1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * page fault path: 93 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 94 * -> page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_lock 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 103 * page lock 104 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 105 * i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> mmap_lock 109 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 110 * 111 * writepages: 112 * transaction start -> page lock(s) -> i_data_sem (rw) 113 */ 114 115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 116 static struct file_system_type ext2_fs_type = { 117 .owner = THIS_MODULE, 118 .name = "ext2", 119 .mount = ext4_mount, 120 .kill_sb = kill_block_super, 121 .fs_flags = FS_REQUIRES_DEV, 122 }; 123 MODULE_ALIAS_FS("ext2"); 124 MODULE_ALIAS("ext2"); 125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 126 #else 127 #define IS_EXT2_SB(sb) (0) 128 #endif 129 130 131 static struct file_system_type ext3_fs_type = { 132 .owner = THIS_MODULE, 133 .name = "ext3", 134 .mount = ext4_mount, 135 .kill_sb = kill_block_super, 136 .fs_flags = FS_REQUIRES_DEV, 137 }; 138 MODULE_ALIAS_FS("ext3"); 139 MODULE_ALIAS("ext3"); 140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 141 142 143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 144 bh_end_io_t *end_io) 145 { 146 /* 147 * buffer's verified bit is no longer valid after reading from 148 * disk again due to write out error, clear it to make sure we 149 * recheck the buffer contents. 150 */ 151 clear_buffer_verified(bh); 152 153 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 154 get_bh(bh); 155 submit_bh(REQ_OP_READ, op_flags, bh); 156 } 157 158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 159 bh_end_io_t *end_io) 160 { 161 BUG_ON(!buffer_locked(bh)); 162 163 if (ext4_buffer_uptodate(bh)) { 164 unlock_buffer(bh); 165 return; 166 } 167 __ext4_read_bh(bh, op_flags, end_io); 168 } 169 170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 171 { 172 BUG_ON(!buffer_locked(bh)); 173 174 if (ext4_buffer_uptodate(bh)) { 175 unlock_buffer(bh); 176 return 0; 177 } 178 179 __ext4_read_bh(bh, op_flags, end_io); 180 181 wait_on_buffer(bh); 182 if (buffer_uptodate(bh)) 183 return 0; 184 return -EIO; 185 } 186 187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 188 { 189 if (trylock_buffer(bh)) { 190 if (wait) 191 return ext4_read_bh(bh, op_flags, NULL); 192 ext4_read_bh_nowait(bh, op_flags, NULL); 193 return 0; 194 } 195 if (wait) { 196 wait_on_buffer(bh); 197 if (buffer_uptodate(bh)) 198 return 0; 199 return -EIO; 200 } 201 return 0; 202 } 203 204 /* 205 * This works like __bread_gfp() except it uses ERR_PTR for error 206 * returns. Currently with sb_bread it's impossible to distinguish 207 * between ENOMEM and EIO situations (since both result in a NULL 208 * return. 209 */ 210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 211 sector_t block, int op_flags, 212 gfp_t gfp) 213 { 214 struct buffer_head *bh; 215 int ret; 216 217 bh = sb_getblk_gfp(sb, block, gfp); 218 if (bh == NULL) 219 return ERR_PTR(-ENOMEM); 220 if (ext4_buffer_uptodate(bh)) 221 return bh; 222 223 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 224 if (ret) { 225 put_bh(bh); 226 return ERR_PTR(ret); 227 } 228 return bh; 229 } 230 231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 232 int op_flags) 233 { 234 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 235 } 236 237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 238 sector_t block) 239 { 240 return __ext4_sb_bread_gfp(sb, block, 0, 0); 241 } 242 243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 244 { 245 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 246 247 if (likely(bh)) { 248 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 249 brelse(bh); 250 } 251 } 252 253 static int ext4_verify_csum_type(struct super_block *sb, 254 struct ext4_super_block *es) 255 { 256 if (!ext4_has_feature_metadata_csum(sb)) 257 return 1; 258 259 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 260 } 261 262 static __le32 ext4_superblock_csum(struct super_block *sb, 263 struct ext4_super_block *es) 264 { 265 struct ext4_sb_info *sbi = EXT4_SB(sb); 266 int offset = offsetof(struct ext4_super_block, s_checksum); 267 __u32 csum; 268 269 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 270 271 return cpu_to_le32(csum); 272 } 273 274 static int ext4_superblock_csum_verify(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum == ext4_superblock_csum(sb, es); 281 } 282 283 void ext4_superblock_csum_set(struct super_block *sb) 284 { 285 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 286 287 if (!ext4_has_metadata_csum(sb)) 288 return; 289 290 es->s_checksum = ext4_superblock_csum(sb, es); 291 } 292 293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 294 struct ext4_group_desc *bg) 295 { 296 return le32_to_cpu(bg->bg_block_bitmap_lo) | 297 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 298 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 299 } 300 301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 302 struct ext4_group_desc *bg) 303 { 304 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 305 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 306 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 307 } 308 309 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 310 struct ext4_group_desc *bg) 311 { 312 return le32_to_cpu(bg->bg_inode_table_lo) | 313 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 314 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 315 } 316 317 __u32 ext4_free_group_clusters(struct super_block *sb, 318 struct ext4_group_desc *bg) 319 { 320 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 321 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 322 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 323 } 324 325 __u32 ext4_free_inodes_count(struct super_block *sb, 326 struct ext4_group_desc *bg) 327 { 328 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 329 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 330 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 331 } 332 333 __u32 ext4_used_dirs_count(struct super_block *sb, 334 struct ext4_group_desc *bg) 335 { 336 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 337 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 338 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 339 } 340 341 __u32 ext4_itable_unused_count(struct super_block *sb, 342 struct ext4_group_desc *bg) 343 { 344 return le16_to_cpu(bg->bg_itable_unused_lo) | 345 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 346 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 347 } 348 349 void ext4_block_bitmap_set(struct super_block *sb, 350 struct ext4_group_desc *bg, ext4_fsblk_t blk) 351 { 352 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 353 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 354 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 355 } 356 357 void ext4_inode_bitmap_set(struct super_block *sb, 358 struct ext4_group_desc *bg, ext4_fsblk_t blk) 359 { 360 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 361 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 362 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 363 } 364 365 void ext4_inode_table_set(struct super_block *sb, 366 struct ext4_group_desc *bg, ext4_fsblk_t blk) 367 { 368 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 369 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 370 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 371 } 372 373 void ext4_free_group_clusters_set(struct super_block *sb, 374 struct ext4_group_desc *bg, __u32 count) 375 { 376 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 377 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 378 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 379 } 380 381 void ext4_free_inodes_set(struct super_block *sb, 382 struct ext4_group_desc *bg, __u32 count) 383 { 384 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 385 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 386 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 387 } 388 389 void ext4_used_dirs_set(struct super_block *sb, 390 struct ext4_group_desc *bg, __u32 count) 391 { 392 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 393 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 394 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 395 } 396 397 void ext4_itable_unused_set(struct super_block *sb, 398 struct ext4_group_desc *bg, __u32 count) 399 { 400 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 401 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 402 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 403 } 404 405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 406 { 407 now = clamp_val(now, 0, (1ull << 40) - 1); 408 409 *lo = cpu_to_le32(lower_32_bits(now)); 410 *hi = upper_32_bits(now); 411 } 412 413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 414 { 415 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 416 } 417 #define ext4_update_tstamp(es, tstamp) \ 418 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 419 ktime_get_real_seconds()) 420 #define ext4_get_tstamp(es, tstamp) \ 421 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 422 423 /* 424 * The del_gendisk() function uninitializes the disk-specific data 425 * structures, including the bdi structure, without telling anyone 426 * else. Once this happens, any attempt to call mark_buffer_dirty() 427 * (for example, by ext4_commit_super), will cause a kernel OOPS. 428 * This is a kludge to prevent these oops until we can put in a proper 429 * hook in del_gendisk() to inform the VFS and file system layers. 430 */ 431 static int block_device_ejected(struct super_block *sb) 432 { 433 struct inode *bd_inode = sb->s_bdev->bd_inode; 434 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 435 436 return bdi->dev == NULL; 437 } 438 439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 440 { 441 struct super_block *sb = journal->j_private; 442 struct ext4_sb_info *sbi = EXT4_SB(sb); 443 int error = is_journal_aborted(journal); 444 struct ext4_journal_cb_entry *jce; 445 446 BUG_ON(txn->t_state == T_FINISHED); 447 448 ext4_process_freed_data(sb, txn->t_tid); 449 450 spin_lock(&sbi->s_md_lock); 451 while (!list_empty(&txn->t_private_list)) { 452 jce = list_entry(txn->t_private_list.next, 453 struct ext4_journal_cb_entry, jce_list); 454 list_del_init(&jce->jce_list); 455 spin_unlock(&sbi->s_md_lock); 456 jce->jce_func(sb, jce, error); 457 spin_lock(&sbi->s_md_lock); 458 } 459 spin_unlock(&sbi->s_md_lock); 460 } 461 462 /* 463 * This writepage callback for write_cache_pages() 464 * takes care of a few cases after page cleaning. 465 * 466 * write_cache_pages() already checks for dirty pages 467 * and calls clear_page_dirty_for_io(), which we want, 468 * to write protect the pages. 469 * 470 * However, we may have to redirty a page (see below.) 471 */ 472 static int ext4_journalled_writepage_callback(struct page *page, 473 struct writeback_control *wbc, 474 void *data) 475 { 476 transaction_t *transaction = (transaction_t *) data; 477 struct buffer_head *bh, *head; 478 struct journal_head *jh; 479 480 bh = head = page_buffers(page); 481 do { 482 /* 483 * We have to redirty a page in these cases: 484 * 1) If buffer is dirty, it means the page was dirty because it 485 * contains a buffer that needs checkpointing. So the dirty bit 486 * needs to be preserved so that checkpointing writes the buffer 487 * properly. 488 * 2) If buffer is not part of the committing transaction 489 * (we may have just accidentally come across this buffer because 490 * inode range tracking is not exact) or if the currently running 491 * transaction already contains this buffer as well, dirty bit 492 * needs to be preserved so that the buffer gets writeprotected 493 * properly on running transaction's commit. 494 */ 495 jh = bh2jh(bh); 496 if (buffer_dirty(bh) || 497 (jh && (jh->b_transaction != transaction || 498 jh->b_next_transaction))) { 499 redirty_page_for_writepage(wbc, page); 500 goto out; 501 } 502 } while ((bh = bh->b_this_page) != head); 503 504 out: 505 return AOP_WRITEPAGE_ACTIVATE; 506 } 507 508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 509 { 510 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 511 struct writeback_control wbc = { 512 .sync_mode = WB_SYNC_ALL, 513 .nr_to_write = LONG_MAX, 514 .range_start = jinode->i_dirty_start, 515 .range_end = jinode->i_dirty_end, 516 }; 517 518 return write_cache_pages(mapping, &wbc, 519 ext4_journalled_writepage_callback, 520 jinode->i_transaction); 521 } 522 523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 524 { 525 int ret; 526 527 if (ext4_should_journal_data(jinode->i_vfs_inode)) 528 ret = ext4_journalled_submit_inode_data_buffers(jinode); 529 else 530 ret = jbd2_journal_submit_inode_data_buffers(jinode); 531 532 return ret; 533 } 534 535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 536 { 537 int ret = 0; 538 539 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 540 ret = jbd2_journal_finish_inode_data_buffers(jinode); 541 542 return ret; 543 } 544 545 static bool system_going_down(void) 546 { 547 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 548 || system_state == SYSTEM_RESTART; 549 } 550 551 struct ext4_err_translation { 552 int code; 553 int errno; 554 }; 555 556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 557 558 static struct ext4_err_translation err_translation[] = { 559 EXT4_ERR_TRANSLATE(EIO), 560 EXT4_ERR_TRANSLATE(ENOMEM), 561 EXT4_ERR_TRANSLATE(EFSBADCRC), 562 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 563 EXT4_ERR_TRANSLATE(ENOSPC), 564 EXT4_ERR_TRANSLATE(ENOKEY), 565 EXT4_ERR_TRANSLATE(EROFS), 566 EXT4_ERR_TRANSLATE(EFBIG), 567 EXT4_ERR_TRANSLATE(EEXIST), 568 EXT4_ERR_TRANSLATE(ERANGE), 569 EXT4_ERR_TRANSLATE(EOVERFLOW), 570 EXT4_ERR_TRANSLATE(EBUSY), 571 EXT4_ERR_TRANSLATE(ENOTDIR), 572 EXT4_ERR_TRANSLATE(ENOTEMPTY), 573 EXT4_ERR_TRANSLATE(ESHUTDOWN), 574 EXT4_ERR_TRANSLATE(EFAULT), 575 }; 576 577 static int ext4_errno_to_code(int errno) 578 { 579 int i; 580 581 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 582 if (err_translation[i].errno == errno) 583 return err_translation[i].code; 584 return EXT4_ERR_UNKNOWN; 585 } 586 587 static void save_error_info(struct super_block *sb, int error, 588 __u32 ino, __u64 block, 589 const char *func, unsigned int line) 590 { 591 struct ext4_sb_info *sbi = EXT4_SB(sb); 592 593 /* We default to EFSCORRUPTED error... */ 594 if (error == 0) 595 error = EFSCORRUPTED; 596 597 spin_lock(&sbi->s_error_lock); 598 sbi->s_add_error_count++; 599 sbi->s_last_error_code = error; 600 sbi->s_last_error_line = line; 601 sbi->s_last_error_ino = ino; 602 sbi->s_last_error_block = block; 603 sbi->s_last_error_func = func; 604 sbi->s_last_error_time = ktime_get_real_seconds(); 605 if (!sbi->s_first_error_time) { 606 sbi->s_first_error_code = error; 607 sbi->s_first_error_line = line; 608 sbi->s_first_error_ino = ino; 609 sbi->s_first_error_block = block; 610 sbi->s_first_error_func = func; 611 sbi->s_first_error_time = sbi->s_last_error_time; 612 } 613 spin_unlock(&sbi->s_error_lock); 614 } 615 616 /* Deal with the reporting of failure conditions on a filesystem such as 617 * inconsistencies detected or read IO failures. 618 * 619 * On ext2, we can store the error state of the filesystem in the 620 * superblock. That is not possible on ext4, because we may have other 621 * write ordering constraints on the superblock which prevent us from 622 * writing it out straight away; and given that the journal is about to 623 * be aborted, we can't rely on the current, or future, transactions to 624 * write out the superblock safely. 625 * 626 * We'll just use the jbd2_journal_abort() error code to record an error in 627 * the journal instead. On recovery, the journal will complain about 628 * that error until we've noted it down and cleared it. 629 * 630 * If force_ro is set, we unconditionally force the filesystem into an 631 * ABORT|READONLY state, unless the error response on the fs has been set to 632 * panic in which case we take the easy way out and panic immediately. This is 633 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 634 * at a critical moment in log management. 635 */ 636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 637 __u32 ino, __u64 block, 638 const char *func, unsigned int line) 639 { 640 journal_t *journal = EXT4_SB(sb)->s_journal; 641 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 642 643 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 644 if (test_opt(sb, WARN_ON_ERROR)) 645 WARN_ON_ONCE(1); 646 647 if (!continue_fs && !sb_rdonly(sb)) { 648 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 649 if (journal) 650 jbd2_journal_abort(journal, -EIO); 651 } 652 653 if (!bdev_read_only(sb->s_bdev)) { 654 save_error_info(sb, error, ino, block, func, line); 655 /* 656 * In case the fs should keep running, we need to writeout 657 * superblock through the journal. Due to lock ordering 658 * constraints, it may not be safe to do it right here so we 659 * defer superblock flushing to a workqueue. 660 */ 661 if (continue_fs) 662 schedule_work(&EXT4_SB(sb)->s_error_work); 663 else 664 ext4_commit_super(sb); 665 } 666 667 /* 668 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 669 * could panic during 'reboot -f' as the underlying device got already 670 * disabled. 671 */ 672 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 673 panic("EXT4-fs (device %s): panic forced after error\n", 674 sb->s_id); 675 } 676 677 if (sb_rdonly(sb) || continue_fs) 678 return; 679 680 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 681 /* 682 * Make sure updated value of ->s_mount_flags will be visible before 683 * ->s_flags update 684 */ 685 smp_wmb(); 686 sb->s_flags |= SB_RDONLY; 687 } 688 689 static void flush_stashed_error_work(struct work_struct *work) 690 { 691 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 692 s_error_work); 693 journal_t *journal = sbi->s_journal; 694 handle_t *handle; 695 696 /* 697 * If the journal is still running, we have to write out superblock 698 * through the journal to avoid collisions of other journalled sb 699 * updates. 700 * 701 * We use directly jbd2 functions here to avoid recursing back into 702 * ext4 error handling code during handling of previous errors. 703 */ 704 if (!sb_rdonly(sbi->s_sb) && journal) { 705 struct buffer_head *sbh = sbi->s_sbh; 706 handle = jbd2_journal_start(journal, 1); 707 if (IS_ERR(handle)) 708 goto write_directly; 709 if (jbd2_journal_get_write_access(handle, sbh)) { 710 jbd2_journal_stop(handle); 711 goto write_directly; 712 } 713 ext4_update_super(sbi->s_sb); 714 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 715 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 716 "superblock detected"); 717 clear_buffer_write_io_error(sbh); 718 set_buffer_uptodate(sbh); 719 } 720 721 if (jbd2_journal_dirty_metadata(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 jbd2_journal_stop(handle); 726 ext4_notify_error_sysfs(sbi); 727 return; 728 } 729 write_directly: 730 /* 731 * Write through journal failed. Write sb directly to get error info 732 * out and hope for the best. 733 */ 734 ext4_commit_super(sbi->s_sb); 735 ext4_notify_error_sysfs(sbi); 736 } 737 738 #define ext4_error_ratelimit(sb) \ 739 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 740 "EXT4-fs error") 741 742 void __ext4_error(struct super_block *sb, const char *function, 743 unsigned int line, bool force_ro, int error, __u64 block, 744 const char *fmt, ...) 745 { 746 struct va_format vaf; 747 va_list args; 748 749 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 750 return; 751 752 trace_ext4_error(sb, function, line); 753 if (ext4_error_ratelimit(sb)) { 754 va_start(args, fmt); 755 vaf.fmt = fmt; 756 vaf.va = &args; 757 printk(KERN_CRIT 758 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 759 sb->s_id, function, line, current->comm, &vaf); 760 va_end(args); 761 } 762 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 763 } 764 765 void __ext4_error_inode(struct inode *inode, const char *function, 766 unsigned int line, ext4_fsblk_t block, int error, 767 const char *fmt, ...) 768 { 769 va_list args; 770 struct va_format vaf; 771 772 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 773 return; 774 775 trace_ext4_error(inode->i_sb, function, line); 776 if (ext4_error_ratelimit(inode->i_sb)) { 777 va_start(args, fmt); 778 vaf.fmt = fmt; 779 vaf.va = &args; 780 if (block) 781 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 782 "inode #%lu: block %llu: comm %s: %pV\n", 783 inode->i_sb->s_id, function, line, inode->i_ino, 784 block, current->comm, &vaf); 785 else 786 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 787 "inode #%lu: comm %s: %pV\n", 788 inode->i_sb->s_id, function, line, inode->i_ino, 789 current->comm, &vaf); 790 va_end(args); 791 } 792 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 793 function, line); 794 } 795 796 void __ext4_error_file(struct file *file, const char *function, 797 unsigned int line, ext4_fsblk_t block, 798 const char *fmt, ...) 799 { 800 va_list args; 801 struct va_format vaf; 802 struct inode *inode = file_inode(file); 803 char pathname[80], *path; 804 805 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 806 return; 807 808 trace_ext4_error(inode->i_sb, function, line); 809 if (ext4_error_ratelimit(inode->i_sb)) { 810 path = file_path(file, pathname, sizeof(pathname)); 811 if (IS_ERR(path)) 812 path = "(unknown)"; 813 va_start(args, fmt); 814 vaf.fmt = fmt; 815 vaf.va = &args; 816 if (block) 817 printk(KERN_CRIT 818 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 819 "block %llu: comm %s: path %s: %pV\n", 820 inode->i_sb->s_id, function, line, inode->i_ino, 821 block, current->comm, path, &vaf); 822 else 823 printk(KERN_CRIT 824 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 825 "comm %s: path %s: %pV\n", 826 inode->i_sb->s_id, function, line, inode->i_ino, 827 current->comm, path, &vaf); 828 va_end(args); 829 } 830 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 831 function, line); 832 } 833 834 const char *ext4_decode_error(struct super_block *sb, int errno, 835 char nbuf[16]) 836 { 837 char *errstr = NULL; 838 839 switch (errno) { 840 case -EFSCORRUPTED: 841 errstr = "Corrupt filesystem"; 842 break; 843 case -EFSBADCRC: 844 errstr = "Filesystem failed CRC"; 845 break; 846 case -EIO: 847 errstr = "IO failure"; 848 break; 849 case -ENOMEM: 850 errstr = "Out of memory"; 851 break; 852 case -EROFS: 853 if (!sb || (EXT4_SB(sb)->s_journal && 854 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 855 errstr = "Journal has aborted"; 856 else 857 errstr = "Readonly filesystem"; 858 break; 859 default: 860 /* If the caller passed in an extra buffer for unknown 861 * errors, textualise them now. Else we just return 862 * NULL. */ 863 if (nbuf) { 864 /* Check for truncated error codes... */ 865 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 866 errstr = nbuf; 867 } 868 break; 869 } 870 871 return errstr; 872 } 873 874 /* __ext4_std_error decodes expected errors from journaling functions 875 * automatically and invokes the appropriate error response. */ 876 877 void __ext4_std_error(struct super_block *sb, const char *function, 878 unsigned int line, int errno) 879 { 880 char nbuf[16]; 881 const char *errstr; 882 883 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 884 return; 885 886 /* Special case: if the error is EROFS, and we're not already 887 * inside a transaction, then there's really no point in logging 888 * an error. */ 889 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 890 return; 891 892 if (ext4_error_ratelimit(sb)) { 893 errstr = ext4_decode_error(sb, errno, nbuf); 894 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 895 sb->s_id, function, line, errstr); 896 } 897 898 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 899 } 900 901 void __ext4_msg(struct super_block *sb, 902 const char *prefix, const char *fmt, ...) 903 { 904 struct va_format vaf; 905 va_list args; 906 907 atomic_inc(&EXT4_SB(sb)->s_msg_count); 908 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 909 return; 910 911 va_start(args, fmt); 912 vaf.fmt = fmt; 913 vaf.va = &args; 914 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 915 va_end(args); 916 } 917 918 static int ext4_warning_ratelimit(struct super_block *sb) 919 { 920 atomic_inc(&EXT4_SB(sb)->s_warning_count); 921 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 922 "EXT4-fs warning"); 923 } 924 925 void __ext4_warning(struct super_block *sb, const char *function, 926 unsigned int line, const char *fmt, ...) 927 { 928 struct va_format vaf; 929 va_list args; 930 931 if (!ext4_warning_ratelimit(sb)) 932 return; 933 934 va_start(args, fmt); 935 vaf.fmt = fmt; 936 vaf.va = &args; 937 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 938 sb->s_id, function, line, &vaf); 939 va_end(args); 940 } 941 942 void __ext4_warning_inode(const struct inode *inode, const char *function, 943 unsigned int line, const char *fmt, ...) 944 { 945 struct va_format vaf; 946 va_list args; 947 948 if (!ext4_warning_ratelimit(inode->i_sb)) 949 return; 950 951 va_start(args, fmt); 952 vaf.fmt = fmt; 953 vaf.va = &args; 954 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 955 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 956 function, line, inode->i_ino, current->comm, &vaf); 957 va_end(args); 958 } 959 960 void __ext4_grp_locked_error(const char *function, unsigned int line, 961 struct super_block *sb, ext4_group_t grp, 962 unsigned long ino, ext4_fsblk_t block, 963 const char *fmt, ...) 