xref: /openbmc/linux/fs/ext4/super.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * page fault path:
93  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
94  *   -> page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_lock
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
103  *   page lock
104  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
105  *   i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> mmap_lock
109  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
110  *
111  * writepages:
112  * transaction start -> page lock(s) -> i_data_sem (rw)
113  */
114 
115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
116 static struct file_system_type ext2_fs_type = {
117 	.owner		= THIS_MODULE,
118 	.name		= "ext2",
119 	.mount		= ext4_mount,
120 	.kill_sb	= kill_block_super,
121 	.fs_flags	= FS_REQUIRES_DEV,
122 };
123 MODULE_ALIAS_FS("ext2");
124 MODULE_ALIAS("ext2");
125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
126 #else
127 #define IS_EXT2_SB(sb) (0)
128 #endif
129 
130 
131 static struct file_system_type ext3_fs_type = {
132 	.owner		= THIS_MODULE,
133 	.name		= "ext3",
134 	.mount		= ext4_mount,
135 	.kill_sb	= kill_block_super,
136 	.fs_flags	= FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("ext3");
139 MODULE_ALIAS("ext3");
140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
141 
142 
143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
144 				  bh_end_io_t *end_io)
145 {
146 	/*
147 	 * buffer's verified bit is no longer valid after reading from
148 	 * disk again due to write out error, clear it to make sure we
149 	 * recheck the buffer contents.
150 	 */
151 	clear_buffer_verified(bh);
152 
153 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
154 	get_bh(bh);
155 	submit_bh(REQ_OP_READ, op_flags, bh);
156 }
157 
158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
159 			 bh_end_io_t *end_io)
160 {
161 	BUG_ON(!buffer_locked(bh));
162 
163 	if (ext4_buffer_uptodate(bh)) {
164 		unlock_buffer(bh);
165 		return;
166 	}
167 	__ext4_read_bh(bh, op_flags, end_io);
168 }
169 
170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
171 {
172 	BUG_ON(!buffer_locked(bh));
173 
174 	if (ext4_buffer_uptodate(bh)) {
175 		unlock_buffer(bh);
176 		return 0;
177 	}
178 
179 	__ext4_read_bh(bh, op_flags, end_io);
180 
181 	wait_on_buffer(bh);
182 	if (buffer_uptodate(bh))
183 		return 0;
184 	return -EIO;
185 }
186 
187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
188 {
189 	if (trylock_buffer(bh)) {
190 		if (wait)
191 			return ext4_read_bh(bh, op_flags, NULL);
192 		ext4_read_bh_nowait(bh, op_flags, NULL);
193 		return 0;
194 	}
195 	if (wait) {
196 		wait_on_buffer(bh);
197 		if (buffer_uptodate(bh))
198 			return 0;
199 		return -EIO;
200 	}
201 	return 0;
202 }
203 
204 /*
205  * This works like __bread_gfp() except it uses ERR_PTR for error
206  * returns.  Currently with sb_bread it's impossible to distinguish
207  * between ENOMEM and EIO situations (since both result in a NULL
208  * return.
209  */
210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
211 					       sector_t block, int op_flags,
212 					       gfp_t gfp)
213 {
214 	struct buffer_head *bh;
215 	int ret;
216 
217 	bh = sb_getblk_gfp(sb, block, gfp);
218 	if (bh == NULL)
219 		return ERR_PTR(-ENOMEM);
220 	if (ext4_buffer_uptodate(bh))
221 		return bh;
222 
223 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
224 	if (ret) {
225 		put_bh(bh);
226 		return ERR_PTR(ret);
227 	}
228 	return bh;
229 }
230 
231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
232 				   int op_flags)
233 {
234 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
235 }
236 
237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
238 					    sector_t block)
239 {
240 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
241 }
242 
243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
244 {
245 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
246 
247 	if (likely(bh)) {
248 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
249 		brelse(bh);
250 	}
251 }
252 
253 static int ext4_verify_csum_type(struct super_block *sb,
254 				 struct ext4_super_block *es)
255 {
256 	if (!ext4_has_feature_metadata_csum(sb))
257 		return 1;
258 
259 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
260 }
261 
262 static __le32 ext4_superblock_csum(struct super_block *sb,
263 				   struct ext4_super_block *es)
264 {
265 	struct ext4_sb_info *sbi = EXT4_SB(sb);
266 	int offset = offsetof(struct ext4_super_block, s_checksum);
267 	__u32 csum;
268 
269 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
270 
271 	return cpu_to_le32(csum);
272 }
273 
274 static int ext4_superblock_csum_verify(struct super_block *sb,
275 				       struct ext4_super_block *es)
276 {
277 	if (!ext4_has_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum == ext4_superblock_csum(sb, es);
281 }
282 
283 void ext4_superblock_csum_set(struct super_block *sb)
284 {
285 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
286 
287 	if (!ext4_has_metadata_csum(sb))
288 		return;
289 
290 	es->s_checksum = ext4_superblock_csum(sb, es);
291 }
292 
293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
294 			       struct ext4_group_desc *bg)
295 {
296 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
297 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
298 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
299 }
300 
301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
302 			       struct ext4_group_desc *bg)
303 {
304 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
305 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
306 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
307 }
308 
309 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
310 			      struct ext4_group_desc *bg)
311 {
312 	return le32_to_cpu(bg->bg_inode_table_lo) |
313 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
314 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
315 }
316 
317 __u32 ext4_free_group_clusters(struct super_block *sb,
318 			       struct ext4_group_desc *bg)
319 {
320 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
321 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
322 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
323 }
324 
325 __u32 ext4_free_inodes_count(struct super_block *sb,
326 			      struct ext4_group_desc *bg)
327 {
328 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
329 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
330 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
331 }
332 
333 __u32 ext4_used_dirs_count(struct super_block *sb,
334 			      struct ext4_group_desc *bg)
335 {
336 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
337 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
338 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
339 }
340 
341 __u32 ext4_itable_unused_count(struct super_block *sb,
342 			      struct ext4_group_desc *bg)
343 {
344 	return le16_to_cpu(bg->bg_itable_unused_lo) |
345 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
346 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
347 }
348 
349 void ext4_block_bitmap_set(struct super_block *sb,
350 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
351 {
352 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
353 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
354 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
355 }
356 
357 void ext4_inode_bitmap_set(struct super_block *sb,
358 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
359 {
360 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
361 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
362 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
363 }
364 
365 void ext4_inode_table_set(struct super_block *sb,
366 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
367 {
368 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
369 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
370 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
371 }
372 
373 void ext4_free_group_clusters_set(struct super_block *sb,
374 				  struct ext4_group_desc *bg, __u32 count)
375 {
376 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
377 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
378 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
379 }
380 
381 void ext4_free_inodes_set(struct super_block *sb,
382 			  struct ext4_group_desc *bg, __u32 count)
383 {
384 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
385 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
386 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
387 }
388 
389 void ext4_used_dirs_set(struct super_block *sb,
390 			  struct ext4_group_desc *bg, __u32 count)
391 {
392 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
393 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
394 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
395 }
396 
397 void ext4_itable_unused_set(struct super_block *sb,
398 			  struct ext4_group_desc *bg, __u32 count)
399 {
400 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
401 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
402 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
403 }
404 
405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
406 {
407 	now = clamp_val(now, 0, (1ull << 40) - 1);
408 
409 	*lo = cpu_to_le32(lower_32_bits(now));
410 	*hi = upper_32_bits(now);
411 }
412 
413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
414 {
415 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
416 }
417 #define ext4_update_tstamp(es, tstamp) \
418 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
419 			     ktime_get_real_seconds())
420 #define ext4_get_tstamp(es, tstamp) \
421 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
422 
423 /*
424  * The del_gendisk() function uninitializes the disk-specific data
425  * structures, including the bdi structure, without telling anyone
426  * else.  Once this happens, any attempt to call mark_buffer_dirty()
427  * (for example, by ext4_commit_super), will cause a kernel OOPS.
428  * This is a kludge to prevent these oops until we can put in a proper
429  * hook in del_gendisk() to inform the VFS and file system layers.
430  */
431 static int block_device_ejected(struct super_block *sb)
432 {
433 	struct inode *bd_inode = sb->s_bdev->bd_inode;
434 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
435 
436 	return bdi->dev == NULL;
437 }
438 
439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
440 {
441 	struct super_block		*sb = journal->j_private;
442 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
443 	int				error = is_journal_aborted(journal);
444 	struct ext4_journal_cb_entry	*jce;
445 
446 	BUG_ON(txn->t_state == T_FINISHED);
447 
448 	ext4_process_freed_data(sb, txn->t_tid);
449 
450 	spin_lock(&sbi->s_md_lock);
451 	while (!list_empty(&txn->t_private_list)) {
452 		jce = list_entry(txn->t_private_list.next,
453 				 struct ext4_journal_cb_entry, jce_list);
454 		list_del_init(&jce->jce_list);
455 		spin_unlock(&sbi->s_md_lock);
456 		jce->jce_func(sb, jce, error);
457 		spin_lock(&sbi->s_md_lock);
458 	}
459 	spin_unlock(&sbi->s_md_lock);
460 }
461 
462 /*
463  * This writepage callback for write_cache_pages()
464  * takes care of a few cases after page cleaning.
465  *
466  * write_cache_pages() already checks for dirty pages
467  * and calls clear_page_dirty_for_io(), which we want,
468  * to write protect the pages.
469  *
470  * However, we may have to redirty a page (see below.)
471  */
472 static int ext4_journalled_writepage_callback(struct page *page,
473 					      struct writeback_control *wbc,
474 					      void *data)
475 {
476 	transaction_t *transaction = (transaction_t *) data;
477 	struct buffer_head *bh, *head;
478 	struct journal_head *jh;
479 
480 	bh = head = page_buffers(page);
481 	do {
482 		/*
483 		 * We have to redirty a page in these cases:
484 		 * 1) If buffer is dirty, it means the page was dirty because it
485 		 * contains a buffer that needs checkpointing. So the dirty bit
486 		 * needs to be preserved so that checkpointing writes the buffer
487 		 * properly.
488 		 * 2) If buffer is not part of the committing transaction
489 		 * (we may have just accidentally come across this buffer because
490 		 * inode range tracking is not exact) or if the currently running
491 		 * transaction already contains this buffer as well, dirty bit
492 		 * needs to be preserved so that the buffer gets writeprotected
493 		 * properly on running transaction's commit.
494 		 */
495 		jh = bh2jh(bh);
496 		if (buffer_dirty(bh) ||
497 		    (jh && (jh->b_transaction != transaction ||
498 			    jh->b_next_transaction))) {
499 			redirty_page_for_writepage(wbc, page);
500 			goto out;
501 		}
502 	} while ((bh = bh->b_this_page) != head);
503 
504 out:
505 	return AOP_WRITEPAGE_ACTIVATE;
506 }
507 
508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
509 {
510 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
511 	struct writeback_control wbc = {
512 		.sync_mode =  WB_SYNC_ALL,
513 		.nr_to_write = LONG_MAX,
514 		.range_start = jinode->i_dirty_start,
515 		.range_end = jinode->i_dirty_end,
516         };
517 
518 	return write_cache_pages(mapping, &wbc,
519 				 ext4_journalled_writepage_callback,
520 				 jinode->i_transaction);
521 }
522 
523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
524 {
525 	int ret;
526 
527 	if (ext4_should_journal_data(jinode->i_vfs_inode))
528 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
529 	else
530 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
531 
532 	return ret;
533 }
534 
535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
536 {
537 	int ret = 0;
538 
539 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
540 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
541 
542 	return ret;
543 }
544 
545 static bool system_going_down(void)
546 {
547 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
548 		|| system_state == SYSTEM_RESTART;
549 }
550 
551 struct ext4_err_translation {
552 	int code;
553 	int errno;
554 };
555 
556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
557 
558 static struct ext4_err_translation err_translation[] = {
559 	EXT4_ERR_TRANSLATE(EIO),
560 	EXT4_ERR_TRANSLATE(ENOMEM),
561 	EXT4_ERR_TRANSLATE(EFSBADCRC),
562 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
563 	EXT4_ERR_TRANSLATE(ENOSPC),
564 	EXT4_ERR_TRANSLATE(ENOKEY),
565 	EXT4_ERR_TRANSLATE(EROFS),
566 	EXT4_ERR_TRANSLATE(EFBIG),
567 	EXT4_ERR_TRANSLATE(EEXIST),
568 	EXT4_ERR_TRANSLATE(ERANGE),
569 	EXT4_ERR_TRANSLATE(EOVERFLOW),
570 	EXT4_ERR_TRANSLATE(EBUSY),
571 	EXT4_ERR_TRANSLATE(ENOTDIR),
572 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
573 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
574 	EXT4_ERR_TRANSLATE(EFAULT),
575 };
576 
577 static int ext4_errno_to_code(int errno)
578 {
579 	int i;
580 
581 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
582 		if (err_translation[i].errno == errno)
583 			return err_translation[i].code;
584 	return EXT4_ERR_UNKNOWN;
585 }
586 
587 static void save_error_info(struct super_block *sb, int error,
588 			    __u32 ino, __u64 block,
589 			    const char *func, unsigned int line)
590 {
591 	struct ext4_sb_info *sbi = EXT4_SB(sb);
592 
593 	/* We default to EFSCORRUPTED error... */
594 	if (error == 0)
595 		error = EFSCORRUPTED;
596 
597 	spin_lock(&sbi->s_error_lock);
598 	sbi->s_add_error_count++;
599 	sbi->s_last_error_code = error;
600 	sbi->s_last_error_line = line;
601 	sbi->s_last_error_ino = ino;
602 	sbi->s_last_error_block = block;
603 	sbi->s_last_error_func = func;
604 	sbi->s_last_error_time = ktime_get_real_seconds();
605 	if (!sbi->s_first_error_time) {
606 		sbi->s_first_error_code = error;
607 		sbi->s_first_error_line = line;
608 		sbi->s_first_error_ino = ino;
609 		sbi->s_first_error_block = block;
610 		sbi->s_first_error_func = func;
611 		sbi->s_first_error_time = sbi->s_last_error_time;
612 	}
613 	spin_unlock(&sbi->s_error_lock);
614 }
615 
616 /* Deal with the reporting of failure conditions on a filesystem such as
617  * inconsistencies detected or read IO failures.
618  *
619  * On ext2, we can store the error state of the filesystem in the
620  * superblock.  That is not possible on ext4, because we may have other
621  * write ordering constraints on the superblock which prevent us from
622  * writing it out straight away; and given that the journal is about to
623  * be aborted, we can't rely on the current, or future, transactions to
624  * write out the superblock safely.
625  *
626  * We'll just use the jbd2_journal_abort() error code to record an error in
627  * the journal instead.  On recovery, the journal will complain about
628  * that error until we've noted it down and cleared it.
629  *
630  * If force_ro is set, we unconditionally force the filesystem into an
631  * ABORT|READONLY state, unless the error response on the fs has been set to
632  * panic in which case we take the easy way out and panic immediately. This is
633  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
634  * at a critical moment in log management.
635  */
636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
637 			      __u32 ino, __u64 block,
638 			      const char *func, unsigned int line)
639 {
640 	journal_t *journal = EXT4_SB(sb)->s_journal;
641 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
642 
643 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
644 	if (test_opt(sb, WARN_ON_ERROR))
645 		WARN_ON_ONCE(1);
646 
647 	if (!continue_fs && !sb_rdonly(sb)) {
648 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
649 		if (journal)
650 			jbd2_journal_abort(journal, -EIO);
651 	}
652 
653 	if (!bdev_read_only(sb->s_bdev)) {
654 		save_error_info(sb, error, ino, block, func, line);
655 		/*
656 		 * In case the fs should keep running, we need to writeout
657 		 * superblock through the journal. Due to lock ordering
658 		 * constraints, it may not be safe to do it right here so we
659 		 * defer superblock flushing to a workqueue.
660 		 */
661 		if (continue_fs)
662 			schedule_work(&EXT4_SB(sb)->s_error_work);
663 		else
664 			ext4_commit_super(sb);
665 	}
666 
667 	/*
668 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
669 	 * could panic during 'reboot -f' as the underlying device got already
670 	 * disabled.
671 	 */
672 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
673 		panic("EXT4-fs (device %s): panic forced after error\n",
674 			sb->s_id);
675 	}
676 
677 	if (sb_rdonly(sb) || continue_fs)
678 		return;
679 
680 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
681 	/*
682 	 * Make sure updated value of ->s_mount_flags will be visible before
683 	 * ->s_flags update
684 	 */
685 	smp_wmb();
686 	sb->s_flags |= SB_RDONLY;
687 }
688 
689 static void flush_stashed_error_work(struct work_struct *work)
690 {
691 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
692 						s_error_work);
693 	journal_t *journal = sbi->s_journal;
694 	handle_t *handle;
695 
696 	/*
697 	 * If the journal is still running, we have to write out superblock
698 	 * through the journal to avoid collisions of other journalled sb
699 	 * updates.
700 	 *
701 	 * We use directly jbd2 functions here to avoid recursing back into
702 	 * ext4 error handling code during handling of previous errors.
703 	 */
704 	if (!sb_rdonly(sbi->s_sb) && journal) {
705 		struct buffer_head *sbh = sbi->s_sbh;
706 		handle = jbd2_journal_start(journal, 1);
707 		if (IS_ERR(handle))
708 			goto write_directly;
709 		if (jbd2_journal_get_write_access(handle, sbh)) {
710 			jbd2_journal_stop(handle);
711 			goto write_directly;
712 		}
713 		ext4_update_super(sbi->s_sb);
714 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
715 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
716 				 "superblock detected");
717 			clear_buffer_write_io_error(sbh);
718 			set_buffer_uptodate(sbh);
719 		}
720 
721 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
722 			jbd2_journal_stop(handle);
723 			goto write_directly;
724 		}
725 		jbd2_journal_stop(handle);
726 		ext4_notify_error_sysfs(sbi);
727 		return;
728 	}
729 write_directly:
730 	/*
731 	 * Write through journal failed. Write sb directly to get error info
732 	 * out and hope for the best.
733 	 */
734 	ext4_commit_super(sbi->s_sb);
735 	ext4_notify_error_sysfs(sbi);
736 }
737 
738 #define ext4_error_ratelimit(sb)					\
739 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
740 			     "EXT4-fs error")
741 
742 void __ext4_error(struct super_block *sb, const char *function,
743 		  unsigned int line, bool force_ro, int error, __u64 block,
744 		  const char *fmt, ...)
745 {
746 	struct va_format vaf;
747 	va_list args;
748 
749 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
750 		return;
751 
752 	trace_ext4_error(sb, function, line);
753 	if (ext4_error_ratelimit(sb)) {
754 		va_start(args, fmt);
755 		vaf.fmt = fmt;
756 		vaf.va = &args;
757 		printk(KERN_CRIT
758 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
759 		       sb->s_id, function, line, current->comm, &vaf);
760 		va_end(args);
761 	}
762 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
763 }
764 
765 void __ext4_error_inode(struct inode *inode, const char *function,
766 			unsigned int line, ext4_fsblk_t block, int error,
767 			const char *fmt, ...)
768 {
769 	va_list args;
770 	struct va_format vaf;
771 
772 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
773 		return;
774 
775 	trace_ext4_error(inode->i_sb, function, line);
776 	if (ext4_error_ratelimit(inode->i_sb)) {
777 		va_start(args, fmt);
778 		vaf.fmt = fmt;
779 		vaf.va = &args;
780 		if (block)
781 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782 			       "inode #%lu: block %llu: comm %s: %pV\n",
783 			       inode->i_sb->s_id, function, line, inode->i_ino,
784 			       block, current->comm, &vaf);
785 		else
786 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
787 			       "inode #%lu: comm %s: %pV\n",
788 			       inode->i_sb->s_id, function, line, inode->i_ino,
789 			       current->comm, &vaf);
790 		va_end(args);
791 	}
792 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
793 			  function, line);
794 }
795 
796 void __ext4_error_file(struct file *file, const char *function,
797 		       unsigned int line, ext4_fsblk_t block,
798 		       const char *fmt, ...)
799 {
800 	va_list args;
801 	struct va_format vaf;
802 	struct inode *inode = file_inode(file);
803 	char pathname[80], *path;
804 
805 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
806 		return;
807 
808 	trace_ext4_error(inode->i_sb, function, line);
809 	if (ext4_error_ratelimit(inode->i_sb)) {
810 		path = file_path(file, pathname, sizeof(pathname));
811 		if (IS_ERR(path))
812 			path = "(unknown)";
813 		va_start(args, fmt);
814 		vaf.fmt = fmt;
815 		vaf.va = &args;
816 		if (block)
817 			printk(KERN_CRIT
818 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 			       "block %llu: comm %s: path %s: %pV\n",
820 			       inode->i_sb->s_id, function, line, inode->i_ino,
821 			       block, current->comm, path, &vaf);
822 		else
823 			printk(KERN_CRIT
824 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
825 			       "comm %s: path %s: %pV\n",
826 			       inode->i_sb->s_id, function, line, inode->i_ino,
827 			       current->comm, path, &vaf);
828 		va_end(args);
829 	}
830 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
831 			  function, line);
832 }
833 
834 const char *ext4_decode_error(struct super_block *sb, int errno,
835 			      char nbuf[16])
836 {
837 	char *errstr = NULL;
838 
839 	switch (errno) {
840 	case -EFSCORRUPTED:
841 		errstr = "Corrupt filesystem";
842 		break;
843 	case -EFSBADCRC:
844 		errstr = "Filesystem failed CRC";
845 		break;
846 	case -EIO:
847 		errstr = "IO failure";
848 		break;
849 	case -ENOMEM:
850 		errstr = "Out of memory";
851 		break;
852 	case -EROFS:
853 		if (!sb || (EXT4_SB(sb)->s_journal &&
854 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
855 			errstr = "Journal has aborted";
856 		else
857 			errstr = "Readonly filesystem";
858 		break;
859 	default:
860 		/* If the caller passed in an extra buffer for unknown
861 		 * errors, textualise them now.  Else we just return
862 		 * NULL. */
863 		if (nbuf) {
864 			/* Check for truncated error codes... */
865 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
866 				errstr = nbuf;
867 		}
868 		break;
869 	}
870 
871 	return errstr;
872 }
873 
874 /* __ext4_std_error decodes expected errors from journaling functions
875  * automatically and invokes the appropriate error response.  */
876 
877 void __ext4_std_error(struct super_block *sb, const char *function,
878 		      unsigned int line, int errno)
879 {
880 	char nbuf[16];
881 	const char *errstr;
882 
883 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
884 		return;
885 
886 	/* Special case: if the error is EROFS, and we're not already
887 	 * inside a transaction, then there's really no point in logging
888 	 * an error. */
889 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
890 		return;
891 
892 	if (ext4_error_ratelimit(sb)) {
893 		errstr = ext4_decode_error(sb, errno, nbuf);
894 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
895 		       sb->s_id, function, line, errstr);
896 	}
897 
898 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
899 }
900 
901 void __ext4_msg(struct super_block *sb,
902 		const char *prefix, const char *fmt, ...)
903 {
904 	struct va_format vaf;
905 	va_list args;
906 
907 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
908 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
909 		return;
910 
911 	va_start(args, fmt);
912 	vaf.fmt = fmt;
913 	vaf.va = &args;
914 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
915 	va_end(args);
916 }
917 
918 static int ext4_warning_ratelimit(struct super_block *sb)
919 {
920 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
921 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
922 			    "EXT4-fs warning");
923 }
924 
925 void __ext4_warning(struct super_block *sb, const char *function,
926 		    unsigned int line, const char *fmt, ...)
927 {
928 	struct va_format vaf;
929 	va_list args;
930 
931 	if (!ext4_warning_ratelimit(sb))
932 		return;
933 
934 	va_start(args, fmt);
935 	vaf.fmt = fmt;
936 	vaf.va = &args;
937 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
938 	       sb->s_id, function, line, &vaf);
939 	va_end(args);
940 }
941 
942 void __ext4_warning_inode(const struct inode *inode, const char *function,
943 			  unsigned int line, const char *fmt, ...)
944 {
945 	struct va_format vaf;
946 	va_list args;
947 
948 	if (!ext4_warning_ratelimit(inode->i_sb))
949 		return;
950 
951 	va_start(args, fmt);
952 	vaf.fmt = fmt;
953 	vaf.va = &args;
954 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
955 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
956 	       function, line, inode->i_ino, current->comm, &vaf);
957 	va_end(args);
958 }
959 
960 void __ext4_grp_locked_error(const char *function, unsigned int line,
961 			     struct super_block *sb, ext4_group_t grp,
962 			     unsigned long ino, ext4_fsblk_t block,
963 			     const char *fmt, ...)
964 __releases(bitlock)
965 __acquires(bitlock)
966 {
967 	struct va_format vaf;
968 	va_list args;
969 
970 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
971 		return;
972 
973 	trace_ext4_error(sb, function, line);
974 	if (ext4_error_ratelimit(sb)) {
975 		va_start(args, fmt);
976 		vaf.fmt = fmt;
977 		vaf.va = &args;
978 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
979 		       sb->s_id, function, line, grp);
980 		if (ino)
981 			printk(KERN_CONT "inode %lu: ", ino);
982 		if (block)
983 			printk(KERN_CONT "block %llu:",
984 			       (unsigned long long) block);
985 		printk(KERN_CONT "%pV\n", &vaf);
986 		va_end(args);
987 	}
988 
989 	if (test_opt(sb, ERRORS_CONT)) {
990 		if (test_opt(sb, WARN_ON_ERROR))
991 			WARN_ON_ONCE(1);
992 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
993 		if (!bdev_read_only(sb->s_bdev)) {
994 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
995 					line);
996 			schedule_work(&EXT4_SB(sb)->s_error_work);
997 		}
998 		return;
999 	}
1000 	ext4_unlock_group(sb, grp);
1001 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1002 	/*
1003 	 * We only get here in the ERRORS_RO case; relocking the group
1004 	 * may be dangerous, but nothing bad will happen since the
1005 	 * filesystem will have already been marked read/only and the
1006 	 * journal has been aborted.  We return 1 as a hint to callers
1007 	 * who might what to use the return value from
1008 	 * ext4_grp_locked_error() to distinguish between the
1009 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1010 	 * aggressively from the ext4 function in question, with a
1011 	 * more appropriate error code.
