1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 static struct inode *ext4_get_journal_inode(struct super_block *sb, 88 unsigned int journal_inum); 89 90 /* 91 * Lock ordering 92 * 93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 94 * i_mmap_rwsem (inode->i_mmap_rwsem)! 95 * 96 * page fault path: 97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 98 * page lock -> i_data_sem (rw) 99 * 100 * buffered write path: 101 * sb_start_write -> i_mutex -> mmap_lock 102 * sb_start_write -> i_mutex -> transaction start -> page lock -> 103 * i_data_sem (rw) 104 * 105 * truncate: 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 108 * i_data_sem (rw) 109 * 110 * direct IO: 111 * sb_start_write -> i_mutex -> mmap_lock 112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 113 * 114 * writepages: 115 * transaction start -> page lock(s) -> i_data_sem (rw) 116 */ 117 118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 119 static struct file_system_type ext2_fs_type = { 120 .owner = THIS_MODULE, 121 .name = "ext2", 122 .mount = ext4_mount, 123 .kill_sb = kill_block_super, 124 .fs_flags = FS_REQUIRES_DEV, 125 }; 126 MODULE_ALIAS_FS("ext2"); 127 MODULE_ALIAS("ext2"); 128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 129 #else 130 #define IS_EXT2_SB(sb) (0) 131 #endif 132 133 134 static struct file_system_type ext3_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext3", 137 .mount = ext4_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext3"); 142 MODULE_ALIAS("ext3"); 143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 144 145 146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 147 bh_end_io_t *end_io) 148 { 149 /* 150 * buffer's verified bit is no longer valid after reading from 151 * disk again due to write out error, clear it to make sure we 152 * recheck the buffer contents. 153 */ 154 clear_buffer_verified(bh); 155 156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 157 get_bh(bh); 158 submit_bh(REQ_OP_READ, op_flags, bh); 159 } 160 161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 162 bh_end_io_t *end_io) 163 { 164 BUG_ON(!buffer_locked(bh)); 165 166 if (ext4_buffer_uptodate(bh)) { 167 unlock_buffer(bh); 168 return; 169 } 170 __ext4_read_bh(bh, op_flags, end_io); 171 } 172 173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 174 { 175 BUG_ON(!buffer_locked(bh)); 176 177 if (ext4_buffer_uptodate(bh)) { 178 unlock_buffer(bh); 179 return 0; 180 } 181 182 __ext4_read_bh(bh, op_flags, end_io); 183 184 wait_on_buffer(bh); 185 if (buffer_uptodate(bh)) 186 return 0; 187 return -EIO; 188 } 189 190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 191 { 192 if (trylock_buffer(bh)) { 193 if (wait) 194 return ext4_read_bh(bh, op_flags, NULL); 195 ext4_read_bh_nowait(bh, op_flags, NULL); 196 return 0; 197 } 198 if (wait) { 199 wait_on_buffer(bh); 200 if (buffer_uptodate(bh)) 201 return 0; 202 return -EIO; 203 } 204 return 0; 205 } 206 207 /* 208 * This works like __bread_gfp() except it uses ERR_PTR for error 209 * returns. Currently with sb_bread it's impossible to distinguish 210 * between ENOMEM and EIO situations (since both result in a NULL 211 * return. 212 */ 213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 214 sector_t block, int op_flags, 215 gfp_t gfp) 216 { 217 struct buffer_head *bh; 218 int ret; 219 220 bh = sb_getblk_gfp(sb, block, gfp); 221 if (bh == NULL) 222 return ERR_PTR(-ENOMEM); 223 if (ext4_buffer_uptodate(bh)) 224 return bh; 225 226 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 227 if (ret) { 228 put_bh(bh); 229 return ERR_PTR(ret); 230 } 231 return bh; 232 } 233 234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 235 int op_flags) 236 { 237 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 238 } 239 240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 241 sector_t block) 242 { 243 return __ext4_sb_bread_gfp(sb, block, 0, 0); 244 } 245 246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 247 { 248 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 249 250 if (likely(bh)) { 251 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 252 brelse(bh); 253 } 254 } 255 256 static int ext4_verify_csum_type(struct super_block *sb, 257 struct ext4_super_block *es) 258 { 259 if (!ext4_has_feature_metadata_csum(sb)) 260 return 1; 261 262 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 263 } 264 265 static __le32 ext4_superblock_csum(struct super_block *sb, 266 struct ext4_super_block *es) 267 { 268 struct ext4_sb_info *sbi = EXT4_SB(sb); 269 int offset = offsetof(struct ext4_super_block, s_checksum); 270 __u32 csum; 271 272 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 273 274 return cpu_to_le32(csum); 275 } 276 277 static int ext4_superblock_csum_verify(struct super_block *sb, 278 struct ext4_super_block *es) 279 { 280 if (!ext4_has_metadata_csum(sb)) 281 return 1; 282 283 return es->s_checksum == ext4_superblock_csum(sb, es); 284 } 285 286 void ext4_superblock_csum_set(struct super_block *sb) 287 { 288 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 289 290 if (!ext4_has_metadata_csum(sb)) 291 return; 292 293 es->s_checksum = ext4_superblock_csum(sb, es); 294 } 295 296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 297 struct ext4_group_desc *bg) 298 { 299 return le32_to_cpu(bg->bg_block_bitmap_lo) | 300 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 301 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 302 } 303 304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 305 struct ext4_group_desc *bg) 306 { 307 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 308 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 309 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 310 } 311 312 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 313 struct ext4_group_desc *bg) 314 { 315 return le32_to_cpu(bg->bg_inode_table_lo) | 316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 317 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 318 } 319 320 __u32 ext4_free_group_clusters(struct super_block *sb, 321 struct ext4_group_desc *bg) 322 { 323 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 325 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 326 } 327 328 __u32 ext4_free_inodes_count(struct super_block *sb, 329 struct ext4_group_desc *bg) 330 { 331 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 333 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 334 } 335 336 __u32 ext4_used_dirs_count(struct super_block *sb, 337 struct ext4_group_desc *bg) 338 { 339 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 341 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 342 } 343 344 __u32 ext4_itable_unused_count(struct super_block *sb, 345 struct ext4_group_desc *bg) 346 { 347 return le16_to_cpu(bg->bg_itable_unused_lo) | 348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 349 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 350 } 351 352 void ext4_block_bitmap_set(struct super_block *sb, 353 struct ext4_group_desc *bg, ext4_fsblk_t blk) 354 { 355 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 356 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 357 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 358 } 359 360 void ext4_inode_bitmap_set(struct super_block *sb, 361 struct ext4_group_desc *bg, ext4_fsblk_t blk) 362 { 363 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 364 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 365 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 366 } 367 368 void ext4_inode_table_set(struct super_block *sb, 369 struct ext4_group_desc *bg, ext4_fsblk_t blk) 370 { 371 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 373 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 374 } 375 376 void ext4_free_group_clusters_set(struct super_block *sb, 377 struct ext4_group_desc *bg, __u32 count) 378 { 379 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 381 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 382 } 383 384 void ext4_free_inodes_set(struct super_block *sb, 385 struct ext4_group_desc *bg, __u32 count) 386 { 387 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 389 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 390 } 391 392 void ext4_used_dirs_set(struct super_block *sb, 393 struct ext4_group_desc *bg, __u32 count) 394 { 395 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 397 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 398 } 399 400 void ext4_itable_unused_set(struct super_block *sb, 401 struct ext4_group_desc *bg, __u32 count) 402 { 403 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 405 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 406 } 407 408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 409 { 410 now = clamp_val(now, 0, (1ull << 40) - 1); 411 412 *lo = cpu_to_le32(lower_32_bits(now)); 413 *hi = upper_32_bits(now); 414 } 415 416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 417 { 418 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 419 } 420 #define ext4_update_tstamp(es, tstamp) \ 421 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 422 ktime_get_real_seconds()) 423 #define ext4_get_tstamp(es, tstamp) \ 424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 425 426 /* 427 * The del_gendisk() function uninitializes the disk-specific data 428 * structures, including the bdi structure, without telling anyone 429 * else. Once this happens, any attempt to call mark_buffer_dirty() 430 * (for example, by ext4_commit_super), will cause a kernel OOPS. 431 * This is a kludge to prevent these oops until we can put in a proper 432 * hook in del_gendisk() to inform the VFS and file system layers. 433 */ 434 static int block_device_ejected(struct super_block *sb) 435 { 436 struct inode *bd_inode = sb->s_bdev->bd_inode; 437 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 438 439 return bdi->dev == NULL; 440 } 441 442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 443 { 444 struct super_block *sb = journal->j_private; 445 struct ext4_sb_info *sbi = EXT4_SB(sb); 446 int error = is_journal_aborted(journal); 447 struct ext4_journal_cb_entry *jce; 448 449 BUG_ON(txn->t_state == T_FINISHED); 450 451 ext4_process_freed_data(sb, txn->t_tid); 452 453 spin_lock(&sbi->s_md_lock); 454 while (!list_empty(&txn->t_private_list)) { 455 jce = list_entry(txn->t_private_list.next, 456 struct ext4_journal_cb_entry, jce_list); 457 list_del_init(&jce->jce_list); 458 spin_unlock(&sbi->s_md_lock); 459 jce->jce_func(sb, jce, error); 460 spin_lock(&sbi->s_md_lock); 461 } 462 spin_unlock(&sbi->s_md_lock); 463 } 464 465 /* 466 * This writepage callback for write_cache_pages() 467 * takes care of a few cases after page cleaning. 468 * 469 * write_cache_pages() already checks for dirty pages 470 * and calls clear_page_dirty_for_io(), which we want, 471 * to write protect the pages. 472 * 473 * However, we may have to redirty a page (see below.) 474 */ 475 static int ext4_journalled_writepage_callback(struct page *page, 476 struct writeback_control *wbc, 477 void *data) 478 { 479 transaction_t *transaction = (transaction_t *) data; 480 struct buffer_head *bh, *head; 481 struct journal_head *jh; 482 483 bh = head = page_buffers(page); 484 do { 485 /* 486 * We have to redirty a page in these cases: 487 * 1) If buffer is dirty, it means the page was dirty because it 488 * contains a buffer that needs checkpointing. So the dirty bit 489 * needs to be preserved so that checkpointing writes the buffer 490 * properly. 491 * 2) If buffer is not part of the committing transaction 492 * (we may have just accidentally come across this buffer because 493 * inode range tracking is not exact) or if the currently running 494 * transaction already contains this buffer as well, dirty bit 495 * needs to be preserved so that the buffer gets writeprotected 496 * properly on running transaction's commit. 497 */ 498 jh = bh2jh(bh); 499 if (buffer_dirty(bh) || 500 (jh && (jh->b_transaction != transaction || 501 jh->b_next_transaction))) { 502 redirty_page_for_writepage(wbc, page); 503 goto out; 504 } 505 } while ((bh = bh->b_this_page) != head); 506 507 out: 508 return AOP_WRITEPAGE_ACTIVATE; 509 } 510 511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 512 { 513 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 514 struct writeback_control wbc = { 515 .sync_mode = WB_SYNC_ALL, 516 .nr_to_write = LONG_MAX, 517 .range_start = jinode->i_dirty_start, 518 .range_end = jinode->i_dirty_end, 519 }; 520 521 return write_cache_pages(mapping, &wbc, 522 ext4_journalled_writepage_callback, 523 jinode->i_transaction); 524 } 525 526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 527 { 528 int ret; 529 530 if (ext4_should_journal_data(jinode->i_vfs_inode)) 531 ret = ext4_journalled_submit_inode_data_buffers(jinode); 532 else 533 ret = jbd2_journal_submit_inode_data_buffers(jinode); 534 535 return ret; 536 } 537 538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 539 { 540 int ret = 0; 541 542 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 543 ret = jbd2_journal_finish_inode_data_buffers(jinode); 544 545 return ret; 546 } 547 548 static bool system_going_down(void) 549 { 550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 551 || system_state == SYSTEM_RESTART; 552 } 553 554 struct ext4_err_translation { 555 int code; 556 int errno; 557 }; 558 559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 560 561 static struct ext4_err_translation err_translation[] = { 562 EXT4_ERR_TRANSLATE(EIO), 563 EXT4_ERR_TRANSLATE(ENOMEM), 564 EXT4_ERR_TRANSLATE(EFSBADCRC), 565 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 566 EXT4_ERR_TRANSLATE(ENOSPC), 567 EXT4_ERR_TRANSLATE(ENOKEY), 568 EXT4_ERR_TRANSLATE(EROFS), 569 EXT4_ERR_TRANSLATE(EFBIG), 570 EXT4_ERR_TRANSLATE(EEXIST), 571 EXT4_ERR_TRANSLATE(ERANGE), 572 EXT4_ERR_TRANSLATE(EOVERFLOW), 573 EXT4_ERR_TRANSLATE(EBUSY), 574 EXT4_ERR_TRANSLATE(ENOTDIR), 575 EXT4_ERR_TRANSLATE(ENOTEMPTY), 576 EXT4_ERR_TRANSLATE(ESHUTDOWN), 577 EXT4_ERR_TRANSLATE(EFAULT), 578 }; 579 580 static int ext4_errno_to_code(int errno) 581 { 582 int i; 583 584 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 585 if (err_translation[i].errno == errno) 586 return err_translation[i].code; 587 return EXT4_ERR_UNKNOWN; 588 } 589 590 static void save_error_info(struct super_block *sb, int error, 591 __u32 ino, __u64 block, 592 const char *func, unsigned int line) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 596 /* We default to EFSCORRUPTED error... */ 597 if (error == 0) 598 error = EFSCORRUPTED; 599 600 spin_lock(&sbi->s_error_lock); 601 sbi->s_add_error_count++; 602 sbi->s_last_error_code = error; 603 sbi->s_last_error_line = line; 604 sbi->s_last_error_ino = ino; 605 sbi->s_last_error_block = block; 606 sbi->s_last_error_func = func; 607 sbi->s_last_error_time = ktime_get_real_seconds(); 608 if (!sbi->s_first_error_time) { 609 sbi->s_first_error_code = error; 610 sbi->s_first_error_line = line; 611 sbi->s_first_error_ino = ino; 612 sbi->s_first_error_block = block; 613 sbi->s_first_error_func = func; 614 sbi->s_first_error_time = sbi->s_last_error_time; 615 } 616 spin_unlock(&sbi->s_error_lock); 617 } 618 619 /* Deal with the reporting of failure conditions on a filesystem such as 620 * inconsistencies detected or read IO failures. 621 * 622 * On ext2, we can store the error state of the filesystem in the 623 * superblock. That is not possible on ext4, because we may have other 624 * write ordering constraints on the superblock which prevent us from 625 * writing it out straight away; and given that the journal is about to 626 * be aborted, we can't rely on the current, or future, transactions to 627 * write out the superblock safely. 628 * 629 * We'll just use the jbd2_journal_abort() error code to record an error in 630 * the journal instead. On recovery, the journal will complain about 631 * that error until we've noted it down and cleared it. 632 * 633 * If force_ro is set, we unconditionally force the filesystem into an 634 * ABORT|READONLY state, unless the error response on the fs has been set to 635 * panic in which case we take the easy way out and panic immediately. This is 636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 637 * at a critical moment in log management. 638 */ 639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 640 __u32 ino, __u64 block, 641 const char *func, unsigned int line) 642 { 643 journal_t *journal = EXT4_SB(sb)->s_journal; 644 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 645 646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 647 if (test_opt(sb, WARN_ON_ERROR)) 648 WARN_ON_ONCE(1); 649 650 if (!continue_fs && !sb_rdonly(sb)) { 651 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 652 if (journal) 653 jbd2_journal_abort(journal, -EIO); 654 } 655 656 if (!bdev_read_only(sb->s_bdev)) { 657 save_error_info(sb, error, ino, block, func, line); 658 /* 659 * In case the fs should keep running, we need to writeout 660 * superblock through the journal. Due to lock ordering 661 * constraints, it may not be safe to do it right here so we 662 * defer superblock flushing to a workqueue. 663 */ 664 if (continue_fs) 665 schedule_work(&EXT4_SB(sb)->s_error_work); 666 else 667 ext4_commit_super(sb); 668 } 669 670 /* 671 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 672 * could panic during 'reboot -f' as the underlying device got already 673 * disabled. 674 */ 675 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 676 panic("EXT4-fs (device %s): panic forced after error\n", 677 sb->s_id); 678 } 679 680 if (sb_rdonly(sb) || continue_fs) 681 return; 682 683 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 684 /* 685 * Make sure updated value of ->s_mount_flags will be visible before 686 * ->s_flags update 687 */ 688 smp_wmb(); 689 sb->s_flags |= SB_RDONLY; 690 } 691 692 static void flush_stashed_error_work(struct work_struct *work) 693 { 694 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 695 s_error_work); 696 journal_t *journal = sbi->s_journal; 697 handle_t *handle; 698 699 /* 700 * If the journal is still running, we have to write out superblock 701 * through the journal to avoid collisions of other journalled sb 702 * updates. 703 * 704 * We use directly jbd2 functions here to avoid recursing back into 705 * ext4 error handling code during handling of previous errors. 706 */ 707 if (!sb_rdonly(sbi->s_sb) && journal) { 708 struct buffer_head *sbh = sbi->s_sbh; 709 handle = jbd2_journal_start(journal, 1); 710 if (IS_ERR(handle)) 711 goto write_directly; 712 if (jbd2_journal_get_write_access(handle, sbh)) { 713 jbd2_journal_stop(handle); 714 goto write_directly; 715 } 716 ext4_update_super(sbi->s_sb); 717 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 718 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 719 "superblock detected"); 720 clear_buffer_write_io_error(sbh); 721 set_buffer_uptodate(sbh); 722 } 723 724 if (jbd2_journal_dirty_metadata(handle, sbh)) { 725 jbd2_journal_stop(handle); 726 goto write_directly; 727 } 728 jbd2_journal_stop(handle); 729 ext4_notify_error_sysfs(sbi); 730 return; 731 } 732 write_directly: 733 /* 734 * Write through journal failed. Write sb directly to get error info 735 * out and hope for the best. 736 */ 737 ext4_commit_super(sbi->s_sb); 738 ext4_notify_error_sysfs(sbi); 739 } 740 741 #define ext4_error_ratelimit(sb) \ 742 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 743 "EXT4-fs error") 744 745 void __ext4_error(struct super_block *sb, const char *function, 746 unsigned int line, bool force_ro, int error, __u64 block, 747 const char *fmt, ...) 748 { 749 struct va_format vaf; 750 va_list args; 751 752 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 753 return; 754 755 trace_ext4_error(sb, function, line); 756 if (ext4_error_ratelimit(sb)) { 757 va_start(args, fmt); 758 vaf.fmt = fmt; 759 vaf.va = &args; 760 printk(KERN_CRIT 761 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 762 sb->s_id, function, line, current->comm, &vaf); 763 va_end(args); 764 } 765 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 766 } 767 768 void __ext4_error_inode(struct inode *inode, const char *function, 769 unsigned int line, ext4_fsblk_t block, int error, 770 const char *fmt, ...) 771 { 772 va_list args; 773 struct va_format vaf; 774 775 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 776 return; 777 778 trace_ext4_error(inode->i_sb, function, line); 779 if (ext4_error_ratelimit(inode->i_sb)) { 780 va_start(args, fmt); 781 vaf.fmt = fmt; 782 vaf.va = &args; 783 if (block) 784 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 785 "inode #%lu: block %llu: comm %s: %pV\n", 786 inode->i_sb->s_id, function, line, inode->i_ino, 787 block, current->comm, &vaf); 788 else 789 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 790 "inode #%lu: comm %s: %pV\n", 791 inode->i_sb->s_id, function, line, inode->i_ino, 792 current->comm, &vaf); 793 va_end(args); 794 } 795 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 796 function, line); 797 } 798 799 void __ext4_error_file(struct file *file, const char *function, 800 unsigned int line, ext4_fsblk_t block, 801 const char *fmt, ...) 802 { 803 va_list args; 804 struct va_format vaf; 805 struct inode *inode = file_inode(file); 806 char pathname[80], *path; 807 808 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 809 return; 810 811 trace_ext4_error(inode->i_sb, function, line); 812 if (ext4_error_ratelimit(inode->i_sb)) { 813 path = file_path(file, pathname, sizeof(pathname)); 814 if (IS_ERR(path)) 815 path = "(unknown)"; 816 va_start(args, fmt); 817 vaf.fmt = fmt; 818 vaf.va = &args; 819 if (block) 820 printk(KERN_CRIT 821 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 822 "block %llu: comm %s: path %s: %pV\n", 823 inode->i_sb->s_id, function, line, inode->i_ino, 824 block, current->comm, path, &vaf); 825 else 826 printk(KERN_CRIT 827 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 828 "comm %s: path %s: %pV\n", 829 inode->i_sb->s_id, function, line, inode->i_ino, 830 current->comm, path, &vaf); 831 va_end(args); 832 } 833 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 834 function, line); 835 } 836 837 const char *ext4_decode_error(struct super_block *sb, int errno, 838 char nbuf[16]) 839 { 840 char *errstr = NULL; 841 842 switch (errno) { 843 case -EFSCORRUPTED: 844 errstr = "Corrupt filesystem"; 845 break; 846 case -EFSBADCRC: 847 errstr = "Filesystem failed CRC"; 848 break; 849 case -EIO: 850 errstr = "IO failure"; 851 break; 852 case -ENOMEM: 853 errstr = "Out of memory"; 854 break; 855 case -EROFS: 856 if (!sb || (EXT4_SB(sb)->s_journal && 857 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 858 errstr = "Journal has aborted"; 859 else 860 errstr = "Readonly filesystem"; 861 break; 862 default: 863 /* If the caller passed in an extra buffer for unknown 864 * errors, textualise them now. Else we just return 865 * NULL. */ 866 if (nbuf) { 867 /* Check for truncated error codes... */ 868 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 869 errstr = nbuf; 870 } 871 break; 872 } 873 874 return errstr; 875 } 876 877 /* __ext4_std_error decodes expected errors from journaling functions 878 * automatically and invokes the appropriate error response. */ 879 880 void __ext4_std_error(struct super_block *sb, const char *function, 881 unsigned int line, int errno) 882 { 883 char nbuf[16]; 884 const char *errstr; 885 886 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 887 return; 888 889 /* Special case: if the error is EROFS, and we're not already 890 * inside a transaction, then there's really no point in logging 891 * an error. */ 892 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 893 return; 894 895 if (ext4_error_ratelimit(sb)) { 896 errstr = ext4_decode_error(sb, errno, nbuf); 897 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 898 sb->s_id, function, line, errstr); 899 } 900 901 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 902 } 903 904 void __ext4_msg(struct super_block *sb, 905 const char *prefix, const char *fmt, ...) 906 { 907 struct va_format vaf; 908 va_list args; 909 910 atomic_inc(&EXT4_SB(sb)->s_msg_count); 911 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 912 return; 913 914 va_start(args, fmt); 915 vaf.fmt = fmt; 916 vaf.va = &args; 917 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 918 va_end(args); 919 } 920 921 static int ext4_warning_ratelimit(struct super_block *sb) 922 { 923 atomic_inc(&EXT4_SB(sb)->s_warning_count); 924 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 925 "EXT4-fs warning"); 926 } 927 928 void __ext4_warning(struct super_block *sb, const char *function, 929 unsigned int line, const char *fmt, ...) 930 { 931 struct va_format vaf; 932 va_list args; 933 934 if (!ext4_warning_ratelimit(sb)) 935 return; 936 937 va_start(args, fmt); 938 vaf.fmt = fmt; 939 vaf.va = &args; 940 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 941 sb->s_id, function, line, &vaf); 942 va_end(args); 943 } 944 945 void __ext4_warning_inode(const struct inode *inode, const char *function, 946 unsigned int line, const char *fmt, ...) 947 { 948 struct va_format vaf; 949 va_list args; 950 951 if (!ext4_warning_ratelimit(inode->i_sb)) 952 return; 953 954 va_start(args, fmt); 955 vaf.fmt = fmt; 956 vaf.va = &args; 957 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 958 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 959 function, line, inode->i_ino, current->comm, &vaf); 960 va_end(args); 961 } 962 963 void __ext4_grp_locked_error(const char *function, unsigned int line, 964 struct super_block *sb, ext4_group_t grp, 965 unsigned long ino, ext4_fsblk_t block, 966 const char *fmt, ...) 