1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_jbd2.h" 48 #include "xattr.h" 49 #include "acl.h" 50 #include "mballoc.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/ext4.h> 54 55 static struct proc_dir_entry *ext4_proc_root; 56 static struct kset *ext4_kset; 57 struct ext4_lazy_init *ext4_li_info; 58 struct mutex ext4_li_mtx; 59 struct ext4_features *ext4_feat; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static const char *ext4_decode_error(struct super_block *sb, int errno, 70 char nbuf[16]); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static void ext4_write_super(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 82 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 83 static struct file_system_type ext3_fs_type = { 84 .owner = THIS_MODULE, 85 .name = "ext3", 86 .mount = ext4_mount, 87 .kill_sb = kill_block_super, 88 .fs_flags = FS_REQUIRES_DEV, 89 }; 90 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 91 #else 92 #define IS_EXT3_SB(sb) (0) 93 #endif 94 95 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 96 struct ext4_group_desc *bg) 97 { 98 return le32_to_cpu(bg->bg_block_bitmap_lo) | 99 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 100 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 101 } 102 103 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 104 struct ext4_group_desc *bg) 105 { 106 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 107 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 108 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 109 } 110 111 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 112 struct ext4_group_desc *bg) 113 { 114 return le32_to_cpu(bg->bg_inode_table_lo) | 115 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 116 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 117 } 118 119 __u32 ext4_free_blks_count(struct super_block *sb, 120 struct ext4_group_desc *bg) 121 { 122 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 123 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 124 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 125 } 126 127 __u32 ext4_free_inodes_count(struct super_block *sb, 128 struct ext4_group_desc *bg) 129 { 130 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 131 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 132 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 133 } 134 135 __u32 ext4_used_dirs_count(struct super_block *sb, 136 struct ext4_group_desc *bg) 137 { 138 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 139 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 140 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 141 } 142 143 __u32 ext4_itable_unused_count(struct super_block *sb, 144 struct ext4_group_desc *bg) 145 { 146 return le16_to_cpu(bg->bg_itable_unused_lo) | 147 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 148 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 149 } 150 151 void ext4_block_bitmap_set(struct super_block *sb, 152 struct ext4_group_desc *bg, ext4_fsblk_t blk) 153 { 154 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 155 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 156 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 157 } 158 159 void ext4_inode_bitmap_set(struct super_block *sb, 160 struct ext4_group_desc *bg, ext4_fsblk_t blk) 161 { 162 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 163 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 164 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 165 } 166 167 void ext4_inode_table_set(struct super_block *sb, 168 struct ext4_group_desc *bg, ext4_fsblk_t blk) 169 { 170 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 171 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 172 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 173 } 174 175 void ext4_free_blks_set(struct super_block *sb, 176 struct ext4_group_desc *bg, __u32 count) 177 { 178 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 179 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 180 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 181 } 182 183 void ext4_free_inodes_set(struct super_block *sb, 184 struct ext4_group_desc *bg, __u32 count) 185 { 186 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 187 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 188 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 189 } 190 191 void ext4_used_dirs_set(struct super_block *sb, 192 struct ext4_group_desc *bg, __u32 count) 193 { 194 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 195 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 196 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 197 } 198 199 void ext4_itable_unused_set(struct super_block *sb, 200 struct ext4_group_desc *bg, __u32 count) 201 { 202 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 203 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 204 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 205 } 206 207 208 /* Just increment the non-pointer handle value */ 209 static handle_t *ext4_get_nojournal(void) 210 { 211 handle_t *handle = current->journal_info; 212 unsigned long ref_cnt = (unsigned long)handle; 213 214 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 215 216 ref_cnt++; 217 handle = (handle_t *)ref_cnt; 218 219 current->journal_info = handle; 220 return handle; 221 } 222 223 224 /* Decrement the non-pointer handle value */ 225 static void ext4_put_nojournal(handle_t *handle) 226 { 227 unsigned long ref_cnt = (unsigned long)handle; 228 229 BUG_ON(ref_cnt == 0); 230 231 ref_cnt--; 232 handle = (handle_t *)ref_cnt; 233 234 current->journal_info = handle; 235 } 236 237 /* 238 * Wrappers for jbd2_journal_start/end. 239 * 240 * The only special thing we need to do here is to make sure that all 241 * journal_end calls result in the superblock being marked dirty, so 242 * that sync() will call the filesystem's write_super callback if 243 * appropriate. 244 */ 245 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 246 { 247 journal_t *journal; 248 249 if (sb->s_flags & MS_RDONLY) 250 return ERR_PTR(-EROFS); 251 252 vfs_check_frozen(sb, SB_FREEZE_TRANS); 253 /* Special case here: if the journal has aborted behind our 254 * backs (eg. EIO in the commit thread), then we still need to 255 * take the FS itself readonly cleanly. */ 256 journal = EXT4_SB(sb)->s_journal; 257 if (journal) { 258 if (is_journal_aborted(journal)) { 259 ext4_abort(sb, "Detected aborted journal"); 260 return ERR_PTR(-EROFS); 261 } 262 return jbd2_journal_start(journal, nblocks); 263 } 264 return ext4_get_nojournal(); 265 } 266 267 /* 268 * The only special thing we need to do here is to make sure that all 269 * jbd2_journal_stop calls result in the superblock being marked dirty, so 270 * that sync() will call the filesystem's write_super callback if 271 * appropriate. 272 */ 273 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 274 { 275 struct super_block *sb; 276 int err; 277 int rc; 278 279 if (!ext4_handle_valid(handle)) { 280 ext4_put_nojournal(handle); 281 return 0; 282 } 283 sb = handle->h_transaction->t_journal->j_private; 284 err = handle->h_err; 285 rc = jbd2_journal_stop(handle); 286 287 if (!err) 288 err = rc; 289 if (err) 290 __ext4_std_error(sb, where, line, err); 291 return err; 292 } 293 294 void ext4_journal_abort_handle(const char *caller, unsigned int line, 295 const char *err_fn, struct buffer_head *bh, 296 handle_t *handle, int err) 297 { 298 char nbuf[16]; 299 const char *errstr = ext4_decode_error(NULL, err, nbuf); 300 301 BUG_ON(!ext4_handle_valid(handle)); 302 303 if (bh) 304 BUFFER_TRACE(bh, "abort"); 305 306 if (!handle->h_err) 307 handle->h_err = err; 308 309 if (is_handle_aborted(handle)) 310 return; 311 312 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n", 313 caller, line, errstr, err_fn); 314 315 jbd2_journal_abort_handle(handle); 316 } 317 318 static void __save_error_info(struct super_block *sb, const char *func, 319 unsigned int line) 320 { 321 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 322 323 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 353 /* Deal with the reporting of failure conditions on a filesystem such as 354 * inconsistencies detected or read IO failures. 355 * 356 * On ext2, we can store the error state of the filesystem in the 357 * superblock. That is not possible on ext4, because we may have other 358 * write ordering constraints on the superblock which prevent us from 359 * writing it out straight away; and given that the journal is about to 360 * be aborted, we can't rely on the current, or future, transactions to 361 * write out the superblock safely. 362 * 363 * We'll just use the jbd2_journal_abort() error code to record an error in 364 * the journal instead. On recovery, the journal will complain about 365 * that error until we've noted it down and cleared it. 366 */ 367 368 static void ext4_handle_error(struct super_block *sb) 369 { 370 if (sb->s_flags & MS_RDONLY) 371 return; 372 373 if (!test_opt(sb, ERRORS_CONT)) { 374 journal_t *journal = EXT4_SB(sb)->s_journal; 375 376 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 377 if (journal) 378 jbd2_journal_abort(journal, -EIO); 379 } 380 if (test_opt(sb, ERRORS_RO)) { 381 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 382 sb->s_flags |= MS_RDONLY; 383 } 384 if (test_opt(sb, ERRORS_PANIC)) 385 panic("EXT4-fs (device %s): panic forced after error\n", 386 sb->s_id); 387 } 388 389 void __ext4_error(struct super_block *sb, const char *function, 390 unsigned int line, const char *fmt, ...) 391 { 392 struct va_format vaf; 393 va_list args; 394 395 va_start(args, fmt); 396 vaf.fmt = fmt; 397 vaf.va = &args; 398 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 399 sb->s_id, function, line, current->comm, &vaf); 400 va_end(args); 401 402 ext4_handle_error(sb); 403 } 404 405 void ext4_error_inode(struct inode *inode, const char *function, 406 unsigned int line, ext4_fsblk_t block, 407 const char *fmt, ...) 408 { 409 va_list args; 410 struct va_format vaf; 411 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 412 413 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 414 es->s_last_error_block = cpu_to_le64(block); 415 save_error_info(inode->i_sb, function, line); 416 va_start(args, fmt); 417 vaf.fmt = fmt; 418 vaf.va = &args; 419 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 420 inode->i_sb->s_id, function, line, inode->i_ino); 421 if (block) 422 printk(KERN_CONT "block %llu: ", block); 423 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf); 424 va_end(args); 425 426 ext4_handle_error(inode->i_sb); 427 } 428 429 void ext4_error_file(struct file *file, const char *function, 430 unsigned int line, ext4_fsblk_t block, 431 const char *fmt, ...) 432 { 433 va_list args; 434 struct va_format vaf; 435 struct ext4_super_block *es; 436 struct inode *inode = file->f_dentry->d_inode; 437 char pathname[80], *path; 438 439 es = EXT4_SB(inode->i_sb)->s_es; 440 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 441 save_error_info(inode->i_sb, function, line); 442 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 443 if (IS_ERR(path)) 444 path = "(unknown)"; 445 printk(KERN_CRIT 446 "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 447 inode->i_sb->s_id, function, line, inode->i_ino); 448 if (block) 449 printk(KERN_CONT "block %llu: ", block); 450 va_start(args, fmt); 451 vaf.fmt = fmt; 452 vaf.va = &args; 453 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf); 454 va_end(args); 455 456 ext4_handle_error(inode->i_sb); 457 } 458 459 static const char *ext4_decode_error(struct super_block *sb, int errno, 460 char nbuf[16]) 461 { 462 char *errstr = NULL; 463 464 switch (errno) { 465 case -EIO: 466 errstr = "IO failure"; 467 break; 468 case -ENOMEM: 469 errstr = "Out of memory"; 470 break; 471 case -EROFS: 472 if (!sb || (EXT4_SB(sb)->s_journal && 473 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 474 errstr = "Journal has aborted"; 475 else 476 errstr = "Readonly filesystem"; 477 break; 478 default: 479 /* If the caller passed in an extra buffer for unknown 480 * errors, textualise them now. Else we just return 481 * NULL. */ 482 if (nbuf) { 483 /* Check for truncated error codes... */ 484 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 485 errstr = nbuf; 486 } 487 break; 488 } 489 490 return errstr; 491 } 492 493 /* __ext4_std_error decodes expected errors from journaling functions 494 * automatically and invokes the appropriate error response. */ 495 496 void __ext4_std_error(struct super_block *sb, const char *function, 497 unsigned int line, int errno) 498 { 499 char nbuf[16]; 500 const char *errstr; 501 502 /* Special case: if the error is EROFS, and we're not already 503 * inside a transaction, then there's really no point in logging 504 * an error. */ 505 if (errno == -EROFS && journal_current_handle() == NULL && 506 (sb->s_flags & MS_RDONLY)) 507 return; 508 509 errstr = ext4_decode_error(sb, errno, nbuf); 510 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 511 sb->s_id, function, line, errstr); 512 save_error_info(sb, function, line); 513 514 ext4_handle_error(sb); 515 } 516 517 /* 518 * ext4_abort is a much stronger failure handler than ext4_error. The 519 * abort function may be used to deal with unrecoverable failures such 520 * as journal IO errors or ENOMEM at a critical moment in log management. 521 * 522 * We unconditionally force the filesystem into an ABORT|READONLY state, 523 * unless the error response on the fs has been set to panic in which 524 * case we take the easy way out and panic immediately. 525 */ 526 527 void __ext4_abort(struct super_block *sb, const char *function, 528 unsigned int line, const char *fmt, ...) 529 { 530 va_list args; 531 532 save_error_info(sb, function, line); 533 va_start(args, fmt); 534 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 535 function, line); 536 vprintk(fmt, args); 537 printk("\n"); 538 va_end(args); 539 540 if ((sb->s_flags & MS_RDONLY) == 0) { 541 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 542 sb->s_flags |= MS_RDONLY; 543 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 544 if (EXT4_SB(sb)->s_journal) 545 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 546 save_error_info(sb, function, line); 547 } 548 if (test_opt(sb, ERRORS_PANIC)) 549 panic("EXT4-fs panic from previous error\n"); 550 } 551 552 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 553 { 554 struct va_format vaf; 555 va_list args; 556 557 va_start(args, fmt); 558 vaf.fmt = fmt; 559 vaf.va = &args; 560 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 561 va_end(args); 562 } 563 564 void __ext4_warning(struct super_block *sb, const char *function, 565 unsigned int line, const char *fmt, ...) 566 { 567 struct va_format vaf; 568 va_list args; 569 570 va_start(args, fmt); 571 vaf.fmt = fmt; 572 vaf.va = &args; 573 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 574 sb->s_id, function, line, &vaf); 575 va_end(args); 576 } 577 578 void __ext4_grp_locked_error(const char *function, unsigned int line, 579 struct super_block *sb, ext4_group_t grp, 580 unsigned long ino, ext4_fsblk_t block, 581 const char *fmt, ...) 582 __releases(bitlock) 583 __acquires(bitlock) 584 { 585 struct va_format vaf; 586 va_list args; 587 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 588 589 es->s_last_error_ino = cpu_to_le32(ino); 590 es->s_last_error_block = cpu_to_le64(block); 591 __save_error_info(sb, function, line); 592 593 va_start(args, fmt); 594 595 vaf.fmt = fmt; 596 vaf.va = &args; 597 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u", 598 sb->s_id, function, line, grp); 599 if (ino) 600 printk(KERN_CONT "inode %lu: ", ino); 601 if (block) 602 printk(KERN_CONT "block %llu:", (unsigned long long) block); 603 printk(KERN_CONT "%pV\n", &vaf); 604 va_end(args); 605 606 if (test_opt(sb, ERRORS_CONT)) { 607 ext4_commit_super(sb, 0); 608 return; 609 } 610 611 ext4_unlock_group(sb, grp); 612 ext4_handle_error(sb); 613 /* 614 * We only get here in the ERRORS_RO case; relocking the group 615 * may be dangerous, but nothing bad will happen since the 616 * filesystem will have already been marked read/only and the 617 * journal has been aborted. We return 1 as a hint to callers 618 * who might what to use the return value from 619 * ext4_grp_locked_error() to distinguish beween the 620 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 621 * aggressively from the ext4 function in question, with a 622 * more appropriate error code. 623 */ 624 ext4_lock_group(sb, grp); 625 return; 626 } 627 628 void ext4_update_dynamic_rev(struct super_block *sb) 629 { 630 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 631 632 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 633 return; 634 635 ext4_warning(sb, 636 "updating to rev %d because of new feature flag, " 637 "running e2fsck is recommended", 638 EXT4_DYNAMIC_REV); 639 640 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 641 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 642 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 643 /* leave es->s_feature_*compat flags alone */ 644 /* es->s_uuid will be set by e2fsck if empty */ 645 646 /* 647 * The rest of the superblock fields should be zero, and if not it 648 * means they are likely already in use, so leave them alone. We 649 * can leave it up to e2fsck to clean up any inconsistencies there. 