1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 316 { 317 time64_t now = ktime_get_real_seconds(); 318 319 now = clamp_val(now, 0, (1ull << 40) - 1); 320 321 *lo = cpu_to_le32(lower_32_bits(now)); 322 *hi = upper_32_bits(now); 323 } 324 325 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 326 { 327 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 328 } 329 #define ext4_update_tstamp(es, tstamp) \ 330 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 331 #define ext4_get_tstamp(es, tstamp) \ 332 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 333 334 static void __save_error_info(struct super_block *sb, const char *func, 335 unsigned int line) 336 { 337 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 338 339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 340 if (bdev_read_only(sb->s_bdev)) 341 return; 342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 343 ext4_update_tstamp(es, s_last_error_time); 344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 345 es->s_last_error_line = cpu_to_le32(line); 346 if (!es->s_first_error_time) { 347 es->s_first_error_time = es->s_last_error_time; 348 es->s_first_error_time_hi = es->s_last_error_time_hi; 349 strncpy(es->s_first_error_func, func, 350 sizeof(es->s_first_error_func)); 351 es->s_first_error_line = cpu_to_le32(line); 352 es->s_first_error_ino = es->s_last_error_ino; 353 es->s_first_error_block = es->s_last_error_block; 354 } 355 /* 356 * Start the daily error reporting function if it hasn't been 357 * started already 358 */ 359 if (!es->s_error_count) 360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 361 le32_add_cpu(&es->s_error_count, 1); 362 } 363 364 static void save_error_info(struct super_block *sb, const char *func, 365 unsigned int line) 366 { 367 __save_error_info(sb, func, line); 368 ext4_commit_super(sb, 1); 369 } 370 371 /* 372 * The del_gendisk() function uninitializes the disk-specific data 373 * structures, including the bdi structure, without telling anyone 374 * else. Once this happens, any attempt to call mark_buffer_dirty() 375 * (for example, by ext4_commit_super), will cause a kernel OOPS. 376 * This is a kludge to prevent these oops until we can put in a proper 377 * hook in del_gendisk() to inform the VFS and file system layers. 378 */ 379 static int block_device_ejected(struct super_block *sb) 380 { 381 struct inode *bd_inode = sb->s_bdev->bd_inode; 382 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 383 384 return bdi->dev == NULL; 385 } 386 387 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 388 { 389 struct super_block *sb = journal->j_private; 390 struct ext4_sb_info *sbi = EXT4_SB(sb); 391 int error = is_journal_aborted(journal); 392 struct ext4_journal_cb_entry *jce; 393 394 BUG_ON(txn->t_state == T_FINISHED); 395 396 ext4_process_freed_data(sb, txn->t_tid); 397 398 spin_lock(&sbi->s_md_lock); 399 while (!list_empty(&txn->t_private_list)) { 400 jce = list_entry(txn->t_private_list.next, 401 struct ext4_journal_cb_entry, jce_list); 402 list_del_init(&jce->jce_list); 403 spin_unlock(&sbi->s_md_lock); 404 jce->jce_func(sb, jce, error); 405 spin_lock(&sbi->s_md_lock); 406 } 407 spin_unlock(&sbi->s_md_lock); 408 } 409 410 /* Deal with the reporting of failure conditions on a filesystem such as 411 * inconsistencies detected or read IO failures. 412 * 413 * On ext2, we can store the error state of the filesystem in the 414 * superblock. That is not possible on ext4, because we may have other 415 * write ordering constraints on the superblock which prevent us from 416 * writing it out straight away; and given that the journal is about to 417 * be aborted, we can't rely on the current, or future, transactions to 418 * write out the superblock safely. 419 * 420 * We'll just use the jbd2_journal_abort() error code to record an error in 421 * the journal instead. On recovery, the journal will complain about 422 * that error until we've noted it down and cleared it. 423 */ 424 425 static void ext4_handle_error(struct super_block *sb) 426 { 427 if (test_opt(sb, WARN_ON_ERROR)) 428 WARN_ON_ONCE(1); 429 430 if (sb_rdonly(sb)) 431 return; 432 433 if (!test_opt(sb, ERRORS_CONT)) { 434 journal_t *journal = EXT4_SB(sb)->s_journal; 435 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (journal) 438 jbd2_journal_abort(journal, -EIO); 439 } 440 if (test_opt(sb, ERRORS_RO)) { 441 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 442 /* 443 * Make sure updated value of ->s_mount_flags will be visible 444 * before ->s_flags update 445 */ 446 smp_wmb(); 447 sb->s_flags |= SB_RDONLY; 448 } 449 if (test_opt(sb, ERRORS_PANIC)) { 450 if (EXT4_SB(sb)->s_journal && 451 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 452 return; 453 panic("EXT4-fs (device %s): panic forced after error\n", 454 sb->s_id); 455 } 456 } 457 458 #define ext4_error_ratelimit(sb) \ 459 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 460 "EXT4-fs error") 461 462 void __ext4_error(struct super_block *sb, const char *function, 463 unsigned int line, const char *fmt, ...) 464 { 465 struct va_format vaf; 466 va_list args; 467 468 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 469 return; 470 471 trace_ext4_error(sb, function, line); 472 if (ext4_error_ratelimit(sb)) { 473 va_start(args, fmt); 474 vaf.fmt = fmt; 475 vaf.va = &args; 476 printk(KERN_CRIT 477 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 478 sb->s_id, function, line, current->comm, &vaf); 479 va_end(args); 480 } 481 save_error_info(sb, function, line); 482 ext4_handle_error(sb); 483 } 484 485 void __ext4_error_inode(struct inode *inode, const char *function, 486 unsigned int line, ext4_fsblk_t block, 487 const char *fmt, ...) 488 { 489 va_list args; 490 struct va_format vaf; 491 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 492 493 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 494 return; 495 496 trace_ext4_error(inode->i_sb, function, line); 497 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 498 es->s_last_error_block = cpu_to_le64(block); 499 if (ext4_error_ratelimit(inode->i_sb)) { 500 va_start(args, fmt); 501 vaf.fmt = fmt; 502 vaf.va = &args; 503 if (block) 504 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 505 "inode #%lu: block %llu: comm %s: %pV\n", 506 inode->i_sb->s_id, function, line, inode->i_ino, 507 block, current->comm, &vaf); 508 else 509 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 510 "inode #%lu: comm %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 void __ext4_error_file(struct file *file, const char *function, 520 unsigned int line, ext4_fsblk_t block, 521 const char *fmt, ...) 522 { 523 va_list args; 524 struct va_format vaf; 525 struct ext4_super_block *es; 526 struct inode *inode = file_inode(file); 527 char pathname[80], *path; 528 529 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 530 return; 531 532 trace_ext4_error(inode->i_sb, function, line); 533 es = EXT4_SB(inode->i_sb)->s_es; 534 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 535 if (ext4_error_ratelimit(inode->i_sb)) { 536 path = file_path(file, pathname, sizeof(pathname)); 537 if (IS_ERR(path)) 538 path = "(unknown)"; 539 va_start(args, fmt); 540 vaf.fmt = fmt; 541 vaf.va = &args; 542 if (block) 543 printk(KERN_CRIT 544 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 545 "block %llu: comm %s: path %s: %pV\n", 546 inode->i_sb->s_id, function, line, inode->i_ino, 547 block, current->comm, path, &vaf); 548 else 549 printk(KERN_CRIT 550 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 551 "comm %s: path %s: %pV\n", 552 inode->i_sb->s_id, function, line, inode->i_ino, 553 current->comm, path, &vaf); 554 va_end(args); 555 } 556 save_error_info(inode->i_sb, function, line); 557 ext4_handle_error(inode->i_sb); 558 } 559 560 const char *ext4_decode_error(struct super_block *sb, int errno, 561 char nbuf[16]) 562 { 563 char *errstr = NULL; 564 565 switch (errno) { 566 case -EFSCORRUPTED: 567 errstr = "Corrupt filesystem"; 568 break; 569 case -EFSBADCRC: 570 errstr = "Filesystem failed CRC"; 571 break; 572 case -EIO: 573 errstr = "IO failure"; 574 break; 575 case -ENOMEM: 576 errstr = "Out of memory"; 577 break; 578 case -EROFS: 579 if (!sb || (EXT4_SB(sb)->s_journal && 580 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 581 errstr = "Journal has aborted"; 582 else 583 errstr = "Readonly filesystem"; 584 break; 585 default: 586 /* If the caller passed in an extra buffer for unknown 587 * errors, textualise them now. Else we just return 588 * NULL. */ 589 if (nbuf) { 590 /* Check for truncated error codes... */ 591 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 592 errstr = nbuf; 593 } 594 break; 595 } 596 597 return errstr; 598 } 599 600 /* __ext4_std_error decodes expected errors from journaling functions 601 * automatically and invokes the appropriate error response. */ 602 603 void __ext4_std_error(struct super_block *sb, const char *function, 604 unsigned int line, int errno) 605 { 606 char nbuf[16]; 607 const char *errstr; 608 609 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 610 return; 611 612 /* Special case: if the error is EROFS, and we're not already 613 * inside a transaction, then there's really no point in logging 614 * an error. */ 615 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 616 return; 617 618 if (ext4_error_ratelimit(sb)) { 619 errstr = ext4_decode_error(sb, errno, nbuf); 620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 621 sb->s_id, function, line, errstr); 622 } 623 624 save_error_info(sb, function, line); 625 ext4_handle_error(sb); 626 } 627 628 /* 629 * ext4_abort is a much stronger failure handler than ext4_error. The 630 * abort function may be used to deal with unrecoverable failures such 631 * as journal IO errors or ENOMEM at a critical moment in log management. 632 * 633 * We unconditionally force the filesystem into an ABORT|READONLY state, 634 * unless the error response on the fs has been set to panic in which 635 * case we take the easy way out and panic immediately. 636 */ 637 638 void __ext4_abort(struct super_block *sb, const char *function, 639 unsigned int line, const char *fmt, ...) 640 { 641 struct va_format vaf; 642 va_list args; 643 644 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 645 return; 646 647 save_error_info(sb, function, line); 648 va_start(args, fmt); 649 vaf.fmt = fmt; 650 vaf.va = &args; 651 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 652 sb->s_id, function, line, &vaf); 653 va_end(args); 654 655 if (sb_rdonly(sb) == 0) { 656 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 658 /* 659 * Make sure updated value of ->s_mount_flags will be visible 660 * before ->s_flags update 661 */ 662 smp_wmb(); 663 sb->s_flags |= SB_RDONLY; 664 if (EXT4_SB(sb)->s_journal) 665 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 666 save_error_info(sb, function, line); 667 } 668 if (test_opt(sb, ERRORS_PANIC)) { 669 if (EXT4_SB(sb)->s_journal && 670 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 671 return; 672 panic("EXT4-fs panic from previous error\n"); 673 } 674 } 675 676 void __ext4_msg(struct super_block *sb, 677 const char *prefix, const char *fmt, ...) 678 { 679 struct va_format vaf; 680 va_list args; 681 682 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 683 return; 684 685 va_start(args, fmt); 686 vaf.fmt = fmt; 687 vaf.va = &args; 688 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 689 va_end(args); 690 } 691 692 #define ext4_warning_ratelimit(sb) \ 693 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 694 "EXT4-fs warning") 695 696 void __ext4_warning(struct super_block *sb, const char *function, 697 unsigned int line, const char *fmt, ...) 698 { 699 struct va_format vaf; 700 va_list args; 701 702 if (!ext4_warning_ratelimit(sb)) 703 return; 704 705 va_start(args, fmt); 706 vaf.fmt = fmt; 707 vaf.va = &args; 708 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 709 sb->s_id, function, line, &vaf); 710 va_end(args); 711 } 712 713 void __ext4_warning_inode(const struct inode *inode, const char *function, 714 unsigned int line, const char *fmt, ...) 715 { 716 struct va_format vaf; 717 va_list args; 718 719 if (!ext4_warning_ratelimit(inode->i_sb)) 720 return; 721 722 va_start(args, fmt); 723 vaf.fmt = fmt; 724 vaf.va = &args; 725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 726 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 727 function, line, inode->i_ino, current->comm, &vaf); 728 va_end(args); 729 } 730 731 void __ext4_grp_locked_error(const char *function, unsigned int line, 732 struct super_block *sb, ext4_group_t grp, 733 unsigned long ino, ext4_fsblk_t block, 734 const char *fmt, ...) 735 __releases(bitlock) 736 __acquires(bitlock) 737 { 738 struct va_format vaf; 739 va_list args; 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 743 return; 744 745 trace_ext4_error(sb, function, line); 746 es->s_last_error_ino = cpu_to_le32(ino); 747 es->s_last_error_block = cpu_to_le64(block); 748 __save_error_info(sb, function, line); 749 750 if (ext4_error_ratelimit(sb)) { 751 va_start(args, fmt); 752 vaf.fmt = fmt; 753 vaf.va = &args; 754 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 755 sb->s_id, function, line, grp); 756 if (ino) 757 printk(KERN_CONT "inode %lu: ", ino); 758 if (block) 759 printk(KERN_CONT "block %llu:", 760 (unsigned long long) block); 761 printk(KERN_CONT "%pV\n", &vaf); 762 va_end(args); 763 } 764 765 if (test_opt(sb, WARN_ON_ERROR)) 766 WARN_ON_ONCE(1); 767 768 if (test_opt(sb, ERRORS_CONT)) { 769 ext4_commit_super(sb, 0); 770 return; 771 } 772 773 ext4_unlock_group(sb, grp); 774 ext4_commit_super(sb, 1); 775 ext4_handle_error(sb); 776 /* 777 * We only get here in the ERRORS_RO case; relocking the group 778 * may be dangerous, but nothing bad will happen since the 779 * filesystem will have already been marked read/only and the 780 * journal has been aborted. We return 1 as a hint to callers 781 * who might what to use the return value from 782 * ext4_grp_locked_error() to distinguish between the 783 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 784 * aggressively from the ext4 function in question, with a 785 * more appropriate error code. 786 */ 787 ext4_lock_group(sb, grp); 788 return; 789 } 790 791 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 792 ext4_group_t group, 793 unsigned int flags) 794 { 795 struct ext4_sb_info *sbi = EXT4_SB(sb); 796 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 797 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 798 int ret; 799 800 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 801 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 802 &grp->bb_state); 803 if (!ret) 804 percpu_counter_sub(&sbi->s_freeclusters_counter, 805 grp->bb_free); 806 } 807 808 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 809 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 810 &grp->bb_state); 811 if (!ret && gdp) { 812 int count; 813 814 count = ext4_free_inodes_count(sb, gdp); 815 percpu_counter_sub(&sbi->s_freeinodes_counter, 816 count); 817 } 818 } 819 } 820 821 void ext4_update_dynamic_rev(struct super_block *sb) 822 { 823 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 824 825 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 826 return; 827 828 ext4_warning(sb, 829 "updating to rev %d because of new feature flag, " 830 "running e2fsck is recommended", 831 EXT4_DYNAMIC_REV); 832 833 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 834 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 835 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 836 /* leave es->s_feature_*compat flags alone */ 837 /* es->s_uuid will be set by e2fsck if empty */ 838 839 /* 840 * The rest of the superblock fields should be zero, and if not it 841 * means they are likely already in use, so leave them alone. We 842 * can leave it up to e2fsck to clean up any inconsistencies there. 843 */ 844 } 845 846 /* 847 * Open the external journal device 848 */ 849 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 850 { 851 struct block_device *bdev; 852 char b[BDEVNAME_SIZE]; 853 854 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 855 if (IS_ERR(bdev)) 856 goto fail; 857 return bdev; 858 859 fail: 860 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 861 __bdevname(dev, b), PTR_ERR(bdev)); 862 return NULL; 863 } 864 865 /* 866 * Release the journal device 867 */ 868 static void ext4_blkdev_put(struct block_device *bdev) 869 { 870 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 871 } 872 873 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 874 { 875 struct block_device *bdev; 876 bdev = sbi->journal_bdev; 877 if (bdev) { 878 ext4_blkdev_put(bdev); 879 sbi->journal_bdev = NULL; 880 } 881 } 882 883 static inline struct inode *orphan_list_entry(struct list_head *l) 884 { 885 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 886 } 887 888 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 889 { 890 struct list_head *l; 891 892 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 893 le32_to_cpu(sbi->s_es->s_last_orphan)); 894 895 printk(KERN_ERR "sb_info orphan list:\n"); 896 list_for_each(l, &sbi->s_orphan) { 897 struct inode *inode = orphan_list_entry(l); 898 printk(KERN_ERR " " 899 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 900 inode->i_sb->s_id, inode->i_ino, inode, 901 inode->i_mode, inode->i_nlink, 902 NEXT_ORPHAN(inode)); 903 } 904 } 905 906 #ifdef CONFIG_QUOTA 907 static int ext4_quota_off(struct super_block *sb, int type); 908 909 static inline void ext4_quota_off_umount(struct super_block *sb) 910 { 911 int type; 912 913 /* Use our quota_off function to clear inode flags etc. */ 914 for (type = 0; type < EXT4_MAXQUOTAS; type++) 915 ext4_quota_off(sb, type); 916 } 917 #else 918 static inline void ext4_quota_off_umount(struct super_block *sb) 919 { 920 } 921 #endif 922 923 static void ext4_put_super(struct super_block *sb) 924 { 925 struct ext4_sb_info *sbi = EXT4_SB(sb); 926 struct ext4_super_block *es = sbi->s_es; 927 int aborted = 0; 928 int i, err; 929 930 ext4_unregister_li_request(sb); 931 ext4_quota_off_umount(sb); 932 933 destroy_workqueue(sbi->rsv_conversion_wq); 934 935 if (sbi->s_journal) { 936 aborted = is_journal_aborted(sbi->s_journal); 937 err = jbd2_journal_destroy(sbi->s_journal); 938 sbi->s_journal = NULL; 939 if ((err < 0) && !aborted) 940 ext4_abort(sb, "Couldn't clean up the journal"); 941 } 942 943 ext4_unregister_sysfs(sb); 944 ext4_es_unregister_shrinker(sbi); 945 del_timer_sync(&sbi->s_err_report); 946 ext4_release_system_zone(sb); 947 ext4_mb_release(sb); 948 ext4_ext_release(sb); 949 950 if (!sb_rdonly(sb) && !aborted) { 951 ext4_clear_feature_journal_needs_recovery(sb); 952 es->s_state = cpu_to_le16(sbi->s_mount_state); 953 } 954 if (!sb_rdonly(sb)) 955 ext4_commit_super(sb, 1); 956 957 for (i = 0; i < sbi->s_gdb_count; i++) 958 brelse(sbi->s_group_desc[i]); 959 kvfree(sbi->s_group_desc); 960 kvfree(sbi->s_flex_groups); 961 percpu_counter_destroy(&sbi->s_freeclusters_counter); 962 percpu_counter_destroy(&sbi->s_freeinodes_counter); 963 percpu_counter_destroy(&sbi->s_dirs_counter); 964 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 965 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 966 #ifdef CONFIG_QUOTA 967 for (i = 0; i < EXT4_MAXQUOTAS; i++) 968 kfree(sbi->s_qf_names[i]); 969 #endif 970 971 /* Debugging code just in case the in-memory inode orphan list 972 * isn't empty. The on-disk one can be non-empty if we've 973 * detected an error and taken the fs readonly, but the 974 * in-memory list had better be clean by this point. */ 975 if (!list_empty(&sbi->s_orphan)) 976 dump_orphan_list(sb, sbi); 977 J_ASSERT(list_empty(&sbi->s_orphan)); 978 979 sync_blockdev(sb->s_bdev); 980 invalidate_bdev(sb->s_bdev); 981 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 982 /* 983 * Invalidate the journal device's buffers. We don't want them 984 * floating about in memory - the physical journal device may 985 * hotswapped, and it breaks the `ro-after' testing code. 986 */ 987 sync_blockdev(sbi->journal_bdev); 988 invalidate_bdev(sbi->journal_bdev); 989 ext4_blkdev_remove(sbi); 990 } 991 if (sbi->s_ea_inode_cache) { 992 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 993 sbi->s_ea_inode_cache = NULL; 994 } 995 if (sbi->s_ea_block_cache) { 996 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 997 sbi->s_ea_block_cache = NULL; 998 } 999 if (sbi->s_mmp_tsk) 1000 kthread_stop(sbi->s_mmp_tsk); 1001 brelse(sbi->s_sbh); 1002 sb->s_fs_info = NULL; 1003 /* 1004 * Now that we are completely done shutting down the 1005 * superblock, we need to actually destroy the kobject. 1006 */ 1007 kobject_put(&sbi->s_kobj); 1008 wait_for_completion(&sbi->s_kobj_unregister); 1009 if (sbi->s_chksum_driver) 1010 crypto_free_shash(sbi->s_chksum_driver); 1011 kfree(sbi->s_blockgroup_lock); 1012 fs_put_dax(sbi->s_daxdev); 1013 kfree(sbi); 1014 } 1015 1016 static struct kmem_cache *ext4_inode_cachep; 1017 1018 /* 1019 * Called inside transaction, so use GFP_NOFS 1020 */ 1021 static struct inode *ext4_alloc_inode(struct super_block *sb) 1022 { 1023 struct ext4_inode_info *ei; 1024 1025 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1026 if (!ei) 1027 return NULL; 1028 1029 inode_set_iversion(&ei->vfs_inode, 1); 1030 spin_lock_init(&ei->i_raw_lock); 1031 INIT_LIST_HEAD(&ei->i_prealloc_list); 1032 spin_lock_init(&ei->i_prealloc_lock); 1033 ext4_es_init_tree(&ei->i_es_tree); 1034 rwlock_init(&ei->i_es_lock); 1035 INIT_LIST_HEAD(&ei->i_es_list); 1036 ei->i_es_all_nr = 0; 1037 ei->i_es_shk_nr = 0; 1038 ei->i_es_shrink_lblk = 0; 1039 ei->i_reserved_data_blocks = 0; 1040 ei->i_da_metadata_calc_len = 0; 1041 ei->i_da_metadata_calc_last_lblock = 0; 1042 spin_lock_init(&(ei->i_block_reservation_lock)); 1043 #ifdef CONFIG_QUOTA 1044 ei->i_reserved_quota = 0; 1045 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1046 #endif 1047 ei->jinode = NULL; 1048 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1049 spin_lock_init(&ei->i_completed_io_lock); 1050 ei->i_sync_tid = 0; 1051 ei->i_datasync_tid = 0; 1052 atomic_set(&ei->i_unwritten, 0); 1053 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1054 return &ei->vfs_inode; 1055 } 1056 1057 static int ext4_drop_inode(struct inode *inode) 1058 { 1059 int drop = generic_drop_inode(inode); 1060 1061 trace_ext4_drop_inode(inode, drop); 1062 return drop; 1063 } 1064 1065 static void ext4_i_callback(struct rcu_head *head) 1066 { 1067 struct inode *inode = container_of(head, struct inode, i_rcu); 1068 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1069 } 1070 1071 static void ext4_destroy_inode(struct inode *inode) 1072 { 1073 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1074 ext4_msg(inode->i_sb, KERN_ERR, 1075 "Inode %lu (%p): orphan list check failed!", 1076 inode->i_ino, EXT4_I(inode)); 1077 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1078 EXT4_I(inode), sizeof(struct ext4_inode_info), 1079 true); 1080 dump_stack(); 1081 } 1082 call_rcu(&inode->i_rcu, ext4_i_callback); 1083 } 1084 1085 static void init_once(void *foo) 1086 { 1087 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1088 1089 INIT_LIST_HEAD(&ei->i_orphan); 1090 init_rwsem(&ei->xattr_sem); 1091 init_rwsem(&ei->i_data_sem); 1092 init_rwsem(&ei->i_mmap_sem); 1093 inode_init_once(&ei->vfs_inode); 1094 } 1095 1096 static int __init init_inodecache(void) 1097 { 1098 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1099 sizeof(struct ext4_inode_info), 0, 1100 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1101 SLAB_ACCOUNT), 1102 offsetof(struct ext4_inode_info, i_data), 1103 sizeof_field(struct ext4_inode_info, i_data), 1104 init_once); 1105 if (ext4_inode_cachep == NULL) 1106 return -ENOMEM; 1107 return 0; 1108 } 1109 1110 static void destroy_inodecache(void) 1111 { 1112 /* 1113 * Make sure all delayed rcu free inodes are flushed before we 1114 * destroy cache. 