967 __releases(bitlock) 968 __acquires(bitlock) 969 { 970 struct va_format vaf; 971 va_list args; 972 973 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 974 return; 975 976 trace_ext4_error(sb, function, line); 977 if (ext4_error_ratelimit(sb)) { 978 va_start(args, fmt); 979 vaf.fmt = fmt; 980 vaf.va = &args; 981 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 982 sb->s_id, function, line, grp); 983 if (ino) 984 printk(KERN_CONT "inode %lu: ", ino); 985 if (block) 986 printk(KERN_CONT "block %llu:", 987 (unsigned long long) block); 988 printk(KERN_CONT "%pV\n", &vaf); 989 va_end(args); 990 } 991 992 if (test_opt(sb, ERRORS_CONT)) { 993 if (test_opt(sb, WARN_ON_ERROR)) 994 WARN_ON_ONCE(1); 995 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 996 if (!bdev_read_only(sb->s_bdev)) { 997 save_error_info(sb, EFSCORRUPTED, ino, block, function, 998 line); 999 schedule_work(&EXT4_SB(sb)->s_error_work); 1000 } 1001 return; 1002 } 1003 ext4_unlock_group(sb, grp); 1004 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1005 /* 1006 * We only get here in the ERRORS_RO case; relocking the group 1007 * may be dangerous, but nothing bad will happen since the 1008 * filesystem will have already been marked read/only and the 1009 * journal has been aborted. We return 1 as a hint to callers 1010 * who might what to use the return value from 1011 * ext4_grp_locked_error() to distinguish between the 1012 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1013 * aggressively from the ext4 function in question, with a 1014 * more appropriate error code. 1015 */ 1016 ext4_lock_group(sb, grp); 1017 return; 1018 } 1019 1020 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1021 ext4_group_t group, 1022 unsigned int flags) 1023 { 1024 struct ext4_sb_info *sbi = EXT4_SB(sb); 1025 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1026 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1027 int ret; 1028 1029 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1030 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1031 &grp->bb_state); 1032 if (!ret) 1033 percpu_counter_sub(&sbi->s_freeclusters_counter, 1034 grp->bb_free); 1035 } 1036 1037 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1038 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1039 &grp->bb_state); 1040 if (!ret && gdp) { 1041 int count; 1042 1043 count = ext4_free_inodes_count(sb, gdp); 1044 percpu_counter_sub(&sbi->s_freeinodes_counter, 1045 count); 1046 } 1047 } 1048 } 1049 1050 void ext4_update_dynamic_rev(struct super_block *sb) 1051 { 1052 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1053 1054 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1055 return; 1056 1057 ext4_warning(sb, 1058 "updating to rev %d because of new feature flag, " 1059 "running e2fsck is recommended", 1060 EXT4_DYNAMIC_REV); 1061 1062 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1063 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1064 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1065 /* leave es->s_feature_*compat flags alone */ 1066 /* es->s_uuid will be set by e2fsck if empty */ 1067 1068 /* 1069 * The rest of the superblock fields should be zero, and if not it 1070 * means they are likely already in use, so leave them alone. We 1071 * can leave it up to e2fsck to clean up any inconsistencies there. 1072 */ 1073 } 1074 1075 /* 1076 * Open the external journal device 1077 */ 1078 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1079 { 1080 struct block_device *bdev; 1081 1082 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1083 if (IS_ERR(bdev)) 1084 goto fail; 1085 return bdev; 1086 1087 fail: 1088 ext4_msg(sb, KERN_ERR, 1089 "failed to open journal device unknown-block(%u,%u) %ld", 1090 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1091 return NULL; 1092 } 1093 1094 /* 1095 * Release the journal device 1096 */ 1097 static void ext4_blkdev_put(struct block_device *bdev) 1098 { 1099 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1100 } 1101 1102 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1103 { 1104 struct block_device *bdev; 1105 bdev = sbi->s_journal_bdev; 1106 if (bdev) { 1107 ext4_blkdev_put(bdev); 1108 sbi->s_journal_bdev = NULL; 1109 } 1110 } 1111 1112 static inline struct inode *orphan_list_entry(struct list_head *l) 1113 { 1114 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1115 } 1116 1117 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1118 { 1119 struct list_head *l; 1120 1121 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1122 le32_to_cpu(sbi->s_es->s_last_orphan)); 1123 1124 printk(KERN_ERR "sb_info orphan list:\n"); 1125 list_for_each(l, &sbi->s_orphan) { 1126 struct inode *inode = orphan_list_entry(l); 1127 printk(KERN_ERR " " 1128 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1129 inode->i_sb->s_id, inode->i_ino, inode, 1130 inode->i_mode, inode->i_nlink, 1131 NEXT_ORPHAN(inode)); 1132 } 1133 } 1134 1135 #ifdef CONFIG_QUOTA 1136 static int ext4_quota_off(struct super_block *sb, int type); 1137 1138 static inline void ext4_quota_off_umount(struct super_block *sb) 1139 { 1140 int type; 1141 1142 /* Use our quota_off function to clear inode flags etc. */ 1143 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1144 ext4_quota_off(sb, type); 1145 } 1146 1147 /* 1148 * This is a helper function which is used in the mount/remount 1149 * codepaths (which holds s_umount) to fetch the quota file name. 1150 */ 1151 static inline char *get_qf_name(struct super_block *sb, 1152 struct ext4_sb_info *sbi, 1153 int type) 1154 { 1155 return rcu_dereference_protected(sbi->s_qf_names[type], 1156 lockdep_is_held(&sb->s_umount)); 1157 } 1158 #else 1159 static inline void ext4_quota_off_umount(struct super_block *sb) 1160 { 1161 } 1162 #endif 1163 1164 static void ext4_put_super(struct super_block *sb) 1165 { 1166 struct ext4_sb_info *sbi = EXT4_SB(sb); 1167 struct ext4_super_block *es = sbi->s_es; 1168 struct buffer_head **group_desc; 1169 struct flex_groups **flex_groups; 1170 int aborted = 0; 1171 int i, err; 1172 1173 ext4_unregister_li_request(sb); 1174 ext4_quota_off_umount(sb); 1175 1176 flush_work(&sbi->s_error_work); 1177 destroy_workqueue(sbi->rsv_conversion_wq); 1178 1179 /* 1180 * Unregister sysfs before destroying jbd2 journal. 1181 * Since we could still access attr_journal_task attribute via sysfs 1182 * path which could have sbi->s_journal->j_task as NULL 1183 */ 1184 ext4_unregister_sysfs(sb); 1185 1186 if (sbi->s_journal) { 1187 aborted = is_journal_aborted(sbi->s_journal); 1188 err = jbd2_journal_destroy(sbi->s_journal); 1189 sbi->s_journal = NULL; 1190 if ((err < 0) && !aborted) { 1191 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1192 } 1193 } 1194 1195 ext4_es_unregister_shrinker(sbi); 1196 del_timer_sync(&sbi->s_err_report); 1197 ext4_release_system_zone(sb); 1198 ext4_mb_release(sb); 1199 ext4_ext_release(sb); 1200 1201 if (!sb_rdonly(sb) && !aborted) { 1202 ext4_clear_feature_journal_needs_recovery(sb); 1203 es->s_state = cpu_to_le16(sbi->s_mount_state); 1204 } 1205 if (!sb_rdonly(sb)) 1206 ext4_commit_super(sb); 1207 1208 rcu_read_lock(); 1209 group_desc = rcu_dereference(sbi->s_group_desc); 1210 for (i = 0; i < sbi->s_gdb_count; i++) 1211 brelse(group_desc[i]); 1212 kvfree(group_desc); 1213 flex_groups = rcu_dereference(sbi->s_flex_groups); 1214 if (flex_groups) { 1215 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1216 kvfree(flex_groups[i]); 1217 kvfree(flex_groups); 1218 } 1219 rcu_read_unlock(); 1220 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1221 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1222 percpu_counter_destroy(&sbi->s_dirs_counter); 1223 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1224 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1225 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1226 #ifdef CONFIG_QUOTA 1227 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1228 kfree(get_qf_name(sb, sbi, i)); 1229 #endif 1230 1231 /* Debugging code just in case the in-memory inode orphan list 1232 * isn't empty. The on-disk one can be non-empty if we've 1233 * detected an error and taken the fs readonly, but the 1234 * in-memory list had better be clean by this point. */ 1235 if (!list_empty(&sbi->s_orphan)) 1236 dump_orphan_list(sb, sbi); 1237 ASSERT(list_empty(&sbi->s_orphan)); 1238 1239 sync_blockdev(sb->s_bdev); 1240 invalidate_bdev(sb->s_bdev); 1241 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1242 /* 1243 * Invalidate the journal device's buffers. We don't want them 1244 * floating about in memory - the physical journal device may 1245 * hotswapped, and it breaks the `ro-after' testing code. 1246 */ 1247 sync_blockdev(sbi->s_journal_bdev); 1248 invalidate_bdev(sbi->s_journal_bdev); 1249 ext4_blkdev_remove(sbi); 1250 } 1251 1252 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1253 sbi->s_ea_inode_cache = NULL; 1254 1255 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1256 sbi->s_ea_block_cache = NULL; 1257 1258 ext4_stop_mmpd(sbi); 1259 1260 brelse(sbi->s_sbh); 1261 sb->s_fs_info = NULL; 1262 /* 1263 * Now that we are completely done shutting down the 1264 * superblock, we need to actually destroy the kobject. 1265 */ 1266 kobject_put(&sbi->s_kobj); 1267 wait_for_completion(&sbi->s_kobj_unregister); 1268 if (sbi->s_chksum_driver) 1269 crypto_free_shash(sbi->s_chksum_driver); 1270 kfree(sbi->s_blockgroup_lock); 1271 fs_put_dax(sbi->s_daxdev); 1272 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1273 #ifdef CONFIG_UNICODE 1274 utf8_unload(sb->s_encoding); 1275 #endif 1276 kfree(sbi); 1277 } 1278 1279 static struct kmem_cache *ext4_inode_cachep; 1280 1281 /* 1282 * Called inside transaction, so use GFP_NOFS 1283 */ 1284 static struct inode *ext4_alloc_inode(struct super_block *sb) 1285 { 1286 struct ext4_inode_info *ei; 1287 1288 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1289 if (!ei) 1290 return NULL; 1291 1292 inode_set_iversion(&ei->vfs_inode, 1); 1293 spin_lock_init(&ei->i_raw_lock); 1294 INIT_LIST_HEAD(&ei->i_prealloc_list); 1295 atomic_set(&ei->i_prealloc_active, 0); 1296 spin_lock_init(&ei->i_prealloc_lock); 1297 ext4_es_init_tree(&ei->i_es_tree); 1298 rwlock_init(&ei->i_es_lock); 1299 INIT_LIST_HEAD(&ei->i_es_list); 1300 ei->i_es_all_nr = 0; 1301 ei->i_es_shk_nr = 0; 1302 ei->i_es_shrink_lblk = 0; 1303 ei->i_reserved_data_blocks = 0; 1304 spin_lock_init(&(ei->i_block_reservation_lock)); 1305 ext4_init_pending_tree(&ei->i_pending_tree); 1306 #ifdef CONFIG_QUOTA 1307 ei->i_reserved_quota = 0; 1308 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1309 #endif 1310 ei->jinode = NULL; 1311 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1312 spin_lock_init(&ei->i_completed_io_lock); 1313 ei->i_sync_tid = 0; 1314 ei->i_datasync_tid = 0; 1315 atomic_set(&ei->i_unwritten, 0); 1316 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1317 ext4_fc_init_inode(&ei->vfs_inode); 1318 mutex_init(&ei->i_fc_lock); 1319 return &ei->vfs_inode; 1320 } 1321 1322 static int ext4_drop_inode(struct inode *inode) 1323 { 1324 int drop = generic_drop_inode(inode); 1325 1326 if (!drop) 1327 drop = fscrypt_drop_inode(inode); 1328 1329 trace_ext4_drop_inode(inode, drop); 1330 return drop; 1331 } 1332 1333 static void ext4_free_in_core_inode(struct inode *inode) 1334 { 1335 fscrypt_free_inode(inode); 1336 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1337 pr_warn("%s: inode %ld still in fc list", 1338 __func__, inode->i_ino); 1339 } 1340 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1341 } 1342 1343 static void ext4_destroy_inode(struct inode *inode) 1344 { 1345 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1346 ext4_msg(inode->i_sb, KERN_ERR, 1347 "Inode %lu (%p): orphan list check failed!", 1348 inode->i_ino, EXT4_I(inode)); 1349 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1350 EXT4_I(inode), sizeof(struct ext4_inode_info), 1351 true); 1352 dump_stack(); 1353 } 1354 } 1355 1356 static void init_once(void *foo) 1357 { 1358 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1359 1360 INIT_LIST_HEAD(&ei->i_orphan); 1361 init_rwsem(&ei->xattr_sem); 1362 init_rwsem(&ei->i_data_sem); 1363 init_rwsem(&ei->i_mmap_sem); 1364 inode_init_once(&ei->vfs_inode); 1365 ext4_fc_init_inode(&ei->vfs_inode); 1366 } 1367 1368 static int __init init_inodecache(void) 1369 { 1370 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1371 sizeof(struct ext4_inode_info), 0, 1372 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1373 SLAB_ACCOUNT), 1374 offsetof(struct ext4_inode_info, i_data), 1375 sizeof_field(struct ext4_inode_info, i_data), 1376 init_once); 1377 if (ext4_inode_cachep == NULL) 1378 return -ENOMEM; 1379 return 0; 1380 } 1381 1382 static void destroy_inodecache(void) 1383 { 1384 /* 1385 * Make sure all delayed rcu free inodes are flushed before we 1386 * destroy cache. 1387 */ 1388 rcu_barrier(); 1389 kmem_cache_destroy(ext4_inode_cachep); 1390 } 1391 1392 void ext4_clear_inode(struct inode *inode) 1393 { 1394 ext4_fc_del(inode); 1395 invalidate_inode_buffers(inode); 1396 clear_inode(inode); 1397 ext4_discard_preallocations(inode, 0); 1398 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1399 dquot_drop(inode); 1400 if (EXT4_I(inode)->jinode) { 1401 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1402 EXT4_I(inode)->jinode); 1403 jbd2_free_inode(EXT4_I(inode)->jinode); 1404 EXT4_I(inode)->jinode = NULL; 1405 } 1406 fscrypt_put_encryption_info(inode); 1407 fsverity_cleanup_inode(inode); 1408 } 1409 1410 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1411 u64 ino, u32 generation) 1412 { 1413 struct inode *inode; 1414 1415 /* 1416 * Currently we don't know the generation for parent directory, so 1417 * a generation of 0 means "accept any" 1418 */ 1419 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1420 if (IS_ERR(inode)) 1421 return ERR_CAST(inode); 1422 if (generation && inode->i_generation != generation) { 1423 iput(inode); 1424 return ERR_PTR(-ESTALE); 1425 } 1426 1427 return inode; 1428 } 1429 1430 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1431 int fh_len, int fh_type) 1432 { 1433 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1434 ext4_nfs_get_inode); 1435 } 1436 1437 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1438 int fh_len, int fh_type) 1439 { 1440 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1441 ext4_nfs_get_inode); 1442 } 1443 1444 static int ext4_nfs_commit_metadata(struct inode *inode) 1445 { 1446 struct writeback_control wbc = { 1447 .sync_mode = WB_SYNC_ALL 1448 }; 1449 1450 trace_ext4_nfs_commit_metadata(inode); 1451 return ext4_write_inode(inode, &wbc); 1452 } 1453 1454 #ifdef CONFIG_FS_ENCRYPTION 1455 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1456 { 1457 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1458 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1459 } 1460 1461 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1462 void *fs_data) 1463 { 1464 handle_t *handle = fs_data; 1465 int res, res2, credits, retries = 0; 1466 1467 /* 1468 * Encrypting the root directory is not allowed because e2fsck expects 1469 * lost+found to exist and be unencrypted, and encrypting the root 1470 * directory would imply encrypting the lost+found directory as well as 1471 * the filename "lost+found" itself. 1472 */ 1473 if (inode->i_ino == EXT4_ROOT_INO) 1474 return -EPERM; 1475 1476 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1477 return -EINVAL; 1478 1479 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1480 return -EOPNOTSUPP; 1481 1482 res = ext4_convert_inline_data(inode); 1483 if (res) 1484 return res; 1485 1486 /* 1487 * If a journal handle was specified, then the encryption context is 1488 * being set on a new inode via inheritance and is part of a larger 1489 * transaction to create the inode. Otherwise the encryption context is 1490 * being set on an existing inode in its own transaction. Only in the 1491 * latter case should the "retry on ENOSPC" logic be used. 1492 */ 1493 1494 if (handle) { 1495 res = ext4_xattr_set_handle(handle, inode, 1496 EXT4_XATTR_INDEX_ENCRYPTION, 1497 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1498 ctx, len, 0); 1499 if (!res) { 1500 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1501 ext4_clear_inode_state(inode, 1502 EXT4_STATE_MAY_INLINE_DATA); 1503 /* 1504 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1505 * S_DAX may be disabled 1506 */ 1507 ext4_set_inode_flags(inode, false); 1508 } 1509 return res; 1510 } 1511 1512 res = dquot_initialize(inode); 1513 if (res) 1514 return res; 1515 retry: 1516 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1517 &credits); 1518 if (res) 1519 return res; 1520 1521 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1522 if (IS_ERR(handle)) 1523 return PTR_ERR(handle); 1524 1525 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1526 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1527 ctx, len, 0); 1528 if (!res) { 1529 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1530 /* 1531 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1532 * S_DAX may be disabled 1533 */ 1534 ext4_set_inode_flags(inode, false); 1535 res = ext4_mark_inode_dirty(handle, inode); 1536 if (res) 1537 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1538 } 1539 res2 = ext4_journal_stop(handle); 1540 1541 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1542 goto retry; 1543 if (!res) 1544 res = res2; 1545 return res; 1546 } 1547 1548 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1549 { 1550 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1551 } 1552 1553 static bool ext4_has_stable_inodes(struct super_block *sb) 1554 { 1555 return ext4_has_feature_stable_inodes(sb); 1556 } 1557 1558 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1559 int *ino_bits_ret, int *lblk_bits_ret) 1560 { 1561 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1562 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1563 } 1564 1565 static const struct fscrypt_operations ext4_cryptops = { 1566 .key_prefix = "ext4:", 1567 .get_context = ext4_get_context, 1568 .set_context = ext4_set_context, 1569 .get_dummy_policy = ext4_get_dummy_policy, 1570 .empty_dir = ext4_empty_dir, 1571 .max_namelen = EXT4_NAME_LEN, 1572 .has_stable_inodes = ext4_has_stable_inodes, 1573 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1574 }; 1575 #endif 1576 1577 #ifdef CONFIG_QUOTA 1578 static const char * const quotatypes[] = INITQFNAMES; 1579 #define QTYPE2NAME(t) (quotatypes[t]) 1580 1581 static int ext4_write_dquot(struct dquot *dquot); 1582 static int ext4_acquire_dquot(struct dquot *dquot); 1583 static int ext4_release_dquot(struct dquot *dquot); 1584 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1585 static int ext4_write_info(struct super_block *sb, int type); 1586 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1587 const struct path *path); 1588 static int ext4_quota_on_mount(struct super_block *sb, int type); 1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1590 size_t len, loff_t off); 1591 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1592 const char *data, size_t len, loff_t off); 1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1594 unsigned int flags); 1595 static int ext4_enable_quotas(struct super_block *sb); 1596 1597 static struct dquot **ext4_get_dquots(struct inode *inode) 1598 { 1599 return EXT4_I(inode)->i_dquot; 1600 } 1601 1602 static const struct dquot_operations ext4_quota_operations = { 1603 .get_reserved_space = ext4_get_reserved_space, 1604 .write_dquot = ext4_write_dquot, 1605 .acquire_dquot = ext4_acquire_dquot, 1606 .release_dquot = ext4_release_dquot, 1607 .mark_dirty = ext4_mark_dquot_dirty, 1608 .write_info = ext4_write_info, 1609 .alloc_dquot = dquot_alloc, 1610 .destroy_dquot = dquot_destroy, 1611 .get_projid = ext4_get_projid, 1612 .get_inode_usage = ext4_get_inode_usage, 1613 .get_next_id = dquot_get_next_id, 1614 }; 1615 1616 static const struct quotactl_ops ext4_qctl_operations = { 1617 .quota_on = ext4_quota_on, 1618 .quota_off = ext4_quota_off, 1619 .quota_sync = dquot_quota_sync, 1620 .get_state = dquot_get_state, 1621 .set_info = dquot_set_dqinfo, 1622 .get_dqblk = dquot_get_dqblk, 1623 .set_dqblk = dquot_set_dqblk, 1624 .get_nextdqblk = dquot_get_next_dqblk, 1625 }; 1626 #endif 1627 1628 static const struct super_operations ext4_sops = { 1629 .alloc_inode = ext4_alloc_inode, 1630 .free_inode = ext4_free_in_core_inode, 1631 .destroy_inode = ext4_destroy_inode, 1632 .write_inode = ext4_write_inode, 1633 .dirty_inode = ext4_dirty_inode, 1634 .drop_inode = ext4_drop_inode, 1635 .evict_inode = ext4_evict_inode, 1636 .put_super = ext4_put_super, 1637 .sync_fs = ext4_sync_fs, 1638 .freeze_fs = ext4_freeze, 1639 .unfreeze_fs = ext4_unfreeze, 1640 .statfs = ext4_statfs, 1641 .remount_fs = ext4_remount, 1642 .show_options = ext4_show_options, 1643 #ifdef CONFIG_QUOTA 1644 .quota_read = ext4_quota_read, 1645 .quota_write = ext4_quota_write, 1646 .get_dquots = ext4_get_dquots, 1647 #endif 1648 }; 1649 1650 static const struct export_operations ext4_export_ops = { 1651 .fh_to_dentry = ext4_fh_to_dentry, 1652 .fh_to_parent = ext4_fh_to_parent, 1653 .get_parent = ext4_get_parent, 1654 .commit_metadata = ext4_nfs_commit_metadata, 1655 }; 1656 1657 enum { 1658 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1659 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1660 Opt_nouid32, Opt_debug, Opt_removed, 1661 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1662 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1663 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1664 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1665 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1666 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1667 Opt_inlinecrypt, 1668 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1669 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1670 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1671 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1672 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1673 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1674 Opt_nowarn_on_error, Opt_mblk_io_submit, 1675 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1676 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1677 Opt_inode_readahead_blks, Opt_journal_ioprio, 1678 Opt_dioread_nolock, Opt_dioread_lock, 1679 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1680 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1681 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1682 #ifdef CONFIG_EXT4_DEBUG 1683 Opt_fc_debug_max_replay, Opt_fc_debug_force 1684 #endif 1685 }; 1686 1687 static const match_table_t tokens = { 1688 {Opt_bsd_df, "bsddf"}, 1689 {Opt_minix_df, "minixdf"}, 1690 {Opt_grpid, "grpid"}, 1691 {Opt_grpid, "bsdgroups"}, 1692 {Opt_nogrpid, "nogrpid"}, 1693 {Opt_nogrpid, "sysvgroups"}, 1694 {Opt_resgid, "resgid=%u"}, 1695 {Opt_resuid, "resuid=%u"}, 1696 {Opt_sb, "sb=%u"}, 1697 {Opt_err_cont, "errors=continue"}, 1698 {Opt_err_panic, "errors=panic"}, 1699 {Opt_err_ro, "errors=remount-ro"}, 1700 {Opt_nouid32, "nouid32"}, 1701 {Opt_debug, "debug"}, 1702 {Opt_removed, "oldalloc"}, 1703 {Opt_removed, "orlov"}, 1704 {Opt_user_xattr, "user_xattr"}, 1705 {Opt_nouser_xattr, "nouser_xattr"}, 1706 {Opt_acl, "acl"}, 1707 {Opt_noacl, "noacl"}, 1708 {Opt_noload, "norecovery"}, 1709 {Opt_noload, "noload"}, 1710 {Opt_removed, "nobh"}, 1711 {Opt_removed, "bh"}, 1712 {Opt_commit, "commit=%u"}, 1713 {Opt_min_batch_time, "min_batch_time=%u"}, 1714 {Opt_max_batch_time, "max_batch_time=%u"}, 1715 {Opt_journal_dev, "journal_dev=%u"}, 1716 {Opt_journal_path, "journal_path=%s"}, 1717 {Opt_journal_checksum, "journal_checksum"}, 1718 {Opt_nojournal_checksum, "nojournal_checksum"}, 1719 {Opt_journal_async_commit, "journal_async_commit"}, 1720 {Opt_abort, "abort"}, 1721 {Opt_data_journal, "data=journal"}, 1722 {Opt_data_ordered, "data=ordered"}, 1723 {Opt_data_writeback, "data=writeback"}, 1724 {Opt_data_err_abort, "data_err=abort"}, 1725 {Opt_data_err_ignore, "data_err=ignore"}, 1726 {Opt_offusrjquota, "usrjquota="}, 1727 {Opt_usrjquota, "usrjquota=%s"}, 1728 {Opt_offgrpjquota, "grpjquota="}, 1729 {Opt_grpjquota, "grpjquota=%s"}, 1730 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1731 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1732 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1733 {Opt_grpquota, "grpquota"}, 1734 {Opt_noquota, "noquota"}, 1735 {Opt_quota, "quota"}, 1736 {Opt_usrquota, "usrquota"}, 1737 {Opt_prjquota, "prjquota"}, 1738 {Opt_barrier, "barrier=%u"}, 1739 {Opt_barrier, "barrier"}, 1740 {Opt_nobarrier, "nobarrier"}, 1741 {Opt_i_version, "i_version"}, 1742 {Opt_dax, "dax"}, 1743 {Opt_dax_always, "dax=always"}, 1744 {Opt_dax_inode, "dax=inode"}, 1745 {Opt_dax_never, "dax=never"}, 1746 {Opt_stripe, "stripe=%u"}, 1747 {Opt_delalloc, "delalloc"}, 1748 {Opt_warn_on_error, "warn_on_error"}, 1749 {Opt_nowarn_on_error, "nowarn_on_error"}, 1750 {Opt_lazytime, "lazytime"}, 1751 {Opt_nolazytime, "nolazytime"}, 1752 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1753 {Opt_nodelalloc, "nodelalloc"}, 1754 {Opt_removed, "mblk_io_submit"}, 1755 {Opt_removed, "nomblk_io_submit"}, 1756 {Opt_block_validity, "block_validity"}, 1757 {Opt_noblock_validity, "noblock_validity"}, 1758 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1759 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1760 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1761 {Opt_auto_da_alloc, "auto_da_alloc"}, 1762 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1763 {Opt_dioread_nolock, "dioread_nolock"}, 1764 {Opt_dioread_lock, "nodioread_nolock"}, 1765 {Opt_dioread_lock, "dioread_lock"}, 1766 {Opt_discard, "discard"}, 1767 {Opt_nodiscard, "nodiscard"}, 1768 {Opt_init_itable, "init_itable=%u"}, 1769 {Opt_init_itable, "init_itable"}, 1770 {Opt_noinit_itable, "noinit_itable"}, 1771 #ifdef CONFIG_EXT4_DEBUG 1772 {Opt_fc_debug_force, "fc_debug_force"}, 1773 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1774 #endif 1775 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1776 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1777 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1778 {Opt_inlinecrypt, "inlinecrypt"}, 1779 {Opt_nombcache, "nombcache"}, 1780 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1781 {Opt_removed, "prefetch_block_bitmaps"}, 1782 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1783 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1784 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1785 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1786 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1787 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1788 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1789 {Opt_err, NULL}, 1790 }; 1791 1792 static ext4_fsblk_t get_sb_block(void **data) 1793 { 1794 ext4_fsblk_t sb_block; 1795 char *options = (char *) *data; 1796 1797 if (!options || strncmp(options, "sb=", 3) != 0) 1798 return 