1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 static struct inode *ext4_get_journal_inode(struct super_block *sb, 88 unsigned int journal_inum); 89 90 /* 91 * Lock ordering 92 * 93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 94 * i_mmap_rwsem (inode->i_mmap_rwsem)! 95 * 96 * page fault path: 97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 98 * page lock -> i_data_sem (rw) 99 * 100 * buffered write path: 101 * sb_start_write -> i_mutex -> mmap_lock 102 * sb_start_write -> i_mutex -> transaction start -> page lock -> 103 * i_data_sem (rw) 104 * 105 * truncate: 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 108 * i_data_sem (rw) 109 * 110 * direct IO: 111 * sb_start_write -> i_mutex -> mmap_lock 112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 113 * 114 * writepages: 115 * transaction start -> page lock(s) -> i_data_sem (rw) 116 */ 117 118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 119 static struct file_system_type ext2_fs_type = { 120 .owner = THIS_MODULE, 121 .name = "ext2", 122 .mount = ext4_mount, 123 .kill_sb = kill_block_super, 124 .fs_flags = FS_REQUIRES_DEV, 125 }; 126 MODULE_ALIAS_FS("ext2"); 127 MODULE_ALIAS("ext2"); 128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 129 #else 130 #define IS_EXT2_SB(sb) (0) 131 #endif 132 133 134 static struct file_system_type ext3_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext3", 137 .mount = ext4_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext3"); 142 MODULE_ALIAS("ext3"); 143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 144 145 146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 147 bh_end_io_t *end_io) 148 { 149 /* 150 * buffer's verified bit is no longer valid after reading from 151 * disk again due to write out error, clear it to make sure we 152 * recheck the buffer contents. 153 */ 154 clear_buffer_verified(bh); 155 156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 157 get_bh(bh); 158 submit_bh(REQ_OP_READ, op_flags, bh); 159 } 160 161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 162 bh_end_io_t *end_io) 163 { 164 BUG_ON(!buffer_locked(bh)); 165 166 if (ext4_buffer_uptodate(bh)) { 167 unlock_buffer(bh); 168 return; 169 } 170 __ext4_read_bh(bh, op_flags, end_io); 171 } 172 173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 174 { 175 BUG_ON(!buffer_locked(bh)); 176 177 if (ext4_buffer_uptodate(bh)) { 178 unlock_buffer(bh); 179 return 0; 180 } 181 182 __ext4_read_bh(bh, op_flags, end_io); 183 184 wait_on_buffer(bh); 185 if (buffer_uptodate(bh)) 186 return 0; 187 return -EIO; 188 } 189 190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 191 { 192 if (trylock_buffer(bh)) { 193 if (wait) 194 return ext4_read_bh(bh, op_flags, NULL); 195 ext4_read_bh_nowait(bh, op_flags, NULL); 196 return 0; 197 } 198 if (wait) { 199 wait_on_buffer(bh); 200 if (buffer_uptodate(bh)) 201 return 0; 202 return -EIO; 203 } 204 return 0; 205 } 206 207 /* 208 * This works like __bread_gfp() except it uses ERR_PTR for error 209 * returns. Currently with sb_bread it's impossible to distinguish 210 * between ENOMEM and EIO situations (since both result in a NULL 211 * return. 212 */ 213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 214 sector_t block, int op_flags, 215 gfp_t gfp) 216 { 217 struct buffer_head *bh; 218 int ret; 219 220 bh = sb_getblk_gfp(sb, block, gfp); 221 if (bh == NULL) 222 return ERR_PTR(-ENOMEM); 223 if (ext4_buffer_uptodate(bh)) 224 return bh; 225 226 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 227 if (ret) { 228 put_bh(bh); 229 return ERR_PTR(ret); 230 } 231 return bh; 232 } 233 234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 235 int op_flags) 236 { 237 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 238 } 239 240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 241 sector_t block) 242 { 243 return __ext4_sb_bread_gfp(sb, block, 0, 0); 244 } 245 246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 247 { 248 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 249 250 if (likely(bh)) { 251 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 252 brelse(bh); 253 } 254 } 255 256 static int ext4_verify_csum_type(struct super_block *sb, 257 struct ext4_super_block *es) 258 { 259 if (!ext4_has_feature_metadata_csum(sb)) 260 return 1; 261 262 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 263 } 264 265 static __le32 ext4_superblock_csum(struct super_block *sb, 266 struct ext4_super_block *es) 267 { 268 struct ext4_sb_info *sbi = EXT4_SB(sb); 269 int offset = offsetof(struct ext4_super_block, s_checksum); 270 __u32 csum; 271 272 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 273 274 return cpu_to_le32(csum); 275 } 276 277 static int ext4_superblock_csum_verify(struct super_block *sb, 278 struct ext4_super_block *es) 279 { 280 if (!ext4_has_metadata_csum(sb)) 281 return 1; 282 283 return es->s_checksum == ext4_superblock_csum(sb, es); 284 } 285 286 void ext4_superblock_csum_set(struct super_block *sb) 287 { 288 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 289 290 if (!ext4_has_metadata_csum(sb)) 291 return; 292 293 es->s_checksum = ext4_superblock_csum(sb, es); 294 } 295 296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 297 struct ext4_group_desc *bg) 298 { 299 return le32_to_cpu(bg->bg_block_bitmap_lo) | 300 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 301 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 302 } 303 304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 305 struct ext4_group_desc *bg) 306 { 307 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 308 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 309 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 310 } 311 312 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 313 struct ext4_group_desc *bg) 314 { 315 return le32_to_cpu(bg->bg_inode_table_lo) | 316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 317 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 318 } 319 320 __u32 ext4_free_group_clusters(struct super_block *sb, 321 struct ext4_group_desc *bg) 322 { 323 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 325 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 326 } 327 328 __u32 ext4_free_inodes_count(struct super_block *sb, 329 struct ext4_group_desc *bg) 330 { 331 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 333 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 334 } 335 336 __u32 ext4_used_dirs_count(struct super_block *sb, 337 struct ext4_group_desc *bg) 338 { 339 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 341 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 342 } 343 344 __u32 ext4_itable_unused_count(struct super_block *sb, 345 struct ext4_group_desc *bg) 346 { 347 return le16_to_cpu(bg->bg_itable_unused_lo) | 348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 349 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 350 } 351 352 void ext4_block_bitmap_set(struct super_block *sb, 353 struct ext4_group_desc *bg, ext4_fsblk_t blk) 354 { 355 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 356 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 357 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 358 } 359 360 void ext4_inode_bitmap_set(struct super_block *sb, 361 struct ext4_group_desc *bg, ext4_fsblk_t blk) 362 { 363 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 364 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 365 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 366 } 367 368 void ext4_inode_table_set(struct super_block *sb, 369 struct ext4_group_desc *bg, ext4_fsblk_t blk) 370 { 371 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 373 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 374 } 375 376 void ext4_free_group_clusters_set(struct super_block *sb, 377 struct ext4_group_desc *bg, __u32 count) 378 { 379 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 381 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 382 } 383 384 void ext4_free_inodes_set(struct super_block *sb, 385 struct ext4_group_desc *bg, __u32 count) 386 { 387 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 389 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 390 } 391 392 void ext4_used_dirs_set(struct super_block *sb, 393 struct ext4_group_desc *bg, __u32 count) 394 { 395 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 397 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 398 } 399 400 void ext4_itable_unused_set(struct super_block *sb, 401 struct ext4_group_desc *bg, __u32 count) 402 { 403 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 405 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 406 } 407 408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 409 { 410 now = clamp_val(now, 0, (1ull << 40) - 1); 411 412 *lo = cpu_to_le32(lower_32_bits(now)); 413 *hi = upper_32_bits(now); 414 } 415 416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 417 { 418 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 419 } 420 #define ext4_update_tstamp(es, tstamp) \ 421 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 422 ktime_get_real_seconds()) 423 #define ext4_get_tstamp(es, tstamp) \ 424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 425 426 /* 427 * The del_gendisk() function uninitializes the disk-specific data 428 * structures, including the bdi structure, without telling anyone 429 * else. Once this happens, any attempt to call mark_buffer_dirty() 430 * (for example, by ext4_commit_super), will cause a kernel OOPS. 431 * This is a kludge to prevent these oops until we can put in a proper 432 * hook in del_gendisk() to inform the VFS and file system layers. 433 */ 434 static int block_device_ejected(struct super_block *sb) 435 { 436 struct inode *bd_inode = sb->s_bdev->bd_inode; 437 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 438 439 return bdi->dev == NULL; 440 } 441 442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 443 { 444 struct super_block *sb = journal->j_private; 445 struct ext4_sb_info *sbi = EXT4_SB(sb); 446 int error = is_journal_aborted(journal); 447 struct ext4_journal_cb_entry *jce; 448 449 BUG_ON(txn->t_state == T_FINISHED); 450 451 ext4_process_freed_data(sb, txn->t_tid); 452 453 spin_lock(&sbi->s_md_lock); 454 while (!list_empty(&txn->t_private_list)) { 455 jce = list_entry(txn->t_private_list.next, 456 struct ext4_journal_cb_entry, jce_list); 457 list_del_init(&jce->jce_list); 458 spin_unlock(&sbi->s_md_lock); 459 jce->jce_func(sb, jce, error); 460 spin_lock(&sbi->s_md_lock); 461 } 462 spin_unlock(&sbi->s_md_lock); 463 } 464 465 /* 466 * This writepage callback for write_cache_pages() 467 * takes care of a few cases after page cleaning. 468 * 469 * write_cache_pages() already checks for dirty pages 470 * and calls clear_page_dirty_for_io(), which we want, 471 * to write protect the pages. 472 * 473 * However, we may have to redirty a page (see below.) 474 */ 475 static int ext4_journalled_writepage_callback(struct page *page, 476 struct writeback_control *wbc, 477 void *data) 478 { 479 transaction_t *transaction = (transaction_t *) data; 480 struct buffer_head *bh, *head; 481 struct journal_head *jh; 482 483 bh = head = page_buffers(page); 484 do { 485 /* 486 * We have to redirty a page in these cases: 487 * 1) If buffer is dirty, it means the page was dirty because it 488 * contains a buffer that needs checkpointing. So the dirty bit 489 * needs to be preserved so that checkpointing writes the buffer 490 * properly. 491 * 2) If buffer is not part of the committing transaction 492 * (we may have just accidentally come across this buffer because 493 * inode range tracking is not exact) or if the currently running 494 * transaction already contains this buffer as well, dirty bit 495 * needs to be preserved so that the buffer gets writeprotected 496 * properly on running transaction's commit. 497 */ 498 jh = bh2jh(bh); 499 if (buffer_dirty(bh) || 500 (jh && (jh->b_transaction != transaction || 501 jh->b_next_transaction))) { 502 redirty_page_for_writepage(wbc, page); 503 goto out; 504 } 505 } while ((bh = bh->b_this_page) != head); 506 507 out: 508 return AOP_WRITEPAGE_ACTIVATE; 509 } 510 511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 512 { 513 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 514 struct writeback_control wbc = { 515 .sync_mode = WB_SYNC_ALL, 516 .nr_to_write = LONG_MAX, 517 .range_start = jinode->i_dirty_start, 518 .range_end = jinode->i_dirty_end, 519 }; 520 521 return write_cache_pages(mapping, &wbc, 522 ext4_journalled_writepage_callback, 523 jinode->i_transaction); 524 } 525 526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 527 { 528 int ret; 529 530 if (ext4_should_journal_data(jinode->i_vfs_inode)) 531 ret = ext4_journalled_submit_inode_data_buffers(jinode); 532 else 533 ret = jbd2_journal_submit_inode_data_buffers(jinode); 534 535 return ret; 536 } 537 538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 539 { 540 int ret = 0; 541 542 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 543 ret = jbd2_journal_finish_inode_data_buffers(jinode); 544 545 return ret; 546 } 547 548 static bool system_going_down(void) 549 { 550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 551 || system_state == SYSTEM_RESTART; 552 } 553 554 struct ext4_err_translation { 555 int code; 556 int errno; 557 }; 558 559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 560 561 static struct ext4_err_translation err_translation[] = { 562 EXT4_ERR_TRANSLATE(EIO), 563 EXT4_ERR_TRANSLATE(ENOMEM), 564 EXT4_ERR_TRANSLATE(EFSBADCRC), 565 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 566 EXT4_ERR_TRANSLATE(ENOSPC), 567 EXT4_ERR_TRANSLATE(ENOKEY), 568 EXT4_ERR_TRANSLATE(EROFS), 569 EXT4_ERR_TRANSLATE(EFBIG), 570 EXT4_ERR_TRANSLATE(EEXIST), 571 EXT4_ERR_TRANSLATE(ERANGE), 572 EXT4_ERR_TRANSLATE(EOVERFLOW), 573 EXT4_ERR_TRANSLATE(EBUSY), 574 EXT4_ERR_TRANSLATE(ENOTDIR), 575 EXT4_ERR_TRANSLATE(ENOTEMPTY), 576 EXT4_ERR_TRANSLATE(ESHUTDOWN), 577 EXT4_ERR_TRANSLATE(EFAULT), 578 }; 579 580 static int ext4_errno_to_code(int errno) 581 { 582 int i; 583 584 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 585 if (err_translation[i].errno == errno) 586 return err_translation[i].code; 587 return EXT4_ERR_UNKNOWN; 588 } 589 590 static void save_error_info(struct super_block *sb, int error, 591 __u32 ino, __u64 block, 592 const char *func, unsigned int line) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 596 /* We default to EFSCORRUPTED error... */ 597 if (error == 0) 598 error = EFSCORRUPTED; 599 600 spin_lock(&sbi->s_error_lock); 601 sbi->s_add_error_count++; 602 sbi->s_last_error_code = error; 603 sbi->s_last_error_line = line; 604 sbi->s_last_error_ino = ino; 605 sbi->s_last_error_block = block; 606 sbi->s_last_error_func = func; 607 sbi->s_last_error_time = ktime_get_real_seconds(); 608 if (!sbi->s_first_error_time) { 609 sbi->s_first_error_code = error; 610 sbi->s_first_error_line = line; 611 sbi->s_first_error_ino = ino; 612 sbi->s_first_error_block = block; 613 sbi->s_first_error_func = func; 614 sbi->s_first_error_time = sbi->s_last_error_time; 615 } 616 spin_unlock(&sbi->s_error_lock); 617 } 618 619 /* Deal with the reporting of failure conditions on a filesystem such as 620 * inconsistencies detected or read IO failures. 621 * 622 * On ext2, we can store the error state of the filesystem in the 623 * superblock. That is not possible on ext4, because we may have other 624 * write ordering constraints on the superblock which prevent us from 625 * writing it out straight away; and given that the journal is about to 626 * be aborted, we can't rely on the current, or future, transactions to 627 * write out the superblock safely. 628 * 629 * We'll just use the jbd2_journal_abort() error code to record an error in 630 * the journal instead. On recovery, the journal will complain about 631 * that error until we've noted it down and cleared it. 632 * 633 * If force_ro is set, we unconditionally force the filesystem into an 634 * ABORT|READONLY state, unless the error response on the fs has been set to 635 * panic in which case we take the easy way out and panic immediately. This is 636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 637 * at a critical moment in log management. 638 */ 639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 640 __u32 ino, __u64 block, 641 const char *func, unsigned int line) 642 { 643 journal_t *journal = EXT4_SB(sb)->s_journal; 644 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 645 646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 647 if (test_opt(sb, WARN_ON_ERROR)) 648 WARN_ON_ONCE(1); 649 650 if (!continue_fs && !sb_rdonly(sb)) { 651 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 652 if (journal) 653 jbd2_journal_abort(journal, -EIO); 654 } 655 656 if (!bdev_read_only(sb->s_bdev)) { 657 save_error_info(sb, error, ino, block, func, line); 658 /* 659 * In case the fs should keep running, we need to writeout 660 * superblock through the journal. Due to lock ordering 661 * constraints, it may not be safe to do it right here so we 662 * defer superblock flushing to a workqueue. 663 */ 664 if (continue_fs) 665 schedule_work(&EXT4_SB(sb)->s_error_work); 666 else 667 ext4_commit_super(sb); 668 } 669 670 if (sb_rdonly(sb) || continue_fs) 671 return; 672 673 /* 674 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 675 * could panic during 'reboot -f' as the underlying device got already 676 * disabled. 677 */ 678 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 679 panic("EXT4-fs (device %s): panic forced after error\n", 680 sb->s_id); 681 } 682 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 683 /* 684 * Make sure updated value of ->s_mount_flags will be visible before 685 * ->s_flags update 686 */ 687 smp_wmb(); 688 sb->s_flags |= SB_RDONLY; 689 } 690 691 static void flush_stashed_error_work(struct work_struct *work) 692 { 693 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 694 s_error_work); 695 journal_t *journal = sbi->s_journal; 696 handle_t *handle; 697 698 /* 699 * If the journal is still running, we have to write out superblock 700 * through the journal to avoid collisions of other journalled sb 701 * updates. 702 * 703 * We use directly jbd2 functions here to avoid recursing back into 704 * ext4 error handling code during handling of previous errors. 705 */ 706 if (!sb_rdonly(sbi->s_sb) && journal) { 707 handle = jbd2_journal_start(journal, 1); 708 if (IS_ERR(handle)) 709 goto write_directly; 710 if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) { 711 jbd2_journal_stop(handle); 712 goto write_directly; 713 } 714 ext4_update_super(sbi->s_sb); 715 if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) { 716 jbd2_journal_stop(handle); 717 goto write_directly; 718 } 719 jbd2_journal_stop(handle); 720 return; 721 } 722 write_directly: 723 /* 724 * Write through journal failed. Write sb directly to get error info 725 * out and hope for the best. 726 */ 727 ext4_commit_super(sbi->s_sb); 728 } 729 730 #define ext4_error_ratelimit(sb) \ 731 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 732 "EXT4-fs error") 733 734 void __ext4_error(struct super_block *sb, const char *function, 735 unsigned int line, bool force_ro, int error, __u64 block, 736 const char *fmt, ...) 737 { 738 struct va_format vaf; 739 va_list args; 740 741 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 742 return; 743 744 trace_ext4_error(sb, function, line); 745 if (ext4_error_ratelimit(sb)) { 746 va_start(args, fmt); 747 vaf.fmt = fmt; 748 vaf.va = &args; 749 printk(KERN_CRIT 750 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 751 sb->s_id, function, line, current->comm, &vaf); 752 va_end(args); 753 } 754 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 755 } 756 757 void __ext4_error_inode(struct inode *inode, const char *function, 758 unsigned int line, ext4_fsblk_t block, int error, 759 const char *fmt, ...) 760 { 761 va_list args; 762 struct va_format vaf; 763 764 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 765 return; 766 767 trace_ext4_error(inode->i_sb, function, line); 768 if (ext4_error_ratelimit(inode->i_sb)) { 769 va_start(args, fmt); 770 vaf.fmt = fmt; 771 vaf.va = &args; 772 if (block) 773 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 774 "inode #%lu: block %llu: comm %s: %pV\n", 775 inode->i_sb->s_id, function, line, inode->i_ino, 776 block, current->comm, &vaf); 777 else 778 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 779 "inode #%lu: comm %s: %pV\n", 780 inode->i_sb->s_id, function, line, inode->i_ino, 781 current->comm, &vaf); 782 va_end(args); 783 } 784 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 785 function, line); 786 } 787 788 void __ext4_error_file(struct file *file, const char *function, 789 unsigned int line, ext4_fsblk_t block, 790 const char *fmt, ...) 791 { 792 va_list args; 793 struct va_format vaf; 794 struct inode *inode = file_inode(file); 795 char pathname[80], *path; 796 797 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 798 return; 799 800 trace_ext4_error(inode->i_sb, function, line); 801 if (ext4_error_ratelimit(inode->i_sb)) { 802 path = file_path(file, pathname, sizeof(pathname)); 803 if (IS_ERR(path)) 804 path = "(unknown)"; 805 va_start(args, fmt); 806 vaf.fmt = fmt; 807 vaf.va = &args; 808 if (block) 809 printk(KERN_CRIT 810 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 811 "block %llu: comm %s: path %s: %pV\n", 812 inode->i_sb->s_id, function, line, inode->i_ino, 813 block, current->comm, path, &vaf); 814 else 815 printk(KERN_CRIT 816 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 817 "comm %s: path %s: %pV\n", 818 inode->i_sb->s_id, function, line, inode->i_ino, 819 current->comm, path, &vaf); 820 va_end(args); 821 } 822 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 823 function, line); 824 } 825 826 const char *ext4_decode_error(struct super_block *sb, int errno, 827 char nbuf[16]) 828 { 829 char *errstr = NULL; 830 831 switch (errno) { 832 case -EFSCORRUPTED: 833 errstr = "Corrupt filesystem"; 834 break; 835 case -EFSBADCRC: 836 errstr = "Filesystem failed CRC"; 837 break; 838 case -EIO: 839 errstr = "IO failure"; 840 break; 841 case -ENOMEM: 842 errstr = "Out of memory"; 843 break; 844 case -EROFS: 845 if (!sb || (EXT4_SB(sb)->s_journal && 846 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 847 errstr = "Journal has aborted"; 848 else 849 errstr = "Readonly filesystem"; 850 break; 851 default: 852 /* If the caller passed in an extra buffer for unknown 853 * errors, textualise them now. Else we just return 854 * NULL. */ 855 if (nbuf) { 856 /* Check for truncated error codes... */ 857 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 858 errstr = nbuf; 859 } 860 break; 861 } 862 863 return errstr; 864 } 865 866 /* __ext4_std_error decodes expected errors from journaling functions 867 * automatically and invokes the appropriate error response. */ 868 869 void __ext4_std_error(struct super_block *sb, const char *function, 870 unsigned int line, int errno) 871 { 872 char nbuf[16]; 873 const char *errstr; 874 875 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 876 return; 877 878 /* Special case: if the error is EROFS, and we're not already 879 * inside a transaction, then there's really no point in logging 880 * an error. */ 881 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 882 return; 883 884 if (ext4_error_ratelimit(sb)) { 885 errstr = ext4_decode_error(sb, errno, nbuf); 886 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 887 sb->s_id, function, line, errstr); 888 } 889 890 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 891 } 892 893 void __ext4_msg(struct super_block *sb, 894 const char *prefix, const char *fmt, ...) 895 { 896 struct va_format vaf; 897 va_list args; 898 899 atomic_inc(&EXT4_SB(sb)->s_msg_count); 900 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 901 return; 902 903 va_start(args, fmt); 904 vaf.fmt = fmt; 905 vaf.va = &args; 906 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 907 va_end(args); 908 } 909 910 static int ext4_warning_ratelimit(struct super_block *sb) 911 { 912 atomic_inc(&EXT4_SB(sb)->s_warning_count); 913 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 914 "EXT4-fs warning"); 915 } 916 917 void __ext4_warning(struct super_block *sb, const char *function, 918 unsigned int line, const char *fmt, ...) 919 { 920 struct va_format vaf; 921 va_list args; 922 923 if (!ext4_warning_ratelimit(sb)) 924 return; 925 926 va_start(args, fmt); 927 vaf.fmt = fmt; 928 vaf.va = &args; 929 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 930 sb->s_id, function, line, &vaf); 931 va_end(args); 932 } 933 934 void __ext4_warning_inode(const struct inode *inode, const char *function, 935 unsigned int line, const char *fmt, ...) 936 { 937 struct va_format vaf; 938 va_list args; 939 940 if (!ext4_warning_ratelimit(inode->i_sb)) 941 return; 942 943 va_start(args, fmt); 944 vaf.fmt = fmt; 945 vaf.va = &args; 946 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 947 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 948 function, line, inode->i_ino, current->comm, &vaf); 949 va_end(args); 950 } 951 952 void __ext4_grp_locked_error(const char *function, unsigned int line, 953 struct super_block *sb, ext4_group_t grp, 954 unsigned long ino, ext4_fsblk_t block, 955 const char *fmt, ...) 