1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 static int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!ext4_has_metadata_csum(sb)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147 } 148 149 void ext4_superblock_csum_set(struct super_block *sb) 150 { 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!ext4_has_metadata_csum(sb)) 154 return; 155 156 es->s_checksum = ext4_superblock_csum(sb, es); 157 } 158 159 void *ext4_kvmalloc(size_t size, gfp_t flags) 160 { 161 void *ret; 162 163 ret = kmalloc(size, flags | __GFP_NOWARN); 164 if (!ret) 165 ret = __vmalloc(size, flags, PAGE_KERNEL); 166 return ret; 167 } 168 169 void *ext4_kvzalloc(size_t size, gfp_t flags) 170 { 171 void *ret; 172 173 ret = kzalloc(size, flags | __GFP_NOWARN); 174 if (!ret) 175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 176 return ret; 177 } 178 179 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 180 struct ext4_group_desc *bg) 181 { 182 return le32_to_cpu(bg->bg_block_bitmap_lo) | 183 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 184 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 185 } 186 187 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 188 struct ext4_group_desc *bg) 189 { 190 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 191 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 192 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 193 } 194 195 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 196 struct ext4_group_desc *bg) 197 { 198 return le32_to_cpu(bg->bg_inode_table_lo) | 199 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 200 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 201 } 202 203 __u32 ext4_free_group_clusters(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 209 } 210 211 __u32 ext4_free_inodes_count(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 217 } 218 219 __u32 ext4_used_dirs_count(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 225 } 226 227 __u32 ext4_itable_unused_count(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_itable_unused_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 233 } 234 235 void ext4_block_bitmap_set(struct super_block *sb, 236 struct ext4_group_desc *bg, ext4_fsblk_t blk) 237 { 238 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 239 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 240 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 241 } 242 243 void ext4_inode_bitmap_set(struct super_block *sb, 244 struct ext4_group_desc *bg, ext4_fsblk_t blk) 245 { 246 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 247 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 248 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 249 } 250 251 void ext4_inode_table_set(struct super_block *sb, 252 struct ext4_group_desc *bg, ext4_fsblk_t blk) 253 { 254 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 255 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 256 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 257 } 258 259 void ext4_free_group_clusters_set(struct super_block *sb, 260 struct ext4_group_desc *bg, __u32 count) 261 { 262 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 265 } 266 267 void ext4_free_inodes_set(struct super_block *sb, 268 struct ext4_group_desc *bg, __u32 count) 269 { 270 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 273 } 274 275 void ext4_used_dirs_set(struct super_block *sb, 276 struct ext4_group_desc *bg, __u32 count) 277 { 278 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 281 } 282 283 void ext4_itable_unused_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 289 } 290 291 292 static void __save_error_info(struct super_block *sb, const char *func, 293 unsigned int line) 294 { 295 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 296 297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 298 if (bdev_read_only(sb->s_bdev)) 299 return; 300 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 301 es->s_last_error_time = cpu_to_le32(get_seconds()); 302 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 303 es->s_last_error_line = cpu_to_le32(line); 304 if (!es->s_first_error_time) { 305 es->s_first_error_time = es->s_last_error_time; 306 strncpy(es->s_first_error_func, func, 307 sizeof(es->s_first_error_func)); 308 es->s_first_error_line = cpu_to_le32(line); 309 es->s_first_error_ino = es->s_last_error_ino; 310 es->s_first_error_block = es->s_last_error_block; 311 } 312 /* 313 * Start the daily error reporting function if it hasn't been 314 * started already 315 */ 316 if (!es->s_error_count) 317 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 318 le32_add_cpu(&es->s_error_count, 1); 319 } 320 321 static void save_error_info(struct super_block *sb, const char *func, 322 unsigned int line) 323 { 324 __save_error_info(sb, func, line); 325 ext4_commit_super(sb, 1); 326 } 327 328 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 329 { 330 struct super_block *sb = journal->j_private; 331 struct ext4_sb_info *sbi = EXT4_SB(sb); 332 int error = is_journal_aborted(journal); 333 struct ext4_journal_cb_entry *jce; 334 335 BUG_ON(txn->t_state == T_FINISHED); 336 spin_lock(&sbi->s_md_lock); 337 while (!list_empty(&txn->t_private_list)) { 338 jce = list_entry(txn->t_private_list.next, 339 struct ext4_journal_cb_entry, jce_list); 340 list_del_init(&jce->jce_list); 341 spin_unlock(&sbi->s_md_lock); 342 jce->jce_func(sb, jce, error); 343 spin_lock(&sbi->s_md_lock); 344 } 345 spin_unlock(&sbi->s_md_lock); 346 } 347 348 /* Deal with the reporting of failure conditions on a filesystem such as 349 * inconsistencies detected or read IO failures. 350 * 351 * On ext2, we can store the error state of the filesystem in the 352 * superblock. That is not possible on ext4, because we may have other 353 * write ordering constraints on the superblock which prevent us from 354 * writing it out straight away; and given that the journal is about to 355 * be aborted, we can't rely on the current, or future, transactions to 356 * write out the superblock safely. 357 * 358 * We'll just use the jbd2_journal_abort() error code to record an error in 359 * the journal instead. On recovery, the journal will complain about 360 * that error until we've noted it down and cleared it. 361 */ 362 363 static void ext4_handle_error(struct super_block *sb) 364 { 365 if (sb->s_flags & MS_RDONLY) 366 return; 367 368 if (!test_opt(sb, ERRORS_CONT)) { 369 journal_t *journal = EXT4_SB(sb)->s_journal; 370 371 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 372 if (journal) 373 jbd2_journal_abort(journal, -EIO); 374 } 375 if (test_opt(sb, ERRORS_RO)) { 376 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 377 /* 378 * Make sure updated value of ->s_mount_flags will be visible 379 * before ->s_flags update 380 */ 381 smp_wmb(); 382 sb->s_flags |= MS_RDONLY; 383 } 384 if (test_opt(sb, ERRORS_PANIC)) 385 panic("EXT4-fs (device %s): panic forced after error\n", 386 sb->s_id); 387 } 388 389 #define ext4_error_ratelimit(sb) \ 390 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 391 "EXT4-fs error") 392 393 void __ext4_error(struct super_block *sb, const char *function, 394 unsigned int line, const char *fmt, ...) 395 { 396 struct va_format vaf; 397 va_list args; 398 399 if (ext4_error_ratelimit(sb)) { 400 va_start(args, fmt); 401 vaf.fmt = fmt; 402 vaf.va = &args; 403 printk(KERN_CRIT 404 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 405 sb->s_id, function, line, current->comm, &vaf); 406 va_end(args); 407 } 408 save_error_info(sb, function, line); 409 ext4_handle_error(sb); 410 } 411 412 void __ext4_error_inode(struct inode *inode, const char *function, 413 unsigned int line, ext4_fsblk_t block, 414 const char *fmt, ...) 415 { 416 va_list args; 417 struct va_format vaf; 418 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 419 420 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 421 es->s_last_error_block = cpu_to_le64(block); 422 if (ext4_error_ratelimit(inode->i_sb)) { 423 va_start(args, fmt); 424 vaf.fmt = fmt; 425 vaf.va = &args; 426 if (block) 427 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 428 "inode #%lu: block %llu: comm %s: %pV\n", 429 inode->i_sb->s_id, function, line, inode->i_ino, 430 block, current->comm, &vaf); 431 else 432 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 433 "inode #%lu: comm %s: %pV\n", 434 inode->i_sb->s_id, function, line, inode->i_ino, 435 current->comm, &vaf); 436 va_end(args); 437 } 438 save_error_info(inode->i_sb, function, line); 439 ext4_handle_error(inode->i_sb); 440 } 441 442 void __ext4_error_file(struct file *file, const char *function, 443 unsigned int line, ext4_fsblk_t block, 444 const char *fmt, ...) 445 { 446 va_list args; 447 struct va_format vaf; 448 struct ext4_super_block *es; 449 struct inode *inode = file_inode(file); 450 char pathname[80], *path; 451 452 es = EXT4_SB(inode->i_sb)->s_es; 453 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 454 if (ext4_error_ratelimit(inode->i_sb)) { 455 path = file_path(file, pathname, sizeof(pathname)); 456 if (IS_ERR(path)) 457 path = "(unknown)"; 458 va_start(args, fmt); 459 vaf.fmt = fmt; 460 vaf.va = &args; 461 if (block) 462 printk(KERN_CRIT 463 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 464 "block %llu: comm %s: path %s: %pV\n", 465 inode->i_sb->s_id, function, line, inode->i_ino, 466 block, current->comm, path, &vaf); 467 else 468 printk(KERN_CRIT 469 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 470 "comm %s: path %s: %pV\n", 471 inode->i_sb->s_id, function, line, inode->i_ino, 472 current->comm, path, &vaf); 473 va_end(args); 474 } 475 save_error_info(inode->i_sb, function, line); 476 ext4_handle_error(inode->i_sb); 477 } 478 479 const char *ext4_decode_error(struct super_block *sb, int errno, 480 char nbuf[16]) 481 { 482 char *errstr = NULL; 483 484 switch (errno) { 485 case -EIO: 486 errstr = "IO failure"; 487 break; 488 case -ENOMEM: 489 errstr = "Out of memory"; 490 break; 491 case -EROFS: 492 if (!sb || (EXT4_SB(sb)->s_journal && 493 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 494 errstr = "Journal has aborted"; 495 else 496 errstr = "Readonly filesystem"; 497 break; 498 default: 499 /* If the caller passed in an extra buffer for unknown 500 * errors, textualise them now. Else we just return 501 * NULL. */ 502 if (nbuf) { 503 /* Check for truncated error codes... */ 504 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 505 errstr = nbuf; 506 } 507 break; 508 } 509 510 return errstr; 511 } 512 513 /* __ext4_std_error decodes expected errors from journaling functions 514 * automatically and invokes the appropriate error response. */ 515 516 void __ext4_std_error(struct super_block *sb, const char *function, 517 unsigned int line, int errno) 518 { 519 char nbuf[16]; 520 const char *errstr; 521 522 /* Special case: if the error is EROFS, and we're not already 523 * inside a transaction, then there's really no point in logging 524 * an error. */ 525 if (errno == -EROFS && journal_current_handle() == NULL && 526 (sb->s_flags & MS_RDONLY)) 527 return; 528 529 if (ext4_error_ratelimit(sb)) { 530 errstr = ext4_decode_error(sb, errno, nbuf); 531 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 532 sb->s_id, function, line, errstr); 533 } 534 535 save_error_info(sb, function, line); 536 ext4_handle_error(sb); 537 } 538 539 /* 540 * ext4_abort is a much stronger failure handler than ext4_error. The 541 * abort function may be used to deal with unrecoverable failures such 542 * as journal IO errors or ENOMEM at a critical moment in log management. 543 * 544 * We unconditionally force the filesystem into an ABORT|READONLY state, 545 * unless the error response on the fs has been set to panic in which 546 * case we take the easy way out and panic immediately. 547 */ 548 549 void __ext4_abort(struct super_block *sb, const char *function, 550 unsigned int line, const char *fmt, ...) 551 { 552 va_list args; 553 554 save_error_info(sb, function, line); 555 va_start(args, fmt); 556 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 557 function, line); 558 vprintk(fmt, args); 559 printk("\n"); 560 va_end(args); 561 562 if ((sb->s_flags & MS_RDONLY) == 0) { 563 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 564 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 565 /* 566 * Make sure updated value of ->s_mount_flags will be visible 567 * before ->s_flags update 568 */ 569 smp_wmb(); 570 sb->s_flags |= MS_RDONLY; 571 if (EXT4_SB(sb)->s_journal) 572 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 573 save_error_info(sb, function, line); 574 } 575 if (test_opt(sb, ERRORS_PANIC)) 576 panic("EXT4-fs panic from previous error\n"); 577 } 578 579 void __ext4_msg(struct super_block *sb, 580 const char *prefix, const char *fmt, ...) 581 { 582 struct va_format vaf; 583 va_list args; 584 585 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 586 return; 587 588 va_start(args, fmt); 589 vaf.fmt = fmt; 590 vaf.va = &args; 591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 592 va_end(args); 593 } 594 595 #define ext4_warning_ratelimit(sb) \ 596 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 597 "EXT4-fs warning") 598 599 void __ext4_warning(struct super_block *sb, const char *function, 600 unsigned int line, const char *fmt, ...) 601 { 602 struct va_format vaf; 603 va_list args; 604 605 if (!ext4_warning_ratelimit(sb)) 606 return; 607 608 va_start(args, fmt); 609 vaf.fmt = fmt; 610 vaf.va = &args; 611 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 612 sb->s_id, function, line, &vaf); 613 va_end(args); 614 } 615 616 void __ext4_warning_inode(const struct inode *inode, const char *function, 617 unsigned int line, const char *fmt, ...) 618 { 619 struct va_format vaf; 620 va_list args; 621 622 if (!ext4_warning_ratelimit(inode->i_sb)) 623 return; 624 625 va_start(args, fmt); 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 629 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 630 function, line, inode->i_ino, current->comm, &vaf); 631 va_end(args); 632 } 633 634 void __ext4_grp_locked_error(const char *function, unsigned int line, 635 struct super_block *sb, ext4_group_t grp, 636 unsigned long ino, ext4_fsblk_t block, 637 const char *fmt, ...) 638 __releases(bitlock) 639 __acquires(bitlock) 640 { 641 struct va_format vaf; 642 va_list args; 643 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 644 645 es->s_last_error_ino = cpu_to_le32(ino); 646 es->s_last_error_block = cpu_to_le64(block); 647 __save_error_info(sb, function, line); 648 649 if (ext4_error_ratelimit(sb)) { 650 va_start(args, fmt); 651 vaf.fmt = fmt; 652 vaf.va = &args; 653 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 654 sb->s_id, function, line, grp); 655 if (ino) 656 printk(KERN_CONT "inode %lu: ", ino); 657 if (block) 658 printk(KERN_CONT "block %llu:", 659 (unsigned long long) block); 660 printk(KERN_CONT "%pV\n", &vaf); 661 va_end(args); 662 } 663 664 if (test_opt(sb, ERRORS_CONT)) { 665 ext4_commit_super(sb, 0); 666 return; 667 } 668 669 ext4_unlock_group(sb, grp); 670 ext4_handle_error(sb); 671 /* 672 * We only get here in the ERRORS_RO case; relocking the group 673 * may be dangerous, but nothing bad will happen since the 674 * filesystem will have already been marked read/only and the 675 * journal has been aborted. We return 1 as a hint to callers 676 * who might what to use the return value from 677 * ext4_grp_locked_error() to distinguish between the 678 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 679 * aggressively from the ext4 function in question, with a 680 * more appropriate error code. 681 */ 682 ext4_lock_group(sb, grp); 683 return; 684 } 685 686 void ext4_update_dynamic_rev(struct super_block *sb) 687 { 688 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 689 690 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 691 return; 692 693 ext4_warning(sb, 694 "updating to rev %d because of new feature flag, " 695 "running e2fsck is recommended", 696 EXT4_DYNAMIC_REV); 697 698 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 699 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 700 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 701 /* leave es->s_feature_*compat flags alone */ 702 /* es->s_uuid will be set by e2fsck if empty */ 703 704 /* 705 * The rest of the superblock fields should be zero, and if not it 706 * means they are likely already in use, so leave them alone. We 707 * can leave it up to e2fsck to clean up any inconsistencies there. 708 */ 709 } 710 711 /* 712 * Open the external journal device 713 */ 714 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 715 { 716 struct block_device *bdev; 717 char b[BDEVNAME_SIZE]; 718 719 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 720 if (IS_ERR(bdev)) 721 goto fail; 722 return bdev; 723 724 fail: 725 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 726 __bdevname(dev, b), PTR_ERR(bdev)); 727 return NULL; 728 } 729 730 /* 731 * Release the journal device 732 */ 733 static void ext4_blkdev_put(struct block_device *bdev) 734 { 735 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 736 } 737 738 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 739 { 740 struct block_device *bdev; 741 bdev = sbi->journal_bdev; 742 if (bdev) { 743 ext4_blkdev_put(bdev); 744 sbi->journal_bdev = NULL; 745 } 746 } 747 748 static inline struct inode *orphan_list_entry(struct list_head *l) 749 { 750 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 751 } 752 753 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 754 { 755 struct list_head *l; 756 757 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 758 le32_to_cpu(sbi->s_es->s_last_orphan)); 759 760 printk(KERN_ERR "sb_info orphan list:\n"); 761 list_for_each(l, &sbi->s_orphan) { 762 struct inode *inode = orphan_list_entry(l); 763 printk(KERN_ERR " " 764 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 765 inode->i_sb->s_id, inode->i_ino, inode, 766 inode->i_mode, inode->i_nlink, 767 NEXT_ORPHAN(inode)); 768 } 769 } 770 771 static void ext4_put_super(struct super_block *sb) 772 { 773 struct ext4_sb_info *sbi = EXT4_SB(sb); 774 struct ext4_super_block *es = sbi->s_es; 775 int i, err; 776 777 ext4_unregister_li_request(sb); 778 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 779 780 flush_workqueue(sbi->rsv_conversion_wq); 781 destroy_workqueue(sbi->rsv_conversion_wq); 782 783 if (sbi->s_journal) { 784 err = jbd2_journal_destroy(sbi->s_journal); 785 sbi->s_journal = NULL; 786 if (err < 0) 787 ext4_abort(sb, "Couldn't clean up the journal"); 788 } 789 790 ext4_es_unregister_shrinker(sbi); 791 del_timer_sync(&sbi->s_err_report); 792 ext4_release_system_zone(sb); 793 ext4_mb_release(sb); 794 ext4_ext_release(sb); 795 ext4_xattr_put_super(sb); 796 797 if (!(sb->s_flags & MS_RDONLY)) { 798 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 799 es->s_state = cpu_to_le16(sbi->s_mount_state); 800 } 801 if (!(sb->s_flags & MS_RDONLY)) 802 ext4_commit_super(sb, 1); 803 804 if (sbi->s_proc) { 805 remove_proc_entry("options", sbi->s_proc); 806 remove_proc_entry(sb->s_id, ext4_proc_root); 807 } 808 kobject_del(&sbi->s_kobj); 809 810 for (i = 0; i < sbi->s_gdb_count; i++) 811 brelse(sbi->s_group_desc[i]); 812 kvfree(sbi->s_group_desc); 813 kvfree(sbi->s_flex_groups); 814 percpu_counter_destroy(&sbi->s_freeclusters_counter); 815 percpu_counter_destroy(&sbi->s_freeinodes_counter); 816 percpu_counter_destroy(&sbi->s_dirs_counter); 817 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 818 brelse(sbi->s_sbh); 819 #ifdef CONFIG_QUOTA 820 for (i = 0; i < EXT4_MAXQUOTAS; i++) 821 kfree(sbi->s_qf_names[i]); 822 #endif 823 824 /* Debugging code just in case the in-memory inode orphan list 825 * isn't empty. The on-disk one can be non-empty if we've 826 * detected an error and taken the fs readonly, but the 827 * in-memory list had better be clean by this point. */ 828 if (!list_empty(&sbi->s_orphan)) 829 dump_orphan_list(sb, sbi); 830 J_ASSERT(list_empty(&sbi->s_orphan)); 831 832 sync_blockdev(sb->s_bdev); 833 invalidate_bdev(sb->s_bdev); 834 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 835 /* 836 * Invalidate the journal device's buffers. We don't want them 837 * floating about in memory - the physical journal device may 838 * hotswapped, and it breaks the `ro-after' testing code. 839 */ 840 sync_blockdev(sbi->journal_bdev); 841 invalidate_bdev(sbi->journal_bdev); 842 ext4_blkdev_remove(sbi); 843 } 844 if (sbi->s_mb_cache) { 845 ext4_xattr_destroy_cache(sbi->s_mb_cache); 846 sbi->s_mb_cache = NULL; 847 } 848 if (sbi->s_mmp_tsk) 849 kthread_stop(sbi->s_mmp_tsk); 850 sb->s_fs_info = NULL; 851 /* 852 * Now that we are completely done shutting down the 853 * superblock, we need to actually destroy the kobject. 