1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/parser.h> 28 #include <linux/buffer_head.h> 29 #include <linux/exportfs.h> 30 #include <linux/vfs.h> 31 #include <linux/random.h> 32 #include <linux/mount.h> 33 #include <linux/namei.h> 34 #include <linux/quotaops.h> 35 #include <linux/seq_file.h> 36 #include <linux/proc_fs.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct proc_dir_entry *ext4_proc_root; 57 static struct kset *ext4_kset; 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ext4_features *ext4_feat; 61 static int ext4_mballoc_ready; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static inline int ext2_feature_set_ok(struct super_block *sb); 79 static inline int ext3_feature_set_ok(struct super_block *sb); 80 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81 static void ext4_destroy_lazyinit_thread(void); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 85 86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 87 static struct file_system_type ext2_fs_type = { 88 .owner = THIS_MODULE, 89 .name = "ext2", 90 .mount = ext4_mount, 91 .kill_sb = kill_block_super, 92 .fs_flags = FS_REQUIRES_DEV, 93 }; 94 MODULE_ALIAS_FS("ext2"); 95 MODULE_ALIAS("ext2"); 96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97 #else 98 #define IS_EXT2_SB(sb) (0) 99 #endif 100 101 102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103 static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109 }; 110 MODULE_ALIAS_FS("ext3"); 111 MODULE_ALIAS("ext3"); 112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 113 #else 114 #define IS_EXT3_SB(sb) (0) 115 #endif 116 117 static int ext4_verify_csum_type(struct super_block *sb, 118 struct ext4_super_block *es) 119 { 120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 122 return 1; 123 124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 125 } 126 127 static __le32 ext4_superblock_csum(struct super_block *sb, 128 struct ext4_super_block *es) 129 { 130 struct ext4_sb_info *sbi = EXT4_SB(sb); 131 int offset = offsetof(struct ext4_super_block, s_checksum); 132 __u32 csum; 133 134 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 135 136 return cpu_to_le32(csum); 137 } 138 139 static int ext4_superblock_csum_verify(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!ext4_has_metadata_csum(sb)) 143 return 1; 144 145 return es->s_checksum == ext4_superblock_csum(sb, es); 146 } 147 148 void ext4_superblock_csum_set(struct super_block *sb) 149 { 150 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 151 152 if (!ext4_has_metadata_csum(sb)) 153 return; 154 155 es->s_checksum = ext4_superblock_csum(sb, es); 156 } 157 158 void *ext4_kvmalloc(size_t size, gfp_t flags) 159 { 160 void *ret; 161 162 ret = kmalloc(size, flags | __GFP_NOWARN); 163 if (!ret) 164 ret = __vmalloc(size, flags, PAGE_KERNEL); 165 return ret; 166 } 167 168 void *ext4_kvzalloc(size_t size, gfp_t flags) 169 { 170 void *ret; 171 172 ret = kzalloc(size, flags | __GFP_NOWARN); 173 if (!ret) 174 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 175 return ret; 176 } 177 178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 179 struct ext4_group_desc *bg) 180 { 181 return le32_to_cpu(bg->bg_block_bitmap_lo) | 182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 183 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 184 } 185 186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 192 } 193 194 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le32_to_cpu(bg->bg_inode_table_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 200 } 201 202 __u32 ext4_free_group_clusters(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 208 } 209 210 __u32 ext4_free_inodes_count(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_used_dirs_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 224 } 225 226 __u32 ext4_itable_unused_count(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le16_to_cpu(bg->bg_itable_unused_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 232 } 233 234 