956 __releases(bitlock) 957 __acquires(bitlock) 958 { 959 struct va_format vaf; 960 va_list args; 961 962 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 963 return; 964 965 trace_ext4_error(sb, function, line); 966 if (ext4_error_ratelimit(sb)) { 967 va_start(args, fmt); 968 vaf.fmt = fmt; 969 vaf.va = &args; 970 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 971 sb->s_id, function, line, grp); 972 if (ino) 973 printk(KERN_CONT "inode %lu: ", ino); 974 if (block) 975 printk(KERN_CONT "block %llu:", 976 (unsigned long long) block); 977 printk(KERN_CONT "%pV\n", &vaf); 978 va_end(args); 979 } 980 981 if (test_opt(sb, ERRORS_CONT)) { 982 if (test_opt(sb, WARN_ON_ERROR)) 983 WARN_ON_ONCE(1); 984 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 985 if (!bdev_read_only(sb->s_bdev)) { 986 save_error_info(sb, EFSCORRUPTED, ino, block, function, 987 line); 988 schedule_work(&EXT4_SB(sb)->s_error_work); 989 } 990 return; 991 } 992 ext4_unlock_group(sb, grp); 993 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 994 /* 995 * We only get here in the ERRORS_RO case; relocking the group 996 * may be dangerous, but nothing bad will happen since the 997 * filesystem will have already been marked read/only and the 998 * journal has been aborted. We return 1 as a hint to callers 999 * who might what to use the return value from 1000 * ext4_grp_locked_error() to distinguish between the 1001 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1002 * aggressively from the ext4 function in question, with a 1003 * more appropriate error code. 1004 */ 1005 ext4_lock_group(sb, grp); 1006 return; 1007 } 1008 1009 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1010 ext4_group_t group, 1011 unsigned int flags) 1012 { 1013 struct ext4_sb_info *sbi = EXT4_SB(sb); 1014 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1015 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1016 int ret; 1017 1018 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1019 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1020 &grp->bb_state); 1021 if (!ret) 1022 percpu_counter_sub(&sbi->s_freeclusters_counter, 1023 grp->bb_free); 1024 } 1025 1026 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1027 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1028 &grp->bb_state); 1029 if (!ret && gdp) { 1030 int count; 1031 1032 count = ext4_free_inodes_count(sb, gdp); 1033 percpu_counter_sub(&sbi->s_freeinodes_counter, 1034 count); 1035 } 1036 } 1037 } 1038 1039 void ext4_update_dynamic_rev(struct super_block *sb) 1040 { 1041 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1042 1043 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1044 return; 1045 1046 ext4_warning(sb, 1047 "updating to rev %d because of new feature flag, " 1048 "running e2fsck is recommended", 1049 EXT4_DYNAMIC_REV); 1050 1051 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1052 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1053 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1054 /* leave es->s_feature_*compat flags alone */ 1055 /* es->s_uuid will be set by e2fsck if empty */ 1056 1057 /* 1058 * The rest of the superblock fields should be zero, and if not it 1059 * means they are likely already in use, so leave them alone. We 1060 * can leave it up to e2fsck to clean up any inconsistencies there. 1061 */ 1062 } 1063 1064 /* 1065 * Open the external journal device 1066 */ 1067 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1068 { 1069 struct block_device *bdev; 1070 1071 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1072 if (IS_ERR(bdev)) 1073 goto fail; 1074 return bdev; 1075 1076 fail: 1077 ext4_msg(sb, KERN_ERR, 1078 "failed to open journal device unknown-block(%u,%u) %ld", 1079 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1080 return NULL; 1081 } 1082 1083 /* 1084 * Release the journal device 1085 */ 1086 static void ext4_blkdev_put(struct block_device *bdev) 1087 { 1088 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1089 } 1090 1091 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1092 { 1093 struct block_device *bdev; 1094 bdev = sbi->s_journal_bdev; 1095 if (bdev) { 1096 ext4_blkdev_put(bdev); 1097 sbi->s_journal_bdev = NULL; 1098 } 1099 } 1100 1101 static inline struct inode *orphan_list_entry(struct list_head *l) 1102 { 1103 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1104 } 1105 1106 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1107 { 1108 struct list_head *l; 1109 1110 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1111 le32_to_cpu(sbi->s_es->s_last_orphan)); 1112 1113 printk(KERN_ERR "sb_info orphan list:\n"); 1114 list_for_each(l, &sbi->s_orphan) { 1115 struct inode *inode = orphan_list_entry(l); 1116 printk(KERN_ERR " " 1117 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1118 inode->i_sb->s_id, inode->i_ino, inode, 1119 inode->i_mode, inode->i_nlink, 1120 NEXT_ORPHAN(inode)); 1121 } 1122 } 1123 1124 #ifdef CONFIG_QUOTA 1125 static int ext4_quota_off(struct super_block *sb, int type); 1126 1127 static inline void ext4_quota_off_umount(struct super_block *sb) 1128 { 1129 int type; 1130 1131 /* Use our quota_off function to clear inode flags etc. */ 1132 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1133 ext4_quota_off(sb, type); 1134 } 1135 1136 /* 1137 * This is a helper function which is used in the mount/remount 1138 * codepaths (which holds s_umount) to fetch the quota file name. 1139 */ 1140 static inline char *get_qf_name(struct super_block *sb, 1141 struct ext4_sb_info *sbi, 1142 int type) 1143 { 1144 return rcu_dereference_protected(sbi->s_qf_names[type], 1145 lockdep_is_held(&sb->s_umount)); 1146 } 1147 #else 1148 static inline void ext4_quota_off_umount(struct super_block *sb) 1149 { 1150 } 1151 #endif 1152 1153 static void ext4_put_super(struct super_block *sb) 1154 { 1155 struct ext4_sb_info *sbi = EXT4_SB(sb); 1156 struct ext4_super_block *es = sbi->s_es; 1157 struct buffer_head **group_desc; 1158 struct flex_groups **flex_groups; 1159 int aborted = 0; 1160 int i, err; 1161 1162 ext4_unregister_li_request(sb); 1163 ext4_quota_off_umount(sb); 1164 1165 flush_work(&sbi->s_error_work); 1166 destroy_workqueue(sbi->rsv_conversion_wq); 1167 1168 /* 1169 * Unregister sysfs before destroying jbd2 journal. 1170 * Since we could still access attr_journal_task attribute via sysfs 1171 * path which could have sbi->s_journal->j_task as NULL 1172 */ 1173 ext4_unregister_sysfs(sb); 1174 1175 if (sbi->s_journal) { 1176 aborted = is_journal_aborted(sbi->s_journal); 1177 err = jbd2_journal_destroy(sbi->s_journal); 1178 sbi->s_journal = NULL; 1179 if ((err < 0) && !aborted) { 1180 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1181 } 1182 } 1183 1184 ext4_es_unregister_shrinker(sbi); 1185 del_timer_sync(&sbi->s_err_report); 1186 ext4_release_system_zone(sb); 1187 ext4_mb_release(sb); 1188 ext4_ext_release(sb); 1189 1190 if (!sb_rdonly(sb) && !aborted) { 1191 ext4_clear_feature_journal_needs_recovery(sb); 1192 es->s_state = cpu_to_le16(sbi->s_mount_state); 1193 } 1194 if (!sb_rdonly(sb)) 1195 ext4_commit_super(sb); 1196 1197 rcu_read_lock(); 1198 group_desc = rcu_dereference(sbi->s_group_desc); 1199 for (i = 0; i < sbi->s_gdb_count; i++) 1200 brelse(group_desc[i]); 1201 kvfree(group_desc); 1202 flex_groups = rcu_dereference(sbi->s_flex_groups); 1203 if (flex_groups) { 1204 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1205 kvfree(flex_groups[i]); 1206 kvfree(flex_groups); 1207 } 1208 rcu_read_unlock(); 1209 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1210 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1211 percpu_counter_destroy(&sbi->s_dirs_counter); 1212 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1213 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1214 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1215 #ifdef CONFIG_QUOTA 1216 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1217 kfree(get_qf_name(sb, sbi, i)); 1218 #endif 1219 1220 /* Debugging code just in case the in-memory inode orphan list 1221 * isn't empty. The on-disk one can be non-empty if we've 1222 * detected an error and taken the fs readonly, but the 1223 * in-memory list had better be clean by this point. */ 1224 if (!list_empty(&sbi->s_orphan)) 1225 dump_orphan_list(sb, sbi); 1226 ASSERT(list_empty(&sbi->s_orphan)); 1227 1228 sync_blockdev(sb->s_bdev); 1229 invalidate_bdev(sb->s_bdev); 1230 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1231 /* 1232 * Invalidate the journal device's buffers. We don't want them 1233 * floating about in memory - the physical journal device may 1234 * hotswapped, and it breaks the `ro-after' testing code. 1235 */ 1236 sync_blockdev(sbi->s_journal_bdev); 1237 invalidate_bdev(sbi->s_journal_bdev); 1238 ext4_blkdev_remove(sbi); 1239 } 1240 1241 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1242 sbi->s_ea_inode_cache = NULL; 1243 1244 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1245 sbi->s_ea_block_cache = NULL; 1246 1247 if (sbi->s_mmp_tsk) 1248 kthread_stop(sbi->s_mmp_tsk); 1249 brelse(sbi->s_sbh); 1250 sb->s_fs_info = NULL; 1251 /* 1252 * Now that we are completely done shutting down the 1253 * superblock, we need to actually destroy the kobject. 1254 */ 1255 kobject_put(&sbi->s_kobj); 1256 wait_for_completion(&sbi->s_kobj_unregister); 1257 if (sbi->s_chksum_driver) 1258 crypto_free_shash(sbi->s_chksum_driver); 1259 kfree(sbi->s_blockgroup_lock); 1260 fs_put_dax(sbi->s_daxdev); 1261 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1262 #ifdef CONFIG_UNICODE 1263 utf8_unload(sb->s_encoding); 1264 #endif 1265 kfree(sbi); 1266 } 1267 1268 static struct kmem_cache *ext4_inode_cachep; 1269 1270 /* 1271 * Called inside transaction, so use GFP_NOFS 1272 */ 1273 static struct inode *ext4_alloc_inode(struct super_block *sb) 1274 { 1275 struct ext4_inode_info *ei; 1276 1277 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1278 if (!ei) 1279 return NULL; 1280 1281 inode_set_iversion(&ei->vfs_inode, 1); 1282 spin_lock_init(&ei->i_raw_lock); 1283 INIT_LIST_HEAD(&ei->i_prealloc_list); 1284 atomic_set(&ei->i_prealloc_active, 0); 1285 spin_lock_init(&ei->i_prealloc_lock); 1286 ext4_es_init_tree(&ei->i_es_tree); 1287 rwlock_init(&ei->i_es_lock); 1288 INIT_LIST_HEAD(&ei->i_es_list); 1289 ei->i_es_all_nr = 0; 1290 ei->i_es_shk_nr = 0; 1291 ei->i_es_shrink_lblk = 0; 1292 ei->i_reserved_data_blocks = 0; 1293 spin_lock_init(&(ei->i_block_reservation_lock)); 1294 ext4_init_pending_tree(&ei->i_pending_tree); 1295 #ifdef CONFIG_QUOTA 1296 ei->i_reserved_quota = 0; 1297 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1298 #endif 1299 ei->jinode = NULL; 1300 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1301 spin_lock_init(&ei->i_completed_io_lock); 1302 ei->i_sync_tid = 0; 1303 ei->i_datasync_tid = 0; 1304 atomic_set(&ei->i_unwritten, 0); 1305 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1306 ext4_fc_init_inode(&ei->vfs_inode); 1307 mutex_init(&ei->i_fc_lock); 1308 return &ei->vfs_inode; 1309 } 1310 1311 static int ext4_drop_inode(struct inode *inode) 1312 { 1313 int drop = generic_drop_inode(inode); 1314 1315 if (!drop) 1316 drop = fscrypt_drop_inode(inode); 1317 1318 trace_ext4_drop_inode(inode, drop); 1319 return drop; 1320 } 1321 1322 static void ext4_free_in_core_inode(struct inode *inode) 1323 { 1324 fscrypt_free_inode(inode); 1325 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1326 pr_warn("%s: inode %ld still in fc list", 1327 __func__, inode->i_ino); 1328 } 1329 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1330 } 1331 1332 static void ext4_destroy_inode(struct inode *inode) 1333 { 1334 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1335 ext4_msg(inode->i_sb, KERN_ERR, 1336 "Inode %lu (%p): orphan list check failed!", 1337 inode->i_ino, EXT4_I(inode)); 1338 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1339 EXT4_I(inode), sizeof(struct ext4_inode_info), 1340 true); 1341 dump_stack(); 1342 } 1343 } 1344 1345 static void init_once(void *foo) 1346 { 1347 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1348 1349 INIT_LIST_HEAD(&ei->i_orphan); 1350 init_rwsem(&ei->xattr_sem); 1351 init_rwsem(&ei->i_data_sem); 1352 init_rwsem(&ei->i_mmap_sem); 1353 inode_init_once(&ei->vfs_inode); 1354 ext4_fc_init_inode(&ei->vfs_inode); 1355 } 1356 1357 static int __init init_inodecache(void) 1358 { 1359 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1360 sizeof(struct ext4_inode_info), 0, 1361 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1362 SLAB_ACCOUNT), 1363 offsetof(struct ext4_inode_info, i_data), 1364 sizeof_field(struct ext4_inode_info, i_data), 1365 init_once); 1366 if (ext4_inode_cachep == NULL) 1367 return -ENOMEM; 1368 return 0; 1369 } 1370 1371 static void destroy_inodecache(void) 1372 { 1373 /* 1374 * Make sure all delayed rcu free inodes are flushed before we 1375 * destroy cache. 1376 */ 1377 rcu_barrier(); 1378 kmem_cache_destroy(ext4_inode_cachep); 1379 } 1380 1381 void ext4_clear_inode(struct inode *inode) 1382 { 1383 ext4_fc_del(inode); 1384 invalidate_inode_buffers(inode); 1385 clear_inode(inode); 1386 ext4_discard_preallocations(inode, 0); 1387 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1388 dquot_drop(inode); 1389 if (EXT4_I(inode)->jinode) { 1390 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1391 EXT4_I(inode)->jinode); 1392 jbd2_free_inode(EXT4_I(inode)->jinode); 1393 EXT4_I(inode)->jinode = NULL; 1394 } 1395 fscrypt_put_encryption_info(inode); 1396 fsverity_cleanup_inode(inode); 1397 } 1398 1399 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1400 u64 ino, u32 generation) 1401 { 1402 struct inode *inode; 1403 1404 /* 1405 * Currently we don't know the generation for parent directory, so 1406 * a generation of 0 means "accept any" 1407 */ 1408 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1409 if (IS_ERR(inode)) 1410 return ERR_CAST(inode); 1411 if (generation && inode->i_generation != generation) { 1412 iput(inode); 1413 return ERR_PTR(-ESTALE); 1414 } 1415 1416 return inode; 1417 } 1418 1419 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1420 int fh_len, int fh_type) 1421 { 1422 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1423 ext4_nfs_get_inode); 1424 } 1425 1426 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1427 int fh_len, int fh_type) 1428 { 1429 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1430 ext4_nfs_get_inode); 1431 } 1432 1433 static int ext4_nfs_commit_metadata(struct inode *inode) 1434 { 1435 struct writeback_control wbc = { 1436 .sync_mode = WB_SYNC_ALL 1437 }; 1438 1439 trace_ext4_nfs_commit_metadata(inode); 1440 return ext4_write_inode(inode, &wbc); 1441 } 1442 1443 /* 1444 * Try to release metadata pages (indirect blocks, directories) which are 1445 * mapped via the block device. Since these pages could have journal heads 1446 * which would prevent try_to_free_buffers() from freeing them, we must use 1447 * jbd2 layer's try_to_free_buffers() function to release them. 1448 */ 1449 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1450 gfp_t wait) 1451 { 1452 journal_t *journal = EXT4_SB(sb)->s_journal; 1453 1454 WARN_ON(PageChecked(page)); 1455 if (!page_has_buffers(page)) 1456 return 0; 1457 if (journal) 1458 return jbd2_journal_try_to_free_buffers(journal, page); 1459 1460 return try_to_free_buffers(page); 1461 } 1462 1463 #ifdef CONFIG_FS_ENCRYPTION 1464 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1465 { 1466 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1467 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1468 } 1469 1470 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1471 void *fs_data) 1472 { 1473 handle_t *handle = fs_data; 1474 int res, res2, credits, retries = 0; 1475 1476 /* 1477 * Encrypting the root directory is not allowed because e2fsck expects 1478 * lost+found to exist and be unencrypted, and encrypting the root 1479 * directory would imply encrypting the lost+found directory as well as 1480 * the filename "lost+found" itself. 1481 */ 1482 if (inode->i_ino == EXT4_ROOT_INO) 1483 return -EPERM; 1484 1485 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1486 return -EINVAL; 1487 1488 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1489 return -EOPNOTSUPP; 1490 1491 res = ext4_convert_inline_data(inode); 1492 if (res) 1493 return res; 1494 1495 /* 1496 * If a journal handle was specified, then the encryption context is 1497 * being set on a new inode via inheritance and is part of a larger 1498 * transaction to create the inode. Otherwise the encryption context is 1499 * being set on an existing inode in its own transaction. Only in the 1500 * latter case should the "retry on ENOSPC" logic be used. 1501 */ 1502 1503 if (handle) { 1504 res = ext4_xattr_set_handle(handle, inode, 1505 EXT4_XATTR_INDEX_ENCRYPTION, 1506 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1507 ctx, len, 0); 1508 if (!res) { 1509 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1510 ext4_clear_inode_state(inode, 1511 EXT4_STATE_MAY_INLINE_DATA); 1512 /* 1513 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1514 * S_DAX may be disabled 1515 */ 1516 ext4_set_inode_flags(inode, false); 1517 } 1518 return res; 1519 } 1520 1521 res = dquot_initialize(inode); 1522 if (res) 1523 return res; 1524 retry: 1525 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1526 &credits); 1527 if (res) 1528 return res; 1529 1530 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1531 if (IS_ERR(handle)) 1532 return PTR_ERR(handle); 1533 1534 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1535 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1536 ctx, len, 0); 1537 if (!res) { 1538 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1539 /* 1540 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1541 * S_DAX may be disabled 1542 */ 1543 ext4_set_inode_flags(inode, false); 1544 res = ext4_mark_inode_dirty(handle, inode); 1545 if (res) 1546 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1547 } 1548 res2 = ext4_journal_stop(handle); 1549 1550 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1551 goto retry; 1552 if (!res) 1553 res = res2; 1554 return res; 1555 } 1556 1557 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1558 { 1559 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1560 } 1561 1562 static bool ext4_has_stable_inodes(struct super_block *sb) 1563 { 1564 return ext4_has_feature_stable_inodes(sb); 1565 } 1566 1567 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1568 int *ino_bits_ret, int *lblk_bits_ret) 1569 { 1570 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1571 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1572 } 1573 1574 static const struct fscrypt_operations ext4_cryptops = { 1575 .key_prefix = "ext4:", 1576 .get_context = ext4_get_context, 1577 .set_context = ext4_set_context, 1578 .get_dummy_policy = ext4_get_dummy_policy, 1579 .empty_dir = ext4_empty_dir, 1580 .max_namelen = EXT4_NAME_LEN, 1581 .has_stable_inodes = ext4_has_stable_inodes, 1582 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1583 }; 1584 #endif 1585 1586 #ifdef CONFIG_QUOTA 1587 static const char * const quotatypes[] = INITQFNAMES; 1588 #define QTYPE2NAME(t) (quotatypes[t]) 1589 1590 static int ext4_write_dquot(struct dquot *dquot); 1591 static int ext4_acquire_dquot(struct dquot *dquot); 1592 static int ext4_release_dquot(struct dquot *dquot); 1593 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1594 static int ext4_write_info(struct super_block *sb, int type); 1595 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1596 const struct path *path); 1597 static int ext4_quota_on_mount(struct super_block *sb, int type); 1598 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1599 size_t len, loff_t off); 1600 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1601 const char *data, size_t len, loff_t off); 1602 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1603 unsigned int flags); 1604 static int ext4_enable_quotas(struct super_block *sb); 1605 1606 static struct dquot **ext4_get_dquots(struct inode *inode) 1607 { 1608 return EXT4_I(inode)->i_dquot; 1609 } 1610 1611 static const struct dquot_operations ext4_quota_operations = { 1612 .get_reserved_space = ext4_get_reserved_space, 1613 .write_dquot = ext4_write_dquot, 1614 .acquire_dquot = ext4_acquire_dquot, 1615 .release_dquot = ext4_release_dquot, 1616 .mark_dirty = ext4_mark_dquot_dirty, 1617 .write_info = ext4_write_info, 1618 .alloc_dquot = dquot_alloc, 1619 .destroy_dquot = dquot_destroy, 1620 .get_projid = ext4_get_projid, 1621 .get_inode_usage = ext4_get_inode_usage, 1622 .get_next_id = dquot_get_next_id, 1623 }; 1624 1625 static const struct quotactl_ops ext4_qctl_operations = { 1626 .quota_on = ext4_quota_on, 1627 .quota_off = ext4_quota_off, 1628 .quota_sync = dquot_quota_sync, 1629 .get_state = dquot_get_state, 1630 .set_info = dquot_set_dqinfo, 1631 .get_dqblk = dquot_get_dqblk, 1632 .set_dqblk = dquot_set_dqblk, 1633 .get_nextdqblk = dquot_get_next_dqblk, 1634 }; 1635 #endif 1636 1637 static const struct super_operations ext4_sops = { 1638 .alloc_inode = ext4_alloc_inode, 1639 .free_inode = ext4_free_in_core_inode, 1640 .destroy_inode = ext4_destroy_inode, 1641 .write_inode = ext4_write_inode, 1642 .dirty_inode = ext4_dirty_inode, 1643 .drop_inode = ext4_drop_inode, 1644 .evict_inode = ext4_evict_inode, 1645 .put_super = ext4_put_super, 1646 .sync_fs = ext4_sync_fs, 1647 .freeze_fs = ext4_freeze, 1648 .unfreeze_fs = ext4_unfreeze, 1649 .statfs = ext4_statfs, 1650 .remount_fs = ext4_remount, 1651 .show_options = ext4_show_options, 1652 #ifdef CONFIG_QUOTA 1653 .quota_read = ext4_quota_read, 1654 .quota_write = ext4_quota_write, 1655 .get_dquots = ext4_get_dquots, 1656 #endif 1657 .bdev_try_to_free_page = bdev_try_to_free_page, 1658 }; 1659 1660 static const struct export_operations ext4_export_ops = { 1661 .fh_to_dentry = ext4_fh_to_dentry, 1662 .fh_to_parent = ext4_fh_to_parent, 1663 .get_parent = ext4_get_parent, 1664 .commit_metadata = ext4_nfs_commit_metadata, 1665 }; 1666 1667 enum { 1668 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1669 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1670 Opt_nouid32, Opt_debug, Opt_removed, 1671 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1672 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1673 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1674 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1675 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1676 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1677 Opt_inlinecrypt, 1678 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1679 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1680 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1681 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1682 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1683 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1684 Opt_nowarn_on_error, Opt_mblk_io_submit, 1685 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1686 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1687 Opt_inode_readahead_blks, Opt_journal_ioprio, 1688 Opt_dioread_nolock, Opt_dioread_lock, 1689 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1690 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1691 Opt_prefetch_block_bitmaps, 1692 #ifdef CONFIG_EXT4_DEBUG 1693 Opt_fc_debug_max_replay, Opt_fc_debug_force 1694 #endif 1695 }; 1696 1697 static const match_table_t tokens = { 1698 {Opt_bsd_df, "bsddf"}, 1699 {Opt_minix_df, "minixdf"}, 1700 {Opt_grpid, "grpid"}, 1701 {Opt_grpid, "bsdgroups"}, 1702 {Opt_nogrpid, "nogrpid"}, 1703 {Opt_nogrpid, "sysvgroups"}, 1704 {Opt_resgid, "resgid=%u"}, 1705 {Opt_resuid, "resuid=%u"}, 1706 {Opt_sb, "sb=%u"}, 1707 {Opt_err_cont, "errors=continue"}, 1708 {Opt_err_panic, "errors=panic"}, 1709 {Opt_err_ro, "errors=remount-ro"}, 1710 {Opt_nouid32, "nouid32"}, 1711 {Opt_debug, "debug"}, 1712 {Opt_removed, "oldalloc"}, 1713 {Opt_removed, "orlov"}, 1714 {Opt_user_xattr, "user_xattr"}, 1715 {Opt_nouser_xattr, "nouser_xattr"}, 1716 {Opt_acl, "acl"}, 1717 {Opt_noacl, "noacl"}, 1718 {Opt_noload, "norecovery"}, 1719 {Opt_noload, "noload"}, 1720 {Opt_removed, "nobh"}, 1721 {Opt_removed, "bh"}, 1722 {Opt_commit, "commit=%u"}, 1723 {Opt_min_batch_time, "min_batch_time=%u"}, 1724 {Opt_max_batch_time, "max_batch_time=%u"}, 1725 {Opt_journal_dev, "journal_dev=%u"}, 1726 {Opt_journal_path, "journal_path=%s"}, 1727 {Opt_journal_checksum, "journal_checksum"}, 1728 {Opt_nojournal_checksum, "nojournal_checksum"}, 1729 {Opt_journal_async_commit, "journal_async_commit"}, 1730 {Opt_abort, "abort"}, 1731 {Opt_data_journal, "data=journal"}, 1732 {Opt_data_ordered, "data=ordered"}, 1733 {Opt_data_writeback, "data=writeback"}, 1734 {Opt_data_err_abort, "data_err=abort"}, 1735 {Opt_data_err_ignore, "data_err=ignore"}, 1736 {Opt_offusrjquota, "usrjquota="}, 1737 {Opt_usrjquota, "usrjquota=%s"}, 1738 {Opt_offgrpjquota, "grpjquota="}, 1739 {Opt_grpjquota, "grpjquota=%s"}, 1740 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1741 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1742 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1743 {Opt_grpquota, "grpquota"}, 1744 {Opt_noquota, "noquota"}, 1745 {Opt_quota, "quota"}, 1746 {Opt_usrquota, "usrquota"}, 1747 {Opt_prjquota, "prjquota"}, 1748 {Opt_barrier, "barrier=%u"}, 1749 {Opt_barrier, "barrier"}, 1750 {Opt_nobarrier, "nobarrier"}, 1751 {Opt_i_version, "i_version"}, 1752 {Opt_dax, "dax"}, 1753 {Opt_dax_always, "dax=always"}, 1754 {Opt_dax_inode, "dax=inode"}, 1755 {Opt_dax_never, "dax=never"}, 1756 {Opt_stripe, "stripe=%u"}, 1757 {Opt_delalloc, "delalloc"}, 1758 {Opt_warn_on_error, "warn_on_error"}, 1759 {Opt_nowarn_on_error, "nowarn_on_error"}, 1760 {Opt_lazytime, "lazytime"}, 1761 {Opt_nolazytime, "nolazytime"}, 1762 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1763 {Opt_nodelalloc, "nodelalloc"}, 1764 {Opt_removed, "mblk_io_submit"}, 1765 {Opt_removed, "nomblk_io_submit"}, 1766 {Opt_block_validity, "block_validity"}, 1767 {Opt_noblock_validity, "noblock_validity"}, 1768 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1769 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1770 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1771 {Opt_auto_da_alloc, "auto_da_alloc"}, 1772 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1773 {Opt_dioread_nolock, "dioread_nolock"}, 1774 {Opt_dioread_lock, "nodioread_nolock"}, 1775 {Opt_dioread_lock, "dioread_lock"}, 1776 {Opt_discard, "discard"}, 1777 {Opt_nodiscard, "nodiscard"}, 1778 {Opt_init_itable, "init_itable=%u"}, 1779 {Opt_init_itable, "init_itable"}, 1780 {Opt_noinit_itable, "noinit_itable"}, 1781 #ifdef CONFIG_EXT4_DEBUG 1782 {Opt_fc_debug_force, "fc_debug_force"}, 1783 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1784 #endif 1785 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1786 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1787 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1788 {Opt_inlinecrypt, "inlinecrypt"}, 1789 {Opt_nombcache, "nombcache"}, 1790 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1791 