1115 */ 1116 rcu_barrier(); 1117 kmem_cache_destroy(ext4_inode_cachep); 1118 } 1119 1120 void ext4_clear_inode(struct inode *inode) 1121 { 1122 invalidate_inode_buffers(inode); 1123 clear_inode(inode); 1124 dquot_drop(inode); 1125 ext4_discard_preallocations(inode); 1126 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1127 if (EXT4_I(inode)->jinode) { 1128 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1129 EXT4_I(inode)->jinode); 1130 jbd2_free_inode(EXT4_I(inode)->jinode); 1131 EXT4_I(inode)->jinode = NULL; 1132 } 1133 fscrypt_put_encryption_info(inode); 1134 } 1135 1136 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1137 u64 ino, u32 generation) 1138 { 1139 struct inode *inode; 1140 1141 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1142 return ERR_PTR(-ESTALE); 1143 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1144 return ERR_PTR(-ESTALE); 1145 1146 /* iget isn't really right if the inode is currently unallocated!! 1147 * 1148 * ext4_read_inode will return a bad_inode if the inode had been 1149 * deleted, so we should be safe. 1150 * 1151 * Currently we don't know the generation for parent directory, so 1152 * a generation of 0 means "accept any" 1153 */ 1154 inode = ext4_iget_normal(sb, ino); 1155 if (IS_ERR(inode)) 1156 return ERR_CAST(inode); 1157 if (generation && inode->i_generation != generation) { 1158 iput(inode); 1159 return ERR_PTR(-ESTALE); 1160 } 1161 1162 return inode; 1163 } 1164 1165 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1166 int fh_len, int fh_type) 1167 { 1168 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1169 ext4_nfs_get_inode); 1170 } 1171 1172 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1173 int fh_len, int fh_type) 1174 { 1175 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1176 ext4_nfs_get_inode); 1177 } 1178 1179 /* 1180 * Try to release metadata pages (indirect blocks, directories) which are 1181 * mapped via the block device. Since these pages could have journal heads 1182 * which would prevent try_to_free_buffers() from freeing them, we must use 1183 * jbd2 layer's try_to_free_buffers() function to release them. 1184 */ 1185 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1186 gfp_t wait) 1187 { 1188 journal_t *journal = EXT4_SB(sb)->s_journal; 1189 1190 WARN_ON(PageChecked(page)); 1191 if (!page_has_buffers(page)) 1192 return 0; 1193 if (journal) 1194 return jbd2_journal_try_to_free_buffers(journal, page, 1195 wait & ~__GFP_DIRECT_RECLAIM); 1196 return try_to_free_buffers(page); 1197 } 1198 1199 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1200 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1201 { 1202 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1203 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1204 } 1205 1206 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1207 void *fs_data) 1208 { 1209 handle_t *handle = fs_data; 1210 int res, res2, credits, retries = 0; 1211 1212 /* 1213 * Encrypting the root directory is not allowed because e2fsck expects 1214 * lost+found to exist and be unencrypted, and encrypting the root 1215 * directory would imply encrypting the lost+found directory as well as 1216 * the filename "lost+found" itself. 1217 */ 1218 if (inode->i_ino == EXT4_ROOT_INO) 1219 return -EPERM; 1220 1221 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1222 return -EINVAL; 1223 1224 res = ext4_convert_inline_data(inode); 1225 if (res) 1226 return res; 1227 1228 /* 1229 * If a journal handle was specified, then the encryption context is 1230 * being set on a new inode via inheritance and is part of a larger 1231 * transaction to create the inode. Otherwise the encryption context is 1232 * being set on an existing inode in its own transaction. Only in the 1233 * latter case should the "retry on ENOSPC" logic be used. 1234 */ 1235 1236 if (handle) { 1237 res = ext4_xattr_set_handle(handle, inode, 1238 EXT4_XATTR_INDEX_ENCRYPTION, 1239 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1240 ctx, len, 0); 1241 if (!res) { 1242 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1243 ext4_clear_inode_state(inode, 1244 EXT4_STATE_MAY_INLINE_DATA); 1245 /* 1246 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1247 * S_DAX may be disabled 1248 */ 1249 ext4_set_inode_flags(inode); 1250 } 1251 return res; 1252 } 1253 1254 res = dquot_initialize(inode); 1255 if (res) 1256 return res; 1257 retry: 1258 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1259 &credits); 1260 if (res) 1261 return res; 1262 1263 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1264 if (IS_ERR(handle)) 1265 return PTR_ERR(handle); 1266 1267 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1268 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1269 ctx, len, 0); 1270 if (!res) { 1271 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1272 /* 1273 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1274 * S_DAX may be disabled 1275 */ 1276 ext4_set_inode_flags(inode); 1277 res = ext4_mark_inode_dirty(handle, inode); 1278 if (res) 1279 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1280 } 1281 res2 = ext4_journal_stop(handle); 1282 1283 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1284 goto retry; 1285 if (!res) 1286 res = res2; 1287 return res; 1288 } 1289 1290 static bool ext4_dummy_context(struct inode *inode) 1291 { 1292 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1293 } 1294 1295 static const struct fscrypt_operations ext4_cryptops = { 1296 .key_prefix = "ext4:", 1297 .get_context = ext4_get_context, 1298 .set_context = ext4_set_context, 1299 .dummy_context = ext4_dummy_context, 1300 .empty_dir = ext4_empty_dir, 1301 .max_namelen = EXT4_NAME_LEN, 1302 }; 1303 #endif 1304 1305 #ifdef CONFIG_QUOTA 1306 static const char * const quotatypes[] = INITQFNAMES; 1307 #define QTYPE2NAME(t) (quotatypes[t]) 1308 1309 static int ext4_write_dquot(struct dquot *dquot); 1310 static int ext4_acquire_dquot(struct dquot *dquot); 1311 static int ext4_release_dquot(struct dquot *dquot); 1312 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1313 static int ext4_write_info(struct super_block *sb, int type); 1314 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1315 const struct path *path); 1316 static int ext4_quota_on_mount(struct super_block *sb, int type); 1317 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1318 size_t len, loff_t off); 1319 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1320 const char *data, size_t len, loff_t off); 1321 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1322 unsigned int flags); 1323 static int ext4_enable_quotas(struct super_block *sb); 1324 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1325 1326 static struct dquot **ext4_get_dquots(struct inode *inode) 1327 { 1328 return EXT4_I(inode)->i_dquot; 1329 } 1330 1331 static const struct dquot_operations ext4_quota_operations = { 1332 .get_reserved_space = ext4_get_reserved_space, 1333 .write_dquot = ext4_write_dquot, 1334 .acquire_dquot = ext4_acquire_dquot, 1335 .release_dquot = ext4_release_dquot, 1336 .mark_dirty = ext4_mark_dquot_dirty, 1337 .write_info = ext4_write_info, 1338 .alloc_dquot = dquot_alloc, 1339 .destroy_dquot = dquot_destroy, 1340 .get_projid = ext4_get_projid, 1341 .get_inode_usage = ext4_get_inode_usage, 1342 .get_next_id = ext4_get_next_id, 1343 }; 1344 1345 static const struct quotactl_ops ext4_qctl_operations = { 1346 .quota_on = ext4_quota_on, 1347 .quota_off = ext4_quota_off, 1348 .quota_sync = dquot_quota_sync, 1349 .get_state = dquot_get_state, 1350 .set_info = dquot_set_dqinfo, 1351 .get_dqblk = dquot_get_dqblk, 1352 .set_dqblk = dquot_set_dqblk, 1353 .get_nextdqblk = dquot_get_next_dqblk, 1354 }; 1355 #endif 1356 1357 static const struct super_operations ext4_sops = { 1358 .alloc_inode = ext4_alloc_inode, 1359 .destroy_inode = ext4_destroy_inode, 1360 .write_inode = ext4_write_inode, 1361 .dirty_inode = ext4_dirty_inode, 1362 .drop_inode = ext4_drop_inode, 1363 .evict_inode = ext4_evict_inode, 1364 .put_super = ext4_put_super, 1365 .sync_fs = ext4_sync_fs, 1366 .freeze_fs = ext4_freeze, 1367 .unfreeze_fs = ext4_unfreeze, 1368 .statfs = ext4_statfs, 1369 .remount_fs = ext4_remount, 1370 .show_options = ext4_show_options, 1371 #ifdef CONFIG_QUOTA 1372 .quota_read = ext4_quota_read, 1373 .quota_write = ext4_quota_write, 1374 .get_dquots = ext4_get_dquots, 1375 #endif 1376 .bdev_try_to_free_page = bdev_try_to_free_page, 1377 }; 1378 1379 static const struct export_operations ext4_export_ops = { 1380 .fh_to_dentry = ext4_fh_to_dentry, 1381 .fh_to_parent = ext4_fh_to_parent, 1382 .get_parent = ext4_get_parent, 1383 }; 1384 1385 enum { 1386 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1387 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1388 Opt_nouid32, Opt_debug, Opt_removed, 1389 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1390 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1391 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1392 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1393 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1394 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1395 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1396 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1397 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1398 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1399 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1400 Opt_nowarn_on_error, Opt_mblk_io_submit, 1401 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1402 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1403 Opt_inode_readahead_blks, Opt_journal_ioprio, 1404 Opt_dioread_nolock, Opt_dioread_lock, 1405 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1406 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1407 }; 1408 1409 static const match_table_t tokens = { 1410 {Opt_bsd_df, "bsddf"}, 1411 {Opt_minix_df, "minixdf"}, 1412 {Opt_grpid, "grpid"}, 1413 {Opt_grpid, "bsdgroups"}, 1414 {Opt_nogrpid, "nogrpid"}, 1415 {Opt_nogrpid, "sysvgroups"}, 1416 {Opt_resgid, "resgid=%u"}, 1417 {Opt_resuid, "resuid=%u"}, 1418 {Opt_sb, "sb=%u"}, 1419 {Opt_err_cont, "errors=continue"}, 1420 {Opt_err_panic, "errors=panic"}, 1421 {Opt_err_ro, "errors=remount-ro"}, 1422 {Opt_nouid32, "nouid32"}, 1423 {Opt_debug, "debug"}, 1424 {Opt_removed, "oldalloc"}, 1425 {Opt_removed, "orlov"}, 1426 {Opt_user_xattr, "user_xattr"}, 1427 {Opt_nouser_xattr, "nouser_xattr"}, 1428 {Opt_acl, "acl"}, 1429 {Opt_noacl, "noacl"}, 1430 {Opt_noload, "norecovery"}, 1431 {Opt_noload, "noload"}, 1432 {Opt_removed, "nobh"}, 1433 {Opt_removed, "bh"}, 1434 {Opt_commit, "commit=%u"}, 1435 {Opt_min_batch_time, "min_batch_time=%u"}, 1436 {Opt_max_batch_time, "max_batch_time=%u"}, 1437 {Opt_journal_dev, "journal_dev=%u"}, 1438 {Opt_journal_path, "journal_path=%s"}, 1439 {Opt_journal_checksum, "journal_checksum"}, 1440 {Opt_nojournal_checksum, "nojournal_checksum"}, 1441 {Opt_journal_async_commit, "journal_async_commit"}, 1442 {Opt_abort, "abort"}, 1443 {Opt_data_journal, "data=journal"}, 1444 {Opt_data_ordered, "data=ordered"}, 1445 {Opt_data_writeback, "data=writeback"}, 1446 {Opt_data_err_abort, "data_err=abort"}, 1447 {Opt_data_err_ignore, "data_err=ignore"}, 1448 {Opt_offusrjquota, "usrjquota="}, 1449 {Opt_usrjquota, "usrjquota=%s"}, 1450 {Opt_offgrpjquota, "grpjquota="}, 1451 {Opt_grpjquota, "grpjquota=%s"}, 1452 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1453 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1454 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1455 {Opt_grpquota, "grpquota"}, 1456 {Opt_noquota, "noquota"}, 1457 {Opt_quota, "quota"}, 1458 {Opt_usrquota, "usrquota"}, 1459 {Opt_prjquota, "prjquota"}, 1460 {Opt_barrier, "barrier=%u"}, 1461 {Opt_barrier, "barrier"}, 1462 {Opt_nobarrier, "nobarrier"}, 1463 {Opt_i_version, "i_version"}, 1464 {Opt_dax, "dax"}, 1465 {Opt_stripe, "stripe=%u"}, 1466 {Opt_delalloc, "delalloc"}, 1467 {Opt_warn_on_error, "warn_on_error"}, 1468 {Opt_nowarn_on_error, "nowarn_on_error"}, 1469 {Opt_lazytime, "lazytime"}, 1470 {Opt_nolazytime, "nolazytime"}, 1471 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1472 {Opt_nodelalloc, "nodelalloc"}, 1473 {Opt_removed, "mblk_io_submit"}, 1474 {Opt_removed, "nomblk_io_submit"}, 1475 {Opt_block_validity, "block_validity"}, 1476 {Opt_noblock_validity, "noblock_validity"}, 1477 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1478 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1479 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1480 {Opt_auto_da_alloc, "auto_da_alloc"}, 1481 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1482 {Opt_dioread_nolock, "dioread_nolock"}, 1483 {Opt_dioread_lock, "dioread_lock"}, 1484 {Opt_discard, "discard"}, 1485 {Opt_nodiscard, "nodiscard"}, 1486 {Opt_init_itable, "init_itable=%u"}, 1487 {Opt_init_itable, "init_itable"}, 1488 {Opt_noinit_itable, "noinit_itable"}, 1489 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1490 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1491 {Opt_nombcache, "nombcache"}, 1492 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1493 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1494 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1495 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1496 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1497 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1498 {Opt_err, NULL}, 1499 }; 1500 1501 static ext4_fsblk_t get_sb_block(void **data) 1502 { 1503 ext4_fsblk_t sb_block; 1504 char *options = (char *) *data; 1505 1506 if (!options || strncmp(options, "sb=", 3) != 0) 1507 return 1; /* Default location */ 1508 1509 options += 3; 1510 /* TODO: use simple_strtoll with >32bit ext4 */ 1511 sb_block = simple_strtoul(options, &options, 0); 1512 if (*options && *options != ',') { 1513 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1514 (char *) *data); 1515 return 1; 1516 } 1517 if (*options == ',') 1518 options++; 1519 *data = (void *) options; 1520 1521 return sb_block; 1522 } 1523 1524 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1525 static const char deprecated_msg[] = 1526 "Mount option \"%s\" will be removed by %s\n" 1527 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1528 1529 #ifdef CONFIG_QUOTA 1530 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1531 { 1532 struct ext4_sb_info *sbi = EXT4_SB(sb); 1533 char *qname; 1534 int ret = -1; 1535 1536 if (sb_any_quota_loaded(sb) && 1537 !sbi->s_qf_names[qtype]) { 1538 ext4_msg(sb, KERN_ERR, 1539 "Cannot change journaled " 1540 "quota options when quota turned on"); 1541 return -1; 1542 } 1543 if (ext4_has_feature_quota(sb)) { 1544 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1545 "ignored when QUOTA feature is enabled"); 1546 return 1; 1547 } 1548 qname = match_strdup(args); 1549 if (!qname) { 1550 ext4_msg(sb, KERN_ERR, 1551 "Not enough memory for storing quotafile name"); 1552 return -1; 1553 } 1554 if (sbi->s_qf_names[qtype]) { 1555 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1556 ret = 1; 1557 else 1558 ext4_msg(sb, KERN_ERR, 1559 "%s quota file already specified", 1560 QTYPE2NAME(qtype)); 1561 goto errout; 1562 } 1563 if (strchr(qname, '/')) { 1564 ext4_msg(sb, KERN_ERR, 1565 "quotafile must be on filesystem root"); 1566 goto errout; 1567 } 1568 sbi->s_qf_names[qtype] = qname; 1569 set_opt(sb, QUOTA); 1570 return 1; 1571 errout: 1572 kfree(qname); 1573 return ret; 1574 } 1575 1576 static int clear_qf_name(struct super_block *sb, int qtype) 1577 { 1578 1579 struct ext4_sb_info *sbi = EXT4_SB(sb); 1580 1581 if (sb_any_quota_loaded(sb) && 1582 sbi->s_qf_names[qtype]) { 1583 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1584 " when quota turned on"); 1585 return -1; 1586 } 1587 kfree(sbi->s_qf_names[qtype]); 1588 sbi->s_qf_names[qtype] = NULL; 1589 return 1; 1590 } 1591 #endif 1592 1593 #define MOPT_SET 0x0001 1594 #define MOPT_CLEAR 0x0002 1595 #define MOPT_NOSUPPORT 0x0004 1596 #define MOPT_EXPLICIT 0x0008 1597 #define MOPT_CLEAR_ERR 0x0010 1598 #define MOPT_GTE0 0x0020 1599 #ifdef CONFIG_QUOTA 1600 #define MOPT_Q 0 1601 #define MOPT_QFMT 0x0040 1602 #else 1603 #define MOPT_Q MOPT_NOSUPPORT 1604 #define MOPT_QFMT MOPT_NOSUPPORT 1605 #endif 1606 #define MOPT_DATAJ 0x0080 1607 #define MOPT_NO_EXT2 0x0100 1608 #define MOPT_NO_EXT3 0x0200 1609 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1610 #define MOPT_STRING 0x0400 1611 1612 static const struct mount_opts { 1613 int token; 1614 int mount_opt; 1615 int flags; 1616 } ext4_mount_opts[] = { 1617 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1618 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1619 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1620 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1621 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1622 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1623 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1624 MOPT_EXT4_ONLY | MOPT_SET}, 1625 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1626 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1627 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1628 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1629 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1630 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1631 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1632 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1633 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1634 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1635 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1636 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1637 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1638 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1639 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1640 EXT4_MOUNT_JOURNAL_CHECKSUM), 1641 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1642 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1643 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1644 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1645 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1646 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1647 MOPT_NO_EXT2}, 1648 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1649 MOPT_NO_EXT2}, 1650 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1651 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1652 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1653 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1654 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1655 {Opt_commit, 0, MOPT_GTE0}, 1656 {Opt_max_batch_time, 0, MOPT_GTE0}, 1657 {Opt_min_batch_time, 0, MOPT_GTE0}, 1658 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1659 {Opt_init_itable, 0, MOPT_GTE0}, 1660 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1661 {Opt_stripe, 0, MOPT_GTE0}, 1662 {Opt_resuid, 0, MOPT_GTE0}, 1663 {Opt_resgid, 0, MOPT_GTE0}, 1664 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1665 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1666 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1667 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1668 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1669 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1670 MOPT_NO_EXT2 | MOPT_DATAJ}, 1671 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1672 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1673 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1674 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1675 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1676 #else 1677 {Opt_acl, 0, MOPT_NOSUPPORT}, 1678 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1679 #endif 1680 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1681 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1682 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1683 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1684 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1685 MOPT_SET | MOPT_Q}, 1686 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1687 MOPT_SET | MOPT_Q}, 1688 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1689 MOPT_SET | MOPT_Q}, 1690 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1691 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1692 MOPT_CLEAR | MOPT_Q}, 1693 {Opt_usrjquota, 0, MOPT_Q}, 1694 {Opt_grpjquota, 0, MOPT_Q}, 1695 {Opt_offusrjquota, 0, MOPT_Q}, 1696 {Opt_offgrpjquota, 0, MOPT_Q}, 1697 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1698 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1699 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1700 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1701 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1702 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1703 {Opt_err, 0, 0} 1704 }; 1705 1706 