode->i_nlink) {
4638 		make_bad_inode(journal_inode);
4639 		iput(journal_inode);
4640 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4641 		return NULL;
4642 	}
4643 
4644 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4645 		  journal_inode, journal_inode->i_size);
4646 	if (!S_ISREG(journal_inode->i_mode)) {
4647 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4648 		iput(journal_inode);
4649 		return NULL;
4650 	}
4651 	return journal_inode;
4652 }
4653 
4654 static journal_t *ext4_get_journal(struct super_block *sb,
4655 				   unsigned int journal_inum)
4656 {
4657 	struct inode *journal_inode;
4658 	journal_t *journal;
4659 
4660 	BUG_ON(!ext4_has_feature_journal(sb));
4661 
4662 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4663 	if (!journal_inode)
4664 		return NULL;
4665 
4666 	journal = jbd2_journal_init_inode(journal_inode);
4667 	if (!journal) {
4668 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4669 		iput(journal_inode);
4670 		return NULL;
4671 	}
4672 	journal->j_private = sb;
4673 	ext4_init_journal_params(sb, journal);
4674 	return journal;
4675 }
4676 
4677 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4678 				       dev_t j_dev)
4679 {
4680 	struct buffer_head *bh;
4681 	journal_t *journal;
4682 	ext4_fsblk_t start;
4683 	ext4_fsblk_t len;
4684 	int hblock, blocksize;
4685 	ext4_fsblk_t sb_block;
4686 	unsigned long offset;
4687 	struct ext4_super_block *es;
4688 	struct block_device *bdev;
4689 
4690 	BUG_ON(!ext4_has_feature_journal(sb));
4691 
4692 	bdev = ext4_blkdev_get(j_dev, sb);
4693 	if (bdev == NULL)
4694 		return NULL;
4695 
4696 	blocksize = sb->s_blocksize;
4697 	hblock = bdev_logical_block_size(bdev);
4698 	if (blocksize < hblock) {
4699 		ext4_msg(sb, KERN_ERR,
4700 			"blocksize too small for journal device");
4701 		goto out_bdev;
4702 	}
4703 
4704 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4705 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4706 	set_blocksize(bdev, blocksize);
4707 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4708 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4709 		       "external journal");
4710 		goto out_bdev;
4711 	}
4712 
4713 	es = (struct ext4_super_block *) (bh->b_data + offset);
4714 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4715 	    !(le32_to_cpu(es->s_feature_incompat) &
4716 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4717 		ext4_msg(sb, KERN_ERR, "external journal has "
4718 					"bad superblock");
4719 		brelse(bh);
4720 		goto out_bdev;
4721 	}
4722 
4723 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4724 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4725 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4726 		ext4_msg(sb, KERN_ERR, "external journal has "
4727 				       "corrupt superblock");
4728 		brelse(bh);
4729 		goto out_bdev;
4730 	}
4731 
4732 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4733 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4734 		brelse(bh);
4735 		goto out_bdev;
4736 	}
4737 
4738 	len = ext4_blocks_count(es);
4739 	start = sb_block + 1;
4740 	brelse(bh);	/* we're done with the superblock */
4741 
4742 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4743 					start, len, blocksize);
4744 	if (!journal) {
4745 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4746 		goto out_bdev;
4747 	}
4748 	journal->j_private = sb;
4749 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4750 	wait_on_buffer(journal->j_sb_buffer);
4751 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4752 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4753 		goto out_journal;
4754 	}
4755 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4756 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4757 					"user (unsupported) - %d",
4758 			be32_to_cpu(journal->j_superblock->s_nr_users));
4759 		goto out_journal;
4760 	}
4761 	EXT4_SB(sb)->journal_bdev = bdev;
4762 	ext4_init_journal_params(sb, journal);
4763 	return journal;
4764 
4765 out_journal:
4766 	jbd2_journal_destroy(journal);
4767 out_bdev:
4768 	ext4_blkdev_put(bdev);
4769 	return NULL;
4770 }
4771 
4772 static int ext4_load_journal(struct super_block *sb,
4773 			     struct ext4_super_block *es,
4774 			     unsigned long journal_devnum)
4775 {
4776 	journal_t *journal;
4777 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4778 	dev_t journal_dev;
4779 	int err = 0;
4780 	int really_read_only;
4781 
4782 	BUG_ON(!ext4_has_feature_journal(sb));
4783 
4784 	if (journal_devnum &&
4785 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4786 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4787 			"numbers have changed");
4788 		journal_dev = new_decode_dev(journal_devnum);
4789 	} else
4790 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4791 
4792 	really_read_only = bdev_read_only(sb->s_bdev);
4793 
4794 	/*
4795 	 * Are we loading a blank journal or performing recovery after a
4796 	 * crash?  For recovery, we need to check in advance whether we
4797 	 * can get read-write access to the device.