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, 1792 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1793 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1794 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1795 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1796 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1797 {Opt_err, NULL}, 1798 }; 1799 1800 static ext4_fsblk_t get_sb_block(void **data) 1801 { 1802 ext4_fsblk_t sb_block; 1803 char *options = (char *) *data; 1804 1805 if (!options || strncmp(options, "sb=", 3) != 0) 1806 return 1; /* Default location */ 1807 1808 options += 3; 1809 /* TODO: use simple_strtoll with >32bit ext4 */ 1810 sb_block = simple_strtoul(options, &options, 0); 1811 if (*options && *options != ',') { 1812 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1813 (char *) *data); 1814 return 1; 1815 } 1816 if (*options == ',') 1817 options++; 1818 *data = (void *) options; 1819 1820 return sb_block; 1821 } 1822 1823 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1824 static const char deprecated_msg[] = 1825 "Mount option \"%s\" will be removed by %s\n" 1826 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1827 1828 #ifdef CONFIG_QUOTA 1829 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1830 { 1831 struct ext4_sb_info *sbi = EXT4_SB(sb); 1832 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1833 int ret = -1; 1834 1835 if (sb_any_quota_loaded(sb) && !old_qname) { 1836 ext4_msg(sb, KERN_ERR, 1837 "Cannot change journaled " 1838 "quota options when quota turned on"); 1839 return -1; 1840 } 1841 if (ext4_has_feature_quota(sb)) { 1842 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1843 "ignored when QUOTA feature is enabled"); 1844 return 1; 1845 } 1846 qname = match_strdup(args); 1847 if (!qname) { 1848 ext4_msg(sb, KERN_ERR, 1849 "Not enough memory for storing quotafile name"); 1850 return -1; 1851 } 1852 if (old_qname) { 1853 if (strcmp(old_qname, qname) == 0) 1854 ret = 1; 1855 else 1856 ext4_msg(sb, KERN_ERR, 1857 "%s quota file already specified", 1858 QTYPE2NAME(qtype)); 1859 goto errout; 1860 } 1861 if (strchr(qname, '/')) { 1862 ext4_msg(sb, KERN_ERR, 1863 "quotafile must be on filesystem root"); 1864 goto errout; 1865 } 1866 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1867 set_opt(sb, QUOTA); 1868 return 1; 1869 errout: 1870 kfree(qname); 1871 return ret; 1872 } 1873 1874 static int clear_qf_name(struct super_block *sb, int qtype) 1875 { 1876 1877 struct ext4_sb_info *sbi = EXT4_SB(sb); 1878 char *old_qname = get_qf_name(sb, sbi, qtype); 1879 1880 if (sb_any_quota_loaded(sb) && old_qname) { 1881 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1882 " when quota turned on"); 1883 return -1; 1884 } 1885 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1886 synchronize_rcu(); 1887 kfree(old_qname); 1888 return 1; 1889 } 1890 #endif 1891 1892 #define MOPT_SET 0x0001 1893 #define MOPT_CLEAR 0x0002 1894 #define MOPT_NOSUPPORT 0x0004 1895 #define MOPT_EXPLICIT 0x0008 1896 #define MOPT_CLEAR_ERR 0x0010 1897 #define MOPT_GTE0 0x0020 1898 #ifdef CONFIG_QUOTA 1899 #define MOPT_Q 0 1900 #define MOPT_QFMT 0x0040 1901 #else 1902 #define MOPT_Q MOPT_NOSUPPORT 1903 #define MOPT_QFMT MOPT_NOSUPPORT 1904 #endif 1905 #define MOPT_DATAJ 0x0080 1906 #define MOPT_NO_EXT2 0x0100 1907 #define MOPT_NO_EXT3 0x0200 1908 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1909 #define MOPT_STRING 0x0400 1910 #define MOPT_SKIP 0x0800 1911 #define MOPT_2 0x1000 1912 1913 static const struct mount_opts { 1914 int token; 1915 int mount_opt; 1916 int flags; 1917 } ext4_mount_opts[] = { 1918 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1919 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1920 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1921 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1922 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1923 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1924 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1925 MOPT_EXT4_ONLY | MOPT_SET}, 1926 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1927 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1928 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1929 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1930 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1931 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1932 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1933 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1934 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1935 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1936 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1937 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1938 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1939 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1940 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1941 EXT4_MOUNT_JOURNAL_CHECKSUM), 1942 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1943 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1944 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1945 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1946 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1947 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1948 MOPT_NO_EXT2}, 1949 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1950 MOPT_NO_EXT2}, 1951 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1952 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1953 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1954 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1955 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1956 {Opt_commit, 0, MOPT_GTE0}, 1957 {Opt_max_batch_time, 0, MOPT_GTE0}, 1958 {Opt_min_batch_time, 0, MOPT_GTE0}, 1959 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1960 {Opt_init_itable, 0, MOPT_GTE0}, 1961 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1962 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1963 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1964 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1965 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1966 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1967 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1968 {Opt_stripe, 0, MOPT_GTE0}, 1969 {Opt_resuid, 0, MOPT_GTE0}, 1970 {Opt_resgid, 0, MOPT_GTE0}, 1971 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1972 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1973 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1974 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1975 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1976 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1977 MOPT_NO_EXT2 | MOPT_DATAJ}, 1978 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1979 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1980 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1981 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1982 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1983 #else 1984 {Opt_acl, 0, MOPT_NOSUPPORT}, 1985 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1986 #endif 1987 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1988 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1989 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1990 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1991 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1992 MOPT_SET | MOPT_Q}, 1993 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1994 MOPT_SET | MOPT_Q}, 1995 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1996 MOPT_SET | MOPT_Q}, 1997 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1998 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1999 MOPT_CLEAR | MOPT_Q}, 2000 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 2001 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 2002 {Opt_offusrjquota, 0, MOPT_Q}, 2003 {Opt_offgrpjquota, 0, MOPT_Q}, 2004 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 2005 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 2006 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2007 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2008 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2009 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2010 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, 2011 MOPT_SET}, 2012 #ifdef CONFIG_EXT4_DEBUG 2013 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2014 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2015 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2016 #endif 2017 {Opt_err, 0, 0} 2018 }; 2019 2020 #ifdef CONFIG_UNICODE 2021 static const struct ext4_sb_encodings { 2022 __u16 magic; 2023 char *name; 2024 char *version; 2025 } ext4_sb_encoding_map[] = { 2026 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2027 }; 2028 2029 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2030 const struct ext4_sb_encodings **encoding, 2031 __u16 *flags) 2032 { 2033 __u16 magic = le16_to_cpu(es->s_encoding); 2034 int i; 2035 2036 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2037 if (magic == ext4_sb_encoding_map[i].magic) 2038 break; 2039 2040 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2041 return -EINVAL; 2042 2043 *encoding = &ext4_sb_encoding_map[i]; 2044 *flags = le16_to_cpu(es->s_encoding_flags); 2045 2046 return 0; 2047 } 2048 #endif 2049 2050 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2051 const char *opt, 2052 const substring_t *arg, 2053 bool is_remount) 2054 { 2055 #ifdef CONFIG_FS_ENCRYPTION 2056 struct ext4_sb_info *sbi = EXT4_SB(sb); 2057 int err; 2058 2059 /* 2060 * This mount option is just for testing, and it's not worthwhile to 2061 * implement the extra complexity (e.g. RCU protection) that would be 2062 * needed to allow it to be set or changed during remount. We do allow 2063 * it to be specified during remount, but only if there is no change. 2064 */ 2065 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2066 ext4_msg(sb, KERN_WARNING, 2067 "Can't set test_dummy_encryption on remount"); 2068 return -1; 2069 } 2070 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2071 &sbi->s_dummy_enc_policy); 2072 if (err) { 2073 if (err == -EEXIST) 2074 ext4_msg(sb, KERN_WARNING, 2075 "Can't change test_dummy_encryption on remount"); 2076 else if (err == -EINVAL) 2077 ext4_msg(sb, KERN_WARNING, 2078 "Value of option \"%s\" is unrecognized", opt); 2079 else 2080 ext4_msg(sb, KERN_WARNING, 2081 "Error processing option \"%s\" [%d]", 2082 opt, err); 2083 return -1; 2084 } 2085 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2086 #else 2087 ext4_msg(sb, KERN_WARNING, 2088 "Test dummy encryption mount option ignored"); 2089 #endif 2090 return 1; 2091 } 2092 2093 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2094 substring_t *args, unsigned long *journal_devnum, 2095 unsigned int *journal_ioprio, int is_remount) 2096 { 2097 struct ext4_sb_info *sbi = EXT4_SB(sb); 2098 const struct mount_opts *m; 2099 kuid_t uid; 2100 kgid_t gid; 2101 int arg = 0; 2102 2103 #ifdef CONFIG_QUOTA 2104 if (token == Opt_usrjquota) 2105 return set_qf_name(sb, USRQUOTA, &args[0]); 2106 else if (token == Opt_grpjquota) 2107 return set_qf_name(sb, GRPQUOTA, &args[0]); 2108 else if (token == Opt_offusrjquota) 2109 return clear_qf_name(sb, USRQUOTA); 2110 else if (token == Opt_offgrpjquota) 2111 return clear_qf_name(sb, GRPQUOTA); 2112 #endif 2113 switch (token) { 2114 case Opt_noacl: 2115 case Opt_nouser_xattr: 2116 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2117 break; 2118 case Opt_sb: 2119 return 1; /* handled by get_sb_block() */ 2120 case Opt_removed: 2121 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2122 return 1; 2123 case Opt_abort: 2124 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2125 return 1; 2126 case Opt_i_version: 2127 sb->s_flags |= SB_I_VERSION; 2128 return 1; 2129 case Opt_lazytime: 2130 sb->s_flags |= SB_LAZYTIME; 2131 return 1; 2132 case Opt_nolazytime: 2133 sb->s_flags &= ~SB_LAZYTIME; 2134 return 1; 2135 case Opt_inlinecrypt: 2136 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2137 sb->s_flags |= SB_INLINECRYPT; 2138 #else 2139 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2140 #endif 2141 return 1; 2142 } 2143 2144 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2145 if (token == m->token) 2146 break; 2147 2148 if (m->token == Opt_err) { 2149 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2150 "or missing value", opt); 2151 return -1; 2152 } 2153 2154 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2155 ext4_msg(sb, KERN_ERR, 2156 "Mount option \"%s\" incompatible with ext2", opt); 2157 return -1; 2158 } 2159 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2160 ext4_msg(sb, KERN_ERR, 2161 "Mount option \"%s\" incompatible with ext3", opt); 2162 return -1; 2163 } 2164 2165 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2166 return -1; 2167 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2168 return -1; 2169 if (m->flags & MOPT_EXPLICIT) { 2170 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2171 set_opt2(sb, EXPLICIT_DELALLOC); 2172 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2173 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2174 } else 2175 return -1; 2176 } 2177 if (m->flags & MOPT_CLEAR_ERR) 2178 clear_opt(sb, ERRORS_MASK); 2179 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2180 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2181 "options when quota turned on"); 2182 return -1; 2183 } 2184 2185 if (m->flags & MOPT_NOSUPPORT) { 2186 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2187 } else if (token == Opt_commit) { 2188 if (arg == 0) 2189 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2190 else if (arg > INT_MAX / HZ) { 2191 ext4_msg(sb, KERN_ERR, 2192 "Invalid commit interval %d, " 2193 "must be smaller than %d", 2194 arg, INT_MAX / HZ); 2195 return -1; 2196 } 2197 sbi->s_commit_interval = HZ * arg; 2198 } else if (token == Opt_debug_want_extra_isize) { 2199 if ((arg & 1) || 2200 (arg < 4) || 2201 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2202 ext4_msg(sb, KERN_ERR, 2203 "Invalid want_extra_isize %d", arg); 2204 return -1; 2205 } 2206 sbi->s_want_extra_isize = arg; 2207 } else if (token == Opt_max_batch_time) { 2208 sbi->s_max_batch_time = arg; 2209 } else if (token == Opt_min_batch_time) { 2210 sbi->s_min_batch_time = arg; 2211 } else if (token == Opt_inode_readahead_blks) { 2212 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2213 ext4_msg(sb, KERN_ERR, 2214 "EXT4-fs: inode_readahead_blks must be " 2215 "0 or a power of 2 smaller than 2^31"); 2216 return -1; 2217 } 2218 sbi->s_inode_readahead_blks = arg; 2219 } else if (token == Opt_init_itable) { 2220 set_opt(sb, INIT_INODE_TABLE); 2221 if (!args->from) 2222 arg = EXT4_DEF_LI_WAIT_MULT; 2223 sbi->s_li_wait_mult = arg; 2224 } else if (token == Opt_max_dir_size_kb) { 2225 sbi->s_max_dir_size_kb = arg; 2226 #ifdef CONFIG_EXT4_DEBUG 2227 } else if (token == Opt_fc_debug_max_replay) { 2228 sbi->s_fc_debug_max_replay = arg; 2229 #endif 2230 } else if (token == Opt_stripe) { 2231 sbi->s_stripe = arg; 2232 } else if (token == Opt_resuid) { 2233 uid = make_kuid(current_user_ns(), arg); 2234 if (!uid_valid(uid)) { 2235 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2236 return -1; 2237 } 2238 sbi->s_resuid = uid; 2239 } else if (token == Opt_resgid) { 2240 gid = make_kgid(current_user_ns(), arg); 2241 if (!gid_valid(gid)) { 2242 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2243 return -1; 2244 } 2245 sbi->s_resgid = gid; 2246 } else if (token == Opt_journal_dev) { 2247 if (is_remount) { 2248 ext4_msg(sb, KERN_ERR, 2249 "Cannot specify journal on remount"); 2250 return -1; 2251 } 2252 *journal_devnum = arg; 2253 } else if (token == Opt_journal_path) { 2254 char *journal_path; 2255 struct inode *journal_inode; 2256 struct path path; 2257 int error; 2258 2259 if (is_remount) { 2260 ext4_msg(sb, KERN_ERR, 2261 "Cannot specify journal on remount"); 2262 return -1; 2263 } 2264 journal_path = match_strdup(&args[0]); 2265 if (!journal_path) { 2266 ext4_msg(sb, KERN_ERR, "error: could not dup " 2267 "journal device string"); 2268 return -1; 2269 } 2270 2271 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2272 if (error) { 2273 ext4_msg(sb, KERN_ERR, "error: could not find " 2274 "journal device path: error %d", error); 2275 kfree(journal_path); 2276 return -1; 2277 } 2278 2279 journal_inode = d_inode(path.dentry); 2280 if (!S_ISBLK(journal_inode->i_mode)) { 2281 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2282 "is not a block device", journal_path); 2283 path_put(&path); 2284 kfree(journal_path); 2285 return -1; 2286 } 2287 2288 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2289 path_put(&path); 2290 kfree(journal_path); 2291 } else if (token == Opt_journal_ioprio) { 2292 if (arg > 7) { 2293 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2294 " (must be 0-7)"); 2295 return -1; 2296 } 2297 *journal_ioprio = 2298 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2299 } else if (token == Opt_test_dummy_encryption) { 2300 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2301 is_remount); 2302 } else if (m->flags & MOPT_DATAJ) { 2303 if (is_remount) { 2304 if (!sbi->s_journal) 2305 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2306 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2307 ext4_msg(sb, KERN_ERR, 2308 "Cannot change data mode on remount"); 2309 return -1; 2310 } 2311 } else { 2312 clear_opt(sb, DATA_FLAGS); 2313 sbi->s_mount_opt |= m->mount_opt; 2314 } 2315 #ifdef CONFIG_QUOTA 2316 } else if (m->flags & MOPT_QFMT) { 2317 if (sb_any_quota_loaded(sb) && 2318 sbi->s_jquota_fmt != m->mount_opt) { 2319 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2320 "quota options when quota turned on"); 2321 return -1; 2322 } 2323 if (ext4_has_feature_quota(sb)) { 2324 ext4_msg(sb, KERN_INFO, 2325 "Quota format mount options ignored " 2326 "when QUOTA feature is enabled"); 2327 return 1; 2328 } 2329 sbi->s_jquota_fmt = m->mount_opt; 2330 #endif 2331 } else if (token == Opt_dax || token == Opt_dax_always || 2332 token == Opt_dax_inode || token == Opt_dax_never) { 2333 #ifdef CONFIG_FS_DAX 2334 switch (token) { 2335 case Opt_dax: 2336 case Opt_dax_always: 2337 if (is_remount && 2338 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2339 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2340 fail_dax_change_remount: 2341 ext4_msg(sb, KERN_ERR, "can't change " 2342 "dax mount option while remounting"); 2343 return -1; 2344 } 2345 if (is_remount && 2346 (test_opt(sb, DATA_FLAGS) == 2347 EXT4_MOUNT_JOURNAL_DATA)) { 2348 ext4_msg(sb, KERN_ERR, "can't mount with " 2349 "both data=journal and dax"); 2350 return -1; 2351 } 2352 ext4_msg(sb, KERN_WARNING, 2353 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2354 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2355 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2356 break; 2357 case Opt_dax_never: 2358 if (is_remount && 2359 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2360 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2361 goto fail_dax_change_remount; 2362 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2363 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2364 break; 2365 case Opt_dax_inode: 2366 if (is_remount && 2367 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2368 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2369 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2370 goto fail_dax_change_remount; 2371 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2372 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2373 /* Strictly for printing options */ 2374 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2375 break; 2376 } 2377 #else 2378 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2379 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2380 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2381 return -1; 2382 #endif 2383 } else if (token == Opt_data_err_abort) { 2384 sbi->s_mount_opt |= m->mount_opt; 2385 } else if (token == Opt_data_err_ignore) { 2386 sbi->s_mount_opt &= ~m->mount_opt; 2387 } else { 2388 if (!args->from) 2389 arg = 1; 2390 if (m->flags & MOPT_CLEAR) 2391 arg = !arg; 2392 else if (unlikely(!(m->flags & MOPT_SET))) { 2393 ext4_msg(sb, KERN_WARNING, 2394 "buggy handling of option %s", opt); 2395 WARN_ON(1); 2396 return -1; 2397 } 2398 if (m->flags & MOPT_2) { 2399 if (arg != 0) 2400 sbi->s_mount_opt2 |= m->mount_opt; 2401 else 2402 sbi->s_mount_opt2 &= ~m->mount_opt; 2403 } else { 2404 if (arg != 0) 2405 sbi->s_mount_opt |= m->mount_opt; 2406 else 2407 sbi->s_mount_opt &= ~m->mount_opt; 2408 } 2409 } 2410 return 1; 2411 } 2412 2413 static int parse_options(char *options, struct super_block *sb, 2414 unsigned long *journal_devnum, 2415 unsigned int *journal_ioprio, 2416 int is_remount) 2417 { 2418 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2419 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2420 substring_t args[MAX_OPT_ARGS]; 2421 int token; 2422 2423 if (!options) 2424 return 1; 2425 2426 while ((p = strsep(&options, ",")) != NULL) { 2427 if (!*p) 2428 continue; 2429 /* 2430 * Initialize args struct so we know whether arg was 2431 * found; some options take optional arguments. 2432 */ 2433 args[0].to = args[0].from = NULL; 2434 token = match_token(p, tokens, args); 2435 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2436 journal_ioprio, is_remount) < 0) 2437 return 0; 2438 } 2439 #ifdef CONFIG_QUOTA 2440 /* 2441 * We do the test below only for project quotas. 'usrquota' and 2442 * 'grpquota' mount options are allowed even without quota feature 2443 * to support legacy quotas in quota files. 2444 */ 2445 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2446 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2447 "Cannot enable project quota enforcement."); 2448 return 0; 2449 } 2450 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2451 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2452 if (usr_qf_name || grp_qf_name) { 2453 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2454 clear_opt(sb, USRQUOTA); 2455 2456 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2457 clear_opt(sb, GRPQUOTA); 2458 2459 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2460 ext4_msg(sb, KERN_ERR, "old and new quota " 2461 "format mixing"); 2462 return 0; 2463 } 2464 2465 if (!sbi->s_jquota_fmt) { 2466 ext4_msg(sb, KERN_ERR, "journaled quota format " 2467 "not specified"); 2468 return 0; 2469 } 2470 } 2471 #endif 2472 if (test_opt(sb, DIOREAD_NOLOCK)) { 2473 int blocksize = 2474 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2475 if (blocksize < PAGE_SIZE) 2476 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2477 "experimental mount option 'dioread_nolock' " 2478 "for blocksize < PAGE_SIZE"); 2479 } 2480 return 1; 2481 } 2482 2483 static inline void ext4_show_quota_options(struct seq_file *seq, 2484 struct super_block *sb) 2485 { 2486 #if defined(CONFIG_QUOTA) 2487 struct ext4_sb_info *sbi = EXT4_SB(sb); 2488 char *usr_qf_name, *grp_qf_name; 2489 2490 if (sbi->s_jquota_fmt) { 2491 char *fmtname = ""; 2492 2493 switch (sbi->s_jquota_fmt) { 2494 case QFMT_VFS_OLD: 2495 fmtname = "vfsold"; 2496 break; 2497 case QFMT_VFS_V0: 2498 fmtname = "vfsv0"; 2499 break; 2500 case QFMT_VFS_V1: 2501 fmtname = "vfsv1"; 2502 break; 2503 } 2504 seq_printf(seq, ",jqfmt=%s", fmtname); 2505 } 2506 2507 rcu_read_lock(); 2508 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2509 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2510 if (usr_qf_name) 2511 seq_show_option(seq, "usrjquota", usr_qf_name); 2512 if (grp_qf_name) 2513 seq_show_option(seq, "grpjquota", grp_qf_name); 2514 rcu_read_unlock(); 2515 #endif 2516 } 2517 2518 static const char *token2str(int token) 2519 { 2520 const struct match_token *t; 2521 2522 for (t = tokens; t->token != Opt_err; t++) 2523 if (t->token == token && !strchr(t->pattern, '=')) 2524 break; 2525 return t->pattern; 2526 } 2527 2528 /* 2529 * Show an option if 2530 * - it's set to a non-default value OR 2531 * - if the per-sb default is different from the global default 2532 */ 2533 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2534 int nodefs) 2535 { 2536 struct ext4_sb_info *sbi = EXT4_SB(sb); 2537 struct ext4_super_block *es = sbi->s_es; 2538 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2539 const struct mount_opts *m; 2540 char sep = nodefs ? '\n' : ','; 2541 2542 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2543 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2544 2545 if (sbi->s_sb_block != 1) 2546 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2547 2548 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2549 int want_set = m->flags & MOPT_SET; 2550 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2551 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2552 continue; 2553 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2554 continue; /* skip if same as the default */ 2555 if ((want_set && 2556 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2557 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2558 continue; /* select Opt_noFoo vs Opt_Foo */ 2559 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2560 } 2561 2562 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2563 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2564 SEQ_OPTS_PRINT("resuid=%u", 2565 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2566 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2567 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2568 SEQ_OPTS_PRINT("resgid=%u", 2569 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2570 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2571 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2572 SEQ_OPTS_PUTS("errors=remount-ro"); 2573 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2574 SEQ_OPTS_PUTS("errors=continue"); 2575 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2576 SEQ_OPTS_PUTS("errors=panic"); 2577 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2578 