xref: /openbmc/linux/fs/ext4/super.c (revision e1181b5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94  * i_mmap_rwsem (inode->i_mmap_rwsem)!
95  *
96  * page fault path:
97  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98  *   page lock -> i_data_sem (rw)
99  *
100  * buffered write path:
101  * sb_start_write -> i_mutex -> mmap_lock
102  * sb_start_write -> i_mutex -> transaction start -> page lock ->
103  *   i_data_sem (rw)
104  *
105  * truncate:
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108  *   i_data_sem (rw)
109  *
110  * direct IO:
111  * sb_start_write -> i_mutex -> mmap_lock
112  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113  *
114  * writepages:
115  * transaction start -> page lock(s) -> i_data_sem (rw)
116  */
117 
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 	.owner		= THIS_MODULE,
121 	.name		= "ext2",
122 	.mount		= ext4_mount,
123 	.kill_sb	= kill_block_super,
124 	.fs_flags	= FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132 
133 
134 static struct file_system_type ext3_fs_type = {
135 	.owner		= THIS_MODULE,
136 	.name		= "ext3",
137 	.mount		= ext4_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 
145 
146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 				  bh_end_io_t *end_io)
148 {
149 	/*
150 	 * buffer's verified bit is no longer valid after reading from
151 	 * disk again due to write out error, clear it to make sure we
152 	 * recheck the buffer contents.
153 	 */
154 	clear_buffer_verified(bh);
155 
156 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 	get_bh(bh);
158 	submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160 
161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 			 bh_end_io_t *end_io)
163 {
164 	BUG_ON(!buffer_locked(bh));
165 
166 	if (ext4_buffer_uptodate(bh)) {
167 		unlock_buffer(bh);
168 		return;
169 	}
170 	__ext4_read_bh(bh, op_flags, end_io);
171 }
172 
173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 	BUG_ON(!buffer_locked(bh));
176 
177 	if (ext4_buffer_uptodate(bh)) {
178 		unlock_buffer(bh);
179 		return 0;
180 	}
181 
182 	__ext4_read_bh(bh, op_flags, end_io);
183 
184 	wait_on_buffer(bh);
185 	if (buffer_uptodate(bh))
186 		return 0;
187 	return -EIO;
188 }
189 
190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 	if (trylock_buffer(bh)) {
193 		if (wait)
194 			return ext4_read_bh(bh, op_flags, NULL);
195 		ext4_read_bh_nowait(bh, op_flags, NULL);
196 		return 0;
197 	}
198 	if (wait) {
199 		wait_on_buffer(bh);
200 		if (buffer_uptodate(bh))
201 			return 0;
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 /*
208  * This works like __bread_gfp() except it uses ERR_PTR for error
209  * returns.  Currently with sb_bread it's impossible to distinguish
210  * between ENOMEM and EIO situations (since both result in a NULL
211  * return.
212  */
213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 					       sector_t block, int op_flags,
215 					       gfp_t gfp)
216 {
217 	struct buffer_head *bh;
218 	int ret;
219 
220 	bh = sb_getblk_gfp(sb, block, gfp);
221 	if (bh == NULL)
222 		return ERR_PTR(-ENOMEM);
223 	if (ext4_buffer_uptodate(bh))
224 		return bh;
225 
226 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
227 	if (ret) {
228 		put_bh(bh);
229 		return ERR_PTR(ret);
230 	}
231 	return bh;
232 }
233 
234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
235 				   int op_flags)
236 {
237 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
238 }
239 
240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
241 					    sector_t block)
242 {
243 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
244 }
245 
246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
247 {
248 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
249 
250 	if (likely(bh)) {
251 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
252 		brelse(bh);
253 	}
254 }
255 
256 static int ext4_verify_csum_type(struct super_block *sb,
257 				 struct ext4_super_block *es)
258 {
259 	if (!ext4_has_feature_metadata_csum(sb))
260 		return 1;
261 
262 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
263 }
264 
265 static __le32 ext4_superblock_csum(struct super_block *sb,
266 				   struct ext4_super_block *es)
267 {
268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
269 	int offset = offsetof(struct ext4_super_block, s_checksum);
270 	__u32 csum;
271 
272 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
273 
274 	return cpu_to_le32(csum);
275 }
276 
277 static int ext4_superblock_csum_verify(struct super_block *sb,
278 				       struct ext4_super_block *es)
279 {
280 	if (!ext4_has_metadata_csum(sb))
281 		return 1;
282 
283 	return es->s_checksum == ext4_superblock_csum(sb, es);
284 }
285 
286 void ext4_superblock_csum_set(struct super_block *sb)
287 {
288 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
289 
290 	if (!ext4_has_metadata_csum(sb))
291 		return;
292 
293 	es->s_checksum = ext4_superblock_csum(sb, es);
294 }
295 
296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 			       struct ext4_group_desc *bg)
298 {
299 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
302 }
303 
304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 			       struct ext4_group_desc *bg)
306 {
307 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
310 }
311 
312 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 			      struct ext4_group_desc *bg)
314 {
315 	return le32_to_cpu(bg->bg_inode_table_lo) |
316 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
318 }
319 
320 __u32 ext4_free_group_clusters(struct super_block *sb,
321 			       struct ext4_group_desc *bg)
322 {
323 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
326 }
327 
328 __u32 ext4_free_inodes_count(struct super_block *sb,
329 			      struct ext4_group_desc *bg)
330 {
331 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
334 }
335 
336 __u32 ext4_used_dirs_count(struct super_block *sb,
337 			      struct ext4_group_desc *bg)
338 {
339 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
342 }
343 
344 __u32 ext4_itable_unused_count(struct super_block *sb,
345 			      struct ext4_group_desc *bg)
346 {
347 	return le16_to_cpu(bg->bg_itable_unused_lo) |
348 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
350 }
351 
352 void ext4_block_bitmap_set(struct super_block *sb,
353 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
354 {
355 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
358 }
359 
360 void ext4_inode_bitmap_set(struct super_block *sb,
361 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
362 {
363 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
364 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
366 }
367 
368 void ext4_inode_table_set(struct super_block *sb,
369 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
370 {
371 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
374 }
375 
376 void ext4_free_group_clusters_set(struct super_block *sb,
377 				  struct ext4_group_desc *bg, __u32 count)
378 {
379 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
382 }
383 
384 void ext4_free_inodes_set(struct super_block *sb,
385 			  struct ext4_group_desc *bg, __u32 count)
386 {
387 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
390 }
391 
392 void ext4_used_dirs_set(struct super_block *sb,
393 			  struct ext4_group_desc *bg, __u32 count)
394 {
395 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
398 }
399 
400 void ext4_itable_unused_set(struct super_block *sb,
401 			  struct ext4_group_desc *bg, __u32 count)
402 {
403 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
406 }
407 
408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
409 {
410 	now = clamp_val(now, 0, (1ull << 40) - 1);
411 
412 	*lo = cpu_to_le32(lower_32_bits(now));
413 	*hi = upper_32_bits(now);
414 }
415 
416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
417 {
418 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
419 }
420 #define ext4_update_tstamp(es, tstamp) \
421 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 			     ktime_get_real_seconds())
423 #define ext4_get_tstamp(es, tstamp) \
424 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425 
426 /*
427  * The del_gendisk() function uninitializes the disk-specific data
428  * structures, including the bdi structure, without telling anyone
429  * else.  Once this happens, any attempt to call mark_buffer_dirty()
430  * (for example, by ext4_commit_super), will cause a kernel OOPS.
431  * This is a kludge to prevent these oops until we can put in a proper
432  * hook in del_gendisk() to inform the VFS and file system layers.
433  */
434 static int block_device_ejected(struct super_block *sb)
435 {
436 	struct inode *bd_inode = sb->s_bdev->bd_inode;
437 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
438 
439 	return bdi->dev == NULL;
440 }
441 
442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
443 {
444 	struct super_block		*sb = journal->j_private;
445 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
446 	int				error = is_journal_aborted(journal);
447 	struct ext4_journal_cb_entry	*jce;
448 
449 	BUG_ON(txn->t_state == T_FINISHED);
450 
451 	ext4_process_freed_data(sb, txn->t_tid);
452 
453 	spin_lock(&sbi->s_md_lock);
454 	while (!list_empty(&txn->t_private_list)) {
455 		jce = list_entry(txn->t_private_list.next,
456 				 struct ext4_journal_cb_entry, jce_list);
457 		list_del_init(&jce->jce_list);
458 		spin_unlock(&sbi->s_md_lock);
459 		jce->jce_func(sb, jce, error);
460 		spin_lock(&sbi->s_md_lock);
461 	}
462 	spin_unlock(&sbi->s_md_lock);
463 }
464 
465 /*
466  * This writepage callback for write_cache_pages()
467  * takes care of a few cases after page cleaning.
468  *
469  * write_cache_pages() already checks for dirty pages
470  * and calls clear_page_dirty_for_io(), which we want,
471  * to write protect the pages.
472  *
473  * However, we may have to redirty a page (see below.)
474  */
475 static int ext4_journalled_writepage_callback(struct page *page,
476 					      struct writeback_control *wbc,
477 					      void *data)
478 {
479 	transaction_t *transaction = (transaction_t *) data;
480 	struct buffer_head *bh, *head;
481 	struct journal_head *jh;
482 
483 	bh = head = page_buffers(page);
484 	do {
485 		/*
486 		 * We have to redirty a page in these cases:
487 		 * 1) If buffer is dirty, it means the page was dirty because it
488 		 * contains a buffer that needs checkpointing. So the dirty bit
489 		 * needs to be preserved so that checkpointing writes the buffer
490 		 * properly.
491 		 * 2) If buffer is not part of the committing transaction
492 		 * (we may have just accidentally come across this buffer because
493 		 * inode range tracking is not exact) or if the currently running
494 		 * transaction already contains this buffer as well, dirty bit
495 		 * needs to be preserved so that the buffer gets writeprotected
496 		 * properly on running transaction's commit.
497 		 */
498 		jh = bh2jh(bh);
499 		if (buffer_dirty(bh) ||
500 		    (jh && (jh->b_transaction != transaction ||
501 			    jh->b_next_transaction))) {
502 			redirty_page_for_writepage(wbc, page);
503 			goto out;
504 		}
505 	} while ((bh = bh->b_this_page) != head);
506 
507 out:
508 	return AOP_WRITEPAGE_ACTIVATE;
509 }
510 
511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
512 {
513 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 	struct writeback_control wbc = {
515 		.sync_mode =  WB_SYNC_ALL,
516 		.nr_to_write = LONG_MAX,
517 		.range_start = jinode->i_dirty_start,
518 		.range_end = jinode->i_dirty_end,
519         };
520 
521 	return write_cache_pages(mapping, &wbc,
522 				 ext4_journalled_writepage_callback,
523 				 jinode->i_transaction);
524 }
525 
526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
527 {
528 	int ret;
529 
530 	if (ext4_should_journal_data(jinode->i_vfs_inode))
531 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
532 	else
533 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
534 
535 	return ret;
536 }
537 
538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
539 {
540 	int ret = 0;
541 
542 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
544 
545 	return ret;
546 }
547 
548 static bool system_going_down(void)
549 {
550 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 		|| system_state == SYSTEM_RESTART;
552 }
553 
554 struct ext4_err_translation {
555 	int code;
556 	int errno;
557 };
558 
559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
560 
561 static struct ext4_err_translation err_translation[] = {
562 	EXT4_ERR_TRANSLATE(EIO),
563 	EXT4_ERR_TRANSLATE(ENOMEM),
564 	EXT4_ERR_TRANSLATE(EFSBADCRC),
565 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 	EXT4_ERR_TRANSLATE(ENOSPC),
567 	EXT4_ERR_TRANSLATE(ENOKEY),
568 	EXT4_ERR_TRANSLATE(EROFS),
569 	EXT4_ERR_TRANSLATE(EFBIG),
570 	EXT4_ERR_TRANSLATE(EEXIST),
571 	EXT4_ERR_TRANSLATE(ERANGE),
572 	EXT4_ERR_TRANSLATE(EOVERFLOW),
573 	EXT4_ERR_TRANSLATE(EBUSY),
574 	EXT4_ERR_TRANSLATE(ENOTDIR),
575 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 	EXT4_ERR_TRANSLATE(EFAULT),
578 };
579 
580 static int ext4_errno_to_code(int errno)
581 {
582 	int i;
583 
584 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 		if (err_translation[i].errno == errno)
586 			return err_translation[i].code;
587 	return EXT4_ERR_UNKNOWN;
588 }
589 
590 static void save_error_info(struct super_block *sb, int error,
591 			    __u32 ino, __u64 block,
592 			    const char *func, unsigned int line)
593 {
594 	struct ext4_sb_info *sbi = EXT4_SB(sb);
595 
596 	/* We default to EFSCORRUPTED error... */
597 	if (error == 0)
598 		error = EFSCORRUPTED;
599 
600 	spin_lock(&sbi->s_error_lock);
601 	sbi->s_add_error_count++;
602 	sbi->s_last_error_code = error;
603 	sbi->s_last_error_line = line;
604 	sbi->s_last_error_ino = ino;
605 	sbi->s_last_error_block = block;
606 	sbi->s_last_error_func = func;
607 	sbi->s_last_error_time = ktime_get_real_seconds();
608 	if (!sbi->s_first_error_time) {
609 		sbi->s_first_error_code = error;
610 		sbi->s_first_error_line = line;
611 		sbi->s_first_error_ino = ino;
612 		sbi->s_first_error_block = block;
613 		sbi->s_first_error_func = func;
614 		sbi->s_first_error_time = sbi->s_last_error_time;
615 	}
616 	spin_unlock(&sbi->s_error_lock);
617 }
618 
619 /* Deal with the reporting of failure conditions on a filesystem such as
620  * inconsistencies detected or read IO failures.
621  *
622  * On ext2, we can store the error state of the filesystem in the
623  * superblock.  That is not possible on ext4, because we may have other
624  * write ordering constraints on the superblock which prevent us from
625  * writing it out straight away; and given that the journal is about to
626  * be aborted, we can't rely on the current, or future, transactions to
627  * write out the superblock safely.
628  *
629  * We'll just use the jbd2_journal_abort() error code to record an error in
630  * the journal instead.  On recovery, the journal will complain about
631  * that error until we've noted it down and cleared it.
632  *
633  * If force_ro is set, we unconditionally force the filesystem into an
634  * ABORT|READONLY state, unless the error response on the fs has been set to
635  * panic in which case we take the easy way out and panic immediately. This is
636  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637  * at a critical moment in log management.
638  */
639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 			      __u32 ino, __u64 block,
641 			      const char *func, unsigned int line)
642 {
643 	journal_t *journal = EXT4_SB(sb)->s_journal;
644 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
645 
646 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 	if (test_opt(sb, WARN_ON_ERROR))
648 		WARN_ON_ONCE(1);
649 
650 	if (!continue_fs && !sb_rdonly(sb)) {
651 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
652 		if (journal)
653 			jbd2_journal_abort(journal, -EIO);
654 	}
655 
656 	if (!bdev_read_only(sb->s_bdev)) {
657 		save_error_info(sb, error, ino, block, func, line);
658 		/*
659 		 * In case the fs should keep running, we need to writeout
660 		 * superblock through the journal. Due to lock ordering
661 		 * constraints, it may not be safe to do it right here so we
662 		 * defer superblock flushing to a workqueue.
663 		 */
664 		if (continue_fs)
665 			schedule_work(&EXT4_SB(sb)->s_error_work);
666 		else
667 			ext4_commit_super(sb);
668 	}
669 
670 	if (sb_rdonly(sb) || continue_fs)
671 		return;
672 
673 	/*
674 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
675 	 * could panic during 'reboot -f' as the underlying device got already
676 	 * disabled.
677 	 */
678 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
679 		panic("EXT4-fs (device %s): panic forced after error\n",
680 			sb->s_id);
681 	}
682 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
683 	/*
684 	 * Make sure updated value of ->s_mount_flags will be visible before
685 	 * ->s_flags update
686 	 */
687 	smp_wmb();
688 	sb->s_flags |= SB_RDONLY;
689 }
690 
691 static void flush_stashed_error_work(struct work_struct *work)
692 {
693 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
694 						s_error_work);
695 	journal_t *journal = sbi->s_journal;
696 	handle_t *handle;
697 
698 	/*
699 	 * If the journal is still running, we have to write out superblock
700 	 * through the journal to avoid collisions of other journalled sb
701 	 * updates.
702 	 *
703 	 * We use directly jbd2 functions here to avoid recursing back into
704 	 * ext4 error handling code during handling of previous errors.
705 	 */
706 	if (!sb_rdonly(sbi->s_sb) && journal) {
707 		handle = jbd2_journal_start(journal, 1);
708 		if (IS_ERR(handle))
709 			goto write_directly;
710 		if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) {
711 			jbd2_journal_stop(handle);
712 			goto write_directly;
713 		}
714 		ext4_update_super(sbi->s_sb);
715 		if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) {
716 			jbd2_journal_stop(handle);
717 			goto write_directly;
718 		}
719 		jbd2_journal_stop(handle);
720 		return;
721 	}
722 write_directly:
723 	/*
724 	 * Write through journal failed. Write sb directly to get error info
725 	 * out and hope for the best.
726 	 */
727 	ext4_commit_super(sbi->s_sb);
728 }
729 
730 #define ext4_error_ratelimit(sb)					\
731 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
732 			     "EXT4-fs error")
733 
734 void __ext4_error(struct super_block *sb, const char *function,
735 		  unsigned int line, bool force_ro, int error, __u64 block,
736 		  const char *fmt, ...)
737 {
738 	struct va_format vaf;
739 	va_list args;
740 
741 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
742 		return;
743 
744 	trace_ext4_error(sb, function, line);
745 	if (ext4_error_ratelimit(sb)) {
746 		va_start(args, fmt);
747 		vaf.fmt = fmt;
748 		vaf.va = &args;
749 		printk(KERN_CRIT
750 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
751 		       sb->s_id, function, line, current->comm, &vaf);
752 		va_end(args);
753 	}
754 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
755 }
756 
757 void __ext4_error_inode(struct inode *inode, const char *function,
758 			unsigned int line, ext4_fsblk_t block, int error,
759 			const char *fmt, ...)
760 {
761 	va_list args;
762 	struct va_format vaf;
763 
764 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
765 		return;
766 
767 	trace_ext4_error(inode->i_sb, function, line);
768 	if (ext4_error_ratelimit(inode->i_sb)) {
769 		va_start(args, fmt);
770 		vaf.fmt = fmt;
771 		vaf.va = &args;
772 		if (block)
773 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
774 			       "inode #%lu: block %llu: comm %s: %pV\n",
775 			       inode->i_sb->s_id, function, line, inode->i_ino,
776 			       block, current->comm, &vaf);
777 		else
778 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
779 			       "inode #%lu: comm %s: %pV\n",
780 			       inode->i_sb->s_id, function, line, inode->i_ino,
781 			       current->comm, &vaf);
782 		va_end(args);
783 	}
784 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
785 			  function, line);
786 }
787 
788 void __ext4_error_file(struct file *file, const char *function,
789 		       unsigned int line, ext4_fsblk_t block,
790 		       const char *fmt, ...)
791 {
792 	va_list args;
793 	struct va_format vaf;
794 	struct inode *inode = file_inode(file);
795 	char pathname[80], *path;
796 
797 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
798 		return;
799 
800 	trace_ext4_error(inode->i_sb, function, line);
801 	if (ext4_error_ratelimit(inode->i_sb)) {
802 		path = file_path(file, pathname, sizeof(pathname));
803 		if (IS_ERR(path))
804 			path = "(unknown)";
805 		va_start(args, fmt);
806 		vaf.fmt = fmt;
807 		vaf.va = &args;
808 		if (block)
809 			printk(KERN_CRIT
810 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
811 			       "block %llu: comm %s: path %s: %pV\n",
812 			       inode->i_sb->s_id, function, line, inode->i_ino,
813 			       block, current->comm, path, &vaf);
814 		else
815 			printk(KERN_CRIT
816 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
817 			       "comm %s: path %s: %pV\n",
818 			       inode->i_sb->s_id, function, line, inode->i_ino,
819 			       current->comm, path, &vaf);
820 		va_end(args);
821 	}
822 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
823 			  function, line);
824 }
825 
826 const char *ext4_decode_error(struct super_block *sb, int errno,
827 			      char nbuf[16])
828 {
829 	char *errstr = NULL;
830 
831 	switch (errno) {
832 	case -EFSCORRUPTED:
833 		errstr = "Corrupt filesystem";
834 		break;
835 	case -EFSBADCRC:
836 		errstr = "Filesystem failed CRC";
837 		break;
838 	case -EIO:
839 		errstr = "IO failure";
840 		break;
841 	case -ENOMEM:
842 		errstr = "Out of memory";
843 		break;
844 	case -EROFS:
845 		if (!sb || (EXT4_SB(sb)->s_journal &&
846 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
847 			errstr = "Journal has aborted";
848 		else
849 			errstr = "Readonly filesystem";
850 		break;
851 	default:
852 		/* If the caller passed in an extra buffer for unknown
853 		 * errors, textualise them now.  Else we just return
854 		 * NULL. */
855 		if (nbuf) {
856 			/* Check for truncated error codes... */
857 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
858 				errstr = nbuf;
859 		}
860 		break;
861 	}
862 
863 	return errstr;
864 }
865 
866 /* __ext4_std_error decodes expected errors from journaling functions
867  * automatically and invokes the appropriate error response.  */
868 
869 void __ext4_std_error(struct super_block *sb, const char *function,
870 		      unsigned int line, int errno)
871 {
872 	char nbuf[16];
873 	const char *errstr;
874 
875 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
876 		return;
877 
878 	/* Special case: if the error is EROFS, and we're not already
879 	 * inside a transaction, then there's really no point in logging
880 	 * an error. */
881 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
882 		return;
883 
884 	if (ext4_error_ratelimit(sb)) {
885 		errstr = ext4_decode_error(sb, errno, nbuf);
886 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
887 		       sb->s_id, function, line, errstr);
888 	}
889 
890 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
891 }
892 
893 void __ext4_msg(struct super_block *sb,
894 		const char *prefix, const char *fmt, ...)
895 {
896 	struct va_format vaf;
897 	va_list args;
898 
899 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
900 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
901 		return;
902 
903 	va_start(args, fmt);
904 	vaf.fmt = fmt;
905 	vaf.va = &args;
906 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
907 	va_end(args);
908 }
909 
910 static int ext4_warning_ratelimit(struct super_block *sb)
911 {
912 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
913 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
914 			    "EXT4-fs warning");
915 }
916 
917 void __ext4_warning(struct super_block *sb, const char *function,
918 		    unsigned int line, const char *fmt, ...)
919 {
920 	struct va_format vaf;
921 	va_list args;
922 
923 	if (!ext4_warning_ratelimit(sb))
924 		return;
925 
926 	va_start(args, fmt);
927 	vaf.fmt = fmt;
928 	vaf.va = &args;
929 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
930 	       sb->s_id, function, line, &vaf);
931 	va_end(args);
932 }
933 
934 void __ext4_warning_inode(const struct inode *inode, const char *function,
935 			  unsigned int line, const char *fmt, ...)
936 {
937 	struct va_format vaf;
938 	va_list args;
939 
940 	if (!ext4_warning_ratelimit(inode->i_sb))
941 		return;
942 
943 	va_start(args, fmt);
944 	vaf.fmt = fmt;
945 	vaf.va = &args;
946 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
947 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
948 	       function, line, inode->i_ino, current->comm, &vaf);
949 	va_end(args);
950 }
951 
952 void __ext4_grp_locked_error(const char *function, unsigned int line,
953 			     struct super_block *sb, ext4_group_t grp,
954 			     unsigned long ino, ext4_fsblk_t block,
955 			     const char *fmt, ...)
956 __releases(bitlock)
957 __acquires(bitlock)
958 {
959 	struct va_format vaf;
960 	va_list args;
961 
962 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
963 		return;
964 
965 	trace_ext4_error(sb, function, line);
966 	if (ext4_error_ratelimit(sb)) {
967 		va_start(args, fmt);
968 		vaf.fmt = fmt;
969 		vaf.va = &args;
970 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
971 		       sb->s_id, function, line, grp);
972 		if (ino)
973 			printk(KERN_CONT "inode %lu: ", ino);
974 		if (block)
975 			printk(KERN_CONT "block %llu:",
976 			       (unsigned long long) block);
977 		printk(KERN_CONT "%pV\n", &vaf);
978 		va_end(args);
979 	}
980 
981 	if (test_opt(sb, ERRORS_CONT)) {
982 		if (test_opt(sb, WARN_ON_ERROR))
983 			WARN_ON_ONCE(1);
984 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
985 		if (!bdev_read_only(sb->s_bdev)) {
986 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
987 					line);
988 			schedule_work(&EXT4_SB(sb)->s_error_work);
989 		}
990 		return;
991 	}
992 	ext4_unlock_group(sb, grp);
993 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
994 	/*
995 	 * We only get here in the ERRORS_RO case; relocking the group
996 	 * may be dangerous, but nothing bad will happen since the
997 	 * filesystem will have already been marked read/only and the
998 	 * journal has been aborted.  We return 1 as a hint to callers
999 	 * who might what to use the return value from
1000 	 * ext4_grp_locked_error() to distinguish between the
1001 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1002 	 * aggressively from the ext4 function in question, with a
1003 	 * more appropriate error code.