1012 	 */
1013 	ext4_lock_group(sb, grp);
1014 	return;
1015 }
1016 
1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1018 				     ext4_group_t group,
1019 				     unsigned int flags)
1020 {
1021 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1022 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1023 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1024 	int ret;
1025 
1026 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1027 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1028 					    &grp->bb_state);
1029 		if (!ret)
1030 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1031 					   grp->bb_free);
1032 	}
1033 
1034 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1035 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1036 					    &grp->bb_state);
1037 		if (!ret && gdp) {
1038 			int count;
1039 
1040 			count = ext4_free_inodes_count(sb, gdp);
1041 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1042 					   count);
1043 		}
1044 	}
1045 }
1046 
1047 void ext4_update_dynamic_rev(struct super_block *sb)
1048 {
1049 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1050 
1051 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1052 		return;
1053 
1054 	ext4_warning(sb,
1055 		     "updating to rev %d because of new feature flag, "
1056 		     "running e2fsck is recommended",
1057 		     EXT4_DYNAMIC_REV);
1058 
1059 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1060 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1061 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1062 	/* leave es->s_feature_*compat flags alone */
1063 	/* es->s_uuid will be set by e2fsck if empty */
1064 
1065 	/*
1066 	 * The rest of the superblock fields should be zero, and if not it
1067 	 * means they are likely already in use, so leave them alone.  We
1068 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1069 	 */
1070 }
1071 
1072 /*
1073  * Open the external journal device
1074  */
1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1076 {
1077 	struct block_device *bdev;
1078 
1079 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1080 	if (IS_ERR(bdev))
1081 		goto fail;
1082 	return bdev;
1083 
1084 fail:
1085 	ext4_msg(sb, KERN_ERR,
1086 		 "failed to open journal device unknown-block(%u,%u) %ld",
1087 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1088 	return NULL;
1089 }
1090 
1091 /*
1092  * Release the journal device
1093  */
1094 static void ext4_blkdev_put(struct block_device *bdev)
1095 {
1096 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1097 }
1098 
1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1100 {
1101 	struct block_device *bdev;
1102 	bdev = sbi->s_journal_bdev;
1103 	if (bdev) {
1104 		ext4_blkdev_put(bdev);
1105 		sbi->s_journal_bdev = NULL;
1106 	}
1107 }
1108 
1109 static inline struct inode *orphan_list_entry(struct list_head *l)
1110 {
1111 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1112 }
1113 
1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1115 {
1116 	struct list_head *l;
1117 
1118 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1119 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1120 
1121 	printk(KERN_ERR "sb_info orphan list:\n");
1122 	list_for_each(l, &sbi->s_orphan) {
1123 		struct inode *inode = orphan_list_entry(l);
1124 		printk(KERN_ERR "  "
1125 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1126 		       inode->i_sb->s_id, inode->i_ino, inode,
1127 		       inode->i_mode, inode->i_nlink,
1128 		       NEXT_ORPHAN(inode));
1129 	}
1130 }
1131 
1132 #ifdef CONFIG_QUOTA
1133 static int ext4_quota_off(struct super_block *sb, int type);
1134 
1135 static inline void ext4_quota_off_umount(struct super_block *sb)
1136 {
1137 	int type;
1138 
1139 	/* Use our quota_off function to clear inode flags etc. */
1140 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1141 		ext4_quota_off(sb, type);
1142 }
1143 
1144 /*
1145  * This is a helper function which is used in the mount/remount
1146  * codepaths (which holds s_umount) to fetch the quota file name.
1147  */
1148 static inline char *get_qf_name(struct super_block *sb,
1149 				struct ext4_sb_info *sbi,
1150 				int type)
1151 {
1152 	return rcu_dereference_protected(sbi->s_qf_names[type],
1153 					 lockdep_is_held(&sb->s_umount));
1154 }
1155 #else
1156 static inline void ext4_quota_off_umount(struct super_block *sb)
1157 {
1158 }
1159 #endif
1160 
1161 static void ext4_put_super(struct super_block *sb)
1162 {
1163 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1164 	struct ext4_super_block *es = sbi->s_es;
1165 	struct buffer_head **group_desc;
1166 	struct flex_groups **flex_groups;
1167 	int aborted = 0;
1168 	int i, err;
1169 
1170 	ext4_unregister_li_request(sb);
1171 	ext4_quota_off_umount(sb);
1172 
1173 	flush_work(&sbi->s_error_work);
1174 	destroy_workqueue(sbi->rsv_conversion_wq);
1175 	ext4_release_orphan_info(sb);
1176 
1177 	/*
1178 	 * Unregister sysfs before destroying jbd2 journal.
1179 	 * Since we could still access attr_journal_task attribute via sysfs
1180 	 * path which could have sbi->s_journal->j_task as NULL
1181 	 */
1182 	ext4_unregister_sysfs(sb);
1183 
1184 	if (sbi->s_journal) {
1185 		aborted = is_journal_aborted(sbi->s_journal);
1186 		err = jbd2_journal_destroy(sbi->s_journal);
1187 		sbi->s_journal = NULL;
1188 		if ((err < 0) && !aborted) {
1189 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1190 		}
1191 	}
1192 
1193 	ext4_es_unregister_shrinker(sbi);
1194 	del_timer_sync(&sbi->s_err_report);
1195 	ext4_release_system_zone(sb);
1196 	ext4_mb_release(sb);
1197 	ext4_ext_release(sb);
1198 
1199 	if (!sb_rdonly(sb) && !aborted) {
1200 		ext4_clear_feature_journal_needs_recovery(sb);
1201 		ext4_clear_feature_orphan_present(sb);
1202 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1203 	}
1204 	if (!sb_rdonly(sb))
1205 		ext4_commit_super(sb);
1206 
1207 	rcu_read_lock();
1208 	group_desc = rcu_dereference(sbi->s_group_desc);
1209 	for (i = 0; i < sbi->s_gdb_count; i++)
1210 		brelse(group_desc[i]);
1211 	kvfree(group_desc);
1212 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1213 	if (flex_groups) {
1214 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1215 			kvfree(flex_groups[i]);
1216 		kvfree(flex_groups);
1217 	}
1218 	rcu_read_unlock();
1219 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1220 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1221 	percpu_counter_destroy(&sbi->s_dirs_counter);
1222 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1223 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1224 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1225 #ifdef CONFIG_QUOTA
1226 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1227 		kfree(get_qf_name(sb, sbi, i));
1228 #endif
1229 
1230 	/* Debugging code just in case the in-memory inode orphan list
1231 	 * isn't empty.  The on-disk one can be non-empty if we've
1232 	 * detected an error and taken the fs readonly, but the
1233 	 * in-memory list had better be clean by this point. */
1234 	if (!list_empty(&sbi->s_orphan))
1235 		dump_orphan_list(sb, sbi);
1236 	ASSERT(list_empty(&sbi->s_orphan));
1237 
1238 	sync_blockdev(sb->s_bdev);
1239 	invalidate_bdev(sb->s_bdev);
1240 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1241 		/*
1242 		 * Invalidate the journal device's buffers.  We don't want them
1243 		 * floating about in memory - the physical journal device may
1244 		 * hotswapped, and it breaks the `ro-after' testing code.
1245 		 */
1246 		sync_blockdev(sbi->s_journal_bdev);
1247 		invalidate_bdev(sbi->s_journal_bdev);
1248 		ext4_blkdev_remove(sbi);
1249 	}
1250 
1251 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1252 	sbi->s_ea_inode_cache = NULL;
1253 
1254 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1255 	sbi->s_ea_block_cache = NULL;
1256 
1257 	ext4_stop_mmpd(sbi);
1258 
1259 	brelse(sbi->s_sbh);
1260 	sb->s_fs_info = NULL;
1261 	/*
1262 	 * Now that we are completely done shutting down the
1263 	 * superblock, we need to actually destroy the kobject.
1264 	 */
1265 	kobject_put(&sbi->s_kobj);
1266 	wait_for_completion(&sbi->s_kobj_unregister);
1267 	if (sbi->s_chksum_driver)
1268 		crypto_free_shash(sbi->s_chksum_driver);
1269 	kfree(sbi->s_blockgroup_lock);
1270 	fs_put_dax(sbi->s_daxdev);
1271 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1272 #ifdef CONFIG_UNICODE
1273 	utf8_unload(sb->s_encoding);
1274 #endif
1275 	kfree(sbi);
1276 }
1277 
1278 static struct kmem_cache *ext4_inode_cachep;
1279 
1280 /*
1281  * Called inside transaction, so use GFP_NOFS
1282  */
1283 static struct inode *ext4_alloc_inode(struct super_block *sb)
1284 {
1285 	struct ext4_inode_info *ei;
1286 
1287 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1288 	if (!ei)
1289 		return NULL;
1290 
1291 	inode_set_iversion(&ei->vfs_inode, 1);
1292 	spin_lock_init(&ei->i_raw_lock);
1293 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1294 	atomic_set(&ei->i_prealloc_active, 0);
1295 	spin_lock_init(&ei->i_prealloc_lock);
1296 	ext4_es_init_tree(&ei->i_es_tree);
1297 	rwlock_init(&ei->i_es_lock);
1298 	INIT_LIST_HEAD(&ei->i_es_list);
1299 	ei->i_es_all_nr = 0;
1300 	ei->i_es_shk_nr = 0;
1301 	ei->i_es_shrink_lblk = 0;
1302 	ei->i_reserved_data_blocks = 0;
1303 	spin_lock_init(&(ei->i_block_reservation_lock));
1304 	ext4_init_pending_tree(&ei->i_pending_tree);
1305 #ifdef CONFIG_QUOTA
1306 	ei->i_reserved_quota = 0;
1307 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1308 #endif
1309 	ei->jinode = NULL;
1310 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1311 	spin_lock_init(&ei->i_completed_io_lock);
1312 	ei->i_sync_tid = 0;
1313 	ei->i_datasync_tid = 0;
1314 	atomic_set(&ei->i_unwritten, 0);
1315 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1316 	ext4_fc_init_inode(&ei->vfs_inode);
1317 	mutex_init(&ei->i_fc_lock);
1318 	return &ei->vfs_inode;
1319 }
1320 
1321 static int ext4_drop_inode(struct inode *inode)
1322 {
1323 	int drop = generic_drop_inode(inode);
1324 
1325 	if (!drop)
1326 		drop = fscrypt_drop_inode(inode);
1327 
1328 	trace_ext4_drop_inode(inode, drop);
1329 	return drop;
1330 }
1331 
1332 static void ext4_free_in_core_inode(struct inode *inode)
1333 {
1334 	fscrypt_free_inode(inode);
1335 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1336 		pr_warn("%s: inode %ld still in fc list",
1337 			__func__, inode->i_ino);
1338 	}
1339 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1340 }
1341 
1342 static void ext4_destroy_inode(struct inode *inode)
1343 {
1344 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1345 		ext4_msg(inode->i_sb, KERN_ERR,
1346 			 "Inode %lu (%p): orphan list check failed!",
1347 			 inode->i_ino, EXT4_I(inode));
1348 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1349 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1350 				true);
1351 		dump_stack();
1352 	}
1353 }
1354 
1355 static void init_once(void *foo)
1356 {
1357 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1358 
1359 	INIT_LIST_HEAD(&ei->i_orphan);
1360 	init_rwsem(&ei->xattr_sem);
1361 	init_rwsem(&ei->i_data_sem);
1362 	inode_init_once(&ei->vfs_inode);
1363 	ext4_fc_init_inode(&ei->vfs_inode);
1364 }
1365 
1366 static int __init init_inodecache(void)
1367 {
1368 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1369 				sizeof(struct ext4_inode_info), 0,
1370 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1371 					SLAB_ACCOUNT),
1372 				offsetof(struct ext4_inode_info, i_data),
1373 				sizeof_field(struct ext4_inode_info, i_data),
1374 				init_once);
1375 	if (ext4_inode_cachep == NULL)
1376 		return -ENOMEM;
1377 	return 0;
1378 }
1379 
1380 static void destroy_inodecache(void)
1381 {
1382 	/*
1383 	 * Make sure all delayed rcu free inodes are flushed before we
1384 	 * destroy cache.
1385 	 */
1386 	rcu_barrier();
1387 	kmem_cache_destroy(ext4_inode_cachep);
1388 }
1389 
1390 void ext4_clear_inode(struct inode *inode)
1391 {
1392 	ext4_fc_del(inode);
1393 	invalidate_inode_buffers(inode);
1394 	clear_inode(inode);
1395 	ext4_discard_preallocations(inode, 0);
1396 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1397 	dquot_drop(inode);
1398 	if (EXT4_I(inode)->jinode) {
1399 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1400 					       EXT4_I(inode)->jinode);
1401 		jbd2_free_inode(EXT4_I(inode)->jinode);
1402 		EXT4_I(inode)->jinode = NULL;
1403 	}
1404 	fscrypt_put_encryption_info(inode);
1405 	fsverity_cleanup_inode(inode);
1406 }
1407 
1408 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1409 					u64 ino, u32 generation)
1410 {
1411 	struct inode *inode;
1412 
1413 	/*
1414 	 * Currently we don't know the generation for parent directory, so
1415 	 * a generation of 0 means "accept any"
1416 	 */
1417 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1418 	if (IS_ERR(inode))
1419 		return ERR_CAST(inode);
1420 	if (generation && inode->i_generation != generation) {
1421 		iput(inode);
1422 		return ERR_PTR(-ESTALE);
1423 	}
1424 
1425 	return inode;
1426 }
1427 
1428 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1429 					int fh_len, int fh_type)
1430 {
1431 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1432 				    ext4_nfs_get_inode);
1433 }
1434 
1435 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1436 					int fh_len, int fh_type)
1437 {
1438 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1439 				    ext4_nfs_get_inode);
1440 }
1441 
1442 static int ext4_nfs_commit_metadata(struct inode *inode)
1443 {
1444 	struct writeback_control wbc = {
1445 		.sync_mode = WB_SYNC_ALL
1446 	};
1447 
1448 	trace_ext4_nfs_commit_metadata(inode);
1449 	return ext4_write_inode(inode, &wbc);
1450 }
1451 
1452 #ifdef CONFIG_FS_ENCRYPTION
1453 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1454 {
1455 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1456 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1457 }
1458 
1459 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1460 							void *fs_data)
1461 {
1462 	handle_t *handle = fs_data;
1463 	int res, res2, credits, retries = 0;
1464 
1465 	/*
1466 	 * Encrypting the root directory is not allowed because e2fsck expects
1467 	 * lost+found to exist and be unencrypted, and encrypting the root
1468 	 * directory would imply encrypting the lost+found directory as well as
1469 	 * the filename "lost+found" itself.
1470 	 */
1471 	if (inode->i_ino == EXT4_ROOT_INO)
1472 		return -EPERM;
1473 
1474 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1475 		return -EINVAL;
1476 
1477 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1478 		return -EOPNOTSUPP;
1479 
1480 	res = ext4_convert_inline_data(inode);
1481 	if (res)
1482 		return res;
1483 
1484 	/*
1485 	 * If a journal handle was specified, then the encryption context is
1486 	 * being set on a new inode via inheritance and is part of a larger
1487 	 * transaction to create the inode.  Otherwise the encryption context is
1488 	 * being set on an existing inode in its own transaction.  Only in the
1489 	 * latter case should the "retry on ENOSPC" logic be used.
1490 	 */
1491 
1492 	if (handle) {
1493 		res = ext4_xattr_set_handle(handle, inode,
1494 					    EXT4_XATTR_INDEX_ENCRYPTION,
1495 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1496 					    ctx, len, 0);
1497 		if (!res) {
1498 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1499 			ext4_clear_inode_state(inode,
1500 					EXT4_STATE_MAY_INLINE_DATA);
1501 			/*
1502 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1503 			 * S_DAX may be disabled
1504 			 */
1505 			ext4_set_inode_flags(inode, false);
1506 		}
1507 		return res;
1508 	}
1509 
1510 	res = dquot_initialize(inode);
1511 	if (res)
1512 		return res;
1513 retry:
1514 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1515 				     &credits);
1516 	if (res)
1517 		return res;
1518 
1519 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1520 	if (IS_ERR(handle))
1521 		return PTR_ERR(handle);
1522 
1523 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1524 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1525 				    ctx, len, 0);
1526 	if (!res) {
1527 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1528 		/*
1529 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1530 		 * S_DAX may be disabled
1531 		 */
1532 		ext4_set_inode_flags(inode, false);
1533 		res = ext4_mark_inode_dirty(handle, inode);
1534 		if (res)
1535 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1536 	}
1537 	res2 = ext4_journal_stop(handle);
1538 
1539 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1540 		goto retry;
1541 	if (!res)
1542 		res = res2;
1543 	return res;
1544 }
1545 
1546 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1547 {
1548 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1549 }
1550 
1551 static bool ext4_has_stable_inodes(struct super_block *sb)
1552 {
1553 	return ext4_has_feature_stable_inodes(sb);
1554 }
1555 
1556 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1557 				       int *ino_bits_ret, int *lblk_bits_ret)
1558 {
1559 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1560 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1561 }
1562 
1563 static const struct fscrypt_operations ext4_cryptops = {
1564 	.key_prefix		= "ext4:",
1565 	.get_context		= ext4_get_context,
1566 	.set_context		= ext4_set_context,
1567 	.get_dummy_policy	= ext4_get_dummy_policy,
1568 	.empty_dir		= ext4_empty_dir,
1569 	.max_namelen		= EXT4_NAME_LEN,
1570 	.has_stable_inodes	= ext4_has_stable_inodes,
1571 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1572 };
1573 #endif
1574 
1575 #ifdef CONFIG_QUOTA
1576 static const char * const quotatypes[] = INITQFNAMES;
1577 #define QTYPE2NAME(t) (quotatypes[t])
1578 
1579 static int ext4_write_dquot(struct dquot *dquot);
1580 static int ext4_acquire_dquot(struct dquot *dquot);
1581 static int ext4_release_dquot(struct dquot *dquot);
1582 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1583 static int ext4_write_info(struct super_block *sb, int type);
1584 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1585 			 const struct path *path);
1586 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1587 			       size_t len, loff_t off);
1588 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1589 				const char *data, size_t len, loff_t off);
1590 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1591 			     unsigned int flags);
1592 
1593 static struct dquot **ext4_get_dquots(struct inode *inode)
1594 {
1595 	return EXT4_I(inode)->i_dquot;
1596 }
1597 
1598 static const struct dquot_operations ext4_quota_operations = {
1599 	.get_reserved_space	= ext4_get_reserved_space,
1600 	.write_dquot		= ext4_write_dquot,
1601 	.acquire_dquot		= ext4_acquire_dquot,
1602 	.release_dquot		= ext4_release_dquot,
1603 	.mark_dirty		= ext4_mark_dquot_dirty,
1604 	.write_info		= ext4_write_info,
1605 	.alloc_dquot		= dquot_alloc,
1606 	.destroy_dquot		= dquot_destroy,
1607 	.get_projid		= ext4_get_projid,
1608 	.get_inode_usage	= ext4_get_inode_usage,
1609 	.get_next_id		= dquot_get_next_id,
1610 };
1611 
1612 static const struct quotactl_ops ext4_qctl_operations = {
1613 	.quota_on	= ext4_quota_on,
1614 	.quota_off	= ext4_quota_off,
1615 	.quota_sync	= dquot_quota_sync,
1616 	.get_state	= dquot_get_state,
1617 	.set_info	= dquot_set_dqinfo,
1618 	.get_dqblk	= dquot_get_dqblk,
1619 	.set_dqblk	= dquot_set_dqblk,
1620 	.get_nextdqblk	= dquot_get_next_dqblk,
1621 };
1622 #endif
1623 
1624 static const struct super_operations ext4_sops = {
1625 	.alloc_inode	= ext4_alloc_inode,
1626 	.free_inode	= ext4_free_in_core_inode,
1627 	.destroy_inode	= ext4_destroy_inode,
1628 	.write_inode	= ext4_write_inode,
1629 	.dirty_inode	= ext4_dirty_inode,
1630 	.drop_inode	= ext4_drop_inode,
1631 	.evict_inode	= ext4_evict_inode,
1632 	.put_super	= ext4_put_super,
1633 	.sync_fs	= ext4_sync_fs,
1634 	.freeze_fs	= ext4_freeze,
1635 	.unfreeze_fs	= ext4_unfreeze,
1636 	.statfs		= ext4_statfs,
1637 	.remount_fs	= ext4_remount,
1638 	.show_options	= ext4_show_options,
1639 #ifdef CONFIG_QUOTA
1640 	.quota_read	= ext4_quota_read,
1641 	.quota_write	= ext4_quota_write,
1642 	.get_dquots	= ext4_get_dquots,
1643 #endif
1644 };
1645 
1646 static const struct export_operations ext4_export_ops = {
1647 	.fh_to_dentry = ext4_fh_to_dentry,
1648 	.fh_to_parent = ext4_fh_to_parent,
1649 	.get_parent = ext4_get_parent,
1650 	.commit_metadata = ext4_nfs_commit_metadata,
1651 };
1652 
1653 enum {
1654 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1655 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1656 	Opt_nouid32, Opt_debug, Opt_removed,
1657 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1658 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1659 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1660 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1661 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1662 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1663 	Opt_inlinecrypt,
1664 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1665 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1666 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1667 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1668 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1669 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1670 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1671 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1672 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1673 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1674 	Opt_dioread_nolock, Opt_dioread_lock,
1675 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1676 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1677 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1678 #ifdef CONFIG_EXT4_DEBUG
1679 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1680 #endif
1681 };
1682 
1683 static const match_table_t tokens = {
1684 	{Opt_bsd_df, "bsddf"},
1685 	{Opt_minix_df, "minixdf"},
1686 	{Opt_grpid, "grpid"},
1687 	{Opt_grpid, "bsdgroups"},
1688 	{Opt_nogrpid, "nogrpid"},
1689 	{Opt_nogrpid, "sysvgroups"},
1690 	{Opt_resgid, "resgid=%u"},
1691 	{Opt_resuid, "resuid=%u"},
1692 	{Opt_sb, "sb=%u"},
1693 	{Opt_err_cont, "errors=continue"},
1694 	{Opt_err_panic, "errors=panic"},
1695 	{Opt_err_ro, "errors=remount-ro"},
1696 	{Opt_nouid32, "nouid32"},
1697 	{Opt_debug, "debug"},
1698 	{Opt_removed, "oldalloc"},
1699 	{Opt_removed, "orlov"},
1700 	{Opt_user_xattr, "user_xattr"},
1701 	{Opt_nouser_xattr, "nouser_xattr"},
1702 	{Opt_acl, "acl"},
1703 	{Opt_noacl, "noacl"},
1704 	{Opt_noload, "norecovery"},
1705 	{Opt_noload, "noload"},
1706 	{Opt_removed, "nobh"},
1707 	{Opt_removed, "bh"},
1708 	{Opt_commit, "commit=%u"},
1709 	{Opt_min_batch_time, "min_batch_time=%u"},
1710 	{Opt_max_batch_time, "max_batch_time=%u"},
1711 	{Opt_journal_dev, "journal_dev=%u"},
1712 	{Opt_journal_path, "journal_path=%s"},
1713 	{Opt_journal_checksum, "journal_checksum"},
1714 	{Opt_nojournal_checksum, "nojournal_checksum"},
1715 	{Opt_journal_async_commit, "journal_async_commit"},
1716 	{Opt_abort, "abort"},
1717 	{Opt_data_journal, "data=journal"},
1718 	{Opt_data_ordered, "data=ordered"},
1719 	{Opt_data_writeback, "data=writeback"},
1720 	{Opt_data_err_abort, "data_err=abort"},
1721 	{Opt_data_err_ignore, "data_err=ignore"},
1722 	{Opt_offusrjquota, "usrjquota="},
1723 	{Opt_usrjquota, "usrjquota=%s"},
1724 	{Opt_offgrpjquota, "grpjquota="},
1725 	{Opt_grpjquota, "grpjquota=%s"},
1726 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1727 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1728 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1729 	{Opt_grpquota, "grpquota"},
1730 	{Opt_noquota, "noquota"},
1731 	{Opt_quota, "quota"},
1732 	{Opt_usrquota, "usrquota"},
1733 	{Opt_prjquota, "prjquota"},
1734 	{Opt_barrier, "barrier=%u"},
1735 	{Opt_barrier, "barrier"},
1736 	{Opt_nobarrier, "nobarrier"},
1737 	{Opt_i_version, "i_version"},
1738 	{Opt_dax, "dax"},
1739 	{Opt_dax_always, "dax=always"},
1740 	{Opt_dax_inode, "dax=inode"},
1741 	{Opt_dax_never, "dax=never"},
1742 	{Opt_stripe, "stripe=%u"},
1743 	{Opt_delalloc, "delalloc"},
1744 	{Opt_warn_on_error, "warn_on_error"},
1745 	{Opt_nowarn_on_error, "nowarn_on_error"},
1746 	{Opt_lazytime, "lazytime"},
1747 	{Opt_nolazytime, "nolazytime"},
1748 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1749 	{Opt_nodelalloc, "nodelalloc"},
1750 	{Opt_removed, "mblk_io_submit"},
1751 	{Opt_removed, "nomblk_io_submit"},
1752 	{Opt_block_validity, "block_validity"},