854 */ 855 kobject_put(&sbi->s_kobj); 856 wait_for_completion(&sbi->s_kobj_unregister); 857 if (sbi->s_chksum_driver) 858 crypto_free_shash(sbi->s_chksum_driver); 859 kfree(sbi->s_blockgroup_lock); 860 kfree(sbi); 861 } 862 863 static struct kmem_cache *ext4_inode_cachep; 864 865 /* 866 * Called inside transaction, so use GFP_NOFS 867 */ 868 static struct inode *ext4_alloc_inode(struct super_block *sb) 869 { 870 struct ext4_inode_info *ei; 871 872 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 873 if (!ei) 874 return NULL; 875 876 ei->vfs_inode.i_version = 1; 877 spin_lock_init(&ei->i_raw_lock); 878 INIT_LIST_HEAD(&ei->i_prealloc_list); 879 spin_lock_init(&ei->i_prealloc_lock); 880 ext4_es_init_tree(&ei->i_es_tree); 881 rwlock_init(&ei->i_es_lock); 882 INIT_LIST_HEAD(&ei->i_es_list); 883 ei->i_es_all_nr = 0; 884 ei->i_es_shk_nr = 0; 885 ei->i_es_shrink_lblk = 0; 886 ei->i_reserved_data_blocks = 0; 887 ei->i_reserved_meta_blocks = 0; 888 ei->i_allocated_meta_blocks = 0; 889 ei->i_da_metadata_calc_len = 0; 890 ei->i_da_metadata_calc_last_lblock = 0; 891 spin_lock_init(&(ei->i_block_reservation_lock)); 892 #ifdef CONFIG_QUOTA 893 ei->i_reserved_quota = 0; 894 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 895 #endif 896 ei->jinode = NULL; 897 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 898 spin_lock_init(&ei->i_completed_io_lock); 899 ei->i_sync_tid = 0; 900 ei->i_datasync_tid = 0; 901 atomic_set(&ei->i_ioend_count, 0); 902 atomic_set(&ei->i_unwritten, 0); 903 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 904 #ifdef CONFIG_EXT4_FS_ENCRYPTION 905 ei->i_crypt_info = NULL; 906 #endif 907 return &ei->vfs_inode; 908 } 909 910 static int ext4_drop_inode(struct inode *inode) 911 { 912 int drop = generic_drop_inode(inode); 913 914 trace_ext4_drop_inode(inode, drop); 915 return drop; 916 } 917 918 static void ext4_i_callback(struct rcu_head *head) 919 { 920 struct inode *inode = container_of(head, struct inode, i_rcu); 921 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 922 } 923 924 static void ext4_destroy_inode(struct inode *inode) 925 { 926 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 927 ext4_msg(inode->i_sb, KERN_ERR, 928 "Inode %lu (%p): orphan list check failed!", 929 inode->i_ino, EXT4_I(inode)); 930 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 931 EXT4_I(inode), sizeof(struct ext4_inode_info), 932 true); 933 dump_stack(); 934 } 935 call_rcu(&inode->i_rcu, ext4_i_callback); 936 } 937 938 static void init_once(void *foo) 939 { 940 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 941 942 INIT_LIST_HEAD(&ei->i_orphan); 943 init_rwsem(&ei->xattr_sem); 944 init_rwsem(&ei->i_data_sem); 945 inode_init_once(&ei->vfs_inode); 946 } 947 948 static int __init init_inodecache(void) 949 { 950 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 951 sizeof(struct ext4_inode_info), 952 0, (SLAB_RECLAIM_ACCOUNT| 953 SLAB_MEM_SPREAD), 954 init_once); 955 if (ext4_inode_cachep == NULL) 956 return -ENOMEM; 957 return 0; 958 } 959 960 static void destroy_inodecache(void) 961 { 962 /* 963 * Make sure all delayed rcu free inodes are flushed before we 964 * destroy cache. 965 */ 966 rcu_barrier(); 967 kmem_cache_destroy(ext4_inode_cachep); 968 } 969 970 void ext4_clear_inode(struct inode *inode) 971 { 972 invalidate_inode_buffers(inode); 973 clear_inode(inode); 974 dquot_drop(inode); 975 ext4_discard_preallocations(inode); 976 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 977 if (EXT4_I(inode)->jinode) { 978 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 979 EXT4_I(inode)->jinode); 980 jbd2_free_inode(EXT4_I(inode)->jinode); 981 EXT4_I(inode)->jinode = NULL; 982 } 983 #ifdef CONFIG_EXT4_FS_ENCRYPTION 984 if (EXT4_I(inode)->i_crypt_info) 985 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 986 #endif 987 } 988 989 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 990 u64 ino, u32 generation) 991 { 992 struct inode *inode; 993 994 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 995 return ERR_PTR(-ESTALE); 996 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 997 return ERR_PTR(-ESTALE); 998 999 /* iget isn't really right if the inode is currently unallocated!! 1000 * 1001 * ext4_read_inode will return a bad_inode if the inode had been 1002 * deleted, so we should be safe. 1003 * 1004 * Currently we don't know the generation for parent directory, so 1005 * a generation of 0 means "accept any" 1006 */ 1007 inode = ext4_iget_normal(sb, ino); 1008 if (IS_ERR(inode)) 1009 return ERR_CAST(inode); 1010 if (generation && inode->i_generation != generation) { 1011 iput(inode); 1012 return ERR_PTR(-ESTALE); 1013 } 1014 1015 return inode; 1016 } 1017 1018 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1019 int fh_len, int fh_type) 1020 { 1021 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1022 ext4_nfs_get_inode); 1023 } 1024 1025 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1026 int fh_len, int fh_type) 1027 { 1028 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1029 ext4_nfs_get_inode); 1030 } 1031 1032 /* 1033 * Try to release metadata pages (indirect blocks, directories) which are 1034 * mapped via the block device. Since these pages could have journal heads 1035 * which would prevent try_to_free_buffers() from freeing them, we must use 1036 * jbd2 layer's try_to_free_buffers() function to release them. 1037 */ 1038 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1039 gfp_t wait) 1040 { 1041 journal_t *journal = EXT4_SB(sb)->s_journal; 1042 1043 WARN_ON(PageChecked(page)); 1044 if (!page_has_buffers(page)) 1045 return 0; 1046 if (journal) 1047 return jbd2_journal_try_to_free_buffers(journal, page, 1048 wait & ~__GFP_WAIT); 1049 return try_to_free_buffers(page); 1050 } 1051 1052 #ifdef CONFIG_QUOTA 1053 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1054 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1055 1056 static int ext4_write_dquot(struct dquot *dquot); 1057 static int ext4_acquire_dquot(struct dquot *dquot); 1058 static int ext4_release_dquot(struct dquot *dquot); 1059 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1060 static int ext4_write_info(struct super_block *sb, int type); 1061 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1062 struct path *path); 1063 static int ext4_quota_off(struct super_block *sb, int type); 1064 static int ext4_quota_on_mount(struct super_block *sb, int type); 1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1066 size_t len, loff_t off); 1067 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1068 const char *data, size_t len, loff_t off); 1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1070 unsigned int flags); 1071 static int ext4_enable_quotas(struct super_block *sb); 1072 1073 static struct dquot **ext4_get_dquots(struct inode *inode) 1074 { 1075 return EXT4_I(inode)->i_dquot; 1076 } 1077 1078 static const struct dquot_operations ext4_quota_operations = { 1079 .get_reserved_space = ext4_get_reserved_space, 1080 .write_dquot = ext4_write_dquot, 1081 .acquire_dquot = ext4_acquire_dquot, 1082 .release_dquot = ext4_release_dquot, 1083 .mark_dirty = ext4_mark_dquot_dirty, 1084 .write_info = ext4_write_info, 1085 .alloc_dquot = dquot_alloc, 1086 .destroy_dquot = dquot_destroy, 1087 }; 1088 1089 static const struct quotactl_ops ext4_qctl_operations = { 1090 .quota_on = ext4_quota_on, 1091 .quota_off = ext4_quota_off, 1092 .quota_sync = dquot_quota_sync, 1093 .get_state = dquot_get_state, 1094 .set_info = dquot_set_dqinfo, 1095 .get_dqblk = dquot_get_dqblk, 1096 .set_dqblk = dquot_set_dqblk 1097 }; 1098 #endif 1099 1100 static const struct super_operations ext4_sops = { 1101 .alloc_inode = ext4_alloc_inode, 1102 .destroy_inode = ext4_destroy_inode, 1103 .write_inode = ext4_write_inode, 1104 .dirty_inode = ext4_dirty_inode, 1105 .drop_inode = ext4_drop_inode, 1106 .evict_inode = ext4_evict_inode, 1107 .put_super = ext4_put_super, 1108 .sync_fs = ext4_sync_fs, 1109 .freeze_fs = ext4_freeze, 1110 .unfreeze_fs = ext4_unfreeze, 1111 .statfs = ext4_statfs, 1112 .remount_fs = ext4_remount, 1113 .show_options = ext4_show_options, 1114 #ifdef CONFIG_QUOTA 1115 .quota_read = ext4_quota_read, 1116 .quota_write = ext4_quota_write, 1117 .get_dquots = ext4_get_dquots, 1118 #endif 1119 .bdev_try_to_free_page = bdev_try_to_free_page, 1120 }; 1121 1122 static const struct export_operations ext4_export_ops = { 1123 .fh_to_dentry = ext4_fh_to_dentry, 1124 .fh_to_parent = ext4_fh_to_parent, 1125 .get_parent = ext4_get_parent, 1126 }; 1127 1128 enum { 1129 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1130 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1131 Opt_nouid32, Opt_debug, Opt_removed, 1132 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1133 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1134 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1135 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1136 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1137 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1138 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1139 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1140 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1141 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1142 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1143 Opt_lazytime, Opt_nolazytime, 1144 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1145 Opt_inode_readahead_blks, Opt_journal_ioprio, 1146 Opt_dioread_nolock, Opt_dioread_lock, 1147 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1148 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1149 }; 1150 1151 static const match_table_t tokens = { 1152 {Opt_bsd_df, "bsddf"}, 1153 {Opt_minix_df, "minixdf"}, 1154 {Opt_grpid, "grpid"}, 1155 {Opt_grpid, "bsdgroups"}, 1156 {Opt_nogrpid, "nogrpid"}, 1157 {Opt_nogrpid, "sysvgroups"}, 1158 {Opt_resgid, "resgid=%u"}, 1159 {Opt_resuid, "resuid=%u"}, 1160 {Opt_sb, "sb=%u"}, 1161 {Opt_err_cont, "errors=continue"}, 1162 {Opt_err_panic, "errors=panic"}, 1163 {Opt_err_ro, "errors=remount-ro"}, 1164 {Opt_nouid32, "nouid32"}, 1165 {Opt_debug, "debug"}, 1166 {Opt_removed, "oldalloc"}, 1167 {Opt_removed, "orlov"}, 1168 {Opt_user_xattr, "user_xattr"}, 1169 {Opt_nouser_xattr, "nouser_xattr"}, 1170 {Opt_acl, "acl"}, 1171 {Opt_noacl, "noacl"}, 1172 {Opt_noload, "norecovery"}, 1173 {Opt_noload, "noload"}, 1174 {Opt_removed, "nobh"}, 1175 {Opt_removed, "bh"}, 1176 {Opt_commit, "commit=%u"}, 1177 {Opt_min_batch_time, "min_batch_time=%u"}, 1178 {Opt_max_batch_time, "max_batch_time=%u"}, 1179 {Opt_journal_dev, "journal_dev=%u"}, 1180 {Opt_journal_path, "journal_path=%s"}, 1181 {Opt_journal_checksum, "journal_checksum"}, 1182 {Opt_nojournal_checksum, "nojournal_checksum"}, 1183 {Opt_journal_async_commit, "journal_async_commit"}, 1184 {Opt_abort, "abort"}, 1185 {Opt_data_journal, "data=journal"}, 1186 {Opt_data_ordered, "data=ordered"}, 1187 {Opt_data_writeback, "data=writeback"}, 1188 {Opt_data_err_abort, "data_err=abort"}, 1189 {Opt_data_err_ignore, "data_err=ignore"}, 1190 {Opt_offusrjquota, "usrjquota="}, 1191 {Opt_usrjquota, "usrjquota=%s"}, 1192 {Opt_offgrpjquota, "grpjquota="}, 1193 {Opt_grpjquota, "grpjquota=%s"}, 1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1197 {Opt_grpquota, "grpquota"}, 1198 {Opt_noquota, "noquota"}, 1199 {Opt_quota, "quota"}, 1200 {Opt_usrquota, "usrquota"}, 1201 {Opt_barrier, "barrier=%u"}, 1202 {Opt_barrier, "barrier"}, 1203 {Opt_nobarrier, "nobarrier"}, 1204 {Opt_i_version, "i_version"}, 1205 {Opt_dax, "dax"}, 1206 {Opt_stripe, "stripe=%u"}, 1207 {Opt_delalloc, "delalloc"}, 1208 {Opt_lazytime, "lazytime"}, 1209 {Opt_nolazytime, "nolazytime"}, 1210 {Opt_nodelalloc, "nodelalloc"}, 1211 {Opt_removed, "mblk_io_submit"}, 1212 {Opt_removed, "nomblk_io_submit"}, 1213 {Opt_block_validity, "block_validity"}, 1214 {Opt_noblock_validity, "noblock_validity"}, 1215 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1216 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1217 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1218 {Opt_auto_da_alloc, "auto_da_alloc"}, 1219 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1220 {Opt_dioread_nolock, "dioread_nolock"}, 1221 {Opt_dioread_lock, "dioread_lock"}, 1222 {Opt_discard, "discard"}, 1223 {Opt_nodiscard, "nodiscard"}, 1224 {Opt_init_itable, "init_itable=%u"}, 1225 {Opt_init_itable, "init_itable"}, 1226 {Opt_noinit_itable, "noinit_itable"}, 1227 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1228 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1229 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1230 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1231 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1232 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1233 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1234 {Opt_err, NULL}, 1235 }; 1236 1237 static ext4_fsblk_t get_sb_block(void **data) 1238 { 1239 ext4_fsblk_t sb_block; 1240 char *options = (char *) *data; 1241 1242 if (!options || strncmp(options, "sb=", 3) != 0) 1243 return 1; /* Default location */ 1244 1245 options += 3; 1246 /* TODO: use simple_strtoll with >32bit ext4 */ 1247 sb_block = simple_strtoul(options, &options, 0); 1248 if (*options && *options != ',') { 1249 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1250 (char *) *data); 1251 return 1; 1252 } 1253 if (*options == ',') 1254 options++; 1255 *data = (void *) options; 1256 1257 return sb_block; 1258 } 1259 1260 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1261 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1262 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1263 1264 #ifdef CONFIG_QUOTA 1265 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1266 { 1267 struct ext4_sb_info *sbi = EXT4_SB(sb); 1268 char *qname; 1269 int ret = -1; 1270 1271 if (sb_any_quota_loaded(sb) && 1272 !sbi->s_qf_names[qtype]) { 1273 ext4_msg(sb, KERN_ERR, 1274 "Cannot change journaled " 1275 "quota options when quota turned on"); 1276 return -1; 1277 } 1278 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1279 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1280 "when QUOTA feature is enabled"); 1281 return -1; 1282 } 1283 qname = match_strdup(args); 1284 if (!qname) { 1285 ext4_msg(sb, KERN_ERR, 1286 "Not enough memory for storing quotafile name"); 1287 return -1; 1288 } 1289 if (sbi->s_qf_names[qtype]) { 1290 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1291 ret = 1; 1292 else 1293 ext4_msg(sb, KERN_ERR, 1294 "%s quota file already specified", 1295 QTYPE2NAME(qtype)); 1296 goto errout; 1297 } 1298 if (strchr(qname, '/')) { 1299 ext4_msg(sb, KERN_ERR, 1300 "quotafile must be on filesystem root"); 1301 goto errout; 1302 } 1303 sbi->s_qf_names[qtype] = qname; 1304 set_opt(sb, QUOTA); 1305 return 1; 1306 errout: 1307 kfree(qname); 1308 return ret; 1309 } 1310 1311 static int clear_qf_name(struct super_block *sb, int qtype) 1312 { 1313 1314 struct ext4_sb_info *sbi = EXT4_SB(sb); 1315 1316 if (sb_any_quota_loaded(sb) && 1317 sbi->s_qf_names[qtype]) { 1318 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1319 " when quota turned on"); 1320 return -1; 1321 } 1322 kfree(sbi->s_qf_names[qtype]); 1323 sbi->s_qf_names[qtype] = NULL; 1324 return 1; 1325 } 1326 #endif 1327 1328 #define MOPT_SET 0x0001 1329 #define MOPT_CLEAR 0x0002 1330 #define MOPT_NOSUPPORT 0x0004 1331 #define MOPT_EXPLICIT 0x0008 1332 #define MOPT_CLEAR_ERR 0x0010 1333 #define MOPT_GTE0 0x0020 1334 #ifdef CONFIG_QUOTA 1335 #define MOPT_Q 0 1336 #define MOPT_QFMT 0x0040 1337 #else 1338 #define MOPT_Q MOPT_NOSUPPORT 1339 #define MOPT_QFMT MOPT_NOSUPPORT 1340 #endif 1341 #define MOPT_DATAJ 0x0080 1342 #define MOPT_NO_EXT2 0x0100 1343 #define MOPT_NO_EXT3 0x0200 1344 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1345 #define MOPT_STRING 0x0400 1346 1347 static const struct mount_opts { 1348 int token; 1349 int mount_opt; 1350 int flags; 1351 } ext4_mount_opts[] = { 1352 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1353 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1354 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1355 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1356 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1357 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1358 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1359 MOPT_EXT4_ONLY | MOPT_SET}, 1360 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1361 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1362 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1363 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1364 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1365 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1366 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1367 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1368 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1369 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1370 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1371 MOPT_EXT4_ONLY | MOPT_SET}, 1372 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1373 EXT4_MOUNT_JOURNAL_CHECKSUM), 1374 MOPT_EXT4_ONLY | MOPT_SET}, 1375 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1376 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1377 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1378 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1379 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1380 MOPT_NO_EXT2 | MOPT_SET}, 1381 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1382 MOPT_NO_EXT2 | MOPT_CLEAR}, 1383 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1384 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1385 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1386 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1387 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1388 {Opt_commit, 0, MOPT_GTE0}, 1389 {Opt_max_batch_time, 0, MOPT_GTE0}, 1390 {Opt_min_batch_time, 0, MOPT_GTE0}, 1391 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1392 {Opt_init_itable, 0, MOPT_GTE0}, 1393 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1394 {Opt_stripe, 0, MOPT_GTE0}, 1395 {Opt_resuid, 0, MOPT_GTE0}, 1396 {Opt_resgid, 0, MOPT_GTE0}, 1397 {Opt_journal_dev, 0, MOPT_GTE0}, 1398 {Opt_journal_path, 0, MOPT_STRING}, 1399 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1400 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1401 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1402 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1403 MOPT_NO_EXT2 | MOPT_DATAJ}, 1404 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1405 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1406 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1407 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1408 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1409 #else 1410 {Opt_acl, 0, MOPT_NOSUPPORT}, 1411 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1412 #endif 1413 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1414 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1415 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1416 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1417 MOPT_SET | MOPT_Q}, 1418 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1419 MOPT_SET | MOPT_Q}, 1420 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1421 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1422 {Opt_usrjquota, 0, MOPT_Q}, 1423 {Opt_grpjquota, 0, MOPT_Q}, 1424 {Opt_offusrjquota, 0, MOPT_Q}, 1425 {Opt_offgrpjquota, 0, MOPT_Q}, 1426 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1427 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1428 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1429 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1430 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1431 {Opt_err, 0, 0} 1432 }; 1433 1434 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1435 substring_t *args, unsigned long *journal_devnum, 1436 unsigned int *journal_ioprio, int is_remount) 1437 { 1438 struct ext4_sb_info *sbi = EXT4_SB(sb); 1439 const struct mount_opts *m; 1440 kuid_t uid; 1441 kgid_t gid; 1442 int arg = 0; 1443 1444 #ifdef CONFIG_QUOTA 1445 if (token == Opt_usrjquota) 1446 return set_qf_name(sb, USRQUOTA, &args[0]); 1447 else if (token == Opt_grpjquota) 1448 return set_qf_name(sb, GRPQUOTA, &args[0]); 1449 else if (token == Opt_offusrjquota) 1450 return clear_qf_name(sb, USRQUOTA); 1451 else if (token == Opt_offgrpjquota) 1452 return clear_qf_name(sb, GRPQUOTA); 1453 #endif 1454 switch (token) { 1455 case Opt_noacl: 1456 case Opt_nouser_xattr: 1457 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1458 break; 1459 case Opt_sb: 1460 return 1; /* handled by get_sb_block() */ 1461 case Opt_removed: 1462 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1463 return 1; 1464 case Opt_abort: 1465 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1466 return 1; 1467 case Opt_i_version: 1468 sb->s_flags |= MS_I_VERSION; 1469 return 1; 1470 case Opt_lazytime: 1471 sb->s_flags |= MS_LAZYTIME; 1472 return 1; 1473 case Opt_nolazytime: 1474 sb->s_flags &= ~MS_LAZYTIME; 1475 return 1; 1476 } 1477 1478 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1479 if (token == m->token) 1480 break; 1481 1482 if (m->token == Opt_err) { 1483 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1484 "or missing value", opt); 1485 return -1; 1486 } 1487 1488 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1489 ext4_msg(sb, KERN_ERR, 1490 "Mount option \"%s\" incompatible with ext2", opt); 1491 return -1; 1492 } 1493 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1494 ext4_msg(sb, KERN_ERR, 1495 "Mount option \"%s\" incompatible with ext3", opt); 1496 return -1; 1497 } 1498 1499 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1500 return -1; 1501 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1502 return -1; 1503 if (m->flags & MOPT_EXPLICIT) 1504 set_opt2(sb, EXPLICIT_DELALLOC); 1505 if (m->flags & MOPT_CLEAR_ERR) 1506 clear_opt(sb, ERRORS_MASK); 1507 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1508 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1509 "options when quota turned on"); 1510 return -1; 1511 } 1512 1513 if (m->flags & MOPT_NOSUPPORT) { 1514 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1515 } else if (token == Opt_commit) { 1516 if (arg == 0) 1517 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1518 sbi->s_commit_interval = HZ * arg; 1519 } else if (token == Opt_max_batch_time) { 1520 sbi->s_max_batch_time = arg; 1521 } else if (token == Opt_min_batch_time) { 