650 */ 651 } 652 653 /* 654 * Open the external journal device 655 */ 656 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 657 { 658 struct block_device *bdev; 659 char b[BDEVNAME_SIZE]; 660 661 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 662 if (IS_ERR(bdev)) 663 goto fail; 664 return bdev; 665 666 fail: 667 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 668 __bdevname(dev, b), PTR_ERR(bdev)); 669 return NULL; 670 } 671 672 /* 673 * Release the journal device 674 */ 675 static int ext4_blkdev_put(struct block_device *bdev) 676 { 677 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 678 } 679 680 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 681 { 682 struct block_device *bdev; 683 int ret = -ENODEV; 684 685 bdev = sbi->journal_bdev; 686 if (bdev) { 687 ret = ext4_blkdev_put(bdev); 688 sbi->journal_bdev = NULL; 689 } 690 return ret; 691 } 692 693 static inline struct inode *orphan_list_entry(struct list_head *l) 694 { 695 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 696 } 697 698 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 699 { 700 struct list_head *l; 701 702 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 703 le32_to_cpu(sbi->s_es->s_last_orphan)); 704 705 printk(KERN_ERR "sb_info orphan list:\n"); 706 list_for_each(l, &sbi->s_orphan) { 707 struct inode *inode = orphan_list_entry(l); 708 printk(KERN_ERR " " 709 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 710 inode->i_sb->s_id, inode->i_ino, inode, 711 inode->i_mode, inode->i_nlink, 712 NEXT_ORPHAN(inode)); 713 } 714 } 715 716 static void ext4_put_super(struct super_block *sb) 717 { 718 struct ext4_sb_info *sbi = EXT4_SB(sb); 719 struct ext4_super_block *es = sbi->s_es; 720 int i, err; 721 722 ext4_unregister_li_request(sb); 723 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 724 725 flush_workqueue(sbi->dio_unwritten_wq); 726 destroy_workqueue(sbi->dio_unwritten_wq); 727 728 lock_super(sb); 729 if (sb->s_dirt) 730 ext4_commit_super(sb, 1); 731 732 if (sbi->s_journal) { 733 err = jbd2_journal_destroy(sbi->s_journal); 734 sbi->s_journal = NULL; 735 if (err < 0) 736 ext4_abort(sb, "Couldn't clean up the journal"); 737 } 738 739 del_timer(&sbi->s_err_report); 740 ext4_release_system_zone(sb); 741 ext4_mb_release(sb); 742 ext4_ext_release(sb); 743 ext4_xattr_put_super(sb); 744 745 if (!(sb->s_flags & MS_RDONLY)) { 746 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 747 es->s_state = cpu_to_le16(sbi->s_mount_state); 748 ext4_commit_super(sb, 1); 749 } 750 if (sbi->s_proc) { 751 remove_proc_entry(sb->s_id, ext4_proc_root); 752 } 753 kobject_del(&sbi->s_kobj); 754 755 for (i = 0; i < sbi->s_gdb_count; i++) 756 brelse(sbi->s_group_desc[i]); 757 kfree(sbi->s_group_desc); 758 if (is_vmalloc_addr(sbi->s_flex_groups)) 759 vfree(sbi->s_flex_groups); 760 else 761 kfree(sbi->s_flex_groups); 762 percpu_counter_destroy(&sbi->s_freeblocks_counter); 763 percpu_counter_destroy(&sbi->s_freeinodes_counter); 764 percpu_counter_destroy(&sbi->s_dirs_counter); 765 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 766 brelse(sbi->s_sbh); 767 #ifdef CONFIG_QUOTA 768 for (i = 0; i < MAXQUOTAS; i++) 769 kfree(sbi->s_qf_names[i]); 770 #endif 771 772 /* Debugging code just in case the in-memory inode orphan list 773 * isn't empty. The on-disk one can be non-empty if we've 774 * detected an error and taken the fs readonly, but the 775 * in-memory list had better be clean by this point. */ 776 if (!list_empty(&sbi->s_orphan)) 777 dump_orphan_list(sb, sbi); 778 J_ASSERT(list_empty(&sbi->s_orphan)); 779 780 invalidate_bdev(sb->s_bdev); 781 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 782 /* 783 * Invalidate the journal device's buffers. We don't want them 784 * floating about in memory - the physical journal device may 785 * hotswapped, and it breaks the `ro-after' testing code. 786 */ 787 sync_blockdev(sbi->journal_bdev); 788 invalidate_bdev(sbi->journal_bdev); 789 ext4_blkdev_remove(sbi); 790 } 791 sb->s_fs_info = NULL; 792 /* 793 * Now that we are completely done shutting down the 794 * superblock, we need to actually destroy the kobject. 795 */ 796 unlock_super(sb); 797 kobject_put(&sbi->s_kobj); 798 wait_for_completion(&sbi->s_kobj_unregister); 799 kfree(sbi->s_blockgroup_lock); 800 kfree(sbi); 801 } 802 803 static struct kmem_cache *ext4_inode_cachep; 804 805 /* 806 * Called inside transaction, so use GFP_NOFS 807 */ 808 static struct inode *ext4_alloc_inode(struct super_block *sb) 809 { 810 struct ext4_inode_info *ei; 811 812 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 813 if (!ei) 814 return NULL; 815 816 ei->vfs_inode.i_version = 1; 817 ei->vfs_inode.i_data.writeback_index = 0; 818 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 819 INIT_LIST_HEAD(&ei->i_prealloc_list); 820 spin_lock_init(&ei->i_prealloc_lock); 821 ei->i_reserved_data_blocks = 0; 822 ei->i_reserved_meta_blocks = 0; 823 ei->i_allocated_meta_blocks = 0; 824 ei->i_da_metadata_calc_len = 0; 825 spin_lock_init(&(ei->i_block_reservation_lock)); 826 #ifdef CONFIG_QUOTA 827 ei->i_reserved_quota = 0; 828 #endif 829 ei->jinode = NULL; 830 INIT_LIST_HEAD(&ei->i_completed_io_list); 831 spin_lock_init(&ei->i_completed_io_lock); 832 ei->cur_aio_dio = NULL; 833 ei->i_sync_tid = 0; 834 ei->i_datasync_tid = 0; 835 atomic_set(&ei->i_ioend_count, 0); 836 atomic_set(&ei->i_aiodio_unwritten, 0); 837 838 return &ei->vfs_inode; 839 } 840 841 static int ext4_drop_inode(struct inode *inode) 842 { 843 int drop = generic_drop_inode(inode); 844 845 trace_ext4_drop_inode(inode, drop); 846 return drop; 847 } 848 849 static void ext4_i_callback(struct rcu_head *head) 850 { 851 struct inode *inode = container_of(head, struct inode, i_rcu); 852 INIT_LIST_HEAD(&inode->i_dentry); 853 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 854 } 855 856 static void ext4_destroy_inode(struct inode *inode) 857 { 858 ext4_ioend_wait(inode); 859 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 860 ext4_msg(inode->i_sb, KERN_ERR, 861 "Inode %lu (%p): orphan list check failed!", 862 inode->i_ino, EXT4_I(inode)); 863 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 864 EXT4_I(inode), sizeof(struct ext4_inode_info), 865 true); 866 dump_stack(); 867 } 868 call_rcu(&inode->i_rcu, ext4_i_callback); 869 } 870 871 static void init_once(void *foo) 872 { 873 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 874 875 INIT_LIST_HEAD(&ei->i_orphan); 876 #ifdef CONFIG_EXT4_FS_XATTR 877 init_rwsem(&ei->xattr_sem); 878 #endif 879 init_rwsem(&ei->i_data_sem); 880 inode_init_once(&ei->vfs_inode); 881 } 882 883 static int init_inodecache(void) 884 { 885 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 886 sizeof(struct ext4_inode_info), 887 0, (SLAB_RECLAIM_ACCOUNT| 888 SLAB_MEM_SPREAD), 889 init_once); 890 if (ext4_inode_cachep == NULL) 891 return -ENOMEM; 892 return 0; 893 } 894 895 static void destroy_inodecache(void) 896 { 897 kmem_cache_destroy(ext4_inode_cachep); 898 } 899 900 void ext4_clear_inode(struct inode *inode) 901 { 902 invalidate_inode_buffers(inode); 903 end_writeback(inode); 904 dquot_drop(inode); 905 ext4_discard_preallocations(inode); 906 if (EXT4_I(inode)->jinode) { 907 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 908 EXT4_I(inode)->jinode); 909 jbd2_free_inode(EXT4_I(inode)->jinode); 910 EXT4_I(inode)->jinode = NULL; 911 } 912 } 913 914 static inline void ext4_show_quota_options(struct seq_file *seq, 915 struct super_block *sb) 916 { 917 #if defined(CONFIG_QUOTA) 918 struct ext4_sb_info *sbi = EXT4_SB(sb); 919 920 if (sbi->s_jquota_fmt) { 921 char *fmtname = ""; 922 923 switch (sbi->s_jquota_fmt) { 924 case QFMT_VFS_OLD: 925 fmtname = "vfsold"; 926 break; 927 case QFMT_VFS_V0: 928 fmtname = "vfsv0"; 929 break; 930 case QFMT_VFS_V1: 931 fmtname = "vfsv1"; 932 break; 933 } 934 seq_printf(seq, ",jqfmt=%s", fmtname); 935 } 936 937 if (sbi->s_qf_names[USRQUOTA]) 938 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 939 940 if (sbi->s_qf_names[GRPQUOTA]) 941 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 942 943 if (test_opt(sb, USRQUOTA)) 944 seq_puts(seq, ",usrquota"); 945 946 if (test_opt(sb, GRPQUOTA)) 947 seq_puts(seq, ",grpquota"); 948 #endif 949 } 950 951 /* 952 * Show an option if 953 * - it's set to a non-default value OR 954 * - if the per-sb default is different from the global default 955 */ 956 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 957 { 958 int def_errors; 959 unsigned long def_mount_opts; 960 struct super_block *sb = vfs->mnt_sb; 961 struct ext4_sb_info *sbi = EXT4_SB(sb); 962 struct ext4_super_block *es = sbi->s_es; 963 964 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 965 def_errors = le16_to_cpu(es->s_errors); 966 967 if (sbi->s_sb_block != 1) 968 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 969 if (test_opt(sb, MINIX_DF)) 970 seq_puts(seq, ",minixdf"); 971 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 972 seq_puts(seq, ",grpid"); 973 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 974 seq_puts(seq, ",nogrpid"); 975 if (sbi->s_resuid != EXT4_DEF_RESUID || 976 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 977 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 978 } 979 if (sbi->s_resgid != EXT4_DEF_RESGID || 980 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 981 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 982 } 983 if (test_opt(sb, ERRORS_RO)) { 984 if (def_errors == EXT4_ERRORS_PANIC || 985 def_errors == EXT4_ERRORS_CONTINUE) { 986 seq_puts(seq, ",errors=remount-ro"); 987 } 988 } 989 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 990 seq_puts(seq, ",errors=continue"); 991 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 992 seq_puts(seq, ",errors=panic"); 993 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 994 seq_puts(seq, ",nouid32"); 995 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 996 seq_puts(seq, ",debug"); 997 if (test_opt(sb, OLDALLOC)) 998 seq_puts(seq, ",oldalloc"); 999 #ifdef CONFIG_EXT4_FS_XATTR 1000 if (test_opt(sb, XATTR_USER) && 1001 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 1002 seq_puts(seq, ",user_xattr"); 1003 if (!test_opt(sb, XATTR_USER) && 1004 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 1005 seq_puts(seq, ",nouser_xattr"); 1006 } 1007 #endif 1008 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1009 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 1010 seq_puts(seq, ",acl"); 1011 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 1012 seq_puts(seq, ",noacl"); 1013 #endif 1014 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 1015 seq_printf(seq, ",commit=%u", 1016 (unsigned) (sbi->s_commit_interval / HZ)); 1017 } 1018 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 1019 seq_printf(seq, ",min_batch_time=%u", 1020 (unsigned) sbi->s_min_batch_time); 1021 } 1022 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 1023 seq_printf(seq, ",max_batch_time=%u", 1024 (unsigned) sbi->s_min_batch_time); 1025 } 1026 1027 /* 1028 * We're changing the default of barrier mount option, so 1029 * let's always display its mount state so it's clear what its 1030 * status is. 1031 */ 1032 seq_puts(seq, ",barrier="); 1033 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 1034 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 1035 seq_puts(seq, ",journal_async_commit"); 1036 else if (test_opt(sb, JOURNAL_CHECKSUM)) 1037 seq_puts(seq, ",journal_checksum"); 1038 if (test_opt(sb, I_VERSION)) 1039 seq_puts(seq, ",i_version"); 1040 if (!test_opt(sb, DELALLOC) && 1041 !(def_mount_opts & EXT4_DEFM_NODELALLOC)) 1042 seq_puts(seq, ",nodelalloc"); 1043 1044 if (test_opt(sb, MBLK_IO_SUBMIT)) 1045 seq_puts(seq, ",mblk_io_submit"); 1046 if (sbi->s_stripe) 1047 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 1048 /* 1049 * journal mode get enabled in different ways 1050 * So just print the value even if we didn't specify it 1051 */ 1052 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1053 seq_puts(seq, ",data=journal"); 1054 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1055 seq_puts(seq, ",data=ordered"); 1056 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1057 seq_puts(seq, ",data=writeback"); 1058 1059 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1060 seq_printf(seq, ",inode_readahead_blks=%u", 1061 sbi->s_inode_readahead_blks); 1062 1063 if (test_opt(sb, DATA_ERR_ABORT)) 1064 seq_puts(seq, ",data_err=abort"); 1065 1066 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 1067 seq_puts(seq, ",noauto_da_alloc"); 1068 1069 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD)) 1070 seq_puts(seq, ",discard"); 1071 1072 if (test_opt(sb, NOLOAD)) 1073 seq_puts(seq, ",norecovery"); 1074 1075 if (test_opt(sb, DIOREAD_NOLOCK)) 1076 seq_puts(seq, ",dioread_nolock"); 1077 1078 if (test_opt(sb, BLOCK_VALIDITY) && 1079 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)) 1080 seq_puts(seq, ",block_validity"); 1081 1082 if (!test_opt(sb, INIT_INODE_TABLE)) 1083 seq_puts(seq, ",noinit_inode_table"); 1084 else if (sbi->s_li_wait_mult) 1085 seq_printf(seq, ",init_inode_table=%u", 1086 (unsigned) sbi->s_li_wait_mult); 1087 1088 ext4_show_quota_options(seq, sb); 1089 1090 return 0; 1091 } 1092 1093 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1094 u64 ino, u32 generation) 1095 { 1096 struct inode *inode; 1097 1098 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1099 return ERR_PTR(-ESTALE); 1100 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1101 return ERR_PTR(-ESTALE); 1102 1103 /* iget isn't really right if the inode is currently unallocated!! 1104 * 1105 * ext4_read_inode will return a bad_inode if the inode had been 1106 * deleted, so we should be safe. 1107 * 1108 * Currently we don't know the generation for parent directory, so 1109 * a generation of 0 means "accept any" 1110 */ 1111 inode = ext4_iget(sb, ino); 1112 if (IS_ERR(inode)) 1113 return ERR_CAST(inode); 1114 if (generation && inode->i_generation != generation) { 1115 iput(inode); 1116 return ERR_PTR(-ESTALE); 1117 } 1118 1119 return inode; 1120 } 1121 1122 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1123 int fh_len, int fh_type) 1124 { 1125 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1126 ext4_nfs_get_inode); 1127 } 1128 1129 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1130 int fh_len, int fh_type) 1131 { 1132 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1133 ext4_nfs_get_inode); 1134 } 1135 1136 /* 1137 * Try to release metadata pages (indirect blocks, directories) which are 1138 * mapped via the block device. Since these pages could have journal heads 1139 * which would prevent try_to_free_buffers() from freeing them, we must use 1140 * jbd2 layer's try_to_free_buffers() function to release them. 1141 */ 1142 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1143 gfp_t wait) 1144 { 1145 journal_t *journal = EXT4_SB(sb)->s_journal; 1146 1147 WARN_ON(PageChecked(page)); 1148 if (!page_has_buffers(page)) 1149 return 0; 1150 if (journal) 1151 return jbd2_journal_try_to_free_buffers(journal, page, 1152 wait & ~__GFP_WAIT); 1153 return try_to_free_buffers(page); 1154 } 1155 1156 #ifdef CONFIG_QUOTA 1157 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1158 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1159 1160 static int ext4_write_dquot(struct dquot *dquot); 1161 static int ext4_acquire_dquot(struct dquot *dquot); 1162 static int ext4_release_dquot(struct dquot *dquot); 1163 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1164 static int ext4_write_info(struct super_block *sb, int type); 1165 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1166 struct path *path); 1167 static int ext4_quota_off(struct super_block *sb, int type); 1168 static int ext4_quota_on_mount(struct super_block *sb, int type); 1169 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1170 size_t len, loff_t off); 1171 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1172 const char *data, size_t len, loff_t off); 1173 1174 static const struct dquot_operations ext4_quota_operations = { 1175 #ifdef CONFIG_QUOTA 1176 .get_reserved_space = ext4_get_reserved_space, 1177 #endif 1178 .write_dquot = ext4_write_dquot, 1179 .acquire_dquot = ext4_acquire_dquot, 1180 .release_dquot = ext4_release_dquot, 1181 .mark_dirty = ext4_mark_dquot_dirty, 1182 .write_info = ext4_write_info, 1183 .alloc_dquot = dquot_alloc, 1184 .destroy_dquot = dquot_destroy, 1185 }; 1186 1187 static const struct quotactl_ops ext4_qctl_operations = { 1188 .quota_on = ext4_quota_on, 1189 .quota_off = ext4_quota_off, 1190 .quota_sync = dquot_quota_sync, 1191 .get_info = dquot_get_dqinfo, 1192 .set_info = dquot_set_dqinfo, 1193 .get_dqblk = dquot_get_dqblk, 1194 .set_dqblk = dquot_set_dqblk 1195 }; 1196 #endif 1197 1198 static const struct super_operations ext4_sops = { 1199 .alloc_inode = ext4_alloc_inode, 1200 .destroy_inode = ext4_destroy_inode, 1201 .write_inode = ext4_write_inode, 1202 .dirty_inode = ext4_dirty_inode, 1203 .drop_inode = ext4_drop_inode, 1204 .evict_inode = ext4_evict_inode, 1205 .put_super = ext4_put_super, 1206 .sync_fs = ext4_sync_fs, 1207 .freeze_fs = ext4_freeze, 1208 .unfreeze_fs = ext4_unfreeze, 1209 .statfs = ext4_statfs, 1210 .remount_fs = ext4_remount, 1211 .show_options = ext4_show_options, 1212 #ifdef CONFIG_QUOTA 1213 .quota_read = ext4_quota_read, 1214 .quota_write = ext4_quota_write, 1215 #endif 1216 .bdev_try_to_free_page = bdev_try_to_free_page, 1217 }; 1218 1219 static const struct super_operations ext4_nojournal_sops = { 1220 .alloc_inode = ext4_alloc_inode, 1221 .destroy_inode = ext4_destroy_inode, 1222 .write_inode = ext4_write_inode, 1223 .dirty_inode = ext4_dirty_inode, 1224 .drop_inode = ext4_drop_inode, 1225 .evict_inode = ext4_evict_inode, 1226 .write_super = ext4_write_super, 1227 .put_super = ext4_put_super, 1228 .statfs = ext4_statfs, 1229 .remount_fs = ext4_remount, 1230 .show_options = ext4_show_options, 1231 #ifdef CONFIG_QUOTA 1232 .quota_read = ext4_quota_read, 1233 .quota_write = ext4_quota_write, 1234 #endif 1235 .bdev_try_to_free_page = bdev_try_to_free_page, 1236 }; 1237 1238 static const struct export_operations ext4_export_ops = { 1239 .fh_to_dentry = ext4_fh_to_dentry, 1240 .fh_to_parent = ext4_fh_to_parent, 1241 .get_parent = ext4_get_parent, 1242 }; 1243 1244 enum { 1245 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1246 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1247 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1248 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1249 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1250 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1251 Opt_journal_update, Opt_journal_dev, 1252 Opt_journal_checksum, Opt_journal_async_commit, 1253 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1254 Opt_data_err_abort, Opt_data_err_ignore, 1255 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1256 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1257 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1258 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1259 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1260 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1261 Opt_inode_readahead_blks, Opt_journal_ioprio, 