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2579 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2580 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2581 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2582 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2583 if (sb->s_flags & SB_I_VERSION) 2584 SEQ_OPTS_PUTS("i_version"); 2585 if (nodefs || sbi->s_stripe) 2586 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2587 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2588 (sbi->s_mount_opt ^ def_mount_opt)) { 2589 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2590 SEQ_OPTS_PUTS("data=journal"); 2591 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2592 SEQ_OPTS_PUTS("data=ordered"); 2593 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2594 SEQ_OPTS_PUTS("data=writeback"); 2595 } 2596 if (nodefs || 2597 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2598 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2599 sbi->s_inode_readahead_blks); 2600 2601 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2602 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2603 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2604 if (nodefs || sbi->s_max_dir_size_kb) 2605 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2606 if (test_opt(sb, DATA_ERR_ABORT)) 2607 SEQ_OPTS_PUTS("data_err=abort"); 2608 2609 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2610 2611 if (sb->s_flags & SB_INLINECRYPT) 2612 SEQ_OPTS_PUTS("inlinecrypt"); 2613 2614 if (test_opt(sb, DAX_ALWAYS)) { 2615 if (IS_EXT2_SB(sb)) 2616 SEQ_OPTS_PUTS("dax"); 2617 else 2618 SEQ_OPTS_PUTS("dax=always"); 2619 } else if (test_opt2(sb, DAX_NEVER)) { 2620 SEQ_OPTS_PUTS("dax=never"); 2621 } else if (test_opt2(sb, DAX_INODE)) { 2622 SEQ_OPTS_PUTS("dax=inode"); 2623 } 2624 ext4_show_quota_options(seq, sb); 2625 return 0; 2626 } 2627 2628 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2629 { 2630 return _ext4_show_options(seq, root->d_sb, 0); 2631 } 2632 2633 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2634 { 2635 struct super_block *sb = seq->private; 2636 int rc; 2637 2638 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2639 rc = _ext4_show_options(seq, sb, 1); 2640 seq_puts(seq, "\n"); 2641 return rc; 2642 } 2643 2644 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2645 int read_only) 2646 { 2647 struct ext4_sb_info *sbi = EXT4_SB(sb); 2648 int err = 0; 2649 2650 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2651 ext4_msg(sb, KERN_ERR, "revision level too high, " 2652 "forcing read-only mode"); 2653 err = -EROFS; 2654 goto done; 2655 } 2656 if (read_only) 2657 goto done; 2658 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2659 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2660 "running e2fsck is recommended"); 2661 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2662 ext4_msg(sb, KERN_WARNING, 2663 "warning: mounting fs with errors, " 2664 "running e2fsck is recommended"); 2665 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2666 le16_to_cpu(es->s_mnt_count) >= 2667 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2668 ext4_msg(sb, KERN_WARNING, 2669 "warning: maximal mount count reached, " 2670 "running e2fsck is recommended"); 2671 else if (le32_to_cpu(es->s_checkinterval) && 2672 (ext4_get_tstamp(es, s_lastcheck) + 2673 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2674 ext4_msg(sb, KERN_WARNING, 2675 "warning: checktime reached, " 2676 "running e2fsck is recommended"); 2677 if (!sbi->s_journal) 2678 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2679 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2680 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2681 le16_add_cpu(&es->s_mnt_count, 1); 2682 ext4_update_tstamp(es, s_mtime); 2683 if (sbi->s_journal) 2684 ext4_set_feature_journal_needs_recovery(sb); 2685 2686 err = ext4_commit_super(sb); 2687 done: 2688 if (test_opt(sb, DEBUG)) 2689 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2690 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2691 sb->s_blocksize, 2692 sbi->s_groups_count, 2693 EXT4_BLOCKS_PER_GROUP(sb), 2694 EXT4_INODES_PER_GROUP(sb), 2695 sbi->s_mount_opt, sbi->s_mount_opt2); 2696 2697 cleancache_init_fs(sb); 2698 return err; 2699 } 2700 2701 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2702 { 2703 struct ext4_sb_info *sbi = EXT4_SB(sb); 2704 struct flex_groups **old_groups, **new_groups; 2705 int size, i, j; 2706 2707 if (!sbi->s_log_groups_per_flex) 2708 return 0; 2709 2710 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2711 if (size <= sbi->s_flex_groups_allocated) 2712 return 0; 2713 2714 new_groups = kvzalloc(roundup_pow_of_two(size * 2715 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2716 if (!new_groups) { 2717 ext4_msg(sb, KERN_ERR, 2718 "not enough memory for %d flex group pointers", size); 2719 return -ENOMEM; 2720 } 2721 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2722 new_groups[i] = kvzalloc(roundup_pow_of_two( 2723 sizeof(struct flex_groups)), 2724 GFP_KERNEL); 2725 if (!new_groups[i]) { 2726 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2727 kvfree(new_groups[j]); 2728 kvfree(new_groups); 2729 ext4_msg(sb, KERN_ERR, 2730 "not enough memory for %d flex groups", size); 2731 return -ENOMEM; 2732 } 2733 } 2734 rcu_read_lock(); 2735 old_groups = rcu_dereference(sbi->s_flex_groups); 2736 if (old_groups) 2737 memcpy(new_groups, old_groups, 2738 (sbi->s_flex_groups_allocated * 2739 sizeof(struct flex_groups *))); 2740 rcu_read_unlock(); 2741 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2742 sbi->s_flex_groups_allocated = size; 2743 if (old_groups) 2744 ext4_kvfree_array_rcu(old_groups); 2745 return 0; 2746 } 2747 2748 static int ext4_fill_flex_info(struct super_block *sb) 2749 { 2750 struct ext4_sb_info *sbi = EXT4_SB(sb); 2751 struct ext4_group_desc *gdp = NULL; 2752 struct flex_groups *fg; 2753 ext4_group_t flex_group; 2754 int i, err; 2755 2756 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2757 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2758 sbi->s_log_groups_per_flex = 0; 2759 return 1; 2760 } 2761 2762 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2763 if (err) 2764 goto failed; 2765 2766 for (i = 0; i < sbi->s_groups_count; i++) { 2767 gdp = ext4_get_group_desc(sb, i, NULL); 2768 2769 flex_group = ext4_flex_group(sbi, i); 2770 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2771 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2772 atomic64_add(ext4_free_group_clusters(sb, gdp), 2773 &fg->free_clusters); 2774 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2775 } 2776 2777 return 1; 2778 failed: 2779 return 0; 2780 } 2781 2782 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2783 struct ext4_group_desc *gdp) 2784 { 2785 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2786 __u16 crc = 0; 2787 __le32 le_group = cpu_to_le32(block_group); 2788 struct ext4_sb_info *sbi = EXT4_SB(sb); 2789 2790 if (ext4_has_metadata_csum(sbi->s_sb)) { 2791 /* Use new metadata_csum algorithm */ 2792 __u32 csum32; 2793 __u16 dummy_csum = 0; 2794 2795 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2796 sizeof(le_group)); 2797 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2798 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2799 sizeof(dummy_csum)); 2800 offset += sizeof(dummy_csum); 2801 if (offset < sbi->s_desc_size) 2802 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2803 sbi->s_desc_size - offset); 2804 2805 crc = csum32 & 0xFFFF; 2806 goto out; 2807 } 2808 2809 /* old crc16 code */ 2810 if (!ext4_has_feature_gdt_csum(sb)) 2811 return 0; 2812 2813 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2814 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2815 crc = crc16(crc, (__u8 *)gdp, offset); 2816 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2817 /* for checksum of struct ext4_group_desc do the rest...*/ 2818 if (ext4_has_feature_64bit(sb) && 2819 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2820 crc = crc16(crc, (__u8 *)gdp + offset, 2821 le16_to_cpu(sbi->s_es->s_desc_size) - 2822 offset); 2823 2824 out: 2825 return cpu_to_le16(crc); 2826 } 2827 2828 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2829 struct ext4_group_desc *gdp) 2830 { 2831 if (ext4_has_group_desc_csum(sb) && 2832 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2833 return 0; 2834 2835 return 1; 2836 } 2837 2838 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2839 struct ext4_group_desc *gdp) 2840 { 2841 if (!ext4_has_group_desc_csum(sb)) 2842 return; 2843 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2844 } 2845 2846 /* Called at mount-time, super-block is locked */ 2847 static int ext4_check_descriptors(struct super_block *sb, 2848 ext4_fsblk_t sb_block, 2849 ext4_group_t *first_not_zeroed) 2850 { 2851 struct ext4_sb_info *sbi = EXT4_SB(sb); 2852 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2853 ext4_fsblk_t last_block; 2854 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2855 ext4_fsblk_t block_bitmap; 2856 ext4_fsblk_t inode_bitmap; 2857 ext4_fsblk_t inode_table; 2858 int flexbg_flag = 0; 2859 ext4_group_t i, grp = sbi->s_groups_count; 2860 2861 if (ext4_has_feature_flex_bg(sb)) 2862 flexbg_flag = 1; 2863 2864 ext4_debug("Checking group descriptors"); 2865 2866 for (i = 0; i < sbi->s_groups_count; i++) { 2867 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2868 2869 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2870 last_block = ext4_blocks_count(sbi->s_es) - 1; 2871 else 2872 last_block = first_block + 2873 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2874 2875 if ((grp == sbi->s_groups_count) && 2876 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2877 grp = i; 2878 2879 block_bitmap = ext4_block_bitmap(sb, gdp); 2880 if (block_bitmap == sb_block) { 2881 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2882 "Block bitmap for group %u overlaps " 2883 "superblock", i); 2884 if (!sb_rdonly(sb)) 2885 return 0; 2886 } 2887 if (block_bitmap >= sb_block + 1 && 2888 block_bitmap <= last_bg_block) { 2889 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2890 "Block bitmap for group %u overlaps " 2891 "block group descriptors", i); 2892 if (!sb_rdonly(sb)) 2893 return 0; 2894 } 2895 if (block_bitmap < first_block || block_bitmap > last_block) { 2896 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2897 "Block bitmap for group %u not in group " 2898 "(block %llu)!", i, block_bitmap); 2899 return 0; 2900 } 2901 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2902 if (inode_bitmap == sb_block) { 2903 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2904 "Inode bitmap for group %u overlaps " 2905 "superblock", i); 2906 if (!sb_rdonly(sb)) 2907 return 0; 2908 } 2909 if (inode_bitmap >= sb_block + 1 && 2910 inode_bitmap <= last_bg_block) { 2911 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2912 "Inode bitmap for group %u overlaps " 2913 "block group descriptors", i); 2914 if (!sb_rdonly(sb)) 2915 return 0; 2916 } 2917 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2918 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2919 "Inode bitmap for group %u not in group " 2920 "(block %llu)!", i, inode_bitmap); 2921 return 0; 2922 } 2923 inode_table = ext4_inode_table(sb, gdp); 2924 if (inode_table == sb_block) { 2925 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2926 "Inode table for group %u overlaps " 2927 "superblock", i); 2928 if (!sb_rdonly(sb)) 2929 return 0; 2930 } 2931 if (inode_table >= sb_block + 1 && 2932 inode_table <= last_bg_block) { 2933 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2934 "Inode table for group %u overlaps " 2935 "block group descriptors", i); 2936 if (!sb_rdonly(sb)) 2937 return 0; 2938 } 2939 if (inode_table < first_block || 2940 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2941 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2942 "Inode table for group %u not in group " 2943 "(block %llu)!", i, inode_table); 2944 return 0; 2945 } 2946 ext4_lock_group(sb, i); 2947 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2948 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2949 "Checksum for group %u failed (%u!=%u)", 2950 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2951 gdp)), le16_to_cpu(gdp->bg_checksum)); 2952 if (!sb_rdonly(sb)) { 2953 ext4_unlock_group(sb, i); 2954 return 0; 2955 } 2956 } 2957 ext4_unlock_group(sb, i); 2958 if (!flexbg_flag) 2959 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2960 } 2961 if (NULL != first_not_zeroed) 2962 *first_not_zeroed = grp; 2963 return 1; 2964 } 2965 2966 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2967 * the superblock) which were deleted from all directories, but held open by 2968 * a process at the time of a crash. We walk the list and try to delete these 2969 * inodes at recovery time (only with a read-write filesystem). 2970 * 2971 * In order to keep the orphan inode chain consistent during traversal (in 2972 * case of crash during recovery), we link each inode into the superblock 2973 * orphan list_head and handle it the same way as an inode deletion during 2974 * normal operation (which journals the operations for us). 2975 * 2976 * We only do an iget() and an iput() on each inode, which is very safe if we 2977 * accidentally point at an in-use or already deleted inode. The worst that 2978 * can happen in this case is that we get a "bit already cleared" message from 2979 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2980 * e2fsck was run on this filesystem, and it must have already done the orphan 2981 * inode cleanup for us, so we can safely abort without any further action. 2982 */ 2983 static void ext4_orphan_cleanup(struct super_block *sb, 2984 struct ext4_super_block *es) 2985 { 2986 unsigned int s_flags = sb->s_flags; 2987 int ret, nr_orphans = 0, nr_truncates = 0; 2988 #ifdef CONFIG_QUOTA 2989 int quota_update = 0; 2990 int i; 2991 #endif 2992 if (!es->s_last_orphan) { 2993 jbd_debug(4, "no orphan inodes to clean up\n"); 2994 return; 2995 } 2996 2997 if (bdev_read_only(sb->s_bdev)) { 2998 ext4_msg(sb, KERN_ERR, "write access " 2999 "unavailable, skipping orphan cleanup"); 3000 return; 3001 } 3002 3003 /* Check if feature set would not allow a r/w mount */ 3004 if (!ext4_feature_set_ok(sb, 0)) { 3005 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 3006 "unknown ROCOMPAT features"); 3007 return; 3008 } 3009 3010 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3011 /* don't clear list on RO mount w/ errors */ 3012 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 3013 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 3014 "clearing orphan list.\n"); 3015 es->s_last_orphan = 0; 3016 } 3017 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3018 return; 3019 } 3020 3021 if (s_flags & SB_RDONLY) { 3022 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 3023 sb->s_flags &= ~SB_RDONLY; 3024 } 3025 #ifdef CONFIG_QUOTA 3026 /* Needed for iput() to work correctly and not trash data */ 3027 sb->s_flags |= SB_ACTIVE; 3028 3029 /* 3030 * Turn on quotas which were not enabled for read-only mounts if 3031 * filesystem has quota feature, so that they are updated correctly. 3032 */ 3033 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 3034 int ret = ext4_enable_quotas(sb); 3035 3036 if (!ret) 3037 quota_update = 1; 3038 else 3039 ext4_msg(sb, KERN_ERR, 3040 "Cannot turn on quotas: error %d", ret); 3041 } 3042 3043 /* Turn on journaled quotas used for old sytle */ 3044 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3045 if (EXT4_SB(sb)->s_qf_names[i]) { 3046 int ret = ext4_quota_on_mount(sb, i); 3047 3048 if (!ret) 3049 quota_update = 1; 3050 else 3051 ext4_msg(sb, KERN_ERR, 3052 "Cannot turn on journaled " 3053 "quota: type %d: error %d", i, ret); 3054 } 3055 } 3056 #endif 3057 3058 while (es->s_last_orphan) { 3059 struct inode *inode; 3060 3061 /* 3062 * We may have encountered an error during cleanup; if 3063 * so, skip the rest. 3064 */ 3065 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3066 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3067 es->s_last_orphan = 0; 3068 break; 3069 } 3070 3071 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 3072 if (IS_ERR(inode)) { 3073 es->s_last_orphan = 0; 3074 break; 3075 } 3076 3077 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 3078 dquot_initialize(inode); 3079 if (inode->i_nlink) { 3080 if (test_opt(sb, DEBUG)) 3081 ext4_msg(sb, KERN_DEBUG, 3082 "%s: truncating inode %lu to %lld bytes", 3083 __func__, inode->i_ino, inode->i_size); 3084 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 3085 inode->i_ino, inode->i_size); 3086 inode_lock(inode); 3087 truncate_inode_pages(inode->i_mapping, inode->i_size); 3088 ret = ext4_truncate(inode); 3089 if (ret) 3090 ext4_std_error(inode->i_sb, ret); 3091 inode_unlock(inode); 3092 nr_truncates++; 3093 } else { 3094 if (test_opt(sb, DEBUG)) 3095 ext4_msg(sb, KERN_DEBUG, 3096 "%s: deleting unreferenced inode %lu", 3097 __func__, inode->i_ino); 3098 jbd_debug(2, "deleting unreferenced inode %lu\n", 3099 inode->i_ino); 3100 nr_orphans++; 3101 } 3102 iput(inode); /* The delete magic happens here! */ 3103 } 3104 3105 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 3106 3107 if (nr_orphans) 3108 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 3109 PLURAL(nr_orphans)); 3110 if (nr_truncates) 3111 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 3112 PLURAL(nr_truncates)); 3113 #ifdef CONFIG_QUOTA 3114 /* Turn off quotas if they were enabled for orphan cleanup */ 3115 if (quota_update) { 3116 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3117 if (sb_dqopt(sb)->files[i]) 3118 dquot_quota_off(sb, i); 3119 } 3120 } 3121 #endif 3122 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 3123 } 3124 3125 /* 3126 * Maximal extent format file size. 3127 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3128 * extent format containers, within a sector_t, and within i_blocks 3129 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3130 * so that won't be a limiting factor. 3131 * 3132 * However there is other limiting factor. We do store extents in the form 3133 * of starting block and length, hence the resulting length of the extent 3134 * covering maximum file size must fit into on-disk format containers as 3135 * well. Given that length is always by 1 unit bigger than max unit (because 3136 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3137 * 3138 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3139 */ 3140 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3141 { 3142 loff_t res; 3143 loff_t upper_limit = MAX_LFS_FILESIZE; 3144 3145 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3146 3147 if (!has_huge_files) { 3148 upper_limit = (1LL << 32) - 1; 3149 3150 /* total blocks in file system block size */ 3151 upper_limit >>= (blkbits - 9); 3152 upper_limit <<= blkbits; 3153 } 3154 3155 /* 3156 * 32-bit extent-start container, ee_block. We lower the maxbytes 3157 * by one fs block, so ee_len can cover the extent of maximum file 3158 * size 3159 */ 3160 res = (1LL << 32) - 1; 3161 res <<= blkbits; 3162 3163 /* Sanity check against vm- & vfs- imposed limits */ 3164 if (res > upper_limit) 3165 res = upper_limit; 3166 3167 return res; 3168 } 3169 3170 /* 3171 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3172 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3173 * We need to be 1 filesystem block less than the 2^48 sector limit. 3174 */ 3175 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3176 { 3177 loff_t res = EXT4_NDIR_BLOCKS; 3178 int meta_blocks; 3179 loff_t upper_limit; 3180 /* This is calculated to be the largest file size for a dense, block 3181 * mapped file such that the file's total number of 512-byte sectors, 3182 * including data and all indirect blocks, does not exceed (2^48 - 1). 3183 * 3184 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3185 * number of 512-byte sectors of the file. 3186 */ 3187 3188 if (!has_huge_files) { 3189 /* 3190 * !has_huge_files or implies that the inode i_block field 3191 * represents total file blocks in 2^32 512-byte sectors == 3192 * size of vfs inode i_blocks * 8 3193 */ 3194 upper_limit = (1LL << 32) - 1; 3195 3196 /* total blocks in file system block size */ 3197 upper_limit >>= (bits - 9); 3198 3199 } else { 3200 /* 3201 * We use 48 bit ext4_inode i_blocks 3202 * With EXT4_HUGE_FILE_FL set the i_blocks 3203 * represent total number of blocks in 3204 * file system block size 3205 */ 3206 upper_limit = (1LL << 48) - 1; 3207 3208 } 3209 3210 /* indirect blocks */ 3211 meta_blocks = 1; 3212 /* double indirect blocks */ 3213 meta_blocks += 1 + (1LL << (bits-2)); 3214 /* tripple indirect blocks */ 3215 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3216 3217 upper_limit -= meta_blocks; 3218 upper_limit <<= bits; 3219 3220 res += 1LL << (bits-2); 3221 res += 1LL << (2*(bits-2)); 3222 res += 1LL << (3*(bits-2)); 3223 res <<= bits; 3224 if (res > upper_limit) 3225 res = upper_limit; 3226 3227 if (res > MAX_LFS_FILESIZE) 3228 res = MAX_LFS_FILESIZE; 3229 3230 return res; 3231 } 3232 3233 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3234 ext4_fsblk_t logical_sb_block, int nr) 3235 { 3236 struct ext4_sb_info *sbi = EXT4_SB(sb); 3237 ext4_group_t bg, first_meta_bg; 3238 int has_super = 0; 3239 3240 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3241 3242 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3243 return logical_sb_block + nr + 1; 3244 bg = sbi->s_desc_per_block * nr; 3245 if (ext4_bg_has_super(sb, bg)) 3246 has_super = 1; 3247 3248 /* 3249 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3250 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3251 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3252 * compensate. 3253 */ 3254 if (sb->s_blocksize == 1024 && nr == 0 && 3255 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3256 has_super++; 3257 3258 return (has_super + ext4_group_first_block_no(sb, bg)); 3259 } 3260 3261 /** 3262 * ext4_get_stripe_size: Get the stripe size. 3263 * @sbi: In memory super block info 3264 * 3265 * If we have specified it via mount option, then 3266 * use the mount option value. If the value specified at mount time is 3267 * greater than the blocks per group use the super block value. 3268 * If the super block value is greater than blocks per group return 0. 3269 * Allocator needs it be less than blocks per group. 3270 * 3271 */ 3272 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3273 { 3274 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3275 unsigned long stripe_width = 3276 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3277 int ret; 3278 3279 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3280 ret = sbi->s_stripe; 3281 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3282 ret = stripe_width; 3283 else if (stride && stride <= sbi->s_blocks_per_group) 3284 ret = stride; 3285 else 3286 ret = 0; 3287 3288 /* 3289 * If the stripe width is 1, this makes no sense and 3290 * we set it to 0 to turn off stripe handling code. 3291 */ 3292 if (ret <= 1) 3293 ret = 0; 3294 3295 return ret; 3296 } 3297 3298 /* 3299 * Check whether this filesystem can be mounted based on 3300 * the features present and the RDONLY/RDWR mount requested. 3301 * Returns 1 if this filesystem can be mounted as requested, 3302 * 0 if it cannot be. 3303 */ 3304 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3305 { 3306 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3307 ext4_msg(sb, KERN_ERR, 3308 "Couldn't mount because of " 3309 "unsupported optional features (%x)", 3310 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3311 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3312 return 0; 3313 } 3314 3315 #ifndef CONFIG_UNICODE 3316 if (ext4_has_feature_casefold(sb)) { 3317 ext4_msg(sb, KERN_ERR, 3318 "Filesystem with casefold feature cannot be " 3319 "mounted without CONFIG_UNICODE"); 3320 return 0; 3321 } 3322 #endif 3323 3324 if (readonly) 3325 return 1; 3326 3327 if (ext4_has_feature_readonly(sb)) { 3328 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3329 sb->s_flags |= SB_RDONLY; 3330 return 1; 3331 } 3332 3333 /* Check that feature set is OK for a read-write mount */ 3334 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3335 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3336 "unsupported optional features (%x)", 3337 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3338 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3339 return 0; 3340 } 3341 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3342 ext4_msg(sb, KERN_ERR, 3343 "Can't support bigalloc feature without " 3344 "extents feature\n"); 3345 return 0; 3346 } 3347 3348 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3349 if (!readonly && (ext4_has_feature_quota(sb) || 3350 ext4_has_feature_project(sb))) { 3351 ext4_msg(sb, KERN_ERR, 3352 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3353 return 0; 3354 } 3355 #endif /* CONFIG_QUOTA */ 3356 return 1; 3357 } 3358 3359 /* 3360 * This function is called once a day if we have errors logged 3361 * on the file system 3362 */ 3363 static void print_daily_error_info(struct timer_list *t) 3364 { 3365 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3366 struct super_block *sb = sbi->s_sb; 3367 struct ext4_super_block *es = sbi->s_es; 3368 3369 if (es->s_error_count) 3370 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3371 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3372 le32_to_cpu(es->s_error_count)); 3373 if (es->s_first_error_time) { 3374 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3375 sb->s_id, 3376 ext4_get_tstamp(es, s_first_error_time), 3377 (int) sizeof(es->s_first_error_func), 3378 es->s_first_error_func, 3379 le32_to_cpu(es->s_first_error_line)); 3380 if (es->s_first_error_ino) 3381 printk(KERN_CONT ": inode %u", 3382 le32_to_cpu(es->s_first_error_ino)); 3383 if (es->s_first_error_block) 3384 printk(KERN_CONT ": block %llu", (unsigned long long) 3385 le64_to_cpu(es->s_first_error_block)); 3386 printk(KERN_CONT "\n"); 3387 } 3388 if (es->s_last_error_time) { 3389 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3390 sb->s_id, 3391 ext4_get_tstamp(es, s_last_error_time), 3392 (int) sizeof(es->s_last_error_func), 3393 es->s_last_error_func, 3394 le32_to_cpu(es->s_last_error_line)); 3395 if (es->s_last_error_ino) 3396 printk(KERN_CONT ": inode %u", 3397 le32_to_cpu(es->s_last_error_ino)); 3398 if (es->s_last_error_block) 3399 printk(KERN_CONT ": block %llu", (unsigned long long) 3400 le64_to_cpu(es->s_last_error_block)); 3401 printk(KERN_CONT "\n"); 3402 } 3403 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3404 } 3405 3406 /* Find next suitable group and run ext4_init_inode_table */ 3407 static int ext4_run_li_request(struct ext4_li_request *elr) 3408 { 3409 struct ext4_group_desc *gdp = NULL; 3410 struct super_block *sb = elr->lr_super; 3411 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3412 ext4_group_t group = elr->lr_next_group; 3413 unsigned long timeout = 0; 3414 unsigned int prefetch_ios = 0; 3415 int ret = 0; 3416 3417 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3418 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3419 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3420 if (prefetch_ios) 3421 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3422 prefetch_ios); 3423 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3424 prefetch_ios); 3425 if (group >= elr->lr_next_group) { 3426 ret = 1; 3427 if (elr->lr_first_not_zeroed != ngroups && 3428 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3429 elr->lr_next_group = elr->lr_first_not_zeroed; 3430 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3431 ret = 0; 3432 } 3433 } 3434 return ret; 3435 } 3436 3437 for (; group < ngroups; group++) { 3438 gdp = ext4_get_group_desc(sb, group, NULL); 3439 if (!gdp) { 3440 ret = 1; 3441 break; 3442 } 3443 3444 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3445 break; 3446 } 3447 3448 if (group >= ngroups) 3449 ret = 1; 3450 3451 if (!ret) { 3452 timeout = jiffies; 3453 ret = ext4_init_inode_table(sb, group, 3454 elr->lr_timeout ? 