964 __releases(bitlock) 965 __acquires(bitlock) 966 { 967 struct va_format vaf; 968 va_list args; 969 970 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 971 return; 972 973 trace_ext4_error(sb, function, line); 974 if (ext4_error_ratelimit(sb)) { 975 va_start(args, fmt); 976 vaf.fmt = fmt; 977 vaf.va = &args; 978 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 979 sb->s_id, function, line, grp); 980 if (ino) 981 printk(KERN_CONT "inode %lu: ", ino); 982 if (block) 983 printk(KERN_CONT "block %llu:", 984 (unsigned long long) block); 985 printk(KERN_CONT "%pV\n", &vaf); 986 va_end(args); 987 } 988 989 if (test_opt(sb, ERRORS_CONT)) { 990 if (test_opt(sb, WARN_ON_ERROR)) 991 WARN_ON_ONCE(1); 992 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 993 if (!bdev_read_only(sb->s_bdev)) { 994 save_error_info(sb, EFSCORRUPTED, ino, block, function, 995 line); 996 schedule_work(&EXT4_SB(sb)->s_error_work); 997 } 998 return; 999 } 1000 ext4_unlock_group(sb, grp); 1001 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1002 /* 1003 * We only get here in the ERRORS_RO case; relocking the group 1004 * may be dangerous, but nothing bad will happen since the 1005 * filesystem will have already been marked read/only and the 1006 * journal has been aborted. We return 1 as a hint to callers 1007 * who might what to use the return value from 1008 * ext4_grp_locked_error() to distinguish between the 1009 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1010 * aggressively from the ext4 function in question, with a 1011 * more appropriate error code. 1012 */ 1013 ext4_lock_group(sb, grp); 1014 return; 1015 } 1016 1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1018 ext4_group_t group, 1019 unsigned int flags) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(sb); 1022 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1023 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1024 int ret; 1025 1026 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1027 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1028 &grp->bb_state); 1029 if (!ret) 1030 percpu_counter_sub(&sbi->s_freeclusters_counter, 1031 grp->bb_free); 1032 } 1033 1034 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1035 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1036 &grp->bb_state); 1037 if (!ret && gdp) { 1038 int count; 1039 1040 count = ext4_free_inodes_count(sb, gdp); 1041 percpu_counter_sub(&sbi->s_freeinodes_counter, 1042 count); 1043 } 1044 } 1045 } 1046 1047 void ext4_update_dynamic_rev(struct super_block *sb) 1048 { 1049 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1050 1051 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1052 return; 1053 1054 ext4_warning(sb, 1055 "updating to rev %d because of new feature flag, " 1056 "running e2fsck is recommended", 1057 EXT4_DYNAMIC_REV); 1058 1059 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1060 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1061 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1062 /* leave es->s_feature_*compat flags alone */ 1063 /* es->s_uuid will be set by e2fsck if empty */ 1064 1065 /* 1066 * The rest of the superblock fields should be zero, and if not it 1067 * means they are likely already in use, so leave them alone. We 1068 * can leave it up to e2fsck to clean up any inconsistencies there. 1069 */ 1070 } 1071 1072 /* 1073 * Open the external journal device 1074 */ 1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1076 { 1077 struct block_device *bdev; 1078 1079 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1080 if (IS_ERR(bdev)) 1081 goto fail; 1082 return bdev; 1083 1084 fail: 1085 ext4_msg(sb, KERN_ERR, 1086 "failed to open journal device unknown-block(%u,%u) %ld", 1087 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1088 return NULL; 1089 } 1090 1091 /* 1092 * Release the journal device 1093 */ 1094 static void ext4_blkdev_put(struct block_device *bdev) 1095 { 1096 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1097 } 1098 1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1100 { 1101 struct block_device *bdev; 1102 bdev = sbi->s_journal_bdev; 1103 if (bdev) { 1104 ext4_blkdev_put(bdev); 1105 sbi->s_journal_bdev = NULL; 1106 } 1107 } 1108 1109 static inline struct inode *orphan_list_entry(struct list_head *l) 1110 { 1111 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1112 } 1113 1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1115 { 1116 struct list_head *l; 1117 1118 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1119 le32_to_cpu(sbi->s_es->s_last_orphan)); 1120 1121 printk(KERN_ERR "sb_info orphan list:\n"); 1122 list_for_each(l, &sbi->s_orphan) { 1123 struct inode *inode = orphan_list_entry(l); 1124 printk(KERN_ERR " " 1125 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1126 inode->i_sb->s_id, inode->i_ino, inode, 1127 inode->i_mode, inode->i_nlink, 1128 NEXT_ORPHAN(inode)); 1129 } 1130 } 1131 1132 #ifdef CONFIG_QUOTA 1133 static int ext4_quota_off(struct super_block *sb, int type); 1134 1135 static inline void ext4_quota_off_umount(struct super_block *sb) 1136 { 1137 int type; 1138 1139 /* Use our quota_off function to clear inode flags etc. */ 1140 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1141 ext4_quota_off(sb, type); 1142 } 1143 1144 /* 1145 * This is a helper function which is used in the mount/remount 1146 * codepaths (which holds s_umount) to fetch the quota file name. 1147 */ 1148 static inline char *get_qf_name(struct super_block *sb, 1149 struct ext4_sb_info *sbi, 1150 int type) 1151 { 1152 return rcu_dereference_protected(sbi->s_qf_names[type], 1153 lockdep_is_held(&sb->s_umount)); 1154 } 1155 #else 1156 static inline void ext4_quota_off_umount(struct super_block *sb) 1157 { 1158 } 1159 #endif 1160 1161 static void ext4_put_super(struct super_block *sb) 1162 { 1163 struct ext4_sb_info *sbi = EXT4_SB(sb); 1164 struct ext4_super_block *es = sbi->s_es; 1165 struct buffer_head **group_desc; 1166 struct flex_groups **flex_groups; 1167 int aborted = 0; 1168 int i, err; 1169 1170 ext4_unregister_li_request(sb); 1171 ext4_quota_off_umount(sb); 1172 1173 flush_work(&sbi->s_error_work); 1174 destroy_workqueue(sbi->rsv_conversion_wq); 1175 ext4_release_orphan_info(sb); 1176 1177 /* 1178 * Unregister sysfs before destroying jbd2 journal. 1179 * Since we could still access attr_journal_task attribute via sysfs 1180 * path which could have sbi->s_journal->j_task as NULL 1181 */ 1182 ext4_unregister_sysfs(sb); 1183 1184 if (sbi->s_journal) { 1185 aborted = is_journal_aborted(sbi->s_journal); 1186 err = jbd2_journal_destroy(sbi->s_journal); 1187 sbi->s_journal = NULL; 1188 if ((err < 0) && !aborted) { 1189 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1190 } 1191 } 1192 1193 ext4_es_unregister_shrinker(sbi); 1194 del_timer_sync(&sbi->s_err_report); 1195 ext4_release_system_zone(sb); 1196 ext4_mb_release(sb); 1197 ext4_ext_release(sb); 1198 1199 if (!sb_rdonly(sb) && !aborted) { 1200 ext4_clear_feature_journal_needs_recovery(sb); 1201 ext4_clear_feature_orphan_present(sb); 1202 es->s_state = cpu_to_le16(sbi->s_mount_state); 1203 } 1204 if (!sb_rdonly(sb)) 1205 ext4_commit_super(sb); 1206 1207 rcu_read_lock(); 1208 group_desc = rcu_dereference(sbi->s_group_desc); 1209 for (i = 0; i < sbi->s_gdb_count; i++) 1210 brelse(group_desc[i]); 1211 kvfree(group_desc); 1212 flex_groups = rcu_dereference(sbi->s_flex_groups); 1213 if (flex_groups) { 1214 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1215 kvfree(flex_groups[i]); 1216 kvfree(flex_groups); 1217 } 1218 rcu_read_unlock(); 1219 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1220 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1221 percpu_counter_destroy(&sbi->s_dirs_counter); 1222 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1223 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1224 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1225 #ifdef CONFIG_QUOTA 1226 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1227 kfree(get_qf_name(sb, sbi, i)); 1228 #endif 1229 1230 /* Debugging code just in case the in-memory inode orphan list 1231 * isn't empty. The on-disk one can be non-empty if we've 1232 * detected an error and taken the fs readonly, but the 1233 * in-memory list had better be clean by this point. */ 1234 if (!list_empty(&sbi->s_orphan)) 1235 dump_orphan_list(sb, sbi); 1236 ASSERT(list_empty(&sbi->s_orphan)); 1237 1238 sync_blockdev(sb->s_bdev); 1239 invalidate_bdev(sb->s_bdev); 1240 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1241 /* 1242 * Invalidate the journal device's buffers. We don't want them 1243 * floating about in memory - the physical journal device may 1244 * hotswapped, and it breaks the `ro-after' testing code. 1245 */ 1246 sync_blockdev(sbi->s_journal_bdev); 1247 invalidate_bdev(sbi->s_journal_bdev); 1248 ext4_blkdev_remove(sbi); 1249 } 1250 1251 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1252 sbi->s_ea_inode_cache = NULL; 1253 1254 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1255 sbi->s_ea_block_cache = NULL; 1256 1257 ext4_stop_mmpd(sbi); 1258 1259 brelse(sbi->s_sbh); 1260 sb->s_fs_info = NULL; 1261 /* 1262 * Now that we are completely done shutting down the 1263 * superblock, we need to actually destroy the kobject. 1264 */ 1265 kobject_put(&sbi->s_kobj); 1266 wait_for_completion(&sbi->s_kobj_unregister); 1267 if (sbi->s_chksum_driver) 1268 crypto_free_shash(sbi->s_chksum_driver); 1269 kfree(sbi->s_blockgroup_lock); 1270 fs_put_dax(sbi->s_daxdev); 1271 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1272 #ifdef CONFIG_UNICODE 1273 utf8_unload(sb->s_encoding); 1274 #endif 1275 kfree(sbi); 1276 } 1277 1278 static struct kmem_cache *ext4_inode_cachep; 1279 1280 /* 1281 * Called inside transaction, so use GFP_NOFS 1282 */ 1283 static struct inode *ext4_alloc_inode(struct super_block *sb) 1284 { 1285 struct ext4_inode_info *ei; 1286 1287 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1288 if (!ei) 1289 return NULL; 1290 1291 inode_set_iversion(&ei->vfs_inode, 1); 1292 spin_lock_init(&ei->i_raw_lock); 1293 INIT_LIST_HEAD(&ei->i_prealloc_list); 1294 atomic_set(&ei->i_prealloc_active, 0); 1295 spin_lock_init(&ei->i_prealloc_lock); 1296 ext4_es_init_tree(&ei->i_es_tree); 1297 rwlock_init(&ei->i_es_lock); 1298 INIT_LIST_HEAD(&ei->i_es_list); 1299 ei->i_es_all_nr = 0; 1300 ei->i_es_shk_nr = 0; 1301 ei->i_es_shrink_lblk = 0; 1302 ei->i_reserved_data_blocks = 0; 1303 spin_lock_init(&(ei->i_block_reservation_lock)); 1304 ext4_init_pending_tree(&ei->i_pending_tree); 1305 #ifdef CONFIG_QUOTA 1306 ei->i_reserved_quota = 0; 1307 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1308 #endif 1309 ei->jinode = NULL; 1310 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1311 spin_lock_init(&ei->i_completed_io_lock); 1312 ei->i_sync_tid = 0; 1313 ei->i_datasync_tid = 0; 1314 atomic_set(&ei->i_unwritten, 0); 1315 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1316 ext4_fc_init_inode(&ei->vfs_inode); 1317 mutex_init(&ei->i_fc_lock); 1318 return &ei->vfs_inode; 1319 } 1320 1321 static int ext4_drop_inode(struct inode *inode) 1322 { 1323 int drop = generic_drop_inode(inode); 1324 1325 if (!drop) 1326 drop = fscrypt_drop_inode(inode); 1327 1328 trace_ext4_drop_inode(inode, drop); 1329 return drop; 1330 } 1331 1332 static void ext4_free_in_core_inode(struct inode *inode) 1333 { 1334 fscrypt_free_inode(inode); 1335 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1336 pr_warn("%s: inode %ld still in fc list", 1337 __func__, inode->i_ino); 1338 } 1339 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1340 } 1341 1342 static void ext4_destroy_inode(struct inode *inode) 1343 { 1344 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1345 ext4_msg(inode->i_sb, KERN_ERR, 1346 "Inode %lu (%p): orphan list check failed!", 1347 inode->i_ino, EXT4_I(inode)); 1348 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1349 EXT4_I(inode), sizeof(struct ext4_inode_info), 1350 true); 1351 dump_stack(); 1352 } 1353 } 1354 1355 static void init_once(void *foo) 1356 { 1357 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1358 1359 INIT_LIST_HEAD(&ei->i_orphan); 1360 init_rwsem(&ei->xattr_sem); 1361 init_rwsem(&ei->i_data_sem); 1362 inode_init_once(&ei->vfs_inode); 1363 ext4_fc_init_inode(&ei->vfs_inode); 1364 } 1365 1366 static int __init init_inodecache(void) 1367 { 1368 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1369 sizeof(struct ext4_inode_info), 0, 1370 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1371 SLAB_ACCOUNT), 1372 offsetof(struct ext4_inode_info, i_data), 1373 sizeof_field(struct ext4_inode_info, i_data), 1374 init_once); 1375 if (ext4_inode_cachep == NULL) 1376 return -ENOMEM; 1377 return 0; 1378 } 1379 1380 static void destroy_inodecache(void) 1381 { 1382 /* 1383 * Make sure all delayed rcu free inodes are flushed before we 1384 * destroy cache. 1385 */ 1386 rcu_barrier(); 1387 kmem_cache_destroy(ext4_inode_cachep); 1388 } 1389 1390 void ext4_clear_inode(struct inode *inode) 1391 { 1392 ext4_fc_del(inode); 1393 invalidate_inode_buffers(inode); 1394 clear_inode(inode); 1395 ext4_discard_preallocations(inode, 0); 1396 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1397 dquot_drop(inode); 1398 if (EXT4_I(inode)->jinode) { 1399 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1400 EXT4_I(inode)->jinode); 1401 jbd2_free_inode(EXT4_I(inode)->jinode); 1402 EXT4_I(inode)->jinode = NULL; 1403 } 1404 fscrypt_put_encryption_info(inode); 1405 fsverity_cleanup_inode(inode); 1406 } 1407 1408 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1409 u64 ino, u32 generation) 1410 { 1411 struct inode *inode; 1412 1413 /* 1414 * Currently we don't know the generation for parent directory, so 1415 * a generation of 0 means "accept any" 1416 */ 1417 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1418 if (IS_ERR(inode)) 1419 return ERR_CAST(inode); 1420 if (generation && inode->i_generation != generation) { 1421 iput(inode); 1422 return ERR_PTR(-ESTALE); 1423 } 1424 1425 return inode; 1426 } 1427 1428 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1429 int fh_len, int fh_type) 1430 { 1431 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1432 ext4_nfs_get_inode); 1433 } 1434 1435 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1436 int fh_len, int fh_type) 1437 { 1438 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1439 ext4_nfs_get_inode); 1440 } 1441 1442 static int ext4_nfs_commit_metadata(struct inode *inode) 1443 { 1444 struct writeback_control wbc = { 1445 .sync_mode = WB_SYNC_ALL 1446 }; 1447 1448 trace_ext4_nfs_commit_metadata(inode); 1449 return ext4_write_inode(inode, &wbc); 1450 } 1451 1452 #ifdef CONFIG_FS_ENCRYPTION 1453 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1454 { 1455 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1456 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1457 } 1458 1459 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1460 void *fs_data) 1461 { 1462 handle_t *handle = fs_data; 1463 int res, res2, credits, retries = 0; 1464 1465 /* 1466 * Encrypting the root directory is not allowed because e2fsck expects 1467 * lost+found to exist and be unencrypted, and encrypting the root 1468 * directory would imply encrypting the lost+found directory as well as 1469 * the filename "lost+found" itself. 1470 */ 1471 if (inode->i_ino == EXT4_ROOT_INO) 1472 return -EPERM; 1473 1474 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1475 return -EINVAL; 1476 1477 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1478 return -EOPNOTSUPP; 1479 1480 res = ext4_convert_inline_data(inode); 1481 if (res) 1482 return res; 1483 1484 /* 1485 * If a journal handle was specified, then the encryption context is 1486 * being set on a new inode via inheritance and is part of a larger 1487 * transaction to create the inode. Otherwise the encryption context is 1488 * being set on an existing inode in its own transaction. Only in the 1489 * latter case should the "retry on ENOSPC" logic be used. 1490 */ 1491 1492 if (handle) { 1493 res = ext4_xattr_set_handle(handle, inode, 1494 EXT4_XATTR_INDEX_ENCRYPTION, 1495 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1496 ctx, len, 0); 1497 if (!res) { 1498 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1499 ext4_clear_inode_state(inode, 1500 EXT4_STATE_MAY_INLINE_DATA); 1501 /* 1502 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1503 * S_DAX may be disabled 1504 */ 1505 ext4_set_inode_flags(inode, false); 1506 } 1507 return res; 1508 } 1509 1510 res = dquot_initialize(inode); 1511 if (res) 1512 return res; 1513 retry: 1514 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1515 &credits); 1516 if (res) 1517 return res; 1518 1519 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1520 if (IS_ERR(handle)) 1521 return PTR_ERR(handle); 1522 1523 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1524 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1525 ctx, len, 0); 1526 if (!res) { 1527 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1528 /* 1529 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1530 * S_DAX may be disabled 1531 */ 1532 ext4_set_inode_flags(inode, false); 1533 res = ext4_mark_inode_dirty(handle, inode); 1534 if (res) 1535 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1536 } 1537 res2 = ext4_journal_stop(handle); 1538 1539 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1540 goto retry; 1541 if (!res) 1542 res = res2; 1543 return res; 1544 } 1545 1546 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1547 { 1548 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1549 } 1550 1551 static bool ext4_has_stable_inodes(struct super_block *sb) 1552 { 1553 return ext4_has_feature_stable_inodes(sb); 1554 } 1555 1556 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1557 int *ino_bits_ret, int *lblk_bits_ret) 1558 { 1559 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1560 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1561 } 1562 1563 static const struct fscrypt_operations ext4_cryptops = { 1564 .key_prefix = "ext4:", 1565 .get_context = ext4_get_context, 1566 .set_context = ext4_set_context, 1567 .get_dummy_policy = ext4_get_dummy_policy, 1568 .empty_dir = ext4_empty_dir, 1569 .max_namelen = EXT4_NAME_LEN, 1570 .has_stable_inodes = ext4_has_stable_inodes, 1571 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1572 }; 1573 #endif 1574 1575 #ifdef CONFIG_QUOTA 1576 static const char * const quotatypes[] = INITQFNAMES; 1577 #define QTYPE2NAME(t) (quotatypes[t]) 1578 1579 static int ext4_write_dquot(struct dquot *dquot); 1580 static int ext4_acquire_dquot(struct dquot *dquot); 1581 static int ext4_release_dquot(struct dquot *dquot); 1582 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1583 static int ext4_write_info(struct super_block *sb, int type); 1584 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1585 const struct path *path); 1586 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1587 size_t len, loff_t off); 1588 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1589 const char *data, size_t len, loff_t off); 1590 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1591 unsigned int flags); 1592 1593 static struct dquot **ext4_get_dquots(struct inode *inode) 1594 { 1595 return EXT4_I(inode)->i_dquot; 1596 } 1597 1598 static const struct dquot_operations ext4_quota_operations = { 1599 .get_reserved_space = ext4_get_reserved_space, 1600 .write_dquot = ext4_write_dquot, 1601 .acquire_dquot = ext4_acquire_dquot, 1602 .release_dquot = ext4_release_dquot, 1603 .mark_dirty = ext4_mark_dquot_dirty, 1604 .write_info = ext4_write_info, 1605 .alloc_dquot = dquot_alloc, 1606 .destroy_dquot = dquot_destroy, 1607 .get_projid = ext4_get_projid, 1608 .get_inode_usage = ext4_get_inode_usage, 1609 .get_next_id = dquot_get_next_id, 1610 }; 1611 1612 static const struct quotactl_ops ext4_qctl_operations = { 1613 .quota_on = ext4_quota_on, 1614 .quota_off = ext4_quota_off, 1615 .quota_sync = dquot_quota_sync, 1616 .get_state = dquot_get_state, 1617 .set_info = dquot_set_dqinfo, 1618 .get_dqblk = dquot_get_dqblk, 1619 .set_dqblk = dquot_set_dqblk, 1620 .get_nextdqblk = dquot_get_next_dqblk, 1621 }; 1622 #endif 1623 1624 static const struct super_operations ext4_sops = { 1625 .alloc_inode = ext4_alloc_inode, 1626 .free_inode = ext4_free_in_core_inode, 1627 .destroy_inode = ext4_destroy_inode, 1628 .write_inode = ext4_write_inode, 1629 .dirty_inode = ext4_dirty_inode, 1630 .drop_inode = ext4_drop_inode, 1631 .evict_inode = ext4_evict_inode, 1632 .put_super = ext4_put_super, 1633 .sync_fs = ext4_sync_fs, 1634 .freeze_fs = ext4_freeze, 1635 .unfreeze_fs = ext4_unfreeze, 1636 .statfs = ext4_statfs, 1637 .remount_fs = ext4_remount, 1638 .show_options = ext4_show_options, 1639 #ifdef CONFIG_QUOTA 1640 .quota_read = ext4_quota_read, 1641 .quota_write = ext4_quota_write, 1642 .get_dquots = ext4_get_dquots, 1643 #endif 1644 }; 1645 1646 static const struct export_operations ext4_export_ops = { 1647 .fh_to_dentry = ext4_fh_to_dentry, 1648 .fh_to_parent = ext4_fh_to_parent, 1649 .get_parent = ext4_get_parent, 1650 .commit_metadata = ext4_nfs_commit_metadata, 1651 }; 1652 1653 enum { 1654 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1655 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1656 Opt_nouid32, Opt_debug, Opt_removed, 1657 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1658 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1659 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1660 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1661 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1662 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1663 Opt_inlinecrypt, 1664 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1665 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1666 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1667 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1668 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1669 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1670 Opt_nowarn_on_error, Opt_mblk_io_submit, 1671 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1672 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1673 Opt_inode_readahead_blks, Opt_journal_ioprio, 1674 Opt_dioread_nolock, Opt_dioread_lock, 1675 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1676 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1677 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1678 #ifdef CONFIG_EXT4_DEBUG 1679 Opt_fc_debug_max_replay, Opt_fc_debug_force 1680 #endif 1681 }; 1682 1683 static const match_table_t tokens = { 1684 {Opt_bsd_df, "bsddf"}, 1685 {Opt_minix_df, "minixdf"}, 1686 {Opt_grpid, "grpid"}, 1687 {Opt_grpid, "bsdgroups"}, 1688 {Opt_nogrpid, "nogrpid"}, 1689 {Opt_nogrpid, "sysvgroups"}, 1690 {Opt_resgid, "resgid=%u"}, 1691 {Opt_resuid, "resuid=%u"}, 1692 {Opt_sb, "sb=%u"}, 1693 {Opt_err_cont, "errors=continue"}, 1694 {Opt_err_panic, "errors=panic"}, 1695 {Opt_err_ro, "errors=remount-ro"}, 1696 {Opt_nouid32, "nouid32"}, 1697 {Opt_debug, "debug"}, 1698 {Opt_removed, "oldalloc"}, 1699 {Opt_removed, "orlov"}, 1700 {Opt_user_xattr, "user_xattr"}, 1701 {Opt_nouser_xattr, "nouser_xattr"}, 1702 {Opt_acl, "acl"}, 1703 {Opt_noacl, "noacl"}, 1704 {Opt_noload, "norecovery"}, 1705 {Opt_noload, "noload"}, 1706 {Opt_removed, "nobh"}, 1707 {Opt_removed, "bh"}, 1708 {Opt_commit, "commit=%u"}, 1709 {Opt_min_batch_time, "min_batch_time=%u"}, 1710 {Opt_max_batch_time, "max_batch_time=%u"}, 1711 {Opt_journal_dev, "journal_dev=%u"}, 1712 {Opt_journal_path, "journal_path=%s"}, 1713 {Opt_journal_checksum, "journal_checksum"}, 1714 {Opt_nojournal_checksum, "nojournal_checksum"}, 1715 {Opt_journal_async_commit, "journal_async_commit"}, 1716 {Opt_abort, "abort"}, 1717 {Opt_data_journal, "data=journal"}, 1718 {Opt_data_ordered, "data=ordered"}, 1719 {Opt_data_writeback, "data=writeback"}, 1720 {Opt_data_err_abort, "data_err=abort"}, 1721 {Opt_data_err_ignore, "data_err=ignore"}, 1722 {Opt_offusrjquota, "usrjquota="}, 1723 {Opt_usrjquota, "usrjquota=%s"}, 1724 {Opt_offgrpjquota, "grpjquota="}, 1725 {Opt_grpjquota, "grpjquota=%s"}, 1726 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1727 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1728 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1729 {Opt_grpquota, "grpquota"}, 1730 {Opt_noquota, "noquota"}, 1731 {Opt_quota, "quota"}, 1732 {Opt_usrquota, "usrquota"}, 1733 {Opt_prjquota, "prjquota"}, 1734 {Opt_barrier, "barrier=%u"}, 1735 {Opt_barrier, "barrier"}, 1736 {Opt_nobarrier, "nobarrier"}, 1737 {Opt_i_version, "i_version"}, 1738 {Opt_dax, "dax"}, 1739 {Opt_dax_always, "dax=always"}, 1740 {Opt_dax_inode, "dax=inode"}, 1741 {Opt_dax_never, "dax=never"}, 1742 {Opt_stripe, "stripe=%u"}, 1743 {Opt_delalloc, "delalloc"}, 1744 {Opt_warn_on_error, "warn_on_error"}, 1745 {Opt_nowarn_on_error, "nowarn_on_error"}, 1746 {Opt_lazytime, "lazytime"}, 1747 {Opt_nolazytime, "nolazytime"}, 1748 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1749 {Opt_nodelalloc, "nodelalloc"}, 1750 {Opt_removed, "mblk_io_submit"}, 1751 {Opt_removed, "nomblk_io_submit"}, 1752 {Opt_block_validity, "block_validity"}, 1753 {Opt_noblock_validity, "noblock_validity"}, 1754 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1755 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1756 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1757 {Opt_auto_da_alloc, "auto_da_alloc"}, 1758 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1759 {Opt_dioread_nolock, "dioread_nolock"}, 1760 {Opt_dioread_lock, "nodioread_nolock"}, 1761 {Opt_dioread_lock, "dioread_lock"}, 1762 {Opt_discard, "discard"}, 1763 {Opt_nodiscard, "nodiscard"}, 1764 {Opt_init_itable, "init_itable=%u"}, 1765 {Opt_init_itable, "init_itable"}, 1766 {Opt_noinit_itable, "noinit_itable"}, 1767 #ifdef CONFIG_EXT4_DEBUG 1768 {Opt_fc_debug_force, "fc_debug_force"}, 1769 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1770 #endif 1771 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1772 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1773 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1774 {Opt_inlinecrypt, "inlinecrypt"}, 1775 {Opt_nombcache, "nombcache"}, 1776 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1777 {Opt_removed, "prefetch_block_bitmaps"}, 1778 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1779 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1780 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1781 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1782 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1783 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1784 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1785 {Opt_err, NULL}, 1786 }; 1787 1788 static ext4_fsblk_t get_sb_block(void **data) 1789 { 1790 ext4_fsblk_t sb_block; 1791 char *options = (char *) *data; 1792 1793 if (!options || strncmp(options, "sb=", 3) != 0) 1794 return 1; /* Default location */ 1795 1796 options += 3; 1797 /* TODO: use simple_strtoll with >32bit ext4 */ 1798 sb_block = simple_strtoul(options, &options, 0); 1799 if (*options && *options != ',') { 1800 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1801 (char *) *data); 1802 return 1; 1803 } 1804 if (*options == ',') 1805 options++; 1806 *data = (void *) options; 1807 1808 return sb_block; 1809 } 1810 1811 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1812 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1813 1814 static const char deprecated_msg[] = 1815 "Mount option \"%s\" will be removed by %s\n" 1816 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1817 1818 #ifdef CONFIG_QUOTA 1819 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1820 { 1821 struct ext4_sb_info *sbi = EXT4_SB(sb); 1822 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1823 int ret = -1; 1824 1825 if (sb_any_quota_loaded(sb) && !old_qname) { 1826 ext4_msg(sb, KERN_ERR, 1827 "Cannot change journaled " 1828 "quota options when quota turned on"); 1829 return -1; 1830 } 1831 if (ext4_has_feature_quota(sb)) { 1832 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1833 "ignored when QUOTA feature is enabled"); 1834 return 1; 1835 } 1836 qname = match_strdup(args); 1837 if (!qname) { 1838 ext4_msg(sb, KERN_ERR, 1839 "Not enough memory for storing quotafile name"); 1840 return -1; 1841 } 1842 if (old_qname) { 1843 if (strcmp(old_qname, qname) == 0) 1844 ret = 1; 1845 else 1846 ext4_msg(sb, KERN_ERR, 1847 "%s quota file already specified", 1848 QTYPE2NAME(qtype)); 1849 goto errout; 1850 } 1851 if (strchr(qname, '/')) { 1852 ext4_msg(sb, KERN_ERR, 1853 "quotafile must be on filesystem root"); 1854 goto errout; 1855 } 1856 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1857 set_opt(sb, QUOTA); 1858 return 1; 1859 errout: 1860 kfree(qname); 1861 return ret; 1862 } 1863 1864 static int clear_qf_name(struct super_block *sb, int qtype) 1865 { 1866 1867 struct ext4_sb_info *sbi = EXT4_SB(sb); 1868 char *old_qname = get_qf_name(sb, sbi, qtype); 1869 1870 if (sb_any_quota_loaded(sb) && old_qname) { 1871 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1872 " when quota turned on"); 1873 return -1; 1874 } 1875 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1876 synchronize_rcu(); 1877 kfree(old_qname); 1878 return 1; 1879 } 1880 #endif 1881 1882 #define MOPT_SET 0x0001 1883 #define MOPT_CLEAR 0x0002 1884 #define MOPT_NOSUPPORT 0x0004 1885 #define MOPT_EXPLICIT 0x0008 1886 #define MOPT_CLEAR_ERR 0x0010 1887 #define MOPT_GTE0 0x0020 1888 #ifdef CONFIG_QUOTA 1889 #define MOPT_Q 0 1890 #define MOPT_QFMT 0x0040 1891 #else 1892 #define MOPT_Q MOPT_NOSUPPORT 1893 #define MOPT_QFMT MOPT_NOSUPPORT 1894 #endif 1895 #define MOPT_DATAJ 0x0080 1896 #define MOPT_NO_EXT2 0x0100 1897 #define MOPT_NO_EXT3 0x0200 1898 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1899 #define MOPT_STRING 0x0400 1900 #define MOPT_SKIP 0x0800 1901 #define MOPT_2 0x1000 1902 1903 static const struct mount_opts { 1904 int token; 1905 int mount_opt; 1906 int flags; 1907 } ext4_mount_opts[] = { 1908 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1909 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1910 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1911 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1912 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1913 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1914 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1915 MOPT_EXT4_ONLY | MOPT_SET}, 1916 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1917 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1918 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1919 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1920 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1921 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1922 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1923 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1924 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1925 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1926 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1927 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1928 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1929 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1930 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1931 EXT4_MOUNT_JOURNAL_CHECKSUM), 1932 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1933 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1934 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1935 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1936 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1937 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1938 MOPT_NO_EXT2}, 1939 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1940 MOPT_NO_EXT2}, 1941 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1942 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1943 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1944 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1945 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1946 {Opt_commit, 0, MOPT_GTE0}, 1947 {Opt_max_batch_time, 0, MOPT_GTE0}, 1948 {Opt_min_batch_time, 0, MOPT_GTE0}, 1949 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1950 {Opt_init_itable, 0, MOPT_GTE0}, 1951 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1952 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1953 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1954 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1955 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1956 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1957 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1958 {Opt_stripe, 0, MOPT_GTE0}, 1959 {Opt_resuid, 0, MOPT_GTE0}, 1960 {Opt_resgid, 0, MOPT_GTE0}, 1961 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1962 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1963 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1964 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1965 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1966 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1967 MOPT_NO_EXT2 | MOPT_DATAJ}, 1968 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1969 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1970 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1971 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1972 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1973 #else 1974 {Opt_acl, 0, MOPT_NOSUPPORT}, 1975 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1976 #endif 1977 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1978 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1979 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1980 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1981 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1982 MOPT_SET | MOPT_Q}, 1983 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1984 MOPT_SET | MOPT_Q}, 1985 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1986 MOPT_SET | MOPT_Q}, 1987 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1988 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1989 MOPT_CLEAR | MOPT_Q}, 1990 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1991 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1992 {Opt_offusrjquota, 0, MOPT_Q}, 1993 {Opt_offgrpjquota, 0, MOPT_Q}, 1994 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1995 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1996 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1997 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1998 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1999 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2000 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2001 MOPT_SET}, 2002 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2003 #ifdef CONFIG_EXT4_DEBUG 2004 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2005 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2006 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2007 #endif 2008 {Opt_err, 0, 0} 2009 }; 2010 2011 #ifdef CONFIG_UNICODE 2012 static const struct ext4_sb_encodings { 2013 __u16 magic; 2014 char *name; 2015 char *version; 2016 } ext4_sb_encoding_map[] = { 2017 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2018 }; 2019 2020 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2021 const struct ext4_sb_encodings **encoding, 2022 __u16 *flags) 2023 { 2024 __u16 magic = le16_to_cpu(es->s_encoding); 2025 int i; 2026 2027 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2028 if (magic == ext4_sb_encoding_map[i].magic) 2029 break; 2030 2031 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2032 return -EINVAL; 2033 2034 *encoding = &ext4_sb_encoding_map[i]; 2035 *flags = le16_to_cpu(es->s_encoding_flags); 2036 2037 return 0; 2038 } 2039 #endif 2040 2041 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2042 const char *opt, 2043 const substring_t *arg, 2044 bool is_remount) 2045 { 2046 #ifdef CONFIG_FS_ENCRYPTION 2047 struct ext4_sb_info *sbi = EXT4_SB(sb); 2048 int err; 2049 2050 /* 2051 * This mount option is just for testing, and it's not worthwhile to 2052 * implement the extra complexity (e.g. RCU protection) that would be 2053 * needed to allow it to be set or changed during remount. We do allow 2054 * it to be specified during remount, but only if there is no change. 2055 */ 2056 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2057 ext4_msg(sb, KERN_WARNING, 2058 "Can't set test_dummy_encryption on remount"); 2059 return -1; 2060 } 2061 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2062 &sbi->s_dummy_enc_policy); 2063 if (err) { 2064 if (err == -EEXIST) 2065 ext4_msg(sb, KERN_WARNING, 2066 "Can't change test_dummy_encryption on remount"); 2067 else if (err == -EINVAL) 2068 ext4_msg(sb, KERN_WARNING, 2069 "Value of option \"%s\" is unrecognized", opt); 2070 else 2071 ext4_msg(sb, KERN_WARNING, 2072 "Error processing option \"%s\" [%d]", 2073 opt, err); 2074 return -1; 2075 } 2076 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2077 #else 2078 ext4_msg(sb, KERN_WARNING, 2079 "Test dummy encryption mount option ignored"); 2080 #endif 2081 return 1; 2082 } 2083 2084 struct ext4_parsed_options { 2085 unsigned long journal_devnum; 2086 unsigned int journal_ioprio; 2087 int mb_optimize_scan; 2088 }; 2089 2090 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2091 substring_t *args, struct ext4_parsed_options *parsed_opts, 2092 int is_remount) 2093 { 2094 struct ext4_sb_info *sbi = EXT4_SB(sb); 2095 const struct mount_opts *m; 2096 kuid_t uid; 2097 kgid_t gid; 2098 int arg = 0; 2099 2100 #ifdef CONFIG_QUOTA 2101 if (token == Opt_usrjquota) 2102 return set_qf_name(sb, USRQUOTA, &args[0]); 2103 else if (token == Opt_grpjquota) 2104 return set_qf_name(sb, GRPQUOTA, &args[0]); 2105 else if (token == Opt_offusrjquota) 2106 return clear_qf_name(sb, USRQUOTA); 2107 else if (token == Opt_offgrpjquota) 2108 return clear_qf_name(sb, GRPQUOTA); 2109 #endif 2110 switch (token) { 2111 case Opt_noacl: 2112 case Opt_nouser_xattr: 2113 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2114 break; 2115 case Opt_sb: 2116 return 1; /* handled by get_sb_block() */ 2117 case Opt_removed: 2118 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2119 return 1; 2120 case Opt_abort: 2121 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2122 return 1; 2123 case Opt_i_version: 2124 sb->s_flags |= SB_I_VERSION; 2125 return 1; 2126 case Opt_lazytime: 2127 sb->s_flags |= SB_LAZYTIME; 2128 return 1; 2129 case Opt_nolazytime: 2130 sb->s_flags &= ~SB_LAZYTIME; 2131 return 1; 2132 case Opt_inlinecrypt: 2133 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2134 sb->s_flags |= SB_INLINECRYPT; 2135 #else 2136 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2137 #endif 2138 return 1; 2139 } 2140 2141 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2142 if (token == m->token) 2143 break; 2144 2145 if (m->token == Opt_err) { 2146 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2147 "or missing value", opt); 2148 return -1; 2149 } 2150 2151 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2152 ext4_msg(sb, KERN_ERR, 2153 "Mount option \"%s\" incompatible with ext2", opt); 2154 return -1; 2155 } 2156 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2157 ext4_msg(sb, KERN_ERR, 2158 "Mount option \"%s\" incompatible with ext3", opt); 2159 return -1; 2160 } 2161 2162 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2163 return -1; 2164 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2165 return -1; 2166 if (m->flags & MOPT_EXPLICIT) { 2167 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2168 set_opt2(sb, EXPLICIT_DELALLOC); 2169 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2170 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2171 } else 2172 return -1; 2173 } 2174 if (m->flags & MOPT_CLEAR_ERR) 2175 clear_opt(sb, ERRORS_MASK); 2176 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2177 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2178 "options when quota turned on"); 2179 return -1; 2180 } 2181 2182 if (m->flags & MOPT_NOSUPPORT) { 2183 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2184 } else if (token == Opt_commit) { 2185 if (arg == 0) 2186 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2187 else if (arg > INT_MAX / HZ) { 2188 ext4_msg(sb, KERN_ERR, 2189 "Invalid commit interval %d, " 2190 "must be smaller than %d", 2191 arg, INT_MAX / HZ); 2192 return -1; 2193 } 2194 sbi->s_commit_interval = HZ * arg; 2195 } else if (token == Opt_debug_want_extra_isize) { 2196 if ((arg & 1) || 2197 (arg < 4) || 2198 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2199 ext4_msg(sb, KERN_ERR, 2200 "Invalid want_extra_isize %d", arg); 2201 return -1; 2202 } 2203 sbi->s_want_extra_isize = arg; 2204 } else if (token == Opt_max_batch_time) { 2205 sbi->s_max_batch_time = arg; 2206 } else if (token == Opt_min_batch_time) { 2207 sbi->s_min_batch_time = arg; 2208 } else if (token == Opt_inode_readahead_blks) { 2209 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2210 ext4_msg(sb, KERN_ERR, 2211 "EXT4-fs: inode_readahead_blks must be " 2212 "0 or a power of 2 smaller than 2^31"); 2213 return -1; 2214 } 2215 sbi->s_inode_readahead_blks = arg; 2216 } else if (token == Opt_init_itable) { 2217 set_opt(sb, INIT_INODE_TABLE); 2218 if (!args->from) 2219 arg = EXT4_DEF_LI_WAIT_MULT; 2220 sbi->s_li_wait_mult = arg; 2221 } else if (token == Opt_max_dir_size_kb) { 2222 sbi->s_max_dir_size_kb = arg; 2223 #ifdef CONFIG_EXT4_DEBUG 2224 } else if (token == Opt_fc_debug_max_replay) { 2225 sbi->s_fc_debug_max_replay = arg; 2226 #endif 2227 } else if (token == Opt_stripe) { 2228 sbi->s_stripe = arg; 2229 } else if (token == Opt_resuid) { 2230 uid = make_kuid(current_user_ns(), arg); 2231 if (!uid_valid(uid)) { 2232 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2233 return -1; 2234 } 2235 sbi->s_resuid = uid; 2236 } else if (token == Opt_resgid) { 2237 gid = make_kgid(current_user_ns(), arg); 2238 if (!gid_valid(gid)) { 2239 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2240 return -1; 2241 } 2242 sbi->s_resgid = gid; 2243 } else if (token == Opt_journal_dev) { 2244 if (is_remount) { 2245 ext4_msg(sb, KERN_ERR, 2246 "Cannot specify journal on remount"); 2247 return -1; 2248 } 2249 parsed_opts->journal_devnum = arg; 2250 } else if (token == Opt_journal_path) { 2251 char *journal_path; 2252 struct inode *journal_inode; 2253 struct path path; 2254 int error; 2255 2256 if (is_remount) { 2257 ext4_msg(sb, KERN_ERR, 2258 "Cannot specify journal on remount"); 2259 return -1; 2260 } 2261 journal_path = match_strdup(&args[0]); 2262 if (!journal_path) { 2263 ext4_msg(sb, KERN_ERR, "error: could not dup " 2264 "journal device string"); 2265 return -1; 2266 } 2267 2268 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2269 if (error) { 2270 ext4_msg(sb, KERN_ERR, "error: could not find " 2271 "journal device path: error %d", error); 2272 kfree(journal_path); 2273 return -1; 2274 } 2275 2276 journal_inode = d_inode(path.dentry); 2277 if (!S_ISBLK(journal_inode->i_mode)) { 2278 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2279 "is not a block device", journal_path); 2280 path_put(&path); 2281 kfree(journal_path); 2282 return -1; 2283 } 2284 2285 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2286 path_put(&path); 2287 kfree(journal_path); 2288 } else if (token == Opt_journal_ioprio) { 2289 if (arg > 7) { 2290 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2291 " (must be 0-7)"); 2292 return -1; 2293 } 2294 parsed_opts->journal_ioprio = 2295 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2296 } else if (token == Opt_test_dummy_encryption) { 2297 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2298 is_remount); 2299 } else if (m->flags & MOPT_DATAJ) { 2300 if (is_remount) { 2301 if (!sbi->s_journal) 2302 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2303 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2304 ext4_msg(sb, KERN_ERR, 2305 "Cannot change data mode on remount"); 2306 return -1; 2307 } 2308 } else { 2309 clear_opt(sb, DATA_FLAGS); 2310 sbi->s_mount_opt |= m->mount_opt; 2311 } 2312 #ifdef CONFIG_QUOTA 2313 } else if (m->flags & MOPT_QFMT) { 2314 if (sb_any_quota_loaded(sb) && 2315 sbi->s_jquota_fmt != m->mount_opt) { 2316 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2317 "quota options when quota turned on"); 2318 return -1; 2319 } 2320 if (ext4_has_feature_quota(sb)) { 2321 ext4_msg(sb, KERN_INFO, 2322 "Quota format mount options ignored " 2323 "when QUOTA feature is enabled"); 2324 return 1; 2325 } 2326 sbi->s_jquota_fmt = m->mount_opt; 2327 #endif 2328 } else if (token == Opt_dax || token == Opt_dax_always || 2329 token == Opt_dax_inode || token == Opt_dax_never) { 2330 #ifdef CONFIG_FS_DAX 2331 switch (token) { 2332 case Opt_dax: 2333 case Opt_dax_always: 2334 if (is_remount && 2335 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2336 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2337 fail_dax_change_remount: 2338 ext4_msg(sb, KERN_ERR, "can't change " 2339 "dax mount option while remounting"); 2340 return -1; 2341 } 2342 if (is_remount && 2343 (test_opt(sb, DATA_FLAGS) == 2344 EXT4_MOUNT_JOURNAL_DATA)) { 2345 ext4_msg(sb, KERN_ERR, "can't mount with " 2346 "both data=journal and dax"); 2347 return -1; 2348 } 2349 ext4_msg(sb, KERN_WARNING, 2350 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2351 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2352 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2353 break; 2354 case Opt_dax_never: 2355 if (is_remount && 2356 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2357 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2358 goto fail_dax_change_remount; 2359 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2360 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2361 break; 2362 case Opt_dax_inode: 2363 if (is_remount && 2364 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2365 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2366 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2367 goto fail_dax_change_remount; 2368 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2369 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2370 /* Strictly for printing options */ 2371 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2372 break; 2373 } 2374 #else 2375 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2376 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2377 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2378 return -1; 2379 #endif 2380 } else if (token == Opt_data_err_abort) { 2381 sbi->s_mount_opt |= m->mount_opt; 2382 } else if (token == Opt_data_err_ignore) { 2383 sbi->s_mount_opt &= ~m->mount_opt; 2384 } else if (token == Opt_mb_optimize_scan) { 2385 if (arg != 0 && arg != 1) { 2386 ext4_msg(sb, KERN_WARNING, 2387 "mb_optimize_scan should be set to 0 or 1."); 2388 return -1; 2389 } 2390 parsed_opts->mb_optimize_scan = arg; 2391 } else { 2392 if (!args->from) 2393 arg = 1; 2394 if (m->flags & MOPT_CLEAR) 2395 arg = !arg; 2396 else if (unlikely(!(m->flags & MOPT_SET))) { 2397 ext4_msg(sb, KERN_WARNING, 2398 "buggy handling of option %s", opt); 2399 WARN_ON(1); 2400 return -1; 2401 } 2402 if (m->flags & MOPT_2) { 2403 if (arg != 0) 2404 sbi->s_mount_opt2 |= m->mount_opt; 2405 else 2406 sbi->s_mount_opt2 &= ~m->mount_opt; 2407 } else { 2408 if (arg != 0) 2409 sbi->s_mount_opt |= m->mount_opt; 2410 else 2411 sbi->s_mount_opt &= ~m->mount_opt; 2412 } 2413 } 2414 return 1; 2415 } 2416 2417 static int parse_options(char *options, struct super_block *sb, 2418 struct ext4_parsed_options *ret_opts, 2419 int is_remount) 2420 { 2421 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2422 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2423 substring_t args[MAX_OPT_ARGS]; 2424 int token; 2425 2426 if (!options) 2427 return 1; 2428 2429 while ((p = strsep(&options, ",")) != NULL) { 2430 if (!*p) 2431 continue; 2432 /* 2433 * Initialize args struct so we know whether arg was 2434 * found; some options take optional arguments. 2435 */ 2436 args[0].to = args[0].from = NULL; 2437 token = match_token(p, tokens, args); 2438 if (handle_mount_opt(sb, p, token, args, ret_opts, 2439 is_remount) < 0) 2440 return 0; 2441 } 2442 #ifdef CONFIG_QUOTA 2443 /* 2444 * We do the test below only for project quotas. 'usrquota' and 2445 * 'grpquota' mount options are allowed even without quota feature 2446 * to support legacy quotas in quota files. 