1522 sbi->s_min_batch_time = arg; 1523 } else if (token == Opt_inode_readahead_blks) { 1524 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1525 ext4_msg(sb, KERN_ERR, 1526 "EXT4-fs: inode_readahead_blks must be " 1527 "0 or a power of 2 smaller than 2^31"); 1528 return -1; 1529 } 1530 sbi->s_inode_readahead_blks = arg; 1531 } else if (token == Opt_init_itable) { 1532 set_opt(sb, INIT_INODE_TABLE); 1533 if (!args->from) 1534 arg = EXT4_DEF_LI_WAIT_MULT; 1535 sbi->s_li_wait_mult = arg; 1536 } else if (token == Opt_max_dir_size_kb) { 1537 sbi->s_max_dir_size_kb = arg; 1538 } else if (token == Opt_stripe) { 1539 sbi->s_stripe = arg; 1540 } else if (token == Opt_resuid) { 1541 uid = make_kuid(current_user_ns(), arg); 1542 if (!uid_valid(uid)) { 1543 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1544 return -1; 1545 } 1546 sbi->s_resuid = uid; 1547 } else if (token == Opt_resgid) { 1548 gid = make_kgid(current_user_ns(), arg); 1549 if (!gid_valid(gid)) { 1550 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1551 return -1; 1552 } 1553 sbi->s_resgid = gid; 1554 } else if (token == Opt_journal_dev) { 1555 if (is_remount) { 1556 ext4_msg(sb, KERN_ERR, 1557 "Cannot specify journal on remount"); 1558 return -1; 1559 } 1560 *journal_devnum = arg; 1561 } else if (token == Opt_journal_path) { 1562 char *journal_path; 1563 struct inode *journal_inode; 1564 struct path path; 1565 int error; 1566 1567 if (is_remount) { 1568 ext4_msg(sb, KERN_ERR, 1569 "Cannot specify journal on remount"); 1570 return -1; 1571 } 1572 journal_path = match_strdup(&args[0]); 1573 if (!journal_path) { 1574 ext4_msg(sb, KERN_ERR, "error: could not dup " 1575 "journal device string"); 1576 return -1; 1577 } 1578 1579 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1580 if (error) { 1581 ext4_msg(sb, KERN_ERR, "error: could not find " 1582 "journal device path: error %d", error); 1583 kfree(journal_path); 1584 return -1; 1585 } 1586 1587 journal_inode = d_inode(path.dentry); 1588 if (!S_ISBLK(journal_inode->i_mode)) { 1589 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1590 "is not a block device", journal_path); 1591 path_put(&path); 1592 kfree(journal_path); 1593 return -1; 1594 } 1595 1596 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1597 path_put(&path); 1598 kfree(journal_path); 1599 } else if (token == Opt_journal_ioprio) { 1600 if (arg > 7) { 1601 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1602 " (must be 0-7)"); 1603 return -1; 1604 } 1605 *journal_ioprio = 1606 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1607 } else if (token == Opt_test_dummy_encryption) { 1608 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1609 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1610 ext4_msg(sb, KERN_WARNING, 1611 "Test dummy encryption mode enabled"); 1612 #else 1613 ext4_msg(sb, KERN_WARNING, 1614 "Test dummy encryption mount option ignored"); 1615 #endif 1616 } else if (m->flags & MOPT_DATAJ) { 1617 if (is_remount) { 1618 if (!sbi->s_journal) 1619 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1620 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1621 ext4_msg(sb, KERN_ERR, 1622 "Cannot change data mode on remount"); 1623 return -1; 1624 } 1625 } else { 1626 clear_opt(sb, DATA_FLAGS); 1627 sbi->s_mount_opt |= m->mount_opt; 1628 } 1629 #ifdef CONFIG_QUOTA 1630 } else if (m->flags & MOPT_QFMT) { 1631 if (sb_any_quota_loaded(sb) && 1632 sbi->s_jquota_fmt != m->mount_opt) { 1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1634 "quota options when quota turned on"); 1635 return -1; 1636 } 1637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1638 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1639 ext4_msg(sb, KERN_ERR, 1640 "Cannot set journaled quota options " 1641 "when QUOTA feature is enabled"); 1642 return -1; 1643 } 1644 sbi->s_jquota_fmt = m->mount_opt; 1645 #endif 1646 #ifndef CONFIG_FS_DAX 1647 } else if (token == Opt_dax) { 1648 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1649 return -1; 1650 #endif 1651 } else { 1652 if (!args->from) 1653 arg = 1; 1654 if (m->flags & MOPT_CLEAR) 1655 arg = !arg; 1656 else if (unlikely(!(m->flags & MOPT_SET))) { 1657 ext4_msg(sb, KERN_WARNING, 1658 "buggy handling of option %s", opt); 1659 WARN_ON(1); 1660 return -1; 1661 } 1662 if (arg != 0) 1663 sbi->s_mount_opt |= m->mount_opt; 1664 else 1665 sbi->s_mount_opt &= ~m->mount_opt; 1666 } 1667 return 1; 1668 } 1669 1670 static int parse_options(char *options, struct super_block *sb, 1671 unsigned long *journal_devnum, 1672 unsigned int *journal_ioprio, 1673 int is_remount) 1674 { 1675 struct ext4_sb_info *sbi = EXT4_SB(sb); 1676 char *p; 1677 substring_t args[MAX_OPT_ARGS]; 1678 int token; 1679 1680 if (!options) 1681 return 1; 1682 1683 while ((p = strsep(&options, ",")) != NULL) { 1684 if (!*p) 1685 continue; 1686 /* 1687 * Initialize args struct so we know whether arg was 1688 * found; some options take optional arguments. 1689 */ 1690 args[0].to = args[0].from = NULL; 1691 token = match_token(p, tokens, args); 1692 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1693 journal_ioprio, is_remount) < 0) 1694 return 0; 1695 } 1696 #ifdef CONFIG_QUOTA 1697 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1698 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1699 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1700 "feature is enabled"); 1701 return 0; 1702 } 1703 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1704 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1705 clear_opt(sb, USRQUOTA); 1706 1707 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1708 clear_opt(sb, GRPQUOTA); 1709 1710 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1711 ext4_msg(sb, KERN_ERR, "old and new quota " 1712 "format mixing"); 1713 return 0; 1714 } 1715 1716 if (!sbi->s_jquota_fmt) { 1717 ext4_msg(sb, KERN_ERR, "journaled quota format " 1718 "not specified"); 1719 return 0; 1720 } 1721 } 1722 #endif 1723 if (test_opt(sb, DIOREAD_NOLOCK)) { 1724 int blocksize = 1725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1726 1727 if (blocksize < PAGE_CACHE_SIZE) { 1728 ext4_msg(sb, KERN_ERR, "can't mount with " 1729 "dioread_nolock if block size != PAGE_SIZE"); 1730 return 0; 1731 } 1732 } 1733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1734 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1735 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1736 "in data=ordered mode"); 1737 return 0; 1738 } 1739 return 1; 1740 } 1741 1742 static inline void ext4_show_quota_options(struct seq_file *seq, 1743 struct super_block *sb) 1744 { 1745 #if defined(CONFIG_QUOTA) 1746 struct ext4_sb_info *sbi = EXT4_SB(sb); 1747 1748 if (sbi->s_jquota_fmt) { 1749 char *fmtname = ""; 1750 1751 switch (sbi->s_jquota_fmt) { 1752 case QFMT_VFS_OLD: 1753 fmtname = "vfsold"; 1754 break; 1755 case QFMT_VFS_V0: 1756 fmtname = "vfsv0"; 1757 break; 1758 case QFMT_VFS_V1: 1759 fmtname = "vfsv1"; 1760 break; 1761 } 1762 seq_printf(seq, ",jqfmt=%s", fmtname); 1763 } 1764 1765 if (sbi->s_qf_names[USRQUOTA]) 1766 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1767 1768 if (sbi->s_qf_names[GRPQUOTA]) 1769 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1770 #endif 1771 } 1772 1773 static const char *token2str(int token) 1774 { 1775 const struct match_token *t; 1776 1777 for (t = tokens; t->token != Opt_err; t++) 1778 if (t->token == token && !strchr(t->pattern, '=')) 1779 break; 1780 return t->pattern; 1781 } 1782 1783 /* 1784 * Show an option if 1785 * - it's set to a non-default value OR 1786 * - if the per-sb default is different from the global default 1787 */ 1788 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1789 int nodefs) 1790 { 1791 struct ext4_sb_info *sbi = EXT4_SB(sb); 1792 struct ext4_super_block *es = sbi->s_es; 1793 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1794 const struct mount_opts *m; 1795 char sep = nodefs ? '\n' : ','; 1796 1797 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1798 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1799 1800 if (sbi->s_sb_block != 1) 1801 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1802 1803 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1804 int want_set = m->flags & MOPT_SET; 1805 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1806 (m->flags & MOPT_CLEAR_ERR)) 1807 continue; 1808 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1809 continue; /* skip if same as the default */ 1810 if ((want_set && 1811 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1812 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1813 continue; /* select Opt_noFoo vs Opt_Foo */ 1814 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1815 } 1816 1817 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1818 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1819 SEQ_OPTS_PRINT("resuid=%u", 1820 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1821 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1822 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1823 SEQ_OPTS_PRINT("resgid=%u", 1824 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1825 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1826 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1827 SEQ_OPTS_PUTS("errors=remount-ro"); 1828 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1829 SEQ_OPTS_PUTS("errors=continue"); 1830 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1831 SEQ_OPTS_PUTS("errors=panic"); 1832 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1833 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1834 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1835 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1836 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1837 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1838 if (sb->s_flags & MS_I_VERSION) 1839 SEQ_OPTS_PUTS("i_version"); 1840 if (nodefs || sbi->s_stripe) 1841 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1842 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1843 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1844 SEQ_OPTS_PUTS("data=journal"); 1845 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1846 SEQ_OPTS_PUTS("data=ordered"); 1847 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1848 SEQ_OPTS_PUTS("data=writeback"); 1849 } 1850 if (nodefs || 1851 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1852 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1853 sbi->s_inode_readahead_blks); 1854 1855 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1856 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1857 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1858 if (nodefs || sbi->s_max_dir_size_kb) 1859 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1860 1861 ext4_show_quota_options(seq, sb); 1862 return 0; 1863 } 1864 1865 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1866 { 1867 return _ext4_show_options(seq, root->d_sb, 0); 1868 } 1869 1870 static int options_seq_show(struct seq_file *seq, void *offset) 1871 { 1872 struct super_block *sb = seq->private; 1873 int rc; 1874 1875 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1876 rc = _ext4_show_options(seq, sb, 1); 1877 seq_puts(seq, "\n"); 1878 return rc; 1879 } 1880 1881 static int options_open_fs(struct inode *inode, struct file *file) 1882 { 1883 return single_open(file, options_seq_show, PDE_DATA(inode)); 1884 } 1885 1886 static const struct file_operations ext4_seq_options_fops = { 1887 .owner = THIS_MODULE, 1888 .open = options_open_fs, 1889 .read = seq_read, 1890 .llseek = seq_lseek, 1891 .release = single_release, 1892 }; 1893 1894 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1895 int read_only) 1896 { 1897 struct ext4_sb_info *sbi = EXT4_SB(sb); 1898 int res = 0; 1899 1900 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1901 ext4_msg(sb, KERN_ERR, "revision level too high, " 1902 "forcing read-only mode"); 1903 res = MS_RDONLY; 1904 } 1905 if (read_only) 1906 goto done; 1907 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1908 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1909 "running e2fsck is recommended"); 1910 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1911 ext4_msg(sb, KERN_WARNING, 1912 "warning: mounting fs with errors, " 1913 "running e2fsck is recommended"); 1914 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1915 le16_to_cpu(es->s_mnt_count) >= 1916 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1917 ext4_msg(sb, KERN_WARNING, 1918 "warning: maximal mount count reached, " 1919 "running e2fsck is recommended"); 1920 else if (le32_to_cpu(es->s_checkinterval) && 1921 (le32_to_cpu(es->s_lastcheck) + 1922 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1923 ext4_msg(sb, KERN_WARNING, 1924 "warning: checktime reached, " 1925 "running e2fsck is recommended"); 1926 if (!sbi->s_journal) 1927 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1928 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1929 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1930 le16_add_cpu(&es->s_mnt_count, 1); 1931 es->s_mtime = cpu_to_le32(get_seconds()); 1932 ext4_update_dynamic_rev(sb); 1933 if (sbi->s_journal) 1934 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1935 1936 ext4_commit_super(sb, 1); 1937 done: 1938 if (test_opt(sb, DEBUG)) 1939 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1940 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1941 sb->s_blocksize, 1942 sbi->s_groups_count, 1943 EXT4_BLOCKS_PER_GROUP(sb), 1944 EXT4_INODES_PER_GROUP(sb), 1945 sbi->s_mount_opt, sbi->s_mount_opt2); 1946 1947 cleancache_init_fs(sb); 1948 return res; 1949 } 1950 1951 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1952 { 1953 struct ext4_sb_info *sbi = EXT4_SB(sb); 1954 struct flex_groups *new_groups; 1955 int size; 1956 1957 if (!sbi->s_log_groups_per_flex) 1958 return 0; 1959 1960 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1961 if (size <= sbi->s_flex_groups_allocated) 1962 return 0; 1963 1964 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1965 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1966 if (!new_groups) { 1967 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1968 size / (int) sizeof(struct flex_groups)); 1969 return -ENOMEM; 1970 } 1971 1972 if (sbi->s_flex_groups) { 1973 memcpy(new_groups, sbi->s_flex_groups, 1974 (sbi->s_flex_groups_allocated * 1975 sizeof(struct flex_groups))); 1976 kvfree(sbi->s_flex_groups); 1977 } 1978 sbi->s_flex_groups = new_groups; 1979 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1980 return 0; 1981 } 1982 1983 static int ext4_fill_flex_info(struct super_block *sb) 1984 { 1985 struct ext4_sb_info *sbi = EXT4_SB(sb); 1986 struct ext4_group_desc *gdp = NULL; 1987 ext4_group_t flex_group; 1988 int i, err; 1989 1990 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1991 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1992 sbi->s_log_groups_per_flex = 0; 1993 return 1; 1994 } 1995 1996 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1997 if (err) 1998 goto failed; 1999 2000 for (i = 0; i < sbi->s_groups_count; i++) { 2001 gdp = ext4_get_group_desc(sb, i, NULL); 2002 2003 flex_group = ext4_flex_group(sbi, i); 2004 atomic_add(ext4_free_inodes_count(sb, gdp), 2005 &sbi->s_flex_groups[flex_group].free_inodes); 2006 atomic64_add(ext4_free_group_clusters(sb, gdp), 2007 &sbi->s_flex_groups[flex_group].free_clusters); 2008 atomic_add(ext4_used_dirs_count(sb, gdp), 2009 &sbi->s_flex_groups[flex_group].used_dirs); 2010 } 2011 2012 return 1; 2013 failed: 2014 return 0; 2015 } 2016 2017 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2018 struct ext4_group_desc *gdp) 2019 { 2020 int offset; 2021 __u16 crc = 0; 2022 __le32 le_group = cpu_to_le32(block_group); 2023 2024 if (ext4_has_metadata_csum(sbi->s_sb)) { 2025 /* Use new metadata_csum algorithm */ 2026 __le16 save_csum; 2027 __u32 csum32; 2028 2029 save_csum = gdp->bg_checksum; 2030 gdp->bg_checksum = 0; 2031 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2032 sizeof(le_group)); 2033 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2034 sbi->s_desc_size); 2035 gdp->bg_checksum = save_csum; 2036 2037 crc = csum32 & 0xFFFF; 2038 goto out; 2039 } 2040 2041 /* old crc16 code */ 2042 if (!(sbi->s_es->s_feature_ro_compat & 2043 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2044 return 0; 2045 2046 offset = offsetof(struct ext4_group_desc, bg_checksum); 2047 2048 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2049 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2050 crc = crc16(crc, (__u8 *)gdp, offset); 2051 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2052 /* for checksum of struct ext4_group_desc do the rest...*/ 2053 if ((sbi->s_es->s_feature_incompat & 2054 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2055 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2056 crc = crc16(crc, (__u8 *)gdp + offset, 2057 le16_to_cpu(sbi->s_es->s_desc_size) - 2058 offset); 2059 2060 out: 2061 return cpu_to_le16(crc); 2062 } 2063 2064 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2065 struct ext4_group_desc *gdp) 2066 { 2067 if (ext4_has_group_desc_csum(sb) && 2068 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2069 block_group, gdp))) 2070 return 0; 2071 2072 return 1; 2073 } 2074 2075 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2076 struct ext4_group_desc *gdp) 2077 { 2078 if (!ext4_has_group_desc_csum(sb)) 2079 return; 2080 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2081 } 2082 2083 /* Called at mount-time, super-block is locked */ 2084 static int ext4_check_descriptors(struct super_block *sb, 2085 ext4_group_t *first_not_zeroed) 2086 { 2087 struct ext4_sb_info *sbi = EXT4_SB(sb); 2088 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2089 ext4_fsblk_t last_block; 2090 ext4_fsblk_t block_bitmap; 2091 ext4_fsblk_t inode_bitmap; 2092 ext4_fsblk_t inode_table; 2093 int flexbg_flag = 0; 2094 ext4_group_t i, grp = sbi->s_groups_count; 2095 2096 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2097 flexbg_flag = 1; 2098 2099 ext4_debug("Checking group descriptors"); 2100 2101 for (i = 0; i < sbi->s_groups_count; i++) { 2102 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2103 2104 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2105 last_block = ext4_blocks_count(sbi->s_es) - 1; 2106 else 2107 last_block = first_block + 2108 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2109 2110 if ((grp == sbi->s_groups_count) && 2111 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2112 grp = i; 2113 2114 block_bitmap = ext4_block_bitmap(sb, gdp); 2115 if (block_bitmap < first_block || block_bitmap > last_block) { 2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2117 "Block bitmap for group %u not in group " 2118 "(block %llu)!", i, block_bitmap); 2119 return 0; 2120 } 2121 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2122 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2124 "Inode bitmap for group %u not in group " 2125 "(block %llu)!", i, inode_bitmap); 2126 return 0; 2127 } 2128 inode_table = ext4_inode_table(sb, gdp); 2129 if (inode_table < first_block || 2130 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2131 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2132 "Inode table for group %u not in group " 2133 "(block %llu)!", i, inode_table); 2134 return 0; 2135 } 2136 ext4_lock_group(sb, i); 2137 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2138 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2139 "Checksum for group %u failed (%u!=%u)", 2140 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2141 gdp)), le16_to_cpu(gdp->bg_checksum)); 2142 if (!(sb->s_flags & MS_RDONLY)) { 2143 ext4_unlock_group(sb, i); 2144 return 0; 2145 } 2146 } 2147 ext4_unlock_group(sb, i); 2148 if (!flexbg_flag) 2149 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2150 } 2151 if (NULL != first_not_zeroed) 2152 *first_not_zeroed = grp; 2153 return 1; 2154 } 2155 2156 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2157 * the superblock) which were deleted from all directories, but held open by 2158 * a process at the time of a crash. We walk the list and try to delete these 2159 * inodes at recovery time (only with a read-write filesystem). 2160 * 2161 * In order to keep the orphan inode chain consistent during traversal (in 2162 * case of crash during recovery), we link each inode into the superblock 2163 * orphan list_head and handle it the same way as an inode deletion during 2164 * normal operation (which journals the operations for us). 2165 * 2166 * We only do an iget() and an iput() on each inode, which is very safe if we 2167 * accidentally point at an in-use or already deleted inode. The worst that 2168 * can happen in this case is that we get a "bit already cleared" message from 2169 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2170 * e2fsck was run on this filesystem, and it must have already done the orphan 2171 * inode cleanup for us, so we can safely abort without any further action. 2172 */ 2173 static void ext4_orphan_cleanup(struct super_block *sb, 2174 struct ext4_super_block *es) 2175 { 2176 unsigned int s_flags = sb->s_flags; 2177 int nr_orphans = 0, nr_truncates = 0; 2178 #ifdef CONFIG_QUOTA 2179 int i; 2180 #endif 2181 if (!es->s_last_orphan) { 2182 jbd_debug(4, "no orphan inodes to clean up\n"); 2183 return; 2184 } 2185 2186 if (bdev_read_only(sb->s_bdev)) { 2187 ext4_msg(sb, KERN_ERR, "write access " 2188 "unavailable, skipping orphan cleanup"); 2189 return; 2190 } 2191 2192 /* Check if feature set would not allow a r/w mount */ 2193 if (!ext4_feature_set_ok(sb, 0)) { 2194 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2195 "unknown ROCOMPAT features"); 2196 return; 2197 } 2198 2199 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2200 /* don't clear list on RO mount w/ errors */ 2201 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2202 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2203 "clearing orphan list.