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1707 substring_t *args, unsigned long *journal_devnum, 1708 unsigned int *journal_ioprio, int is_remount) 1709 { 1710 struct ext4_sb_info *sbi = EXT4_SB(sb); 1711 const struct mount_opts *m; 1712 kuid_t uid; 1713 kgid_t gid; 1714 int arg = 0; 1715 1716 #ifdef CONFIG_QUOTA 1717 if (token == Opt_usrjquota) 1718 return set_qf_name(sb, USRQUOTA, &args[0]); 1719 else if (token == Opt_grpjquota) 1720 return set_qf_name(sb, GRPQUOTA, &args[0]); 1721 else if (token == Opt_offusrjquota) 1722 return clear_qf_name(sb, USRQUOTA); 1723 else if (token == Opt_offgrpjquota) 1724 return clear_qf_name(sb, GRPQUOTA); 1725 #endif 1726 switch (token) { 1727 case Opt_noacl: 1728 case Opt_nouser_xattr: 1729 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1730 break; 1731 case Opt_sb: 1732 return 1; /* handled by get_sb_block() */ 1733 case Opt_removed: 1734 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1735 return 1; 1736 case Opt_abort: 1737 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1738 return 1; 1739 case Opt_i_version: 1740 sb->s_flags |= SB_I_VERSION; 1741 return 1; 1742 case Opt_lazytime: 1743 sb->s_flags |= SB_LAZYTIME; 1744 return 1; 1745 case Opt_nolazytime: 1746 sb->s_flags &= ~SB_LAZYTIME; 1747 return 1; 1748 } 1749 1750 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1751 if (token == m->token) 1752 break; 1753 1754 if (m->token == Opt_err) { 1755 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1756 "or missing value", opt); 1757 return -1; 1758 } 1759 1760 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1761 ext4_msg(sb, KERN_ERR, 1762 "Mount option \"%s\" incompatible with ext2", opt); 1763 return -1; 1764 } 1765 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1766 ext4_msg(sb, KERN_ERR, 1767 "Mount option \"%s\" incompatible with ext3", opt); 1768 return -1; 1769 } 1770 1771 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1772 return -1; 1773 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1774 return -1; 1775 if (m->flags & MOPT_EXPLICIT) { 1776 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1777 set_opt2(sb, EXPLICIT_DELALLOC); 1778 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1779 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1780 } else 1781 return -1; 1782 } 1783 if (m->flags & MOPT_CLEAR_ERR) 1784 clear_opt(sb, ERRORS_MASK); 1785 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1786 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1787 "options when quota turned on"); 1788 return -1; 1789 } 1790 1791 if (m->flags & MOPT_NOSUPPORT) { 1792 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1793 } else if (token == Opt_commit) { 1794 if (arg == 0) 1795 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1796 sbi->s_commit_interval = HZ * arg; 1797 } else if (token == Opt_debug_want_extra_isize) { 1798 sbi->s_want_extra_isize = arg; 1799 } else if (token == Opt_max_batch_time) { 1800 sbi->s_max_batch_time = arg; 1801 } else if (token == Opt_min_batch_time) { 1802 sbi->s_min_batch_time = arg; 1803 } else if (token == Opt_inode_readahead_blks) { 1804 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1805 ext4_msg(sb, KERN_ERR, 1806 "EXT4-fs: inode_readahead_blks must be " 1807 "0 or a power of 2 smaller than 2^31"); 1808 return -1; 1809 } 1810 sbi->s_inode_readahead_blks = arg; 1811 } else if (token == Opt_init_itable) { 1812 set_opt(sb, INIT_INODE_TABLE); 1813 if (!args->from) 1814 arg = EXT4_DEF_LI_WAIT_MULT; 1815 sbi->s_li_wait_mult = arg; 1816 } else if (token == Opt_max_dir_size_kb) { 1817 sbi->s_max_dir_size_kb = arg; 1818 } else if (token == Opt_stripe) { 1819 sbi->s_stripe = arg; 1820 } else if (token == Opt_resuid) { 1821 uid = make_kuid(current_user_ns(), arg); 1822 if (!uid_valid(uid)) { 1823 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1824 return -1; 1825 } 1826 sbi->s_resuid = uid; 1827 } else if (token == Opt_resgid) { 1828 gid = make_kgid(current_user_ns(), arg); 1829 if (!gid_valid(gid)) { 1830 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1831 return -1; 1832 } 1833 sbi->s_resgid = gid; 1834 } else if (token == Opt_journal_dev) { 1835 if (is_remount) { 1836 ext4_msg(sb, KERN_ERR, 1837 "Cannot specify journal on remount"); 1838 return -1; 1839 } 1840 *journal_devnum = arg; 1841 } else if (token == Opt_journal_path) { 1842 char *journal_path; 1843 struct inode *journal_inode; 1844 struct path path; 1845 int error; 1846 1847 if (is_remount) { 1848 ext4_msg(sb, KERN_ERR, 1849 "Cannot specify journal on remount"); 1850 return -1; 1851 } 1852 journal_path = match_strdup(&args[0]); 1853 if (!journal_path) { 1854 ext4_msg(sb, KERN_ERR, "error: could not dup " 1855 "journal device string"); 1856 return -1; 1857 } 1858 1859 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1860 if (error) { 1861 ext4_msg(sb, KERN_ERR, "error: could not find " 1862 "journal device path: error %d", error); 1863 kfree(journal_path); 1864 return -1; 1865 } 1866 1867 journal_inode = d_inode(path.dentry); 1868 if (!S_ISBLK(journal_inode->i_mode)) { 1869 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1870 "is not a block device", journal_path); 1871 path_put(&path); 1872 kfree(journal_path); 1873 return -1; 1874 } 1875 1876 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1877 path_put(&path); 1878 kfree(journal_path); 1879 } else if (token == Opt_journal_ioprio) { 1880 if (arg > 7) { 1881 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1882 " (must be 0-7)"); 1883 return -1; 1884 } 1885 *journal_ioprio = 1886 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1887 } else if (token == Opt_test_dummy_encryption) { 1888 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1889 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1890 ext4_msg(sb, KERN_WARNING, 1891 "Test dummy encryption mode enabled"); 1892 #else 1893 ext4_msg(sb, KERN_WARNING, 1894 "Test dummy encryption mount option ignored"); 1895 #endif 1896 } else if (m->flags & MOPT_DATAJ) { 1897 if (is_remount) { 1898 if (!sbi->s_journal) 1899 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1900 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1901 ext4_msg(sb, KERN_ERR, 1902 "Cannot change data mode on remount"); 1903 return -1; 1904 } 1905 } else { 1906 clear_opt(sb, DATA_FLAGS); 1907 sbi->s_mount_opt |= m->mount_opt; 1908 } 1909 #ifdef CONFIG_QUOTA 1910 } else if (m->flags & MOPT_QFMT) { 1911 if (sb_any_quota_loaded(sb) && 1912 sbi->s_jquota_fmt != m->mount_opt) { 1913 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1914 "quota options when quota turned on"); 1915 return -1; 1916 } 1917 if (ext4_has_feature_quota(sb)) { 1918 ext4_msg(sb, KERN_INFO, 1919 "Quota format mount options ignored " 1920 "when QUOTA feature is enabled"); 1921 return 1; 1922 } 1923 sbi->s_jquota_fmt = m->mount_opt; 1924 #endif 1925 } else if (token == Opt_dax) { 1926 #ifdef CONFIG_FS_DAX 1927 ext4_msg(sb, KERN_WARNING, 1928 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1929 sbi->s_mount_opt |= m->mount_opt; 1930 #else 1931 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1932 return -1; 1933 #endif 1934 } else if (token == Opt_data_err_abort) { 1935 sbi->s_mount_opt |= m->mount_opt; 1936 } else if (token == Opt_data_err_ignore) { 1937 sbi->s_mount_opt &= ~m->mount_opt; 1938 } else { 1939 if (!args->from) 1940 arg = 1; 1941 if (m->flags & MOPT_CLEAR) 1942 arg = !arg; 1943 else if (unlikely(!(m->flags & MOPT_SET))) { 1944 ext4_msg(sb, KERN_WARNING, 1945 "buggy handling of option %s", opt); 1946 WARN_ON(1); 1947 return -1; 1948 } 1949 if (arg != 0) 1950 sbi->s_mount_opt |= m->mount_opt; 1951 else 1952 sbi->s_mount_opt &= ~m->mount_opt; 1953 } 1954 return 1; 1955 } 1956 1957 static int parse_options(char *options, struct super_block *sb, 1958 unsigned long *journal_devnum, 1959 unsigned int *journal_ioprio, 1960 int is_remount) 1961 { 1962 struct ext4_sb_info *sbi = EXT4_SB(sb); 1963 char *p; 1964 substring_t args[MAX_OPT_ARGS]; 1965 int token; 1966 1967 if (!options) 1968 return 1; 1969 1970 while ((p = strsep(&options, ",")) != NULL) { 1971 if (!*p) 1972 continue; 1973 /* 1974 * Initialize args struct so we know whether arg was 1975 * found; some options take optional arguments. 1976 */ 1977 args[0].to = args[0].from = NULL; 1978 token = match_token(p, tokens, args); 1979 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1980 journal_ioprio, is_remount) < 0) 1981 return 0; 1982 } 1983 #ifdef CONFIG_QUOTA 1984 /* 1985 * We do the test below only for project quotas. 'usrquota' and 1986 * 'grpquota' mount options are allowed even without quota feature 1987 * to support legacy quotas in quota files. 1988 */ 1989 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1990 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1991 "Cannot enable project quota enforcement."); 1992 return 0; 1993 } 1994 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1995 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1996 clear_opt(sb, USRQUOTA); 1997 1998 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1999 clear_opt(sb, GRPQUOTA); 2000 2001 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2002 ext4_msg(sb, KERN_ERR, "old and new quota " 2003 "format mixing"); 2004 return 0; 2005 } 2006 2007 if (!sbi->s_jquota_fmt) { 2008 ext4_msg(sb, KERN_ERR, "journaled quota format " 2009 "not specified"); 2010 return 0; 2011 } 2012 } 2013 #endif 2014 if (test_opt(sb, DIOREAD_NOLOCK)) { 2015 int blocksize = 2016 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2017 2018 if (blocksize < PAGE_SIZE) { 2019 ext4_msg(sb, KERN_ERR, "can't mount with " 2020 "dioread_nolock if block size != PAGE_SIZE"); 2021 return 0; 2022 } 2023 } 2024 return 1; 2025 } 2026 2027 static inline void ext4_show_quota_options(struct seq_file *seq, 2028 struct super_block *sb) 2029 { 2030 #if defined(CONFIG_QUOTA) 2031 struct ext4_sb_info *sbi = EXT4_SB(sb); 2032 2033 if (sbi->s_jquota_fmt) { 2034 char *fmtname = ""; 2035 2036 switch (sbi->s_jquota_fmt) { 2037 case QFMT_VFS_OLD: 2038 fmtname = "vfsold"; 2039 break; 2040 case QFMT_VFS_V0: 2041 fmtname = "vfsv0"; 2042 break; 2043 case QFMT_VFS_V1: 2044 fmtname = "vfsv1"; 2045 break; 2046 } 2047 seq_printf(seq, ",jqfmt=%s", fmtname); 2048 } 2049 2050 if (sbi->s_qf_names[USRQUOTA]) 2051 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 2052 2053 if (sbi->s_qf_names[GRPQUOTA]) 2054 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 2055 #endif 2056 } 2057 2058 static const char *token2str(int token) 2059 { 2060 const struct match_token *t; 2061 2062 for (t = tokens; t->token != Opt_err; t++) 2063 if (t->token == token && !strchr(t->pattern, '=')) 2064 break; 2065 return t->pattern; 2066 } 2067 2068 /* 2069 * Show an option if 2070 * - it's set to a non-default value OR 2071 * - if the per-sb default is different from the global default 2072 */ 2073 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2074 int nodefs) 2075 { 2076 struct ext4_sb_info *sbi = EXT4_SB(sb); 2077 struct ext4_super_block *es = sbi->s_es; 2078 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2079 const struct mount_opts *m; 2080 char sep = nodefs ? '\n' : ','; 2081 2082 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2083 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2084 2085 if (sbi->s_sb_block != 1) 2086 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2087 2088 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2089 int want_set = m->flags & MOPT_SET; 2090 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2091 (m->flags & MOPT_CLEAR_ERR)) 2092 continue; 2093 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2094 continue; /* skip if same as the default */ 2095 if ((want_set && 2096 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2097 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2098 continue; /* select Opt_noFoo vs Opt_Foo */ 2099 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2100 } 2101 2102 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2103 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2104 SEQ_OPTS_PRINT("resuid=%u", 2105 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2106 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2107 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2108 SEQ_OPTS_PRINT("resgid=%u", 2109 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2110 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2111 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2112 SEQ_OPTS_PUTS("errors=remount-ro"); 2113 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2114 SEQ_OPTS_PUTS("errors=continue"); 2115 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2116 SEQ_OPTS_PUTS("errors=panic"); 2117 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2118 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2119 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2120 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2121 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2122 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2123 if (sb->s_flags & SB_I_VERSION) 2124 SEQ_OPTS_PUTS("i_version"); 2125 if (nodefs || sbi->s_stripe) 2126 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2127 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2128 (sbi->s_mount_opt ^ def_mount_opt)) { 2129 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2130 SEQ_OPTS_PUTS("data=journal"); 2131 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2132 SEQ_OPTS_PUTS("data=ordered"); 2133 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2134 SEQ_OPTS_PUTS("data=writeback"); 2135 } 2136 if (nodefs || 2137 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2138 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2139 sbi->s_inode_readahead_blks); 2140 2141 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2142 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2143 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2144 if (nodefs || sbi->s_max_dir_size_kb) 2145 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2146 if (test_opt(sb, DATA_ERR_ABORT)) 2147 SEQ_OPTS_PUTS("data_err=abort"); 2148 2149 ext4_show_quota_options(seq, sb); 2150 return 0; 2151 } 2152 2153 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2154 { 2155 return _ext4_show_options(seq, root->d_sb, 0); 2156 } 2157 2158 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2159 { 2160 struct super_block *sb = seq->private; 2161 int rc; 2162 2163 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2164 rc = _ext4_show_options(seq, sb, 1); 2165 seq_puts(seq, "\n"); 2166 return rc; 2167 } 2168 2169 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2170 int read_only) 2171 { 2172 struct ext4_sb_info *sbi = EXT4_SB(sb); 2173 int err = 0; 2174 2175 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2176 ext4_msg(sb, KERN_ERR, "revision level too high, " 2177 "forcing read-only mode"); 2178 err = -EROFS; 2179 } 2180 if (read_only) 2181 goto done; 2182 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2183 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2184 "running e2fsck is recommended"); 2185 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2186 ext4_msg(sb, KERN_WARNING, 2187 "warning: mounting fs with errors, " 2188 "running e2fsck is recommended"); 2189 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2190 le16_to_cpu(es->s_mnt_count) >= 2191 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2192 ext4_msg(sb, KERN_WARNING, 2193 "warning: maximal mount count reached, " 2194 "running e2fsck is recommended"); 2195 else if (le32_to_cpu(es->s_checkinterval) && 2196 (ext4_get_tstamp(es, s_lastcheck) + 2197 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2198 ext4_msg(sb, KERN_WARNING, 2199 "warning: checktime reached, " 2200 "running e2fsck is recommended"); 2201 if (!sbi->s_journal) 2202 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2203 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2204 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2205 le16_add_cpu(&es->s_mnt_count, 1); 2206 ext4_update_tstamp(es, s_mtime); 2207 ext4_update_dynamic_rev(sb); 2208 if (sbi->s_journal) 2209 ext4_set_feature_journal_needs_recovery(sb); 2210 2211 err = ext4_commit_super(sb, 1); 2212 done: 2213 if (test_opt(sb, DEBUG)) 2214 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2215 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2216 sb->s_blocksize, 2217 sbi->s_groups_count, 2218 EXT4_BLOCKS_PER_GROUP(sb), 2219 EXT4_INODES_PER_GROUP(sb), 2220 sbi->s_mount_opt, sbi->s_mount_opt2); 2221 2222 cleancache_init_fs(sb); 2223 return err; 2224 } 2225 2226 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2227 { 2228 struct ext4_sb_info *sbi = EXT4_SB(sb); 2229 struct flex_groups *new_groups; 2230 int size; 2231 2232 if (!sbi->s_log_groups_per_flex) 2233 return 0; 2234 2235 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2236 if (size <= sbi->s_flex_groups_allocated) 2237 return 0; 2238 2239 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2240 new_groups = kvzalloc(size, GFP_KERNEL); 2241 if (!new_groups) { 2242 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2243 size / (int) sizeof(struct flex_groups)); 2244 return -ENOMEM; 2245 } 2246 2247 if (sbi->s_flex_groups) { 2248 memcpy(new_groups, sbi->s_flex_groups, 2249 (sbi->s_flex_groups_allocated * 2250 sizeof(struct flex_groups))); 2251 kvfree(sbi->s_flex_groups); 2252 } 2253 sbi->s_flex_groups = new_groups; 2254 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2255 return 0; 2256 } 2257 2258 static int ext4_fill_flex_info(struct super_block *sb) 2259 { 2260 struct ext4_sb_info *sbi = EXT4_SB(sb); 2261 struct ext4_group_desc *gdp = NULL; 2262 ext4_group_t flex_group; 2263 int i, err; 2264 2265 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2266 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2267 sbi->s_log_groups_per_flex = 0; 2268 return 1; 2269 } 2270 2271 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2272 if (err) 2273 goto failed; 2274 2275 for (i = 0; i < sbi->s_groups_count; i++) { 2276 gdp = ext4_get_group_desc(sb, i, NULL); 2277 2278 flex_group = ext4_flex_group(sbi, i); 2279 atomic_add(ext4_free_inodes_count(sb, gdp), 2280 &sbi->s_flex_groups[flex_group].free_inodes); 2281 atomic64_add(ext4_free_group_clusters(sb, gdp), 2282 &sbi->s_flex_groups[flex_group].free_clusters); 2283 atomic_add(ext4_used_dirs_count(sb, gdp), 2284 &sbi->s_flex_groups[flex_group].used_dirs); 2285 } 2286 2287 return 1; 2288 failed: 2289 return 0; 2290 } 2291 2292 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2293 struct ext4_group_desc *gdp) 2294 { 2295 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2296 __u16 crc = 0; 2297 __le32 le_group = cpu_to_le32(block_group); 2298 struct ext4_sb_info *sbi = EXT4_SB(sb); 2299 2300 if (ext4_has_metadata_csum(sbi->s_sb)) { 2301 /* Use new metadata_csum algorithm */ 2302 __u32 csum32; 2303 __u16 dummy_csum = 0; 2304 2305 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2306 sizeof(le_group)); 2307 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2308 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2309 sizeof(dummy_csum)); 2310 offset += sizeof(dummy_csum); 2311 if (offset < sbi->s_desc_size) 2312 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2313 sbi->s_desc_size - offset); 2314 2315 crc = csum32 & 0xFFFF; 2316 goto out; 2317 } 2318 2319 /* old crc16 code */ 2320 if (!ext4_has_feature_gdt_csum(sb)) 2321 return 0; 2322 2323 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2324 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2325 crc = crc16(crc, (__u8 *)gdp, offset); 2326 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2327 /* for checksum of struct ext4_group_desc do the rest...*/ 2328 if (ext4_has_feature_64bit(sb) && 2329 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2330 crc = crc16(crc, (__u8 *)gdp + offset, 2331 le16_to_cpu(sbi->s_es->s_desc_size) - 2332 offset); 2333 2334 out: 2335 return cpu_to_le16(crc); 2336 } 2337 2338 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2339 struct ext4_group_desc *gdp) 2340 { 2341 if (ext4_has_group_desc_csum(sb) && 2342 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2343 return 0; 2344 2345 return 1; 2346 } 2347 2348 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2349 struct ext4_group_desc *gdp) 2350 { 2351 if (!ext4_has_group_desc_csum(sb)) 2352 return; 2353 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2354 } 2355 2356 /* Called at mount-time, super-block is locked */ 2357 static int ext4_check_descriptors(struct super_block *sb, 2358 ext4_fsblk_t sb_block, 2359 ext4_group_t *first_not_zeroed) 2360 { 2361 struct ext4_sb_info *sbi = EXT4_SB(sb); 2362 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2363 ext4_fsblk_t last_block; 2364 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2365 ext4_fsblk_t block_bitmap; 2366 ext4_fsblk_t inode_bitmap; 2367 ext4_fsblk_t inode_table; 2368 int flexbg_flag = 0; 2369 ext4_group_t i, grp = sbi->s_groups_count; 2370 2371 if (ext4_has_feature_flex_bg(sb)) 2372 flexbg_flag = 1; 2373 2374 ext4_debug("Checking group descriptors"); 2375 2376 for (i = 0; i < sbi->s_groups_count; i++) { 2377 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2378 2379 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2380 last_block = ext4_blocks_count(sbi->s_es) - 1; 2381 else 2382 last_block = first_block + 2383 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2384 2385 if ((grp == sbi->s_groups_count) && 2386 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2387 grp = i; 2388 2389 block_bitmap = ext4_block_bitmap(sb, gdp); 2390 if (block_bitmap == sb_block) { 2391 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2392 "Block bitmap for group %u overlaps " 2393 "superblock", i); 2394 if (!sb_rdonly(sb)) 2395 return 0; 2396 } 2397 if (block_bitmap >= sb_block + 1 && 2398 block_bitmap <= last_bg_block) { 2399 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2400 "Block bitmap for group %u overlaps " 2401 "block group descriptors", i); 2402 if (!sb_rdonly(sb)) 2403 return 0; 2404 } 2405 if (block_bitmap < first_block || block_bitmap > last_block) { 2406 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2407 "Block bitmap for group %u not in group " 2408 "(block %llu)!", i, block_bitmap); 2409 return 0; 2410 } 2411 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2412 if (inode_bitmap == sb_block) { 2413 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2414 "Inode bitmap for group %u overlaps " 2415 "superblock", i); 2416 if (!sb_rdonly(sb)) 2417 return 0; 2418 } 2419 if (inode_bitmap >= sb_block + 1 && 2420 inode_bitmap <= last_bg_block) { 2421 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2422 "Inode bitmap for group %u overlaps " 2423 "block group descriptors", i); 2424 if (!sb_rdonly(sb)) 2425 return 0; 2426 } 2427 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2428 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2429 "Inode bitmap for group %u not in group " 2430 "(block %llu)!", i, inode_bitmap); 2431 return 0; 2432 } 2433 inode_table = ext4_inode_table(sb, gdp); 2434 if (inode_table == sb_block) { 2435 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2436 "Inode table for group %u overlaps " 2437 "superblock", i); 2438 if (!sb_rdonly(sb)) 2439 return 0; 2440 } 2441 if (inode_table >= sb_block + 1 && 2442 inode_table <= last_bg_block) { 2443 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2444 "Inode table for group %u overlaps " 2445 "block group descriptors", i); 2446 if (!sb_rdonly(sb)) 2447 return 0; 2448 } 2449 if (inode_table < first_block || 2450 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2451 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2452 "Inode table for group %u not in group " 2453 "(block %llu)!", i, inode_table); 2454 return 0; 2455 } 2456 ext4_lock_group(sb, i); 2457 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2458 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2459 "Checksum for group %u failed (%u!