2447 */ 2448 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2449 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2450 "Cannot enable project quota enforcement."); 2451 return 0; 2452 } 2453 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2454 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2455 if (usr_qf_name || grp_qf_name) { 2456 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2457 clear_opt(sb, USRQUOTA); 2458 2459 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2460 clear_opt(sb, GRPQUOTA); 2461 2462 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2463 ext4_msg(sb, KERN_ERR, "old and new quota " 2464 "format mixing"); 2465 return 0; 2466 } 2467 2468 if (!sbi->s_jquota_fmt) { 2469 ext4_msg(sb, KERN_ERR, "journaled quota format " 2470 "not specified"); 2471 return 0; 2472 } 2473 } 2474 #endif 2475 if (test_opt(sb, DIOREAD_NOLOCK)) { 2476 int blocksize = 2477 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2478 if (blocksize < PAGE_SIZE) 2479 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2480 "experimental mount option 'dioread_nolock' " 2481 "for blocksize < PAGE_SIZE"); 2482 } 2483 return 1; 2484 } 2485 2486 static inline void ext4_show_quota_options(struct seq_file *seq, 2487 struct super_block *sb) 2488 { 2489 #if defined(CONFIG_QUOTA) 2490 struct ext4_sb_info *sbi = EXT4_SB(sb); 2491 char *usr_qf_name, *grp_qf_name; 2492 2493 if (sbi->s_jquota_fmt) { 2494 char *fmtname = ""; 2495 2496 switch (sbi->s_jquota_fmt) { 2497 case QFMT_VFS_OLD: 2498 fmtname = "vfsold"; 2499 break; 2500 case QFMT_VFS_V0: 2501 fmtname = "vfsv0"; 2502 break; 2503 case QFMT_VFS_V1: 2504 fmtname = "vfsv1"; 2505 break; 2506 } 2507 seq_printf(seq, ",jqfmt=%s", fmtname); 2508 } 2509 2510 rcu_read_lock(); 2511 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2512 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2513 if (usr_qf_name) 2514 seq_show_option(seq, "usrjquota", usr_qf_name); 2515 if (grp_qf_name) 2516 seq_show_option(seq, "grpjquota", grp_qf_name); 2517 rcu_read_unlock(); 2518 #endif 2519 } 2520 2521 static const char *token2str(int token) 2522 { 2523 const struct match_token *t; 2524 2525 for (t = tokens; t->token != Opt_err; t++) 2526 if (t->token == token && !strchr(t->pattern, '=')) 2527 break; 2528 return t->pattern; 2529 } 2530 2531 /* 2532 * Show an option if 2533 * - it's set to a non-default value OR 2534 * - if the per-sb default is different from the global default 2535 */ 2536 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2537 int nodefs) 2538 { 2539 struct ext4_sb_info *sbi = EXT4_SB(sb); 2540 struct ext4_super_block *es = sbi->s_es; 2541 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2542 const struct mount_opts *m; 2543 char sep = nodefs ? '\n' : ','; 2544 2545 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2546 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2547 2548 if (sbi->s_sb_block != 1) 2549 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2550 2551 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2552 int want_set = m->flags & MOPT_SET; 2553 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2554 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2555 continue; 2556 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2557 continue; /* skip if same as the default */ 2558 if ((want_set && 2559 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2560 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2561 continue; /* select Opt_noFoo vs Opt_Foo */ 2562 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2563 } 2564 2565 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2566 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2567 SEQ_OPTS_PRINT("resuid=%u", 2568 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2569 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2570 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2571 SEQ_OPTS_PRINT("resgid=%u", 2572 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2573 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2574 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2575 SEQ_OPTS_PUTS("errors=remount-ro"); 2576 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2577 SEQ_OPTS_PUTS("errors=continue"); 2578 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2579 SEQ_OPTS_PUTS("errors=panic"); 2580 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2581 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2582 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2583 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2584 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2585 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2586 if (sb->s_flags & SB_I_VERSION) 2587 SEQ_OPTS_PUTS("i_version"); 2588 if (nodefs || sbi->s_stripe) 2589 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2590 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2591 (sbi->s_mount_opt ^ def_mount_opt)) { 2592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2593 SEQ_OPTS_PUTS("data=journal"); 2594 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2595 SEQ_OPTS_PUTS("data=ordered"); 2596 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2597 SEQ_OPTS_PUTS("data=writeback"); 2598 } 2599 if (nodefs || 2600 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2601 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2602 sbi->s_inode_readahead_blks); 2603 2604 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2605 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2606 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2607 if (nodefs || sbi->s_max_dir_size_kb) 2608 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2609 if (test_opt(sb, DATA_ERR_ABORT)) 2610 SEQ_OPTS_PUTS("data_err=abort"); 2611 2612 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2613 2614 if (sb->s_flags & SB_INLINECRYPT) 2615 SEQ_OPTS_PUTS("inlinecrypt"); 2616 2617 if (test_opt(sb, DAX_ALWAYS)) { 2618 if (IS_EXT2_SB(sb)) 2619 SEQ_OPTS_PUTS("dax"); 2620 else 2621 SEQ_OPTS_PUTS("dax=always"); 2622 } else if (test_opt2(sb, DAX_NEVER)) { 2623 SEQ_OPTS_PUTS("dax=never"); 2624 } else if (test_opt2(sb, DAX_INODE)) { 2625 SEQ_OPTS_PUTS("dax=inode"); 2626 } 2627 ext4_show_quota_options(seq, sb); 2628 return 0; 2629 } 2630 2631 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2632 { 2633 return _ext4_show_options(seq, root->d_sb, 0); 2634 } 2635 2636 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2637 { 2638 struct super_block *sb = seq->private; 2639 int rc; 2640 2641 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2642 rc = _ext4_show_options(seq, sb, 1); 2643 seq_puts(seq, "\n"); 2644 return rc; 2645 } 2646 2647 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2648 int read_only) 2649 { 2650 struct ext4_sb_info *sbi = EXT4_SB(sb); 2651 int err = 0; 2652 2653 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2654 ext4_msg(sb, KERN_ERR, "revision level too high, " 2655 "forcing read-only mode"); 2656 err = -EROFS; 2657 goto done; 2658 } 2659 if (read_only) 2660 goto done; 2661 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2662 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2663 "running e2fsck is recommended"); 2664 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2665 ext4_msg(sb, KERN_WARNING, 2666 "warning: mounting fs with errors, " 2667 "running e2fsck is recommended"); 2668 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2669 le16_to_cpu(es->s_mnt_count) >= 2670 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2671 ext4_msg(sb, KERN_WARNING, 2672 "warning: maximal mount count reached, " 2673 "running e2fsck is recommended"); 2674 else if (le32_to_cpu(es->s_checkinterval) && 2675 (ext4_get_tstamp(es, s_lastcheck) + 2676 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2677 ext4_msg(sb, KERN_WARNING, 2678 "warning: checktime reached, " 2679 "running e2fsck is recommended"); 2680 if (!sbi->s_journal) 2681 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2682 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2683 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2684 le16_add_cpu(&es->s_mnt_count, 1); 2685 ext4_update_tstamp(es, s_mtime); 2686 if (sbi->s_journal) { 2687 ext4_set_feature_journal_needs_recovery(sb); 2688 if (ext4_has_feature_orphan_file(sb)) 2689 ext4_set_feature_orphan_present(sb); 2690 } 2691 2692 err = ext4_commit_super(sb); 2693 done: 2694 if (test_opt(sb, DEBUG)) 2695 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2696 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2697 sb->s_blocksize, 2698 sbi->s_groups_count, 2699 EXT4_BLOCKS_PER_GROUP(sb), 2700 EXT4_INODES_PER_GROUP(sb), 2701 sbi->s_mount_opt, sbi->s_mount_opt2); 2702 2703 cleancache_init_fs(sb); 2704 return err; 2705 } 2706 2707 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2708 { 2709 struct ext4_sb_info *sbi = EXT4_SB(sb); 2710 struct flex_groups **old_groups, **new_groups; 2711 int size, i, j; 2712 2713 if (!sbi->s_log_groups_per_flex) 2714 return 0; 2715 2716 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2717 if (size <= sbi->s_flex_groups_allocated) 2718 return 0; 2719 2720 new_groups = kvzalloc(roundup_pow_of_two(size * 2721 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2722 if (!new_groups) { 2723 ext4_msg(sb, KERN_ERR, 2724 "not enough memory for %d flex group pointers", size); 2725 return -ENOMEM; 2726 } 2727 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2728 new_groups[i] = kvzalloc(roundup_pow_of_two( 2729 sizeof(struct flex_groups)), 2730 GFP_KERNEL); 2731 if (!new_groups[i]) { 2732 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2733 kvfree(new_groups[j]); 2734 kvfree(new_groups); 2735 ext4_msg(sb, KERN_ERR, 2736 "not enough memory for %d flex groups", size); 2737 return -ENOMEM; 2738 } 2739 } 2740 rcu_read_lock(); 2741 old_groups = rcu_dereference(sbi->s_flex_groups); 2742 if (old_groups) 2743 memcpy(new_groups, old_groups, 2744 (sbi->s_flex_groups_allocated * 2745 sizeof(struct flex_groups *))); 2746 rcu_read_unlock(); 2747 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2748 sbi->s_flex_groups_allocated = size; 2749 if (old_groups) 2750 ext4_kvfree_array_rcu(old_groups); 2751 return 0; 2752 } 2753 2754 static int ext4_fill_flex_info(struct super_block *sb) 2755 { 2756 struct ext4_sb_info *sbi = EXT4_SB(sb); 2757 struct ext4_group_desc *gdp = NULL; 2758 struct flex_groups *fg; 2759 ext4_group_t flex_group; 2760 int i, err; 2761 2762 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2763 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2764 sbi->s_log_groups_per_flex = 0; 2765 return 1; 2766 } 2767 2768 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2769 if (err) 2770 goto failed; 2771 2772 for (i = 0; i < sbi->s_groups_count; i++) { 2773 gdp = ext4_get_group_desc(sb, i, NULL); 2774 2775 flex_group = ext4_flex_group(sbi, i); 2776 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2777 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2778 atomic64_add(ext4_free_group_clusters(sb, gdp), 2779 &fg->free_clusters); 2780 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2781 } 2782 2783 return 1; 2784 failed: 2785 return 0; 2786 } 2787 2788 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2789 struct ext4_group_desc *gdp) 2790 { 2791 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2792 __u16 crc = 0; 2793 __le32 le_group = cpu_to_le32(block_group); 2794 struct ext4_sb_info *sbi = EXT4_SB(sb); 2795 2796 if (ext4_has_metadata_csum(sbi->s_sb)) { 2797 /* Use new metadata_csum algorithm */ 2798 __u32 csum32; 2799 __u16 dummy_csum = 0; 2800 2801 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2802 sizeof(le_group)); 2803 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2804 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2805 sizeof(dummy_csum)); 2806 offset += sizeof(dummy_csum); 2807 if (offset < sbi->s_desc_size) 2808 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2809 sbi->s_desc_size - offset); 2810 2811 crc = csum32 & 0xFFFF; 2812 goto out; 2813 } 2814 2815 /* old crc16 code */ 2816 if (!ext4_has_feature_gdt_csum(sb)) 2817 return 0; 2818 2819 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2820 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2821 crc = crc16(crc, (__u8 *)gdp, offset); 2822 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2823 /* for checksum of struct ext4_group_desc do the rest...*/ 2824 if (ext4_has_feature_64bit(sb) && 2825 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2826 crc = crc16(crc, (__u8 *)gdp + offset, 2827 le16_to_cpu(sbi->s_es->s_desc_size) - 2828 offset); 2829 2830 out: 2831 return cpu_to_le16(crc); 2832 } 2833 2834 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2835 struct ext4_group_desc *gdp) 2836 { 2837 if (ext4_has_group_desc_csum(sb) && 2838 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2839 return 0; 2840 2841 return 1; 2842 } 2843 2844 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2845 struct ext4_group_desc *gdp) 2846 { 2847 if (!ext4_has_group_desc_csum(sb)) 2848 return; 2849 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2850 } 2851 2852 /* Called at mount-time, super-block is locked */ 2853 static int ext4_check_descriptors(struct super_block *sb, 2854 ext4_fsblk_t sb_block, 2855 ext4_group_t *first_not_zeroed) 2856 { 2857 struct ext4_sb_info *sbi = EXT4_SB(sb); 2858 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2859 ext4_fsblk_t last_block; 2860 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2861 ext4_fsblk_t block_bitmap; 2862 ext4_fsblk_t inode_bitmap; 2863 ext4_fsblk_t inode_table; 2864 int flexbg_flag = 0; 2865 ext4_group_t i, grp = sbi->s_groups_count; 2866 2867 if (ext4_has_feature_flex_bg(sb)) 2868 flexbg_flag = 1; 2869 2870 ext4_debug("Checking group descriptors"); 2871 2872 for (i = 0; i < sbi->s_groups_count; i++) { 2873 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2874 2875 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2876 last_block = ext4_blocks_count(sbi->s_es) - 1; 2877 else 2878 last_block = first_block + 2879 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2880 2881 if ((grp == sbi->s_groups_count) && 2882 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2883 grp = i; 2884 2885 block_bitmap = ext4_block_bitmap(sb, gdp); 2886 if (block_bitmap == sb_block) { 2887 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2888 "Block bitmap for group %u overlaps " 2889 "superblock", i); 2890 if (!sb_rdonly(sb)) 2891 return 0; 2892 } 2893 if (block_bitmap >= sb_block + 1 && 2894 block_bitmap <= last_bg_block) { 2895 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2896 "Block bitmap for group %u overlaps " 2897 "block group descriptors", i); 2898 if (!sb_rdonly(sb)) 2899 return 0; 2900 } 2901 if (block_bitmap < first_block || block_bitmap > last_block) { 2902 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2903 "Block bitmap for group %u not in group " 2904 "(block %llu)!", i, block_bitmap); 2905 return 0; 2906 } 2907 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2908 if (inode_bitmap == sb_block) { 2909 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2910 "Inode bitmap for group %u overlaps " 2911 "superblock", i); 2912 if (!sb_rdonly(sb)) 2913 return 0; 2914 } 2915 if (inode_bitmap >= sb_block + 1 && 2916 inode_bitmap <= last_bg_block) { 2917 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2918 "Inode bitmap for group %u overlaps " 2919 "block group descriptors", i); 2920 if (!sb_rdonly(sb)) 2921 return 0; 2922 } 2923 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2924 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2925 "Inode bitmap for group %u not in group " 2926 "(block %llu)!", i, inode_bitmap); 2927 return 0; 2928 } 2929 inode_table = ext4_inode_table(sb, gdp); 2930 if (inode_table == sb_block) { 2931 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2932 "Inode table for group %u overlaps " 2933 "superblock", i); 2934 if (!sb_rdonly(sb)) 2935 return 0; 2936 } 2937 if (inode_table >= sb_block + 1 && 2938 inode_table <= last_bg_block) { 2939 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2940 "Inode table for group %u overlaps " 2941 "block group descriptors", i); 2942 if (!sb_rdonly(sb)) 2943 return 0; 2944 } 2945 if (inode_table < first_block || 2946 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2947 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2948 "Inode table for group %u not in group " 2949 "(block %llu)!", i, inode_table); 2950 return 0; 2951 } 2952 ext4_lock_group(sb, i); 2953 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2954 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2955 "Checksum for group %u failed (%u!=%u)", 2956 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2957 gdp)), le16_to_cpu(gdp->bg_checksum)); 2958 if (!sb_rdonly(sb)) { 2959 ext4_unlock_group(sb, i); 2960 return 0; 2961 } 2962 } 2963 ext4_unlock_group(sb, i); 2964 if (!flexbg_flag) 2965 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2966 } 2967 if (NULL != first_not_zeroed) 2968 *first_not_zeroed = grp; 2969 return 1; 2970 } 2971 2972 /* 2973 * Maximal extent format file size. 2974 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2975 * extent format containers, within a sector_t, and within i_blocks 2976 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2977 * so that won't be a limiting factor. 2978 * 2979 * However there is other limiting factor. We do store extents in the form 2980 * of starting block and length, hence the resulting length of the extent 2981 * covering maximum file size must fit into on-disk format containers as 2982 * well. Given that length is always by 1 unit bigger than max unit (because 2983 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2984 * 2985 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2986 */ 2987 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2988 { 2989 loff_t res; 2990 loff_t upper_limit = MAX_LFS_FILESIZE; 2991 2992 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2993 2994 if (!has_huge_files) { 2995 upper_limit = (1LL << 32) - 1; 2996 2997 /* total blocks in file system block size */ 2998 upper_limit >>= (blkbits - 9); 2999 upper_limit <<= blkbits; 3000 } 3001 3002 /* 3003 * 32-bit extent-start container, ee_block. We lower the maxbytes 3004 * by one fs block, so ee_len can cover the extent of maximum file 3005 * size 3006 */ 3007 res = (1LL << 32) - 1; 3008 res <<= blkbits; 3009 3010 /* Sanity check against vm- & vfs- imposed limits */ 3011 if (res > upper_limit) 3012 res = upper_limit; 3013 3014 return res; 3015 } 3016 3017 /* 3018 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3019 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3020 * We need to be 1 filesystem block less than the 2^48 sector limit. 3021 */ 3022 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3023 { 3024 loff_t res = EXT4_NDIR_BLOCKS; 3025 int meta_blocks; 3026 loff_t upper_limit; 3027 /* This is calculated to be the largest file size for a dense, block 3028 * mapped file such that the file's total number of 512-byte sectors, 3029 * including data and all indirect blocks, does not exceed (2^48 - 1). 3030 * 3031 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3032 * number of 512-byte sectors of the file. 3033 */ 3034 3035 if (!has_huge_files) { 3036 /* 3037 * !has_huge_files or implies that the inode i_block field 3038 * represents total file blocks in 2^32 512-byte sectors == 3039 * size of vfs inode i_blocks * 8 3040 */ 3041 upper_limit = (1LL << 32) - 1; 3042 3043 /* total blocks in file system block size */ 3044 upper_limit >>= (bits - 9); 3045 3046 } else { 3047 /* 3048 * We use 48 bit ext4_inode i_blocks 3049 * With EXT4_HUGE_FILE_FL set the i_blocks 3050 * represent total number of blocks in 3051 * file system block size 3052 */ 3053 upper_limit = (1LL << 48) - 1; 3054 3055 } 3056 3057 /* indirect blocks */ 3058 meta_blocks = 1; 3059 /* double indirect blocks */ 3060 meta_blocks += 1 + (1LL << (bits-2)); 3061 /* tripple indirect blocks */ 3062 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3063 3064 upper_limit -= meta_blocks; 3065 upper_limit <<= bits; 3066 3067 res += 1LL << (bits-2); 3068 res += 1LL << (2*(bits-2)); 3069 res += 1LL << (3*(bits-2)); 3070 res <<= bits; 3071 if (res > upper_limit) 3072 res = upper_limit; 3073 3074 if (res > MAX_LFS_FILESIZE) 3075 res = MAX_LFS_FILESIZE; 3076 3077 return res; 3078 } 3079 3080 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3081 ext4_fsblk_t logical_sb_block, int nr) 3082 { 3083 struct ext4_sb_info *sbi = EXT4_SB(sb); 3084 ext4_group_t bg, first_meta_bg; 3085 int has_super = 0; 3086 3087 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3088 3089 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3090 return logical_sb_block + nr + 1; 3091 bg = sbi->s_desc_per_block * nr; 3092 if (ext4_bg_has_super(sb, bg)) 3093 has_super = 1; 3094 3095 /* 3096 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3097 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3098 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3099 * compensate. 3100 */ 3101 if (sb->s_blocksize == 1024 && nr == 0 && 3102 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3103 has_super++; 3104 3105 return (has_super + ext4_group_first_block_no(sb, bg)); 3106 } 3107 3108 /** 3109 * ext4_get_stripe_size: Get the stripe size. 3110 * @sbi: In memory super block info 3111 * 3112 * If we have specified it via mount option, then 3113 * use the mount option value. If the value specified at mount time is 3114 * greater than the blocks per group use the super block value. 3115 * If the super block value is greater than blocks per group return 0. 3116 * Allocator needs it be less than blocks per group. 3117 * 3118 */ 3119 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3120 { 3121 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3122 unsigned long stripe_width = 3123 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3124 int ret; 3125 3126 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3127 ret = sbi->s_stripe; 3128 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3129 ret = stripe_width; 3130 else if (stride && stride <= sbi->s_blocks_per_group) 3131 ret = stride; 3132 else 3133 ret = 0; 3134 3135 /* 3136 * If the stripe width is 1, this makes no sense and 3137 * we set it to 0 to turn off stripe handling code. 3138 */ 3139 if (ret <= 1) 3140 ret = 0; 3141 3142 return ret; 3143 } 3144 3145 /* 3146 * Check whether this filesystem can be mounted based on 3147 * the features present and the RDONLY/RDWR mount requested. 3148 * Returns 1 if this filesystem can be mounted as requested, 3149 * 0 if it cannot be. 3150 */ 3151 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3152 { 3153 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3154 ext4_msg(sb, KERN_ERR, 3155 "Couldn't mount because of " 3156 "unsupported optional features (%x)", 3157 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3158 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3159 return 0; 3160 } 3161 3162 #ifndef CONFIG_UNICODE 3163 if (ext4_has_feature_casefold(sb)) { 3164 ext4_msg(sb, KERN_ERR, 3165 "Filesystem with casefold feature cannot be " 3166 "mounted without CONFIG_UNICODE"); 3167 return 0; 3168 } 3169 #endif 3170 3171 if (readonly) 3172 return 1; 3173 3174 if (ext4_has_feature_readonly(sb)) { 3175 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3176 sb->s_flags |= SB_RDONLY; 3177 return 1; 3178 } 3179 3180 /* Check that feature set is OK for a read-write mount */ 3181 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3182 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3183 "unsupported optional features (%x)", 3184 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3185 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3186 return 0; 3187 } 3188 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3189 ext4_msg(sb, KERN_ERR, 3190 "Can't support bigalloc feature without " 3191 "extents feature\n"); 3192 return 0; 3193 } 3194 3195 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3196 if (!readonly && (ext4_has_feature_quota(sb) || 3197 ext4_has_feature_project(sb))) { 3198 ext4_msg(sb, KERN_ERR, 3199 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3200 return 0; 3201 } 3202 #endif /* CONFIG_QUOTA */ 3203 return 1; 3204 } 3205 3206 /* 3207 * This function is called once a day if we have errors logged 3208 * on the file system 3209 */ 3210 static void print_daily_error_info(struct timer_list *t) 3211 { 3212 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3213 struct super_block *sb = sbi->s_sb; 3214 struct ext4_super_block *es = sbi->s_es; 3215 3216 if (es->s_error_count) 3217 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3218 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3219 le32_to_cpu(es->s_error_count)); 3220 if (es->s_first_error_time) { 3221 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3222 sb->s_id, 3223 ext4_get_tstamp(es, s_first_error_time), 3224 (int) sizeof(es->s_first_error_func), 3225 es->s_first_error_func, 3226 le32_to_cpu(es->s_first_error_line)); 3227 if (es->s_first_error_ino) 3228 printk(KERN_CONT ": inode %u", 3229 le32_to_cpu(es->s_first_error_ino)); 3230 if (es->s_first_error_block) 3231 printk(KERN_CONT ": block %llu", (unsigned long long) 3232 le64_to_cpu(es->s_first_error_block)); 3233 printk(KERN_CONT "\n"); 3234 } 3235 if (es->s_last_error_time) { 3236 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3237 sb->s_id, 3238 ext4_get_tstamp(es, s_last_error_time), 3239 (int) sizeof(es->s_last_error_func), 3240 es->s_last_error_func, 3241 le32_to_cpu(es->s_last_error_line)); 3242 if (es->s_last_error_ino) 3243 printk(KERN_CONT ": inode %u", 3244 le32_to_cpu(es->s_last_error_ino)); 3245 if (es->s_last_error_block) 3246 printk(KERN_CONT ": block %llu", (unsigned long long) 3247 le64_to_cpu(es->s_last_error_block)); 3248 printk(KERN_CONT "\n"); 3249 } 3250 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3251 } 3252 3253 /* Find next suitable group and run ext4_init_inode_table */ 3254 static int ext4_run_li_request(struct ext4_li_request *elr) 3255 { 3256 struct ext4_group_desc *gdp = NULL; 3257 struct super_block *sb = elr->lr_super; 3258 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3259 ext4_group_t group = elr->lr_next_group; 3260 unsigned long timeout = 0; 3261 unsigned int prefetch_ios = 0; 3262 int ret = 0; 3263 3264 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3265 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3266 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3267 if (prefetch_ios) 3268 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3269 prefetch_ios); 3270 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3271 prefetch_ios); 3272 if (group >= elr->lr_next_group) { 3273 ret = 1; 3274 if (elr->lr_first_not_zeroed != ngroups && 3275 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3276 elr->lr_next_group = elr->lr_first_not_zeroed; 3277 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3278 ret = 0; 3279 } 3280 } 3281 return ret; 3282 } 3283 3284 for (; group < ngroups; group++) { 3285 gdp = ext4_get_group_desc(sb, group, NULL); 3286 if (!gdp) { 3287 ret = 1; 3288 break; 3289 } 3290 3291 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3292 break; 3293 } 3294 3295 if (group >= ngroups) 3296 ret = 1; 3297 3298 if (!ret) { 3299 timeout = jiffies; 3300 ret = ext4_init_inode_table(sb, group, 3301 elr->lr_timeout ? 0 : 1); 3302 trace_ext4_lazy_itable_init(sb, group); 3303 if (elr->lr_timeout == 0) { 3304 timeout = (jiffies - timeout) * 3305 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3306 elr->lr_timeout = timeout; 3307 } 3308 elr->lr_next_sched = jiffies + elr->lr_timeout; 3309 elr->lr_next_group = group + 1; 3310 } 3311 return ret; 3312 } 3313 3314 /* 3315 * Remove lr_request from the list_request and free the 3316 * request structure. Should be called with li_list_mtx held 3317 */ 3318 static void ext4_remove_li_request(struct ext4_li_request *elr) 3319 { 3320 if (!elr) 3321 return; 3322 3323 list_del(&elr->lr_request); 3324 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3325 kfree(elr); 3326 } 3327 3328 static void ext4_unregister_li_request(struct super_block *sb) 3329 { 3330 mutex_lock(&ext4_li_mtx); 3331 if (!ext4_li_info) { 3332 mutex_unlock(&ext4_li_mtx); 3333 return; 3334 } 3335 3336 mutex_lock(&ext4_li_info->li_list_mtx); 3337 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3338 mutex_unlock(&ext4_li_info->li_list_mtx); 3339 mutex_unlock(&ext4_li_mtx); 3340 } 3341 3342 static struct task_struct *ext4_lazyinit_task; 3343 3344 /* 3345 * This is the function where ext4lazyinit thread lives. It walks 3346 * through the request list searching for next scheduled filesystem. 3347 * When such a fs is found, run the lazy initialization request 3348 * (ext4_rn_li_request) and keep track of the time spend in this 3349 * function. Based on that time we compute next schedule time of 3350 * the request. When walking through the list is complete, compute 3351 * next waking time and put itself into sleep. 