\n"); 2204 es->s_last_orphan = 0; 2205 } 2206 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2207 return; 2208 } 2209 2210 if (s_flags & MS_RDONLY) { 2211 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2212 sb->s_flags &= ~MS_RDONLY; 2213 } 2214 #ifdef CONFIG_QUOTA 2215 /* Needed for iput() to work correctly and not trash data */ 2216 sb->s_flags |= MS_ACTIVE; 2217 /* Turn on quotas so that they are updated correctly */ 2218 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2219 if (EXT4_SB(sb)->s_qf_names[i]) { 2220 int ret = ext4_quota_on_mount(sb, i); 2221 if (ret < 0) 2222 ext4_msg(sb, KERN_ERR, 2223 "Cannot turn on journaled " 2224 "quota: error %d", ret); 2225 } 2226 } 2227 #endif 2228 2229 while (es->s_last_orphan) { 2230 struct inode *inode; 2231 2232 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2233 if (IS_ERR(inode)) { 2234 es->s_last_orphan = 0; 2235 break; 2236 } 2237 2238 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2239 dquot_initialize(inode); 2240 if (inode->i_nlink) { 2241 if (test_opt(sb, DEBUG)) 2242 ext4_msg(sb, KERN_DEBUG, 2243 "%s: truncating inode %lu to %lld bytes", 2244 __func__, inode->i_ino, inode->i_size); 2245 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2246 inode->i_ino, inode->i_size); 2247 mutex_lock(&inode->i_mutex); 2248 truncate_inode_pages(inode->i_mapping, inode->i_size); 2249 ext4_truncate(inode); 2250 mutex_unlock(&inode->i_mutex); 2251 nr_truncates++; 2252 } else { 2253 if (test_opt(sb, DEBUG)) 2254 ext4_msg(sb, KERN_DEBUG, 2255 "%s: deleting unreferenced inode %lu", 2256 __func__, inode->i_ino); 2257 jbd_debug(2, "deleting unreferenced inode %lu\n", 2258 inode->i_ino); 2259 nr_orphans++; 2260 } 2261 iput(inode); /* The delete magic happens here! */ 2262 } 2263 2264 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2265 2266 if (nr_orphans) 2267 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2268 PLURAL(nr_orphans)); 2269 if (nr_truncates) 2270 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2271 PLURAL(nr_truncates)); 2272 #ifdef CONFIG_QUOTA 2273 /* Turn quotas off */ 2274 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2275 if (sb_dqopt(sb)->files[i]) 2276 dquot_quota_off(sb, i); 2277 } 2278 #endif 2279 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2280 } 2281 2282 /* 2283 * Maximal extent format file size. 2284 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2285 * extent format containers, within a sector_t, and within i_blocks 2286 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2287 * so that won't be a limiting factor. 2288 * 2289 * However there is other limiting factor. We do store extents in the form 2290 * of starting block and length, hence the resulting length of the extent 2291 * covering maximum file size must fit into on-disk format containers as 2292 * well. Given that length is always by 1 unit bigger than max unit (because 2293 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2294 * 2295 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2296 */ 2297 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2298 { 2299 loff_t res; 2300 loff_t upper_limit = MAX_LFS_FILESIZE; 2301 2302 /* small i_blocks in vfs inode? */ 2303 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2304 /* 2305 * CONFIG_LBDAF is not enabled implies the inode 2306 * i_block represent total blocks in 512 bytes 2307 * 32 == size of vfs inode i_blocks * 8 2308 */ 2309 upper_limit = (1LL << 32) - 1; 2310 2311 /* total blocks in file system block size */ 2312 upper_limit >>= (blkbits - 9); 2313 upper_limit <<= blkbits; 2314 } 2315 2316 /* 2317 * 32-bit extent-start container, ee_block. We lower the maxbytes 2318 * by one fs block, so ee_len can cover the extent of maximum file 2319 * size 2320 */ 2321 res = (1LL << 32) - 1; 2322 res <<= blkbits; 2323 2324 /* Sanity check against vm- & vfs- imposed limits */ 2325 if (res > upper_limit) 2326 res = upper_limit; 2327 2328 return res; 2329 } 2330 2331 /* 2332 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2333 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2334 * We need to be 1 filesystem block less than the 2^48 sector limit. 2335 */ 2336 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2337 { 2338 loff_t res = EXT4_NDIR_BLOCKS; 2339 int meta_blocks; 2340 loff_t upper_limit; 2341 /* This is calculated to be the largest file size for a dense, block 2342 * mapped file such that the file's total number of 512-byte sectors, 2343 * including data and all indirect blocks, does not exceed (2^48 - 1). 2344 * 2345 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2346 * number of 512-byte sectors of the file. 2347 */ 2348 2349 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2350 /* 2351 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2352 * the inode i_block field represents total file blocks in 2353 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2354 */ 2355 upper_limit = (1LL << 32) - 1; 2356 2357 /* total blocks in file system block size */ 2358 upper_limit >>= (bits - 9); 2359 2360 } else { 2361 /* 2362 * We use 48 bit ext4_inode i_blocks 2363 * With EXT4_HUGE_FILE_FL set the i_blocks 2364 * represent total number of blocks in 2365 * file system block size 2366 */ 2367 upper_limit = (1LL << 48) - 1; 2368 2369 } 2370 2371 /* indirect blocks */ 2372 meta_blocks = 1; 2373 /* double indirect blocks */ 2374 meta_blocks += 1 + (1LL << (bits-2)); 2375 /* tripple indirect blocks */ 2376 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2377 2378 upper_limit -= meta_blocks; 2379 upper_limit <<= bits; 2380 2381 res += 1LL << (bits-2); 2382 res += 1LL << (2*(bits-2)); 2383 res += 1LL << (3*(bits-2)); 2384 res <<= bits; 2385 if (res > upper_limit) 2386 res = upper_limit; 2387 2388 if (res > MAX_LFS_FILESIZE) 2389 res = MAX_LFS_FILESIZE; 2390 2391 return res; 2392 } 2393 2394 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2395 ext4_fsblk_t logical_sb_block, int nr) 2396 { 2397 struct ext4_sb_info *sbi = EXT4_SB(sb); 2398 ext4_group_t bg, first_meta_bg; 2399 int has_super = 0; 2400 2401 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2402 2403 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2404 nr < first_meta_bg) 2405 return logical_sb_block + nr + 1; 2406 bg = sbi->s_desc_per_block * nr; 2407 if (ext4_bg_has_super(sb, bg)) 2408 has_super = 1; 2409 2410 /* 2411 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2412 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2413 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2414 * compensate. 2415 */ 2416 if (sb->s_blocksize == 1024 && nr == 0 && 2417 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2418 has_super++; 2419 2420 return (has_super + ext4_group_first_block_no(sb, bg)); 2421 } 2422 2423 /** 2424 * ext4_get_stripe_size: Get the stripe size. 2425 * @sbi: In memory super block info 2426 * 2427 * If we have specified it via mount option, then 2428 * use the mount option value. If the value specified at mount time is 2429 * greater than the blocks per group use the super block value. 2430 * If the super block value is greater than blocks per group return 0. 2431 * Allocator needs it be less than blocks per group. 2432 * 2433 */ 2434 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2435 { 2436 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2437 unsigned long stripe_width = 2438 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2439 int ret; 2440 2441 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2442 ret = sbi->s_stripe; 2443 else if (stripe_width <= sbi->s_blocks_per_group) 2444 ret = stripe_width; 2445 else if (stride <= sbi->s_blocks_per_group) 2446 ret = stride; 2447 else 2448 ret = 0; 2449 2450 /* 2451 * If the stripe width is 1, this makes no sense and 2452 * we set it to 0 to turn off stripe handling code. 2453 */ 2454 if (ret <= 1) 2455 ret = 0; 2456 2457 return ret; 2458 } 2459 2460 /* sysfs supprt */ 2461 2462 struct ext4_attr { 2463 struct attribute attr; 2464 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2465 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2466 const char *, size_t); 2467 union { 2468 int offset; 2469 int deprecated_val; 2470 } u; 2471 }; 2472 2473 static int parse_strtoull(const char *buf, 2474 unsigned long long max, unsigned long long *value) 2475 { 2476 int ret; 2477 2478 ret = kstrtoull(skip_spaces(buf), 0, value); 2479 if (!ret && *value > max) 2480 ret = -EINVAL; 2481 return ret; 2482 } 2483 2484 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2485 struct ext4_sb_info *sbi, 2486 char *buf) 2487 { 2488 return snprintf(buf, PAGE_SIZE, "%llu\n", 2489 (s64) EXT4_C2B(sbi, 2490 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2491 } 2492 2493 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2494 struct ext4_sb_info *sbi, char *buf) 2495 { 2496 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2497 2498 if (!sb->s_bdev->bd_part) 2499 return snprintf(buf, PAGE_SIZE, "0\n"); 2500 return snprintf(buf, PAGE_SIZE, "%lu\n", 2501 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2502 sbi->s_sectors_written_start) >> 1); 2503 } 2504 2505 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2506 struct ext4_sb_info *sbi, char *buf) 2507 { 2508 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2509 2510 if (!sb->s_bdev->bd_part) 2511 return snprintf(buf, PAGE_SIZE, "0\n"); 2512 return snprintf(buf, PAGE_SIZE, "%llu\n", 2513 (unsigned long long)(sbi->s_kbytes_written + 2514 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2515 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2516 } 2517 2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2519 struct ext4_sb_info *sbi, 2520 const char *buf, size_t count) 2521 { 2522 unsigned long t; 2523 int ret; 2524 2525 ret = kstrtoul(skip_spaces(buf), 0, &t); 2526 if (ret) 2527 return ret; 2528 2529 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2530 return -EINVAL; 2531 2532 sbi->s_inode_readahead_blks = t; 2533 return count; 2534 } 2535 2536 static ssize_t sbi_ui_show(struct ext4_attr *a, 2537 struct ext4_sb_info *sbi, char *buf) 2538 { 2539 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2540 2541 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2542 } 2543 2544 static ssize_t sbi_ui_store(struct ext4_attr *a, 2545 struct ext4_sb_info *sbi, 2546 const char *buf, size_t count) 2547 { 2548 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2549 unsigned long t; 2550 int ret; 2551 2552 ret = kstrtoul(skip_spaces(buf), 0, &t); 2553 if (ret) 2554 return ret; 2555 *ui = t; 2556 return count; 2557 } 2558 2559 static ssize_t es_ui_show(struct ext4_attr *a, 2560 struct ext4_sb_info *sbi, char *buf) 2561 { 2562 2563 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2564 a->u.offset); 2565 2566 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2567 } 2568 2569 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2570 struct ext4_sb_info *sbi, char *buf) 2571 { 2572 return snprintf(buf, PAGE_SIZE, "%llu\n", 2573 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2574 } 2575 2576 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2577 struct ext4_sb_info *sbi, 2578 const char *buf, size_t count) 2579 { 2580 unsigned long long val; 2581 int ret; 2582 2583 if (parse_strtoull(buf, -1ULL, &val)) 2584 return -EINVAL; 2585 ret = ext4_reserve_clusters(sbi, val); 2586 2587 return ret ? ret : count; 2588 } 2589 2590 static ssize_t trigger_test_error(struct ext4_attr *a, 2591 struct ext4_sb_info *sbi, 2592 const char *buf, size_t count) 2593 { 2594 int len = count; 2595 2596 if (!capable(CAP_SYS_ADMIN)) 2597 return -EPERM; 2598 2599 if (len && buf[len-1] == '\n') 2600 len--; 2601 2602 if (len) 2603 ext4_error(sbi->s_sb, "%.*s", len, buf); 2604 return count; 2605 } 2606 2607 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2608 struct ext4_sb_info *sbi, char *buf) 2609 { 2610 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2611 } 2612 2613 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2614 static struct ext4_attr ext4_attr_##_name = { \ 2615 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2616 .show = _show, \ 2617 .store = _store, \ 2618 .u = { \ 2619 .offset = offsetof(struct ext4_sb_info, _elname),\ 2620 }, \ 2621 } 2622 2623 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2624 static struct ext4_attr ext4_attr_##_name = { \ 2625 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2626 .show = _show, \ 2627 .store = _store, \ 2628 .u = { \ 2629 .offset = offsetof(struct ext4_super_block, _elname), \ 2630 }, \ 2631 } 2632 2633 #define EXT4_ATTR(name, mode, show, store) \ 2634 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2635 2636 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2637 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2638 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2639 2640 #define EXT4_RO_ATTR_ES_UI(name, elname) \ 2641 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2642 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2643 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2644 2645 #define ATTR_LIST(name) &ext4_attr_##name.attr 2646 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2647 static struct ext4_attr ext4_attr_##_name = { \ 2648 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2649 .show = sbi_deprecated_show, \ 2650 .u = { \ 2651 .deprecated_val = _val, \ 2652 }, \ 2653 } 2654 2655 EXT4_RO_ATTR(delayed_allocation_blocks); 2656 EXT4_RO_ATTR(session_write_kbytes); 2657 EXT4_RO_ATTR(lifetime_write_kbytes); 2658 EXT4_RW_ATTR(reserved_clusters); 2659 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2660 inode_readahead_blks_store, s_inode_readahead_blks); 2661 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2662 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2663 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2664 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2665 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2666 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2667 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2668 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2669 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2670 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2671 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2672 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2673 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2674 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2675 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2676 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2677 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2678 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2679 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2680 2681 static struct attribute *ext4_attrs[] = { 2682 ATTR_LIST(delayed_allocation_blocks), 2683 ATTR_LIST(session_write_kbytes), 2684 ATTR_LIST(lifetime_write_kbytes), 2685 ATTR_LIST(reserved_clusters), 2686 ATTR_LIST(inode_readahead_blks), 2687 ATTR_LIST(inode_goal), 2688 ATTR_LIST(mb_stats), 2689 ATTR_LIST(mb_max_to_scan), 2690 ATTR_LIST(mb_min_to_scan), 2691 ATTR_LIST(mb_order2_req), 2692 ATTR_LIST(mb_stream_req), 2693 ATTR_LIST(mb_group_prealloc), 2694 ATTR_LIST(max_writeback_mb_bump), 2695 ATTR_LIST(extent_max_zeroout_kb), 2696 ATTR_LIST(trigger_fs_error), 2697 ATTR_LIST(err_ratelimit_interval_ms), 2698 ATTR_LIST(err_ratelimit_burst), 2699 ATTR_LIST(warning_ratelimit_interval_ms), 2700 ATTR_LIST(warning_ratelimit_burst), 2701 ATTR_LIST(msg_ratelimit_interval_ms), 2702 ATTR_LIST(msg_ratelimit_burst), 2703 ATTR_LIST(errors_count), 2704 ATTR_LIST(first_error_time), 2705 ATTR_LIST(last_error_time), 2706 NULL, 2707 }; 2708 2709 /* Features this copy of ext4 supports */ 2710 EXT4_INFO_ATTR(lazy_itable_init); 2711 EXT4_INFO_ATTR(batched_discard); 2712 EXT4_INFO_ATTR(meta_bg_resize); 2713 EXT4_INFO_ATTR(encryption); 2714 2715 static struct attribute *ext4_feat_attrs[] = { 2716 ATTR_LIST(lazy_itable_init), 2717 ATTR_LIST(batched_discard), 2718 ATTR_LIST(meta_bg_resize), 2719 ATTR_LIST(encryption), 2720 NULL, 2721 }; 2722 2723 static ssize_t ext4_attr_show(struct kobject *kobj, 2724 struct attribute *attr, char *buf) 2725 { 2726 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2727 s_kobj); 2728 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2729 2730 return a->show ? a->show(a, sbi, buf) : 0; 2731 } 2732 2733 static ssize_t ext4_attr_store(struct kobject *kobj, 2734 struct attribute *attr, 2735 const char *buf, size_t len) 2736 { 2737 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2738 s_kobj); 2739 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2740 2741 return a->store ? a->store(a, sbi, buf, len) : 0; 2742 } 2743 2744 static void ext4_sb_release(struct kobject *kobj) 2745 { 2746 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2747 s_kobj); 2748 complete(&sbi->s_kobj_unregister); 2749 } 2750 2751 static const struct sysfs_ops ext4_attr_ops = { 2752 .show = ext4_attr_show, 2753 .store = ext4_attr_store, 2754 }; 2755 2756 static struct kobj_type ext4_ktype = { 2757 .default_attrs = ext4_attrs, 2758 .sysfs_ops = &ext4_attr_ops, 2759 .release = ext4_sb_release, 2760 }; 2761 2762 static void ext4_feat_release(struct kobject *kobj) 2763 { 2764 complete(&ext4_feat->f_kobj_unregister); 2765 } 2766 2767 static ssize_t ext4_feat_show(struct kobject *kobj, 2768 struct attribute *attr, char *buf) 2769 { 2770 return snprintf(buf, PAGE_SIZE, "supported\n"); 2771 } 2772 2773 /* 2774 * We can not use ext4_attr_show/store because it relies on the kobject 2775 * being embedded in the ext4_sb_info structure which is definitely not 2776 * true in this case. 2777 */ 2778 static const struct sysfs_ops ext4_feat_ops = { 2779 .show = ext4_feat_show, 2780 .store = NULL, 2781 }; 2782 2783 static struct kobj_type ext4_feat_ktype = { 2784 .default_attrs = ext4_feat_attrs, 2785 .sysfs_ops = &ext4_feat_ops, 2786 .release = ext4_feat_release, 2787 }; 2788 2789 /* 2790 * Check whether this filesystem can be mounted based on 2791 * the features present and the RDONLY/RDWR mount requested. 2792 * Returns 1 if this filesystem can be mounted as requested, 2793 * 0 if it cannot be. 2794 */ 2795 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2796 { 2797 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2798 ext4_msg(sb, KERN_ERR, 2799 "Couldn't mount because of " 2800 "unsupported optional features (%x)", 2801 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2802 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2803 return 0; 2804 } 2805 2806 if (readonly) 2807 return 1; 2808 2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) { 2810 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2811 sb->s_flags |= MS_RDONLY; 2812 return 1; 2813 } 2814 2815 /* Check that feature set is OK for a read-write mount */ 2816 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2817 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2818 "unsupported optional features (%x)", 2819 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2820 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2821 return 0; 2822 } 2823 /* 2824 * Large file size enabled file system can only be mounted 2825 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2826 */ 2827 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2828 if (sizeof(blkcnt_t) < sizeof(u64)) { 2829 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2830 "cannot be mounted RDWR without " 2831 "CONFIG_LBDAF"); 2832 return 0; 2833 } 2834 } 2835 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2836 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2837 ext4_msg(sb, KERN_ERR, 2838 "Can't support bigalloc feature without " 2839 "extents feature\n"); 2840 return 0; 2841 } 2842 2843 #ifndef CONFIG_QUOTA 2844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2845 !readonly) { 2846 ext4_msg(sb, KERN_ERR, 2847 "Filesystem with quota feature cannot be mounted RDWR " 2848 "without CONFIG_QUOTA"); 2849 return 0; 2850 } 2851 #endif /* CONFIG_QUOTA */ 2852 return 1; 2853 } 2854 2855 /* 2856 * This function is called once a day if we have errors logged 2857 * on the file system 2858 */ 2859 static void print_daily_error_info(unsigned long arg) 2860 { 2861 struct super_block *sb = (struct super_block *) arg; 2862 struct ext4_sb_info *sbi; 2863 struct ext4_super_block *es; 2864 2865 sbi = EXT4_SB(sb); 2866 es = sbi->s_es; 2867 2868 if (es->s_error_count) 2869 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2870 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2871 le32_to_cpu(es->s_error_count)); 2872 if (es->s_first_error_time) { 2873 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2874 sb->s_id, le32_to_cpu(es->s_first_error_time), 2875 (int) sizeof(es->s_first_error_func), 2876 es->s_first_error_func, 2877 le32_to_cpu(es->s_first_error_line)); 2878 if (es->s_first_error_ino) 2879 printk(": inode %u", 2880 le32_to_cpu(es->s_first_error_ino)); 2881 if (es->s_first_error_block) 2882 printk(": block %llu", (unsigned long long) 2883 le64_to_cpu(es->s_first_error_block)); 2884 printk("\n"); 2885 } 2886 if (es->s_last_error_time) { 2887 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2888 sb->s_id, le32_to_cpu(es->s_last_error_time), 2889 (int) sizeof(es->s_last_error_func), 2890 es->s_last_error_func, 2891 le32_to_cpu(es->s_last_error_line)); 2892 if (es->s_last_error_ino) 2893 printk(": inode %u", 2894 le32_to_cpu(es->s_last_error_ino)); 2895 if (es->s_last_error_block) 2896 printk(": block %llu", (unsigned long long) 2897 le64_to_cpu(es->s_last_error_block)); 2898 printk("\n"); 2899 } 2900 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2901 } 2902 2903 /* Find next suitable group and run ext4_init_inode_table */ 2904 static int ext4_run_li_request(struct ext4_li_request *elr) 2905 { 2906 struct ext4_group_desc *gdp = NULL; 2907 ext4_group_t group, ngroups; 2908 struct super_block *sb; 2909 unsigned long timeout = 0; 2910 int ret = 0; 2911 2912 sb = elr->lr_super; 2913 ngroups = EXT4_SB(sb)->s_groups_count; 2914 2915 sb_start_write(sb); 2916 for (group = elr->lr_next_group; group < ngroups; group++) { 2917 gdp = ext4_get_group_desc(sb, group, NULL); 2918 if (!gdp) { 2919 ret = 1; 2920 break; 2921 } 2922 2923 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2924 break; 2925 } 2926 2927 if (group >= ngroups) 2928 ret = 1; 2929 2930 if (!ret) { 2931 timeout = jiffies; 2932 ret = ext4_init_inode_table(sb, group, 2933 elr->lr_timeout ? 