4798 	 */
4799 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4800 		if (sb_rdonly(sb)) {
4801 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4802 					"required on readonly filesystem");
4803 			if (really_read_only) {
4804 				ext4_msg(sb, KERN_ERR, "write access "
4805 					"unavailable, cannot proceed "
4806 					"(try mounting with noload)");
4807 				return -EROFS;
4808 			}
4809 			ext4_msg(sb, KERN_INFO, "write access will "
4810 			       "be enabled during recovery");
4811 		}
4812 	}
4813 
4814 	if (journal_inum && journal_dev) {
4815 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4816 		       "and inode journals!");
4817 		return -EINVAL;
4818 	}
4819 
4820 	if (journal_inum) {
4821 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4822 			return -EINVAL;
4823 	} else {
4824 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4825 			return -EINVAL;
4826 	}
4827 
4828 	if (!(journal->j_flags & JBD2_BARRIER))
4829 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4830 
4831 	if (!ext4_has_feature_journal_needs_recovery(sb))
4832 		err = jbd2_journal_wipe(journal, !really_read_only);
4833 	if (!err) {
4834 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4835 		if (save)
4836 			memcpy(save, ((char *) es) +
4837 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4838 		err = jbd2_journal_load(journal);
4839 		if (save)
4840 			memcpy(((char *) es) + EXT4_S_ERR_START,
4841 			       save, EXT4_S_ERR_LEN);
4842 		kfree(save);
4843 	}
4844 
4845 	if (err) {
4846 		ext4_msg(sb, KERN_ERR, "error loading journal");
4847 		jbd2_journal_destroy(journal);
4848 		return err;
4849 	}
4850 
4851 	EXT4_SB(sb)->s_journal = journal;
4852 	ext4_clear_journal_err(sb, es);
4853 
4854 	if (!really_read_only && journal_devnum &&
4855 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4856 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4857 
4858 		/* Make sure we flush the recovery flag to disk. */
4859 		ext4_commit_super(sb, 1);
4860 	}
4861 
4862 	return 0;
4863 }
4864 
4865 static int ext4_commit_super(struct super_block *sb, int sync)
4866 {
4867 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4868 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4869 	int error = 0;
4870 
4871 	if (!sbh || block_device_ejected(sb))
4872 		return error;
4873 
4874 	/*
4875 	 * The superblock bh should be mapped, but it might not be if the
4876 	 * device was hot-removed. Not much we can do but fail the I/O.
4877 	 */
4878 	if (!buffer_mapped(sbh))
4879 		return error;
4880 
4881 	/*
4882 	 * If the file system is mounted read-only, don't update the
4883 	 * superblock write time.  This avoids updating the superblock
4884 	 * write time when we are mounting the root file system
4885 	 * read/only but we need to replay the journal; at that point,
4886 	 * for people who are east of GMT and who make their clock
4887 	 * tick in localtime for Windows bug-for-bug compatibility,
4888 	 * the clock is set in the future, and this will cause e2fsck
4889 	 * to complain and force a full file system check.
4890 	 */
4891 	if (!(sb->s_flags & SB_RDONLY))
4892 		ext4_update_tstamp(es, s_wtime);
4893 	if (sb->s_bdev->bd_part)
4894 		es->s_kbytes_written =
4895 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4896 			    ((part_stat_read(sb->s_bdev->bd_part,
4897 					     sectors[STAT_WRITE]) -
4898 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4899 	else
4900 		es->s_kbytes_written =
4901 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4902 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4903 		ext4_free_blocks_count_set(es,
4904 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4905 				&EXT4_SB(sb)->s_freeclusters_counter)));
4906 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4907 		es->s_free_inodes_count =
4908 			cpu_to_le32(percpu_counter_sum_positive(
4909 				&EXT4_SB(sb)->s_freeinodes_counter));
4910 	BUFFER_TRACE(sbh, "marking dirty");
4911 	ext4_superblock_csum_set(sb);
4912 	if (sync)
4913 		lock_buffer(sbh);
4914 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
4915 		/*
4916 		 * Oh, dear.  A previous attempt to write the
4917 		 * superblock failed.  This could happen because the
4918 		 * USB device was yanked out.  Or it could happen to
4919 		 * be a transient write error and maybe the block will
4920 		 * be remapped.  Nothing we can do but to retry the
4921 		 * write and hope for the best.
4922 		 */
4923 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4924 		       "superblock detected");
4925 		clear_buffer_write_io_error(sbh);
4926 		set_buffer_uptodate(sbh);
4927 	}
4928 	mark_buffer_dirty(sbh);
4929 	if (sync) {
4930 		unlock_buffer(sbh);
4931 		error = __sync_dirty_buffer(sbh,
4932 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4933 		if (buffer_write_io_error(sbh)) {
4934 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4935 			       "superblock");
4936 			clear_buffer_write_io_error(sbh);
4937 			set_buffer_uptodate(sbh);
4938 		}
4939 	}
4940 	return error;
4941 }
4942 
4943 /*
4944  * Have we just finished recovery?  If so, and if we are mounting (or
4945  * remounting) the filesystem readonly, then we will end up with a
4946  * consistent fs on disk.  Record that fact.
4947  */
4948 static void ext4_mark_recovery_complete(struct super_block *sb,
4949 					struct ext4_super_block *es)
4950 {
4951 	journal_t *journal = EXT4_SB(sb)->s_journal;
4952 
4953 	if (!ext4_has_feature_journal(sb)) {
4954 		BUG_ON(journal != NULL);
4955 		return;
4956 	}
4957 	jbd2_journal_lock_updates(journal);
4958 	if (jbd2_journal_flush(journal) < 0)
4959 		goto out;
4960 
4961 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4962 		ext4_clear_feature_journal_needs_recovery(sb);
4963 		ext4_commit_super(sb, 1);
4964 	}
4965 
4966 out:
4967 	jbd2_journal_unlock_updates(journal);
4968 }
4969 
4970 /*
4971  * If we are mounting (or read-write remounting) a filesystem whose journal
4972  * has recorded an error from a previous lifetime, move that error to the
4973  * main filesystem now.