=%u)", 2460 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2461 gdp)), le16_to_cpu(gdp->bg_checksum)); 2462 if (!sb_rdonly(sb)) { 2463 ext4_unlock_group(sb, i); 2464 return 0; 2465 } 2466 } 2467 ext4_unlock_group(sb, i); 2468 if (!flexbg_flag) 2469 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2470 } 2471 if (NULL != first_not_zeroed) 2472 *first_not_zeroed = grp; 2473 return 1; 2474 } 2475 2476 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2477 * the superblock) which were deleted from all directories, but held open by 2478 * a process at the time of a crash. We walk the list and try to delete these 2479 * inodes at recovery time (only with a read-write filesystem). 2480 * 2481 * In order to keep the orphan inode chain consistent during traversal (in 2482 * case of crash during recovery), we link each inode into the superblock 2483 * orphan list_head and handle it the same way as an inode deletion during 2484 * normal operation (which journals the operations for us). 2485 * 2486 * We only do an iget() and an iput() on each inode, which is very safe if we 2487 * accidentally point at an in-use or already deleted inode. The worst that 2488 * can happen in this case is that we get a "bit already cleared" message from 2489 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2490 * e2fsck was run on this filesystem, and it must have already done the orphan 2491 * inode cleanup for us, so we can safely abort without any further action. 2492 */ 2493 static void ext4_orphan_cleanup(struct super_block *sb, 2494 struct ext4_super_block *es) 2495 { 2496 unsigned int s_flags = sb->s_flags; 2497 int ret, nr_orphans = 0, nr_truncates = 0; 2498 #ifdef CONFIG_QUOTA 2499 int quota_update = 0; 2500 int i; 2501 #endif 2502 if (!es->s_last_orphan) { 2503 jbd_debug(4, "no orphan inodes to clean up\n"); 2504 return; 2505 } 2506 2507 if (bdev_read_only(sb->s_bdev)) { 2508 ext4_msg(sb, KERN_ERR, "write access " 2509 "unavailable, skipping orphan cleanup"); 2510 return; 2511 } 2512 2513 /* Check if feature set would not allow a r/w mount */ 2514 if (!ext4_feature_set_ok(sb, 0)) { 2515 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2516 "unknown ROCOMPAT features"); 2517 return; 2518 } 2519 2520 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2521 /* don't clear list on RO mount w/ errors */ 2522 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2523 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2524 "clearing orphan list.\n"); 2525 es->s_last_orphan = 0; 2526 } 2527 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2528 return; 2529 } 2530 2531 if (s_flags & SB_RDONLY) { 2532 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2533 sb->s_flags &= ~SB_RDONLY; 2534 } 2535 #ifdef CONFIG_QUOTA 2536 /* Needed for iput() to work correctly and not trash data */ 2537 sb->s_flags |= SB_ACTIVE; 2538 2539 /* 2540 * Turn on quotas which were not enabled for read-only mounts if 2541 * filesystem has quota feature, so that they are updated correctly. 2542 */ 2543 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2544 int ret = ext4_enable_quotas(sb); 2545 2546 if (!ret) 2547 quota_update = 1; 2548 else 2549 ext4_msg(sb, KERN_ERR, 2550 "Cannot turn on quotas: error %d", ret); 2551 } 2552 2553 /* Turn on journaled quotas used for old sytle */ 2554 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2555 if (EXT4_SB(sb)->s_qf_names[i]) { 2556 int ret = ext4_quota_on_mount(sb, i); 2557 2558 if (!ret) 2559 quota_update = 1; 2560 else 2561 ext4_msg(sb, KERN_ERR, 2562 "Cannot turn on journaled " 2563 "quota: type %d: error %d", i, ret); 2564 } 2565 } 2566 #endif 2567 2568 while (es->s_last_orphan) { 2569 struct inode *inode; 2570 2571 /* 2572 * We may have encountered an error during cleanup; if 2573 * so, skip the rest. 2574 */ 2575 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2576 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2577 es->s_last_orphan = 0; 2578 break; 2579 } 2580 2581 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2582 if (IS_ERR(inode)) { 2583 es->s_last_orphan = 0; 2584 break; 2585 } 2586 2587 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2588 dquot_initialize(inode); 2589 if (inode->i_nlink) { 2590 if (test_opt(sb, DEBUG)) 2591 ext4_msg(sb, KERN_DEBUG, 2592 "%s: truncating inode %lu to %lld bytes", 2593 __func__, inode->i_ino, inode->i_size); 2594 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2595 inode->i_ino, inode->i_size); 2596 inode_lock(inode); 2597 truncate_inode_pages(inode->i_mapping, inode->i_size); 2598 ret = ext4_truncate(inode); 2599 if (ret) 2600 ext4_std_error(inode->i_sb, ret); 2601 inode_unlock(inode); 2602 nr_truncates++; 2603 } else { 2604 if (test_opt(sb, DEBUG)) 2605 ext4_msg(sb, KERN_DEBUG, 2606 "%s: deleting unreferenced inode %lu", 2607 __func__, inode->i_ino); 2608 jbd_debug(2, "deleting unreferenced inode %lu\n", 2609 inode->i_ino); 2610 nr_orphans++; 2611 } 2612 iput(inode); /* The delete magic happens here! */ 2613 } 2614 2615 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2616 2617 if (nr_orphans) 2618 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2619 PLURAL(nr_orphans)); 2620 if (nr_truncates) 2621 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2622 PLURAL(nr_truncates)); 2623 #ifdef CONFIG_QUOTA 2624 /* Turn off quotas if they were enabled for orphan cleanup */ 2625 if (quota_update) { 2626 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2627 if (sb_dqopt(sb)->files[i]) 2628 dquot_quota_off(sb, i); 2629 } 2630 } 2631 #endif 2632 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2633 } 2634 2635 /* 2636 * Maximal extent format file size. 2637 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2638 * extent format containers, within a sector_t, and within i_blocks 2639 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2640 * so that won't be a limiting factor. 2641 * 2642 * However there is other limiting factor. We do store extents in the form 2643 * of starting block and length, hence the resulting length of the extent 2644 * covering maximum file size must fit into on-disk format containers as 2645 * well. Given that length is always by 1 unit bigger than max unit (because 2646 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2647 * 2648 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2649 */ 2650 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2651 { 2652 loff_t res; 2653 loff_t upper_limit = MAX_LFS_FILESIZE; 2654 2655 /* small i_blocks in vfs inode? */ 2656 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2657 /* 2658 * CONFIG_LBDAF is not enabled implies the inode 2659 * i_block represent total blocks in 512 bytes 2660 * 32 == size of vfs inode i_blocks * 8 2661 */ 2662 upper_limit = (1LL << 32) - 1; 2663 2664 /* total blocks in file system block size */ 2665 upper_limit >>= (blkbits - 9); 2666 upper_limit <<= blkbits; 2667 } 2668 2669 /* 2670 * 32-bit extent-start container, ee_block. We lower the maxbytes 2671 * by one fs block, so ee_len can cover the extent of maximum file 2672 * size 2673 */ 2674 res = (1LL << 32) - 1; 2675 res <<= blkbits; 2676 2677 /* Sanity check against vm- & vfs- imposed limits */ 2678 if (res > upper_limit) 2679 res = upper_limit; 2680 2681 return res; 2682 } 2683 2684 /* 2685 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2686 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2687 * We need to be 1 filesystem block less than the 2^48 sector limit. 2688 */ 2689 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2690 { 2691 loff_t res = EXT4_NDIR_BLOCKS; 2692 int meta_blocks; 2693 loff_t upper_limit; 2694 /* This is calculated to be the largest file size for a dense, block 2695 * mapped file such that the file's total number of 512-byte sectors, 2696 * including data and all indirect blocks, does not exceed (2^48 - 1). 2697 * 2698 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2699 * number of 512-byte sectors of the file. 2700 */ 2701 2702 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2703 /* 2704 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2705 * the inode i_block field represents total file blocks in 2706 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2707 */ 2708 upper_limit = (1LL << 32) - 1; 2709 2710 /* total blocks in file system block size */ 2711 upper_limit >>= (bits - 9); 2712 2713 } else { 2714 /* 2715 * We use 48 bit ext4_inode i_blocks 2716 * With EXT4_HUGE_FILE_FL set the i_blocks 2717 * represent total number of blocks in 2718 * file system block size 2719 */ 2720 upper_limit = (1LL << 48) - 1; 2721 2722 } 2723 2724 /* indirect blocks */ 2725 meta_blocks = 1; 2726 /* double indirect blocks */ 2727 meta_blocks += 1 + (1LL << (bits-2)); 2728 /* tripple indirect blocks */ 2729 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2730 2731 upper_limit -= meta_blocks; 2732 upper_limit <<= bits; 2733 2734 res += 1LL << (bits-2); 2735 res += 1LL << (2*(bits-2)); 2736 res += 1LL << (3*(bits-2)); 2737 res <<= bits; 2738 if (res > upper_limit) 2739 res = upper_limit; 2740 2741 if (res > MAX_LFS_FILESIZE) 2742 res = MAX_LFS_FILESIZE; 2743 2744 return res; 2745 } 2746 2747 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2748 ext4_fsblk_t logical_sb_block, int nr) 2749 { 2750 struct ext4_sb_info *sbi = EXT4_SB(sb); 2751 ext4_group_t bg, first_meta_bg; 2752 int has_super = 0; 2753 2754 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2755 2756 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2757 return logical_sb_block + nr + 1; 2758 bg = sbi->s_desc_per_block * nr; 2759 if (ext4_bg_has_super(sb, bg)) 2760 has_super = 1; 2761 2762 /* 2763 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2764 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2765 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2766 * compensate. 2767 */ 2768 if (sb->s_blocksize == 1024 && nr == 0 && 2769 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2770 has_super++; 2771 2772 return (has_super + ext4_group_first_block_no(sb, bg)); 2773 } 2774 2775 /** 2776 * ext4_get_stripe_size: Get the stripe size. 2777 * @sbi: In memory super block info 2778 * 2779 * If we have specified it via mount option, then 2780 * use the mount option value. If the value specified at mount time is 2781 * greater than the blocks per group use the super block value. 2782 * If the super block value is greater than blocks per group return 0. 2783 * Allocator needs it be less than blocks per group. 2784 * 2785 */ 2786 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2787 { 2788 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2789 unsigned long stripe_width = 2790 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2791 int ret; 2792 2793 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2794 ret = sbi->s_stripe; 2795 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2796 ret = stripe_width; 2797 else if (stride && stride <= sbi->s_blocks_per_group) 2798 ret = stride; 2799 else 2800 ret = 0; 2801 2802 /* 2803 * If the stripe width is 1, this makes no sense and 2804 * we set it to 0 to turn off stripe handling code. 2805 */ 2806 if (ret <= 1) 2807 ret = 0; 2808 2809 return ret; 2810 } 2811 2812 /* 2813 * Check whether this filesystem can be mounted based on 2814 * the features present and the RDONLY/RDWR mount requested. 2815 * Returns 1 if this filesystem can be mounted as requested, 2816 * 0 if it cannot be. 2817 */ 2818 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2819 { 2820 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2821 ext4_msg(sb, KERN_ERR, 2822 "Couldn't mount because of " 2823 "unsupported optional features (%x)", 2824 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2825 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2826 return 0; 2827 } 2828 2829 if (readonly) 2830 return 1; 2831 2832 if (ext4_has_feature_readonly(sb)) { 2833 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2834 sb->s_flags |= SB_RDONLY; 2835 return 1; 2836 } 2837 2838 /* Check that feature set is OK for a read-write mount */ 2839 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2840 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2841 "unsupported optional features (%x)", 2842 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2843 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2844 return 0; 2845 } 2846 /* 2847 * Large file size enabled file system can only be mounted 2848 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2849 */ 2850 if (ext4_has_feature_huge_file(sb)) { 2851 if (sizeof(blkcnt_t) < sizeof(u64)) { 2852 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2853 "cannot be mounted RDWR without " 2854 "CONFIG_LBDAF"); 2855 return 0; 2856 } 2857 } 2858 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2859 ext4_msg(sb, KERN_ERR, 2860 "Can't support bigalloc feature without " 2861 "extents feature\n"); 2862 return 0; 2863 } 2864 2865 #ifndef CONFIG_QUOTA 2866 if (ext4_has_feature_quota(sb) && !readonly) { 2867 ext4_msg(sb, KERN_ERR, 2868 "Filesystem with quota feature cannot be mounted RDWR " 2869 "without CONFIG_QUOTA"); 2870 return 0; 2871 } 2872 if (ext4_has_feature_project(sb) && !readonly) { 2873 ext4_msg(sb, KERN_ERR, 2874 "Filesystem with project quota feature cannot be mounted RDWR " 2875 "without CONFIG_QUOTA"); 2876 return 0; 2877 } 2878 #endif /* CONFIG_QUOTA */ 2879 return 1; 2880 } 2881 2882 /* 2883 * This function is called once a day if we have errors logged 2884 * on the file system 2885 */ 2886 static void print_daily_error_info(struct timer_list *t) 2887 { 2888 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2889 struct super_block *sb = sbi->s_sb; 2890 struct ext4_super_block *es = sbi->s_es; 2891 2892 if (es->s_error_count) 2893 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2894 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2895 le32_to_cpu(es->s_error_count)); 2896 if (es->s_first_error_time) { 2897 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 2898 sb->s_id, 2899 ext4_get_tstamp(es, s_first_error_time), 2900 (int) sizeof(es->s_first_error_func), 2901 es->s_first_error_func, 2902 le32_to_cpu(es->s_first_error_line)); 2903 if (es->s_first_error_ino) 2904 printk(KERN_CONT ": inode %u", 2905 le32_to_cpu(es->s_first_error_ino)); 2906 if (es->s_first_error_block) 2907 printk(KERN_CONT ": block %llu", (unsigned long long) 2908 le64_to_cpu(es->s_first_error_block)); 2909 printk(KERN_CONT "\n"); 2910 } 2911 if (es->s_last_error_time) { 2912 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 2913 sb->s_id, 2914 ext4_get_tstamp(es, s_last_error_time), 2915 (int) sizeof(es->s_last_error_func), 2916 es->s_last_error_func, 2917 le32_to_cpu(es->s_last_error_line)); 2918 if (es->s_last_error_ino) 2919 printk(KERN_CONT ": inode %u", 2920 le32_to_cpu(es->s_last_error_ino)); 2921 if (es->s_last_error_block) 2922 printk(KERN_CONT ": block %llu", (unsigned long long) 2923 le64_to_cpu(es->s_last_error_block)); 2924 printk(KERN_CONT "\n"); 2925 } 2926 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2927 } 2928 2929 /* Find next suitable group and run ext4_init_inode_table */ 2930 static int ext4_run_li_request(struct ext4_li_request *elr) 2931 { 2932 struct ext4_group_desc *gdp = NULL; 2933 ext4_group_t group, ngroups; 2934 struct super_block *sb; 2935 unsigned long timeout = 0; 2936 int ret = 0; 2937 2938 sb = elr->lr_super; 2939 ngroups = EXT4_SB(sb)->s_groups_count; 2940 2941 for (group = elr->lr_next_group; group < ngroups; group++) { 2942 gdp = ext4_get_group_desc(sb, group, NULL); 2943 if (!gdp) { 2944 ret = 1; 2945 break; 2946 } 2947 2948 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2949 break; 2950 } 2951 2952 if (group >= ngroups) 2953 ret = 1; 2954 2955 if (!ret) { 2956 timeout = jiffies; 2957 ret = ext4_init_inode_table(sb, group, 2958 elr->lr_timeout ? 0 : 1); 2959 if (elr->lr_timeout == 0) { 2960 timeout = (jiffies - timeout) * 2961 elr->lr_sbi->s_li_wait_mult; 2962 elr->lr_timeout = timeout; 2963 } 2964 elr->lr_next_sched = jiffies + elr->lr_timeout; 2965 elr->lr_next_group = group + 1; 2966 } 2967 return ret; 2968 } 2969 2970 /* 2971 * Remove lr_request from the list_request and free the 2972 * request structure. Should be called with li_list_mtx held 2973 */ 2974 static void ext4_remove_li_request(struct ext4_li_request *elr) 2975 { 2976 struct ext4_sb_info *sbi; 2977 2978 if (!elr) 2979 return; 2980 2981 sbi = elr->lr_sbi; 2982 2983 list_del(&elr->lr_request); 2984 sbi->s_li_request = NULL; 2985 kfree(elr); 2986 } 2987 2988 static void ext4_unregister_li_request(struct super_block *sb) 2989 { 2990 mutex_lock(&ext4_li_mtx); 2991 if (!ext4_li_info) { 2992 mutex_unlock(&ext4_li_mtx); 2993 return; 2994 } 2995 2996 mutex_lock(&ext4_li_info->li_list_mtx); 2997 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2998 mutex_unlock(&ext4_li_info->li_list_mtx); 2999 mutex_unlock(&ext4_li_mtx); 3000 } 3001 3002 static struct task_struct *ext4_lazyinit_task; 3003 3004 /* 3005 * This is the function where ext4lazyinit thread lives. It walks 3006 * through the request list searching for next scheduled filesystem. 3007 * When such a fs is found, run the lazy initialization request 3008 * (ext4_rn_li_request) and keep track of the time spend in this 3009 * function. Based on that time we compute next schedule time of 3010 * the request. When walking through the list is complete, compute 3011 * next waking time and put itself into sleep. 3012 */ 3013 static int ext4_lazyinit_thread(void *arg) 3014 { 3015 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3016 struct list_head *pos, *n; 3017 struct ext4_li_request *elr; 3018 unsigned long next_wakeup, cur; 3019 3020 BUG_ON(NULL == eli); 3021 3022 cont_thread: 3023 while (true) { 3024 next_wakeup = MAX_JIFFY_OFFSET; 3025 3026 mutex_lock(&eli->li_list_mtx); 3027 if (list_empty(&eli->li_request_list)) { 3028 mutex_unlock(&eli->li_list_mtx); 3029 goto exit_thread; 3030 } 3031 list_for_each_safe(pos, n, &eli->li_request_list) { 3032 int err = 0; 3033 int progress = 0; 3034 elr = list_entry(pos, struct ext4_li_request, 3035 lr_request); 3036 3037 if (time_before(jiffies, elr->lr_next_sched)) { 3038 if (time_before(elr->lr_next_sched, next_wakeup)) 3039 next_wakeup = elr->lr_next_sched; 3040 continue; 3041 } 3042 if (down_read_trylock(&elr->lr_super->s_umount)) { 3043 if (sb_start_write_trylock(elr->lr_super)) { 3044 progress = 1; 3045 /* 3046 * We hold sb->s_umount, sb can not 3047 * be removed from the list, it is 3048 * now safe to drop li_list_mtx 3049 */ 3050 mutex_unlock(&eli->li_list_mtx); 3051 err = ext4_run_li_request(elr); 3052 sb_end_write(elr->lr_super); 3053 mutex_lock(&eli->li_list_mtx); 3054 n = pos->next; 3055 } 3056 up_read((&elr->lr_super->s_umount)); 3057 } 3058 /* error, remove the lazy_init job */ 3059 if (err) { 3060 ext4_remove_li_request(elr); 3061 continue; 3062 } 3063 if (!progress) { 3064 elr->lr_next_sched = jiffies + 3065 (prandom_u32() 3066 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3067 } 3068 if (time_before(elr->lr_next_sched, next_wakeup)) 3069 next_wakeup = elr->lr_next_sched; 3070 } 3071 mutex_unlock(&eli->li_list_mtx); 3072 3073 try_to_freeze(); 3074 3075 cur = jiffies; 3076 if ((time_after_eq(cur, next_wakeup)) || 3077 (MAX_JIFFY_OFFSET == next_wakeup)) { 3078 cond_resched(); 3079 continue; 3080 } 3081 3082 schedule_timeout_interruptible(next_wakeup - cur); 3083 3084 if (kthread_should_stop()) { 3085 ext4_clear_request_list(); 3086 goto exit_thread; 3087 } 3088 } 3089 3090 exit_thread: 3091 /* 3092 * It looks like the request list is empty, but we need 3093 * to check it under the li_list_mtx lock, to prevent any 3094 * additions into it, and of course we should lock ext4_li_mtx 3095 * to atomically free the list and ext4_li_info, because at 3096 * this point another ext4 filesystem could be registering 3097 * new one. 3098 */ 3099 mutex_lock(&ext4_li_mtx); 3100 mutex_lock(&eli->li_list_mtx); 3101 if (!list_empty(&eli->li_request_list)) { 3102 mutex_unlock(&eli->li_list_mtx); 3103 mutex_unlock(&ext4_li_mtx); 3104 goto cont_thread; 3105 } 3106 mutex_unlock(&eli->li_list_mtx); 3107 kfree(ext4_li_info); 3108 ext4_li_info = NULL; 3109 mutex_unlock(&ext4_li_mtx); 3110 3111 return 0; 3112 } 3113 3114 static void ext4_clear_request_list(void) 3115 { 3116 struct list_head *pos, *n; 3117 struct ext4_li_request *elr; 3118 3119 mutex_lock(&ext4_li_info->li_list_mtx); 3120 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3121 elr = list_entry(pos, struct ext4_li_request, 3122 lr_request); 3123 ext4_remove_li_request(elr); 3124 } 3125 mutex_unlock(&ext4_li_info->li_list_mtx); 3126 } 3127 3128 static int ext4_run_lazyinit_thread(void) 3129 { 3130 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3131 ext4_li_info, "ext4lazyinit"); 3132 if (IS_ERR(ext4_lazyinit_task)) { 3133 int err = PTR_ERR(ext4_lazyinit_task); 3134 ext4_clear_request_list(); 3135 kfree(ext4_li_info); 3136 ext4_li_info = NULL; 3137 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3138 "initialization thread\n", 3139 err); 3140 return err; 3141 } 3142 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3143 return 0; 3144 } 3145 3146 /* 3147 * Check whether it make sense to run itable init. thread or not. 3148 * If there is at least one uninitialized inode table, return 3149 * corresponding group number, else the loop goes through all 3150 * groups and return total number of groups. 