0 : 1); 2934 if (elr->lr_timeout == 0) { 2935 timeout = (jiffies - timeout) * 2936 elr->lr_sbi->s_li_wait_mult; 2937 elr->lr_timeout = timeout; 2938 } 2939 elr->lr_next_sched = jiffies + elr->lr_timeout; 2940 elr->lr_next_group = group + 1; 2941 } 2942 sb_end_write(sb); 2943 2944 return ret; 2945 } 2946 2947 /* 2948 * Remove lr_request from the list_request and free the 2949 * request structure. Should be called with li_list_mtx held 2950 */ 2951 static void ext4_remove_li_request(struct ext4_li_request *elr) 2952 { 2953 struct ext4_sb_info *sbi; 2954 2955 if (!elr) 2956 return; 2957 2958 sbi = elr->lr_sbi; 2959 2960 list_del(&elr->lr_request); 2961 sbi->s_li_request = NULL; 2962 kfree(elr); 2963 } 2964 2965 static void ext4_unregister_li_request(struct super_block *sb) 2966 { 2967 mutex_lock(&ext4_li_mtx); 2968 if (!ext4_li_info) { 2969 mutex_unlock(&ext4_li_mtx); 2970 return; 2971 } 2972 2973 mutex_lock(&ext4_li_info->li_list_mtx); 2974 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2975 mutex_unlock(&ext4_li_info->li_list_mtx); 2976 mutex_unlock(&ext4_li_mtx); 2977 } 2978 2979 static struct task_struct *ext4_lazyinit_task; 2980 2981 /* 2982 * This is the function where ext4lazyinit thread lives. It walks 2983 * through the request list searching for next scheduled filesystem. 2984 * When such a fs is found, run the lazy initialization request 2985 * (ext4_rn_li_request) and keep track of the time spend in this 2986 * function. Based on that time we compute next schedule time of 2987 * the request. When walking through the list is complete, compute 2988 * next waking time and put itself into sleep. 2989 */ 2990 static int ext4_lazyinit_thread(void *arg) 2991 { 2992 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2993 struct list_head *pos, *n; 2994 struct ext4_li_request *elr; 2995 unsigned long next_wakeup, cur; 2996 2997 BUG_ON(NULL == eli); 2998 2999 cont_thread: 3000 while (true) { 3001 next_wakeup = MAX_JIFFY_OFFSET; 3002 3003 mutex_lock(&eli->li_list_mtx); 3004 if (list_empty(&eli->li_request_list)) { 3005 mutex_unlock(&eli->li_list_mtx); 3006 goto exit_thread; 3007 } 3008 3009 list_for_each_safe(pos, n, &eli->li_request_list) { 3010 elr = list_entry(pos, struct ext4_li_request, 3011 lr_request); 3012 3013 if (time_after_eq(jiffies, elr->lr_next_sched)) { 3014 if (ext4_run_li_request(elr) != 0) { 3015 /* error, remove the lazy_init job */ 3016 ext4_remove_li_request(elr); 3017 continue; 3018 } 3019 } 3020 3021 if (time_before(elr->lr_next_sched, next_wakeup)) 3022 next_wakeup = elr->lr_next_sched; 3023 } 3024 mutex_unlock(&eli->li_list_mtx); 3025 3026 try_to_freeze(); 3027 3028 cur = jiffies; 3029 if ((time_after_eq(cur, next_wakeup)) || 3030 (MAX_JIFFY_OFFSET == next_wakeup)) { 3031 cond_resched(); 3032 continue; 3033 } 3034 3035 schedule_timeout_interruptible(next_wakeup - cur); 3036 3037 if (kthread_should_stop()) { 3038 ext4_clear_request_list(); 3039 goto exit_thread; 3040 } 3041 } 3042 3043 exit_thread: 3044 /* 3045 * It looks like the request list is empty, but we need 3046 * to check it under the li_list_mtx lock, to prevent any 3047 * additions into it, and of course we should lock ext4_li_mtx 3048 * to atomically free the list and ext4_li_info, because at 3049 * this point another ext4 filesystem could be registering 3050 * new one. 3051 */ 3052 mutex_lock(&ext4_li_mtx); 3053 mutex_lock(&eli->li_list_mtx); 3054 if (!list_empty(&eli->li_request_list)) { 3055 mutex_unlock(&eli->li_list_mtx); 3056 mutex_unlock(&ext4_li_mtx); 3057 goto cont_thread; 3058 } 3059 mutex_unlock(&eli->li_list_mtx); 3060 kfree(ext4_li_info); 3061 ext4_li_info = NULL; 3062 mutex_unlock(&ext4_li_mtx); 3063 3064 return 0; 3065 } 3066 3067 static void ext4_clear_request_list(void) 3068 { 3069 struct list_head *pos, *n; 3070 struct ext4_li_request *elr; 3071 3072 mutex_lock(&ext4_li_info->li_list_mtx); 3073 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3074 elr = list_entry(pos, struct ext4_li_request, 3075 lr_request); 3076 ext4_remove_li_request(elr); 3077 } 3078 mutex_unlock(&ext4_li_info->li_list_mtx); 3079 } 3080 3081 static int ext4_run_lazyinit_thread(void) 3082 { 3083 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3084 ext4_li_info, "ext4lazyinit"); 3085 if (IS_ERR(ext4_lazyinit_task)) { 3086 int err = PTR_ERR(ext4_lazyinit_task); 3087 ext4_clear_request_list(); 3088 kfree(ext4_li_info); 3089 ext4_li_info = NULL; 3090 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3091 "initialization thread\n", 3092 err); 3093 return err; 3094 } 3095 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3096 return 0; 3097 } 3098 3099 /* 3100 * Check whether it make sense to run itable init. thread or not. 3101 * If there is at least one uninitialized inode table, return 3102 * corresponding group number, else the loop goes through all 3103 * groups and return total number of groups. 3104 */ 3105 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3106 { 3107 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3108 struct ext4_group_desc *gdp = NULL; 3109 3110 for (group = 0; group < ngroups; group++) { 3111 gdp = ext4_get_group_desc(sb, group, NULL); 3112 if (!gdp) 3113 continue; 3114 3115 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3116 break; 3117 } 3118 3119 return group; 3120 } 3121 3122 static int ext4_li_info_new(void) 3123 { 3124 struct ext4_lazy_init *eli = NULL; 3125 3126 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3127 if (!eli) 3128 return -ENOMEM; 3129 3130 INIT_LIST_HEAD(&eli->li_request_list); 3131 mutex_init(&eli->li_list_mtx); 3132 3133 eli->li_state |= EXT4_LAZYINIT_QUIT; 3134 3135 ext4_li_info = eli; 3136 3137 return 0; 3138 } 3139 3140 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3141 ext4_group_t start) 3142 { 3143 struct ext4_sb_info *sbi = EXT4_SB(sb); 3144 struct ext4_li_request *elr; 3145 3146 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3147 if (!elr) 3148 return NULL; 3149 3150 elr->lr_super = sb; 3151 elr->lr_sbi = sbi; 3152 elr->lr_next_group = start; 3153 3154 /* 3155 * Randomize first schedule time of the request to 3156 * spread the inode table initialization requests 3157 * better. 3158 */ 3159 elr->lr_next_sched = jiffies + (prandom_u32() % 3160 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3161 return elr; 3162 } 3163 3164 int ext4_register_li_request(struct super_block *sb, 3165 ext4_group_t first_not_zeroed) 3166 { 3167 struct ext4_sb_info *sbi = EXT4_SB(sb); 3168 struct ext4_li_request *elr = NULL; 3169 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3170 int ret = 0; 3171 3172 mutex_lock(&ext4_li_mtx); 3173 if (sbi->s_li_request != NULL) { 3174 /* 3175 * Reset timeout so it can be computed again, because 3176 * s_li_wait_mult might have changed. 3177 */ 3178 sbi->s_li_request->lr_timeout = 0; 3179 goto out; 3180 } 3181 3182 if (first_not_zeroed == ngroups || 3183 (sb->s_flags & MS_RDONLY) || 3184 !test_opt(sb, INIT_INODE_TABLE)) 3185 goto out; 3186 3187 elr = ext4_li_request_new(sb, first_not_zeroed); 3188 if (!elr) { 3189 ret = -ENOMEM; 3190 goto out; 3191 } 3192 3193 if (NULL == ext4_li_info) { 3194 ret = ext4_li_info_new(); 3195 if (ret) 3196 goto out; 3197 } 3198 3199 mutex_lock(&ext4_li_info->li_list_mtx); 3200 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3201 mutex_unlock(&ext4_li_info->li_list_mtx); 3202 3203 sbi->s_li_request = elr; 3204 /* 3205 * set elr to NULL here since it has been inserted to 3206 * the request_list and the removal and free of it is 3207 * handled by ext4_clear_request_list from now on. 3208 */ 3209 elr = NULL; 3210 3211 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3212 ret = ext4_run_lazyinit_thread(); 3213 if (ret) 3214 goto out; 3215 } 3216 out: 3217 mutex_unlock(&ext4_li_mtx); 3218 if (ret) 3219 kfree(elr); 3220 return ret; 3221 } 3222 3223 /* 3224 * We do not need to lock anything since this is called on 3225 * module unload. 3226 */ 3227 static void ext4_destroy_lazyinit_thread(void) 3228 { 3229 /* 3230 * If thread exited earlier 3231 * there's nothing to be done. 3232 */ 3233 if (!ext4_li_info || !ext4_lazyinit_task) 3234 return; 3235 3236 kthread_stop(ext4_lazyinit_task); 3237 } 3238 3239 static int set_journal_csum_feature_set(struct super_block *sb) 3240 { 3241 int ret = 1; 3242 int compat, incompat; 3243 struct ext4_sb_info *sbi = EXT4_SB(sb); 3244 3245 if (ext4_has_metadata_csum(sb)) { 3246 /* journal checksum v3 */ 3247 compat = 0; 3248 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3249 } else { 3250 /* journal checksum v1 */ 3251 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3252 incompat = 0; 3253 } 3254 3255 jbd2_journal_clear_features(sbi->s_journal, 3256 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3257 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3258 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3259 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3260 ret = jbd2_journal_set_features(sbi->s_journal, 3261 compat, 0, 3262 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3263 incompat); 3264 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3265 ret = jbd2_journal_set_features(sbi->s_journal, 3266 compat, 0, 3267 incompat); 3268 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3269 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3270 } else { 3271 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3272 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3273 } 3274 3275 return ret; 3276 } 3277 3278 /* 3279 * Note: calculating the overhead so we can be compatible with 3280 * historical BSD practice is quite difficult in the face of 3281 * clusters/bigalloc. This is because multiple metadata blocks from 3282 * different block group can end up in the same allocation cluster. 3283 * Calculating the exact overhead in the face of clustered allocation 3284 * requires either O(all block bitmaps) in memory or O(number of block 3285 * groups**2) in time. We will still calculate the superblock for 3286 * older file systems --- and if we come across with a bigalloc file 3287 * system with zero in s_overhead_clusters the estimate will be close to 3288 * correct especially for very large cluster sizes --- but for newer 3289 * file systems, it's better to calculate this figure once at mkfs 3290 * time, and store it in the superblock. If the superblock value is 3291 * present (even for non-bigalloc file systems), we will use it. 3292 */ 3293 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3294 char *buf) 3295 { 3296 struct ext4_sb_info *sbi = EXT4_SB(sb); 3297 struct ext4_group_desc *gdp; 3298 ext4_fsblk_t first_block, last_block, b; 3299 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3300 int s, j, count = 0; 3301 3302 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3303 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3304 sbi->s_itb_per_group + 2); 3305 3306 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3307 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3308 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3309 for (i = 0; i < ngroups; i++) { 3310 gdp = ext4_get_group_desc(sb, i, NULL); 3311 b = ext4_block_bitmap(sb, gdp); 3312 if (b >= first_block && b <= last_block) { 3313 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3314 count++; 3315 } 3316 b = ext4_inode_bitmap(sb, gdp); 3317 if (b >= first_block && b <= last_block) { 3318 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3319 count++; 3320 } 3321 b = ext4_inode_table(sb, gdp); 3322 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3323 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3324 int c = EXT4_B2C(sbi, b - first_block); 3325 ext4_set_bit(c, buf); 3326 count++; 3327 } 3328 if (i != grp) 3329 continue; 3330 s = 0; 3331 if (ext4_bg_has_super(sb, grp)) { 3332 ext4_set_bit(s++, buf); 3333 count++; 3334 } 3335 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3336 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3337 count++; 3338 } 3339 } 3340 if (!count) 3341 return 0; 3342 return EXT4_CLUSTERS_PER_GROUP(sb) - 3343 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3344 } 3345 3346 /* 3347 * Compute the overhead and stash it in sbi->s_overhead 3348 */ 3349 int ext4_calculate_overhead(struct super_block *sb) 3350 { 3351 struct ext4_sb_info *sbi = EXT4_SB(sb); 3352 struct ext4_super_block *es = sbi->s_es; 3353 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3354 ext4_fsblk_t overhead = 0; 3355 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3356 3357 if (!buf) 3358 return -ENOMEM; 3359 3360 /* 3361 * Compute the overhead (FS structures). This is constant 3362 * for a given filesystem unless the number of block groups 3363 * changes so we cache the previous value until it does. 3364 */ 3365 3366 /* 3367 * All of the blocks before first_data_block are overhead 3368 */ 3369 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3370 3371 /* 3372 * Add the overhead found in each block group 3373 */ 3374 for (i = 0; i < ngroups; i++) { 3375 int blks; 3376 3377 blks = count_overhead(sb, i, buf); 3378 overhead += blks; 3379 if (blks) 3380 memset(buf, 0, PAGE_SIZE); 3381 cond_resched(); 3382 } 3383 /* Add the internal journal blocks as well */ 3384 if (sbi->s_journal && !sbi->journal_bdev) 3385 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3386 3387 sbi->s_overhead = overhead; 3388 smp_wmb(); 3389 free_page((unsigned long) buf); 3390 return 0; 3391 } 3392 3393 3394 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3395 { 3396 ext4_fsblk_t resv_clusters; 3397 3398 /* 3399 * There's no need to reserve anything when we aren't using extents. 3400 * The space estimates are exact, there are no unwritten extents, 3401 * hole punching doesn't need new metadata... This is needed especially 3402 * to keep ext2/3 backward compatibility. 3403 */ 3404 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3405 return 0; 3406 /* 3407 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3408 * This should cover the situations where we can not afford to run 3409 * out of space like for example punch hole, or converting 3410 * unwritten extents in delalloc path. In most cases such 3411 * allocation would require 1, or 2 blocks, higher numbers are 3412 * very rare. 3413 */ 3414 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3415 EXT4_SB(sb)->s_cluster_bits; 3416 3417 do_div(resv_clusters, 50); 3418 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3419 3420 return resv_clusters; 3421 } 3422 3423 3424 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3425 { 3426 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3427 sbi->s_cluster_bits; 3428 3429 if (count >= clusters) 3430 return -EINVAL; 3431 3432 atomic64_set(&sbi->s_resv_clusters, count); 3433 return 0; 3434 } 3435 3436 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3437 { 3438 char *orig_data = kstrdup(data, GFP_KERNEL); 3439 struct buffer_head *bh; 3440 struct ext4_super_block *es = NULL; 3441 struct ext4_sb_info *sbi; 3442 ext4_fsblk_t block; 3443 ext4_fsblk_t sb_block = get_sb_block(&data); 3444 ext4_fsblk_t logical_sb_block; 3445 unsigned long offset = 0; 3446 unsigned long journal_devnum = 0; 3447 unsigned long def_mount_opts; 3448 struct inode *root; 3449 const char *descr; 3450 int ret = -ENOMEM; 3451 int blocksize, clustersize; 3452 unsigned int db_count; 3453 unsigned int i; 3454 int needs_recovery, has_huge_files, has_bigalloc; 3455 __u64 blocks_count; 3456 int err = 0; 3457 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3458 ext4_group_t first_not_zeroed; 3459 3460 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3461 if (!sbi) 3462 goto out_free_orig; 3463 3464 sbi->s_blockgroup_lock = 3465 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3466 if (!sbi->s_blockgroup_lock) { 3467 kfree(sbi); 3468 goto out_free_orig; 3469 } 3470 sb->s_fs_info = sbi; 3471 sbi->s_sb = sb; 3472 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3473 sbi->s_sb_block = sb_block; 3474 if (sb->s_bdev->bd_part) 3475 sbi->s_sectors_written_start = 3476 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3477 3478 /* Cleanup superblock name */ 3479 strreplace(sb->s_id, '/', '!'); 3480 3481 /* -EINVAL is default */ 3482 ret = -EINVAL; 3483 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3484 if (!blocksize) { 3485 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3486 goto out_fail; 3487 } 3488 3489 /* 3490 * The ext4 superblock will not be buffer aligned for other than 1kB 3491 * block sizes. We need to calculate the offset from buffer start. 3492 */ 3493 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3494 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3495 offset = do_div(logical_sb_block, blocksize); 3496 } else { 3497 logical_sb_block = sb_block; 3498 } 3499 3500 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3501 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3502 goto out_fail; 3503 } 3504 /* 3505 * Note: s_es must be initialized as soon as possible because 3506 * some ext4 macro-instructions depend on its value 3507 */ 3508 es = (struct ext4_super_block *) (bh->b_data + offset); 3509 sbi->s_es = es; 3510 sb->s_magic = le16_to_cpu(es->s_magic); 3511 if (sb->s_magic != EXT4_SUPER_MAGIC) 3512 goto cantfind_ext4; 3513 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3514 3515 /* Warn if metadata_csum and gdt_csum are both set. */ 3516 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3517 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3518 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3519 ext4_warning(sb, "metadata_csum and uninit_bg are " 3520 "redundant flags; please run fsck."); 3521 3522 /* Check for a known checksum algorithm */ 3523 if (!ext4_verify_csum_type(sb, es)) { 3524 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3525 "unknown checksum algorithm."); 3526 silent = 1; 3527 goto cantfind_ext4; 3528 } 3529 3530 /* Load the checksum driver */ 3531 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3532 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3533 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3534 if (IS_ERR(sbi->s_chksum_driver)) { 3535 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3536 ret = PTR_ERR(sbi->s_chksum_driver); 3537 sbi->s_chksum_driver = NULL; 3538 goto failed_mount; 3539 } 3540 } 3541 3542 /* Check superblock checksum */ 3543 if (!ext4_superblock_csum_verify(sb, es)) { 3544 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3545 "invalid superblock checksum. Run e2fsck?"); 3546 silent = 1; 3547 goto cantfind_ext4; 3548 } 3549 3550 /* Precompute checksum seed for all metadata */ 3551 if (ext4_has_metadata_csum(sb)) 3552 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3553 sizeof(es->s_uuid)); 3554 3555 /* Set defaults before we parse the mount options */ 3556 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3557 set_opt(sb, INIT_INODE_TABLE); 3558 if (def_mount_opts & EXT4_DEFM_DEBUG) 3559 set_opt(sb, DEBUG); 3560 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3561 set_opt(sb, GRPID); 3562 if (def_mount_opts & EXT4_DEFM_UID16) 3563 set_opt(sb, NO_UID32); 3564 /* xattr user namespace & acls are now defaulted on */ 3565 set_opt(sb, XATTR_USER); 3566 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3567 set_opt(sb, POSIX_ACL); 3568 #endif 3569 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3570 if (ext4_has_metadata_csum(sb)) 3571 set_opt(sb, JOURNAL_CHECKSUM); 3572 3573 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3574 set_opt(sb, JOURNAL_DATA); 3575 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3576 set_opt(sb, ORDERED_DATA); 3577 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3578 set_opt(sb, WRITEBACK_DATA); 3579 3580 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3581 set_opt(sb, ERRORS_PANIC); 3582 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3583 set_opt(sb, ERRORS_CONT); 3584 else 3585 set_opt(sb, ERRORS_RO); 3586 /* block_validity enabled by default; disable with noblock_validity */ 3587 set_opt(sb, BLOCK_VALIDITY); 3588 if (def_mount_opts & EXT4_DEFM_DISCARD) 3589 set_opt(sb, DISCARD); 3590 3591 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3592 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3593 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3594 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3595 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3596 3597 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3598 set_opt(sb, BARRIER); 3599 3600 /* 3601 * enable delayed allocation by default 3602 * Use -o nodelalloc to turn it off 3603 */ 3604 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3605 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3606 set_opt(sb, DELALLOC); 3607 3608 /* 3609 * set default s_li_wait_mult for lazyinit, for the case there is 3610 * no mount option specified. 