1262 Opt_dioread_nolock, Opt_dioread_lock, 1263 Opt_discard, Opt_nodiscard, 1264 Opt_init_inode_table, Opt_noinit_inode_table, 1265 }; 1266 1267 static const match_table_t tokens = { 1268 {Opt_bsd_df, "bsddf"}, 1269 {Opt_minix_df, "minixdf"}, 1270 {Opt_grpid, "grpid"}, 1271 {Opt_grpid, "bsdgroups"}, 1272 {Opt_nogrpid, "nogrpid"}, 1273 {Opt_nogrpid, "sysvgroups"}, 1274 {Opt_resgid, "resgid=%u"}, 1275 {Opt_resuid, "resuid=%u"}, 1276 {Opt_sb, "sb=%u"}, 1277 {Opt_err_cont, "errors=continue"}, 1278 {Opt_err_panic, "errors=panic"}, 1279 {Opt_err_ro, "errors=remount-ro"}, 1280 {Opt_nouid32, "nouid32"}, 1281 {Opt_debug, "debug"}, 1282 {Opt_oldalloc, "oldalloc"}, 1283 {Opt_orlov, "orlov"}, 1284 {Opt_user_xattr, "user_xattr"}, 1285 {Opt_nouser_xattr, "nouser_xattr"}, 1286 {Opt_acl, "acl"}, 1287 {Opt_noacl, "noacl"}, 1288 {Opt_noload, "noload"}, 1289 {Opt_noload, "norecovery"}, 1290 {Opt_nobh, "nobh"}, 1291 {Opt_bh, "bh"}, 1292 {Opt_commit, "commit=%u"}, 1293 {Opt_min_batch_time, "min_batch_time=%u"}, 1294 {Opt_max_batch_time, "max_batch_time=%u"}, 1295 {Opt_journal_update, "journal=update"}, 1296 {Opt_journal_dev, "journal_dev=%u"}, 1297 {Opt_journal_checksum, "journal_checksum"}, 1298 {Opt_journal_async_commit, "journal_async_commit"}, 1299 {Opt_abort, "abort"}, 1300 {Opt_data_journal, "data=journal"}, 1301 {Opt_data_ordered, "data=ordered"}, 1302 {Opt_data_writeback, "data=writeback"}, 1303 {Opt_data_err_abort, "data_err=abort"}, 1304 {Opt_data_err_ignore, "data_err=ignore"}, 1305 {Opt_offusrjquota, "usrjquota="}, 1306 {Opt_usrjquota, "usrjquota=%s"}, 1307 {Opt_offgrpjquota, "grpjquota="}, 1308 {Opt_grpjquota, "grpjquota=%s"}, 1309 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1310 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1311 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1312 {Opt_grpquota, "grpquota"}, 1313 {Opt_noquota, "noquota"}, 1314 {Opt_quota, "quota"}, 1315 {Opt_usrquota, "usrquota"}, 1316 {Opt_barrier, "barrier=%u"}, 1317 {Opt_barrier, "barrier"}, 1318 {Opt_nobarrier, "nobarrier"}, 1319 {Opt_i_version, "i_version"}, 1320 {Opt_stripe, "stripe=%u"}, 1321 {Opt_resize, "resize"}, 1322 {Opt_delalloc, "delalloc"}, 1323 {Opt_nodelalloc, "nodelalloc"}, 1324 {Opt_mblk_io_submit, "mblk_io_submit"}, 1325 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1326 {Opt_block_validity, "block_validity"}, 1327 {Opt_noblock_validity, "noblock_validity"}, 1328 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1329 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1330 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1331 {Opt_auto_da_alloc, "auto_da_alloc"}, 1332 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1333 {Opt_dioread_nolock, "dioread_nolock"}, 1334 {Opt_dioread_lock, "dioread_lock"}, 1335 {Opt_discard, "discard"}, 1336 {Opt_nodiscard, "nodiscard"}, 1337 {Opt_init_inode_table, "init_itable=%u"}, 1338 {Opt_init_inode_table, "init_itable"}, 1339 {Opt_noinit_inode_table, "noinit_itable"}, 1340 {Opt_err, NULL}, 1341 }; 1342 1343 static ext4_fsblk_t get_sb_block(void **data) 1344 { 1345 ext4_fsblk_t sb_block; 1346 char *options = (char *) *data; 1347 1348 if (!options || strncmp(options, "sb=", 3) != 0) 1349 return 1; /* Default location */ 1350 1351 options += 3; 1352 /* TODO: use simple_strtoll with >32bit ext4 */ 1353 sb_block = simple_strtoul(options, &options, 0); 1354 if (*options && *options != ',') { 1355 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1356 (char *) *data); 1357 return 1; 1358 } 1359 if (*options == ',') 1360 options++; 1361 *data = (void *) options; 1362 1363 return sb_block; 1364 } 1365 1366 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1367 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1368 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1369 1370 #ifdef CONFIG_QUOTA 1371 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1372 { 1373 struct ext4_sb_info *sbi = EXT4_SB(sb); 1374 char *qname; 1375 1376 if (sb_any_quota_loaded(sb) && 1377 !sbi->s_qf_names[qtype]) { 1378 ext4_msg(sb, KERN_ERR, 1379 "Cannot change journaled " 1380 "quota options when quota turned on"); 1381 return 0; 1382 } 1383 qname = match_strdup(args); 1384 if (!qname) { 1385 ext4_msg(sb, KERN_ERR, 1386 "Not enough memory for storing quotafile name"); 1387 return 0; 1388 } 1389 if (sbi->s_qf_names[qtype] && 1390 strcmp(sbi->s_qf_names[qtype], qname)) { 1391 ext4_msg(sb, KERN_ERR, 1392 "%s quota file already specified", QTYPE2NAME(qtype)); 1393 kfree(qname); 1394 return 0; 1395 } 1396 sbi->s_qf_names[qtype] = qname; 1397 if (strchr(sbi->s_qf_names[qtype], '/')) { 1398 ext4_msg(sb, KERN_ERR, 1399 "quotafile must be on filesystem root"); 1400 kfree(sbi->s_qf_names[qtype]); 1401 sbi->s_qf_names[qtype] = NULL; 1402 return 0; 1403 } 1404 set_opt(sb, QUOTA); 1405 return 1; 1406 } 1407 1408 static int clear_qf_name(struct super_block *sb, int qtype) 1409 { 1410 1411 struct ext4_sb_info *sbi = EXT4_SB(sb); 1412 1413 if (sb_any_quota_loaded(sb) && 1414 sbi->s_qf_names[qtype]) { 1415 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1416 " when quota turned on"); 1417 return 0; 1418 } 1419 /* 1420 * The space will be released later when all options are confirmed 1421 * to be correct 1422 */ 1423 sbi->s_qf_names[qtype] = NULL; 1424 return 1; 1425 } 1426 #endif 1427 1428 static int parse_options(char *options, struct super_block *sb, 1429 unsigned long *journal_devnum, 1430 unsigned int *journal_ioprio, 1431 ext4_fsblk_t *n_blocks_count, int is_remount) 1432 { 1433 struct ext4_sb_info *sbi = EXT4_SB(sb); 1434 char *p; 1435 substring_t args[MAX_OPT_ARGS]; 1436 int data_opt = 0; 1437 int option; 1438 #ifdef CONFIG_QUOTA 1439 int qfmt; 1440 #endif 1441 1442 if (!options) 1443 return 1; 1444 1445 while ((p = strsep(&options, ",")) != NULL) { 1446 int token; 1447 if (!*p) 1448 continue; 1449 1450 /* 1451 * Initialize args struct so we know whether arg was 1452 * found; some options take optional arguments. 1453 */ 1454 args[0].to = args[0].from = 0; 1455 token = match_token(p, tokens, args); 1456 switch (token) { 1457 case Opt_bsd_df: 1458 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1459 clear_opt(sb, MINIX_DF); 1460 break; 1461 case Opt_minix_df: 1462 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1463 set_opt(sb, MINIX_DF); 1464 1465 break; 1466 case Opt_grpid: 1467 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1468 set_opt(sb, GRPID); 1469 1470 break; 1471 case Opt_nogrpid: 1472 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1473 clear_opt(sb, GRPID); 1474 1475 break; 1476 case Opt_resuid: 1477 if (match_int(&args[0], &option)) 1478 return 0; 1479 sbi->s_resuid = option; 1480 break; 1481 case Opt_resgid: 1482 if (match_int(&args[0], &option)) 1483 return 0; 1484 sbi->s_resgid = option; 1485 break; 1486 case Opt_sb: 1487 /* handled by get_sb_block() instead of here */ 1488 /* *sb_block = match_int(&args[0]); */ 1489 break; 1490 case Opt_err_panic: 1491 clear_opt(sb, ERRORS_CONT); 1492 clear_opt(sb, ERRORS_RO); 1493 set_opt(sb, ERRORS_PANIC); 1494 break; 1495 case Opt_err_ro: 1496 clear_opt(sb, ERRORS_CONT); 1497 clear_opt(sb, ERRORS_PANIC); 1498 set_opt(sb, ERRORS_RO); 1499 break; 1500 case Opt_err_cont: 1501 clear_opt(sb, ERRORS_RO); 1502 clear_opt(sb, ERRORS_PANIC); 1503 set_opt(sb, ERRORS_CONT); 1504 break; 1505 case Opt_nouid32: 1506 set_opt(sb, NO_UID32); 1507 break; 1508 case Opt_debug: 1509 set_opt(sb, DEBUG); 1510 break; 1511 case Opt_oldalloc: 1512 set_opt(sb, OLDALLOC); 1513 break; 1514 case Opt_orlov: 1515 clear_opt(sb, OLDALLOC); 1516 break; 1517 #ifdef CONFIG_EXT4_FS_XATTR 1518 case Opt_user_xattr: 1519 set_opt(sb, XATTR_USER); 1520 break; 1521 case Opt_nouser_xattr: 1522 clear_opt(sb, XATTR_USER); 1523 break; 1524 #else 1525 case Opt_user_xattr: 1526 case Opt_nouser_xattr: 1527 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1528 break; 1529 #endif 1530 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1531 case Opt_acl: 1532 set_opt(sb, POSIX_ACL); 1533 break; 1534 case Opt_noacl: 1535 clear_opt(sb, POSIX_ACL); 1536 break; 1537 #else 1538 case Opt_acl: 1539 case Opt_noacl: 1540 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1541 break; 1542 #endif 1543 case Opt_journal_update: 1544 /* @@@ FIXME */ 1545 /* Eventually we will want to be able to create 1546 a journal file here. For now, only allow the 1547 user to specify an existing inode to be the 1548 journal file. */ 1549 if (is_remount) { 1550 ext4_msg(sb, KERN_ERR, 1551 "Cannot specify journal on remount"); 1552 return 0; 1553 } 1554 set_opt(sb, UPDATE_JOURNAL); 1555 break; 1556 case Opt_journal_dev: 1557 if (is_remount) { 1558 ext4_msg(sb, KERN_ERR, 1559 "Cannot specify journal on remount"); 1560 return 0; 1561 } 1562 if (match_int(&args[0], &option)) 1563 return 0; 1564 *journal_devnum = option; 1565 break; 1566 case Opt_journal_checksum: 1567 set_opt(sb, JOURNAL_CHECKSUM); 1568 break; 1569 case Opt_journal_async_commit: 1570 set_opt(sb, JOURNAL_ASYNC_COMMIT); 1571 set_opt(sb, JOURNAL_CHECKSUM); 1572 break; 1573 case Opt_noload: 1574 set_opt(sb, NOLOAD); 1575 break; 1576 case Opt_commit: 1577 if (match_int(&args[0], &option)) 1578 return 0; 1579 if (option < 0) 1580 return 0; 1581 if (option == 0) 1582 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1583 sbi->s_commit_interval = HZ * option; 1584 break; 1585 case Opt_max_batch_time: 1586 if (match_int(&args[0], &option)) 1587 return 0; 1588 if (option < 0) 1589 return 0; 1590 if (option == 0) 1591 option = EXT4_DEF_MAX_BATCH_TIME; 1592 sbi->s_max_batch_time = option; 1593 break; 1594 case Opt_min_batch_time: 1595 if (match_int(&args[0], &option)) 1596 return 0; 1597 if (option < 0) 1598 return 0; 1599 sbi->s_min_batch_time = option; 1600 break; 1601 case Opt_data_journal: 1602 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1603 goto datacheck; 1604 case Opt_data_ordered: 1605 data_opt = EXT4_MOUNT_ORDERED_DATA; 1606 goto datacheck; 1607 case Opt_data_writeback: 1608 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1609 datacheck: 1610 if (is_remount) { 1611 if (test_opt(sb, DATA_FLAGS) != data_opt) { 1612 ext4_msg(sb, KERN_ERR, 1613 "Cannot change data mode on remount"); 1614 return 0; 1615 } 1616 } else { 1617 clear_opt(sb, DATA_FLAGS); 1618 sbi->s_mount_opt |= data_opt; 1619 } 1620 break; 1621 case Opt_data_err_abort: 1622 set_opt(sb, DATA_ERR_ABORT); 1623 break; 1624 case Opt_data_err_ignore: 1625 clear_opt(sb, DATA_ERR_ABORT); 1626 break; 1627 #ifdef CONFIG_QUOTA 1628 case Opt_usrjquota: 1629 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1630 return 0; 1631 break; 1632 case Opt_grpjquota: 1633 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1634 return 0; 1635 break; 1636 case Opt_offusrjquota: 1637 if (!clear_qf_name(sb, USRQUOTA)) 1638 return 0; 1639 break; 1640 case Opt_offgrpjquota: 1641 if (!clear_qf_name(sb, GRPQUOTA)) 1642 return 0; 1643 break; 1644 1645 case Opt_jqfmt_vfsold: 1646 qfmt = QFMT_VFS_OLD; 1647 goto set_qf_format; 1648 case Opt_jqfmt_vfsv0: 1649 qfmt = QFMT_VFS_V0; 1650 goto set_qf_format; 1651 case Opt_jqfmt_vfsv1: 1652 qfmt = QFMT_VFS_V1; 1653 set_qf_format: 1654 if (sb_any_quota_loaded(sb) && 1655 sbi->s_jquota_fmt != qfmt) { 1656 ext4_msg(sb, KERN_ERR, "Cannot change " 1657 "journaled quota options when " 1658 "quota turned on"); 1659 return 0; 1660 } 1661 sbi->s_jquota_fmt = qfmt; 1662 break; 1663 case Opt_quota: 1664 case Opt_usrquota: 1665 set_opt(sb, QUOTA); 1666 set_opt(sb, USRQUOTA); 1667 break; 1668 case Opt_grpquota: 1669 set_opt(sb, QUOTA); 1670 set_opt(sb, GRPQUOTA); 1671 break; 1672 case Opt_noquota: 1673 if (sb_any_quota_loaded(sb)) { 1674 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1675 "options when quota turned on"); 1676 return 0; 1677 } 1678 clear_opt(sb, QUOTA); 1679 clear_opt(sb, USRQUOTA); 1680 clear_opt(sb, GRPQUOTA); 1681 break; 1682 #else 1683 case Opt_quota: 1684 case Opt_usrquota: 1685 case Opt_grpquota: 1686 ext4_msg(sb, KERN_ERR, 1687 "quota options not supported"); 1688 break; 1689 case Opt_usrjquota: 1690 case Opt_grpjquota: 1691 case Opt_offusrjquota: 1692 case Opt_offgrpjquota: 1693 case Opt_jqfmt_vfsold: 1694 case Opt_jqfmt_vfsv0: 1695 case Opt_jqfmt_vfsv1: 1696 ext4_msg(sb, KERN_ERR, 1697 "journaled quota options not supported"); 1698 break; 1699 case Opt_noquota: 1700 break; 1701 #endif 1702 case Opt_abort: 1703 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1704 break; 1705 case Opt_nobarrier: 1706 clear_opt(sb, BARRIER); 1707 break; 1708 case Opt_barrier: 1709 if (args[0].from) { 1710 if (match_int(&args[0], &option)) 1711 return 0; 1712 } else 1713 option = 1; /* No argument, default to 1 */ 1714 if (option) 1715 set_opt(sb, BARRIER); 1716 else 1717 clear_opt(sb, BARRIER); 1718 break; 1719 case Opt_ignore: 1720 break; 1721 case Opt_resize: 1722 if (!is_remount) { 1723 ext4_msg(sb, KERN_ERR, 1724 "resize option only available " 1725 "for remount"); 1726 return 0; 1727 } 1728 if (match_int(&args[0], &option) != 0) 1729 return 0; 1730 *n_blocks_count = option; 1731 break; 1732 case Opt_nobh: 1733 ext4_msg(sb, KERN_WARNING, 1734 "Ignoring deprecated nobh option"); 1735 break; 1736 case Opt_bh: 1737 ext4_msg(sb, KERN_WARNING, 1738 "Ignoring deprecated bh option"); 1739 break; 1740 case Opt_i_version: 1741 set_opt(sb, I_VERSION); 1742 sb->s_flags |= MS_I_VERSION; 1743 break; 1744 case Opt_nodelalloc: 1745 clear_opt(sb, DELALLOC); 1746 break; 1747 case Opt_mblk_io_submit: 1748 set_opt(sb, MBLK_IO_SUBMIT); 1749 break; 1750 case Opt_nomblk_io_submit: 1751 clear_opt(sb, MBLK_IO_SUBMIT); 1752 break; 1753 case Opt_stripe: 1754 if (match_int(&args[0], &option)) 1755 return 0; 1756 if (option < 0) 1757 return 0; 1758 sbi->s_stripe = option; 1759 break; 1760 case Opt_delalloc: 1761 set_opt(sb, DELALLOC); 1762 break; 1763 case Opt_block_validity: 1764 set_opt(sb, BLOCK_VALIDITY); 1765 break; 1766 case Opt_noblock_validity: 1767 clear_opt(sb, BLOCK_VALIDITY); 1768 break; 1769 case Opt_inode_readahead_blks: 1770 if (match_int(&args[0], &option)) 1771 return 0; 1772 if (option < 0 || option > (1 << 30)) 1773 return 0; 1774 if (!is_power_of_2(option)) { 1775 ext4_msg(sb, KERN_ERR, 1776 "EXT4-fs: inode_readahead_blks" 1777 " must be a power of 2"); 1778 return 0; 1779 } 1780 sbi->s_inode_readahead_blks = option; 1781 break; 1782 case Opt_journal_ioprio: 1783 if (match_int(&args[0], &option)) 1784 return 0; 1785 if (option < 0 || option > 7) 1786 break; 1787 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1788 option); 1789 break; 1790 case Opt_noauto_da_alloc: 1791 set_opt(sb, NO_AUTO_DA_ALLOC); 1792 break; 1793 case Opt_auto_da_alloc: 1794 if (args[0].from) { 1795 if (match_int(&args[0], &option)) 1796 return 0; 1797 } else 1798 option = 1; /* No argument, default to 1 */ 1799 if (option) 1800 clear_opt(sb, NO_AUTO_DA_ALLOC); 1801 else 1802 set_opt(sb,NO_AUTO_DA_ALLOC); 1803 break; 1804 case Opt_discard: 1805 set_opt(sb, DISCARD); 1806 break; 1807 case Opt_nodiscard: 1808 clear_opt(sb, DISCARD); 1809 break; 1810 case Opt_dioread_nolock: 1811 set_opt(sb, DIOREAD_NOLOCK); 1812 break; 1813 case Opt_dioread_lock: 1814 clear_opt(sb, DIOREAD_NOLOCK); 1815 break; 1816 case Opt_init_inode_table: 1817 set_opt(sb, INIT_INODE_TABLE); 1818 if (args[0].from) { 1819 if (match_int(&args[0], &option)) 1820 return 0; 1821 } else 1822 option = EXT4_DEF_LI_WAIT_MULT; 1823 if (option < 0) 1824 return 0; 1825 sbi->s_li_wait_mult = option; 1826 break; 1827 case Opt_noinit_inode_table: 1828 clear_opt(sb, INIT_INODE_TABLE); 1829 break; 1830 default: 1831 ext4_msg(sb, KERN_ERR, 1832 "Unrecognized mount option \"%s\" " 1833 "or missing value", p); 1834 return 0; 1835 } 1836 } 1837 #ifdef CONFIG_QUOTA 1838 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1839 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1840 clear_opt(sb, USRQUOTA); 1841 1842 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1843 clear_opt(sb, GRPQUOTA); 1844 1845 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1846 ext4_msg(sb, KERN_ERR, "old and new quota " 1847 "format mixing"); 1848 return 0; 1849 } 1850 1851 if (!sbi->s_jquota_fmt) { 1852 ext4_msg(sb, KERN_ERR, "journaled quota format " 1853 "not specified"); 1854 return 0; 1855 } 1856 } else { 1857 if (sbi->s_jquota_fmt) { 1858 ext4_msg(sb, KERN_ERR, "journaled quota format " 1859 "specified with no journaling " 1860 "enabled"); 1861 return 0; 1862 } 1863 } 1864 #endif 1865 return 1; 1866 } 1867 1868 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1869 int read_only) 1870 { 1871 struct ext4_sb_info *sbi = EXT4_SB(sb); 1872 int res = 0; 1873 1874 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1875 ext4_msg(sb, KERN_ERR, "revision level too high, " 1876 "forcing read-only mode"); 1877 res = MS_RDONLY; 1878 } 1879 if (read_only) 1880 return res; 1881 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1882 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1883 "running e2fsck is recommended"); 1884 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1885 ext4_msg(sb, KERN_WARNING, 1886 "warning: mounting fs with errors, " 1887 "running e2fsck is recommended"); 1888 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1889 le16_to_cpu(es->s_mnt_count) >= 1890 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1891 ext4_msg(sb, KERN_WARNING, 1892 "warning: maximal mount count reached, " 1893 "running e2fsck is recommended"); 1894 else if (le32_to_cpu(es->s_checkinterval) && 1895 (le32_to_cpu(es->s_lastcheck) + 1896 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1897 ext4_msg(sb, KERN_WARNING, 1898 "warning: checktime reached, " 1899 "running e2fsck is recommended"); 1900 if (!sbi->s_journal) 1901 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1902 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1903 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1904 le16_add_cpu(&es->s_mnt_count, 1); 1905 es->s_mtime = cpu_to_le32(get_seconds()); 1906 ext4_update_dynamic_rev(sb); 1907 if (sbi->s_journal) 1908 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1909 1910 ext4_commit_super(sb, 1); 1911 if (test_opt(sb, DEBUG)) 1912 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1913 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1914 sb->s_blocksize, 1915 sbi->s_groups_count, 1916 EXT4_BLOCKS_PER_GROUP(sb), 1917 EXT4_INODES_PER_GROUP(sb), 1918 sbi->s_mount_opt, sbi->s_mount_opt2); 1919 1920 return res; 1921 } 1922 1923 static int ext4_fill_flex_info(struct super_block *sb) 1924 { 1925 struct ext4_sb_info *sbi = EXT4_SB(sb); 1926 struct ext4_group_desc *gdp = NULL; 1927 ext4_group_t flex_group_count; 1928 ext4_group_t flex_group; 1929 int groups_per_flex = 0; 1930 size_t size; 1931 int i; 1932 1933 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1934 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1935 1936 if (groups_per_flex < 2) { 1937 sbi->s_log_groups_per_flex = 0; 1938 return 1; 1939 } 1940 1941 /* We allocate both existing and potentially added groups */ 1942 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1943 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1944 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1945 size = flex_group_count * sizeof(struct flex_groups); 1946 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1947 if (sbi->s_flex_groups == NULL) { 1948 sbi->s_flex_groups = vzalloc(size); 1949 if (sbi->s_flex_groups == NULL) { 1950 ext4_msg(sb, KERN_ERR, 1951 "not enough memory for %u flex groups", 1952 flex_group_count); 1953 goto failed; 1954 } 1955 } 1956 1957 for (i = 0; i < sbi->s_groups_count; i++) { 1958 gdp = ext4_get_group_desc(sb, i, NULL); 1959 1960 flex_group = ext4_flex_group(sbi, i); 1961 atomic_add(ext4_free_inodes_count(sb, gdp), 1962 &sbi->s_flex_groups[flex_group].free_inodes); 1963 atomic_add(ext4_free_blks_count(sb, gdp), 1964 &sbi->s_flex_groups[flex_group].free_blocks); 1965 atomic_add(ext4_used_dirs_count(sb, gdp), 1966 &sbi->s_flex_groups[flex_group].used_dirs); 1967 } 1968 1969 return 1; 1970 failed: 1971 return 0; 1972 } 1973 1974 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1975 struct ext4_group_desc *gdp) 1976 { 1977 __u16 crc = 0; 1978 1979 if (sbi->s_es->s_feature_ro_compat & 1980 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1981 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1982 __le32 le_group = cpu_to_le32(block_group); 1983 1984 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1985 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1986 crc = crc16(crc, (__u8 *)gdp, offset); 1987 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1988 /* for checksum of struct ext4_group_desc do the rest...