1004 	 */
1005 	ext4_lock_group(sb, grp);
1006 	return;
1007 }
1008 
1009 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1010 				     ext4_group_t group,
1011 				     unsigned int flags)
1012 {
1013 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1014 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1015 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1016 	int ret;
1017 
1018 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1019 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1020 					    &grp->bb_state);
1021 		if (!ret)
1022 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1023 					   grp->bb_free);
1024 	}
1025 
1026 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1027 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1028 					    &grp->bb_state);
1029 		if (!ret && gdp) {
1030 			int count;
1031 
1032 			count = ext4_free_inodes_count(sb, gdp);
1033 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1034 					   count);
1035 		}
1036 	}
1037 }
1038 
1039 void ext4_update_dynamic_rev(struct super_block *sb)
1040 {
1041 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1042 
1043 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1044 		return;
1045 
1046 	ext4_warning(sb,
1047 		     "updating to rev %d because of new feature flag, "
1048 		     "running e2fsck is recommended",
1049 		     EXT4_DYNAMIC_REV);
1050 
1051 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1052 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1053 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1054 	/* leave es->s_feature_*compat flags alone */
1055 	/* es->s_uuid will be set by e2fsck if empty */
1056 
1057 	/*
1058 	 * The rest of the superblock fields should be zero, and if not it
1059 	 * means they are likely already in use, so leave them alone.  We
1060 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1061 	 */
1062 }
1063 
1064 /*
1065  * Open the external journal device
1066  */
1067 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1068 {
1069 	struct block_device *bdev;
1070 
1071 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1072 	if (IS_ERR(bdev))
1073 		goto fail;
1074 	return bdev;
1075 
1076 fail:
1077 	ext4_msg(sb, KERN_ERR,
1078 		 "failed to open journal device unknown-block(%u,%u) %ld",
1079 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * Release the journal device
1085  */
1086 static void ext4_blkdev_put(struct block_device *bdev)
1087 {
1088 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089 }
1090 
1091 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1092 {
1093 	struct block_device *bdev;
1094 	bdev = sbi->s_journal_bdev;
1095 	if (bdev) {
1096 		ext4_blkdev_put(bdev);
1097 		sbi->s_journal_bdev = NULL;
1098 	}
1099 }
1100 
1101 static inline struct inode *orphan_list_entry(struct list_head *l)
1102 {
1103 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1104 }
1105 
1106 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1107 {
1108 	struct list_head *l;
1109 
1110 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1111 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1112 
1113 	printk(KERN_ERR "sb_info orphan list:\n");
1114 	list_for_each(l, &sbi->s_orphan) {
1115 		struct inode *inode = orphan_list_entry(l);
1116 		printk(KERN_ERR "  "
1117 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1118 		       inode->i_sb->s_id, inode->i_ino, inode,
1119 		       inode->i_mode, inode->i_nlink,
1120 		       NEXT_ORPHAN(inode));
1121 	}
1122 }
1123 
1124 #ifdef CONFIG_QUOTA
1125 static int ext4_quota_off(struct super_block *sb, int type);
1126 
1127 static inline void ext4_quota_off_umount(struct super_block *sb)
1128 {
1129 	int type;
1130 
1131 	/* Use our quota_off function to clear inode flags etc. */
1132 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1133 		ext4_quota_off(sb, type);
1134 }
1135 
1136 /*
1137  * This is a helper function which is used in the mount/remount
1138  * codepaths (which holds s_umount) to fetch the quota file name.
1139  */
1140 static inline char *get_qf_name(struct super_block *sb,
1141 				struct ext4_sb_info *sbi,
1142 				int type)
1143 {
1144 	return rcu_dereference_protected(sbi->s_qf_names[type],
1145 					 lockdep_is_held(&sb->s_umount));
1146 }
1147 #else
1148 static inline void ext4_quota_off_umount(struct super_block *sb)
1149 {
1150 }
1151 #endif
1152 
1153 static void ext4_put_super(struct super_block *sb)
1154 {
1155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1156 	struct ext4_super_block *es = sbi->s_es;
1157 	struct buffer_head **group_desc;
1158 	struct flex_groups **flex_groups;
1159 	int aborted = 0;
1160 	int i, err;
1161 
1162 	ext4_unregister_li_request(sb);
1163 	ext4_quota_off_umount(sb);
1164 
1165 	flush_work(&sbi->s_error_work);
1166 	destroy_workqueue(sbi->rsv_conversion_wq);
1167 
1168 	/*
1169 	 * Unregister sysfs before destroying jbd2 journal.
1170 	 * Since we could still access attr_journal_task attribute via sysfs
1171 	 * path which could have sbi->s_journal->j_task as NULL
1172 	 */
1173 	ext4_unregister_sysfs(sb);
1174 
1175 	if (sbi->s_journal) {
1176 		aborted = is_journal_aborted(sbi->s_journal);
1177 		err = jbd2_journal_destroy(sbi->s_journal);
1178 		sbi->s_journal = NULL;
1179 		if ((err < 0) && !aborted) {
1180 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1181 		}
1182 	}
1183 
1184 	ext4_es_unregister_shrinker(sbi);
1185 	del_timer_sync(&sbi->s_err_report);
1186 	ext4_release_system_zone(sb);
1187 	ext4_mb_release(sb);
1188 	ext4_ext_release(sb);
1189 
1190 	if (!sb_rdonly(sb) && !aborted) {
1191 		ext4_clear_feature_journal_needs_recovery(sb);
1192 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1193 	}
1194 	if (!sb_rdonly(sb))
1195 		ext4_commit_super(sb);
1196 
1197 	rcu_read_lock();
1198 	group_desc = rcu_dereference(sbi->s_group_desc);
1199 	for (i = 0; i < sbi->s_gdb_count; i++)
1200 		brelse(group_desc[i]);
1201 	kvfree(group_desc);
1202 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1203 	if (flex_groups) {
1204 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1205 			kvfree(flex_groups[i]);
1206 		kvfree(flex_groups);
1207 	}
1208 	rcu_read_unlock();
1209 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1210 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1211 	percpu_counter_destroy(&sbi->s_dirs_counter);
1212 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1213 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1214 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1215 #ifdef CONFIG_QUOTA
1216 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1217 		kfree(get_qf_name(sb, sbi, i));
1218 #endif
1219 
1220 	/* Debugging code just in case the in-memory inode orphan list
1221 	 * isn't empty.  The on-disk one can be non-empty if we've
1222 	 * detected an error and taken the fs readonly, but the
1223 	 * in-memory list had better be clean by this point. */
1224 	if (!list_empty(&sbi->s_orphan))
1225 		dump_orphan_list(sb, sbi);
1226 	ASSERT(list_empty(&sbi->s_orphan));
1227 
1228 	sync_blockdev(sb->s_bdev);
1229 	invalidate_bdev(sb->s_bdev);
1230 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1231 		/*
1232 		 * Invalidate the journal device's buffers.  We don't want them
1233 		 * floating about in memory - the physical journal device may
1234 		 * hotswapped, and it breaks the `ro-after' testing code.
1235 		 */
1236 		sync_blockdev(sbi->s_journal_bdev);
1237 		invalidate_bdev(sbi->s_journal_bdev);
1238 		ext4_blkdev_remove(sbi);
1239 	}
1240 
1241 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1242 	sbi->s_ea_inode_cache = NULL;
1243 
1244 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1245 	sbi->s_ea_block_cache = NULL;
1246 
1247 	if (sbi->s_mmp_tsk)
1248 		kthread_stop(sbi->s_mmp_tsk);
1249 	brelse(sbi->s_sbh);
1250 	sb->s_fs_info = NULL;
1251 	/*
1252 	 * Now that we are completely done shutting down the
1253 	 * superblock, we need to actually destroy the kobject.
1254 	 */
1255 	kobject_put(&sbi->s_kobj);
1256 	wait_for_completion(&sbi->s_kobj_unregister);
1257 	if (sbi->s_chksum_driver)
1258 		crypto_free_shash(sbi->s_chksum_driver);
1259 	kfree(sbi->s_blockgroup_lock);
1260 	fs_put_dax(sbi->s_daxdev);
1261 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1262 #ifdef CONFIG_UNICODE
1263 	utf8_unload(sb->s_encoding);
1264 #endif
1265 	kfree(sbi);
1266 }
1267 
1268 static struct kmem_cache *ext4_inode_cachep;
1269 
1270 /*
1271  * Called inside transaction, so use GFP_NOFS
1272  */
1273 static struct inode *ext4_alloc_inode(struct super_block *sb)
1274 {
1275 	struct ext4_inode_info *ei;
1276 
1277 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1278 	if (!ei)
1279 		return NULL;
1280 
1281 	inode_set_iversion(&ei->vfs_inode, 1);
1282 	spin_lock_init(&ei->i_raw_lock);
1283 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1284 	atomic_set(&ei->i_prealloc_active, 0);
1285 	spin_lock_init(&ei->i_prealloc_lock);
1286 	ext4_es_init_tree(&ei->i_es_tree);
1287 	rwlock_init(&ei->i_es_lock);
1288 	INIT_LIST_HEAD(&ei->i_es_list);
1289 	ei->i_es_all_nr = 0;
1290 	ei->i_es_shk_nr = 0;
1291 	ei->i_es_shrink_lblk = 0;
1292 	ei->i_reserved_data_blocks = 0;
1293 	spin_lock_init(&(ei->i_block_reservation_lock));
1294 	ext4_init_pending_tree(&ei->i_pending_tree);
1295 #ifdef CONFIG_QUOTA
1296 	ei->i_reserved_quota = 0;
1297 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1298 #endif
1299 	ei->jinode = NULL;
1300 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1301 	spin_lock_init(&ei->i_completed_io_lock);
1302 	ei->i_sync_tid = 0;
1303 	ei->i_datasync_tid = 0;
1304 	atomic_set(&ei->i_unwritten, 0);
1305 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1306 	ext4_fc_init_inode(&ei->vfs_inode);
1307 	mutex_init(&ei->i_fc_lock);
1308 	return &ei->vfs_inode;
1309 }
1310 
1311 static int ext4_drop_inode(struct inode *inode)
1312 {
1313 	int drop = generic_drop_inode(inode);
1314 
1315 	if (!drop)
1316 		drop = fscrypt_drop_inode(inode);
1317 
1318 	trace_ext4_drop_inode(inode, drop);
1319 	return drop;
1320 }
1321 
1322 static void ext4_free_in_core_inode(struct inode *inode)
1323 {
1324 	fscrypt_free_inode(inode);
1325 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1326 		pr_warn("%s: inode %ld still in fc list",
1327 			__func__, inode->i_ino);
1328 	}
1329 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1330 }
1331 
1332 static void ext4_destroy_inode(struct inode *inode)
1333 {
1334 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1335 		ext4_msg(inode->i_sb, KERN_ERR,
1336 			 "Inode %lu (%p): orphan list check failed!",
1337 			 inode->i_ino, EXT4_I(inode));
1338 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1339 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1340 				true);
1341 		dump_stack();
1342 	}
1343 }
1344 
1345 static void init_once(void *foo)
1346 {
1347 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1348 
1349 	INIT_LIST_HEAD(&ei->i_orphan);
1350 	init_rwsem(&ei->xattr_sem);
1351 	init_rwsem(&ei->i_data_sem);
1352 	init_rwsem(&ei->i_mmap_sem);
1353 	inode_init_once(&ei->vfs_inode);
1354 	ext4_fc_init_inode(&ei->vfs_inode);
1355 }
1356 
1357 static int __init init_inodecache(void)
1358 {
1359 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1360 				sizeof(struct ext4_inode_info), 0,
1361 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1362 					SLAB_ACCOUNT),
1363 				offsetof(struct ext4_inode_info, i_data),
1364 				sizeof_field(struct ext4_inode_info, i_data),
1365 				init_once);
1366 	if (ext4_inode_cachep == NULL)
1367 		return -ENOMEM;
1368 	return 0;
1369 }
1370 
1371 static void destroy_inodecache(void)
1372 {
1373 	/*
1374 	 * Make sure all delayed rcu free inodes are flushed before we
1375 	 * destroy cache.
1376 	 */
1377 	rcu_barrier();
1378 	kmem_cache_destroy(ext4_inode_cachep);
1379 }
1380 
1381 void ext4_clear_inode(struct inode *inode)
1382 {
1383 	ext4_fc_del(inode);
1384 	invalidate_inode_buffers(inode);
1385 	clear_inode(inode);
1386 	ext4_discard_preallocations(inode, 0);
1387 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1388 	dquot_drop(inode);
1389 	if (EXT4_I(inode)->jinode) {
1390 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1391 					       EXT4_I(inode)->jinode);
1392 		jbd2_free_inode(EXT4_I(inode)->jinode);
1393 		EXT4_I(inode)->jinode = NULL;
1394 	}
1395 	fscrypt_put_encryption_info(inode);
1396 	fsverity_cleanup_inode(inode);
1397 }
1398 
1399 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1400 					u64 ino, u32 generation)
1401 {
1402 	struct inode *inode;
1403 
1404 	/*
1405 	 * Currently we don't know the generation for parent directory, so
1406 	 * a generation of 0 means "accept any"
1407 	 */
1408 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1409 	if (IS_ERR(inode))
1410 		return ERR_CAST(inode);
1411 	if (generation && inode->i_generation != generation) {
1412 		iput(inode);
1413 		return ERR_PTR(-ESTALE);
1414 	}
1415 
1416 	return inode;
1417 }
1418 
1419 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1420 					int fh_len, int fh_type)
1421 {
1422 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1423 				    ext4_nfs_get_inode);
1424 }
1425 
1426 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1427 					int fh_len, int fh_type)
1428 {
1429 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1430 				    ext4_nfs_get_inode);
1431 }
1432 
1433 static int ext4_nfs_commit_metadata(struct inode *inode)
1434 {
1435 	struct writeback_control wbc = {
1436 		.sync_mode = WB_SYNC_ALL
1437 	};
1438 
1439 	trace_ext4_nfs_commit_metadata(inode);
1440 	return ext4_write_inode(inode, &wbc);
1441 }
1442 
1443 /*
1444  * Try to release metadata pages (indirect blocks, directories) which are
1445  * mapped via the block device.  Since these pages could have journal heads
1446  * which would prevent try_to_free_buffers() from freeing them, we must use
1447  * jbd2 layer's try_to_free_buffers() function to release them.
1448  */
1449 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1450 				 gfp_t wait)
1451 {
1452 	journal_t *journal = EXT4_SB(sb)->s_journal;
1453 
1454 	WARN_ON(PageChecked(page));
1455 	if (!page_has_buffers(page))
1456 		return 0;
1457 	if (journal)
1458 		return jbd2_journal_try_to_free_buffers(journal, page);
1459 
1460 	return try_to_free_buffers(page);
1461 }
1462 
1463 #ifdef CONFIG_FS_ENCRYPTION
1464 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1465 {
1466 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1467 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1468 }
1469 
1470 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1471 							void *fs_data)
1472 {
1473 	handle_t *handle = fs_data;
1474 	int res, res2, credits, retries = 0;
1475 
1476 	/*
1477 	 * Encrypting the root directory is not allowed because e2fsck expects
1478 	 * lost+found to exist and be unencrypted, and encrypting the root
1479 	 * directory would imply encrypting the lost+found directory as well as
1480 	 * the filename "lost+found" itself.
1481 	 */
1482 	if (inode->i_ino == EXT4_ROOT_INO)
1483 		return -EPERM;
1484 
1485 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1486 		return -EINVAL;
1487 
1488 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1489 		return -EOPNOTSUPP;
1490 
1491 	res = ext4_convert_inline_data(inode);
1492 	if (res)
1493 		return res;
1494 
1495 	/*
1496 	 * If a journal handle was specified, then the encryption context is
1497 	 * being set on a new inode via inheritance and is part of a larger
1498 	 * transaction to create the inode.  Otherwise the encryption context is
1499 	 * being set on an existing inode in its own transaction.  Only in the
1500 	 * latter case should the "retry on ENOSPC" logic be used.
1501 	 */
1502 
1503 	if (handle) {
1504 		res = ext4_xattr_set_handle(handle, inode,
1505 					    EXT4_XATTR_INDEX_ENCRYPTION,
1506 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1507 					    ctx, len, 0);
1508 		if (!res) {
1509 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1510 			ext4_clear_inode_state(inode,
1511 					EXT4_STATE_MAY_INLINE_DATA);
1512 			/*
1513 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1514 			 * S_DAX may be disabled
1515 			 */
1516 			ext4_set_inode_flags(inode, false);
1517 		}
1518 		return res;
1519 	}
1520 
1521 	res = dquot_initialize(inode);
1522 	if (res)
1523 		return res;
1524 retry:
1525 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1526 				     &credits);
1527 	if (res)
1528 		return res;
1529 
1530 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1531 	if (IS_ERR(handle))
1532 		return PTR_ERR(handle);
1533 
1534 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1535 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1536 				    ctx, len, 0);
1537 	if (!res) {
1538 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1539 		/*
1540 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1541 		 * S_DAX may be disabled
1542 		 */
1543 		ext4_set_inode_flags(inode, false);
1544 		res = ext4_mark_inode_dirty(handle, inode);
1545 		if (res)
1546 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1547 	}
1548 	res2 = ext4_journal_stop(handle);
1549 
1550 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1551 		goto retry;
1552 	if (!res)
1553 		res = res2;
1554 	return res;
1555 }
1556 
1557 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1558 {
1559 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1560 }
1561 
1562 static bool ext4_has_stable_inodes(struct super_block *sb)
1563 {
1564 	return ext4_has_feature_stable_inodes(sb);
1565 }
1566 
1567 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1568 				       int *ino_bits_ret, int *lblk_bits_ret)
1569 {
1570 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1571 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1572 }
1573 
1574 static const struct fscrypt_operations ext4_cryptops = {
1575 	.key_prefix		= "ext4:",
1576 	.get_context		= ext4_get_context,
1577 	.set_context		= ext4_set_context,
1578 	.get_dummy_policy	= ext4_get_dummy_policy,
1579 	.empty_dir		= ext4_empty_dir,
1580 	.max_namelen		= EXT4_NAME_LEN,
1581 	.has_stable_inodes	= ext4_has_stable_inodes,
1582 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1583 };
1584 #endif
1585 
1586 #ifdef CONFIG_QUOTA
1587 static const char * const quotatypes[] = INITQFNAMES;
1588 #define QTYPE2NAME(t) (quotatypes[t])
1589 
1590 static int ext4_write_dquot(struct dquot *dquot);
1591 static int ext4_acquire_dquot(struct dquot *dquot);
1592 static int ext4_release_dquot(struct dquot *dquot);
1593 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1594 static int ext4_write_info(struct super_block *sb, int type);
1595 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1596 			 const struct path *path);
1597 static int ext4_quota_on_mount(struct super_block *sb, int type);
1598 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1599 			       size_t len, loff_t off);
1600 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1601 				const char *data, size_t len, loff_t off);
1602 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1603 			     unsigned int flags);
1604 static int ext4_enable_quotas(struct super_block *sb);
1605 
1606 static struct dquot **ext4_get_dquots(struct inode *inode)
1607 {
1608 	return EXT4_I(inode)->i_dquot;
1609 }
1610 
1611 static const struct dquot_operations ext4_quota_operations = {
1612 	.get_reserved_space	= ext4_get_reserved_space,
1613 	.write_dquot		= ext4_write_dquot,
1614 	.acquire_dquot		= ext4_acquire_dquot,
1615 	.release_dquot		= ext4_release_dquot,
1616 	.mark_dirty		= ext4_mark_dquot_dirty,
1617 	.write_info		= ext4_write_info,
1618 	.alloc_dquot		= dquot_alloc,
1619 	.destroy_dquot		= dquot_destroy,
1620 	.get_projid		= ext4_get_projid,
1621 	.get_inode_usage	= ext4_get_inode_usage,
1622 	.get_next_id		= dquot_get_next_id,
1623 };
1624 
1625 static const struct quotactl_ops ext4_qctl_operations = {
1626 	.quota_on	= ext4_quota_on,
1627 	.quota_off	= ext4_quota_off,
1628 	.quota_sync	= dquot_quota_sync,
1629 	.get_state	= dquot_get_state,
1630 	.set_info	= dquot_set_dqinfo,
1631 	.get_dqblk	= dquot_get_dqblk,
1632 	.set_dqblk	= dquot_set_dqblk,
1633 	.get_nextdqblk	= dquot_get_next_dqblk,
1634 };
1635 #endif
1636 
1637 static const struct super_operations ext4_sops = {
1638 	.alloc_inode	= ext4_alloc_inode,
1639 	.free_inode	= ext4_free_in_core_inode,
1640 	.destroy_inode	= ext4_destroy_inode,
1641 	.write_inode	= ext4_write_inode,
1642 	.dirty_inode	= ext4_dirty_inode,
1643 	.drop_inode	= ext4_drop_inode,
1644 	.evict_inode	= ext4_evict_inode,
1645 	.put_super	= ext4_put_super,
1646 	.sync_fs	= ext4_sync_fs,
1647 	.freeze_fs	= ext4_freeze,
1648 	.unfreeze_fs	= ext4_unfreeze,
1649 	.statfs		= ext4_statfs,
1650 	.remount_fs	= ext4_remount,
1651 	.show_options	= ext4_show_options,
1652 #ifdef CONFIG_QUOTA
1653 	.quota_read	= ext4_quota_read,
1654 	.quota_write	= ext4_quota_write,
1655 	.get_dquots	= ext4_get_dquots,
1656 #endif
1657 	.bdev_try_to_free_page = bdev_try_to_free_page,
1658 };
1659 
1660 static const struct export_operations ext4_export_ops = {
1661 	.fh_to_dentry = ext4_fh_to_dentry,
1662 	.fh_to_parent = ext4_fh_to_parent,
1663 	.get_parent = ext4_get_parent,
1664 	.commit_metadata = ext4_nfs_commit_metadata,
1665 };
1666 
1667 enum {
1668 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1669 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1670 	Opt_nouid32, Opt_debug, Opt_removed,
1671 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1672 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1673 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1674 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1675 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1676 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1677 	Opt_inlinecrypt,
1678 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1679 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1680 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1681 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1682 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1683 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1684 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1685 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1686 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1687 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1688 	Opt_dioread_nolock, Opt_dioread_lock,
1689 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1690 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1691 	Opt_prefetch_block_bitmaps,
1692 #ifdef CONFIG_EXT4_DEBUG
1693 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1694 #endif
1695 };
1696 
1697 static const match_table_t tokens = {
1698 	{Opt_bsd_df, "bsddf"},
1699 	{Opt_minix_df, "minixdf"},
1700 	{Opt_grpid, "grpid"},
1701 	{Opt_grpid, "bsdgroups"},
1702 	{Opt_nogrpid, "nogrpid"},
1703 	{Opt_nogrpid, "sysvgroups"},
1704 	{Opt_resgid, "resgid=%u"},
1705 	{Opt_resuid, "resuid=%u"},
1706 	{Opt_sb, "sb=%u"},
1707 	{Opt_err_cont, "errors=continue"},
1708 	{Opt_err_panic, "errors=panic"},
1709 	{Opt_err_ro, "errors=remount-ro"},
1710 	{Opt_nouid32, "nouid32"},
1711 	{Opt_debug, "debug"},
1712 	{Opt_removed, "oldalloc"},
1713 	{Opt_removed, "orlov"},
1714 	{Opt_user_xattr, "user_xattr"},
1715 	{Opt_nouser_xattr, "nouser_xattr"},
1716 	{Opt_acl, "acl"},
1717 	{Opt_noacl, "noacl"},
1718 	{Opt_noload, "norecovery"},
1719 	{Opt_noload, "noload"},
1720 	{Opt_removed, "nobh"},
1721 	{Opt_removed, "bh"},
1722 	{Opt_commit, "commit=%u"},
1723 	{Opt_min_batch_time, "min_batch_time=%u"},
1724 	{Opt_max_batch_time, "max_batch_time=%u"},
1725 	{Opt_journal_dev, "journal_dev=%u"},
1726 	{Opt_journal_path, "journal_path=%s"},
1727 	{Opt_journal_checksum, "journal_checksum"},
1728 	{Opt_nojournal_checksum, "nojournal_checksum"},
1729 	{Opt_journal_async_commit, "journal_async_commit"},
1730 	{Opt_abort, "abort"},
1731 	{Opt_data_journal, "data=journal"},
1732 	{Opt_data_ordered, "data=ordered"},
1733 	{Opt_data_writeback, "data=writeback"},
1734 	{Opt_data_err_abort, "data_err=abort"},
1735 	{Opt_data_err_ignore, "data_err=ignore"},
1736 	{Opt_offusrjquota, "usrjquota="},
1737 	{Opt_usrjquota, "usrjquota=%s"},
1738 	{Opt_offgrpjquota, "grpjquota="},
1739 	{Opt_grpjquota, "grpjquota=%s"},
1740 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1741 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1742 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1743 	{Opt_grpquota, "grpquota"},
1744 	{Opt_noquota, "noquota"},
1745 	{Opt_quota, "quota"},
1746 	{Opt_usrquota, "usrquota"},
1747 	{Opt_prjquota, "prjquota"},
1748 	{Opt_barrier, "barrier=%u"},
1749 	{Opt_barrier, "barrier"},
1750 	{Opt_nobarrier, "nobarrier"},
1751 	{Opt_i_version, "i_version"},
1752 	{Opt_dax, "dax"},
1753 	{Opt_dax_always, "dax=always"},
1754 	{Opt_dax_inode, "dax=inode"},
1755 	{Opt_dax_never, "dax=never"},
1756 	{Opt_stripe, "stripe=%u"},
1757 	{Opt_delalloc, "delalloc"},
1758 	{Opt_warn_on_error, "warn_on_error"},
1759 	{Opt_nowarn_on_error, "nowarn_on_error"},
1760 	{Opt_lazytime, "lazytime"},
1761 	{Opt_nolazytime, "nolazytime"},
1762 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1763 	{Opt_nodelalloc, "nodelalloc"},
1764 	{Opt_removed, "mblk_io_submit"},
1765 	{Opt_removed, "nomblk_io_submit"},
1766 	{Opt_block_validity, "block_validity"},
1767 	{Opt_noblock_validity, "noblock_validity"},
1768 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1769 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1770 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1771 	{Opt_auto_da_alloc, "auto_da_alloc"},
1772 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1773 	{Opt_dioread_nolock, "dioread_nolock"},
1774 	{Opt_dioread_lock, "nodioread_nolock"},
1775 	{Opt_dioread_lock, "dioread_lock"},
1776 	{Opt_discard, "discard"},
1777 	{Opt_nodiscard, "nodiscard"},
1778 	{Opt_init_itable, "init_itable=%u"},
1779 	{Opt_init_itable, "init_itable"},
1780 	{Opt_noinit_itable, "noinit_itable"},
1781 #ifdef CONFIG_EXT4_DEBUG
1782 	{Opt_fc_debug_force, "fc_debug_force"},
1783 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1784 #endif
1785 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1786 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1787 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1788 	{Opt_inlinecrypt, "inlinecrypt"},
1789 	{Opt_nombcache, "nombcache"},
1790 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1791 	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1792 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1793 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1794 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1795 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1796 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1797 	{Opt_err, NULL},
1798 };
1799 
1800 static ext4_fsblk_t get_sb_block(void **data)
1801 {
1802 	ext4_fsblk_t	sb_block;
1803 	char		*options = (char *) *data;
1804 
1805 	if (!options || strncmp(options, "sb=", 3) != 0)
1806 		return 1;	/* Default location */
1807 
1808 	options += 3;
1809 	/* TODO: use simple_strtoll with >32bit ext4 */
1810 	sb_block = simple_strtoul(options, &options, 0);
1811 	if (*options && *options != ',') {
1812 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1813 		       (char *) *data);
1814 		return 1;
1815 	}
1816 	if (*options == ',')
1817 		options++;
1818 	*data = (void *) options;
1819 
1820 	return sb_block;
1821 }
1822 
1823 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1824 static const char deprecated_msg[] =
1825 	"Mount option \"%s\" will be removed by %s\n"
1826 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1827 
1828 #ifdef CONFIG_QUOTA
1829 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1830 {
1831 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1832 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1833 	int ret = -1;
1834 
1835 	if (sb_any_quota_loaded(sb) && !old_qname) {
1836 		ext4_msg(sb, KERN_ERR,
1837 			"Cannot change journaled "
1838 			"quota options when quota turned on");
1839 		return -1;
1840 	}
1841 	if (ext4_has_feature_quota(sb)) {
1842 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1843 			 "ignored when QUOTA feature is enabled");
1844 		return 1;
1845 	}
1846 	qname = match_strdup(args);
1847 	if (!qname) {
1848 		ext4_msg(sb, KERN_ERR,
1849 			"Not enough memory for storing quotafile name");
1850 		return -1;
1851 	}
1852 	if (old_qname) {
1853 		if (strcmp(old_qname, qname) == 0)
1854 			ret = 1;
1855 		else
1856 			ext4_msg(sb, KERN_ERR,
1857 				 "%s quota file already specified",
1858 				 QTYPE2NAME(qtype));
1859 		goto errout;
1860 	}
1861 	if (strchr(qname, '/')) {
1862 		ext4_msg(sb, KERN_ERR,
1863 			"quotafile must be on filesystem root");
1864 		goto errout;
1865 	}
1866 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1867 	set_opt(sb, QUOTA);
1868 	return 1;
1869 errout:
1870 	kfree(qname);
1871 	return ret;
1872 }
1873 
1874 static int clear_qf_name(struct super_block *sb, int qtype)
1875 {
1876 
1877 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1878 	char *old_qname = get_qf_name(sb, sbi, qtype);
1879 
1880 	if (sb_any_quota_loaded(sb) && old_qname) {
1881 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1882 			" when quota turned on");
1883 		return -1;
1884 	}
1885 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1886 	synchronize_rcu();
1887 	kfree(old_qname);
1888 	return 1;
1889 }
1890 #endif
1891 
1892 #define MOPT_SET	0x0001
1893 #define MOPT_CLEAR	0x0002
1894 #define MOPT_NOSUPPORT	0x0004
1895 #define MOPT_EXPLICIT	0x0008
1896 #define MOPT_CLEAR_ERR	0x0010
1897 #define MOPT_GTE0	0x0020
1898 #ifdef CONFIG_QUOTA
1899 #define MOPT_Q		0
1900 #define MOPT_QFMT	0x0040
1901 #else
1902 #define MOPT_Q		MOPT_NOSUPPORT
1903 #define MOPT_QFMT	MOPT_NOSUPPORT
1904 #endif
1905 #define MOPT_DATAJ	0x0080
1906 #define MOPT_NO_EXT2	0x0100
1907 #define MOPT_NO_EXT3	0x0200
1908 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1909 #define MOPT_STRING	0x0400
1910 #define MOPT_SKIP	0x0800
1911 #define	MOPT_2		0x1000
1912 
1913 static const struct mount_opts {
1914 	int	token;
1915 	int	mount_opt;
1916 	int	flags;
1917 } ext4_mount_opts[] = {
1918 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1919 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1920 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1921 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1922 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1923 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1924 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1925 	 MOPT_EXT4_ONLY | MOPT_SET},
1926 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1927 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1928 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1929 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1930 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1931 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1932 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1933 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1935 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1936 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1937 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1938 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1939 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1940 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1941 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1942 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1943 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1944 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1945 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1946 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1947 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1948 	 MOPT_NO_EXT2},
1949 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1950 	 MOPT_NO_EXT2},
1951 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1952 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1953 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1954 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1955 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1956 	{Opt_commit, 0, MOPT_GTE0},
1957 	{Opt_max_batch_time, 0, MOPT_GTE0},
1958 	{Opt_min_batch_time, 0, MOPT_GTE0},
1959 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1960 	{Opt_init_itable, 0, MOPT_GTE0},
1961 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1962 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1963 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1965 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1966 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1967 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1968 	{Opt_stripe, 0, MOPT_GTE0},
1969 	{Opt_resuid, 0, MOPT_GTE0},
1970 	{Opt_resgid, 0, MOPT_GTE0},
1971 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1972 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1973 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1974 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1976 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1977 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1978 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1979 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1980 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1981 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1982 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1983 #else
1984 	{Opt_acl, 0, MOPT_NOSUPPORT},
1985 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1986 #endif
1987 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1988 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1989 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1990 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1991 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1992 							MOPT_SET | MOPT_Q},
1993 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1994 							MOPT_SET | MOPT_Q},
1995 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1996 							MOPT_SET | MOPT_Q},
1997 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1998 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1999 							MOPT_CLEAR | MOPT_Q},
2000 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2001 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2002 	{Opt_offusrjquota, 0, MOPT_Q},
2003 	{Opt_offgrpjquota, 0, MOPT_Q},
2004 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2005 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2006 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2007 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2008 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2009 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2010 	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2011 	 MOPT_SET},
2012 #ifdef CONFIG_EXT4_DEBUG
2013 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2014 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2015 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2016 #endif
2017 	{Opt_err, 0, 0}
2018 };
2019 
2020 #ifdef CONFIG_UNICODE
2021 static const struct ext4_sb_encodings {
2022 	__u16 magic;
2023 	char *name;
2024 	char *version;
2025 } ext4_sb_encoding_map[] = {
2026 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2027 };
2028 
2029 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2030 				 const struct ext4_sb_encodings **encoding,
2031 				 __u16 *flags)
2032 {
2033 	__u16 magic = le16_to_cpu(es->s_encoding);
2034 	int i;
2035 
2036 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2037 		if (magic == ext4_sb_encoding_map[i].magic)
2038 			break;
2039 
2040 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2041 		return -EINVAL;
2042 
2043 	*encoding = &ext4_sb_encoding_map[i];
2044 	*flags = le16_to_cpu(es->s_encoding_flags);
2045 
2046 	return 0;
2047 }
2048 #endif
2049 
2050 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2051 					  const char *opt,
2052 					  const substring_t *arg,
2053 					  bool is_remount)
2054 {
2055 #ifdef CONFIG_FS_ENCRYPTION
2056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2057 	int err;
2058 
2059 	/*
2060 	 * This mount option is just for testing, and it's not worthwhile to
2061 	 * implement the extra complexity (e.g. RCU protection) that would be
2062 	 * needed to allow it to be set or changed during remount.  We do allow
2063 	 * it to be specified during remount, but only if there is no change.