1; /* Default location */ 1799 1800 options += 3; 1801 /* TODO: use simple_strtoll with >32bit ext4 */ 1802 sb_block = simple_strtoul(options, &options, 0); 1803 if (*options && *options != ',') { 1804 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1805 (char *) *data); 1806 return 1; 1807 } 1808 if (*options == ',') 1809 options++; 1810 *data = (void *) options; 1811 1812 return sb_block; 1813 } 1814 1815 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1816 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1817 1818 static const char deprecated_msg[] = 1819 "Mount option \"%s\" will be removed by %s\n" 1820 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1821 1822 #ifdef CONFIG_QUOTA 1823 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1824 { 1825 struct ext4_sb_info *sbi = EXT4_SB(sb); 1826 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1827 int ret = -1; 1828 1829 if (sb_any_quota_loaded(sb) && !old_qname) { 1830 ext4_msg(sb, KERN_ERR, 1831 "Cannot change journaled " 1832 "quota options when quota turned on"); 1833 return -1; 1834 } 1835 if (ext4_has_feature_quota(sb)) { 1836 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1837 "ignored when QUOTA feature is enabled"); 1838 return 1; 1839 } 1840 qname = match_strdup(args); 1841 if (!qname) { 1842 ext4_msg(sb, KERN_ERR, 1843 "Not enough memory for storing quotafile name"); 1844 return -1; 1845 } 1846 if (old_qname) { 1847 if (strcmp(old_qname, qname) == 0) 1848 ret = 1; 1849 else 1850 ext4_msg(sb, KERN_ERR, 1851 "%s quota file already specified", 1852 QTYPE2NAME(qtype)); 1853 goto errout; 1854 } 1855 if (strchr(qname, '/')) { 1856 ext4_msg(sb, KERN_ERR, 1857 "quotafile must be on filesystem root"); 1858 goto errout; 1859 } 1860 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1861 set_opt(sb, QUOTA); 1862 return 1; 1863 errout: 1864 kfree(qname); 1865 return ret; 1866 } 1867 1868 static int clear_qf_name(struct super_block *sb, int qtype) 1869 { 1870 1871 struct ext4_sb_info *sbi = EXT4_SB(sb); 1872 char *old_qname = get_qf_name(sb, sbi, qtype); 1873 1874 if (sb_any_quota_loaded(sb) && old_qname) { 1875 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1876 " when quota turned on"); 1877 return -1; 1878 } 1879 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1880 synchronize_rcu(); 1881 kfree(old_qname); 1882 return 1; 1883 } 1884 #endif 1885 1886 #define MOPT_SET 0x0001 1887 #define MOPT_CLEAR 0x0002 1888 #define MOPT_NOSUPPORT 0x0004 1889 #define MOPT_EXPLICIT 0x0008 1890 #define MOPT_CLEAR_ERR 0x0010 1891 #define MOPT_GTE0 0x0020 1892 #ifdef CONFIG_QUOTA 1893 #define MOPT_Q 0 1894 #define MOPT_QFMT 0x0040 1895 #else 1896 #define MOPT_Q MOPT_NOSUPPORT 1897 #define MOPT_QFMT MOPT_NOSUPPORT 1898 #endif 1899 #define MOPT_DATAJ 0x0080 1900 #define MOPT_NO_EXT2 0x0100 1901 #define MOPT_NO_EXT3 0x0200 1902 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1903 #define MOPT_STRING 0x0400 1904 #define MOPT_SKIP 0x0800 1905 #define MOPT_2 0x1000 1906 1907 static const struct mount_opts { 1908 int token; 1909 int mount_opt; 1910 int flags; 1911 } ext4_mount_opts[] = { 1912 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1913 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1914 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1915 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1916 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1917 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1918 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1919 MOPT_EXT4_ONLY | MOPT_SET}, 1920 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1921 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1922 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1923 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1924 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1925 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1926 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1927 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1928 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1929 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1930 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1931 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1932 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1933 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1934 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1935 EXT4_MOUNT_JOURNAL_CHECKSUM), 1936 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1937 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1938 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1939 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1940 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1941 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1942 MOPT_NO_EXT2}, 1943 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1944 MOPT_NO_EXT2}, 1945 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1946 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1947 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1948 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1949 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1950 {Opt_commit, 0, MOPT_GTE0}, 1951 {Opt_max_batch_time, 0, MOPT_GTE0}, 1952 {Opt_min_batch_time, 0, MOPT_GTE0}, 1953 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1954 {Opt_init_itable, 0, MOPT_GTE0}, 1955 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1956 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1957 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1958 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1959 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1960 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1961 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1962 {Opt_stripe, 0, MOPT_GTE0}, 1963 {Opt_resuid, 0, MOPT_GTE0}, 1964 {Opt_resgid, 0, MOPT_GTE0}, 1965 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1966 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1967 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1968 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1969 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1970 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1971 MOPT_NO_EXT2 | MOPT_DATAJ}, 1972 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1973 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1974 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1975 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1976 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1977 #else 1978 {Opt_acl, 0, MOPT_NOSUPPORT}, 1979 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1980 #endif 1981 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1982 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1983 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1984 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1985 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1986 MOPT_SET | MOPT_Q}, 1987 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1988 MOPT_SET | MOPT_Q}, 1989 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1990 MOPT_SET | MOPT_Q}, 1991 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1992 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1993 MOPT_CLEAR | MOPT_Q}, 1994 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1995 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1996 {Opt_offusrjquota, 0, MOPT_Q}, 1997 {Opt_offgrpjquota, 0, MOPT_Q}, 1998 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1999 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 2000 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2001 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2002 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2003 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2004 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2005 MOPT_SET}, 2006 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2007 #ifdef CONFIG_EXT4_DEBUG 2008 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2009 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2010 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2011 #endif 2012 {Opt_err, 0, 0} 2013 }; 2014 2015 #ifdef CONFIG_UNICODE 2016 static const struct ext4_sb_encodings { 2017 __u16 magic; 2018 char *name; 2019 char *version; 2020 } ext4_sb_encoding_map[] = { 2021 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2022 }; 2023 2024 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2025 const struct ext4_sb_encodings **encoding, 2026 __u16 *flags) 2027 { 2028 __u16 magic = le16_to_cpu(es->s_encoding); 2029 int i; 2030 2031 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2032 if (magic == ext4_sb_encoding_map[i].magic) 2033 break; 2034 2035 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2036 return -EINVAL; 2037 2038 *encoding = &ext4_sb_encoding_map[i]; 2039 *flags = le16_to_cpu(es->s_encoding_flags); 2040 2041 return 0; 2042 } 2043 #endif 2044 2045 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2046 const char *opt, 2047 const substring_t *arg, 2048 bool is_remount) 2049 { 2050 #ifdef CONFIG_FS_ENCRYPTION 2051 struct ext4_sb_info *sbi = EXT4_SB(sb); 2052 int err; 2053 2054 /* 2055 * This mount option is just for testing, and it's not worthwhile to 2056 * implement the extra complexity (e.g. RCU protection) that would be 2057 * needed to allow it to be set or changed during remount. We do allow 2058 * it to be specified during remount, but only if there is no change. 2059 */ 2060 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2061 ext4_msg(sb, KERN_WARNING, 2062 "Can't set test_dummy_encryption on remount"); 2063 return -1; 2064 } 2065 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2066 &sbi->s_dummy_enc_policy); 2067 if (err) { 2068 if (err == -EEXIST) 2069 ext4_msg(sb, KERN_WARNING, 2070 "Can't change test_dummy_encryption on remount"); 2071 else if (err == -EINVAL) 2072 ext4_msg(sb, KERN_WARNING, 2073 "Value of option \"%s\" is unrecognized", opt); 2074 else 2075 ext4_msg(sb, KERN_WARNING, 2076 "Error processing option \"%s\" [%d]", 2077 opt, err); 2078 return -1; 2079 } 2080 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2081 #else 2082 ext4_msg(sb, KERN_WARNING, 2083 "Test dummy encryption mount option ignored"); 2084 #endif 2085 return 1; 2086 } 2087 2088 struct ext4_parsed_options { 2089 unsigned long journal_devnum; 2090 unsigned int journal_ioprio; 2091 int mb_optimize_scan; 2092 }; 2093 2094 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2095 substring_t *args, struct ext4_parsed_options *parsed_opts, 2096 int is_remount) 2097 { 2098 struct ext4_sb_info *sbi = EXT4_SB(sb); 2099 const struct mount_opts *m; 2100 kuid_t uid; 2101 kgid_t gid; 2102 int arg = 0; 2103 2104 #ifdef CONFIG_QUOTA 2105 if (token == Opt_usrjquota) 2106 return set_qf_name(sb, USRQUOTA, &args[0]); 2107 else if (token == Opt_grpjquota) 2108 return set_qf_name(sb, GRPQUOTA, &args[0]); 2109 else if (token == Opt_offusrjquota) 2110 return clear_qf_name(sb, USRQUOTA); 2111 else if (token == Opt_offgrpjquota) 2112 return clear_qf_name(sb, GRPQUOTA); 2113 #endif 2114 switch (token) { 2115 case Opt_noacl: 2116 case Opt_nouser_xattr: 2117 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2118 break; 2119 case Opt_sb: 2120 return 1; /* handled by get_sb_block() */ 2121 case Opt_removed: 2122 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2123 return 1; 2124 case Opt_abort: 2125 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2126 return 1; 2127 case Opt_i_version: 2128 sb->s_flags |= SB_I_VERSION; 2129 return 1; 2130 case Opt_lazytime: 2131 sb->s_flags |= SB_LAZYTIME; 2132 return 1; 2133 case Opt_nolazytime: 2134 sb->s_flags &= ~SB_LAZYTIME; 2135 return 1; 2136 case Opt_inlinecrypt: 2137 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2138 sb->s_flags |= SB_INLINECRYPT; 2139 #else 2140 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2141 #endif 2142 return 1; 2143 } 2144 2145 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2146 if (token == m->token) 2147 break; 2148 2149 if (m->token == Opt_err) { 2150 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2151 "or missing value", opt); 2152 return -1; 2153 } 2154 2155 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2156 ext4_msg(sb, KERN_ERR, 2157 "Mount option \"%s\" incompatible with ext2", opt); 2158 return -1; 2159 } 2160 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2161 ext4_msg(sb, KERN_ERR, 2162 "Mount option \"%s\" incompatible with ext3", opt); 2163 return -1; 2164 } 2165 2166 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2167 return -1; 2168 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2169 return -1; 2170 if (m->flags & MOPT_EXPLICIT) { 2171 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2172 set_opt2(sb, EXPLICIT_DELALLOC); 2173 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2174 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2175 } else 2176 return -1; 2177 } 2178 if (m->flags & MOPT_CLEAR_ERR) 2179 clear_opt(sb, ERRORS_MASK); 2180 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2181 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2182 "options when quota turned on"); 2183 return -1; 2184 } 2185 2186 if (m->flags & MOPT_NOSUPPORT) { 2187 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2188 } else if (token == Opt_commit) { 2189 if (arg == 0) 2190 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2191 else if (arg > INT_MAX / HZ) { 2192 ext4_msg(sb, KERN_ERR, 2193 "Invalid commit interval %d, " 2194 "must be smaller than %d", 2195 arg, INT_MAX / HZ); 2196 return -1; 2197 } 2198 sbi->s_commit_interval = HZ * arg; 2199 } else if (token == Opt_debug_want_extra_isize) { 2200 if ((arg & 1) || 2201 (arg < 4) || 2202 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2203 ext4_msg(sb, KERN_ERR, 2204 "Invalid want_extra_isize %d", arg); 2205 return -1; 2206 } 2207 sbi->s_want_extra_isize = arg; 2208 } else if (token == Opt_max_batch_time) { 2209 sbi->s_max_batch_time = arg; 2210 } else if (token == Opt_min_batch_time) { 2211 sbi->s_min_batch_time = arg; 2212 } else if (token == Opt_inode_readahead_blks) { 2213 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2214 ext4_msg(sb, KERN_ERR, 2215 "EXT4-fs: inode_readahead_blks must be " 2216 "0 or a power of 2 smaller than 2^31"); 2217 return -1; 2218 } 2219 sbi->s_inode_readahead_blks = arg; 2220 } else if (token == Opt_init_itable) { 2221 set_opt(sb, INIT_INODE_TABLE); 2222 if (!args->from) 2223 arg = EXT4_DEF_LI_WAIT_MULT; 2224 sbi->s_li_wait_mult = arg; 2225 } else if (token == Opt_max_dir_size_kb) { 2226 sbi->s_max_dir_size_kb = arg; 2227 #ifdef CONFIG_EXT4_DEBUG 2228 } else if (token == Opt_fc_debug_max_replay) { 2229 sbi->s_fc_debug_max_replay = arg; 2230 #endif 2231 } else if (token == Opt_stripe) { 2232 sbi->s_stripe = arg; 2233 } else if (token == Opt_resuid) { 2234 uid = make_kuid(current_user_ns(), arg); 2235 if (!uid_valid(uid)) { 2236 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2237 return -1; 2238 } 2239 sbi->s_resuid = uid; 2240 } else if (token == Opt_resgid) { 2241 gid = make_kgid(current_user_ns(), arg); 2242 if (!gid_valid(gid)) { 2243 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2244 return -1; 2245 } 2246 sbi->s_resgid = gid; 2247 } else if (token == Opt_journal_dev) { 2248 if (is_remount) { 2249 ext4_msg(sb, KERN_ERR, 2250 "Cannot specify journal on remount"); 2251 return -1; 2252 } 2253 parsed_opts->journal_devnum = arg; 2254 } else if (token == Opt_journal_path) { 2255 char *journal_path; 2256 struct inode *journal_inode; 2257 struct path path; 2258 int error; 2259 2260 if (is_remount) { 2261 ext4_msg(sb, KERN_ERR, 2262 "Cannot specify journal on remount"); 2263 return -1; 2264 } 2265 journal_path = match_strdup(&args[0]); 2266 if (!journal_path) { 2267 ext4_msg(sb, KERN_ERR, "error: could not dup " 2268 "journal device string"); 2269 return -1; 2270 } 2271 2272 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2273 if (error) { 2274 ext4_msg(sb, KERN_ERR, "error: could not find " 2275 "journal device path: error %d", error); 2276 kfree(journal_path); 2277 return -1; 2278 } 2279 2280 journal_inode = d_inode(path.dentry); 2281 if (!S_ISBLK(journal_inode->i_mode)) { 2282 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2283 "is not a block device", journal_path); 2284 path_put(&path); 2285 kfree(journal_path); 2286 return -1; 2287 } 2288 2289 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2290 path_put(&path); 2291 kfree(journal_path); 2292 } else if (token == Opt_journal_ioprio) { 2293 if (arg > 7) { 2294 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2295 " (must be 0-7)"); 2296 return -1; 2297 } 2298 parsed_opts->journal_ioprio = 2299 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2300 } else if (token == Opt_test_dummy_encryption) { 2301 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2302 is_remount); 2303 } else if (m->flags & MOPT_DATAJ) { 2304 if (is_remount) { 2305 if (!sbi->s_journal) 2306 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2307 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2308 ext4_msg(sb, KERN_ERR, 2309 "Cannot change data mode on remount"); 2310 return -1; 2311 } 2312 } else { 2313 clear_opt(sb, DATA_FLAGS); 2314 sbi->s_mount_opt |= m->mount_opt; 2315 } 2316 #ifdef CONFIG_QUOTA 2317 } else if (m->flags & MOPT_QFMT) { 2318 if (sb_any_quota_loaded(sb) && 2319 sbi->s_jquota_fmt != m->mount_opt) { 2320 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2321 "quota options when quota turned on"); 2322 return -1; 2323 } 2324 if (ext4_has_feature_quota(sb)) { 2325 ext4_msg(sb, KERN_INFO, 2326 "Quota format mount options ignored " 2327 "when QUOTA feature is enabled"); 2328 return 1; 2329 } 2330 sbi->s_jquota_fmt = m->mount_opt; 2331 #endif 2332 } else if (token == Opt_dax || token == Opt_dax_always || 2333 token == Opt_dax_inode || token == Opt_dax_never) { 2334 #ifdef CONFIG_FS_DAX 2335 switch (token) { 2336 case Opt_dax: 2337 case Opt_dax_always: 2338 if (is_remount && 2339 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2340 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2341 fail_dax_change_remount: 2342 ext4_msg(sb, KERN_ERR, "can't change " 2343 "dax mount option while remounting"); 2344 return -1; 2345 } 2346 if (is_remount && 2347 (test_opt(sb, DATA_FLAGS) == 2348 EXT4_MOUNT_JOURNAL_DATA)) { 2349 ext4_msg(sb, KERN_ERR, "can't mount with " 2350 "both data=journal and dax"); 2351 return -1; 2352 } 2353 ext4_msg(sb, KERN_WARNING, 2354 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2355 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2356 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2357 break; 2358 case Opt_dax_never: 2359 if (is_remount && 2360 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2361 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2362 goto fail_dax_change_remount; 2363 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2364 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2365 break; 2366 case Opt_dax_inode: 2367 if (is_remount && 2368 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2369 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2370 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2371 goto fail_dax_change_remount; 2372 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2373 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2374 /* Strictly for printing options */ 2375 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2376 break; 2377 } 2378 #else 2379 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2380 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2381 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2382 return -1; 2383 #endif 2384 } else if (token == Opt_data_err_abort) { 2385 sbi->s_mount_opt |= m->mount_opt; 2386 } else if (token == Opt_data_err_ignore) { 2387 sbi->s_mount_opt &= ~m->mount_opt; 2388 } else if (token == Opt_mb_optimize_scan) { 2389 if (arg != 0 && arg != 1) { 2390 ext4_msg(sb, KERN_WARNING, 2391 "mb_optimize_scan should be set to 0 or 1."); 2392 return -1; 2393 } 2394 parsed_opts->mb_optimize_scan = arg; 2395 } else { 2396 if (!args->from) 2397 arg = 1; 2398 if (m->flags & MOPT_CLEAR) 2399 arg = !arg; 2400 else if (unlikely(!(m->flags & MOPT_SET))) { 2401 ext4_msg(sb, KERN_WARNING, 2402 "buggy handling of option %s", opt); 2403 WARN_ON(1); 2404 return -1; 2405 } 2406 if (m->flags & MOPT_2) { 2407 if (arg != 0) 2408 sbi->s_mount_opt2 |= m->mount_opt; 2409 else 2410 sbi->s_mount_opt2 &= ~m->mount_opt; 2411 } else { 2412 if (arg != 0) 2413 sbi->s_mount_opt |= m->mount_opt; 2414 else 2415 sbi->s_mount_opt &= ~m->mount_opt; 2416 } 2417 } 2418 return 1; 2419 } 2420 2421 static int parse_options(char *options, struct super_block *sb, 2422 struct ext4_parsed_options *ret_opts, 2423 int is_remount) 2424 { 2425 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2426 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2427 substring_t args[MAX_OPT_ARGS]; 2428 int token; 2429 2430 if (!options) 2431 return 1; 2432 2433 while ((p = strsep(&options, ",")) != NULL) { 2434 if (!*p) 2435 continue; 2436 /* 2437 * Initialize args struct so we know whether arg was 2438 * found; some options take optional arguments. 2439 */ 2440 args[0].to = args[0].from = NULL; 2441 token = match_token(p, tokens, args); 2442 if (handle_mount_opt(sb, p, token, args, ret_opts, 2443 is_remount) < 0) 2444 return 0; 2445 } 2446 #ifdef CONFIG_QUOTA 2447 /* 2448 * We do the test below only for project quotas. 'usrquota' and 2449 * 'grpquota' mount options are allowed even without quota feature 2450 * to support legacy quotas in quota files. 2451 */ 2452 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2453 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2454 "Cannot enable project quota enforcement."); 2455 return 0; 2456 } 2457 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2458 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2459 if (usr_qf_name || grp_qf_name) { 2460 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2461 clear_opt(sb, USRQUOTA); 2462 2463 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2464 clear_opt(sb, GRPQUOTA); 2465 2466 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2467 ext4_msg(sb, KERN_ERR, "old and new quota " 2468 "format mixing"); 2469 return 0; 2470 } 2471 2472 if (!sbi->s_jquota_fmt) { 2473 ext4_msg(sb, KERN_ERR, "journaled quota format " 2474 "not specified"); 2475 return 0; 2476 } 2477 } 2478 #endif 2479 if (test_opt(sb, DIOREAD_NOLOCK)) { 2480 int blocksize = 2481 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2482 if (blocksize < PAGE_SIZE) 2483 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2484 "experimental mount option 'dioread_nolock' " 2485 "for blocksize < PAGE_SIZE"); 2486 } 2487 return 1; 2488 } 2489 2490 static inline void ext4_show_quota_options(struct seq_file *seq, 2491 struct super_block *sb) 2492 { 2493 #if defined(CONFIG_QUOTA) 2494 struct ext4_sb_info *sbi = EXT4_SB(sb); 2495 char *usr_qf_name, *grp_qf_name; 2496 2497 if (sbi->s_jquota_fmt) { 2498 char *fmtname = ""; 2499 2500 switch (sbi->s_jquota_fmt) { 2501 case QFMT_VFS_OLD: 2502 fmtname = "vfsold"; 2503 break; 2504 case QFMT_VFS_V0: 2505 fmtname = "vfsv0"; 2506 break; 2507 case QFMT_VFS_V1: 2508 fmtname = "vfsv1"; 2509 break; 2510 } 2511 seq_printf(seq, ",jqfmt=%s", fmtname); 2512 } 2513 2514 rcu_read_lock(); 2515 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2516 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2517 if (usr_qf_name) 2518 seq_show_option(seq, "usrjquota", usr_qf_name); 2519 if (grp_qf_name) 2520 seq_show_option(seq, "grpjquota", grp_qf_name); 2521 rcu_read_unlock(); 2522 #endif 2523 } 2524 2525 static const char *token2str(int token) 2526 { 2527 const struct match_token *t; 2528 2529 for (t = tokens; t->token != Opt_err; t++) 2530 if (t->token == token && !strchr(t->pattern, '=')) 2531 break; 2532 return t->pattern; 2533 } 2534 2535 /* 2536 * Show an option if 2537 * - it's set to a non-default value OR 2538 * - if the per-sb default is different from the global default 2539 */ 2540 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2541 int nodefs) 2542 { 2543 struct ext4_sb_info *sbi = EXT4_SB(sb); 2544 struct ext4_super_block *es = sbi->s_es; 2545 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2546 const struct mount_opts *m; 2547 char sep = nodefs ? '\n' : ','; 2548 2549 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2550 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2551 2552 if (sbi->s_sb_block != 1) 2553 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2554 2555 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2556 int want_set = m->flags & MOPT_SET; 2557 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2558 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2559 continue; 2560 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2561 continue; /* skip if same as the default */ 2562 if ((want_set && 2563 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2564 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2565 continue; /* select Opt_noFoo vs Opt_Foo */ 2566 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2567 } 2568 2569 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2570 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2571 SEQ_OPTS_PRINT("resuid=%u", 2572 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2573 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2574 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2575 SEQ_OPTS_PRINT("resgid=%u", 2576 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2577 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2578 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2579 SEQ_OPTS_PUTS("errors=remount-ro"); 2580 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2581 SEQ_OPTS_PUTS("errors=continue"); 2582 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2583 SEQ_OPTS_PUTS("errors=panic"); 2584 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2585 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2586 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2587 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2588 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2589 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2590 