1753 	{Opt_noblock_validity, "noblock_validity"},
1754 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1755 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1756 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1757 	{Opt_auto_da_alloc, "auto_da_alloc"},
1758 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1759 	{Opt_dioread_nolock, "dioread_nolock"},
1760 	{Opt_dioread_lock, "nodioread_nolock"},
1761 	{Opt_dioread_lock, "dioread_lock"},
1762 	{Opt_discard, "discard"},
1763 	{Opt_nodiscard, "nodiscard"},
1764 	{Opt_init_itable, "init_itable=%u"},
1765 	{Opt_init_itable, "init_itable"},
1766 	{Opt_noinit_itable, "noinit_itable"},
1767 #ifdef CONFIG_EXT4_DEBUG
1768 	{Opt_fc_debug_force, "fc_debug_force"},
1769 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1770 #endif
1771 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1772 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1773 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1774 	{Opt_inlinecrypt, "inlinecrypt"},
1775 	{Opt_nombcache, "nombcache"},
1776 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1777 	{Opt_removed, "prefetch_block_bitmaps"},
1778 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1779 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1780 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1781 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1782 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1783 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1784 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1785 	{Opt_err, NULL},
1786 };
1787 
1788 static ext4_fsblk_t get_sb_block(void **data)
1789 {
1790 	ext4_fsblk_t	sb_block;
1791 	char		*options = (char *) *data;
1792 
1793 	if (!options || strncmp(options, "sb=", 3) != 0)
1794 		return 1;	/* Default location */
1795 
1796 	options += 3;
1797 	/* TODO: use simple_strtoll with >32bit ext4 */
1798 	sb_block = simple_strtoul(options, &options, 0);
1799 	if (*options && *options != ',') {
1800 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1801 		       (char *) *data);
1802 		return 1;
1803 	}
1804 	if (*options == ',')
1805 		options++;
1806 	*data = (void *) options;
1807 
1808 	return sb_block;
1809 }
1810 
1811 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1812 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1813 
1814 static const char deprecated_msg[] =
1815 	"Mount option \"%s\" will be removed by %s\n"
1816 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1817 
1818 #ifdef CONFIG_QUOTA
1819 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1820 {
1821 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1822 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1823 	int ret = -1;
1824 
1825 	if (sb_any_quota_loaded(sb) && !old_qname) {
1826 		ext4_msg(sb, KERN_ERR,
1827 			"Cannot change journaled "
1828 			"quota options when quota turned on");
1829 		return -1;
1830 	}
1831 	if (ext4_has_feature_quota(sb)) {
1832 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1833 			 "ignored when QUOTA feature is enabled");
1834 		return 1;
1835 	}
1836 	qname = match_strdup(args);
1837 	if (!qname) {
1838 		ext4_msg(sb, KERN_ERR,
1839 			"Not enough memory for storing quotafile name");
1840 		return -1;
1841 	}
1842 	if (old_qname) {
1843 		if (strcmp(old_qname, qname) == 0)
1844 			ret = 1;
1845 		else
1846 			ext4_msg(sb, KERN_ERR,
1847 				 "%s quota file already specified",
1848 				 QTYPE2NAME(qtype));
1849 		goto errout;
1850 	}
1851 	if (strchr(qname, '/')) {
1852 		ext4_msg(sb, KERN_ERR,
1853 			"quotafile must be on filesystem root");
1854 		goto errout;
1855 	}
1856 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1857 	set_opt(sb, QUOTA);
1858 	return 1;
1859 errout:
1860 	kfree(qname);
1861 	return ret;
1862 }
1863 
1864 static int clear_qf_name(struct super_block *sb, int qtype)
1865 {
1866 
1867 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1868 	char *old_qname = get_qf_name(sb, sbi, qtype);
1869 
1870 	if (sb_any_quota_loaded(sb) && old_qname) {
1871 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1872 			" when quota turned on");
1873 		return -1;
1874 	}
1875 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1876 	synchronize_rcu();
1877 	kfree(old_qname);
1878 	return 1;
1879 }
1880 #endif
1881 
1882 #define MOPT_SET	0x0001
1883 #define MOPT_CLEAR	0x0002
1884 #define MOPT_NOSUPPORT	0x0004
1885 #define MOPT_EXPLICIT	0x0008
1886 #define MOPT_CLEAR_ERR	0x0010
1887 #define MOPT_GTE0	0x0020
1888 #ifdef CONFIG_QUOTA
1889 #define MOPT_Q		0
1890 #define MOPT_QFMT	0x0040
1891 #else
1892 #define MOPT_Q		MOPT_NOSUPPORT
1893 #define MOPT_QFMT	MOPT_NOSUPPORT
1894 #endif
1895 #define MOPT_DATAJ	0x0080
1896 #define MOPT_NO_EXT2	0x0100
1897 #define MOPT_NO_EXT3	0x0200
1898 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1899 #define MOPT_STRING	0x0400
1900 #define MOPT_SKIP	0x0800
1901 #define	MOPT_2		0x1000
1902 
1903 static const struct mount_opts {
1904 	int	token;
1905 	int	mount_opt;
1906 	int	flags;
1907 } ext4_mount_opts[] = {
1908 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1909 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1910 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1911 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1912 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1913 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1914 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1915 	 MOPT_EXT4_ONLY | MOPT_SET},
1916 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1917 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1918 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1919 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1920 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1921 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1922 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1923 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1924 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1925 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1926 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1927 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1928 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1929 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1930 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1931 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1932 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1933 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1934 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1935 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1936 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1937 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1938 	 MOPT_NO_EXT2},
1939 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1940 	 MOPT_NO_EXT2},
1941 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1942 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1943 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1944 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1945 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1946 	{Opt_commit, 0, MOPT_GTE0},
1947 	{Opt_max_batch_time, 0, MOPT_GTE0},
1948 	{Opt_min_batch_time, 0, MOPT_GTE0},
1949 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1950 	{Opt_init_itable, 0, MOPT_GTE0},
1951 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1952 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1953 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1954 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1955 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1956 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1957 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1958 	{Opt_stripe, 0, MOPT_GTE0},
1959 	{Opt_resuid, 0, MOPT_GTE0},
1960 	{Opt_resgid, 0, MOPT_GTE0},
1961 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1962 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1963 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1964 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1965 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1966 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1967 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1968 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1969 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1970 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1971 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1972 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1973 #else
1974 	{Opt_acl, 0, MOPT_NOSUPPORT},
1975 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1976 #endif
1977 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1978 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1979 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1980 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1981 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1982 							MOPT_SET | MOPT_Q},
1983 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1984 							MOPT_SET | MOPT_Q},
1985 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1986 							MOPT_SET | MOPT_Q},
1987 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1988 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1989 							MOPT_CLEAR | MOPT_Q},
1990 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1991 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1992 	{Opt_offusrjquota, 0, MOPT_Q},
1993 	{Opt_offgrpjquota, 0, MOPT_Q},
1994 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1995 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1996 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1997 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1998 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
1999 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2000 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2001 	 MOPT_SET},
2002 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2003 #ifdef CONFIG_EXT4_DEBUG
2004 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2005 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2006 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2007 #endif
2008 	{Opt_err, 0, 0}
2009 };
2010 
2011 #ifdef CONFIG_UNICODE
2012 static const struct ext4_sb_encodings {
2013 	__u16 magic;
2014 	char *name;
2015 	char *version;
2016 } ext4_sb_encoding_map[] = {
2017 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2018 };
2019 
2020 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2021 				 const struct ext4_sb_encodings **encoding,
2022 				 __u16 *flags)
2023 {
2024 	__u16 magic = le16_to_cpu(es->s_encoding);
2025 	int i;
2026 
2027 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2028 		if (magic == ext4_sb_encoding_map[i].magic)
2029 			break;
2030 
2031 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2032 		return -EINVAL;
2033 
2034 	*encoding = &ext4_sb_encoding_map[i];
2035 	*flags = le16_to_cpu(es->s_encoding_flags);
2036 
2037 	return 0;
2038 }
2039 #endif
2040 
2041 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2042 					  const char *opt,
2043 					  const substring_t *arg,
2044 					  bool is_remount)
2045 {
2046 #ifdef CONFIG_FS_ENCRYPTION
2047 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2048 	int err;
2049 
2050 	/*
2051 	 * This mount option is just for testing, and it's not worthwhile to
2052 	 * implement the extra complexity (e.g. RCU protection) that would be
2053 	 * needed to allow it to be set or changed during remount.  We do allow
2054 	 * it to be specified during remount, but only if there is no change.
2055 	 */
2056 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2057 		ext4_msg(sb, KERN_WARNING,
2058 			 "Can't set test_dummy_encryption on remount");
2059 		return -1;
2060 	}
2061 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2062 						&sbi->s_dummy_enc_policy);
2063 	if (err) {
2064 		if (err == -EEXIST)
2065 			ext4_msg(sb, KERN_WARNING,
2066 				 "Can't change test_dummy_encryption on remount");
2067 		else if (err == -EINVAL)
2068 			ext4_msg(sb, KERN_WARNING,
2069 				 "Value of option \"%s\" is unrecognized", opt);
2070 		else
2071 			ext4_msg(sb, KERN_WARNING,
2072 				 "Error processing option \"%s\" [%d]",
2073 				 opt, err);
2074 		return -1;
2075 	}
2076 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2077 #else
2078 	ext4_msg(sb, KERN_WARNING,
2079 		 "Test dummy encryption mount option ignored");
2080 #endif
2081 	return 1;
2082 }
2083 
2084 struct ext4_parsed_options {
2085 	unsigned long journal_devnum;
2086 	unsigned int journal_ioprio;
2087 	int mb_optimize_scan;
2088 };
2089 
2090 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2091 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2092 			    int is_remount)
2093 {
2094 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2095 	const struct mount_opts *m;
2096 	kuid_t uid;
2097 	kgid_t gid;
2098 	int arg = 0;
2099 
2100 #ifdef CONFIG_QUOTA
2101 	if (token == Opt_usrjquota)
2102 		return set_qf_name(sb, USRQUOTA, &args[0]);
2103 	else if (token == Opt_grpjquota)
2104 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2105 	else if (token == Opt_offusrjquota)
2106 		return clear_qf_name(sb, USRQUOTA);
2107 	else if (token == Opt_offgrpjquota)
2108 		return clear_qf_name(sb, GRPQUOTA);
2109 #endif
2110 	switch (token) {
2111 	case Opt_noacl:
2112 	case Opt_nouser_xattr:
2113 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2114 		break;
2115 	case Opt_sb:
2116 		return 1;	/* handled by get_sb_block() */
2117 	case Opt_removed:
2118 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2119 		return 1;
2120 	case Opt_abort:
2121 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2122 		return 1;
2123 	case Opt_i_version:
2124 		sb->s_flags |= SB_I_VERSION;
2125 		return 1;
2126 	case Opt_lazytime:
2127 		sb->s_flags |= SB_LAZYTIME;
2128 		return 1;
2129 	case Opt_nolazytime:
2130 		sb->s_flags &= ~SB_LAZYTIME;
2131 		return 1;
2132 	case Opt_inlinecrypt:
2133 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2134 		sb->s_flags |= SB_INLINECRYPT;
2135 #else
2136 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2137 #endif
2138 		return 1;
2139 	}
2140 
2141 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2142 		if (token == m->token)
2143 			break;
2144 
2145 	if (m->token == Opt_err) {
2146 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2147 			 "or missing value", opt);
2148 		return -1;
2149 	}
2150 
2151 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2152 		ext4_msg(sb, KERN_ERR,
2153 			 "Mount option \"%s\" incompatible with ext2", opt);
2154 		return -1;
2155 	}
2156 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2157 		ext4_msg(sb, KERN_ERR,
2158 			 "Mount option \"%s\" incompatible with ext3", opt);
2159 		return -1;
2160 	}
2161 
2162 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2163 		return -1;
2164 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2165 		return -1;
2166 	if (m->flags & MOPT_EXPLICIT) {
2167 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2168 			set_opt2(sb, EXPLICIT_DELALLOC);
2169 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2170 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2171 		} else
2172 			return -1;
2173 	}
2174 	if (m->flags & MOPT_CLEAR_ERR)
2175 		clear_opt(sb, ERRORS_MASK);
2176 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2177 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2178 			 "options when quota turned on");
2179 		return -1;
2180 	}
2181 
2182 	if (m->flags & MOPT_NOSUPPORT) {
2183 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2184 	} else if (token == Opt_commit) {
2185 		if (arg == 0)
2186 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2187 		else if (arg > INT_MAX / HZ) {
2188 			ext4_msg(sb, KERN_ERR,
2189 				 "Invalid commit interval %d, "
2190 				 "must be smaller than %d",
2191 				 arg, INT_MAX / HZ);
2192 			return -1;
2193 		}
2194 		sbi->s_commit_interval = HZ * arg;
2195 	} else if (token == Opt_debug_want_extra_isize) {
2196 		if ((arg & 1) ||
2197 		    (arg < 4) ||
2198 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2199 			ext4_msg(sb, KERN_ERR,
2200 				 "Invalid want_extra_isize %d", arg);
2201 			return -1;
2202 		}
2203 		sbi->s_want_extra_isize = arg;
2204 	} else if (token == Opt_max_batch_time) {
2205 		sbi->s_max_batch_time = arg;
2206 	} else if (token == Opt_min_batch_time) {
2207 		sbi->s_min_batch_time = arg;
2208 	} else if (token == Opt_inode_readahead_blks) {
2209 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2210 			ext4_msg(sb, KERN_ERR,
2211 				 "EXT4-fs: inode_readahead_blks must be "
2212 				 "0 or a power of 2 smaller than 2^31");
2213 			return -1;
2214 		}
2215 		sbi->s_inode_readahead_blks = arg;
2216 	} else if (token == Opt_init_itable) {
2217 		set_opt(sb, INIT_INODE_TABLE);
2218 		if (!args->from)
2219 			arg = EXT4_DEF_LI_WAIT_MULT;
2220 		sbi->s_li_wait_mult = arg;
2221 	} else if (token == Opt_max_dir_size_kb) {
2222 		sbi->s_max_dir_size_kb = arg;
2223 #ifdef CONFIG_EXT4_DEBUG
2224 	} else if (token == Opt_fc_debug_max_replay) {
2225 		sbi->s_fc_debug_max_replay = arg;
2226 #endif
2227 	} else if (token == Opt_stripe) {
2228 		sbi->s_stripe = arg;
2229 	} else if (token == Opt_resuid) {
2230 		uid = make_kuid(current_user_ns(), arg);
2231 		if (!uid_valid(uid)) {
2232 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2233 			return -1;
2234 		}
2235 		sbi->s_resuid = uid;
2236 	} else if (token == Opt_resgid) {
2237 		gid = make_kgid(current_user_ns(), arg);
2238 		if (!gid_valid(gid)) {
2239 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2240 			return -1;
2241 		}
2242 		sbi->s_resgid = gid;
2243 	} else if (token == Opt_journal_dev) {
2244 		if (is_remount) {
2245 			ext4_msg(sb, KERN_ERR,
2246 				 "Cannot specify journal on remount");
2247 			return -1;
2248 		}
2249 		parsed_opts->journal_devnum = arg;
2250 	} else if (token == Opt_journal_path) {
2251 		char *journal_path;
2252 		struct inode *journal_inode;
2253 		struct path path;
2254 		int error;
2255 
2256 		if (is_remount) {
2257 			ext4_msg(sb, KERN_ERR,
2258 				 "Cannot specify journal on remount");
2259 			return -1;
2260 		}
2261 		journal_path = match_strdup(&args[0]);
2262 		if (!journal_path) {
2263 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2264 				"journal device string");
2265 			return -1;
2266 		}
2267 
2268 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2269 		if (error) {
2270 			ext4_msg(sb, KERN_ERR, "error: could not find "
2271 				"journal device path: error %d", error);
2272 			kfree(journal_path);
2273 			return -1;
2274 		}
2275 
2276 		journal_inode = d_inode(path.dentry);
2277 		if (!S_ISBLK(journal_inode->i_mode)) {
2278 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2279 				"is not a block device", journal_path);
2280 			path_put(&path);
2281 			kfree(journal_path);
2282 			return -1;
2283 		}
2284 
2285 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2286 		path_put(&path);
2287 		kfree(journal_path);
2288 	} else if (token == Opt_journal_ioprio) {
2289 		if (arg > 7) {
2290 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2291 				 " (must be 0-7)");
2292 			return -1;
2293 		}
2294 		parsed_opts->journal_ioprio =
2295 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2296 	} else if (token == Opt_test_dummy_encryption) {
2297 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2298 						      is_remount);
2299 	} else if (m->flags & MOPT_DATAJ) {
2300 		if (is_remount) {
2301 			if (!sbi->s_journal)
2302 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2303 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2304 				ext4_msg(sb, KERN_ERR,
2305 					 "Cannot change data mode on remount");
2306 				return -1;
2307 			}
2308 		} else {
2309 			clear_opt(sb, DATA_FLAGS);
2310 			sbi->s_mount_opt |= m->mount_opt;
2311 		}
2312 #ifdef CONFIG_QUOTA
2313 	} else if (m->flags & MOPT_QFMT) {
2314 		if (sb_any_quota_loaded(sb) &&
2315 		    sbi->s_jquota_fmt != m->mount_opt) {
2316 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2317 				 "quota options when quota turned on");
2318 			return -1;
2319 		}
2320 		if (ext4_has_feature_quota(sb)) {
2321 			ext4_msg(sb, KERN_INFO,
2322 				 "Quota format mount options ignored "
2323 				 "when QUOTA feature is enabled");
2324 			return 1;
2325 		}
2326 		sbi->s_jquota_fmt = m->mount_opt;
2327 #endif
2328 	} else if (token == Opt_dax || token == Opt_dax_always ||
2329 		   token == Opt_dax_inode || token == Opt_dax_never) {
2330 #ifdef CONFIG_FS_DAX
2331 		switch (token) {
2332 		case Opt_dax:
2333 		case Opt_dax_always:
2334 			if (is_remount &&
2335 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2336 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2337 			fail_dax_change_remount:
2338 				ext4_msg(sb, KERN_ERR, "can't change "
2339 					 "dax mount option while remounting");
2340 				return -1;
2341 			}
2342 			if (is_remount &&
2343 			    (test_opt(sb, DATA_FLAGS) ==
2344 			     EXT4_MOUNT_JOURNAL_DATA)) {
2345 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2346 					     "both data=journal and dax");
2347 				    return -1;
2348 			}
2349 			ext4_msg(sb, KERN_WARNING,
2350 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2351 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2352 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2353 			break;
2354 		case Opt_dax_never:
2355 			if (is_remount &&
2356 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2357 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2358 				goto fail_dax_change_remount;
2359 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2360 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2361 			break;
2362 		case Opt_dax_inode:
2363 			if (is_remount &&
2364 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2365 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2366 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2367 				goto fail_dax_change_remount;
2368 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2369 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2370 			/* Strictly for printing options */
2371 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2372 			break;
2373 		}
2374 #else
2375 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2376 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2377 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2378 		return -1;
2379 #endif
2380 	} else if (token == Opt_data_err_abort) {
2381 		sbi->s_mount_opt |= m->mount_opt;
2382 	} else if (token == Opt_data_err_ignore) {
2383 		sbi->s_mount_opt &= ~m->mount_opt;
2384 	} else if (token == Opt_mb_optimize_scan) {
2385 		if (arg != 0 && arg != 1) {
2386 			ext4_msg(sb, KERN_WARNING,
2387 				 "mb_optimize_scan should be set to 0 or 1.");
2388 			return -1;
2389 		}
2390 		parsed_opts->mb_optimize_scan = arg;
2391 	} else {
2392 		if (!args->from)
2393 			arg = 1;
2394 		if (m->flags & MOPT_CLEAR)
2395 			arg = !arg;
2396 		else if (unlikely(!(m->flags & MOPT_SET))) {
2397 			ext4_msg(sb, KERN_WARNING,
2398 				 "buggy handling of option %s", opt);
2399 			WARN_ON(1);
2400 			return -1;
2401 		}
2402 		if (m->flags & MOPT_2) {
2403 			if (arg != 0)
2404 				sbi->s_mount_opt2 |= m->mount_opt;
2405 			else
2406 				sbi->s_mount_opt2 &= ~m->mount_opt;
2407 		} else {
2408 			if (arg != 0)
2409 				sbi->s_mount_opt |= m->mount_opt;
2410 			else
2411 				sbi->s_mount_opt &= ~m->mount_opt;
2412 		}
2413 	}
2414 	return 1;
2415 }
2416 
2417 static int parse_options(char *options, struct super_block *sb,
2418 			 struct ext4_parsed_options *ret_opts,
2419 			 int is_remount)
2420 {
2421 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2422 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2423 	substring_t args[MAX_OPT_ARGS];
2424 	int token;
2425 
2426 	if (!options)
2427 		return 1;
2428 
2429 	while ((p = strsep(&options, ",")) != NULL) {
2430 		if (!*p)
2431 			continue;
2432 		/*
2433 		 * Initialize args struct so we know whether arg was
2434 		 * found; some options take optional arguments.
2435 		 */
2436 		args[0].to = args[0].from = NULL;
2437 		token = match_token(p, tokens, args);
2438 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2439 				     is_remount) < 0)
2440 			return 0;
2441 	}
2442 #ifdef CONFIG_QUOTA
2443 	/*
2444 	 * We do the test below only for project quotas. 'usrquota' and
2445 	 * 'grpquota' mount options are allowed even without quota feature
2446 	 * to support legacy quotas in quota files.