2064 	 */
2065 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2066 		ext4_msg(sb, KERN_WARNING,
2067 			 "Can't set test_dummy_encryption on remount");
2068 		return -1;
2069 	}
2070 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2071 						&sbi->s_dummy_enc_policy);
2072 	if (err) {
2073 		if (err == -EEXIST)
2074 			ext4_msg(sb, KERN_WARNING,
2075 				 "Can't change test_dummy_encryption on remount");
2076 		else if (err == -EINVAL)
2077 			ext4_msg(sb, KERN_WARNING,
2078 				 "Value of option \"%s\" is unrecognized", opt);
2079 		else
2080 			ext4_msg(sb, KERN_WARNING,
2081 				 "Error processing option \"%s\" [%d]",
2082 				 opt, err);
2083 		return -1;
2084 	}
2085 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2086 #else
2087 	ext4_msg(sb, KERN_WARNING,
2088 		 "Test dummy encryption mount option ignored");
2089 #endif
2090 	return 1;
2091 }
2092 
2093 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2094 			    substring_t *args, unsigned long *journal_devnum,
2095 			    unsigned int *journal_ioprio, int is_remount)
2096 {
2097 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2098 	const struct mount_opts *m;
2099 	kuid_t uid;
2100 	kgid_t gid;
2101 	int arg = 0;
2102 
2103 #ifdef CONFIG_QUOTA
2104 	if (token == Opt_usrjquota)
2105 		return set_qf_name(sb, USRQUOTA, &args[0]);
2106 	else if (token == Opt_grpjquota)
2107 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2108 	else if (token == Opt_offusrjquota)
2109 		return clear_qf_name(sb, USRQUOTA);
2110 	else if (token == Opt_offgrpjquota)
2111 		return clear_qf_name(sb, GRPQUOTA);
2112 #endif
2113 	switch (token) {
2114 	case Opt_noacl:
2115 	case Opt_nouser_xattr:
2116 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2117 		break;
2118 	case Opt_sb:
2119 		return 1;	/* handled by get_sb_block() */
2120 	case Opt_removed:
2121 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2122 		return 1;
2123 	case Opt_abort:
2124 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2125 		return 1;
2126 	case Opt_i_version:
2127 		sb->s_flags |= SB_I_VERSION;
2128 		return 1;
2129 	case Opt_lazytime:
2130 		sb->s_flags |= SB_LAZYTIME;
2131 		return 1;
2132 	case Opt_nolazytime:
2133 		sb->s_flags &= ~SB_LAZYTIME;
2134 		return 1;
2135 	case Opt_inlinecrypt:
2136 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2137 		sb->s_flags |= SB_INLINECRYPT;
2138 #else
2139 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2140 #endif
2141 		return 1;
2142 	}
2143 
2144 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2145 		if (token == m->token)
2146 			break;
2147 
2148 	if (m->token == Opt_err) {
2149 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2150 			 "or missing value", opt);
2151 		return -1;
2152 	}
2153 
2154 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2155 		ext4_msg(sb, KERN_ERR,
2156 			 "Mount option \"%s\" incompatible with ext2", opt);
2157 		return -1;
2158 	}
2159 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2160 		ext4_msg(sb, KERN_ERR,
2161 			 "Mount option \"%s\" incompatible with ext3", opt);
2162 		return -1;
2163 	}
2164 
2165 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2166 		return -1;
2167 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2168 		return -1;
2169 	if (m->flags & MOPT_EXPLICIT) {
2170 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2171 			set_opt2(sb, EXPLICIT_DELALLOC);
2172 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2173 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2174 		} else
2175 			return -1;
2176 	}
2177 	if (m->flags & MOPT_CLEAR_ERR)
2178 		clear_opt(sb, ERRORS_MASK);
2179 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2180 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2181 			 "options when quota turned on");
2182 		return -1;
2183 	}
2184 
2185 	if (m->flags & MOPT_NOSUPPORT) {
2186 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2187 	} else if (token == Opt_commit) {
2188 		if (arg == 0)
2189 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2190 		else if (arg > INT_MAX / HZ) {
2191 			ext4_msg(sb, KERN_ERR,
2192 				 "Invalid commit interval %d, "
2193 				 "must be smaller than %d",
2194 				 arg, INT_MAX / HZ);
2195 			return -1;
2196 		}
2197 		sbi->s_commit_interval = HZ * arg;
2198 	} else if (token == Opt_debug_want_extra_isize) {
2199 		if ((arg & 1) ||
2200 		    (arg < 4) ||
2201 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2202 			ext4_msg(sb, KERN_ERR,
2203 				 "Invalid want_extra_isize %d", arg);
2204 			return -1;
2205 		}
2206 		sbi->s_want_extra_isize = arg;
2207 	} else if (token == Opt_max_batch_time) {
2208 		sbi->s_max_batch_time = arg;
2209 	} else if (token == Opt_min_batch_time) {
2210 		sbi->s_min_batch_time = arg;
2211 	} else if (token == Opt_inode_readahead_blks) {
2212 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2213 			ext4_msg(sb, KERN_ERR,
2214 				 "EXT4-fs: inode_readahead_blks must be "
2215 				 "0 or a power of 2 smaller than 2^31");
2216 			return -1;
2217 		}
2218 		sbi->s_inode_readahead_blks = arg;
2219 	} else if (token == Opt_init_itable) {
2220 		set_opt(sb, INIT_INODE_TABLE);
2221 		if (!args->from)
2222 			arg = EXT4_DEF_LI_WAIT_MULT;
2223 		sbi->s_li_wait_mult = arg;
2224 	} else if (token == Opt_max_dir_size_kb) {
2225 		sbi->s_max_dir_size_kb = arg;
2226 #ifdef CONFIG_EXT4_DEBUG
2227 	} else if (token == Opt_fc_debug_max_replay) {
2228 		sbi->s_fc_debug_max_replay = arg;
2229 #endif
2230 	} else if (token == Opt_stripe) {
2231 		sbi->s_stripe = arg;
2232 	} else if (token == Opt_resuid) {
2233 		uid = make_kuid(current_user_ns(), arg);
2234 		if (!uid_valid(uid)) {
2235 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2236 			return -1;
2237 		}
2238 		sbi->s_resuid = uid;
2239 	} else if (token == Opt_resgid) {
2240 		gid = make_kgid(current_user_ns(), arg);
2241 		if (!gid_valid(gid)) {
2242 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2243 			return -1;
2244 		}
2245 		sbi->s_resgid = gid;
2246 	} else if (token == Opt_journal_dev) {
2247 		if (is_remount) {
2248 			ext4_msg(sb, KERN_ERR,
2249 				 "Cannot specify journal on remount");
2250 			return -1;
2251 		}
2252 		*journal_devnum = arg;
2253 	} else if (token == Opt_journal_path) {
2254 		char *journal_path;
2255 		struct inode *journal_inode;
2256 		struct path path;
2257 		int error;
2258 
2259 		if (is_remount) {
2260 			ext4_msg(sb, KERN_ERR,
2261 				 "Cannot specify journal on remount");
2262 			return -1;
2263 		}
2264 		journal_path = match_strdup(&args[0]);
2265 		if (!journal_path) {
2266 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2267 				"journal device string");
2268 			return -1;
2269 		}
2270 
2271 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2272 		if (error) {
2273 			ext4_msg(sb, KERN_ERR, "error: could not find "
2274 				"journal device path: error %d", error);
2275 			kfree(journal_path);
2276 			return -1;
2277 		}
2278 
2279 		journal_inode = d_inode(path.dentry);
2280 		if (!S_ISBLK(journal_inode->i_mode)) {
2281 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2282 				"is not a block device", journal_path);
2283 			path_put(&path);
2284 			kfree(journal_path);
2285 			return -1;
2286 		}
2287 
2288 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2289 		path_put(&path);
2290 		kfree(journal_path);
2291 	} else if (token == Opt_journal_ioprio) {
2292 		if (arg > 7) {
2293 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2294 				 " (must be 0-7)");
2295 			return -1;
2296 		}
2297 		*journal_ioprio =
2298 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2299 	} else if (token == Opt_test_dummy_encryption) {
2300 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2301 						      is_remount);
2302 	} else if (m->flags & MOPT_DATAJ) {
2303 		if (is_remount) {
2304 			if (!sbi->s_journal)
2305 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2306 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2307 				ext4_msg(sb, KERN_ERR,
2308 					 "Cannot change data mode on remount");
2309 				return -1;
2310 			}
2311 		} else {
2312 			clear_opt(sb, DATA_FLAGS);
2313 			sbi->s_mount_opt |= m->mount_opt;
2314 		}
2315 #ifdef CONFIG_QUOTA
2316 	} else if (m->flags & MOPT_QFMT) {
2317 		if (sb_any_quota_loaded(sb) &&
2318 		    sbi->s_jquota_fmt != m->mount_opt) {
2319 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2320 				 "quota options when quota turned on");
2321 			return -1;
2322 		}
2323 		if (ext4_has_feature_quota(sb)) {
2324 			ext4_msg(sb, KERN_INFO,
2325 				 "Quota format mount options ignored "
2326 				 "when QUOTA feature is enabled");
2327 			return 1;
2328 		}
2329 		sbi->s_jquota_fmt = m->mount_opt;
2330 #endif
2331 	} else if (token == Opt_dax || token == Opt_dax_always ||
2332 		   token == Opt_dax_inode || token == Opt_dax_never) {
2333 #ifdef CONFIG_FS_DAX
2334 		switch (token) {
2335 		case Opt_dax:
2336 		case Opt_dax_always:
2337 			if (is_remount &&
2338 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2339 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2340 			fail_dax_change_remount:
2341 				ext4_msg(sb, KERN_ERR, "can't change "
2342 					 "dax mount option while remounting");
2343 				return -1;
2344 			}
2345 			if (is_remount &&
2346 			    (test_opt(sb, DATA_FLAGS) ==
2347 			     EXT4_MOUNT_JOURNAL_DATA)) {
2348 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2349 					     "both data=journal and dax");
2350 				    return -1;
2351 			}
2352 			ext4_msg(sb, KERN_WARNING,
2353 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2354 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2355 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2356 			break;
2357 		case Opt_dax_never:
2358 			if (is_remount &&
2359 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2360 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2361 				goto fail_dax_change_remount;
2362 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2363 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2364 			break;
2365 		case Opt_dax_inode:
2366 			if (is_remount &&
2367 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2368 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2369 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2370 				goto fail_dax_change_remount;
2371 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2372 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2373 			/* Strictly for printing options */
2374 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2375 			break;
2376 		}
2377 #else
2378 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2379 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2380 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2381 		return -1;
2382 #endif
2383 	} else if (token == Opt_data_err_abort) {
2384 		sbi->s_mount_opt |= m->mount_opt;
2385 	} else if (token == Opt_data_err_ignore) {
2386 		sbi->s_mount_opt &= ~m->mount_opt;
2387 	} else {
2388 		if (!args->from)
2389 			arg = 1;
2390 		if (m->flags & MOPT_CLEAR)
2391 			arg = !arg;
2392 		else if (unlikely(!(m->flags & MOPT_SET))) {
2393 			ext4_msg(sb, KERN_WARNING,
2394 				 "buggy handling of option %s", opt);
2395 			WARN_ON(1);
2396 			return -1;
2397 		}
2398 		if (m->flags & MOPT_2) {
2399 			if (arg != 0)
2400 				sbi->s_mount_opt2 |= m->mount_opt;
2401 			else
2402 				sbi->s_mount_opt2 &= ~m->mount_opt;
2403 		} else {
2404 			if (arg != 0)
2405 				sbi->s_mount_opt |= m->mount_opt;
2406 			else
2407 				sbi->s_mount_opt &= ~m->mount_opt;
2408 		}
2409 	}
2410 	return 1;
2411 }
2412 
2413 static int parse_options(char *options, struct super_block *sb,
2414 			 unsigned long *journal_devnum,
2415 			 unsigned int *journal_ioprio,
2416 			 int is_remount)
2417 {
2418 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2419 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2420 	substring_t args[MAX_OPT_ARGS];
2421 	int token;
2422 
2423 	if (!options)
2424 		return 1;
2425 
2426 	while ((p = strsep(&options, ",")) != NULL) {
2427 		if (!*p)
2428 			continue;
2429 		/*
2430 		 * Initialize args struct so we know whether arg was
2431 		 * found; some options take optional arguments.
2432 		 */
2433 		args[0].to = args[0].from = NULL;
2434 		token = match_token(p, tokens, args);
2435 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2436 				     journal_ioprio, is_remount) < 0)
2437 			return 0;
2438 	}
2439 #ifdef CONFIG_QUOTA
2440 	/*
2441 	 * We do the test below only for project quotas. 'usrquota' and
2442 	 * 'grpquota' mount options are allowed even without quota feature
2443 	 * to support legacy quotas in quota files.