3151 */ 3152 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3153 { 3154 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3155 struct ext4_group_desc *gdp = NULL; 3156 3157 if (!ext4_has_group_desc_csum(sb)) 3158 return ngroups; 3159 3160 for (group = 0; group < ngroups; group++) { 3161 gdp = ext4_get_group_desc(sb, group, NULL); 3162 if (!gdp) 3163 continue; 3164 3165 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3166 break; 3167 } 3168 3169 return group; 3170 } 3171 3172 static int ext4_li_info_new(void) 3173 { 3174 struct ext4_lazy_init *eli = NULL; 3175 3176 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3177 if (!eli) 3178 return -ENOMEM; 3179 3180 INIT_LIST_HEAD(&eli->li_request_list); 3181 mutex_init(&eli->li_list_mtx); 3182 3183 eli->li_state |= EXT4_LAZYINIT_QUIT; 3184 3185 ext4_li_info = eli; 3186 3187 return 0; 3188 } 3189 3190 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3191 ext4_group_t start) 3192 { 3193 struct ext4_sb_info *sbi = EXT4_SB(sb); 3194 struct ext4_li_request *elr; 3195 3196 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3197 if (!elr) 3198 return NULL; 3199 3200 elr->lr_super = sb; 3201 elr->lr_sbi = sbi; 3202 elr->lr_next_group = start; 3203 3204 /* 3205 * Randomize first schedule time of the request to 3206 * spread the inode table initialization requests 3207 * better. 3208 */ 3209 elr->lr_next_sched = jiffies + (prandom_u32() % 3210 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3211 return elr; 3212 } 3213 3214 int ext4_register_li_request(struct super_block *sb, 3215 ext4_group_t first_not_zeroed) 3216 { 3217 struct ext4_sb_info *sbi = EXT4_SB(sb); 3218 struct ext4_li_request *elr = NULL; 3219 ext4_group_t ngroups = sbi->s_groups_count; 3220 int ret = 0; 3221 3222 mutex_lock(&ext4_li_mtx); 3223 if (sbi->s_li_request != NULL) { 3224 /* 3225 * Reset timeout so it can be computed again, because 3226 * s_li_wait_mult might have changed. 3227 */ 3228 sbi->s_li_request->lr_timeout = 0; 3229 goto out; 3230 } 3231 3232 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3233 !test_opt(sb, INIT_INODE_TABLE)) 3234 goto out; 3235 3236 elr = ext4_li_request_new(sb, first_not_zeroed); 3237 if (!elr) { 3238 ret = -ENOMEM; 3239 goto out; 3240 } 3241 3242 if (NULL == ext4_li_info) { 3243 ret = ext4_li_info_new(); 3244 if (ret) 3245 goto out; 3246 } 3247 3248 mutex_lock(&ext4_li_info->li_list_mtx); 3249 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3250 mutex_unlock(&ext4_li_info->li_list_mtx); 3251 3252 sbi->s_li_request = elr; 3253 /* 3254 * set elr to NULL here since it has been inserted to 3255 * the request_list and the removal and free of it is 3256 * handled by ext4_clear_request_list from now on. 3257 */ 3258 elr = NULL; 3259 3260 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3261 ret = ext4_run_lazyinit_thread(); 3262 if (ret) 3263 goto out; 3264 } 3265 out: 3266 mutex_unlock(&ext4_li_mtx); 3267 if (ret) 3268 kfree(elr); 3269 return ret; 3270 } 3271 3272 /* 3273 * We do not need to lock anything since this is called on 3274 * module unload. 3275 */ 3276 static void ext4_destroy_lazyinit_thread(void) 3277 { 3278 /* 3279 * If thread exited earlier 3280 * there's nothing to be done. 3281 */ 3282 if (!ext4_li_info || !ext4_lazyinit_task) 3283 return; 3284 3285 kthread_stop(ext4_lazyinit_task); 3286 } 3287 3288 static int set_journal_csum_feature_set(struct super_block *sb) 3289 { 3290 int ret = 1; 3291 int compat, incompat; 3292 struct ext4_sb_info *sbi = EXT4_SB(sb); 3293 3294 if (ext4_has_metadata_csum(sb)) { 3295 /* journal checksum v3 */ 3296 compat = 0; 3297 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3298 } else { 3299 /* journal checksum v1 */ 3300 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3301 incompat = 0; 3302 } 3303 3304 jbd2_journal_clear_features(sbi->s_journal, 3305 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3306 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3307 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3308 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3309 ret = jbd2_journal_set_features(sbi->s_journal, 3310 compat, 0, 3311 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3312 incompat); 3313 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3314 ret = jbd2_journal_set_features(sbi->s_journal, 3315 compat, 0, 3316 incompat); 3317 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3318 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3319 } else { 3320 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3321 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3322 } 3323 3324 return ret; 3325 } 3326 3327 /* 3328 * Note: calculating the overhead so we can be compatible with 3329 * historical BSD practice is quite difficult in the face of 3330 * clusters/bigalloc. This is because multiple metadata blocks from 3331 * different block group can end up in the same allocation cluster. 3332 * Calculating the exact overhead in the face of clustered allocation 3333 * requires either O(all block bitmaps) in memory or O(number of block 3334 * groups**2) in time. We will still calculate the superblock for 3335 * older file systems --- and if we come across with a bigalloc file 3336 * system with zero in s_overhead_clusters the estimate will be close to 3337 * correct especially for very large cluster sizes --- but for newer 3338 * file systems, it's better to calculate this figure once at mkfs 3339 * time, and store it in the superblock. If the superblock value is 3340 * present (even for non-bigalloc file systems), we will use it. 3341 */ 3342 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3343 char *buf) 3344 { 3345 struct ext4_sb_info *sbi = EXT4_SB(sb); 3346 struct ext4_group_desc *gdp; 3347 ext4_fsblk_t first_block, last_block, b; 3348 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3349 int s, j, count = 0; 3350 3351 if (!ext4_has_feature_bigalloc(sb)) 3352 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3353 sbi->s_itb_per_group + 2); 3354 3355 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3356 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3357 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3358 for (i = 0; i < ngroups; i++) { 3359 gdp = ext4_get_group_desc(sb, i, NULL); 3360 b = ext4_block_bitmap(sb, gdp); 3361 if (b >= first_block && b <= last_block) { 3362 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3363 count++; 3364 } 3365 b = ext4_inode_bitmap(sb, gdp); 3366 if (b >= first_block && b <= last_block) { 3367 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3368 count++; 3369 } 3370 b = ext4_inode_table(sb, gdp); 3371 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3372 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3373 int c = EXT4_B2C(sbi, b - first_block); 3374 ext4_set_bit(c, buf); 3375 count++; 3376 } 3377 if (i != grp) 3378 continue; 3379 s = 0; 3380 if (ext4_bg_has_super(sb, grp)) { 3381 ext4_set_bit(s++, buf); 3382 count++; 3383 } 3384 j = ext4_bg_num_gdb(sb, grp); 3385 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3386 ext4_error(sb, "Invalid number of block group " 3387 "descriptor blocks: %d", j); 3388 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3389 } 3390 count += j; 3391 for (; j > 0; j--) 3392 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3393 } 3394 if (!count) 3395 return 0; 3396 return EXT4_CLUSTERS_PER_GROUP(sb) - 3397 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3398 } 3399 3400 /* 3401 * Compute the overhead and stash it in sbi->s_overhead 3402 */ 3403 int ext4_calculate_overhead(struct super_block *sb) 3404 { 3405 struct ext4_sb_info *sbi = EXT4_SB(sb); 3406 struct ext4_super_block *es = sbi->s_es; 3407 struct inode *j_inode; 3408 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3409 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3410 ext4_fsblk_t overhead = 0; 3411 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3412 3413 if (!buf) 3414 return -ENOMEM; 3415 3416 /* 3417 * Compute the overhead (FS structures). This is constant 3418 * for a given filesystem unless the number of block groups 3419 * changes so we cache the previous value until it does. 3420 */ 3421 3422 /* 3423 * All of the blocks before first_data_block are overhead 3424 */ 3425 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3426 3427 /* 3428 * Add the overhead found in each block group 3429 */ 3430 for (i = 0; i < ngroups; i++) { 3431 int blks; 3432 3433 blks = count_overhead(sb, i, buf); 3434 overhead += blks; 3435 if (blks) 3436 memset(buf, 0, PAGE_SIZE); 3437 cond_resched(); 3438 } 3439 3440 /* 3441 * Add the internal journal blocks whether the journal has been 3442 * loaded or not 3443 */ 3444 if (sbi->s_journal && !sbi->journal_bdev) 3445 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3446 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3447 j_inode = ext4_get_journal_inode(sb, j_inum); 3448 if (j_inode) { 3449 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3450 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3451 iput(j_inode); 3452 } else { 3453 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3454 } 3455 } 3456 sbi->s_overhead = overhead; 3457 smp_wmb(); 3458 free_page((unsigned long) buf); 3459 return 0; 3460 } 3461 3462 static void ext4_set_resv_clusters(struct super_block *sb) 3463 { 3464 ext4_fsblk_t resv_clusters; 3465 struct ext4_sb_info *sbi = EXT4_SB(sb); 3466 3467 /* 3468 * There's no need to reserve anything when we aren't using extents. 3469 * The space estimates are exact, there are no unwritten extents, 3470 * hole punching doesn't need new metadata... This is needed especially 3471 * to keep ext2/3 backward compatibility. 3472 */ 3473 if (!ext4_has_feature_extents(sb)) 3474 return; 3475 /* 3476 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3477 * This should cover the situations where we can not afford to run 3478 * out of space like for example punch hole, or converting 3479 * unwritten extents in delalloc path. In most cases such 3480 * allocation would require 1, or 2 blocks, higher numbers are 3481 * very rare. 3482 */ 3483 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3484 sbi->s_cluster_bits); 3485 3486 do_div(resv_clusters, 50); 3487 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3488 3489 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3490 } 3491 3492 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3493 { 3494 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3495 char *orig_data = kstrdup(data, GFP_KERNEL); 3496 struct buffer_head *bh; 3497 struct ext4_super_block *es = NULL; 3498 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3499 ext4_fsblk_t block; 3500 ext4_fsblk_t sb_block = get_sb_block(&data); 3501 ext4_fsblk_t logical_sb_block; 3502 unsigned long offset = 0; 3503 unsigned long journal_devnum = 0; 3504 unsigned long def_mount_opts; 3505 struct inode *root; 3506 const char *descr; 3507 int ret = -ENOMEM; 3508 int blocksize, clustersize; 3509 unsigned int db_count; 3510 unsigned int i; 3511 int needs_recovery, has_huge_files, has_bigalloc; 3512 __u64 blocks_count; 3513 int err = 0; 3514 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3515 ext4_group_t first_not_zeroed; 3516 3517 if ((data && !orig_data) || !sbi) 3518 goto out_free_base; 3519 3520 sbi->s_daxdev = dax_dev; 3521 sbi->s_blockgroup_lock = 3522 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3523 if (!sbi->s_blockgroup_lock) 3524 goto out_free_base; 3525 3526 sb->s_fs_info = sbi; 3527 sbi->s_sb = sb; 3528 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3529 sbi->s_sb_block = sb_block; 3530 if (sb->s_bdev->bd_part) 3531 sbi->s_sectors_written_start = 3532 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3533 3534 /* Cleanup superblock name */ 3535 strreplace(sb->s_id, '/', '!'); 3536 3537 /* -EINVAL is default */ 3538 ret = -EINVAL; 3539 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3540 if (!blocksize) { 3541 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3542 goto out_fail; 3543 } 3544 3545 /* 3546 * The ext4 superblock will not be buffer aligned for other than 1kB 3547 * block sizes. We need to calculate the offset from buffer start. 3548 */ 3549 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3550 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3551 offset = do_div(logical_sb_block, blocksize); 3552 } else { 3553 logical_sb_block = sb_block; 3554 } 3555 3556 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3557 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3558 goto out_fail; 3559 } 3560 /* 3561 * Note: s_es must be initialized as soon as possible because 3562 * some ext4 macro-instructions depend on its value 3563 */ 3564 es = (struct ext4_super_block *) (bh->b_data + offset); 3565 sbi->s_es = es; 3566 sb->s_magic = le16_to_cpu(es->s_magic); 3567 if (sb->s_magic != EXT4_SUPER_MAGIC) 3568 goto cantfind_ext4; 3569 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3570 3571 /* Warn if metadata_csum and gdt_csum are both set. */ 3572 if (ext4_has_feature_metadata_csum(sb) && 3573 ext4_has_feature_gdt_csum(sb)) 3574 ext4_warning(sb, "metadata_csum and uninit_bg are " 3575 "redundant flags; please run fsck."); 3576 3577 /* Check for a known checksum algorithm */ 3578 if (!ext4_verify_csum_type(sb, es)) { 3579 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3580 "unknown checksum algorithm."); 3581 silent = 1; 3582 goto cantfind_ext4; 3583 } 3584 3585 /* Load the checksum driver */ 3586 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3587 if (IS_ERR(sbi->s_chksum_driver)) { 3588 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3589 ret = PTR_ERR(sbi->s_chksum_driver); 3590 sbi->s_chksum_driver = NULL; 3591 goto failed_mount; 3592 } 3593 3594 /* Check superblock checksum */ 3595 if (!ext4_superblock_csum_verify(sb, es)) { 3596 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3597 "invalid superblock checksum. Run e2fsck?"); 3598 silent = 1; 3599 ret = -EFSBADCRC; 3600 goto cantfind_ext4; 3601 } 3602 3603 /* Precompute checksum seed for all metadata */ 3604 if (ext4_has_feature_csum_seed(sb)) 3605 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3606 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3607 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3608 sizeof(es->s_uuid)); 3609 3610 /* Set defaults before we parse the mount options */ 3611 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3612 set_opt(sb, INIT_INODE_TABLE); 3613 if (def_mount_opts & EXT4_DEFM_DEBUG) 3614 set_opt(sb, DEBUG); 3615 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3616 set_opt(sb, GRPID); 3617 if (def_mount_opts & EXT4_DEFM_UID16) 3618 set_opt(sb, NO_UID32); 3619 /* xattr user namespace & acls are now defaulted on */ 3620 set_opt(sb, XATTR_USER); 3621 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3622 set_opt(sb, POSIX_ACL); 3623 #endif 3624 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3625 if (ext4_has_metadata_csum(sb)) 3626 set_opt(sb, JOURNAL_CHECKSUM); 3627 3628 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3629 set_opt(sb, JOURNAL_DATA); 3630 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3631 set_opt(sb, ORDERED_DATA); 3632 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3633 set_opt(sb, WRITEBACK_DATA); 3634 3635 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3636 set_opt(sb, ERRORS_PANIC); 3637 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3638 set_opt(sb, ERRORS_CONT); 3639 else 3640 set_opt(sb, ERRORS_RO); 3641 /* block_validity enabled by default; disable with noblock_validity */ 3642 set_opt(sb, BLOCK_VALIDITY); 3643 if (def_mount_opts & EXT4_DEFM_DISCARD) 3644 set_opt(sb, DISCARD); 3645 3646 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3647 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3648 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3649 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3650 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3651 3652 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3653 set_opt(sb, BARRIER); 3654 3655 /* 3656 * enable delayed allocation by default 3657 * Use -o nodelalloc to turn it off 3658 */ 3659 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3660 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3661 set_opt(sb, DELALLOC); 3662 3663 /* 3664 * set default s_li_wait_mult for lazyinit, for the case there is 3665 * no mount option specified. 3666 */ 3667 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3668 3669 if (sbi->s_es->s_mount_opts[0]) { 3670 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3671 sizeof(sbi->s_es->s_mount_opts), 3672 GFP_KERNEL); 3673 if (!s_mount_opts) 3674 goto failed_mount; 3675 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3676 &journal_ioprio, 0)) { 3677 ext4_msg(sb, KERN_WARNING, 3678 "failed to parse options in superblock: %s", 3679 s_mount_opts); 3680 } 3681 kfree(s_mount_opts); 3682 } 3683 sbi->s_def_mount_opt = sbi->s_mount_opt; 3684 if (!parse_options((char *) data, sb, &journal_devnum, 3685 &journal_ioprio, 0)) 3686 goto failed_mount; 3687 3688 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3689 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3690 "with data=journal disables delayed " 3691 "allocation and O_DIRECT support!\n"); 3692 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3693 ext4_msg(sb, KERN_ERR, "can't mount with " 3694 "both data=journal and delalloc"); 3695 goto failed_mount; 3696 } 3697 if (test_opt(sb, DIOREAD_NOLOCK)) { 3698 ext4_msg(sb, KERN_ERR, "can't mount with " 3699 "both data=journal and dioread_nolock"); 3700 goto failed_mount; 3701 } 3702 if (test_opt(sb, DAX)) { 3703 ext4_msg(sb, KERN_ERR, "can't mount with " 3704 "both data=journal and dax"); 3705 goto failed_mount; 3706 } 3707 if (ext4_has_feature_encrypt(sb)) { 3708 ext4_msg(sb, KERN_WARNING, 3709 "encrypted files will use data=ordered " 3710 "instead of data journaling mode"); 3711 } 3712 if (test_opt(sb, DELALLOC)) 3713 clear_opt(sb, DELALLOC); 3714 } else { 3715 sb->s_iflags |= SB_I_CGROUPWB; 3716 } 3717 3718 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3719 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3720 3721 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3722 (ext4_has_compat_features(sb) || 3723 ext4_has_ro_compat_features(sb) || 3724 ext4_has_incompat_features(sb))) 3725 ext4_msg(sb, KERN_WARNING, 3726 "feature flags set on rev 0 fs, " 3727 "running e2fsck is recommended"); 3728 3729 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3730 set_opt2(sb, HURD_COMPAT); 3731 if (ext4_has_feature_64bit(sb)) { 3732 ext4_msg(sb, KERN_ERR, 3733 "The Hurd can't support 64-bit file systems"); 3734 goto failed_mount; 3735 } 3736 3737 /* 3738 * ea_inode feature uses l_i_version field which is not 3739 * available in HURD_COMPAT mode. 3740 */ 3741 if (ext4_has_feature_ea_inode(sb)) { 3742 ext4_msg(sb, KERN_ERR, 3743 "ea_inode feature is not supported for Hurd"); 3744 goto failed_mount; 3745 } 3746 } 3747 3748 if (IS_EXT2_SB(sb)) { 3749 if (ext2_feature_set_ok(sb)) 3750 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3751 "using the ext4 subsystem"); 3752 else { 3753 /* 3754 * If we're probing be silent, if this looks like 3755 * it's actually an ext[34] filesystem. 3756 */ 3757 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3758 goto failed_mount; 3759 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3760 "to feature incompatibilities"); 3761 goto failed_mount; 3762 } 3763 } 3764 3765 if (IS_EXT3_SB(sb)) { 3766 if (ext3_feature_set_ok(sb)) 3767 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3768 "using the ext4 subsystem"); 3769 else { 3770 /* 3771 * If we're probing be silent, if this looks like 3772 * it's actually an ext4 filesystem. 3773 */ 3774 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3775 goto failed_mount; 3776 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3777 "to feature incompatibilities"); 3778 goto failed_mount; 3779 } 3780 } 3781 3782 /* 3783 * Check feature flags regardless of the revision level, since we 3784 * previously didn't change the revision level when setting the flags, 3785 * so there is a chance incompat flags are set on a rev 0 filesystem. 