3611 */ 3612 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3613 3614 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3615 &journal_devnum, &journal_ioprio, 0)) { 3616 ext4_msg(sb, KERN_WARNING, 3617 "failed to parse options in superblock: %s", 3618 sbi->s_es->s_mount_opts); 3619 } 3620 sbi->s_def_mount_opt = sbi->s_mount_opt; 3621 if (!parse_options((char *) data, sb, &journal_devnum, 3622 &journal_ioprio, 0)) 3623 goto failed_mount; 3624 3625 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3626 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3627 "with data=journal disables delayed " 3628 "allocation and O_DIRECT support!\n"); 3629 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3630 ext4_msg(sb, KERN_ERR, "can't mount with " 3631 "both data=journal and delalloc"); 3632 goto failed_mount; 3633 } 3634 if (test_opt(sb, DIOREAD_NOLOCK)) { 3635 ext4_msg(sb, KERN_ERR, "can't mount with " 3636 "both data=journal and dioread_nolock"); 3637 goto failed_mount; 3638 } 3639 if (test_opt(sb, DAX)) { 3640 ext4_msg(sb, KERN_ERR, "can't mount with " 3641 "both data=journal and dax"); 3642 goto failed_mount; 3643 } 3644 if (test_opt(sb, DELALLOC)) 3645 clear_opt(sb, DELALLOC); 3646 } 3647 3648 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3649 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3650 3651 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3652 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3653 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3654 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3655 ext4_msg(sb, KERN_WARNING, 3656 "feature flags set on rev 0 fs, " 3657 "running e2fsck is recommended"); 3658 3659 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3660 set_opt2(sb, HURD_COMPAT); 3661 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3662 EXT4_FEATURE_INCOMPAT_64BIT)) { 3663 ext4_msg(sb, KERN_ERR, 3664 "The Hurd can't support 64-bit file systems"); 3665 goto failed_mount; 3666 } 3667 } 3668 3669 if (IS_EXT2_SB(sb)) { 3670 if (ext2_feature_set_ok(sb)) 3671 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3672 "using the ext4 subsystem"); 3673 else { 3674 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3675 "to feature incompatibilities"); 3676 goto failed_mount; 3677 } 3678 } 3679 3680 if (IS_EXT3_SB(sb)) { 3681 if (ext3_feature_set_ok(sb)) 3682 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3683 "using the ext4 subsystem"); 3684 else { 3685 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3686 "to feature incompatibilities"); 3687 goto failed_mount; 3688 } 3689 } 3690 3691 /* 3692 * Check feature flags regardless of the revision level, since we 3693 * previously didn't change the revision level when setting the flags, 3694 * so there is a chance incompat flags are set on a rev 0 filesystem. 3695 */ 3696 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3697 goto failed_mount; 3698 3699 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3700 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3701 blocksize > EXT4_MAX_BLOCK_SIZE) { 3702 ext4_msg(sb, KERN_ERR, 3703 "Unsupported filesystem blocksize %d", blocksize); 3704 goto failed_mount; 3705 } 3706 3707 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3708 if (blocksize != PAGE_SIZE) { 3709 ext4_msg(sb, KERN_ERR, 3710 "error: unsupported blocksize for dax"); 3711 goto failed_mount; 3712 } 3713 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3714 ext4_msg(sb, KERN_ERR, 3715 "error: device does not support dax"); 3716 goto failed_mount; 3717 } 3718 } 3719 3720 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) && 3721 es->s_encryption_level) { 3722 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3723 es->s_encryption_level); 3724 goto failed_mount; 3725 } 3726 3727 if (sb->s_blocksize != blocksize) { 3728 /* Validate the filesystem blocksize */ 3729 if (!sb_set_blocksize(sb, blocksize)) { 3730 ext4_msg(sb, KERN_ERR, "bad block size %d", 3731 blocksize); 3732 goto failed_mount; 3733 } 3734 3735 brelse(bh); 3736 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3737 offset = do_div(logical_sb_block, blocksize); 3738 bh = sb_bread_unmovable(sb, logical_sb_block); 3739 if (!bh) { 3740 ext4_msg(sb, KERN_ERR, 3741 "Can't read superblock on 2nd try"); 3742 goto failed_mount; 3743 } 3744 es = (struct ext4_super_block *)(bh->b_data + offset); 3745 sbi->s_es = es; 3746 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3747 ext4_msg(sb, KERN_ERR, 3748 "Magic mismatch, very weird!"); 3749 goto failed_mount; 3750 } 3751 } 3752 3753 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3754 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3755 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3756 has_huge_files); 3757 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3758 3759 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3760 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3761 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3762 } else { 3763 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3764 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3765 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3766 (!is_power_of_2(sbi->s_inode_size)) || 3767 (sbi->s_inode_size > blocksize)) { 3768 ext4_msg(sb, KERN_ERR, 3769 "unsupported inode size: %d", 3770 sbi->s_inode_size); 3771 goto failed_mount; 3772 } 3773 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3774 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3775 } 3776 3777 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3778 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3779 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3780 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3781 !is_power_of_2(sbi->s_desc_size)) { 3782 ext4_msg(sb, KERN_ERR, 3783 "unsupported descriptor size %lu", 3784 sbi->s_desc_size); 3785 goto failed_mount; 3786 } 3787 } else 3788 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3789 3790 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3791 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3792 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3793 goto cantfind_ext4; 3794 3795 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3796 if (sbi->s_inodes_per_block == 0) 3797 goto cantfind_ext4; 3798 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3799 sbi->s_inodes_per_block; 3800 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3801 sbi->s_sbh = bh; 3802 sbi->s_mount_state = le16_to_cpu(es->s_state); 3803 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3804 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3805 3806 for (i = 0; i < 4; i++) 3807 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3808 sbi->s_def_hash_version = es->s_def_hash_version; 3809 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3810 i = le32_to_cpu(es->s_flags); 3811 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3812 sbi->s_hash_unsigned = 3; 3813 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3814 #ifdef __CHAR_UNSIGNED__ 3815 if (!(sb->s_flags & MS_RDONLY)) 3816 es->s_flags |= 3817 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3818 sbi->s_hash_unsigned = 3; 3819 #else 3820 if (!(sb->s_flags & MS_RDONLY)) 3821 es->s_flags |= 3822 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3823 #endif 3824 } 3825 } 3826 3827 /* Handle clustersize */ 3828 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3829 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3830 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3831 if (has_bigalloc) { 3832 if (clustersize < blocksize) { 3833 ext4_msg(sb, KERN_ERR, 3834 "cluster size (%d) smaller than " 3835 "block size (%d)", clustersize, blocksize); 3836 goto failed_mount; 3837 } 3838 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3839 le32_to_cpu(es->s_log_block_size); 3840 sbi->s_clusters_per_group = 3841 le32_to_cpu(es->s_clusters_per_group); 3842 if (sbi->s_clusters_per_group > blocksize * 8) { 3843 ext4_msg(sb, KERN_ERR, 3844 "#clusters per group too big: %lu", 3845 sbi->s_clusters_per_group); 3846 goto failed_mount; 3847 } 3848 if (sbi->s_blocks_per_group != 3849 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3850 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3851 "clusters per group (%lu) inconsistent", 3852 sbi->s_blocks_per_group, 3853 sbi->s_clusters_per_group); 3854 goto failed_mount; 3855 } 3856 } else { 3857 if (clustersize != blocksize) { 3858 ext4_warning(sb, "fragment/cluster size (%d) != " 3859 "block size (%d)", clustersize, 3860 blocksize); 3861 clustersize = blocksize; 3862 } 3863 if (sbi->s_blocks_per_group > blocksize * 8) { 3864 ext4_msg(sb, KERN_ERR, 3865 "#blocks per group too big: %lu", 3866 sbi->s_blocks_per_group); 3867 goto failed_mount; 3868 } 3869 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3870 sbi->s_cluster_bits = 0; 3871 } 3872 sbi->s_cluster_ratio = clustersize / blocksize; 3873 3874 if (sbi->s_inodes_per_group > blocksize * 8) { 3875 ext4_msg(sb, KERN_ERR, 3876 "#inodes per group too big: %lu", 3877 sbi->s_inodes_per_group); 3878 goto failed_mount; 3879 } 3880 3881 /* Do we have standard group size of clustersize * 8 blocks ? */ 3882 if (sbi->s_blocks_per_group == clustersize << 3) 3883 set_opt2(sb, STD_GROUP_SIZE); 3884 3885 /* 3886 * Test whether we have more sectors than will fit in sector_t, 3887 * and whether the max offset is addressable by the page cache. 3888 */ 3889 err = generic_check_addressable(sb->s_blocksize_bits, 3890 ext4_blocks_count(es)); 3891 if (err) { 3892 ext4_msg(sb, KERN_ERR, "filesystem" 3893 " too large to mount safely on this system"); 3894 if (sizeof(sector_t) < 8) 3895 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3896 goto failed_mount; 3897 } 3898 3899 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3900 goto cantfind_ext4; 3901 3902 /* check blocks count against device size */ 3903 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3904 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3905 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3906 "exceeds size of device (%llu blocks)", 3907 ext4_blocks_count(es), blocks_count); 3908 goto failed_mount; 3909 } 3910 3911 /* 3912 * It makes no sense for the first data block to be beyond the end 3913 * of the filesystem. 3914 */ 3915 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3916 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3917 "block %u is beyond end of filesystem (%llu)", 3918 le32_to_cpu(es->s_first_data_block), 3919 ext4_blocks_count(es)); 3920 goto failed_mount; 3921 } 3922 blocks_count = (ext4_blocks_count(es) - 3923 le32_to_cpu(es->s_first_data_block) + 3924 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3925 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3926 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3927 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3928 "(block count %llu, first data block %u, " 3929 "blocks per group %lu)", sbi->s_groups_count, 3930 ext4_blocks_count(es), 3931 le32_to_cpu(es->s_first_data_block), 3932 EXT4_BLOCKS_PER_GROUP(sb)); 3933 goto failed_mount; 3934 } 3935 sbi->s_groups_count = blocks_count; 3936 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3937 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3938 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3939 EXT4_DESC_PER_BLOCK(sb); 3940 sbi->s_group_desc = ext4_kvmalloc(db_count * 3941 sizeof(struct buffer_head *), 3942 GFP_KERNEL); 3943 if (sbi->s_group_desc == NULL) { 3944 ext4_msg(sb, KERN_ERR, "not enough memory"); 3945 ret = -ENOMEM; 3946 goto failed_mount; 3947 } 3948 3949 if (ext4_proc_root) 3950 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3951 3952 if (sbi->s_proc) 3953 proc_create_data("options", S_IRUGO, sbi->s_proc, 3954 &ext4_seq_options_fops, sb); 3955 3956 bgl_lock_init(sbi->s_blockgroup_lock); 3957 3958 for (i = 0; i < db_count; i++) { 3959 block = descriptor_loc(sb, logical_sb_block, i); 3960 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3961 if (!sbi->s_group_desc[i]) { 3962 ext4_msg(sb, KERN_ERR, 3963 "can't read group descriptor %d", i); 3964 db_count = i; 3965 goto failed_mount2; 3966 } 3967 } 3968 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3969 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3970 goto failed_mount2; 3971 } 3972 3973 sbi->s_gdb_count = db_count; 3974 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3975 spin_lock_init(&sbi->s_next_gen_lock); 3976 3977 setup_timer(&sbi->s_err_report, print_daily_error_info, 3978 (unsigned long) sb); 3979 3980 /* Register extent status tree shrinker */ 3981 if (ext4_es_register_shrinker(sbi)) 3982 goto failed_mount3; 3983 3984 sbi->s_stripe = ext4_get_stripe_size(sbi); 3985 sbi->s_extent_max_zeroout_kb = 32; 3986 3987 /* 3988 * set up enough so that it can read an inode 3989 */ 3990 sb->s_op = &ext4_sops; 3991 sb->s_export_op = &ext4_export_ops; 3992 sb->s_xattr = ext4_xattr_handlers; 3993 #ifdef CONFIG_QUOTA 3994 sb->dq_op = &ext4_quota_operations; 3995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3996 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3997 else 3998 sb->s_qcop = &ext4_qctl_operations; 3999 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4000 #endif 4001 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4002 4003 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4004 mutex_init(&sbi->s_orphan_lock); 4005 4006 sb->s_root = NULL; 4007 4008 needs_recovery = (es->s_last_orphan != 0 || 4009 EXT4_HAS_INCOMPAT_FEATURE(sb, 4010 EXT4_FEATURE_INCOMPAT_RECOVER)); 4011 4012 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 4013 !(sb->s_flags & MS_RDONLY)) 4014 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4015 goto failed_mount3a; 4016 4017 /* 4018 * The first inode we look at is the journal inode. Don't try 4019 * root first: it may be modified in the journal! 4020 */ 4021 if (!test_opt(sb, NOLOAD) && 4022 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4023 if (ext4_load_journal(sb, es, journal_devnum)) 4024 goto failed_mount3a; 4025 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 4026 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4027 ext4_msg(sb, KERN_ERR, "required journal recovery " 4028 "suppressed and not mounted read-only"); 4029 goto failed_mount_wq; 4030 } else { 4031 clear_opt(sb, DATA_FLAGS); 4032 sbi->s_journal = NULL; 4033 needs_recovery = 0; 4034 goto no_journal; 4035 } 4036 4037 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 4038 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4039 JBD2_FEATURE_INCOMPAT_64BIT)) { 4040 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4041 goto failed_mount_wq; 4042 } 4043 4044 if (!set_journal_csum_feature_set(sb)) { 4045 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4046 "feature set"); 4047 goto failed_mount_wq; 4048 } 4049 4050 /* We have now updated the journal if required, so we can 4051 * validate the data journaling mode. */ 4052 switch (test_opt(sb, DATA_FLAGS)) { 4053 case 0: 4054 /* No mode set, assume a default based on the journal 4055 * capabilities: ORDERED_DATA if the journal can 4056 * cope, else JOURNAL_DATA 4057 */ 4058 if (jbd2_journal_check_available_features 4059 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4060 set_opt(sb, ORDERED_DATA); 4061 else 4062 set_opt(sb, JOURNAL_DATA); 4063 break; 4064 4065 case EXT4_MOUNT_ORDERED_DATA: 4066 case EXT4_MOUNT_WRITEBACK_DATA: 4067 if (!jbd2_journal_check_available_features 4068 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4069 ext4_msg(sb, KERN_ERR, "Journal does not support " 4070 "requested data journaling mode"); 4071 goto failed_mount_wq; 4072 } 4073 default: 4074 break; 4075 } 4076 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4077 4078 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4079 4080 no_journal: 4081 if (ext4_mballoc_ready) { 4082 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4083 if (!sbi->s_mb_cache) { 4084 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4085 goto failed_mount_wq; 4086 } 4087 } 4088 4089 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || 4090 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) && 4091 (blocksize != PAGE_CACHE_SIZE)) { 4092 ext4_msg(sb, KERN_ERR, 4093 "Unsupported blocksize for fs encryption"); 4094 goto failed_mount_wq; 4095 } 4096 4097 if (DUMMY_ENCRYPTION_ENABLED(sbi) && 4098 !(sb->s_flags & MS_RDONLY) && 4099 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) { 4100 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT); 4101 ext4_commit_super(sb, 1); 4102 } 4103 4104 /* 4105 * Get the # of file system overhead blocks from the 4106 * superblock if present. 4107 */ 4108 if (es->s_overhead_clusters) 4109 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4110 else { 4111 err = ext4_calculate_overhead(sb); 4112 if (err) 4113 goto failed_mount_wq; 4114 } 4115 4116 /* 4117 * The maximum number of concurrent works can be high and 4118 * concurrency isn't really necessary. Limit it to 1. 4119 */ 4120 EXT4_SB(sb)->rsv_conversion_wq = 4121 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4122 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4123 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4124 ret = -ENOMEM; 4125 goto failed_mount4; 4126 } 4127 4128 /* 4129 * The jbd2_journal_load will have done any necessary log recovery, 4130 * so we can safely mount the rest of the filesystem now. 4131 */ 4132 4133 root = ext4_iget(sb, EXT4_ROOT_INO); 4134 if (IS_ERR(root)) { 4135 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4136 ret = PTR_ERR(root); 4137 root = NULL; 4138 goto failed_mount4; 4139 } 4140 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4141 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4142 iput(root); 4143 goto failed_mount4; 4144 } 4145 sb->s_root = d_make_root(root); 4146 if (!sb->s_root) { 4147 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4148 ret = -ENOMEM; 4149 goto failed_mount4; 4150 } 4151 4152 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4153 sb->s_flags |= MS_RDONLY; 4154 4155 /* determine the minimum size of new large inodes, if present */ 4156 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4157 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4158 EXT4_GOOD_OLD_INODE_SIZE; 4159 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4160 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4161 if (sbi->s_want_extra_isize < 4162 le16_to_cpu(es->s_want_extra_isize)) 4163 sbi->s_want_extra_isize = 4164 le16_to_cpu(es->s_want_extra_isize); 4165 if (sbi->s_want_extra_isize < 4166 le16_to_cpu(es->s_min_extra_isize)) 4167 sbi->s_want_extra_isize = 4168 le16_to_cpu(es->s_min_extra_isize); 4169 } 4170 } 4171 /* Check if enough inode space is available */ 4172 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4173 sbi->s_inode_size) { 4174 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4175 EXT4_GOOD_OLD_INODE_SIZE; 4176 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4177 "available"); 4178 } 4179 4180 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4181 if (err) { 4182 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4183 "reserved pool", ext4_calculate_resv_clusters(sb)); 4184 goto failed_mount4a; 4185 } 4186 4187 err = ext4_setup_system_zone(sb); 4188 if (err) { 4189 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4190 "zone (%d)", err); 4191 goto failed_mount4a; 4192 } 4193 4194 ext4_ext_init(sb); 4195 err = ext4_mb_init(sb); 4196 if (err) { 4197 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4198 err); 4199 goto failed_mount5; 4200 } 4201 4202 block = ext4_count_free_clusters(sb); 4203 ext4_free_blocks_count_set(sbi->s_es, 4204 EXT4_C2B(sbi, block)); 4205 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4206 GFP_KERNEL); 4207 if (!err) { 4208 unsigned long freei = ext4_count_free_inodes(sb); 4209 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4210 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4211 GFP_KERNEL); 4212 } 4213 if (!err) 4214 err = percpu_counter_init(&sbi->s_dirs_counter, 4215 ext4_count_dirs(sb), GFP_KERNEL); 4216 if (!err) 4217 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4218 GFP_KERNEL); 4219 if (err) { 4220 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4221 goto failed_mount6; 4222 } 4223 4224 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4225 if (!ext4_fill_flex_info(sb)) { 4226 ext4_msg(sb, KERN_ERR, 4227 "unable to initialize " 4228 "flex_bg meta info!"); 4229 goto failed_mount6; 4230 } 4231 4232 err = ext4_register_li_request(sb, first_not_zeroed); 4233 if (err) 4234 goto failed_mount6; 4235 4236 sbi->s_kobj.kset = ext4_kset; 4237 init_completion(&sbi->s_kobj_unregister); 4238 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4239 "%s", sb->s_id); 4240 if (err) 4241 goto failed_mount7; 4242 4243 #ifdef CONFIG_QUOTA 4244 /* Enable quota usage during mount. */ 4245 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4246 !