2444 	 */
2445 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2446 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2447 			 "Cannot enable project quota enforcement.");
2448 		return 0;
2449 	}
2450 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2451 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2452 	if (usr_qf_name || grp_qf_name) {
2453 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2454 			clear_opt(sb, USRQUOTA);
2455 
2456 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2457 			clear_opt(sb, GRPQUOTA);
2458 
2459 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2460 			ext4_msg(sb, KERN_ERR, "old and new quota "
2461 					"format mixing");
2462 			return 0;
2463 		}
2464 
2465 		if (!sbi->s_jquota_fmt) {
2466 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2467 					"not specified");
2468 			return 0;
2469 		}
2470 	}
2471 #endif
2472 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2473 		int blocksize =
2474 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2475 		if (blocksize < PAGE_SIZE)
2476 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2477 				 "experimental mount option 'dioread_nolock' "
2478 				 "for blocksize < PAGE_SIZE");
2479 	}
2480 	return 1;
2481 }
2482 
2483 static inline void ext4_show_quota_options(struct seq_file *seq,
2484 					   struct super_block *sb)
2485 {
2486 #if defined(CONFIG_QUOTA)
2487 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2488 	char *usr_qf_name, *grp_qf_name;
2489 
2490 	if (sbi->s_jquota_fmt) {
2491 		char *fmtname = "";
2492 
2493 		switch (sbi->s_jquota_fmt) {
2494 		case QFMT_VFS_OLD:
2495 			fmtname = "vfsold";
2496 			break;
2497 		case QFMT_VFS_V0:
2498 			fmtname = "vfsv0";
2499 			break;
2500 		case QFMT_VFS_V1:
2501 			fmtname = "vfsv1";
2502 			break;
2503 		}
2504 		seq_printf(seq, ",jqfmt=%s", fmtname);
2505 	}
2506 
2507 	rcu_read_lock();
2508 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2509 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2510 	if (usr_qf_name)
2511 		seq_show_option(seq, "usrjquota", usr_qf_name);
2512 	if (grp_qf_name)
2513 		seq_show_option(seq, "grpjquota", grp_qf_name);
2514 	rcu_read_unlock();
2515 #endif
2516 }
2517 
2518 static const char *token2str(int token)
2519 {
2520 	const struct match_token *t;
2521 
2522 	for (t = tokens; t->token != Opt_err; t++)
2523 		if (t->token == token && !strchr(t->pattern, '='))
2524 			break;
2525 	return t->pattern;
2526 }
2527 
2528 /*
2529  * Show an option if
2530  *  - it's set to a non-default value OR
2531  *  - if the per-sb default is different from the global default
2532  */
2533 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2534 			      int nodefs)
2535 {
2536 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2537 	struct ext4_super_block *es = sbi->s_es;
2538 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2539 	const struct mount_opts *m;
2540 	char sep = nodefs ? '\n' : ',';
2541 
2542 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2543 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2544 
2545 	if (sbi->s_sb_block != 1)
2546 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2547 
2548 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2549 		int want_set = m->flags & MOPT_SET;
2550 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2551 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2552 			continue;
2553 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2554 			continue; /* skip if same as the default */
2555 		if ((want_set &&
2556 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2557 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2558 			continue; /* select Opt_noFoo vs Opt_Foo */
2559 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2560 	}
2561 
2562 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2563 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2564 		SEQ_OPTS_PRINT("resuid=%u",
2565 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2566 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2567 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2568 		SEQ_OPTS_PRINT("resgid=%u",
2569 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2570 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2571 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2572 		SEQ_OPTS_PUTS("errors=remount-ro");
2573 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2574 		SEQ_OPTS_PUTS("errors=continue");
2575 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2576 		SEQ_OPTS_PUTS("errors=panic");
2577 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2578 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2579 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2580 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2581 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2582 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2583 	if (sb->s_flags & SB_I_VERSION)
2584 		SEQ_OPTS_PUTS("i_version");
2585 	if (nodefs || sbi->s_stripe)
2586 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2587 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2588 			(sbi->s_mount_opt ^ def_mount_opt)) {
2589 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2590 			SEQ_OPTS_PUTS("data=journal");
2591 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2592 			SEQ_OPTS_PUTS("data=ordered");
2593 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2594 			SEQ_OPTS_PUTS("data=writeback");
2595 	}
2596 	if (nodefs ||
2597 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2598 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2599 			       sbi->s_inode_readahead_blks);
2600 
2601 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2602 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2603 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2604 	if (nodefs || sbi->s_max_dir_size_kb)
2605 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2606 	if (test_opt(sb, DATA_ERR_ABORT))
2607 		SEQ_OPTS_PUTS("data_err=abort");
2608 
2609 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2610 
2611 	if (sb->s_flags & SB_INLINECRYPT)
2612 		SEQ_OPTS_PUTS("inlinecrypt");
2613 
2614 	if (test_opt(sb, DAX_ALWAYS)) {
2615 		if (IS_EXT2_SB(sb))
2616 			SEQ_OPTS_PUTS("dax");
2617 		else
2618 			SEQ_OPTS_PUTS("dax=always");
2619 	} else if (test_opt2(sb, DAX_NEVER)) {
2620 		SEQ_OPTS_PUTS("dax=never");
2621 	} else if (test_opt2(sb, DAX_INODE)) {
2622 		SEQ_OPTS_PUTS("dax=inode");
2623 	}
2624 	ext4_show_quota_options(seq, sb);
2625 	return 0;
2626 }
2627 
2628 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2629 {
2630 	return _ext4_show_options(seq, root->d_sb, 0);
2631 }
2632 
2633 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2634 {
2635 	struct super_block *sb = seq->private;
2636 	int rc;
2637 
2638 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2639 	rc = _ext4_show_options(seq, sb, 1);
2640 	seq_puts(seq, "\n");
2641 	return rc;
2642 }
2643 
2644 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2645 			    int read_only)
2646 {
2647 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2648 	int err = 0;
2649 
2650 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2651 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2652 			 "forcing read-only mode");
2653 		err = -EROFS;
2654 		goto done;
2655 	}
2656 	if (read_only)
2657 		goto done;
2658 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2659 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2660 			 "running e2fsck is recommended");
2661 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2662 		ext4_msg(sb, KERN_WARNING,
2663 			 "warning: mounting fs with errors, "
2664 			 "running e2fsck is recommended");
2665 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2666 		 le16_to_cpu(es->s_mnt_count) >=
2667 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2668 		ext4_msg(sb, KERN_WARNING,
2669 			 "warning: maximal mount count reached, "
2670 			 "running e2fsck is recommended");
2671 	else if (le32_to_cpu(es->s_checkinterval) &&
2672 		 (ext4_get_tstamp(es, s_lastcheck) +
2673 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2674 		ext4_msg(sb, KERN_WARNING,
2675 			 "warning: checktime reached, "
2676 			 "running e2fsck is recommended");
2677 	if (!sbi->s_journal)
2678 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2679 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2680 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2681 	le16_add_cpu(&es->s_mnt_count, 1);
2682 	ext4_update_tstamp(es, s_mtime);
2683 	if (sbi->s_journal)
2684 		ext4_set_feature_journal_needs_recovery(sb);
2685 
2686 	err = ext4_commit_super(sb);
2687 done:
2688 	if (test_opt(sb, DEBUG))
2689 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2690 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2691 			sb->s_blocksize,
2692 			sbi->s_groups_count,
2693 			EXT4_BLOCKS_PER_GROUP(sb),
2694 			EXT4_INODES_PER_GROUP(sb),
2695 			sbi->s_mount_opt, sbi->s_mount_opt2);
2696 
2697 	cleancache_init_fs(sb);
2698 	return err;
2699 }
2700 
2701 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2702 {
2703 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 	struct flex_groups **old_groups, **new_groups;
2705 	int size, i, j;
2706 
2707 	if (!sbi->s_log_groups_per_flex)
2708 		return 0;
2709 
2710 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2711 	if (size <= sbi->s_flex_groups_allocated)
2712 		return 0;
2713 
2714 	new_groups = kvzalloc(roundup_pow_of_two(size *
2715 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2716 	if (!new_groups) {
2717 		ext4_msg(sb, KERN_ERR,
2718 			 "not enough memory for %d flex group pointers", size);
2719 		return -ENOMEM;
2720 	}
2721 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2722 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2723 					 sizeof(struct flex_groups)),
2724 					 GFP_KERNEL);
2725 		if (!new_groups[i]) {
2726 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2727 				kvfree(new_groups[j]);
2728 			kvfree(new_groups);
2729 			ext4_msg(sb, KERN_ERR,
2730 				 "not enough memory for %d flex groups", size);
2731 			return -ENOMEM;
2732 		}
2733 	}
2734 	rcu_read_lock();
2735 	old_groups = rcu_dereference(sbi->s_flex_groups);
2736 	if (old_groups)
2737 		memcpy(new_groups, old_groups,
2738 		       (sbi->s_flex_groups_allocated *
2739 			sizeof(struct flex_groups *)));
2740 	rcu_read_unlock();
2741 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2742 	sbi->s_flex_groups_allocated = size;
2743 	if (old_groups)
2744 		ext4_kvfree_array_rcu(old_groups);
2745 	return 0;
2746 }
2747 
2748 static int ext4_fill_flex_info(struct super_block *sb)
2749 {
2750 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2751 	struct ext4_group_desc *gdp = NULL;
2752 	struct flex_groups *fg;
2753 	ext4_group_t flex_group;
2754 	int i, err;
2755 
2756 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2757 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2758 		sbi->s_log_groups_per_flex = 0;
2759 		return 1;
2760 	}
2761 
2762 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2763 	if (err)
2764 		goto failed;
2765 
2766 	for (i = 0; i < sbi->s_groups_count; i++) {
2767 		gdp = ext4_get_group_desc(sb, i, NULL);
2768 
2769 		flex_group = ext4_flex_group(sbi, i);
2770 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2771 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2772 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2773 			     &fg->free_clusters);
2774 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2775 	}
2776 
2777 	return 1;
2778 failed:
2779 	return 0;
2780 }
2781 
2782 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2783 				   struct ext4_group_desc *gdp)
2784 {
2785 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2786 	__u16 crc = 0;
2787 	__le32 le_group = cpu_to_le32(block_group);
2788 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2789 
2790 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2791 		/* Use new metadata_csum algorithm */
2792 		__u32 csum32;
2793 		__u16 dummy_csum = 0;
2794 
2795 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2796 				     sizeof(le_group));
2797 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2798 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2799 				     sizeof(dummy_csum));
2800 		offset += sizeof(dummy_csum);
2801 		if (offset < sbi->s_desc_size)
2802 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2803 					     sbi->s_desc_size - offset);
2804 
2805 		crc = csum32 & 0xFFFF;
2806 		goto out;
2807 	}
2808 
2809 	/* old crc16 code */
2810 	if (!ext4_has_feature_gdt_csum(sb))
2811 		return 0;
2812 
2813 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2814 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2815 	crc = crc16(crc, (__u8 *)gdp, offset);
2816 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2817 	/* for checksum of struct ext4_group_desc do the rest...*/
2818 	if (ext4_has_feature_64bit(sb) &&
2819 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2820 		crc = crc16(crc, (__u8 *)gdp + offset,
2821 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2822 				offset);
2823 
2824 out:
2825 	return cpu_to_le16(crc);
2826 }
2827 
2828 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2829 				struct ext4_group_desc *gdp)
2830 {
2831 	if (ext4_has_group_desc_csum(sb) &&
2832 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2833 		return 0;
2834 
2835 	return 1;
2836 }
2837 
2838 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2839 			      struct ext4_group_desc *gdp)
2840 {
2841 	if (!ext4_has_group_desc_csum(sb))
2842 		return;
2843 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2844 }
2845 
2846 /* Called at mount-time, super-block is locked */
2847 static int ext4_check_descriptors(struct super_block *sb,
2848 				  ext4_fsblk_t sb_block,
2849 				  ext4_group_t *first_not_zeroed)
2850 {
2851 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2852 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2853 	ext4_fsblk_t last_block;
2854 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2855 	ext4_fsblk_t block_bitmap;
2856 	ext4_fsblk_t inode_bitmap;
2857 	ext4_fsblk_t inode_table;
2858 	int flexbg_flag = 0;
2859 	ext4_group_t i, grp = sbi->s_groups_count;
2860 
2861 	if (ext4_has_feature_flex_bg(sb))
2862 		flexbg_flag = 1;
2863 
2864 	ext4_debug("Checking group descriptors");
2865 
2866 	for (i = 0; i < sbi->s_groups_count; i++) {
2867 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2868 
2869 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2870 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2871 		else
2872 			last_block = first_block +
2873 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2874 
2875 		if ((grp == sbi->s_groups_count) &&
2876 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2877 			grp = i;
2878 
2879 		block_bitmap = ext4_block_bitmap(sb, gdp);
2880 		if (block_bitmap == sb_block) {
2881 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2882 				 "Block bitmap for group %u overlaps "
2883 				 "superblock", i);
2884 			if (!sb_rdonly(sb))
2885 				return 0;
2886 		}
2887 		if (block_bitmap >= sb_block + 1 &&
2888 		    block_bitmap <= last_bg_block) {
2889 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2890 				 "Block bitmap for group %u overlaps "
2891 				 "block group descriptors", i);
2892 			if (!sb_rdonly(sb))
2893 				return 0;
2894 		}
2895 		if (block_bitmap < first_block || block_bitmap > last_block) {
2896 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2897 			       "Block bitmap for group %u not in group "
2898 			       "(block %llu)!", i, block_bitmap);
2899 			return 0;
2900 		}
2901 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2902 		if (inode_bitmap == sb_block) {
2903 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2904 				 "Inode bitmap for group %u overlaps "
2905 				 "superblock", i);
2906 			if (!sb_rdonly(sb))
2907 				return 0;
2908 		}
2909 		if (inode_bitmap >= sb_block + 1 &&
2910 		    inode_bitmap <= last_bg_block) {
2911 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2912 				 "Inode bitmap for group %u overlaps "
2913 				 "block group descriptors", i);
2914 			if (!sb_rdonly(sb))
2915 				return 0;
2916 		}
2917 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2918 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2919 			       "Inode bitmap for group %u not in group "
2920 			       "(block %llu)!", i, inode_bitmap);
2921 			return 0;
2922 		}
2923 		inode_table = ext4_inode_table(sb, gdp);
2924 		if (inode_table == sb_block) {
2925 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2926 				 "Inode table for group %u overlaps "
2927 				 "superblock", i);
2928 			if (!sb_rdonly(sb))
2929 				return 0;
2930 		}
2931 		if (inode_table >= sb_block + 1 &&
2932 		    inode_table <= last_bg_block) {
2933 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2934 				 "Inode table for group %u overlaps "
2935 				 "block group descriptors", i);
2936 			if (!sb_rdonly(sb))
2937 				return 0;
2938 		}
2939 		if (inode_table < first_block ||
2940 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2941 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2942 			       "Inode table for group %u not in group "
2943 			       "(block %llu)!", i, inode_table);
2944 			return 0;
2945 		}
2946 		ext4_lock_group(sb, i);
2947 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2948 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2949 				 "Checksum for group %u failed (%u!=%u)",
2950 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2951 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2952 			if (!sb_rdonly(sb)) {
2953 				ext4_unlock_group(sb, i);
2954 				return 0;
2955 			}
2956 		}
2957 		ext4_unlock_group(sb, i);
2958 		if (!flexbg_flag)
2959 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2960 	}
2961 	if (NULL != first_not_zeroed)
2962 		*first_not_zeroed = grp;
2963 	return 1;
2964 }
2965 
2966 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2967  * the superblock) which were deleted from all directories, but held open by
2968  * a process at the time of a crash.  We walk the list and try to delete these
2969  * inodes at recovery time (only with a read-write filesystem).
2970  *
2971  * In order to keep the orphan inode chain consistent during traversal (in
2972  * case of crash during recovery), we link each inode into the superblock
2973  * orphan list_head and handle it the same way as an inode deletion during
2974  * normal operation (which journals the operations for us).
2975  *
2976  * We only do an iget() and an iput() on each inode, which is very safe if we
2977  * accidentally point at an in-use or already deleted inode.  The worst that
2978  * can happen in this case is that we get a "bit already cleared" message from
2979  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2980  * e2fsck was run on this filesystem, and it must have already done the orphan
2981  * inode cleanup for us, so we can safely abort without any further action.
2982  */
2983 static void ext4_orphan_cleanup(struct super_block *sb,
2984 				struct ext4_super_block *es)
2985 {
2986 	unsigned int s_flags = sb->s_flags;
2987 	int ret, nr_orphans = 0, nr_truncates = 0;
2988 #ifdef CONFIG_QUOTA
2989 	int quota_update = 0;
2990 	int i;
2991 #endif
2992 	if (!es->s_last_orphan) {
2993 		jbd_debug(4, "no orphan inodes to clean up\n");
2994 		return;
2995 	}
2996 
2997 	if (bdev_read_only(sb->s_bdev)) {
2998 		ext4_msg(sb, KERN_ERR, "write access "
2999 			"unavailable, skipping orphan cleanup");
3000 		return;
3001 	}
3002 
3003 	/* Check if feature set would not allow a r/w mount */
3004 	if (!ext4_feature_set_ok(sb, 0)) {
3005 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3006 			 "unknown ROCOMPAT features");
3007 		return;
3008 	}
3009 
3010 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3011 		/* don't clear list on RO mount w/ errors */
3012 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3013 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3014 				  "clearing orphan list.\n");
3015 			es->s_last_orphan = 0;
3016 		}
3017 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3018 		return;
3019 	}
3020 
3021 	if (s_flags & SB_RDONLY) {
3022 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3023 		sb->s_flags &= ~SB_RDONLY;
3024 	}
3025 #ifdef CONFIG_QUOTA
3026 	/* Needed for iput() to work correctly and not trash data */
3027 	sb->s_flags |= SB_ACTIVE;
3028 
3029 	/*
3030 	 * Turn on quotas which were not enabled for read-only mounts if
3031 	 * filesystem has quota feature, so that they are updated correctly.
3032 	 */
3033 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3034 		int ret = ext4_enable_quotas(sb);
3035 
3036 		if (!ret)
3037 			quota_update = 1;
3038 		else
3039 			ext4_msg(sb, KERN_ERR,
3040 				"Cannot turn on quotas: error %d", ret);
3041 	}
3042 
3043 	/* Turn on journaled quotas used for old sytle */
3044 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3045 		if (EXT4_SB(sb)->s_qf_names[i]) {
3046 			int ret = ext4_quota_on_mount(sb, i);
3047 
3048 			if (!ret)
3049 				quota_update = 1;
3050 			else
3051 				ext4_msg(sb, KERN_ERR,
3052 					"Cannot turn on journaled "
3053 					"quota: type %d: error %d", i, ret);
3054 		}
3055 	}
3056 #endif
3057 
3058 	while (es->s_last_orphan) {
3059 		struct inode *inode;
3060 
3061 		/*
3062 		 * We may have encountered an error during cleanup; if
3063 		 * so, skip the rest.
3064 		 */
3065 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3066 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3067 			es->s_last_orphan = 0;
3068 			break;
3069 		}
3070 
3071 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3072 		if (IS_ERR(inode)) {
3073 			es->s_last_orphan = 0;
3074 			break;
3075 		}
3076 
3077 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3078 		dquot_initialize(inode);
3079 		if (inode->i_nlink) {
3080 			if (test_opt(sb, DEBUG))
3081 				ext4_msg(sb, KERN_DEBUG,
3082 					"%s: truncating inode %lu to %lld bytes",
3083 					__func__, inode->i_ino, inode->i_size);
3084 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3085 				  inode->i_ino, inode->i_size);
3086 			inode_lock(inode);
3087 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3088 			ret = ext4_truncate(inode);
3089 			if (ret)
3090 				ext4_std_error(inode->i_sb, ret);
3091 			inode_unlock(inode);
3092 			nr_truncates++;
3093 		} else {
3094 			if (test_opt(sb, DEBUG))
3095 				ext4_msg(sb, KERN_DEBUG,
3096 					"%s: deleting unreferenced inode %lu",
3097 					__func__, inode->i_ino);
3098 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3099 				  inode->i_ino);
3100 			nr_orphans++;
3101 		}
3102 		iput(inode);  /* The delete magic happens here! */
3103 	}
3104 
3105 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3106 
3107 	if (nr_orphans)
3108 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3109 		       PLURAL(nr_orphans));
3110 	if (nr_truncates)
3111 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3112 		       PLURAL(nr_truncates));
3113 #ifdef CONFIG_QUOTA
3114 	/* Turn off quotas if they were enabled for orphan cleanup */
3115 	if (quota_update) {
3116 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3117 			if (sb_dqopt(sb)->files[i])
3118 				dquot_quota_off(sb, i);
3119 		}
3120 	}
3121 #endif
3122 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3123 }
3124 
3125 /*
3126  * Maximal extent format file size.
3127  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3128  * extent format containers, within a sector_t, and within i_blocks
3129  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3130  * so that won't be a limiting factor.
3131  *
3132  * However there is other limiting factor. We do store extents in the form
3133  * of starting block and length, hence the resulting length of the extent
3134  * covering maximum file size must fit into on-disk format containers as
3135  * well. Given that length is always by 1 unit bigger than max unit (because
3136  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3137  *
3138  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3139  */
3140 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3141 {
3142 	loff_t res;
3143 	loff_t upper_limit = MAX_LFS_FILESIZE;
3144 
3145 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3146 
3147 	if (!has_huge_files) {
3148 		upper_limit = (1LL << 32) - 1;
3149 
3150 		/* total blocks in file system block size */
3151 		upper_limit >>= (blkbits - 9);
3152 		upper_limit <<= blkbits;
3153 	}
3154 
3155 	/*
3156 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3157 	 * by one fs block, so ee_len can cover the extent of maximum file
3158 	 * size
3159 	 */
3160 	res = (1LL << 32) - 1;
3161 	res <<= blkbits;
3162 
3163 	/* Sanity check against vm- & vfs- imposed limits */
3164 	if (res > upper_limit)
3165 		res = upper_limit;
3166 
3167 	return res;
3168 }
3169 
3170 /*
3171  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3172  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3173  * We need to be 1 filesystem block less than the 2^48 sector limit.
3174  */
3175 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3176 {
3177 	loff_t res = EXT4_NDIR_BLOCKS;
3178 	int meta_blocks;
3179 	loff_t upper_limit;
3180 	/* This is calculated to be the largest file size for a dense, block
3181 	 * mapped file such that the file's total number of 512-byte sectors,
3182 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3183 	 *
3184 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3185 	 * number of 512-byte sectors of the file.
3186 	 */
3187 
3188 	if (!has_huge_files) {
3189 		/*
3190 		 * !has_huge_files or implies that the inode i_block field
3191 		 * represents total file blocks in 2^32 512-byte sectors ==
3192 		 * size of vfs inode i_blocks * 8
3193 		 */
3194 		upper_limit = (1LL << 32) - 1;
3195 
3196 		/* total blocks in file system block size */
3197 		upper_limit >>= (bits - 9);
3198 
3199 	} else {
3200 		/*
3201 		 * We use 48 bit ext4_inode i_blocks
3202 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3203 		 * represent total number of blocks in
3204 		 * file system block size
3205 		 */
3206 		upper_limit = (1LL << 48) - 1;
3207 
3208 	}
3209 
3210 	/* indirect blocks */
3211 	meta_blocks = 1;
3212 	/* double indirect blocks */
3213 	meta_blocks += 1 + (1LL << (bits-2));
3214 	/* tripple indirect blocks */
3215 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3216 
3217 	upper_limit -= meta_blocks;
3218 	upper_limit <<= bits;
3219 
3220 	res += 1LL << (bits-2);
3221 	res += 1LL << (2*(bits-2));
3222 	res += 1LL << (3*(bits-2));
3223 	res <<= bits;
3224 	if (res > upper_limit)
3225 		res = upper_limit;
3226 
3227 	if (res > MAX_LFS_FILESIZE)
3228 		res = MAX_LFS_FILESIZE;
3229 
3230 	return res;
3231 }
3232 
3233 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3234 				   ext4_fsblk_t logical_sb_block, int nr)
3235 {
3236 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3237 	ext4_group_t bg, first_meta_bg;
3238 	int has_super = 0;
3239 
3240 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3241 
3242 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3243 		return logical_sb_block + nr + 1;
3244 	bg = sbi->s_desc_per_block * nr;
3245 	if (ext4_bg_has_super(sb, bg))
3246 		has_super = 1;
3247 
3248 	/*
3249 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3250 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3251 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3252 	 * compensate.
3253 	 */
3254 	if (sb->s_blocksize == 1024 && nr == 0 &&
3255 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3256 		has_super++;
3257 
3258 	return (has_super + ext4_group_first_block_no(sb, bg));
3259 }
3260 
3261 /**
3262  * ext4_get_stripe_size: Get the stripe size.
3263  * @sbi: In memory super block info
3264  *
3265  * If we have specified it via mount option, then
3266  * use the mount option value. If the value specified at mount time is
3267  * greater than the blocks per group use the super block value.
3268  * If the super block value is greater than blocks per group return 0.
3269  * Allocator needs it be less than blocks per group.
3270  *
3271  */
3272 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3273 {
3274 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3275 	unsigned long stripe_width =
3276 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3277 	int ret;
3278 
3279 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3280 		ret = sbi->s_stripe;
3281 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3282 		ret = stripe_width;
3283 	else if (stride && stride <= sbi->s_blocks_per_group)
3284 		ret = stride;
3285 	else
3286 		ret = 0;
3287 
3288 	/*
3289 	 * If the stripe width is 1, this makes no sense and
3290 	 * we set it to 0 to turn off stripe handling code.
3291 	 */
3292 	if (ret <= 1)
3293 		ret = 0;
3294 
3295 	return ret;
3296 }
3297 
3298 /*
3299  * Check whether this filesystem can be mounted based on
3300  * the features present and the RDONLY/RDWR mount requested.
3301  * Returns 1 if this filesystem can be mounted as requested,
3302  * 0 if it cannot be.
3303  */
3304 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3305 {
3306 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3307 		ext4_msg(sb, KERN_ERR,
3308 			"Couldn't mount because of "
3309 			"unsupported optional features (%x)",
3310 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3311 			~EXT4_FEATURE_INCOMPAT_SUPP));
3312 		return 0;
3313 	}
3314 
3315 #ifndef CONFIG_UNICODE
3316 	if (ext4_has_feature_casefold(sb)) {
3317 		ext4_msg(sb, KERN_ERR,
3318 			 "Filesystem with casefold feature cannot be "
3319 			 "mounted without CONFIG_UNICODE");
3320 		return 0;
3321 	}
3322 #endif
3323 
3324 	if (readonly)
3325 		return 1;
3326 
3327 	if (ext4_has_feature_readonly(sb)) {
3328 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3329 		sb->s_flags |= SB_RDONLY;
3330 		return 1;
3331 	}
3332 
3333 	/* Check that feature set is OK for a read-write mount */
3334 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3335 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3336 			 "unsupported optional features (%x)",
3337 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3338 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3339 		return 0;
3340 	}
3341 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3342 		ext4_msg(sb, KERN_ERR,
3343 			 "Can't support bigalloc feature without "
3344 			 "extents feature\n");
3345 		return 0;
3346 	}
3347 
3348 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3349 	if (!readonly && (ext4_has_feature_quota(sb) ||
3350 			  ext4_has_feature_project(sb))) {
3351 		ext4_msg(sb, KERN_ERR,
3352 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3353 		return 0;
3354 	}
3355 #endif  /* CONFIG_QUOTA */
3356 	return 1;
3357 }
3358 
3359 /*
3360  * This function is called once a day if we have errors logged
3361  * on the file system
3362  */
3363 static void print_daily_error_info(struct timer_list *t)
3364 {
3365 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3366 	struct super_block *sb = sbi->s_sb;
3367 	struct ext4_super_block *es = sbi->s_es;
3368 
3369 	if (es->s_error_count)
3370 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3371 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3372 			 le32_to_cpu(es->s_error_count));
3373 	if (es->s_first_error_time) {
3374 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3375 		       sb->s_id,
3376 		       ext4_get_tstamp(es, s_first_error_time),
3377 		       (int) sizeof(es->s_first_error_func),
3378 		       es->s_first_error_func,
3379 		       le32_to_cpu(es->s_first_error_line));
3380 		if (es->s_first_error_ino)
3381 			printk(KERN_CONT ": inode %u",
3382 			       le32_to_cpu(es->s_first_error_ino));
3383 		if (es->s_first_error_block)
3384 			printk(KERN_CONT ": block %llu", (unsigned long long)
3385 			       le64_to_cpu(es->s_first_error_block));
3386 		printk(KERN_CONT "\n");
3387 	}
3388 	if (es->s_last_error_time) {
3389 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3390 		       sb->s_id,
3391 		       ext4_get_tstamp(es, s_last_error_time),
3392 		       (int) sizeof(es->s_last_error_func),
3393 		       es->s_last_error_func,
3394 		       le32_to_cpu(es->s_last_error_line));
3395 		if (es->s_last_error_ino)
3396 			printk(KERN_CONT ": inode %u",
3397 			       le32_to_cpu(es->s_last_error_ino));
3398 		if (es->s_last_error_block)
3399 			printk(KERN_CONT ": block %llu", (unsigned long long)
3400 			       le64_to_cpu(es->s_last_error_block));
3401 		printk(KERN_CONT "\n");
3402 	}
3403 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3404 }
3405 
3406 /* Find next suitable group and run ext4_init_inode_table */
3407 static int ext4_run_li_request(struct ext4_li_request *elr)
3408 {
3409 	struct ext4_group_desc *gdp = NULL;
3410 	struct super_block *sb = elr->lr_super;
3411 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3412 	ext4_group_t group = elr->lr_next_group;
3413 	unsigned long timeout = 0;
3414 	unsigned int prefetch_ios = 0;
3415 	int ret = 0;
3416 
3417 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3418 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3419 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3420 		if (prefetch_ios)
3421 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3422 					      prefetch_ios);
3423 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3424 					    prefetch_ios);
3425 		if (group >= elr->lr_next_group) {
3426 			ret = 1;
3427 			if (elr->lr_first_not_zeroed != ngroups &&
3428 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3429 				elr->lr_next_group = elr->lr_first_not_zeroed;
3430 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3431 				ret = 0;
3432 			}
3433 		}
3434 		return ret;
3435 	}
3436 
3437 	for (; group < ngroups; group++) {
3438 		gdp = ext4_get_group_desc(sb, group, NULL);
3439 		if (!gdp) {
3440 			ret = 1;
3441 			break;
3442 		}
3443 
3444 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3445 			break;
3446 	}
3447 
3448 	if (group >= ngroups)
3449 		ret = 1;
3450 
3451 	if (!ret) {
3452 		timeout = jiffies;
3453 		ret = ext4_init_inode_table(sb, group,
3454 					    elr->lr_timeout ? 0 : 1);
3455 		trace_ext4_lazy_itable_init(sb, group);
3456 		if (elr->lr_timeout == 0) {
3457 			timeout = (jiffies - timeout) *
3458 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3459 			elr->lr_timeout = timeout;
3460 		}
3461 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3462 		elr->lr_next_group = group + 1;
3463 	}
3464 	return ret;
3465 }
3466 
3467 /*
3468  * Remove lr_request from the list_request and free the
3469  * request structure. Should be called with li_list_mtx held
3470  */
3471 static void ext4_remove_li_request(struct ext4_li_request *elr)
3472 {
3473 	if (!elr)
3474 		return;
3475 
3476 	list_del(&elr->lr_request);
3477 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3478 	kfree(elr);
3479 }
3480 
3481 static void ext4_unregister_li_request(struct super_block *sb)
3482 {
3483 	mutex_lock(&ext4_li_mtx);
3484 	if (!ext4_li_info) {
3485 		mutex_unlock(&ext4_li_mtx);
3486 		return;
3487 	}
3488 
3489 	mutex_lock(&ext4_li_info->li_list_mtx);
3490 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3491 	mutex_unlock(&ext4_li_info->li_list_mtx);
3492 	mutex_unlock(&ext4_li_mtx);
3493 }
3494 
3495 static struct task_struct *ext4_lazyinit_task;
3496 
3497 /*
3498  * This is the function where ext4lazyinit thread lives. It walks
3499  * through the request list searching for next scheduled filesystem.