3352 */ 3353 static int ext4_lazyinit_thread(void *arg) 3354 { 3355 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3356 struct list_head *pos, *n; 3357 struct ext4_li_request *elr; 3358 unsigned long next_wakeup, cur; 3359 3360 BUG_ON(NULL == eli); 3361 3362 cont_thread: 3363 while (true) { 3364 next_wakeup = MAX_JIFFY_OFFSET; 3365 3366 mutex_lock(&eli->li_list_mtx); 3367 if (list_empty(&eli->li_request_list)) { 3368 mutex_unlock(&eli->li_list_mtx); 3369 goto exit_thread; 3370 } 3371 list_for_each_safe(pos, n, &eli->li_request_list) { 3372 int err = 0; 3373 int progress = 0; 3374 elr = list_entry(pos, struct ext4_li_request, 3375 lr_request); 3376 3377 if (time_before(jiffies, elr->lr_next_sched)) { 3378 if (time_before(elr->lr_next_sched, next_wakeup)) 3379 next_wakeup = elr->lr_next_sched; 3380 continue; 3381 } 3382 if (down_read_trylock(&elr->lr_super->s_umount)) { 3383 if (sb_start_write_trylock(elr->lr_super)) { 3384 progress = 1; 3385 /* 3386 * We hold sb->s_umount, sb can not 3387 * be removed from the list, it is 3388 * now safe to drop li_list_mtx 3389 */ 3390 mutex_unlock(&eli->li_list_mtx); 3391 err = ext4_run_li_request(elr); 3392 sb_end_write(elr->lr_super); 3393 mutex_lock(&eli->li_list_mtx); 3394 n = pos->next; 3395 } 3396 up_read((&elr->lr_super->s_umount)); 3397 } 3398 /* error, remove the lazy_init job */ 3399 if (err) { 3400 ext4_remove_li_request(elr); 3401 continue; 3402 } 3403 if (!progress) { 3404 elr->lr_next_sched = jiffies + 3405 (prandom_u32() 3406 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3407 } 3408 if (time_before(elr->lr_next_sched, next_wakeup)) 3409 next_wakeup = elr->lr_next_sched; 3410 } 3411 mutex_unlock(&eli->li_list_mtx); 3412 3413 try_to_freeze(); 3414 3415 cur = jiffies; 3416 if ((time_after_eq(cur, next_wakeup)) || 3417 (MAX_JIFFY_OFFSET == next_wakeup)) { 3418 cond_resched(); 3419 continue; 3420 } 3421 3422 schedule_timeout_interruptible(next_wakeup - cur); 3423 3424 if (kthread_should_stop()) { 3425 ext4_clear_request_list(); 3426 goto exit_thread; 3427 } 3428 } 3429 3430 exit_thread: 3431 /* 3432 * It looks like the request list is empty, but we need 3433 * to check it under the li_list_mtx lock, to prevent any 3434 * additions into it, and of course we should lock ext4_li_mtx 3435 * to atomically free the list and ext4_li_info, because at 3436 * this point another ext4 filesystem could be registering 3437 * new one. 3438 */ 3439 mutex_lock(&ext4_li_mtx); 3440 mutex_lock(&eli->li_list_mtx); 3441 if (!list_empty(&eli->li_request_list)) { 3442 mutex_unlock(&eli->li_list_mtx); 3443 mutex_unlock(&ext4_li_mtx); 3444 goto cont_thread; 3445 } 3446 mutex_unlock(&eli->li_list_mtx); 3447 kfree(ext4_li_info); 3448 ext4_li_info = NULL; 3449 mutex_unlock(&ext4_li_mtx); 3450 3451 return 0; 3452 } 3453 3454 static void ext4_clear_request_list(void) 3455 { 3456 struct list_head *pos, *n; 3457 struct ext4_li_request *elr; 3458 3459 mutex_lock(&ext4_li_info->li_list_mtx); 3460 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3461 elr = list_entry(pos, struct ext4_li_request, 3462 lr_request); 3463 ext4_remove_li_request(elr); 3464 } 3465 mutex_unlock(&ext4_li_info->li_list_mtx); 3466 } 3467 3468 static int ext4_run_lazyinit_thread(void) 3469 { 3470 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3471 ext4_li_info, "ext4lazyinit"); 3472 if (IS_ERR(ext4_lazyinit_task)) { 3473 int err = PTR_ERR(ext4_lazyinit_task); 3474 ext4_clear_request_list(); 3475 kfree(ext4_li_info); 3476 ext4_li_info = NULL; 3477 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3478 "initialization thread\n", 3479 err); 3480 return err; 3481 } 3482 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3483 return 0; 3484 } 3485 3486 /* 3487 * Check whether it make sense to run itable init. thread or not. 3488 * If there is at least one uninitialized inode table, return 3489 * corresponding group number, else the loop goes through all 3490 * groups and return total number of groups. 3491 */ 3492 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3493 { 3494 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3495 struct ext4_group_desc *gdp = NULL; 3496 3497 if (!ext4_has_group_desc_csum(sb)) 3498 return ngroups; 3499 3500 for (group = 0; group < ngroups; group++) { 3501 gdp = ext4_get_group_desc(sb, group, NULL); 3502 if (!gdp) 3503 continue; 3504 3505 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3506 break; 3507 } 3508 3509 return group; 3510 } 3511 3512 static int ext4_li_info_new(void) 3513 { 3514 struct ext4_lazy_init *eli = NULL; 3515 3516 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3517 if (!eli) 3518 return -ENOMEM; 3519 3520 INIT_LIST_HEAD(&eli->li_request_list); 3521 mutex_init(&eli->li_list_mtx); 3522 3523 eli->li_state |= EXT4_LAZYINIT_QUIT; 3524 3525 ext4_li_info = eli; 3526 3527 return 0; 3528 } 3529 3530 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3531 ext4_group_t start) 3532 { 3533 struct ext4_li_request *elr; 3534 3535 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3536 if (!elr) 3537 return NULL; 3538 3539 elr->lr_super = sb; 3540 elr->lr_first_not_zeroed = start; 3541 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3542 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3543 elr->lr_next_group = start; 3544 } else { 3545 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3546 } 3547 3548 /* 3549 * Randomize first schedule time of the request to 3550 * spread the inode table initialization requests 3551 * better. 3552 */ 3553 elr->lr_next_sched = jiffies + (prandom_u32() % 3554 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3555 return elr; 3556 } 3557 3558 int ext4_register_li_request(struct super_block *sb, 3559 ext4_group_t first_not_zeroed) 3560 { 3561 struct ext4_sb_info *sbi = EXT4_SB(sb); 3562 struct ext4_li_request *elr = NULL; 3563 ext4_group_t ngroups = sbi->s_groups_count; 3564 int ret = 0; 3565 3566 mutex_lock(&ext4_li_mtx); 3567 if (sbi->s_li_request != NULL) { 3568 /* 3569 * Reset timeout so it can be computed again, because 3570 * s_li_wait_mult might have changed. 3571 */ 3572 sbi->s_li_request->lr_timeout = 0; 3573 goto out; 3574 } 3575 3576 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3577 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3578 !test_opt(sb, INIT_INODE_TABLE))) 3579 goto out; 3580 3581 elr = ext4_li_request_new(sb, first_not_zeroed); 3582 if (!elr) { 3583 ret = -ENOMEM; 3584 goto out; 3585 } 3586 3587 if (NULL == ext4_li_info) { 3588 ret = ext4_li_info_new(); 3589 if (ret) 3590 goto out; 3591 } 3592 3593 mutex_lock(&ext4_li_info->li_list_mtx); 3594 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3595 mutex_unlock(&ext4_li_info->li_list_mtx); 3596 3597 sbi->s_li_request = elr; 3598 /* 3599 * set elr to NULL here since it has been inserted to 3600 * the request_list and the removal and free of it is 3601 * handled by ext4_clear_request_list from now on. 3602 */ 3603 elr = NULL; 3604 3605 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3606 ret = ext4_run_lazyinit_thread(); 3607 if (ret) 3608 goto out; 3609 } 3610 out: 3611 mutex_unlock(&ext4_li_mtx); 3612 if (ret) 3613 kfree(elr); 3614 return ret; 3615 } 3616 3617 /* 3618 * We do not need to lock anything since this is called on 3619 * module unload. 3620 */ 3621 static void ext4_destroy_lazyinit_thread(void) 3622 { 3623 /* 3624 * If thread exited earlier 3625 * there's nothing to be done. 3626 */ 3627 if (!ext4_li_info || !ext4_lazyinit_task) 3628 return; 3629 3630 kthread_stop(ext4_lazyinit_task); 3631 } 3632 3633 static int set_journal_csum_feature_set(struct super_block *sb) 3634 { 3635 int ret = 1; 3636 int compat, incompat; 3637 struct ext4_sb_info *sbi = EXT4_SB(sb); 3638 3639 if (ext4_has_metadata_csum(sb)) { 3640 /* journal checksum v3 */ 3641 compat = 0; 3642 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3643 } else { 3644 /* journal checksum v1 */ 3645 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3646 incompat = 0; 3647 } 3648 3649 jbd2_journal_clear_features(sbi->s_journal, 3650 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3651 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3652 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3653 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3654 ret = jbd2_journal_set_features(sbi->s_journal, 3655 compat, 0, 3656 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3657 incompat); 3658 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3659 ret = jbd2_journal_set_features(sbi->s_journal, 3660 compat, 0, 3661 incompat); 3662 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3663 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3664 } else { 3665 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3666 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3667 } 3668 3669 return ret; 3670 } 3671 3672 /* 3673 * Note: calculating the overhead so we can be compatible with 3674 * historical BSD practice is quite difficult in the face of 3675 * clusters/bigalloc. This is because multiple metadata blocks from 3676 * different block group can end up in the same allocation cluster. 3677 * Calculating the exact overhead in the face of clustered allocation 3678 * requires either O(all block bitmaps) in memory or O(number of block 3679 * groups**2) in time. We will still calculate the superblock for 3680 * older file systems --- and if we come across with a bigalloc file 3681 * system with zero in s_overhead_clusters the estimate will be close to 3682 * correct especially for very large cluster sizes --- but for newer 3683 * file systems, it's better to calculate this figure once at mkfs 3684 * time, and store it in the superblock. If the superblock value is 3685 * present (even for non-bigalloc file systems), we will use it. 3686 */ 3687 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3688 char *buf) 3689 { 3690 struct ext4_sb_info *sbi = EXT4_SB(sb); 3691 struct ext4_group_desc *gdp; 3692 ext4_fsblk_t first_block, last_block, b; 3693 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3694 int s, j, count = 0; 3695 3696 if (!ext4_has_feature_bigalloc(sb)) 3697 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3698 sbi->s_itb_per_group + 2); 3699 3700 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3701 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3702 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3703 for (i = 0; i < ngroups; i++) { 3704 gdp = ext4_get_group_desc(sb, i, NULL); 3705 b = ext4_block_bitmap(sb, gdp); 3706 if (b >= first_block && b <= last_block) { 3707 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3708 count++; 3709 } 3710 b = ext4_inode_bitmap(sb, gdp); 3711 if (b >= first_block && b <= last_block) { 3712 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3713 count++; 3714 } 3715 b = ext4_inode_table(sb, gdp); 3716 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3717 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3718 int c = EXT4_B2C(sbi, b - first_block); 3719 ext4_set_bit(c, buf); 3720 count++; 3721 } 3722 if (i != grp) 3723 continue; 3724 s = 0; 3725 if (ext4_bg_has_super(sb, grp)) { 3726 ext4_set_bit(s++, buf); 3727 count++; 3728 } 3729 j = ext4_bg_num_gdb(sb, grp); 3730 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3731 ext4_error(sb, "Invalid number of block group " 3732 "descriptor blocks: %d", j); 3733 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3734 } 3735 count += j; 3736 for (; j > 0; j--) 3737 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3738 } 3739 if (!count) 3740 return 0; 3741 return EXT4_CLUSTERS_PER_GROUP(sb) - 3742 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3743 } 3744 3745 /* 3746 * Compute the overhead and stash it in sbi->s_overhead 3747 */ 3748 int ext4_calculate_overhead(struct super_block *sb) 3749 { 3750 struct ext4_sb_info *sbi = EXT4_SB(sb); 3751 struct ext4_super_block *es = sbi->s_es; 3752 struct inode *j_inode; 3753 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3754 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3755 ext4_fsblk_t overhead = 0; 3756 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3757 3758 if (!buf) 3759 return -ENOMEM; 3760 3761 /* 3762 * Compute the overhead (FS structures). This is constant 3763 * for a given filesystem unless the number of block groups 3764 * changes so we cache the previous value until it does. 3765 */ 3766 3767 /* 3768 * All of the blocks before first_data_block are overhead 3769 */ 3770 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3771 3772 /* 3773 * Add the overhead found in each block group 3774 */ 3775 for (i = 0; i < ngroups; i++) { 3776 int blks; 3777 3778 blks = count_overhead(sb, i, buf); 3779 overhead += blks; 3780 if (blks) 3781 memset(buf, 0, PAGE_SIZE); 3782 cond_resched(); 3783 } 3784 3785 /* 3786 * Add the internal journal blocks whether the journal has been 3787 * loaded or not 3788 */ 3789 if (sbi->s_journal && !sbi->s_journal_bdev) 3790 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3791 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3792 /* j_inum for internal journal is non-zero */ 3793 j_inode = ext4_get_journal_inode(sb, j_inum); 3794 if (j_inode) { 3795 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3796 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3797 iput(j_inode); 3798 } else { 3799 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3800 } 3801 } 3802 sbi->s_overhead = overhead; 3803 smp_wmb(); 3804 free_page((unsigned long) buf); 3805 return 0; 3806 } 3807 3808 static void ext4_set_resv_clusters(struct super_block *sb) 3809 { 3810 ext4_fsblk_t resv_clusters; 3811 struct ext4_sb_info *sbi = EXT4_SB(sb); 3812 3813 /* 3814 * There's no need to reserve anything when we aren't using extents. 3815 * The space estimates are exact, there are no unwritten extents, 3816 * hole punching doesn't need new metadata... This is needed especially 3817 * to keep ext2/3 backward compatibility. 3818 */ 3819 if (!ext4_has_feature_extents(sb)) 3820 return; 3821 /* 3822 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3823 * This should cover the situations where we can not afford to run 3824 * out of space like for example punch hole, or converting 3825 * unwritten extents in delalloc path. In most cases such 3826 * allocation would require 1, or 2 blocks, higher numbers are 3827 * very rare. 3828 */ 3829 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3830 sbi->s_cluster_bits); 3831 3832 do_div(resv_clusters, 50); 3833 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3834 3835 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3836 } 3837 3838 static const char *ext4_quota_mode(struct super_block *sb) 3839 { 3840 #ifdef CONFIG_QUOTA 3841 if (!ext4_quota_capable(sb)) 3842 return "none"; 3843 3844 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3845 return "journalled"; 3846 else 3847 return "writeback"; 3848 #else 3849 return "disabled"; 3850 #endif 3851 } 3852 3853 static void ext4_setup_csum_trigger(struct super_block *sb, 3854 enum ext4_journal_trigger_type type, 3855 void (*trigger)( 3856 struct jbd2_buffer_trigger_type *type, 3857 struct buffer_head *bh, 3858 void *mapped_data, 3859 size_t size)) 3860 { 3861 struct ext4_sb_info *sbi = EXT4_SB(sb); 3862 3863 sbi->s_journal_triggers[type].sb = sb; 3864 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 3865 } 3866 3867 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3868 { 3869 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3870 char *orig_data = kstrdup(data, GFP_KERNEL); 3871 struct buffer_head *bh, **group_desc; 3872 struct ext4_super_block *es = NULL; 3873 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3874 struct flex_groups **flex_groups; 3875 ext4_fsblk_t block; 3876 ext4_fsblk_t sb_block = get_sb_block(&data); 3877 ext4_fsblk_t logical_sb_block; 3878 unsigned long offset = 0; 3879 unsigned long def_mount_opts; 3880 struct inode *root; 3881 const char *descr; 3882 int ret = -ENOMEM; 3883 int blocksize, clustersize; 3884 unsigned int db_count; 3885 unsigned int i; 3886 int needs_recovery, has_huge_files; 3887 __u64 blocks_count; 3888 int err = 0; 3889 ext4_group_t first_not_zeroed; 3890 struct ext4_parsed_options parsed_opts; 3891 3892 /* Set defaults for the variables that will be set during parsing */ 3893 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3894 parsed_opts.journal_devnum = 0; 3895 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 3896 3897 if ((data && !orig_data) || !sbi) 3898 goto out_free_base; 3899 3900 sbi->s_daxdev = dax_dev; 3901 sbi->s_blockgroup_lock = 3902 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3903 if (!sbi->s_blockgroup_lock) 3904 goto out_free_base; 3905 3906 sb->s_fs_info = sbi; 3907 sbi->s_sb = sb; 3908 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3909 sbi->s_sb_block = sb_block; 3910 sbi->s_sectors_written_start = 3911 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 3912 3913 /* Cleanup superblock name */ 3914 strreplace(sb->s_id, '/', '!'); 3915 3916 /* -EINVAL is default */ 3917 ret = -EINVAL; 3918 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3919 if (!blocksize) { 3920 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3921 goto out_fail; 3922 } 3923 3924 /* 3925 * The ext4 superblock will not be buffer aligned for other than 1kB 3926 * block sizes. We need to calculate the offset from buffer start. 3927 */ 3928 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3929 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3930 offset = do_div(logical_sb_block, blocksize); 3931 } else { 3932 logical_sb_block = sb_block; 3933 } 3934 3935 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 3936 if (IS_ERR(bh)) { 3937 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3938 ret = PTR_ERR(bh); 3939 goto out_fail; 3940 } 3941 /* 3942 * Note: s_es must be initialized as soon as possible because 3943 * some ext4 macro-instructions depend on its value 3944 */ 3945 es = (struct ext4_super_block *) (bh->b_data + offset); 3946 sbi->s_es = es; 3947 sb->s_magic = le16_to_cpu(es->s_magic); 3948 if (sb->s_magic != EXT4_SUPER_MAGIC) 3949 goto cantfind_ext4; 3950 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3951 3952 /* Warn if metadata_csum and gdt_csum are both set. */ 3953 if (ext4_has_feature_metadata_csum(sb) && 3954 ext4_has_feature_gdt_csum(sb)) 3955 ext4_warning(sb, "metadata_csum and uninit_bg are " 3956 "redundant flags; please run fsck."); 3957 3958 /* Check for a known checksum algorithm */ 3959 if (!ext4_verify_csum_type(sb, es)) { 3960 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3961 "unknown checksum algorithm."); 3962 silent = 1; 3963 goto cantfind_ext4; 3964 } 3965 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 3966 ext4_orphan_file_block_trigger); 3967 3968 /* Load the checksum driver */ 3969 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3970 if (IS_ERR(sbi->s_chksum_driver)) { 3971 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3972 ret = PTR_ERR(sbi->s_chksum_driver); 3973 sbi->s_chksum_driver = NULL; 3974 goto failed_mount; 3975 } 3976 3977 /* Check superblock checksum */ 3978 if (!ext4_superblock_csum_verify(sb, es)) { 3979 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3980 "invalid superblock checksum. Run e2fsck?"); 3981 silent = 1; 3982 ret = -EFSBADCRC; 3983 goto cantfind_ext4; 3984 } 3985 3986 /* Precompute checksum seed for all metadata */ 3987 if (ext4_has_feature_csum_seed(sb)) 3988 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3989 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3990 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3991 sizeof(es->s_uuid)); 3992 3993 /* Set defaults before we parse the mount options */ 3994 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3995 set_opt(sb, INIT_INODE_TABLE); 3996 if (def_mount_opts & EXT4_DEFM_DEBUG) 3997 set_opt(sb, DEBUG); 3998 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3999 set_opt(sb, GRPID); 4000 if (def_mount_opts & EXT4_DEFM_UID16) 4001 set_opt(sb, NO_UID32); 4002 /* xattr user namespace & acls are now defaulted on */ 4003 set_opt(sb, XATTR_USER); 4004 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4005 set_opt(sb, POSIX_ACL); 4006 #endif 4007 if (ext4_has_feature_fast_commit(sb)) 4008 set_opt2(sb, JOURNAL_FAST_COMMIT); 4009 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4010 if (ext4_has_metadata_csum(sb)) 4011 set_opt(sb, JOURNAL_CHECKSUM); 4012 4013 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4014 set_opt(sb, JOURNAL_DATA); 4015 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4016 set_opt(sb, ORDERED_DATA); 4017 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4018 set_opt(sb, WRITEBACK_DATA); 4019 4020 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4021 set_opt(sb, ERRORS_PANIC); 4022 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4023 set_opt(sb, ERRORS_CONT); 4024 else 4025 set_opt(sb, ERRORS_RO); 4026 /* block_validity enabled by default; disable with noblock_validity */ 4027 set_opt(sb, BLOCK_VALIDITY); 4028 if (def_mount_opts & EXT4_DEFM_DISCARD) 4029 set_opt(sb, DISCARD); 4030 4031 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4032 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4033 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4034 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4035 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4036 4037 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4038 set_opt(sb, BARRIER); 4039 4040 /* 4041 * enable delayed allocation by default 4042 * Use -o nodelalloc to turn it off 4043 */ 4044 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4045 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4046 set_opt(sb, DELALLOC); 4047 4048 /* 4049 * set default s_li_wait_mult for lazyinit, for the case there is 4050 * no mount option specified. 4051 */ 4052 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4053 4054 if (le32_to_cpu(es->s_log_block_size) > 4055 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4056 ext4_msg(sb, KERN_ERR, 4057 "Invalid log block size: %u", 4058 le32_to_cpu(es->s_log_block_size)); 4059 goto failed_mount; 4060 } 4061 if (le32_to_cpu(es->s_log_cluster_size) > 4062 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4063 ext4_msg(sb, KERN_ERR, 4064 "Invalid log cluster size: %u", 4065 le32_to_cpu(es->s_log_cluster_size)); 4066 goto failed_mount; 4067 } 4068 4069 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4070 4071 if (blocksize == PAGE_SIZE) 4072 set_opt(sb, DIOREAD_NOLOCK); 4073 4074 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4075 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4076 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4077 } else { 4078 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4079 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4080 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4081 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4082 sbi->s_first_ino); 4083 goto failed_mount; 4084 } 4085 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4086 (!is_power_of_2(sbi->s_inode_size)) || 4087 (sbi->s_inode_size > blocksize)) { 4088 ext4_msg(sb, KERN_ERR, 4089 "unsupported inode size: %d", 4090 sbi->s_inode_size); 4091 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4092 goto failed_mount; 4093 } 4094 /* 4095 * i_atime_extra is the last extra field available for 4096 * [acm]times in struct ext4_inode. Checking for that 4097 * field should suffice to ensure we have extra space 4098 * for all three. 