void ext4_block_bitmap_set(struct super_block *sb, 235 struct ext4_group_desc *bg, ext4_fsblk_t blk) 236 { 237 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 239 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 240 } 241 242 void ext4_inode_bitmap_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_inode_table_set(struct super_block *sb, 251 struct ext4_group_desc *bg, ext4_fsblk_t blk) 252 { 253 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 256 } 257 258 void ext4_free_group_clusters_set(struct super_block *sb, 259 struct ext4_group_desc *bg, __u32 count) 260 { 261 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 264 } 265 266 void ext4_free_inodes_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_used_dirs_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 280 } 281 282 void ext4_itable_unused_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284 { 285 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 288 } 289 290 291 static void __save_error_info(struct super_block *sb, const char *func, 292 unsigned int line) 293 { 294 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 295 296 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 297 if (bdev_read_only(sb->s_bdev)) 298 return; 299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 300 es->s_last_error_time = cpu_to_le32(get_seconds()); 301 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 302 es->s_last_error_line = cpu_to_le32(line); 303 if (!es->s_first_error_time) { 304 es->s_first_error_time = es->s_last_error_time; 305 strncpy(es->s_first_error_func, func, 306 sizeof(es->s_first_error_func)); 307 es->s_first_error_line = cpu_to_le32(line); 308 es->s_first_error_ino = es->s_last_error_ino; 309 es->s_first_error_block = es->s_last_error_block; 310 } 311 /* 312 * Start the daily error reporting function if it hasn't been 313 * started already 314 */ 315 if (!es->s_error_count) 316 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 317 le32_add_cpu(&es->s_error_count, 1); 318 } 319 320 static void save_error_info(struct super_block *sb, const char *func, 321 unsigned int line) 322 { 323 __save_error_info(sb, func, line); 324 ext4_commit_super(sb, 1); 325 } 326 327 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 328 { 329 struct super_block *sb = journal->j_private; 330 struct ext4_sb_info *sbi = EXT4_SB(sb); 331 int error = is_journal_aborted(journal); 332 struct ext4_journal_cb_entry *jce; 333 334 BUG_ON(txn->t_state == T_FINISHED); 335 spin_lock(&sbi->s_md_lock); 336 while (!list_empty(&txn->t_private_list)) { 337 jce = list_entry(txn->t_private_list.next, 338 struct ext4_journal_cb_entry, jce_list); 339 list_del_init(&jce->jce_list); 340 spin_unlock(&sbi->s_md_lock); 341 jce->jce_func(sb, jce, error); 342 spin_lock(&sbi->s_md_lock); 343 } 344 spin_unlock(&sbi->s_md_lock); 345 } 346 347 /* Deal with the reporting of failure conditions on a filesystem such as 348 * inconsistencies detected or read IO failures. 349 * 350 * On ext2, we can store the error state of the filesystem in the 351 * superblock. That is not possible on ext4, because we may have other 352 * write ordering constraints on the superblock which prevent us from 353 * writing it out straight away; and given that the journal is about to 354 * be aborted, we can't rely on the current, or future, transactions to 355 * write out the superblock safely. 356 * 357 * We'll just use the jbd2_journal_abort() error code to record an error in 358 * the journal instead. On recovery, the journal will complain about 359 * that error until we've noted it down and cleared it. 360 */ 361 362 static void ext4_handle_error(struct super_block *sb) 363 { 364 if (sb->s_flags & MS_RDONLY) 365 return; 366 367 if (!test_opt(sb, ERRORS_CONT)) { 368 journal_t *journal = EXT4_SB(sb)->s_journal; 369 370 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 371 if (journal) 372 jbd2_journal_abort(journal, -EIO); 373 } 374 if (test_opt(sb, ERRORS_RO)) { 375 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 376 /* 377 * Make sure updated value of ->s_mount_flags will be visible 378 * before ->s_flags update 379 */ 380 smp_wmb(); 381 sb->s_flags |= MS_RDONLY; 382 } 383 if (test_opt(sb, ERRORS_PANIC)) 384 panic("EXT4-fs (device %s): panic forced after error\n", 385 sb->s_id); 386 } 387 388 #define ext4_error_ratelimit(sb) \ 389 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 390 "EXT4-fs error") 391 392 void __ext4_error(struct super_block *sb, const char *function, 393 unsigned int line, const char *fmt, ...) 