0 : 1); 3455 trace_ext4_lazy_itable_init(sb, group); 3456 if (elr->lr_timeout == 0) { 3457 timeout = (jiffies - timeout) * 3458 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3459 elr->lr_timeout = timeout; 3460 } 3461 elr->lr_next_sched = jiffies + elr->lr_timeout; 3462 elr->lr_next_group = group + 1; 3463 } 3464 return ret; 3465 } 3466 3467 /* 3468 * Remove lr_request from the list_request and free the 3469 * request structure. Should be called with li_list_mtx held 3470 */ 3471 static void ext4_remove_li_request(struct ext4_li_request *elr) 3472 { 3473 if (!elr) 3474 return; 3475 3476 list_del(&elr->lr_request); 3477 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3478 kfree(elr); 3479 } 3480 3481 static void ext4_unregister_li_request(struct super_block *sb) 3482 { 3483 mutex_lock(&ext4_li_mtx); 3484 if (!ext4_li_info) { 3485 mutex_unlock(&ext4_li_mtx); 3486 return; 3487 } 3488 3489 mutex_lock(&ext4_li_info->li_list_mtx); 3490 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3491 mutex_unlock(&ext4_li_info->li_list_mtx); 3492 mutex_unlock(&ext4_li_mtx); 3493 } 3494 3495 static struct task_struct *ext4_lazyinit_task; 3496 3497 /* 3498 * This is the function where ext4lazyinit thread lives. It walks 3499 * through the request list searching for next scheduled filesystem. 3500 * When such a fs is found, run the lazy initialization request 3501 * (ext4_rn_li_request) and keep track of the time spend in this 3502 * function. Based on that time we compute next schedule time of 3503 * the request. When walking through the list is complete, compute 3504 * next waking time and put itself into sleep. 3505 */ 3506 static int ext4_lazyinit_thread(void *arg) 3507 { 3508 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3509 struct list_head *pos, *n; 3510 struct ext4_li_request *elr; 3511 unsigned long next_wakeup, cur; 3512 3513 BUG_ON(NULL == eli); 3514 3515 cont_thread: 3516 while (true) { 3517 next_wakeup = MAX_JIFFY_OFFSET; 3518 3519 mutex_lock(&eli->li_list_mtx); 3520 if (list_empty(&eli->li_request_list)) { 3521 mutex_unlock(&eli->li_list_mtx); 3522 goto exit_thread; 3523 } 3524 list_for_each_safe(pos, n, &eli->li_request_list) { 3525 int err = 0; 3526 int progress = 0; 3527 elr = list_entry(pos, struct ext4_li_request, 3528 lr_request); 3529 3530 if (time_before(jiffies, elr->lr_next_sched)) { 3531 if (time_before(elr->lr_next_sched, next_wakeup)) 3532 next_wakeup = elr->lr_next_sched; 3533 continue; 3534 } 3535 if (down_read_trylock(&elr->lr_super->s_umount)) { 3536 if (sb_start_write_trylock(elr->lr_super)) { 3537 progress = 1; 3538 /* 3539 * We hold sb->s_umount, sb can not 3540 * be removed from the list, it is 3541 * now safe to drop li_list_mtx 3542 */ 3543 mutex_unlock(&eli->li_list_mtx); 3544 err = ext4_run_li_request(elr); 3545 sb_end_write(elr->lr_super); 3546 mutex_lock(&eli->li_list_mtx); 3547 n = pos->next; 3548 } 3549 up_read((&elr->lr_super->s_umount)); 3550 } 3551 /* error, remove the lazy_init job */ 3552 if (err) { 3553 ext4_remove_li_request(elr); 3554 continue; 3555 } 3556 if (!progress) { 3557 elr->lr_next_sched = jiffies + 3558 (prandom_u32() 3559 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3560 } 3561 if (time_before(elr->lr_next_sched, next_wakeup)) 3562 next_wakeup = elr->lr_next_sched; 3563 } 3564 mutex_unlock(&eli->li_list_mtx); 3565 3566 try_to_freeze(); 3567 3568 cur = jiffies; 3569 if ((time_after_eq(cur, next_wakeup)) || 3570 (MAX_JIFFY_OFFSET == next_wakeup)) { 3571 cond_resched(); 3572 continue; 3573 } 3574 3575 schedule_timeout_interruptible(next_wakeup - cur); 3576 3577 if (kthread_should_stop()) { 3578 ext4_clear_request_list(); 3579 goto exit_thread; 3580 } 3581 } 3582 3583 exit_thread: 3584 /* 3585 * It looks like the request list is empty, but we need 3586 * to check it under the li_list_mtx lock, to prevent any 3587 * additions into it, and of course we should lock ext4_li_mtx 3588 * to atomically free the list and ext4_li_info, because at 3589 * this point another ext4 filesystem could be registering 3590 * new one. 3591 */ 3592 mutex_lock(&ext4_li_mtx); 3593 mutex_lock(&eli->li_list_mtx); 3594 if (!list_empty(&eli->li_request_list)) { 3595 mutex_unlock(&eli->li_list_mtx); 3596 mutex_unlock(&ext4_li_mtx); 3597 goto cont_thread; 3598 } 3599 mutex_unlock(&eli->li_list_mtx); 3600 kfree(ext4_li_info); 3601 ext4_li_info = NULL; 3602 mutex_unlock(&ext4_li_mtx); 3603 3604 return 0; 3605 } 3606 3607 static void ext4_clear_request_list(void) 3608 { 3609 struct list_head *pos, *n; 3610 struct ext4_li_request *elr; 3611 3612 mutex_lock(&ext4_li_info->li_list_mtx); 3613 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3614 elr = list_entry(pos, struct ext4_li_request, 3615 lr_request); 3616 ext4_remove_li_request(elr); 3617 } 3618 mutex_unlock(&ext4_li_info->li_list_mtx); 3619 } 3620 3621 static int ext4_run_lazyinit_thread(void) 3622 { 3623 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3624 ext4_li_info, "ext4lazyinit"); 3625 if (IS_ERR(ext4_lazyinit_task)) { 3626 int err = PTR_ERR(ext4_lazyinit_task); 3627 ext4_clear_request_list(); 3628 kfree(ext4_li_info); 3629 ext4_li_info = NULL; 3630 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3631 "initialization thread\n", 3632 err); 3633 return err; 3634 } 3635 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3636 return 0; 3637 } 3638 3639 /* 3640 * Check whether it make sense to run itable init. thread or not. 3641 * If there is at least one uninitialized inode table, return 3642 * corresponding group number, else the loop goes through all 3643 * groups and return total number of groups. 3644 */ 3645 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3646 { 3647 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3648 struct ext4_group_desc *gdp = NULL; 3649 3650 if (!ext4_has_group_desc_csum(sb)) 3651 return ngroups; 3652 3653 for (group = 0; group < ngroups; group++) { 3654 gdp = ext4_get_group_desc(sb, group, NULL); 3655 if (!gdp) 3656 continue; 3657 3658 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3659 break; 3660 } 3661 3662 return group; 3663 } 3664 3665 static int ext4_li_info_new(void) 3666 { 3667 struct ext4_lazy_init *eli = NULL; 3668 3669 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3670 if (!eli) 3671 return -ENOMEM; 3672 3673 INIT_LIST_HEAD(&eli->li_request_list); 3674 mutex_init(&eli->li_list_mtx); 3675 3676 eli->li_state |= EXT4_LAZYINIT_QUIT; 3677 3678 ext4_li_info = eli; 3679 3680 return 0; 3681 } 3682 3683 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3684 ext4_group_t start) 3685 { 3686 struct ext4_li_request *elr; 3687 3688 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3689 if (!elr) 3690 return NULL; 3691 3692 elr->lr_super = sb; 3693 elr->lr_first_not_zeroed = start; 3694 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS)) 3695 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3696 else { 3697 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3698 elr->lr_next_group = start; 3699 } 3700 3701 /* 3702 * Randomize first schedule time of the request to 3703 * spread the inode table initialization requests 3704 * better. 3705 */ 3706 elr->lr_next_sched = jiffies + (prandom_u32() % 3707 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3708 return elr; 3709 } 3710 3711 int ext4_register_li_request(struct super_block *sb, 3712 ext4_group_t first_not_zeroed) 3713 { 3714 struct ext4_sb_info *sbi = EXT4_SB(sb); 3715 struct ext4_li_request *elr = NULL; 3716 ext4_group_t ngroups = sbi->s_groups_count; 3717 int ret = 0; 3718 3719 mutex_lock(&ext4_li_mtx); 3720 if (sbi->s_li_request != NULL) { 3721 /* 3722 * Reset timeout so it can be computed again, because 3723 * s_li_wait_mult might have changed. 3724 */ 3725 sbi->s_li_request->lr_timeout = 0; 3726 goto out; 3727 } 3728 3729 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) && 3730 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3731 !test_opt(sb, INIT_INODE_TABLE))) 3732 goto out; 3733 3734 elr = ext4_li_request_new(sb, first_not_zeroed); 3735 if (!elr) { 3736 ret = -ENOMEM; 3737 goto out; 3738 } 3739 3740 if (NULL == ext4_li_info) { 3741 ret = ext4_li_info_new(); 3742 if (ret) 3743 goto out; 3744 } 3745 3746 mutex_lock(&ext4_li_info->li_list_mtx); 3747 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3748 mutex_unlock(&ext4_li_info->li_list_mtx); 3749 3750 sbi->s_li_request = elr; 3751 /* 3752 * set elr to NULL here since it has been inserted to 3753 * the request_list and the removal and free of it is 3754 * handled by ext4_clear_request_list from now on. 3755 */ 3756 elr = NULL; 3757 3758 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3759 ret = ext4_run_lazyinit_thread(); 3760 if (ret) 3761 goto out; 3762 } 3763 out: 3764 mutex_unlock(&ext4_li_mtx); 3765 if (ret) 3766 kfree(elr); 3767 return ret; 3768 } 3769 3770 /* 3771 * We do not need to lock anything since this is called on 3772 * module unload. 3773 */ 3774 static void ext4_destroy_lazyinit_thread(void) 3775 { 3776 /* 3777 * If thread exited earlier 3778 * there's nothing to be done. 3779 */ 3780 if (!ext4_li_info || !ext4_lazyinit_task) 3781 return; 3782 3783 kthread_stop(ext4_lazyinit_task); 3784 } 3785 3786 static int set_journal_csum_feature_set(struct super_block *sb) 3787 { 3788 int ret = 1; 3789 int compat, incompat; 3790 struct ext4_sb_info *sbi = EXT4_SB(sb); 3791 3792 if (ext4_has_metadata_csum(sb)) { 3793 /* journal checksum v3 */ 3794 compat = 0; 3795 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3796 } else { 3797 /* journal checksum v1 */ 3798 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3799 incompat = 0; 3800 } 3801 3802 jbd2_journal_clear_features(sbi->s_journal, 3803 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3804 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3805 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3806 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3807 ret = jbd2_journal_set_features(sbi->s_journal, 3808 compat, 0, 3809 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3810 incompat); 3811 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3812 ret = jbd2_journal_set_features(sbi->s_journal, 3813 compat, 0, 3814 incompat); 3815 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3816 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3817 } else { 3818 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3819 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3820 } 3821 3822 return ret; 3823 } 3824 3825 /* 3826 * Note: calculating the overhead so we can be compatible with 3827 * historical BSD practice is quite difficult in the face of 3828 * clusters/bigalloc. This is because multiple metadata blocks from 3829 * different block group can end up in the same allocation cluster. 3830 * Calculating the exact overhead in the face of clustered allocation 3831 * requires either O(all block bitmaps) in memory or O(number of block 3832 * groups**2) in time. We will still calculate the superblock for 3833 * older file systems --- and if we come across with a bigalloc file 3834 * system with zero in s_overhead_clusters the estimate will be close to 3835 * correct especially for very large cluster sizes --- but for newer 3836 * file systems, it's better to calculate this figure once at mkfs 3837 * time, and store it in the superblock. If the superblock value is 3838 * present (even for non-bigalloc file systems), we will use it. 3839 */ 3840 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3841 char *buf) 3842 { 3843 struct ext4_sb_info *sbi = EXT4_SB(sb); 3844 struct ext4_group_desc *gdp; 3845 ext4_fsblk_t first_block, last_block, b; 3846 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3847 int s, j, count = 0; 3848 3849 if (!ext4_has_feature_bigalloc(sb)) 3850 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3851 sbi->s_itb_per_group + 2); 3852 3853 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3854 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3855 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3856 for (i = 0; i < ngroups; i++) { 3857 gdp = ext4_get_group_desc(sb, i, NULL); 3858 b = ext4_block_bitmap(sb, gdp); 3859 if (b >= first_block && b <= last_block) { 3860 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3861 count++; 3862 } 3863 b = ext4_inode_bitmap(sb, gdp); 3864 if (b >= first_block && b <= last_block) { 3865 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3866 count++; 3867 } 3868 b = ext4_inode_table(sb, gdp); 3869 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3870 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3871 int c = EXT4_B2C(sbi, b - first_block); 3872 ext4_set_bit(c, buf); 3873 count++; 3874 } 3875 if (i != grp) 3876 continue; 3877 s = 0; 3878 if (ext4_bg_has_super(sb, grp)) { 3879 ext4_set_bit(s++, buf); 3880 count++; 3881 } 3882 j = ext4_bg_num_gdb(sb, grp); 3883 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3884 ext4_error(sb, "Invalid number of block group " 3885 "descriptor blocks: %d", j); 3886 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3887 } 3888 count += j; 3889 for (; j > 0; j--) 3890 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3891 } 3892 if (!count) 3893 return 0; 3894 return EXT4_CLUSTERS_PER_GROUP(sb) - 3895 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3896 } 3897 3898 /* 3899 * Compute the overhead and stash it in sbi->s_overhead 3900 */ 3901 int ext4_calculate_overhead(struct super_block *sb) 3902 { 3903 struct ext4_sb_info *sbi = EXT4_SB(sb); 3904 struct ext4_super_block *es = sbi->s_es; 3905 struct inode *j_inode; 3906 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3907 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3908 ext4_fsblk_t overhead = 0; 3909 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3910 3911 if (!buf) 3912 return -ENOMEM; 3913 3914 /* 3915 * Compute the overhead (FS structures). This is constant 3916 * for a given filesystem unless the number of block groups 3917 * changes so we cache the previous value until it does. 3918 */ 3919 3920 /* 3921 * All of the blocks before first_data_block are overhead 3922 */ 3923 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3924 3925 /* 3926 * Add the overhead found in each block group 3927 */ 3928 for (i = 0; i < ngroups; i++) { 3929 int blks; 3930 3931 blks = count_overhead(sb, i, buf); 3932 overhead += blks; 3933 if (blks) 3934 memset(buf, 0, PAGE_SIZE); 3935 cond_resched(); 3936 } 3937 3938 /* 3939 * Add the internal journal blocks whether the journal has been 3940 * loaded or not 3941 */ 3942 if (sbi->s_journal && !sbi->s_journal_bdev) 3943 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3944 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3945 /* j_inum for internal journal is non-zero */ 3946 j_inode = ext4_get_journal_inode(sb, j_inum); 3947 if (j_inode) { 3948 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3949 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3950 iput(j_inode); 3951 } else { 3952 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3953 } 3954 } 3955 sbi->s_overhead = overhead; 3956 smp_wmb(); 3957 free_page((unsigned long) buf); 3958 return 0; 3959 } 3960 3961 static void ext4_set_resv_clusters(struct super_block *sb) 3962 { 3963 ext4_fsblk_t resv_clusters; 3964 struct ext4_sb_info *sbi = EXT4_SB(sb); 3965 3966 /* 3967 * There's no need to reserve anything when we aren't using extents. 3968 * The space estimates are exact, there are no unwritten extents, 3969 * hole punching doesn't need new metadata... This is needed especially 3970 * to keep ext2/3 backward compatibility. 3971 */ 3972 if (!ext4_has_feature_extents(sb)) 3973 return; 3974 /* 3975 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3976 * This should cover the situations where we can not afford to run 3977 * out of space like for example punch hole, or converting 3978 * unwritten extents in delalloc path. In most cases such 3979 * allocation would require 1, or 2 blocks, higher numbers are 3980 * very rare. 3981 */ 3982 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3983 sbi->s_cluster_bits); 3984 3985 do_div(resv_clusters, 50); 3986 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3987 3988 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3989 } 3990 3991 static const char *ext4_quota_mode(struct super_block *sb) 3992 { 3993 #ifdef CONFIG_QUOTA 3994 if (!ext4_quota_capable(sb)) 3995 return "none"; 3996 3997 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3998 return "journalled"; 3999 else 4000 return "writeback"; 4001 #else 4002 return "disabled"; 4003 #endif 4004 } 4005 4006 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 4007 { 4008 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 4009 char *orig_data = kstrdup(data, GFP_KERNEL); 4010 struct buffer_head *bh, **group_desc; 4011 struct ext4_super_block *es = NULL; 4012 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4013 struct flex_groups **flex_groups; 4014 ext4_fsblk_t block; 4015 ext4_fsblk_t sb_block = get_sb_block(&data); 4016 ext4_fsblk_t logical_sb_block; 4017 unsigned long offset = 0; 4018 unsigned long journal_devnum = 0; 4019 unsigned long def_mount_opts; 4020 struct inode *root; 4021 const char *descr; 4022 int ret = -ENOMEM; 4023 int blocksize, clustersize; 4024 unsigned int db_count; 4025 unsigned int i; 4026 int needs_recovery, has_huge_files; 4027 __u64 blocks_count; 4028 int err = 0; 4029 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4030 ext4_group_t first_not_zeroed; 4031 4032 if ((data && !orig_data) || !sbi) 4033 goto out_free_base; 4034 4035 sbi->s_daxdev = dax_dev; 4036 sbi->s_blockgroup_lock = 4037 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4038 if (!sbi->s_blockgroup_lock) 4039 goto out_free_base; 4040 4041 sb->s_fs_info = sbi; 4042 sbi->s_sb = sb; 4043 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4044 sbi->s_sb_block = sb_block; 4045 sbi->s_sectors_written_start = 4046 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4047 4048 /* Cleanup superblock name */ 4049 strreplace(sb->s_id, '/', '!'); 4050 4051 /* -EINVAL is default */ 4052 ret = -EINVAL; 4053 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4054 if (!blocksize) { 4055 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4056 goto out_fail; 4057 } 4058 4059 /* 4060 * The ext4 superblock will not be buffer aligned for other than 1kB 4061 * block sizes. We need to calculate the offset from buffer start. 4062 */ 4063 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4064 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4065 offset = do_div(logical_sb_block, blocksize); 4066 } else { 4067 logical_sb_block = sb_block; 4068 } 4069 4070 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4071 if (IS_ERR(bh)) { 4072 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4073 ret = PTR_ERR(bh); 4074 goto out_fail; 4075 } 4076 /* 4077 * Note: s_es must be initialized as soon as possible because 4078 * some ext4 macro-instructions depend on its value 4079 */ 4080 es = (struct ext4_super_block *) (bh->b_data + offset); 4081 sbi->s_es = es; 4082 sb->s_magic = le16_to_cpu(es->s_magic); 4083 if (sb->s_magic != EXT4_SUPER_MAGIC) 4084 goto cantfind_ext4; 4085 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4086 4087 /* Warn if metadata_csum and gdt_csum are both set. */ 4088 if (ext4_has_feature_metadata_csum(sb) && 4089 ext4_has_feature_gdt_csum(sb)) 4090 ext4_warning(sb, "metadata_csum and uninit_bg are " 4091 "redundant flags; please run fsck."); 4092 4093 /* Check for a known checksum algorithm */ 4094 if (!ext4_verify_csum_type(sb, es)) { 4095 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4096 "unknown checksum algorithm."); 4097 silent = 1; 4098 goto cantfind_ext4; 4099 } 4100 4101 /* Load the checksum driver */ 4102 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4103 if (IS_ERR(sbi->s_chksum_driver)) { 4104 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4105 ret = PTR_ERR(sbi->s_chksum_driver); 4106 sbi->s_chksum_driver = NULL; 4107 goto failed_mount; 4108 } 4109 4110 /* Check superblock checksum */ 4111 if (!ext4_superblock_csum_verify(sb, es)) { 4112 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4113 "invalid superblock checksum. Run e2fsck?"); 4114 silent = 1; 4115 ret = -EFSBADCRC; 4116 goto cantfind_ext4; 4117 } 4118 4119 /* Precompute checksum seed for all metadata */ 4120 if (ext4_has_feature_csum_seed(sb)) 4121 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4122 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4123 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4124 sizeof(es->s_uuid)); 4125 4126 /* Set defaults before we parse the mount options */ 4127 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4128 set_opt(sb, INIT_INODE_TABLE); 4129 if (def_mount_opts & EXT4_DEFM_DEBUG) 4130 set_opt(sb, DEBUG); 4131 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4132 set_opt(sb, GRPID); 4133 if (def_mount_opts & EXT4_DEFM_UID16) 4134 set_opt(sb, NO_UID32); 4135 /* xattr user namespace & acls are now defaulted on */ 4136 set_opt(sb, XATTR_USER); 4137 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4138 set_opt(sb, POSIX_ACL); 4139 #endif 4140 if (ext4_has_feature_fast_commit(sb)) 4141 set_opt2(sb, JOURNAL_FAST_COMMIT); 4142 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4143 if (ext4_has_metadata_csum(sb)) 4144 set_opt(sb, JOURNAL_CHECKSUM); 4145 4146 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4147 set_opt(sb, JOURNAL_DATA); 4148 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4149 set_opt(sb, ORDERED_DATA); 4150 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4151 set_opt(sb, WRITEBACK_DATA); 4152 4153 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4154 set_opt(sb, ERRORS_PANIC); 4155 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4156 set_opt(sb, ERRORS_CONT); 4157 else 4158 set_opt(sb, ERRORS_RO); 4159 /* block_validity enabled by default; disable with noblock_validity */ 4160 set_opt(sb, BLOCK_VALIDITY); 4161 if (def_mount_opts & EXT4_DEFM_DISCARD) 4162 set_opt(sb, DISCARD); 4163 4164 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4165 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4166 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4167 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4168 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4169 4170 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4171 set_opt(sb, BARRIER); 4172 4173 /* 4174 * enable delayed allocation by default 4175 * Use -o nodelalloc to turn it off 4176 */ 4177 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4178 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4179 set_opt(sb, DELALLOC); 4180 4181 /* 4182 * set default s_li_wait_mult for lazyinit, for the case there is 4183 * no mount option specified. 4184 */ 4185 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4186 4187 if (le32_to_cpu(es->s_log_block_size) > 4188 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4189 ext4_msg(sb, KERN_ERR, 4190 "Invalid log block size: %u", 4191 le32_to_cpu(es->s_log_block_size)); 4192 goto failed_mount; 4193 } 4194 if (le32_to_cpu(es->s_log_cluster_size) > 4195 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4196 ext4_msg(sb, KERN_ERR, 4197 "Invalid log cluster size: %u", 4198 le32_to_cpu(es->s_log_cluster_size)); 4199 goto failed_mount; 4200 } 4201 4202 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4203 4204 if (blocksize == PAGE_SIZE) 4205 set_opt(sb, DIOREAD_NOLOCK); 4206 4207 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4208 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4209 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4210 } else { 4211 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4212 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4213 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4214 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4215 sbi->s_first_ino); 4216 goto failed_mount; 4217 } 4218 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4219 (!is_power_of_2(sbi->s_inode_size)) || 4220 (sbi->s_inode_size > blocksize)) { 4221 ext4_msg(sb, KERN_ERR, 4222 "unsupported inode size: %d", 4223 sbi->s_inode_size); 4224 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4225 goto failed_mount; 4226 } 4227 /* 4228 * i_atime_extra is the last extra field available for 4229 * [acm]times in struct ext4_inode. Checking for that 4230 * field should suffice to ensure we have extra space 4231 * for all three. 