3786 */ 3787 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3788 goto failed_mount; 3789 3790 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3791 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3792 blocksize > EXT4_MAX_BLOCK_SIZE) { 3793 ext4_msg(sb, KERN_ERR, 3794 "Unsupported filesystem blocksize %d (%d log_block_size)", 3795 blocksize, le32_to_cpu(es->s_log_block_size)); 3796 goto failed_mount; 3797 } 3798 if (le32_to_cpu(es->s_log_block_size) > 3799 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3800 ext4_msg(sb, KERN_ERR, 3801 "Invalid log block size: %u", 3802 le32_to_cpu(es->s_log_block_size)); 3803 goto failed_mount; 3804 } 3805 if (le32_to_cpu(es->s_log_cluster_size) > 3806 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3807 ext4_msg(sb, KERN_ERR, 3808 "Invalid log cluster size: %u", 3809 le32_to_cpu(es->s_log_cluster_size)); 3810 goto failed_mount; 3811 } 3812 3813 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3814 ext4_msg(sb, KERN_ERR, 3815 "Number of reserved GDT blocks insanely large: %d", 3816 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3817 goto failed_mount; 3818 } 3819 3820 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3821 if (ext4_has_feature_inline_data(sb)) { 3822 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3823 " that may contain inline data"); 3824 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3825 } 3826 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3827 ext4_msg(sb, KERN_ERR, 3828 "DAX unsupported by block device. Turning off DAX."); 3829 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3830 } 3831 } 3832 3833 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3834 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3835 es->s_encryption_level); 3836 goto failed_mount; 3837 } 3838 3839 if (sb->s_blocksize != blocksize) { 3840 /* Validate the filesystem blocksize */ 3841 if (!sb_set_blocksize(sb, blocksize)) { 3842 ext4_msg(sb, KERN_ERR, "bad block size %d", 3843 blocksize); 3844 goto failed_mount; 3845 } 3846 3847 brelse(bh); 3848 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3849 offset = do_div(logical_sb_block, blocksize); 3850 bh = sb_bread_unmovable(sb, logical_sb_block); 3851 if (!bh) { 3852 ext4_msg(sb, KERN_ERR, 3853 "Can't read superblock on 2nd try"); 3854 goto failed_mount; 3855 } 3856 es = (struct ext4_super_block *)(bh->b_data + offset); 3857 sbi->s_es = es; 3858 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3859 ext4_msg(sb, KERN_ERR, 3860 "Magic mismatch, very weird!"); 3861 goto failed_mount; 3862 } 3863 } 3864 3865 has_huge_files = ext4_has_feature_huge_file(sb); 3866 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3867 has_huge_files); 3868 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3869 3870 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3871 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3872 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3873 } else { 3874 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3875 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3876 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3877 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3878 sbi->s_first_ino); 3879 goto failed_mount; 3880 } 3881 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3882 (!is_power_of_2(sbi->s_inode_size)) || 3883 (sbi->s_inode_size > blocksize)) { 3884 ext4_msg(sb, KERN_ERR, 3885 "unsupported inode size: %d", 3886 sbi->s_inode_size); 3887 goto failed_mount; 3888 } 3889 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3890 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3891 } 3892 3893 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3894 if (ext4_has_feature_64bit(sb)) { 3895 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3896 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3897 !is_power_of_2(sbi->s_desc_size)) { 3898 ext4_msg(sb, KERN_ERR, 3899 "unsupported descriptor size %lu", 3900 sbi->s_desc_size); 3901 goto failed_mount; 3902 } 3903 } else 3904 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3905 3906 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3907 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3908 3909 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3910 if (sbi->s_inodes_per_block == 0) 3911 goto cantfind_ext4; 3912 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3913 sbi->s_inodes_per_group > blocksize * 8) { 3914 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3915 sbi->s_blocks_per_group); 3916 goto failed_mount; 3917 } 3918 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3919 sbi->s_inodes_per_block; 3920 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3921 sbi->s_sbh = bh; 3922 sbi->s_mount_state = le16_to_cpu(es->s_state); 3923 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3924 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3925 3926 for (i = 0; i < 4; i++) 3927 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3928 sbi->s_def_hash_version = es->s_def_hash_version; 3929 if (ext4_has_feature_dir_index(sb)) { 3930 i = le32_to_cpu(es->s_flags); 3931 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3932 sbi->s_hash_unsigned = 3; 3933 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3934 #ifdef __CHAR_UNSIGNED__ 3935 if (!sb_rdonly(sb)) 3936 es->s_flags |= 3937 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3938 sbi->s_hash_unsigned = 3; 3939 #else 3940 if (!sb_rdonly(sb)) 3941 es->s_flags |= 3942 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3943 #endif 3944 } 3945 } 3946 3947 /* Handle clustersize */ 3948 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3949 has_bigalloc = ext4_has_feature_bigalloc(sb); 3950 if (has_bigalloc) { 3951 if (clustersize < blocksize) { 3952 ext4_msg(sb, KERN_ERR, 3953 "cluster size (%d) smaller than " 3954 "block size (%d)", clustersize, blocksize); 3955 goto failed_mount; 3956 } 3957 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3958 le32_to_cpu(es->s_log_block_size); 3959 sbi->s_clusters_per_group = 3960 le32_to_cpu(es->s_clusters_per_group); 3961 if (sbi->s_clusters_per_group > blocksize * 8) { 3962 ext4_msg(sb, KERN_ERR, 3963 "#clusters per group too big: %lu", 3964 sbi->s_clusters_per_group); 3965 goto failed_mount; 3966 } 3967 if (sbi->s_blocks_per_group != 3968 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3969 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3970 "clusters per group (%lu) inconsistent", 3971 sbi->s_blocks_per_group, 3972 sbi->s_clusters_per_group); 3973 goto failed_mount; 3974 } 3975 } else { 3976 if (clustersize != blocksize) { 3977 ext4_msg(sb, KERN_ERR, 3978 "fragment/cluster size (%d) != " 3979 "block size (%d)", clustersize, blocksize); 3980 goto failed_mount; 3981 } 3982 if (sbi->s_blocks_per_group > blocksize * 8) { 3983 ext4_msg(sb, KERN_ERR, 3984 "#blocks per group too big: %lu", 3985 sbi->s_blocks_per_group); 3986 goto failed_mount; 3987 } 3988 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3989 sbi->s_cluster_bits = 0; 3990 } 3991 sbi->s_cluster_ratio = clustersize / blocksize; 3992 3993 /* Do we have standard group size of clustersize * 8 blocks ? */ 3994 if (sbi->s_blocks_per_group == clustersize << 3) 3995 set_opt2(sb, STD_GROUP_SIZE); 3996 3997 /* 3998 * Test whether we have more sectors than will fit in sector_t, 3999 * and whether the max offset is addressable by the page cache. 4000 */ 4001 err = generic_check_addressable(sb->s_blocksize_bits, 4002 ext4_blocks_count(es)); 4003 if (err) { 4004 ext4_msg(sb, KERN_ERR, "filesystem" 4005 " too large to mount safely on this system"); 4006 if (sizeof(sector_t) < 8) 4007 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 4008 goto failed_mount; 4009 } 4010 4011 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4012 goto cantfind_ext4; 4013 4014 /* check blocks count against device size */ 4015 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4016 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4017 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4018 "exceeds size of device (%llu blocks)", 4019 ext4_blocks_count(es), blocks_count); 4020 goto failed_mount; 4021 } 4022 4023 /* 4024 * It makes no sense for the first data block to be beyond the end 4025 * of the filesystem. 4026 */ 4027 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4028 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4029 "block %u is beyond end of filesystem (%llu)", 4030 le32_to_cpu(es->s_first_data_block), 4031 ext4_blocks_count(es)); 4032 goto failed_mount; 4033 } 4034 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4035 (sbi->s_cluster_ratio == 1)) { 4036 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4037 "block is 0 with a 1k block and cluster size"); 4038 goto failed_mount; 4039 } 4040 4041 blocks_count = (ext4_blocks_count(es) - 4042 le32_to_cpu(es->s_first_data_block) + 4043 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4044 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4045 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4046 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4047 "(block count %llu, first data block %u, " 4048 "blocks per group %lu)", sbi->s_groups_count, 4049 ext4_blocks_count(es), 4050 le32_to_cpu(es->s_first_data_block), 4051 EXT4_BLOCKS_PER_GROUP(sb)); 4052 goto failed_mount; 4053 } 4054 sbi->s_groups_count = blocks_count; 4055 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4056 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4057 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4058 EXT4_DESC_PER_BLOCK(sb); 4059 if (ext4_has_feature_meta_bg(sb)) { 4060 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4061 ext4_msg(sb, KERN_WARNING, 4062 "first meta block group too large: %u " 4063 "(group descriptor block count %u)", 4064 le32_to_cpu(es->s_first_meta_bg), db_count); 4065 goto failed_mount; 4066 } 4067 } 4068 sbi->s_group_desc = kvmalloc_array(db_count, 4069 sizeof(struct buffer_head *), 4070 GFP_KERNEL); 4071 if (sbi->s_group_desc == NULL) { 4072 ext4_msg(sb, KERN_ERR, "not enough memory"); 4073 ret = -ENOMEM; 4074 goto failed_mount; 4075 } 4076 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4077 le32_to_cpu(es->s_inodes_count)) { 4078 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4079 le32_to_cpu(es->s_inodes_count), 4080 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4081 ret = -EINVAL; 4082 goto failed_mount; 4083 } 4084 4085 bgl_lock_init(sbi->s_blockgroup_lock); 4086 4087 /* Pre-read the descriptors into the buffer cache */ 4088 for (i = 0; i < db_count; i++) { 4089 block = descriptor_loc(sb, logical_sb_block, i); 4090 sb_breadahead(sb, block); 4091 } 4092 4093 for (i = 0; i < db_count; i++) { 4094 block = descriptor_loc(sb, logical_sb_block, i); 4095 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4096 if (!sbi->s_group_desc[i]) { 4097 ext4_msg(sb, KERN_ERR, 4098 "can't read group descriptor %d", i); 4099 db_count = i; 4100 goto failed_mount2; 4101 } 4102 } 4103 sbi->s_gdb_count = db_count; 4104 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4105 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4106 ret = -EFSCORRUPTED; 4107 goto failed_mount2; 4108 } 4109 4110 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4111 4112 /* Register extent status tree shrinker */ 4113 if (ext4_es_register_shrinker(sbi)) 4114 goto failed_mount3; 4115 4116 sbi->s_stripe = ext4_get_stripe_size(sbi); 4117 sbi->s_extent_max_zeroout_kb = 32; 4118 4119 /* 4120 * set up enough so that it can read an inode 4121 */ 4122 sb->s_op = &ext4_sops; 4123 sb->s_export_op = &ext4_export_ops; 4124 sb->s_xattr = ext4_xattr_handlers; 4125 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4126 sb->s_cop = &ext4_cryptops; 4127 #endif 4128 #ifdef CONFIG_QUOTA 4129 sb->dq_op = &ext4_quota_operations; 4130 if (ext4_has_feature_quota(sb)) 4131 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4132 else 4133 sb->s_qcop = &ext4_qctl_operations; 4134 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4135 #endif 4136 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4137 4138 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4139 mutex_init(&sbi->s_orphan_lock); 4140 4141 sb->s_root = NULL; 4142 4143 needs_recovery = (es->s_last_orphan != 0 || 4144 ext4_has_feature_journal_needs_recovery(sb)); 4145 4146 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4147 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4148 goto failed_mount3a; 4149 4150 /* 4151 * The first inode we look at is the journal inode. Don't try 4152 * root first: it may be modified in the journal! 4153 */ 4154 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4155 err = ext4_load_journal(sb, es, journal_devnum); 4156 if (err) 4157 goto failed_mount3a; 4158 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4159 ext4_has_feature_journal_needs_recovery(sb)) { 4160 ext4_msg(sb, KERN_ERR, "required journal recovery " 4161 "suppressed and not mounted read-only"); 4162 goto failed_mount_wq; 4163 } else { 4164 /* Nojournal mode, all journal mount options are illegal */ 4165 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4166 ext4_msg(sb, KERN_ERR, "can't mount with " 4167 "journal_checksum, fs mounted w/o journal"); 4168 goto failed_mount_wq; 4169 } 4170 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4171 ext4_msg(sb, KERN_ERR, "can't mount with " 4172 "journal_async_commit, fs mounted w/o journal"); 4173 goto failed_mount_wq; 4174 } 4175 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4176 ext4_msg(sb, KERN_ERR, "can't mount with " 4177 "commit=%lu, fs mounted w/o journal", 4178 sbi->s_commit_interval / HZ); 4179 goto failed_mount_wq; 4180 } 4181 if (EXT4_MOUNT_DATA_FLAGS & 4182 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4183 ext4_msg(sb, KERN_ERR, "can't mount with " 4184 "data=, fs mounted w/o journal"); 4185 goto failed_mount_wq; 4186 } 4187 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4188 clear_opt(sb, JOURNAL_CHECKSUM); 4189 clear_opt(sb, DATA_FLAGS); 4190 sbi->s_journal = NULL; 4191 needs_recovery = 0; 4192 goto no_journal; 4193 } 4194 4195 if (ext4_has_feature_64bit(sb) && 4196 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4197 JBD2_FEATURE_INCOMPAT_64BIT)) { 4198 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4199 goto failed_mount_wq; 4200 } 4201 4202 if (!set_journal_csum_feature_set(sb)) { 4203 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4204 "feature set"); 4205 goto failed_mount_wq; 4206 } 4207 4208 /* We have now updated the journal if required, so we can 4209 * validate the data journaling mode. */ 4210 switch (test_opt(sb, DATA_FLAGS)) { 4211 case 0: 4212 /* No mode set, assume a default based on the journal 4213 * capabilities: ORDERED_DATA if the journal can 4214 * cope, else JOURNAL_DATA 4215 */ 4216 if (jbd2_journal_check_available_features 4217 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4218 set_opt(sb, ORDERED_DATA); 4219 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4220 } else { 4221 set_opt(sb, JOURNAL_DATA); 4222 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4223 } 4224 break; 4225 4226 case EXT4_MOUNT_ORDERED_DATA: 4227 case EXT4_MOUNT_WRITEBACK_DATA: 4228 if (!jbd2_journal_check_available_features 4229 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4230 ext4_msg(sb, KERN_ERR, "Journal does not support " 4231 "requested data journaling mode"); 4232 goto failed_mount_wq; 4233 } 4234 default: 4235 break; 4236 } 4237 4238 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4239 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4240 ext4_msg(sb, KERN_ERR, "can't mount with " 4241 "journal_async_commit in data=ordered mode"); 4242 goto failed_mount_wq; 4243 } 4244 4245 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4246 4247 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4248 4249 no_journal: 4250 if (!test_opt(sb, NO_MBCACHE)) { 4251 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4252 if (!sbi->s_ea_block_cache) { 4253 ext4_msg(sb, KERN_ERR, 4254 "Failed to create ea_block_cache"); 4255 goto failed_mount_wq; 4256 } 4257 4258 if (ext4_has_feature_ea_inode(sb)) { 4259 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4260 if (!sbi->s_ea_inode_cache) { 4261 ext4_msg(sb, KERN_ERR, 4262 "Failed to create ea_inode_cache"); 4263 goto failed_mount_wq; 4264 } 4265 } 4266 } 4267 4268 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4269 (blocksize != PAGE_SIZE)) { 4270 ext4_msg(sb, KERN_ERR, 4271 "Unsupported blocksize for fs encryption"); 4272 goto failed_mount_wq; 4273 } 4274 4275 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4276 !ext4_has_feature_encrypt(sb)) { 4277 ext4_set_feature_encrypt(sb); 4278 ext4_commit_super(sb, 1); 4279 } 4280 4281 /* 4282 * Get the # of file system overhead blocks from the 4283 * superblock if present. 4284 */ 4285 if (es->s_overhead_clusters) 4286 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4287 else { 4288 err = ext4_calculate_overhead(sb); 4289 if (err) 4290 goto failed_mount_wq; 4291 } 4292 4293 /* 4294 * The maximum number of concurrent works can be high and 4295 * concurrency isn't really necessary. Limit it to 1. 4296 */ 4297 EXT4_SB(sb)->rsv_conversion_wq = 4298 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4299 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4300 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4301 ret = -ENOMEM; 4302 goto failed_mount4; 4303 } 4304 4305 /* 4306 * The jbd2_journal_load will have done any necessary log recovery, 4307 * so we can safely mount the rest of the filesystem now. 4308 */ 4309 4310 root = ext4_iget(sb, EXT4_ROOT_INO); 4311 if (IS_ERR(root)) { 4312 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4313 ret = PTR_ERR(root); 4314 root = NULL; 4315 goto failed_mount4; 4316 } 4317 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4318 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4319 iput(root); 4320 goto failed_mount4; 4321 } 4322 sb->s_root = d_make_root(root); 4323 if (!sb->s_root) { 4324 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4325 ret = -ENOMEM; 4326 goto failed_mount4; 4327 } 4328 4329 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4330 if (ret == -EROFS) { 4331 sb->s_flags |= SB_RDONLY; 4332 ret = 0; 4333 } else if (ret) 4334 goto failed_mount4a; 4335 4336 /* determine the minimum size of new large inodes, if present */ 4337 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4338 sbi->s_want_extra_isize == 0) { 4339 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4340 EXT4_GOOD_OLD_INODE_SIZE; 4341 if (ext4_has_feature_extra_isize(sb)) { 4342 if (sbi->s_want_extra_isize < 4343 le16_to_cpu(es->s_want_extra_isize)) 4344 sbi->s_want_extra_isize = 4345 le16_to_cpu(es->s_want_extra_isize); 4346 if (sbi->s_want_extra_isize < 4347 le16_to_cpu(es->s_min_extra_isize)) 4348 sbi->s_want_extra_isize = 4349 le16_to_cpu(es->s_min_extra_isize); 4350 } 4351 } 4352 /* Check if enough inode space is available */ 4353 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4354 sbi->s_inode_size) { 4355 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4356 EXT4_GOOD_OLD_INODE_SIZE; 4357 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4358 "available"); 4359 } 4360 4361 ext4_set_resv_clusters(sb); 4362 4363 err = ext4_setup_system_zone(sb); 4364 if (err) { 4365 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4366 "zone (%d)", err); 4367 goto failed_mount4a; 4368 } 4369 4370 ext4_ext_init(sb); 4371 err = ext4_mb_init(sb); 4372 if (err) { 4373 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4374 err); 4375 goto failed_mount5; 4376 } 4377 4378 block = ext4_count_free_clusters(sb); 4379 ext4_free_blocks_count_set(sbi->s_es, 4380 EXT4_C2B(sbi, block)); 4381 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4382 GFP_KERNEL); 4383 if (!err) { 4384 unsigned long freei = ext4_count_free_inodes(sb); 4385 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4386 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4387 GFP_KERNEL); 4388 } 4389 if (!err) 4390 err = percpu_counter_init(&sbi->s_dirs_counter, 4391 ext4_count_dirs(sb), GFP_KERNEL); 4392 if (!err) 4393 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4394 GFP_KERNEL); 4395 if (!err) 4396 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4397 4398 if (err) { 4399 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4400 goto failed_mount6; 4401 } 4402 4403 if (ext4_has_feature_flex_bg(sb)) 4404 if (!ext4_fill_flex_info(sb)) { 4405 ext4_msg(sb, KERN_ERR, 4406 "unable to initialize " 4407 "flex_bg meta info!"); 4408 goto failed_mount6; 4409 } 4410 4411 err = ext4_register_li_request(sb, first_not_zeroed); 4412 if (err) 4413 goto failed_mount6; 4414 4415 err = ext4_register_sysfs(sb); 4416 if (err) 4417 goto failed_mount7; 4418 4419 #ifdef CONFIG_QUOTA 4420 /* Enable quota usage during mount. */ 4421 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4422 err = ext4_enable_quotas(sb); 4423 if (err) 4424 goto failed_mount8; 4425 } 4426 #endif /* CONFIG_QUOTA */ 4427 4428 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4429 ext4_orphan_cleanup(sb, es); 4430 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4431 if (needs_recovery) { 4432 ext4_msg(sb, KERN_INFO, "recovery complete"); 4433 ext4_mark_recovery_complete(sb, es); 4434 } 4435 if (EXT4_SB(sb)->s_journal) { 4436 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4437 descr = " journalled data mode"; 4438 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4439 descr = " ordered data mode"; 4440 else 4441 descr = " writeback data mode"; 4442 } else 4443 descr = "out journal"; 4444 4445 if (test_opt(sb, DISCARD)) { 4446 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4447 if (!blk_queue_discard(q)) 4448 ext4_msg(sb, KERN_WARNING, 4449 "mounting with \"discard\" option, but " 4450 "the device does not support discard"); 4451 } 4452 4453 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4454 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4455 "Opts: %.*s%s%s", descr, 4456 (int) sizeof(sbi->s_es->s_mount_opts), 4457 sbi->s_es->s_mount_opts, 4458 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4459 4460 if (es->s_error_count) 4461 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4462 4463 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4464 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4465 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4466 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4467 4468 kfree(orig_data); 4469 return 0; 4470 4471 cantfind_ext4: 4472 if (!silent) 4473 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4474 goto failed_mount; 4475 4476 #ifdef CONFIG_QUOTA 4477 failed_mount8: 4478 ext4_unregister_sysfs(sb); 4479 #endif 4480 failed_mount7: 4481 ext4_unregister_li_request(sb); 4482 failed_mount6: 4483 ext4_mb_release(sb); 4484 if (sbi->s_flex_groups) 4485 kvfree(sbi->s_flex_groups); 4486 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4487 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4488 percpu_counter_destroy(&sbi->s_dirs_counter); 4489 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4490 failed_mount5: 4491 ext4_ext_release(sb); 4492 ext4_release_system_zone(sb); 4493 failed_mount4a: 4494 dput(sb->s_root); 4495 sb->s_root = NULL; 4496 failed_mount4: 4497 ext4_msg(sb, KERN_ERR, "mount failed"); 4498 if (EXT4_SB(sb)->rsv_conversion_wq) 4499 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4500 failed_mount_wq: 4501 if (sbi->s_ea_inode_cache) { 4502 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4503 sbi->s_ea_inode_cache = NULL; 4504 } 4505 if (sbi->s_ea_block_cache) { 4506 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4507 sbi->s_ea_block_cache = NULL; 4508 } 4509 if (sbi->s_journal) { 4510 jbd2_journal_destroy(sbi->s_journal); 4511 sbi->s_journal = NULL; 4512 } 4513 failed_mount3a: 4514 ext4_es_unregister_shrinker(sbi); 4515 failed_mount3: 4516 del_timer_sync(&sbi->s_err_report); 4517 if (sbi->s_mmp_tsk) 4518 kthread_stop(sbi->s_mmp_tsk); 4519 failed_mount2: 4520 for (i = 0; i < db_count; i++) 4521 brelse(sbi->s_group_desc[i]); 4522 kvfree(sbi->s_group_desc); 4523 failed_mount: 4524 if (sbi->s_chksum_driver) 4525 crypto_free_shash(sbi->s_chksum_driver); 4526 #ifdef CONFIG_QUOTA 4527 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4528 kfree(sbi->s_qf_names[i]); 4529 #endif 4530 ext4_blkdev_remove(sbi); 4531 brelse(bh); 4532 out_fail: 4533 sb->s_fs_info = NULL; 4534 kfree(sbi->s_blockgroup_lock); 4535 out_free_base: 4536 kfree(sbi); 4537 kfree(orig_data); 4538 fs_put_dax(dax_dev); 4539 return err ? err : ret; 4540 } 4541 4542 /* 4543 * Setup any per-fs journal parameters now. We'll do this both on 4544 * initial mount, once the journal has been initialised but before we've 4545 * done any recovery; and again on any subsequent remount. 