if (sb->s_flags & SB_I_VERSION) 2591 SEQ_OPTS_PUTS("i_version"); 2592 if (nodefs || sbi->s_stripe) 2593 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2594 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2595 (sbi->s_mount_opt ^ def_mount_opt)) { 2596 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2597 SEQ_OPTS_PUTS("data=journal"); 2598 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2599 SEQ_OPTS_PUTS("data=ordered"); 2600 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2601 SEQ_OPTS_PUTS("data=writeback"); 2602 } 2603 if (nodefs || 2604 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2605 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2606 sbi->s_inode_readahead_blks); 2607 2608 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2609 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2610 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2611 if (nodefs || sbi->s_max_dir_size_kb) 2612 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2613 if (test_opt(sb, DATA_ERR_ABORT)) 2614 SEQ_OPTS_PUTS("data_err=abort"); 2615 2616 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2617 2618 if (sb->s_flags & SB_INLINECRYPT) 2619 SEQ_OPTS_PUTS("inlinecrypt"); 2620 2621 if (test_opt(sb, DAX_ALWAYS)) { 2622 if (IS_EXT2_SB(sb)) 2623 SEQ_OPTS_PUTS("dax"); 2624 else 2625 SEQ_OPTS_PUTS("dax=always"); 2626 } else if (test_opt2(sb, DAX_NEVER)) { 2627 SEQ_OPTS_PUTS("dax=never"); 2628 } else if (test_opt2(sb, DAX_INODE)) { 2629 SEQ_OPTS_PUTS("dax=inode"); 2630 } 2631 ext4_show_quota_options(seq, sb); 2632 return 0; 2633 } 2634 2635 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2636 { 2637 return _ext4_show_options(seq, root->d_sb, 0); 2638 } 2639 2640 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2641 { 2642 struct super_block *sb = seq->private; 2643 int rc; 2644 2645 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2646 rc = _ext4_show_options(seq, sb, 1); 2647 seq_puts(seq, "\n"); 2648 return rc; 2649 } 2650 2651 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2652 int read_only) 2653 { 2654 struct ext4_sb_info *sbi = EXT4_SB(sb); 2655 int err = 0; 2656 2657 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2658 ext4_msg(sb, KERN_ERR, "revision level too high, " 2659 "forcing read-only mode"); 2660 err = -EROFS; 2661 goto done; 2662 } 2663 if (read_only) 2664 goto done; 2665 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2666 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2667 "running e2fsck is recommended"); 2668 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2669 ext4_msg(sb, KERN_WARNING, 2670 "warning: mounting fs with errors, " 2671 "running e2fsck is recommended"); 2672 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2673 le16_to_cpu(es->s_mnt_count) >= 2674 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2675 ext4_msg(sb, KERN_WARNING, 2676 "warning: maximal mount count reached, " 2677 "running e2fsck is recommended"); 2678 else if (le32_to_cpu(es->s_checkinterval) && 2679 (ext4_get_tstamp(es, s_lastcheck) + 2680 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2681 ext4_msg(sb, KERN_WARNING, 2682 "warning: checktime reached, " 2683 "running e2fsck is recommended"); 2684 if (!sbi->s_journal) 2685 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2686 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2687 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2688 le16_add_cpu(&es->s_mnt_count, 1); 2689 ext4_update_tstamp(es, s_mtime); 2690 if (sbi->s_journal) 2691 ext4_set_feature_journal_needs_recovery(sb); 2692 2693 err = ext4_commit_super(sb); 2694 done: 2695 if (test_opt(sb, DEBUG)) 2696 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2697 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2698 sb->s_blocksize, 2699 sbi->s_groups_count, 2700 EXT4_BLOCKS_PER_GROUP(sb), 2701 EXT4_INODES_PER_GROUP(sb), 2702 sbi->s_mount_opt, sbi->s_mount_opt2); 2703 2704 cleancache_init_fs(sb); 2705 return err; 2706 } 2707 2708 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2709 { 2710 struct ext4_sb_info *sbi = EXT4_SB(sb); 2711 struct flex_groups **old_groups, **new_groups; 2712 int size, i, j; 2713 2714 if (!sbi->s_log_groups_per_flex) 2715 return 0; 2716 2717 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2718 if (size <= sbi->s_flex_groups_allocated) 2719 return 0; 2720 2721 new_groups = kvzalloc(roundup_pow_of_two(size * 2722 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2723 if (!new_groups) { 2724 ext4_msg(sb, KERN_ERR, 2725 "not enough memory for %d flex group pointers", size); 2726 return -ENOMEM; 2727 } 2728 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2729 new_groups[i] = kvzalloc(roundup_pow_of_two( 2730 sizeof(struct flex_groups)), 2731 GFP_KERNEL); 2732 if (!new_groups[i]) { 2733 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2734 kvfree(new_groups[j]); 2735 kvfree(new_groups); 2736 ext4_msg(sb, KERN_ERR, 2737 "not enough memory for %d flex groups", size); 2738 return -ENOMEM; 2739 } 2740 } 2741 rcu_read_lock(); 2742 old_groups = rcu_dereference(sbi->s_flex_groups); 2743 if (old_groups) 2744 memcpy(new_groups, old_groups, 2745 (sbi->s_flex_groups_allocated * 2746 sizeof(struct flex_groups *))); 2747 rcu_read_unlock(); 2748 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2749 sbi->s_flex_groups_allocated = size; 2750 if (old_groups) 2751 ext4_kvfree_array_rcu(old_groups); 2752 return 0; 2753 } 2754 2755 static int ext4_fill_flex_info(struct super_block *sb) 2756 { 2757 struct ext4_sb_info *sbi = EXT4_SB(sb); 2758 struct ext4_group_desc *gdp = NULL; 2759 struct flex_groups *fg; 2760 ext4_group_t flex_group; 2761 int i, err; 2762 2763 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2764 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2765 sbi->s_log_groups_per_flex = 0; 2766 return 1; 2767 } 2768 2769 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2770 if (err) 2771 goto failed; 2772 2773 for (i = 0; i < sbi->s_groups_count; i++) { 2774 gdp = ext4_get_group_desc(sb, i, NULL); 2775 2776 flex_group = ext4_flex_group(sbi, i); 2777 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2778 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2779 atomic64_add(ext4_free_group_clusters(sb, gdp), 2780 &fg->free_clusters); 2781 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2782 } 2783 2784 return 1; 2785 failed: 2786 return 0; 2787 } 2788 2789 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2790 struct ext4_group_desc *gdp) 2791 { 2792 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2793 __u16 crc = 0; 2794 __le32 le_group = cpu_to_le32(block_group); 2795 struct ext4_sb_info *sbi = EXT4_SB(sb); 2796 2797 if (ext4_has_metadata_csum(sbi->s_sb)) { 2798 /* Use new metadata_csum algorithm */ 2799 __u32 csum32; 2800 __u16 dummy_csum = 0; 2801 2802 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2803 sizeof(le_group)); 2804 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2805 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2806 sizeof(dummy_csum)); 2807 offset += sizeof(dummy_csum); 2808 if (offset < sbi->s_desc_size) 2809 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2810 sbi->s_desc_size - offset); 2811 2812 crc = csum32 & 0xFFFF; 2813 goto out; 2814 } 2815 2816 /* old crc16 code */ 2817 if (!ext4_has_feature_gdt_csum(sb)) 2818 return 0; 2819 2820 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2821 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2822 crc = crc16(crc, (__u8 *)gdp, offset); 2823 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2824 /* for checksum of struct ext4_group_desc do the rest...*/ 2825 if (ext4_has_feature_64bit(sb) && 2826 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2827 crc = crc16(crc, (__u8 *)gdp + offset, 2828 le16_to_cpu(sbi->s_es->s_desc_size) - 2829 offset); 2830 2831 out: 2832 return cpu_to_le16(crc); 2833 } 2834 2835 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2836 struct ext4_group_desc *gdp) 2837 { 2838 if (ext4_has_group_desc_csum(sb) && 2839 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2840 return 0; 2841 2842 return 1; 2843 } 2844 2845 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2846 struct ext4_group_desc *gdp) 2847 { 2848 if (!ext4_has_group_desc_csum(sb)) 2849 return; 2850 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2851 } 2852 2853 /* Called at mount-time, super-block is locked */ 2854 static int ext4_check_descriptors(struct super_block *sb, 2855 ext4_fsblk_t sb_block, 2856 ext4_group_t *first_not_zeroed) 2857 { 2858 struct ext4_sb_info *sbi = EXT4_SB(sb); 2859 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2860 ext4_fsblk_t last_block; 2861 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2862 ext4_fsblk_t block_bitmap; 2863 ext4_fsblk_t inode_bitmap; 2864 ext4_fsblk_t inode_table; 2865 int flexbg_flag = 0; 2866 ext4_group_t i, grp = sbi->s_groups_count; 2867 2868 if (ext4_has_feature_flex_bg(sb)) 2869 flexbg_flag = 1; 2870 2871 ext4_debug("Checking group descriptors"); 2872 2873 for (i = 0; i < sbi->s_groups_count; i++) { 2874 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2875 2876 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2877 last_block = ext4_blocks_count(sbi->s_es) - 1; 2878 else 2879 last_block = first_block + 2880 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2881 2882 if ((grp == sbi->s_groups_count) && 2883 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2884 grp = i; 2885 2886 block_bitmap = ext4_block_bitmap(sb, gdp); 2887 if (block_bitmap == sb_block) { 2888 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2889 "Block bitmap for group %u overlaps " 2890 "superblock", i); 2891 if (!sb_rdonly(sb)) 2892 return 0; 2893 } 2894 if (block_bitmap >= sb_block + 1 && 2895 block_bitmap <= last_bg_block) { 2896 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2897 "Block bitmap for group %u overlaps " 2898 "block group descriptors", i); 2899 if (!sb_rdonly(sb)) 2900 return 0; 2901 } 2902 if (block_bitmap < first_block || block_bitmap > last_block) { 2903 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2904 "Block bitmap for group %u not in group " 2905 "(block %llu)!", i, block_bitmap); 2906 return 0; 2907 } 2908 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2909 if (inode_bitmap == sb_block) { 2910 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2911 "Inode bitmap for group %u overlaps " 2912 "superblock", i); 2913 if (!sb_rdonly(sb)) 2914 return 0; 2915 } 2916 if (inode_bitmap >= sb_block + 1 && 2917 inode_bitmap <= last_bg_block) { 2918 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2919 "Inode bitmap for group %u overlaps " 2920 "block group descriptors", i); 2921 if (!sb_rdonly(sb)) 2922 return 0; 2923 } 2924 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2925 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2926 "Inode bitmap for group %u not in group " 2927 "(block %llu)!", i, inode_bitmap); 2928 return 0; 2929 } 2930 inode_table = ext4_inode_table(sb, gdp); 2931 if (inode_table == sb_block) { 2932 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2933 "Inode table for group %u overlaps " 2934 "superblock", i); 2935 if (!sb_rdonly(sb)) 2936 return 0; 2937 } 2938 if (inode_table >= sb_block + 1 && 2939 inode_table <= last_bg_block) { 2940 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2941 "Inode table for group %u overlaps " 2942 "block group descriptors", i); 2943 if (!sb_rdonly(sb)) 2944 return 0; 2945 } 2946 if (inode_table < first_block || 2947 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2948 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2949 "Inode table for group %u not in group " 2950 "(block %llu)!", i, inode_table); 2951 return 0; 2952 } 2953 ext4_lock_group(sb, i); 2954 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2955 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2956 "Checksum for group %u failed (%u!=%u)", 2957 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2958 gdp)), le16_to_cpu(gdp->bg_checksum)); 2959 if (!sb_rdonly(sb)) { 2960 ext4_unlock_group(sb, i); 2961 return 0; 2962 } 2963 } 2964 ext4_unlock_group(sb, i); 2965 if (!flexbg_flag) 2966 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2967 } 2968 if (NULL != first_not_zeroed) 2969 *first_not_zeroed = grp; 2970 return 1; 2971 } 2972 2973 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2974 * the superblock) which were deleted from all directories, but held open by 2975 * a process at the time of a crash. We walk the list and try to delete these 2976 * inodes at recovery time (only with a read-write filesystem). 2977 * 2978 * In order to keep the orphan inode chain consistent during traversal (in 2979 * case of crash during recovery), we link each inode into the superblock 2980 * orphan list_head and handle it the same way as an inode deletion during 2981 * normal operation (which journals the operations for us). 2982 * 2983 * We only do an iget() and an iput() on each inode, which is very safe if we 2984 * accidentally point at an in-use or already deleted inode. The worst that 2985 * can happen in this case is that we get a "bit already cleared" message from 2986 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2987 * e2fsck was run on this filesystem, and it must have already done the orphan 2988 * inode cleanup for us, so we can safely abort without any further action. 2989 */ 2990 static void ext4_orphan_cleanup(struct super_block *sb, 2991 struct ext4_super_block *es) 2992 { 2993 unsigned int s_flags = sb->s_flags; 2994 int ret, nr_orphans = 0, nr_truncates = 0; 2995 #ifdef CONFIG_QUOTA 2996 int quota_update = 0; 2997 int i; 2998 #endif 2999 if (!es->s_last_orphan) { 3000 jbd_debug(4, "no orphan inodes to clean up\n"); 3001 return; 3002 } 3003 3004 if (bdev_read_only(sb->s_bdev)) { 3005 ext4_msg(sb, KERN_ERR, "write access " 3006 "unavailable, skipping orphan cleanup"); 3007 return; 3008 } 3009 3010 /* Check if feature set would not allow a r/w mount */ 3011 if (!ext4_feature_set_ok(sb, 0)) { 3012 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 3013 "unknown ROCOMPAT features"); 3014 return; 3015 } 3016 3017 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3018 /* don't clear list on RO mount w/ errors */ 3019 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 3020 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 3021 "clearing orphan list.\n"); 3022 es->s_last_orphan = 0; 3023 } 3024 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3025 return; 3026 } 3027 3028 if (s_flags & SB_RDONLY) { 3029 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 3030 sb->s_flags &= ~SB_RDONLY; 3031 } 3032 #ifdef CONFIG_QUOTA 3033 /* 3034 * Turn on quotas which were not enabled for read-only mounts if 3035 * filesystem has quota feature, so that they are updated correctly. 3036 */ 3037 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 3038 int ret = ext4_enable_quotas(sb); 3039 3040 if (!ret) 3041 quota_update = 1; 3042 else 3043 ext4_msg(sb, KERN_ERR, 3044 "Cannot turn on quotas: error %d", ret); 3045 } 3046 3047 /* Turn on journaled quotas used for old sytle */ 3048 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3049 if (EXT4_SB(sb)->s_qf_names[i]) { 3050 int ret = ext4_quota_on_mount(sb, i); 3051 3052 if (!ret) 3053 quota_update = 1; 3054 else 3055 ext4_msg(sb, KERN_ERR, 3056 "Cannot turn on journaled " 3057 "quota: type %d: error %d", i, ret); 3058 } 3059 } 3060 #endif 3061 3062 while (es->s_last_orphan) { 3063 struct inode *inode; 3064 3065 /* 3066 * We may have encountered an error during cleanup; if 3067 * so, skip the rest. 3068 */ 3069 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3070 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3071 es->s_last_orphan = 0; 3072 break; 3073 } 3074 3075 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 3076 if (IS_ERR(inode)) { 3077 es->s_last_orphan = 0; 3078 break; 3079 } 3080 3081 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 3082 dquot_initialize(inode); 3083 if (inode->i_nlink) { 3084 if (test_opt(sb, DEBUG)) 3085 ext4_msg(sb, KERN_DEBUG, 3086 "%s: truncating inode %lu to %lld bytes", 3087 __func__, inode->i_ino, inode->i_size); 3088 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 3089 inode->i_ino, inode->i_size); 3090 inode_lock(inode); 3091 truncate_inode_pages(inode->i_mapping, inode->i_size); 3092 ret = ext4_truncate(inode); 3093 if (ret) { 3094 /* 3095 * We need to clean up the in-core orphan list 3096 * manually if ext4_truncate() failed to get a 3097 * transaction handle. 3098 */ 3099 ext4_orphan_del(NULL, inode); 3100 ext4_std_error(inode->i_sb, ret); 3101 } 3102 inode_unlock(inode); 3103 nr_truncates++; 3104 } else { 3105 if (test_opt(sb, DEBUG)) 3106 ext4_msg(sb, KERN_DEBUG, 3107 "%s: deleting unreferenced inode %lu", 3108 __func__, inode->i_ino); 3109 jbd_debug(2, "deleting unreferenced inode %lu\n", 3110 inode->i_ino); 3111 nr_orphans++; 3112 } 3113 iput(inode); /* The delete magic happens here! */ 3114 } 3115 3116 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 3117 3118 if (nr_orphans) 3119 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 3120 PLURAL(nr_orphans)); 3121 if (nr_truncates) 3122 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 3123 PLURAL(nr_truncates)); 3124 #ifdef CONFIG_QUOTA 3125 /* Turn off quotas if they were enabled for orphan cleanup */ 3126 if (quota_update) { 3127 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3128 if (sb_dqopt(sb)->files[i]) 3129 dquot_quota_off(sb, i); 3130 } 3131 } 3132 #endif 3133 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 3134 } 3135 3136 /* 3137 * Maximal extent format file size. 3138 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3139 * extent format containers, within a sector_t, and within i_blocks 3140 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3141 * so that won't be a limiting factor. 3142 * 3143 * However there is other limiting factor. We do store extents in the form 3144 * of starting block and length, hence the resulting length of the extent 3145 * covering maximum file size must fit into on-disk format containers as 3146 * well. Given that length is always by 1 unit bigger than max unit (because 3147 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3148 * 3149 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3150 */ 3151 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3152 { 3153 loff_t res; 3154 loff_t upper_limit = MAX_LFS_FILESIZE; 3155 3156 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3157 3158 if (!has_huge_files) { 3159 upper_limit = (1LL << 32) - 1; 3160 3161 /* total blocks in file system block size */ 3162 upper_limit >>= (blkbits - 9); 3163 upper_limit <<= blkbits; 3164 } 3165 3166 /* 3167 * 32-bit extent-start container, ee_block. We lower the maxbytes 3168 * by one fs block, so ee_len can cover the extent of maximum file 3169 * size 3170 */ 3171 res = (1LL << 32) - 1; 3172 res <<= blkbits; 3173 3174 /* Sanity check against vm- & vfs- imposed limits */ 3175 if (res > upper_limit) 3176 res = upper_limit; 3177 3178 return res; 3179 } 3180 3181 /* 3182 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3183 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3184 * We need to be 1 filesystem block less than the 2^48 sector limit. 3185 */ 3186 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3187 { 3188 loff_t res = EXT4_NDIR_BLOCKS; 3189 int meta_blocks; 3190 loff_t upper_limit; 3191 /* This is calculated to be the largest file size for a dense, block 3192 * mapped file such that the file's total number of 512-byte sectors, 3193 * including data and all indirect blocks, does not exceed (2^48 - 1). 3194 * 3195 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3196 * number of 512-byte sectors of the file. 3197 */ 3198 3199 if (!has_huge_files) { 3200 /* 3201 * !has_huge_files or implies that the inode i_block field 3202 * represents total file blocks in 2^32 512-byte sectors == 3203 * size of vfs inode i_blocks * 8 3204 */ 3205 upper_limit = (1LL << 32) - 1; 3206 3207 /* total blocks in file system block size */ 3208 upper_limit >>= (bits - 9); 3209 3210 } else { 3211 /* 3212 * We use 48 bit ext4_inode i_blocks 3213 * With EXT4_HUGE_FILE_FL set the i_blocks 3214 * represent total number of blocks in 3215 * file system block size 3216 */ 3217 upper_limit = (1LL << 48) - 1; 3218 3219 } 3220 3221 /* indirect blocks */ 3222 meta_blocks = 1; 3223 /* double indirect blocks */ 3224 meta_blocks += 1 + (1LL << (bits-2)); 3225 /* tripple indirect blocks */ 3226 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3227 3228 upper_limit -= meta_blocks; 3229 upper_limit <<= bits; 3230 3231 res += 1LL << (bits-2); 3232 res += 1LL << (2*(bits-2)); 3233 res += 1LL << (3*(bits-2)); 3234 res <<= bits; 3235 if (res > upper_limit) 3236 res = upper_limit; 3237 3238 if (res > MAX_LFS_FILESIZE) 3239 res = MAX_LFS_FILESIZE; 3240 3241 return res; 3242 } 3243 3244 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3245 ext4_fsblk_t logical_sb_block, int nr) 3246 { 3247 struct ext4_sb_info *sbi = EXT4_SB(sb); 3248 ext4_group_t bg, first_meta_bg; 3249 int has_super = 0; 3250 3251 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3252 3253 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3254 return logical_sb_block + nr + 1; 3255 bg = sbi->s_desc_per_block * nr; 3256 if (ext4_bg_has_super(sb, bg)) 3257 has_super = 1; 3258 3259 /* 3260 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3261 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3262 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3263 * compensate. 3264 */ 3265 if (sb->s_blocksize == 1024 && nr == 0 && 3266 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3267 has_super++; 3268 3269 return (has_super + ext4_group_first_block_no(sb, bg)); 3270 } 3271 3272 /** 3273 * ext4_get_stripe_size: Get the stripe size. 3274 * @sbi: In memory super block info 3275 * 3276 * If we have specified it via mount option, then 3277 * use the mount option value. If the value specified at mount time is 3278 * greater than the blocks per group use the super block value. 3279 * If the super block value is greater than blocks per group return 0. 3280 * Allocator needs it be less than blocks per group. 3281 * 3282 */ 3283 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3284 { 3285 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3286 unsigned long stripe_width = 3287 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3288 int ret; 3289 3290 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3291 ret = sbi->s_stripe; 3292 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3293 ret = stripe_width; 3294 else if (stride && stride <= sbi->s_blocks_per_group) 3295 ret = stride; 3296 else 3297 ret = 0; 3298 3299 /* 3300 * If the stripe width is 1, this makes no sense and 3301 * we set it to 0 to turn off stripe handling code. 3302 */ 3303 if (ret <= 1) 3304 ret = 0; 3305 3306 return ret; 3307 } 3308 3309 /* 3310 * Check whether this filesystem can be mounted based on 3311 * the features present and the RDONLY/RDWR mount requested. 3312 * Returns 1 if this filesystem can be mounted as requested, 3313 * 0 if it cannot be. 3314 */ 3315 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3316 { 3317 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3318 ext4_msg(sb, KERN_ERR, 3319 "Couldn't mount because of " 3320 "unsupported optional features (%x)", 3321 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3322 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3323 return 0; 3324 } 3325 3326 #ifndef CONFIG_UNICODE 3327 if (ext4_has_feature_casefold(sb)) { 3328 ext4_msg(sb, KERN_ERR, 3329 "Filesystem with casefold feature cannot be " 3330 "mounted without CONFIG_UNICODE"); 3331 return 0; 3332 } 3333 #endif 3334 3335 if (readonly) 3336 return 1; 3337 3338 if (ext4_has_feature_readonly(sb)) { 3339 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3340 sb->s_flags |= SB_RDONLY; 3341 return 1; 3342 } 3343 3344 /* Check that feature set is OK for a read-write mount */ 3345 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3346 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3347 "unsupported optional features (%x)", 3348 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3349 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3350 return 0; 3351 } 3352 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3353 ext4_msg(sb, KERN_ERR, 3354 "Can't support bigalloc feature without " 3355 "extents feature\n"); 3356 return 0; 3357 } 3358 3359 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3360 if (!readonly && (ext4_has_feature_quota(sb) || 3361 ext4_has_feature_project(sb))) { 3362 ext4_msg(sb, KERN_ERR, 3363 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3364 return 0; 3365 } 3366 #endif /* CONFIG_QUOTA */ 3367 return 1; 3368 } 3369 3370 /* 3371 * This function is called once a day if we have errors logged 3372 * on the file system 3373 */ 3374 static void print_daily_error_info(struct timer_list *t) 3375 { 3376 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3377 struct super_block *sb = sbi->s_sb; 3378 struct ext4_super_block *es = sbi->s_es; 3379 3380 if (es->s_error_count) 3381 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3382 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3383 le32_to_cpu(es->s_error_count)); 3384 if (es->s_first_error_time) { 3385 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3386 sb->s_id, 3387 ext4_get_tstamp(es, s_first_error_time), 3388 (int) sizeof(es->s_first_error_func), 3389 es->s_first_error_func, 3390 le32_to_cpu(es->s_first_error_line)); 3391 if (es->s_first_error_ino) 3392 printk(KERN_CONT ": inode %u", 3393 le32_to_cpu(es->s_first_error_ino)); 3394 if (es->s_first_error_block) 3395 printk(KERN_CONT ": block %llu", (unsigned long long) 3396 le64_to_cpu(es->s_first_error_block)); 3397 printk(KERN_CONT "\n"); 3398 } 3399 if (es->s_last_error_time) { 3400 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3401 sb->s_id, 3402 ext4_get_tstamp(es, s_last_error_time), 3403 (int) sizeof(es->s_last_error_func), 3404 es->s_last_error_func, 3405 le32_to_cpu(es->s_last_error_line)); 3406 if (es->s_last_error_ino) 3407 printk(KERN_CONT ": inode %u", 3408 le32_to_cpu(es->s_last_error_ino)); 3409 if (es->s_last_error_block) 3410 printk(KERN_CONT ": block %llu", (unsigned long long) 3411 le64_to_cpu(es->s_last_error_block)); 3412 printk(KERN_CONT "\n"); 3413 } 3414 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3415 } 3416 3417 /* Find next suitable group and run ext4_init_inode_table */ 3418 static int ext4_run_li_request(struct ext4_li_request *elr) 3419 { 3420 struct ext4_group_desc *gdp = NULL; 3421 struct super_block *sb = elr->lr_super; 3422 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3423 ext4_group_t group = elr->lr_next_group; 3424 unsigned long timeout = 0; 3425 unsigned int prefetch_ios = 0; 3426 int ret = 0; 3427 3428 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3429 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3430 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3431 if (prefetch_ios) 3432 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3433 prefetch_ios); 3434 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3435 prefetch_ios); 3436 if (group >= elr->lr_next_group) { 3437 ret = 1; 3438 if (elr->lr_first_not_zeroed != ngroups && 3439 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3440 elr->lr_next_group = elr->lr_first_not_zeroed; 3441 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3442 ret = 0; 3443 } 3444 } 3445 return ret; 3446 } 3447 3448 for (; group < ngroups; group++) { 3449 gdp = ext4_get_group_desc(sb, group, NULL); 3450 if (!gdp) { 3451 ret = 1; 3452 break; 3453 } 3454 3455 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3456 break; 3457 } 3458 3459 if (group >= ngroups) 3460 ret = 1; 3461 3462 if (!ret) { 3463 timeout = jiffies; 3464 ret = ext4_init_inode_table(sb, group, 3465 elr->lr_timeout ? 