*/ 1989 if ((sbi->s_es->s_feature_incompat & 1990 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1991 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1992 crc = crc16(crc, (__u8 *)gdp + offset, 1993 le16_to_cpu(sbi->s_es->s_desc_size) - 1994 offset); 1995 } 1996 1997 return cpu_to_le16(crc); 1998 } 1999 2000 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 2001 struct ext4_group_desc *gdp) 2002 { 2003 if ((sbi->s_es->s_feature_ro_compat & 2004 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 2005 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 2006 return 0; 2007 2008 return 1; 2009 } 2010 2011 /* Called at mount-time, super-block is locked */ 2012 static int ext4_check_descriptors(struct super_block *sb, 2013 ext4_group_t *first_not_zeroed) 2014 { 2015 struct ext4_sb_info *sbi = EXT4_SB(sb); 2016 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2017 ext4_fsblk_t last_block; 2018 ext4_fsblk_t block_bitmap; 2019 ext4_fsblk_t inode_bitmap; 2020 ext4_fsblk_t inode_table; 2021 int flexbg_flag = 0; 2022 ext4_group_t i, grp = sbi->s_groups_count; 2023 2024 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2025 flexbg_flag = 1; 2026 2027 ext4_debug("Checking group descriptors"); 2028 2029 for (i = 0; i < sbi->s_groups_count; i++) { 2030 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2031 2032 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2033 last_block = ext4_blocks_count(sbi->s_es) - 1; 2034 else 2035 last_block = first_block + 2036 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2037 2038 if ((grp == sbi->s_groups_count) && 2039 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2040 grp = i; 2041 2042 block_bitmap = ext4_block_bitmap(sb, gdp); 2043 if (block_bitmap < first_block || block_bitmap > last_block) { 2044 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2045 "Block bitmap for group %u not in group " 2046 "(block %llu)!", i, block_bitmap); 2047 return 0; 2048 } 2049 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2050 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2051 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2052 "Inode bitmap for group %u not in group " 2053 "(block %llu)!", i, inode_bitmap); 2054 return 0; 2055 } 2056 inode_table = ext4_inode_table(sb, gdp); 2057 if (inode_table < first_block || 2058 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2059 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2060 "Inode table for group %u not in group " 2061 "(block %llu)!", i, inode_table); 2062 return 0; 2063 } 2064 ext4_lock_group(sb, i); 2065 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2066 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2067 "Checksum for group %u failed (%u!=%u)", 2068 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2069 gdp)), le16_to_cpu(gdp->bg_checksum)); 2070 if (!(sb->s_flags & MS_RDONLY)) { 2071 ext4_unlock_group(sb, i); 2072 return 0; 2073 } 2074 } 2075 ext4_unlock_group(sb, i); 2076 if (!flexbg_flag) 2077 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2078 } 2079 if (NULL != first_not_zeroed) 2080 *first_not_zeroed = grp; 2081 2082 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 2083 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2084 return 1; 2085 } 2086 2087 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2088 * the superblock) which were deleted from all directories, but held open by 2089 * a process at the time of a crash. We walk the list and try to delete these 2090 * inodes at recovery time (only with a read-write filesystem). 2091 * 2092 * In order to keep the orphan inode chain consistent during traversal (in 2093 * case of crash during recovery), we link each inode into the superblock 2094 * orphan list_head and handle it the same way as an inode deletion during 2095 * normal operation (which journals the operations for us). 2096 * 2097 * We only do an iget() and an iput() on each inode, which is very safe if we 2098 * accidentally point at an in-use or already deleted inode. The worst that 2099 * can happen in this case is that we get a "bit already cleared" message from 2100 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2101 * e2fsck was run on this filesystem, and it must have already done the orphan 2102 * inode cleanup for us, so we can safely abort without any further action. 2103 */ 2104 static void ext4_orphan_cleanup(struct super_block *sb, 2105 struct ext4_super_block *es) 2106 { 2107 unsigned int s_flags = sb->s_flags; 2108 int nr_orphans = 0, nr_truncates = 0; 2109 #ifdef CONFIG_QUOTA 2110 int i; 2111 #endif 2112 if (!es->s_last_orphan) { 2113 jbd_debug(4, "no orphan inodes to clean up\n"); 2114 return; 2115 } 2116 2117 if (bdev_read_only(sb->s_bdev)) { 2118 ext4_msg(sb, KERN_ERR, "write access " 2119 "unavailable, skipping orphan cleanup"); 2120 return; 2121 } 2122 2123 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2124 if (es->s_last_orphan) 2125 jbd_debug(1, "Errors on filesystem, " 2126 "clearing orphan list.\n"); 2127 es->s_last_orphan = 0; 2128 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2129 return; 2130 } 2131 2132 if (s_flags & MS_RDONLY) { 2133 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2134 sb->s_flags &= ~MS_RDONLY; 2135 } 2136 #ifdef CONFIG_QUOTA 2137 /* Needed for iput() to work correctly and not trash data */ 2138 sb->s_flags |= MS_ACTIVE; 2139 /* Turn on quotas so that they are updated correctly */ 2140 for (i = 0; i < MAXQUOTAS; i++) { 2141 if (EXT4_SB(sb)->s_qf_names[i]) { 2142 int ret = ext4_quota_on_mount(sb, i); 2143 if (ret < 0) 2144 ext4_msg(sb, KERN_ERR, 2145 "Cannot turn on journaled " 2146 "quota: error %d", ret); 2147 } 2148 } 2149 #endif 2150 2151 while (es->s_last_orphan) { 2152 struct inode *inode; 2153 2154 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2155 if (IS_ERR(inode)) { 2156 es->s_last_orphan = 0; 2157 break; 2158 } 2159 2160 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2161 dquot_initialize(inode); 2162 if (inode->i_nlink) { 2163 ext4_msg(sb, KERN_DEBUG, 2164 "%s: truncating inode %lu to %lld bytes", 2165 __func__, inode->i_ino, inode->i_size); 2166 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2167 inode->i_ino, inode->i_size); 2168 ext4_truncate(inode); 2169 nr_truncates++; 2170 } else { 2171 ext4_msg(sb, KERN_DEBUG, 2172 "%s: deleting unreferenced inode %lu", 2173 __func__, inode->i_ino); 2174 jbd_debug(2, "deleting unreferenced inode %lu\n", 2175 inode->i_ino); 2176 nr_orphans++; 2177 } 2178 iput(inode); /* The delete magic happens here! */ 2179 } 2180 2181 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2182 2183 if (nr_orphans) 2184 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2185 PLURAL(nr_orphans)); 2186 if (nr_truncates) 2187 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2188 PLURAL(nr_truncates)); 2189 #ifdef CONFIG_QUOTA 2190 /* Turn quotas off */ 2191 for (i = 0; i < MAXQUOTAS; i++) { 2192 if (sb_dqopt(sb)->files[i]) 2193 dquot_quota_off(sb, i); 2194 } 2195 #endif 2196 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2197 } 2198 2199 /* 2200 * Maximal extent format file size. 2201 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2202 * extent format containers, within a sector_t, and within i_blocks 2203 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2204 * so that won't be a limiting factor. 2205 * 2206 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2207 */ 2208 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2209 { 2210 loff_t res; 2211 loff_t upper_limit = MAX_LFS_FILESIZE; 2212 2213 /* small i_blocks in vfs inode? */ 2214 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2215 /* 2216 * CONFIG_LBDAF is not enabled implies the inode 2217 * i_block represent total blocks in 512 bytes 2218 * 32 == size of vfs inode i_blocks * 8 2219 */ 2220 upper_limit = (1LL << 32) - 1; 2221 2222 /* total blocks in file system block size */ 2223 upper_limit >>= (blkbits - 9); 2224 upper_limit <<= blkbits; 2225 } 2226 2227 /* 32-bit extent-start container, ee_block */ 2228 res = 1LL << 32; 2229 res <<= blkbits; 2230 res -= 1; 2231 2232 /* Sanity check against vm- & vfs- imposed limits */ 2233 if (res > upper_limit) 2234 res = upper_limit; 2235 2236 return res; 2237 } 2238 2239 /* 2240 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2241 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2242 * We need to be 1 filesystem block less than the 2^48 sector limit. 2243 */ 2244 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2245 { 2246 loff_t res = EXT4_NDIR_BLOCKS; 2247 int meta_blocks; 2248 loff_t upper_limit; 2249 /* This is calculated to be the largest file size for a dense, block 2250 * mapped file such that the file's total number of 512-byte sectors, 2251 * including data and all indirect blocks, does not exceed (2^48 - 1). 2252 * 2253 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2254 * number of 512-byte sectors of the file. 2255 */ 2256 2257 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2258 /* 2259 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2260 * the inode i_block field represents total file blocks in 2261 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2262 */ 2263 upper_limit = (1LL << 32) - 1; 2264 2265 /* total blocks in file system block size */ 2266 upper_limit >>= (bits - 9); 2267 2268 } else { 2269 /* 2270 * We use 48 bit ext4_inode i_blocks 2271 * With EXT4_HUGE_FILE_FL set the i_blocks 2272 * represent total number of blocks in 2273 * file system block size 2274 */ 2275 upper_limit = (1LL << 48) - 1; 2276 2277 } 2278 2279 /* indirect blocks */ 2280 meta_blocks = 1; 2281 /* double indirect blocks */ 2282 meta_blocks += 1 + (1LL << (bits-2)); 2283 /* tripple indirect blocks */ 2284 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2285 2286 upper_limit -= meta_blocks; 2287 upper_limit <<= bits; 2288 2289 res += 1LL << (bits-2); 2290 res += 1LL << (2*(bits-2)); 2291 res += 1LL << (3*(bits-2)); 2292 res <<= bits; 2293 if (res > upper_limit) 2294 res = upper_limit; 2295 2296 if (res > MAX_LFS_FILESIZE) 2297 res = MAX_LFS_FILESIZE; 2298 2299 return res; 2300 } 2301 2302 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2303 ext4_fsblk_t logical_sb_block, int nr) 2304 { 2305 struct ext4_sb_info *sbi = EXT4_SB(sb); 2306 ext4_group_t bg, first_meta_bg; 2307 int has_super = 0; 2308 2309 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2310 2311 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2312 nr < first_meta_bg) 2313 return logical_sb_block + nr + 1; 2314 bg = sbi->s_desc_per_block * nr; 2315 if (ext4_bg_has_super(sb, bg)) 2316 has_super = 1; 2317 2318 return (has_super + ext4_group_first_block_no(sb, bg)); 2319 } 2320 2321 /** 2322 * ext4_get_stripe_size: Get the stripe size. 2323 * @sbi: In memory super block info 2324 * 2325 * If we have specified it via mount option, then 2326 * use the mount option value. If the value specified at mount time is 2327 * greater than the blocks per group use the super block value. 2328 * If the super block value is greater than blocks per group return 0. 2329 * Allocator needs it be less than blocks per group. 2330 * 2331 */ 2332 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2333 { 2334 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2335 unsigned long stripe_width = 2336 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2337 2338 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2339 return sbi->s_stripe; 2340 2341 if (stripe_width <= sbi->s_blocks_per_group) 2342 return stripe_width; 2343 2344 if (stride <= sbi->s_blocks_per_group) 2345 return stride; 2346 2347 return 0; 2348 } 2349 2350 /* sysfs supprt */ 2351 2352 struct ext4_attr { 2353 struct attribute attr; 2354 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2355 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2356 const char *, size_t); 2357 int offset; 2358 }; 2359 2360 static int parse_strtoul(const char *buf, 2361 unsigned long max, unsigned long *value) 2362 { 2363 char *endp; 2364 2365 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2366 endp = skip_spaces(endp); 2367 if (*endp || *value > max) 2368 return -EINVAL; 2369 2370 return 0; 2371 } 2372 2373 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2374 struct ext4_sb_info *sbi, 2375 char *buf) 2376 { 2377 return snprintf(buf, PAGE_SIZE, "%llu\n", 2378 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2379 } 2380 2381 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2382 struct ext4_sb_info *sbi, char *buf) 2383 { 2384 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2385 2386 if (!sb->s_bdev->bd_part) 2387 return snprintf(buf, PAGE_SIZE, "0\n"); 2388 return snprintf(buf, PAGE_SIZE, "%lu\n", 2389 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2390 sbi->s_sectors_written_start) >> 1); 2391 } 2392 2393 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2394 struct ext4_sb_info *sbi, char *buf) 2395 { 2396 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2397 2398 if (!sb->s_bdev->bd_part) 2399 return snprintf(buf, PAGE_SIZE, "0\n"); 2400 return snprintf(buf, PAGE_SIZE, "%llu\n", 2401 (unsigned long long)(sbi->s_kbytes_written + 2402 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2403 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2404 } 2405 2406 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2407 struct ext4_sb_info *sbi, 2408 const char *buf, size_t count) 2409 { 2410 unsigned long t; 2411 2412 if (parse_strtoul(buf, 0x40000000, &t)) 2413 return -EINVAL; 2414 2415 if (!is_power_of_2(t)) 2416 return -EINVAL; 2417 2418 sbi->s_inode_readahead_blks = t; 2419 return count; 2420 } 2421 2422 static ssize_t sbi_ui_show(struct ext4_attr *a, 2423 struct ext4_sb_info *sbi, char *buf) 2424 { 2425 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2426 2427 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2428 } 2429 2430 static ssize_t sbi_ui_store(struct ext4_attr *a, 2431 struct ext4_sb_info *sbi, 2432 const char *buf, size_t count) 2433 { 2434 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2435 unsigned long t; 2436 2437 if (parse_strtoul(buf, 0xffffffff, &t)) 2438 return -EINVAL; 2439 *ui = t; 2440 return count; 2441 } 2442 2443 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2444 static struct ext4_attr ext4_attr_##_name = { \ 2445 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2446 .show = _show, \ 2447 .store = _store, \ 2448 .offset = offsetof(struct ext4_sb_info, _elname), \ 2449 } 2450 #define EXT4_ATTR(name, mode, show, store) \ 2451 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2452 2453 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2454 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2455 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2456 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2457 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2458 #define ATTR_LIST(name) &ext4_attr_##name.attr 2459 2460 EXT4_RO_ATTR(delayed_allocation_blocks); 2461 EXT4_RO_ATTR(session_write_kbytes); 2462 EXT4_RO_ATTR(lifetime_write_kbytes); 2463 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2464 inode_readahead_blks_store, s_inode_readahead_blks); 2465 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2466 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2467 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2468 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2469 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2470 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2471 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2472 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2473 2474 static struct attribute *ext4_attrs[] = { 2475 ATTR_LIST(delayed_allocation_blocks), 2476 ATTR_LIST(session_write_kbytes), 2477 ATTR_LIST(lifetime_write_kbytes), 2478 ATTR_LIST(inode_readahead_blks), 2479 ATTR_LIST(inode_goal), 2480 ATTR_LIST(mb_stats), 2481 ATTR_LIST(mb_max_to_scan), 2482 ATTR_LIST(mb_min_to_scan), 2483 ATTR_LIST(mb_order2_req), 2484 ATTR_LIST(mb_stream_req), 2485 ATTR_LIST(mb_group_prealloc), 2486 ATTR_LIST(max_writeback_mb_bump), 2487 NULL, 2488 }; 2489 2490 /* Features this copy of ext4 supports */ 2491 EXT4_INFO_ATTR(lazy_itable_init); 2492 EXT4_INFO_ATTR(batched_discard); 2493 2494 static struct attribute *ext4_feat_attrs[] = { 2495 ATTR_LIST(lazy_itable_init), 2496 ATTR_LIST(batched_discard), 2497 NULL, 2498 }; 2499 2500 static ssize_t ext4_attr_show(struct kobject *kobj, 2501 struct attribute *attr, char *buf) 2502 { 2503 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2504 s_kobj); 2505 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2506 2507 return a->show ? a->show(a, sbi, buf) : 0; 2508 } 2509 2510 static ssize_t ext4_attr_store(struct kobject *kobj, 2511 struct attribute *attr, 2512 const char *buf, size_t len) 2513 { 2514 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2515 s_kobj); 2516 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2517 2518 return a->store ? a->store(a, sbi, buf, len) : 0; 2519 } 2520 2521 static void ext4_sb_release(struct kobject *kobj) 2522 { 2523 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2524 s_kobj); 2525 complete(&sbi->s_kobj_unregister); 2526 } 2527 2528 static const struct sysfs_ops ext4_attr_ops = { 2529 .show = ext4_attr_show, 2530 .store = ext4_attr_store, 2531 }; 2532 2533 static struct kobj_type ext4_ktype = { 2534 .default_attrs = ext4_attrs, 2535 .sysfs_ops = &ext4_attr_ops, 2536 .release = ext4_sb_release, 2537 }; 2538 2539 static void ext4_feat_release(struct kobject *kobj) 2540 { 2541 complete(&ext4_feat->f_kobj_unregister); 2542 } 2543 2544 static struct kobj_type ext4_feat_ktype = { 2545 .default_attrs = ext4_feat_attrs, 2546 .sysfs_ops = &ext4_attr_ops, 2547 .release = ext4_feat_release, 2548 }; 2549 2550 /* 2551 * Check whether this filesystem can be mounted based on 2552 * the features present and the RDONLY/RDWR mount requested. 