2447 	 */
2448 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2449 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2450 			 "Cannot enable project quota enforcement.");
2451 		return 0;
2452 	}
2453 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2454 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2455 	if (usr_qf_name || grp_qf_name) {
2456 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2457 			clear_opt(sb, USRQUOTA);
2458 
2459 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2460 			clear_opt(sb, GRPQUOTA);
2461 
2462 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2463 			ext4_msg(sb, KERN_ERR, "old and new quota "
2464 					"format mixing");
2465 			return 0;
2466 		}
2467 
2468 		if (!sbi->s_jquota_fmt) {
2469 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2470 					"not specified");
2471 			return 0;
2472 		}
2473 	}
2474 #endif
2475 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2476 		int blocksize =
2477 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2478 		if (blocksize < PAGE_SIZE)
2479 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2480 				 "experimental mount option 'dioread_nolock' "
2481 				 "for blocksize < PAGE_SIZE");
2482 	}
2483 	return 1;
2484 }
2485 
2486 static inline void ext4_show_quota_options(struct seq_file *seq,
2487 					   struct super_block *sb)
2488 {
2489 #if defined(CONFIG_QUOTA)
2490 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2491 	char *usr_qf_name, *grp_qf_name;
2492 
2493 	if (sbi->s_jquota_fmt) {
2494 		char *fmtname = "";
2495 
2496 		switch (sbi->s_jquota_fmt) {
2497 		case QFMT_VFS_OLD:
2498 			fmtname = "vfsold";
2499 			break;
2500 		case QFMT_VFS_V0:
2501 			fmtname = "vfsv0";
2502 			break;
2503 		case QFMT_VFS_V1:
2504 			fmtname = "vfsv1";
2505 			break;
2506 		}
2507 		seq_printf(seq, ",jqfmt=%s", fmtname);
2508 	}
2509 
2510 	rcu_read_lock();
2511 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2512 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2513 	if (usr_qf_name)
2514 		seq_show_option(seq, "usrjquota", usr_qf_name);
2515 	if (grp_qf_name)
2516 		seq_show_option(seq, "grpjquota", grp_qf_name);
2517 	rcu_read_unlock();
2518 #endif
2519 }
2520 
2521 static const char *token2str(int token)
2522 {
2523 	const struct match_token *t;
2524 
2525 	for (t = tokens; t->token != Opt_err; t++)
2526 		if (t->token == token && !strchr(t->pattern, '='))
2527 			break;
2528 	return t->pattern;
2529 }
2530 
2531 /*
2532  * Show an option if
2533  *  - it's set to a non-default value OR
2534  *  - if the per-sb default is different from the global default
2535  */
2536 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2537 			      int nodefs)
2538 {
2539 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2540 	struct ext4_super_block *es = sbi->s_es;
2541 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2542 	const struct mount_opts *m;
2543 	char sep = nodefs ? '\n' : ',';
2544 
2545 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2546 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2547 
2548 	if (sbi->s_sb_block != 1)
2549 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2550 
2551 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2552 		int want_set = m->flags & MOPT_SET;
2553 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2554 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2555 			continue;
2556 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2557 			continue; /* skip if same as the default */
2558 		if ((want_set &&
2559 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2560 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2561 			continue; /* select Opt_noFoo vs Opt_Foo */
2562 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2563 	}
2564 
2565 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2566 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2567 		SEQ_OPTS_PRINT("resuid=%u",
2568 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2569 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2570 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2571 		SEQ_OPTS_PRINT("resgid=%u",
2572 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2573 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2574 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2575 		SEQ_OPTS_PUTS("errors=remount-ro");
2576 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2577 		SEQ_OPTS_PUTS("errors=continue");
2578 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2579 		SEQ_OPTS_PUTS("errors=panic");
2580 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2581 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2582 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2583 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2584 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2585 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2586 	if (sb->s_flags & SB_I_VERSION)
2587 		SEQ_OPTS_PUTS("i_version");
2588 	if (nodefs || sbi->s_stripe)
2589 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2590 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2591 			(sbi->s_mount_opt ^ def_mount_opt)) {
2592 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2593 			SEQ_OPTS_PUTS("data=journal");
2594 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2595 			SEQ_OPTS_PUTS("data=ordered");
2596 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2597 			SEQ_OPTS_PUTS("data=writeback");
2598 	}
2599 	if (nodefs ||
2600 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2601 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2602 			       sbi->s_inode_readahead_blks);
2603 
2604 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2605 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2606 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2607 	if (nodefs || sbi->s_max_dir_size_kb)
2608 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2609 	if (test_opt(sb, DATA_ERR_ABORT))
2610 		SEQ_OPTS_PUTS("data_err=abort");
2611 
2612 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2613 
2614 	if (sb->s_flags & SB_INLINECRYPT)
2615 		SEQ_OPTS_PUTS("inlinecrypt");
2616 
2617 	if (test_opt(sb, DAX_ALWAYS)) {
2618 		if (IS_EXT2_SB(sb))
2619 			SEQ_OPTS_PUTS("dax");
2620 		else
2621 			SEQ_OPTS_PUTS("dax=always");
2622 	} else if (test_opt2(sb, DAX_NEVER)) {
2623 		SEQ_OPTS_PUTS("dax=never");
2624 	} else if (test_opt2(sb, DAX_INODE)) {
2625 		SEQ_OPTS_PUTS("dax=inode");
2626 	}
2627 	ext4_show_quota_options(seq, sb);
2628 	return 0;
2629 }
2630 
2631 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2632 {
2633 	return _ext4_show_options(seq, root->d_sb, 0);
2634 }
2635 
2636 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2637 {
2638 	struct super_block *sb = seq->private;
2639 	int rc;
2640 
2641 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2642 	rc = _ext4_show_options(seq, sb, 1);
2643 	seq_puts(seq, "\n");
2644 	return rc;
2645 }
2646 
2647 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2648 			    int read_only)
2649 {
2650 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2651 	int err = 0;
2652 
2653 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2654 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2655 			 "forcing read-only mode");
2656 		err = -EROFS;
2657 		goto done;
2658 	}
2659 	if (read_only)
2660 		goto done;
2661 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2662 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2663 			 "running e2fsck is recommended");
2664 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2665 		ext4_msg(sb, KERN_WARNING,
2666 			 "warning: mounting fs with errors, "
2667 			 "running e2fsck is recommended");
2668 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2669 		 le16_to_cpu(es->s_mnt_count) >=
2670 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2671 		ext4_msg(sb, KERN_WARNING,
2672 			 "warning: maximal mount count reached, "
2673 			 "running e2fsck is recommended");
2674 	else if (le32_to_cpu(es->s_checkinterval) &&
2675 		 (ext4_get_tstamp(es, s_lastcheck) +
2676 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2677 		ext4_msg(sb, KERN_WARNING,
2678 			 "warning: checktime reached, "
2679 			 "running e2fsck is recommended");
2680 	if (!sbi->s_journal)
2681 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2682 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2683 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2684 	le16_add_cpu(&es->s_mnt_count, 1);
2685 	ext4_update_tstamp(es, s_mtime);
2686 	if (sbi->s_journal) {
2687 		ext4_set_feature_journal_needs_recovery(sb);
2688 		if (ext4_has_feature_orphan_file(sb))
2689 			ext4_set_feature_orphan_present(sb);
2690 	}
2691 
2692 	err = ext4_commit_super(sb);
2693 done:
2694 	if (test_opt(sb, DEBUG))
2695 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2696 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2697 			sb->s_blocksize,
2698 			sbi->s_groups_count,
2699 			EXT4_BLOCKS_PER_GROUP(sb),
2700 			EXT4_INODES_PER_GROUP(sb),
2701 			sbi->s_mount_opt, sbi->s_mount_opt2);
2702 
2703 	cleancache_init_fs(sb);
2704 	return err;
2705 }
2706 
2707 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2708 {
2709 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2710 	struct flex_groups **old_groups, **new_groups;
2711 	int size, i, j;
2712 
2713 	if (!sbi->s_log_groups_per_flex)
2714 		return 0;
2715 
2716 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2717 	if (size <= sbi->s_flex_groups_allocated)
2718 		return 0;
2719 
2720 	new_groups = kvzalloc(roundup_pow_of_two(size *
2721 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2722 	if (!new_groups) {
2723 		ext4_msg(sb, KERN_ERR,
2724 			 "not enough memory for %d flex group pointers", size);
2725 		return -ENOMEM;
2726 	}
2727 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2728 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2729 					 sizeof(struct flex_groups)),
2730 					 GFP_KERNEL);
2731 		if (!new_groups[i]) {
2732 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2733 				kvfree(new_groups[j]);
2734 			kvfree(new_groups);
2735 			ext4_msg(sb, KERN_ERR,
2736 				 "not enough memory for %d flex groups", size);
2737 			return -ENOMEM;
2738 		}
2739 	}
2740 	rcu_read_lock();
2741 	old_groups = rcu_dereference(sbi->s_flex_groups);
2742 	if (old_groups)
2743 		memcpy(new_groups, old_groups,
2744 		       (sbi->s_flex_groups_allocated *
2745 			sizeof(struct flex_groups *)));
2746 	rcu_read_unlock();
2747 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2748 	sbi->s_flex_groups_allocated = size;
2749 	if (old_groups)
2750 		ext4_kvfree_array_rcu(old_groups);
2751 	return 0;
2752 }
2753 
2754 static int ext4_fill_flex_info(struct super_block *sb)
2755 {
2756 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2757 	struct ext4_group_desc *gdp = NULL;
2758 	struct flex_groups *fg;
2759 	ext4_group_t flex_group;
2760 	int i, err;
2761 
2762 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2763 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2764 		sbi->s_log_groups_per_flex = 0;
2765 		return 1;
2766 	}
2767 
2768 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2769 	if (err)
2770 		goto failed;
2771 
2772 	for (i = 0; i < sbi->s_groups_count; i++) {
2773 		gdp = ext4_get_group_desc(sb, i, NULL);
2774 
2775 		flex_group = ext4_flex_group(sbi, i);
2776 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2777 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2778 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2779 			     &fg->free_clusters);
2780 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2781 	}
2782 
2783 	return 1;
2784 failed:
2785 	return 0;
2786 }
2787 
2788 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2789 				   struct ext4_group_desc *gdp)
2790 {
2791 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2792 	__u16 crc = 0;
2793 	__le32 le_group = cpu_to_le32(block_group);
2794 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2795 
2796 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2797 		/* Use new metadata_csum algorithm */
2798 		__u32 csum32;
2799 		__u16 dummy_csum = 0;
2800 
2801 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2802 				     sizeof(le_group));
2803 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2804 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2805 				     sizeof(dummy_csum));
2806 		offset += sizeof(dummy_csum);
2807 		if (offset < sbi->s_desc_size)
2808 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2809 					     sbi->s_desc_size - offset);
2810 
2811 		crc = csum32 & 0xFFFF;
2812 		goto out;
2813 	}
2814 
2815 	/* old crc16 code */
2816 	if (!ext4_has_feature_gdt_csum(sb))
2817 		return 0;
2818 
2819 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2820 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2821 	crc = crc16(crc, (__u8 *)gdp, offset);
2822 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2823 	/* for checksum of struct ext4_group_desc do the rest...*/
2824 	if (ext4_has_feature_64bit(sb) &&
2825 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2826 		crc = crc16(crc, (__u8 *)gdp + offset,
2827 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2828 				offset);
2829 
2830 out:
2831 	return cpu_to_le16(crc);
2832 }
2833 
2834 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2835 				struct ext4_group_desc *gdp)
2836 {
2837 	if (ext4_has_group_desc_csum(sb) &&
2838 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2839 		return 0;
2840 
2841 	return 1;
2842 }
2843 
2844 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2845 			      struct ext4_group_desc *gdp)
2846 {
2847 	if (!ext4_has_group_desc_csum(sb))
2848 		return;
2849 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2850 }
2851 
2852 /* Called at mount-time, super-block is locked */
2853 static int ext4_check_descriptors(struct super_block *sb,
2854 				  ext4_fsblk_t sb_block,
2855 				  ext4_group_t *first_not_zeroed)
2856 {
2857 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2858 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2859 	ext4_fsblk_t last_block;
2860 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2861 	ext4_fsblk_t block_bitmap;
2862 	ext4_fsblk_t inode_bitmap;
2863 	ext4_fsblk_t inode_table;
2864 	int flexbg_flag = 0;
2865 	ext4_group_t i, grp = sbi->s_groups_count;
2866 
2867 	if (ext4_has_feature_flex_bg(sb))
2868 		flexbg_flag = 1;
2869 
2870 	ext4_debug("Checking group descriptors");
2871 
2872 	for (i = 0; i < sbi->s_groups_count; i++) {
2873 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2874 
2875 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2876 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2877 		else
2878 			last_block = first_block +
2879 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2880 
2881 		if ((grp == sbi->s_groups_count) &&
2882 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2883 			grp = i;
2884 
2885 		block_bitmap = ext4_block_bitmap(sb, gdp);
2886 		if (block_bitmap == sb_block) {
2887 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2888 				 "Block bitmap for group %u overlaps "
2889 				 "superblock", i);
2890 			if (!sb_rdonly(sb))
2891 				return 0;
2892 		}
2893 		if (block_bitmap >= sb_block + 1 &&
2894 		    block_bitmap <= last_bg_block) {
2895 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2896 				 "Block bitmap for group %u overlaps "
2897 				 "block group descriptors", i);
2898 			if (!sb_rdonly(sb))
2899 				return 0;
2900 		}
2901 		if (block_bitmap < first_block || block_bitmap > last_block) {
2902 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 			       "Block bitmap for group %u not in group "
2904 			       "(block %llu)!", i, block_bitmap);
2905 			return 0;
2906 		}
2907 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2908 		if (inode_bitmap == sb_block) {
2909 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2910 				 "Inode bitmap for group %u overlaps "
2911 				 "superblock", i);
2912 			if (!sb_rdonly(sb))
2913 				return 0;
2914 		}
2915 		if (inode_bitmap >= sb_block + 1 &&
2916 		    inode_bitmap <= last_bg_block) {
2917 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918 				 "Inode bitmap for group %u overlaps "
2919 				 "block group descriptors", i);
2920 			if (!sb_rdonly(sb))
2921 				return 0;
2922 		}
2923 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2924 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 			       "Inode bitmap for group %u not in group "
2926 			       "(block %llu)!", i, inode_bitmap);
2927 			return 0;
2928 		}
2929 		inode_table = ext4_inode_table(sb, gdp);
2930 		if (inode_table == sb_block) {
2931 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2932 				 "Inode table for group %u overlaps "
2933 				 "superblock", i);
2934 			if (!sb_rdonly(sb))
2935 				return 0;
2936 		}
2937 		if (inode_table >= sb_block + 1 &&
2938 		    inode_table <= last_bg_block) {
2939 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2940 				 "Inode table for group %u overlaps "
2941 				 "block group descriptors", i);
2942 			if (!sb_rdonly(sb))
2943 				return 0;
2944 		}
2945 		if (inode_table < first_block ||
2946 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2947 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2948 			       "Inode table for group %u not in group "
2949 			       "(block %llu)!", i, inode_table);
2950 			return 0;
2951 		}
2952 		ext4_lock_group(sb, i);
2953 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2954 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955 				 "Checksum for group %u failed (%u!=%u)",
2956 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2957 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2958 			if (!sb_rdonly(sb)) {
2959 				ext4_unlock_group(sb, i);
2960 				return 0;
2961 			}
2962 		}
2963 		ext4_unlock_group(sb, i);
2964 		if (!flexbg_flag)
2965 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2966 	}
2967 	if (NULL != first_not_zeroed)
2968 		*first_not_zeroed = grp;
2969 	return 1;
2970 }
2971 
2972 /*
2973  * Maximal extent format file size.
2974  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2975  * extent format containers, within a sector_t, and within i_blocks
2976  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2977  * so that won't be a limiting factor.
2978  *
2979  * However there is other limiting factor. We do store extents in the form
2980  * of starting block and length, hence the resulting length of the extent
2981  * covering maximum file size must fit into on-disk format containers as
2982  * well. Given that length is always by 1 unit bigger than max unit (because
2983  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2984  *
2985  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2986  */
2987 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2988 {
2989 	loff_t res;
2990 	loff_t upper_limit = MAX_LFS_FILESIZE;
2991 
2992 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2993 
2994 	if (!has_huge_files) {
2995 		upper_limit = (1LL << 32) - 1;
2996 
2997 		/* total blocks in file system block size */
2998 		upper_limit >>= (blkbits - 9);
2999 		upper_limit <<= blkbits;
3000 	}
3001 
3002 	/*
3003 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3004 	 * by one fs block, so ee_len can cover the extent of maximum file
3005 	 * size
3006 	 */
3007 	res = (1LL << 32) - 1;
3008 	res <<= blkbits;
3009 
3010 	/* Sanity check against vm- & vfs- imposed limits */
3011 	if (res > upper_limit)
3012 		res = upper_limit;
3013 
3014 	return res;
3015 }
3016 
3017 /*
3018  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3019  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3020  * We need to be 1 filesystem block less than the 2^48 sector limit.
3021  */
3022 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3023 {
3024 	loff_t res = EXT4_NDIR_BLOCKS;
3025 	int meta_blocks;
3026 	loff_t upper_limit;
3027 	/* This is calculated to be the largest file size for a dense, block
3028 	 * mapped file such that the file's total number of 512-byte sectors,
3029 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3030 	 *
3031 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3032 	 * number of 512-byte sectors of the file.
3033 	 */
3034 
3035 	if (!has_huge_files) {
3036 		/*
3037 		 * !has_huge_files or implies that the inode i_block field
3038 		 * represents total file blocks in 2^32 512-byte sectors ==
3039 		 * size of vfs inode i_blocks * 8
3040 		 */
3041 		upper_limit = (1LL << 32) - 1;
3042 
3043 		/* total blocks in file system block size */
3044 		upper_limit >>= (bits - 9);
3045 
3046 	} else {
3047 		/*
3048 		 * We use 48 bit ext4_inode i_blocks
3049 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3050 		 * represent total number of blocks in
3051 		 * file system block size
3052 		 */
3053 		upper_limit = (1LL << 48) - 1;
3054 
3055 	}
3056 
3057 	/* indirect blocks */
3058 	meta_blocks = 1;
3059 	/* double indirect blocks */
3060 	meta_blocks += 1 + (1LL << (bits-2));
3061 	/* tripple indirect blocks */
3062 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3063 
3064 	upper_limit -= meta_blocks;
3065 	upper_limit <<= bits;
3066 
3067 	res += 1LL << (bits-2);
3068 	res += 1LL << (2*(bits-2));
3069 	res += 1LL << (3*(bits-2));
3070 	res <<= bits;
3071 	if (res > upper_limit)
3072 		res = upper_limit;
3073 
3074 	if (res > MAX_LFS_FILESIZE)
3075 		res = MAX_LFS_FILESIZE;
3076 
3077 	return res;
3078 }
3079 
3080 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3081 				   ext4_fsblk_t logical_sb_block, int nr)
3082 {
3083 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3084 	ext4_group_t bg, first_meta_bg;
3085 	int has_super = 0;
3086 
3087 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3088 
3089 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3090 		return logical_sb_block + nr + 1;
3091 	bg = sbi->s_desc_per_block * nr;
3092 	if (ext4_bg_has_super(sb, bg))
3093 		has_super = 1;
3094 
3095 	/*
3096 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3097 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3098 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3099 	 * compensate.
3100 	 */
3101 	if (sb->s_blocksize == 1024 && nr == 0 &&
3102 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3103 		has_super++;
3104 
3105 	return (has_super + ext4_group_first_block_no(sb, bg));
3106 }
3107 
3108 /**
3109  * ext4_get_stripe_size: Get the stripe size.
3110  * @sbi: In memory super block info
3111  *
3112  * If we have specified it via mount option, then
3113  * use the mount option value. If the value specified at mount time is
3114  * greater than the blocks per group use the super block value.
3115  * If the super block value is greater than blocks per group return 0.
3116  * Allocator needs it be less than blocks per group.
3117  *
3118  */
3119 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3120 {
3121 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3122 	unsigned long stripe_width =
3123 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3124 	int ret;
3125 
3126 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3127 		ret = sbi->s_stripe;
3128 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3129 		ret = stripe_width;
3130 	else if (stride && stride <= sbi->s_blocks_per_group)
3131 		ret = stride;
3132 	else
3133 		ret = 0;
3134 
3135 	/*
3136 	 * If the stripe width is 1, this makes no sense and
3137 	 * we set it to 0 to turn off stripe handling code.
3138 	 */
3139 	if (ret <= 1)
3140 		ret = 0;
3141 
3142 	return ret;
3143 }
3144 
3145 /*
3146  * Check whether this filesystem can be mounted based on
3147  * the features present and the RDONLY/RDWR mount requested.
3148  * Returns 1 if this filesystem can be mounted as requested,
3149  * 0 if it cannot be.
3150  */
3151 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3152 {
3153 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3154 		ext4_msg(sb, KERN_ERR,
3155 			"Couldn't mount because of "
3156 			"unsupported optional features (%x)",
3157 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3158 			~EXT4_FEATURE_INCOMPAT_SUPP));
3159 		return 0;
3160 	}
3161 
3162 #ifndef CONFIG_UNICODE
3163 	if (ext4_has_feature_casefold(sb)) {
3164 		ext4_msg(sb, KERN_ERR,
3165 			 "Filesystem with casefold feature cannot be "
3166 			 "mounted without CONFIG_UNICODE");
3167 		return 0;
3168 	}
3169 #endif
3170 
3171 	if (readonly)
3172 		return 1;
3173 
3174 	if (ext4_has_feature_readonly(sb)) {
3175 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3176 		sb->s_flags |= SB_RDONLY;
3177 		return 1;
3178 	}
3179 
3180 	/* Check that feature set is OK for a read-write mount */
3181 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3182 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3183 			 "unsupported optional features (%x)",
3184 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3185 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3186 		return 0;
3187 	}
3188 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3189 		ext4_msg(sb, KERN_ERR,
3190 			 "Can't support bigalloc feature without "
3191 			 "extents feature\n");
3192 		return 0;
3193 	}
3194 
3195 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3196 	if (!readonly && (ext4_has_feature_quota(sb) ||
3197 			  ext4_has_feature_project(sb))) {
3198 		ext4_msg(sb, KERN_ERR,
3199 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3200 		return 0;
3201 	}
3202 #endif  /* CONFIG_QUOTA */
3203 	return 1;
3204 }
3205 
3206 /*
3207  * This function is called once a day if we have errors logged
3208  * on the file system
3209  */
3210 static void print_daily_error_info(struct timer_list *t)
3211 {
3212 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3213 	struct super_block *sb = sbi->s_sb;
3214 	struct ext4_super_block *es = sbi->s_es;
3215 
3216 	if (es->s_error_count)
3217 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3218 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3219 			 le32_to_cpu(es->s_error_count));
3220 	if (es->s_first_error_time) {
3221 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3222 		       sb->s_id,
3223 		       ext4_get_tstamp(es, s_first_error_time),
3224 		       (int) sizeof(es->s_first_error_func),
3225 		       es->s_first_error_func,
3226 		       le32_to_cpu(es->s_first_error_line));
3227 		if (es->s_first_error_ino)
3228 			printk(KERN_CONT ": inode %u",
3229 			       le32_to_cpu(es->s_first_error_ino));
3230 		if (es->s_first_error_block)
3231 			printk(KERN_CONT ": block %llu", (unsigned long long)
3232 			       le64_to_cpu(es->s_first_error_block));
3233 		printk(KERN_CONT "\n");
3234 	}
3235 	if (es->s_last_error_time) {
3236 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3237 		       sb->s_id,
3238 		       ext4_get_tstamp(es, s_last_error_time),
3239 		       (int) sizeof(es->s_last_error_func),
3240 		       es->s_last_error_func,
3241 		       le32_to_cpu(es->s_last_error_line));
3242 		if (es->s_last_error_ino)
3243 			printk(KERN_CONT ": inode %u",
3244 			       le32_to_cpu(es->s_last_error_ino));
3245 		if (es->s_last_error_block)
3246 			printk(KERN_CONT ": block %llu", (unsigned long long)
3247 			       le64_to_cpu(es->s_last_error_block));
3248 		printk(KERN_CONT "\n");
3249 	}
3250 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3251 }
3252 
3253 /* Find next suitable group and run ext4_init_inode_table */
3254 static int ext4_run_li_request(struct ext4_li_request *elr)
3255 {
3256 	struct ext4_group_desc *gdp = NULL;
3257 	struct super_block *sb = elr->lr_super;
3258 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3259 	ext4_group_t group = elr->lr_next_group;
3260 	unsigned long timeout = 0;
3261 	unsigned int prefetch_ios = 0;
3262 	int ret = 0;
3263 
3264 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3265 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3266 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3267 		if (prefetch_ios)
3268 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3269 					      prefetch_ios);
3270 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3271 					    prefetch_ios);
3272 		if (group >= elr->lr_next_group) {
3273 			ret = 1;
3274 			if (elr->lr_first_not_zeroed != ngroups &&
3275 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3276 				elr->lr_next_group = elr->lr_first_not_zeroed;
3277 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3278 				ret = 0;
3279 			}
3280 		}
3281 		return ret;
3282 	}
3283 
3284 	for (; group < ngroups; group++) {
3285 		gdp = ext4_get_group_desc(sb, group, NULL);
3286 		if (!gdp) {
3287 			ret = 1;
3288 			break;
3289 		}
3290 
3291 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292 			break;
3293 	}
3294 
3295 	if (group >= ngroups)
3296 		ret = 1;
3297 
3298 	if (!ret) {
3299 		timeout = jiffies;
3300 		ret = ext4_init_inode_table(sb, group,
3301 					    elr->lr_timeout ? 0 : 1);
3302 		trace_ext4_lazy_itable_init(sb, group);
3303 		if (elr->lr_timeout == 0) {
3304 			timeout = (jiffies - timeout) *
3305 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3306 			elr->lr_timeout = timeout;
3307 		}
3308 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3309 		elr->lr_next_group = group + 1;
3310 	}
3311 	return ret;
3312 }
3313 
3314 /*
3315  * Remove lr_request from the list_request and free the
3316  * request structure. Should be called with li_list_mtx held
3317  */
3318 static void ext4_remove_li_request(struct ext4_li_request *elr)
3319 {
3320 	if (!elr)
3321 		return;
3322 
3323 	list_del(&elr->lr_request);
3324 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3325 	kfree(elr);
3326 }
3327 
3328 static void ext4_unregister_li_request(struct super_block *sb)
3329 {
3330 	mutex_lock(&ext4_li_mtx);
3331 	if (!ext4_li_info) {
3332 		mutex_unlock(&ext4_li_mtx);
3333 		return;
3334 	}
3335 
3336 	mutex_lock(&ext4_li_info->li_list_mtx);
3337 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3338 	mutex_unlock(&ext4_li_info->li_list_mtx);
3339 	mutex_unlock(&ext4_li_mtx);
3340 }
3341 
3342 static struct task_struct *ext4_lazyinit_task;
3343 
3344 /*
3345  * This is the function where ext4lazyinit thread lives. It walks
3346  * through the request list searching for next scheduled filesystem.
3347  * When such a fs is found, run the lazy initialization request
3348  * (ext4_rn_li_request) and keep track of the time spend in this
3349  * function. Based on that time we compute next schedule time of
3350  * the request. When walking through the list is complete, compute
3351  * next waking time and put itself into sleep.
3352  */
3353 static int ext4_lazyinit_thread(void *arg)
3354 {
3355 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3356 	struct list_head *pos, *n;
3357 	struct ext4_li_request *elr;
3358 	unsigned long next_wakeup, cur;
3359 
3360 	BUG_ON(NULL == eli);
3361 
3362 cont_thread:
3363 	while (true) {
3364 		next_wakeup = MAX_JIFFY_OFFSET;
3365 
3366 		mutex_lock(&eli->li_list_mtx);
3367 		if (list_empty(&eli->li_request_list)) {
3368 			mutex_unlock(&eli->li_list_mtx);
3369 			goto exit_thread;
3370 		}
3371 		list_for_each_safe(pos, n, &eli->li_request_list) {
3372 			int err = 0;
3373 			int progress = 0;
3374 			elr = list_entry(pos, struct ext4_li_request,
3375 					 lr_request);
3376 
3377 			if (time_before(jiffies, elr->lr_next_sched)) {
3378 				if (time_before(elr->lr_next_sched, next_wakeup))
3379 					next_wakeup = elr->lr_next_sched;
3380 				continue;
3381 			}
3382 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3383 				if (sb_start_write_trylock(elr->lr_super)) {
3384 					progress = 1;
3385 					/*
3386 					 * We hold sb->s_umount, sb can not
3387 					 * be removed from the list, it is
3388 					 * now safe to drop li_list_mtx
3389 					 */
3390 					mutex_unlock(&eli->li_list_mtx);
3391 					err = ext4_run_li_request(elr);
3392 					sb_end_write(elr->lr_super);
3393 					mutex_lock(&eli->li_list_mtx);
3394 					n = pos->next;
3395 				}
3396 				up_read((&elr->lr_super->s_umount));
3397 			}
3398 			/* error, remove the lazy_init job */
3399 			if (err) {
3400 				ext4_remove_li_request(elr);
3401 				continue;
3402 			}
3403 			if (!progress) {
3404 				elr->lr_next_sched = jiffies +
3405 					(prandom_u32()
3406 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3407 			}
3408 			if (time_before(elr->lr_next_sched, next_wakeup))
3409 				next_wakeup = elr->lr_next_sched;
3410 		}
3411 		mutex_unlock(&eli->li_list_mtx);
3412 
3413 		try_to_freeze();
3414 
3415 		cur = jiffies;
3416 		if ((time_after_eq(cur, next_wakeup)) ||
3417 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3418 			cond_resched();
3419 			continue;
3420 		}
3421 
3422 		schedule_timeout_interruptible(next_wakeup - cur);
3423 
3424 		if (kthread_should_stop()) {
3425 			ext4_clear_request_list();
3426 			goto exit_thread;
3427 		}
3428 	}
3429 
3430 exit_thread:
3431 	/*
3432 	 * It looks like the request list is empty, but we need
3433 	 * to check it under the li_list_mtx lock, to prevent any
3434 	 * additions into it, and of course we should lock ext4_li_mtx
3435 	 * to atomically free the list and ext4_li_info, because at
3436 	 * this point another ext4 filesystem could be registering
3437 	 * new one.