3500  * When such a fs is found, run the lazy initialization request
3501  * (ext4_rn_li_request) and keep track of the time spend in this
3502  * function. Based on that time we compute next schedule time of
3503  * the request. When walking through the list is complete, compute
3504  * next waking time and put itself into sleep.
3505  */
3506 static int ext4_lazyinit_thread(void *arg)
3507 {
3508 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3509 	struct list_head *pos, *n;
3510 	struct ext4_li_request *elr;
3511 	unsigned long next_wakeup, cur;
3512 
3513 	BUG_ON(NULL == eli);
3514 
3515 cont_thread:
3516 	while (true) {
3517 		next_wakeup = MAX_JIFFY_OFFSET;
3518 
3519 		mutex_lock(&eli->li_list_mtx);
3520 		if (list_empty(&eli->li_request_list)) {
3521 			mutex_unlock(&eli->li_list_mtx);
3522 			goto exit_thread;
3523 		}
3524 		list_for_each_safe(pos, n, &eli->li_request_list) {
3525 			int err = 0;
3526 			int progress = 0;
3527 			elr = list_entry(pos, struct ext4_li_request,
3528 					 lr_request);
3529 
3530 			if (time_before(jiffies, elr->lr_next_sched)) {
3531 				if (time_before(elr->lr_next_sched, next_wakeup))
3532 					next_wakeup = elr->lr_next_sched;
3533 				continue;
3534 			}
3535 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3536 				if (sb_start_write_trylock(elr->lr_super)) {
3537 					progress = 1;
3538 					/*
3539 					 * We hold sb->s_umount, sb can not
3540 					 * be removed from the list, it is
3541 					 * now safe to drop li_list_mtx
3542 					 */
3543 					mutex_unlock(&eli->li_list_mtx);
3544 					err = ext4_run_li_request(elr);
3545 					sb_end_write(elr->lr_super);
3546 					mutex_lock(&eli->li_list_mtx);
3547 					n = pos->next;
3548 				}
3549 				up_read((&elr->lr_super->s_umount));
3550 			}
3551 			/* error, remove the lazy_init job */
3552 			if (err) {
3553 				ext4_remove_li_request(elr);
3554 				continue;
3555 			}
3556 			if (!progress) {
3557 				elr->lr_next_sched = jiffies +
3558 					(prandom_u32()
3559 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3560 			}
3561 			if (time_before(elr->lr_next_sched, next_wakeup))
3562 				next_wakeup = elr->lr_next_sched;
3563 		}
3564 		mutex_unlock(&eli->li_list_mtx);
3565 
3566 		try_to_freeze();
3567 
3568 		cur = jiffies;
3569 		if ((time_after_eq(cur, next_wakeup)) ||
3570 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3571 			cond_resched();
3572 			continue;
3573 		}
3574 
3575 		schedule_timeout_interruptible(next_wakeup - cur);
3576 
3577 		if (kthread_should_stop()) {
3578 			ext4_clear_request_list();
3579 			goto exit_thread;
3580 		}
3581 	}
3582 
3583 exit_thread:
3584 	/*
3585 	 * It looks like the request list is empty, but we need
3586 	 * to check it under the li_list_mtx lock, to prevent any
3587 	 * additions into it, and of course we should lock ext4_li_mtx
3588 	 * to atomically free the list and ext4_li_info, because at
3589 	 * this point another ext4 filesystem could be registering
3590 	 * new one.
3591 	 */
3592 	mutex_lock(&ext4_li_mtx);
3593 	mutex_lock(&eli->li_list_mtx);
3594 	if (!list_empty(&eli->li_request_list)) {
3595 		mutex_unlock(&eli->li_list_mtx);
3596 		mutex_unlock(&ext4_li_mtx);
3597 		goto cont_thread;
3598 	}
3599 	mutex_unlock(&eli->li_list_mtx);
3600 	kfree(ext4_li_info);
3601 	ext4_li_info = NULL;
3602 	mutex_unlock(&ext4_li_mtx);
3603 
3604 	return 0;
3605 }
3606 
3607 static void ext4_clear_request_list(void)
3608 {
3609 	struct list_head *pos, *n;
3610 	struct ext4_li_request *elr;
3611 
3612 	mutex_lock(&ext4_li_info->li_list_mtx);
3613 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3614 		elr = list_entry(pos, struct ext4_li_request,
3615 				 lr_request);
3616 		ext4_remove_li_request(elr);
3617 	}
3618 	mutex_unlock(&ext4_li_info->li_list_mtx);
3619 }
3620 
3621 static int ext4_run_lazyinit_thread(void)
3622 {
3623 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3624 					 ext4_li_info, "ext4lazyinit");
3625 	if (IS_ERR(ext4_lazyinit_task)) {
3626 		int err = PTR_ERR(ext4_lazyinit_task);
3627 		ext4_clear_request_list();
3628 		kfree(ext4_li_info);
3629 		ext4_li_info = NULL;
3630 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3631 				 "initialization thread\n",
3632 				 err);
3633 		return err;
3634 	}
3635 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3636 	return 0;
3637 }
3638 
3639 /*
3640  * Check whether it make sense to run itable init. thread or not.
3641  * If there is at least one uninitialized inode table, return
3642  * corresponding group number, else the loop goes through all
3643  * groups and return total number of groups.
3644  */
3645 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3646 {
3647 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3648 	struct ext4_group_desc *gdp = NULL;
3649 
3650 	if (!ext4_has_group_desc_csum(sb))
3651 		return ngroups;
3652 
3653 	for (group = 0; group < ngroups; group++) {
3654 		gdp = ext4_get_group_desc(sb, group, NULL);
3655 		if (!gdp)
3656 			continue;
3657 
3658 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3659 			break;
3660 	}
3661 
3662 	return group;
3663 }
3664 
3665 static int ext4_li_info_new(void)
3666 {
3667 	struct ext4_lazy_init *eli = NULL;
3668 
3669 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3670 	if (!eli)
3671 		return -ENOMEM;
3672 
3673 	INIT_LIST_HEAD(&eli->li_request_list);
3674 	mutex_init(&eli->li_list_mtx);
3675 
3676 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3677 
3678 	ext4_li_info = eli;
3679 
3680 	return 0;
3681 }
3682 
3683 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3684 					    ext4_group_t start)
3685 {
3686 	struct ext4_li_request *elr;
3687 
3688 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3689 	if (!elr)
3690 		return NULL;
3691 
3692 	elr->lr_super = sb;
3693 	elr->lr_first_not_zeroed = start;
3694 	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3695 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3696 	else {
3697 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3698 		elr->lr_next_group = start;
3699 	}
3700 
3701 	/*
3702 	 * Randomize first schedule time of the request to
3703 	 * spread the inode table initialization requests
3704 	 * better.
3705 	 */
3706 	elr->lr_next_sched = jiffies + (prandom_u32() %
3707 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3708 	return elr;
3709 }
3710 
3711 int ext4_register_li_request(struct super_block *sb,
3712 			     ext4_group_t first_not_zeroed)
3713 {
3714 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3715 	struct ext4_li_request *elr = NULL;
3716 	ext4_group_t ngroups = sbi->s_groups_count;
3717 	int ret = 0;
3718 
3719 	mutex_lock(&ext4_li_mtx);
3720 	if (sbi->s_li_request != NULL) {
3721 		/*
3722 		 * Reset timeout so it can be computed again, because
3723 		 * s_li_wait_mult might have changed.
3724 		 */
3725 		sbi->s_li_request->lr_timeout = 0;
3726 		goto out;
3727 	}
3728 
3729 	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3730 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3731 	     !test_opt(sb, INIT_INODE_TABLE)))
3732 		goto out;
3733 
3734 	elr = ext4_li_request_new(sb, first_not_zeroed);
3735 	if (!elr) {
3736 		ret = -ENOMEM;
3737 		goto out;
3738 	}
3739 
3740 	if (NULL == ext4_li_info) {
3741 		ret = ext4_li_info_new();
3742 		if (ret)
3743 			goto out;
3744 	}
3745 
3746 	mutex_lock(&ext4_li_info->li_list_mtx);
3747 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3748 	mutex_unlock(&ext4_li_info->li_list_mtx);
3749 
3750 	sbi->s_li_request = elr;
3751 	/*
3752 	 * set elr to NULL here since it has been inserted to
3753 	 * the request_list and the removal and free of it is
3754 	 * handled by ext4_clear_request_list from now on.
3755 	 */
3756 	elr = NULL;
3757 
3758 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3759 		ret = ext4_run_lazyinit_thread();
3760 		if (ret)
3761 			goto out;
3762 	}
3763 out:
3764 	mutex_unlock(&ext4_li_mtx);
3765 	if (ret)
3766 		kfree(elr);
3767 	return ret;
3768 }
3769 
3770 /*
3771  * We do not need to lock anything since this is called on
3772  * module unload.
3773  */
3774 static void ext4_destroy_lazyinit_thread(void)
3775 {
3776 	/*
3777 	 * If thread exited earlier
3778 	 * there's nothing to be done.
3779 	 */
3780 	if (!ext4_li_info || !ext4_lazyinit_task)
3781 		return;
3782 
3783 	kthread_stop(ext4_lazyinit_task);
3784 }
3785 
3786 static int set_journal_csum_feature_set(struct super_block *sb)
3787 {
3788 	int ret = 1;
3789 	int compat, incompat;
3790 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3791 
3792 	if (ext4_has_metadata_csum(sb)) {
3793 		/* journal checksum v3 */
3794 		compat = 0;
3795 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3796 	} else {
3797 		/* journal checksum v1 */
3798 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3799 		incompat = 0;
3800 	}
3801 
3802 	jbd2_journal_clear_features(sbi->s_journal,
3803 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3804 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3805 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3806 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3807 		ret = jbd2_journal_set_features(sbi->s_journal,
3808 				compat, 0,
3809 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3810 				incompat);
3811 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3812 		ret = jbd2_journal_set_features(sbi->s_journal,
3813 				compat, 0,
3814 				incompat);
3815 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3816 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3817 	} else {
3818 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3819 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3820 	}
3821 
3822 	return ret;
3823 }
3824 
3825 /*
3826  * Note: calculating the overhead so we can be compatible with
3827  * historical BSD practice is quite difficult in the face of
3828  * clusters/bigalloc.  This is because multiple metadata blocks from
3829  * different block group can end up in the same allocation cluster.
3830  * Calculating the exact overhead in the face of clustered allocation
3831  * requires either O(all block bitmaps) in memory or O(number of block
3832  * groups**2) in time.  We will still calculate the superblock for
3833  * older file systems --- and if we come across with a bigalloc file
3834  * system with zero in s_overhead_clusters the estimate will be close to
3835  * correct especially for very large cluster sizes --- but for newer
3836  * file systems, it's better to calculate this figure once at mkfs
3837  * time, and store it in the superblock.  If the superblock value is
3838  * present (even for non-bigalloc file systems), we will use it.
3839  */
3840 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3841 			  char *buf)
3842 {
3843 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3844 	struct ext4_group_desc	*gdp;
3845 	ext4_fsblk_t		first_block, last_block, b;
3846 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3847 	int			s, j, count = 0;
3848 
3849 	if (!ext4_has_feature_bigalloc(sb))
3850 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3851 			sbi->s_itb_per_group + 2);
3852 
3853 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3854 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3855 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3856 	for (i = 0; i < ngroups; i++) {
3857 		gdp = ext4_get_group_desc(sb, i, NULL);
3858 		b = ext4_block_bitmap(sb, gdp);
3859 		if (b >= first_block && b <= last_block) {
3860 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3861 			count++;
3862 		}
3863 		b = ext4_inode_bitmap(sb, gdp);
3864 		if (b >= first_block && b <= last_block) {
3865 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3866 			count++;
3867 		}
3868 		b = ext4_inode_table(sb, gdp);
3869 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3870 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3871 				int c = EXT4_B2C(sbi, b - first_block);
3872 				ext4_set_bit(c, buf);
3873 				count++;
3874 			}
3875 		if (i != grp)
3876 			continue;
3877 		s = 0;
3878 		if (ext4_bg_has_super(sb, grp)) {
3879 			ext4_set_bit(s++, buf);
3880 			count++;
3881 		}
3882 		j = ext4_bg_num_gdb(sb, grp);
3883 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3884 			ext4_error(sb, "Invalid number of block group "
3885 				   "descriptor blocks: %d", j);
3886 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3887 		}
3888 		count += j;
3889 		for (; j > 0; j--)
3890 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3891 	}
3892 	if (!count)
3893 		return 0;
3894 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3895 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3896 }
3897 
3898 /*
3899  * Compute the overhead and stash it in sbi->s_overhead
3900  */
3901 int ext4_calculate_overhead(struct super_block *sb)
3902 {
3903 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3904 	struct ext4_super_block *es = sbi->s_es;
3905 	struct inode *j_inode;
3906 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3907 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3908 	ext4_fsblk_t overhead = 0;
3909 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3910 
3911 	if (!buf)
3912 		return -ENOMEM;
3913 
3914 	/*
3915 	 * Compute the overhead (FS structures).  This is constant
3916 	 * for a given filesystem unless the number of block groups
3917 	 * changes so we cache the previous value until it does.
3918 	 */
3919 
3920 	/*
3921 	 * All of the blocks before first_data_block are overhead
3922 	 */
3923 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3924 
3925 	/*
3926 	 * Add the overhead found in each block group
3927 	 */
3928 	for (i = 0; i < ngroups; i++) {
3929 		int blks;
3930 
3931 		blks = count_overhead(sb, i, buf);
3932 		overhead += blks;
3933 		if (blks)
3934 			memset(buf, 0, PAGE_SIZE);
3935 		cond_resched();
3936 	}
3937 
3938 	/*
3939 	 * Add the internal journal blocks whether the journal has been
3940 	 * loaded or not
3941 	 */
3942 	if (sbi->s_journal && !sbi->s_journal_bdev)
3943 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3944 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3945 		/* j_inum for internal journal is non-zero */
3946 		j_inode = ext4_get_journal_inode(sb, j_inum);
3947 		if (j_inode) {
3948 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3949 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3950 			iput(j_inode);
3951 		} else {
3952 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3953 		}
3954 	}
3955 	sbi->s_overhead = overhead;
3956 	smp_wmb();
3957 	free_page((unsigned long) buf);
3958 	return 0;
3959 }
3960 
3961 static void ext4_set_resv_clusters(struct super_block *sb)
3962 {
3963 	ext4_fsblk_t resv_clusters;
3964 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3965 
3966 	/*
3967 	 * There's no need to reserve anything when we aren't using extents.
3968 	 * The space estimates are exact, there are no unwritten extents,
3969 	 * hole punching doesn't need new metadata... This is needed especially
3970 	 * to keep ext2/3 backward compatibility.
3971 	 */
3972 	if (!ext4_has_feature_extents(sb))
3973 		return;
3974 	/*
3975 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3976 	 * This should cover the situations where we can not afford to run
3977 	 * out of space like for example punch hole, or converting
3978 	 * unwritten extents in delalloc path. In most cases such
3979 	 * allocation would require 1, or 2 blocks, higher numbers are
3980 	 * very rare.
3981 	 */
3982 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3983 			 sbi->s_cluster_bits);
3984 
3985 	do_div(resv_clusters, 50);
3986 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3987 
3988 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3989 }
3990 
3991 static const char *ext4_quota_mode(struct super_block *sb)
3992 {
3993 #ifdef CONFIG_QUOTA
3994 	if (!ext4_quota_capable(sb))
3995 		return "none";
3996 
3997 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3998 		return "journalled";
3999 	else
4000 		return "writeback";
4001 #else
4002 	return "disabled";
4003 #endif
4004 }
4005 
4006 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4007 {
4008 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4009 	char *orig_data = kstrdup(data, GFP_KERNEL);
4010 	struct buffer_head *bh, **group_desc;
4011 	struct ext4_super_block *es = NULL;
4012 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4013 	struct flex_groups **flex_groups;
4014 	ext4_fsblk_t block;
4015 	ext4_fsblk_t sb_block = get_sb_block(&data);
4016 	ext4_fsblk_t logical_sb_block;
4017 	unsigned long offset = 0;
4018 	unsigned long journal_devnum = 0;
4019 	unsigned long def_mount_opts;
4020 	struct inode *root;
4021 	const char *descr;
4022 	int ret = -ENOMEM;
4023 	int blocksize, clustersize;
4024 	unsigned int db_count;
4025 	unsigned int i;
4026 	int needs_recovery, has_huge_files;
4027 	__u64 blocks_count;
4028 	int err = 0;
4029 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4030 	ext4_group_t first_not_zeroed;
4031 
4032 	if ((data && !orig_data) || !sbi)
4033 		goto out_free_base;
4034 
4035 	sbi->s_daxdev = dax_dev;
4036 	sbi->s_blockgroup_lock =
4037 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4038 	if (!sbi->s_blockgroup_lock)
4039 		goto out_free_base;
4040 
4041 	sb->s_fs_info = sbi;
4042 	sbi->s_sb = sb;
4043 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4044 	sbi->s_sb_block = sb_block;
4045 	sbi->s_sectors_written_start =
4046 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4047 
4048 	/* Cleanup superblock name */
4049 	strreplace(sb->s_id, '/', '!');
4050 
4051 	/* -EINVAL is default */
4052 	ret = -EINVAL;
4053 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4054 	if (!blocksize) {
4055 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4056 		goto out_fail;
4057 	}
4058 
4059 	/*
4060 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4061 	 * block sizes.  We need to calculate the offset from buffer start.
4062 	 */
4063 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4064 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4065 		offset = do_div(logical_sb_block, blocksize);
4066 	} else {
4067 		logical_sb_block = sb_block;
4068 	}
4069 
4070 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4071 	if (IS_ERR(bh)) {
4072 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4073 		ret = PTR_ERR(bh);
4074 		goto out_fail;
4075 	}
4076 	/*
4077 	 * Note: s_es must be initialized as soon as possible because
4078 	 *       some ext4 macro-instructions depend on its value
4079 	 */
4080 	es = (struct ext4_super_block *) (bh->b_data + offset);
4081 	sbi->s_es = es;
4082 	sb->s_magic = le16_to_cpu(es->s_magic);
4083 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4084 		goto cantfind_ext4;
4085 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4086 
4087 	/* Warn if metadata_csum and gdt_csum are both set. */
4088 	if (ext4_has_feature_metadata_csum(sb) &&
4089 	    ext4_has_feature_gdt_csum(sb))
4090 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4091 			     "redundant flags; please run fsck.");
4092 
4093 	/* Check for a known checksum algorithm */
4094 	if (!ext4_verify_csum_type(sb, es)) {
4095 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4096 			 "unknown checksum algorithm.");
4097 		silent = 1;
4098 		goto cantfind_ext4;
4099 	}
4100 
4101 	/* Load the checksum driver */
4102 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4103 	if (IS_ERR(sbi->s_chksum_driver)) {
4104 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4105 		ret = PTR_ERR(sbi->s_chksum_driver);
4106 		sbi->s_chksum_driver = NULL;
4107 		goto failed_mount;
4108 	}
4109 
4110 	/* Check superblock checksum */
4111 	if (!ext4_superblock_csum_verify(sb, es)) {
4112 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4113 			 "invalid superblock checksum.  Run e2fsck?");
4114 		silent = 1;
4115 		ret = -EFSBADCRC;
4116 		goto cantfind_ext4;
4117 	}
4118 
4119 	/* Precompute checksum seed for all metadata */
4120 	if (ext4_has_feature_csum_seed(sb))
4121 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4122 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4123 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4124 					       sizeof(es->s_uuid));
4125 
4126 	/* Set defaults before we parse the mount options */
4127 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4128 	set_opt(sb, INIT_INODE_TABLE);
4129 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4130 		set_opt(sb, DEBUG);
4131 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4132 		set_opt(sb, GRPID);
4133 	if (def_mount_opts & EXT4_DEFM_UID16)
4134 		set_opt(sb, NO_UID32);
4135 	/* xattr user namespace & acls are now defaulted on */
4136 	set_opt(sb, XATTR_USER);
4137 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4138 	set_opt(sb, POSIX_ACL);
4139 #endif
4140 	if (ext4_has_feature_fast_commit(sb))
4141 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4142 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4143 	if (ext4_has_metadata_csum(sb))
4144 		set_opt(sb, JOURNAL_CHECKSUM);
4145 
4146 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4147 		set_opt(sb, JOURNAL_DATA);
4148 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4149 		set_opt(sb, ORDERED_DATA);
4150 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4151 		set_opt(sb, WRITEBACK_DATA);
4152 
4153 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4154 		set_opt(sb, ERRORS_PANIC);
4155 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4156 		set_opt(sb, ERRORS_CONT);
4157 	else
4158 		set_opt(sb, ERRORS_RO);
4159 	/* block_validity enabled by default; disable with noblock_validity */
4160 	set_opt(sb, BLOCK_VALIDITY);
4161 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4162 		set_opt(sb, DISCARD);
4163 
4164 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4165 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4166 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4167 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4168 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4169 
4170 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4171 		set_opt(sb, BARRIER);
4172 
4173 	/*
4174 	 * enable delayed allocation by default
4175 	 * Use -o nodelalloc to turn it off
4176 	 */
4177 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4178 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4179 		set_opt(sb, DELALLOC);
4180 
4181 	/*
4182 	 * set default s_li_wait_mult for lazyinit, for the case there is
4183 	 * no mount option specified.
4184 	 */
4185 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4186 
4187 	if (le32_to_cpu(es->s_log_block_size) >
4188 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4189 		ext4_msg(sb, KERN_ERR,
4190 			 "Invalid log block size: %u",
4191 			 le32_to_cpu(es->s_log_block_size));
4192 		goto failed_mount;
4193 	}
4194 	if (le32_to_cpu(es->s_log_cluster_size) >
4195 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4196 		ext4_msg(sb, KERN_ERR,
4197 			 "Invalid log cluster size: %u",
4198 			 le32_to_cpu(es->s_log_cluster_size));
4199 		goto failed_mount;
4200 	}
4201 
4202 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4203 
4204 	if (blocksize == PAGE_SIZE)
4205 		set_opt(sb, DIOREAD_NOLOCK);
4206 
4207 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4208 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4209 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4210 	} else {
4211 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4212 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4213 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4214 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4215 				 sbi->s_first_ino);
4216 			goto failed_mount;
4217 		}
4218 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4219 		    (!is_power_of_2(sbi->s_inode_size)) ||
4220 		    (sbi->s_inode_size > blocksize)) {
4221 			ext4_msg(sb, KERN_ERR,
4222 			       "unsupported inode size: %d",
4223 			       sbi->s_inode_size);
4224 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4225 			goto failed_mount;
4226 		}
4227 		/*
4228 		 * i_atime_extra is the last extra field available for
4229 		 * [acm]times in struct ext4_inode. Checking for that
4230 		 * field should suffice to ensure we have extra space
4231 		 * for all three.