0 : 1); 3466 trace_ext4_lazy_itable_init(sb, group); 3467 if (elr->lr_timeout == 0) { 3468 timeout = (jiffies - timeout) * 3469 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3470 elr->lr_timeout = timeout; 3471 } 3472 elr->lr_next_sched = jiffies + elr->lr_timeout; 3473 elr->lr_next_group = group + 1; 3474 } 3475 return ret; 3476 } 3477 3478 /* 3479 * Remove lr_request from the list_request and free the 3480 * request structure. Should be called with li_list_mtx held 3481 */ 3482 static void ext4_remove_li_request(struct ext4_li_request *elr) 3483 { 3484 if (!elr) 3485 return; 3486 3487 list_del(&elr->lr_request); 3488 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3489 kfree(elr); 3490 } 3491 3492 static void ext4_unregister_li_request(struct super_block *sb) 3493 { 3494 mutex_lock(&ext4_li_mtx); 3495 if (!ext4_li_info) { 3496 mutex_unlock(&ext4_li_mtx); 3497 return; 3498 } 3499 3500 mutex_lock(&ext4_li_info->li_list_mtx); 3501 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3502 mutex_unlock(&ext4_li_info->li_list_mtx); 3503 mutex_unlock(&ext4_li_mtx); 3504 } 3505 3506 static struct task_struct *ext4_lazyinit_task; 3507 3508 /* 3509 * This is the function where ext4lazyinit thread lives. It walks 3510 * through the request list searching for next scheduled filesystem. 3511 * When such a fs is found, run the lazy initialization request 3512 * (ext4_rn_li_request) and keep track of the time spend in this 3513 * function. Based on that time we compute next schedule time of 3514 * the request. When walking through the list is complete, compute 3515 * next waking time and put itself into sleep. 3516 */ 3517 static int ext4_lazyinit_thread(void *arg) 3518 { 3519 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3520 struct list_head *pos, *n; 3521 struct ext4_li_request *elr; 3522 unsigned long next_wakeup, cur; 3523 3524 BUG_ON(NULL == eli); 3525 3526 cont_thread: 3527 while (true) { 3528 next_wakeup = MAX_JIFFY_OFFSET; 3529 3530 mutex_lock(&eli->li_list_mtx); 3531 if (list_empty(&eli->li_request_list)) { 3532 mutex_unlock(&eli->li_list_mtx); 3533 goto exit_thread; 3534 } 3535 list_for_each_safe(pos, n, &eli->li_request_list) { 3536 int err = 0; 3537 int progress = 0; 3538 elr = list_entry(pos, struct ext4_li_request, 3539 lr_request); 3540 3541 if (time_before(jiffies, elr->lr_next_sched)) { 3542 if (time_before(elr->lr_next_sched, next_wakeup)) 3543 next_wakeup = elr->lr_next_sched; 3544 continue; 3545 } 3546 if (down_read_trylock(&elr->lr_super->s_umount)) { 3547 if (sb_start_write_trylock(elr->lr_super)) { 3548 progress = 1; 3549 /* 3550 * We hold sb->s_umount, sb can not 3551 * be removed from the list, it is 3552 * now safe to drop li_list_mtx 3553 */ 3554 mutex_unlock(&eli->li_list_mtx); 3555 err = ext4_run_li_request(elr); 3556 sb_end_write(elr->lr_super); 3557 mutex_lock(&eli->li_list_mtx); 3558 n = pos->next; 3559 } 3560 up_read((&elr->lr_super->s_umount)); 3561 } 3562 /* error, remove the lazy_init job */ 3563 if (err) { 3564 ext4_remove_li_request(elr); 3565 continue; 3566 } 3567 if (!progress) { 3568 elr->lr_next_sched = jiffies + 3569 (prandom_u32() 3570 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3571 } 3572 if (time_before(elr->lr_next_sched, next_wakeup)) 3573 next_wakeup = elr->lr_next_sched; 3574 } 3575 mutex_unlock(&eli->li_list_mtx); 3576 3577 try_to_freeze(); 3578 3579 cur = jiffies; 3580 if ((time_after_eq(cur, next_wakeup)) || 3581 (MAX_JIFFY_OFFSET == next_wakeup)) { 3582 cond_resched(); 3583 continue; 3584 } 3585 3586 schedule_timeout_interruptible(next_wakeup - cur); 3587 3588 if (kthread_should_stop()) { 3589 ext4_clear_request_list(); 3590 goto exit_thread; 3591 } 3592 } 3593 3594 exit_thread: 3595 /* 3596 * It looks like the request list is empty, but we need 3597 * to check it under the li_list_mtx lock, to prevent any 3598 * additions into it, and of course we should lock ext4_li_mtx 3599 * to atomically free the list and ext4_li_info, because at 3600 * this point another ext4 filesystem could be registering 3601 * new one. 3602 */ 3603 mutex_lock(&ext4_li_mtx); 3604 mutex_lock(&eli->li_list_mtx); 3605 if (!list_empty(&eli->li_request_list)) { 3606 mutex_unlock(&eli->li_list_mtx); 3607 mutex_unlock(&ext4_li_mtx); 3608 goto cont_thread; 3609 } 3610 mutex_unlock(&eli->li_list_mtx); 3611 kfree(ext4_li_info); 3612 ext4_li_info = NULL; 3613 mutex_unlock(&ext4_li_mtx); 3614 3615 return 0; 3616 } 3617 3618 static void ext4_clear_request_list(void) 3619 { 3620 struct list_head *pos, *n; 3621 struct ext4_li_request *elr; 3622 3623 mutex_lock(&ext4_li_info->li_list_mtx); 3624 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3625 elr = list_entry(pos, struct ext4_li_request, 3626 lr_request); 3627 ext4_remove_li_request(elr); 3628 } 3629 mutex_unlock(&ext4_li_info->li_list_mtx); 3630 } 3631 3632 static int ext4_run_lazyinit_thread(void) 3633 { 3634 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3635 ext4_li_info, "ext4lazyinit"); 3636 if (IS_ERR(ext4_lazyinit_task)) { 3637 int err = PTR_ERR(ext4_lazyinit_task); 3638 ext4_clear_request_list(); 3639 kfree(ext4_li_info); 3640 ext4_li_info = NULL; 3641 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3642 "initialization thread\n", 3643 err); 3644 return err; 3645 } 3646 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3647 return 0; 3648 } 3649 3650 /* 3651 * Check whether it make sense to run itable init. thread or not. 3652 * If there is at least one uninitialized inode table, return 3653 * corresponding group number, else the loop goes through all 3654 * groups and return total number of groups. 3655 */ 3656 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3657 { 3658 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3659 struct ext4_group_desc *gdp = NULL; 3660 3661 if (!ext4_has_group_desc_csum(sb)) 3662 return ngroups; 3663 3664 for (group = 0; group < ngroups; group++) { 3665 gdp = ext4_get_group_desc(sb, group, NULL); 3666 if (!gdp) 3667 continue; 3668 3669 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3670 break; 3671 } 3672 3673 return group; 3674 } 3675 3676 static int ext4_li_info_new(void) 3677 { 3678 struct ext4_lazy_init *eli = NULL; 3679 3680 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3681 if (!eli) 3682 return -ENOMEM; 3683 3684 INIT_LIST_HEAD(&eli->li_request_list); 3685 mutex_init(&eli->li_list_mtx); 3686 3687 eli->li_state |= EXT4_LAZYINIT_QUIT; 3688 3689 ext4_li_info = eli; 3690 3691 return 0; 3692 } 3693 3694 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3695 ext4_group_t start) 3696 { 3697 struct ext4_li_request *elr; 3698 3699 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3700 if (!elr) 3701 return NULL; 3702 3703 elr->lr_super = sb; 3704 elr->lr_first_not_zeroed = start; 3705 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3706 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3707 elr->lr_next_group = start; 3708 } else { 3709 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3710 } 3711 3712 /* 3713 * Randomize first schedule time of the request to 3714 * spread the inode table initialization requests 3715 * better. 3716 */ 3717 elr->lr_next_sched = jiffies + (prandom_u32() % 3718 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3719 return elr; 3720 } 3721 3722 int ext4_register_li_request(struct super_block *sb, 3723 ext4_group_t first_not_zeroed) 3724 { 3725 struct ext4_sb_info *sbi = EXT4_SB(sb); 3726 struct ext4_li_request *elr = NULL; 3727 ext4_group_t ngroups = sbi->s_groups_count; 3728 int ret = 0; 3729 3730 mutex_lock(&ext4_li_mtx); 3731 if (sbi->s_li_request != NULL) { 3732 /* 3733 * Reset timeout so it can be computed again, because 3734 * s_li_wait_mult might have changed. 3735 */ 3736 sbi->s_li_request->lr_timeout = 0; 3737 goto out; 3738 } 3739 3740 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3741 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3742 !test_opt(sb, INIT_INODE_TABLE))) 3743 goto out; 3744 3745 elr = ext4_li_request_new(sb, first_not_zeroed); 3746 if (!elr) { 3747 ret = -ENOMEM; 3748 goto out; 3749 } 3750 3751 if (NULL == ext4_li_info) { 3752 ret = ext4_li_info_new(); 3753 if (ret) 3754 goto out; 3755 } 3756 3757 mutex_lock(&ext4_li_info->li_list_mtx); 3758 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3759 mutex_unlock(&ext4_li_info->li_list_mtx); 3760 3761 sbi->s_li_request = elr; 3762 /* 3763 * set elr to NULL here since it has been inserted to 3764 * the request_list and the removal and free of it is 3765 * handled by ext4_clear_request_list from now on. 3766 */ 3767 elr = NULL; 3768 3769 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3770 ret = ext4_run_lazyinit_thread(); 3771 if (ret) 3772 goto out; 3773 } 3774 out: 3775 mutex_unlock(&ext4_li_mtx); 3776 if (ret) 3777 kfree(elr); 3778 return ret; 3779 } 3780 3781 /* 3782 * We do not need to lock anything since this is called on 3783 * module unload. 3784 */ 3785 static void ext4_destroy_lazyinit_thread(void) 3786 { 3787 /* 3788 * If thread exited earlier 3789 * there's nothing to be done. 3790 */ 3791 if (!ext4_li_info || !ext4_lazyinit_task) 3792 return; 3793 3794 kthread_stop(ext4_lazyinit_task); 3795 } 3796 3797 static int set_journal_csum_feature_set(struct super_block *sb) 3798 { 3799 int ret = 1; 3800 int compat, incompat; 3801 struct ext4_sb_info *sbi = EXT4_SB(sb); 3802 3803 if (ext4_has_metadata_csum(sb)) { 3804 /* journal checksum v3 */ 3805 compat = 0; 3806 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3807 } else { 3808 /* journal checksum v1 */ 3809 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3810 incompat = 0; 3811 } 3812 3813 jbd2_journal_clear_features(sbi->s_journal, 3814 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3815 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3816 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3817 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3818 ret = jbd2_journal_set_features(sbi->s_journal, 3819 compat, 0, 3820 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3821 incompat); 3822 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3823 ret = jbd2_journal_set_features(sbi->s_journal, 3824 compat, 0, 3825 incompat); 3826 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3827 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3828 } else { 3829 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3830 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3831 } 3832 3833 return ret; 3834 } 3835 3836 /* 3837 * Note: calculating the overhead so we can be compatible with 3838 * historical BSD practice is quite difficult in the face of 3839 * clusters/bigalloc. This is because multiple metadata blocks from 3840 * different block group can end up in the same allocation cluster. 3841 * Calculating the exact overhead in the face of clustered allocation 3842 * requires either O(all block bitmaps) in memory or O(number of block 3843 * groups**2) in time. We will still calculate the superblock for 3844 * older file systems --- and if we come across with a bigalloc file 3845 * system with zero in s_overhead_clusters the estimate will be close to 3846 * correct especially for very large cluster sizes --- but for newer 3847 * file systems, it's better to calculate this figure once at mkfs 3848 * time, and store it in the superblock. If the superblock value is 3849 * present (even for non-bigalloc file systems), we will use it. 3850 */ 3851 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3852 char *buf) 3853 { 3854 struct ext4_sb_info *sbi = EXT4_SB(sb); 3855 struct ext4_group_desc *gdp; 3856 ext4_fsblk_t first_block, last_block, b; 3857 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3858 int s, j, count = 0; 3859 3860 if (!ext4_has_feature_bigalloc(sb)) 3861 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3862 sbi->s_itb_per_group + 2); 3863 3864 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3865 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3866 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3867 for (i = 0; i < ngroups; i++) { 3868 gdp = ext4_get_group_desc(sb, i, NULL); 3869 b = ext4_block_bitmap(sb, gdp); 3870 if (b >= first_block && b <= last_block) { 3871 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3872 count++; 3873 } 3874 b = ext4_inode_bitmap(sb, gdp); 3875 if (b >= first_block && b <= last_block) { 3876 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3877 count++; 3878 } 3879 b = ext4_inode_table(sb, gdp); 3880 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3881 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3882 int c = EXT4_B2C(sbi, b - first_block); 3883 ext4_set_bit(c, buf); 3884 count++; 3885 } 3886 if (i != grp) 3887 continue; 3888 s = 0; 3889 if (ext4_bg_has_super(sb, grp)) { 3890 ext4_set_bit(s++, buf); 3891 count++; 3892 } 3893 j = ext4_bg_num_gdb(sb, grp); 3894 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3895 ext4_error(sb, "Invalid number of block group " 3896 "descriptor blocks: %d", j); 3897 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3898 } 3899 count += j; 3900 for (; j > 0; j--) 3901 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3902 } 3903 if (!count) 3904 return 0; 3905 return EXT4_CLUSTERS_PER_GROUP(sb) - 3906 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3907 } 3908 3909 /* 3910 * Compute the overhead and stash it in sbi->s_overhead 3911 */ 3912 int ext4_calculate_overhead(struct super_block *sb) 3913 { 3914 struct ext4_sb_info *sbi = EXT4_SB(sb); 3915 struct ext4_super_block *es = sbi->s_es; 3916 struct inode *j_inode; 3917 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3918 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3919 ext4_fsblk_t overhead = 0; 3920 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3921 3922 if (!buf) 3923 return -ENOMEM; 3924 3925 /* 3926 * Compute the overhead (FS structures). This is constant 3927 * for a given filesystem unless the number of block groups 3928 * changes so we cache the previous value until it does. 3929 */ 3930 3931 /* 3932 * All of the blocks before first_data_block are overhead 3933 */ 3934 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3935 3936 /* 3937 * Add the overhead found in each block group 3938 */ 3939 for (i = 0; i < ngroups; i++) { 3940 int blks; 3941 3942 blks = count_overhead(sb, i, buf); 3943 overhead += blks; 3944 if (blks) 3945 memset(buf, 0, PAGE_SIZE); 3946 cond_resched(); 3947 } 3948 3949 /* 3950 * Add the internal journal blocks whether the journal has been 3951 * loaded or not 3952 */ 3953 if (sbi->s_journal && !sbi->s_journal_bdev) 3954 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3955 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3956 /* j_inum for internal journal is non-zero */ 3957 j_inode = ext4_get_journal_inode(sb, j_inum); 3958 if (j_inode) { 3959 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3960 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3961 iput(j_inode); 3962 } else { 3963 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3964 } 3965 } 3966 sbi->s_overhead = overhead; 3967 smp_wmb(); 3968 free_page((unsigned long) buf); 3969 return 0; 3970 } 3971 3972 static void ext4_set_resv_clusters(struct super_block *sb) 3973 { 3974 ext4_fsblk_t resv_clusters; 3975 struct ext4_sb_info *sbi = EXT4_SB(sb); 3976 3977 /* 3978 * There's no need to reserve anything when we aren't using extents. 3979 * The space estimates are exact, there are no unwritten extents, 3980 * hole punching doesn't need new metadata... This is needed especially 3981 * to keep ext2/3 backward compatibility. 3982 */ 3983 if (!ext4_has_feature_extents(sb)) 3984 return; 3985 /* 3986 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3987 * This should cover the situations where we can not afford to run 3988 * out of space like for example punch hole, or converting 3989 * unwritten extents in delalloc path. In most cases such 3990 * allocation would require 1, or 2 blocks, higher numbers are 3991 * very rare. 3992 */ 3993 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3994 sbi->s_cluster_bits); 3995 3996 do_div(resv_clusters, 50); 3997 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3998 3999 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4000 } 4001 4002 static const char *ext4_quota_mode(struct super_block *sb) 4003 { 4004 #ifdef CONFIG_QUOTA 4005 if (!ext4_quota_capable(sb)) 4006 return "none"; 4007 4008 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4009 return "journalled"; 4010 else 4011 return "writeback"; 4012 #else 4013 return "disabled"; 4014 #endif 4015 } 4016 4017 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 4018 { 4019 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 4020 char *orig_data = kstrdup(data, GFP_KERNEL); 4021 struct buffer_head *bh, **group_desc; 4022 struct ext4_super_block *es = NULL; 4023 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4024 struct flex_groups **flex_groups; 4025 ext4_fsblk_t block; 4026 ext4_fsblk_t sb_block = get_sb_block(&data); 4027 ext4_fsblk_t logical_sb_block; 4028 unsigned long offset = 0; 4029 unsigned long def_mount_opts; 4030 struct inode *root; 4031 const char *descr; 4032 int ret = -ENOMEM; 4033 int blocksize, clustersize; 4034 unsigned int db_count; 4035 unsigned int i; 4036 int needs_recovery, has_huge_files; 4037 __u64 blocks_count; 4038 int err = 0; 4039 ext4_group_t first_not_zeroed; 4040 struct ext4_parsed_options parsed_opts; 4041 4042 /* Set defaults for the variables that will be set during parsing */ 4043 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4044 parsed_opts.journal_devnum = 0; 4045 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 4046 4047 if ((data && !orig_data) || !sbi) 4048 goto out_free_base; 4049 4050 sbi->s_daxdev = dax_dev; 4051 sbi->s_blockgroup_lock = 4052 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4053 if (!sbi->s_blockgroup_lock) 4054 goto out_free_base; 4055 4056 sb->s_fs_info = sbi; 4057 sbi->s_sb = sb; 4058 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4059 sbi->s_sb_block = sb_block; 4060 sbi->s_sectors_written_start = 4061 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4062 4063 /* Cleanup superblock name */ 4064 strreplace(sb->s_id, '/', '!'); 4065 4066 /* -EINVAL is default */ 4067 ret = -EINVAL; 4068 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4069 if (!blocksize) { 4070 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4071 goto out_fail; 4072 } 4073 4074 /* 4075 * The ext4 superblock will not be buffer aligned for other than 1kB 4076 * block sizes. We need to calculate the offset from buffer start. 4077 */ 4078 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4079 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4080 offset = do_div(logical_sb_block, blocksize); 4081 } else { 4082 logical_sb_block = sb_block; 4083 } 4084 4085 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4086 if (IS_ERR(bh)) { 4087 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4088 ret = PTR_ERR(bh); 4089 goto out_fail; 4090 } 4091 /* 4092 * Note: s_es must be initialized as soon as possible because 4093 * some ext4 macro-instructions depend on its value 4094 */ 4095 es = (struct ext4_super_block *) (bh->b_data + offset); 4096 sbi->s_es = es; 4097 sb->s_magic = le16_to_cpu(es->s_magic); 4098 if (sb->s_magic != EXT4_SUPER_MAGIC) 4099 goto cantfind_ext4; 4100 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4101 4102 /* Warn if metadata_csum and gdt_csum are both set. */ 4103 if (ext4_has_feature_metadata_csum(sb) && 4104 ext4_has_feature_gdt_csum(sb)) 4105 ext4_warning(sb, "metadata_csum and uninit_bg are " 4106 "redundant flags; please run fsck."); 4107 4108 /* Check for a known checksum algorithm */ 4109 if (!ext4_verify_csum_type(sb, es)) { 4110 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4111 "unknown checksum algorithm."); 4112 silent = 1; 4113 goto cantfind_ext4; 4114 } 4115 4116 /* Load the checksum driver */ 4117 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4118 if (IS_ERR(sbi->s_chksum_driver)) { 4119 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4120 ret = PTR_ERR(sbi->s_chksum_driver); 4121 sbi->s_chksum_driver = NULL; 4122 goto failed_mount; 4123 } 4124 4125 /* Check superblock checksum */ 4126 if (!ext4_superblock_csum_verify(sb, es)) { 4127 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4128 "invalid superblock checksum. Run e2fsck?"); 4129 silent = 1; 4130 ret = -EFSBADCRC; 4131 goto cantfind_ext4; 4132 } 4133 4134 /* Precompute checksum seed for all metadata */ 4135 if (ext4_has_feature_csum_seed(sb)) 4136 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4137 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4138 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4139 sizeof(es->s_uuid)); 4140 4141 /* Set defaults before we parse the mount options */ 4142 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4143 set_opt(sb, INIT_INODE_TABLE); 4144 if (def_mount_opts & EXT4_DEFM_DEBUG) 4145 set_opt(sb, DEBUG); 4146 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4147 set_opt(sb, GRPID); 4148 if (def_mount_opts & EXT4_DEFM_UID16) 4149 set_opt(sb, NO_UID32); 4150 /* xattr user namespace & acls are now defaulted on */ 4151 set_opt(sb, XATTR_USER); 4152 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4153 set_opt(sb, POSIX_ACL); 4154 #endif 4155 if (ext4_has_feature_fast_commit(sb)) 4156 set_opt2(sb, JOURNAL_FAST_COMMIT); 4157 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4158 if (ext4_has_metadata_csum(sb)) 4159 set_opt(sb, JOURNAL_CHECKSUM); 4160 4161 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4162 set_opt(sb, JOURNAL_DATA); 4163 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4164 set_opt(sb, ORDERED_DATA); 4165 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4166 set_opt(sb, WRITEBACK_DATA); 4167 4168 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4169 set_opt(sb, ERRORS_PANIC); 4170 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4171 set_opt(sb, ERRORS_CONT); 4172 else 4173 set_opt(sb, ERRORS_RO); 4174 /* block_validity enabled by default; disable with noblock_validity */ 4175 set_opt(sb, BLOCK_VALIDITY); 4176 if (def_mount_opts & EXT4_DEFM_DISCARD) 4177 set_opt(sb, DISCARD); 4178 4179 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4180 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4181 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4182 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4183 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4184 4185 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4186 set_opt(sb, BARRIER); 4187 4188 /* 4189 * enable delayed allocation by default 4190 * Use -o nodelalloc to turn it off 4191 */ 4192 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4193 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4194 set_opt(sb, DELALLOC); 4195 4196 /* 4197 * set default s_li_wait_mult for lazyinit, for the case there is 4198 * no mount option specified. 4199 */ 4200 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4201 4202 if (le32_to_cpu(es->s_log_block_size) > 4203 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4204 ext4_msg(sb, KERN_ERR, 4205 "Invalid log block size: %u", 4206 le32_to_cpu(es->s_log_block_size)); 4207 goto failed_mount; 4208 } 4209 if (le32_to_cpu(es->s_log_cluster_size) > 4210 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4211 ext4_msg(sb, KERN_ERR, 4212 "Invalid log cluster size: %u", 4213 le32_to_cpu(es->s_log_cluster_size)); 4214 goto failed_mount; 4215 } 4216 4217 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4218 4219 if (blocksize == PAGE_SIZE) 4220 set_opt(sb, DIOREAD_NOLOCK); 4221 4222 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4223 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4224 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4225 } else { 4226 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4227 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4228 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4229 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4230 sbi->s_first_ino); 4231 goto failed_mount; 4232 } 4233 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4234 (!is_power_of_2(sbi->s_inode_size)) || 4235 (sbi->s_inode_size > blocksize)) { 4236 ext4_msg(sb, KERN_ERR, 4237 "unsupported inode size: %d", 4238 sbi->s_inode_size); 4239 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4240 goto failed_mount; 4241 } 4242 /* 4243 * i_atime_extra is the last extra field available for 4244 * [acm]times in struct ext4_inode. Checking for that 4245 * field should suffice to ensure we have extra space 4246 * for all three. 