3438 	 */
3439 	mutex_lock(&ext4_li_mtx);
3440 	mutex_lock(&eli->li_list_mtx);
3441 	if (!list_empty(&eli->li_request_list)) {
3442 		mutex_unlock(&eli->li_list_mtx);
3443 		mutex_unlock(&ext4_li_mtx);
3444 		goto cont_thread;
3445 	}
3446 	mutex_unlock(&eli->li_list_mtx);
3447 	kfree(ext4_li_info);
3448 	ext4_li_info = NULL;
3449 	mutex_unlock(&ext4_li_mtx);
3450 
3451 	return 0;
3452 }
3453 
3454 static void ext4_clear_request_list(void)
3455 {
3456 	struct list_head *pos, *n;
3457 	struct ext4_li_request *elr;
3458 
3459 	mutex_lock(&ext4_li_info->li_list_mtx);
3460 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3461 		elr = list_entry(pos, struct ext4_li_request,
3462 				 lr_request);
3463 		ext4_remove_li_request(elr);
3464 	}
3465 	mutex_unlock(&ext4_li_info->li_list_mtx);
3466 }
3467 
3468 static int ext4_run_lazyinit_thread(void)
3469 {
3470 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3471 					 ext4_li_info, "ext4lazyinit");
3472 	if (IS_ERR(ext4_lazyinit_task)) {
3473 		int err = PTR_ERR(ext4_lazyinit_task);
3474 		ext4_clear_request_list();
3475 		kfree(ext4_li_info);
3476 		ext4_li_info = NULL;
3477 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3478 				 "initialization thread\n",
3479 				 err);
3480 		return err;
3481 	}
3482 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3483 	return 0;
3484 }
3485 
3486 /*
3487  * Check whether it make sense to run itable init. thread or not.
3488  * If there is at least one uninitialized inode table, return
3489  * corresponding group number, else the loop goes through all
3490  * groups and return total number of groups.
3491  */
3492 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3493 {
3494 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3495 	struct ext4_group_desc *gdp = NULL;
3496 
3497 	if (!ext4_has_group_desc_csum(sb))
3498 		return ngroups;
3499 
3500 	for (group = 0; group < ngroups; group++) {
3501 		gdp = ext4_get_group_desc(sb, group, NULL);
3502 		if (!gdp)
3503 			continue;
3504 
3505 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3506 			break;
3507 	}
3508 
3509 	return group;
3510 }
3511 
3512 static int ext4_li_info_new(void)
3513 {
3514 	struct ext4_lazy_init *eli = NULL;
3515 
3516 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3517 	if (!eli)
3518 		return -ENOMEM;
3519 
3520 	INIT_LIST_HEAD(&eli->li_request_list);
3521 	mutex_init(&eli->li_list_mtx);
3522 
3523 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3524 
3525 	ext4_li_info = eli;
3526 
3527 	return 0;
3528 }
3529 
3530 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3531 					    ext4_group_t start)
3532 {
3533 	struct ext4_li_request *elr;
3534 
3535 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3536 	if (!elr)
3537 		return NULL;
3538 
3539 	elr->lr_super = sb;
3540 	elr->lr_first_not_zeroed = start;
3541 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3542 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3543 		elr->lr_next_group = start;
3544 	} else {
3545 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3546 	}
3547 
3548 	/*
3549 	 * Randomize first schedule time of the request to
3550 	 * spread the inode table initialization requests
3551 	 * better.
3552 	 */
3553 	elr->lr_next_sched = jiffies + (prandom_u32() %
3554 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3555 	return elr;
3556 }
3557 
3558 int ext4_register_li_request(struct super_block *sb,
3559 			     ext4_group_t first_not_zeroed)
3560 {
3561 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3562 	struct ext4_li_request *elr = NULL;
3563 	ext4_group_t ngroups = sbi->s_groups_count;
3564 	int ret = 0;
3565 
3566 	mutex_lock(&ext4_li_mtx);
3567 	if (sbi->s_li_request != NULL) {
3568 		/*
3569 		 * Reset timeout so it can be computed again, because
3570 		 * s_li_wait_mult might have changed.
3571 		 */
3572 		sbi->s_li_request->lr_timeout = 0;
3573 		goto out;
3574 	}
3575 
3576 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3577 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3578 	     !test_opt(sb, INIT_INODE_TABLE)))
3579 		goto out;
3580 
3581 	elr = ext4_li_request_new(sb, first_not_zeroed);
3582 	if (!elr) {
3583 		ret = -ENOMEM;
3584 		goto out;
3585 	}
3586 
3587 	if (NULL == ext4_li_info) {
3588 		ret = ext4_li_info_new();
3589 		if (ret)
3590 			goto out;
3591 	}
3592 
3593 	mutex_lock(&ext4_li_info->li_list_mtx);
3594 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3595 	mutex_unlock(&ext4_li_info->li_list_mtx);
3596 
3597 	sbi->s_li_request = elr;
3598 	/*
3599 	 * set elr to NULL here since it has been inserted to
3600 	 * the request_list and the removal and free of it is
3601 	 * handled by ext4_clear_request_list from now on.
3602 	 */
3603 	elr = NULL;
3604 
3605 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3606 		ret = ext4_run_lazyinit_thread();
3607 		if (ret)
3608 			goto out;
3609 	}
3610 out:
3611 	mutex_unlock(&ext4_li_mtx);
3612 	if (ret)
3613 		kfree(elr);
3614 	return ret;
3615 }
3616 
3617 /*
3618  * We do not need to lock anything since this is called on
3619  * module unload.
3620  */
3621 static void ext4_destroy_lazyinit_thread(void)
3622 {
3623 	/*
3624 	 * If thread exited earlier
3625 	 * there's nothing to be done.
3626 	 */
3627 	if (!ext4_li_info || !ext4_lazyinit_task)
3628 		return;
3629 
3630 	kthread_stop(ext4_lazyinit_task);
3631 }
3632 
3633 static int set_journal_csum_feature_set(struct super_block *sb)
3634 {
3635 	int ret = 1;
3636 	int compat, incompat;
3637 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3638 
3639 	if (ext4_has_metadata_csum(sb)) {
3640 		/* journal checksum v3 */
3641 		compat = 0;
3642 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3643 	} else {
3644 		/* journal checksum v1 */
3645 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3646 		incompat = 0;
3647 	}
3648 
3649 	jbd2_journal_clear_features(sbi->s_journal,
3650 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3651 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3652 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3653 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3654 		ret = jbd2_journal_set_features(sbi->s_journal,
3655 				compat, 0,
3656 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3657 				incompat);
3658 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3659 		ret = jbd2_journal_set_features(sbi->s_journal,
3660 				compat, 0,
3661 				incompat);
3662 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3663 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3664 	} else {
3665 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3666 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3667 	}
3668 
3669 	return ret;
3670 }
3671 
3672 /*
3673  * Note: calculating the overhead so we can be compatible with
3674  * historical BSD practice is quite difficult in the face of
3675  * clusters/bigalloc.  This is because multiple metadata blocks from
3676  * different block group can end up in the same allocation cluster.
3677  * Calculating the exact overhead in the face of clustered allocation
3678  * requires either O(all block bitmaps) in memory or O(number of block
3679  * groups**2) in time.  We will still calculate the superblock for
3680  * older file systems --- and if we come across with a bigalloc file
3681  * system with zero in s_overhead_clusters the estimate will be close to
3682  * correct especially for very large cluster sizes --- but for newer
3683  * file systems, it's better to calculate this figure once at mkfs
3684  * time, and store it in the superblock.  If the superblock value is
3685  * present (even for non-bigalloc file systems), we will use it.
3686  */
3687 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3688 			  char *buf)
3689 {
3690 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3691 	struct ext4_group_desc	*gdp;
3692 	ext4_fsblk_t		first_block, last_block, b;
3693 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3694 	int			s, j, count = 0;
3695 
3696 	if (!ext4_has_feature_bigalloc(sb))
3697 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3698 			sbi->s_itb_per_group + 2);
3699 
3700 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3701 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3702 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3703 	for (i = 0; i < ngroups; i++) {
3704 		gdp = ext4_get_group_desc(sb, i, NULL);
3705 		b = ext4_block_bitmap(sb, gdp);
3706 		if (b >= first_block && b <= last_block) {
3707 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3708 			count++;
3709 		}
3710 		b = ext4_inode_bitmap(sb, gdp);
3711 		if (b >= first_block && b <= last_block) {
3712 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3713 			count++;
3714 		}
3715 		b = ext4_inode_table(sb, gdp);
3716 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3717 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3718 				int c = EXT4_B2C(sbi, b - first_block);
3719 				ext4_set_bit(c, buf);
3720 				count++;
3721 			}
3722 		if (i != grp)
3723 			continue;
3724 		s = 0;
3725 		if (ext4_bg_has_super(sb, grp)) {
3726 			ext4_set_bit(s++, buf);
3727 			count++;
3728 		}
3729 		j = ext4_bg_num_gdb(sb, grp);
3730 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3731 			ext4_error(sb, "Invalid number of block group "
3732 				   "descriptor blocks: %d", j);
3733 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3734 		}
3735 		count += j;
3736 		for (; j > 0; j--)
3737 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3738 	}
3739 	if (!count)
3740 		return 0;
3741 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3742 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3743 }
3744 
3745 /*
3746  * Compute the overhead and stash it in sbi->s_overhead
3747  */
3748 int ext4_calculate_overhead(struct super_block *sb)
3749 {
3750 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3751 	struct ext4_super_block *es = sbi->s_es;
3752 	struct inode *j_inode;
3753 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3754 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3755 	ext4_fsblk_t overhead = 0;
3756 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3757 
3758 	if (!buf)
3759 		return -ENOMEM;
3760 
3761 	/*
3762 	 * Compute the overhead (FS structures).  This is constant
3763 	 * for a given filesystem unless the number of block groups
3764 	 * changes so we cache the previous value until it does.
3765 	 */
3766 
3767 	/*
3768 	 * All of the blocks before first_data_block are overhead
3769 	 */
3770 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3771 
3772 	/*
3773 	 * Add the overhead found in each block group
3774 	 */
3775 	for (i = 0; i < ngroups; i++) {
3776 		int blks;
3777 
3778 		blks = count_overhead(sb, i, buf);
3779 		overhead += blks;
3780 		if (blks)
3781 			memset(buf, 0, PAGE_SIZE);
3782 		cond_resched();
3783 	}
3784 
3785 	/*
3786 	 * Add the internal journal blocks whether the journal has been
3787 	 * loaded or not
3788 	 */
3789 	if (sbi->s_journal && !sbi->s_journal_bdev)
3790 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3791 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3792 		/* j_inum for internal journal is non-zero */
3793 		j_inode = ext4_get_journal_inode(sb, j_inum);
3794 		if (j_inode) {
3795 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3796 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3797 			iput(j_inode);
3798 		} else {
3799 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3800 		}
3801 	}
3802 	sbi->s_overhead = overhead;
3803 	smp_wmb();
3804 	free_page((unsigned long) buf);
3805 	return 0;
3806 }
3807 
3808 static void ext4_set_resv_clusters(struct super_block *sb)
3809 {
3810 	ext4_fsblk_t resv_clusters;
3811 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3812 
3813 	/*
3814 	 * There's no need to reserve anything when we aren't using extents.
3815 	 * The space estimates are exact, there are no unwritten extents,
3816 	 * hole punching doesn't need new metadata... This is needed especially
3817 	 * to keep ext2/3 backward compatibility.
3818 	 */
3819 	if (!ext4_has_feature_extents(sb))
3820 		return;
3821 	/*
3822 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3823 	 * This should cover the situations where we can not afford to run
3824 	 * out of space like for example punch hole, or converting
3825 	 * unwritten extents in delalloc path. In most cases such
3826 	 * allocation would require 1, or 2 blocks, higher numbers are
3827 	 * very rare.
3828 	 */
3829 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3830 			 sbi->s_cluster_bits);
3831 
3832 	do_div(resv_clusters, 50);
3833 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3834 
3835 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3836 }
3837 
3838 static const char *ext4_quota_mode(struct super_block *sb)
3839 {
3840 #ifdef CONFIG_QUOTA
3841 	if (!ext4_quota_capable(sb))
3842 		return "none";
3843 
3844 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3845 		return "journalled";
3846 	else
3847 		return "writeback";
3848 #else
3849 	return "disabled";
3850 #endif
3851 }
3852 
3853 static void ext4_setup_csum_trigger(struct super_block *sb,
3854 				    enum ext4_journal_trigger_type type,
3855 				    void (*trigger)(
3856 					struct jbd2_buffer_trigger_type *type,
3857 					struct buffer_head *bh,
3858 					void *mapped_data,
3859 					size_t size))
3860 {
3861 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3862 
3863 	sbi->s_journal_triggers[type].sb = sb;
3864 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3865 }
3866 
3867 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3868 {
3869 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3870 	char *orig_data = kstrdup(data, GFP_KERNEL);
3871 	struct buffer_head *bh, **group_desc;
3872 	struct ext4_super_block *es = NULL;
3873 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3874 	struct flex_groups **flex_groups;
3875 	ext4_fsblk_t block;
3876 	ext4_fsblk_t sb_block = get_sb_block(&data);
3877 	ext4_fsblk_t logical_sb_block;
3878 	unsigned long offset = 0;
3879 	unsigned long def_mount_opts;
3880 	struct inode *root;
3881 	const char *descr;
3882 	int ret = -ENOMEM;
3883 	int blocksize, clustersize;
3884 	unsigned int db_count;
3885 	unsigned int i;
3886 	int needs_recovery, has_huge_files;
3887 	__u64 blocks_count;
3888 	int err = 0;
3889 	ext4_group_t first_not_zeroed;
3890 	struct ext4_parsed_options parsed_opts;
3891 
3892 	/* Set defaults for the variables that will be set during parsing */
3893 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3894 	parsed_opts.journal_devnum = 0;
3895 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3896 
3897 	if ((data && !orig_data) || !sbi)
3898 		goto out_free_base;
3899 
3900 	sbi->s_daxdev = dax_dev;
3901 	sbi->s_blockgroup_lock =
3902 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3903 	if (!sbi->s_blockgroup_lock)
3904 		goto out_free_base;
3905 
3906 	sb->s_fs_info = sbi;
3907 	sbi->s_sb = sb;
3908 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3909 	sbi->s_sb_block = sb_block;
3910 	sbi->s_sectors_written_start =
3911 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3912 
3913 	/* Cleanup superblock name */
3914 	strreplace(sb->s_id, '/', '!');
3915 
3916 	/* -EINVAL is default */
3917 	ret = -EINVAL;
3918 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3919 	if (!blocksize) {
3920 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3921 		goto out_fail;
3922 	}
3923 
3924 	/*
3925 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3926 	 * block sizes.  We need to calculate the offset from buffer start.
3927 	 */
3928 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3929 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3930 		offset = do_div(logical_sb_block, blocksize);
3931 	} else {
3932 		logical_sb_block = sb_block;
3933 	}
3934 
3935 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3936 	if (IS_ERR(bh)) {
3937 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3938 		ret = PTR_ERR(bh);
3939 		goto out_fail;
3940 	}
3941 	/*
3942 	 * Note: s_es must be initialized as soon as possible because
3943 	 *       some ext4 macro-instructions depend on its value
3944 	 */
3945 	es = (struct ext4_super_block *) (bh->b_data + offset);
3946 	sbi->s_es = es;
3947 	sb->s_magic = le16_to_cpu(es->s_magic);
3948 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3949 		goto cantfind_ext4;
3950 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3951 
3952 	/* Warn if metadata_csum and gdt_csum are both set. */
3953 	if (ext4_has_feature_metadata_csum(sb) &&
3954 	    ext4_has_feature_gdt_csum(sb))
3955 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3956 			     "redundant flags; please run fsck.");
3957 
3958 	/* Check for a known checksum algorithm */
3959 	if (!ext4_verify_csum_type(sb, es)) {
3960 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3961 			 "unknown checksum algorithm.");
3962 		silent = 1;
3963 		goto cantfind_ext4;
3964 	}
3965 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3966 				ext4_orphan_file_block_trigger);
3967 
3968 	/* Load the checksum driver */
3969 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3970 	if (IS_ERR(sbi->s_chksum_driver)) {
3971 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3972 		ret = PTR_ERR(sbi->s_chksum_driver);
3973 		sbi->s_chksum_driver = NULL;
3974 		goto failed_mount;
3975 	}
3976 
3977 	/* Check superblock checksum */
3978 	if (!ext4_superblock_csum_verify(sb, es)) {
3979 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3980 			 "invalid superblock checksum.  Run e2fsck?");
3981 		silent = 1;
3982 		ret = -EFSBADCRC;
3983 		goto cantfind_ext4;
3984 	}
3985 
3986 	/* Precompute checksum seed for all metadata */
3987 	if (ext4_has_feature_csum_seed(sb))
3988 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3989 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3990 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3991 					       sizeof(es->s_uuid));
3992 
3993 	/* Set defaults before we parse the mount options */
3994 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3995 	set_opt(sb, INIT_INODE_TABLE);
3996 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3997 		set_opt(sb, DEBUG);
3998 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3999 		set_opt(sb, GRPID);
4000 	if (def_mount_opts & EXT4_DEFM_UID16)
4001 		set_opt(sb, NO_UID32);
4002 	/* xattr user namespace & acls are now defaulted on */
4003 	set_opt(sb, XATTR_USER);
4004 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4005 	set_opt(sb, POSIX_ACL);
4006 #endif
4007 	if (ext4_has_feature_fast_commit(sb))
4008 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4009 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4010 	if (ext4_has_metadata_csum(sb))
4011 		set_opt(sb, JOURNAL_CHECKSUM);
4012 
4013 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4014 		set_opt(sb, JOURNAL_DATA);
4015 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4016 		set_opt(sb, ORDERED_DATA);
4017 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4018 		set_opt(sb, WRITEBACK_DATA);
4019 
4020 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4021 		set_opt(sb, ERRORS_PANIC);
4022 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4023 		set_opt(sb, ERRORS_CONT);
4024 	else
4025 		set_opt(sb, ERRORS_RO);
4026 	/* block_validity enabled by default; disable with noblock_validity */
4027 	set_opt(sb, BLOCK_VALIDITY);
4028 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4029 		set_opt(sb, DISCARD);
4030 
4031 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4032 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4033 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4034 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4035 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4036 
4037 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4038 		set_opt(sb, BARRIER);
4039 
4040 	/*
4041 	 * enable delayed allocation by default
4042 	 * Use -o nodelalloc to turn it off
4043 	 */
4044 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4045 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4046 		set_opt(sb, DELALLOC);
4047 
4048 	/*
4049 	 * set default s_li_wait_mult for lazyinit, for the case there is
4050 	 * no mount option specified.
4051 	 */
4052 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4053 
4054 	if (le32_to_cpu(es->s_log_block_size) >
4055 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4056 		ext4_msg(sb, KERN_ERR,
4057 			 "Invalid log block size: %u",
4058 			 le32_to_cpu(es->s_log_block_size));
4059 		goto failed_mount;
4060 	}
4061 	if (le32_to_cpu(es->s_log_cluster_size) >
4062 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4063 		ext4_msg(sb, KERN_ERR,
4064 			 "Invalid log cluster size: %u",
4065 			 le32_to_cpu(es->s_log_cluster_size));
4066 		goto failed_mount;
4067 	}
4068 
4069 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4070 
4071 	if (blocksize == PAGE_SIZE)
4072 		set_opt(sb, DIOREAD_NOLOCK);
4073 
4074 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4075 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4076 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4077 	} else {
4078 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4079 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4080 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4081 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4082 				 sbi->s_first_ino);
4083 			goto failed_mount;
4084 		}
4085 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4086 		    (!is_power_of_2(sbi->s_inode_size)) ||
4087 		    (sbi->s_inode_size > blocksize)) {
4088 			ext4_msg(sb, KERN_ERR,
4089 			       "unsupported inode size: %d",
4090 			       sbi->s_inode_size);
4091 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4092 			goto failed_mount;
4093 		}
4094 		/*
4095 		 * i_atime_extra is the last extra field available for
4096 		 * [acm]times in struct ext4_inode. Checking for that
4097 		 * field should suffice to ensure we have extra space
4098 		 * for all three.
4099 		 */
4100 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4101 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4102 			sb->s_time_gran = 1;
4103 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4104 		} else {
4105 			sb->s_time_gran = NSEC_PER_SEC;
4106 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4107 		}
4108 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4109 	}
4110 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4111 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4112 			EXT4_GOOD_OLD_INODE_SIZE;
4113 		if (ext4_has_feature_extra_isize(sb)) {
4114 			unsigned v, max = (sbi->s_inode_size -
4115 					   EXT4_GOOD_OLD_INODE_SIZE);
4116 
4117 			v = le16_to_cpu(es->s_want_extra_isize);
4118 			if (v > max) {
4119 				ext4_msg(sb, KERN_ERR,
4120 					 "bad s_want_extra_isize: %d", v);
4121 				goto failed_mount;
4122 			}
4123 			if (sbi->s_want_extra_isize < v)
4124 				sbi->s_want_extra_isize = v;
4125 
4126 			v = le16_to_cpu(es->s_min_extra_isize);
4127 			if (v > max) {
4128 				ext4_msg(sb, KERN_ERR,
4129 					 "bad s_min_extra_isize: %d", v);
4130 				goto failed_mount;
4131 			}
4132 			if (sbi->s_want_extra_isize < v)
4133 				sbi->s_want_extra_isize = v;
4134 		}
4135 	}
4136 
4137 	if (sbi->s_es->s_mount_opts[0]) {
4138 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4139 					      sizeof(sbi->s_es->s_mount_opts),
4140 					      GFP_KERNEL);
4141 		if (!s_mount_opts)
4142 			goto failed_mount;
4143 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4144 			ext4_msg(sb, KERN_WARNING,
4145 				 "failed to parse options in superblock: %s",
4146 				 s_mount_opts);
4147 		}
4148 		kfree(s_mount_opts);
4149 	}
4150 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4151 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4152 		goto failed_mount;
4153 
4154 #ifdef CONFIG_UNICODE
4155 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4156 		const struct ext4_sb_encodings *encoding_info;
4157 		struct unicode_map *encoding;
4158 		__u16 encoding_flags;
4159 
4160 		if (ext4_sb_read_encoding(es, &encoding_info,
4161 					  &encoding_flags)) {
4162 			ext4_msg(sb, KERN_ERR,
4163 				 "Encoding requested by superblock is unknown");
4164 			goto failed_mount;
4165 		}
4166 
4167 		encoding = utf8_load(encoding_info->version);
4168 		if (IS_ERR(encoding)) {
4169 			ext4_msg(sb, KERN_ERR,
4170 				 "can't mount with superblock charset: %s-%s "
4171 				 "not supported by the kernel. flags: 0x%x.",
4172 				 encoding_info->name, encoding_info->version,
4173 				 encoding_flags);
4174 			goto failed_mount;
4175 		}
4176 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4177 			 "%s-%s with flags 0x%hx", encoding_info->name,
4178 			 encoding_info->version?:"\b", encoding_flags);
4179 
4180 		sb->s_encoding = encoding;
4181 		sb->s_encoding_flags = encoding_flags;
4182 	}
4183 #endif
4184 
4185 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4186 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4187 		/* can't mount with both data=journal and dioread_nolock. */
4188 		clear_opt(sb, DIOREAD_NOLOCK);
4189 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4190 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4191 			ext4_msg(sb, KERN_ERR, "can't mount with "
4192 				 "both data=journal and delalloc");
4193 			goto failed_mount;
4194 		}
4195 		if (test_opt(sb, DAX_ALWAYS)) {
4196 			ext4_msg(sb, KERN_ERR, "can't mount with "
4197 				 "both data=journal and dax");
4198 			goto failed_mount;
4199 		}
4200 		if (ext4_has_feature_encrypt(sb)) {
4201 			ext4_msg(sb, KERN_WARNING,
4202 				 "encrypted files will use data=ordered "
4203 				 "instead of data journaling mode");
4204 		}
4205 		if (test_opt(sb, DELALLOC))
4206 			clear_opt(sb, DELALLOC);
4207 	} else {
4208 		sb->s_iflags |= SB_I_CGROUPWB;
4209 	}
4210 
4211 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4212 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4213 
4214 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4215 	    (ext4_has_compat_features(sb) ||
4216 	     ext4_has_ro_compat_features(sb) ||
4217 	     ext4_has_incompat_features(sb)))
4218 		ext4_msg(sb, KERN_WARNING,
4219 		       "feature flags set on rev 0 fs, "
4220 		       "running e2fsck is recommended");
4221 
4222 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4223 		set_opt2(sb, HURD_COMPAT);
4224 		if (ext4_has_feature_64bit(sb)) {
4225 			ext4_msg(sb, KERN_ERR,
4226 				 "The Hurd can't support 64-bit file systems");
4227 			goto failed_mount;
4228 		}
4229 
4230 		/*
4231 		 * ea_inode feature uses l_i_version field which is not
4232 		 * available in HURD_COMPAT mode.