2553 * Returns 1 if this filesystem can be mounted as requested, 2554 * 0 if it cannot be. 2555 */ 2556 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2557 { 2558 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2559 ext4_msg(sb, KERN_ERR, 2560 "Couldn't mount because of " 2561 "unsupported optional features (%x)", 2562 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2563 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2564 return 0; 2565 } 2566 2567 if (readonly) 2568 return 1; 2569 2570 /* Check that feature set is OK for a read-write mount */ 2571 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2572 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2573 "unsupported optional features (%x)", 2574 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2575 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2576 return 0; 2577 } 2578 /* 2579 * Large file size enabled file system can only be mounted 2580 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2581 */ 2582 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2583 if (sizeof(blkcnt_t) < sizeof(u64)) { 2584 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2585 "cannot be mounted RDWR without " 2586 "CONFIG_LBDAF"); 2587 return 0; 2588 } 2589 } 2590 return 1; 2591 } 2592 2593 /* 2594 * This function is called once a day if we have errors logged 2595 * on the file system 2596 */ 2597 static void print_daily_error_info(unsigned long arg) 2598 { 2599 struct super_block *sb = (struct super_block *) arg; 2600 struct ext4_sb_info *sbi; 2601 struct ext4_super_block *es; 2602 2603 sbi = EXT4_SB(sb); 2604 es = sbi->s_es; 2605 2606 if (es->s_error_count) 2607 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2608 le32_to_cpu(es->s_error_count)); 2609 if (es->s_first_error_time) { 2610 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2611 sb->s_id, le32_to_cpu(es->s_first_error_time), 2612 (int) sizeof(es->s_first_error_func), 2613 es->s_first_error_func, 2614 le32_to_cpu(es->s_first_error_line)); 2615 if (es->s_first_error_ino) 2616 printk(": inode %u", 2617 le32_to_cpu(es->s_first_error_ino)); 2618 if (es->s_first_error_block) 2619 printk(": block %llu", (unsigned long long) 2620 le64_to_cpu(es->s_first_error_block)); 2621 printk("\n"); 2622 } 2623 if (es->s_last_error_time) { 2624 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2625 sb->s_id, le32_to_cpu(es->s_last_error_time), 2626 (int) sizeof(es->s_last_error_func), 2627 es->s_last_error_func, 2628 le32_to_cpu(es->s_last_error_line)); 2629 if (es->s_last_error_ino) 2630 printk(": inode %u", 2631 le32_to_cpu(es->s_last_error_ino)); 2632 if (es->s_last_error_block) 2633 printk(": block %llu", (unsigned long long) 2634 le64_to_cpu(es->s_last_error_block)); 2635 printk("\n"); 2636 } 2637 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2638 } 2639 2640 static void ext4_lazyinode_timeout(unsigned long data) 2641 { 2642 struct task_struct *p = (struct task_struct *)data; 2643 wake_up_process(p); 2644 } 2645 2646 /* Find next suitable group and run ext4_init_inode_table */ 2647 static int ext4_run_li_request(struct ext4_li_request *elr) 2648 { 2649 struct ext4_group_desc *gdp = NULL; 2650 ext4_group_t group, ngroups; 2651 struct super_block *sb; 2652 unsigned long timeout = 0; 2653 int ret = 0; 2654 2655 sb = elr->lr_super; 2656 ngroups = EXT4_SB(sb)->s_groups_count; 2657 2658 for (group = elr->lr_next_group; group < ngroups; group++) { 2659 gdp = ext4_get_group_desc(sb, group, NULL); 2660 if (!gdp) { 2661 ret = 1; 2662 break; 2663 } 2664 2665 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2666 break; 2667 } 2668 2669 if (group == ngroups) 2670 ret = 1; 2671 2672 if (!ret) { 2673 timeout = jiffies; 2674 ret = ext4_init_inode_table(sb, group, 2675 elr->lr_timeout ? 0 : 1); 2676 if (elr->lr_timeout == 0) { 2677 timeout = jiffies - timeout; 2678 if (elr->lr_sbi->s_li_wait_mult) 2679 timeout *= elr->lr_sbi->s_li_wait_mult; 2680 else 2681 timeout *= 20; 2682 elr->lr_timeout = timeout; 2683 } 2684 elr->lr_next_sched = jiffies + elr->lr_timeout; 2685 elr->lr_next_group = group + 1; 2686 } 2687 2688 return ret; 2689 } 2690 2691 /* 2692 * Remove lr_request from the list_request and free the 2693 * request tructure. Should be called with li_list_mtx held 2694 */ 2695 static void ext4_remove_li_request(struct ext4_li_request *elr) 2696 { 2697 struct ext4_sb_info *sbi; 2698 2699 if (!elr) 2700 return; 2701 2702 sbi = elr->lr_sbi; 2703 2704 list_del(&elr->lr_request); 2705 sbi->s_li_request = NULL; 2706 kfree(elr); 2707 } 2708 2709 static void ext4_unregister_li_request(struct super_block *sb) 2710 { 2711 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request; 2712 2713 if (!ext4_li_info) 2714 return; 2715 2716 mutex_lock(&ext4_li_info->li_list_mtx); 2717 ext4_remove_li_request(elr); 2718 mutex_unlock(&ext4_li_info->li_list_mtx); 2719 } 2720 2721 static struct task_struct *ext4_lazyinit_task; 2722 2723 /* 2724 * This is the function where ext4lazyinit thread lives. It walks 2725 * through the request list searching for next scheduled filesystem. 2726 * When such a fs is found, run the lazy initialization request 2727 * (ext4_rn_li_request) and keep track of the time spend in this 2728 * function. Based on that time we compute next schedule time of 2729 * the request. When walking through the list is complete, compute 2730 * next waking time and put itself into sleep. 2731 */ 2732 static int ext4_lazyinit_thread(void *arg) 2733 { 2734 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2735 struct list_head *pos, *n; 2736 struct ext4_li_request *elr; 2737 unsigned long next_wakeup; 2738 DEFINE_WAIT(wait); 2739 2740 BUG_ON(NULL == eli); 2741 2742 eli->li_timer.data = (unsigned long)current; 2743 eli->li_timer.function = ext4_lazyinode_timeout; 2744 2745 eli->li_task = current; 2746 wake_up(&eli->li_wait_task); 2747 2748 cont_thread: 2749 while (true) { 2750 next_wakeup = MAX_JIFFY_OFFSET; 2751 2752 mutex_lock(&eli->li_list_mtx); 2753 if (list_empty(&eli->li_request_list)) { 2754 mutex_unlock(&eli->li_list_mtx); 2755 goto exit_thread; 2756 } 2757 2758 list_for_each_safe(pos, n, &eli->li_request_list) { 2759 elr = list_entry(pos, struct ext4_li_request, 2760 lr_request); 2761 2762 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2763 if (ext4_run_li_request(elr) != 0) { 2764 /* error, remove the lazy_init job */ 2765 ext4_remove_li_request(elr); 2766 continue; 2767 } 2768 } 2769 2770 if (time_before(elr->lr_next_sched, next_wakeup)) 2771 next_wakeup = elr->lr_next_sched; 2772 } 2773 mutex_unlock(&eli->li_list_mtx); 2774 2775 if (freezing(current)) 2776 refrigerator(); 2777 2778 if ((time_after_eq(jiffies, next_wakeup)) || 2779 (MAX_JIFFY_OFFSET == next_wakeup)) { 2780 cond_resched(); 2781 continue; 2782 } 2783 2784 eli->li_timer.expires = next_wakeup; 2785 add_timer(&eli->li_timer); 2786 prepare_to_wait(&eli->li_wait_daemon, &wait, 2787 TASK_INTERRUPTIBLE); 2788 if (time_before(jiffies, next_wakeup)) 2789 schedule(); 2790 finish_wait(&eli->li_wait_daemon, &wait); 2791 if (kthread_should_stop()) { 2792 ext4_clear_request_list(); 2793 goto exit_thread; 2794 } 2795 } 2796 2797 exit_thread: 2798 /* 2799 * It looks like the request list is empty, but we need 2800 * to check it under the li_list_mtx lock, to prevent any 2801 * additions into it, and of course we should lock ext4_li_mtx 2802 * to atomically free the list and ext4_li_info, because at 2803 * this point another ext4 filesystem could be registering 2804 * new one. 2805 */ 2806 mutex_lock(&ext4_li_mtx); 2807 mutex_lock(&eli->li_list_mtx); 2808 if (!list_empty(&eli->li_request_list)) { 2809 mutex_unlock(&eli->li_list_mtx); 2810 mutex_unlock(&ext4_li_mtx); 2811 goto cont_thread; 2812 } 2813 mutex_unlock(&eli->li_list_mtx); 2814 del_timer_sync(&ext4_li_info->li_timer); 2815 eli->li_task = NULL; 2816 wake_up(&eli->li_wait_task); 2817 2818 kfree(ext4_li_info); 2819 ext4_lazyinit_task = NULL; 2820 ext4_li_info = NULL; 2821 mutex_unlock(&ext4_li_mtx); 2822 2823 return 0; 2824 } 2825 2826 static void ext4_clear_request_list(void) 2827 { 2828 struct list_head *pos, *n; 2829 struct ext4_li_request *elr; 2830 2831 mutex_lock(&ext4_li_info->li_list_mtx); 2832 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2833 elr = list_entry(pos, struct ext4_li_request, 2834 lr_request); 2835 ext4_remove_li_request(elr); 2836 } 2837 mutex_unlock(&ext4_li_info->li_list_mtx); 2838 } 2839 2840 static int ext4_run_lazyinit_thread(void) 2841 { 2842 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2843 ext4_li_info, "ext4lazyinit"); 2844 if (IS_ERR(ext4_lazyinit_task)) { 2845 int err = PTR_ERR(ext4_lazyinit_task); 2846 ext4_clear_request_list(); 2847 del_timer_sync(&ext4_li_info->li_timer); 2848 kfree(ext4_li_info); 2849 ext4_li_info = NULL; 2850 printk(KERN_CRIT "EXT4: error %d creating inode table " 2851 "initialization thread\n", 2852 err); 2853 return err; 2854 } 2855 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2856 2857 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL); 2858 return 0; 2859 } 2860 2861 /* 2862 * Check whether it make sense to run itable init. thread or not. 2863 * If there is at least one uninitialized inode table, return 2864 * corresponding group number, else the loop goes through all 2865 * groups and return total number of groups. 2866 */ 2867 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2868 { 2869 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2870 struct ext4_group_desc *gdp = NULL; 2871 2872 for (group = 0; group < ngroups; group++) { 2873 gdp = ext4_get_group_desc(sb, group, NULL); 2874 if (!gdp) 2875 continue; 2876 2877 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2878 break; 2879 } 2880 2881 return group; 2882 } 2883 2884 static int ext4_li_info_new(void) 2885 { 2886 struct ext4_lazy_init *eli = NULL; 2887 2888 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2889 if (!eli) 2890 return -ENOMEM; 2891 2892 eli->li_task = NULL; 2893 INIT_LIST_HEAD(&eli->li_request_list); 2894 mutex_init(&eli->li_list_mtx); 2895 2896 init_waitqueue_head(&eli->li_wait_daemon); 2897 init_waitqueue_head(&eli->li_wait_task); 2898 init_timer(&eli->li_timer); 2899 eli->li_state |= EXT4_LAZYINIT_QUIT; 2900 2901 ext4_li_info = eli; 2902 2903 return 0; 2904 } 2905 2906 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2907 ext4_group_t start) 2908 { 2909 struct ext4_sb_info *sbi = EXT4_SB(sb); 2910 struct ext4_li_request *elr; 2911 unsigned long rnd; 2912 2913 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2914 if (!elr) 2915 return NULL; 2916 2917 elr->lr_super = sb; 2918 elr->lr_sbi = sbi; 2919 elr->lr_next_group = start; 2920 2921 /* 2922 * Randomize first schedule time of the request to 2923 * spread the inode table initialization requests 2924 * better. 2925 */ 2926 get_random_bytes(&rnd, sizeof(rnd)); 2927 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2928 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2929 2930 return elr; 2931 } 2932 2933 static int ext4_register_li_request(struct super_block *sb, 2934 ext4_group_t first_not_zeroed) 2935 { 2936 struct ext4_sb_info *sbi = EXT4_SB(sb); 2937 struct ext4_li_request *elr; 2938 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2939 int ret = 0; 2940 2941 if (sbi->s_li_request != NULL) 2942 return 0; 2943 2944 if (first_not_zeroed == ngroups || 2945 (sb->s_flags & MS_RDONLY) || 2946 !test_opt(sb, INIT_INODE_TABLE)) { 2947 sbi->s_li_request = NULL; 2948 return 0; 2949 } 2950 2951 if (first_not_zeroed == ngroups) { 2952 sbi->s_li_request = NULL; 2953 return 0; 2954 } 2955 2956 elr = ext4_li_request_new(sb, first_not_zeroed); 2957 if (!elr) 2958 return -ENOMEM; 2959 2960 mutex_lock(&ext4_li_mtx); 2961 2962 if (NULL == ext4_li_info) { 2963 ret = ext4_li_info_new(); 2964 if (ret) 2965 goto out; 2966 } 2967 2968 mutex_lock(&ext4_li_info->li_list_mtx); 2969 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2970 mutex_unlock(&ext4_li_info->li_list_mtx); 2971 2972 sbi->s_li_request = elr; 2973 2974 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2975 ret = ext4_run_lazyinit_thread(); 2976 if (ret) 2977 goto out; 2978 } 2979 out: 2980 mutex_unlock(&ext4_li_mtx); 2981 if (ret) 2982 kfree(elr); 2983 return ret; 2984 } 2985 2986 /* 2987 * We do not need to lock anything since this is called on 2988 * module unload. 2989 */ 2990 static void ext4_destroy_lazyinit_thread(void) 2991 { 2992 /* 2993 * If thread exited earlier 2994 * there's nothing to be done. 2995 */ 2996 if (!ext4_li_info || !ext4_lazyinit_task) 2997 return; 2998 2999 kthread_stop(ext4_lazyinit_task); 3000 } 3001 3002 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3003 __releases(kernel_lock) 3004 __acquires(kernel_lock) 3005 { 3006 char *orig_data = kstrdup(data, GFP_KERNEL); 3007 struct buffer_head *bh; 3008 struct ext4_super_block *es = NULL; 3009 struct ext4_sb_info *sbi; 3010 ext4_fsblk_t block; 3011 ext4_fsblk_t sb_block = get_sb_block(&data); 3012 ext4_fsblk_t logical_sb_block; 3013 unsigned long offset = 0; 3014 unsigned long journal_devnum = 0; 3015 unsigned long def_mount_opts; 3016 struct inode *root; 3017 char *cp; 3018 const char *descr; 3019 int ret = -ENOMEM; 3020 int blocksize; 3021 unsigned int db_count; 3022 unsigned int i; 3023 int needs_recovery, has_huge_files; 3024 __u64 blocks_count; 3025 int err; 3026 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3027 ext4_group_t first_not_zeroed; 3028 3029 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3030 if (!sbi) 3031 goto out_free_orig; 3032 3033 sbi->s_blockgroup_lock = 3034 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3035 if (!sbi->s_blockgroup_lock) { 3036 kfree(sbi); 3037 goto out_free_orig; 3038 } 3039 sb->s_fs_info = sbi; 3040 sbi->s_mount_opt = 0; 3041 sbi->s_resuid = EXT4_DEF_RESUID; 3042 sbi->s_resgid = EXT4_DEF_RESGID; 3043 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3044 sbi->s_sb_block = sb_block; 3045 if (sb->s_bdev->bd_part) 3046 sbi->s_sectors_written_start = 3047 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3048 3049 /* Cleanup superblock name */ 3050 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3051 *cp = '!'; 3052 3053 ret = -EINVAL; 3054 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3055 if (!blocksize) { 3056 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3057 goto out_fail; 3058 } 3059 3060 /* 3061 * The ext4 superblock will not be buffer aligned for other than 1kB 3062 * block sizes. We need to calculate the offset from buffer start. 3063 */ 3064 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3065 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3066 offset = do_div(logical_sb_block, blocksize); 3067 } else { 3068 logical_sb_block = sb_block; 3069 } 3070 3071 if (!