4232 */ 4233 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4234 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4235 sb->s_time_gran = 1; 4236 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4237 } else { 4238 sb->s_time_gran = NSEC_PER_SEC; 4239 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4240 } 4241 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4242 } 4243 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4244 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4245 EXT4_GOOD_OLD_INODE_SIZE; 4246 if (ext4_has_feature_extra_isize(sb)) { 4247 unsigned v, max = (sbi->s_inode_size - 4248 EXT4_GOOD_OLD_INODE_SIZE); 4249 4250 v = le16_to_cpu(es->s_want_extra_isize); 4251 if (v > max) { 4252 ext4_msg(sb, KERN_ERR, 4253 "bad s_want_extra_isize: %d", v); 4254 goto failed_mount; 4255 } 4256 if (sbi->s_want_extra_isize < v) 4257 sbi->s_want_extra_isize = v; 4258 4259 v = le16_to_cpu(es->s_min_extra_isize); 4260 if (v > max) { 4261 ext4_msg(sb, KERN_ERR, 4262 "bad s_min_extra_isize: %d", v); 4263 goto failed_mount; 4264 } 4265 if (sbi->s_want_extra_isize < v) 4266 sbi->s_want_extra_isize = v; 4267 } 4268 } 4269 4270 if (sbi->s_es->s_mount_opts[0]) { 4271 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4272 sizeof(sbi->s_es->s_mount_opts), 4273 GFP_KERNEL); 4274 if (!s_mount_opts) 4275 goto failed_mount; 4276 if (!parse_options(s_mount_opts, sb, &journal_devnum, 4277 &journal_ioprio, 0)) { 4278 ext4_msg(sb, KERN_WARNING, 4279 "failed to parse options in superblock: %s", 4280 s_mount_opts); 4281 } 4282 kfree(s_mount_opts); 4283 } 4284 sbi->s_def_mount_opt = sbi->s_mount_opt; 4285 if (!parse_options((char *) data, sb, &journal_devnum, 4286 &journal_ioprio, 0)) 4287 goto failed_mount; 4288 4289 #ifdef CONFIG_UNICODE 4290 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4291 const struct ext4_sb_encodings *encoding_info; 4292 struct unicode_map *encoding; 4293 __u16 encoding_flags; 4294 4295 if (ext4_has_feature_encrypt(sb)) { 4296 ext4_msg(sb, KERN_ERR, 4297 "Can't mount with encoding and encryption"); 4298 goto failed_mount; 4299 } 4300 4301 if (ext4_sb_read_encoding(es, &encoding_info, 4302 &encoding_flags)) { 4303 ext4_msg(sb, KERN_ERR, 4304 "Encoding requested by superblock is unknown"); 4305 goto failed_mount; 4306 } 4307 4308 encoding = utf8_load(encoding_info->version); 4309 if (IS_ERR(encoding)) { 4310 ext4_msg(sb, KERN_ERR, 4311 "can't mount with superblock charset: %s-%s " 4312 "not supported by the kernel. flags: 0x%x.", 4313 encoding_info->name, encoding_info->version, 4314 encoding_flags); 4315 goto failed_mount; 4316 } 4317 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4318 "%s-%s with flags 0x%hx", encoding_info->name, 4319 encoding_info->version?:"\b", encoding_flags); 4320 4321 sb->s_encoding = encoding; 4322 sb->s_encoding_flags = encoding_flags; 4323 } 4324 #endif 4325 4326 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4327 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4328 /* can't mount with both data=journal and dioread_nolock. */ 4329 clear_opt(sb, DIOREAD_NOLOCK); 4330 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4331 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4332 ext4_msg(sb, KERN_ERR, "can't mount with " 4333 "both data=journal and delalloc"); 4334 goto failed_mount; 4335 } 4336 if (test_opt(sb, DAX_ALWAYS)) { 4337 ext4_msg(sb, KERN_ERR, "can't mount with " 4338 "both data=journal and dax"); 4339 goto failed_mount; 4340 } 4341 if (ext4_has_feature_encrypt(sb)) { 4342 ext4_msg(sb, KERN_WARNING, 4343 "encrypted files will use data=ordered " 4344 "instead of data journaling mode"); 4345 } 4346 if (test_opt(sb, DELALLOC)) 4347 clear_opt(sb, DELALLOC); 4348 } else { 4349 sb->s_iflags |= SB_I_CGROUPWB; 4350 } 4351 4352 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4353 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4354 4355 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4356 (ext4_has_compat_features(sb) || 4357 ext4_has_ro_compat_features(sb) || 4358 ext4_has_incompat_features(sb))) 4359 ext4_msg(sb, KERN_WARNING, 4360 "feature flags set on rev 0 fs, " 4361 "running e2fsck is recommended"); 4362 4363 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4364 set_opt2(sb, HURD_COMPAT); 4365 if (ext4_has_feature_64bit(sb)) { 4366 ext4_msg(sb, KERN_ERR, 4367 "The Hurd can't support 64-bit file systems"); 4368 goto failed_mount; 4369 } 4370 4371 /* 4372 * ea_inode feature uses l_i_version field which is not 4373 * available in HURD_COMPAT mode. 4374 */ 4375 if (ext4_has_feature_ea_inode(sb)) { 4376 ext4_msg(sb, KERN_ERR, 4377 "ea_inode feature is not supported for Hurd"); 4378 goto failed_mount; 4379 } 4380 } 4381 4382 if (IS_EXT2_SB(sb)) { 4383 if (ext2_feature_set_ok(sb)) 4384 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4385 "using the ext4 subsystem"); 4386 else { 4387 /* 4388 * If we're probing be silent, if this looks like 4389 * it's actually an ext[34] filesystem. 4390 */ 4391 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4392 goto failed_mount; 4393 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4394 "to feature incompatibilities"); 4395 goto failed_mount; 4396 } 4397 } 4398 4399 if (IS_EXT3_SB(sb)) { 4400 if (ext3_feature_set_ok(sb)) 4401 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4402 "using the ext4 subsystem"); 4403 else { 4404 /* 4405 * If we're probing be silent, if this looks like 4406 * it's actually an ext4 filesystem. 4407 */ 4408 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4409 goto failed_mount; 4410 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4411 "to feature incompatibilities"); 4412 goto failed_mount; 4413 } 4414 } 4415 4416 /* 4417 * Check feature flags regardless of the revision level, since we 4418 * previously didn't change the revision level when setting the flags, 4419 * so there is a chance incompat flags are set on a rev 0 filesystem. 4420 */ 4421 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4422 goto failed_mount; 4423 4424 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4425 ext4_msg(sb, KERN_ERR, 4426 "Number of reserved GDT blocks insanely large: %d", 4427 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4428 goto failed_mount; 4429 } 4430 4431 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4432 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4433 4434 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4435 if (ext4_has_feature_inline_data(sb)) { 4436 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4437 " that may contain inline data"); 4438 goto failed_mount; 4439 } 4440 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4441 ext4_msg(sb, KERN_ERR, 4442 "DAX unsupported by block device."); 4443 goto failed_mount; 4444 } 4445 } 4446 4447 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4448 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4449 es->s_encryption_level); 4450 goto failed_mount; 4451 } 4452 4453 if (sb->s_blocksize != blocksize) { 4454 /* Validate the filesystem blocksize */ 4455 if (!sb_set_blocksize(sb, blocksize)) { 4456 ext4_msg(sb, KERN_ERR, "bad block size %d", 4457 blocksize); 4458 goto failed_mount; 4459 } 4460 4461 brelse(bh); 4462 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4463 offset = do_div(logical_sb_block, blocksize); 4464 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4465 if (IS_ERR(bh)) { 4466 ext4_msg(sb, KERN_ERR, 4467 "Can't read superblock on 2nd try"); 4468 ret = PTR_ERR(bh); 4469 bh = NULL; 4470 goto failed_mount; 4471 } 4472 es = (struct ext4_super_block *)(bh->b_data + offset); 4473 sbi->s_es = es; 4474 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4475 ext4_msg(sb, KERN_ERR, 4476 "Magic mismatch, very weird!"); 4477 goto failed_mount; 4478 } 4479 } 4480 4481 has_huge_files = ext4_has_feature_huge_file(sb); 4482 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4483 has_huge_files); 4484 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4485 4486 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4487 if (ext4_has_feature_64bit(sb)) { 4488 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4489 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4490 !is_power_of_2(sbi->s_desc_size)) { 4491 ext4_msg(sb, KERN_ERR, 4492 "unsupported descriptor size %lu", 4493 sbi->s_desc_size); 4494 goto failed_mount; 4495 } 4496 } else 4497 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4498 4499 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4500 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4501 4502 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4503 if (sbi->s_inodes_per_block == 0) 4504 goto cantfind_ext4; 4505 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4506 sbi->s_inodes_per_group > blocksize * 8) { 4507 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4508 sbi->s_inodes_per_group); 4509 goto failed_mount; 4510 } 4511 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4512 sbi->s_inodes_per_block; 4513 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4514 sbi->s_sbh = bh; 4515 sbi->s_mount_state = le16_to_cpu(es->s_state); 4516 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4517 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4518 4519 for (i = 0; i < 4; i++) 4520 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4521 sbi->s_def_hash_version = es->s_def_hash_version; 4522 if (ext4_has_feature_dir_index(sb)) { 4523 i = le32_to_cpu(es->s_flags); 4524 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4525 sbi->s_hash_unsigned = 3; 4526 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4527 #ifdef __CHAR_UNSIGNED__ 4528 if (!sb_rdonly(sb)) 4529 es->s_flags |= 4530 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4531 sbi->s_hash_unsigned = 3; 4532 #else 4533 if (!sb_rdonly(sb)) 4534 es->s_flags |= 4535 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4536 #endif 4537 } 4538 } 4539 4540 /* Handle clustersize */ 4541 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4542 if (ext4_has_feature_bigalloc(sb)) { 4543 if (clustersize < blocksize) { 4544 ext4_msg(sb, KERN_ERR, 4545 "cluster size (%d) smaller than " 4546 "block size (%d)", clustersize, blocksize); 4547 goto failed_mount; 4548 } 4549 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4550 le32_to_cpu(es->s_log_block_size); 4551 sbi->s_clusters_per_group = 4552 le32_to_cpu(es->s_clusters_per_group); 4553 if (sbi->s_clusters_per_group > blocksize * 8) { 4554 ext4_msg(sb, KERN_ERR, 4555 "#clusters per group too big: %lu", 4556 sbi->s_clusters_per_group); 4557 goto failed_mount; 4558 } 4559 if (sbi->s_blocks_per_group != 4560 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4561 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4562 "clusters per group (%lu) inconsistent", 4563 sbi->s_blocks_per_group, 4564 sbi->s_clusters_per_group); 4565 goto failed_mount; 4566 } 4567 } else { 4568 if (clustersize != blocksize) { 4569 ext4_msg(sb, KERN_ERR, 4570 "fragment/cluster size (%d) != " 4571 "block size (%d)", clustersize, blocksize); 4572 goto failed_mount; 4573 } 4574 if (sbi->s_blocks_per_group > blocksize * 8) { 4575 ext4_msg(sb, KERN_ERR, 4576 "#blocks per group too big: %lu", 4577 sbi->s_blocks_per_group); 4578 goto failed_mount; 4579 } 4580 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4581 sbi->s_cluster_bits = 0; 4582 } 4583 sbi->s_cluster_ratio = clustersize / blocksize; 4584 4585 /* Do we have standard group size of clustersize * 8 blocks ? */ 4586 if (sbi->s_blocks_per_group == clustersize << 3) 4587 set_opt2(sb, STD_GROUP_SIZE); 4588 4589 /* 4590 * Test whether we have more sectors than will fit in sector_t, 4591 * and whether the max offset is addressable by the page cache. 4592 */ 4593 err = generic_check_addressable(sb->s_blocksize_bits, 4594 ext4_blocks_count(es)); 4595 if (err) { 4596 ext4_msg(sb, KERN_ERR, "filesystem" 4597 " too large to mount safely on this system"); 4598 goto failed_mount; 4599 } 4600 4601 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4602 goto cantfind_ext4; 4603 4604 /* check blocks count against device size */ 4605 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4606 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4607 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4608 "exceeds size of device (%llu blocks)", 4609 ext4_blocks_count(es), blocks_count); 4610 goto failed_mount; 4611 } 4612 4613 /* 4614 * It makes no sense for the first data block to be beyond the end 4615 * of the filesystem. 4616 */ 4617 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4618 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4619 "block %u is beyond end of filesystem (%llu)", 4620 le32_to_cpu(es->s_first_data_block), 4621 ext4_blocks_count(es)); 4622 goto failed_mount; 4623 } 4624 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4625 (sbi->s_cluster_ratio == 1)) { 4626 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4627 "block is 0 with a 1k block and cluster size"); 4628 goto failed_mount; 4629 } 4630 4631 blocks_count = (ext4_blocks_count(es) - 4632 le32_to_cpu(es->s_first_data_block) + 4633 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4634 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4635 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4636 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4637 "(block count %llu, first data block %u, " 4638 "blocks per group %lu)", blocks_count, 4639 ext4_blocks_count(es), 4640 le32_to_cpu(es->s_first_data_block), 4641 EXT4_BLOCKS_PER_GROUP(sb)); 4642 goto failed_mount; 4643 } 4644 sbi->s_groups_count = blocks_count; 4645 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4646 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4647 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4648 le32_to_cpu(es->s_inodes_count)) { 4649 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4650 le32_to_cpu(es->s_inodes_count), 4651 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4652 ret = -EINVAL; 4653 goto failed_mount; 4654 } 4655 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4656 EXT4_DESC_PER_BLOCK(sb); 4657 if (ext4_has_feature_meta_bg(sb)) { 4658 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4659 ext4_msg(sb, KERN_WARNING, 4660 "first meta block group too large: %u " 4661 "(group descriptor block count %u)", 4662 le32_to_cpu(es->s_first_meta_bg), db_count); 4663 goto failed_mount; 4664 } 4665 } 4666 rcu_assign_pointer(sbi->s_group_desc, 4667 kvmalloc_array(db_count, 4668 sizeof(struct buffer_head *), 4669 GFP_KERNEL)); 4670 if (sbi->s_group_desc == NULL) { 4671 ext4_msg(sb, KERN_ERR, "not enough memory"); 4672 ret = -ENOMEM; 4673 goto failed_mount; 4674 } 4675 4676 bgl_lock_init(sbi->s_blockgroup_lock); 4677 4678 /* Pre-read the descriptors into the buffer cache */ 4679 for (i = 0; i < db_count; i++) { 4680 block = descriptor_loc(sb, logical_sb_block, i); 4681 ext4_sb_breadahead_unmovable(sb, block); 4682 } 4683 4684 for (i = 0; i < db_count; i++) { 4685 struct buffer_head *bh; 4686 4687 block = descriptor_loc(sb, logical_sb_block, i); 4688 bh = ext4_sb_bread_unmovable(sb, block); 4689 if (IS_ERR(bh)) { 4690 ext4_msg(sb, KERN_ERR, 4691 "can't read group descriptor %d", i); 4692 db_count = i; 4693 ret = PTR_ERR(bh); 4694 goto failed_mount2; 4695 } 4696 rcu_read_lock(); 4697 rcu_dereference(sbi->s_group_desc)[i] = bh; 4698 rcu_read_unlock(); 4699 } 4700 sbi->s_gdb_count = db_count; 4701 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4702 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4703 ret = -EFSCORRUPTED; 4704 goto failed_mount2; 4705 } 4706 4707 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4708 spin_lock_init(&sbi->s_error_lock); 4709 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4710 4711 /* Register extent status tree shrinker */ 4712 if (ext4_es_register_shrinker(sbi)) 4713 goto failed_mount3; 4714 4715 sbi->s_stripe = ext4_get_stripe_size(sbi); 4716 sbi->s_extent_max_zeroout_kb = 32; 4717 4718 /* 4719 * set up enough so that it can read an inode 4720 */ 4721 sb->s_op = &ext4_sops; 4722 sb->s_export_op = &ext4_export_ops; 4723 sb->s_xattr = ext4_xattr_handlers; 4724 #ifdef CONFIG_FS_ENCRYPTION 4725 sb->s_cop = &ext4_cryptops; 4726 #endif 4727 #ifdef CONFIG_FS_VERITY 4728 sb->s_vop = &ext4_verityops; 4729 #endif 4730 #ifdef CONFIG_QUOTA 4731 sb->dq_op = &ext4_quota_operations; 4732 if (ext4_has_feature_quota(sb)) 4733 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4734 else 4735 sb->s_qcop = &ext4_qctl_operations; 4736 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4737 #endif 4738 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4739 4740 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4741 mutex_init(&sbi->s_orphan_lock); 4742 4743 /* Initialize fast commit stuff */ 4744 atomic_set(&sbi->s_fc_subtid, 0); 4745 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4746 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4747 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4748 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4749 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4750 sbi->s_fc_bytes = 0; 4751 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4752 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4753 spin_lock_init(&sbi->s_fc_lock); 4754 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4755 sbi->s_fc_replay_state.fc_regions = NULL; 4756 sbi->s_fc_replay_state.fc_regions_size = 0; 4757 sbi->s_fc_replay_state.fc_regions_used = 0; 4758 sbi->s_fc_replay_state.fc_regions_valid = 0; 4759 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4760 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4761 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4762 4763 sb->s_root = NULL; 4764 4765 needs_recovery = (es->s_last_orphan != 0 || 4766 ext4_has_feature_journal_needs_recovery(sb)); 4767 4768 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4769 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4770 goto failed_mount3a; 4771 4772 /* 4773 * The first inode we look at is the journal inode. Don't try 4774 * root first: it may be modified in the journal! 4775 */ 4776 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4777 err = ext4_load_journal(sb, es, journal_devnum); 4778 if (err) 4779 goto failed_mount3a; 4780 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4781 ext4_has_feature_journal_needs_recovery(sb)) { 4782 ext4_msg(sb, KERN_ERR, "required journal recovery " 4783 "suppressed and not mounted read-only"); 4784 goto failed_mount_wq; 4785 } else { 4786 /* Nojournal mode, all journal mount options are illegal */ 4787 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4788 ext4_msg(sb, KERN_ERR, "can't mount with " 4789 "journal_checksum, fs mounted w/o journal"); 4790 goto failed_mount_wq; 4791 } 4792 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4793 ext4_msg(sb, KERN_ERR, "can't mount with " 4794 "journal_async_commit, fs mounted w/o journal"); 4795 goto failed_mount_wq; 4796 } 4797 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4798 ext4_msg(sb, KERN_ERR, "can't mount with " 4799 "commit=%lu, fs mounted w/o journal", 4800 sbi->s_commit_interval / HZ); 4801 goto failed_mount_wq; 4802 } 4803 if (EXT4_MOUNT_DATA_FLAGS & 4804 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4805 ext4_msg(sb, KERN_ERR, "can't mount with " 4806 "data=, fs mounted w/o journal"); 4807 goto failed_mount_wq; 4808 } 4809 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4810 clear_opt(sb, JOURNAL_CHECKSUM); 4811 clear_opt(sb, DATA_FLAGS); 4812 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4813 sbi->s_journal = NULL; 4814 needs_recovery = 0; 4815 goto no_journal; 4816 } 4817 4818 if (ext4_has_feature_64bit(sb) && 4819 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4820 JBD2_FEATURE_INCOMPAT_64BIT)) { 4821 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4822 goto failed_mount_wq; 4823 } 4824 4825 if (!set_journal_csum_feature_set(sb)) { 4826 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4827 "feature set"); 4828 goto failed_mount_wq; 4829 } 4830 4831 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4832 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4833 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4834 ext4_msg(sb, KERN_ERR, 4835 "Failed to set fast commit journal feature"); 4836 goto failed_mount_wq; 4837 } 4838 4839 /* We have now updated the journal if required, so we can 4840 * validate the data journaling mode. */ 4841 switch (test_opt(sb, DATA_FLAGS)) { 4842 case 0: 4843 /* No mode set, assume a default based on the journal 4844 * capabilities: ORDERED_DATA if the journal can 4845 * cope, else JOURNAL_DATA 4846 */ 4847 if (jbd2_journal_check_available_features 4848 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4849 set_opt(sb, ORDERED_DATA); 4850 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4851 } else { 4852 set_opt(sb, JOURNAL_DATA); 4853 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4854 } 4855 break; 4856 4857 case EXT4_MOUNT_ORDERED_DATA: 4858 case EXT4_MOUNT_WRITEBACK_DATA: 4859 if (!jbd2_journal_check_available_features 4860 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4861 ext4_msg(sb, KERN_ERR, "Journal does not support " 4862 "requested data journaling mode"); 4863 goto failed_mount_wq; 4864 } 4865 break; 4866 default: 4867 break; 4868 } 4869 4870 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4871 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4872 ext4_msg(sb, KERN_ERR, "can't mount with " 4873 "journal_async_commit in data=ordered mode"); 4874 goto failed_mount_wq; 4875 } 4876 4877 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4878 4879 sbi->s_journal->j_submit_inode_data_buffers = 4880 ext4_journal_submit_inode_data_buffers; 4881 sbi->s_journal->j_finish_inode_data_buffers = 4882 ext4_journal_finish_inode_data_buffers; 4883 4884 no_journal: 4885 if (!test_opt(sb, NO_MBCACHE)) { 4886 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4887 if (!sbi->s_ea_block_cache) { 4888 ext4_msg(sb, KERN_ERR, 4889 "Failed to create ea_block_cache"); 4890 goto failed_mount_wq; 4891 } 4892 4893 if (ext4_has_feature_ea_inode(sb)) { 4894 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4895 if (!sbi->s_ea_inode_cache) { 4896 ext4_msg(sb, KERN_ERR, 4897 "Failed to create ea_inode_cache"); 4898 goto failed_mount_wq; 4899 } 4900 } 4901 } 4902 4903 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4904 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4905 goto failed_mount_wq; 4906 } 4907 4908 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4909 !ext4_has_feature_encrypt(sb)) { 4910 ext4_set_feature_encrypt(sb); 4911 ext4_commit_super(sb); 4912 } 4913 4914 /* 4915 * Get the # of file system overhead blocks from the 4916 * superblock if present. 4917 */ 4918 if (es->s_overhead_clusters) 4919 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4920 else { 4921 err = ext4_calculate_overhead(sb); 4922 if (err) 4923 goto failed_mount_wq; 4924 } 4925 4926 /* 4927 * The maximum number of concurrent works can be high and 4928 * concurrency isn't really necessary. Limit it to 1. 4929 */ 4930 EXT4_SB(sb)->rsv_conversion_wq = 4931 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4932 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4933 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4934 ret = -ENOMEM; 4935 goto failed_mount4; 4936 } 4937 4938 /* 4939 * The jbd2_journal_load will have done any necessary log recovery, 4940 * so we can safely mount the rest of the filesystem now. 4941 */ 4942 4943 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4944 if (IS_ERR(root)) { 4945 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4946 ret = PTR_ERR(root); 4947 root = NULL; 4948 goto failed_mount4; 4949 } 4950 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4951 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4952 iput(root); 4953 goto failed_mount4; 4954 } 4955 4956 sb->s_root = d_make_root(root); 4957 if (!sb->s_root) { 4958 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4959 ret = -ENOMEM; 4960 goto failed_mount4; 4961 } 4962 4963 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4964 if (ret == -EROFS) { 4965 sb->s_flags |= SB_RDONLY; 4966 ret = 0; 4967 } else if (ret) 4968 goto failed_mount4a; 4969 4970 ext4_set_resv_clusters(sb); 4971 4972 if (test_opt(sb, BLOCK_VALIDITY)) { 4973 err = ext4_setup_system_zone(sb); 4974 if (err) { 4975 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4976 "zone (%d)", err); 4977 goto failed_mount4a; 4978 } 4979 } 4980 ext4_fc_replay_cleanup(sb); 4981 4982 ext4_ext_init(sb); 4983 err = ext4_mb_init(sb); 4984 if (err) { 4985 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4986 err); 4987 goto failed_mount5; 4988 } 4989 4990 /* 4991 * We can only set up the journal commit callback once 4992 * mballoc is initialized 4993 */ 4994 if (sbi->s_journal) 4995 sbi->s_journal->j_commit_callback = 4996 ext4_journal_commit_callback; 4997 4998 block = ext4_count_free_clusters(sb); 4999 ext4_free_blocks_count_set(sbi->s_es, 5000 EXT4_C2B(sbi, block)); 5001 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5002 GFP_KERNEL); 5003 if (!err) { 5004 unsigned long freei = ext4_count_free_inodes(sb); 5005 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5006 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5007 GFP_KERNEL); 5008 } 5009 if (!err) 5010 err = percpu_counter_init(&sbi->s_dirs_counter, 5011 ext4_count_dirs(sb), GFP_KERNEL); 5012 if (!err) 5013 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5014 GFP_KERNEL); 5015 if (!err) 5016 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5017 GFP_KERNEL); 5018 if (!err) 5019 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5020 5021 if (err) { 5022 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5023 goto failed_mount6; 5024 } 5025 5026 if (ext4_has_feature_flex_bg(sb)) 5027 if (!ext4_fill_flex_info(sb)) { 5028 ext4_msg(sb, KERN_ERR, 5029 "unable to initialize " 5030 "flex_bg meta info!"); 5031 goto failed_mount6; 5032 } 5033 5034 err = ext4_register_li_request(sb, first_not_zeroed); 5035 if (err) 5036 goto failed_mount6; 5037 5038 err = ext4_register_sysfs(sb); 5039 if (err) 5040 goto failed_mount7; 5041 5042 #ifdef CONFIG_QUOTA 5043 /* Enable quota usage during mount. */ 5044 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5045 err = ext4_enable_quotas(sb); 5046 if (err) 5047 goto failed_mount8; 5048 } 5049 #endif /* CONFIG_QUOTA */ 5050 5051 /* 5052 * Save the original bdev mapping's wb_err value which could be 5053 * used to detect the metadata async write error. 