4546 */ 4547 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4548 { 4549 struct ext4_sb_info *sbi = EXT4_SB(sb); 4550 4551 journal->j_commit_interval = sbi->s_commit_interval; 4552 journal->j_min_batch_time = sbi->s_min_batch_time; 4553 journal->j_max_batch_time = sbi->s_max_batch_time; 4554 4555 write_lock(&journal->j_state_lock); 4556 if (test_opt(sb, BARRIER)) 4557 journal->j_flags |= JBD2_BARRIER; 4558 else 4559 journal->j_flags &= ~JBD2_BARRIER; 4560 if (test_opt(sb, DATA_ERR_ABORT)) 4561 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4562 else 4563 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4564 write_unlock(&journal->j_state_lock); 4565 } 4566 4567 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4568 unsigned int journal_inum) 4569 { 4570 struct inode *journal_inode; 4571 4572 /* 4573 * Test for the existence of a valid inode on disk. Bad things 4574 * happen if we iget() an unused inode, as the subsequent iput() 4575 * will try to delete it. 4576 */ 4577 journal_inode = ext4_iget(sb, journal_inum); 4578 if (IS_ERR(journal_inode)) { 4579 ext4_msg(sb, KERN_ERR, "no journal found"); 4580 return NULL; 4581 } 4582 if (!journal_inode->i_nlink) { 4583 make_bad_inode(journal_inode); 4584 iput(journal_inode); 4585 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4586 return NULL; 4587 } 4588 4589 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4590 journal_inode, journal_inode->i_size); 4591 if (!S_ISREG(journal_inode->i_mode)) { 4592 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4593 iput(journal_inode); 4594 return NULL; 4595 } 4596 return journal_inode; 4597 } 4598 4599 static journal_t *ext4_get_journal(struct super_block *sb, 4600 unsigned int journal_inum) 4601 { 4602 struct inode *journal_inode; 4603 journal_t *journal; 4604 4605 BUG_ON(!ext4_has_feature_journal(sb)); 4606 4607 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4608 if (!journal_inode) 4609 return NULL; 4610 4611 journal = jbd2_journal_init_inode(journal_inode); 4612 if (!journal) { 4613 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4614 iput(journal_inode); 4615 return NULL; 4616 } 4617 journal->j_private = sb; 4618 ext4_init_journal_params(sb, journal); 4619 return journal; 4620 } 4621 4622 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4623 dev_t j_dev) 4624 { 4625 struct buffer_head *bh; 4626 journal_t *journal; 4627 ext4_fsblk_t start; 4628 ext4_fsblk_t len; 4629 int hblock, blocksize; 4630 ext4_fsblk_t sb_block; 4631 unsigned long offset; 4632 struct ext4_super_block *es; 4633 struct block_device *bdev; 4634 4635 BUG_ON(!ext4_has_feature_journal(sb)); 4636 4637 bdev = ext4_blkdev_get(j_dev, sb); 4638 if (bdev == NULL) 4639 return NULL; 4640 4641 blocksize = sb->s_blocksize; 4642 hblock = bdev_logical_block_size(bdev); 4643 if (blocksize < hblock) { 4644 ext4_msg(sb, KERN_ERR, 4645 "blocksize too small for journal device"); 4646 goto out_bdev; 4647 } 4648 4649 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4650 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4651 set_blocksize(bdev, blocksize); 4652 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4653 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4654 "external journal"); 4655 goto out_bdev; 4656 } 4657 4658 es = (struct ext4_super_block *) (bh->b_data + offset); 4659 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4660 !(le32_to_cpu(es->s_feature_incompat) & 4661 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4662 ext4_msg(sb, KERN_ERR, "external journal has " 4663 "bad superblock"); 4664 brelse(bh); 4665 goto out_bdev; 4666 } 4667 4668 if ((le32_to_cpu(es->s_feature_ro_compat) & 4669 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4670 es->s_checksum != ext4_superblock_csum(sb, es)) { 4671 ext4_msg(sb, KERN_ERR, "external journal has " 4672 "corrupt superblock"); 4673 brelse(bh); 4674 goto out_bdev; 4675 } 4676 4677 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4678 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4679 brelse(bh); 4680 goto out_bdev; 4681 } 4682 4683 len = ext4_blocks_count(es); 4684 start = sb_block + 1; 4685 brelse(bh); /* we're done with the superblock */ 4686 4687 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4688 start, len, blocksize); 4689 if (!journal) { 4690 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4691 goto out_bdev; 4692 } 4693 journal->j_private = sb; 4694 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4695 wait_on_buffer(journal->j_sb_buffer); 4696 if (!buffer_uptodate(journal->j_sb_buffer)) { 4697 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4698 goto out_journal; 4699 } 4700 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4701 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4702 "user (unsupported) - %d", 4703 be32_to_cpu(journal->j_superblock->s_nr_users)); 4704 goto out_journal; 4705 } 4706 EXT4_SB(sb)->journal_bdev = bdev; 4707 ext4_init_journal_params(sb, journal); 4708 return journal; 4709 4710 out_journal: 4711 jbd2_journal_destroy(journal); 4712 out_bdev: 4713 ext4_blkdev_put(bdev); 4714 return NULL; 4715 } 4716 4717 static int ext4_load_journal(struct super_block *sb, 4718 struct ext4_super_block *es, 4719 unsigned long journal_devnum) 4720 { 4721 journal_t *journal; 4722 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4723 dev_t journal_dev; 4724 int err = 0; 4725 int really_read_only; 4726 4727 BUG_ON(!ext4_has_feature_journal(sb)); 4728 4729 if (journal_devnum && 4730 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4731 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4732 "numbers have changed"); 4733 journal_dev = new_decode_dev(journal_devnum); 4734 } else 4735 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4736 4737 really_read_only = bdev_read_only(sb->s_bdev); 4738 4739 /* 4740 * Are we loading a blank journal or performing recovery after a 4741 * crash? For recovery, we need to check in advance whether we 4742 * can get read-write access to the device. 4743 */ 4744 if (ext4_has_feature_journal_needs_recovery(sb)) { 4745 if (sb_rdonly(sb)) { 4746 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4747 "required on readonly filesystem"); 4748 if (really_read_only) { 4749 ext4_msg(sb, KERN_ERR, "write access " 4750 "unavailable, cannot proceed " 4751 "(try mounting with noload)"); 4752 return -EROFS; 4753 } 4754 ext4_msg(sb, KERN_INFO, "write access will " 4755 "be enabled during recovery"); 4756 } 4757 } 4758 4759 if (journal_inum && journal_dev) { 4760 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4761 "and inode journals!"); 4762 return -EINVAL; 4763 } 4764 4765 if (journal_inum) { 4766 if (!(journal = ext4_get_journal(sb, journal_inum))) 4767 return -EINVAL; 4768 } else { 4769 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4770 return -EINVAL; 4771 } 4772 4773 if (!(journal->j_flags & JBD2_BARRIER)) 4774 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4775 4776 if (!ext4_has_feature_journal_needs_recovery(sb)) 4777 err = jbd2_journal_wipe(journal, !really_read_only); 4778 if (!err) { 4779 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4780 if (save) 4781 memcpy(save, ((char *) es) + 4782 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4783 err = jbd2_journal_load(journal); 4784 if (save) 4785 memcpy(((char *) es) + EXT4_S_ERR_START, 4786 save, EXT4_S_ERR_LEN); 4787 kfree(save); 4788 } 4789 4790 if (err) { 4791 ext4_msg(sb, KERN_ERR, "error loading journal"); 4792 jbd2_journal_destroy(journal); 4793 return err; 4794 } 4795 4796 EXT4_SB(sb)->s_journal = journal; 4797 ext4_clear_journal_err(sb, es); 4798 4799 if (!really_read_only && journal_devnum && 4800 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4801 es->s_journal_dev = cpu_to_le32(journal_devnum); 4802 4803 /* Make sure we flush the recovery flag to disk. */ 4804 ext4_commit_super(sb, 1); 4805 } 4806 4807 return 0; 4808 } 4809 4810 static int ext4_commit_super(struct super_block *sb, int sync) 4811 { 4812 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4813 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4814 int error = 0; 4815 4816 if (!sbh || block_device_ejected(sb)) 4817 return error; 4818 4819 /* 4820 * The superblock bh should be mapped, but it might not be if the 4821 * device was hot-removed. Not much we can do but fail the I/O. 4822 */ 4823 if (!buffer_mapped(sbh)) 4824 return error; 4825 4826 /* 4827 * If the file system is mounted read-only, don't update the 4828 * superblock write time. This avoids updating the superblock 4829 * write time when we are mounting the root file system 4830 * read/only but we need to replay the journal; at that point, 4831 * for people who are east of GMT and who make their clock 4832 * tick in localtime for Windows bug-for-bug compatibility, 4833 * the clock is set in the future, and this will cause e2fsck 4834 * to complain and force a full file system check. 4835 */ 4836 if (!(sb->s_flags & SB_RDONLY)) 4837 ext4_update_tstamp(es, s_wtime); 4838 if (sb->s_bdev->bd_part) 4839 es->s_kbytes_written = 4840 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4841 ((part_stat_read(sb->s_bdev->bd_part, 4842 sectors[STAT_WRITE]) - 4843 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4844 else 4845 es->s_kbytes_written = 4846 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4847 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4848 ext4_free_blocks_count_set(es, 4849 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4850 &EXT4_SB(sb)->s_freeclusters_counter))); 4851 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4852 es->s_free_inodes_count = 4853 cpu_to_le32(percpu_counter_sum_positive( 4854 &EXT4_SB(sb)->s_freeinodes_counter)); 4855 BUFFER_TRACE(sbh, "marking dirty"); 4856 ext4_superblock_csum_set(sb); 4857 if (sync) 4858 lock_buffer(sbh); 4859 if (buffer_write_io_error(sbh)) { 4860 /* 4861 * Oh, dear. A previous attempt to write the 4862 * superblock failed. This could happen because the 4863 * USB device was yanked out. Or it could happen to 4864 * be a transient write error and maybe the block will 4865 * be remapped. Nothing we can do but to retry the 4866 * write and hope for the best. 4867 */ 4868 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4869 "superblock detected"); 4870 clear_buffer_write_io_error(sbh); 4871 set_buffer_uptodate(sbh); 4872 } 4873 mark_buffer_dirty(sbh); 4874 if (sync) { 4875 unlock_buffer(sbh); 4876 error = __sync_dirty_buffer(sbh, 4877 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4878 if (buffer_write_io_error(sbh)) { 4879 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4880 "superblock"); 4881 clear_buffer_write_io_error(sbh); 4882 set_buffer_uptodate(sbh); 4883 } 4884 } 4885 return error; 4886 } 4887 4888 /* 4889 * Have we just finished recovery? If so, and if we are mounting (or 4890 * remounting) the filesystem readonly, then we will end up with a 4891 * consistent fs on disk. Record that fact. 4892 */ 4893 static void ext4_mark_recovery_complete(struct super_block *sb, 4894 struct ext4_super_block *es) 4895 { 4896 journal_t *journal = EXT4_SB(sb)->s_journal; 4897 4898 if (!ext4_has_feature_journal(sb)) { 4899 BUG_ON(journal != NULL); 4900 return; 4901 } 4902 jbd2_journal_lock_updates(journal); 4903 if (jbd2_journal_flush(journal) < 0) 4904 goto out; 4905 4906 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4907 ext4_clear_feature_journal_needs_recovery(sb); 4908 ext4_commit_super(sb, 1); 4909 } 4910 4911 out: 4912 jbd2_journal_unlock_updates(journal); 4913 } 4914 4915 /* 4916 * If we are mounting (or read-write remounting) a filesystem whose journal 4917 * has recorded an error from a previous lifetime, move that error to the 4918 * main filesystem now. 4919 */ 4920 static void ext4_clear_journal_err(struct super_block *sb, 4921 struct ext4_super_block *es) 4922 { 4923 journal_t *journal; 4924 int j_errno; 4925 const char *errstr; 4926 4927 BUG_ON(!ext4_has_feature_journal(sb)); 4928 4929 journal = EXT4_SB(sb)->s_journal; 4930 4931 /* 4932 * Now check for any error status which may have been recorded in the 4933 * journal by a prior ext4_error() or ext4_abort() 4934 */ 4935 4936 j_errno = jbd2_journal_errno(journal); 4937 if (j_errno) { 4938 char nbuf[16]; 4939 4940 errstr = ext4_decode_error(sb, j_errno, nbuf); 4941 ext4_warning(sb, "Filesystem error recorded " 4942 "from previous mount: %s", errstr); 4943 ext4_warning(sb, "Marking fs in need of filesystem check."); 4944 4945 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4946 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4947 ext4_commit_super(sb, 1); 4948 4949 jbd2_journal_clear_err(journal); 4950 jbd2_journal_update_sb_errno(journal); 4951 } 4952 } 4953 4954 /* 4955 * Force the running and committing transactions to commit, 4956 * and wait on the commit. 4957 */ 4958 int ext4_force_commit(struct super_block *sb) 4959 { 4960 journal_t *journal; 4961 4962 if (sb_rdonly(sb)) 4963 return 0; 4964 4965 journal = EXT4_SB(sb)->s_journal; 4966 return ext4_journal_force_commit(journal); 4967 } 4968 4969 static int ext4_sync_fs(struct super_block *sb, int wait) 4970 { 4971 int ret = 0; 4972 tid_t target; 4973 bool needs_barrier = false; 4974 struct ext4_sb_info *sbi = EXT4_SB(sb); 4975 4976 if (unlikely(ext4_forced_shutdown(sbi))) 4977 return 0; 4978 4979 trace_ext4_sync_fs(sb, wait); 4980 flush_workqueue(sbi->rsv_conversion_wq); 4981 /* 4982 * Writeback quota in non-journalled quota case - journalled quota has 4983 * no dirty dquots 4984 */ 4985 dquot_writeback_dquots(sb, -1); 4986 /* 4987 * Data writeback is possible w/o journal transaction, so barrier must 4988 * being sent at the end of the function. But we can skip it if 4989 * transaction_commit will do it for us. 4990 */ 4991 if (sbi->s_journal) { 4992 target = jbd2_get_latest_transaction(sbi->s_journal); 4993 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4994 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4995 needs_barrier = true; 4996 4997 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4998 if (wait) 4999 ret = jbd2_log_wait_commit(sbi->s_journal, 5000 target); 5001 } 5002 } else if (wait && test_opt(sb, BARRIER)) 5003 needs_barrier = true; 5004 if (needs_barrier) { 5005 int err; 5006 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5007 if (!ret) 5008 ret = err; 5009 } 5010 5011 return ret; 5012 } 5013 5014 /* 5015 * LVM calls this function before a (read-only) snapshot is created. This 5016 * gives us a chance to flush the journal completely and mark the fs clean. 5017 * 5018 * Note that only this function cannot bring a filesystem to be in a clean 5019 * state independently. It relies on upper layer to stop all data & metadata 5020 * modifications. 5021 */ 5022 static int ext4_freeze(struct super_block *sb) 5023 { 5024 int error = 0; 5025 journal_t *journal; 5026 5027 if (sb_rdonly(sb)) 5028 return 0; 5029 5030 journal = EXT4_SB(sb)->s_journal; 5031 5032 if (journal) { 5033 /* Now we set up the journal barrier. */ 5034 jbd2_journal_lock_updates(journal); 5035 5036 /* 5037 * Don't clear the needs_recovery flag if we failed to 5038 * flush the journal. 5039 */ 5040 error = jbd2_journal_flush(journal); 5041 if (error < 0) 5042 goto out; 5043 5044 /* Journal blocked and flushed, clear needs_recovery flag. */ 5045 ext4_clear_feature_journal_needs_recovery(sb); 5046 } 5047 5048 error = ext4_commit_super(sb, 1); 5049 out: 5050 if (journal) 5051 /* we rely on upper layer to stop further updates */ 5052 jbd2_journal_unlock_updates(journal); 5053 return error; 5054 } 5055 5056 /* 5057 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5058 * flag here, even though the filesystem is not technically dirty yet. 5059 */ 5060 static int ext4_unfreeze(struct super_block *sb) 5061 { 5062 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5063 return 0; 5064 5065 if (EXT4_SB(sb)->s_journal) { 5066 /* Reset the needs_recovery flag before the fs is unlocked. */ 5067 ext4_set_feature_journal_needs_recovery(sb); 5068 } 5069 5070 ext4_commit_super(sb, 1); 5071 return 0; 5072 } 5073 5074 /* 5075 * Structure to save mount options for ext4_remount's benefit 5076 */ 5077 struct ext4_mount_options { 5078 unsigned long s_mount_opt; 5079 unsigned long s_mount_opt2; 5080 kuid_t s_resuid; 5081 kgid_t s_resgid; 5082 unsigned long s_commit_interval; 5083 u32 s_min_batch_time, s_max_batch_time; 5084 #ifdef CONFIG_QUOTA 5085 int s_jquota_fmt; 5086 char *s_qf_names[EXT4_MAXQUOTAS]; 5087 #endif 5088 }; 5089 5090 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5091 { 5092 struct ext4_super_block *es; 5093 struct ext4_sb_info *sbi = EXT4_SB(sb); 5094 unsigned long old_sb_flags; 5095 struct ext4_mount_options old_opts; 5096 int enable_quota = 0; 5097 ext4_group_t g; 5098 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5099 int err = 0; 5100 #ifdef CONFIG_QUOTA 5101 int i, j; 5102 #endif 5103 char *orig_data = kstrdup(data, GFP_KERNEL); 5104 5105 if (data && !orig_data) 5106 return -ENOMEM; 5107 5108 /* Store the original options */ 5109 old_sb_flags = sb->s_flags; 5110 old_opts.s_mount_opt = sbi->s_mount_opt; 5111 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5112 old_opts.s_resuid = sbi->s_resuid; 5113 old_opts.s_resgid = sbi->s_resgid; 5114 old_opts.s_commit_interval = sbi->s_commit_interval; 5115 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5116 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5117 #ifdef CONFIG_QUOTA 5118 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5119 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5120 if (sbi->s_qf_names[i]) { 5121 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 5122 GFP_KERNEL); 5123 if (!old_opts.s_qf_names[i]) { 5124 for (j = 0; j < i; j++) 5125 kfree(old_opts.s_qf_names[j]); 5126 kfree(orig_data); 5127 return -ENOMEM; 5128 } 5129 } else 5130 old_opts.s_qf_names[i] = NULL; 5131 #endif 5132 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5133 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5134 5135 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5136 err = -EINVAL; 5137 goto restore_opts; 5138 } 5139 5140 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5141 test_opt(sb, JOURNAL_CHECKSUM)) { 5142 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5143 "during remount not supported; ignoring"); 5144 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5145 } 5146 5147 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5148 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5149 ext4_msg(sb, KERN_ERR, "can't mount with " 5150 "both data=journal and delalloc"); 5151 err = -EINVAL; 5152 goto restore_opts; 5153 } 5154 if (test_opt(sb, DIOREAD_NOLOCK)) { 5155 ext4_msg(sb, KERN_ERR, "can't mount with " 5156 "both data=journal and dioread_nolock"); 5157 err = -EINVAL; 5158 goto restore_opts; 5159 } 5160 if (test_opt(sb, DAX)) { 5161 ext4_msg(sb, KERN_ERR, "can't mount with " 5162 "both data=journal and dax"); 5163 err = -EINVAL; 5164 goto restore_opts; 5165 } 5166 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5167 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5168 ext4_msg(sb, KERN_ERR, "can't mount with " 5169 "journal_async_commit in data=ordered mode"); 5170 err = -EINVAL; 5171 goto restore_opts; 5172 } 5173 } 5174 5175 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5176 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5177 err = -EINVAL; 5178 goto restore_opts; 5179 } 5180 5181 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5182 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5183 "dax flag with busy inodes while remounting"); 5184 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5185 } 5186 5187 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5188 ext4_abort(sb, "Abort forced by user"); 5189 5190 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5191 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5192 5193 es = sbi->s_es; 5194 5195 if (sbi->s_journal) { 5196 ext4_init_journal_params(sb, sbi->s_journal); 5197 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5198 } 5199 5200 if (*flags & SB_LAZYTIME) 5201 sb->s_flags |= SB_LAZYTIME; 5202 5203 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5204 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5205 err = -EROFS; 5206 goto restore_opts; 5207 } 5208 5209 if (*flags & SB_RDONLY) { 5210 err = sync_filesystem(sb); 5211 if (err < 0) 5212 goto restore_opts; 5213 err = dquot_suspend(sb, -1); 5214 if (err < 0) 5215 goto restore_opts; 5216 5217 /* 5218 * First of all, the unconditional stuff we have to do 5219 * to disable replay of the journal when we next remount 5220 */ 5221 sb->s_flags |= SB_RDONLY; 5222 5223 /* 5224 * OK, test if we are remounting a valid rw partition 5225 * readonly, and if so set the rdonly flag and then 5226 * mark the partition as valid again. 