4974  */
4975 static void ext4_clear_journal_err(struct super_block *sb,
4976 				   struct ext4_super_block *es)
4977 {
4978 	journal_t *journal;
4979 	int j_errno;
4980 	const char *errstr;
4981 
4982 	BUG_ON(!ext4_has_feature_journal(sb));
4983 
4984 	journal = EXT4_SB(sb)->s_journal;
4985 
4986 	/*
4987 	 * Now check for any error status which may have been recorded in the
4988 	 * journal by a prior ext4_error() or ext4_abort()
4989 	 */
4990 
4991 	j_errno = jbd2_journal_errno(journal);
4992 	if (j_errno) {
4993 		char nbuf[16];
4994 
4995 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4996 		ext4_warning(sb, "Filesystem error recorded "
4997 			     "from previous mount: %s", errstr);
4998 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4999 
5000 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5001 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5002 		ext4_commit_super(sb, 1);
5003 
5004 		jbd2_journal_clear_err(journal);
5005 		jbd2_journal_update_sb_errno(journal);
5006 	}
5007 }
5008 
5009 /*
5010  * Force the running and committing transactions to commit,
5011  * and wait on the commit.
5012  */
5013 int ext4_force_commit(struct super_block *sb)
5014 {
5015 	journal_t *journal;
5016 
5017 	if (sb_rdonly(sb))
5018 		return 0;
5019 
5020 	journal = EXT4_SB(sb)->s_journal;
5021 	return ext4_journal_force_commit(journal);
5022 }
5023 
5024 static int ext4_sync_fs(struct super_block *sb, int wait)
5025 {
5026 	int ret = 0;
5027 	tid_t target;
5028 	bool needs_barrier = false;
5029 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5030 
5031 	if (unlikely(ext4_forced_shutdown(sbi)))
5032 		return 0;
5033 
5034 	trace_ext4_sync_fs(sb, wait);
5035 	flush_workqueue(sbi->rsv_conversion_wq);
5036 	/*
5037 	 * Writeback quota in non-journalled quota case - journalled quota has
5038 	 * no dirty dquots
5039 	 */
5040 	dquot_writeback_dquots(sb, -1);
5041 	/*
5042 	 * Data writeback is possible w/o journal transaction, so barrier must
5043 	 * being sent at the end of the function. But we can skip it if
5044 	 * transaction_commit will do it for us.
5045 	 */
5046 	if (sbi->s_journal) {
5047 		target = jbd2_get_latest_transaction(sbi->s_journal);
5048 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5049 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5050 			needs_barrier = true;
5051 
5052 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5053 			if (wait)
5054 				ret = jbd2_log_wait_commit(sbi->s_journal,
5055 							   target);
5056 		}
5057 	} else if (wait && test_opt(sb, BARRIER))
5058 		needs_barrier = true;
5059 	if (needs_barrier) {
5060 		int err;
5061 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5062 		if (!ret)
5063 			ret = err;
5064 	}
5065 
5066 	return ret;
5067 }
5068 
5069 /*
5070  * LVM calls this function before a (read-only) snapshot is created.  This
5071  * gives us a chance to flush the journal completely and mark the fs clean.
5072  *
5073  * Note that only this function cannot bring a filesystem to be in a clean
5074  * state independently. It relies on upper layer to stop all data & metadata
5075  * modifications.
5076  */
5077 static int ext4_freeze(struct super_block *sb)
5078 {
5079 	int error = 0;
5080 	journal_t *journal;
5081 
5082 	if (sb_rdonly(sb))
5083 		return 0;
5084 
5085 	journal = EXT4_SB(sb)->s_journal;
5086 
5087 	if (journal) {
5088 		/* Now we set up the journal barrier. */
5089 		jbd2_journal_lock_updates(journal);
5090 
5091 		/*
5092 		 * Don't clear the needs_recovery flag if we failed to
5093 		 * flush the journal.
5094 		 */
5095 		error = jbd2_journal_flush(journal);
5096 		if (error < 0)
5097 			goto out;
5098 
5099 		/* Journal blocked and flushed, clear needs_recovery flag. */
5100 		ext4_clear_feature_journal_needs_recovery(sb);
5101 	}
5102 
5103 	error = ext4_commit_super(sb, 1);
5104 out:
5105 	if (journal)
5106 		/* we rely on upper layer to stop further updates */
5107 		jbd2_journal_unlock_updates(journal);
5108 	return error;
5109 }
5110 
5111 /*
5112  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5113  * flag here, even though the filesystem is not technically dirty yet.
5114  */
5115 static int ext4_unfreeze(struct super_block *sb)
5116 {
5117 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5118 		return 0;
5119 
5120 	if (EXT4_SB(sb)->s_journal) {
5121 		/* Reset the needs_recovery flag before the fs is unlocked. */
5122 		ext4_set_feature_journal_needs_recovery(sb);
5123 	}
5124 
5125 	ext4_commit_super(sb, 1);
5126 	return 0;
5127 }
5128 
5129 /*
5130  * Structure to save mount options for ext4_remount's benefit
5131  */
5132 struct ext4_mount_options {
5133 	unsigned long s_mount_opt;
5134 	unsigned long s_mount_opt2;
5135 	kuid_t s_resuid;
5136 	kgid_t s_resgid;
5137 	unsigned long s_commit_interval;
5138 	u32 s_min_batch_time, s_max_batch_time;
5139 #ifdef CONFIG_QUOTA
5140 	int s_jquota_fmt;
5141 	char *s_qf_names[EXT4_MAXQUOTAS];
5142 #endif
5143 };
5144 
5145 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5146 {
5147 	struct ext4_super_block *es;
5148 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5149 	unsigned long old_sb_flags;
5150 	struct ext4_mount_options old_opts;
5151 	int enable_quota = 0;
5152 	ext4_group_t g;
5153 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5154 	int err = 0;
5155 #ifdef CONFIG_QUOTA
5156 	int i, j;
5157 	char *to_free[EXT4_MAXQUOTAS];
5158 #endif
5159 	char *orig_data = kstrdup(data, GFP_KERNEL);
5160 
5161 	if (data && !orig_data)
5162 		return -ENOMEM;
5163 
5164 	/* Store the original options */
5165 	old_sb_flags = sb->s_flags;
5166 	old_opts.s_mount_opt = sbi->s_mount_opt;
5167 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5168 	old_opts.s_resuid = sbi->s_resuid;