4232 		 */
4233 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4234 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4235 			sb->s_time_gran = 1;
4236 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4237 		} else {
4238 			sb->s_time_gran = NSEC_PER_SEC;
4239 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4240 		}
4241 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4242 	}
4243 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4244 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4245 			EXT4_GOOD_OLD_INODE_SIZE;
4246 		if (ext4_has_feature_extra_isize(sb)) {
4247 			unsigned v, max = (sbi->s_inode_size -
4248 					   EXT4_GOOD_OLD_INODE_SIZE);
4249 
4250 			v = le16_to_cpu(es->s_want_extra_isize);
4251 			if (v > max) {
4252 				ext4_msg(sb, KERN_ERR,
4253 					 "bad s_want_extra_isize: %d", v);
4254 				goto failed_mount;
4255 			}
4256 			if (sbi->s_want_extra_isize < v)
4257 				sbi->s_want_extra_isize = v;
4258 
4259 			v = le16_to_cpu(es->s_min_extra_isize);
4260 			if (v > max) {
4261 				ext4_msg(sb, KERN_ERR,
4262 					 "bad s_min_extra_isize: %d", v);
4263 				goto failed_mount;
4264 			}
4265 			if (sbi->s_want_extra_isize < v)
4266 				sbi->s_want_extra_isize = v;
4267 		}
4268 	}
4269 
4270 	if (sbi->s_es->s_mount_opts[0]) {
4271 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4272 					      sizeof(sbi->s_es->s_mount_opts),
4273 					      GFP_KERNEL);
4274 		if (!s_mount_opts)
4275 			goto failed_mount;
4276 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4277 				   &journal_ioprio, 0)) {
4278 			ext4_msg(sb, KERN_WARNING,
4279 				 "failed to parse options in superblock: %s",
4280 				 s_mount_opts);
4281 		}
4282 		kfree(s_mount_opts);
4283 	}
4284 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4285 	if (!parse_options((char *) data, sb, &journal_devnum,
4286 			   &journal_ioprio, 0))
4287 		goto failed_mount;
4288 
4289 #ifdef CONFIG_UNICODE
4290 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4291 		const struct ext4_sb_encodings *encoding_info;
4292 		struct unicode_map *encoding;
4293 		__u16 encoding_flags;
4294 
4295 		if (ext4_has_feature_encrypt(sb)) {
4296 			ext4_msg(sb, KERN_ERR,
4297 				 "Can't mount with encoding and encryption");
4298 			goto failed_mount;
4299 		}
4300 
4301 		if (ext4_sb_read_encoding(es, &encoding_info,
4302 					  &encoding_flags)) {
4303 			ext4_msg(sb, KERN_ERR,
4304 				 "Encoding requested by superblock is unknown");
4305 			goto failed_mount;
4306 		}
4307 
4308 		encoding = utf8_load(encoding_info->version);
4309 		if (IS_ERR(encoding)) {
4310 			ext4_msg(sb, KERN_ERR,
4311 				 "can't mount with superblock charset: %s-%s "
4312 				 "not supported by the kernel. flags: 0x%x.",
4313 				 encoding_info->name, encoding_info->version,
4314 				 encoding_flags);
4315 			goto failed_mount;
4316 		}
4317 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4318 			 "%s-%s with flags 0x%hx", encoding_info->name,
4319 			 encoding_info->version?:"\b", encoding_flags);
4320 
4321 		sb->s_encoding = encoding;
4322 		sb->s_encoding_flags = encoding_flags;
4323 	}
4324 #endif
4325 
4326 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4327 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4328 		/* can't mount with both data=journal and dioread_nolock. */
4329 		clear_opt(sb, DIOREAD_NOLOCK);
4330 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4331 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4332 			ext4_msg(sb, KERN_ERR, "can't mount with "
4333 				 "both data=journal and delalloc");
4334 			goto failed_mount;
4335 		}
4336 		if (test_opt(sb, DAX_ALWAYS)) {
4337 			ext4_msg(sb, KERN_ERR, "can't mount with "
4338 				 "both data=journal and dax");
4339 			goto failed_mount;
4340 		}
4341 		if (ext4_has_feature_encrypt(sb)) {
4342 			ext4_msg(sb, KERN_WARNING,
4343 				 "encrypted files will use data=ordered "
4344 				 "instead of data journaling mode");
4345 		}
4346 		if (test_opt(sb, DELALLOC))
4347 			clear_opt(sb, DELALLOC);
4348 	} else {
4349 		sb->s_iflags |= SB_I_CGROUPWB;
4350 	}
4351 
4352 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4353 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4354 
4355 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4356 	    (ext4_has_compat_features(sb) ||
4357 	     ext4_has_ro_compat_features(sb) ||
4358 	     ext4_has_incompat_features(sb)))
4359 		ext4_msg(sb, KERN_WARNING,
4360 		       "feature flags set on rev 0 fs, "
4361 		       "running e2fsck is recommended");
4362 
4363 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4364 		set_opt2(sb, HURD_COMPAT);
4365 		if (ext4_has_feature_64bit(sb)) {
4366 			ext4_msg(sb, KERN_ERR,
4367 				 "The Hurd can't support 64-bit file systems");
4368 			goto failed_mount;
4369 		}
4370 
4371 		/*
4372 		 * ea_inode feature uses l_i_version field which is not
4373 		 * available in HURD_COMPAT mode.
4374 		 */
4375 		if (ext4_has_feature_ea_inode(sb)) {
4376 			ext4_msg(sb, KERN_ERR,
4377 				 "ea_inode feature is not supported for Hurd");
4378 			goto failed_mount;
4379 		}
4380 	}
4381 
4382 	if (IS_EXT2_SB(sb)) {
4383 		if (ext2_feature_set_ok(sb))
4384 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4385 				 "using the ext4 subsystem");
4386 		else {
4387 			/*
4388 			 * If we're probing be silent, if this looks like
4389 			 * it's actually an ext[34] filesystem.
4390 			 */
4391 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4392 				goto failed_mount;
4393 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4394 				 "to feature incompatibilities");
4395 			goto failed_mount;
4396 		}
4397 	}
4398 
4399 	if (IS_EXT3_SB(sb)) {
4400 		if (ext3_feature_set_ok(sb))
4401 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4402 				 "using the ext4 subsystem");
4403 		else {
4404 			/*
4405 			 * If we're probing be silent, if this looks like
4406 			 * it's actually an ext4 filesystem.
4407 			 */
4408 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4409 				goto failed_mount;
4410 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4411 				 "to feature incompatibilities");
4412 			goto failed_mount;
4413 		}
4414 	}
4415 
4416 	/*
4417 	 * Check feature flags regardless of the revision level, since we
4418 	 * previously didn't change the revision level when setting the flags,
4419 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4420 	 */
4421 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4422 		goto failed_mount;
4423 
4424 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4425 		ext4_msg(sb, KERN_ERR,
4426 			 "Number of reserved GDT blocks insanely large: %d",
4427 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4428 		goto failed_mount;
4429 	}
4430 
4431 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4432 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4433 
4434 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4435 		if (ext4_has_feature_inline_data(sb)) {
4436 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4437 					" that may contain inline data");
4438 			goto failed_mount;
4439 		}
4440 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4441 			ext4_msg(sb, KERN_ERR,
4442 				"DAX unsupported by block device.");
4443 			goto failed_mount;
4444 		}
4445 	}
4446 
4447 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4448 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4449 			 es->s_encryption_level);
4450 		goto failed_mount;
4451 	}
4452 
4453 	if (sb->s_blocksize != blocksize) {
4454 		/* Validate the filesystem blocksize */
4455 		if (!sb_set_blocksize(sb, blocksize)) {
4456 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4457 					blocksize);
4458 			goto failed_mount;
4459 		}
4460 
4461 		brelse(bh);
4462 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4463 		offset = do_div(logical_sb_block, blocksize);
4464 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4465 		if (IS_ERR(bh)) {
4466 			ext4_msg(sb, KERN_ERR,
4467 			       "Can't read superblock on 2nd try");
4468 			ret = PTR_ERR(bh);
4469 			bh = NULL;
4470 			goto failed_mount;
4471 		}
4472 		es = (struct ext4_super_block *)(bh->b_data + offset);
4473 		sbi->s_es = es;
4474 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4475 			ext4_msg(sb, KERN_ERR,
4476 			       "Magic mismatch, very weird!");
4477 			goto failed_mount;
4478 		}
4479 	}
4480 
4481 	has_huge_files = ext4_has_feature_huge_file(sb);
4482 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4483 						      has_huge_files);
4484 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4485 
4486 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4487 	if (ext4_has_feature_64bit(sb)) {
4488 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4489 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4490 		    !is_power_of_2(sbi->s_desc_size)) {
4491 			ext4_msg(sb, KERN_ERR,
4492 			       "unsupported descriptor size %lu",
4493 			       sbi->s_desc_size);
4494 			goto failed_mount;
4495 		}
4496 	} else
4497 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4498 
4499 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4500 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4501 
4502 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4503 	if (sbi->s_inodes_per_block == 0)
4504 		goto cantfind_ext4;
4505 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4506 	    sbi->s_inodes_per_group > blocksize * 8) {
4507 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4508 			 sbi->s_inodes_per_group);
4509 		goto failed_mount;
4510 	}
4511 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4512 					sbi->s_inodes_per_block;
4513 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4514 	sbi->s_sbh = bh;
4515 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4516 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4517 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4518 
4519 	for (i = 0; i < 4; i++)
4520 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4521 	sbi->s_def_hash_version = es->s_def_hash_version;
4522 	if (ext4_has_feature_dir_index(sb)) {
4523 		i = le32_to_cpu(es->s_flags);
4524 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4525 			sbi->s_hash_unsigned = 3;
4526 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4527 #ifdef __CHAR_UNSIGNED__
4528 			if (!sb_rdonly(sb))
4529 				es->s_flags |=
4530 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4531 			sbi->s_hash_unsigned = 3;
4532 #else
4533 			if (!sb_rdonly(sb))
4534 				es->s_flags |=
4535 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4536 #endif
4537 		}
4538 	}
4539 
4540 	/* Handle clustersize */
4541 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4542 	if (ext4_has_feature_bigalloc(sb)) {
4543 		if (clustersize < blocksize) {
4544 			ext4_msg(sb, KERN_ERR,
4545 				 "cluster size (%d) smaller than "
4546 				 "block size (%d)", clustersize, blocksize);
4547 			goto failed_mount;
4548 		}
4549 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4550 			le32_to_cpu(es->s_log_block_size);
4551 		sbi->s_clusters_per_group =
4552 			le32_to_cpu(es->s_clusters_per_group);
4553 		if (sbi->s_clusters_per_group > blocksize * 8) {
4554 			ext4_msg(sb, KERN_ERR,
4555 				 "#clusters per group too big: %lu",
4556 				 sbi->s_clusters_per_group);
4557 			goto failed_mount;
4558 		}
4559 		if (sbi->s_blocks_per_group !=
4560 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4561 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4562 				 "clusters per group (%lu) inconsistent",
4563 				 sbi->s_blocks_per_group,
4564 				 sbi->s_clusters_per_group);
4565 			goto failed_mount;
4566 		}
4567 	} else {
4568 		if (clustersize != blocksize) {
4569 			ext4_msg(sb, KERN_ERR,
4570 				 "fragment/cluster size (%d) != "
4571 				 "block size (%d)", clustersize, blocksize);
4572 			goto failed_mount;
4573 		}
4574 		if (sbi->s_blocks_per_group > blocksize * 8) {
4575 			ext4_msg(sb, KERN_ERR,
4576 				 "#blocks per group too big: %lu",
4577 				 sbi->s_blocks_per_group);
4578 			goto failed_mount;
4579 		}
4580 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4581 		sbi->s_cluster_bits = 0;
4582 	}
4583 	sbi->s_cluster_ratio = clustersize / blocksize;
4584 
4585 	/* Do we have standard group size of clustersize * 8 blocks ? */
4586 	if (sbi->s_blocks_per_group == clustersize << 3)
4587 		set_opt2(sb, STD_GROUP_SIZE);
4588 
4589 	/*
4590 	 * Test whether we have more sectors than will fit in sector_t,
4591 	 * and whether the max offset is addressable by the page cache.
4592 	 */
4593 	err = generic_check_addressable(sb->s_blocksize_bits,
4594 					ext4_blocks_count(es));
4595 	if (err) {
4596 		ext4_msg(sb, KERN_ERR, "filesystem"
4597 			 " too large to mount safely on this system");
4598 		goto failed_mount;
4599 	}
4600 
4601 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4602 		goto cantfind_ext4;
4603 
4604 	/* check blocks count against device size */
4605 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4606 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4607 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4608 		       "exceeds size of device (%llu blocks)",
4609 		       ext4_blocks_count(es), blocks_count);
4610 		goto failed_mount;
4611 	}
4612 
4613 	/*
4614 	 * It makes no sense for the first data block to be beyond the end
4615 	 * of the filesystem.
4616 	 */
4617 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4618 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4619 			 "block %u is beyond end of filesystem (%llu)",
4620 			 le32_to_cpu(es->s_first_data_block),
4621 			 ext4_blocks_count(es));
4622 		goto failed_mount;
4623 	}
4624 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4625 	    (sbi->s_cluster_ratio == 1)) {
4626 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4627 			 "block is 0 with a 1k block and cluster size");
4628 		goto failed_mount;
4629 	}
4630 
4631 	blocks_count = (ext4_blocks_count(es) -
4632 			le32_to_cpu(es->s_first_data_block) +
4633 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4634 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4635 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4636 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4637 		       "(block count %llu, first data block %u, "
4638 		       "blocks per group %lu)", blocks_count,
4639 		       ext4_blocks_count(es),
4640 		       le32_to_cpu(es->s_first_data_block),
4641 		       EXT4_BLOCKS_PER_GROUP(sb));
4642 		goto failed_mount;
4643 	}
4644 	sbi->s_groups_count = blocks_count;
4645 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4646 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4647 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4648 	    le32_to_cpu(es->s_inodes_count)) {
4649 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4650 			 le32_to_cpu(es->s_inodes_count),
4651 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4652 		ret = -EINVAL;
4653 		goto failed_mount;
4654 	}
4655 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4656 		   EXT4_DESC_PER_BLOCK(sb);
4657 	if (ext4_has_feature_meta_bg(sb)) {
4658 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4659 			ext4_msg(sb, KERN_WARNING,
4660 				 "first meta block group too large: %u "
4661 				 "(group descriptor block count %u)",
4662 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4663 			goto failed_mount;
4664 		}
4665 	}
4666 	rcu_assign_pointer(sbi->s_group_desc,
4667 			   kvmalloc_array(db_count,
4668 					  sizeof(struct buffer_head *),
4669 					  GFP_KERNEL));
4670 	if (sbi->s_group_desc == NULL) {
4671 		ext4_msg(sb, KERN_ERR, "not enough memory");
4672 		ret = -ENOMEM;
4673 		goto failed_mount;
4674 	}
4675 
4676 	bgl_lock_init(sbi->s_blockgroup_lock);
4677 
4678 	/* Pre-read the descriptors into the buffer cache */
4679 	for (i = 0; i < db_count; i++) {
4680 		block = descriptor_loc(sb, logical_sb_block, i);
4681 		ext4_sb_breadahead_unmovable(sb, block);
4682 	}
4683 
4684 	for (i = 0; i < db_count; i++) {
4685 		struct buffer_head *bh;
4686 
4687 		block = descriptor_loc(sb, logical_sb_block, i);
4688 		bh = ext4_sb_bread_unmovable(sb, block);
4689 		if (IS_ERR(bh)) {
4690 			ext4_msg(sb, KERN_ERR,
4691 			       "can't read group descriptor %d", i);
4692 			db_count = i;
4693 			ret = PTR_ERR(bh);
4694 			goto failed_mount2;
4695 		}
4696 		rcu_read_lock();
4697 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4698 		rcu_read_unlock();
4699 	}
4700 	sbi->s_gdb_count = db_count;
4701 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4702 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4703 		ret = -EFSCORRUPTED;
4704 		goto failed_mount2;
4705 	}
4706 
4707 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4708 	spin_lock_init(&sbi->s_error_lock);
4709 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4710 
4711 	/* Register extent status tree shrinker */
4712 	if (ext4_es_register_shrinker(sbi))
4713 		goto failed_mount3;
4714 
4715 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4716 	sbi->s_extent_max_zeroout_kb = 32;
4717 
4718 	/*
4719 	 * set up enough so that it can read an inode
4720 	 */
4721 	sb->s_op = &ext4_sops;
4722 	sb->s_export_op = &ext4_export_ops;
4723 	sb->s_xattr = ext4_xattr_handlers;
4724 #ifdef CONFIG_FS_ENCRYPTION
4725 	sb->s_cop = &ext4_cryptops;
4726 #endif
4727 #ifdef CONFIG_FS_VERITY
4728 	sb->s_vop = &ext4_verityops;
4729 #endif
4730 #ifdef CONFIG_QUOTA
4731 	sb->dq_op = &ext4_quota_operations;
4732 	if (ext4_has_feature_quota(sb))
4733 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4734 	else
4735 		sb->s_qcop = &ext4_qctl_operations;
4736 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4737 #endif
4738 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4739 
4740 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4741 	mutex_init(&sbi->s_orphan_lock);
4742 
4743 	/* Initialize fast commit stuff */
4744 	atomic_set(&sbi->s_fc_subtid, 0);
4745 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4746 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4747 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4748 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4749 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4750 	sbi->s_fc_bytes = 0;
4751 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4752 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4753 	spin_lock_init(&sbi->s_fc_lock);
4754 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4755 	sbi->s_fc_replay_state.fc_regions = NULL;
4756 	sbi->s_fc_replay_state.fc_regions_size = 0;
4757 	sbi->s_fc_replay_state.fc_regions_used = 0;
4758 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4759 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4760 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4761 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4762 
4763 	sb->s_root = NULL;
4764 
4765 	needs_recovery = (es->s_last_orphan != 0 ||
4766 			  ext4_has_feature_journal_needs_recovery(sb));
4767 
4768 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4769 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4770 			goto failed_mount3a;
4771 
4772 	/*
4773 	 * The first inode we look at is the journal inode.  Don't try
4774 	 * root first: it may be modified in the journal!
4775 	 */
4776 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4777 		err = ext4_load_journal(sb, es, journal_devnum);
4778 		if (err)
4779 			goto failed_mount3a;
4780 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4781 		   ext4_has_feature_journal_needs_recovery(sb)) {
4782 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4783 		       "suppressed and not mounted read-only");
4784 		goto failed_mount_wq;
4785 	} else {
4786 		/* Nojournal mode, all journal mount options are illegal */
4787 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4788 			ext4_msg(sb, KERN_ERR, "can't mount with "
4789 				 "journal_checksum, fs mounted w/o journal");
4790 			goto failed_mount_wq;
4791 		}
4792 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4793 			ext4_msg(sb, KERN_ERR, "can't mount with "
4794 				 "journal_async_commit, fs mounted w/o journal");
4795 			goto failed_mount_wq;
4796 		}
4797 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4798 			ext4_msg(sb, KERN_ERR, "can't mount with "
4799 				 "commit=%lu, fs mounted w/o journal",
4800 				 sbi->s_commit_interval / HZ);
4801 			goto failed_mount_wq;
4802 		}
4803 		if (EXT4_MOUNT_DATA_FLAGS &
4804 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4805 			ext4_msg(sb, KERN_ERR, "can't mount with "
4806 				 "data=, fs mounted w/o journal");
4807 			goto failed_mount_wq;
4808 		}
4809 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4810 		clear_opt(sb, JOURNAL_CHECKSUM);
4811 		clear_opt(sb, DATA_FLAGS);
4812 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4813 		sbi->s_journal = NULL;
4814 		needs_recovery = 0;
4815 		goto no_journal;
4816 	}
4817 
4818 	if (ext4_has_feature_64bit(sb) &&
4819 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4820 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4821 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4822 		goto failed_mount_wq;
4823 	}
4824 
4825 	if (!set_journal_csum_feature_set(sb)) {
4826 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4827 			 "feature set");
4828 		goto failed_mount_wq;
4829 	}
4830 
4831 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4832 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4833 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4834 		ext4_msg(sb, KERN_ERR,
4835 			"Failed to set fast commit journal feature");
4836 		goto failed_mount_wq;
4837 	}
4838 
4839 	/* We have now updated the journal if required, so we can
4840 	 * validate the data journaling mode. */
4841 	switch (test_opt(sb, DATA_FLAGS)) {
4842 	case 0:
4843 		/* No mode set, assume a default based on the journal
4844 		 * capabilities: ORDERED_DATA if the journal can
4845 		 * cope, else JOURNAL_DATA
4846 		 */
4847 		if (jbd2_journal_check_available_features
4848 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4849 			set_opt(sb, ORDERED_DATA);
4850 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4851 		} else {
4852 			set_opt(sb, JOURNAL_DATA);
4853 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4854 		}
4855 		break;
4856 
4857 	case EXT4_MOUNT_ORDERED_DATA:
4858 	case EXT4_MOUNT_WRITEBACK_DATA:
4859 		if (!jbd2_journal_check_available_features
4860 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4861 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4862 			       "requested data journaling mode");
4863 			goto failed_mount_wq;
4864 		}
4865 		break;
4866 	default:
4867 		break;
4868 	}
4869 
4870 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4871 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4872 		ext4_msg(sb, KERN_ERR, "can't mount with "
4873 			"journal_async_commit in data=ordered mode");
4874 		goto failed_mount_wq;
4875 	}
4876 
4877 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4878 
4879 	sbi->s_journal->j_submit_inode_data_buffers =
4880 		ext4_journal_submit_inode_data_buffers;
4881 	sbi->s_journal->j_finish_inode_data_buffers =
4882 		ext4_journal_finish_inode_data_buffers;
4883 
4884 no_journal:
4885 	if (!test_opt(sb, NO_MBCACHE)) {
4886 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4887 		if (!sbi->s_ea_block_cache) {
4888 			ext4_msg(sb, KERN_ERR,
4889 				 "Failed to create ea_block_cache");
4890 			goto failed_mount_wq;
4891 		}
4892 
4893 		if (ext4_has_feature_ea_inode(sb)) {
4894 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4895 			if (!sbi->s_ea_inode_cache) {
4896 				ext4_msg(sb, KERN_ERR,
4897 					 "Failed to create ea_inode_cache");
4898 				goto failed_mount_wq;
4899 			}
4900 		}
4901 	}
4902 
4903 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4904 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4905 		goto failed_mount_wq;
4906 	}
4907 
4908 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4909 	    !ext4_has_feature_encrypt(sb)) {
4910 		ext4_set_feature_encrypt(sb);
4911 		ext4_commit_super(sb);
4912 	}
4913 
4914 	/*
4915 	 * Get the # of file system overhead blocks from the
4916 	 * superblock if present.
4917 	 */
4918 	if (es->s_overhead_clusters)
4919 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4920 	else {
4921 		err = ext4_calculate_overhead(sb);
4922 		if (err)
4923 			goto failed_mount_wq;
4924 	}
4925 
4926 	/*
4927 	 * The maximum number of concurrent works can be high and
4928 	 * concurrency isn't really necessary.  Limit it to 1.
4929 	 */
4930 	EXT4_SB(sb)->rsv_conversion_wq =
4931 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4932 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4933 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4934 		ret = -ENOMEM;
4935 		goto failed_mount4;
4936 	}
4937 
4938 	/*
4939 	 * The jbd2_journal_load will have done any necessary log recovery,
4940 	 * so we can safely mount the rest of the filesystem now.
4941 	 */
4942 
4943 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4944 	if (IS_ERR(root)) {
4945 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4946 		ret = PTR_ERR(root);
4947 		root = NULL;
4948 		goto failed_mount4;
4949 	}
4950 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4951 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4952 		iput(root);
4953 		goto failed_mount4;
4954 	}
4955 
4956 	sb->s_root = d_make_root(root);
4957 	if (!sb->s_root) {
4958 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4959 		ret = -ENOMEM;
4960 		goto failed_mount4;
4961 	}
4962 
4963 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4964 	if (ret == -EROFS) {
4965 		sb->s_flags |= SB_RDONLY;
4966 		ret = 0;
4967 	} else if (ret)
4968 		goto failed_mount4a;
4969 
4970 	ext4_set_resv_clusters(sb);
4971 
4972 	if (test_opt(sb, BLOCK_VALIDITY)) {
4973 		err = ext4_setup_system_zone(sb);
4974 		if (err) {
4975 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4976 				 "zone (%d)", err);
4977 			goto failed_mount4a;
4978 		}
4979 	}
4980 	ext4_fc_replay_cleanup(sb);
4981 
4982 	ext4_ext_init(sb);
4983 	err = ext4_mb_init(sb);
4984 	if (err) {
4985 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4986 			 err);
4987 		goto failed_mount5;
4988 	}
4989 
4990 	/*
4991 	 * We can only set up the journal commit callback once
4992 	 * mballoc is initialized
4993 	 */
4994 	if (sbi->s_journal)
4995 		sbi->s_journal->j_commit_callback =
4996 			ext4_journal_commit_callback;
4997 
4998 	block = ext4_count_free_clusters(sb);
4999 	ext4_free_blocks_count_set(sbi->s_es,
5000 				   EXT4_C2B(sbi, block));
5001 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5002 				  GFP_KERNEL);
5003 	if (!err) {
5004 		unsigned long freei = ext4_count_free_inodes(sb);
5005 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5006 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5007 					  GFP_KERNEL);
5008 	}
5009 	if (!err)
5010 		err = percpu_counter_init(&sbi->s_dirs_counter,
5011 					  ext4_count_dirs(sb), GFP_KERNEL);
5012 	if (!err)
5013 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5014 					  GFP_KERNEL);
5015 	if (!err)
5016 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5017 					  GFP_KERNEL);
5018 	if (!err)
5019 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5020 
5021 	if (err) {
5022 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5023 		goto failed_mount6;
5024 	}
5025 
5026 	if (ext4_has_feature_flex_bg(sb))
5027 		if (!ext4_fill_flex_info(sb)) {
5028 			ext4_msg(sb, KERN_ERR,
5029 			       "unable to initialize "
5030 			       "flex_bg meta info!");
5031 			goto failed_mount6;
5032 		}
5033 
5034 	err = ext4_register_li_request(sb, first_not_zeroed);
5035 	if (err)
5036 		goto failed_mount6;
5037 
5038 	err = ext4_register_sysfs(sb);
5039 	if (err)
5040 		goto failed_mount7;
5041 
5042 #ifdef CONFIG_QUOTA
5043 	/* Enable quota usage during mount. */
5044 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5045 		err = ext4_enable_quotas(sb);
5046 		if (err)
5047 			goto failed_mount8;
5048 	}
5049 #endif  /* CONFIG_QUOTA */
5050 
5051 	/*
5052 	 * Save the original bdev mapping's wb_err value which could be
5053 	 * used to detect the metadata async write error.