5227 */ 5228 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5229 (sbi->s_mount_state & EXT4_VALID_FS)) 5230 es->s_state = cpu_to_le16(sbi->s_mount_state); 5231 5232 if (sbi->s_journal) 5233 ext4_mark_recovery_complete(sb, es); 5234 if (sbi->s_mmp_tsk) 5235 kthread_stop(sbi->s_mmp_tsk); 5236 } else { 5237 /* Make sure we can mount this feature set readwrite */ 5238 if (ext4_has_feature_readonly(sb) || 5239 !ext4_feature_set_ok(sb, 0)) { 5240 err = -EROFS; 5241 goto restore_opts; 5242 } 5243 /* 5244 * Make sure the group descriptor checksums 5245 * are sane. If they aren't, refuse to remount r/w. 5246 */ 5247 for (g = 0; g < sbi->s_groups_count; g++) { 5248 struct ext4_group_desc *gdp = 5249 ext4_get_group_desc(sb, g, NULL); 5250 5251 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5252 ext4_msg(sb, KERN_ERR, 5253 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5254 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5255 le16_to_cpu(gdp->bg_checksum)); 5256 err = -EFSBADCRC; 5257 goto restore_opts; 5258 } 5259 } 5260 5261 /* 5262 * If we have an unprocessed orphan list hanging 5263 * around from a previously readonly bdev mount, 5264 * require a full umount/remount for now. 5265 */ 5266 if (es->s_last_orphan) { 5267 ext4_msg(sb, KERN_WARNING, "Couldn't " 5268 "remount RDWR because of unprocessed " 5269 "orphan inode list. Please " 5270 "umount/remount instead"); 5271 err = -EINVAL; 5272 goto restore_opts; 5273 } 5274 5275 /* 5276 * Mounting a RDONLY partition read-write, so reread 5277 * and store the current valid flag. (It may have 5278 * been changed by e2fsck since we originally mounted 5279 * the partition.) 5280 */ 5281 if (sbi->s_journal) 5282 ext4_clear_journal_err(sb, es); 5283 sbi->s_mount_state = le16_to_cpu(es->s_state); 5284 5285 err = ext4_setup_super(sb, es, 0); 5286 if (err) 5287 goto restore_opts; 5288 5289 sb->s_flags &= ~SB_RDONLY; 5290 if (ext4_has_feature_mmp(sb)) 5291 if (ext4_multi_mount_protect(sb, 5292 le64_to_cpu(es->s_mmp_block))) { 5293 err = -EROFS; 5294 goto restore_opts; 5295 } 5296 enable_quota = 1; 5297 } 5298 } 5299 5300 /* 5301 * Reinitialize lazy itable initialization thread based on 5302 * current settings 5303 */ 5304 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5305 ext4_unregister_li_request(sb); 5306 else { 5307 ext4_group_t first_not_zeroed; 5308 first_not_zeroed = ext4_has_uninit_itable(sb); 5309 ext4_register_li_request(sb, first_not_zeroed); 5310 } 5311 5312 ext4_setup_system_zone(sb); 5313 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5314 err = ext4_commit_super(sb, 1); 5315 if (err) 5316 goto restore_opts; 5317 } 5318 5319 #ifdef CONFIG_QUOTA 5320 /* Release old quota file names */ 5321 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5322 kfree(old_opts.s_qf_names[i]); 5323 if (enable_quota) { 5324 if (sb_any_quota_suspended(sb)) 5325 dquot_resume(sb, -1); 5326 else if (ext4_has_feature_quota(sb)) { 5327 err = ext4_enable_quotas(sb); 5328 if (err) 5329 goto restore_opts; 5330 } 5331 } 5332 #endif 5333 5334 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5335 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5336 kfree(orig_data); 5337 return 0; 5338 5339 restore_opts: 5340 sb->s_flags = old_sb_flags; 5341 sbi->s_mount_opt = old_opts.s_mount_opt; 5342 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5343 sbi->s_resuid = old_opts.s_resuid; 5344 sbi->s_resgid = old_opts.s_resgid; 5345 sbi->s_commit_interval = old_opts.s_commit_interval; 5346 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5347 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5348 #ifdef CONFIG_QUOTA 5349 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5350 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5351 kfree(sbi->s_qf_names[i]); 5352 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5353 } 5354 #endif 5355 kfree(orig_data); 5356 return err; 5357 } 5358 5359 #ifdef CONFIG_QUOTA 5360 static int ext4_statfs_project(struct super_block *sb, 5361 kprojid_t projid, struct kstatfs *buf) 5362 { 5363 struct kqid qid; 5364 struct dquot *dquot; 5365 u64 limit; 5366 u64 curblock; 5367 5368 qid = make_kqid_projid(projid); 5369 dquot = dqget(sb, qid); 5370 if (IS_ERR(dquot)) 5371 return PTR_ERR(dquot); 5372 spin_lock(&dquot->dq_dqb_lock); 5373 5374 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5375 dquot->dq_dqb.dqb_bsoftlimit : 5376 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5377 if (limit && buf->f_blocks > limit) { 5378 curblock = (dquot->dq_dqb.dqb_curspace + 5379 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5380 buf->f_blocks = limit; 5381 buf->f_bfree = buf->f_bavail = 5382 (buf->f_blocks > curblock) ? 5383 (buf->f_blocks - curblock) : 0; 5384 } 5385 5386 limit = dquot->dq_dqb.dqb_isoftlimit ? 5387 dquot->dq_dqb.dqb_isoftlimit : 5388 dquot->dq_dqb.dqb_ihardlimit; 5389 if (limit && buf->f_files > limit) { 5390 buf->f_files = limit; 5391 buf->f_ffree = 5392 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5393 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5394 } 5395 5396 spin_unlock(&dquot->dq_dqb_lock); 5397 dqput(dquot); 5398 return 0; 5399 } 5400 #endif 5401 5402 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5403 { 5404 struct super_block *sb = dentry->d_sb; 5405 struct ext4_sb_info *sbi = EXT4_SB(sb); 5406 struct ext4_super_block *es = sbi->s_es; 5407 ext4_fsblk_t overhead = 0, resv_blocks; 5408 u64 fsid; 5409 s64 bfree; 5410 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5411 5412 if (!test_opt(sb, MINIX_DF)) 5413 overhead = sbi->s_overhead; 5414 5415 buf->f_type = EXT4_SUPER_MAGIC; 5416 buf->f_bsize = sb->s_blocksize; 5417 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5418 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5419 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5420 /* prevent underflow in case that few free space is available */ 5421 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5422 buf->f_bavail = buf->f_bfree - 5423 (ext4_r_blocks_count(es) + resv_blocks); 5424 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5425 buf->f_bavail = 0; 5426 buf->f_files = le32_to_cpu(es->s_inodes_count); 5427 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5428 buf->f_namelen = EXT4_NAME_LEN; 5429 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5430 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5431 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5432 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5433 5434 #ifdef CONFIG_QUOTA 5435 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5436 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5437 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5438 #endif 5439 return 0; 5440 } 5441 5442 5443 #ifdef CONFIG_QUOTA 5444 5445 /* 5446 * Helper functions so that transaction is started before we acquire dqio_sem 5447 * to keep correct lock ordering of transaction > dqio_sem 5448 */ 5449 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5450 { 5451 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5452 } 5453 5454 static int ext4_write_dquot(struct dquot *dquot) 5455 { 5456 int ret, err; 5457 handle_t *handle; 5458 struct inode *inode; 5459 5460 inode = dquot_to_inode(dquot); 5461 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5462 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5463 if (IS_ERR(handle)) 5464 return PTR_ERR(handle); 5465 ret = dquot_commit(dquot); 5466 err = ext4_journal_stop(handle); 5467 if (!ret) 5468 ret = err; 5469 return ret; 5470 } 5471 5472 static int ext4_acquire_dquot(struct dquot *dquot) 5473 { 5474 int ret, err; 5475 handle_t *handle; 5476 5477 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5478 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5479 if (IS_ERR(handle)) 5480 return PTR_ERR(handle); 5481 ret = dquot_acquire(dquot); 5482 err = ext4_journal_stop(handle); 5483 if (!ret) 5484 ret = err; 5485 return ret; 5486 } 5487 5488 static int ext4_release_dquot(struct dquot *dquot) 5489 { 5490 int ret, err; 5491 handle_t *handle; 5492 5493 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5494 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5495 if (IS_ERR(handle)) { 5496 /* Release dquot anyway to avoid endless cycle in dqput() */ 5497 dquot_release(dquot); 5498 return PTR_ERR(handle); 5499 } 5500 ret = dquot_release(dquot); 5501 err = ext4_journal_stop(handle); 5502 if (!ret) 5503 ret = err; 5504 return ret; 5505 } 5506 5507 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5508 { 5509 struct super_block *sb = dquot->dq_sb; 5510 struct ext4_sb_info *sbi = EXT4_SB(sb); 5511 5512 /* Are we journaling quotas? */ 5513 if (ext4_has_feature_quota(sb) || 5514 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5515 dquot_mark_dquot_dirty(dquot); 5516 return ext4_write_dquot(dquot); 5517 } else { 5518 return dquot_mark_dquot_dirty(dquot); 5519 } 5520 } 5521 5522 static int ext4_write_info(struct super_block *sb, int type) 5523 { 5524 int ret, err; 5525 handle_t *handle; 5526 5527 /* Data block + inode block */ 5528 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5529 if (IS_ERR(handle)) 5530 return PTR_ERR(handle); 5531 ret = dquot_commit_info(sb, type); 5532 err = ext4_journal_stop(handle); 5533 if (!ret) 5534 ret = err; 5535 return ret; 5536 } 5537 5538 /* 5539 * Turn on quotas during mount time - we need to find 5540 * the quota file and such... 5541 */ 5542 static int ext4_quota_on_mount(struct super_block *sb, int type) 5543 { 5544 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5545 EXT4_SB(sb)->s_jquota_fmt, type); 5546 } 5547 5548 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5549 { 5550 struct ext4_inode_info *ei = EXT4_I(inode); 5551 5552 /* The first argument of lockdep_set_subclass has to be 5553 * *exactly* the same as the argument to init_rwsem() --- in 5554 * this case, in init_once() --- or lockdep gets unhappy 5555 * because the name of the lock is set using the 5556 * stringification of the argument to init_rwsem(). 5557 */ 5558 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5559 lockdep_set_subclass(&ei->i_data_sem, subclass); 5560 } 5561 5562 /* 5563 * Standard function to be called on quota_on 5564 */ 5565 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5566 const struct path *path) 5567 { 5568 int err; 5569 5570 if (!test_opt(sb, QUOTA)) 5571 return -EINVAL; 5572 5573 /* Quotafile not on the same filesystem? */ 5574 if (path->dentry->d_sb != sb) 5575 return -EXDEV; 5576 /* Journaling quota? */ 5577 if (EXT4_SB(sb)->s_qf_names[type]) { 5578 /* Quotafile not in fs root? */ 5579 if (path->dentry->d_parent != sb->s_root) 5580 ext4_msg(sb, KERN_WARNING, 5581 "Quota file not on filesystem root. " 5582 "Journaled quota will not work"); 5583 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5584 } else { 5585 /* 5586 * Clear the flag just in case mount options changed since 5587 * last time. 5588 */ 5589 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5590 } 5591 5592 /* 5593 * When we journal data on quota file, we have to flush journal to see 5594 * all updates to the file when we bypass pagecache... 5595 */ 5596 if (EXT4_SB(sb)->s_journal && 5597 ext4_should_journal_data(d_inode(path->dentry))) { 5598 /* 5599 * We don't need to lock updates but journal_flush() could 5600 * otherwise be livelocked... 5601 */ 5602 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5603 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5604 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5605 if (err) 5606 return err; 5607 } 5608 5609 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5610 err = dquot_quota_on(sb, type, format_id, path); 5611 if (err) { 5612 lockdep_set_quota_inode(path->dentry->d_inode, 5613 I_DATA_SEM_NORMAL); 5614 } else { 5615 struct inode *inode = d_inode(path->dentry); 5616 handle_t *handle; 5617 5618 /* 5619 * Set inode flags to prevent userspace from messing with quota 5620 * files. If this fails, we return success anyway since quotas 5621 * are already enabled and this is not a hard failure. 5622 */ 5623 inode_lock(inode); 5624 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5625 if (IS_ERR(handle)) 5626 goto unlock_inode; 5627 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5628 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5629 S_NOATIME | S_IMMUTABLE); 5630 ext4_mark_inode_dirty(handle, inode); 5631 ext4_journal_stop(handle); 5632 unlock_inode: 5633 inode_unlock(inode); 5634 } 5635 return err; 5636 } 5637 5638 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5639 unsigned int flags) 5640 { 5641 int err; 5642 struct inode *qf_inode; 5643 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5644 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5645 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5646 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5647 }; 5648 5649 BUG_ON(!ext4_has_feature_quota(sb)); 5650 5651 if (!qf_inums[type]) 5652 return -EPERM; 5653 5654 qf_inode = ext4_iget(sb, qf_inums[type]); 5655 if (IS_ERR(qf_inode)) { 5656 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5657 return PTR_ERR(qf_inode); 5658 } 5659 5660 /* Don't account quota for quota files to avoid recursion */ 5661 qf_inode->i_flags |= S_NOQUOTA; 5662 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5663 err = dquot_enable(qf_inode, type, format_id, flags); 5664 iput(qf_inode); 5665 if (err) 5666 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5667 5668 return err; 5669 } 5670 5671 /* Enable usage tracking for all quota types. */ 5672 static int ext4_enable_quotas(struct super_block *sb) 5673 { 5674 int type, err = 0; 5675 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5676 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5677 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5678 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5679 }; 5680 bool quota_mopt[EXT4_MAXQUOTAS] = { 5681 test_opt(sb, USRQUOTA), 5682 test_opt(sb, GRPQUOTA), 5683 test_opt(sb, PRJQUOTA), 5684 }; 5685 5686 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5687 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5688 if (qf_inums[type]) { 5689 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5690 DQUOT_USAGE_ENABLED | 5691 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5692 if (err) { 5693 ext4_warning(sb, 5694 "Failed to enable quota tracking " 5695 "(type=%d, err=%d). Please run " 5696 "e2fsck to fix.", type, err); 5697 for (type--; type >= 0; type--) 5698 dquot_quota_off(sb, type); 5699 5700 return err; 5701 } 5702 } 5703 } 5704 return 0; 5705 } 5706 5707 static int ext4_quota_off(struct super_block *sb, int type) 5708 { 5709 struct inode *inode = sb_dqopt(sb)->files[type]; 5710 handle_t *handle; 5711 int err; 5712 5713 /* Force all delayed allocation blocks to be allocated. 5714 * Caller already holds s_umount sem */ 5715 if (test_opt(sb, DELALLOC)) 5716 sync_filesystem(sb); 5717 5718 if (!inode || !igrab(inode)) 5719 goto out; 5720 5721 err = dquot_quota_off(sb, type); 5722 if (err || ext4_has_feature_quota(sb)) 5723 goto out_put; 5724 5725 inode_lock(inode); 5726 /* 5727 * Update modification times of quota files when userspace can 5728 * start looking at them. If we fail, we return success anyway since 5729 * this is not a hard failure and quotas are already disabled. 5730 */ 5731 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5732 if (IS_ERR(handle)) 5733 goto out_unlock; 5734 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5735 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5736 inode->i_mtime = inode->i_ctime = current_time(inode); 5737 ext4_mark_inode_dirty(handle, inode); 5738 ext4_journal_stop(handle); 5739 out_unlock: 5740 inode_unlock(inode); 5741 out_put: 5742 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5743 iput(inode); 5744 return err; 5745 out: 5746 return dquot_quota_off(sb, type); 5747 } 5748 5749 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5750 * acquiring the locks... As quota files are never truncated and quota code 5751 * itself serializes the operations (and no one else should touch the files) 5752 * we don't have to be afraid of races */ 5753 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5754 size_t len, loff_t off) 5755 { 5756 struct inode *inode = sb_dqopt(sb)->files[type]; 5757 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5758 int offset = off & (sb->s_blocksize - 1); 5759 int tocopy; 5760 size_t toread; 5761 struct buffer_head *bh; 5762 loff_t i_size = i_size_read(inode); 5763 5764 if (off > i_size) 5765 return 0; 5766 if (off+len > i_size) 5767 len = i_size-off; 5768 toread = len; 5769 while (toread > 0) { 5770 tocopy = sb->s_blocksize - offset < toread ? 5771 sb->s_blocksize - offset : toread; 5772 bh = ext4_bread(NULL, inode, blk, 0); 5773 if (IS_ERR(bh)) 5774 return PTR_ERR(bh); 5775 if (!bh) /* A hole? */ 5776 memset(data, 0, tocopy); 5777 else 5778 memcpy(data, bh->b_data+offset, tocopy); 5779 brelse(bh); 5780 offset = 0; 5781 toread -= tocopy; 5782 data += tocopy; 5783 blk++; 5784 } 5785 return len; 5786 } 5787 5788 /* Write to quotafile (we know the transaction is already started and has 5789 * enough credits) */ 5790 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5791 const char *data, size_t len, loff_t off) 5792 { 5793 struct inode *inode = sb_dqopt(sb)->files[type]; 5794 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5795 int err, offset = off & (sb->s_blocksize - 1); 5796 int retries = 0; 5797 struct buffer_head *bh; 5798 handle_t *handle = journal_current_handle(); 5799 5800 if (EXT4_SB(sb)->s_journal && !handle) { 5801 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5802 " cancelled because transaction is not started", 5803 (unsigned long long)off, (unsigned long long)len); 5804 return -EIO; 5805 } 5806 /* 5807 * Since we account only one data block in transaction credits, 5808 * then it is impossible to cross a block boundary. 5809 */ 5810 if (sb->s_blocksize - offset < len) { 5811 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5812 " cancelled because not block aligned", 5813 (unsigned long long)off, (unsigned long long)len); 5814 return -EIO; 5815 } 5816 5817 do { 5818 bh = ext4_bread(handle, inode, blk, 5819 EXT4_GET_BLOCKS_CREATE | 5820 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5821 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5822 ext4_should_retry_alloc(inode->i_sb, &retries)); 5823 if (IS_ERR(bh)) 5824 return PTR_ERR(bh); 5825 if (!bh) 5826 goto out; 5827 BUFFER_TRACE(bh, "get write access"); 5828 err = ext4_journal_get_write_access(handle, bh); 5829 if (err) { 5830 brelse(bh); 5831 return err; 5832 } 5833 lock_buffer(bh); 5834 memcpy(bh->b_data+offset, data, len); 5835 flush_dcache_page(bh->b_page); 5836 unlock_buffer(bh); 5837 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5838 brelse(bh); 5839 out: 5840 if (inode->i_size < off + len) { 5841 i_size_write(inode, off + len); 5842 EXT4_I(inode)->i_disksize = inode->i_size; 5843 ext4_mark_inode_dirty(handle, inode); 5844 } 5845 return len; 5846 } 5847 5848 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5849 { 5850 const struct quota_format_ops *ops; 5851 5852 if (!sb_has_quota_loaded(sb, qid->type)) 5853 return -ESRCH; 5854 ops = sb_dqopt(sb)->ops[qid->type]; 5855 if (!ops || !ops->get_next_id) 5856 return -ENOSYS; 5857 return dquot_get_next_id(sb, qid); 5858 } 5859 #endif 5860 5861 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5862 const char *dev_name, void *data) 5863 { 5864 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5865 } 5866 5867 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5868 static inline void register_as_ext2(void) 5869 { 5870 int err = register_filesystem(&ext2_fs_type); 5871 if (err) 5872 printk(KERN_WARNING 5873 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5874 } 5875 5876 static inline void unregister_as_ext2(void) 5877 { 5878 unregister_filesystem(&ext2_fs_type); 5879 } 5880 5881 static inline int ext2_feature_set_ok(struct super_block *sb) 5882 { 5883 if (ext4_has_unknown_ext2_incompat_features(sb)) 5884 return 0; 5885 if (sb_rdonly(sb)) 5886 return 1; 5887 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5888 return 0; 5889 return 1; 5890 } 5891 #else 5892 static inline void register_as_ext2(void) { } 5893 static inline void unregister_as_ext2(void) { } 5894 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5895 #endif 5896 5897 static inline void register_as_ext3(void) 5898 { 5899 int err = register_filesystem(&ext3_fs_type); 5900 if (err) 5901 printk(KERN_WARNING 5902 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5903 } 5904 5905 static inline void unregister_as_ext3(void) 5906 { 5907 unregister_filesystem(&ext3_fs_type); 5908 } 5909 5910 static inline int ext3_feature_set_ok(struct super_block *sb) 5911 { 5912 if (ext4_has_unknown_ext3_incompat_features(sb)) 5913 return 0; 5914 if (!ext4_has_feature_journal(sb)) 5915 return 0; 5916 if (sb_rdonly(sb)) 5917 return 1; 5918 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5919 return 0; 5920 return 1; 5921 } 5922 5923 static struct file_system_type ext4_fs_type = { 5924 .owner = THIS_MODULE, 5925 .name = "ext4", 5926 .mount = ext4_mount, 5927 .kill_sb = kill_block_super, 5928 .fs_flags = FS_REQUIRES_DEV, 5929 }; 5930 MODULE_ALIAS_FS("ext4"); 5931 5932 /* Shared across all ext4 file systems */ 5933 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5934 5935 static int __init ext4_init_fs(void) 5936 { 5937 int i, err; 5938 5939 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5940 ext4_li_info = NULL; 5941 mutex_init(&ext4_li_mtx); 5942 5943 /* Build-time check for flags consistency */ 5944 ext4_check_flag_values(); 5945 5946 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5947 init_waitqueue_head(&ext4__ioend_wq[i]); 5948 5949 err = ext4_init_es(); 5950 if (err) 5951 return err; 5952 5953 err = ext4_init_pageio(); 5954 if (err) 5955 goto out5; 5956 5957 err = ext4_init_system_zone(); 5958 if (err) 5959 goto out4; 5960 5961 err = ext4_init_sysfs(); 5962 if (err) 5963 goto out3; 5964 5965 err = ext4_init_mballoc(); 5966 if (err) 5967 goto out2; 5968 err = init_inodecache(); 5969 if (err) 5970 goto out1; 5971 register_as_ext3(); 5972 register_as_ext2(); 5973 err = register_filesystem(&ext4_fs_type); 5974 if (err) 5975 goto out; 5976 5977 return 0; 5978 out: 5979 unregister_as_ext2(); 5980 unregister_as_ext3(); 5981 destroy_inodecache(); 5982 out1: 5983 ext4_exit_mballoc(); 5984 out2: 5985 ext4_exit_sysfs(); 5986 out3: 5987 ext4_exit_system_zone(); 5988 out4: 5989 ext4_exit_pageio(); 5990 out5: 5991 ext4_exit_es(); 5992 5993 return err; 5994 } 5995 5996 static void __exit ext4_exit_fs(void) 5997 { 5998 ext4_destroy_lazyinit_thread(); 5999 unregister_as_ext2(); 6000 unregister_as_ext3(); 6001 unregister_filesystem(&ext4_fs_type); 6002 destroy_inodecache(); 6003 ext4_exit_mballoc(); 6004 ext4_exit_sysfs(); 6005 ext4_exit_system_zone(); 6006 ext4_exit_pageio(); 6007 ext4_exit_es(); 6008 } 6009 6010 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6011 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6012 MODULE_LICENSE("GPL"); 6013 MODULE_SOFTDEP("pre: crc32c"); 6014 module_init(ext4_init_fs) 6015 module_exit(ext4_exit_fs) 6016