4099 */ 4100 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4101 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4102 sb->s_time_gran = 1; 4103 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4104 } else { 4105 sb->s_time_gran = NSEC_PER_SEC; 4106 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4107 } 4108 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4109 } 4110 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4111 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4112 EXT4_GOOD_OLD_INODE_SIZE; 4113 if (ext4_has_feature_extra_isize(sb)) { 4114 unsigned v, max = (sbi->s_inode_size - 4115 EXT4_GOOD_OLD_INODE_SIZE); 4116 4117 v = le16_to_cpu(es->s_want_extra_isize); 4118 if (v > max) { 4119 ext4_msg(sb, KERN_ERR, 4120 "bad s_want_extra_isize: %d", v); 4121 goto failed_mount; 4122 } 4123 if (sbi->s_want_extra_isize < v) 4124 sbi->s_want_extra_isize = v; 4125 4126 v = le16_to_cpu(es->s_min_extra_isize); 4127 if (v > max) { 4128 ext4_msg(sb, KERN_ERR, 4129 "bad s_min_extra_isize: %d", v); 4130 goto failed_mount; 4131 } 4132 if (sbi->s_want_extra_isize < v) 4133 sbi->s_want_extra_isize = v; 4134 } 4135 } 4136 4137 if (sbi->s_es->s_mount_opts[0]) { 4138 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4139 sizeof(sbi->s_es->s_mount_opts), 4140 GFP_KERNEL); 4141 if (!s_mount_opts) 4142 goto failed_mount; 4143 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4144 ext4_msg(sb, KERN_WARNING, 4145 "failed to parse options in superblock: %s", 4146 s_mount_opts); 4147 } 4148 kfree(s_mount_opts); 4149 } 4150 sbi->s_def_mount_opt = sbi->s_mount_opt; 4151 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4152 goto failed_mount; 4153 4154 #ifdef CONFIG_UNICODE 4155 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4156 const struct ext4_sb_encodings *encoding_info; 4157 struct unicode_map *encoding; 4158 __u16 encoding_flags; 4159 4160 if (ext4_sb_read_encoding(es, &encoding_info, 4161 &encoding_flags)) { 4162 ext4_msg(sb, KERN_ERR, 4163 "Encoding requested by superblock is unknown"); 4164 goto failed_mount; 4165 } 4166 4167 encoding = utf8_load(encoding_info->version); 4168 if (IS_ERR(encoding)) { 4169 ext4_msg(sb, KERN_ERR, 4170 "can't mount with superblock charset: %s-%s " 4171 "not supported by the kernel. flags: 0x%x.", 4172 encoding_info->name, encoding_info->version, 4173 encoding_flags); 4174 goto failed_mount; 4175 } 4176 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4177 "%s-%s with flags 0x%hx", encoding_info->name, 4178 encoding_info->version?:"\b", encoding_flags); 4179 4180 sb->s_encoding = encoding; 4181 sb->s_encoding_flags = encoding_flags; 4182 } 4183 #endif 4184 4185 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4186 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4187 /* can't mount with both data=journal and dioread_nolock. */ 4188 clear_opt(sb, DIOREAD_NOLOCK); 4189 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4190 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4191 ext4_msg(sb, KERN_ERR, "can't mount with " 4192 "both data=journal and delalloc"); 4193 goto failed_mount; 4194 } 4195 if (test_opt(sb, DAX_ALWAYS)) { 4196 ext4_msg(sb, KERN_ERR, "can't mount with " 4197 "both data=journal and dax"); 4198 goto failed_mount; 4199 } 4200 if (ext4_has_feature_encrypt(sb)) { 4201 ext4_msg(sb, KERN_WARNING, 4202 "encrypted files will use data=ordered " 4203 "instead of data journaling mode"); 4204 } 4205 if (test_opt(sb, DELALLOC)) 4206 clear_opt(sb, DELALLOC); 4207 } else { 4208 sb->s_iflags |= SB_I_CGROUPWB; 4209 } 4210 4211 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4212 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4213 4214 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4215 (ext4_has_compat_features(sb) || 4216 ext4_has_ro_compat_features(sb) || 4217 ext4_has_incompat_features(sb))) 4218 ext4_msg(sb, KERN_WARNING, 4219 "feature flags set on rev 0 fs, " 4220 "running e2fsck is recommended"); 4221 4222 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4223 set_opt2(sb, HURD_COMPAT); 4224 if (ext4_has_feature_64bit(sb)) { 4225 ext4_msg(sb, KERN_ERR, 4226 "The Hurd can't support 64-bit file systems"); 4227 goto failed_mount; 4228 } 4229 4230 /* 4231 * ea_inode feature uses l_i_version field which is not 4232 * available in HURD_COMPAT mode. 4233 */ 4234 if (ext4_has_feature_ea_inode(sb)) { 4235 ext4_msg(sb, KERN_ERR, 4236 "ea_inode feature is not supported for Hurd"); 4237 goto failed_mount; 4238 } 4239 } 4240 4241 if (IS_EXT2_SB(sb)) { 4242 if (ext2_feature_set_ok(sb)) 4243 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4244 "using the ext4 subsystem"); 4245 else { 4246 /* 4247 * If we're probing be silent, if this looks like 4248 * it's actually an ext[34] filesystem. 4249 */ 4250 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4251 goto failed_mount; 4252 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4253 "to feature incompatibilities"); 4254 goto failed_mount; 4255 } 4256 } 4257 4258 if (IS_EXT3_SB(sb)) { 4259 if (ext3_feature_set_ok(sb)) 4260 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4261 "using the ext4 subsystem"); 4262 else { 4263 /* 4264 * If we're probing be silent, if this looks like 4265 * it's actually an ext4 filesystem. 4266 */ 4267 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4268 goto failed_mount; 4269 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4270 "to feature incompatibilities"); 4271 goto failed_mount; 4272 } 4273 } 4274 4275 /* 4276 * Check feature flags regardless of the revision level, since we 4277 * previously didn't change the revision level when setting the flags, 4278 * so there is a chance incompat flags are set on a rev 0 filesystem. 4279 */ 4280 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4281 goto failed_mount; 4282 4283 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4284 ext4_msg(sb, KERN_ERR, 4285 "Number of reserved GDT blocks insanely large: %d", 4286 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4287 goto failed_mount; 4288 } 4289 4290 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4291 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4292 4293 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4294 if (ext4_has_feature_inline_data(sb)) { 4295 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4296 " that may contain inline data"); 4297 goto failed_mount; 4298 } 4299 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4300 ext4_msg(sb, KERN_ERR, 4301 "DAX unsupported by block device."); 4302 goto failed_mount; 4303 } 4304 } 4305 4306 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4307 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4308 es->s_encryption_level); 4309 goto failed_mount; 4310 } 4311 4312 if (sb->s_blocksize != blocksize) { 4313 /* 4314 * bh must be released before kill_bdev(), otherwise 4315 * it won't be freed and its page also. kill_bdev() 4316 * is called by sb_set_blocksize(). 4317 */ 4318 brelse(bh); 4319 /* Validate the filesystem blocksize */ 4320 if (!sb_set_blocksize(sb, blocksize)) { 4321 ext4_msg(sb, KERN_ERR, "bad block size %d", 4322 blocksize); 4323 bh = NULL; 4324 goto failed_mount; 4325 } 4326 4327 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4328 offset = do_div(logical_sb_block, blocksize); 4329 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4330 if (IS_ERR(bh)) { 4331 ext4_msg(sb, KERN_ERR, 4332 "Can't read superblock on 2nd try"); 4333 ret = PTR_ERR(bh); 4334 bh = NULL; 4335 goto failed_mount; 4336 } 4337 es = (struct ext4_super_block *)(bh->b_data + offset); 4338 sbi->s_es = es; 4339 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4340 ext4_msg(sb, KERN_ERR, 4341 "Magic mismatch, very weird!"); 4342 goto failed_mount; 4343 } 4344 } 4345 4346 has_huge_files = ext4_has_feature_huge_file(sb); 4347 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4348 has_huge_files); 4349 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4350 4351 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4352 if (ext4_has_feature_64bit(sb)) { 4353 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4354 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4355 !is_power_of_2(sbi->s_desc_size)) { 4356 ext4_msg(sb, KERN_ERR, 4357 "unsupported descriptor size %lu", 4358 sbi->s_desc_size); 4359 goto failed_mount; 4360 } 4361 } else 4362 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4363 4364 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4365 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4366 4367 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4368 if (sbi->s_inodes_per_block == 0) 4369 goto cantfind_ext4; 4370 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4371 sbi->s_inodes_per_group > blocksize * 8) { 4372 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4373 sbi->s_inodes_per_group); 4374 goto failed_mount; 4375 } 4376 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4377 sbi->s_inodes_per_block; 4378 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4379 sbi->s_sbh = bh; 4380 sbi->s_mount_state = le16_to_cpu(es->s_state); 4381 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4382 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4383 4384 for (i = 0; i < 4; i++) 4385 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4386 sbi->s_def_hash_version = es->s_def_hash_version; 4387 if (ext4_has_feature_dir_index(sb)) { 4388 i = le32_to_cpu(es->s_flags); 4389 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4390 sbi->s_hash_unsigned = 3; 4391 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4392 #ifdef __CHAR_UNSIGNED__ 4393 if (!sb_rdonly(sb)) 4394 es->s_flags |= 4395 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4396 sbi->s_hash_unsigned = 3; 4397 #else 4398 if (!sb_rdonly(sb)) 4399 es->s_flags |= 4400 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4401 #endif 4402 } 4403 } 4404 4405 /* Handle clustersize */ 4406 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4407 if (ext4_has_feature_bigalloc(sb)) { 4408 if (clustersize < blocksize) { 4409 ext4_msg(sb, KERN_ERR, 4410 "cluster size (%d) smaller than " 4411 "block size (%d)", clustersize, blocksize); 4412 goto failed_mount; 4413 } 4414 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4415 le32_to_cpu(es->s_log_block_size); 4416 sbi->s_clusters_per_group = 4417 le32_to_cpu(es->s_clusters_per_group); 4418 if (sbi->s_clusters_per_group > blocksize * 8) { 4419 ext4_msg(sb, KERN_ERR, 4420 "#clusters per group too big: %lu", 4421 sbi->s_clusters_per_group); 4422 goto failed_mount; 4423 } 4424 if (sbi->s_blocks_per_group != 4425 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4426 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4427 "clusters per group (%lu) inconsistent", 4428 sbi->s_blocks_per_group, 4429 sbi->s_clusters_per_group); 4430 goto failed_mount; 4431 } 4432 } else { 4433 if (clustersize != blocksize) { 4434 ext4_msg(sb, KERN_ERR, 4435 "fragment/cluster size (%d) != " 4436 "block size (%d)", clustersize, blocksize); 4437 goto failed_mount; 4438 } 4439 if (sbi->s_blocks_per_group > blocksize * 8) { 4440 ext4_msg(sb, KERN_ERR, 4441 "#blocks per group too big: %lu", 4442 sbi->s_blocks_per_group); 4443 goto failed_mount; 4444 } 4445 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4446 sbi->s_cluster_bits = 0; 4447 } 4448 sbi->s_cluster_ratio = clustersize / blocksize; 4449 4450 /* Do we have standard group size of clustersize * 8 blocks ? */ 4451 if (sbi->s_blocks_per_group == clustersize << 3) 4452 set_opt2(sb, STD_GROUP_SIZE); 4453 4454 /* 4455 * Test whether we have more sectors than will fit in sector_t, 4456 * and whether the max offset is addressable by the page cache. 4457 */ 4458 err = generic_check_addressable(sb->s_blocksize_bits, 4459 ext4_blocks_count(es)); 4460 if (err) { 4461 ext4_msg(sb, KERN_ERR, "filesystem" 4462 " too large to mount safely on this system"); 4463 goto failed_mount; 4464 } 4465 4466 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4467 goto cantfind_ext4; 4468 4469 /* check blocks count against device size */ 4470 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4471 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4472 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4473 "exceeds size of device (%llu blocks)", 4474 ext4_blocks_count(es), blocks_count); 4475 goto failed_mount; 4476 } 4477 4478 /* 4479 * It makes no sense for the first data block to be beyond the end 4480 * of the filesystem. 4481 */ 4482 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4483 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4484 "block %u is beyond end of filesystem (%llu)", 4485 le32_to_cpu(es->s_first_data_block), 4486 ext4_blocks_count(es)); 4487 goto failed_mount; 4488 } 4489 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4490 (sbi->s_cluster_ratio == 1)) { 4491 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4492 "block is 0 with a 1k block and cluster size"); 4493 goto failed_mount; 4494 } 4495 4496 blocks_count = (ext4_blocks_count(es) - 4497 le32_to_cpu(es->s_first_data_block) + 4498 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4499 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4500 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4501 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4502 "(block count %llu, first data block %u, " 4503 "blocks per group %lu)", blocks_count, 4504 ext4_blocks_count(es), 4505 le32_to_cpu(es->s_first_data_block), 4506 EXT4_BLOCKS_PER_GROUP(sb)); 4507 goto failed_mount; 4508 } 4509 sbi->s_groups_count = blocks_count; 4510 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4511 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4512 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4513 le32_to_cpu(es->s_inodes_count)) { 4514 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4515 le32_to_cpu(es->s_inodes_count), 4516 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4517 ret = -EINVAL; 4518 goto failed_mount; 4519 } 4520 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4521 EXT4_DESC_PER_BLOCK(sb); 4522 if (ext4_has_feature_meta_bg(sb)) { 4523 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4524 ext4_msg(sb, KERN_WARNING, 4525 "first meta block group too large: %u " 4526 "(group descriptor block count %u)", 4527 le32_to_cpu(es->s_first_meta_bg), db_count); 4528 goto failed_mount; 4529 } 4530 } 4531 rcu_assign_pointer(sbi->s_group_desc, 4532 kvmalloc_array(db_count, 4533 sizeof(struct buffer_head *), 4534 GFP_KERNEL)); 4535 if (sbi->s_group_desc == NULL) { 4536 ext4_msg(sb, KERN_ERR, "not enough memory"); 4537 ret = -ENOMEM; 4538 goto failed_mount; 4539 } 4540 4541 bgl_lock_init(sbi->s_blockgroup_lock); 4542 4543 /* Pre-read the descriptors into the buffer cache */ 4544 for (i = 0; i < db_count; i++) { 4545 block = descriptor_loc(sb, logical_sb_block, i); 4546 ext4_sb_breadahead_unmovable(sb, block); 4547 } 4548 4549 for (i = 0; i < db_count; i++) { 4550 struct buffer_head *bh; 4551 4552 block = descriptor_loc(sb, logical_sb_block, i); 4553 bh = ext4_sb_bread_unmovable(sb, block); 4554 if (IS_ERR(bh)) { 4555 ext4_msg(sb, KERN_ERR, 4556 "can't read group descriptor %d", i); 4557 db_count = i; 4558 ret = PTR_ERR(bh); 4559 goto failed_mount2; 4560 } 4561 rcu_read_lock(); 4562 rcu_dereference(sbi->s_group_desc)[i] = bh; 4563 rcu_read_unlock(); 4564 } 4565 sbi->s_gdb_count = db_count; 4566 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4567 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4568 ret = -EFSCORRUPTED; 4569 goto failed_mount2; 4570 } 4571 4572 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4573 spin_lock_init(&sbi->s_error_lock); 4574 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4575 4576 /* Register extent status tree shrinker */ 4577 if (ext4_es_register_shrinker(sbi)) 4578 goto failed_mount3; 4579 4580 sbi->s_stripe = ext4_get_stripe_size(sbi); 4581 sbi->s_extent_max_zeroout_kb = 32; 4582 4583 /* 4584 * set up enough so that it can read an inode 4585 */ 4586 sb->s_op = &ext4_sops; 4587 sb->s_export_op = &ext4_export_ops; 4588 sb->s_xattr = ext4_xattr_handlers; 4589 #ifdef CONFIG_FS_ENCRYPTION 4590 sb->s_cop = &ext4_cryptops; 4591 #endif 4592 #ifdef CONFIG_FS_VERITY 4593 sb->s_vop = &ext4_verityops; 4594 #endif 4595 #ifdef CONFIG_QUOTA 4596 sb->dq_op = &ext4_quota_operations; 4597 if (ext4_has_feature_quota(sb)) 4598 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4599 else 4600 sb->s_qcop = &ext4_qctl_operations; 4601 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4602 #endif 4603 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4604 4605 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4606 mutex_init(&sbi->s_orphan_lock); 4607 4608 /* Initialize fast commit stuff */ 4609 atomic_set(&sbi->s_fc_subtid, 0); 4610 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4611 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4612 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4613 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4614 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4615 sbi->s_fc_bytes = 0; 4616 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4617 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4618 spin_lock_init(&sbi->s_fc_lock); 4619 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4620 sbi->s_fc_replay_state.fc_regions = NULL; 4621 sbi->s_fc_replay_state.fc_regions_size = 0; 4622 sbi->s_fc_replay_state.fc_regions_used = 0; 4623 sbi->s_fc_replay_state.fc_regions_valid = 0; 4624 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4625 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4626 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4627 4628 sb->s_root = NULL; 4629 4630 needs_recovery = (es->s_last_orphan != 0 || 4631 ext4_has_feature_orphan_present(sb) || 4632 ext4_has_feature_journal_needs_recovery(sb)); 4633 4634 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4635 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4636 goto failed_mount3a; 4637 4638 /* 4639 * The first inode we look at is the journal inode. Don't try 4640 * root first: it may be modified in the journal! 4641 */ 4642 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4643 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4644 if (err) 4645 goto failed_mount3a; 4646 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4647 ext4_has_feature_journal_needs_recovery(sb)) { 4648 ext4_msg(sb, KERN_ERR, "required journal recovery " 4649 "suppressed and not mounted read-only"); 4650 goto failed_mount_wq; 4651 } else { 4652 /* Nojournal mode, all journal mount options are illegal */ 4653 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4654 ext4_msg(sb, KERN_ERR, "can't mount with " 4655 "journal_checksum, fs mounted w/o journal"); 4656 goto failed_mount_wq; 4657 } 4658 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4659 ext4_msg(sb, KERN_ERR, "can't mount with " 4660 "journal_async_commit, fs mounted w/o journal"); 4661 goto failed_mount_wq; 4662 } 4663 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4664 ext4_msg(sb, KERN_ERR, "can't mount with " 4665 "commit=%lu, fs mounted w/o journal", 4666 sbi->s_commit_interval / HZ); 4667 goto failed_mount_wq; 4668 } 4669 if (EXT4_MOUNT_DATA_FLAGS & 4670 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4671 ext4_msg(sb, KERN_ERR, "can't mount with " 4672 "data=, fs mounted w/o journal"); 4673 goto failed_mount_wq; 4674 } 4675 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4676 clear_opt(sb, JOURNAL_CHECKSUM); 4677 clear_opt(sb, DATA_FLAGS); 4678 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4679 sbi->s_journal = NULL; 4680 needs_recovery = 0; 4681 goto no_journal; 4682 } 4683 4684 if (ext4_has_feature_64bit(sb) && 4685 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4686 JBD2_FEATURE_INCOMPAT_64BIT)) { 4687 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4688 goto failed_mount_wq; 4689 } 4690 4691 if (!set_journal_csum_feature_set(sb)) { 4692 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4693 "feature set"); 4694 goto failed_mount_wq; 4695 } 4696 4697 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4698 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4699 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4700 ext4_msg(sb, KERN_ERR, 4701 "Failed to set fast commit journal feature"); 4702 goto failed_mount_wq; 4703 } 4704 4705 /* We have now updated the journal if required, so we can 4706 * validate the data journaling mode. */ 4707 switch (test_opt(sb, DATA_FLAGS)) { 4708 case 0: 4709 /* No mode set, assume a default based on the journal 4710 * capabilities: ORDERED_DATA if the journal can 4711 * cope, else JOURNAL_DATA 4712 */ 4713 if (jbd2_journal_check_available_features 4714 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4715 set_opt(sb, ORDERED_DATA); 4716 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4717 } else { 4718 set_opt(sb, JOURNAL_DATA); 4719 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4720 } 4721 break; 4722 4723 case EXT4_MOUNT_ORDERED_DATA: 4724 case EXT4_MOUNT_WRITEBACK_DATA: 4725 if (!jbd2_journal_check_available_features 4726 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4727 ext4_msg(sb, KERN_ERR, "Journal does not support " 4728 "requested data journaling mode"); 4729 goto failed_mount_wq; 4730 } 4731 break; 4732 default: 4733 break; 4734 } 4735 4736 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4737 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4738 ext4_msg(sb, KERN_ERR, "can't mount with " 4739 "journal_async_commit in data=ordered mode"); 4740 goto failed_mount_wq; 4741 } 4742 4743 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4744 4745 sbi->s_journal->j_submit_inode_data_buffers = 4746 ext4_journal_submit_inode_data_buffers; 4747 sbi->s_journal->j_finish_inode_data_buffers = 4748 ext4_journal_finish_inode_data_buffers; 4749 4750 no_journal: 4751 if (!test_opt(sb, NO_MBCACHE)) { 4752 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4753 if (!sbi->s_ea_block_cache) { 4754 ext4_msg(sb, KERN_ERR, 4755 "Failed to create ea_block_cache"); 4756 goto failed_mount_wq; 4757 } 4758 4759 if (ext4_has_feature_ea_inode(sb)) { 4760 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4761 if (!sbi->s_ea_inode_cache) { 4762 ext4_msg(sb, KERN_ERR, 4763 "Failed to create ea_inode_cache"); 4764 goto failed_mount_wq; 4765 } 4766 } 4767 } 4768 4769 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4770 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4771 goto failed_mount_wq; 4772 } 4773 4774 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4775 !ext4_has_feature_encrypt(sb)) { 4776 ext4_set_feature_encrypt(sb); 4777 ext4_commit_super(sb); 4778 } 4779 4780 /* 4781 * Get the # of file system overhead blocks from the 4782 * superblock if present. 4783 */ 4784 if (es->s_overhead_clusters) 4785 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4786 else { 4787 err = ext4_calculate_overhead(sb); 4788 if (err) 4789 goto failed_mount_wq; 4790 } 4791 4792 /* 4793 * The maximum number of concurrent works can be high and 4794 * concurrency isn't really necessary. Limit it to 1. 4795 */ 4796 EXT4_SB(sb)->rsv_conversion_wq = 4797 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4798 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4799 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4800 ret = -ENOMEM; 4801 goto failed_mount4; 4802 } 4803 4804 /* 4805 * The jbd2_journal_load will have done any necessary log recovery, 4806 * so we can safely mount the rest of the filesystem now. 4807 */ 4808 4809 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4810 if (IS_ERR(root)) { 4811 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4812 ret = PTR_ERR(root); 4813 root = NULL; 4814 goto failed_mount4; 4815 } 4816 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4817 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4818 iput(root); 4819 goto failed_mount4; 4820 } 4821 4822 sb->s_root = d_make_root(root); 4823 if (!sb->s_root) { 4824 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4825 ret = -ENOMEM; 4826 goto failed_mount4; 4827 } 4828 4829 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4830 if (ret == -EROFS) { 4831 sb->s_flags |= SB_RDONLY; 4832 ret = 0; 4833 } else if (ret) 4834 goto failed_mount4a; 4835 4836 ext4_set_resv_clusters(sb); 4837 4838 if (test_opt(sb, BLOCK_VALIDITY)) { 4839 err = ext4_setup_system_zone(sb); 4840 if (err) { 4841 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4842 "zone (%d)", err); 4843 goto failed_mount4a; 4844 } 4845 } 4846 ext4_fc_replay_cleanup(sb); 4847 4848 ext4_ext_init(sb); 4849 4850 /* 4851 * Enable optimize_scan if number of groups is > threshold. This can be 4852 * turned off by passing "mb_optimize_scan=0". This can also be 4853 * turned on forcefully by passing "mb_optimize_scan=1". 4854 */ 4855 if (parsed_opts.mb_optimize_scan == 1) 4856 set_opt2(sb, MB_OPTIMIZE_SCAN); 4857 else if (parsed_opts.mb_optimize_scan == 0) 4858 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4859 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 4860 set_opt2(sb, MB_OPTIMIZE_SCAN); 4861 4862 err = ext4_mb_init(sb); 4863 if (err) { 4864 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4865 err); 4866 goto failed_mount5; 4867 } 4868 4869 /* 4870 * We can only set up the journal commit callback once 4871 * mballoc is initialized 4872 */ 4873 if (sbi->s_journal) 4874 sbi->s_journal->j_commit_callback = 4875 ext4_journal_commit_callback; 4876 4877 block = ext4_count_free_clusters(sb); 4878 ext4_free_blocks_count_set(sbi->s_es, 4879 EXT4_C2B(sbi, block)); 4880 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4881 GFP_KERNEL); 4882 if (!err) { 4883 unsigned long freei = ext4_count_free_inodes(sb); 4884 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4885 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4886 GFP_KERNEL); 4887 } 4888 /* 4889 * Update the checksum after updating free space/inode 4890 * counters. Otherwise the superblock can have an incorrect 4891 * checksum in the buffer cache until it is written out and 4892 * e2fsprogs programs trying to open a file system immediately 4893 * after it is mounted can fail. 4894 */ 4895 ext4_superblock_csum_set(sb); 4896 if (!err) 4897 err = percpu_counter_init(&sbi->s_dirs_counter, 4898 ext4_count_dirs(sb), GFP_KERNEL); 4899 if (!err) 4900 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4901 GFP_KERNEL); 4902 if (!err) 4903 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 4904 GFP_KERNEL); 4905 if (!err) 4906 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4907 4908 if (err) { 4909 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4910 goto failed_mount6; 4911 } 4912 4913 if (ext4_has_feature_flex_bg(sb)) 4914 if (!ext4_fill_flex_info(sb)) { 4915 ext4_msg(sb, KERN_ERR, 4916 "unable to initialize " 4917 "flex_bg meta info!"); 4918 ret = -ENOMEM; 4919 goto failed_mount6; 4920 } 4921 4922 err = ext4_register_li_request(sb, first_not_zeroed); 4923 if (err) 4924 goto failed_mount6; 4925 4926 err = ext4_register_sysfs(sb); 4927 if (err) 4928 goto failed_mount7; 4929 4930 err = ext4_init_orphan_info(sb); 4931 if (err) 4932 goto failed_mount8; 4933 #ifdef CONFIG_QUOTA 4934 /* Enable quota usage during mount. */ 4935 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4936 err = ext4_enable_quotas(sb); 4937 if (err) 4938 goto failed_mount9; 4939 } 4940 #endif /* CONFIG_QUOTA */ 4941 4942 /* 4943 * Save the original bdev mapping's wb_err value which could be 4944 * used to detect the metadata async write error. 