5169 	old_opts.s_resgid = sbi->s_resgid;
5170 	old_opts.s_commit_interval = sbi->s_commit_interval;
5171 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5172 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5173 #ifdef CONFIG_QUOTA
5174 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5175 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5176 		if (sbi->s_qf_names[i]) {
5177 			char *qf_name = get_qf_name(sb, sbi, i);
5178 
5179 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5180 			if (!old_opts.s_qf_names[i]) {
5181 				for (j = 0; j < i; j++)
5182 					kfree(old_opts.s_qf_names[j]);
5183 				kfree(orig_data);
5184 				return -ENOMEM;
5185 			}
5186 		} else
5187 			old_opts.s_qf_names[i] = NULL;
5188 #endif
5189 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5190 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5191 
5192 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5193 		err = -EINVAL;
5194 		goto restore_opts;
5195 	}
5196 
5197 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5198 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5199 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5200 			 "during remount not supported; ignoring");
5201 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5202 	}
5203 
5204 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5205 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5206 			ext4_msg(sb, KERN_ERR, "can't mount with "
5207 				 "both data=journal and delalloc");
5208 			err = -EINVAL;
5209 			goto restore_opts;
5210 		}
5211 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5212 			ext4_msg(sb, KERN_ERR, "can't mount with "
5213 				 "both data=journal and dioread_nolock");
5214 			err = -EINVAL;
5215 			goto restore_opts;
5216 		}
5217 		if (test_opt(sb, DAX)) {
5218 			ext4_msg(sb, KERN_ERR, "can't mount with "
5219 				 "both data=journal and dax");
5220 			err = -EINVAL;
5221 			goto restore_opts;
5222 		}
5223 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5224 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5225 			ext4_msg(sb, KERN_ERR, "can't mount with "
5226 				"journal_async_commit in data=ordered mode");
5227 			err = -EINVAL;
5228 			goto restore_opts;
5229 		}
5230 	}
5231 
5232 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5233 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5234 		err = -EINVAL;
5235 		goto restore_opts;
5236 	}
5237 
5238 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5239 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5240 			"dax flag with busy inodes while remounting");
5241 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5242 	}
5243 
5244 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5245 		ext4_abort(sb, "Abort forced by user");
5246 
5247 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5248 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5249 
5250 	es = sbi->s_es;
5251 
5252 	if (sbi->s_journal) {
5253 		ext4_init_journal_params(sb, sbi->s_journal);
5254 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5255 	}
5256 
5257 	if (*flags & SB_LAZYTIME)
5258 		sb->s_flags |= SB_LAZYTIME;
5259 
5260 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5261 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5262 			err = -EROFS;
5263 			goto restore_opts;
5264 		}
5265 
5266 		if (*flags & SB_RDONLY) {
5267 			err = sync_filesystem(sb);
5268 			if (err < 0)
5269 				goto restore_opts;
5270 			err = dquot_suspend(sb, -1);
5271 			if (err < 0)
5272 				goto restore_opts;
5273 
5274 			/*
5275 			 * First of all, the unconditional stuff we have to do
5276 			 * to disable replay of the journal when we next remount
5277 			 */
5278 			sb->s_flags |= SB_RDONLY;
5279 
5280 			/*
5281 			 * OK, test if we are remounting a valid rw partition
5282 			 * readonly, and if so set the rdonly flag and then
5283 			 * mark the partition as valid again.
5284 			 */
5285 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5286 			    (sbi->s_mount_state & EXT4_VALID_FS))
5287 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5288 
5289 			if (sbi->s_journal)
5290 				ext4_mark_recovery_complete(sb, es);
5291 			if (sbi->s_mmp_tsk)
5292 				kthread_stop(sbi->s_mmp_tsk);
5293 		} else {
5294 			/* Make sure we can mount this feature set readwrite */
5295 			if (ext4_has_feature_readonly(sb) ||
5296 			    !ext4_feature_set_ok(sb, 0)) {
5297 				err = -EROFS;
5298 				goto restore_opts;
5299 			}
5300 			/*
5301 			 * Make sure the group descriptor checksums
5302 			 * are sane.  If they aren't, refuse to remount r/w.
5303 			 */
5304 			for (g = 0; g < sbi->s_groups_count; g++) {
5305 				struct ext4_group_desc *gdp =
5306 					ext4_get_group_desc(sb, g, NULL);
5307 
5308 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5309 					ext4_msg(sb, KERN_ERR,
5310 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5311 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5312 					       le16_to_cpu(gdp->bg_checksum));
5313 					err = -EFSBADCRC;
5314 					goto restore_opts;
5315 				}
5316 			}
5317 
5318 			/*
5319 			 * If we have an unprocessed orphan list hanging
5320 			 * around from a previously readonly bdev mount,
5321 			 * require a full umount/remount for now.
5322 			 */
5323 			if (es->s_last_orphan) {
5324 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5325 				       "remount RDWR because of unprocessed "
5326 				       "orphan inode list.  Please "
5327 				       "umount/remount instead");
5328 				err = -EINVAL;
5329 				goto restore_opts;
5330 			}
5331 
5332 			/*
5333 			 * Mounting a RDONLY partition read-write, so reread
5334 			 * and store the current valid flag.  (It may have
5335 			 * been changed by e2fsck since we originally mounted
5336 			 * the partition.)