394 { 395 struct va_format vaf; 396 va_list args; 397 398 if (ext4_error_ratelimit(sb)) { 399 va_start(args, fmt); 400 vaf.fmt = fmt; 401 vaf.va = &args; 402 printk(KERN_CRIT 403 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 404 sb->s_id, function, line, current->comm, &vaf); 405 va_end(args); 406 } 407 save_error_info(sb, function, line); 408 ext4_handle_error(sb); 409 } 410 411 void __ext4_error_inode(struct inode *inode, const char *function, 412 unsigned int line, ext4_fsblk_t block, 413 const char *fmt, ...) 414 { 415 va_list args; 416 struct va_format vaf; 417 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 418 419 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 420 es->s_last_error_block = cpu_to_le64(block); 421 if (ext4_error_ratelimit(inode->i_sb)) { 422 va_start(args, fmt); 423 vaf.fmt = fmt; 424 vaf.va = &args; 425 if (block) 426 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 427 "inode #%lu: block %llu: comm %s: %pV\n", 428 inode->i_sb->s_id, function, line, inode->i_ino, 429 block, current->comm, &vaf); 430 else 431 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 432 "inode #%lu: comm %s: %pV\n", 433 inode->i_sb->s_id, function, line, inode->i_ino, 434 current->comm, &vaf); 435 va_end(args); 436 } 437 save_error_info(inode->i_sb, function, line); 438 ext4_handle_error(inode->i_sb); 439 } 440 441 void __ext4_error_file(struct file *file, const char *function, 442 unsigned int line, ext4_fsblk_t block, 443 const char *fmt, ...) 444 { 445 va_list args; 446 struct va_format vaf; 447 struct ext4_super_block *es; 448 struct inode *inode = file_inode(file); 449 char pathname[80], *path; 450 451 es = EXT4_SB(inode->i_sb)->s_es; 452 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 453 if (ext4_error_ratelimit(inode->i_sb)) { 454 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 455 if (IS_ERR(path)) 456 path = "(unknown)"; 457 va_start(args, fmt); 458 vaf.fmt = fmt; 459 vaf.va = &args; 460 if (block) 461 printk(KERN_CRIT 462 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 463 "block %llu: comm %s: path %s: %pV\n", 464 inode->i_sb->s_id, function, line, inode->i_ino, 465 block, current->comm, path, &vaf); 466 else 467 printk(KERN_CRIT 468 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 469 "comm %s: path %s: %pV\n", 470 inode->i_sb->s_id, function, line, inode->i_ino, 471 current->comm, path, &vaf); 472 va_end(args); 473 } 474 save_error_info(inode->i_sb, function, line); 475 ext4_handle_error(inode->i_sb); 476 } 477 478 const char *ext4_decode_error(struct super_block *sb, int errno, 479 char nbuf[16]) 480 { 481 char *errstr = NULL; 482 483 switch (errno) { 484 case -EIO: 485 errstr = "IO failure"; 486 break; 487 case -ENOMEM: 488 errstr = "Out of memory"; 489 break; 490 case -EROFS: 491 if (!sb || (EXT4_SB(sb)->s_journal && 492 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 493 errstr = "Journal has aborted"; 494 else 495 errstr = "Readonly filesystem"; 496 break; 497 default: 498 /* If the caller passed in an extra buffer for unknown 499 * errors, textualise them now. Else we just return 500 * NULL. */ 501 if (nbuf) { 502 /* Check for truncated error codes... */ 503 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 504 errstr = nbuf; 505 } 506 break; 507 } 508 509 return errstr; 510 } 511 512 /* __ext4_std_error decodes expected errors from journaling functions 513 * automatically and invokes the appropriate error response. */ 