(bh = sb_bread(sb, logical_sb_block))) { 3072 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3073 goto out_fail; 3074 } 3075 /* 3076 * Note: s_es must be initialized as soon as possible because 3077 * some ext4 macro-instructions depend on its value 3078 */ 3079 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3080 sbi->s_es = es; 3081 sb->s_magic = le16_to_cpu(es->s_magic); 3082 if (sb->s_magic != EXT4_SUPER_MAGIC) 3083 goto cantfind_ext4; 3084 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3085 3086 /* Set defaults before we parse the mount options */ 3087 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3088 set_opt(sb, INIT_INODE_TABLE); 3089 if (def_mount_opts & EXT4_DEFM_DEBUG) 3090 set_opt(sb, DEBUG); 3091 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) { 3092 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups", 3093 "2.6.38"); 3094 set_opt(sb, GRPID); 3095 } 3096 if (def_mount_opts & EXT4_DEFM_UID16) 3097 set_opt(sb, NO_UID32); 3098 #ifdef CONFIG_EXT4_FS_XATTR 3099 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 3100 set_opt(sb, XATTR_USER); 3101 #endif 3102 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3103 if (def_mount_opts & EXT4_DEFM_ACL) 3104 set_opt(sb, POSIX_ACL); 3105 #endif 3106 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3107 set_opt(sb, JOURNAL_DATA); 3108 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3109 set_opt(sb, ORDERED_DATA); 3110 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3111 set_opt(sb, WRITEBACK_DATA); 3112 3113 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3114 set_opt(sb, ERRORS_PANIC); 3115 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3116 set_opt(sb, ERRORS_CONT); 3117 else 3118 set_opt(sb, ERRORS_RO); 3119 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3120 set_opt(sb, BLOCK_VALIDITY); 3121 if (def_mount_opts & EXT4_DEFM_DISCARD) 3122 set_opt(sb, DISCARD); 3123 3124 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3125 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3126 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3127 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3128 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3129 3130 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3131 set_opt(sb, BARRIER); 3132 3133 /* 3134 * enable delayed allocation by default 3135 * Use -o nodelalloc to turn it off 3136 */ 3137 if (!IS_EXT3_SB(sb) && 3138 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3139 set_opt(sb, DELALLOC); 3140 3141 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3142 &journal_devnum, &journal_ioprio, NULL, 0)) { 3143 ext4_msg(sb, KERN_WARNING, 3144 "failed to parse options in superblock: %s", 3145 sbi->s_es->s_mount_opts); 3146 } 3147 if (!parse_options((char *) data, sb, &journal_devnum, 3148 &journal_ioprio, NULL, 0)) 3149 goto failed_mount; 3150 3151 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3152 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3153 3154 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3155 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3156 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3157 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3158 ext4_msg(sb, KERN_WARNING, 3159 "feature flags set on rev 0 fs, " 3160 "running e2fsck is recommended"); 3161 3162 /* 3163 * Check feature flags regardless of the revision level, since we 3164 * previously didn't change the revision level when setting the flags, 3165 * so there is a chance incompat flags are set on a rev 0 filesystem. 3166 */ 3167 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3168 goto failed_mount; 3169 3170 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3171 3172 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3173 blocksize > EXT4_MAX_BLOCK_SIZE) { 3174 ext4_msg(sb, KERN_ERR, 3175 "Unsupported filesystem blocksize %d", blocksize); 3176 goto failed_mount; 3177 } 3178 3179 if (sb->s_blocksize != blocksize) { 3180 /* Validate the filesystem blocksize */ 3181 if (!sb_set_blocksize(sb, blocksize)) { 3182 ext4_msg(sb, KERN_ERR, "bad block size %d", 3183 blocksize); 3184 goto failed_mount; 3185 } 3186 3187 brelse(bh); 3188 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3189 offset = do_div(logical_sb_block, blocksize); 3190 bh = sb_bread(sb, logical_sb_block); 3191 if (!bh) { 3192 ext4_msg(sb, KERN_ERR, 3193 "Can't read superblock on 2nd try"); 3194 goto failed_mount; 3195 } 3196 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3197 sbi->s_es = es; 3198 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3199 ext4_msg(sb, KERN_ERR, 3200 "Magic mismatch, very weird!"); 3201 goto failed_mount; 3202 } 3203 } 3204 3205 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3206 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3207 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3208 has_huge_files); 3209 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3210 3211 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3212 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3213 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3214 } else { 3215 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3216 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3217 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3218 (!is_power_of_2(sbi->s_inode_size)) || 3219 (sbi->s_inode_size > blocksize)) { 3220 ext4_msg(sb, KERN_ERR, 3221 "unsupported inode size: %d", 3222 sbi->s_inode_size); 3223 goto failed_mount; 3224 } 3225 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3226 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3227 } 3228 3229 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3230 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3231 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3232 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3233 !is_power_of_2(sbi->s_desc_size)) { 3234 ext4_msg(sb, KERN_ERR, 3235 "unsupported descriptor size %lu", 3236 sbi->s_desc_size); 3237 goto failed_mount; 3238 } 3239 } else 3240 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3241 3242 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3243 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3244 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3245 goto cantfind_ext4; 3246 3247 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3248 if (sbi->s_inodes_per_block == 0) 3249 goto cantfind_ext4; 3250 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3251 sbi->s_inodes_per_block; 3252 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3253 sbi->s_sbh = bh; 3254 sbi->s_mount_state = le16_to_cpu(es->s_state); 3255 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3256 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3257 3258 for (i = 0; i < 4; i++) 3259 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3260 sbi->s_def_hash_version = es->s_def_hash_version; 3261 i = le32_to_cpu(es->s_flags); 3262 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3263 sbi->s_hash_unsigned = 3; 3264 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3265 #ifdef __CHAR_UNSIGNED__ 3266 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3267 sbi->s_hash_unsigned = 3; 3268 #else 3269 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3270 #endif 3271 sb->s_dirt = 1; 3272 } 3273 3274 if (sbi->s_blocks_per_group > blocksize * 8) { 3275 ext4_msg(sb, KERN_ERR, 3276 "#blocks per group too big: %lu", 3277 sbi->s_blocks_per_group); 3278 goto failed_mount; 3279 } 3280 if (sbi->s_inodes_per_group > blocksize * 8) { 3281 ext4_msg(sb, KERN_ERR, 3282 "#inodes per group too big: %lu", 3283 sbi->s_inodes_per_group); 3284 goto failed_mount; 3285 } 3286 3287 /* 3288 * Test whether we have more sectors than will fit in sector_t, 3289 * and whether the max offset is addressable by the page cache. 3290 */ 3291 err = generic_check_addressable(sb->s_blocksize_bits, 3292 ext4_blocks_count(es)); 3293 if (err) { 3294 ext4_msg(sb, KERN_ERR, "filesystem" 3295 " too large to mount safely on this system"); 3296 if (sizeof(sector_t) < 8) 3297 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3298 ret = err; 3299 goto failed_mount; 3300 } 3301 3302 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3303 goto cantfind_ext4; 3304 3305 /* check blocks count against device size */ 3306 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3307 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3308 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3309 "exceeds size of device (%llu blocks)", 3310 ext4_blocks_count(es), blocks_count); 3311 goto failed_mount; 3312 } 3313 3314 /* 3315 * It makes no sense for the first data block to be beyond the end 3316 * of the filesystem. 3317 */ 3318 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3319 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 3320 "block %u is beyond end of filesystem (%llu)", 3321 le32_to_cpu(es->s_first_data_block), 3322 ext4_blocks_count(es)); 3323 goto failed_mount; 3324 } 3325 blocks_count = (ext4_blocks_count(es) - 3326 le32_to_cpu(es->s_first_data_block) + 3327 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3328 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3329 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3330 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3331 "(block count %llu, first data block %u, " 3332 "blocks per group %lu)", sbi->s_groups_count, 3333 ext4_blocks_count(es), 3334 le32_to_cpu(es->s_first_data_block), 3335 EXT4_BLOCKS_PER_GROUP(sb)); 3336 goto failed_mount; 3337 } 3338 sbi->s_groups_count = blocks_count; 3339 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3340 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3341 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3342 EXT4_DESC_PER_BLOCK(sb); 3343 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 3344 GFP_KERNEL); 3345 if (sbi->s_group_desc == NULL) { 3346 ext4_msg(sb, KERN_ERR, "not enough memory"); 3347 goto failed_mount; 3348 } 3349 3350 #ifdef CONFIG_PROC_FS 3351 if (ext4_proc_root) 3352 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3353 #endif 3354 3355 bgl_lock_init(sbi->s_blockgroup_lock); 3356 3357 for (i = 0; i < db_count; i++) { 3358 block = descriptor_loc(sb, logical_sb_block, i); 3359 sbi->s_group_desc[i] = sb_bread(sb, block); 3360 if (!sbi->s_group_desc[i]) { 3361 ext4_msg(sb, KERN_ERR, 3362 "can't read group descriptor %d", i); 3363 db_count = i; 3364 goto failed_mount2; 3365 } 3366 } 3367 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3368 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3369 goto failed_mount2; 3370 } 3371 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3372 if (!ext4_fill_flex_info(sb)) { 3373 ext4_msg(sb, KERN_ERR, 3374 "unable to initialize " 3375 "flex_bg meta info!"); 3376 goto failed_mount2; 3377 } 3378 3379 sbi->s_gdb_count = db_count; 3380 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3381 spin_lock_init(&sbi->s_next_gen_lock); 3382 3383 err = percpu_counter_init(&sbi->s_freeblocks_counter, 3384 ext4_count_free_blocks(sb)); 3385 if (!err) { 3386 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3387 ext4_count_free_inodes(sb)); 3388 } 3389 if (!err) { 3390 err = percpu_counter_init(&sbi->s_dirs_counter, 3391 ext4_count_dirs(sb)); 3392 } 3393 if (!err) { 3394 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 3395 } 3396 if (err) { 3397 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3398 goto failed_mount3; 3399 } 3400 3401 sbi->s_stripe = ext4_get_stripe_size(sbi); 3402 sbi->s_max_writeback_mb_bump = 128; 3403 3404 /* 3405 * set up enough so that it can read an inode 3406 */ 3407 if (!test_opt(sb, NOLOAD) && 3408 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3409 sb->s_op = &ext4_sops; 3410 else 3411 sb->s_op = &ext4_nojournal_sops; 3412 sb->s_export_op = &ext4_export_ops; 3413 sb->s_xattr = ext4_xattr_handlers; 3414 #ifdef CONFIG_QUOTA 3415 sb->s_qcop = &ext4_qctl_operations; 3416 sb->dq_op = &ext4_quota_operations; 3417 #endif 3418 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3419 mutex_init(&sbi->s_orphan_lock); 3420 mutex_init(&sbi->s_resize_lock); 3421 3422 sb->s_root = NULL; 3423 3424 needs_recovery = (es->s_last_orphan != 0 || 3425 EXT4_HAS_INCOMPAT_FEATURE(sb, 3426 EXT4_FEATURE_INCOMPAT_RECOVER)); 3427 3428 /* 3429 * The first inode we look at is the journal inode. Don't try 3430 * root first: it may be modified in the journal! 3431 */ 3432 if (!test_opt(sb, NOLOAD) && 3433 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3434 if (ext4_load_journal(sb, es, journal_devnum)) 3435 goto failed_mount3; 3436 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3437 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3438 ext4_msg(sb, KERN_ERR, "required journal recovery " 3439 "suppressed and not mounted read-only"); 3440 goto failed_mount_wq; 3441 } else { 3442 clear_opt(sb, DATA_FLAGS); 3443 set_opt(sb, WRITEBACK_DATA); 3444 sbi->s_journal = NULL; 3445 needs_recovery = 0; 3446 goto no_journal; 3447 } 3448 3449 if (ext4_blocks_count(es) > 0xffffffffULL && 3450 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3451 JBD2_FEATURE_INCOMPAT_64BIT)) { 3452 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3453 goto failed_mount_wq; 3454 } 3455 3456 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3457 jbd2_journal_set_features(sbi->s_journal, 3458 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3459 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3460 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3461 jbd2_journal_set_features(sbi->s_journal, 3462 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3463 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3464 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3465 } else { 3466 jbd2_journal_clear_features(sbi->s_journal, 3467 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3468 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3469 } 3470 3471 /* We have now updated the journal if required, so we can 3472 * validate the data journaling mode. */ 3473 switch (test_opt(sb, DATA_FLAGS)) { 3474 case 0: 3475 /* No mode set, assume a default based on the journal 3476 * capabilities: ORDERED_DATA if the journal can 3477 * cope, else JOURNAL_DATA 3478 */ 3479 if (jbd2_journal_check_available_features 3480 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3481 set_opt(sb, ORDERED_DATA); 3482 else 3483 set_opt(sb, JOURNAL_DATA); 3484 break; 3485 3486 case EXT4_MOUNT_ORDERED_DATA: 3487 case EXT4_MOUNT_WRITEBACK_DATA: 3488 if (!jbd2_journal_check_available_features 3489 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3490 ext4_msg(sb, KERN_ERR, "Journal does not support " 3491 "requested data journaling mode"); 3492 goto failed_mount_wq; 3493 } 3494 default: 3495 break; 3496 } 3497 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3498 3499 /* 3500 * The journal may have updated the bg summary counts, so we 3501 * need to update the global counters. 3502 */ 3503 percpu_counter_set(&sbi->s_freeblocks_counter, 3504 ext4_count_free_blocks(sb)); 3505 percpu_counter_set(&sbi->s_freeinodes_counter, 3506 ext4_count_free_inodes(sb)); 3507 percpu_counter_set(&sbi->s_dirs_counter, 3508 ext4_count_dirs(sb)); 3509 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0); 3510 3511 no_journal: 3512 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 3513 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3514 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3515 goto failed_mount_wq; 3516 } 3517 3518 /* 3519 * The jbd2_journal_load will have done any necessary log recovery, 3520 * so we can safely mount the rest of the filesystem now. 3521 */ 3522 3523 root = ext4_iget(sb, EXT4_ROOT_INO); 3524 if (IS_ERR(root)) { 3525 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3526 ret = PTR_ERR(root); 3527 goto failed_mount4; 3528 } 3529 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3530 iput(root); 3531 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3532 goto failed_mount4; 3533 } 3534 sb->s_root = d_alloc_root(root); 3535 if (!sb->s_root) { 3536 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3537 iput(root); 3538 ret = -ENOMEM; 3539 goto failed_mount4; 3540 } 3541 3542 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3543 3544 /* determine the minimum size of new large inodes, if present */ 3545 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3546 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3547 EXT4_GOOD_OLD_INODE_SIZE; 3548 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3549 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3550 if (sbi->s_want_extra_isize < 3551 le16_to_cpu(es->s_want_extra_isize)) 3552 sbi->s_want_extra_isize = 3553 le16_to_cpu(es->s_want_extra_isize); 3554 if (sbi->s_want_extra_isize < 3555 le16_to_cpu(es->s_min_extra_isize)) 3556 sbi->s_want_extra_isize = 3557 le16_to_cpu(es->s_min_extra_isize); 3558 } 3559 } 3560 /* Check if enough inode space is available */ 3561 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3562 sbi->s_inode_size) { 3563 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3564 EXT4_GOOD_OLD_INODE_SIZE; 3565 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3566 "available"); 3567 } 3568 3569 if (test_opt(sb, DELALLOC) && 3570 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 3571 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 3572 "requested data journaling mode"); 3573 clear_opt(sb, DELALLOC); 3574 } 3575 if (test_opt(sb, DIOREAD_NOLOCK)) { 3576 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3577 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3578 "option - requested data journaling mode"); 3579 clear_opt(sb, DIOREAD_NOLOCK); 3580 } 3581 if (sb->s_blocksize < PAGE_SIZE) { 3582 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3583 "option - block size is too small"); 3584 clear_opt(sb, DIOREAD_NOLOCK); 3585 } 3586 } 3587 3588 err = ext4_setup_system_zone(sb); 3589 if (err) { 3590 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3591 "zone (%d)", err); 3592 goto failed_mount4; 3593 } 3594 3595 ext4_ext_init(sb); 3596 err = ext4_mb_init(sb, needs_recovery); 3597 if (err) { 3598 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3599 err); 3600 goto failed_mount4; 3601 } 3602 3603 err = ext4_register_li_request(sb, first_not_zeroed); 3604 if (err) 3605 goto failed_mount4; 3606 3607 sbi->s_kobj.kset = ext4_kset; 3608 init_completion(&sbi->s_kobj_unregister); 3609 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3610 "%s", sb->s_id); 3611 if (err) { 3612 ext4_mb_release(sb); 3613 ext4_ext_release(sb); 3614 goto failed_mount4; 3615 }; 3616 3617 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3618 ext4_orphan_cleanup(sb, es); 3619 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3620 if (needs_recovery) { 3621 ext4_msg(sb, KERN_INFO, "recovery complete"); 3622 ext4_mark_recovery_complete(sb, es); 3623 } 3624 if (EXT4_SB(sb)->s_journal) { 3625 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3626 descr = " journalled data mode"; 3627 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3628 descr = " ordered data mode"; 3629 else 3630 descr = " writeback data mode"; 3631 } else 3632 descr = "out journal"; 3633 3634 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3635 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3636 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3637 3638 init_timer(&sbi->s_err_report); 3639 sbi->s_err_report.function = print_daily_error_info; 3640 sbi->s_err_report.data = (unsigned long) sb; 3641 if (es->s_error_count) 3642 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3643 3644 kfree(orig_data); 3645 return 0; 3646 3647 cantfind_ext4: 3648 if (!silent) 3649 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3650 goto failed_mount; 3651 3652 failed_mount4: 3653 ext4_msg(sb, KERN_ERR, "mount failed"); 3654 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3655 failed_mount_wq: 3656 ext4_release_system_zone(sb); 3657 if (sbi->s_journal) { 3658 jbd2_journal_destroy(sbi->s_journal); 3659 sbi->s_journal = NULL; 3660 } 3661 failed_mount3: 3662 if (sbi->s_flex_groups) { 3663 if (is_vmalloc_addr(sbi->s_flex_groups)) 3664 vfree(sbi->s_flex_groups); 3665 else 3666 kfree(sbi->s_flex_groups); 3667 } 3668 percpu_counter_destroy(&sbi->s_freeblocks_counter); 3669 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3670 percpu_counter_destroy(&sbi->s_dirs_counter); 3671 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 3672 failed_mount2: 3673 for (i = 0; i < db_count; i++) 3674 brelse(sbi->s_group_desc[i]); 3675 kfree(sbi->s_group_desc); 3676 failed_mount: 3677 if (sbi->s_proc) { 3678 remove_proc_entry(sb->s_id, ext4_proc_root); 3679 } 3680 #ifdef CONFIG_QUOTA 3681 for (i = 0; i < MAXQUOTAS; i++) 3682 kfree(sbi->s_qf_names[i]); 3683 #endif 3684 ext4_blkdev_remove(sbi); 3685 brelse(bh); 3686 out_fail: 3687 sb->s_fs_info = NULL; 3688 kfree(sbi->s_blockgroup_lock); 3689 kfree(sbi); 3690 out_free_orig: 3691 kfree(orig_data); 3692 return ret; 3693 } 3694 3695 /* 3696 * Setup any per-fs journal parameters now. We'll do this both on 3697 * initial mount, once the journal has been initialised but before we've 3698 * done any recovery; and again on any subsequent remount. 