5054 */ 5055 spin_lock_init(&sbi->s_bdev_wb_lock); 5056 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5057 &sbi->s_bdev_wb_err); 5058 sb->s_bdev->bd_super = sb; 5059 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5060 ext4_orphan_cleanup(sb, es); 5061 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5062 if (needs_recovery) { 5063 ext4_msg(sb, KERN_INFO, "recovery complete"); 5064 err = ext4_mark_recovery_complete(sb, es); 5065 if (err) 5066 goto failed_mount8; 5067 } 5068 if (EXT4_SB(sb)->s_journal) { 5069 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5070 descr = " journalled data mode"; 5071 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5072 descr = " ordered data mode"; 5073 else 5074 descr = " writeback data mode"; 5075 } else 5076 descr = "out journal"; 5077 5078 if (test_opt(sb, DISCARD)) { 5079 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5080 if (!blk_queue_discard(q)) 5081 ext4_msg(sb, KERN_WARNING, 5082 "mounting with \"discard\" option, but " 5083 "the device does not support discard"); 5084 } 5085 5086 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5087 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5088 "Opts: %.*s%s%s. Quota mode: %s.", descr, 5089 (int) sizeof(sbi->s_es->s_mount_opts), 5090 sbi->s_es->s_mount_opts, 5091 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 5092 ext4_quota_mode(sb)); 5093 5094 if (es->s_error_count) 5095 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5096 5097 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5098 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5099 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5100 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5101 atomic_set(&sbi->s_warning_count, 0); 5102 atomic_set(&sbi->s_msg_count, 0); 5103 5104 kfree(orig_data); 5105 return 0; 5106 5107 cantfind_ext4: 5108 if (!silent) 5109 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5110 goto failed_mount; 5111 5112 failed_mount8: 5113 ext4_unregister_sysfs(sb); 5114 kobject_put(&sbi->s_kobj); 5115 failed_mount7: 5116 ext4_unregister_li_request(sb); 5117 failed_mount6: 5118 ext4_mb_release(sb); 5119 rcu_read_lock(); 5120 flex_groups = rcu_dereference(sbi->s_flex_groups); 5121 if (flex_groups) { 5122 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5123 kvfree(flex_groups[i]); 5124 kvfree(flex_groups); 5125 } 5126 rcu_read_unlock(); 5127 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5128 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5129 percpu_counter_destroy(&sbi->s_dirs_counter); 5130 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5131 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5132 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5133 failed_mount5: 5134 ext4_ext_release(sb); 5135 ext4_release_system_zone(sb); 5136 failed_mount4a: 5137 dput(sb->s_root); 5138 sb->s_root = NULL; 5139 failed_mount4: 5140 ext4_msg(sb, KERN_ERR, "mount failed"); 5141 if (EXT4_SB(sb)->rsv_conversion_wq) 5142 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5143 failed_mount_wq: 5144 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5145 sbi->s_ea_inode_cache = NULL; 5146 5147 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5148 sbi->s_ea_block_cache = NULL; 5149 5150 if (sbi->s_journal) { 5151 jbd2_journal_destroy(sbi->s_journal); 5152 sbi->s_journal = NULL; 5153 } 5154 failed_mount3a: 5155 ext4_es_unregister_shrinker(sbi); 5156 failed_mount3: 5157 flush_work(&sbi->s_error_work); 5158 del_timer_sync(&sbi->s_err_report); 5159 if (sbi->s_mmp_tsk) 5160 kthread_stop(sbi->s_mmp_tsk); 5161 failed_mount2: 5162 rcu_read_lock(); 5163 group_desc = rcu_dereference(sbi->s_group_desc); 5164 for (i = 0; i < db_count; i++) 5165 brelse(group_desc[i]); 5166 kvfree(group_desc); 5167 rcu_read_unlock(); 5168 failed_mount: 5169 if (sbi->s_chksum_driver) 5170 crypto_free_shash(sbi->s_chksum_driver); 5171 5172 #ifdef CONFIG_UNICODE 5173 utf8_unload(sb->s_encoding); 5174 #endif 5175 5176 #ifdef CONFIG_QUOTA 5177 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5178 kfree(get_qf_name(sb, sbi, i)); 5179 #endif 5180 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5181 ext4_blkdev_remove(sbi); 5182 brelse(bh); 5183 out_fail: 5184 sb->s_fs_info = NULL; 5185 kfree(sbi->s_blockgroup_lock); 5186 out_free_base: 5187 kfree(sbi); 5188 kfree(orig_data); 5189 fs_put_dax(dax_dev); 5190 return err ? err : ret; 5191 } 5192 5193 /* 5194 * Setup any per-fs journal parameters now. We'll do this both on 5195 * initial mount, once the journal has been initialised but before we've 5196 * done any recovery; and again on any subsequent remount. 5197 */ 5198 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5199 { 5200 struct ext4_sb_info *sbi = EXT4_SB(sb); 5201 5202 journal->j_commit_interval = sbi->s_commit_interval; 5203 journal->j_min_batch_time = sbi->s_min_batch_time; 5204 journal->j_max_batch_time = sbi->s_max_batch_time; 5205 ext4_fc_init(sb, journal); 5206 5207 write_lock(&journal->j_state_lock); 5208 if (test_opt(sb, BARRIER)) 5209 journal->j_flags |= JBD2_BARRIER; 5210 else 5211 journal->j_flags &= ~JBD2_BARRIER; 5212 if (test_opt(sb, DATA_ERR_ABORT)) 5213 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5214 else 5215 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5216 write_unlock(&journal->j_state_lock); 5217 } 5218 5219 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5220 unsigned int journal_inum) 5221 { 5222 struct inode *journal_inode; 5223 5224 /* 5225 * Test for the existence of a valid inode on disk. Bad things 5226 * happen if we iget() an unused inode, as the subsequent iput() 5227 * will try to delete it. 5228 */ 5229 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5230 if (IS_ERR(journal_inode)) { 5231 ext4_msg(sb, KERN_ERR, "no journal found"); 5232 return NULL; 5233 } 5234 if (!journal_inode->i_nlink) { 5235 make_bad_inode(journal_inode); 5236 iput(journal_inode); 5237 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5238 return NULL; 5239 } 5240 5241 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5242 journal_inode, journal_inode->i_size); 5243 if (!S_ISREG(journal_inode->i_mode)) { 5244 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5245 iput(journal_inode); 5246 return NULL; 5247 } 5248 return journal_inode; 5249 } 5250 5251 static journal_t *ext4_get_journal(struct super_block *sb, 5252 unsigned int journal_inum) 5253 { 5254 struct inode *journal_inode; 5255 journal_t *journal; 5256 5257 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5258 return NULL; 5259 5260 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5261 if (!journal_inode) 5262 return NULL; 5263 5264 journal = jbd2_journal_init_inode(journal_inode); 5265 if (!journal) { 5266 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5267 iput(journal_inode); 5268 return NULL; 5269 } 5270 journal->j_private = sb; 5271 ext4_init_journal_params(sb, journal); 5272 return journal; 5273 } 5274 5275 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5276 dev_t j_dev) 5277 { 5278 struct buffer_head *bh; 5279 journal_t *journal; 5280 ext4_fsblk_t start; 5281 ext4_fsblk_t len; 5282 int hblock, blocksize; 5283 ext4_fsblk_t sb_block; 5284 unsigned long offset; 5285 struct ext4_super_block *es; 5286 struct block_device *bdev; 5287 5288 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5289 return NULL; 5290 5291 bdev = ext4_blkdev_get(j_dev, sb); 5292 if (bdev == NULL) 5293 return NULL; 5294 5295 blocksize = sb->s_blocksize; 5296 hblock = bdev_logical_block_size(bdev); 5297 if (blocksize < hblock) { 5298 ext4_msg(sb, KERN_ERR, 5299 "blocksize too small for journal device"); 5300 goto out_bdev; 5301 } 5302 5303 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5304 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5305 set_blocksize(bdev, blocksize); 5306 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5307 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5308 "external journal"); 5309 goto out_bdev; 5310 } 5311 5312 es = (struct ext4_super_block *) (bh->b_data + offset); 5313 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5314 !(le32_to_cpu(es->s_feature_incompat) & 5315 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5316 ext4_msg(sb, KERN_ERR, "external journal has " 5317 "bad superblock"); 5318 brelse(bh); 5319 goto out_bdev; 5320 } 5321 5322 if ((le32_to_cpu(es->s_feature_ro_compat) & 5323 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5324 es->s_checksum != ext4_superblock_csum(sb, es)) { 5325 ext4_msg(sb, KERN_ERR, "external journal has " 5326 "corrupt superblock"); 5327 brelse(bh); 5328 goto out_bdev; 5329 } 5330 5331 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5332 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5333 brelse(bh); 5334 goto out_bdev; 5335 } 5336 5337 len = ext4_blocks_count(es); 5338 start = sb_block + 1; 5339 brelse(bh); /* we're done with the superblock */ 5340 5341 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5342 start, len, blocksize); 5343 if (!journal) { 5344 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5345 goto out_bdev; 5346 } 5347 journal->j_private = sb; 5348 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5349 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5350 goto out_journal; 5351 } 5352 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5353 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5354 "user (unsupported) - %d", 5355 be32_to_cpu(journal->j_superblock->s_nr_users)); 5356 goto out_journal; 5357 } 5358 EXT4_SB(sb)->s_journal_bdev = bdev; 5359 ext4_init_journal_params(sb, journal); 5360 return journal; 5361 5362 out_journal: 5363 jbd2_journal_destroy(journal); 5364 out_bdev: 5365 ext4_blkdev_put(bdev); 5366 return NULL; 5367 } 5368 5369 static int ext4_load_journal(struct super_block *sb, 5370 struct ext4_super_block *es, 5371 unsigned long journal_devnum) 5372 { 5373 journal_t *journal; 5374 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5375 dev_t journal_dev; 5376 int err = 0; 5377 int really_read_only; 5378 int journal_dev_ro; 5379 5380 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5381 return -EFSCORRUPTED; 5382 5383 if (journal_devnum && 5384 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5385 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5386 "numbers have changed"); 5387 journal_dev = new_decode_dev(journal_devnum); 5388 } else 5389 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5390 5391 if (journal_inum && journal_dev) { 5392 ext4_msg(sb, KERN_ERR, 5393 "filesystem has both journal inode and journal device!"); 5394 return -EINVAL; 5395 } 5396 5397 if (journal_inum) { 5398 journal = ext4_get_journal(sb, journal_inum); 5399 if (!journal) 5400 return -EINVAL; 5401 } else { 5402 journal = ext4_get_dev_journal(sb, journal_dev); 5403 if (!journal) 5404 return -EINVAL; 5405 } 5406 5407 journal_dev_ro = bdev_read_only(journal->j_dev); 5408 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5409 5410 if (journal_dev_ro && !sb_rdonly(sb)) { 5411 ext4_msg(sb, KERN_ERR, 5412 "journal device read-only, try mounting with '-o ro'"); 5413 err = -EROFS; 5414 goto err_out; 5415 } 5416 5417 /* 5418 * Are we loading a blank journal or performing recovery after a 5419 * crash? For recovery, we need to check in advance whether we 5420 * can get read-write access to the device. 5421 */ 5422 if (ext4_has_feature_journal_needs_recovery(sb)) { 5423 if (sb_rdonly(sb)) { 5424 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5425 "required on readonly filesystem"); 5426 if (really_read_only) { 5427 ext4_msg(sb, KERN_ERR, "write access " 5428 "unavailable, cannot proceed " 5429 "(try mounting with noload)"); 5430 err = -EROFS; 5431 goto err_out; 5432 } 5433 ext4_msg(sb, KERN_INFO, "write access will " 5434 "be enabled during recovery"); 5435 } 5436 } 5437 5438 if (!(journal->j_flags & JBD2_BARRIER)) 5439 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5440 5441 if (!ext4_has_feature_journal_needs_recovery(sb)) 5442 err = jbd2_journal_wipe(journal, !really_read_only); 5443 if (!err) { 5444 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5445 if (save) 5446 memcpy(save, ((char *) es) + 5447 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5448 err = jbd2_journal_load(journal); 5449 if (save) 5450 memcpy(((char *) es) + EXT4_S_ERR_START, 5451 save, EXT4_S_ERR_LEN); 5452 kfree(save); 5453 } 5454 5455 if (err) { 5456 ext4_msg(sb, KERN_ERR, "error loading journal"); 5457 goto err_out; 5458 } 5459 5460 EXT4_SB(sb)->s_journal = journal; 5461 err = ext4_clear_journal_err(sb, es); 5462 if (err) { 5463 EXT4_SB(sb)->s_journal = NULL; 5464 jbd2_journal_destroy(journal); 5465 return err; 5466 } 5467 5468 if (!really_read_only && journal_devnum && 5469 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5470 es->s_journal_dev = cpu_to_le32(journal_devnum); 5471 5472 /* Make sure we flush the recovery flag to disk. */ 5473 ext4_commit_super(sb); 5474 } 5475 5476 return 0; 5477 5478 err_out: 5479 jbd2_journal_destroy(journal); 5480 return err; 5481 } 5482 5483 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5484 static void ext4_update_super(struct super_block *sb) 5485 { 5486 struct ext4_sb_info *sbi = EXT4_SB(sb); 5487 struct ext4_super_block *es = sbi->s_es; 5488 struct buffer_head *sbh = sbi->s_sbh; 5489 5490 lock_buffer(sbh); 5491 /* 5492 * If the file system is mounted read-only, don't update the 5493 * superblock write time. This avoids updating the superblock 5494 * write time when we are mounting the root file system 5495 * read/only but we need to replay the journal; at that point, 5496 * for people who are east of GMT and who make their clock 5497 * tick in localtime for Windows bug-for-bug compatibility, 5498 * the clock is set in the future, and this will cause e2fsck 5499 * to complain and force a full file system check. 5500 */ 5501 if (!(sb->s_flags & SB_RDONLY)) 5502 ext4_update_tstamp(es, s_wtime); 5503 es->s_kbytes_written = 5504 cpu_to_le64(sbi->s_kbytes_written + 5505 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5506 sbi->s_sectors_written_start) >> 1)); 5507 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5508 ext4_free_blocks_count_set(es, 5509 EXT4_C2B(sbi, percpu_counter_sum_positive( 5510 &sbi->s_freeclusters_counter))); 5511 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5512 es->s_free_inodes_count = 5513 cpu_to_le32(percpu_counter_sum_positive( 5514 &sbi->s_freeinodes_counter)); 5515 /* Copy error information to the on-disk superblock */ 5516 spin_lock(&sbi->s_error_lock); 5517 if (sbi->s_add_error_count > 0) { 5518 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5519 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5520 __ext4_update_tstamp(&es->s_first_error_time, 5521 &es->s_first_error_time_hi, 5522 sbi->s_first_error_time); 5523 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5524 sizeof(es->s_first_error_func)); 5525 es->s_first_error_line = 5526 cpu_to_le32(sbi->s_first_error_line); 5527 es->s_first_error_ino = 5528 cpu_to_le32(sbi->s_first_error_ino); 5529 es->s_first_error_block = 5530 cpu_to_le64(sbi->s_first_error_block); 5531 es->s_first_error_errcode = 5532 ext4_errno_to_code(sbi->s_first_error_code); 5533 } 5534 __ext4_update_tstamp(&es->s_last_error_time, 5535 &es->s_last_error_time_hi, 5536 sbi->s_last_error_time); 5537 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5538 sizeof(es->s_last_error_func)); 5539 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5540 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5541 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5542 es->s_last_error_errcode = 5543 ext4_errno_to_code(sbi->s_last_error_code); 5544 /* 5545 * Start the daily error reporting function if it hasn't been 5546 * started already 5547 */ 5548 if (!es->s_error_count) 5549 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5550 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5551 sbi->s_add_error_count = 0; 5552 } 5553 spin_unlock(&sbi->s_error_lock); 5554 5555 ext4_superblock_csum_set(sb); 5556 unlock_buffer(sbh); 5557 } 5558 5559 static int ext4_commit_super(struct super_block *sb) 5560 { 5561 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5562 int error = 0; 5563 5564 if (!sbh || block_device_ejected(sb)) 5565 return error; 5566 5567 ext4_update_super(sb); 5568 5569 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5570 /* 5571 * Oh, dear. A previous attempt to write the 5572 * superblock failed. This could happen because the 5573 * USB device was yanked out. Or it could happen to 5574 * be a transient write error and maybe the block will 5575 * be remapped. Nothing we can do but to retry the 5576 * write and hope for the best. 5577 */ 5578 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5579 "superblock detected"); 5580 clear_buffer_write_io_error(sbh); 5581 set_buffer_uptodate(sbh); 5582 } 5583 BUFFER_TRACE(sbh, "marking dirty"); 5584 mark_buffer_dirty(sbh); 5585 error = __sync_dirty_buffer(sbh, 5586 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5587 if (buffer_write_io_error(sbh)) { 5588 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5589 "superblock"); 5590 clear_buffer_write_io_error(sbh); 5591 set_buffer_uptodate(sbh); 5592 } 5593 return error; 5594 } 5595 5596 /* 5597 * Have we just finished recovery? If so, and if we are mounting (or 5598 * remounting) the filesystem readonly, then we will end up with a 5599 * consistent fs on disk. Record that fact. 5600 */ 5601 static int ext4_mark_recovery_complete(struct super_block *sb, 5602 struct ext4_super_block *es) 5603 { 5604 int err; 5605 journal_t *journal = EXT4_SB(sb)->s_journal; 5606 5607 if (!ext4_has_feature_journal(sb)) { 5608 if (journal != NULL) { 5609 ext4_error(sb, "Journal got removed while the fs was " 5610 "mounted!"); 5611 return -EFSCORRUPTED; 5612 } 5613 return 0; 5614 } 5615 jbd2_journal_lock_updates(journal); 5616 err = jbd2_journal_flush(journal); 5617 if (err < 0) 5618 goto out; 5619 5620 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5621 ext4_clear_feature_journal_needs_recovery(sb); 5622 ext4_commit_super(sb); 5623 } 5624 out: 5625 jbd2_journal_unlock_updates(journal); 5626 return err; 5627 } 5628 5629 /* 5630 * If we are mounting (or read-write remounting) a filesystem whose journal 5631 * has recorded an error from a previous lifetime, move that error to the 5632 * main filesystem now. 5633 */ 5634 static int ext4_clear_journal_err(struct super_block *sb, 5635 struct ext4_super_block *es) 5636 { 5637 journal_t *journal; 5638 int j_errno; 5639 const char *errstr; 5640 5641 if (!ext4_has_feature_journal(sb)) { 5642 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5643 return -EFSCORRUPTED; 5644 } 5645 5646 journal = EXT4_SB(sb)->s_journal; 5647 5648 /* 5649 * Now check for any error status which may have been recorded in the 5650 * journal by a prior ext4_error() or ext4_abort() 5651 */ 5652 5653 j_errno = jbd2_journal_errno(journal); 5654 if (j_errno) { 5655 char nbuf[16]; 5656 5657 errstr = ext4_decode_error(sb, j_errno, nbuf); 5658 ext4_warning(sb, "Filesystem error recorded " 5659 "from previous mount: %s", errstr); 5660 ext4_warning(sb, "Marking fs in need of filesystem check."); 5661 5662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5663 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5664 ext4_commit_super(sb); 5665 5666 jbd2_journal_clear_err(journal); 5667 jbd2_journal_update_sb_errno(journal); 5668 } 5669 return 0; 5670 } 5671 5672 /* 5673 * Force the running and committing transactions to commit, 5674 * and wait on the commit. 5675 */ 5676 int ext4_force_commit(struct super_block *sb) 5677 { 5678 journal_t *journal; 5679 5680 if (sb_rdonly(sb)) 5681 return 0; 5682 5683 journal = EXT4_SB(sb)->s_journal; 5684 return ext4_journal_force_commit(journal); 5685 } 5686 5687 static int ext4_sync_fs(struct super_block *sb, int wait) 5688 { 5689 int ret = 0; 5690 tid_t target; 5691 bool needs_barrier = false; 5692 struct ext4_sb_info *sbi = EXT4_SB(sb); 5693 5694 if (unlikely(ext4_forced_shutdown(sbi))) 5695 return 0; 5696 5697 trace_ext4_sync_fs(sb, wait); 5698 flush_workqueue(sbi->rsv_conversion_wq); 5699 /* 5700 * Writeback quota in non-journalled quota case - journalled quota has 5701 * no dirty dquots 5702 */ 5703 dquot_writeback_dquots(sb, -1); 5704 /* 5705 * Data writeback is possible w/o journal transaction, so barrier must 5706 * being sent at the end of the function. But we can skip it if 5707 * transaction_commit will do it for us. 5708 */ 5709 if (sbi->s_journal) { 5710 target = jbd2_get_latest_transaction(sbi->s_journal); 5711 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5712 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5713 needs_barrier = true; 5714 5715 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5716 if (wait) 5717 ret = jbd2_log_wait_commit(sbi->s_journal, 5718 target); 5719 } 5720 } else if (wait && test_opt(sb, BARRIER)) 5721 needs_barrier = true; 5722 if (needs_barrier) { 5723 int err; 5724 err = blkdev_issue_flush(sb->s_bdev); 5725 if (!ret) 5726 ret = err; 5727 } 5728 5729 return ret; 5730 } 5731 5732 /* 5733 * LVM calls this function before a (read-only) snapshot is created. This 5734 * gives us a chance to flush the journal completely and mark the fs clean. 5735 * 5736 * Note that only this function cannot bring a filesystem to be in a clean 5737 * state independently. It relies on upper layer to stop all data & metadata 5738 * modifications. 5739 */ 5740 static int ext4_freeze(struct super_block *sb) 5741 { 5742 int error = 0; 5743 journal_t *journal; 5744 5745 if (sb_rdonly(sb)) 5746 return 0; 5747 5748 journal = EXT4_SB(sb)->s_journal; 5749 5750 if (journal) { 5751 /* Now we set up the journal barrier. */ 5752 jbd2_journal_lock_updates(journal); 5753 5754 /* 5755 * Don't clear the needs_recovery flag if we failed to 5756 * flush the journal. 5757 */ 5758 error = jbd2_journal_flush(journal); 5759 if (error < 0) 5760 goto out; 5761 5762 /* Journal blocked and flushed, clear needs_recovery flag. */ 5763 ext4_clear_feature_journal_needs_recovery(sb); 5764 } 5765 5766 error = ext4_commit_super(sb); 5767 out: 5768 if (journal) 5769 /* we rely on upper layer to stop further updates */ 5770 jbd2_journal_unlock_updates(journal); 5771 return error; 5772 } 5773 5774 /* 5775 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5776 * flag here, even though the filesystem is not technically dirty yet. 5777 */ 5778 static int ext4_unfreeze(struct super_block *sb) 5779 { 5780 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5781 return 0; 5782 5783 if (EXT4_SB(sb)->s_journal) { 5784 /* Reset the needs_recovery flag before the fs is unlocked. */ 5785 ext4_set_feature_journal_needs_recovery(sb); 5786 } 5787 5788 ext4_commit_super(sb); 5789 return 0; 5790 } 5791 5792 /* 5793 * Structure to save mount options for ext4_remount's benefit 5794 */ 5795 struct ext4_mount_options { 5796 unsigned long s_mount_opt; 5797 unsigned long s_mount_opt2; 5798 kuid_t s_resuid; 5799 kgid_t s_resgid; 5800 unsigned long s_commit_interval; 5801 u32 s_min_batch_time, s_max_batch_time; 5802 #ifdef CONFIG_QUOTA 5803 int s_jquota_fmt; 5804 char *s_qf_names[EXT4_MAXQUOTAS]; 5805 #endif 5806 }; 5807 5808 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5809 { 5810 struct ext4_super_block *es; 5811 struct ext4_sb_info *sbi = EXT4_SB(sb); 5812 unsigned long old_sb_flags, vfs_flags; 5813 struct ext4_mount_options old_opts; 5814 int enable_quota = 0; 5815 ext4_group_t g; 5816 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5817 int err = 0; 5818 #ifdef CONFIG_QUOTA 5819 int i, j; 5820 char *to_free[EXT4_MAXQUOTAS]; 5821 #endif 5822 char *orig_data = kstrdup(data, GFP_KERNEL); 5823 5824 if (data && !orig_data) 5825 return -ENOMEM; 5826 5827 /* Store the original options */ 5828 old_sb_flags = sb->s_flags; 5829 old_opts.s_mount_opt = sbi->s_mount_opt; 5830 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5831 old_opts.s_resuid = sbi->s_resuid; 5832 old_opts.s_resgid = sbi->s_resgid; 5833 old_opts.s_commit_interval = sbi->s_commit_interval; 5834 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5835 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5836 #ifdef CONFIG_QUOTA 5837 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5838 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5839 if (sbi->s_qf_names[i]) { 5840 char *qf_name = get_qf_name(sb, sbi, i); 5841 5842 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5843 if (!old_opts.s_qf_names[i]) { 5844 for (j = 0; j < i; j++) 5845 kfree(old_opts.s_qf_names[j]); 5846 kfree(orig_data); 5847 return -ENOMEM; 5848 } 5849 } else 5850 old_opts.s_qf_names[i] = NULL; 5851 #endif 5852 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5853 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5854 5855 /* 5856 * Some options can be enabled by ext4 and/or by VFS mount flag 5857 * either way we need to make sure it matches in both *flags and 5858 * s_flags. Copy those selected flags from *flags to s_flags 5859 */ 5860 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5861 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5862 5863 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5864 err = -EINVAL; 5865 goto restore_opts; 5866 } 5867 5868 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5869 test_opt(sb, JOURNAL_CHECKSUM)) { 5870 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5871 "during remount not supported; ignoring"); 5872 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5873 } 5874 5875 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5876 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5877 ext4_msg(sb, KERN_ERR, "can't mount with " 5878 "both data=journal and delalloc"); 5879 err = -EINVAL; 5880 goto restore_opts; 5881 } 5882 if (test_opt(sb, DIOREAD_NOLOCK)) { 5883 ext4_msg(sb, KERN_ERR, "can't mount with " 5884 "both data=journal and dioread_nolock"); 5885 err = -EINVAL; 5886 goto restore_opts; 5887 } 5888 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5889 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5890 ext4_msg(sb, KERN_ERR, "can't mount with " 5891 "journal_async_commit in data=ordered mode"); 5892 err = -EINVAL; 5893 goto restore_opts; 5894 } 5895 } 5896 5897 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5898 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5899 err = -EINVAL; 5900 goto restore_opts; 5901 } 5902 5903 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5904 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5905 5906 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5907 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5908 5909 es = sbi->s_es; 5910 5911 if (sbi->s_journal) { 5912 ext4_init_journal_params(sb, sbi->s_journal); 5913 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5914 } 5915 5916 /* Flush outstanding errors before changing fs state */ 5917 flush_work(&sbi->s_error_work); 5918 5919 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5920 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5921 err = -EROFS; 5922 goto restore_opts; 5923 } 5924 5925 if (*flags & SB_RDONLY) { 5926 err = sync_filesystem(sb); 5927 if (err < 0) 5928 goto restore_opts; 5929 err = dquot_suspend(sb, -1); 5930 if (err < 0) 5931 goto restore_opts; 5932 5933 /* 5934 * First of all, the unconditional stuff we have to do 5935 * to disable replay of the journal when we next remount 5936 */ 5937 sb->s_flags |= SB_RDONLY; 5938 5939 /* 5940 * OK, test if we are remounting a valid rw partition 5941 * readonly, and if so set the rdonly flag and then 5942 * mark the partition as valid again. 