4247 */ 4248 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4249 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4250 sb->s_time_gran = 1; 4251 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4252 } else { 4253 sb->s_time_gran = NSEC_PER_SEC; 4254 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4255 } 4256 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4257 } 4258 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4259 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4260 EXT4_GOOD_OLD_INODE_SIZE; 4261 if (ext4_has_feature_extra_isize(sb)) { 4262 unsigned v, max = (sbi->s_inode_size - 4263 EXT4_GOOD_OLD_INODE_SIZE); 4264 4265 v = le16_to_cpu(es->s_want_extra_isize); 4266 if (v > max) { 4267 ext4_msg(sb, KERN_ERR, 4268 "bad s_want_extra_isize: %d", v); 4269 goto failed_mount; 4270 } 4271 if (sbi->s_want_extra_isize < v) 4272 sbi->s_want_extra_isize = v; 4273 4274 v = le16_to_cpu(es->s_min_extra_isize); 4275 if (v > max) { 4276 ext4_msg(sb, KERN_ERR, 4277 "bad s_min_extra_isize: %d", v); 4278 goto failed_mount; 4279 } 4280 if (sbi->s_want_extra_isize < v) 4281 sbi->s_want_extra_isize = v; 4282 } 4283 } 4284 4285 if (sbi->s_es->s_mount_opts[0]) { 4286 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4287 sizeof(sbi->s_es->s_mount_opts), 4288 GFP_KERNEL); 4289 if (!s_mount_opts) 4290 goto failed_mount; 4291 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4292 ext4_msg(sb, KERN_WARNING, 4293 "failed to parse options in superblock: %s", 4294 s_mount_opts); 4295 } 4296 kfree(s_mount_opts); 4297 } 4298 sbi->s_def_mount_opt = sbi->s_mount_opt; 4299 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4300 goto failed_mount; 4301 4302 #ifdef CONFIG_UNICODE 4303 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4304 const struct ext4_sb_encodings *encoding_info; 4305 struct unicode_map *encoding; 4306 __u16 encoding_flags; 4307 4308 if (ext4_sb_read_encoding(es, &encoding_info, 4309 &encoding_flags)) { 4310 ext4_msg(sb, KERN_ERR, 4311 "Encoding requested by superblock is unknown"); 4312 goto failed_mount; 4313 } 4314 4315 encoding = utf8_load(encoding_info->version); 4316 if (IS_ERR(encoding)) { 4317 ext4_msg(sb, KERN_ERR, 4318 "can't mount with superblock charset: %s-%s " 4319 "not supported by the kernel. flags: 0x%x.", 4320 encoding_info->name, encoding_info->version, 4321 encoding_flags); 4322 goto failed_mount; 4323 } 4324 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4325 "%s-%s with flags 0x%hx", encoding_info->name, 4326 encoding_info->version?:"\b", encoding_flags); 4327 4328 sb->s_encoding = encoding; 4329 sb->s_encoding_flags = encoding_flags; 4330 } 4331 #endif 4332 4333 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4334 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4335 /* can't mount with both data=journal and dioread_nolock. */ 4336 clear_opt(sb, DIOREAD_NOLOCK); 4337 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4338 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4339 ext4_msg(sb, KERN_ERR, "can't mount with " 4340 "both data=journal and delalloc"); 4341 goto failed_mount; 4342 } 4343 if (test_opt(sb, DAX_ALWAYS)) { 4344 ext4_msg(sb, KERN_ERR, "can't mount with " 4345 "both data=journal and dax"); 4346 goto failed_mount; 4347 } 4348 if (ext4_has_feature_encrypt(sb)) { 4349 ext4_msg(sb, KERN_WARNING, 4350 "encrypted files will use data=ordered " 4351 "instead of data journaling mode"); 4352 } 4353 if (test_opt(sb, DELALLOC)) 4354 clear_opt(sb, DELALLOC); 4355 } else { 4356 sb->s_iflags |= SB_I_CGROUPWB; 4357 } 4358 4359 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4360 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4361 4362 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4363 (ext4_has_compat_features(sb) || 4364 ext4_has_ro_compat_features(sb) || 4365 ext4_has_incompat_features(sb))) 4366 ext4_msg(sb, KERN_WARNING, 4367 "feature flags set on rev 0 fs, " 4368 "running e2fsck is recommended"); 4369 4370 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4371 set_opt2(sb, HURD_COMPAT); 4372 if (ext4_has_feature_64bit(sb)) { 4373 ext4_msg(sb, KERN_ERR, 4374 "The Hurd can't support 64-bit file systems"); 4375 goto failed_mount; 4376 } 4377 4378 /* 4379 * ea_inode feature uses l_i_version field which is not 4380 * available in HURD_COMPAT mode. 4381 */ 4382 if (ext4_has_feature_ea_inode(sb)) { 4383 ext4_msg(sb, KERN_ERR, 4384 "ea_inode feature is not supported for Hurd"); 4385 goto failed_mount; 4386 } 4387 } 4388 4389 if (IS_EXT2_SB(sb)) { 4390 if (ext2_feature_set_ok(sb)) 4391 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4392 "using the ext4 subsystem"); 4393 else { 4394 /* 4395 * If we're probing be silent, if this looks like 4396 * it's actually an ext[34] filesystem. 4397 */ 4398 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4399 goto failed_mount; 4400 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4401 "to feature incompatibilities"); 4402 goto failed_mount; 4403 } 4404 } 4405 4406 if (IS_EXT3_SB(sb)) { 4407 if (ext3_feature_set_ok(sb)) 4408 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4409 "using the ext4 subsystem"); 4410 else { 4411 /* 4412 * If we're probing be silent, if this looks like 4413 * it's actually an ext4 filesystem. 4414 */ 4415 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4416 goto failed_mount; 4417 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4418 "to feature incompatibilities"); 4419 goto failed_mount; 4420 } 4421 } 4422 4423 /* 4424 * Check feature flags regardless of the revision level, since we 4425 * previously didn't change the revision level when setting the flags, 4426 * so there is a chance incompat flags are set on a rev 0 filesystem. 4427 */ 4428 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4429 goto failed_mount; 4430 4431 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4432 ext4_msg(sb, KERN_ERR, 4433 "Number of reserved GDT blocks insanely large: %d", 4434 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4435 goto failed_mount; 4436 } 4437 4438 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4439 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4440 4441 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4442 if (ext4_has_feature_inline_data(sb)) { 4443 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4444 " that may contain inline data"); 4445 goto failed_mount; 4446 } 4447 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4448 ext4_msg(sb, KERN_ERR, 4449 "DAX unsupported by block device."); 4450 goto failed_mount; 4451 } 4452 } 4453 4454 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4455 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4456 es->s_encryption_level); 4457 goto failed_mount; 4458 } 4459 4460 if (sb->s_blocksize != blocksize) { 4461 /* 4462 * bh must be released before kill_bdev(), otherwise 4463 * it won't be freed and its page also. kill_bdev() 4464 * is called by sb_set_blocksize(). 4465 */ 4466 brelse(bh); 4467 /* Validate the filesystem blocksize */ 4468 if (!sb_set_blocksize(sb, blocksize)) { 4469 ext4_msg(sb, KERN_ERR, "bad block size %d", 4470 blocksize); 4471 bh = NULL; 4472 goto failed_mount; 4473 } 4474 4475 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4476 offset = do_div(logical_sb_block, blocksize); 4477 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4478 if (IS_ERR(bh)) { 4479 ext4_msg(sb, KERN_ERR, 4480 "Can't read superblock on 2nd try"); 4481 ret = PTR_ERR(bh); 4482 bh = NULL; 4483 goto failed_mount; 4484 } 4485 es = (struct ext4_super_block *)(bh->b_data + offset); 4486 sbi->s_es = es; 4487 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4488 ext4_msg(sb, KERN_ERR, 4489 "Magic mismatch, very weird!"); 4490 goto failed_mount; 4491 } 4492 } 4493 4494 has_huge_files = ext4_has_feature_huge_file(sb); 4495 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4496 has_huge_files); 4497 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4498 4499 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4500 if (ext4_has_feature_64bit(sb)) { 4501 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4502 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4503 !is_power_of_2(sbi->s_desc_size)) { 4504 ext4_msg(sb, KERN_ERR, 4505 "unsupported descriptor size %lu", 4506 sbi->s_desc_size); 4507 goto failed_mount; 4508 } 4509 } else 4510 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4511 4512 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4513 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4514 4515 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4516 if (sbi->s_inodes_per_block == 0) 4517 goto cantfind_ext4; 4518 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4519 sbi->s_inodes_per_group > blocksize * 8) { 4520 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4521 sbi->s_inodes_per_group); 4522 goto failed_mount; 4523 } 4524 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4525 sbi->s_inodes_per_block; 4526 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4527 sbi->s_sbh = bh; 4528 sbi->s_mount_state = le16_to_cpu(es->s_state); 4529 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4530 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4531 4532 for (i = 0; i < 4; i++) 4533 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4534 sbi->s_def_hash_version = es->s_def_hash_version; 4535 if (ext4_has_feature_dir_index(sb)) { 4536 i = le32_to_cpu(es->s_flags); 4537 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4538 sbi->s_hash_unsigned = 3; 4539 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4540 #ifdef __CHAR_UNSIGNED__ 4541 if (!sb_rdonly(sb)) 4542 es->s_flags |= 4543 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4544 sbi->s_hash_unsigned = 3; 4545 #else 4546 if (!sb_rdonly(sb)) 4547 es->s_flags |= 4548 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4549 #endif 4550 } 4551 } 4552 4553 /* Handle clustersize */ 4554 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4555 if (ext4_has_feature_bigalloc(sb)) { 4556 if (clustersize < blocksize) { 4557 ext4_msg(sb, KERN_ERR, 4558 "cluster size (%d) smaller than " 4559 "block size (%d)", clustersize, blocksize); 4560 goto failed_mount; 4561 } 4562 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4563 le32_to_cpu(es->s_log_block_size); 4564 sbi->s_clusters_per_group = 4565 le32_to_cpu(es->s_clusters_per_group); 4566 if (sbi->s_clusters_per_group > blocksize * 8) { 4567 ext4_msg(sb, KERN_ERR, 4568 "#clusters per group too big: %lu", 4569 sbi->s_clusters_per_group); 4570 goto failed_mount; 4571 } 4572 if (sbi->s_blocks_per_group != 4573 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4574 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4575 "clusters per group (%lu) inconsistent", 4576 sbi->s_blocks_per_group, 4577 sbi->s_clusters_per_group); 4578 goto failed_mount; 4579 } 4580 } else { 4581 if (clustersize != blocksize) { 4582 ext4_msg(sb, KERN_ERR, 4583 "fragment/cluster size (%d) != " 4584 "block size (%d)", clustersize, blocksize); 4585 goto failed_mount; 4586 } 4587 if (sbi->s_blocks_per_group > blocksize * 8) { 4588 ext4_msg(sb, KERN_ERR, 4589 "#blocks per group too big: %lu", 4590 sbi->s_blocks_per_group); 4591 goto failed_mount; 4592 } 4593 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4594 sbi->s_cluster_bits = 0; 4595 } 4596 sbi->s_cluster_ratio = clustersize / blocksize; 4597 4598 /* Do we have standard group size of clustersize * 8 blocks ? */ 4599 if (sbi->s_blocks_per_group == clustersize << 3) 4600 set_opt2(sb, STD_GROUP_SIZE); 4601 4602 /* 4603 * Test whether we have more sectors than will fit in sector_t, 4604 * and whether the max offset is addressable by the page cache. 4605 */ 4606 err = generic_check_addressable(sb->s_blocksize_bits, 4607 ext4_blocks_count(es)); 4608 if (err) { 4609 ext4_msg(sb, KERN_ERR, "filesystem" 4610 " too large to mount safely on this system"); 4611 goto failed_mount; 4612 } 4613 4614 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4615 goto cantfind_ext4; 4616 4617 /* check blocks count against device size */ 4618 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4619 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4620 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4621 "exceeds size of device (%llu blocks)", 4622 ext4_blocks_count(es), blocks_count); 4623 goto failed_mount; 4624 } 4625 4626 /* 4627 * It makes no sense for the first data block to be beyond the end 4628 * of the filesystem. 4629 */ 4630 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4631 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4632 "block %u is beyond end of filesystem (%llu)", 4633 le32_to_cpu(es->s_first_data_block), 4634 ext4_blocks_count(es)); 4635 goto failed_mount; 4636 } 4637 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4638 (sbi->s_cluster_ratio == 1)) { 4639 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4640 "block is 0 with a 1k block and cluster size"); 4641 goto failed_mount; 4642 } 4643 4644 blocks_count = (ext4_blocks_count(es) - 4645 le32_to_cpu(es->s_first_data_block) + 4646 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4647 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4648 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4649 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4650 "(block count %llu, first data block %u, " 4651 "blocks per group %lu)", blocks_count, 4652 ext4_blocks_count(es), 4653 le32_to_cpu(es->s_first_data_block), 4654 EXT4_BLOCKS_PER_GROUP(sb)); 4655 goto failed_mount; 4656 } 4657 sbi->s_groups_count = blocks_count; 4658 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4659 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4660 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4661 le32_to_cpu(es->s_inodes_count)) { 4662 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4663 le32_to_cpu(es->s_inodes_count), 4664 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4665 ret = -EINVAL; 4666 goto failed_mount; 4667 } 4668 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4669 EXT4_DESC_PER_BLOCK(sb); 4670 if (ext4_has_feature_meta_bg(sb)) { 4671 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4672 ext4_msg(sb, KERN_WARNING, 4673 "first meta block group too large: %u " 4674 "(group descriptor block count %u)", 4675 le32_to_cpu(es->s_first_meta_bg), db_count); 4676 goto failed_mount; 4677 } 4678 } 4679 rcu_assign_pointer(sbi->s_group_desc, 4680 kvmalloc_array(db_count, 4681 sizeof(struct buffer_head *), 4682 GFP_KERNEL)); 4683 if (sbi->s_group_desc == NULL) { 4684 ext4_msg(sb, KERN_ERR, "not enough memory"); 4685 ret = -ENOMEM; 4686 goto failed_mount; 4687 } 4688 4689 bgl_lock_init(sbi->s_blockgroup_lock); 4690 4691 /* Pre-read the descriptors into the buffer cache */ 4692 for (i = 0; i < db_count; i++) { 4693 block = descriptor_loc(sb, logical_sb_block, i); 4694 ext4_sb_breadahead_unmovable(sb, block); 4695 } 4696 4697 for (i = 0; i < db_count; i++) { 4698 struct buffer_head *bh; 4699 4700 block = descriptor_loc(sb, logical_sb_block, i); 4701 bh = ext4_sb_bread_unmovable(sb, block); 4702 if (IS_ERR(bh)) { 4703 ext4_msg(sb, KERN_ERR, 4704 "can't read group descriptor %d", i); 4705 db_count = i; 4706 ret = PTR_ERR(bh); 4707 goto failed_mount2; 4708 } 4709 rcu_read_lock(); 4710 rcu_dereference(sbi->s_group_desc)[i] = bh; 4711 rcu_read_unlock(); 4712 } 4713 sbi->s_gdb_count = db_count; 4714 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4715 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4716 ret = -EFSCORRUPTED; 4717 goto failed_mount2; 4718 } 4719 4720 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4721 spin_lock_init(&sbi->s_error_lock); 4722 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4723 4724 /* Register extent status tree shrinker */ 4725 if (ext4_es_register_shrinker(sbi)) 4726 goto failed_mount3; 4727 4728 sbi->s_stripe = ext4_get_stripe_size(sbi); 4729 sbi->s_extent_max_zeroout_kb = 32; 4730 4731 /* 4732 * set up enough so that it can read an inode 4733 */ 4734 sb->s_op = &ext4_sops; 4735 sb->s_export_op = &ext4_export_ops; 4736 sb->s_xattr = ext4_xattr_handlers; 4737 #ifdef CONFIG_FS_ENCRYPTION 4738 sb->s_cop = &ext4_cryptops; 4739 #endif 4740 #ifdef CONFIG_FS_VERITY 4741 sb->s_vop = &ext4_verityops; 4742 #endif 4743 #ifdef CONFIG_QUOTA 4744 sb->dq_op = &ext4_quota_operations; 4745 if (ext4_has_feature_quota(sb)) 4746 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4747 else 4748 sb->s_qcop = &ext4_qctl_operations; 4749 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4750 #endif 4751 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4752 4753 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4754 mutex_init(&sbi->s_orphan_lock); 4755 4756 /* Initialize fast commit stuff */ 4757 atomic_set(&sbi->s_fc_subtid, 0); 4758 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4759 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4760 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4761 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4762 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4763 sbi->s_fc_bytes = 0; 4764 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4765 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4766 spin_lock_init(&sbi->s_fc_lock); 4767 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4768 sbi->s_fc_replay_state.fc_regions = NULL; 4769 sbi->s_fc_replay_state.fc_regions_size = 0; 4770 sbi->s_fc_replay_state.fc_regions_used = 0; 4771 sbi->s_fc_replay_state.fc_regions_valid = 0; 4772 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4773 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4774 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4775 4776 sb->s_root = NULL; 4777 4778 needs_recovery = (es->s_last_orphan != 0 || 4779 ext4_has_feature_journal_needs_recovery(sb)); 4780 4781 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4782 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4783 goto failed_mount3a; 4784 4785 /* 4786 * The first inode we look at is the journal inode. Don't try 4787 * root first: it may be modified in the journal! 4788 */ 4789 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4790 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4791 if (err) 4792 goto failed_mount3a; 4793 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4794 ext4_has_feature_journal_needs_recovery(sb)) { 4795 ext4_msg(sb, KERN_ERR, "required journal recovery " 4796 "suppressed and not mounted read-only"); 4797 goto failed_mount_wq; 4798 } else { 4799 /* Nojournal mode, all journal mount options are illegal */ 4800 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4801 ext4_msg(sb, KERN_ERR, "can't mount with " 4802 "journal_checksum, fs mounted w/o journal"); 4803 goto failed_mount_wq; 4804 } 4805 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4806 ext4_msg(sb, KERN_ERR, "can't mount with " 4807 "journal_async_commit, fs mounted w/o journal"); 4808 goto failed_mount_wq; 4809 } 4810 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4811 ext4_msg(sb, KERN_ERR, "can't mount with " 4812 "commit=%lu, fs mounted w/o journal", 4813 sbi->s_commit_interval / HZ); 4814 goto failed_mount_wq; 4815 } 4816 if (EXT4_MOUNT_DATA_FLAGS & 4817 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4818 ext4_msg(sb, KERN_ERR, "can't mount with " 4819 "data=, fs mounted w/o journal"); 4820 goto failed_mount_wq; 4821 } 4822 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4823 clear_opt(sb, JOURNAL_CHECKSUM); 4824 clear_opt(sb, DATA_FLAGS); 4825 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4826 sbi->s_journal = NULL; 4827 needs_recovery = 0; 4828 goto no_journal; 4829 } 4830 4831 if (ext4_has_feature_64bit(sb) && 4832 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4833 JBD2_FEATURE_INCOMPAT_64BIT)) { 4834 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4835 goto failed_mount_wq; 4836 } 4837 4838 if (!set_journal_csum_feature_set(sb)) { 4839 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4840 "feature set"); 4841 goto failed_mount_wq; 4842 } 4843 4844 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4845 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4846 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4847 ext4_msg(sb, KERN_ERR, 4848 "Failed to set fast commit journal feature"); 4849 goto failed_mount_wq; 4850 } 4851 4852 /* We have now updated the journal if required, so we can 4853 * validate the data journaling mode. */ 4854 switch (test_opt(sb, DATA_FLAGS)) { 4855 case 0: 4856 /* No mode set, assume a default based on the journal 4857 * capabilities: ORDERED_DATA if the journal can 4858 * cope, else JOURNAL_DATA 4859 */ 4860 if (jbd2_journal_check_available_features 4861 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4862 set_opt(sb, ORDERED_DATA); 4863 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4864 } else { 4865 set_opt(sb, JOURNAL_DATA); 4866 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4867 } 4868 break; 4869 4870 case EXT4_MOUNT_ORDERED_DATA: 4871 case EXT4_MOUNT_WRITEBACK_DATA: 4872 if (!jbd2_journal_check_available_features 4873 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4874 ext4_msg(sb, KERN_ERR, "Journal does not support " 4875 "requested data journaling mode"); 4876 goto failed_mount_wq; 4877 } 4878 break; 4879 default: 4880 break; 4881 } 4882 4883 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4884 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4885 ext4_msg(sb, KERN_ERR, "can't mount with " 4886 "journal_async_commit in data=ordered mode"); 4887 goto failed_mount_wq; 4888 } 4889 4890 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4891 4892 sbi->s_journal->j_submit_inode_data_buffers = 4893 ext4_journal_submit_inode_data_buffers; 4894 sbi->s_journal->j_finish_inode_data_buffers = 4895 ext4_journal_finish_inode_data_buffers; 4896 4897 no_journal: 4898 if (!test_opt(sb, NO_MBCACHE)) { 4899 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4900 if (!sbi->s_ea_block_cache) { 4901 ext4_msg(sb, KERN_ERR, 4902 "Failed to create ea_block_cache"); 4903 goto failed_mount_wq; 4904 } 4905 4906 if (ext4_has_feature_ea_inode(sb)) { 4907 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4908 if (!sbi->s_ea_inode_cache) { 4909 ext4_msg(sb, KERN_ERR, 4910 "Failed to create ea_inode_cache"); 4911 goto failed_mount_wq; 4912 } 4913 } 4914 } 4915 4916 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4917 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4918 goto failed_mount_wq; 4919 } 4920 4921 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4922 !ext4_has_feature_encrypt(sb)) { 4923 ext4_set_feature_encrypt(sb); 4924 ext4_commit_super(sb); 4925 } 4926 4927 /* 4928 * Get the # of file system overhead blocks from the 4929 * superblock if present. 4930 */ 4931 if (es->s_overhead_clusters) 4932 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4933 else { 4934 err = ext4_calculate_overhead(sb); 4935 if (err) 4936 goto failed_mount_wq; 4937 } 4938 4939 /* 4940 * The maximum number of concurrent works can be high and 4941 * concurrency isn't really necessary. Limit it to 1. 4942 */ 4943 EXT4_SB(sb)->rsv_conversion_wq = 4944 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4945 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4946 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4947 ret = -ENOMEM; 4948 goto failed_mount4; 4949 } 4950 4951 /* 4952 * The jbd2_journal_load will have done any necessary log recovery, 4953 * so we can safely mount the rest of the filesystem now. 4954 */ 4955 4956 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4957 if (IS_ERR(root)) { 4958 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4959 ret = PTR_ERR(root); 4960 root = NULL; 4961 goto failed_mount4; 4962 } 4963 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4964 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4965 iput(root); 4966 goto failed_mount4; 4967 } 4968 4969 sb->s_root = d_make_root(root); 4970 if (!sb->s_root) { 4971 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4972 ret = -ENOMEM; 4973 goto failed_mount4; 4974 } 4975 4976 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4977 if (ret == -EROFS) { 4978 sb->s_flags |= SB_RDONLY; 4979 ret = 0; 4980 } else if (ret) 4981 goto failed_mount4a; 4982 4983 ext4_set_resv_clusters(sb); 4984 4985 if (test_opt(sb, BLOCK_VALIDITY)) { 4986 err = ext4_setup_system_zone(sb); 4987 if (err) { 4988 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4989 "zone (%d)", err); 4990 goto failed_mount4a; 4991 } 4992 } 4993 ext4_fc_replay_cleanup(sb); 4994 4995 ext4_ext_init(sb); 4996 4997 /* 4998 * Enable optimize_scan if number of groups is > threshold. This can be 4999 * turned off by passing "mb_optimize_scan=0". This can also be 5000 * turned on forcefully by passing "mb_optimize_scan=1". 5001 */ 5002 if (parsed_opts.mb_optimize_scan == 1) 5003 set_opt2(sb, MB_OPTIMIZE_SCAN); 5004 else if (parsed_opts.mb_optimize_scan == 0) 5005 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5006 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5007 set_opt2(sb, MB_OPTIMIZE_SCAN); 5008 5009 err = ext4_mb_init(sb); 5010 if (err) { 5011 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5012 err); 5013 goto failed_mount5; 5014 } 5015 5016 /* 5017 * We can only set up the journal commit callback once 5018 * mballoc is initialized 5019 */ 5020 if (sbi->s_journal) 5021 sbi->s_journal->j_commit_callback = 5022 ext4_journal_commit_callback; 5023 5024 block = ext4_count_free_clusters(sb); 5025 ext4_free_blocks_count_set(sbi->s_es, 5026 EXT4_C2B(sbi, block)); 5027 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5028 GFP_KERNEL); 5029 if (!err) { 5030 unsigned long freei = ext4_count_free_inodes(sb); 5031 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5032 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5033 GFP_KERNEL); 5034 } 5035 if (!err) 5036 err = percpu_counter_init(&sbi->s_dirs_counter, 5037 ext4_count_dirs(sb), GFP_KERNEL); 5038 if (!err) 5039 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5040 GFP_KERNEL); 5041 if (!err) 5042 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5043 GFP_KERNEL); 5044 if (!err) 5045 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5046 5047 if (err) { 5048 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5049 goto failed_mount6; 5050 } 5051 5052 if (ext4_has_feature_flex_bg(sb)) 5053 if (!ext4_fill_flex_info(sb)) { 5054 ext4_msg(sb, KERN_ERR, 5055 "unable to initialize " 5056 "flex_bg meta info!"); 5057 ret = -ENOMEM; 5058 goto failed_mount6; 5059 } 5060 5061 err = ext4_register_li_request(sb, first_not_zeroed); 5062 if (err) 5063 goto failed_mount6; 5064 5065 err = ext4_register_sysfs(sb); 5066 if (err) 5067 goto failed_mount7; 5068 5069 #ifdef CONFIG_QUOTA 5070 /* Enable quota usage during mount. */ 5071 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5072 err = ext4_enable_quotas(sb); 5073 if (err) 5074 goto failed_mount8; 5075 } 5076 #endif /* CONFIG_QUOTA */ 5077 5078 /* 5079 * Save the original bdev mapping's wb_err value which could be 5080 * used to detect the metadata async write error. 