3699 */ 3700 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3701 { 3702 struct ext4_sb_info *sbi = EXT4_SB(sb); 3703 3704 journal->j_commit_interval = sbi->s_commit_interval; 3705 journal->j_min_batch_time = sbi->s_min_batch_time; 3706 journal->j_max_batch_time = sbi->s_max_batch_time; 3707 3708 write_lock(&journal->j_state_lock); 3709 if (test_opt(sb, BARRIER)) 3710 journal->j_flags |= JBD2_BARRIER; 3711 else 3712 journal->j_flags &= ~JBD2_BARRIER; 3713 if (test_opt(sb, DATA_ERR_ABORT)) 3714 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3715 else 3716 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3717 write_unlock(&journal->j_state_lock); 3718 } 3719 3720 static journal_t *ext4_get_journal(struct super_block *sb, 3721 unsigned int journal_inum) 3722 { 3723 struct inode *journal_inode; 3724 journal_t *journal; 3725 3726 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3727 3728 /* First, test for the existence of a valid inode on disk. Bad 3729 * things happen if we iget() an unused inode, as the subsequent 3730 * iput() will try to delete it. */ 3731 3732 journal_inode = ext4_iget(sb, journal_inum); 3733 if (IS_ERR(journal_inode)) { 3734 ext4_msg(sb, KERN_ERR, "no journal found"); 3735 return NULL; 3736 } 3737 if (!journal_inode->i_nlink) { 3738 make_bad_inode(journal_inode); 3739 iput(journal_inode); 3740 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3741 return NULL; 3742 } 3743 3744 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3745 journal_inode, journal_inode->i_size); 3746 if (!S_ISREG(journal_inode->i_mode)) { 3747 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3748 iput(journal_inode); 3749 return NULL; 3750 } 3751 3752 journal = jbd2_journal_init_inode(journal_inode); 3753 if (!journal) { 3754 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3755 iput(journal_inode); 3756 return NULL; 3757 } 3758 journal->j_private = sb; 3759 ext4_init_journal_params(sb, journal); 3760 return journal; 3761 } 3762 3763 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3764 dev_t j_dev) 3765 { 3766 struct buffer_head *bh; 3767 journal_t *journal; 3768 ext4_fsblk_t start; 3769 ext4_fsblk_t len; 3770 int hblock, blocksize; 3771 ext4_fsblk_t sb_block; 3772 unsigned long offset; 3773 struct ext4_super_block *es; 3774 struct block_device *bdev; 3775 3776 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3777 3778 bdev = ext4_blkdev_get(j_dev, sb); 3779 if (bdev == NULL) 3780 return NULL; 3781 3782 blocksize = sb->s_blocksize; 3783 hblock = bdev_logical_block_size(bdev); 3784 if (blocksize < hblock) { 3785 ext4_msg(sb, KERN_ERR, 3786 "blocksize too small for journal device"); 3787 goto out_bdev; 3788 } 3789 3790 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3791 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3792 set_blocksize(bdev, blocksize); 3793 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3794 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3795 "external journal"); 3796 goto out_bdev; 3797 } 3798 3799 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3800 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3801 !(le32_to_cpu(es->s_feature_incompat) & 3802 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3803 ext4_msg(sb, KERN_ERR, "external journal has " 3804 "bad superblock"); 3805 brelse(bh); 3806 goto out_bdev; 3807 } 3808 3809 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3810 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3811 brelse(bh); 3812 goto out_bdev; 3813 } 3814 3815 len = ext4_blocks_count(es); 3816 start = sb_block + 1; 3817 brelse(bh); /* we're done with the superblock */ 3818 3819 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3820 start, len, blocksize); 3821 if (!journal) { 3822 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3823 goto out_bdev; 3824 } 3825 journal->j_private = sb; 3826 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3827 wait_on_buffer(journal->j_sb_buffer); 3828 if (!buffer_uptodate(journal->j_sb_buffer)) { 3829 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3830 goto out_journal; 3831 } 3832 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3833 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3834 "user (unsupported) - %d", 3835 be32_to_cpu(journal->j_superblock->s_nr_users)); 3836 goto out_journal; 3837 } 3838 EXT4_SB(sb)->journal_bdev = bdev; 3839 ext4_init_journal_params(sb, journal); 3840 return journal; 3841 3842 out_journal: 3843 jbd2_journal_destroy(journal); 3844 out_bdev: 3845 ext4_blkdev_put(bdev); 3846 return NULL; 3847 } 3848 3849 static int ext4_load_journal(struct super_block *sb, 3850 struct ext4_super_block *es, 3851 unsigned long journal_devnum) 3852 { 3853 journal_t *journal; 3854 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3855 dev_t journal_dev; 3856 int err = 0; 3857 int really_read_only; 3858 3859 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3860 3861 if (journal_devnum && 3862 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3863 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3864 "numbers have changed"); 3865 journal_dev = new_decode_dev(journal_devnum); 3866 } else 3867 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3868 3869 really_read_only = bdev_read_only(sb->s_bdev); 3870 3871 /* 3872 * Are we loading a blank journal or performing recovery after a 3873 * crash? For recovery, we need to check in advance whether we 3874 * can get read-write access to the device. 3875 */ 3876 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3877 if (sb->s_flags & MS_RDONLY) { 3878 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3879 "required on readonly filesystem"); 3880 if (really_read_only) { 3881 ext4_msg(sb, KERN_ERR, "write access " 3882 "unavailable, cannot proceed"); 3883 return -EROFS; 3884 } 3885 ext4_msg(sb, KERN_INFO, "write access will " 3886 "be enabled during recovery"); 3887 } 3888 } 3889 3890 if (journal_inum && journal_dev) { 3891 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3892 "and inode journals!"); 3893 return -EINVAL; 3894 } 3895 3896 if (journal_inum) { 3897 if (!(journal = ext4_get_journal(sb, journal_inum))) 3898 return -EINVAL; 3899 } else { 3900 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3901 return -EINVAL; 3902 } 3903 3904 if (!(journal->j_flags & JBD2_BARRIER)) 3905 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3906 3907 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3908 err = jbd2_journal_update_format(journal); 3909 if (err) { 3910 ext4_msg(sb, KERN_ERR, "error updating journal"); 3911 jbd2_journal_destroy(journal); 3912 return err; 3913 } 3914 } 3915 3916 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3917 err = jbd2_journal_wipe(journal, !really_read_only); 3918 if (!err) { 3919 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 3920 if (save) 3921 memcpy(save, ((char *) es) + 3922 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 3923 err = jbd2_journal_load(journal); 3924 if (save) 3925 memcpy(((char *) es) + EXT4_S_ERR_START, 3926 save, EXT4_S_ERR_LEN); 3927 kfree(save); 3928 } 3929 3930 if (err) { 3931 ext4_msg(sb, KERN_ERR, "error loading journal"); 3932 jbd2_journal_destroy(journal); 3933 return err; 3934 } 3935 3936 EXT4_SB(sb)->s_journal = journal; 3937 ext4_clear_journal_err(sb, es); 3938 3939 if (!really_read_only && journal_devnum && 3940 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3941 es->s_journal_dev = cpu_to_le32(journal_devnum); 3942 3943 /* Make sure we flush the recovery flag to disk. */ 3944 ext4_commit_super(sb, 1); 3945 } 3946 3947 return 0; 3948 } 3949 3950 static int ext4_commit_super(struct super_block *sb, int sync) 3951 { 3952 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3953 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3954 int error = 0; 3955 3956 if (!sbh) 3957 return error; 3958 if (buffer_write_io_error(sbh)) { 3959 /* 3960 * Oh, dear. A previous attempt to write the 3961 * superblock failed. This could happen because the 3962 * USB device was yanked out. Or it could happen to 3963 * be a transient write error and maybe the block will 3964 * be remapped. Nothing we can do but to retry the 3965 * write and hope for the best. 3966 */ 3967 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3968 "superblock detected"); 3969 clear_buffer_write_io_error(sbh); 3970 set_buffer_uptodate(sbh); 3971 } 3972 /* 3973 * If the file system is mounted read-only, don't update the 3974 * superblock write time. This avoids updating the superblock 3975 * write time when we are mounting the root file system 3976 * read/only but we need to replay the journal; at that point, 3977 * for people who are east of GMT and who make their clock 3978 * tick in localtime for Windows bug-for-bug compatibility, 3979 * the clock is set in the future, and this will cause e2fsck 3980 * to complain and force a full file system check. 3981 */ 3982 if (!(sb->s_flags & MS_RDONLY)) 3983 es->s_wtime = cpu_to_le32(get_seconds()); 3984 if (sb->s_bdev->bd_part) 3985 es->s_kbytes_written = 3986 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3987 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3988 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3989 else 3990 es->s_kbytes_written = 3991 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 3992 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3993 &EXT4_SB(sb)->s_freeblocks_counter)); 3994 es->s_free_inodes_count = 3995 cpu_to_le32(percpu_counter_sum_positive( 3996 &EXT4_SB(sb)->s_freeinodes_counter)); 3997 sb->s_dirt = 0; 3998 BUFFER_TRACE(sbh, "marking dirty"); 3999 mark_buffer_dirty(sbh); 4000 if (sync) { 4001 error = sync_dirty_buffer(sbh); 4002 if (error) 4003 return error; 4004 4005 error = buffer_write_io_error(sbh); 4006 if (error) { 4007 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4008 "superblock"); 4009 clear_buffer_write_io_error(sbh); 4010 set_buffer_uptodate(sbh); 4011 } 4012 } 4013 return error; 4014 } 4015 4016 /* 4017 * Have we just finished recovery? If so, and if we are mounting (or 4018 * remounting) the filesystem readonly, then we will end up with a 4019 * consistent fs on disk. Record that fact. 4020 */ 4021 static void ext4_mark_recovery_complete(struct super_block *sb, 4022 struct ext4_super_block *es) 4023 { 4024 journal_t *journal = EXT4_SB(sb)->s_journal; 4025 4026 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4027 BUG_ON(journal != NULL); 4028 return; 4029 } 4030 jbd2_journal_lock_updates(journal); 4031 if (jbd2_journal_flush(journal) < 0) 4032 goto out; 4033 4034 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4035 sb->s_flags & MS_RDONLY) { 4036 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4037 ext4_commit_super(sb, 1); 4038 } 4039 4040 out: 4041 jbd2_journal_unlock_updates(journal); 4042 } 4043 4044 /* 4045 * If we are mounting (or read-write remounting) a filesystem whose journal 4046 * has recorded an error from a previous lifetime, move that error to the 4047 * main filesystem now. 4048 */ 4049 static void ext4_clear_journal_err(struct super_block *sb, 4050 struct ext4_super_block *es) 4051 { 4052 journal_t *journal; 4053 int j_errno; 4054 const char *errstr; 4055 4056 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4057 4058 journal = EXT4_SB(sb)->s_journal; 4059 4060 /* 4061 * Now check for any error status which may have been recorded in the 4062 * journal by a prior ext4_error() or ext4_abort() 4063 */ 4064 4065 j_errno = jbd2_journal_errno(journal); 4066 if (j_errno) { 4067 char nbuf[16]; 4068 4069 errstr = ext4_decode_error(sb, j_errno, nbuf); 4070 ext4_warning(sb, "Filesystem error recorded " 4071 "from previous mount: %s", errstr); 4072 ext4_warning(sb, "Marking fs in need of filesystem check."); 4073 4074 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4075 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4076 ext4_commit_super(sb, 1); 4077 4078 jbd2_journal_clear_err(journal); 4079 } 4080 } 4081 4082 /* 4083 * Force the running and committing transactions to commit, 4084 * and wait on the commit. 4085 */ 4086 int ext4_force_commit(struct super_block *sb) 4087 { 4088 journal_t *journal; 4089 int ret = 0; 4090 4091 if (sb->s_flags & MS_RDONLY) 4092 return 0; 4093 4094 journal = EXT4_SB(sb)->s_journal; 4095 if (journal) { 4096 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4097 ret = ext4_journal_force_commit(journal); 4098 } 4099 4100 return ret; 4101 } 4102 4103 static void ext4_write_super(struct super_block *sb) 4104 { 4105 lock_super(sb); 4106 ext4_commit_super(sb, 1); 4107 unlock_super(sb); 4108 } 4109 4110 static int ext4_sync_fs(struct super_block *sb, int wait) 4111 { 4112 int ret = 0; 4113 tid_t target; 4114 struct ext4_sb_info *sbi = EXT4_SB(sb); 4115 4116 trace_ext4_sync_fs(sb, wait); 4117 flush_workqueue(sbi->dio_unwritten_wq); 4118 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4119 if (wait) 4120 jbd2_log_wait_commit(sbi->s_journal, target); 4121 } 4122 return ret; 4123 } 4124 4125 /* 4126 * LVM calls this function before a (read-only) snapshot is created. This 4127 * gives us a chance to flush the journal completely and mark the fs clean. 4128 */ 4129 static int ext4_freeze(struct super_block *sb) 4130 { 4131 int error = 0; 4132 journal_t *journal; 4133 4134 if (sb->s_flags & MS_RDONLY) 4135 return 0; 4136 4137 journal = EXT4_SB(sb)->s_journal; 4138 4139 /* Now we set up the journal barrier. */ 4140 jbd2_journal_lock_updates(journal); 4141 4142 /* 4143 * Don't clear the needs_recovery flag if we failed to flush 4144 * the journal. 4145 */ 4146 error = jbd2_journal_flush(journal); 4147 if (error < 0) 4148 goto out; 4149 4150 /* Journal blocked and flushed, clear needs_recovery flag. */ 4151 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4152 error = ext4_commit_super(sb, 1); 4153 out: 4154 /* we rely on s_frozen to stop further updates */ 4155 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4156 return error; 4157 } 4158 4159 /* 4160 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4161 * flag here, even though the filesystem is not technically dirty yet. 4162 */ 4163 static int ext4_unfreeze(struct super_block *sb) 4164 { 4165 if (sb->s_flags & MS_RDONLY) 4166 return 0; 4167 4168 lock_super(sb); 4169 /* Reset the needs_recovery flag before the fs is unlocked. */ 4170 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4171 ext4_commit_super(sb, 1); 4172 unlock_super(sb); 4173 return 0; 4174 } 4175 4176 /* 4177 * Structure to save mount options for ext4_remount's benefit 4178 */ 4179 struct ext4_mount_options { 4180 unsigned long s_mount_opt; 4181 unsigned long s_mount_opt2; 4182 uid_t s_resuid; 4183 gid_t s_resgid; 4184 unsigned long s_commit_interval; 4185 u32 s_min_batch_time, s_max_batch_time; 4186 #ifdef CONFIG_QUOTA 4187 int s_jquota_fmt; 4188 char *s_qf_names[MAXQUOTAS]; 4189 #endif 4190 }; 4191 4192 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4193 { 4194 struct ext4_super_block *es; 4195 struct ext4_sb_info *sbi = EXT4_SB(sb); 4196 ext4_fsblk_t n_blocks_count = 0; 4197 unsigned long old_sb_flags; 4198 struct ext4_mount_options old_opts; 4199 int enable_quota = 0; 4200 ext4_group_t g; 4201 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4202 int err; 4203 #ifdef CONFIG_QUOTA 4204 int i; 4205 #endif 4206 char *orig_data = kstrdup(data, GFP_KERNEL); 4207 4208 /* Store the original options */ 4209 lock_super(sb); 4210 old_sb_flags = sb->s_flags; 4211 old_opts.s_mount_opt = sbi->s_mount_opt; 4212 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4213 old_opts.s_resuid = sbi->s_resuid; 4214 old_opts.s_resgid = sbi->s_resgid; 4215 old_opts.s_commit_interval = sbi->s_commit_interval; 4216 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4217 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4218 #ifdef CONFIG_QUOTA 4219 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4220 for (i = 0; i < MAXQUOTAS; i++) 4221 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4222 #endif 4223 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4224 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4225 4226 /* 4227 * Allow the "check" option to be passed as a remount option. 4228 */ 4229 if (!parse_options(data, sb, NULL, &journal_ioprio, 4230 &n_blocks_count, 1)) { 4231 err = -EINVAL; 4232 goto restore_opts; 4233 } 4234 4235 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4236 ext4_abort(sb, "Abort forced by user"); 4237 4238 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4239 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4240 4241 es = sbi->s_es; 4242 4243 if (sbi->s_journal) { 4244 ext4_init_journal_params(sb, sbi->s_journal); 4245 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4246 } 4247 4248 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 4249 n_blocks_count > ext4_blocks_count(es)) { 4250 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4251 err = -EROFS; 4252 goto restore_opts; 4253 } 4254 4255 if (*flags & MS_RDONLY) { 4256 err = dquot_suspend(sb, -1); 4257 if (err < 0) 4258 goto restore_opts; 4259 4260 /* 4261 * First of all, the unconditional stuff we have to do 4262 * to disable replay of the journal when we next remount 4263 */ 4264 sb->s_flags |= MS_RDONLY; 4265 4266 /* 4267 * OK, test if we are remounting a valid rw partition 4268 * readonly, and if so set the rdonly flag and then 4269 * mark the partition as valid again. 