5337 			 */
5338 			if (sbi->s_journal)
5339 				ext4_clear_journal_err(sb, es);
5340 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5341 
5342 			err = ext4_setup_super(sb, es, 0);
5343 			if (err)
5344 				goto restore_opts;
5345 
5346 			sb->s_flags &= ~SB_RDONLY;
5347 			if (ext4_has_feature_mmp(sb))
5348 				if (ext4_multi_mount_protect(sb,
5349 						le64_to_cpu(es->s_mmp_block))) {
5350 					err = -EROFS;
5351 					goto restore_opts;
5352 				}
5353 			enable_quota = 1;
5354 		}
5355 	}
5356 
5357 	/*
5358 	 * Reinitialize lazy itable initialization thread based on
5359 	 * current settings
5360 	 */
5361 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5362 		ext4_unregister_li_request(sb);
5363 	else {
5364 		ext4_group_t first_not_zeroed;
5365 		first_not_zeroed = ext4_has_uninit_itable(sb);
5366 		ext4_register_li_request(sb, first_not_zeroed);
5367 	}
5368 
5369 	ext4_setup_system_zone(sb);
5370 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5371 		err = ext4_commit_super(sb, 1);
5372 		if (err)
5373 			goto restore_opts;
5374 	}
5375 
5376 #ifdef CONFIG_QUOTA
5377 	/* Release old quota file names */
5378 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5379 		kfree(old_opts.s_qf_names[i]);
5380 	if (enable_quota) {
5381 		if (sb_any_quota_suspended(sb))
5382 			dquot_resume(sb, -1);
5383 		else if (ext4_has_feature_quota(sb)) {
5384 			err = ext4_enable_quotas(sb);
5385 			if (err)
5386 				goto restore_opts;
5387 		}
5388 	}
5389 #endif
5390 
5391 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5392 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5393 	kfree(orig_data);
5394 	return 0;
5395 
5396 restore_opts:
5397 	sb->s_flags = old_sb_flags;
5398 	sbi->s_mount_opt = old_opts.s_mount_opt;
5399 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5400 	sbi->s_resuid = old_opts.s_resuid;
5401 	sbi->s_resgid = old_opts.s_resgid;
5402 	sbi->s_commit_interval = old_opts.s_commit_interval;
5403 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5404 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5405 #ifdef CONFIG_QUOTA
5406 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5407 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5408 		to_free[i] = get_qf_name(sb, sbi, i);
5409 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5410 	}
5411 	synchronize_rcu();
5412 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5413 		kfree(to_free[i]);
5414 #endif
5415 	kfree(orig_data);
5416 	return err;
5417 }
5418 
5419 #ifdef CONFIG_QUOTA
5420 static int ext4_statfs_project(struct super_block *sb,
5421 			       kprojid_t projid, struct kstatfs *buf)
5422 {
5423 	struct kqid qid;
5424 	struct dquot *dquot;
5425 	u64 limit;
5426 	u64 curblock;
5427 
5428 	qid = make_kqid_projid(projid);
5429 	dquot = dqget(sb, qid);
5430 	if (IS_ERR(dquot))
5431 		return PTR_ERR(dquot);
5432 	spin_lock(&dquot->dq_dqb_lock);
5433 
5434 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5435 		 dquot->dq_dqb.dqb_bsoftlimit :
5436 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5437 	if (limit && buf->f_blocks > limit) {
5438 		curblock = (dquot->dq_dqb.dqb_curspace +
5439 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5440 		buf->f_blocks = limit;
5441 		buf->f_bfree = buf->f_bavail =
5442 			(buf->f_blocks > curblock) ?
5443 			 (buf->f_blocks - curblock) : 0;
5444 	}
5445 
5446 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5447 		dquot->dq_dqb.dqb_isoftlimit :
5448 		dquot->dq_dqb.dqb_ihardlimit;
5449 	if (limit && buf->f_files > limit) {
5450 		buf->f_files = limit;
5451 		buf->f_ffree =
5452 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5453 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5454 	}
5455 
5456 	spin_unlock(&dquot->dq_dqb_lock);
5457 	dqput(dquot);
5458 	return 0;
5459 }
5460 #endif
5461 
5462 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5463 {
5464 	struct super_block *sb = dentry->d_sb;
5465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5466 	struct ext4_super_block *es = sbi->s_es;
5467 	ext4_fsblk_t overhead = 0, resv_blocks;
5468 	u64 fsid;
5469 	s64 bfree;
5470 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5471 
5472 	if (!test_opt(sb, MINIX_DF))
5473 		overhead = sbi->s_overhead;
5474 
5475 	buf->f_type = EXT4_SUPER_MAGIC;
5476 	buf->f_bsize = sb->s_blocksize;
5477 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5478 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5479 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5480 	/* prevent underflow in case that few free space is available */
5481 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5482 	buf->f_bavail = buf->f_bfree -
5483 			(ext4_r_blocks_count(es) + resv_blocks);
5484 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5485 		buf->f_bavail = 0;
5486 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5487 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5488 	buf->f_namelen = EXT4_NAME_LEN;
5489 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5490 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5491 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5492 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5493 
5494 #ifdef CONFIG_QUOTA
5495 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5496 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5497 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5498 #endif
5499 	return 0;
5500 }
5501 
5502 
5503 #ifdef CONFIG_QUOTA
5504 
5505 /*