5054 	 */
5055 	spin_lock_init(&sbi->s_bdev_wb_lock);
5056 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5057 				 &sbi->s_bdev_wb_err);
5058 	sb->s_bdev->bd_super = sb;
5059 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5060 	ext4_orphan_cleanup(sb, es);
5061 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5062 	if (needs_recovery) {
5063 		ext4_msg(sb, KERN_INFO, "recovery complete");
5064 		err = ext4_mark_recovery_complete(sb, es);
5065 		if (err)
5066 			goto failed_mount8;
5067 	}
5068 	if (EXT4_SB(sb)->s_journal) {
5069 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5070 			descr = " journalled data mode";
5071 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5072 			descr = " ordered data mode";
5073 		else
5074 			descr = " writeback data mode";
5075 	} else
5076 		descr = "out journal";
5077 
5078 	if (test_opt(sb, DISCARD)) {
5079 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5080 		if (!blk_queue_discard(q))
5081 			ext4_msg(sb, KERN_WARNING,
5082 				 "mounting with \"discard\" option, but "
5083 				 "the device does not support discard");
5084 	}
5085 
5086 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5087 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5088 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5089 			 (int) sizeof(sbi->s_es->s_mount_opts),
5090 			 sbi->s_es->s_mount_opts,
5091 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5092 			 ext4_quota_mode(sb));
5093 
5094 	if (es->s_error_count)
5095 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5096 
5097 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5098 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5099 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5100 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5101 	atomic_set(&sbi->s_warning_count, 0);
5102 	atomic_set(&sbi->s_msg_count, 0);
5103 
5104 	kfree(orig_data);
5105 	return 0;
5106 
5107 cantfind_ext4:
5108 	if (!silent)
5109 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5110 	goto failed_mount;
5111 
5112 failed_mount8:
5113 	ext4_unregister_sysfs(sb);
5114 	kobject_put(&sbi->s_kobj);
5115 failed_mount7:
5116 	ext4_unregister_li_request(sb);
5117 failed_mount6:
5118 	ext4_mb_release(sb);
5119 	rcu_read_lock();
5120 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5121 	if (flex_groups) {
5122 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5123 			kvfree(flex_groups[i]);
5124 		kvfree(flex_groups);
5125 	}
5126 	rcu_read_unlock();
5127 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5128 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5129 	percpu_counter_destroy(&sbi->s_dirs_counter);
5130 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5131 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5132 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5133 failed_mount5:
5134 	ext4_ext_release(sb);
5135 	ext4_release_system_zone(sb);
5136 failed_mount4a:
5137 	dput(sb->s_root);
5138 	sb->s_root = NULL;
5139 failed_mount4:
5140 	ext4_msg(sb, KERN_ERR, "mount failed");
5141 	if (EXT4_SB(sb)->rsv_conversion_wq)
5142 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5143 failed_mount_wq:
5144 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5145 	sbi->s_ea_inode_cache = NULL;
5146 
5147 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5148 	sbi->s_ea_block_cache = NULL;
5149 
5150 	if (sbi->s_journal) {
5151 		jbd2_journal_destroy(sbi->s_journal);
5152 		sbi->s_journal = NULL;
5153 	}
5154 failed_mount3a:
5155 	ext4_es_unregister_shrinker(sbi);
5156 failed_mount3:
5157 	flush_work(&sbi->s_error_work);
5158 	del_timer_sync(&sbi->s_err_report);
5159 	if (sbi->s_mmp_tsk)
5160 		kthread_stop(sbi->s_mmp_tsk);
5161 failed_mount2:
5162 	rcu_read_lock();
5163 	group_desc = rcu_dereference(sbi->s_group_desc);
5164 	for (i = 0; i < db_count; i++)
5165 		brelse(group_desc[i]);
5166 	kvfree(group_desc);
5167 	rcu_read_unlock();
5168 failed_mount:
5169 	if (sbi->s_chksum_driver)
5170 		crypto_free_shash(sbi->s_chksum_driver);
5171 
5172 #ifdef CONFIG_UNICODE
5173 	utf8_unload(sb->s_encoding);
5174 #endif
5175 
5176 #ifdef CONFIG_QUOTA
5177 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5178 		kfree(get_qf_name(sb, sbi, i));
5179 #endif
5180 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5181 	ext4_blkdev_remove(sbi);
5182 	brelse(bh);
5183 out_fail:
5184 	sb->s_fs_info = NULL;
5185 	kfree(sbi->s_blockgroup_lock);
5186 out_free_base:
5187 	kfree(sbi);
5188 	kfree(orig_data);
5189 	fs_put_dax(dax_dev);
5190 	return err ? err : ret;
5191 }
5192 
5193 /*
5194  * Setup any per-fs journal parameters now.  We'll do this both on
5195  * initial mount, once the journal has been initialised but before we've
5196  * done any recovery; and again on any subsequent remount.
5197  */
5198 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5199 {
5200 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5201 
5202 	journal->j_commit_interval = sbi->s_commit_interval;
5203 	journal->j_min_batch_time = sbi->s_min_batch_time;
5204 	journal->j_max_batch_time = sbi->s_max_batch_time;
5205 	ext4_fc_init(sb, journal);
5206 
5207 	write_lock(&journal->j_state_lock);
5208 	if (test_opt(sb, BARRIER))
5209 		journal->j_flags |= JBD2_BARRIER;
5210 	else
5211 		journal->j_flags &= ~JBD2_BARRIER;
5212 	if (test_opt(sb, DATA_ERR_ABORT))
5213 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5214 	else
5215 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5216 	write_unlock(&journal->j_state_lock);
5217 }
5218 
5219 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5220 					     unsigned int journal_inum)
5221 {
5222 	struct inode *journal_inode;
5223 
5224 	/*
5225 	 * Test for the existence of a valid inode on disk.  Bad things
5226 	 * happen if we iget() an unused inode, as the subsequent iput()
5227 	 * will try to delete it.
5228 	 */
5229 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5230 	if (IS_ERR(journal_inode)) {
5231 		ext4_msg(sb, KERN_ERR, "no journal found");
5232 		return NULL;
5233 	}
5234 	if (!journal_inode->i_nlink) {
5235 		make_bad_inode(journal_inode);
5236 		iput(journal_inode);
5237 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5238 		return NULL;
5239 	}
5240 
5241 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5242 		  journal_inode, journal_inode->i_size);
5243 	if (!S_ISREG(journal_inode->i_mode)) {
5244 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5245 		iput(journal_inode);
5246 		return NULL;
5247 	}
5248 	return journal_inode;
5249 }
5250 
5251 static journal_t *ext4_get_journal(struct super_block *sb,
5252 				   unsigned int journal_inum)
5253 {
5254 	struct inode *journal_inode;
5255 	journal_t *journal;
5256 
5257 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5258 		return NULL;
5259 
5260 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5261 	if (!journal_inode)
5262 		return NULL;
5263 
5264 	journal = jbd2_journal_init_inode(journal_inode);
5265 	if (!journal) {
5266 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5267 		iput(journal_inode);
5268 		return NULL;
5269 	}
5270 	journal->j_private = sb;
5271 	ext4_init_journal_params(sb, journal);
5272 	return journal;
5273 }
5274 
5275 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5276 				       dev_t j_dev)
5277 {
5278 	struct buffer_head *bh;
5279 	journal_t *journal;
5280 	ext4_fsblk_t start;
5281 	ext4_fsblk_t len;
5282 	int hblock, blocksize;
5283 	ext4_fsblk_t sb_block;
5284 	unsigned long offset;
5285 	struct ext4_super_block *es;
5286 	struct block_device *bdev;
5287 
5288 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5289 		return NULL;
5290 
5291 	bdev = ext4_blkdev_get(j_dev, sb);
5292 	if (bdev == NULL)
5293 		return NULL;
5294 
5295 	blocksize = sb->s_blocksize;
5296 	hblock = bdev_logical_block_size(bdev);
5297 	if (blocksize < hblock) {
5298 		ext4_msg(sb, KERN_ERR,
5299 			"blocksize too small for journal device");
5300 		goto out_bdev;
5301 	}
5302 
5303 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5304 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5305 	set_blocksize(bdev, blocksize);
5306 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5307 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5308 		       "external journal");
5309 		goto out_bdev;
5310 	}
5311 
5312 	es = (struct ext4_super_block *) (bh->b_data + offset);
5313 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5314 	    !(le32_to_cpu(es->s_feature_incompat) &
5315 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5316 		ext4_msg(sb, KERN_ERR, "external journal has "
5317 					"bad superblock");
5318 		brelse(bh);
5319 		goto out_bdev;
5320 	}
5321 
5322 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5323 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5324 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5325 		ext4_msg(sb, KERN_ERR, "external journal has "
5326 				       "corrupt superblock");
5327 		brelse(bh);
5328 		goto out_bdev;
5329 	}
5330 
5331 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5332 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5333 		brelse(bh);
5334 		goto out_bdev;
5335 	}
5336 
5337 	len = ext4_blocks_count(es);
5338 	start = sb_block + 1;
5339 	brelse(bh);	/* we're done with the superblock */
5340 
5341 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5342 					start, len, blocksize);
5343 	if (!journal) {
5344 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5345 		goto out_bdev;
5346 	}
5347 	journal->j_private = sb;
5348 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5349 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5350 		goto out_journal;
5351 	}
5352 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5353 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5354 					"user (unsupported) - %d",
5355 			be32_to_cpu(journal->j_superblock->s_nr_users));
5356 		goto out_journal;
5357 	}
5358 	EXT4_SB(sb)->s_journal_bdev = bdev;
5359 	ext4_init_journal_params(sb, journal);
5360 	return journal;
5361 
5362 out_journal:
5363 	jbd2_journal_destroy(journal);
5364 out_bdev:
5365 	ext4_blkdev_put(bdev);
5366 	return NULL;
5367 }
5368 
5369 static int ext4_load_journal(struct super_block *sb,
5370 			     struct ext4_super_block *es,
5371 			     unsigned long journal_devnum)
5372 {
5373 	journal_t *journal;
5374 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5375 	dev_t journal_dev;
5376 	int err = 0;
5377 	int really_read_only;
5378 	int journal_dev_ro;
5379 
5380 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5381 		return -EFSCORRUPTED;
5382 
5383 	if (journal_devnum &&
5384 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5385 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5386 			"numbers have changed");
5387 		journal_dev = new_decode_dev(journal_devnum);
5388 	} else
5389 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5390 
5391 	if (journal_inum && journal_dev) {
5392 		ext4_msg(sb, KERN_ERR,
5393 			 "filesystem has both journal inode and journal device!");
5394 		return -EINVAL;
5395 	}
5396 
5397 	if (journal_inum) {
5398 		journal = ext4_get_journal(sb, journal_inum);
5399 		if (!journal)
5400 			return -EINVAL;
5401 	} else {
5402 		journal = ext4_get_dev_journal(sb, journal_dev);
5403 		if (!journal)
5404 			return -EINVAL;
5405 	}
5406 
5407 	journal_dev_ro = bdev_read_only(journal->j_dev);
5408 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5409 
5410 	if (journal_dev_ro && !sb_rdonly(sb)) {
5411 		ext4_msg(sb, KERN_ERR,
5412 			 "journal device read-only, try mounting with '-o ro'");
5413 		err = -EROFS;
5414 		goto err_out;
5415 	}
5416 
5417 	/*
5418 	 * Are we loading a blank journal or performing recovery after a
5419 	 * crash?  For recovery, we need to check in advance whether we
5420 	 * can get read-write access to the device.
5421 	 */
5422 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5423 		if (sb_rdonly(sb)) {
5424 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5425 					"required on readonly filesystem");
5426 			if (really_read_only) {
5427 				ext4_msg(sb, KERN_ERR, "write access "
5428 					"unavailable, cannot proceed "
5429 					"(try mounting with noload)");
5430 				err = -EROFS;
5431 				goto err_out;
5432 			}
5433 			ext4_msg(sb, KERN_INFO, "write access will "
5434 			       "be enabled during recovery");
5435 		}
5436 	}
5437 
5438 	if (!(journal->j_flags & JBD2_BARRIER))
5439 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5440 
5441 	if (!ext4_has_feature_journal_needs_recovery(sb))
5442 		err = jbd2_journal_wipe(journal, !really_read_only);
5443 	if (!err) {
5444 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5445 		if (save)
5446 			memcpy(save, ((char *) es) +
5447 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5448 		err = jbd2_journal_load(journal);
5449 		if (save)
5450 			memcpy(((char *) es) + EXT4_S_ERR_START,
5451 			       save, EXT4_S_ERR_LEN);
5452 		kfree(save);
5453 	}
5454 
5455 	if (err) {
5456 		ext4_msg(sb, KERN_ERR, "error loading journal");
5457 		goto err_out;
5458 	}
5459 
5460 	EXT4_SB(sb)->s_journal = journal;
5461 	err = ext4_clear_journal_err(sb, es);
5462 	if (err) {
5463 		EXT4_SB(sb)->s_journal = NULL;
5464 		jbd2_journal_destroy(journal);
5465 		return err;
5466 	}
5467 
5468 	if (!really_read_only && journal_devnum &&
5469 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5470 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5471 
5472 		/* Make sure we flush the recovery flag to disk. */
5473 		ext4_commit_super(sb);
5474 	}
5475 
5476 	return 0;
5477 
5478 err_out:
5479 	jbd2_journal_destroy(journal);
5480 	return err;
5481 }
5482 
5483 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5484 static void ext4_update_super(struct super_block *sb)
5485 {
5486 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5487 	struct ext4_super_block *es = sbi->s_es;
5488 	struct buffer_head *sbh = sbi->s_sbh;
5489 
5490 	lock_buffer(sbh);
5491 	/*
5492 	 * If the file system is mounted read-only, don't update the
5493 	 * superblock write time.  This avoids updating the superblock
5494 	 * write time when we are mounting the root file system
5495 	 * read/only but we need to replay the journal; at that point,
5496 	 * for people who are east of GMT and who make their clock
5497 	 * tick in localtime for Windows bug-for-bug compatibility,
5498 	 * the clock is set in the future, and this will cause e2fsck
5499 	 * to complain and force a full file system check.
5500 	 */
5501 	if (!(sb->s_flags & SB_RDONLY))
5502 		ext4_update_tstamp(es, s_wtime);
5503 	es->s_kbytes_written =
5504 		cpu_to_le64(sbi->s_kbytes_written +
5505 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5506 		      sbi->s_sectors_written_start) >> 1));
5507 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5508 		ext4_free_blocks_count_set(es,
5509 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5510 				&sbi->s_freeclusters_counter)));
5511 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5512 		es->s_free_inodes_count =
5513 			cpu_to_le32(percpu_counter_sum_positive(
5514 				&sbi->s_freeinodes_counter));
5515 	/* Copy error information to the on-disk superblock */
5516 	spin_lock(&sbi->s_error_lock);
5517 	if (sbi->s_add_error_count > 0) {
5518 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5519 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5520 			__ext4_update_tstamp(&es->s_first_error_time,
5521 					     &es->s_first_error_time_hi,
5522 					     sbi->s_first_error_time);
5523 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5524 				sizeof(es->s_first_error_func));
5525 			es->s_first_error_line =
5526 				cpu_to_le32(sbi->s_first_error_line);
5527 			es->s_first_error_ino =
5528 				cpu_to_le32(sbi->s_first_error_ino);
5529 			es->s_first_error_block =
5530 				cpu_to_le64(sbi->s_first_error_block);
5531 			es->s_first_error_errcode =
5532 				ext4_errno_to_code(sbi->s_first_error_code);
5533 		}
5534 		__ext4_update_tstamp(&es->s_last_error_time,
5535 				     &es->s_last_error_time_hi,
5536 				     sbi->s_last_error_time);
5537 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5538 			sizeof(es->s_last_error_func));
5539 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5540 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5541 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5542 		es->s_last_error_errcode =
5543 				ext4_errno_to_code(sbi->s_last_error_code);
5544 		/*
5545 		 * Start the daily error reporting function if it hasn't been
5546 		 * started already
5547 		 */
5548 		if (!es->s_error_count)
5549 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5550 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5551 		sbi->s_add_error_count = 0;
5552 	}
5553 	spin_unlock(&sbi->s_error_lock);
5554 
5555 	ext4_superblock_csum_set(sb);
5556 	unlock_buffer(sbh);
5557 }
5558 
5559 static int ext4_commit_super(struct super_block *sb)
5560 {
5561 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5562 	int error = 0;
5563 
5564 	if (!sbh || block_device_ejected(sb))
5565 		return error;
5566 
5567 	ext4_update_super(sb);
5568 
5569 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5570 		/*
5571 		 * Oh, dear.  A previous attempt to write the
5572 		 * superblock failed.  This could happen because the
5573 		 * USB device was yanked out.  Or it could happen to
5574 		 * be a transient write error and maybe the block will
5575 		 * be remapped.  Nothing we can do but to retry the
5576 		 * write and hope for the best.
5577 		 */
5578 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5579 		       "superblock detected");
5580 		clear_buffer_write_io_error(sbh);
5581 		set_buffer_uptodate(sbh);
5582 	}
5583 	BUFFER_TRACE(sbh, "marking dirty");
5584 	mark_buffer_dirty(sbh);
5585 	error = __sync_dirty_buffer(sbh,
5586 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5587 	if (buffer_write_io_error(sbh)) {
5588 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5589 		       "superblock");
5590 		clear_buffer_write_io_error(sbh);
5591 		set_buffer_uptodate(sbh);
5592 	}
5593 	return error;
5594 }
5595 
5596 /*
5597  * Have we just finished recovery?  If so, and if we are mounting (or
5598  * remounting) the filesystem readonly, then we will end up with a
5599  * consistent fs on disk.  Record that fact.
5600  */
5601 static int ext4_mark_recovery_complete(struct super_block *sb,
5602 				       struct ext4_super_block *es)
5603 {
5604 	int err;
5605 	journal_t *journal = EXT4_SB(sb)->s_journal;
5606 
5607 	if (!ext4_has_feature_journal(sb)) {
5608 		if (journal != NULL) {
5609 			ext4_error(sb, "Journal got removed while the fs was "
5610 				   "mounted!");
5611 			return -EFSCORRUPTED;
5612 		}
5613 		return 0;
5614 	}
5615 	jbd2_journal_lock_updates(journal);
5616 	err = jbd2_journal_flush(journal);
5617 	if (err < 0)
5618 		goto out;
5619 
5620 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5621 		ext4_clear_feature_journal_needs_recovery(sb);
5622 		ext4_commit_super(sb);
5623 	}
5624 out:
5625 	jbd2_journal_unlock_updates(journal);
5626 	return err;
5627 }
5628 
5629 /*
5630  * If we are mounting (or read-write remounting) a filesystem whose journal
5631  * has recorded an error from a previous lifetime, move that error to the
5632  * main filesystem now.
5633  */
5634 static int ext4_clear_journal_err(struct super_block *sb,
5635 				   struct ext4_super_block *es)
5636 {
5637 	journal_t *journal;
5638 	int j_errno;
5639 	const char *errstr;
5640 
5641 	if (!ext4_has_feature_journal(sb)) {
5642 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5643 		return -EFSCORRUPTED;
5644 	}
5645 
5646 	journal = EXT4_SB(sb)->s_journal;
5647 
5648 	/*
5649 	 * Now check for any error status which may have been recorded in the
5650 	 * journal by a prior ext4_error() or ext4_abort()
5651 	 */
5652 
5653 	j_errno = jbd2_journal_errno(journal);
5654 	if (j_errno) {
5655 		char nbuf[16];
5656 
5657 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5658 		ext4_warning(sb, "Filesystem error recorded "
5659 			     "from previous mount: %s", errstr);
5660 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5661 
5662 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5663 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5664 		ext4_commit_super(sb);
5665 
5666 		jbd2_journal_clear_err(journal);
5667 		jbd2_journal_update_sb_errno(journal);
5668 	}
5669 	return 0;
5670 }
5671 
5672 /*
5673  * Force the running and committing transactions to commit,
5674  * and wait on the commit.
5675  */
5676 int ext4_force_commit(struct super_block *sb)
5677 {
5678 	journal_t *journal;
5679 
5680 	if (sb_rdonly(sb))
5681 		return 0;
5682 
5683 	journal = EXT4_SB(sb)->s_journal;
5684 	return ext4_journal_force_commit(journal);
5685 }
5686 
5687 static int ext4_sync_fs(struct super_block *sb, int wait)
5688 {
5689 	int ret = 0;
5690 	tid_t target;
5691 	bool needs_barrier = false;
5692 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5693 
5694 	if (unlikely(ext4_forced_shutdown(sbi)))
5695 		return 0;
5696 
5697 	trace_ext4_sync_fs(sb, wait);
5698 	flush_workqueue(sbi->rsv_conversion_wq);
5699 	/*
5700 	 * Writeback quota in non-journalled quota case - journalled quota has
5701 	 * no dirty dquots
5702 	 */
5703 	dquot_writeback_dquots(sb, -1);
5704 	/*
5705 	 * Data writeback is possible w/o journal transaction, so barrier must
5706 	 * being sent at the end of the function. But we can skip it if
5707 	 * transaction_commit will do it for us.
5708 	 */
5709 	if (sbi->s_journal) {
5710 		target = jbd2_get_latest_transaction(sbi->s_journal);
5711 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5712 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5713 			needs_barrier = true;
5714 
5715 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5716 			if (wait)
5717 				ret = jbd2_log_wait_commit(sbi->s_journal,
5718 							   target);
5719 		}
5720 	} else if (wait && test_opt(sb, BARRIER))
5721 		needs_barrier = true;
5722 	if (needs_barrier) {
5723 		int err;
5724 		err = blkdev_issue_flush(sb->s_bdev);
5725 		if (!ret)
5726 			ret = err;
5727 	}
5728 
5729 	return ret;
5730 }
5731 
5732 /*
5733  * LVM calls this function before a (read-only) snapshot is created.  This
5734  * gives us a chance to flush the journal completely and mark the fs clean.
5735  *
5736  * Note that only this function cannot bring a filesystem to be in a clean
5737  * state independently. It relies on upper layer to stop all data & metadata
5738  * modifications.
5739  */
5740 static int ext4_freeze(struct super_block *sb)
5741 {
5742 	int error = 0;
5743 	journal_t *journal;
5744 
5745 	if (sb_rdonly(sb))
5746 		return 0;
5747 
5748 	journal = EXT4_SB(sb)->s_journal;
5749 
5750 	if (journal) {
5751 		/* Now we set up the journal barrier. */
5752 		jbd2_journal_lock_updates(journal);
5753 
5754 		/*
5755 		 * Don't clear the needs_recovery flag if we failed to
5756 		 * flush the journal.
5757 		 */
5758 		error = jbd2_journal_flush(journal);
5759 		if (error < 0)
5760 			goto out;
5761 
5762 		/* Journal blocked and flushed, clear needs_recovery flag. */
5763 		ext4_clear_feature_journal_needs_recovery(sb);
5764 	}
5765 
5766 	error = ext4_commit_super(sb);
5767 out:
5768 	if (journal)
5769 		/* we rely on upper layer to stop further updates */
5770 		jbd2_journal_unlock_updates(journal);
5771 	return error;
5772 }
5773 
5774 /*
5775  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5776  * flag here, even though the filesystem is not technically dirty yet.
5777  */
5778 static int ext4_unfreeze(struct super_block *sb)
5779 {
5780 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5781 		return 0;
5782 
5783 	if (EXT4_SB(sb)->s_journal) {
5784 		/* Reset the needs_recovery flag before the fs is unlocked. */
5785 		ext4_set_feature_journal_needs_recovery(sb);
5786 	}
5787 
5788 	ext4_commit_super(sb);
5789 	return 0;
5790 }
5791 
5792 /*
5793  * Structure to save mount options for ext4_remount's benefit
5794  */
5795 struct ext4_mount_options {
5796 	unsigned long s_mount_opt;
5797 	unsigned long s_mount_opt2;
5798 	kuid_t s_resuid;
5799 	kgid_t s_resgid;
5800 	unsigned long s_commit_interval;
5801 	u32 s_min_batch_time, s_max_batch_time;
5802 #ifdef CONFIG_QUOTA
5803 	int s_jquota_fmt;
5804 	char *s_qf_names[EXT4_MAXQUOTAS];
5805 #endif
5806 };
5807 
5808 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5809 {
5810 	struct ext4_super_block *es;
5811 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5812 	unsigned long old_sb_flags, vfs_flags;
5813 	struct ext4_mount_options old_opts;
5814 	int enable_quota = 0;
5815 	ext4_group_t g;
5816 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5817 	int err = 0;
5818 #ifdef CONFIG_QUOTA
5819 	int i, j;
5820 	char *to_free[EXT4_MAXQUOTAS];
5821 #endif
5822 	char *orig_data = kstrdup(data, GFP_KERNEL);
5823 
5824 	if (data && !orig_data)
5825 		return -ENOMEM;
5826 
5827 	/* Store the original options */
5828 	old_sb_flags = sb->s_flags;
5829 	old_opts.s_mount_opt = sbi->s_mount_opt;
5830 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5831 	old_opts.s_resuid = sbi->s_resuid;
5832 	old_opts.s_resgid = sbi->s_resgid;
5833 	old_opts.s_commit_interval = sbi->s_commit_interval;
5834 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5835 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5836 #ifdef CONFIG_QUOTA
5837 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5838 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5839 		if (sbi->s_qf_names[i]) {
5840 			char *qf_name = get_qf_name(sb, sbi, i);
5841 
5842 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5843 			if (!old_opts.s_qf_names[i]) {
5844 				for (j = 0; j < i; j++)
5845 					kfree(old_opts.s_qf_names[j]);
5846 				kfree(orig_data);
5847 				return -ENOMEM;
5848 			}
5849 		} else
5850 			old_opts.s_qf_names[i] = NULL;
5851 #endif
5852 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5853 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5854 
5855 	/*
5856 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5857 	 * either way we need to make sure it matches in both *flags and
5858 	 * s_flags. Copy those selected flags from *flags to s_flags
5859 	 */
5860 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5861 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5862 
5863 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5864 		err = -EINVAL;
5865 		goto restore_opts;
5866 	}
5867 
5868 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5869 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5870 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5871 			 "during remount not supported; ignoring");
5872 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5873 	}
5874 
5875 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5876 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5877 			ext4_msg(sb, KERN_ERR, "can't mount with "
5878 				 "both data=journal and delalloc");
5879 			err = -EINVAL;
5880 			goto restore_opts;
5881 		}
5882 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5883 			ext4_msg(sb, KERN_ERR, "can't mount with "
5884 				 "both data=journal and dioread_nolock");
5885 			err = -EINVAL;
5886 			goto restore_opts;
5887 		}
5888 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5889 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5890 			ext4_msg(sb, KERN_ERR, "can't mount with "
5891 				"journal_async_commit in data=ordered mode");
5892 			err = -EINVAL;
5893 			goto restore_opts;
5894 		}
5895 	}
5896 
5897 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5898 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5899 		err = -EINVAL;
5900 		goto restore_opts;
5901 	}
5902 
5903 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5904 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5905 
5906 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5907 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5908 
5909 	es = sbi->s_es;
5910 
5911 	if (sbi->s_journal) {
5912 		ext4_init_journal_params(sb, sbi->s_journal);
5913 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5914 	}
5915 
5916 	/* Flush outstanding errors before changing fs state */
5917 	flush_work(&sbi->s_error_work);
5918 
5919 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5920 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5921 			err = -EROFS;
5922 			goto restore_opts;
5923 		}
5924 
5925 		if (*flags & SB_RDONLY) {
5926 			err = sync_filesystem(sb);
5927 			if (err < 0)
5928 				goto restore_opts;
5929 			err = dquot_suspend(sb, -1);
5930 			if (err < 0)
5931 				goto restore_opts;
5932 
5933 			/*
5934 			 * First of all, the unconditional stuff we have to do
5935 			 * to disable replay of the journal when we next remount
5936 			 */
5937 			sb->s_flags |= SB_RDONLY;
5938 
5939 			/*
5940 			 * OK, test if we are remounting a valid rw partition
5941 			 * readonly, and if so set the rdonly flag and then
5942 			 * mark the partition as valid again.