4233 		 */
4234 		if (ext4_has_feature_ea_inode(sb)) {
4235 			ext4_msg(sb, KERN_ERR,
4236 				 "ea_inode feature is not supported for Hurd");
4237 			goto failed_mount;
4238 		}
4239 	}
4240 
4241 	if (IS_EXT2_SB(sb)) {
4242 		if (ext2_feature_set_ok(sb))
4243 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4244 				 "using the ext4 subsystem");
4245 		else {
4246 			/*
4247 			 * If we're probing be silent, if this looks like
4248 			 * it's actually an ext[34] filesystem.
4249 			 */
4250 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4251 				goto failed_mount;
4252 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4253 				 "to feature incompatibilities");
4254 			goto failed_mount;
4255 		}
4256 	}
4257 
4258 	if (IS_EXT3_SB(sb)) {
4259 		if (ext3_feature_set_ok(sb))
4260 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4261 				 "using the ext4 subsystem");
4262 		else {
4263 			/*
4264 			 * If we're probing be silent, if this looks like
4265 			 * it's actually an ext4 filesystem.
4266 			 */
4267 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4268 				goto failed_mount;
4269 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4270 				 "to feature incompatibilities");
4271 			goto failed_mount;
4272 		}
4273 	}
4274 
4275 	/*
4276 	 * Check feature flags regardless of the revision level, since we
4277 	 * previously didn't change the revision level when setting the flags,
4278 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4279 	 */
4280 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4281 		goto failed_mount;
4282 
4283 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4284 		ext4_msg(sb, KERN_ERR,
4285 			 "Number of reserved GDT blocks insanely large: %d",
4286 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4287 		goto failed_mount;
4288 	}
4289 
4290 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4291 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4292 
4293 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4294 		if (ext4_has_feature_inline_data(sb)) {
4295 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4296 					" that may contain inline data");
4297 			goto failed_mount;
4298 		}
4299 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4300 			ext4_msg(sb, KERN_ERR,
4301 				"DAX unsupported by block device.");
4302 			goto failed_mount;
4303 		}
4304 	}
4305 
4306 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4307 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4308 			 es->s_encryption_level);
4309 		goto failed_mount;
4310 	}
4311 
4312 	if (sb->s_blocksize != blocksize) {
4313 		/*
4314 		 * bh must be released before kill_bdev(), otherwise
4315 		 * it won't be freed and its page also. kill_bdev()
4316 		 * is called by sb_set_blocksize().
4317 		 */
4318 		brelse(bh);
4319 		/* Validate the filesystem blocksize */
4320 		if (!sb_set_blocksize(sb, blocksize)) {
4321 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4322 					blocksize);
4323 			bh = NULL;
4324 			goto failed_mount;
4325 		}
4326 
4327 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4328 		offset = do_div(logical_sb_block, blocksize);
4329 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4330 		if (IS_ERR(bh)) {
4331 			ext4_msg(sb, KERN_ERR,
4332 			       "Can't read superblock on 2nd try");
4333 			ret = PTR_ERR(bh);
4334 			bh = NULL;
4335 			goto failed_mount;
4336 		}
4337 		es = (struct ext4_super_block *)(bh->b_data + offset);
4338 		sbi->s_es = es;
4339 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4340 			ext4_msg(sb, KERN_ERR,
4341 			       "Magic mismatch, very weird!");
4342 			goto failed_mount;
4343 		}
4344 	}
4345 
4346 	has_huge_files = ext4_has_feature_huge_file(sb);
4347 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4348 						      has_huge_files);
4349 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4350 
4351 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4352 	if (ext4_has_feature_64bit(sb)) {
4353 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4354 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4355 		    !is_power_of_2(sbi->s_desc_size)) {
4356 			ext4_msg(sb, KERN_ERR,
4357 			       "unsupported descriptor size %lu",
4358 			       sbi->s_desc_size);
4359 			goto failed_mount;
4360 		}
4361 	} else
4362 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4363 
4364 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4365 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4366 
4367 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4368 	if (sbi->s_inodes_per_block == 0)
4369 		goto cantfind_ext4;
4370 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4371 	    sbi->s_inodes_per_group > blocksize * 8) {
4372 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4373 			 sbi->s_inodes_per_group);
4374 		goto failed_mount;
4375 	}
4376 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4377 					sbi->s_inodes_per_block;
4378 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4379 	sbi->s_sbh = bh;
4380 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4381 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4382 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4383 
4384 	for (i = 0; i < 4; i++)
4385 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4386 	sbi->s_def_hash_version = es->s_def_hash_version;
4387 	if (ext4_has_feature_dir_index(sb)) {
4388 		i = le32_to_cpu(es->s_flags);
4389 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4390 			sbi->s_hash_unsigned = 3;
4391 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4392 #ifdef __CHAR_UNSIGNED__
4393 			if (!sb_rdonly(sb))
4394 				es->s_flags |=
4395 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4396 			sbi->s_hash_unsigned = 3;
4397 #else
4398 			if (!sb_rdonly(sb))
4399 				es->s_flags |=
4400 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4401 #endif
4402 		}
4403 	}
4404 
4405 	/* Handle clustersize */
4406 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4407 	if (ext4_has_feature_bigalloc(sb)) {
4408 		if (clustersize < blocksize) {
4409 			ext4_msg(sb, KERN_ERR,
4410 				 "cluster size (%d) smaller than "
4411 				 "block size (%d)", clustersize, blocksize);
4412 			goto failed_mount;
4413 		}
4414 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4415 			le32_to_cpu(es->s_log_block_size);
4416 		sbi->s_clusters_per_group =
4417 			le32_to_cpu(es->s_clusters_per_group);
4418 		if (sbi->s_clusters_per_group > blocksize * 8) {
4419 			ext4_msg(sb, KERN_ERR,
4420 				 "#clusters per group too big: %lu",
4421 				 sbi->s_clusters_per_group);
4422 			goto failed_mount;
4423 		}
4424 		if (sbi->s_blocks_per_group !=
4425 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4426 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4427 				 "clusters per group (%lu) inconsistent",
4428 				 sbi->s_blocks_per_group,
4429 				 sbi->s_clusters_per_group);
4430 			goto failed_mount;
4431 		}
4432 	} else {
4433 		if (clustersize != blocksize) {
4434 			ext4_msg(sb, KERN_ERR,
4435 				 "fragment/cluster size (%d) != "
4436 				 "block size (%d)", clustersize, blocksize);
4437 			goto failed_mount;
4438 		}
4439 		if (sbi->s_blocks_per_group > blocksize * 8) {
4440 			ext4_msg(sb, KERN_ERR,
4441 				 "#blocks per group too big: %lu",
4442 				 sbi->s_blocks_per_group);
4443 			goto failed_mount;
4444 		}
4445 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4446 		sbi->s_cluster_bits = 0;
4447 	}
4448 	sbi->s_cluster_ratio = clustersize / blocksize;
4449 
4450 	/* Do we have standard group size of clustersize * 8 blocks ? */
4451 	if (sbi->s_blocks_per_group == clustersize << 3)
4452 		set_opt2(sb, STD_GROUP_SIZE);
4453 
4454 	/*
4455 	 * Test whether we have more sectors than will fit in sector_t,
4456 	 * and whether the max offset is addressable by the page cache.
4457 	 */
4458 	err = generic_check_addressable(sb->s_blocksize_bits,
4459 					ext4_blocks_count(es));
4460 	if (err) {
4461 		ext4_msg(sb, KERN_ERR, "filesystem"
4462 			 " too large to mount safely on this system");
4463 		goto failed_mount;
4464 	}
4465 
4466 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4467 		goto cantfind_ext4;
4468 
4469 	/* check blocks count against device size */
4470 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4471 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4472 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4473 		       "exceeds size of device (%llu blocks)",
4474 		       ext4_blocks_count(es), blocks_count);
4475 		goto failed_mount;
4476 	}
4477 
4478 	/*
4479 	 * It makes no sense for the first data block to be beyond the end
4480 	 * of the filesystem.
4481 	 */
4482 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4483 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4484 			 "block %u is beyond end of filesystem (%llu)",
4485 			 le32_to_cpu(es->s_first_data_block),
4486 			 ext4_blocks_count(es));
4487 		goto failed_mount;
4488 	}
4489 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4490 	    (sbi->s_cluster_ratio == 1)) {
4491 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4492 			 "block is 0 with a 1k block and cluster size");
4493 		goto failed_mount;
4494 	}
4495 
4496 	blocks_count = (ext4_blocks_count(es) -
4497 			le32_to_cpu(es->s_first_data_block) +
4498 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4499 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4500 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4501 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4502 		       "(block count %llu, first data block %u, "
4503 		       "blocks per group %lu)", blocks_count,
4504 		       ext4_blocks_count(es),
4505 		       le32_to_cpu(es->s_first_data_block),
4506 		       EXT4_BLOCKS_PER_GROUP(sb));
4507 		goto failed_mount;
4508 	}
4509 	sbi->s_groups_count = blocks_count;
4510 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4511 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4512 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4513 	    le32_to_cpu(es->s_inodes_count)) {
4514 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4515 			 le32_to_cpu(es->s_inodes_count),
4516 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4517 		ret = -EINVAL;
4518 		goto failed_mount;
4519 	}
4520 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4521 		   EXT4_DESC_PER_BLOCK(sb);
4522 	if (ext4_has_feature_meta_bg(sb)) {
4523 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4524 			ext4_msg(sb, KERN_WARNING,
4525 				 "first meta block group too large: %u "
4526 				 "(group descriptor block count %u)",
4527 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4528 			goto failed_mount;
4529 		}
4530 	}
4531 	rcu_assign_pointer(sbi->s_group_desc,
4532 			   kvmalloc_array(db_count,
4533 					  sizeof(struct buffer_head *),
4534 					  GFP_KERNEL));
4535 	if (sbi->s_group_desc == NULL) {
4536 		ext4_msg(sb, KERN_ERR, "not enough memory");
4537 		ret = -ENOMEM;
4538 		goto failed_mount;
4539 	}
4540 
4541 	bgl_lock_init(sbi->s_blockgroup_lock);
4542 
4543 	/* Pre-read the descriptors into the buffer cache */
4544 	for (i = 0; i < db_count; i++) {
4545 		block = descriptor_loc(sb, logical_sb_block, i);
4546 		ext4_sb_breadahead_unmovable(sb, block);
4547 	}
4548 
4549 	for (i = 0; i < db_count; i++) {
4550 		struct buffer_head *bh;
4551 
4552 		block = descriptor_loc(sb, logical_sb_block, i);
4553 		bh = ext4_sb_bread_unmovable(sb, block);
4554 		if (IS_ERR(bh)) {
4555 			ext4_msg(sb, KERN_ERR,
4556 			       "can't read group descriptor %d", i);
4557 			db_count = i;
4558 			ret = PTR_ERR(bh);
4559 			goto failed_mount2;
4560 		}
4561 		rcu_read_lock();
4562 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4563 		rcu_read_unlock();
4564 	}
4565 	sbi->s_gdb_count = db_count;
4566 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4567 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4568 		ret = -EFSCORRUPTED;
4569 		goto failed_mount2;
4570 	}
4571 
4572 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4573 	spin_lock_init(&sbi->s_error_lock);
4574 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4575 
4576 	/* Register extent status tree shrinker */
4577 	if (ext4_es_register_shrinker(sbi))
4578 		goto failed_mount3;
4579 
4580 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4581 	sbi->s_extent_max_zeroout_kb = 32;
4582 
4583 	/*
4584 	 * set up enough so that it can read an inode
4585 	 */
4586 	sb->s_op = &ext4_sops;
4587 	sb->s_export_op = &ext4_export_ops;
4588 	sb->s_xattr = ext4_xattr_handlers;
4589 #ifdef CONFIG_FS_ENCRYPTION
4590 	sb->s_cop = &ext4_cryptops;
4591 #endif
4592 #ifdef CONFIG_FS_VERITY
4593 	sb->s_vop = &ext4_verityops;
4594 #endif
4595 #ifdef CONFIG_QUOTA
4596 	sb->dq_op = &ext4_quota_operations;
4597 	if (ext4_has_feature_quota(sb))
4598 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4599 	else
4600 		sb->s_qcop = &ext4_qctl_operations;
4601 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4602 #endif
4603 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4604 
4605 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4606 	mutex_init(&sbi->s_orphan_lock);
4607 
4608 	/* Initialize fast commit stuff */
4609 	atomic_set(&sbi->s_fc_subtid, 0);
4610 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4611 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4612 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4613 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4614 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4615 	sbi->s_fc_bytes = 0;
4616 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4617 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4618 	spin_lock_init(&sbi->s_fc_lock);
4619 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4620 	sbi->s_fc_replay_state.fc_regions = NULL;
4621 	sbi->s_fc_replay_state.fc_regions_size = 0;
4622 	sbi->s_fc_replay_state.fc_regions_used = 0;
4623 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4624 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4625 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4626 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4627 
4628 	sb->s_root = NULL;
4629 
4630 	needs_recovery = (es->s_last_orphan != 0 ||
4631 			  ext4_has_feature_orphan_present(sb) ||
4632 			  ext4_has_feature_journal_needs_recovery(sb));
4633 
4634 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4635 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4636 			goto failed_mount3a;
4637 
4638 	/*
4639 	 * The first inode we look at is the journal inode.  Don't try
4640 	 * root first: it may be modified in the journal!
4641 	 */
4642 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4643 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4644 		if (err)
4645 			goto failed_mount3a;
4646 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4647 		   ext4_has_feature_journal_needs_recovery(sb)) {
4648 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4649 		       "suppressed and not mounted read-only");
4650 		goto failed_mount_wq;
4651 	} else {
4652 		/* Nojournal mode, all journal mount options are illegal */
4653 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4654 			ext4_msg(sb, KERN_ERR, "can't mount with "
4655 				 "journal_checksum, fs mounted w/o journal");
4656 			goto failed_mount_wq;
4657 		}
4658 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4659 			ext4_msg(sb, KERN_ERR, "can't mount with "
4660 				 "journal_async_commit, fs mounted w/o journal");
4661 			goto failed_mount_wq;
4662 		}
4663 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4664 			ext4_msg(sb, KERN_ERR, "can't mount with "
4665 				 "commit=%lu, fs mounted w/o journal",
4666 				 sbi->s_commit_interval / HZ);
4667 			goto failed_mount_wq;
4668 		}
4669 		if (EXT4_MOUNT_DATA_FLAGS &
4670 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4671 			ext4_msg(sb, KERN_ERR, "can't mount with "
4672 				 "data=, fs mounted w/o journal");
4673 			goto failed_mount_wq;
4674 		}
4675 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4676 		clear_opt(sb, JOURNAL_CHECKSUM);
4677 		clear_opt(sb, DATA_FLAGS);
4678 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4679 		sbi->s_journal = NULL;
4680 		needs_recovery = 0;
4681 		goto no_journal;
4682 	}
4683 
4684 	if (ext4_has_feature_64bit(sb) &&
4685 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4686 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4687 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4688 		goto failed_mount_wq;
4689 	}
4690 
4691 	if (!set_journal_csum_feature_set(sb)) {
4692 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4693 			 "feature set");
4694 		goto failed_mount_wq;
4695 	}
4696 
4697 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4698 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4699 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4700 		ext4_msg(sb, KERN_ERR,
4701 			"Failed to set fast commit journal feature");
4702 		goto failed_mount_wq;
4703 	}
4704 
4705 	/* We have now updated the journal if required, so we can
4706 	 * validate the data journaling mode. */
4707 	switch (test_opt(sb, DATA_FLAGS)) {
4708 	case 0:
4709 		/* No mode set, assume a default based on the journal
4710 		 * capabilities: ORDERED_DATA if the journal can
4711 		 * cope, else JOURNAL_DATA
4712 		 */
4713 		if (jbd2_journal_check_available_features
4714 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4715 			set_opt(sb, ORDERED_DATA);
4716 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4717 		} else {
4718 			set_opt(sb, JOURNAL_DATA);
4719 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4720 		}
4721 		break;
4722 
4723 	case EXT4_MOUNT_ORDERED_DATA:
4724 	case EXT4_MOUNT_WRITEBACK_DATA:
4725 		if (!jbd2_journal_check_available_features
4726 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4727 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4728 			       "requested data journaling mode");
4729 			goto failed_mount_wq;
4730 		}
4731 		break;
4732 	default:
4733 		break;
4734 	}
4735 
4736 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4737 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4738 		ext4_msg(sb, KERN_ERR, "can't mount with "
4739 			"journal_async_commit in data=ordered mode");
4740 		goto failed_mount_wq;
4741 	}
4742 
4743 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4744 
4745 	sbi->s_journal->j_submit_inode_data_buffers =
4746 		ext4_journal_submit_inode_data_buffers;
4747 	sbi->s_journal->j_finish_inode_data_buffers =
4748 		ext4_journal_finish_inode_data_buffers;
4749 
4750 no_journal:
4751 	if (!test_opt(sb, NO_MBCACHE)) {
4752 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4753 		if (!sbi->s_ea_block_cache) {
4754 			ext4_msg(sb, KERN_ERR,
4755 				 "Failed to create ea_block_cache");
4756 			goto failed_mount_wq;
4757 		}
4758 
4759 		if (ext4_has_feature_ea_inode(sb)) {
4760 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4761 			if (!sbi->s_ea_inode_cache) {
4762 				ext4_msg(sb, KERN_ERR,
4763 					 "Failed to create ea_inode_cache");
4764 				goto failed_mount_wq;
4765 			}
4766 		}
4767 	}
4768 
4769 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4770 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4771 		goto failed_mount_wq;
4772 	}
4773 
4774 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4775 	    !ext4_has_feature_encrypt(sb)) {
4776 		ext4_set_feature_encrypt(sb);
4777 		ext4_commit_super(sb);
4778 	}
4779 
4780 	/*
4781 	 * Get the # of file system overhead blocks from the
4782 	 * superblock if present.
4783 	 */
4784 	if (es->s_overhead_clusters)
4785 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4786 	else {
4787 		err = ext4_calculate_overhead(sb);
4788 		if (err)
4789 			goto failed_mount_wq;
4790 	}
4791 
4792 	/*
4793 	 * The maximum number of concurrent works can be high and
4794 	 * concurrency isn't really necessary.  Limit it to 1.
4795 	 */
4796 	EXT4_SB(sb)->rsv_conversion_wq =
4797 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4798 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4799 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4800 		ret = -ENOMEM;
4801 		goto failed_mount4;
4802 	}
4803 
4804 	/*
4805 	 * The jbd2_journal_load will have done any necessary log recovery,
4806 	 * so we can safely mount the rest of the filesystem now.
4807 	 */
4808 
4809 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4810 	if (IS_ERR(root)) {
4811 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4812 		ret = PTR_ERR(root);
4813 		root = NULL;
4814 		goto failed_mount4;
4815 	}
4816 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4817 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4818 		iput(root);
4819 		goto failed_mount4;
4820 	}
4821 
4822 	sb->s_root = d_make_root(root);
4823 	if (!sb->s_root) {
4824 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4825 		ret = -ENOMEM;
4826 		goto failed_mount4;
4827 	}
4828 
4829 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4830 	if (ret == -EROFS) {
4831 		sb->s_flags |= SB_RDONLY;
4832 		ret = 0;
4833 	} else if (ret)
4834 		goto failed_mount4a;
4835 
4836 	ext4_set_resv_clusters(sb);
4837 
4838 	if (test_opt(sb, BLOCK_VALIDITY)) {
4839 		err = ext4_setup_system_zone(sb);
4840 		if (err) {
4841 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4842 				 "zone (%d)", err);
4843 			goto failed_mount4a;
4844 		}
4845 	}
4846 	ext4_fc_replay_cleanup(sb);
4847 
4848 	ext4_ext_init(sb);
4849 
4850 	/*
4851 	 * Enable optimize_scan if number of groups is > threshold. This can be
4852 	 * turned off by passing "mb_optimize_scan=0". This can also be
4853 	 * turned on forcefully by passing "mb_optimize_scan=1".
4854 	 */
4855 	if (parsed_opts.mb_optimize_scan == 1)
4856 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4857 	else if (parsed_opts.mb_optimize_scan == 0)
4858 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
4859 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4860 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4861 
4862 	err = ext4_mb_init(sb);
4863 	if (err) {
4864 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4865 			 err);
4866 		goto failed_mount5;
4867 	}
4868 
4869 	/*
4870 	 * We can only set up the journal commit callback once
4871 	 * mballoc is initialized
4872 	 */
4873 	if (sbi->s_journal)
4874 		sbi->s_journal->j_commit_callback =
4875 			ext4_journal_commit_callback;
4876 
4877 	block = ext4_count_free_clusters(sb);
4878 	ext4_free_blocks_count_set(sbi->s_es,
4879 				   EXT4_C2B(sbi, block));
4880 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4881 				  GFP_KERNEL);
4882 	if (!err) {
4883 		unsigned long freei = ext4_count_free_inodes(sb);
4884 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4885 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4886 					  GFP_KERNEL);
4887 	}
4888 	/*
4889 	 * Update the checksum after updating free space/inode
4890 	 * counters.  Otherwise the superblock can have an incorrect
4891 	 * checksum in the buffer cache until it is written out and
4892 	 * e2fsprogs programs trying to open a file system immediately
4893 	 * after it is mounted can fail.
4894 	 */
4895 	ext4_superblock_csum_set(sb);
4896 	if (!err)
4897 		err = percpu_counter_init(&sbi->s_dirs_counter,
4898 					  ext4_count_dirs(sb), GFP_KERNEL);
4899 	if (!err)
4900 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4901 					  GFP_KERNEL);
4902 	if (!err)
4903 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4904 					  GFP_KERNEL);
4905 	if (!err)
4906 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4907 
4908 	if (err) {
4909 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4910 		goto failed_mount6;
4911 	}
4912 
4913 	if (ext4_has_feature_flex_bg(sb))
4914 		if (!ext4_fill_flex_info(sb)) {
4915 			ext4_msg(sb, KERN_ERR,
4916 			       "unable to initialize "
4917 			       "flex_bg meta info!");
4918 			ret = -ENOMEM;
4919 			goto failed_mount6;
4920 		}
4921 
4922 	err = ext4_register_li_request(sb, first_not_zeroed);
4923 	if (err)
4924 		goto failed_mount6;
4925 
4926 	err = ext4_register_sysfs(sb);
4927 	if (err)
4928 		goto failed_mount7;
4929 
4930 	err = ext4_init_orphan_info(sb);
4931 	if (err)
4932 		goto failed_mount8;
4933 #ifdef CONFIG_QUOTA
4934 	/* Enable quota usage during mount. */
4935 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4936 		err = ext4_enable_quotas(sb);
4937 		if (err)
4938 			goto failed_mount9;
4939 	}
4940 #endif  /* CONFIG_QUOTA */
4941 
4942 	/*
4943 	 * Save the original bdev mapping's wb_err value which could be
4944 	 * used to detect the metadata async write error.
4945 	 */
4946 	spin_lock_init(&sbi->s_bdev_wb_lock);
4947 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4948 				 &sbi->s_bdev_wb_err);
4949 	sb->s_bdev->bd_super = sb;
4950 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4951 	ext4_orphan_cleanup(sb, es);
4952 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4953 	if (needs_recovery) {
4954 		ext4_msg(sb, KERN_INFO, "recovery complete");
4955 		err = ext4_mark_recovery_complete(sb, es);
4956 		if (err)
4957 			goto failed_mount9;
4958 	}
4959 	if (EXT4_SB(sb)->s_journal) {
4960 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4961 			descr = " journalled data mode";
4962 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4963 			descr = " ordered data mode";
4964 		else
4965 			descr = " writeback data mode";
4966 	} else
4967 		descr = "out journal";
4968 
4969 	if (test_opt(sb, DISCARD)) {
4970 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4971 		if (!blk_queue_discard(q))
4972 			ext4_msg(sb, KERN_WARNING,
4973 				 "mounting with \"discard\" option, but "
4974 				 "the device does not support discard");
4975 	}
4976 
4977 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4978 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4979 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
4980 			 (int) sizeof(sbi->s_es->s_mount_opts),
4981 			 sbi->s_es->s_mount_opts,
4982 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
4983 			 ext4_quota_mode(sb));
4984 
4985 	if (es->s_error_count)
4986 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4987 
4988 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4989 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4990 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4991 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4992 	atomic_set(&sbi->s_warning_count, 0);
4993 	atomic_set(&sbi->s_msg_count, 0);
4994 
4995 	kfree(orig_data);
4996 	return 0;
4997 
4998 cantfind_ext4:
4999 	if (!silent)
5000 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5001 	goto failed_mount;
5002 
5003 failed_mount9:
5004 	ext4_release_orphan_info(sb);
5005 failed_mount8:
5006 	ext4_unregister_sysfs(sb);
5007 	kobject_put(&sbi->s_kobj);
5008 failed_mount7:
5009 	ext4_unregister_li_request(sb);
5010 failed_mount6:
5011 	ext4_mb_release(sb);
5012 	rcu_read_lock();
5013 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5014 	if (flex_groups) {
5015 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5016 			kvfree(flex_groups[i]);
5017 		kvfree(flex_groups);
5018 	}
5019 	rcu_read_unlock();
5020 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5021 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5022 	percpu_counter_destroy(&sbi->s_dirs_counter);
5023 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5024 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5025 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5026 failed_mount5:
5027 	ext4_ext_release(sb);
5028 	ext4_release_system_zone(sb);
5029 failed_mount4a:
5030 	dput(sb->s_root);
5031 	sb->s_root = NULL;
5032 failed_mount4:
5033 	ext4_msg(sb, KERN_ERR, "mount failed");
5034 	if (EXT4_SB(sb)->rsv_conversion_wq)
5035 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5036 failed_mount_wq:
5037 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5038 	sbi->s_ea_inode_cache = NULL;
5039 
5040 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5041 	sbi->s_ea_block_cache = NULL;
5042 
5043 	if (sbi->s_journal) {
5044 		jbd2_journal_destroy(sbi->s_journal);
5045 		sbi->s_journal = NULL;
5046 	}
5047 failed_mount3a:
5048 	ext4_es_unregister_shrinker(sbi);
5049 failed_mount3:
5050 	flush_work(&sbi->s_error_work);
5051 	del_timer_sync(&sbi->s_err_report);
5052 	ext4_stop_mmpd(sbi);
5053 failed_mount2:
5054 	rcu_read_lock();
5055 	group_desc = rcu_dereference(sbi->s_group_desc);
5056 	for (i = 0; i < db_count; i++)
5057 		brelse(group_desc[i]);
5058 	kvfree(group_desc);
5059 	rcu_read_unlock();
5060 failed_mount:
5061 	if (sbi->s_chksum_driver)
5062 		crypto_free_shash(sbi->s_chksum_driver);
5063 
5064 #ifdef CONFIG_UNICODE
5065 	utf8_unload(sb->s_encoding);
5066 #endif
5067 
5068 #ifdef CONFIG_QUOTA
5069 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5070 		kfree(get_qf_name(sb, sbi, i));
5071 #endif
5072 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5073 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5074 	brelse(bh);
5075 	ext4_blkdev_remove(sbi);
5076 out_fail:
5077 	sb->s_fs_info = NULL;
5078 	kfree(sbi->s_blockgroup_lock);
5079 out_free_base:
5080 	kfree(sbi);
5081 	kfree(orig_data);
5082 	fs_put_dax(dax_dev);
5083 	return err ? err : ret;
5084 }
5085 
5086 /*
5087  * Setup any per-fs journal parameters now.  We'll do this both on
5088  * initial mount, once the journal has been initialised but before we've
5089  * done any recovery; and again on any subsequent remount.