5506  * Helper functions so that transaction is started before we acquire dqio_sem
5507  * to keep correct lock ordering of transaction > dqio_sem
5508  */
5509 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5510 {
5511 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5512 }
5513 
5514 static int ext4_write_dquot(struct dquot *dquot)
5515 {
5516 	int ret, err;
5517 	handle_t *handle;
5518 	struct inode *inode;
5519 
5520 	inode = dquot_to_inode(dquot);
5521 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5522 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5523 	if (IS_ERR(handle))
5524 		return PTR_ERR(handle);
5525 	ret = dquot_commit(dquot);
5526 	err = ext4_journal_stop(handle);
5527 	if (!ret)
5528 		ret = err;
5529 	return ret;
5530 }
5531 
5532 static int ext4_acquire_dquot(struct dquot *dquot)
5533 {
5534 	int ret, err;
5535 	handle_t *handle;
5536 
5537 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5538 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5539 	if (IS_ERR(handle))
5540 		return PTR_ERR(handle);
5541 	ret = dquot_acquire(dquot);
5542 	err = ext4_journal_stop(handle);
5543 	if (!ret)
5544 		ret = err;
5545 	return ret;
5546 }
5547 
5548 static int ext4_release_dquot(struct dquot *dquot)
5549 {
5550 	int ret, err;
5551 	handle_t *handle;
5552 
5553 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5554 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5555 	if (IS_ERR(handle)) {
5556 		/* Release dquot anyway to avoid endless cycle in dqput() */
5557 		dquot_release(dquot);
5558 		return PTR_ERR(handle);
5559 	}
5560 	ret = dquot_release(dquot);
5561 	err = ext4_journal_stop(handle);
5562 	if (!ret)
5563 		ret = err;
5564 	return ret;
5565 }
5566 
5567 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5568 {
5569 	struct super_block *sb = dquot->dq_sb;
5570 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5571 
5572 	/* Are we journaling quotas? */
5573 	if (ext4_has_feature_quota(sb) ||
5574 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5575 		dquot_mark_dquot_dirty(dquot);
5576 		return ext4_write_dquot(dquot);
5577 	} else {
5578 		return dquot_mark_dquot_dirty(dquot);
5579 	}
5580 }
5581 
5582 static int ext4_write_info(struct super_block *sb, int type)
5583 {
5584 	int ret, err;
5585 	handle_t *handle;
5586 
5587 	/* Data block + inode block */
5588 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5589 	if (IS_ERR(handle))
5590 		return PTR_ERR(handle);
5591 	ret = dquot_commit_info(sb, type);
5592 	err = ext4_journal_stop(handle);
5593 	if (!ret)
5594 		ret = err;
5595 	return ret;
5596 }
5597 
5598 /*
5599  * Turn on quotas during mount time - we need to find
5600  * the quota file and such...
5601  */
5602 static int ext4_quota_on_mount(struct super_block *sb, int type)
5603 {
5604 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5605 					EXT4_SB(sb)->s_jquota_fmt, type);
5606 }
5607 
5608 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5609 {
5610 	struct ext4_inode_info *ei = EXT4_I(inode);
5611 
5612 	/* The first argument of lockdep_set_subclass has to be
5613 	 * *exactly* the same as the argument to init_rwsem() --- in
5614 	 * this case, in init_once() --- or lockdep gets unhappy
5615 	 * because the name of the lock is set using the
5616 	 * stringification of the argument to init_rwsem().
5617 	 */
5618 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5619 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5620 }
5621 
5622 /*
5623  * Standard function to be called on quota_on
5624  */
5625 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5626 			 const struct path *path)
5627 {
5628 	int err;
5629 
5630 	if (!test_opt(sb, QUOTA))
5631 		return -EINVAL;
5632 
5633 	/* Quotafile not on the same filesystem? */
5634 	if (path->dentry->d_sb != sb)
5635 		return -EXDEV;
5636 	/* Journaling quota? */
5637 	if (EXT4_SB(sb)->s_qf_names[type]) {
5638 		/* Quotafile not in fs root? */
5639 		if (path->dentry->d_parent != sb->s_root)
5640 			ext4_msg(sb, KERN_WARNING,
5641 				"Quota file not on filesystem root. "
5642 				"Journaled quota will not work");
5643 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5644 	} else {
5645 		/*
5646 		 * Clear the flag just in case mount options changed since
5647 		 * last time.
5648 		 */
5649 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5650 	}
5651 
5652 	/*
5653 	 * When we journal data on quota file, we have to flush journal to see
5654 	 * all updates to the file when we bypass pagecache...
5655 	 */
5656 	if (EXT4_SB(sb)->s_journal &&
5657 	    ext4_should_journal_data(d_inode(path->dentry))) {
5658 		/*
5659 		 * We don't need to lock updates but journal_flush() could
5660 		 * otherwise be livelocked...
5661 		 */
5662 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5663 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5664 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5665 		if (err)
5666 			return err;
5667 	}
5668 
5669 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5670 	err = dquot_quota_on(sb, type, format_id, path);
5671 	if (err) {
5672 		lockdep_set_quota_inode(path->dentry->d_inode,
5673 					     I_DATA_SEM_NORMAL);
5674 	} else {
5675 		struct inode *inode = d_inode(path->dentry);
5676 		handle_t *handle;
5677 
5678 		/*
5679 		 * Set inode flags to prevent userspace from messing with quota
5680 		 * files. If this fails, we return success anyway since quotas
5681 		 * are already enabled and this is not a hard failure.