5943 */ 5944 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5945 (sbi->s_mount_state & EXT4_VALID_FS)) 5946 es->s_state = cpu_to_le16(sbi->s_mount_state); 5947 5948 if (sbi->s_journal) { 5949 /* 5950 * We let remount-ro finish even if marking fs 5951 * as clean failed... 5952 */ 5953 ext4_mark_recovery_complete(sb, es); 5954 } 5955 if (sbi->s_mmp_tsk) 5956 kthread_stop(sbi->s_mmp_tsk); 5957 } else { 5958 /* Make sure we can mount this feature set readwrite */ 5959 if (ext4_has_feature_readonly(sb) || 5960 !ext4_feature_set_ok(sb, 0)) { 5961 err = -EROFS; 5962 goto restore_opts; 5963 } 5964 /* 5965 * Make sure the group descriptor checksums 5966 * are sane. If they aren't, refuse to remount r/w. 5967 */ 5968 for (g = 0; g < sbi->s_groups_count; g++) { 5969 struct ext4_group_desc *gdp = 5970 ext4_get_group_desc(sb, g, NULL); 5971 5972 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5973 ext4_msg(sb, KERN_ERR, 5974 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5975 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5976 le16_to_cpu(gdp->bg_checksum)); 5977 err = -EFSBADCRC; 5978 goto restore_opts; 5979 } 5980 } 5981 5982 /* 5983 * If we have an unprocessed orphan list hanging 5984 * around from a previously readonly bdev mount, 5985 * require a full umount/remount for now. 5986 */ 5987 if (es->s_last_orphan) { 5988 ext4_msg(sb, KERN_WARNING, "Couldn't " 5989 "remount RDWR because of unprocessed " 5990 "orphan inode list. Please " 5991 "umount/remount instead"); 5992 err = -EINVAL; 5993 goto restore_opts; 5994 } 5995 5996 /* 5997 * Mounting a RDONLY partition read-write, so reread 5998 * and store the current valid flag. (It may have 5999 * been changed by e2fsck since we originally mounted 6000 * the partition.) 6001 */ 6002 if (sbi->s_journal) { 6003 err = ext4_clear_journal_err(sb, es); 6004 if (err) 6005 goto restore_opts; 6006 } 6007 sbi->s_mount_state = le16_to_cpu(es->s_state); 6008 6009 err = ext4_setup_super(sb, es, 0); 6010 if (err) 6011 goto restore_opts; 6012 6013 sb->s_flags &= ~SB_RDONLY; 6014 if (ext4_has_feature_mmp(sb)) 6015 if (ext4_multi_mount_protect(sb, 6016 le64_to_cpu(es->s_mmp_block))) { 6017 err = -EROFS; 6018 goto restore_opts; 6019 } 6020 enable_quota = 1; 6021 } 6022 } 6023 6024 /* 6025 * Reinitialize lazy itable initialization thread based on 6026 * current settings 6027 */ 6028 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6029 ext4_unregister_li_request(sb); 6030 else { 6031 ext4_group_t first_not_zeroed; 6032 first_not_zeroed = ext4_has_uninit_itable(sb); 6033 ext4_register_li_request(sb, first_not_zeroed); 6034 } 6035 6036 /* 6037 * Handle creation of system zone data early because it can fail. 6038 * Releasing of existing data is done when we are sure remount will 6039 * succeed. 6040 */ 6041 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6042 err = ext4_setup_system_zone(sb); 6043 if (err) 6044 goto restore_opts; 6045 } 6046 6047 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6048 err = ext4_commit_super(sb); 6049 if (err) 6050 goto restore_opts; 6051 } 6052 6053 #ifdef CONFIG_QUOTA 6054 /* Release old quota file names */ 6055 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6056 kfree(old_opts.s_qf_names[i]); 6057 if (enable_quota) { 6058 if (sb_any_quota_suspended(sb)) 6059 dquot_resume(sb, -1); 6060 else if (ext4_has_feature_quota(sb)) { 6061 err = ext4_enable_quotas(sb); 6062 if (err) 6063 goto restore_opts; 6064 } 6065 } 6066 #endif 6067 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6068 ext4_release_system_zone(sb); 6069 6070 /* 6071 * Some options can be enabled by ext4 and/or by VFS mount flag 6072 * either way we need to make sure it matches in both *flags and 6073 * s_flags. Copy those selected flags from s_flags to *flags 6074 */ 6075 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 6076 6077 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 6078 orig_data, ext4_quota_mode(sb)); 6079 kfree(orig_data); 6080 return 0; 6081 6082 restore_opts: 6083 sb->s_flags = old_sb_flags; 6084 sbi->s_mount_opt = old_opts.s_mount_opt; 6085 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6086 sbi->s_resuid = old_opts.s_resuid; 6087 sbi->s_resgid = old_opts.s_resgid; 6088 sbi->s_commit_interval = old_opts.s_commit_interval; 6089 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6090 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6091 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6092 ext4_release_system_zone(sb); 6093 #ifdef CONFIG_QUOTA 6094 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6095 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6096 to_free[i] = get_qf_name(sb, sbi, i); 6097 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6098 } 6099 synchronize_rcu(); 6100 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6101 kfree(to_free[i]); 6102 #endif 6103 kfree(orig_data); 6104 return err; 6105 } 6106 6107 #ifdef CONFIG_QUOTA 6108 static int ext4_statfs_project(struct super_block *sb, 6109 kprojid_t projid, struct kstatfs *buf) 6110 { 6111 struct kqid qid; 6112 struct dquot *dquot; 6113 u64 limit; 6114 u64 curblock; 6115 6116 qid = make_kqid_projid(projid); 6117 dquot = dqget(sb, qid); 6118 if (IS_ERR(dquot)) 6119 return PTR_ERR(dquot); 6120 spin_lock(&dquot->dq_dqb_lock); 6121 6122 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6123 dquot->dq_dqb.dqb_bhardlimit); 6124 limit >>= sb->s_blocksize_bits; 6125 6126 if (limit && buf->f_blocks > limit) { 6127 curblock = (dquot->dq_dqb.dqb_curspace + 6128 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6129 buf->f_blocks = limit; 6130 buf->f_bfree = buf->f_bavail = 6131 (buf->f_blocks > curblock) ? 6132 (buf->f_blocks - curblock) : 0; 6133 } 6134 6135 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6136 dquot->dq_dqb.dqb_ihardlimit); 6137 if (limit && buf->f_files > limit) { 6138 buf->f_files = limit; 6139 buf->f_ffree = 6140 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6141 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6142 } 6143 6144 spin_unlock(&dquot->dq_dqb_lock); 6145 dqput(dquot); 6146 return 0; 6147 } 6148 #endif 6149 6150 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6151 { 6152 struct super_block *sb = dentry->d_sb; 6153 struct ext4_sb_info *sbi = EXT4_SB(sb); 6154 struct ext4_super_block *es = sbi->s_es; 6155 ext4_fsblk_t overhead = 0, resv_blocks; 6156 u64 fsid; 6157 s64 bfree; 6158 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6159 6160 if (!test_opt(sb, MINIX_DF)) 6161 overhead = sbi->s_overhead; 6162 6163 buf->f_type = EXT4_SUPER_MAGIC; 6164 buf->f_bsize = sb->s_blocksize; 6165 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6166 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6167 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6168 /* prevent underflow in case that few free space is available */ 6169 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6170 buf->f_bavail = buf->f_bfree - 6171 (ext4_r_blocks_count(es) + resv_blocks); 6172 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6173 buf->f_bavail = 0; 6174 buf->f_files = le32_to_cpu(es->s_inodes_count); 6175 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6176 buf->f_namelen = EXT4_NAME_LEN; 6177 fsid = le64_to_cpup((void *)es->s_uuid) ^ 6178 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 6179 buf->f_fsid = u64_to_fsid(fsid); 6180 6181 #ifdef CONFIG_QUOTA 6182 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6183 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6184 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6185 #endif 6186 return 0; 6187 } 6188 6189 6190 #ifdef CONFIG_QUOTA 6191 6192 /* 6193 * Helper functions so that transaction is started before we acquire dqio_sem 6194 * to keep correct lock ordering of transaction > dqio_sem 6195 */ 6196 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6197 { 6198 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6199 } 6200 6201 static int ext4_write_dquot(struct dquot *dquot) 6202 { 6203 int ret, err; 6204 handle_t *handle; 6205 struct inode *inode; 6206 6207 inode = dquot_to_inode(dquot); 6208 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6209 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6210 if (IS_ERR(handle)) 6211 return PTR_ERR(handle); 6212 ret = dquot_commit(dquot); 6213 err = ext4_journal_stop(handle); 6214 if (!ret) 6215 ret = err; 6216 return ret; 6217 } 6218 6219 static int ext4_acquire_dquot(struct dquot *dquot) 6220 { 6221 int ret, err; 6222 handle_t *handle; 6223 6224 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6225 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6226 if (IS_ERR(handle)) 6227 return PTR_ERR(handle); 6228 ret = dquot_acquire(dquot); 6229 err = ext4_journal_stop(handle); 6230 if (!ret) 6231 ret = err; 6232 return ret; 6233 } 6234 6235 static int ext4_release_dquot(struct dquot *dquot) 6236 { 6237 int ret, err; 6238 handle_t *handle; 6239 6240 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6241 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6242 if (IS_ERR(handle)) { 6243 /* Release dquot anyway to avoid endless cycle in dqput() */ 6244 dquot_release(dquot); 6245 return PTR_ERR(handle); 6246 } 6247 ret = dquot_release(dquot); 6248 err = ext4_journal_stop(handle); 6249 if (!ret) 6250 ret = err; 6251 return ret; 6252 } 6253 6254 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6255 { 6256 struct super_block *sb = dquot->dq_sb; 6257 6258 if (ext4_is_quota_journalled(sb)) { 6259 dquot_mark_dquot_dirty(dquot); 6260 return ext4_write_dquot(dquot); 6261 } else { 6262 return dquot_mark_dquot_dirty(dquot); 6263 } 6264 } 6265 6266 static int ext4_write_info(struct super_block *sb, int type) 6267 { 6268 int ret, err; 6269 handle_t *handle; 6270 6271 /* Data block + inode block */ 6272 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6273 if (IS_ERR(handle)) 6274 return PTR_ERR(handle); 6275 ret = dquot_commit_info(sb, type); 6276 err = ext4_journal_stop(handle); 6277 if (!ret) 6278 ret = err; 6279 return ret; 6280 } 6281 6282 /* 6283 * Turn on quotas during mount time - we need to find 6284 * the quota file and such... 6285 */ 6286 static int ext4_quota_on_mount(struct super_block *sb, int type) 6287 { 6288 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 6289 EXT4_SB(sb)->s_jquota_fmt, type); 6290 } 6291 6292 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6293 { 6294 struct ext4_inode_info *ei = EXT4_I(inode); 6295 6296 /* The first argument of lockdep_set_subclass has to be 6297 * *exactly* the same as the argument to init_rwsem() --- in 6298 * this case, in init_once() --- or lockdep gets unhappy 6299 * because the name of the lock is set using the 6300 * stringification of the argument to init_rwsem(). 6301 */ 6302 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6303 lockdep_set_subclass(&ei->i_data_sem, subclass); 6304 } 6305 6306 /* 6307 * Standard function to be called on quota_on 6308 */ 6309 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6310 const struct path *path) 6311 { 6312 int err; 6313 6314 if (!test_opt(sb, QUOTA)) 6315 return -EINVAL; 6316 6317 /* Quotafile not on the same filesystem? */ 6318 if (path->dentry->d_sb != sb) 6319 return -EXDEV; 6320 6321 /* Quota already enabled for this file? */ 6322 if (IS_NOQUOTA(d_inode(path->dentry))) 6323 return -EBUSY; 6324 6325 /* Journaling quota? */ 6326 if (EXT4_SB(sb)->s_qf_names[type]) { 6327 /* Quotafile not in fs root? */ 6328 if (path->dentry->d_parent != sb->s_root) 6329 ext4_msg(sb, KERN_WARNING, 6330 "Quota file not on filesystem root. " 6331 "Journaled quota will not work"); 6332 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6333 } else { 6334 /* 6335 * Clear the flag just in case mount options changed since 6336 * last time. 6337 */ 6338 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6339 } 6340 6341 /* 6342 * When we journal data on quota file, we have to flush journal to see 6343 * all updates to the file when we bypass pagecache... 6344 */ 6345 if (EXT4_SB(sb)->s_journal && 6346 ext4_should_journal_data(d_inode(path->dentry))) { 6347 /* 6348 * We don't need to lock updates but journal_flush() could 6349 * otherwise be livelocked... 6350 */ 6351 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6352 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 6353 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6354 if (err) 6355 return err; 6356 } 6357 6358 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6359 err = dquot_quota_on(sb, type, format_id, path); 6360 if (err) { 6361 lockdep_set_quota_inode(path->dentry->d_inode, 6362 I_DATA_SEM_NORMAL); 6363 } else { 6364 struct inode *inode = d_inode(path->dentry); 6365 handle_t *handle; 6366 6367 /* 6368 * Set inode flags to prevent userspace from messing with quota 6369 * files. If this fails, we return success anyway since quotas 6370 * are already enabled and this is not a hard failure. 6371 */ 6372 inode_lock(inode); 6373 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6374 if (IS_ERR(handle)) 6375 goto unlock_inode; 6376 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6377 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6378 S_NOATIME | S_IMMUTABLE); 6379 err = ext4_mark_inode_dirty(handle, inode); 6380 ext4_journal_stop(handle); 6381 unlock_inode: 6382 inode_unlock(inode); 6383 } 6384 return err; 6385 } 6386 6387 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6388 unsigned int flags) 6389 { 6390 int err; 6391 struct inode *qf_inode; 6392 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6393 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6394 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6395 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6396 }; 6397 6398 BUG_ON(!ext4_has_feature_quota(sb)); 6399 6400 if (!qf_inums[type]) 6401 return -EPERM; 6402 6403 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6404 if (IS_ERR(qf_inode)) { 6405 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6406 return PTR_ERR(qf_inode); 6407 } 6408 6409 /* Don't account quota for quota files to avoid recursion */ 6410 qf_inode->i_flags |= S_NOQUOTA; 6411 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6412 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6413 if (err) 6414 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6415 iput(qf_inode); 6416 6417 return err; 6418 } 6419 6420 /* Enable usage tracking for all quota types. */ 6421 static int ext4_enable_quotas(struct super_block *sb) 6422 { 6423 int type, err = 0; 6424 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6425 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6426 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6427 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6428 }; 6429 bool quota_mopt[EXT4_MAXQUOTAS] = { 6430 test_opt(sb, USRQUOTA), 6431 test_opt(sb, GRPQUOTA), 6432 test_opt(sb, PRJQUOTA), 6433 }; 6434 6435 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6436 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6437 if (qf_inums[type]) { 6438 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6439 DQUOT_USAGE_ENABLED | 6440 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6441 if (err) { 6442 ext4_warning(sb, 6443 "Failed to enable quota tracking " 6444 "(type=%d, err=%d). Please run " 6445 "e2fsck to fix.", type, err); 6446 for (type--; type >= 0; type--) 6447 dquot_quota_off(sb, type); 6448 6449 return err; 6450 } 6451 } 6452 } 6453 return 0; 6454 } 6455 6456 static int ext4_quota_off(struct super_block *sb, int type) 6457 { 6458 struct inode *inode = sb_dqopt(sb)->files[type]; 6459 handle_t *handle; 6460 int err; 6461 6462 /* Force all delayed allocation blocks to be allocated. 6463 * Caller already holds s_umount sem */ 6464 if (test_opt(sb, DELALLOC)) 6465 sync_filesystem(sb); 6466 6467 if (!inode || !igrab(inode)) 6468 goto out; 6469 6470 err = dquot_quota_off(sb, type); 6471 if (err || ext4_has_feature_quota(sb)) 6472 goto out_put; 6473 6474 inode_lock(inode); 6475 /* 6476 * Update modification times of quota files when userspace can 6477 * start looking at them. If we fail, we return success anyway since 6478 * this is not a hard failure and quotas are already disabled. 6479 */ 6480 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6481 if (IS_ERR(handle)) { 6482 err = PTR_ERR(handle); 6483 goto out_unlock; 6484 } 6485 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6486 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6487 inode->i_mtime = inode->i_ctime = current_time(inode); 6488 err = ext4_mark_inode_dirty(handle, inode); 6489 ext4_journal_stop(handle); 6490 out_unlock: 6491 inode_unlock(inode); 6492 out_put: 6493 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6494 iput(inode); 6495 return err; 6496 out: 6497 return dquot_quota_off(sb, type); 6498 } 6499 6500 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6501 * acquiring the locks... As quota files are never truncated and quota code 6502 * itself serializes the operations (and no one else should touch the files) 6503 * we don't have to be afraid of races */ 6504 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6505 size_t len, loff_t off) 6506 { 6507 struct inode *inode = sb_dqopt(sb)->files[type]; 6508 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6509 int offset = off & (sb->s_blocksize - 1); 6510 int tocopy; 6511 size_t toread; 6512 struct buffer_head *bh; 6513 loff_t i_size = i_size_read(inode); 6514 6515 if (off > i_size) 6516 return 0; 6517 if (off+len > i_size) 6518 len = i_size-off; 6519 toread = len; 6520 while (toread > 0) { 6521 tocopy = sb->s_blocksize - offset < toread ? 6522 sb->s_blocksize - offset : toread; 6523 bh = ext4_bread(NULL, inode, blk, 0); 6524 if (IS_ERR(bh)) 6525 return PTR_ERR(bh); 6526 if (!bh) /* A hole? */ 6527 memset(data, 0, tocopy); 6528 else 6529 memcpy(data, bh->b_data+offset, tocopy); 6530 brelse(bh); 6531 offset = 0; 6532 toread -= tocopy; 6533 data += tocopy; 6534 blk++; 6535 } 6536 return len; 6537 } 6538 6539 /* Write to quotafile (we know the transaction is already started and has 6540 * enough credits) */ 6541 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6542 const char *data, size_t len, loff_t off) 6543 { 6544 struct inode *inode = sb_dqopt(sb)->files[type]; 6545 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6546 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6547 int retries = 0; 6548 struct buffer_head *bh; 6549 handle_t *handle = journal_current_handle(); 6550 6551 if (EXT4_SB(sb)->s_journal && !handle) { 6552 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6553 " cancelled because transaction is not started", 6554 (unsigned long long)off, (unsigned long long)len); 6555 return -EIO; 6556 } 6557 /* 6558 * Since we account only one data block in transaction credits, 6559 * then it is impossible to cross a block boundary. 6560 */ 6561 if (sb->s_blocksize - offset < len) { 6562 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6563 " cancelled because not block aligned", 6564 (unsigned long long)off, (unsigned long long)len); 6565 return -EIO; 6566 } 6567 6568 do { 6569 bh = ext4_bread(handle, inode, blk, 6570 EXT4_GET_BLOCKS_CREATE | 6571 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6572 } while (PTR_ERR(bh) == -ENOSPC && 6573 ext4_should_retry_alloc(inode->i_sb, &retries)); 6574 if (IS_ERR(bh)) 6575 return PTR_ERR(bh); 6576 if (!bh) 6577 goto out; 6578 BUFFER_TRACE(bh, "get write access"); 6579 err = ext4_journal_get_write_access(handle, bh); 6580 if (err) { 6581 brelse(bh); 6582 return err; 6583 } 6584 lock_buffer(bh); 6585 memcpy(bh->b_data+offset, data, len); 6586 flush_dcache_page(bh->b_page); 6587 unlock_buffer(bh); 6588 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6589 brelse(bh); 6590 out: 6591 if (inode->i_size < off + len) { 6592 i_size_write(inode, off + len); 6593 EXT4_I(inode)->i_disksize = inode->i_size; 6594 err2 = ext4_mark_inode_dirty(handle, inode); 6595 if (unlikely(err2 && !err)) 6596 err = err2; 6597 } 6598 return err ? err : len; 6599 } 6600 #endif 6601 6602 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6603 const char *dev_name, void *data) 6604 { 6605 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6606 } 6607 6608 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6609 static inline void register_as_ext2(void) 6610 { 6611 int err = register_filesystem(&ext2_fs_type); 6612 if (err) 6613 printk(KERN_WARNING 6614 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6615 } 6616 6617 static inline void unregister_as_ext2(void) 6618 { 6619 unregister_filesystem(&ext2_fs_type); 6620 } 6621 6622 static inline int ext2_feature_set_ok(struct super_block *sb) 6623 { 6624 if (ext4_has_unknown_ext2_incompat_features(sb)) 6625 return 0; 6626 if (sb_rdonly(sb)) 6627 return 1; 6628 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6629 return 0; 6630 return 1; 6631 } 6632 #else 6633 static inline void register_as_ext2(void) { } 6634 static inline void unregister_as_ext2(void) { } 6635 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6636 #endif 6637 6638 static inline void register_as_ext3(void) 6639 { 6640 int err = register_filesystem(&ext3_fs_type); 6641 if (err) 6642 printk(KERN_WARNING 6643 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6644 } 6645 6646 static inline void unregister_as_ext3(void) 6647 { 6648 unregister_filesystem(&ext3_fs_type); 6649 } 6650 6651 static inline int ext3_feature_set_ok(struct super_block *sb) 6652 { 6653 if (ext4_has_unknown_ext3_incompat_features(sb)) 6654 return 0; 6655 if (!ext4_has_feature_journal(sb)) 6656 return 0; 6657 if (sb_rdonly(sb)) 6658 return 1; 6659 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6660 return 0; 6661 return 1; 6662 } 6663 6664 static struct file_system_type ext4_fs_type = { 6665 .owner = THIS_MODULE, 6666 .name = "ext4", 6667 .mount = ext4_mount, 6668 .kill_sb = kill_block_super, 6669 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6670 }; 6671 MODULE_ALIAS_FS("ext4"); 6672 6673 /* Shared across all ext4 file systems */ 6674 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6675 6676 static int __init ext4_init_fs(void) 6677 { 6678 int i, err; 6679 6680 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6681 ext4_li_info = NULL; 6682 6683 /* Build-time check for flags consistency */ 6684 ext4_check_flag_values(); 6685 6686 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6687 init_waitqueue_head(&ext4__ioend_wq[i]); 6688 6689 err = ext4_init_es(); 6690 if (err) 6691 return err; 6692 6693 err = ext4_init_pending(); 6694 if (err) 6695 goto out7; 6696 6697 err = ext4_init_post_read_processing(); 6698 if (err) 6699 goto out6; 6700 6701 err = ext4_init_pageio(); 6702 if (err) 6703 goto out5; 6704 6705 err = ext4_init_system_zone(); 6706 if (err) 6707 goto out4; 6708 6709 err = ext4_init_sysfs(); 6710 if (err) 6711 goto out3; 6712 6713 err = ext4_init_mballoc(); 6714 if (err) 6715 goto out2; 6716 err = init_inodecache(); 6717 if (err) 6718 goto out1; 6719 6720 err = ext4_fc_init_dentry_cache(); 6721 if (err) 6722 goto out05; 6723 6724 register_as_ext3(); 6725 register_as_ext2(); 6726 err = register_filesystem(&ext4_fs_type); 6727 if (err) 6728 goto out; 6729 6730 return 0; 6731 out: 6732 unregister_as_ext2(); 6733 unregister_as_ext3(); 6734 out05: 6735 destroy_inodecache(); 6736 out1: 6737 ext4_exit_mballoc(); 6738 out2: 6739 ext4_exit_sysfs(); 6740 out3: 6741 ext4_exit_system_zone(); 6742 out4: 6743 ext4_exit_pageio(); 6744 out5: 6745 ext4_exit_post_read_processing(); 6746 out6: 6747 ext4_exit_pending(); 6748 out7: 6749 ext4_exit_es(); 6750 6751 return err; 6752 } 6753 6754 static void __exit ext4_exit_fs(void) 6755 { 6756 ext4_destroy_lazyinit_thread(); 6757 unregister_as_ext2(); 6758 unregister_as_ext3(); 6759 unregister_filesystem(&ext4_fs_type); 6760 destroy_inodecache(); 6761 ext4_exit_mballoc(); 6762 ext4_exit_sysfs(); 6763 ext4_exit_system_zone(); 6764 ext4_exit_pageio(); 6765 ext4_exit_post_read_processing(); 6766 ext4_exit_es(); 6767 ext4_exit_pending(); 6768 } 6769 6770 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6771 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6772 MODULE_LICENSE("GPL"); 6773 MODULE_SOFTDEP("pre: crc32c"); 6774 module_init(ext4_init_fs) 6775 module_exit(ext4_exit_fs) 6776