5090  */
5091 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5092 {
5093 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5094 
5095 	journal->j_commit_interval = sbi->s_commit_interval;
5096 	journal->j_min_batch_time = sbi->s_min_batch_time;
5097 	journal->j_max_batch_time = sbi->s_max_batch_time;
5098 	ext4_fc_init(sb, journal);
5099 
5100 	write_lock(&journal->j_state_lock);
5101 	if (test_opt(sb, BARRIER))
5102 		journal->j_flags |= JBD2_BARRIER;
5103 	else
5104 		journal->j_flags &= ~JBD2_BARRIER;
5105 	if (test_opt(sb, DATA_ERR_ABORT))
5106 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5107 	else
5108 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5109 	write_unlock(&journal->j_state_lock);
5110 }
5111 
5112 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5113 					     unsigned int journal_inum)
5114 {
5115 	struct inode *journal_inode;
5116 
5117 	/*
5118 	 * Test for the existence of a valid inode on disk.  Bad things
5119 	 * happen if we iget() an unused inode, as the subsequent iput()
5120 	 * will try to delete it.
5121 	 */
5122 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5123 	if (IS_ERR(journal_inode)) {
5124 		ext4_msg(sb, KERN_ERR, "no journal found");
5125 		return NULL;
5126 	}
5127 	if (!journal_inode->i_nlink) {
5128 		make_bad_inode(journal_inode);
5129 		iput(journal_inode);
5130 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5131 		return NULL;
5132 	}
5133 
5134 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5135 		  journal_inode, journal_inode->i_size);
5136 	if (!S_ISREG(journal_inode->i_mode)) {
5137 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5138 		iput(journal_inode);
5139 		return NULL;
5140 	}
5141 	return journal_inode;
5142 }
5143 
5144 static journal_t *ext4_get_journal(struct super_block *sb,
5145 				   unsigned int journal_inum)
5146 {
5147 	struct inode *journal_inode;
5148 	journal_t *journal;
5149 
5150 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5151 		return NULL;
5152 
5153 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5154 	if (!journal_inode)
5155 		return NULL;
5156 
5157 	journal = jbd2_journal_init_inode(journal_inode);
5158 	if (!journal) {
5159 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5160 		iput(journal_inode);
5161 		return NULL;
5162 	}
5163 	journal->j_private = sb;
5164 	ext4_init_journal_params(sb, journal);
5165 	return journal;
5166 }
5167 
5168 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5169 				       dev_t j_dev)
5170 {
5171 	struct buffer_head *bh;
5172 	journal_t *journal;
5173 	ext4_fsblk_t start;
5174 	ext4_fsblk_t len;
5175 	int hblock, blocksize;
5176 	ext4_fsblk_t sb_block;
5177 	unsigned long offset;
5178 	struct ext4_super_block *es;
5179 	struct block_device *bdev;
5180 
5181 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5182 		return NULL;
5183 
5184 	bdev = ext4_blkdev_get(j_dev, sb);
5185 	if (bdev == NULL)
5186 		return NULL;
5187 
5188 	blocksize = sb->s_blocksize;
5189 	hblock = bdev_logical_block_size(bdev);
5190 	if (blocksize < hblock) {
5191 		ext4_msg(sb, KERN_ERR,
5192 			"blocksize too small for journal device");
5193 		goto out_bdev;
5194 	}
5195 
5196 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5197 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5198 	set_blocksize(bdev, blocksize);
5199 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5200 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5201 		       "external journal");
5202 		goto out_bdev;
5203 	}
5204 
5205 	es = (struct ext4_super_block *) (bh->b_data + offset);
5206 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5207 	    !(le32_to_cpu(es->s_feature_incompat) &
5208 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5209 		ext4_msg(sb, KERN_ERR, "external journal has "
5210 					"bad superblock");
5211 		brelse(bh);
5212 		goto out_bdev;
5213 	}
5214 
5215 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5216 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5217 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5218 		ext4_msg(sb, KERN_ERR, "external journal has "
5219 				       "corrupt superblock");
5220 		brelse(bh);
5221 		goto out_bdev;
5222 	}
5223 
5224 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5225 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5226 		brelse(bh);
5227 		goto out_bdev;
5228 	}
5229 
5230 	len = ext4_blocks_count(es);
5231 	start = sb_block + 1;
5232 	brelse(bh);	/* we're done with the superblock */
5233 
5234 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5235 					start, len, blocksize);
5236 	if (!journal) {
5237 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5238 		goto out_bdev;
5239 	}
5240 	journal->j_private = sb;
5241 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5242 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5243 		goto out_journal;
5244 	}
5245 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5246 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5247 					"user (unsupported) - %d",
5248 			be32_to_cpu(journal->j_superblock->s_nr_users));
5249 		goto out_journal;
5250 	}
5251 	EXT4_SB(sb)->s_journal_bdev = bdev;
5252 	ext4_init_journal_params(sb, journal);
5253 	return journal;
5254 
5255 out_journal:
5256 	jbd2_journal_destroy(journal);
5257 out_bdev:
5258 	ext4_blkdev_put(bdev);
5259 	return NULL;
5260 }
5261 
5262 static int ext4_load_journal(struct super_block *sb,
5263 			     struct ext4_super_block *es,
5264 			     unsigned long journal_devnum)
5265 {
5266 	journal_t *journal;
5267 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5268 	dev_t journal_dev;
5269 	int err = 0;
5270 	int really_read_only;
5271 	int journal_dev_ro;
5272 
5273 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5274 		return -EFSCORRUPTED;
5275 
5276 	if (journal_devnum &&
5277 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5278 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5279 			"numbers have changed");
5280 		journal_dev = new_decode_dev(journal_devnum);
5281 	} else
5282 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5283 
5284 	if (journal_inum && journal_dev) {
5285 		ext4_msg(sb, KERN_ERR,
5286 			 "filesystem has both journal inode and journal device!");
5287 		return -EINVAL;
5288 	}
5289 
5290 	if (journal_inum) {
5291 		journal = ext4_get_journal(sb, journal_inum);
5292 		if (!journal)
5293 			return -EINVAL;
5294 	} else {
5295 		journal = ext4_get_dev_journal(sb, journal_dev);
5296 		if (!journal)
5297 			return -EINVAL;
5298 	}
5299 
5300 	journal_dev_ro = bdev_read_only(journal->j_dev);
5301 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5302 
5303 	if (journal_dev_ro && !sb_rdonly(sb)) {
5304 		ext4_msg(sb, KERN_ERR,
5305 			 "journal device read-only, try mounting with '-o ro'");
5306 		err = -EROFS;
5307 		goto err_out;
5308 	}
5309 
5310 	/*
5311 	 * Are we loading a blank journal or performing recovery after a
5312 	 * crash?  For recovery, we need to check in advance whether we
5313 	 * can get read-write access to the device.
5314 	 */
5315 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5316 		if (sb_rdonly(sb)) {
5317 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5318 					"required on readonly filesystem");
5319 			if (really_read_only) {
5320 				ext4_msg(sb, KERN_ERR, "write access "
5321 					"unavailable, cannot proceed "
5322 					"(try mounting with noload)");
5323 				err = -EROFS;
5324 				goto err_out;
5325 			}
5326 			ext4_msg(sb, KERN_INFO, "write access will "
5327 			       "be enabled during recovery");
5328 		}
5329 	}
5330 
5331 	if (!(journal->j_flags & JBD2_BARRIER))
5332 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5333 
5334 	if (!ext4_has_feature_journal_needs_recovery(sb))
5335 		err = jbd2_journal_wipe(journal, !really_read_only);
5336 	if (!err) {
5337 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5338 		if (save)
5339 			memcpy(save, ((char *) es) +
5340 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5341 		err = jbd2_journal_load(journal);
5342 		if (save)
5343 			memcpy(((char *) es) + EXT4_S_ERR_START,
5344 			       save, EXT4_S_ERR_LEN);
5345 		kfree(save);
5346 	}
5347 
5348 	if (err) {
5349 		ext4_msg(sb, KERN_ERR, "error loading journal");
5350 		goto err_out;
5351 	}
5352 
5353 	EXT4_SB(sb)->s_journal = journal;
5354 	err = ext4_clear_journal_err(sb, es);
5355 	if (err) {
5356 		EXT4_SB(sb)->s_journal = NULL;
5357 		jbd2_journal_destroy(journal);
5358 		return err;
5359 	}
5360 
5361 	if (!really_read_only && journal_devnum &&
5362 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5363 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5364 
5365 		/* Make sure we flush the recovery flag to disk. */
5366 		ext4_commit_super(sb);
5367 	}
5368 
5369 	return 0;
5370 
5371 err_out:
5372 	jbd2_journal_destroy(journal);
5373 	return err;
5374 }
5375 
5376 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5377 static void ext4_update_super(struct super_block *sb)
5378 {
5379 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5380 	struct ext4_super_block *es = sbi->s_es;
5381 	struct buffer_head *sbh = sbi->s_sbh;
5382 
5383 	lock_buffer(sbh);
5384 	/*
5385 	 * If the file system is mounted read-only, don't update the
5386 	 * superblock write time.  This avoids updating the superblock
5387 	 * write time when we are mounting the root file system
5388 	 * read/only but we need to replay the journal; at that point,
5389 	 * for people who are east of GMT and who make their clock
5390 	 * tick in localtime for Windows bug-for-bug compatibility,
5391 	 * the clock is set in the future, and this will cause e2fsck
5392 	 * to complain and force a full file system check.
5393 	 */
5394 	if (!(sb->s_flags & SB_RDONLY))
5395 		ext4_update_tstamp(es, s_wtime);
5396 	es->s_kbytes_written =
5397 		cpu_to_le64(sbi->s_kbytes_written +
5398 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5399 		      sbi->s_sectors_written_start) >> 1));
5400 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5401 		ext4_free_blocks_count_set(es,
5402 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5403 				&sbi->s_freeclusters_counter)));
5404 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5405 		es->s_free_inodes_count =
5406 			cpu_to_le32(percpu_counter_sum_positive(
5407 				&sbi->s_freeinodes_counter));
5408 	/* Copy error information to the on-disk superblock */
5409 	spin_lock(&sbi->s_error_lock);
5410 	if (sbi->s_add_error_count > 0) {
5411 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5412 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5413 			__ext4_update_tstamp(&es->s_first_error_time,
5414 					     &es->s_first_error_time_hi,
5415 					     sbi->s_first_error_time);
5416 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5417 				sizeof(es->s_first_error_func));
5418 			es->s_first_error_line =
5419 				cpu_to_le32(sbi->s_first_error_line);
5420 			es->s_first_error_ino =
5421 				cpu_to_le32(sbi->s_first_error_ino);
5422 			es->s_first_error_block =
5423 				cpu_to_le64(sbi->s_first_error_block);
5424 			es->s_first_error_errcode =
5425 				ext4_errno_to_code(sbi->s_first_error_code);
5426 		}
5427 		__ext4_update_tstamp(&es->s_last_error_time,
5428 				     &es->s_last_error_time_hi,
5429 				     sbi->s_last_error_time);
5430 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5431 			sizeof(es->s_last_error_func));
5432 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5433 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5434 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5435 		es->s_last_error_errcode =
5436 				ext4_errno_to_code(sbi->s_last_error_code);
5437 		/*
5438 		 * Start the daily error reporting function if it hasn't been
5439 		 * started already
5440 		 */
5441 		if (!es->s_error_count)
5442 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5443 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5444 		sbi->s_add_error_count = 0;
5445 	}
5446 	spin_unlock(&sbi->s_error_lock);
5447 
5448 	ext4_superblock_csum_set(sb);
5449 	unlock_buffer(sbh);
5450 }
5451 
5452 static int ext4_commit_super(struct super_block *sb)
5453 {
5454 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5455 	int error = 0;
5456 
5457 	if (!sbh)
5458 		return -EINVAL;
5459 	if (block_device_ejected(sb))
5460 		return -ENODEV;
5461 
5462 	ext4_update_super(sb);
5463 
5464 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5465 		/*
5466 		 * Oh, dear.  A previous attempt to write the
5467 		 * superblock failed.  This could happen because the
5468 		 * USB device was yanked out.  Or it could happen to
5469 		 * be a transient write error and maybe the block will
5470 		 * be remapped.  Nothing we can do but to retry the
5471 		 * write and hope for the best.
5472 		 */
5473 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5474 		       "superblock detected");
5475 		clear_buffer_write_io_error(sbh);
5476 		set_buffer_uptodate(sbh);
5477 	}
5478 	BUFFER_TRACE(sbh, "marking dirty");
5479 	mark_buffer_dirty(sbh);
5480 	error = __sync_dirty_buffer(sbh,
5481 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5482 	if (buffer_write_io_error(sbh)) {
5483 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5484 		       "superblock");
5485 		clear_buffer_write_io_error(sbh);
5486 		set_buffer_uptodate(sbh);
5487 	}
5488 	return error;
5489 }
5490 
5491 /*
5492  * Have we just finished recovery?  If so, and if we are mounting (or
5493  * remounting) the filesystem readonly, then we will end up with a
5494  * consistent fs on disk.  Record that fact.
5495  */
5496 static int ext4_mark_recovery_complete(struct super_block *sb,
5497 				       struct ext4_super_block *es)
5498 {
5499 	int err;
5500 	journal_t *journal = EXT4_SB(sb)->s_journal;
5501 
5502 	if (!ext4_has_feature_journal(sb)) {
5503 		if (journal != NULL) {
5504 			ext4_error(sb, "Journal got removed while the fs was "
5505 				   "mounted!");
5506 			return -EFSCORRUPTED;
5507 		}
5508 		return 0;
5509 	}
5510 	jbd2_journal_lock_updates(journal);
5511 	err = jbd2_journal_flush(journal, 0);
5512 	if (err < 0)
5513 		goto out;
5514 
5515 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5516 	    ext4_has_feature_orphan_present(sb))) {
5517 		if (!ext4_orphan_file_empty(sb)) {
5518 			ext4_error(sb, "Orphan file not empty on read-only fs.");
5519 			err = -EFSCORRUPTED;
5520 			goto out;
5521 		}
5522 		ext4_clear_feature_journal_needs_recovery(sb);
5523 		ext4_clear_feature_orphan_present(sb);
5524 		ext4_commit_super(sb);
5525 	}
5526 out:
5527 	jbd2_journal_unlock_updates(journal);
5528 	return err;
5529 }
5530 
5531 /*
5532  * If we are mounting (or read-write remounting) a filesystem whose journal
5533  * has recorded an error from a previous lifetime, move that error to the
5534  * main filesystem now.
5535  */
5536 static int ext4_clear_journal_err(struct super_block *sb,
5537 				   struct ext4_super_block *es)
5538 {
5539 	journal_t *journal;
5540 	int j_errno;
5541 	const char *errstr;
5542 
5543 	if (!ext4_has_feature_journal(sb)) {
5544 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5545 		return -EFSCORRUPTED;
5546 	}
5547 
5548 	journal = EXT4_SB(sb)->s_journal;
5549 
5550 	/*
5551 	 * Now check for any error status which may have been recorded in the
5552 	 * journal by a prior ext4_error() or ext4_abort()
5553 	 */
5554 
5555 	j_errno = jbd2_journal_errno(journal);
5556 	if (j_errno) {
5557 		char nbuf[16];
5558 
5559 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5560 		ext4_warning(sb, "Filesystem error recorded "
5561 			     "from previous mount: %s", errstr);
5562 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5563 
5564 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5565 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5566 		ext4_commit_super(sb);
5567 
5568 		jbd2_journal_clear_err(journal);
5569 		jbd2_journal_update_sb_errno(journal);
5570 	}
5571 	return 0;
5572 }
5573 
5574 /*
5575  * Force the running and committing transactions to commit,
5576  * and wait on the commit.
5577  */
5578 int ext4_force_commit(struct super_block *sb)
5579 {
5580 	journal_t *journal;
5581 
5582 	if (sb_rdonly(sb))
5583 		return 0;
5584 
5585 	journal = EXT4_SB(sb)->s_journal;
5586 	return ext4_journal_force_commit(journal);
5587 }
5588 
5589 static int ext4_sync_fs(struct super_block *sb, int wait)
5590 {
5591 	int ret = 0;
5592 	tid_t target;
5593 	bool needs_barrier = false;
5594 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5595 
5596 	if (unlikely(ext4_forced_shutdown(sbi)))
5597 		return 0;
5598 
5599 	trace_ext4_sync_fs(sb, wait);
5600 	flush_workqueue(sbi->rsv_conversion_wq);
5601 	/*
5602 	 * Writeback quota in non-journalled quota case - journalled quota has
5603 	 * no dirty dquots
5604 	 */
5605 	dquot_writeback_dquots(sb, -1);
5606 	/*
5607 	 * Data writeback is possible w/o journal transaction, so barrier must
5608 	 * being sent at the end of the function. But we can skip it if
5609 	 * transaction_commit will do it for us.
5610 	 */
5611 	if (sbi->s_journal) {
5612 		target = jbd2_get_latest_transaction(sbi->s_journal);
5613 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5614 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5615 			needs_barrier = true;
5616 
5617 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5618 			if (wait)
5619 				ret = jbd2_log_wait_commit(sbi->s_journal,
5620 							   target);
5621 		}
5622 	} else if (wait && test_opt(sb, BARRIER))
5623 		needs_barrier = true;
5624 	if (needs_barrier) {
5625 		int err;
5626 		err = blkdev_issue_flush(sb->s_bdev);
5627 		if (!ret)
5628 			ret = err;
5629 	}
5630 
5631 	return ret;
5632 }
5633 
5634 /*
5635  * LVM calls this function before a (read-only) snapshot is created.  This
5636  * gives us a chance to flush the journal completely and mark the fs clean.
5637  *
5638  * Note that only this function cannot bring a filesystem to be in a clean
5639  * state independently. It relies on upper layer to stop all data & metadata
5640  * modifications.
5641  */
5642 static int ext4_freeze(struct super_block *sb)
5643 {
5644 	int error = 0;
5645 	journal_t *journal;
5646 
5647 	if (sb_rdonly(sb))
5648 		return 0;
5649 
5650 	journal = EXT4_SB(sb)->s_journal;
5651 
5652 	if (journal) {
5653 		/* Now we set up the journal barrier. */
5654 		jbd2_journal_lock_updates(journal);
5655 
5656 		/*
5657 		 * Don't clear the needs_recovery flag if we failed to
5658 		 * flush the journal.
5659 		 */
5660 		error = jbd2_journal_flush(journal, 0);
5661 		if (error < 0)
5662 			goto out;
5663 
5664 		/* Journal blocked and flushed, clear needs_recovery flag. */
5665 		ext4_clear_feature_journal_needs_recovery(sb);
5666 		if (ext4_orphan_file_empty(sb))
5667 			ext4_clear_feature_orphan_present(sb);
5668 	}
5669 
5670 	error = ext4_commit_super(sb);
5671 out:
5672 	if (journal)
5673 		/* we rely on upper layer to stop further updates */
5674 		jbd2_journal_unlock_updates(journal);
5675 	return error;
5676 }
5677 
5678 /*
5679  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5680  * flag here, even though the filesystem is not technically dirty yet.
5681  */
5682 static int ext4_unfreeze(struct super_block *sb)
5683 {
5684 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5685 		return 0;
5686 
5687 	if (EXT4_SB(sb)->s_journal) {
5688 		/* Reset the needs_recovery flag before the fs is unlocked. */
5689 		ext4_set_feature_journal_needs_recovery(sb);
5690 		if (ext4_has_feature_orphan_file(sb))
5691 			ext4_set_feature_orphan_present(sb);
5692 	}
5693 
5694 	ext4_commit_super(sb);
5695 	return 0;
5696 }
5697 
5698 /*
5699  * Structure to save mount options for ext4_remount's benefit
5700  */
5701 struct ext4_mount_options {
5702 	unsigned long s_mount_opt;
5703 	unsigned long s_mount_opt2;
5704 	kuid_t s_resuid;
5705 	kgid_t s_resgid;
5706 	unsigned long s_commit_interval;
5707 	u32 s_min_batch_time, s_max_batch_time;
5708 #ifdef CONFIG_QUOTA
5709 	int s_jquota_fmt;
5710 	char *s_qf_names[EXT4_MAXQUOTAS];
5711 #endif
5712 };
5713 
5714 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5715 {
5716 	struct ext4_super_block *es;
5717 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5718 	unsigned long old_sb_flags, vfs_flags;
5719 	struct ext4_mount_options old_opts;
5720 	int enable_quota = 0;
5721 	ext4_group_t g;
5722 	int err = 0;
5723 #ifdef CONFIG_QUOTA
5724 	int i, j;
5725 	char *to_free[EXT4_MAXQUOTAS];
5726 #endif
5727 	char *orig_data = kstrdup(data, GFP_KERNEL);
5728 	struct ext4_parsed_options parsed_opts;
5729 
5730 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5731 	parsed_opts.journal_devnum = 0;
5732 
5733 	if (data && !orig_data)
5734 		return -ENOMEM;
5735 
5736 	/* Store the original options */
5737 	old_sb_flags = sb->s_flags;
5738 	old_opts.s_mount_opt = sbi->s_mount_opt;
5739 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5740 	old_opts.s_resuid = sbi->s_resuid;
5741 	old_opts.s_resgid = sbi->s_resgid;
5742 	old_opts.s_commit_interval = sbi->s_commit_interval;
5743 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5744 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5745 #ifdef CONFIG_QUOTA
5746 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5747 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5748 		if (sbi->s_qf_names[i]) {
5749 			char *qf_name = get_qf_name(sb, sbi, i);
5750 
5751 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5752 			if (!old_opts.s_qf_names[i]) {
5753 				for (j = 0; j < i; j++)
5754 					kfree(old_opts.s_qf_names[j]);
5755 				kfree(orig_data);
5756 				return -ENOMEM;
5757 			}
5758 		} else
5759 			old_opts.s_qf_names[i] = NULL;
5760 #endif
5761 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5762 		parsed_opts.journal_ioprio =
5763 			sbi->s_journal->j_task->io_context->ioprio;
5764 
5765 	/*
5766 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5767 	 * either way we need to make sure it matches in both *flags and
5768 	 * s_flags. Copy those selected flags from *flags to s_flags
5769 	 */
5770 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5771 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5772 
5773 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5774 		err = -EINVAL;
5775 		goto restore_opts;
5776 	}
5777 
5778 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5779 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5780 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5781 			 "during remount not supported; ignoring");
5782 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5783 	}
5784 
5785 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5786 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5787 			ext4_msg(sb, KERN_ERR, "can't mount with "
5788 				 "both data=journal and delalloc");
5789 			err = -EINVAL;
5790 			goto restore_opts;
5791 		}
5792 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5793 			ext4_msg(sb, KERN_ERR, "can't mount with "
5794 				 "both data=journal and dioread_nolock");
5795 			err = -EINVAL;
5796 			goto restore_opts;
5797 		}
5798 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5799 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5800 			ext4_msg(sb, KERN_ERR, "can't mount with "
5801 				"journal_async_commit in data=ordered mode");
5802 			err = -EINVAL;
5803 			goto restore_opts;
5804 		}
5805 	}
5806 
5807 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5808 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5809 		err = -EINVAL;
5810 		goto restore_opts;
5811 	}
5812 
5813 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5814 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5815 
5816 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5817 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5818 
5819 	es = sbi->s_es;
5820 
5821 	if (sbi->s_journal) {
5822 		ext4_init_journal_params(sb, sbi->s_journal);
5823 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5824 	}
5825 
5826 	/* Flush outstanding errors before changing fs state */
5827 	flush_work(&sbi->s_error_work);
5828 
5829 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5830 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5831 			err = -EROFS;
5832 			goto restore_opts;
5833 		}
5834 
5835 		if (*flags & SB_RDONLY) {
5836 			err = sync_filesystem(sb);
5837 			if (err < 0)
5838 				goto restore_opts;
5839 			err = dquot_suspend(sb, -1);
5840 			if (err < 0)
5841 				goto restore_opts;
5842 
5843 			/*
5844 			 * First of all, the unconditional stuff we have to do
5845 			 * to disable replay of the journal when we next remount
5846 			 */
5847 			sb->s_flags |= SB_RDONLY;
5848 
5849 			/*
5850 			 * OK, test if we are remounting a valid rw partition
5851 			 * readonly, and if so set the rdonly flag and then
5852 			 * mark the partition as valid again.