5081 */ 5082 spin_lock_init(&sbi->s_bdev_wb_lock); 5083 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5084 &sbi->s_bdev_wb_err); 5085 sb->s_bdev->bd_super = sb; 5086 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5087 ext4_orphan_cleanup(sb, es); 5088 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5089 if (needs_recovery) { 5090 ext4_msg(sb, KERN_INFO, "recovery complete"); 5091 err = ext4_mark_recovery_complete(sb, es); 5092 if (err) 5093 goto failed_mount8; 5094 } 5095 if (EXT4_SB(sb)->s_journal) { 5096 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5097 descr = " journalled data mode"; 5098 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5099 descr = " ordered data mode"; 5100 else 5101 descr = " writeback data mode"; 5102 } else 5103 descr = "out journal"; 5104 5105 if (test_opt(sb, DISCARD)) { 5106 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5107 if (!blk_queue_discard(q)) 5108 ext4_msg(sb, KERN_WARNING, 5109 "mounting with \"discard\" option, but " 5110 "the device does not support discard"); 5111 } 5112 5113 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5114 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5115 "Opts: %.*s%s%s. Quota mode: %s.", descr, 5116 (int) sizeof(sbi->s_es->s_mount_opts), 5117 sbi->s_es->s_mount_opts, 5118 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 5119 ext4_quota_mode(sb)); 5120 5121 if (es->s_error_count) 5122 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5123 5124 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5125 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5126 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5127 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5128 atomic_set(&sbi->s_warning_count, 0); 5129 atomic_set(&sbi->s_msg_count, 0); 5130 5131 kfree(orig_data); 5132 return 0; 5133 5134 cantfind_ext4: 5135 if (!silent) 5136 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5137 goto failed_mount; 5138 5139 failed_mount8: 5140 ext4_unregister_sysfs(sb); 5141 kobject_put(&sbi->s_kobj); 5142 failed_mount7: 5143 ext4_unregister_li_request(sb); 5144 failed_mount6: 5145 ext4_mb_release(sb); 5146 rcu_read_lock(); 5147 flex_groups = rcu_dereference(sbi->s_flex_groups); 5148 if (flex_groups) { 5149 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5150 kvfree(flex_groups[i]); 5151 kvfree(flex_groups); 5152 } 5153 rcu_read_unlock(); 5154 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5155 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5156 percpu_counter_destroy(&sbi->s_dirs_counter); 5157 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5158 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5159 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5160 failed_mount5: 5161 ext4_ext_release(sb); 5162 ext4_release_system_zone(sb); 5163 failed_mount4a: 5164 dput(sb->s_root); 5165 sb->s_root = NULL; 5166 failed_mount4: 5167 ext4_msg(sb, KERN_ERR, "mount failed"); 5168 if (EXT4_SB(sb)->rsv_conversion_wq) 5169 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5170 failed_mount_wq: 5171 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5172 sbi->s_ea_inode_cache = NULL; 5173 5174 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5175 sbi->s_ea_block_cache = NULL; 5176 5177 if (sbi->s_journal) { 5178 jbd2_journal_destroy(sbi->s_journal); 5179 sbi->s_journal = NULL; 5180 } 5181 failed_mount3a: 5182 ext4_es_unregister_shrinker(sbi); 5183 failed_mount3: 5184 flush_work(&sbi->s_error_work); 5185 del_timer_sync(&sbi->s_err_report); 5186 ext4_stop_mmpd(sbi); 5187 failed_mount2: 5188 rcu_read_lock(); 5189 group_desc = rcu_dereference(sbi->s_group_desc); 5190 for (i = 0; i < db_count; i++) 5191 brelse(group_desc[i]); 5192 kvfree(group_desc); 5193 rcu_read_unlock(); 5194 failed_mount: 5195 if (sbi->s_chksum_driver) 5196 crypto_free_shash(sbi->s_chksum_driver); 5197 5198 #ifdef CONFIG_UNICODE 5199 utf8_unload(sb->s_encoding); 5200 #endif 5201 5202 #ifdef CONFIG_QUOTA 5203 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5204 kfree(get_qf_name(sb, sbi, i)); 5205 #endif 5206 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5207 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5208 brelse(bh); 5209 ext4_blkdev_remove(sbi); 5210 out_fail: 5211 sb->s_fs_info = NULL; 5212 kfree(sbi->s_blockgroup_lock); 5213 out_free_base: 5214 kfree(sbi); 5215 kfree(orig_data); 5216 fs_put_dax(dax_dev); 5217 return err ? err : ret; 5218 } 5219 5220 /* 5221 * Setup any per-fs journal parameters now. We'll do this both on 5222 * initial mount, once the journal has been initialised but before we've 5223 * done any recovery; and again on any subsequent remount. 5224 */ 5225 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5226 { 5227 struct ext4_sb_info *sbi = EXT4_SB(sb); 5228 5229 journal->j_commit_interval = sbi->s_commit_interval; 5230 journal->j_min_batch_time = sbi->s_min_batch_time; 5231 journal->j_max_batch_time = sbi->s_max_batch_time; 5232 ext4_fc_init(sb, journal); 5233 5234 write_lock(&journal->j_state_lock); 5235 if (test_opt(sb, BARRIER)) 5236 journal->j_flags |= JBD2_BARRIER; 5237 else 5238 journal->j_flags &= ~JBD2_BARRIER; 5239 if (test_opt(sb, DATA_ERR_ABORT)) 5240 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5241 else 5242 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5243 write_unlock(&journal->j_state_lock); 5244 } 5245 5246 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5247 unsigned int journal_inum) 5248 { 5249 struct inode *journal_inode; 5250 5251 /* 5252 * Test for the existence of a valid inode on disk. Bad things 5253 * happen if we iget() an unused inode, as the subsequent iput() 5254 * will try to delete it. 5255 */ 5256 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5257 if (IS_ERR(journal_inode)) { 5258 ext4_msg(sb, KERN_ERR, "no journal found"); 5259 return NULL; 5260 } 5261 if (!journal_inode->i_nlink) { 5262 make_bad_inode(journal_inode); 5263 iput(journal_inode); 5264 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5265 return NULL; 5266 } 5267 5268 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5269 journal_inode, journal_inode->i_size); 5270 if (!S_ISREG(journal_inode->i_mode)) { 5271 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5272 iput(journal_inode); 5273 return NULL; 5274 } 5275 return journal_inode; 5276 } 5277 5278 static journal_t *ext4_get_journal(struct super_block *sb, 5279 unsigned int journal_inum) 5280 { 5281 struct inode *journal_inode; 5282 journal_t *journal; 5283 5284 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5285 return NULL; 5286 5287 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5288 if (!journal_inode) 5289 return NULL; 5290 5291 journal = jbd2_journal_init_inode(journal_inode); 5292 if (!journal) { 5293 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5294 iput(journal_inode); 5295 return NULL; 5296 } 5297 journal->j_private = sb; 5298 ext4_init_journal_params(sb, journal); 5299 return journal; 5300 } 5301 5302 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5303 dev_t j_dev) 5304 { 5305 struct buffer_head *bh; 5306 journal_t *journal; 5307 ext4_fsblk_t start; 5308 ext4_fsblk_t len; 5309 int hblock, blocksize; 5310 ext4_fsblk_t sb_block; 5311 unsigned long offset; 5312 struct ext4_super_block *es; 5313 struct block_device *bdev; 5314 5315 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5316 return NULL; 5317 5318 bdev = ext4_blkdev_get(j_dev, sb); 5319 if (bdev == NULL) 5320 return NULL; 5321 5322 blocksize = sb->s_blocksize; 5323 hblock = bdev_logical_block_size(bdev); 5324 if (blocksize < hblock) { 5325 ext4_msg(sb, KERN_ERR, 5326 "blocksize too small for journal device"); 5327 goto out_bdev; 5328 } 5329 5330 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5331 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5332 set_blocksize(bdev, blocksize); 5333 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5334 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5335 "external journal"); 5336 goto out_bdev; 5337 } 5338 5339 es = (struct ext4_super_block *) (bh->b_data + offset); 5340 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5341 !(le32_to_cpu(es->s_feature_incompat) & 5342 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5343 ext4_msg(sb, KERN_ERR, "external journal has " 5344 "bad superblock"); 5345 brelse(bh); 5346 goto out_bdev; 5347 } 5348 5349 if ((le32_to_cpu(es->s_feature_ro_compat) & 5350 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5351 es->s_checksum != ext4_superblock_csum(sb, es)) { 5352 ext4_msg(sb, KERN_ERR, "external journal has " 5353 "corrupt superblock"); 5354 brelse(bh); 5355 goto out_bdev; 5356 } 5357 5358 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5359 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5360 brelse(bh); 5361 goto out_bdev; 5362 } 5363 5364 len = ext4_blocks_count(es); 5365 start = sb_block + 1; 5366 brelse(bh); /* we're done with the superblock */ 5367 5368 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5369 start, len, blocksize); 5370 if (!journal) { 5371 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5372 goto out_bdev; 5373 } 5374 journal->j_private = sb; 5375 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5376 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5377 goto out_journal; 5378 } 5379 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5380 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5381 "user (unsupported) - %d", 5382 be32_to_cpu(journal->j_superblock->s_nr_users)); 5383 goto out_journal; 5384 } 5385 EXT4_SB(sb)->s_journal_bdev = bdev; 5386 ext4_init_journal_params(sb, journal); 5387 return journal; 5388 5389 out_journal: 5390 jbd2_journal_destroy(journal); 5391 out_bdev: 5392 ext4_blkdev_put(bdev); 5393 return NULL; 5394 } 5395 5396 static int ext4_load_journal(struct super_block *sb, 5397 struct ext4_super_block *es, 5398 unsigned long journal_devnum) 5399 { 5400 journal_t *journal; 5401 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5402 dev_t journal_dev; 5403 int err = 0; 5404 int really_read_only; 5405 int journal_dev_ro; 5406 5407 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5408 return -EFSCORRUPTED; 5409 5410 if (journal_devnum && 5411 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5412 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5413 "numbers have changed"); 5414 journal_dev = new_decode_dev(journal_devnum); 5415 } else 5416 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5417 5418 if (journal_inum && journal_dev) { 5419 ext4_msg(sb, KERN_ERR, 5420 "filesystem has both journal inode and journal device!"); 5421 return -EINVAL; 5422 } 5423 5424 if (journal_inum) { 5425 journal = ext4_get_journal(sb, journal_inum); 5426 if (!journal) 5427 return -EINVAL; 5428 } else { 5429 journal = ext4_get_dev_journal(sb, journal_dev); 5430 if (!journal) 5431 return -EINVAL; 5432 } 5433 5434 journal_dev_ro = bdev_read_only(journal->j_dev); 5435 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5436 5437 if (journal_dev_ro && !sb_rdonly(sb)) { 5438 ext4_msg(sb, KERN_ERR, 5439 "journal device read-only, try mounting with '-o ro'"); 5440 err = -EROFS; 5441 goto err_out; 5442 } 5443 5444 /* 5445 * Are we loading a blank journal or performing recovery after a 5446 * crash? For recovery, we need to check in advance whether we 5447 * can get read-write access to the device. 5448 */ 5449 if (ext4_has_feature_journal_needs_recovery(sb)) { 5450 if (sb_rdonly(sb)) { 5451 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5452 "required on readonly filesystem"); 5453 if (really_read_only) { 5454 ext4_msg(sb, KERN_ERR, "write access " 5455 "unavailable, cannot proceed " 5456 "(try mounting with noload)"); 5457 err = -EROFS; 5458 goto err_out; 5459 } 5460 ext4_msg(sb, KERN_INFO, "write access will " 5461 "be enabled during recovery"); 5462 } 5463 } 5464 5465 if (!(journal->j_flags & JBD2_BARRIER)) 5466 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5467 5468 if (!ext4_has_feature_journal_needs_recovery(sb)) 5469 err = jbd2_journal_wipe(journal, !really_read_only); 5470 if (!err) { 5471 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5472 if (save) 5473 memcpy(save, ((char *) es) + 5474 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5475 err = jbd2_journal_load(journal); 5476 if (save) 5477 memcpy(((char *) es) + EXT4_S_ERR_START, 5478 save, EXT4_S_ERR_LEN); 5479 kfree(save); 5480 } 5481 5482 if (err) { 5483 ext4_msg(sb, KERN_ERR, "error loading journal"); 5484 goto err_out; 5485 } 5486 5487 EXT4_SB(sb)->s_journal = journal; 5488 err = ext4_clear_journal_err(sb, es); 5489 if (err) { 5490 EXT4_SB(sb)->s_journal = NULL; 5491 jbd2_journal_destroy(journal); 5492 return err; 5493 } 5494 5495 if (!really_read_only && journal_devnum && 5496 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5497 es->s_journal_dev = cpu_to_le32(journal_devnum); 5498 5499 /* Make sure we flush the recovery flag to disk. */ 5500 ext4_commit_super(sb); 5501 } 5502 5503 return 0; 5504 5505 err_out: 5506 jbd2_journal_destroy(journal); 5507 return err; 5508 } 5509 5510 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5511 static void ext4_update_super(struct super_block *sb) 5512 { 5513 struct ext4_sb_info *sbi = EXT4_SB(sb); 5514 struct ext4_super_block *es = sbi->s_es; 5515 struct buffer_head *sbh = sbi->s_sbh; 5516 5517 lock_buffer(sbh); 5518 /* 5519 * If the file system is mounted read-only, don't update the 5520 * superblock write time. This avoids updating the superblock 5521 * write time when we are mounting the root file system 5522 * read/only but we need to replay the journal; at that point, 5523 * for people who are east of GMT and who make their clock 5524 * tick in localtime for Windows bug-for-bug compatibility, 5525 * the clock is set in the future, and this will cause e2fsck 5526 * to complain and force a full file system check. 5527 */ 5528 if (!(sb->s_flags & SB_RDONLY)) 5529 ext4_update_tstamp(es, s_wtime); 5530 es->s_kbytes_written = 5531 cpu_to_le64(sbi->s_kbytes_written + 5532 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5533 sbi->s_sectors_written_start) >> 1)); 5534 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5535 ext4_free_blocks_count_set(es, 5536 EXT4_C2B(sbi, percpu_counter_sum_positive( 5537 &sbi->s_freeclusters_counter))); 5538 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5539 es->s_free_inodes_count = 5540 cpu_to_le32(percpu_counter_sum_positive( 5541 &sbi->s_freeinodes_counter)); 5542 /* Copy error information to the on-disk superblock */ 5543 spin_lock(&sbi->s_error_lock); 5544 if (sbi->s_add_error_count > 0) { 5545 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5546 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5547 __ext4_update_tstamp(&es->s_first_error_time, 5548 &es->s_first_error_time_hi, 5549 sbi->s_first_error_time); 5550 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5551 sizeof(es->s_first_error_func)); 5552 es->s_first_error_line = 5553 cpu_to_le32(sbi->s_first_error_line); 5554 es->s_first_error_ino = 5555 cpu_to_le32(sbi->s_first_error_ino); 5556 es->s_first_error_block = 5557 cpu_to_le64(sbi->s_first_error_block); 5558 es->s_first_error_errcode = 5559 ext4_errno_to_code(sbi->s_first_error_code); 5560 } 5561 __ext4_update_tstamp(&es->s_last_error_time, 5562 &es->s_last_error_time_hi, 5563 sbi->s_last_error_time); 5564 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5565 sizeof(es->s_last_error_func)); 5566 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5567 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5568 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5569 es->s_last_error_errcode = 5570 ext4_errno_to_code(sbi->s_last_error_code); 5571 /* 5572 * Start the daily error reporting function if it hasn't been 5573 * started already 5574 */ 5575 if (!es->s_error_count) 5576 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5577 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5578 sbi->s_add_error_count = 0; 5579 } 5580 spin_unlock(&sbi->s_error_lock); 5581 5582 ext4_superblock_csum_set(sb); 5583 unlock_buffer(sbh); 5584 } 5585 5586 static int ext4_commit_super(struct super_block *sb) 5587 { 5588 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5589 int error = 0; 5590 5591 if (!sbh) 5592 return -EINVAL; 5593 if (block_device_ejected(sb)) 5594 return -ENODEV; 5595 5596 ext4_update_super(sb); 5597 5598 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5599 /* 5600 * Oh, dear. A previous attempt to write the 5601 * superblock failed. This could happen because the 5602 * USB device was yanked out. Or it could happen to 5603 * be a transient write error and maybe the block will 5604 * be remapped. Nothing we can do but to retry the 5605 * write and hope for the best. 5606 */ 5607 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5608 "superblock detected"); 5609 clear_buffer_write_io_error(sbh); 5610 set_buffer_uptodate(sbh); 5611 } 5612 BUFFER_TRACE(sbh, "marking dirty"); 5613 mark_buffer_dirty(sbh); 5614 error = __sync_dirty_buffer(sbh, 5615 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5616 if (buffer_write_io_error(sbh)) { 5617 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5618 "superblock"); 5619 clear_buffer_write_io_error(sbh); 5620 set_buffer_uptodate(sbh); 5621 } 5622 return error; 5623 } 5624 5625 /* 5626 * Have we just finished recovery? If so, and if we are mounting (or 5627 * remounting) the filesystem readonly, then we will end up with a 5628 * consistent fs on disk. Record that fact. 5629 */ 5630 static int ext4_mark_recovery_complete(struct super_block *sb, 5631 struct ext4_super_block *es) 5632 { 5633 int err; 5634 journal_t *journal = EXT4_SB(sb)->s_journal; 5635 5636 if (!ext4_has_feature_journal(sb)) { 5637 if (journal != NULL) { 5638 ext4_error(sb, "Journal got removed while the fs was " 5639 "mounted!"); 5640 return -EFSCORRUPTED; 5641 } 5642 return 0; 5643 } 5644 jbd2_journal_lock_updates(journal); 5645 err = jbd2_journal_flush(journal, 0); 5646 if (err < 0) 5647 goto out; 5648 5649 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5650 ext4_clear_feature_journal_needs_recovery(sb); 5651 ext4_commit_super(sb); 5652 } 5653 out: 5654 jbd2_journal_unlock_updates(journal); 5655 return err; 5656 } 5657 5658 /* 5659 * If we are mounting (or read-write remounting) a filesystem whose journal 5660 * has recorded an error from a previous lifetime, move that error to the 5661 * main filesystem now. 5662 */ 5663 static int ext4_clear_journal_err(struct super_block *sb, 5664 struct ext4_super_block *es) 5665 { 5666 journal_t *journal; 5667 int j_errno; 5668 const char *errstr; 5669 5670 if (!ext4_has_feature_journal(sb)) { 5671 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5672 return -EFSCORRUPTED; 5673 } 5674 5675 journal = EXT4_SB(sb)->s_journal; 5676 5677 /* 5678 * Now check for any error status which may have been recorded in the 5679 * journal by a prior ext4_error() or ext4_abort() 5680 */ 5681 5682 j_errno = jbd2_journal_errno(journal); 5683 if (j_errno) { 5684 char nbuf[16]; 5685 5686 errstr = ext4_decode_error(sb, j_errno, nbuf); 5687 ext4_warning(sb, "Filesystem error recorded " 5688 "from previous mount: %s", errstr); 5689 ext4_warning(sb, "Marking fs in need of filesystem check."); 5690 5691 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5692 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5693 ext4_commit_super(sb); 5694 5695 jbd2_journal_clear_err(journal); 5696 jbd2_journal_update_sb_errno(journal); 5697 } 5698 return 0; 5699 } 5700 5701 /* 5702 * Force the running and committing transactions to commit, 5703 * and wait on the commit. 5704 */ 5705 int ext4_force_commit(struct super_block *sb) 5706 { 5707 journal_t *journal; 5708 5709 if (sb_rdonly(sb)) 5710 return 0; 5711 5712 journal = EXT4_SB(sb)->s_journal; 5713 return ext4_journal_force_commit(journal); 5714 } 5715 5716 static int ext4_sync_fs(struct super_block *sb, int wait) 5717 { 5718 int ret = 0; 5719 tid_t target; 5720 bool needs_barrier = false; 5721 struct ext4_sb_info *sbi = EXT4_SB(sb); 5722 5723 if (unlikely(ext4_forced_shutdown(sbi))) 5724 return 0; 5725 5726 trace_ext4_sync_fs(sb, wait); 5727 flush_workqueue(sbi->rsv_conversion_wq); 5728 /* 5729 * Writeback quota in non-journalled quota case - journalled quota has 5730 * no dirty dquots 5731 */ 5732 dquot_writeback_dquots(sb, -1); 5733 /* 5734 * Data writeback is possible w/o journal transaction, so barrier must 5735 * being sent at the end of the function. But we can skip it if 5736 * transaction_commit will do it for us. 5737 */ 5738 if (sbi->s_journal) { 5739 target = jbd2_get_latest_transaction(sbi->s_journal); 5740 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5741 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5742 needs_barrier = true; 5743 5744 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5745 if (wait) 5746 ret = jbd2_log_wait_commit(sbi->s_journal, 5747 target); 5748 } 5749 } else if (wait && test_opt(sb, BARRIER)) 5750 needs_barrier = true; 5751 if (needs_barrier) { 5752 int err; 5753 err = blkdev_issue_flush(sb->s_bdev); 5754 if (!ret) 5755 ret = err; 5756 } 5757 5758 return ret; 5759 } 5760 5761 /* 5762 * LVM calls this function before a (read-only) snapshot is created. This 5763 * gives us a chance to flush the journal completely and mark the fs clean. 5764 * 5765 * Note that only this function cannot bring a filesystem to be in a clean 5766 * state independently. It relies on upper layer to stop all data & metadata 5767 * modifications. 5768 */ 5769 static int ext4_freeze(struct super_block *sb) 5770 { 5771 int error = 0; 5772 journal_t *journal; 5773 5774 if (sb_rdonly(sb)) 5775 return 0; 5776 5777 journal = EXT4_SB(sb)->s_journal; 5778 5779 if (journal) { 5780 /* Now we set up the journal barrier. */ 5781 jbd2_journal_lock_updates(journal); 5782 5783 /* 5784 * Don't clear the needs_recovery flag if we failed to 5785 * flush the journal. 5786 */ 5787 error = jbd2_journal_flush(journal, 0); 5788 if (error < 0) 5789 goto out; 5790 5791 /* Journal blocked and flushed, clear needs_recovery flag. */ 5792 ext4_clear_feature_journal_needs_recovery(sb); 5793 } 5794 5795 error = ext4_commit_super(sb); 5796 out: 5797 if (journal) 5798 /* we rely on upper layer to stop further updates */ 5799 jbd2_journal_unlock_updates(journal); 5800 return error; 5801 } 5802 5803 /* 5804 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5805 * flag here, even though the filesystem is not technically dirty yet. 5806 */ 5807 static int ext4_unfreeze(struct super_block *sb) 5808 { 5809 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5810 return 0; 5811 5812 if (EXT4_SB(sb)->s_journal) { 5813 /* Reset the needs_recovery flag before the fs is unlocked. */ 5814 ext4_set_feature_journal_needs_recovery(sb); 5815 } 5816 5817 ext4_commit_super(sb); 5818 return 0; 5819 } 5820 5821 /* 5822 * Structure to save mount options for ext4_remount's benefit 5823 */ 5824 struct ext4_mount_options { 5825 unsigned long s_mount_opt; 5826 unsigned long s_mount_opt2; 5827 kuid_t s_resuid; 5828 kgid_t s_resgid; 5829 unsigned long s_commit_interval; 5830 u32 s_min_batch_time, s_max_batch_time; 5831 #ifdef CONFIG_QUOTA 5832 int s_jquota_fmt; 5833 char *s_qf_names[EXT4_MAXQUOTAS]; 5834 #endif 5835 }; 5836 5837 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5838 { 5839 struct ext4_super_block *es; 5840 struct ext4_sb_info *sbi = EXT4_SB(sb); 5841 unsigned long old_sb_flags, vfs_flags; 5842 struct ext4_mount_options old_opts; 5843 int enable_quota = 0; 5844 ext4_group_t g; 5845 int err = 0; 5846 #ifdef CONFIG_QUOTA 5847 int i, j; 5848 char *to_free[EXT4_MAXQUOTAS]; 5849 #endif 5850 char *orig_data = kstrdup(data, GFP_KERNEL); 5851 struct ext4_parsed_options parsed_opts; 5852 5853 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5854 parsed_opts.journal_devnum = 0; 5855 5856 if (data && !orig_data) 5857 return -ENOMEM; 5858 5859 /* Store the original options */ 5860 old_sb_flags = sb->s_flags; 5861 old_opts.s_mount_opt = sbi->s_mount_opt; 5862 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5863 old_opts.s_resuid = sbi->s_resuid; 5864 old_opts.s_resgid = sbi->s_resgid; 5865 old_opts.s_commit_interval = sbi->s_commit_interval; 5866 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5867 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5868 #ifdef CONFIG_QUOTA 5869 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5870 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5871 if (sbi->s_qf_names[i]) { 5872 char *qf_name = get_qf_name(sb, sbi, i); 5873 5874 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5875 if (!old_opts.s_qf_names[i]) { 5876 for (j = 0; j < i; j++) 5877 kfree(old_opts.s_qf_names[j]); 5878 kfree(orig_data); 5879 return -ENOMEM; 5880 } 5881 } else 5882 old_opts.s_qf_names[i] = NULL; 5883 #endif 5884 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5885 parsed_opts.journal_ioprio = 5886 sbi->s_journal->j_task->io_context->ioprio; 5887 5888 /* 5889 * Some options can be enabled by ext4 and/or by VFS mount flag 5890 * either way we need to make sure it matches in both *flags and 5891 * s_flags. Copy those selected flags from *flags to s_flags 5892 */ 5893 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5894 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5895 5896 if (!parse_options(data, sb, &parsed_opts, 1)) { 5897 err = -EINVAL; 5898 goto restore_opts; 5899 } 5900 5901 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5902 test_opt(sb, JOURNAL_CHECKSUM)) { 5903 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5904 "during remount not supported; ignoring"); 5905 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5906 } 5907 5908 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5909 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5910 ext4_msg(sb, KERN_ERR, "can't mount with " 5911 "both data=journal and delalloc"); 5912 err = -EINVAL; 5913 goto restore_opts; 5914 } 5915 if (test_opt(sb, DIOREAD_NOLOCK)) { 5916 ext4_msg(sb, KERN_ERR, "can't mount with " 5917 "both data=journal and dioread_nolock"); 5918 err = -EINVAL; 5919 goto restore_opts; 5920 } 5921 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5922 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5923 ext4_msg(sb, KERN_ERR, "can't mount with " 5924 "journal_async_commit in data=ordered mode"); 5925 err = -EINVAL; 5926 goto restore_opts; 5927 } 5928 } 5929 5930 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5931 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5932 err = -EINVAL; 5933 goto restore_opts; 5934 } 5935 5936 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5937 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5938 5939 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5940 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5941 5942 es = sbi->s_es; 5943 5944 if (sbi->s_journal) { 5945 ext4_init_journal_params(sb, sbi->s_journal); 5946 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5947 } 5948 5949 /* Flush outstanding errors before changing fs state */ 5950 flush_work(&sbi->s_error_work); 5951 5952 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5953 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5954 err = -EROFS; 5955 goto restore_opts; 5956 } 5957 5958 if (*flags & SB_RDONLY) { 5959 err = sync_filesystem(sb); 5960 if (err < 0) 5961 goto restore_opts; 5962 err = dquot_suspend(sb, -1); 5963 if (err < 0) 5964 goto restore_opts; 5965 5966 /* 5967 * First of all, the unconditional stuff we have to do 5968 * to disable replay of the journal when we next remount 5969 */ 5970 sb->s_flags |= SB_RDONLY; 5971 5972 /* 5973 * OK, test if we are remounting a valid rw partition 5974 * readonly, and if so set the rdonly flag and then 5975 * mark the partition as valid again. 