5943 			 */
5944 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5945 			    (sbi->s_mount_state & EXT4_VALID_FS))
5946 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5947 
5948 			if (sbi->s_journal) {
5949 				/*
5950 				 * We let remount-ro finish even if marking fs
5951 				 * as clean failed...
5952 				 */
5953 				ext4_mark_recovery_complete(sb, es);
5954 			}
5955 			if (sbi->s_mmp_tsk)
5956 				kthread_stop(sbi->s_mmp_tsk);
5957 		} else {
5958 			/* Make sure we can mount this feature set readwrite */
5959 			if (ext4_has_feature_readonly(sb) ||
5960 			    !ext4_feature_set_ok(sb, 0)) {
5961 				err = -EROFS;
5962 				goto restore_opts;
5963 			}
5964 			/*
5965 			 * Make sure the group descriptor checksums
5966 			 * are sane.  If they aren't, refuse to remount r/w.
5967 			 */
5968 			for (g = 0; g < sbi->s_groups_count; g++) {
5969 				struct ext4_group_desc *gdp =
5970 					ext4_get_group_desc(sb, g, NULL);
5971 
5972 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5973 					ext4_msg(sb, KERN_ERR,
5974 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5975 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5976 					       le16_to_cpu(gdp->bg_checksum));
5977 					err = -EFSBADCRC;
5978 					goto restore_opts;
5979 				}
5980 			}
5981 
5982 			/*
5983 			 * If we have an unprocessed orphan list hanging
5984 			 * around from a previously readonly bdev mount,
5985 			 * require a full umount/remount for now.
5986 			 */
5987 			if (es->s_last_orphan) {
5988 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5989 				       "remount RDWR because of unprocessed "
5990 				       "orphan inode list.  Please "
5991 				       "umount/remount instead");
5992 				err = -EINVAL;
5993 				goto restore_opts;
5994 			}
5995 
5996 			/*
5997 			 * Mounting a RDONLY partition read-write, so reread
5998 			 * and store the current valid flag.  (It may have
5999 			 * been changed by e2fsck since we originally mounted
6000 			 * the partition.)
6001 			 */
6002 			if (sbi->s_journal) {
6003 				err = ext4_clear_journal_err(sb, es);
6004 				if (err)
6005 					goto restore_opts;
6006 			}
6007 			sbi->s_mount_state = le16_to_cpu(es->s_state);
6008 
6009 			err = ext4_setup_super(sb, es, 0);
6010 			if (err)
6011 				goto restore_opts;
6012 
6013 			sb->s_flags &= ~SB_RDONLY;
6014 			if (ext4_has_feature_mmp(sb))
6015 				if (ext4_multi_mount_protect(sb,
6016 						le64_to_cpu(es->s_mmp_block))) {
6017 					err = -EROFS;
6018 					goto restore_opts;
6019 				}
6020 			enable_quota = 1;
6021 		}
6022 	}
6023 
6024 	/*
6025 	 * Reinitialize lazy itable initialization thread based on
6026 	 * current settings
6027 	 */
6028 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6029 		ext4_unregister_li_request(sb);
6030 	else {
6031 		ext4_group_t first_not_zeroed;
6032 		first_not_zeroed = ext4_has_uninit_itable(sb);
6033 		ext4_register_li_request(sb, first_not_zeroed);
6034 	}
6035 
6036 	/*
6037 	 * Handle creation of system zone data early because it can fail.
6038 	 * Releasing of existing data is done when we are sure remount will
6039 	 * succeed.
6040 	 */
6041 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6042 		err = ext4_setup_system_zone(sb);
6043 		if (err)
6044 			goto restore_opts;
6045 	}
6046 
6047 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6048 		err = ext4_commit_super(sb);
6049 		if (err)
6050 			goto restore_opts;
6051 	}
6052 
6053 #ifdef CONFIG_QUOTA
6054 	/* Release old quota file names */
6055 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6056 		kfree(old_opts.s_qf_names[i]);
6057 	if (enable_quota) {
6058 		if (sb_any_quota_suspended(sb))
6059 			dquot_resume(sb, -1);
6060 		else if (ext4_has_feature_quota(sb)) {
6061 			err = ext4_enable_quotas(sb);
6062 			if (err)
6063 				goto restore_opts;
6064 		}
6065 	}
6066 #endif
6067 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6068 		ext4_release_system_zone(sb);
6069 
6070 	/*
6071 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6072 	 * either way we need to make sure it matches in both *flags and
6073 	 * s_flags. Copy those selected flags from s_flags to *flags
6074 	 */
6075 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6076 
6077 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6078 		 orig_data, ext4_quota_mode(sb));
6079 	kfree(orig_data);
6080 	return 0;
6081 
6082 restore_opts:
6083 	sb->s_flags = old_sb_flags;
6084 	sbi->s_mount_opt = old_opts.s_mount_opt;
6085 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6086 	sbi->s_resuid = old_opts.s_resuid;
6087 	sbi->s_resgid = old_opts.s_resgid;
6088 	sbi->s_commit_interval = old_opts.s_commit_interval;
6089 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6090 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6091 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6092 		ext4_release_system_zone(sb);
6093 #ifdef CONFIG_QUOTA
6094 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6095 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6096 		to_free[i] = get_qf_name(sb, sbi, i);
6097 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6098 	}
6099 	synchronize_rcu();
6100 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6101 		kfree(to_free[i]);
6102 #endif
6103 	kfree(orig_data);
6104 	return err;
6105 }
6106 
6107 #ifdef CONFIG_QUOTA
6108 static int ext4_statfs_project(struct super_block *sb,
6109 			       kprojid_t projid, struct kstatfs *buf)
6110 {
6111 	struct kqid qid;
6112 	struct dquot *dquot;
6113 	u64 limit;
6114 	u64 curblock;
6115 
6116 	qid = make_kqid_projid(projid);
6117 	dquot = dqget(sb, qid);
6118 	if (IS_ERR(dquot))
6119 		return PTR_ERR(dquot);
6120 	spin_lock(&dquot->dq_dqb_lock);
6121 
6122 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6123 			     dquot->dq_dqb.dqb_bhardlimit);
6124 	limit >>= sb->s_blocksize_bits;
6125 
6126 	if (limit && buf->f_blocks > limit) {
6127 		curblock = (dquot->dq_dqb.dqb_curspace +
6128 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6129 		buf->f_blocks = limit;
6130 		buf->f_bfree = buf->f_bavail =
6131 			(buf->f_blocks > curblock) ?
6132 			 (buf->f_blocks - curblock) : 0;
6133 	}
6134 
6135 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6136 			     dquot->dq_dqb.dqb_ihardlimit);
6137 	if (limit && buf->f_files > limit) {
6138 		buf->f_files = limit;
6139 		buf->f_ffree =
6140 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6141 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6142 	}
6143 
6144 	spin_unlock(&dquot->dq_dqb_lock);
6145 	dqput(dquot);
6146 	return 0;
6147 }
6148 #endif
6149 
6150 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6151 {
6152 	struct super_block *sb = dentry->d_sb;
6153 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6154 	struct ext4_super_block *es = sbi->s_es;
6155 	ext4_fsblk_t overhead = 0, resv_blocks;
6156 	u64 fsid;
6157 	s64 bfree;
6158 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6159 
6160 	if (!test_opt(sb, MINIX_DF))
6161 		overhead = sbi->s_overhead;
6162 
6163 	buf->f_type = EXT4_SUPER_MAGIC;
6164 	buf->f_bsize = sb->s_blocksize;
6165 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6166 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6167 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6168 	/* prevent underflow in case that few free space is available */
6169 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6170 	buf->f_bavail = buf->f_bfree -
6171 			(ext4_r_blocks_count(es) + resv_blocks);
6172 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6173 		buf->f_bavail = 0;
6174 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6175 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6176 	buf->f_namelen = EXT4_NAME_LEN;
6177 	fsid = le64_to_cpup((void *)es->s_uuid) ^
6178 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6179 	buf->f_fsid = u64_to_fsid(fsid);
6180 
6181 #ifdef CONFIG_QUOTA
6182 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6183 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6184 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6185 #endif
6186 	return 0;
6187 }
6188 
6189 
6190 #ifdef CONFIG_QUOTA
6191 
6192 /*
6193  * Helper functions so that transaction is started before we acquire dqio_sem
6194  * to keep correct lock ordering of transaction > dqio_sem
6195  */
6196 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6197 {
6198 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6199 }
6200 
6201 static int ext4_write_dquot(struct dquot *dquot)
6202 {
6203 	int ret, err;
6204 	handle_t *handle;
6205 	struct inode *inode;
6206 
6207 	inode = dquot_to_inode(dquot);
6208 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6209 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6210 	if (IS_ERR(handle))
6211 		return PTR_ERR(handle);
6212 	ret = dquot_commit(dquot);
6213 	err = ext4_journal_stop(handle);
6214 	if (!ret)
6215 		ret = err;
6216 	return ret;
6217 }
6218 
6219 static int ext4_acquire_dquot(struct dquot *dquot)
6220 {
6221 	int ret, err;
6222 	handle_t *handle;
6223 
6224 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6225 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6226 	if (IS_ERR(handle))
6227 		return PTR_ERR(handle);
6228 	ret = dquot_acquire(dquot);
6229 	err = ext4_journal_stop(handle);
6230 	if (!ret)
6231 		ret = err;
6232 	return ret;
6233 }
6234 
6235 static int ext4_release_dquot(struct dquot *dquot)
6236 {
6237 	int ret, err;
6238 	handle_t *handle;
6239 
6240 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6241 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6242 	if (IS_ERR(handle)) {
6243 		/* Release dquot anyway to avoid endless cycle in dqput() */
6244 		dquot_release(dquot);
6245 		return PTR_ERR(handle);
6246 	}
6247 	ret = dquot_release(dquot);
6248 	err = ext4_journal_stop(handle);
6249 	if (!ret)
6250 		ret = err;
6251 	return ret;
6252 }
6253 
6254 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6255 {
6256 	struct super_block *sb = dquot->dq_sb;
6257 
6258 	if (ext4_is_quota_journalled(sb)) {
6259 		dquot_mark_dquot_dirty(dquot);
6260 		return ext4_write_dquot(dquot);
6261 	} else {
6262 		return dquot_mark_dquot_dirty(dquot);
6263 	}
6264 }
6265 
6266 static int ext4_write_info(struct super_block *sb, int type)
6267 {
6268 	int ret, err;
6269 	handle_t *handle;
6270 
6271 	/* Data block + inode block */
6272 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6273 	if (IS_ERR(handle))
6274 		return PTR_ERR(handle);
6275 	ret = dquot_commit_info(sb, type);
6276 	err = ext4_journal_stop(handle);
6277 	if (!ret)
6278 		ret = err;
6279 	return ret;
6280 }
6281 
6282 /*
6283  * Turn on quotas during mount time - we need to find
6284  * the quota file and such...
6285  */
6286 static int ext4_quota_on_mount(struct super_block *sb, int type)
6287 {
6288 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6289 					EXT4_SB(sb)->s_jquota_fmt, type);
6290 }
6291 
6292 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6293 {
6294 	struct ext4_inode_info *ei = EXT4_I(inode);
6295 
6296 	/* The first argument of lockdep_set_subclass has to be
6297 	 * *exactly* the same as the argument to init_rwsem() --- in
6298 	 * this case, in init_once() --- or lockdep gets unhappy
6299 	 * because the name of the lock is set using the
6300 	 * stringification of the argument to init_rwsem().
6301 	 */
6302 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6303 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6304 }
6305 
6306 /*
6307  * Standard function to be called on quota_on
6308  */
6309 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6310 			 const struct path *path)
6311 {
6312 	int err;
6313 
6314 	if (!test_opt(sb, QUOTA))
6315 		return -EINVAL;
6316 
6317 	/* Quotafile not on the same filesystem? */
6318 	if (path->dentry->d_sb != sb)
6319 		return -EXDEV;
6320 
6321 	/* Quota already enabled for this file? */
6322 	if (IS_NOQUOTA(d_inode(path->dentry)))
6323 		return -EBUSY;
6324 
6325 	/* Journaling quota? */
6326 	if (EXT4_SB(sb)->s_qf_names[type]) {
6327 		/* Quotafile not in fs root? */
6328 		if (path->dentry->d_parent != sb->s_root)
6329 			ext4_msg(sb, KERN_WARNING,
6330 				"Quota file not on filesystem root. "
6331 				"Journaled quota will not work");
6332 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6333 	} else {
6334 		/*
6335 		 * Clear the flag just in case mount options changed since
6336 		 * last time.
6337 		 */
6338 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6339 	}
6340 
6341 	/*
6342 	 * When we journal data on quota file, we have to flush journal to see
6343 	 * all updates to the file when we bypass pagecache...
6344 	 */
6345 	if (EXT4_SB(sb)->s_journal &&
6346 	    ext4_should_journal_data(d_inode(path->dentry))) {
6347 		/*
6348 		 * We don't need to lock updates but journal_flush() could
6349 		 * otherwise be livelocked...
6350 		 */
6351 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6352 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6353 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6354 		if (err)
6355 			return err;
6356 	}
6357 
6358 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6359 	err = dquot_quota_on(sb, type, format_id, path);
6360 	if (err) {
6361 		lockdep_set_quota_inode(path->dentry->d_inode,
6362 					     I_DATA_SEM_NORMAL);
6363 	} else {
6364 		struct inode *inode = d_inode(path->dentry);
6365 		handle_t *handle;
6366 
6367 		/*
6368 		 * Set inode flags to prevent userspace from messing with quota
6369 		 * files. If this fails, we return success anyway since quotas
6370 		 * are already enabled and this is not a hard failure.
6371 		 */
6372 		inode_lock(inode);
6373 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6374 		if (IS_ERR(handle))
6375 			goto unlock_inode;
6376 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6377 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6378 				S_NOATIME | S_IMMUTABLE);
6379 		err = ext4_mark_inode_dirty(handle, inode);
6380 		ext4_journal_stop(handle);
6381 	unlock_inode:
6382 		inode_unlock(inode);
6383 	}
6384 	return err;
6385 }
6386 
6387 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6388 			     unsigned int flags)
6389 {
6390 	int err;
6391 	struct inode *qf_inode;
6392 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6393 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6394 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6395 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6396 	};
6397 
6398 	BUG_ON(!ext4_has_feature_quota(sb));
6399 
6400 	if (!qf_inums[type])
6401 		return -EPERM;
6402 
6403 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6404 	if (IS_ERR(qf_inode)) {
6405 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6406 		return PTR_ERR(qf_inode);
6407 	}
6408 
6409 	/* Don't account quota for quota files to avoid recursion */
6410 	qf_inode->i_flags |= S_NOQUOTA;
6411 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6412 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6413 	if (err)
6414 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6415 	iput(qf_inode);
6416 
6417 	return err;
6418 }
6419 
6420 /* Enable usage tracking for all quota types. */
6421 static int ext4_enable_quotas(struct super_block *sb)
6422 {
6423 	int type, err = 0;
6424 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6425 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6426 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6427 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6428 	};
6429 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6430 		test_opt(sb, USRQUOTA),
6431 		test_opt(sb, GRPQUOTA),
6432 		test_opt(sb, PRJQUOTA),
6433 	};
6434 
6435 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6436 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6437 		if (qf_inums[type]) {
6438 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6439 				DQUOT_USAGE_ENABLED |
6440 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6441 			if (err) {
6442 				ext4_warning(sb,
6443 					"Failed to enable quota tracking "
6444 					"(type=%d, err=%d). Please run "
6445 					"e2fsck to fix.", type, err);
6446 				for (type--; type >= 0; type--)
6447 					dquot_quota_off(sb, type);
6448 
6449 				return err;
6450 			}
6451 		}
6452 	}
6453 	return 0;
6454 }
6455 
6456 static int ext4_quota_off(struct super_block *sb, int type)
6457 {
6458 	struct inode *inode = sb_dqopt(sb)->files[type];
6459 	handle_t *handle;
6460 	int err;
6461 
6462 	/* Force all delayed allocation blocks to be allocated.
6463 	 * Caller already holds s_umount sem */
6464 	if (test_opt(sb, DELALLOC))
6465 		sync_filesystem(sb);
6466 
6467 	if (!inode || !igrab(inode))
6468 		goto out;
6469 
6470 	err = dquot_quota_off(sb, type);
6471 	if (err || ext4_has_feature_quota(sb))
6472 		goto out_put;
6473 
6474 	inode_lock(inode);
6475 	/*
6476 	 * Update modification times of quota files when userspace can
6477 	 * start looking at them. If we fail, we return success anyway since
6478 	 * this is not a hard failure and quotas are already disabled.
6479 	 */
6480 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6481 	if (IS_ERR(handle)) {
6482 		err = PTR_ERR(handle);
6483 		goto out_unlock;
6484 	}
6485 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6486 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6487 	inode->i_mtime = inode->i_ctime = current_time(inode);
6488 	err = ext4_mark_inode_dirty(handle, inode);
6489 	ext4_journal_stop(handle);
6490 out_unlock:
6491 	inode_unlock(inode);
6492 out_put:
6493 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6494 	iput(inode);
6495 	return err;
6496 out:
6497 	return dquot_quota_off(sb, type);
6498 }
6499 
6500 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6501  * acquiring the locks... As quota files are never truncated and quota code
6502  * itself serializes the operations (and no one else should touch the files)
6503  * we don't have to be afraid of races */
6504 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6505 			       size_t len, loff_t off)
6506 {
6507 	struct inode *inode = sb_dqopt(sb)->files[type];
6508 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6509 	int offset = off & (sb->s_blocksize - 1);
6510 	int tocopy;
6511 	size_t toread;
6512 	struct buffer_head *bh;
6513 	loff_t i_size = i_size_read(inode);
6514 
6515 	if (off > i_size)
6516 		return 0;
6517 	if (off+len > i_size)
6518 		len = i_size-off;
6519 	toread = len;
6520 	while (toread > 0) {
6521 		tocopy = sb->s_blocksize - offset < toread ?
6522 				sb->s_blocksize - offset : toread;
6523 		bh = ext4_bread(NULL, inode, blk, 0);
6524 		if (IS_ERR(bh))
6525 			return PTR_ERR(bh);
6526 		if (!bh)	/* A hole? */
6527 			memset(data, 0, tocopy);
6528 		else
6529 			memcpy(data, bh->b_data+offset, tocopy);
6530 		brelse(bh);
6531 		offset = 0;
6532 		toread -= tocopy;
6533 		data += tocopy;
6534 		blk++;
6535 	}
6536 	return len;
6537 }
6538 
6539 /* Write to quotafile (we know the transaction is already started and has
6540  * enough credits) */
6541 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6542 				const char *data, size_t len, loff_t off)
6543 {
6544 	struct inode *inode = sb_dqopt(sb)->files[type];
6545 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6546 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6547 	int retries = 0;
6548 	struct buffer_head *bh;
6549 	handle_t *handle = journal_current_handle();
6550 
6551 	if (EXT4_SB(sb)->s_journal && !handle) {
6552 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6553 			" cancelled because transaction is not started",
6554 			(unsigned long long)off, (unsigned long long)len);
6555 		return -EIO;
6556 	}
6557 	/*
6558 	 * Since we account only one data block in transaction credits,
6559 	 * then it is impossible to cross a block boundary.
6560 	 */
6561 	if (sb->s_blocksize - offset < len) {
6562 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6563 			" cancelled because not block aligned",
6564 			(unsigned long long)off, (unsigned long long)len);
6565 		return -EIO;
6566 	}
6567 
6568 	do {
6569 		bh = ext4_bread(handle, inode, blk,
6570 				EXT4_GET_BLOCKS_CREATE |
6571 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6572 	} while (PTR_ERR(bh) == -ENOSPC &&
6573 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6574 	if (IS_ERR(bh))
6575 		return PTR_ERR(bh);
6576 	if (!bh)
6577 		goto out;
6578 	BUFFER_TRACE(bh, "get write access");
6579 	err = ext4_journal_get_write_access(handle, bh);
6580 	if (err) {
6581 		brelse(bh);
6582 		return err;
6583 	}
6584 	lock_buffer(bh);
6585 	memcpy(bh->b_data+offset, data, len);
6586 	flush_dcache_page(bh->b_page);
6587 	unlock_buffer(bh);
6588 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6589 	brelse(bh);
6590 out:
6591 	if (inode->i_size < off + len) {
6592 		i_size_write(inode, off + len);
6593 		EXT4_I(inode)->i_disksize = inode->i_size;
6594 		err2 = ext4_mark_inode_dirty(handle, inode);
6595 		if (unlikely(err2 && !err))
6596 			err = err2;
6597 	}
6598 	return err ? err : len;
6599 }
6600 #endif
6601 
6602 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6603 		       const char *dev_name, void *data)
6604 {
6605 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6606 }
6607 
6608 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6609 static inline void register_as_ext2(void)
6610 {
6611 	int err = register_filesystem(&ext2_fs_type);
6612 	if (err)
6613 		printk(KERN_WARNING
6614 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6615 }
6616 
6617 static inline void unregister_as_ext2(void)
6618 {
6619 	unregister_filesystem(&ext2_fs_type);
6620 }
6621 
6622 static inline int ext2_feature_set_ok(struct super_block *sb)
6623 {
6624 	if (ext4_has_unknown_ext2_incompat_features(sb))
6625 		return 0;
6626 	if (sb_rdonly(sb))
6627 		return 1;
6628 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6629 		return 0;
6630 	return 1;
6631 }
6632 #else
6633 static inline void register_as_ext2(void) { }
6634 static inline void unregister_as_ext2(void) { }
6635 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6636 #endif
6637 
6638 static inline void register_as_ext3(void)
6639 {
6640 	int err = register_filesystem(&ext3_fs_type);
6641 	if (err)
6642 		printk(KERN_WARNING
6643 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6644 }
6645 
6646 static inline void unregister_as_ext3(void)
6647 {
6648 	unregister_filesystem(&ext3_fs_type);
6649 }
6650 
6651 static inline int ext3_feature_set_ok(struct super_block *sb)
6652 {
6653 	if (ext4_has_unknown_ext3_incompat_features(sb))
6654 		return 0;
6655 	if (!ext4_has_feature_journal(sb))
6656 		return 0;
6657 	if (sb_rdonly(sb))
6658 		return 1;
6659 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6660 		return 0;
6661 	return 1;
6662 }
6663 
6664 static struct file_system_type ext4_fs_type = {
6665 	.owner		= THIS_MODULE,
6666 	.name		= "ext4",
6667 	.mount		= ext4_mount,
6668 	.kill_sb	= kill_block_super,
6669 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6670 };
6671 MODULE_ALIAS_FS("ext4");
6672 
6673 /* Shared across all ext4 file systems */
6674 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6675 
6676 static int __init ext4_init_fs(void)
6677 {
6678 	int i, err;
6679 
6680 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6681 	ext4_li_info = NULL;
6682 
6683 	/* Build-time check for flags consistency */
6684 	ext4_check_flag_values();
6685 
6686 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6687 		init_waitqueue_head(&ext4__ioend_wq[i]);
6688 
6689 	err = ext4_init_es();
6690 	if (err)
6691 		return err;
6692 
6693 	err = ext4_init_pending();
6694 	if (err)
6695 		goto out7;
6696 
6697 	err = ext4_init_post_read_processing();
6698 	if (err)
6699 		goto out6;
6700 
6701 	err = ext4_init_pageio();
6702 	if (err)
6703 		goto out5;
6704 
6705 	err = ext4_init_system_zone();
6706 	if (err)
6707 		goto out4;
6708 
6709 	err = ext4_init_sysfs();
6710 	if (err)
6711 		goto out3;
6712 
6713 	err = ext4_init_mballoc();
6714 	if (err)
6715 		goto out2;
6716 	err = init_inodecache();
6717 	if (err)
6718 		goto out1;
6719 
6720 	err = ext4_fc_init_dentry_cache();
6721 	if (err)
6722 		goto out05;
6723 
6724 	register_as_ext3();
6725 	register_as_ext2();
6726 	err = register_filesystem(&ext4_fs_type);
6727 	if (err)
6728 		goto out;
6729 
6730 	return 0;
6731 out:
6732 	unregister_as_ext2();
6733 	unregister_as_ext3();
6734 out05:
6735 	destroy_inodecache();
6736 out1:
6737 	ext4_exit_mballoc();
6738 out2:
6739 	ext4_exit_sysfs();
6740 out3:
6741 	ext4_exit_system_zone();
6742 out4:
6743 	ext4_exit_pageio();
6744 out5:
6745 	ext4_exit_post_read_processing();
6746 out6:
6747 	ext4_exit_pending();
6748 out7:
6749 	ext4_exit_es();
6750 
6751 	return err;
6752 }
6753 
6754 static void __exit ext4_exit_fs(void)
6755 {
6756 	ext4_destroy_lazyinit_thread();
6757 	unregister_as_ext2();
6758 	unregister_as_ext3();
6759 	unregister_filesystem(&ext4_fs_type);
6760 	destroy_inodecache();
6761 	ext4_exit_mballoc();
6762 	ext4_exit_sysfs();
6763 	ext4_exit_system_zone();
6764 	ext4_exit_pageio();
6765 	ext4_exit_post_read_processing();
6766 	ext4_exit_es();
6767 	ext4_exit_pending();
6768 }
6769 
6770 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6771 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6772 MODULE_LICENSE("GPL");
6773 MODULE_SOFTDEP("pre: crc32c");
6774 module_init(ext4_init_fs)
6775 module_exit(ext4_exit_fs)
6776