5853 			 */
5854 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5855 			    (sbi->s_mount_state & EXT4_VALID_FS))
5856 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5857 
5858 			if (sbi->s_journal) {
5859 				/*
5860 				 * We let remount-ro finish even if marking fs
5861 				 * as clean failed...
5862 				 */
5863 				ext4_mark_recovery_complete(sb, es);
5864 			}
5865 		} else {
5866 			/* Make sure we can mount this feature set readwrite */
5867 			if (ext4_has_feature_readonly(sb) ||
5868 			    !ext4_feature_set_ok(sb, 0)) {
5869 				err = -EROFS;
5870 				goto restore_opts;
5871 			}
5872 			/*
5873 			 * Make sure the group descriptor checksums
5874 			 * are sane.  If they aren't, refuse to remount r/w.
5875 			 */
5876 			for (g = 0; g < sbi->s_groups_count; g++) {
5877 				struct ext4_group_desc *gdp =
5878 					ext4_get_group_desc(sb, g, NULL);
5879 
5880 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5881 					ext4_msg(sb, KERN_ERR,
5882 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5883 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5884 					       le16_to_cpu(gdp->bg_checksum));
5885 					err = -EFSBADCRC;
5886 					goto restore_opts;
5887 				}
5888 			}
5889 
5890 			/*
5891 			 * If we have an unprocessed orphan list hanging
5892 			 * around from a previously readonly bdev mount,
5893 			 * require a full umount/remount for now.
5894 			 */
5895 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5896 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5897 				       "remount RDWR because of unprocessed "
5898 				       "orphan inode list.  Please "
5899 				       "umount/remount instead");
5900 				err = -EINVAL;
5901 				goto restore_opts;
5902 			}
5903 
5904 			/*
5905 			 * Mounting a RDONLY partition read-write, so reread
5906 			 * and store the current valid flag.  (It may have
5907 			 * been changed by e2fsck since we originally mounted
5908 			 * the partition.)
5909 			 */
5910 			if (sbi->s_journal) {
5911 				err = ext4_clear_journal_err(sb, es);
5912 				if (err)
5913 					goto restore_opts;
5914 			}
5915 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5916 
5917 			err = ext4_setup_super(sb, es, 0);
5918 			if (err)
5919 				goto restore_opts;
5920 
5921 			sb->s_flags &= ~SB_RDONLY;
5922 			if (ext4_has_feature_mmp(sb))
5923 				if (ext4_multi_mount_protect(sb,
5924 						le64_to_cpu(es->s_mmp_block))) {
5925 					err = -EROFS;
5926 					goto restore_opts;
5927 				}
5928 			enable_quota = 1;
5929 		}
5930 	}
5931 
5932 	/*
5933 	 * Reinitialize lazy itable initialization thread based on
5934 	 * current settings
5935 	 */
5936 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5937 		ext4_unregister_li_request(sb);
5938 	else {
5939 		ext4_group_t first_not_zeroed;
5940 		first_not_zeroed = ext4_has_uninit_itable(sb);
5941 		ext4_register_li_request(sb, first_not_zeroed);
5942 	}
5943 
5944 	/*
5945 	 * Handle creation of system zone data early because it can fail.
5946 	 * Releasing of existing data is done when we are sure remount will
5947 	 * succeed.
5948 	 */
5949 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5950 		err = ext4_setup_system_zone(sb);
5951 		if (err)
5952 			goto restore_opts;
5953 	}
5954 
5955 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5956 		err = ext4_commit_super(sb);
5957 		if (err)
5958 			goto restore_opts;
5959 	}
5960 
5961 #ifdef CONFIG_QUOTA
5962 	/* Release old quota file names */
5963 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5964 		kfree(old_opts.s_qf_names[i]);
5965 	if (enable_quota) {
5966 		if (sb_any_quota_suspended(sb))
5967 			dquot_resume(sb, -1);
5968 		else if (ext4_has_feature_quota(sb)) {
5969 			err = ext4_enable_quotas(sb);
5970 			if (err)
5971 				goto restore_opts;
5972 		}
5973 	}
5974 #endif
5975 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5976 		ext4_release_system_zone(sb);
5977 
5978 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
5979 		ext4_stop_mmpd(sbi);
5980 
5981 	/*
5982 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5983 	 * either way we need to make sure it matches in both *flags and
5984 	 * s_flags. Copy those selected flags from s_flags to *flags
5985 	 */
5986 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5987 
5988 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
5989 		 orig_data, ext4_quota_mode(sb));
5990 	kfree(orig_data);
5991 	return 0;
5992 
5993 restore_opts:
5994 	sb->s_flags = old_sb_flags;
5995 	sbi->s_mount_opt = old_opts.s_mount_opt;
5996 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5997 	sbi->s_resuid = old_opts.s_resuid;
5998 	sbi->s_resgid = old_opts.s_resgid;
5999 	sbi->s_commit_interval = old_opts.s_commit_interval;
6000 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6001 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6002 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6003 		ext4_release_system_zone(sb);
6004 #ifdef CONFIG_QUOTA
6005 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6006 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6007 		to_free[i] = get_qf_name(sb, sbi, i);
6008 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6009 	}
6010 	synchronize_rcu();
6011 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6012 		kfree(to_free[i]);
6013 #endif
6014 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6015 		ext4_stop_mmpd(sbi);
6016 	kfree(orig_data);
6017 	return err;
6018 }
6019 
6020 #ifdef CONFIG_QUOTA
6021 static int ext4_statfs_project(struct super_block *sb,
6022 			       kprojid_t projid, struct kstatfs *buf)
6023 {
6024 	struct kqid qid;
6025 	struct dquot *dquot;
6026 	u64 limit;
6027 	u64 curblock;
6028 
6029 	qid = make_kqid_projid(projid);
6030 	dquot = dqget(sb, qid);
6031 	if (IS_ERR(dquot))
6032 		return PTR_ERR(dquot);
6033 	spin_lock(&dquot->dq_dqb_lock);
6034 
6035 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6036 			     dquot->dq_dqb.dqb_bhardlimit);
6037 	limit >>= sb->s_blocksize_bits;
6038 
6039 	if (limit && buf->f_blocks > limit) {
6040 		curblock = (dquot->dq_dqb.dqb_curspace +
6041 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6042 		buf->f_blocks = limit;
6043 		buf->f_bfree = buf->f_bavail =
6044 			(buf->f_blocks > curblock) ?
6045 			 (buf->f_blocks - curblock) : 0;
6046 	}
6047 
6048 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6049 			     dquot->dq_dqb.dqb_ihardlimit);
6050 	if (limit && buf->f_files > limit) {
6051 		buf->f_files = limit;
6052 		buf->f_ffree =
6053 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6054 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6055 	}
6056 
6057 	spin_unlock(&dquot->dq_dqb_lock);
6058 	dqput(dquot);
6059 	return 0;
6060 }
6061 #endif
6062 
6063 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6064 {
6065 	struct super_block *sb = dentry->d_sb;
6066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6067 	struct ext4_super_block *es = sbi->s_es;
6068 	ext4_fsblk_t overhead = 0, resv_blocks;
6069 	s64 bfree;
6070 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6071 
6072 	if (!test_opt(sb, MINIX_DF))
6073 		overhead = sbi->s_overhead;
6074 
6075 	buf->f_type = EXT4_SUPER_MAGIC;
6076 	buf->f_bsize = sb->s_blocksize;
6077 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6078 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6079 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6080 	/* prevent underflow in case that few free space is available */
6081 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6082 	buf->f_bavail = buf->f_bfree -
6083 			(ext4_r_blocks_count(es) + resv_blocks);
6084 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6085 		buf->f_bavail = 0;
6086 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6087 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6088 	buf->f_namelen = EXT4_NAME_LEN;
6089 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6090 
6091 #ifdef CONFIG_QUOTA
6092 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6093 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6094 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6095 #endif
6096 	return 0;
6097 }
6098 
6099 
6100 #ifdef CONFIG_QUOTA
6101 
6102 /*
6103  * Helper functions so that transaction is started before we acquire dqio_sem
6104  * to keep correct lock ordering of transaction > dqio_sem
6105  */
6106 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6107 {
6108 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6109 }
6110 
6111 static int ext4_write_dquot(struct dquot *dquot)
6112 {
6113 	int ret, err;
6114 	handle_t *handle;
6115 	struct inode *inode;
6116 
6117 	inode = dquot_to_inode(dquot);
6118 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6119 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6120 	if (IS_ERR(handle))
6121 		return PTR_ERR(handle);
6122 	ret = dquot_commit(dquot);
6123 	err = ext4_journal_stop(handle);
6124 	if (!ret)
6125 		ret = err;
6126 	return ret;
6127 }
6128 
6129 static int ext4_acquire_dquot(struct dquot *dquot)
6130 {
6131 	int ret, err;
6132 	handle_t *handle;
6133 
6134 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6135 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6136 	if (IS_ERR(handle))
6137 		return PTR_ERR(handle);
6138 	ret = dquot_acquire(dquot);
6139 	err = ext4_journal_stop(handle);
6140 	if (!ret)
6141 		ret = err;
6142 	return ret;
6143 }
6144 
6145 static int ext4_release_dquot(struct dquot *dquot)
6146 {
6147 	int ret, err;
6148 	handle_t *handle;
6149 
6150 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6151 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6152 	if (IS_ERR(handle)) {
6153 		/* Release dquot anyway to avoid endless cycle in dqput() */
6154 		dquot_release(dquot);
6155 		return PTR_ERR(handle);
6156 	}
6157 	ret = dquot_release(dquot);
6158 	err = ext4_journal_stop(handle);
6159 	if (!ret)
6160 		ret = err;
6161 	return ret;
6162 }
6163 
6164 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6165 {
6166 	struct super_block *sb = dquot->dq_sb;
6167 
6168 	if (ext4_is_quota_journalled(sb)) {
6169 		dquot_mark_dquot_dirty(dquot);
6170 		return ext4_write_dquot(dquot);
6171 	} else {
6172 		return dquot_mark_dquot_dirty(dquot);
6173 	}
6174 }
6175 
6176 static int ext4_write_info(struct super_block *sb, int type)
6177 {
6178 	int ret, err;
6179 	handle_t *handle;
6180 
6181 	/* Data block + inode block */
6182 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6183 	if (IS_ERR(handle))
6184 		return PTR_ERR(handle);
6185 	ret = dquot_commit_info(sb, type);
6186 	err = ext4_journal_stop(handle);
6187 	if (!ret)
6188 		ret = err;
6189 	return ret;
6190 }
6191 
6192 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6193 {
6194 	struct ext4_inode_info *ei = EXT4_I(inode);
6195 
6196 	/* The first argument of lockdep_set_subclass has to be
6197 	 * *exactly* the same as the argument to init_rwsem() --- in
6198 	 * this case, in init_once() --- or lockdep gets unhappy
6199 	 * because the name of the lock is set using the
6200 	 * stringification of the argument to init_rwsem().
6201 	 */
6202 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6203 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6204 }
6205 
6206 /*
6207  * Standard function to be called on quota_on
6208  */
6209 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6210 			 const struct path *path)
6211 {
6212 	int err;
6213 
6214 	if (!test_opt(sb, QUOTA))
6215 		return -EINVAL;
6216 
6217 	/* Quotafile not on the same filesystem? */
6218 	if (path->dentry->d_sb != sb)
6219 		return -EXDEV;
6220 
6221 	/* Quota already enabled for this file? */
6222 	if (IS_NOQUOTA(d_inode(path->dentry)))
6223 		return -EBUSY;
6224 
6225 	/* Journaling quota? */
6226 	if (EXT4_SB(sb)->s_qf_names[type]) {
6227 		/* Quotafile not in fs root? */
6228 		if (path->dentry->d_parent != sb->s_root)
6229 			ext4_msg(sb, KERN_WARNING,
6230 				"Quota file not on filesystem root. "
6231 				"Journaled quota will not work");
6232 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6233 	} else {
6234 		/*
6235 		 * Clear the flag just in case mount options changed since
6236 		 * last time.
6237 		 */
6238 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6239 	}
6240 
6241 	/*
6242 	 * When we journal data on quota file, we have to flush journal to see
6243 	 * all updates to the file when we bypass pagecache...
6244 	 */
6245 	if (EXT4_SB(sb)->s_journal &&
6246 	    ext4_should_journal_data(d_inode(path->dentry))) {
6247 		/*
6248 		 * We don't need to lock updates but journal_flush() could
6249 		 * otherwise be livelocked...
6250 		 */
6251 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6252 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6253 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6254 		if (err)
6255 			return err;
6256 	}
6257 
6258 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6259 	err = dquot_quota_on(sb, type, format_id, path);
6260 	if (err) {
6261 		lockdep_set_quota_inode(path->dentry->d_inode,
6262 					     I_DATA_SEM_NORMAL);
6263 	} else {
6264 		struct inode *inode = d_inode(path->dentry);
6265 		handle_t *handle;
6266 
6267 		/*
6268 		 * Set inode flags to prevent userspace from messing with quota
6269 		 * files. If this fails, we return success anyway since quotas
6270 		 * are already enabled and this is not a hard failure.
6271 		 */
6272 		inode_lock(inode);
6273 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6274 		if (IS_ERR(handle))
6275 			goto unlock_inode;
6276 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6277 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6278 				S_NOATIME | S_IMMUTABLE);
6279 		err = ext4_mark_inode_dirty(handle, inode);
6280 		ext4_journal_stop(handle);
6281 	unlock_inode:
6282 		inode_unlock(inode);
6283 	}
6284 	return err;
6285 }
6286 
6287 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6288 			     unsigned int flags)
6289 {
6290 	int err;
6291 	struct inode *qf_inode;
6292 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6293 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6294 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6295 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6296 	};
6297 
6298 	BUG_ON(!ext4_has_feature_quota(sb));
6299 
6300 	if (!qf_inums[type])
6301 		return -EPERM;
6302 
6303 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6304 	if (IS_ERR(qf_inode)) {
6305 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6306 		return PTR_ERR(qf_inode);
6307 	}
6308 
6309 	/* Don't account quota for quota files to avoid recursion */
6310 	qf_inode->i_flags |= S_NOQUOTA;
6311 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6312 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6313 	if (err)
6314 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6315 	iput(qf_inode);
6316 
6317 	return err;
6318 }
6319 
6320 /* Enable usage tracking for all quota types. */
6321 int ext4_enable_quotas(struct super_block *sb)
6322 {
6323 	int type, err = 0;
6324 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6325 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6326 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6327 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6328 	};
6329 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6330 		test_opt(sb, USRQUOTA),
6331 		test_opt(sb, GRPQUOTA),
6332 		test_opt(sb, PRJQUOTA),
6333 	};
6334 
6335 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6336 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6337 		if (qf_inums[type]) {
6338 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6339 				DQUOT_USAGE_ENABLED |
6340 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6341 			if (err) {
6342 				ext4_warning(sb,
6343 					"Failed to enable quota tracking "
6344 					"(type=%d, err=%d). Please run "
6345 					"e2fsck to fix.", type, err);
6346 				for (type--; type >= 0; type--)
6347 					dquot_quota_off(sb, type);
6348 
6349 				return err;
6350 			}
6351 		}
6352 	}
6353 	return 0;
6354 }
6355 
6356 static int ext4_quota_off(struct super_block *sb, int type)
6357 {
6358 	struct inode *inode = sb_dqopt(sb)->files[type];
6359 	handle_t *handle;
6360 	int err;
6361 
6362 	/* Force all delayed allocation blocks to be allocated.
6363 	 * Caller already holds s_umount sem */
6364 	if (test_opt(sb, DELALLOC))
6365 		sync_filesystem(sb);
6366 
6367 	if (!inode || !igrab(inode))
6368 		goto out;
6369 
6370 	err = dquot_quota_off(sb, type);
6371 	if (err || ext4_has_feature_quota(sb))
6372 		goto out_put;
6373 
6374 	inode_lock(inode);
6375 	/*
6376 	 * Update modification times of quota files when userspace can
6377 	 * start looking at them. If we fail, we return success anyway since
6378 	 * this is not a hard failure and quotas are already disabled.
6379 	 */
6380 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6381 	if (IS_ERR(handle)) {
6382 		err = PTR_ERR(handle);
6383 		goto out_unlock;
6384 	}
6385 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6386 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6387 	inode->i_mtime = inode->i_ctime = current_time(inode);
6388 	err = ext4_mark_inode_dirty(handle, inode);
6389 	ext4_journal_stop(handle);
6390 out_unlock:
6391 	inode_unlock(inode);
6392 out_put:
6393 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6394 	iput(inode);
6395 	return err;
6396 out:
6397 	return dquot_quota_off(sb, type);
6398 }
6399 
6400 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6401  * acquiring the locks... As quota files are never truncated and quota code
6402  * itself serializes the operations (and no one else should touch the files)
6403  * we don't have to be afraid of races */
6404 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6405 			       size_t len, loff_t off)
6406 {
6407 	struct inode *inode = sb_dqopt(sb)->files[type];
6408 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6409 	int offset = off & (sb->s_blocksize - 1);
6410 	int tocopy;
6411 	size_t toread;
6412 	struct buffer_head *bh;
6413 	loff_t i_size = i_size_read(inode);
6414 
6415 	if (off > i_size)
6416 		return 0;
6417 	if (off+len > i_size)
6418 		len = i_size-off;
6419 	toread = len;
6420 	while (toread > 0) {
6421 		tocopy = sb->s_blocksize - offset < toread ?
6422 				sb->s_blocksize - offset : toread;
6423 		bh = ext4_bread(NULL, inode, blk, 0);
6424 		if (IS_ERR(bh))
6425 			return PTR_ERR(bh);
6426 		if (!bh)	/* A hole? */
6427 			memset(data, 0, tocopy);
6428 		else
6429 			memcpy(data, bh->b_data+offset, tocopy);
6430 		brelse(bh);
6431 		offset = 0;
6432 		toread -= tocopy;
6433 		data += tocopy;
6434 		blk++;
6435 	}
6436 	return len;
6437 }
6438 
6439 /* Write to quotafile (we know the transaction is already started and has
6440  * enough credits) */
6441 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6442 				const char *data, size_t len, loff_t off)
6443 {
6444 	struct inode *inode = sb_dqopt(sb)->files[type];
6445 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6446 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6447 	int retries = 0;
6448 	struct buffer_head *bh;
6449 	handle_t *handle = journal_current_handle();
6450 
6451 	if (EXT4_SB(sb)->s_journal && !handle) {
6452 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6453 			" cancelled because transaction is not started",
6454 			(unsigned long long)off, (unsigned long long)len);
6455 		return -EIO;
6456 	}
6457 	/*
6458 	 * Since we account only one data block in transaction credits,
6459 	 * then it is impossible to cross a block boundary.
6460 	 */
6461 	if (sb->s_blocksize - offset < len) {
6462 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6463 			" cancelled because not block aligned",
6464 			(unsigned long long)off, (unsigned long long)len);
6465 		return -EIO;
6466 	}
6467 
6468 	do {
6469 		bh = ext4_bread(handle, inode, blk,
6470 				EXT4_GET_BLOCKS_CREATE |
6471 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6472 	} while (PTR_ERR(bh) == -ENOSPC &&
6473 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6474 	if (IS_ERR(bh))
6475 		return PTR_ERR(bh);
6476 	if (!bh)
6477 		goto out;
6478 	BUFFER_TRACE(bh, "get write access");
6479 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6480 	if (err) {
6481 		brelse(bh);
6482 		return err;
6483 	}
6484 	lock_buffer(bh);
6485 	memcpy(bh->b_data+offset, data, len);
6486 	flush_dcache_page(bh->b_page);
6487 	unlock_buffer(bh);
6488 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6489 	brelse(bh);
6490 out:
6491 	if (inode->i_size < off + len) {
6492 		i_size_write(inode, off + len);
6493 		EXT4_I(inode)->i_disksize = inode->i_size;
6494 		err2 = ext4_mark_inode_dirty(handle, inode);
6495 		if (unlikely(err2 && !err))
6496 			err = err2;
6497 	}
6498 	return err ? err : len;
6499 }
6500 #endif
6501 
6502 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6503 		       const char *dev_name, void *data)
6504 {
6505 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6506 }
6507 
6508 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6509 static inline void register_as_ext2(void)
6510 {
6511 	int err = register_filesystem(&ext2_fs_type);
6512 	if (err)
6513 		printk(KERN_WARNING
6514 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6515 }
6516 
6517 static inline void unregister_as_ext2(void)
6518 {
6519 	unregister_filesystem(&ext2_fs_type);
6520 }
6521 
6522 static inline int ext2_feature_set_ok(struct super_block *sb)
6523 {
6524 	if (ext4_has_unknown_ext2_incompat_features(sb))
6525 		return 0;
6526 	if (sb_rdonly(sb))
6527 		return 1;
6528 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6529 		return 0;
6530 	return 1;
6531 }
6532 #else
6533 static inline void register_as_ext2(void) { }
6534 static inline void unregister_as_ext2(void) { }
6535 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6536 #endif
6537 
6538 static inline void register_as_ext3(void)
6539 {
6540 	int err = register_filesystem(&ext3_fs_type);
6541 	if (err)
6542 		printk(KERN_WARNING
6543 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6544 }
6545 
6546 static inline void unregister_as_ext3(void)
6547 {
6548 	unregister_filesystem(&ext3_fs_type);
6549 }
6550 
6551 static inline int ext3_feature_set_ok(struct super_block *sb)
6552 {
6553 	if (ext4_has_unknown_ext3_incompat_features(sb))
6554 		return 0;
6555 	if (!ext4_has_feature_journal(sb))
6556 		return 0;
6557 	if (sb_rdonly(sb))
6558 		return 1;
6559 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6560 		return 0;
6561 	return 1;
6562 }
6563 
6564 static struct file_system_type ext4_fs_type = {
6565 	.owner		= THIS_MODULE,
6566 	.name		= "ext4",
6567 	.mount		= ext4_mount,
6568 	.kill_sb	= kill_block_super,
6569 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6570 };
6571 MODULE_ALIAS_FS("ext4");
6572 
6573 /* Shared across all ext4 file systems */
6574 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6575 
6576 static int __init ext4_init_fs(void)
6577 {
6578 	int i, err;
6579 
6580 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6581 	ext4_li_info = NULL;
6582 
6583 	/* Build-time check for flags consistency */
6584 	ext4_check_flag_values();
6585 
6586 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6587 		init_waitqueue_head(&ext4__ioend_wq[i]);
6588 
6589 	err = ext4_init_es();
6590 	if (err)
6591 		return err;
6592 
6593 	err = ext4_init_pending();
6594 	if (err)
6595 		goto out7;
6596 
6597 	err = ext4_init_post_read_processing();
6598 	if (err)
6599 		goto out6;
6600 
6601 	err = ext4_init_pageio();
6602 	if (err)
6603 		goto out5;
6604 
6605 	err = ext4_init_system_zone();
6606 	if (err)
6607 		goto out4;
6608 
6609 	err = ext4_init_sysfs();
6610 	if (err)
6611 		goto out3;
6612 
6613 	err = ext4_init_mballoc();
6614 	if (err)
6615 		goto out2;
6616 	err = init_inodecache();
6617 	if (err)
6618 		goto out1;
6619 
6620 	err = ext4_fc_init_dentry_cache();
6621 	if (err)
6622 		goto out05;
6623 
6624 	register_as_ext3();
6625 	register_as_ext2();
6626 	err = register_filesystem(&ext4_fs_type);
6627 	if (err)
6628 		goto out;
6629 
6630 	return 0;
6631 out:
6632 	unregister_as_ext2();
6633 	unregister_as_ext3();
6634 out05:
6635 	destroy_inodecache();
6636 out1:
6637 	ext4_exit_mballoc();
6638 out2:
6639 	ext4_exit_sysfs();
6640 out3:
6641 	ext4_exit_system_zone();
6642 out4:
6643 	ext4_exit_pageio();
6644 out5:
6645 	ext4_exit_post_read_processing();
6646 out6:
6647 	ext4_exit_pending();
6648 out7:
6649 	ext4_exit_es();
6650 
6651 	return err;
6652 }
6653 
6654 static void __exit ext4_exit_fs(void)
6655 {
6656 	ext4_destroy_lazyinit_thread();
6657 	unregister_as_ext2();
6658 	unregister_as_ext3();
6659 	unregister_filesystem(&ext4_fs_type);
6660 	destroy_inodecache();
6661 	ext4_exit_mballoc();
6662 	ext4_exit_sysfs();
6663 	ext4_exit_system_zone();
6664 	ext4_exit_pageio();
6665 	ext4_exit_post_read_processing();
6666 	ext4_exit_es();
6667 	ext4_exit_pending();
6668 }
6669 
6670 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6671 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6672 MODULE_LICENSE("GPL");
6673 MODULE_SOFTDEP("pre: crc32c");
6674 module_init(ext4_init_fs)
6675 module_exit(ext4_exit_fs)
6676