(sb->s_flags & MS_RDONLY)) { 4247 err = ext4_enable_quotas(sb); 4248 if (err) 4249 goto failed_mount8; 4250 } 4251 #endif /* CONFIG_QUOTA */ 4252 4253 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4254 ext4_orphan_cleanup(sb, es); 4255 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4256 if (needs_recovery) { 4257 ext4_msg(sb, KERN_INFO, "recovery complete"); 4258 ext4_mark_recovery_complete(sb, es); 4259 } 4260 if (EXT4_SB(sb)->s_journal) { 4261 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4262 descr = " journalled data mode"; 4263 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4264 descr = " ordered data mode"; 4265 else 4266 descr = " writeback data mode"; 4267 } else 4268 descr = "out journal"; 4269 4270 if (test_opt(sb, DISCARD)) { 4271 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4272 if (!blk_queue_discard(q)) 4273 ext4_msg(sb, KERN_WARNING, 4274 "mounting with \"discard\" option, but " 4275 "the device does not support discard"); 4276 } 4277 4278 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4279 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4280 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4281 4282 if (es->s_error_count) 4283 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4284 4285 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4286 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4287 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4288 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4289 4290 kfree(orig_data); 4291 return 0; 4292 4293 cantfind_ext4: 4294 if (!silent) 4295 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4296 goto failed_mount; 4297 4298 #ifdef CONFIG_QUOTA 4299 failed_mount8: 4300 kobject_del(&sbi->s_kobj); 4301 #endif 4302 failed_mount7: 4303 ext4_unregister_li_request(sb); 4304 failed_mount6: 4305 ext4_mb_release(sb); 4306 if (sbi->s_flex_groups) 4307 kvfree(sbi->s_flex_groups); 4308 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4309 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4310 percpu_counter_destroy(&sbi->s_dirs_counter); 4311 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4312 failed_mount5: 4313 ext4_ext_release(sb); 4314 ext4_release_system_zone(sb); 4315 failed_mount4a: 4316 dput(sb->s_root); 4317 sb->s_root = NULL; 4318 failed_mount4: 4319 ext4_msg(sb, KERN_ERR, "mount failed"); 4320 if (EXT4_SB(sb)->rsv_conversion_wq) 4321 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4322 failed_mount_wq: 4323 if (sbi->s_journal) { 4324 jbd2_journal_destroy(sbi->s_journal); 4325 sbi->s_journal = NULL; 4326 } 4327 failed_mount3a: 4328 ext4_es_unregister_shrinker(sbi); 4329 failed_mount3: 4330 del_timer_sync(&sbi->s_err_report); 4331 if (sbi->s_mmp_tsk) 4332 kthread_stop(sbi->s_mmp_tsk); 4333 failed_mount2: 4334 for (i = 0; i < db_count; i++) 4335 brelse(sbi->s_group_desc[i]); 4336 kvfree(sbi->s_group_desc); 4337 failed_mount: 4338 if (sbi->s_chksum_driver) 4339 crypto_free_shash(sbi->s_chksum_driver); 4340 if (sbi->s_proc) { 4341 remove_proc_entry("options", sbi->s_proc); 4342 remove_proc_entry(sb->s_id, ext4_proc_root); 4343 } 4344 #ifdef CONFIG_QUOTA 4345 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4346 kfree(sbi->s_qf_names[i]); 4347 #endif 4348 ext4_blkdev_remove(sbi); 4349 brelse(bh); 4350 out_fail: 4351 sb->s_fs_info = NULL; 4352 kfree(sbi->s_blockgroup_lock); 4353 kfree(sbi); 4354 out_free_orig: 4355 kfree(orig_data); 4356 return err ? err : ret; 4357 } 4358 4359 /* 4360 * Setup any per-fs journal parameters now. We'll do this both on 4361 * initial mount, once the journal has been initialised but before we've 4362 * done any recovery; and again on any subsequent remount. 4363 */ 4364 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4365 { 4366 struct ext4_sb_info *sbi = EXT4_SB(sb); 4367 4368 journal->j_commit_interval = sbi->s_commit_interval; 4369 journal->j_min_batch_time = sbi->s_min_batch_time; 4370 journal->j_max_batch_time = sbi->s_max_batch_time; 4371 4372 write_lock(&journal->j_state_lock); 4373 if (test_opt(sb, BARRIER)) 4374 journal->j_flags |= JBD2_BARRIER; 4375 else 4376 journal->j_flags &= ~JBD2_BARRIER; 4377 if (test_opt(sb, DATA_ERR_ABORT)) 4378 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4379 else 4380 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4381 write_unlock(&journal->j_state_lock); 4382 } 4383 4384 static journal_t *ext4_get_journal(struct super_block *sb, 4385 unsigned int journal_inum) 4386 { 4387 struct inode *journal_inode; 4388 journal_t *journal; 4389 4390 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4391 4392 /* First, test for the existence of a valid inode on disk. Bad 4393 * things happen if we iget() an unused inode, as the subsequent 4394 * iput() will try to delete it. */ 4395 4396 journal_inode = ext4_iget(sb, journal_inum); 4397 if (IS_ERR(journal_inode)) { 4398 ext4_msg(sb, KERN_ERR, "no journal found"); 4399 return NULL; 4400 } 4401 if (!journal_inode->i_nlink) { 4402 make_bad_inode(journal_inode); 4403 iput(journal_inode); 4404 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4405 return NULL; 4406 } 4407 4408 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4409 journal_inode, journal_inode->i_size); 4410 if (!S_ISREG(journal_inode->i_mode)) { 4411 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4412 iput(journal_inode); 4413 return NULL; 4414 } 4415 4416 journal = jbd2_journal_init_inode(journal_inode); 4417 if (!journal) { 4418 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4419 iput(journal_inode); 4420 return NULL; 4421 } 4422 journal->j_private = sb; 4423 ext4_init_journal_params(sb, journal); 4424 return journal; 4425 } 4426 4427 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4428 dev_t j_dev) 4429 { 4430 struct buffer_head *bh; 4431 journal_t *journal; 4432 ext4_fsblk_t start; 4433 ext4_fsblk_t len; 4434 int hblock, blocksize; 4435 ext4_fsblk_t sb_block; 4436 unsigned long offset; 4437 struct ext4_super_block *es; 4438 struct block_device *bdev; 4439 4440 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4441 4442 bdev = ext4_blkdev_get(j_dev, sb); 4443 if (bdev == NULL) 4444 return NULL; 4445 4446 blocksize = sb->s_blocksize; 4447 hblock = bdev_logical_block_size(bdev); 4448 if (blocksize < hblock) { 4449 ext4_msg(sb, KERN_ERR, 4450 "blocksize too small for journal device"); 4451 goto out_bdev; 4452 } 4453 4454 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4455 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4456 set_blocksize(bdev, blocksize); 4457 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4458 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4459 "external journal"); 4460 goto out_bdev; 4461 } 4462 4463 es = (struct ext4_super_block *) (bh->b_data + offset); 4464 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4465 !(le32_to_cpu(es->s_feature_incompat) & 4466 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4467 ext4_msg(sb, KERN_ERR, "external journal has " 4468 "bad superblock"); 4469 brelse(bh); 4470 goto out_bdev; 4471 } 4472 4473 if ((le32_to_cpu(es->s_feature_ro_compat) & 4474 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4475 es->s_checksum != ext4_superblock_csum(sb, es)) { 4476 ext4_msg(sb, KERN_ERR, "external journal has " 4477 "corrupt superblock"); 4478 brelse(bh); 4479 goto out_bdev; 4480 } 4481 4482 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4483 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4484 brelse(bh); 4485 goto out_bdev; 4486 } 4487 4488 len = ext4_blocks_count(es); 4489 start = sb_block + 1; 4490 brelse(bh); /* we're done with the superblock */ 4491 4492 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4493 start, len, blocksize); 4494 if (!journal) { 4495 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4496 goto out_bdev; 4497 } 4498 journal->j_private = sb; 4499 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4500 wait_on_buffer(journal->j_sb_buffer); 4501 if (!buffer_uptodate(journal->j_sb_buffer)) { 4502 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4503 goto out_journal; 4504 } 4505 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4506 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4507 "user (unsupported) - %d", 4508 be32_to_cpu(journal->j_superblock->s_nr_users)); 4509 goto out_journal; 4510 } 4511 EXT4_SB(sb)->journal_bdev = bdev; 4512 ext4_init_journal_params(sb, journal); 4513 return journal; 4514 4515 out_journal: 4516 jbd2_journal_destroy(journal); 4517 out_bdev: 4518 ext4_blkdev_put(bdev); 4519 return NULL; 4520 } 4521 4522 static int ext4_load_journal(struct super_block *sb, 4523 struct ext4_super_block *es, 4524 unsigned long journal_devnum) 4525 { 4526 journal_t *journal; 4527 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4528 dev_t journal_dev; 4529 int err = 0; 4530 int really_read_only; 4531 4532 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4533 4534 if (journal_devnum && 4535 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4536 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4537 "numbers have changed"); 4538 journal_dev = new_decode_dev(journal_devnum); 4539 } else 4540 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4541 4542 really_read_only = bdev_read_only(sb->s_bdev); 4543 4544 /* 4545 * Are we loading a blank journal or performing recovery after a 4546 * crash? For recovery, we need to check in advance whether we 4547 * can get read-write access to the device. 4548 */ 4549 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4550 if (sb->s_flags & MS_RDONLY) { 4551 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4552 "required on readonly filesystem"); 4553 if (really_read_only) { 4554 ext4_msg(sb, KERN_ERR, "write access " 4555 "unavailable, cannot proceed"); 4556 return -EROFS; 4557 } 4558 ext4_msg(sb, KERN_INFO, "write access will " 4559 "be enabled during recovery"); 4560 } 4561 } 4562 4563 if (journal_inum && journal_dev) { 4564 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4565 "and inode journals!"); 4566 return -EINVAL; 4567 } 4568 4569 if (journal_inum) { 4570 if (!(journal = ext4_get_journal(sb, journal_inum))) 4571 return -EINVAL; 4572 } else { 4573 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4574 return -EINVAL; 4575 } 4576 4577 if (!(journal->j_flags & JBD2_BARRIER)) 4578 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4579 4580 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4581 err = jbd2_journal_wipe(journal, !really_read_only); 4582 if (!err) { 4583 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4584 if (save) 4585 memcpy(save, ((char *) es) + 4586 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4587 err = jbd2_journal_load(journal); 4588 if (save) 4589 memcpy(((char *) es) + EXT4_S_ERR_START, 4590 save, EXT4_S_ERR_LEN); 4591 kfree(save); 4592 } 4593 4594 if (err) { 4595 ext4_msg(sb, KERN_ERR, "error loading journal"); 4596 jbd2_journal_destroy(journal); 4597 return err; 4598 } 4599 4600 EXT4_SB(sb)->s_journal = journal; 4601 ext4_clear_journal_err(sb, es); 4602 4603 if (!really_read_only && journal_devnum && 4604 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4605 es->s_journal_dev = cpu_to_le32(journal_devnum); 4606 4607 /* Make sure we flush the recovery flag to disk. */ 4608 ext4_commit_super(sb, 1); 4609 } 4610 4611 return 0; 4612 } 4613 4614 static int ext4_commit_super(struct super_block *sb, int sync) 4615 { 4616 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4617 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4618 int error = 0; 4619 4620 if (!sbh) 4621 return error; 4622 if (buffer_write_io_error(sbh)) { 4623 /* 4624 * Oh, dear. A previous attempt to write the 4625 * superblock failed. This could happen because the 4626 * USB device was yanked out. Or it could happen to 4627 * be a transient write error and maybe the block will 4628 * be remapped. Nothing we can do but to retry the 4629 * write and hope for the best. 4630 */ 4631 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4632 "superblock detected"); 4633 clear_buffer_write_io_error(sbh); 4634 set_buffer_uptodate(sbh); 4635 } 4636 /* 4637 * If the file system is mounted read-only, don't update the 4638 * superblock write time. This avoids updating the superblock 4639 * write time when we are mounting the root file system 4640 * read/only but we need to replay the journal; at that point, 4641 * for people who are east of GMT and who make their clock 4642 * tick in localtime for Windows bug-for-bug compatibility, 4643 * the clock is set in the future, and this will cause e2fsck 4644 * to complain and force a full file system check. 4645 */ 4646 if (!(sb->s_flags & MS_RDONLY)) 4647 es->s_wtime = cpu_to_le32(get_seconds()); 4648 if (sb->s_bdev->bd_part) 4649 es->s_kbytes_written = 4650 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4651 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4652 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4653 else 4654 es->s_kbytes_written = 4655 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4656 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4657 ext4_free_blocks_count_set(es, 4658 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4659 &EXT4_SB(sb)->s_freeclusters_counter))); 4660 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4661 es->s_free_inodes_count = 4662 cpu_to_le32(percpu_counter_sum_positive( 4663 &EXT4_SB(sb)->s_freeinodes_counter)); 4664 BUFFER_TRACE(sbh, "marking dirty"); 4665 ext4_superblock_csum_set(sb); 4666 mark_buffer_dirty(sbh); 4667 if (sync) { 4668 error = sync_dirty_buffer(sbh); 4669 if (error) 4670 return error; 4671 4672 error = buffer_write_io_error(sbh); 4673 if (error) { 4674 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4675 "superblock"); 4676 clear_buffer_write_io_error(sbh); 4677 set_buffer_uptodate(sbh); 4678 } 4679 } 4680 return error; 4681 } 4682 4683 /* 4684 * Have we just finished recovery? If so, and if we are mounting (or 4685 * remounting) the filesystem readonly, then we will end up with a 4686 * consistent fs on disk. Record that fact. 4687 */ 4688 static void ext4_mark_recovery_complete(struct super_block *sb, 4689 struct ext4_super_block *es) 4690 { 4691 journal_t *journal = EXT4_SB(sb)->s_journal; 4692 4693 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4694 BUG_ON(journal != NULL); 4695 return; 4696 } 4697 jbd2_journal_lock_updates(journal); 4698 if (jbd2_journal_flush(journal) < 0) 4699 goto out; 4700 4701 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4702 sb->s_flags & MS_RDONLY) { 4703 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4704 ext4_commit_super(sb, 1); 4705 } 4706 4707 out: 4708 jbd2_journal_unlock_updates(journal); 4709 } 4710 4711 /* 4712 * If we are mounting (or read-write remounting) a filesystem whose journal 4713 * has recorded an error from a previous lifetime, move that error to the 4714 * main filesystem now. 4715 */ 4716 static void ext4_clear_journal_err(struct super_block *sb, 4717 struct ext4_super_block *es) 4718 { 4719 journal_t *journal; 4720 int j_errno; 4721 const char *errstr; 4722 4723 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4724 4725 journal = EXT4_SB(sb)->s_journal; 4726 4727 /* 4728 * Now check for any error status which may have been recorded in the 4729 * journal by a prior ext4_error() or ext4_abort() 4730 */ 4731 4732 j_errno = jbd2_journal_errno(journal); 4733 if (j_errno) { 4734 char nbuf[16]; 4735 4736 errstr = ext4_decode_error(sb, j_errno, nbuf); 4737 ext4_warning(sb, "Filesystem error recorded " 4738 "from previous mount: %s", errstr); 4739 ext4_warning(sb, "Marking fs in need of filesystem check."); 4740 4741 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4742 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4743 ext4_commit_super(sb, 1); 4744 4745 jbd2_journal_clear_err(journal); 4746 jbd2_journal_update_sb_errno(journal); 4747 } 4748 } 4749 4750 /* 4751 * Force the running and committing transactions to commit, 4752 * and wait on the commit. 4753 */ 4754 int ext4_force_commit(struct super_block *sb) 4755 { 4756 journal_t *journal; 4757 4758 if (sb->s_flags & MS_RDONLY) 4759 return 0; 4760 4761 journal = EXT4_SB(sb)->s_journal; 4762 return ext4_journal_force_commit(journal); 4763 } 4764 4765 static int ext4_sync_fs(struct super_block *sb, int wait) 4766 { 4767 int ret = 0; 4768 tid_t target; 4769 bool needs_barrier = false; 4770 struct ext4_sb_info *sbi = EXT4_SB(sb); 4771 4772 trace_ext4_sync_fs(sb, wait); 4773 flush_workqueue(sbi->rsv_conversion_wq); 4774 /* 4775 * Writeback quota in non-journalled quota case - journalled quota has 4776 * no dirty dquots 4777 */ 4778 dquot_writeback_dquots(sb, -1); 4779 /* 4780 * Data writeback is possible w/o journal transaction, so barrier must 4781 * being sent at the end of the function. But we can skip it if 4782 * transaction_commit will do it for us. 4783 */ 4784 if (sbi->s_journal) { 4785 target = jbd2_get_latest_transaction(sbi->s_journal); 4786 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4787 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4788 needs_barrier = true; 4789 4790 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4791 if (wait) 4792 ret = jbd2_log_wait_commit(sbi->s_journal, 4793 target); 4794 } 4795 } else if (wait && test_opt(sb, BARRIER)) 4796 needs_barrier = true; 4797 if (needs_barrier) { 4798 int err; 4799 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4800 if (!ret) 4801 ret = err; 4802 } 4803 4804 return ret; 4805 } 4806 4807 /* 4808 * LVM calls this function before a (read-only) snapshot is created. This 4809 * gives us a chance to flush the journal completely and mark the fs clean. 4810 * 4811 * Note that only this function cannot bring a filesystem to be in a clean 4812 * state independently. It relies on upper layer to stop all data & metadata 4813 * modifications. 4814 */ 4815 static int ext4_freeze(struct super_block *sb) 4816 { 4817 int error = 0; 4818 journal_t *journal; 4819 4820 if (sb->s_flags & MS_RDONLY) 4821 return 0; 4822 4823 journal = EXT4_SB(sb)->s_journal; 4824 4825 if (journal) { 4826 /* Now we set up the journal barrier. */ 4827 jbd2_journal_lock_updates(journal); 4828 4829 /* 4830 * Don't clear the needs_recovery flag if we failed to 4831 * flush the journal. 4832 */ 4833 error = jbd2_journal_flush(journal); 4834 if (error < 0) 4835 goto out; 4836 } 4837 4838 /* Journal blocked and flushed, clear needs_recovery flag. */ 4839 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4840 error = ext4_commit_super(sb, 1); 4841 out: 4842 if (journal) 4843 /* we rely on upper layer to stop further updates */ 4844 jbd2_journal_unlock_updates(journal); 4845 return error; 4846 } 4847 4848 /* 4849 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4850 * flag here, even though the filesystem is not technically dirty yet. 4851 */ 4852 static int ext4_unfreeze(struct super_block *sb) 4853 { 4854 if (sb->s_flags & MS_RDONLY) 4855 return 0; 4856 4857 /* Reset the needs_recovery flag before the fs is unlocked. */ 4858 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4859 ext4_commit_super(sb, 1); 4860 return 0; 4861 } 4862 4863 /* 4864 * Structure to save mount options for ext4_remount's benefit 4865 */ 4866 struct ext4_mount_options { 4867 unsigned long s_mount_opt; 4868 unsigned long s_mount_opt2; 4869 kuid_t s_resuid; 4870 kgid_t s_resgid; 4871 unsigned long s_commit_interval; 4872 u32 s_min_batch_time, s_max_batch_time; 4873 #ifdef CONFIG_QUOTA 4874 int s_jquota_fmt; 4875 char *s_qf_names[EXT4_MAXQUOTAS]; 4876 #endif 4877 }; 4878 4879 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4880 { 4881 struct ext4_super_block *es; 4882 struct ext4_sb_info *sbi = EXT4_SB(sb); 4883 unsigned long old_sb_flags; 4884 struct ext4_mount_options old_opts; 4885 int enable_quota = 0; 4886 ext4_group_t g; 4887 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4888 int err = 0; 4889 #ifdef CONFIG_QUOTA 4890 int i, j; 4891 #endif 4892 char *orig_data = kstrdup(data, GFP_KERNEL); 4893 4894 /* Store the original options */ 4895 old_sb_flags = sb->s_flags; 4896 old_opts.s_mount_opt = sbi->s_mount_opt; 4897 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4898 old_opts.s_resuid = sbi->s_resuid; 4899 old_opts.s_resgid = sbi->s_resgid; 4900 old_opts.s_commit_interval = sbi->s_commit_interval; 4901 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4902 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4903 #ifdef CONFIG_QUOTA 4904 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4905 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4906 if (sbi->s_qf_names[i]) { 4907 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4908 GFP_KERNEL); 4909 if (!old_opts.s_qf_names[i]) { 4910 for (j = 0; j < i; j++) 4911 kfree(old_opts.s_qf_names[j]); 4912 kfree(orig_data); 4913 return -ENOMEM; 4914 } 4915 } else 4916 old_opts.s_qf_names[i] = NULL; 4917 #endif 4918 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4919 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4920 4921 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4922 err = -EINVAL; 4923 goto restore_opts; 4924 } 4925 4926 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4927 test_opt(sb, JOURNAL_CHECKSUM)) { 4928 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4929 "during remount not supported; ignoring"); 4930 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4931 } 4932 4933 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4934 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4935 ext4_msg(sb, KERN_ERR, "can't mount with " 4936 "both data=journal and delalloc"); 4937 err = -EINVAL; 4938 goto restore_opts; 4939 } 4940 if (test_opt(sb, DIOREAD_NOLOCK)) { 4941 ext4_msg(sb, KERN_ERR, "can't mount with " 4942 "both data=journal and dioread_nolock"); 4943 err = -EINVAL; 4944 goto restore_opts; 4945 } 4946 if (test_opt(sb, DAX)) { 4947 ext4_msg(sb, KERN_ERR, "can't mount with " 4948 "both data=journal and dax"); 4949 err = -EINVAL; 4950 goto restore_opts; 4951 } 4952 } 4953 4954 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4955 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4956 "dax flag with busy inodes while remounting"); 4957 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4958 } 4959 4960 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4961 ext4_abort(sb, "Abort forced by user"); 4962 4963 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4964 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4965 4966 es = sbi->s_es; 4967 4968 if (sbi->s_journal) { 4969 ext4_init_journal_params(sb, sbi->s_journal); 4970 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4971 } 4972 4973 if (*flags & MS_LAZYTIME) 4974 sb->s_flags |= MS_LAZYTIME; 4975 4976 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4977 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4978 err = -EROFS; 4979 goto restore_opts; 4980 } 4981 4982 if (*flags & MS_RDONLY) { 4983 err = sync_filesystem(sb); 4984 if (err < 0) 4985 goto restore_opts; 4986 err = dquot_suspend(sb, -1); 4987 if (err < 0) 4988 goto restore_opts; 4989 4990 /* 4991 * First of all, the unconditional stuff we have to do 4992 * to disable replay of the journal when we next remount 4993 */ 4994 sb->s_flags |= MS_RDONLY; 4995 4996 /* 4997 * OK, test if we are remounting a valid rw partition 4998 * readonly, and if so set the rdonly flag and then 4999 * mark the partition as valid again. 