4945 */ 4946 spin_lock_init(&sbi->s_bdev_wb_lock); 4947 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4948 &sbi->s_bdev_wb_err); 4949 sb->s_bdev->bd_super = sb; 4950 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4951 ext4_orphan_cleanup(sb, es); 4952 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4953 if (needs_recovery) { 4954 ext4_msg(sb, KERN_INFO, "recovery complete"); 4955 err = ext4_mark_recovery_complete(sb, es); 4956 if (err) 4957 goto failed_mount9; 4958 } 4959 if (EXT4_SB(sb)->s_journal) { 4960 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4961 descr = " journalled data mode"; 4962 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4963 descr = " ordered data mode"; 4964 else 4965 descr = " writeback data mode"; 4966 } else 4967 descr = "out journal"; 4968 4969 if (test_opt(sb, DISCARD)) { 4970 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4971 if (!blk_queue_discard(q)) 4972 ext4_msg(sb, KERN_WARNING, 4973 "mounting with \"discard\" option, but " 4974 "the device does not support discard"); 4975 } 4976 4977 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4978 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4979 "Opts: %.*s%s%s. Quota mode: %s.", descr, 4980 (int) sizeof(sbi->s_es->s_mount_opts), 4981 sbi->s_es->s_mount_opts, 4982 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 4983 ext4_quota_mode(sb)); 4984 4985 if (es->s_error_count) 4986 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4987 4988 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4989 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4990 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4991 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4992 atomic_set(&sbi->s_warning_count, 0); 4993 atomic_set(&sbi->s_msg_count, 0); 4994 4995 kfree(orig_data); 4996 return 0; 4997 4998 cantfind_ext4: 4999 if (!silent) 5000 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5001 goto failed_mount; 5002 5003 failed_mount9: 5004 ext4_release_orphan_info(sb); 5005 failed_mount8: 5006 ext4_unregister_sysfs(sb); 5007 kobject_put(&sbi->s_kobj); 5008 failed_mount7: 5009 ext4_unregister_li_request(sb); 5010 failed_mount6: 5011 ext4_mb_release(sb); 5012 rcu_read_lock(); 5013 flex_groups = rcu_dereference(sbi->s_flex_groups); 5014 if (flex_groups) { 5015 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5016 kvfree(flex_groups[i]); 5017 kvfree(flex_groups); 5018 } 5019 rcu_read_unlock(); 5020 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5021 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5022 percpu_counter_destroy(&sbi->s_dirs_counter); 5023 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5024 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5025 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5026 failed_mount5: 5027 ext4_ext_release(sb); 5028 ext4_release_system_zone(sb); 5029 failed_mount4a: 5030 dput(sb->s_root); 5031 sb->s_root = NULL; 5032 failed_mount4: 5033 ext4_msg(sb, KERN_ERR, "mount failed"); 5034 if (EXT4_SB(sb)->rsv_conversion_wq) 5035 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5036 failed_mount_wq: 5037 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5038 sbi->s_ea_inode_cache = NULL; 5039 5040 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5041 sbi->s_ea_block_cache = NULL; 5042 5043 if (sbi->s_journal) { 5044 jbd2_journal_destroy(sbi->s_journal); 5045 sbi->s_journal = NULL; 5046 } 5047 failed_mount3a: 5048 ext4_es_unregister_shrinker(sbi); 5049 failed_mount3: 5050 flush_work(&sbi->s_error_work); 5051 del_timer_sync(&sbi->s_err_report); 5052 ext4_stop_mmpd(sbi); 5053 failed_mount2: 5054 rcu_read_lock(); 5055 group_desc = rcu_dereference(sbi->s_group_desc); 5056 for (i = 0; i < db_count; i++) 5057 brelse(group_desc[i]); 5058 kvfree(group_desc); 5059 rcu_read_unlock(); 5060 failed_mount: 5061 if (sbi->s_chksum_driver) 5062 crypto_free_shash(sbi->s_chksum_driver); 5063 5064 #ifdef CONFIG_UNICODE 5065 utf8_unload(sb->s_encoding); 5066 #endif 5067 5068 #ifdef CONFIG_QUOTA 5069 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5070 kfree(get_qf_name(sb, sbi, i)); 5071 #endif 5072 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5073 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5074 brelse(bh); 5075 ext4_blkdev_remove(sbi); 5076 out_fail: 5077 sb->s_fs_info = NULL; 5078 kfree(sbi->s_blockgroup_lock); 5079 out_free_base: 5080 kfree(sbi); 5081 kfree(orig_data); 5082 fs_put_dax(dax_dev); 5083 return err ? err : ret; 5084 } 5085 5086 /* 5087 * Setup any per-fs journal parameters now. We'll do this both on 5088 * initial mount, once the journal has been initialised but before we've 5089 * done any recovery; and again on any subsequent remount. 5090 */ 5091 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5092 { 5093 struct ext4_sb_info *sbi = EXT4_SB(sb); 5094 5095 journal->j_commit_interval = sbi->s_commit_interval; 5096 journal->j_min_batch_time = sbi->s_min_batch_time; 5097 journal->j_max_batch_time = sbi->s_max_batch_time; 5098 ext4_fc_init(sb, journal); 5099 5100 write_lock(&journal->j_state_lock); 5101 if (test_opt(sb, BARRIER)) 5102 journal->j_flags |= JBD2_BARRIER; 5103 else 5104 journal->j_flags &= ~JBD2_BARRIER; 5105 if (test_opt(sb, DATA_ERR_ABORT)) 5106 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5107 else 5108 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5109 write_unlock(&journal->j_state_lock); 5110 } 5111 5112 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5113 unsigned int journal_inum) 5114 { 5115 struct inode *journal_inode; 5116 5117 /* 5118 * Test for the existence of a valid inode on disk. Bad things 5119 * happen if we iget() an unused inode, as the subsequent iput() 5120 * will try to delete it. 5121 */ 5122 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5123 if (IS_ERR(journal_inode)) { 5124 ext4_msg(sb, KERN_ERR, "no journal found"); 5125 return NULL; 5126 } 5127 if (!journal_inode->i_nlink) { 5128 make_bad_inode(journal_inode); 5129 iput(journal_inode); 5130 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5131 return NULL; 5132 } 5133 5134 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5135 journal_inode, journal_inode->i_size); 5136 if (!S_ISREG(journal_inode->i_mode)) { 5137 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5138 iput(journal_inode); 5139 return NULL; 5140 } 5141 return journal_inode; 5142 } 5143 5144 static journal_t *ext4_get_journal(struct super_block *sb, 5145 unsigned int journal_inum) 5146 { 5147 struct inode *journal_inode; 5148 journal_t *journal; 5149 5150 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5151 return NULL; 5152 5153 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5154 if (!journal_inode) 5155 return NULL; 5156 5157 journal = jbd2_journal_init_inode(journal_inode); 5158 if (!journal) { 5159 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5160 iput(journal_inode); 5161 return NULL; 5162 } 5163 journal->j_private = sb; 5164 ext4_init_journal_params(sb, journal); 5165 return journal; 5166 } 5167 5168 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5169 dev_t j_dev) 5170 { 5171 struct buffer_head *bh; 5172 journal_t *journal; 5173 ext4_fsblk_t start; 5174 ext4_fsblk_t len; 5175 int hblock, blocksize; 5176 ext4_fsblk_t sb_block; 5177 unsigned long offset; 5178 struct ext4_super_block *es; 5179 struct block_device *bdev; 5180 5181 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5182 return NULL; 5183 5184 bdev = ext4_blkdev_get(j_dev, sb); 5185 if (bdev == NULL) 5186 return NULL; 5187 5188 blocksize = sb->s_blocksize; 5189 hblock = bdev_logical_block_size(bdev); 5190 if (blocksize < hblock) { 5191 ext4_msg(sb, KERN_ERR, 5192 "blocksize too small for journal device"); 5193 goto out_bdev; 5194 } 5195 5196 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5197 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5198 set_blocksize(bdev, blocksize); 5199 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5200 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5201 "external journal"); 5202 goto out_bdev; 5203 } 5204 5205 es = (struct ext4_super_block *) (bh->b_data + offset); 5206 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5207 !(le32_to_cpu(es->s_feature_incompat) & 5208 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5209 ext4_msg(sb, KERN_ERR, "external journal has " 5210 "bad superblock"); 5211 brelse(bh); 5212 goto out_bdev; 5213 } 5214 5215 if ((le32_to_cpu(es->s_feature_ro_compat) & 5216 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5217 es->s_checksum != ext4_superblock_csum(sb, es)) { 5218 ext4_msg(sb, KERN_ERR, "external journal has " 5219 "corrupt superblock"); 5220 brelse(bh); 5221 goto out_bdev; 5222 } 5223 5224 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5225 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5226 brelse(bh); 5227 goto out_bdev; 5228 } 5229 5230 len = ext4_blocks_count(es); 5231 start = sb_block + 1; 5232 brelse(bh); /* we're done with the superblock */ 5233 5234 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5235 start, len, blocksize); 5236 if (!journal) { 5237 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5238 goto out_bdev; 5239 } 5240 journal->j_private = sb; 5241 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5242 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5243 goto out_journal; 5244 } 5245 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5246 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5247 "user (unsupported) - %d", 5248 be32_to_cpu(journal->j_superblock->s_nr_users)); 5249 goto out_journal; 5250 } 5251 EXT4_SB(sb)->s_journal_bdev = bdev; 5252 ext4_init_journal_params(sb, journal); 5253 return journal; 5254 5255 out_journal: 5256 jbd2_journal_destroy(journal); 5257 out_bdev: 5258 ext4_blkdev_put(bdev); 5259 return NULL; 5260 } 5261 5262 static int ext4_load_journal(struct super_block *sb, 5263 struct ext4_super_block *es, 5264 unsigned long journal_devnum) 5265 { 5266 journal_t *journal; 5267 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5268 dev_t journal_dev; 5269 int err = 0; 5270 int really_read_only; 5271 int journal_dev_ro; 5272 5273 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5274 return -EFSCORRUPTED; 5275 5276 if (journal_devnum && 5277 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5278 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5279 "numbers have changed"); 5280 journal_dev = new_decode_dev(journal_devnum); 5281 } else 5282 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5283 5284 if (journal_inum && journal_dev) { 5285 ext4_msg(sb, KERN_ERR, 5286 "filesystem has both journal inode and journal device!"); 5287 return -EINVAL; 5288 } 5289 5290 if (journal_inum) { 5291 journal = ext4_get_journal(sb, journal_inum); 5292 if (!journal) 5293 return -EINVAL; 5294 } else { 5295 journal = ext4_get_dev_journal(sb, journal_dev); 5296 if (!journal) 5297 return -EINVAL; 5298 } 5299 5300 journal_dev_ro = bdev_read_only(journal->j_dev); 5301 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5302 5303 if (journal_dev_ro && !sb_rdonly(sb)) { 5304 ext4_msg(sb, KERN_ERR, 5305 "journal device read-only, try mounting with '-o ro'"); 5306 err = -EROFS; 5307 goto err_out; 5308 } 5309 5310 /* 5311 * Are we loading a blank journal or performing recovery after a 5312 * crash? For recovery, we need to check in advance whether we 5313 * can get read-write access to the device. 5314 */ 5315 if (ext4_has_feature_journal_needs_recovery(sb)) { 5316 if (sb_rdonly(sb)) { 5317 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5318 "required on readonly filesystem"); 5319 if (really_read_only) { 5320 ext4_msg(sb, KERN_ERR, "write access " 5321 "unavailable, cannot proceed " 5322 "(try mounting with noload)"); 5323 err = -EROFS; 5324 goto err_out; 5325 } 5326 ext4_msg(sb, KERN_INFO, "write access will " 5327 "be enabled during recovery"); 5328 } 5329 } 5330 5331 if (!(journal->j_flags & JBD2_BARRIER)) 5332 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5333 5334 if (!ext4_has_feature_journal_needs_recovery(sb)) 5335 err = jbd2_journal_wipe(journal, !really_read_only); 5336 if (!err) { 5337 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5338 if (save) 5339 memcpy(save, ((char *) es) + 5340 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5341 err = jbd2_journal_load(journal); 5342 if (save) 5343 memcpy(((char *) es) + EXT4_S_ERR_START, 5344 save, EXT4_S_ERR_LEN); 5345 kfree(save); 5346 } 5347 5348 if (err) { 5349 ext4_msg(sb, KERN_ERR, "error loading journal"); 5350 goto err_out; 5351 } 5352 5353 EXT4_SB(sb)->s_journal = journal; 5354 err = ext4_clear_journal_err(sb, es); 5355 if (err) { 5356 EXT4_SB(sb)->s_journal = NULL; 5357 jbd2_journal_destroy(journal); 5358 return err; 5359 } 5360 5361 if (!really_read_only && journal_devnum && 5362 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5363 es->s_journal_dev = cpu_to_le32(journal_devnum); 5364 5365 /* Make sure we flush the recovery flag to disk. */ 5366 ext4_commit_super(sb); 5367 } 5368 5369 return 0; 5370 5371 err_out: 5372 jbd2_journal_destroy(journal); 5373 return err; 5374 } 5375 5376 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5377 static void ext4_update_super(struct super_block *sb) 5378 { 5379 struct ext4_sb_info *sbi = EXT4_SB(sb); 5380 struct ext4_super_block *es = sbi->s_es; 5381 struct buffer_head *sbh = sbi->s_sbh; 5382 5383 lock_buffer(sbh); 5384 /* 5385 * If the file system is mounted read-only, don't update the 5386 * superblock write time. This avoids updating the superblock 5387 * write time when we are mounting the root file system 5388 * read/only but we need to replay the journal; at that point, 5389 * for people who are east of GMT and who make their clock 5390 * tick in localtime for Windows bug-for-bug compatibility, 5391 * the clock is set in the future, and this will cause e2fsck 5392 * to complain and force a full file system check. 5393 */ 5394 if (!(sb->s_flags & SB_RDONLY)) 5395 ext4_update_tstamp(es, s_wtime); 5396 es->s_kbytes_written = 5397 cpu_to_le64(sbi->s_kbytes_written + 5398 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5399 sbi->s_sectors_written_start) >> 1)); 5400 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5401 ext4_free_blocks_count_set(es, 5402 EXT4_C2B(sbi, percpu_counter_sum_positive( 5403 &sbi->s_freeclusters_counter))); 5404 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5405 es->s_free_inodes_count = 5406 cpu_to_le32(percpu_counter_sum_positive( 5407 &sbi->s_freeinodes_counter)); 5408 /* Copy error information to the on-disk superblock */ 5409 spin_lock(&sbi->s_error_lock); 5410 if (sbi->s_add_error_count > 0) { 5411 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5412 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5413 __ext4_update_tstamp(&es->s_first_error_time, 5414 &es->s_first_error_time_hi, 5415 sbi->s_first_error_time); 5416 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5417 sizeof(es->s_first_error_func)); 5418 es->s_first_error_line = 5419 cpu_to_le32(sbi->s_first_error_line); 5420 es->s_first_error_ino = 5421 cpu_to_le32(sbi->s_first_error_ino); 5422 es->s_first_error_block = 5423 cpu_to_le64(sbi->s_first_error_block); 5424 es->s_first_error_errcode = 5425 ext4_errno_to_code(sbi->s_first_error_code); 5426 } 5427 __ext4_update_tstamp(&es->s_last_error_time, 5428 &es->s_last_error_time_hi, 5429 sbi->s_last_error_time); 5430 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5431 sizeof(es->s_last_error_func)); 5432 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5433 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5434 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5435 es->s_last_error_errcode = 5436 ext4_errno_to_code(sbi->s_last_error_code); 5437 /* 5438 * Start the daily error reporting function if it hasn't been 5439 * started already 5440 */ 5441 if (!es->s_error_count) 5442 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5443 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5444 sbi->s_add_error_count = 0; 5445 } 5446 spin_unlock(&sbi->s_error_lock); 5447 5448 ext4_superblock_csum_set(sb); 5449 unlock_buffer(sbh); 5450 } 5451 5452 static int ext4_commit_super(struct super_block *sb) 5453 { 5454 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5455 int error = 0; 5456 5457 if (!sbh) 5458 return -EINVAL; 5459 if (block_device_ejected(sb)) 5460 return -ENODEV; 5461 5462 ext4_update_super(sb); 5463 5464 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5465 /* 5466 * Oh, dear. A previous attempt to write the 5467 * superblock failed. This could happen because the 5468 * USB device was yanked out. Or it could happen to 5469 * be a transient write error and maybe the block will 5470 * be remapped. Nothing we can do but to retry the 5471 * write and hope for the best. 5472 */ 5473 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5474 "superblock detected"); 5475 clear_buffer_write_io_error(sbh); 5476 set_buffer_uptodate(sbh); 5477 } 5478 BUFFER_TRACE(sbh, "marking dirty"); 5479 mark_buffer_dirty(sbh); 5480 error = __sync_dirty_buffer(sbh, 5481 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5482 if (buffer_write_io_error(sbh)) { 5483 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5484 "superblock"); 5485 clear_buffer_write_io_error(sbh); 5486 set_buffer_uptodate(sbh); 5487 } 5488 return error; 5489 } 5490 5491 /* 5492 * Have we just finished recovery? If so, and if we are mounting (or 5493 * remounting) the filesystem readonly, then we will end up with a 5494 * consistent fs on disk. Record that fact. 5495 */ 5496 static int ext4_mark_recovery_complete(struct super_block *sb, 5497 struct ext4_super_block *es) 5498 { 5499 int err; 5500 journal_t *journal = EXT4_SB(sb)->s_journal; 5501 5502 if (!ext4_has_feature_journal(sb)) { 5503 if (journal != NULL) { 5504 ext4_error(sb, "Journal got removed while the fs was " 5505 "mounted!"); 5506 return -EFSCORRUPTED; 5507 } 5508 return 0; 5509 } 5510 jbd2_journal_lock_updates(journal); 5511 err = jbd2_journal_flush(journal, 0); 5512 if (err < 0) 5513 goto out; 5514 5515 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5516 ext4_has_feature_orphan_present(sb))) { 5517 if (!ext4_orphan_file_empty(sb)) { 5518 ext4_error(sb, "Orphan file not empty on read-only fs."); 5519 err = -EFSCORRUPTED; 5520 goto out; 5521 } 5522 ext4_clear_feature_journal_needs_recovery(sb); 5523 ext4_clear_feature_orphan_present(sb); 5524 ext4_commit_super(sb); 5525 } 5526 out: 5527 jbd2_journal_unlock_updates(journal); 5528 return err; 5529 } 5530 5531 /* 5532 * If we are mounting (or read-write remounting) a filesystem whose journal 5533 * has recorded an error from a previous lifetime, move that error to the 5534 * main filesystem now. 5535 */ 5536 static int ext4_clear_journal_err(struct super_block *sb, 5537 struct ext4_super_block *es) 5538 { 5539 journal_t *journal; 5540 int j_errno; 5541 const char *errstr; 5542 5543 if (!ext4_has_feature_journal(sb)) { 5544 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5545 return -EFSCORRUPTED; 5546 } 5547 5548 journal = EXT4_SB(sb)->s_journal; 5549 5550 /* 5551 * Now check for any error status which may have been recorded in the 5552 * journal by a prior ext4_error() or ext4_abort() 5553 */ 5554 5555 j_errno = jbd2_journal_errno(journal); 5556 if (j_errno) { 5557 char nbuf[16]; 5558 5559 errstr = ext4_decode_error(sb, j_errno, nbuf); 5560 ext4_warning(sb, "Filesystem error recorded " 5561 "from previous mount: %s", errstr); 5562 ext4_warning(sb, "Marking fs in need of filesystem check."); 5563 5564 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5565 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5566 ext4_commit_super(sb); 5567 5568 jbd2_journal_clear_err(journal); 5569 jbd2_journal_update_sb_errno(journal); 5570 } 5571 return 0; 5572 } 5573 5574 /* 5575 * Force the running and committing transactions to commit, 5576 * and wait on the commit. 5577 */ 5578 int ext4_force_commit(struct super_block *sb) 5579 { 5580 journal_t *journal; 5581 5582 if (sb_rdonly(sb)) 5583 return 0; 5584 5585 journal = EXT4_SB(sb)->s_journal; 5586 return ext4_journal_force_commit(journal); 5587 } 5588 5589 static int ext4_sync_fs(struct super_block *sb, int wait) 5590 { 5591 int ret = 0; 5592 tid_t target; 5593 bool needs_barrier = false; 5594 struct ext4_sb_info *sbi = EXT4_SB(sb); 5595 5596 if (unlikely(ext4_forced_shutdown(sbi))) 5597 return 0; 5598 5599 trace_ext4_sync_fs(sb, wait); 5600 flush_workqueue(sbi->rsv_conversion_wq); 5601 /* 5602 * Writeback quota in non-journalled quota case - journalled quota has 5603 * no dirty dquots 5604 */ 5605 dquot_writeback_dquots(sb, -1); 5606 /* 5607 * Data writeback is possible w/o journal transaction, so barrier must 5608 * being sent at the end of the function. But we can skip it if 5609 * transaction_commit will do it for us. 5610 */ 5611 if (sbi->s_journal) { 5612 target = jbd2_get_latest_transaction(sbi->s_journal); 5613 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5614 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5615 needs_barrier = true; 5616 5617 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5618 if (wait) 5619 ret = jbd2_log_wait_commit(sbi->s_journal, 5620 target); 5621 } 5622 } else if (wait && test_opt(sb, BARRIER)) 5623 needs_barrier = true; 5624 if (needs_barrier) { 5625 int err; 5626 err = blkdev_issue_flush(sb->s_bdev); 5627 if (!ret) 5628 ret = err; 5629 } 5630 5631 return ret; 5632 } 5633 5634 /* 5635 * LVM calls this function before a (read-only) snapshot is created. This 5636 * gives us a chance to flush the journal completely and mark the fs clean. 5637 * 5638 * Note that only this function cannot bring a filesystem to be in a clean 5639 * state independently. It relies on upper layer to stop all data & metadata 5640 * modifications. 5641 */ 5642 static int ext4_freeze(struct super_block *sb) 5643 { 5644 int error = 0; 5645 journal_t *journal; 5646 5647 if (sb_rdonly(sb)) 5648 return 0; 5649 5650 journal = EXT4_SB(sb)->s_journal; 5651 5652 if (journal) { 5653 /* Now we set up the journal barrier. */ 5654 jbd2_journal_lock_updates(journal); 5655 5656 /* 5657 * Don't clear the needs_recovery flag if we failed to 5658 * flush the journal. 5659 */ 5660 error = jbd2_journal_flush(journal, 0); 5661 if (error < 0) 5662 goto out; 5663 5664 /* Journal blocked and flushed, clear needs_recovery flag. */ 5665 ext4_clear_feature_journal_needs_recovery(sb); 5666 if (ext4_orphan_file_empty(sb)) 5667 ext4_clear_feature_orphan_present(sb); 5668 } 5669 5670 error = ext4_commit_super(sb); 5671 out: 5672 if (journal) 5673 /* we rely on upper layer to stop further updates */ 5674 jbd2_journal_unlock_updates(journal); 5675 return error; 5676 } 5677 5678 /* 5679 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5680 * flag here, even though the filesystem is not technically dirty yet. 5681 */ 5682 static int ext4_unfreeze(struct super_block *sb) 5683 { 5684 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5685 return 0; 5686 5687 if (EXT4_SB(sb)->s_journal) { 5688 /* Reset the needs_recovery flag before the fs is unlocked. */ 5689 ext4_set_feature_journal_needs_recovery(sb); 5690 if (ext4_has_feature_orphan_file(sb)) 5691 ext4_set_feature_orphan_present(sb); 5692 } 5693 5694 ext4_commit_super(sb); 5695 return 0; 5696 } 5697 5698 /* 5699 * Structure to save mount options for ext4_remount's benefit 5700 */ 5701 struct ext4_mount_options { 5702 unsigned long s_mount_opt; 5703 unsigned long s_mount_opt2; 5704 kuid_t s_resuid; 5705 kgid_t s_resgid; 5706 unsigned long s_commit_interval; 5707 u32 s_min_batch_time, s_max_batch_time; 5708 #ifdef CONFIG_QUOTA 5709 int s_jquota_fmt; 5710 char *s_qf_names[EXT4_MAXQUOTAS]; 5711 #endif 5712 }; 5713 5714 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5715 { 5716 struct ext4_super_block *es; 5717 struct ext4_sb_info *sbi = EXT4_SB(sb); 5718 unsigned long old_sb_flags, vfs_flags; 5719 struct ext4_mount_options old_opts; 5720 int enable_quota = 0; 5721 ext4_group_t g; 5722 int err = 0; 5723 #ifdef CONFIG_QUOTA 5724 int i, j; 5725 char *to_free[EXT4_MAXQUOTAS]; 5726 #endif 5727 char *orig_data = kstrdup(data, GFP_KERNEL); 5728 struct ext4_parsed_options parsed_opts; 5729 5730 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5731 parsed_opts.journal_devnum = 0; 5732 5733 if (data && !orig_data) 5734 return -ENOMEM; 5735 5736 /* Store the original options */ 5737 old_sb_flags = sb->s_flags; 5738 old_opts.s_mount_opt = sbi->s_mount_opt; 5739 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5740 old_opts.s_resuid = sbi->s_resuid; 5741 old_opts.s_resgid = sbi->s_resgid; 5742 old_opts.s_commit_interval = sbi->s_commit_interval; 5743 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5744 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5745 #ifdef CONFIG_QUOTA 5746 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5747 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5748 if (sbi->s_qf_names[i]) { 5749 char *qf_name = get_qf_name(sb, sbi, i); 5750 5751 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5752 if (!old_opts.s_qf_names[i]) { 5753 for (j = 0; j < i; j++) 5754 kfree(old_opts.s_qf_names[j]); 5755 kfree(orig_data); 5756 return -ENOMEM; 5757 } 5758 } else 5759 old_opts.s_qf_names[i] = NULL; 5760 #endif 5761 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5762 parsed_opts.journal_ioprio = 5763 sbi->s_journal->j_task->io_context->ioprio; 5764 5765 /* 5766 * Some options can be enabled by ext4 and/or by VFS mount flag 5767 * either way we need to make sure it matches in both *flags and 5768 * s_flags. Copy those selected flags from *flags to s_flags 5769 */ 5770 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5771 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5772 5773 if (!parse_options(data, sb, &parsed_opts, 1)) { 5774 err = -EINVAL; 5775 goto restore_opts; 5776 } 5777 5778 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5779 test_opt(sb, JOURNAL_CHECKSUM)) { 5780 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5781 "during remount not supported; ignoring"); 5782 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5783 } 5784 5785 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5786 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5787 ext4_msg(sb, KERN_ERR, "can't mount with " 5788 "both data=journal and delalloc"); 5789 err = -EINVAL; 5790 goto restore_opts; 5791 } 5792 if (test_opt(sb, DIOREAD_NOLOCK)) { 5793 ext4_msg(sb, KERN_ERR, "can't mount with " 5794 "both data=journal and dioread_nolock"); 5795 err = -EINVAL; 5796 goto restore_opts; 5797 } 5798 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5799 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5800 ext4_msg(sb, KERN_ERR, "can't mount with " 5801 "journal_async_commit in data=ordered mode"); 5802 err = -EINVAL; 5803 goto restore_opts; 5804 } 5805 } 5806 5807 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5808 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5809 err = -EINVAL; 5810 goto restore_opts; 5811 } 5812 5813 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5814 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5815 5816 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5817 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5818 5819 es = sbi->s_es; 5820 5821 if (sbi->s_journal) { 5822 ext4_init_journal_params(sb, sbi->s_journal); 5823 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5824 } 5825 5826 /* Flush outstanding errors before changing fs state */ 5827 flush_work(&sbi->s_error_work); 5828 5829 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5830 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5831 err = -EROFS; 5832 goto restore_opts; 5833 } 5834 5835 if (*flags & SB_RDONLY) { 5836 err = sync_filesystem(sb); 5837 if (err < 0) 5838 goto restore_opts; 5839 err = dquot_suspend(sb, -1); 5840 if (err < 0) 5841 goto restore_opts; 5842 5843 /* 5844 * First of all, the unconditional stuff we have to do 5845 * to disable replay of the journal when we next remount 5846 */ 5847 sb->s_flags |= SB_RDONLY; 5848 5849 /* 5850 * OK, test if we are remounting a valid rw partition 5851 * readonly, and if so set the rdonly flag and then 5852 * mark the partition as valid again. 