5682 		 */
5683 		inode_lock(inode);
5684 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5685 		if (IS_ERR(handle))
5686 			goto unlock_inode;
5687 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5688 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5689 				S_NOATIME | S_IMMUTABLE);
5690 		ext4_mark_inode_dirty(handle, inode);
5691 		ext4_journal_stop(handle);
5692 	unlock_inode:
5693 		inode_unlock(inode);
5694 	}
5695 	return err;
5696 }
5697 
5698 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5699 			     unsigned int flags)
5700 {
5701 	int err;
5702 	struct inode *qf_inode;
5703 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5704 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5705 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5706 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5707 	};
5708 
5709 	BUG_ON(!ext4_has_feature_quota(sb));
5710 
5711 	if (!qf_inums[type])
5712 		return -EPERM;
5713 
5714 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5715 	if (IS_ERR(qf_inode)) {
5716 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5717 		return PTR_ERR(qf_inode);
5718 	}
5719 
5720 	/* Don't account quota for quota files to avoid recursion */
5721 	qf_inode->i_flags |= S_NOQUOTA;
5722 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5723 	err = dquot_enable(qf_inode, type, format_id, flags);
5724 	if (err)
5725 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5726 	iput(qf_inode);
5727 
5728 	return err;
5729 }
5730 
5731 /* Enable usage tracking for all quota types. */
5732 static int ext4_enable_quotas(struct super_block *sb)
5733 {
5734 	int type, err = 0;
5735 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5736 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5737 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5738 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5739 	};
5740 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5741 		test_opt(sb, USRQUOTA),
5742 		test_opt(sb, GRPQUOTA),
5743 		test_opt(sb, PRJQUOTA),
5744 	};
5745 
5746 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5747 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5748 		if (qf_inums[type]) {
5749 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5750 				DQUOT_USAGE_ENABLED |
5751 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5752 			if (err) {
5753 				ext4_warning(sb,
5754 					"Failed to enable quota tracking "
5755 					"(type=%d, err=%d). Please run "
5756 					"e2fsck to fix.", type, err);
5757 				for (type--; type >= 0; type--)
5758 					dquot_quota_off(sb, type);
5759 
5760 				return err;
5761 			}
5762 		}
5763 	}
5764 	return 0;
5765 }
5766 
5767 static int ext4_quota_off(struct super_block *sb, int type)
5768 {
5769 	struct inode *inode = sb_dqopt(sb)->files[type];
5770 	handle_t *handle;
5771 	int err;
5772 
5773 	/* Force all delayed allocation blocks to be allocated.
5774 	 * Caller already holds s_umount sem */
5775 	if (test_opt(sb, DELALLOC))
5776 		sync_filesystem(sb);
5777 
5778 	if (!inode || !igrab(inode))
5779 		goto out;
5780 
5781 	err = dquot_quota_off(sb, type);
5782 	if (err || ext4_has_feature_quota(sb))
5783 		goto out_put;
5784 
5785 	inode_lock(inode);
5786 	/*
5787 	 * Update modification times of quota files when userspace can
5788 	 * start looking at them. If we fail, we return success anyway since
5789 	 * this is not a hard failure and quotas are already disabled.
5790 	 */
5791 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5792 	if (IS_ERR(handle))
5793 		goto out_unlock;
5794 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5795 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5796 	inode->i_mtime = inode->i_ctime = current_time(inode);
5797 	ext4_mark_inode_dirty(handle, inode);
5798 	ext4_journal_stop(handle);
5799 out_unlock:
5800 	inode_unlock(inode);
5801 out_put:
5802 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5803 	iput(inode);
5804 	return err;
5805 out:
5806 	return dquot_quota_off(sb, type);
5807 }
5808 
5809 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5810  * acquiring the locks... As quota files are never truncated and quota code
5811  * itself serializes the operations (and no one else should touch the files)
5812  * we don't have to be afraid of races */
5813 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5814 			       size_t len, loff_t off)
5815 {
5816 	struct inode *inode = sb_dqopt(sb)->files[type];
5817 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5818 	int offset = off & (sb->s_blocksize - 1);
5819 	int tocopy;
5820 	size_t toread;
5821 	struct buffer_head *bh;
5822 	loff_t i_size = i_size_read(inode);
5823 
5824 	if (off > i_size)
5825 		return 0;
5826 	if (off+len > i_size)
5827 		len = i_size-off;
5828 	toread = len;
5829 	while (toread > 0) {
5830 		tocopy = sb->s_blocksize - offset < toread ?
5831 				sb->s_blocksize - offset : toread;
5832 		bh = ext4_bread(NULL, inode, blk, 0);
5833 		if (IS_ERR(bh))
5834 			return PTR_ERR(bh);
5835 		if (!bh)	/* A hole? */
5836 			memset(data, 0, tocopy);
5837 		else
5838 			memcpy(data, bh->b_data+offset, tocopy);
5839 		brelse(bh);
5840 		offset = 0;
5841 		toread -= tocopy;
5842 		data += tocopy;
5843 		blk++;
5844 	}
5845 	return len;
5846 }
5847 
5848 /* Write to quotafile (we know the transaction is already started and has
5849  * enough credits) */
5850 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5851 				const char *data, size_t len, loff_t off)
5852 {
5853 	struct inode *inode = sb_dqopt(sb)->files[type];
5854 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5855 	int err, offset = off & (sb->s_blocksize - 1);
5856 	int retries = 0;
5857 	struct buffer_head *bh;
5858 	handle_t *handle = journal_current_handle();
5859 
5860 	if (EXT4_SB(sb)->s_journal && !handle) {
5861 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5862 			" cancelled because transaction is not started",
5863 			(unsigned long long)off, (unsigned long long)len);
5864 		return -EIO;
5865 	}
5866 	/*
5867 	 * Since we account only one data block in transaction credits,
5868 	 * then it is impossible to cross a block boundary.