5000 */ 5001 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5002 (sbi->s_mount_state & EXT4_VALID_FS)) 5003 es->s_state = cpu_to_le16(sbi->s_mount_state); 5004 5005 if (sbi->s_journal) 5006 ext4_mark_recovery_complete(sb, es); 5007 } else { 5008 /* Make sure we can mount this feature set readwrite */ 5009 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5010 EXT4_FEATURE_RO_COMPAT_READONLY) || 5011 !ext4_feature_set_ok(sb, 0)) { 5012 err = -EROFS; 5013 goto restore_opts; 5014 } 5015 /* 5016 * Make sure the group descriptor checksums 5017 * are sane. If they aren't, refuse to remount r/w. 5018 */ 5019 for (g = 0; g < sbi->s_groups_count; g++) { 5020 struct ext4_group_desc *gdp = 5021 ext4_get_group_desc(sb, g, NULL); 5022 5023 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5024 ext4_msg(sb, KERN_ERR, 5025 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5026 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 5027 le16_to_cpu(gdp->bg_checksum)); 5028 err = -EINVAL; 5029 goto restore_opts; 5030 } 5031 } 5032 5033 /* 5034 * If we have an unprocessed orphan list hanging 5035 * around from a previously readonly bdev mount, 5036 * require a full umount/remount for now. 5037 */ 5038 if (es->s_last_orphan) { 5039 ext4_msg(sb, KERN_WARNING, "Couldn't " 5040 "remount RDWR because of unprocessed " 5041 "orphan inode list. Please " 5042 "umount/remount instead"); 5043 err = -EINVAL; 5044 goto restore_opts; 5045 } 5046 5047 /* 5048 * Mounting a RDONLY partition read-write, so reread 5049 * and store the current valid flag. (It may have 5050 * been changed by e2fsck since we originally mounted 5051 * the partition.) 5052 */ 5053 if (sbi->s_journal) 5054 ext4_clear_journal_err(sb, es); 5055 sbi->s_mount_state = le16_to_cpu(es->s_state); 5056 if (!ext4_setup_super(sb, es, 0)) 5057 sb->s_flags &= ~MS_RDONLY; 5058 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 5059 EXT4_FEATURE_INCOMPAT_MMP)) 5060 if (ext4_multi_mount_protect(sb, 5061 le64_to_cpu(es->s_mmp_block))) { 5062 err = -EROFS; 5063 goto restore_opts; 5064 } 5065 enable_quota = 1; 5066 } 5067 } 5068 5069 /* 5070 * Reinitialize lazy itable initialization thread based on 5071 * current settings 5072 */ 5073 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5074 ext4_unregister_li_request(sb); 5075 else { 5076 ext4_group_t first_not_zeroed; 5077 first_not_zeroed = ext4_has_uninit_itable(sb); 5078 ext4_register_li_request(sb, first_not_zeroed); 5079 } 5080 5081 ext4_setup_system_zone(sb); 5082 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5083 ext4_commit_super(sb, 1); 5084 5085 #ifdef CONFIG_QUOTA 5086 /* Release old quota file names */ 5087 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5088 kfree(old_opts.s_qf_names[i]); 5089 if (enable_quota) { 5090 if (sb_any_quota_suspended(sb)) 5091 dquot_resume(sb, -1); 5092 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5093 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5094 err = ext4_enable_quotas(sb); 5095 if (err) 5096 goto restore_opts; 5097 } 5098 } 5099 #endif 5100 5101 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5102 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5103 kfree(orig_data); 5104 return 0; 5105 5106 restore_opts: 5107 sb->s_flags = old_sb_flags; 5108 sbi->s_mount_opt = old_opts.s_mount_opt; 5109 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5110 sbi->s_resuid = old_opts.s_resuid; 5111 sbi->s_resgid = old_opts.s_resgid; 5112 sbi->s_commit_interval = old_opts.s_commit_interval; 5113 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5114 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5115 #ifdef CONFIG_QUOTA 5116 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5117 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5118 kfree(sbi->s_qf_names[i]); 5119 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5120 } 5121 #endif 5122 kfree(orig_data); 5123 return err; 5124 } 5125 5126 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5127 { 5128 struct super_block *sb = dentry->d_sb; 5129 struct ext4_sb_info *sbi = EXT4_SB(sb); 5130 struct ext4_super_block *es = sbi->s_es; 5131 ext4_fsblk_t overhead = 0, resv_blocks; 5132 u64 fsid; 5133 s64 bfree; 5134 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5135 5136 if (!test_opt(sb, MINIX_DF)) 5137 overhead = sbi->s_overhead; 5138 5139 buf->f_type = EXT4_SUPER_MAGIC; 5140 buf->f_bsize = sb->s_blocksize; 5141 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5142 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5143 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5144 /* prevent underflow in case that few free space is available */ 5145 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5146 buf->f_bavail = buf->f_bfree - 5147 (ext4_r_blocks_count(es) + resv_blocks); 5148 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5149 buf->f_bavail = 0; 5150 buf->f_files = le32_to_cpu(es->s_inodes_count); 5151 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5152 buf->f_namelen = EXT4_NAME_LEN; 5153 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5154 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5155 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5156 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5157 5158 return 0; 5159 } 5160 5161 /* Helper function for writing quotas on sync - we need to start transaction 5162 * before quota file is locked for write. Otherwise the are possible deadlocks: 5163 * Process 1 Process 2 5164 * ext4_create() quota_sync() 5165 * jbd2_journal_start() write_dquot() 5166 * dquot_initialize() down(dqio_mutex) 5167 * down(dqio_mutex) jbd2_journal_start() 5168 * 5169 */ 5170 5171 #ifdef CONFIG_QUOTA 5172 5173 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5174 { 5175 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5176 } 5177 5178 static int ext4_write_dquot(struct dquot *dquot) 5179 { 5180 int ret, err; 5181 handle_t *handle; 5182 struct inode *inode; 5183 5184 inode = dquot_to_inode(dquot); 5185 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5186 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5187 if (IS_ERR(handle)) 5188 return PTR_ERR(handle); 5189 ret = dquot_commit(dquot); 5190 err = ext4_journal_stop(handle); 5191 if (!ret) 5192 ret = err; 5193 return ret; 5194 } 5195 5196 static int ext4_acquire_dquot(struct dquot *dquot) 5197 { 5198 int ret, err; 5199 handle_t *handle; 5200 5201 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5202 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5203 if (IS_ERR(handle)) 5204 return PTR_ERR(handle); 5205 ret = dquot_acquire(dquot); 5206 err = ext4_journal_stop(handle); 5207 if (!ret) 5208 ret = err; 5209 return ret; 5210 } 5211 5212 static int ext4_release_dquot(struct dquot *dquot) 5213 { 5214 int ret, err; 5215 handle_t *handle; 5216 5217 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5218 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5219 if (IS_ERR(handle)) { 5220 /* Release dquot anyway to avoid endless cycle in dqput() */ 5221 dquot_release(dquot); 5222 return PTR_ERR(handle); 5223 } 5224 ret = dquot_release(dquot); 5225 err = ext4_journal_stop(handle); 5226 if (!ret) 5227 ret = err; 5228 return ret; 5229 } 5230 5231 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5232 { 5233 struct super_block *sb = dquot->dq_sb; 5234 struct ext4_sb_info *sbi = EXT4_SB(sb); 5235 5236 /* Are we journaling quotas? */ 5237 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5238 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5239 dquot_mark_dquot_dirty(dquot); 5240 return ext4_write_dquot(dquot); 5241 } else { 5242 return dquot_mark_dquot_dirty(dquot); 5243 } 5244 } 5245 5246 static int ext4_write_info(struct super_block *sb, int type) 5247 { 5248 int ret, err; 5249 handle_t *handle; 5250 5251 /* Data block + inode block */ 5252 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5253 if (IS_ERR(handle)) 5254 return PTR_ERR(handle); 5255 ret = dquot_commit_info(sb, type); 5256 err = ext4_journal_stop(handle); 5257 if (!ret) 5258 ret = err; 5259 return ret; 5260 } 5261 5262 /* 5263 * Turn on quotas during mount time - we need to find 5264 * the quota file and such... 5265 */ 5266 static int ext4_quota_on_mount(struct super_block *sb, int type) 5267 { 5268 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5269 EXT4_SB(sb)->s_jquota_fmt, type); 5270 } 5271 5272 /* 5273 * Standard function to be called on quota_on 5274 */ 5275 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5276 struct path *path) 5277 { 5278 int err; 5279 5280 if (!test_opt(sb, QUOTA)) 5281 return -EINVAL; 5282 5283 /* Quotafile not on the same filesystem? */ 5284 if (path->dentry->d_sb != sb) 5285 return -EXDEV; 5286 /* Journaling quota? */ 5287 if (EXT4_SB(sb)->s_qf_names[type]) { 5288 /* Quotafile not in fs root? */ 5289 if (path->dentry->d_parent != sb->s_root) 5290 ext4_msg(sb, KERN_WARNING, 5291 "Quota file not on filesystem root. " 5292 "Journaled quota will not work"); 5293 } 5294 5295 /* 5296 * When we journal data on quota file, we have to flush journal to see 5297 * all updates to the file when we bypass pagecache... 5298 */ 5299 if (EXT4_SB(sb)->s_journal && 5300 ext4_should_journal_data(d_inode(path->dentry))) { 5301 /* 5302 * We don't need to lock updates but journal_flush() could 5303 * otherwise be livelocked... 5304 */ 5305 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5306 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5307 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5308 if (err) 5309 return err; 5310 } 5311 5312 return dquot_quota_on(sb, type, format_id, path); 5313 } 5314 5315 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5316 unsigned int flags) 5317 { 5318 int err; 5319 struct inode *qf_inode; 5320 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5321 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5322 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5323 }; 5324 5325 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5326 5327 if (!qf_inums[type]) 5328 return -EPERM; 5329 5330 qf_inode = ext4_iget(sb, qf_inums[type]); 5331 if (IS_ERR(qf_inode)) { 5332 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5333 return PTR_ERR(qf_inode); 5334 } 5335 5336 /* Don't account quota for quota files to avoid recursion */ 5337 qf_inode->i_flags |= S_NOQUOTA; 5338 err = dquot_enable(qf_inode, type, format_id, flags); 5339 iput(qf_inode); 5340 5341 return err; 5342 } 5343 5344 /* Enable usage tracking for all quota types. */ 5345 static int ext4_enable_quotas(struct super_block *sb) 5346 { 5347 int type, err = 0; 5348 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5349 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5350 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5351 }; 5352 5353 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5354 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5355 if (qf_inums[type]) { 5356 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5357 DQUOT_USAGE_ENABLED); 5358 if (err) { 5359 ext4_warning(sb, 5360 "Failed to enable quota tracking " 5361 "(type=%d, err=%d). Please run " 5362 "e2fsck to fix.", type, err); 5363 return err; 5364 } 5365 } 5366 } 5367 return 0; 5368 } 5369 5370 static int ext4_quota_off(struct super_block *sb, int type) 5371 { 5372 struct inode *inode = sb_dqopt(sb)->files[type]; 5373 handle_t *handle; 5374 5375 /* Force all delayed allocation blocks to be allocated. 5376 * Caller already holds s_umount sem */ 5377 if (test_opt(sb, DELALLOC)) 5378 sync_filesystem(sb); 5379 5380 if (!inode) 5381 goto out; 5382 5383 /* Update modification times of quota files when userspace can 5384 * start looking at them */ 5385 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5386 if (IS_ERR(handle)) 5387 goto out; 5388 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5389 ext4_mark_inode_dirty(handle, inode); 5390 ext4_journal_stop(handle); 5391 5392 out: 5393 return dquot_quota_off(sb, type); 5394 } 5395 5396 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5397 * acquiring the locks... As quota files are never truncated and quota code 5398 * itself serializes the operations (and no one else should touch the files) 5399 * we don't have to be afraid of races */ 5400 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5401 size_t len, loff_t off) 5402 { 5403 struct inode *inode = sb_dqopt(sb)->files[type]; 5404 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5405 int offset = off & (sb->s_blocksize - 1); 5406 int tocopy; 5407 size_t toread; 5408 struct buffer_head *bh; 5409 loff_t i_size = i_size_read(inode); 5410 5411 if (off > i_size) 5412 return 0; 5413 if (off+len > i_size) 5414 len = i_size-off; 5415 toread = len; 5416 while (toread > 0) { 5417 tocopy = sb->s_blocksize - offset < toread ? 5418 sb->s_blocksize - offset : toread; 5419 bh = ext4_bread(NULL, inode, blk, 0); 5420 if (IS_ERR(bh)) 5421 return PTR_ERR(bh); 5422 if (!bh) /* A hole? */ 5423 memset(data, 0, tocopy); 5424 else 5425 memcpy(data, bh->b_data+offset, tocopy); 5426 brelse(bh); 5427 offset = 0; 5428 toread -= tocopy; 5429 data += tocopy; 5430 blk++; 5431 } 5432 return len; 5433 } 5434 5435 /* Write to quotafile (we know the transaction is already started and has 5436 * enough credits) */ 5437 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5438 const char *data, size_t len, loff_t off) 5439 { 5440 struct inode *inode = sb_dqopt(sb)->files[type]; 5441 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5442 int err, offset = off & (sb->s_blocksize - 1); 5443 int retries = 0; 5444 struct buffer_head *bh; 5445 handle_t *handle = journal_current_handle(); 5446 5447 if (EXT4_SB(sb)->s_journal && !handle) { 5448 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5449 " cancelled because transaction is not started", 5450 (unsigned long long)off, (unsigned long long)len); 5451 return -EIO; 5452 } 5453 /* 5454 * Since we account only one data block in transaction credits, 5455 * then it is impossible to cross a block boundary. 5456 */ 5457 if (sb->s_blocksize - offset < len) { 5458 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5459 " cancelled because not block aligned", 5460 (unsigned long long)off, (unsigned long long)len); 5461 return -EIO; 5462 } 5463 5464 do { 5465 bh = ext4_bread(handle, inode, blk, 5466 EXT4_GET_BLOCKS_CREATE | 5467 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5468 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5469 ext4_should_retry_alloc(inode->i_sb, &retries)); 5470 if (IS_ERR(bh)) 5471 return PTR_ERR(bh); 5472 if (!bh) 5473 goto out; 5474 BUFFER_TRACE(bh, "get write access"); 5475 err = ext4_journal_get_write_access(handle, bh); 5476 if (err) { 5477 brelse(bh); 5478 return err; 5479 } 5480 lock_buffer(bh); 5481 memcpy(bh->b_data+offset, data, len); 5482 flush_dcache_page(bh->b_page); 5483 unlock_buffer(bh); 5484 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5485 brelse(bh); 5486 out: 5487 if (inode->i_size < off + len) { 5488 i_size_write(inode, off + len); 5489 EXT4_I(inode)->i_disksize = inode->i_size; 5490 ext4_mark_inode_dirty(handle, inode); 5491 } 5492 return len; 5493 } 5494 5495 #endif 5496 5497 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5498 const char *dev_name, void *data) 5499 { 5500 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5501 } 5502 5503 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5504 static inline void register_as_ext2(void) 5505 { 5506 int err = register_filesystem(&ext2_fs_type); 5507 if (err) 5508 printk(KERN_WARNING 5509 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5510 } 5511 5512 static inline void unregister_as_ext2(void) 5513 { 5514 unregister_filesystem(&ext2_fs_type); 5515 } 5516 5517 static inline int ext2_feature_set_ok(struct super_block *sb) 5518 { 5519 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5520 return 0; 5521 if (sb->s_flags & MS_RDONLY) 5522 return 1; 5523 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5524 return 0; 5525 return 1; 5526 } 5527 #else 5528 static inline void register_as_ext2(void) { } 5529 static inline void unregister_as_ext2(void) { } 5530 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5531 #endif 5532 5533 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5534 static inline void register_as_ext3(void) 5535 { 5536 int err = register_filesystem(&ext3_fs_type); 5537 if (err) 5538 printk(KERN_WARNING 5539 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5540 } 5541 5542 static inline void unregister_as_ext3(void) 5543 { 5544 unregister_filesystem(&ext3_fs_type); 5545 } 5546 5547 static inline int ext3_feature_set_ok(struct super_block *sb) 5548 { 5549 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5550 return 0; 5551 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5552 return 0; 5553 if (sb->s_flags & MS_RDONLY) 5554 return 1; 5555 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5556 return 0; 5557 return 1; 5558 } 5559 #else 5560 static inline void register_as_ext3(void) { } 5561 static inline void unregister_as_ext3(void) { } 5562 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5563 #endif 5564 5565 static struct file_system_type ext4_fs_type = { 5566 .owner = THIS_MODULE, 5567 .name = "ext4", 5568 .mount = ext4_mount, 5569 .kill_sb = kill_block_super, 5570 .fs_flags = FS_REQUIRES_DEV, 5571 }; 5572 MODULE_ALIAS_FS("ext4"); 5573 5574 static int __init ext4_init_feat_adverts(void) 5575 { 5576 struct ext4_features *ef; 5577 int ret = -ENOMEM; 5578 5579 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5580 if (!ef) 5581 goto out; 5582 5583 ef->f_kobj.kset = ext4_kset; 5584 init_completion(&ef->f_kobj_unregister); 5585 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5586 "features"); 5587 if (ret) { 5588 kfree(ef); 5589 goto out; 5590 } 5591 5592 ext4_feat = ef; 5593 ret = 0; 5594 out: 5595 return ret; 5596 } 5597 5598 static void ext4_exit_feat_adverts(void) 5599 { 5600 kobject_put(&ext4_feat->f_kobj); 5601 wait_for_completion(&ext4_feat->f_kobj_unregister); 5602 kfree(ext4_feat); 5603 } 5604 5605 /* Shared across all ext4 file systems */ 5606 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5607 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5608 5609 static int __init ext4_init_fs(void) 5610 { 5611 int i, err; 5612 5613 ext4_li_info = NULL; 5614 mutex_init(&ext4_li_mtx); 5615 5616 /* Build-time check for flags consistency */ 5617 ext4_check_flag_values(); 5618 5619 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5620 mutex_init(&ext4__aio_mutex[i]); 5621 init_waitqueue_head(&ext4__ioend_wq[i]); 5622 } 5623 5624 err = ext4_init_es(); 5625 if (err) 5626 return err; 5627 5628 err = ext4_init_pageio(); 5629 if (err) 5630 goto out7; 5631 5632 err = ext4_init_system_zone(); 5633 if (err) 5634 goto out6; 5635 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5636 if (!ext4_kset) { 5637 err = -ENOMEM; 5638 goto out5; 5639 } 5640 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5641 5642 err = ext4_init_feat_adverts(); 5643 if (err) 5644 goto out4; 5645 5646 err = ext4_init_mballoc(); 5647 if (err) 5648 goto out2; 5649 else 5650 ext4_mballoc_ready = 1; 5651 err = init_inodecache(); 5652 if (err) 5653 goto out1; 5654 register_as_ext3(); 5655 register_as_ext2(); 5656 err = register_filesystem(&ext4_fs_type); 5657 if (err) 5658 goto out; 5659 5660 return 0; 5661 out: 5662 unregister_as_ext2(); 5663 unregister_as_ext3(); 5664 destroy_inodecache(); 5665 out1: 5666 ext4_mballoc_ready = 0; 5667 ext4_exit_mballoc(); 5668 out2: 5669 ext4_exit_feat_adverts(); 5670 out4: 5671 if (ext4_proc_root) 5672 remove_proc_entry("fs/ext4", NULL); 5673 kset_unregister(ext4_kset); 5674 out5: 5675 ext4_exit_system_zone(); 5676 out6: 5677 ext4_exit_pageio(); 5678 out7: 5679 ext4_exit_es(); 5680 5681 return err; 5682 } 5683 5684 static void __exit ext4_exit_fs(void) 5685 { 5686 ext4_exit_crypto(); 5687 ext4_destroy_lazyinit_thread(); 5688 unregister_as_ext2(); 5689 unregister_as_ext3(); 5690 unregister_filesystem(&ext4_fs_type); 5691 destroy_inodecache(); 5692 ext4_exit_mballoc(); 5693 ext4_exit_feat_adverts(); 5694 remove_proc_entry("fs/ext4", NULL); 5695 kset_unregister(ext4_kset); 5696 ext4_exit_system_zone(); 5697 ext4_exit_pageio(); 5698 ext4_exit_es(); 5699 } 5700 5701 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5702 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5703 MODULE_LICENSE("GPL"); 5704 module_init(ext4_init_fs) 5705 module_exit(ext4_exit_fs) 5706