5853 */ 5854 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5855 (sbi->s_mount_state & EXT4_VALID_FS)) 5856 es->s_state = cpu_to_le16(sbi->s_mount_state); 5857 5858 if (sbi->s_journal) { 5859 /* 5860 * We let remount-ro finish even if marking fs 5861 * as clean failed... 5862 */ 5863 ext4_mark_recovery_complete(sb, es); 5864 } 5865 } else { 5866 /* Make sure we can mount this feature set readwrite */ 5867 if (ext4_has_feature_readonly(sb) || 5868 !ext4_feature_set_ok(sb, 0)) { 5869 err = -EROFS; 5870 goto restore_opts; 5871 } 5872 /* 5873 * Make sure the group descriptor checksums 5874 * are sane. If they aren't, refuse to remount r/w. 5875 */ 5876 for (g = 0; g < sbi->s_groups_count; g++) { 5877 struct ext4_group_desc *gdp = 5878 ext4_get_group_desc(sb, g, NULL); 5879 5880 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5881 ext4_msg(sb, KERN_ERR, 5882 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5883 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5884 le16_to_cpu(gdp->bg_checksum)); 5885 err = -EFSBADCRC; 5886 goto restore_opts; 5887 } 5888 } 5889 5890 /* 5891 * If we have an unprocessed orphan list hanging 5892 * around from a previously readonly bdev mount, 5893 * require a full umount/remount for now. 5894 */ 5895 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 5896 ext4_msg(sb, KERN_WARNING, "Couldn't " 5897 "remount RDWR because of unprocessed " 5898 "orphan inode list. Please " 5899 "umount/remount instead"); 5900 err = -EINVAL; 5901 goto restore_opts; 5902 } 5903 5904 /* 5905 * Mounting a RDONLY partition read-write, so reread 5906 * and store the current valid flag. (It may have 5907 * been changed by e2fsck since we originally mounted 5908 * the partition.) 5909 */ 5910 if (sbi->s_journal) { 5911 err = ext4_clear_journal_err(sb, es); 5912 if (err) 5913 goto restore_opts; 5914 } 5915 sbi->s_mount_state = le16_to_cpu(es->s_state); 5916 5917 err = ext4_setup_super(sb, es, 0); 5918 if (err) 5919 goto restore_opts; 5920 5921 sb->s_flags &= ~SB_RDONLY; 5922 if (ext4_has_feature_mmp(sb)) 5923 if (ext4_multi_mount_protect(sb, 5924 le64_to_cpu(es->s_mmp_block))) { 5925 err = -EROFS; 5926 goto restore_opts; 5927 } 5928 enable_quota = 1; 5929 } 5930 } 5931 5932 /* 5933 * Reinitialize lazy itable initialization thread based on 5934 * current settings 5935 */ 5936 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5937 ext4_unregister_li_request(sb); 5938 else { 5939 ext4_group_t first_not_zeroed; 5940 first_not_zeroed = ext4_has_uninit_itable(sb); 5941 ext4_register_li_request(sb, first_not_zeroed); 5942 } 5943 5944 /* 5945 * Handle creation of system zone data early because it can fail. 5946 * Releasing of existing data is done when we are sure remount will 5947 * succeed. 5948 */ 5949 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5950 err = ext4_setup_system_zone(sb); 5951 if (err) 5952 goto restore_opts; 5953 } 5954 5955 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5956 err = ext4_commit_super(sb); 5957 if (err) 5958 goto restore_opts; 5959 } 5960 5961 #ifdef CONFIG_QUOTA 5962 /* Release old quota file names */ 5963 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5964 kfree(old_opts.s_qf_names[i]); 5965 if (enable_quota) { 5966 if (sb_any_quota_suspended(sb)) 5967 dquot_resume(sb, -1); 5968 else if (ext4_has_feature_quota(sb)) { 5969 err = ext4_enable_quotas(sb); 5970 if (err) 5971 goto restore_opts; 5972 } 5973 } 5974 #endif 5975 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 5976 ext4_release_system_zone(sb); 5977 5978 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 5979 ext4_stop_mmpd(sbi); 5980 5981 /* 5982 * Some options can be enabled by ext4 and/or by VFS mount flag 5983 * either way we need to make sure it matches in both *flags and 5984 * s_flags. Copy those selected flags from s_flags to *flags 5985 */ 5986 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 5987 5988 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 5989 orig_data, ext4_quota_mode(sb)); 5990 kfree(orig_data); 5991 return 0; 5992 5993 restore_opts: 5994 sb->s_flags = old_sb_flags; 5995 sbi->s_mount_opt = old_opts.s_mount_opt; 5996 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5997 sbi->s_resuid = old_opts.s_resuid; 5998 sbi->s_resgid = old_opts.s_resgid; 5999 sbi->s_commit_interval = old_opts.s_commit_interval; 6000 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6001 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6002 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6003 ext4_release_system_zone(sb); 6004 #ifdef CONFIG_QUOTA 6005 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6006 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6007 to_free[i] = get_qf_name(sb, sbi, i); 6008 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6009 } 6010 synchronize_rcu(); 6011 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6012 kfree(to_free[i]); 6013 #endif 6014 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6015 ext4_stop_mmpd(sbi); 6016 kfree(orig_data); 6017 return err; 6018 } 6019 6020 #ifdef CONFIG_QUOTA 6021 static int ext4_statfs_project(struct super_block *sb, 6022 kprojid_t projid, struct kstatfs *buf) 6023 { 6024 struct kqid qid; 6025 struct dquot *dquot; 6026 u64 limit; 6027 u64 curblock; 6028 6029 qid = make_kqid_projid(projid); 6030 dquot = dqget(sb, qid); 6031 if (IS_ERR(dquot)) 6032 return PTR_ERR(dquot); 6033 spin_lock(&dquot->dq_dqb_lock); 6034 6035 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6036 dquot->dq_dqb.dqb_bhardlimit); 6037 limit >>= sb->s_blocksize_bits; 6038 6039 if (limit && buf->f_blocks > limit) { 6040 curblock = (dquot->dq_dqb.dqb_curspace + 6041 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6042 buf->f_blocks = limit; 6043 buf->f_bfree = buf->f_bavail = 6044 (buf->f_blocks > curblock) ? 6045 (buf->f_blocks - curblock) : 0; 6046 } 6047 6048 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6049 dquot->dq_dqb.dqb_ihardlimit); 6050 if (limit && buf->f_files > limit) { 6051 buf->f_files = limit; 6052 buf->f_ffree = 6053 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6054 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6055 } 6056 6057 spin_unlock(&dquot->dq_dqb_lock); 6058 dqput(dquot); 6059 return 0; 6060 } 6061 #endif 6062 6063 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6064 { 6065 struct super_block *sb = dentry->d_sb; 6066 struct ext4_sb_info *sbi = EXT4_SB(sb); 6067 struct ext4_super_block *es = sbi->s_es; 6068 ext4_fsblk_t overhead = 0, resv_blocks; 6069 s64 bfree; 6070 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6071 6072 if (!test_opt(sb, MINIX_DF)) 6073 overhead = sbi->s_overhead; 6074 6075 buf->f_type = EXT4_SUPER_MAGIC; 6076 buf->f_bsize = sb->s_blocksize; 6077 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6078 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6079 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6080 /* prevent underflow in case that few free space is available */ 6081 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6082 buf->f_bavail = buf->f_bfree - 6083 (ext4_r_blocks_count(es) + resv_blocks); 6084 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6085 buf->f_bavail = 0; 6086 buf->f_files = le32_to_cpu(es->s_inodes_count); 6087 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6088 buf->f_namelen = EXT4_NAME_LEN; 6089 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6090 6091 #ifdef CONFIG_QUOTA 6092 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6093 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6094 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6095 #endif 6096 return 0; 6097 } 6098 6099 6100 #ifdef CONFIG_QUOTA 6101 6102 /* 6103 * Helper functions so that transaction is started before we acquire dqio_sem 6104 * to keep correct lock ordering of transaction > dqio_sem 6105 */ 6106 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6107 { 6108 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6109 } 6110 6111 static int ext4_write_dquot(struct dquot *dquot) 6112 { 6113 int ret, err; 6114 handle_t *handle; 6115 struct inode *inode; 6116 6117 inode = dquot_to_inode(dquot); 6118 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6119 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6120 if (IS_ERR(handle)) 6121 return PTR_ERR(handle); 6122 ret = dquot_commit(dquot); 6123 err = ext4_journal_stop(handle); 6124 if (!ret) 6125 ret = err; 6126 return ret; 6127 } 6128 6129 static int ext4_acquire_dquot(struct dquot *dquot) 6130 { 6131 int ret, err; 6132 handle_t *handle; 6133 6134 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6135 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6136 if (IS_ERR(handle)) 6137 return PTR_ERR(handle); 6138 ret = dquot_acquire(dquot); 6139 err = ext4_journal_stop(handle); 6140 if (!ret) 6141 ret = err; 6142 return ret; 6143 } 6144 6145 static int ext4_release_dquot(struct dquot *dquot) 6146 { 6147 int ret, err; 6148 handle_t *handle; 6149 6150 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6151 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6152 if (IS_ERR(handle)) { 6153 /* Release dquot anyway to avoid endless cycle in dqput() */ 6154 dquot_release(dquot); 6155 return PTR_ERR(handle); 6156 } 6157 ret = dquot_release(dquot); 6158 err = ext4_journal_stop(handle); 6159 if (!ret) 6160 ret = err; 6161 return ret; 6162 } 6163 6164 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6165 { 6166 struct super_block *sb = dquot->dq_sb; 6167 6168 if (ext4_is_quota_journalled(sb)) { 6169 dquot_mark_dquot_dirty(dquot); 6170 return ext4_write_dquot(dquot); 6171 } else { 6172 return dquot_mark_dquot_dirty(dquot); 6173 } 6174 } 6175 6176 static int ext4_write_info(struct super_block *sb, int type) 6177 { 6178 int ret, err; 6179 handle_t *handle; 6180 6181 /* Data block + inode block */ 6182 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6183 if (IS_ERR(handle)) 6184 return PTR_ERR(handle); 6185 ret = dquot_commit_info(sb, type); 6186 err = ext4_journal_stop(handle); 6187 if (!ret) 6188 ret = err; 6189 return ret; 6190 } 6191 6192 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6193 { 6194 struct ext4_inode_info *ei = EXT4_I(inode); 6195 6196 /* The first argument of lockdep_set_subclass has to be 6197 * *exactly* the same as the argument to init_rwsem() --- in 6198 * this case, in init_once() --- or lockdep gets unhappy 6199 * because the name of the lock is set using the 6200 * stringification of the argument to init_rwsem(). 6201 */ 6202 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6203 lockdep_set_subclass(&ei->i_data_sem, subclass); 6204 } 6205 6206 /* 6207 * Standard function to be called on quota_on 6208 */ 6209 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6210 const struct path *path) 6211 { 6212 int err; 6213 6214 if (!test_opt(sb, QUOTA)) 6215 return -EINVAL; 6216 6217 /* Quotafile not on the same filesystem? */ 6218 if (path->dentry->d_sb != sb) 6219 return -EXDEV; 6220 6221 /* Quota already enabled for this file? */ 6222 if (IS_NOQUOTA(d_inode(path->dentry))) 6223 return -EBUSY; 6224 6225 /* Journaling quota? */ 6226 if (EXT4_SB(sb)->s_qf_names[type]) { 6227 /* Quotafile not in fs root? */ 6228 if (path->dentry->d_parent != sb->s_root) 6229 ext4_msg(sb, KERN_WARNING, 6230 "Quota file not on filesystem root. " 6231 "Journaled quota will not work"); 6232 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6233 } else { 6234 /* 6235 * Clear the flag just in case mount options changed since 6236 * last time. 6237 */ 6238 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6239 } 6240 6241 /* 6242 * When we journal data on quota file, we have to flush journal to see 6243 * all updates to the file when we bypass pagecache... 6244 */ 6245 if (EXT4_SB(sb)->s_journal && 6246 ext4_should_journal_data(d_inode(path->dentry))) { 6247 /* 6248 * We don't need to lock updates but journal_flush() could 6249 * otherwise be livelocked... 6250 */ 6251 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6252 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6253 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6254 if (err) 6255 return err; 6256 } 6257 6258 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6259 err = dquot_quota_on(sb, type, format_id, path); 6260 if (err) { 6261 lockdep_set_quota_inode(path->dentry->d_inode, 6262 I_DATA_SEM_NORMAL); 6263 } else { 6264 struct inode *inode = d_inode(path->dentry); 6265 handle_t *handle; 6266 6267 /* 6268 * Set inode flags to prevent userspace from messing with quota 6269 * files. If this fails, we return success anyway since quotas 6270 * are already enabled and this is not a hard failure. 6271 */ 6272 inode_lock(inode); 6273 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6274 if (IS_ERR(handle)) 6275 goto unlock_inode; 6276 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6277 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6278 S_NOATIME | S_IMMUTABLE); 6279 err = ext4_mark_inode_dirty(handle, inode); 6280 ext4_journal_stop(handle); 6281 unlock_inode: 6282 inode_unlock(inode); 6283 } 6284 return err; 6285 } 6286 6287 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6288 unsigned int flags) 6289 { 6290 int err; 6291 struct inode *qf_inode; 6292 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6293 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6294 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6295 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6296 }; 6297 6298 BUG_ON(!ext4_has_feature_quota(sb)); 6299 6300 if (!qf_inums[type]) 6301 return -EPERM; 6302 6303 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6304 if (IS_ERR(qf_inode)) { 6305 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6306 return PTR_ERR(qf_inode); 6307 } 6308 6309 /* Don't account quota for quota files to avoid recursion */ 6310 qf_inode->i_flags |= S_NOQUOTA; 6311 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6312 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6313 if (err) 6314 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6315 iput(qf_inode); 6316 6317 return err; 6318 } 6319 6320 /* Enable usage tracking for all quota types. */ 6321 int ext4_enable_quotas(struct super_block *sb) 6322 { 6323 int type, err = 0; 6324 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6325 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6326 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6327 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6328 }; 6329 bool quota_mopt[EXT4_MAXQUOTAS] = { 6330 test_opt(sb, USRQUOTA), 6331 test_opt(sb, GRPQUOTA), 6332 test_opt(sb, PRJQUOTA), 6333 }; 6334 6335 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6336 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6337 if (qf_inums[type]) { 6338 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6339 DQUOT_USAGE_ENABLED | 6340 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6341 if (err) { 6342 ext4_warning(sb, 6343 "Failed to enable quota tracking " 6344 "(type=%d, err=%d). Please run " 6345 "e2fsck to fix.", type, err); 6346 for (type--; type >= 0; type--) 6347 dquot_quota_off(sb, type); 6348 6349 return err; 6350 } 6351 } 6352 } 6353 return 0; 6354 } 6355 6356 static int ext4_quota_off(struct super_block *sb, int type) 6357 { 6358 struct inode *inode = sb_dqopt(sb)->files[type]; 6359 handle_t *handle; 6360 int err; 6361 6362 /* Force all delayed allocation blocks to be allocated. 6363 * Caller already holds s_umount sem */ 6364 if (test_opt(sb, DELALLOC)) 6365 sync_filesystem(sb); 6366 6367 if (!inode || !igrab(inode)) 6368 goto out; 6369 6370 err = dquot_quota_off(sb, type); 6371 if (err || ext4_has_feature_quota(sb)) 6372 goto out_put; 6373 6374 inode_lock(inode); 6375 /* 6376 * Update modification times of quota files when userspace can 6377 * start looking at them. If we fail, we return success anyway since 6378 * this is not a hard failure and quotas are already disabled. 6379 */ 6380 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6381 if (IS_ERR(handle)) { 6382 err = PTR_ERR(handle); 6383 goto out_unlock; 6384 } 6385 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6386 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6387 inode->i_mtime = inode->i_ctime = current_time(inode); 6388 err = ext4_mark_inode_dirty(handle, inode); 6389 ext4_journal_stop(handle); 6390 out_unlock: 6391 inode_unlock(inode); 6392 out_put: 6393 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6394 iput(inode); 6395 return err; 6396 out: 6397 return dquot_quota_off(sb, type); 6398 } 6399 6400 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6401 * acquiring the locks... As quota files are never truncated and quota code 6402 * itself serializes the operations (and no one else should touch the files) 6403 * we don't have to be afraid of races */ 6404 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6405 size_t len, loff_t off) 6406 { 6407 struct inode *inode = sb_dqopt(sb)->files[type]; 6408 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6409 int offset = off & (sb->s_blocksize - 1); 6410 int tocopy; 6411 size_t toread; 6412 struct buffer_head *bh; 6413 loff_t i_size = i_size_read(inode); 6414 6415 if (off > i_size) 6416 return 0; 6417 if (off+len > i_size) 6418 len = i_size-off; 6419 toread = len; 6420 while (toread > 0) { 6421 tocopy = sb->s_blocksize - offset < toread ? 6422 sb->s_blocksize - offset : toread; 6423 bh = ext4_bread(NULL, inode, blk, 0); 6424 if (IS_ERR(bh)) 6425 return PTR_ERR(bh); 6426 if (!bh) /* A hole? */ 6427 memset(data, 0, tocopy); 6428 else 6429 memcpy(data, bh->b_data+offset, tocopy); 6430 brelse(bh); 6431 offset = 0; 6432 toread -= tocopy; 6433 data += tocopy; 6434 blk++; 6435 } 6436 return len; 6437 } 6438 6439 /* Write to quotafile (we know the transaction is already started and has 6440 * enough credits) */ 6441 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6442 const char *data, size_t len, loff_t off) 6443 { 6444 struct inode *inode = sb_dqopt(sb)->files[type]; 6445 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6446 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6447 int retries = 0; 6448 struct buffer_head *bh; 6449 handle_t *handle = journal_current_handle(); 6450 6451 if (EXT4_SB(sb)->s_journal && !handle) { 6452 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6453 " cancelled because transaction is not started", 6454 (unsigned long long)off, (unsigned long long)len); 6455 return -EIO; 6456 } 6457 /* 6458 * Since we account only one data block in transaction credits, 6459 * then it is impossible to cross a block boundary. 6460 */ 6461 if (sb->s_blocksize - offset < len) { 6462 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6463 " cancelled because not block aligned", 6464 (unsigned long long)off, (unsigned long long)len); 6465 return -EIO; 6466 } 6467 6468 do { 6469 bh = ext4_bread(handle, inode, blk, 6470 EXT4_GET_BLOCKS_CREATE | 6471 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6472 } while (PTR_ERR(bh) == -ENOSPC && 6473 ext4_should_retry_alloc(inode->i_sb, &retries)); 6474 if (IS_ERR(bh)) 6475 return PTR_ERR(bh); 6476 if (!bh) 6477 goto out; 6478 BUFFER_TRACE(bh, "get write access"); 6479 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6480 if (err) { 6481 brelse(bh); 6482 return err; 6483 } 6484 lock_buffer(bh); 6485 memcpy(bh->b_data+offset, data, len); 6486 flush_dcache_page(bh->b_page); 6487 unlock_buffer(bh); 6488 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6489 brelse(bh); 6490 out: 6491 if (inode->i_size < off + len) { 6492 i_size_write(inode, off + len); 6493 EXT4_I(inode)->i_disksize = inode->i_size; 6494 err2 = ext4_mark_inode_dirty(handle, inode); 6495 if (unlikely(err2 && !err)) 6496 err = err2; 6497 } 6498 return err ? err : len; 6499 } 6500 #endif 6501 6502 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6503 const char *dev_name, void *data) 6504 { 6505 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6506 } 6507 6508 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6509 static inline void register_as_ext2(void) 6510 { 6511 int err = register_filesystem(&ext2_fs_type); 6512 if (err) 6513 printk(KERN_WARNING 6514 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6515 } 6516 6517 static inline void unregister_as_ext2(void) 6518 { 6519 unregister_filesystem(&ext2_fs_type); 6520 } 6521 6522 static inline int ext2_feature_set_ok(struct super_block *sb) 6523 { 6524 if (ext4_has_unknown_ext2_incompat_features(sb)) 6525 return 0; 6526 if (sb_rdonly(sb)) 6527 return 1; 6528 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6529 return 0; 6530 return 1; 6531 } 6532 #else 6533 static inline void register_as_ext2(void) { } 6534 static inline void unregister_as_ext2(void) { } 6535 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6536 #endif 6537 6538 static inline void register_as_ext3(void) 6539 { 6540 int err = register_filesystem(&ext3_fs_type); 6541 if (err) 6542 printk(KERN_WARNING 6543 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6544 } 6545 6546 static inline void unregister_as_ext3(void) 6547 { 6548 unregister_filesystem(&ext3_fs_type); 6549 } 6550 6551 static inline int ext3_feature_set_ok(struct super_block *sb) 6552 { 6553 if (ext4_has_unknown_ext3_incompat_features(sb)) 6554 return 0; 6555 if (!ext4_has_feature_journal(sb)) 6556 return 0; 6557 if (sb_rdonly(sb)) 6558 return 1; 6559 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6560 return 0; 6561 return 1; 6562 } 6563 6564 static struct file_system_type ext4_fs_type = { 6565 .owner = THIS_MODULE, 6566 .name = "ext4", 6567 .mount = ext4_mount, 6568 .kill_sb = kill_block_super, 6569 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6570 }; 6571 MODULE_ALIAS_FS("ext4"); 6572 6573 /* Shared across all ext4 file systems */ 6574 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6575 6576 static int __init ext4_init_fs(void) 6577 { 6578 int i, err; 6579 6580 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6581 ext4_li_info = NULL; 6582 6583 /* Build-time check for flags consistency */ 6584 ext4_check_flag_values(); 6585 6586 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6587 init_waitqueue_head(&ext4__ioend_wq[i]); 6588 6589 err = ext4_init_es(); 6590 if (err) 6591 return err; 6592 6593 err = ext4_init_pending(); 6594 if (err) 6595 goto out7; 6596 6597 err = ext4_init_post_read_processing(); 6598 if (err) 6599 goto out6; 6600 6601 err = ext4_init_pageio(); 6602 if (err) 6603 goto out5; 6604 6605 err = ext4_init_system_zone(); 6606 if (err) 6607 goto out4; 6608 6609 err = ext4_init_sysfs(); 6610 if (err) 6611 goto out3; 6612 6613 err = ext4_init_mballoc(); 6614 if (err) 6615 goto out2; 6616 err = init_inodecache(); 6617 if (err) 6618 goto out1; 6619 6620 err = ext4_fc_init_dentry_cache(); 6621 if (err) 6622 goto out05; 6623 6624 register_as_ext3(); 6625 register_as_ext2(); 6626 err = register_filesystem(&ext4_fs_type); 6627 if (err) 6628 goto out; 6629 6630 return 0; 6631 out: 6632 unregister_as_ext2(); 6633 unregister_as_ext3(); 6634 out05: 6635 destroy_inodecache(); 6636 out1: 6637 ext4_exit_mballoc(); 6638 out2: 6639 ext4_exit_sysfs(); 6640 out3: 6641 ext4_exit_system_zone(); 6642 out4: 6643 ext4_exit_pageio(); 6644 out5: 6645 ext4_exit_post_read_processing(); 6646 out6: 6647 ext4_exit_pending(); 6648 out7: 6649 ext4_exit_es(); 6650 6651 return err; 6652 } 6653 6654 static void __exit ext4_exit_fs(void) 6655 { 6656 ext4_destroy_lazyinit_thread(); 6657 unregister_as_ext2(); 6658 unregister_as_ext3(); 6659 unregister_filesystem(&ext4_fs_type); 6660 destroy_inodecache(); 6661 ext4_exit_mballoc(); 6662 ext4_exit_sysfs(); 6663 ext4_exit_system_zone(); 6664 ext4_exit_pageio(); 6665 ext4_exit_post_read_processing(); 6666 ext4_exit_es(); 6667 ext4_exit_pending(); 6668 } 6669 6670 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6671 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6672 MODULE_LICENSE("GPL"); 6673 MODULE_SOFTDEP("pre: crc32c"); 6674 module_init(ext4_init_fs) 6675 module_exit(ext4_exit_fs) 6676