5869 	 */
5870 	if (sb->s_blocksize - offset < len) {
5871 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5872 			" cancelled because not block aligned",
5873 			(unsigned long long)off, (unsigned long long)len);
5874 		return -EIO;
5875 	}
5876 
5877 	do {
5878 		bh = ext4_bread(handle, inode, blk,
5879 				EXT4_GET_BLOCKS_CREATE |
5880 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5881 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5882 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5883 	if (IS_ERR(bh))
5884 		return PTR_ERR(bh);
5885 	if (!bh)
5886 		goto out;
5887 	BUFFER_TRACE(bh, "get write access");
5888 	err = ext4_journal_get_write_access(handle, bh);
5889 	if (err) {
5890 		brelse(bh);
5891 		return err;
5892 	}
5893 	lock_buffer(bh);
5894 	memcpy(bh->b_data+offset, data, len);
5895 	flush_dcache_page(bh->b_page);
5896 	unlock_buffer(bh);
5897 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5898 	brelse(bh);
5899 out:
5900 	if (inode->i_size < off + len) {
5901 		i_size_write(inode, off + len);
5902 		EXT4_I(inode)->i_disksize = inode->i_size;
5903 		ext4_mark_inode_dirty(handle, inode);
5904 	}
5905 	return len;
5906 }
5907 
5908 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5909 {
5910 	const struct quota_format_ops	*ops;
5911 
5912 	if (!sb_has_quota_loaded(sb, qid->type))
5913 		return -ESRCH;
5914 	ops = sb_dqopt(sb)->ops[qid->type];
5915 	if (!ops || !ops->get_next_id)
5916 		return -ENOSYS;
5917 	return dquot_get_next_id(sb, qid);
5918 }
5919 #endif
5920 
5921 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5922 		       const char *dev_name, void *data)
5923 {
5924 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5925 }
5926 
5927 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5928 static inline void register_as_ext2(void)
5929 {
5930 	int err = register_filesystem(&ext2_fs_type);
5931 	if (err)
5932 		printk(KERN_WARNING
5933 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5934 }
5935 
5936 static inline void unregister_as_ext2(void)
5937 {
5938 	unregister_filesystem(&ext2_fs_type);
5939 }
5940 
5941 static inline int ext2_feature_set_ok(struct super_block *sb)
5942 {
5943 	if (ext4_has_unknown_ext2_incompat_features(sb))
5944 		return 0;
5945 	if (sb_rdonly(sb))
5946 		return 1;
5947 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5948 		return 0;
5949 	return 1;
5950 }
5951 #else
5952 static inline void register_as_ext2(void) { }
5953 static inline void unregister_as_ext2(void) { }
5954 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5955 #endif
5956 
5957 static inline void register_as_ext3(void)
5958 {
5959 	int err = register_filesystem(&ext3_fs_type);
5960 	if (err)
5961 		printk(KERN_WARNING
5962 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5963 }
5964 
5965 static inline void unregister_as_ext3(void)
5966 {
5967 	unregister_filesystem(&ext3_fs_type);
5968 }
5969 
5970 static inline int ext3_feature_set_ok(struct super_block *sb)
5971 {
5972 	if (ext4_has_unknown_ext3_incompat_features(sb))
5973 		return 0;
5974 	if (!ext4_has_feature_journal(sb))
5975 		return 0;
5976 	if (sb_rdonly(sb))
5977 		return 1;
5978 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5979 		return 0;
5980 	return 1;
5981 }
5982 
5983 static struct file_system_type ext4_fs_type = {
5984 	.owner		= THIS_MODULE,
5985 	.name		= "ext4",
5986 	.mount		= ext4_mount,
5987 	.kill_sb	= kill_block_super,
5988 	.fs_flags	= FS_REQUIRES_DEV,
5989 };
5990 MODULE_ALIAS_FS("ext4");
5991 
5992 /* Shared across all ext4 file systems */
5993 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5994 
5995 static int __init ext4_init_fs(void)
5996 {
5997 	int i, err;
5998 
5999 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6000 	ext4_li_info = NULL;
6001 	mutex_init(&ext4_li_mtx);
6002 
6003 	/* Build-time check for flags consistency */
6004 	ext4_check_flag_values();
6005 
6006 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6007 		init_waitqueue_head(&ext4__ioend_wq[i]);
6008 
6009 	err = ext4_init_es();
6010 	if (err)
6011 		return err;
6012 
6013 	err = ext4_init_pending();
6014 	if (err)
6015 		goto out6;
6016 
6017 	err = ext4_init_pageio();
6018 	if (err)
6019 		goto out5;
6020 
6021 	err = ext4_init_system_zone();
6022 	if (err)
6023 		goto out4;
6024 
6025 	err = ext4_init_sysfs();
6026 	if (err)
6027 		goto out3;
6028 
6029 	err = ext4_init_mballoc();
6030 	if (err)
6031 		goto out2;
6032 	err = init_inodecache();
6033 	if (err)
6034 		goto out1;
6035 	register_as_ext3();
6036 	register_as_ext2();
6037 	err = register_filesystem(&ext4_fs_type);
6038 	if (err)
6039 		goto out;
6040 
6041 	return 0;
6042 out:
6043 	unregister_as_ext2();
6044 	unregister_as_ext3();
6045 	destroy_inodecache();
6046 out1:
6047 	ext4_exit_mballoc();
6048 out2:
6049 	ext4_exit_sysfs();
6050 out3:
6051 	ext4_exit_system_zone();
6052 out4:
6053 	ext4_exit_pageio();
6054 out5:
6055 	ext4_exit_pending();
6056 out6:
6057 	ext4_exit_es();
6058 
6059 	return err;
6060 }
6061 
6062 static void __exit ext4_exit_fs(void)
6063 {
6064 	ext4_destroy_lazyinit_thread();
6065 	unregister_as_ext2();
6066 	unregister_as_ext3();
6067 	unregister_filesystem(&ext4_fs_type);
6068 	destroy_inodecache();
6069 	ext4_exit_mballoc();
6070 	ext4_exit_sysfs();
6071 	ext4_exit_system_zone();
6072 	ext4_exit_pageio();
6073 	ext4_exit_es();
6074 	ext4_exit_pending();
6075 }
6076 
6077 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6078 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6079 MODULE_LICENSE("GPL");
6080 MODULE_SOFTDEP("pre: crc32c");
6081 module_init(ext4_init_fs)
6082 module_exit(ext4_exit_fs)
6083