5976 */ 5977 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5978 (sbi->s_mount_state & EXT4_VALID_FS)) 5979 es->s_state = cpu_to_le16(sbi->s_mount_state); 5980 5981 if (sbi->s_journal) { 5982 /* 5983 * We let remount-ro finish even if marking fs 5984 * as clean failed... 5985 */ 5986 ext4_mark_recovery_complete(sb, es); 5987 } 5988 } else { 5989 /* Make sure we can mount this feature set readwrite */ 5990 if (ext4_has_feature_readonly(sb) || 5991 !ext4_feature_set_ok(sb, 0)) { 5992 err = -EROFS; 5993 goto restore_opts; 5994 } 5995 /* 5996 * Make sure the group descriptor checksums 5997 * are sane. If they aren't, refuse to remount r/w. 5998 */ 5999 for (g = 0; g < sbi->s_groups_count; g++) { 6000 struct ext4_group_desc *gdp = 6001 ext4_get_group_desc(sb, g, NULL); 6002 6003 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6004 ext4_msg(sb, KERN_ERR, 6005 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6006 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6007 le16_to_cpu(gdp->bg_checksum)); 6008 err = -EFSBADCRC; 6009 goto restore_opts; 6010 } 6011 } 6012 6013 /* 6014 * If we have an unprocessed orphan list hanging 6015 * around from a previously readonly bdev mount, 6016 * require a full umount/remount for now. 6017 */ 6018 if (es->s_last_orphan) { 6019 ext4_msg(sb, KERN_WARNING, "Couldn't " 6020 "remount RDWR because of unprocessed " 6021 "orphan inode list. Please " 6022 "umount/remount instead"); 6023 err = -EINVAL; 6024 goto restore_opts; 6025 } 6026 6027 /* 6028 * Mounting a RDONLY partition read-write, so reread 6029 * and store the current valid flag. (It may have 6030 * been changed by e2fsck since we originally mounted 6031 * the partition.) 6032 */ 6033 if (sbi->s_journal) { 6034 err = ext4_clear_journal_err(sb, es); 6035 if (err) 6036 goto restore_opts; 6037 } 6038 sbi->s_mount_state = le16_to_cpu(es->s_state); 6039 6040 err = ext4_setup_super(sb, es, 0); 6041 if (err) 6042 goto restore_opts; 6043 6044 sb->s_flags &= ~SB_RDONLY; 6045 if (ext4_has_feature_mmp(sb)) 6046 if (ext4_multi_mount_protect(sb, 6047 le64_to_cpu(es->s_mmp_block))) { 6048 err = -EROFS; 6049 goto restore_opts; 6050 } 6051 enable_quota = 1; 6052 } 6053 } 6054 6055 /* 6056 * Reinitialize lazy itable initialization thread based on 6057 * current settings 6058 */ 6059 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6060 ext4_unregister_li_request(sb); 6061 else { 6062 ext4_group_t first_not_zeroed; 6063 first_not_zeroed = ext4_has_uninit_itable(sb); 6064 ext4_register_li_request(sb, first_not_zeroed); 6065 } 6066 6067 /* 6068 * Handle creation of system zone data early because it can fail. 6069 * Releasing of existing data is done when we are sure remount will 6070 * succeed. 6071 */ 6072 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6073 err = ext4_setup_system_zone(sb); 6074 if (err) 6075 goto restore_opts; 6076 } 6077 6078 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6079 err = ext4_commit_super(sb); 6080 if (err) 6081 goto restore_opts; 6082 } 6083 6084 #ifdef CONFIG_QUOTA 6085 /* Release old quota file names */ 6086 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6087 kfree(old_opts.s_qf_names[i]); 6088 if (enable_quota) { 6089 if (sb_any_quota_suspended(sb)) 6090 dquot_resume(sb, -1); 6091 else if (ext4_has_feature_quota(sb)) { 6092 err = ext4_enable_quotas(sb); 6093 if (err) 6094 goto restore_opts; 6095 } 6096 } 6097 #endif 6098 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6099 ext4_release_system_zone(sb); 6100 6101 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6102 ext4_stop_mmpd(sbi); 6103 6104 /* 6105 * Some options can be enabled by ext4 and/or by VFS mount flag 6106 * either way we need to make sure it matches in both *flags and 6107 * s_flags. Copy those selected flags from s_flags to *flags 6108 */ 6109 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 6110 6111 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 6112 orig_data, ext4_quota_mode(sb)); 6113 kfree(orig_data); 6114 return 0; 6115 6116 restore_opts: 6117 sb->s_flags = old_sb_flags; 6118 sbi->s_mount_opt = old_opts.s_mount_opt; 6119 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6120 sbi->s_resuid = old_opts.s_resuid; 6121 sbi->s_resgid = old_opts.s_resgid; 6122 sbi->s_commit_interval = old_opts.s_commit_interval; 6123 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6124 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6125 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6126 ext4_release_system_zone(sb); 6127 #ifdef CONFIG_QUOTA 6128 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6129 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6130 to_free[i] = get_qf_name(sb, sbi, i); 6131 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6132 } 6133 synchronize_rcu(); 6134 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6135 kfree(to_free[i]); 6136 #endif 6137 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6138 ext4_stop_mmpd(sbi); 6139 kfree(orig_data); 6140 return err; 6141 } 6142 6143 #ifdef CONFIG_QUOTA 6144 static int ext4_statfs_project(struct super_block *sb, 6145 kprojid_t projid, struct kstatfs *buf) 6146 { 6147 struct kqid qid; 6148 struct dquot *dquot; 6149 u64 limit; 6150 u64 curblock; 6151 6152 qid = make_kqid_projid(projid); 6153 dquot = dqget(sb, qid); 6154 if (IS_ERR(dquot)) 6155 return PTR_ERR(dquot); 6156 spin_lock(&dquot->dq_dqb_lock); 6157 6158 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6159 dquot->dq_dqb.dqb_bhardlimit); 6160 limit >>= sb->s_blocksize_bits; 6161 6162 if (limit && buf->f_blocks > limit) { 6163 curblock = (dquot->dq_dqb.dqb_curspace + 6164 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6165 buf->f_blocks = limit; 6166 buf->f_bfree = buf->f_bavail = 6167 (buf->f_blocks > curblock) ? 6168 (buf->f_blocks - curblock) : 0; 6169 } 6170 6171 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6172 dquot->dq_dqb.dqb_ihardlimit); 6173 if (limit && buf->f_files > limit) { 6174 buf->f_files = limit; 6175 buf->f_ffree = 6176 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6177 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6178 } 6179 6180 spin_unlock(&dquot->dq_dqb_lock); 6181 dqput(dquot); 6182 return 0; 6183 } 6184 #endif 6185 6186 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6187 { 6188 struct super_block *sb = dentry->d_sb; 6189 struct ext4_sb_info *sbi = EXT4_SB(sb); 6190 struct ext4_super_block *es = sbi->s_es; 6191 ext4_fsblk_t overhead = 0, resv_blocks; 6192 s64 bfree; 6193 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6194 6195 if (!test_opt(sb, MINIX_DF)) 6196 overhead = sbi->s_overhead; 6197 6198 buf->f_type = EXT4_SUPER_MAGIC; 6199 buf->f_bsize = sb->s_blocksize; 6200 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6201 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6202 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6203 /* prevent underflow in case that few free space is available */ 6204 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6205 buf->f_bavail = buf->f_bfree - 6206 (ext4_r_blocks_count(es) + resv_blocks); 6207 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6208 buf->f_bavail = 0; 6209 buf->f_files = le32_to_cpu(es->s_inodes_count); 6210 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6211 buf->f_namelen = EXT4_NAME_LEN; 6212 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6213 6214 #ifdef CONFIG_QUOTA 6215 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6216 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6217 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6218 #endif 6219 return 0; 6220 } 6221 6222 6223 #ifdef CONFIG_QUOTA 6224 6225 /* 6226 * Helper functions so that transaction is started before we acquire dqio_sem 6227 * to keep correct lock ordering of transaction > dqio_sem 6228 */ 6229 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6230 { 6231 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6232 } 6233 6234 static int ext4_write_dquot(struct dquot *dquot) 6235 { 6236 int ret, err; 6237 handle_t *handle; 6238 struct inode *inode; 6239 6240 inode = dquot_to_inode(dquot); 6241 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6242 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6243 if (IS_ERR(handle)) 6244 return PTR_ERR(handle); 6245 ret = dquot_commit(dquot); 6246 err = ext4_journal_stop(handle); 6247 if (!ret) 6248 ret = err; 6249 return ret; 6250 } 6251 6252 static int ext4_acquire_dquot(struct dquot *dquot) 6253 { 6254 int ret, err; 6255 handle_t *handle; 6256 6257 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6258 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6259 if (IS_ERR(handle)) 6260 return PTR_ERR(handle); 6261 ret = dquot_acquire(dquot); 6262 err = ext4_journal_stop(handle); 6263 if (!ret) 6264 ret = err; 6265 return ret; 6266 } 6267 6268 static int ext4_release_dquot(struct dquot *dquot) 6269 { 6270 int ret, err; 6271 handle_t *handle; 6272 6273 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6274 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6275 if (IS_ERR(handle)) { 6276 /* Release dquot anyway to avoid endless cycle in dqput() */ 6277 dquot_release(dquot); 6278 return PTR_ERR(handle); 6279 } 6280 ret = dquot_release(dquot); 6281 err = ext4_journal_stop(handle); 6282 if (!ret) 6283 ret = err; 6284 return ret; 6285 } 6286 6287 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6288 { 6289 struct super_block *sb = dquot->dq_sb; 6290 6291 if (ext4_is_quota_journalled(sb)) { 6292 dquot_mark_dquot_dirty(dquot); 6293 return ext4_write_dquot(dquot); 6294 } else { 6295 return dquot_mark_dquot_dirty(dquot); 6296 } 6297 } 6298 6299 static int ext4_write_info(struct super_block *sb, int type) 6300 { 6301 int ret, err; 6302 handle_t *handle; 6303 6304 /* Data block + inode block */ 6305 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6306 if (IS_ERR(handle)) 6307 return PTR_ERR(handle); 6308 ret = dquot_commit_info(sb, type); 6309 err = ext4_journal_stop(handle); 6310 if (!ret) 6311 ret = err; 6312 return ret; 6313 } 6314 6315 /* 6316 * Turn on quotas during mount time - we need to find 6317 * the quota file and such... 6318 */ 6319 static int ext4_quota_on_mount(struct super_block *sb, int type) 6320 { 6321 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 6322 EXT4_SB(sb)->s_jquota_fmt, type); 6323 } 6324 6325 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6326 { 6327 struct ext4_inode_info *ei = EXT4_I(inode); 6328 6329 /* The first argument of lockdep_set_subclass has to be 6330 * *exactly* the same as the argument to init_rwsem() --- in 6331 * this case, in init_once() --- or lockdep gets unhappy 6332 * because the name of the lock is set using the 6333 * stringification of the argument to init_rwsem(). 6334 */ 6335 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6336 lockdep_set_subclass(&ei->i_data_sem, subclass); 6337 } 6338 6339 /* 6340 * Standard function to be called on quota_on 6341 */ 6342 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6343 const struct path *path) 6344 { 6345 int err; 6346 6347 if (!test_opt(sb, QUOTA)) 6348 return -EINVAL; 6349 6350 /* Quotafile not on the same filesystem? */ 6351 if (path->dentry->d_sb != sb) 6352 return -EXDEV; 6353 6354 /* Quota already enabled for this file? */ 6355 if (IS_NOQUOTA(d_inode(path->dentry))) 6356 return -EBUSY; 6357 6358 /* Journaling quota? */ 6359 if (EXT4_SB(sb)->s_qf_names[type]) { 6360 /* Quotafile not in fs root? */ 6361 if (path->dentry->d_parent != sb->s_root) 6362 ext4_msg(sb, KERN_WARNING, 6363 "Quota file not on filesystem root. " 6364 "Journaled quota will not work"); 6365 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6366 } else { 6367 /* 6368 * Clear the flag just in case mount options changed since 6369 * last time. 6370 */ 6371 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6372 } 6373 6374 /* 6375 * When we journal data on quota file, we have to flush journal to see 6376 * all updates to the file when we bypass pagecache... 6377 */ 6378 if (EXT4_SB(sb)->s_journal && 6379 ext4_should_journal_data(d_inode(path->dentry))) { 6380 /* 6381 * We don't need to lock updates but journal_flush() could 6382 * otherwise be livelocked... 6383 */ 6384 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6385 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6386 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6387 if (err) 6388 return err; 6389 } 6390 6391 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6392 err = dquot_quota_on(sb, type, format_id, path); 6393 if (err) { 6394 lockdep_set_quota_inode(path->dentry->d_inode, 6395 I_DATA_SEM_NORMAL); 6396 } else { 6397 struct inode *inode = d_inode(path->dentry); 6398 handle_t *handle; 6399 6400 /* 6401 * Set inode flags to prevent userspace from messing with quota 6402 * files. If this fails, we return success anyway since quotas 6403 * are already enabled and this is not a hard failure. 6404 */ 6405 inode_lock(inode); 6406 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6407 if (IS_ERR(handle)) 6408 goto unlock_inode; 6409 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6410 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6411 S_NOATIME | S_IMMUTABLE); 6412 err = ext4_mark_inode_dirty(handle, inode); 6413 ext4_journal_stop(handle); 6414 unlock_inode: 6415 inode_unlock(inode); 6416 } 6417 return err; 6418 } 6419 6420 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6421 unsigned int flags) 6422 { 6423 int err; 6424 struct inode *qf_inode; 6425 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6426 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6427 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6428 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6429 }; 6430 6431 BUG_ON(!ext4_has_feature_quota(sb)); 6432 6433 if (!qf_inums[type]) 6434 return -EPERM; 6435 6436 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6437 if (IS_ERR(qf_inode)) { 6438 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6439 return PTR_ERR(qf_inode); 6440 } 6441 6442 /* Don't account quota for quota files to avoid recursion */ 6443 qf_inode->i_flags |= S_NOQUOTA; 6444 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6445 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6446 if (err) 6447 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6448 iput(qf_inode); 6449 6450 return err; 6451 } 6452 6453 /* Enable usage tracking for all quota types. */ 6454 static int ext4_enable_quotas(struct super_block *sb) 6455 { 6456 int type, err = 0; 6457 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6458 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6459 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6460 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6461 }; 6462 bool quota_mopt[EXT4_MAXQUOTAS] = { 6463 test_opt(sb, USRQUOTA), 6464 test_opt(sb, GRPQUOTA), 6465 test_opt(sb, PRJQUOTA), 6466 }; 6467 6468 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6469 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6470 if (qf_inums[type]) { 6471 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6472 DQUOT_USAGE_ENABLED | 6473 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6474 if (err) { 6475 ext4_warning(sb, 6476 "Failed to enable quota tracking " 6477 "(type=%d, err=%d). Please run " 6478 "e2fsck to fix.", type, err); 6479 for (type--; type >= 0; type--) 6480 dquot_quota_off(sb, type); 6481 6482 return err; 6483 } 6484 } 6485 } 6486 return 0; 6487 } 6488 6489 static int ext4_quota_off(struct super_block *sb, int type) 6490 { 6491 struct inode *inode = sb_dqopt(sb)->files[type]; 6492 handle_t *handle; 6493 int err; 6494 6495 /* Force all delayed allocation blocks to be allocated. 6496 * Caller already holds s_umount sem */ 6497 if (test_opt(sb, DELALLOC)) 6498 sync_filesystem(sb); 6499 6500 if (!inode || !igrab(inode)) 6501 goto out; 6502 6503 err = dquot_quota_off(sb, type); 6504 if (err || ext4_has_feature_quota(sb)) 6505 goto out_put; 6506 6507 inode_lock(inode); 6508 /* 6509 * Update modification times of quota files when userspace can 6510 * start looking at them. If we fail, we return success anyway since 6511 * this is not a hard failure and quotas are already disabled. 6512 */ 6513 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6514 if (IS_ERR(handle)) { 6515 err = PTR_ERR(handle); 6516 goto out_unlock; 6517 } 6518 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6519 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6520 inode->i_mtime = inode->i_ctime = current_time(inode); 6521 err = ext4_mark_inode_dirty(handle, inode); 6522 ext4_journal_stop(handle); 6523 out_unlock: 6524 inode_unlock(inode); 6525 out_put: 6526 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6527 iput(inode); 6528 return err; 6529 out: 6530 return dquot_quota_off(sb, type); 6531 } 6532 6533 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6534 * acquiring the locks... As quota files are never truncated and quota code 6535 * itself serializes the operations (and no one else should touch the files) 6536 * we don't have to be afraid of races */ 6537 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6538 size_t len, loff_t off) 6539 { 6540 struct inode *inode = sb_dqopt(sb)->files[type]; 6541 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6542 int offset = off & (sb->s_blocksize - 1); 6543 int tocopy; 6544 size_t toread; 6545 struct buffer_head *bh; 6546 loff_t i_size = i_size_read(inode); 6547 6548 if (off > i_size) 6549 return 0; 6550 if (off+len > i_size) 6551 len = i_size-off; 6552 toread = len; 6553 while (toread > 0) { 6554 tocopy = sb->s_blocksize - offset < toread ? 6555 sb->s_blocksize - offset : toread; 6556 bh = ext4_bread(NULL, inode, blk, 0); 6557 if (IS_ERR(bh)) 6558 return PTR_ERR(bh); 6559 if (!bh) /* A hole? */ 6560 memset(data, 0, tocopy); 6561 else 6562 memcpy(data, bh->b_data+offset, tocopy); 6563 brelse(bh); 6564 offset = 0; 6565 toread -= tocopy; 6566 data += tocopy; 6567 blk++; 6568 } 6569 return len; 6570 } 6571 6572 /* Write to quotafile (we know the transaction is already started and has 6573 * enough credits) */ 6574 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6575 const char *data, size_t len, loff_t off) 6576 { 6577 struct inode *inode = sb_dqopt(sb)->files[type]; 6578 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6579 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6580 int retries = 0; 6581 struct buffer_head *bh; 6582 handle_t *handle = journal_current_handle(); 6583 6584 if (EXT4_SB(sb)->s_journal && !handle) { 6585 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6586 " cancelled because transaction is not started", 6587 (unsigned long long)off, (unsigned long long)len); 6588 return -EIO; 6589 } 6590 /* 6591 * Since we account only one data block in transaction credits, 6592 * then it is impossible to cross a block boundary. 6593 */ 6594 if (sb->s_blocksize - offset < len) { 6595 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6596 " cancelled because not block aligned", 6597 (unsigned long long)off, (unsigned long long)len); 6598 return -EIO; 6599 } 6600 6601 do { 6602 bh = ext4_bread(handle, inode, blk, 6603 EXT4_GET_BLOCKS_CREATE | 6604 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6605 } while (PTR_ERR(bh) == -ENOSPC && 6606 ext4_should_retry_alloc(inode->i_sb, &retries)); 6607 if (IS_ERR(bh)) 6608 return PTR_ERR(bh); 6609 if (!bh) 6610 goto out; 6611 BUFFER_TRACE(bh, "get write access"); 6612 err = ext4_journal_get_write_access(handle, bh); 6613 if (err) { 6614 brelse(bh); 6615 return err; 6616 } 6617 lock_buffer(bh); 6618 memcpy(bh->b_data+offset, data, len); 6619 flush_dcache_page(bh->b_page); 6620 unlock_buffer(bh); 6621 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6622 brelse(bh); 6623 out: 6624 if (inode->i_size < off + len) { 6625 i_size_write(inode, off + len); 6626 EXT4_I(inode)->i_disksize = inode->i_size; 6627 err2 = ext4_mark_inode_dirty(handle, inode); 6628 if (unlikely(err2 && !err)) 6629 err = err2; 6630 } 6631 return err ? err : len; 6632 } 6633 #endif 6634 6635 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6636 const char *dev_name, void *data) 6637 { 6638 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6639 } 6640 6641 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6642 static inline void register_as_ext2(void) 6643 { 6644 int err = register_filesystem(&ext2_fs_type); 6645 if (err) 6646 printk(KERN_WARNING 6647 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6648 } 6649 6650 static inline void unregister_as_ext2(void) 6651 { 6652 unregister_filesystem(&ext2_fs_type); 6653 } 6654 6655 static inline int ext2_feature_set_ok(struct super_block *sb) 6656 { 6657 if (ext4_has_unknown_ext2_incompat_features(sb)) 6658 return 0; 6659 if (sb_rdonly(sb)) 6660 return 1; 6661 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6662 return 0; 6663 return 1; 6664 } 6665 #else 6666 static inline void register_as_ext2(void) { } 6667 static inline void unregister_as_ext2(void) { } 6668 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6669 #endif 6670 6671 static inline void register_as_ext3(void) 6672 { 6673 int err = register_filesystem(&ext3_fs_type); 6674 if (err) 6675 printk(KERN_WARNING 6676 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6677 } 6678 6679 static inline void unregister_as_ext3(void) 6680 { 6681 unregister_filesystem(&ext3_fs_type); 6682 } 6683 6684 static inline int ext3_feature_set_ok(struct super_block *sb) 6685 { 6686 if (ext4_has_unknown_ext3_incompat_features(sb)) 6687 return 0; 6688 if (!ext4_has_feature_journal(sb)) 6689 return 0; 6690 if (sb_rdonly(sb)) 6691 return 1; 6692 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6693 return 0; 6694 return 1; 6695 } 6696 6697 static struct file_system_type ext4_fs_type = { 6698 .owner = THIS_MODULE, 6699 .name = "ext4", 6700 .mount = ext4_mount, 6701 .kill_sb = kill_block_super, 6702 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6703 }; 6704 MODULE_ALIAS_FS("ext4"); 6705 6706 /* Shared across all ext4 file systems */ 6707 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6708 6709 static int __init ext4_init_fs(void) 6710 { 6711 int i, err; 6712 6713 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6714 ext4_li_info = NULL; 6715 6716 /* Build-time check for flags consistency */ 6717 ext4_check_flag_values(); 6718 6719 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6720 init_waitqueue_head(&ext4__ioend_wq[i]); 6721 6722 err = ext4_init_es(); 6723 if (err) 6724 return err; 6725 6726 err = ext4_init_pending(); 6727 if (err) 6728 goto out7; 6729 6730 err = ext4_init_post_read_processing(); 6731 if (err) 6732 goto out6; 6733 6734 err = ext4_init_pageio(); 6735 if (err) 6736 goto out5; 6737 6738 err = ext4_init_system_zone(); 6739 if (err) 6740 goto out4; 6741 6742 err = ext4_init_sysfs(); 6743 if (err) 6744 goto out3; 6745 6746 err = ext4_init_mballoc(); 6747 if (err) 6748 goto out2; 6749 err = init_inodecache(); 6750 if (err) 6751 goto out1; 6752 6753 err = ext4_fc_init_dentry_cache(); 6754 if (err) 6755 goto out05; 6756 6757 register_as_ext3(); 6758 register_as_ext2(); 6759 err = register_filesystem(&ext4_fs_type); 6760 if (err) 6761 goto out; 6762 6763 return 0; 6764 out: 6765 unregister_as_ext2(); 6766 unregister_as_ext3(); 6767 out05: 6768 destroy_inodecache(); 6769 out1: 6770 ext4_exit_mballoc(); 6771 out2: 6772 ext4_exit_sysfs(); 6773 out3: 6774 ext4_exit_system_zone(); 6775 out4: 6776 ext4_exit_pageio(); 6777 out5: 6778 ext4_exit_post_read_processing(); 6779 out6: 6780 ext4_exit_pending(); 6781 out7: 6782 ext4_exit_es(); 6783 6784 return err; 6785 } 6786 6787 static void __exit ext4_exit_fs(void) 6788 { 6789 ext4_destroy_lazyinit_thread(); 6790 unregister_as_ext2(); 6791 unregister_as_ext3(); 6792 unregister_filesystem(&ext4_fs_type); 6793 destroy_inodecache(); 6794 ext4_exit_mballoc(); 6795 ext4_exit_sysfs(); 6796 ext4_exit_system_zone(); 6797 ext4_exit_pageio(); 6798 ext4_exit_post_read_processing(); 6799 ext4_exit_es(); 6800 ext4_exit_pending(); 6801 } 6802 6803 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6804 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6805 MODULE_LICENSE("GPL"); 6806 MODULE_SOFTDEP("pre: crc32c"); 6807 module_init(ext4_init_fs) 6808 module_exit(ext4_exit_fs) 6809