4270 */ 4271 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4272 (sbi->s_mount_state & EXT4_VALID_FS)) 4273 es->s_state = cpu_to_le16(sbi->s_mount_state); 4274 4275 if (sbi->s_journal) 4276 ext4_mark_recovery_complete(sb, es); 4277 } else { 4278 /* Make sure we can mount this feature set readwrite */ 4279 if (!ext4_feature_set_ok(sb, 0)) { 4280 err = -EROFS; 4281 goto restore_opts; 4282 } 4283 /* 4284 * Make sure the group descriptor checksums 4285 * are sane. If they aren't, refuse to remount r/w. 4286 */ 4287 for (g = 0; g < sbi->s_groups_count; g++) { 4288 struct ext4_group_desc *gdp = 4289 ext4_get_group_desc(sb, g, NULL); 4290 4291 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4292 ext4_msg(sb, KERN_ERR, 4293 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4294 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4295 le16_to_cpu(gdp->bg_checksum)); 4296 err = -EINVAL; 4297 goto restore_opts; 4298 } 4299 } 4300 4301 /* 4302 * If we have an unprocessed orphan list hanging 4303 * around from a previously readonly bdev mount, 4304 * require a full umount/remount for now. 4305 */ 4306 if (es->s_last_orphan) { 4307 ext4_msg(sb, KERN_WARNING, "Couldn't " 4308 "remount RDWR because of unprocessed " 4309 "orphan inode list. Please " 4310 "umount/remount instead"); 4311 err = -EINVAL; 4312 goto restore_opts; 4313 } 4314 4315 /* 4316 * Mounting a RDONLY partition read-write, so reread 4317 * and store the current valid flag. (It may have 4318 * been changed by e2fsck since we originally mounted 4319 * the partition.) 4320 */ 4321 if (sbi->s_journal) 4322 ext4_clear_journal_err(sb, es); 4323 sbi->s_mount_state = le16_to_cpu(es->s_state); 4324 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 4325 goto restore_opts; 4326 if (!ext4_setup_super(sb, es, 0)) 4327 sb->s_flags &= ~MS_RDONLY; 4328 enable_quota = 1; 4329 } 4330 } 4331 4332 /* 4333 * Reinitialize lazy itable initialization thread based on 4334 * current settings 4335 */ 4336 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4337 ext4_unregister_li_request(sb); 4338 else { 4339 ext4_group_t first_not_zeroed; 4340 first_not_zeroed = ext4_has_uninit_itable(sb); 4341 ext4_register_li_request(sb, first_not_zeroed); 4342 } 4343 4344 ext4_setup_system_zone(sb); 4345 if (sbi->s_journal == NULL) 4346 ext4_commit_super(sb, 1); 4347 4348 #ifdef CONFIG_QUOTA 4349 /* Release old quota file names */ 4350 for (i = 0; i < MAXQUOTAS; i++) 4351 if (old_opts.s_qf_names[i] && 4352 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4353 kfree(old_opts.s_qf_names[i]); 4354 #endif 4355 unlock_super(sb); 4356 if (enable_quota) 4357 dquot_resume(sb, -1); 4358 4359 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4360 kfree(orig_data); 4361 return 0; 4362 4363 restore_opts: 4364 sb->s_flags = old_sb_flags; 4365 sbi->s_mount_opt = old_opts.s_mount_opt; 4366 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4367 sbi->s_resuid = old_opts.s_resuid; 4368 sbi->s_resgid = old_opts.s_resgid; 4369 sbi->s_commit_interval = old_opts.s_commit_interval; 4370 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4371 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4372 #ifdef CONFIG_QUOTA 4373 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4374 for (i = 0; i < MAXQUOTAS; i++) { 4375 if (sbi->s_qf_names[i] && 4376 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4377 kfree(sbi->s_qf_names[i]); 4378 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4379 } 4380 #endif 4381 unlock_super(sb); 4382 kfree(orig_data); 4383 return err; 4384 } 4385 4386 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4387 { 4388 struct super_block *sb = dentry->d_sb; 4389 struct ext4_sb_info *sbi = EXT4_SB(sb); 4390 struct ext4_super_block *es = sbi->s_es; 4391 u64 fsid; 4392 4393 if (test_opt(sb, MINIX_DF)) { 4394 sbi->s_overhead_last = 0; 4395 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4396 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4397 ext4_fsblk_t overhead = 0; 4398 4399 /* 4400 * Compute the overhead (FS structures). This is constant 4401 * for a given filesystem unless the number of block groups 4402 * changes so we cache the previous value until it does. 4403 */ 4404 4405 /* 4406 * All of the blocks before first_data_block are 4407 * overhead 4408 */ 4409 overhead = le32_to_cpu(es->s_first_data_block); 4410 4411 /* 4412 * Add the overhead attributed to the superblock and 4413 * block group descriptors. If the sparse superblocks 4414 * feature is turned on, then not all groups have this. 4415 */ 4416 for (i = 0; i < ngroups; i++) { 4417 overhead += ext4_bg_has_super(sb, i) + 4418 ext4_bg_num_gdb(sb, i); 4419 cond_resched(); 4420 } 4421 4422 /* 4423 * Every block group has an inode bitmap, a block 4424 * bitmap, and an inode table. 4425 */ 4426 overhead += ngroups * (2 + sbi->s_itb_per_group); 4427 sbi->s_overhead_last = overhead; 4428 smp_wmb(); 4429 sbi->s_blocks_last = ext4_blocks_count(es); 4430 } 4431 4432 buf->f_type = EXT4_SUPER_MAGIC; 4433 buf->f_bsize = sb->s_blocksize; 4434 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 4435 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 4436 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 4437 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4438 if (buf->f_bfree < ext4_r_blocks_count(es)) 4439 buf->f_bavail = 0; 4440 buf->f_files = le32_to_cpu(es->s_inodes_count); 4441 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4442 buf->f_namelen = EXT4_NAME_LEN; 4443 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4444 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4445 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4446 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4447 4448 return 0; 4449 } 4450 4451 /* Helper function for writing quotas on sync - we need to start transaction 4452 * before quota file is locked for write. Otherwise the are possible deadlocks: 4453 * Process 1 Process 2 4454 * ext4_create() quota_sync() 4455 * jbd2_journal_start() write_dquot() 4456 * dquot_initialize() down(dqio_mutex) 4457 * down(dqio_mutex) jbd2_journal_start() 4458 * 4459 */ 4460 4461 #ifdef CONFIG_QUOTA 4462 4463 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4464 { 4465 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4466 } 4467 4468 static int ext4_write_dquot(struct dquot *dquot) 4469 { 4470 int ret, err; 4471 handle_t *handle; 4472 struct inode *inode; 4473 4474 inode = dquot_to_inode(dquot); 4475 handle = ext4_journal_start(inode, 4476 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4477 if (IS_ERR(handle)) 4478 return PTR_ERR(handle); 4479 ret = dquot_commit(dquot); 4480 err = ext4_journal_stop(handle); 4481 if (!ret) 4482 ret = err; 4483 return ret; 4484 } 4485 4486 static int ext4_acquire_dquot(struct dquot *dquot) 4487 { 4488 int ret, err; 4489 handle_t *handle; 4490 4491 handle = ext4_journal_start(dquot_to_inode(dquot), 4492 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4493 if (IS_ERR(handle)) 4494 return PTR_ERR(handle); 4495 ret = dquot_acquire(dquot); 4496 err = ext4_journal_stop(handle); 4497 if (!ret) 4498 ret = err; 4499 return ret; 4500 } 4501 4502 static int ext4_release_dquot(struct dquot *dquot) 4503 { 4504 int ret, err; 4505 handle_t *handle; 4506 4507 handle = ext4_journal_start(dquot_to_inode(dquot), 4508 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4509 if (IS_ERR(handle)) { 4510 /* Release dquot anyway to avoid endless cycle in dqput() */ 4511 dquot_release(dquot); 4512 return PTR_ERR(handle); 4513 } 4514 ret = dquot_release(dquot); 4515 err = ext4_journal_stop(handle); 4516 if (!ret) 4517 ret = err; 4518 return ret; 4519 } 4520 4521 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4522 { 4523 /* Are we journaling quotas? */ 4524 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4525 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4526 dquot_mark_dquot_dirty(dquot); 4527 return ext4_write_dquot(dquot); 4528 } else { 4529 return dquot_mark_dquot_dirty(dquot); 4530 } 4531 } 4532 4533 static int ext4_write_info(struct super_block *sb, int type) 4534 { 4535 int ret, err; 4536 handle_t *handle; 4537 4538 /* Data block + inode block */ 4539 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4540 if (IS_ERR(handle)) 4541 return PTR_ERR(handle); 4542 ret = dquot_commit_info(sb, type); 4543 err = ext4_journal_stop(handle); 4544 if (!ret) 4545 ret = err; 4546 return ret; 4547 } 4548 4549 /* 4550 * Turn on quotas during mount time - we need to find 4551 * the quota file and such... 4552 */ 4553 static int ext4_quota_on_mount(struct super_block *sb, int type) 4554 { 4555 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4556 EXT4_SB(sb)->s_jquota_fmt, type); 4557 } 4558 4559 /* 4560 * Standard function to be called on quota_on 4561 */ 4562 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4563 struct path *path) 4564 { 4565 int err; 4566 4567 if (!test_opt(sb, QUOTA)) 4568 return -EINVAL; 4569 4570 /* Quotafile not on the same filesystem? */ 4571 if (path->mnt->mnt_sb != sb) 4572 return -EXDEV; 4573 /* Journaling quota? */ 4574 if (EXT4_SB(sb)->s_qf_names[type]) { 4575 /* Quotafile not in fs root? */ 4576 if (path->dentry->d_parent != sb->s_root) 4577 ext4_msg(sb, KERN_WARNING, 4578 "Quota file not on filesystem root. " 4579 "Journaled quota will not work"); 4580 } 4581 4582 /* 4583 * When we journal data on quota file, we have to flush journal to see 4584 * all updates to the file when we bypass pagecache... 4585 */ 4586 if (EXT4_SB(sb)->s_journal && 4587 ext4_should_journal_data(path->dentry->d_inode)) { 4588 /* 4589 * We don't need to lock updates but journal_flush() could 4590 * otherwise be livelocked... 4591 */ 4592 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4593 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4594 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4595 if (err) 4596 return err; 4597 } 4598 4599 return dquot_quota_on(sb, type, format_id, path); 4600 } 4601 4602 static int ext4_quota_off(struct super_block *sb, int type) 4603 { 4604 /* Force all delayed allocation blocks to be allocated. 4605 * Caller already holds s_umount sem */ 4606 if (test_opt(sb, DELALLOC)) 4607 sync_filesystem(sb); 4608 4609 return dquot_quota_off(sb, type); 4610 } 4611 4612 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4613 * acquiring the locks... As quota files are never truncated and quota code 4614 * itself serializes the operations (and noone else should touch the files) 4615 * we don't have to be afraid of races */ 4616 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4617 size_t len, loff_t off) 4618 { 4619 struct inode *inode = sb_dqopt(sb)->files[type]; 4620 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4621 int err = 0; 4622 int offset = off & (sb->s_blocksize - 1); 4623 int tocopy; 4624 size_t toread; 4625 struct buffer_head *bh; 4626 loff_t i_size = i_size_read(inode); 4627 4628 if (off > i_size) 4629 return 0; 4630 if (off+len > i_size) 4631 len = i_size-off; 4632 toread = len; 4633 while (toread > 0) { 4634 tocopy = sb->s_blocksize - offset < toread ? 4635 sb->s_blocksize - offset : toread; 4636 bh = ext4_bread(NULL, inode, blk, 0, &err); 4637 if (err) 4638 return err; 4639 if (!bh) /* A hole? */ 4640 memset(data, 0, tocopy); 4641 else 4642 memcpy(data, bh->b_data+offset, tocopy); 4643 brelse(bh); 4644 offset = 0; 4645 toread -= tocopy; 4646 data += tocopy; 4647 blk++; 4648 } 4649 return len; 4650 } 4651 4652 /* Write to quotafile (we know the transaction is already started and has 4653 * enough credits) */ 4654 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4655 const char *data, size_t len, loff_t off) 4656 { 4657 struct inode *inode = sb_dqopt(sb)->files[type]; 4658 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4659 int err = 0; 4660 int offset = off & (sb->s_blocksize - 1); 4661 struct buffer_head *bh; 4662 handle_t *handle = journal_current_handle(); 4663 4664 if (EXT4_SB(sb)->s_journal && !handle) { 4665 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4666 " cancelled because transaction is not started", 4667 (unsigned long long)off, (unsigned long long)len); 4668 return -EIO; 4669 } 4670 /* 4671 * Since we account only one data block in transaction credits, 4672 * then it is impossible to cross a block boundary. 4673 */ 4674 if (sb->s_blocksize - offset < len) { 4675 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4676 " cancelled because not block aligned", 4677 (unsigned long long)off, (unsigned long long)len); 4678 return -EIO; 4679 } 4680 4681 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4682 bh = ext4_bread(handle, inode, blk, 1, &err); 4683 if (!bh) 4684 goto out; 4685 err = ext4_journal_get_write_access(handle, bh); 4686 if (err) { 4687 brelse(bh); 4688 goto out; 4689 } 4690 lock_buffer(bh); 4691 memcpy(bh->b_data+offset, data, len); 4692 flush_dcache_page(bh->b_page); 4693 unlock_buffer(bh); 4694 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4695 brelse(bh); 4696 out: 4697 if (err) { 4698 mutex_unlock(&inode->i_mutex); 4699 return err; 4700 } 4701 if (inode->i_size < off + len) { 4702 i_size_write(inode, off + len); 4703 EXT4_I(inode)->i_disksize = inode->i_size; 4704 } 4705 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4706 ext4_mark_inode_dirty(handle, inode); 4707 mutex_unlock(&inode->i_mutex); 4708 return len; 4709 } 4710 4711 #endif 4712 4713 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4714 const char *dev_name, void *data) 4715 { 4716 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4717 } 4718 4719 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4720 static struct file_system_type ext2_fs_type = { 4721 .owner = THIS_MODULE, 4722 .name = "ext2", 4723 .mount = ext4_mount, 4724 .kill_sb = kill_block_super, 4725 .fs_flags = FS_REQUIRES_DEV, 4726 }; 4727 4728 static inline void register_as_ext2(void) 4729 { 4730 int err = register_filesystem(&ext2_fs_type); 4731 if (err) 4732 printk(KERN_WARNING 4733 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4734 } 4735 4736 static inline void unregister_as_ext2(void) 4737 { 4738 unregister_filesystem(&ext2_fs_type); 4739 } 4740 MODULE_ALIAS("ext2"); 4741 #else 4742 static inline void register_as_ext2(void) { } 4743 static inline void unregister_as_ext2(void) { } 4744 #endif 4745 4746 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4747 static inline void register_as_ext3(void) 4748 { 4749 int err = register_filesystem(&ext3_fs_type); 4750 if (err) 4751 printk(KERN_WARNING 4752 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4753 } 4754 4755 static inline void unregister_as_ext3(void) 4756 { 4757 unregister_filesystem(&ext3_fs_type); 4758 } 4759 MODULE_ALIAS("ext3"); 4760 #else 4761 static inline void register_as_ext3(void) { } 4762 static inline void unregister_as_ext3(void) { } 4763 #endif 4764 4765 static struct file_system_type ext4_fs_type = { 4766 .owner = THIS_MODULE, 4767 .name = "ext4", 4768 .mount = ext4_mount, 4769 .kill_sb = kill_block_super, 4770 .fs_flags = FS_REQUIRES_DEV, 4771 }; 4772 4773 static int __init ext4_init_feat_adverts(void) 4774 { 4775 struct ext4_features *ef; 4776 int ret = -ENOMEM; 4777 4778 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4779 if (!ef) 4780 goto out; 4781 4782 ef->f_kobj.kset = ext4_kset; 4783 init_completion(&ef->f_kobj_unregister); 4784 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4785 "features"); 4786 if (ret) { 4787 kfree(ef); 4788 goto out; 4789 } 4790 4791 ext4_feat = ef; 4792 ret = 0; 4793 out: 4794 return ret; 4795 } 4796 4797 static void ext4_exit_feat_adverts(void) 4798 { 4799 kobject_put(&ext4_feat->f_kobj); 4800 wait_for_completion(&ext4_feat->f_kobj_unregister); 4801 kfree(ext4_feat); 4802 } 4803 4804 /* Shared across all ext4 file systems */ 4805 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 4806 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 4807 4808 static int __init ext4_init_fs(void) 4809 { 4810 int i, err; 4811 4812 ext4_check_flag_values(); 4813 4814 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 4815 mutex_init(&ext4__aio_mutex[i]); 4816 init_waitqueue_head(&ext4__ioend_wq[i]); 4817 } 4818 4819 err = ext4_init_pageio(); 4820 if (err) 4821 return err; 4822 err = ext4_init_system_zone(); 4823 if (err) 4824 goto out7; 4825 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4826 if (!ext4_kset) 4827 goto out6; 4828 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4829 if (!ext4_proc_root) 4830 goto out5; 4831 4832 err = ext4_init_feat_adverts(); 4833 if (err) 4834 goto out4; 4835 4836 err = ext4_init_mballoc(); 4837 if (err) 4838 goto out3; 4839 4840 err = ext4_init_xattr(); 4841 if (err) 4842 goto out2; 4843 err = init_inodecache(); 4844 if (err) 4845 goto out1; 4846 register_as_ext2(); 4847 register_as_ext3(); 4848 err = register_filesystem(&ext4_fs_type); 4849 if (err) 4850 goto out; 4851 4852 ext4_li_info = NULL; 4853 mutex_init(&ext4_li_mtx); 4854 return 0; 4855 out: 4856 unregister_as_ext2(); 4857 unregister_as_ext3(); 4858 destroy_inodecache(); 4859 out1: 4860 ext4_exit_xattr(); 4861 out2: 4862 ext4_exit_mballoc(); 4863 out3: 4864 ext4_exit_feat_adverts(); 4865 out4: 4866 remove_proc_entry("fs/ext4", NULL); 4867 out5: 4868 kset_unregister(ext4_kset); 4869 out6: 4870 ext4_exit_system_zone(); 4871 out7: 4872 ext4_exit_pageio(); 4873 return err; 4874 } 4875 4876 static void __exit ext4_exit_fs(void) 4877 { 4878 ext4_destroy_lazyinit_thread(); 4879 unregister_as_ext2(); 4880 unregister_as_ext3(); 4881 unregister_filesystem(&ext4_fs_type); 4882 destroy_inodecache(); 4883 ext4_exit_xattr(); 4884 ext4_exit_mballoc(); 4885 ext4_exit_feat_adverts(); 4886 remove_proc_entry("fs/ext4", NULL); 4887 kset_unregister(ext4_kset); 4888 ext4_exit_system_zone(); 4889 ext4_exit_pageio(); 4890 } 4891 4892 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4893 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4894 MODULE_LICENSE("GPL"); 4895 module_init(ext4_init_fs) 4896 module_exit(ext4_exit_fs) 4897