514 515 void __ext4_std_error(struct super_block *sb, const char *function, 516 unsigned int line, int errno) 517 { 518 char nbuf[16]; 519 const char *errstr; 520 521 /* Special case: if the error is EROFS, and we're not already 522 * inside a transaction, then there's really no point in logging 523 * an error. */ 524 if (errno == -EROFS && journal_current_handle() == NULL && 525 (sb->s_flags & MS_RDONLY)) 526 return; 527 528 if (ext4_error_ratelimit(sb)) { 529 errstr = ext4_decode_error(sb, errno, nbuf); 530 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 531 sb->s_id, function, line, errstr); 532 } 533 534 save_error_info(sb, function, line); 535 ext4_handle_error(sb); 536 } 537 538 /* 539 * ext4_abort is a much stronger failure handler than ext4_error. The 540 * abort function may be used to deal with unrecoverable failures such 541 * as journal IO errors or ENOMEM at a critical moment in log management. 542 * 543 * We unconditionally force the filesystem into an ABORT|READONLY state, 544 * unless the error response on the fs has been set to panic in which 545 * case we take the easy way out and panic immediately. 546 */ 547 548 void __ext4_abort(struct super_block *sb, const char *function, 549 unsigned int line, const char *fmt, ...) 550 { 551 va_list args; 552 553 save_error_info(sb, function, line); 554 va_start(args, fmt); 555 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 556 function, line); 557 vprintk(fmt, args); 558 printk("\n"); 559 va_end(args); 560 561 if ((sb->s_flags & MS_RDONLY) == 0) { 562 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 563 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 564 /* 565 * Make sure updated value of ->s_mount_flags will be visible 566 * before ->s_flags update 567 */ 568 smp_wmb(); 569 sb->s_flags |= MS_RDONLY; 570 if (EXT4_SB(sb)->s_journal) 571 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 572 save_error_info(sb, function, line); 573 } 574 if (test_opt(sb, ERRORS_PANIC)) 575 panic("EXT4-fs panic from previous error\n"); 576 } 577 578 void __ext4_msg(struct super_block *sb, 579 const char *prefix, const char *fmt, ...) 580 { 581 struct va_format vaf; 582 va_list args; 583 584 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 585 return; 586 587 va_start(args, fmt); 588 vaf.fmt = fmt; 589 vaf.va = &args; 590 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 591 va_end(args); 592 } 593 594 void __ext4_warning(struct super_block *sb, const char *function, 595 unsigned int line, const char *fmt, ...) 596 { 597 struct va_format vaf; 598 va_list args; 599 600 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 601 "EXT4-fs warning")) 602 return; 603 604 va_start(args, fmt); 605 vaf.fmt = fmt; 606 vaf.va = &args; 607 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 608 sb->s_id, function, line, &vaf); 609 va_end(args); 610 } 611 612 void __ext4_grp_locked_error(const char *function, unsigned int line, 613 struct super_block *sb, ext4_group_t grp, 614 unsigned long ino, ext4_fsblk_t block, 615 const char *fmt, ...) 616 __releases(bitlock) 617 __acquires(bitlock) 618 { 619 struct va_format vaf; 620 va_list args; 621 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 622 623 es->s_last_error_ino = cpu_to_le32(ino); 624 es->s_last_error_block = cpu_to_le64(block); 625 __save_error_info(sb, function, line); 626 627 if (ext4_error_ratelimit(sb)) { 628 va_start(args, fmt); 629 vaf.fmt = fmt; 630 vaf.va = &args; 631 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 632 sb->s_id, function, line, grp); 633 if (ino) 634 printk(KERN_CONT "inode %lu: ", ino); 635 if (block) 636 printk(KERN_CONT "block %llu:", 637 (unsigned long long) block); 638 printk(KERN_CONT "%pV\n", &vaf); 639 va_end(args); 640 } 641 642 if (test_opt(sb, ERRORS_CONT)) { 643 ext4_commit_super(sb, 0); 644 return; 645 } 646 647 ext4_unlock_group(sb, grp); 648 ext4_handle_error(sb); 649 /* 650 * We only get here in the ERRORS_RO case; relocking the group 651 * may be dangerous, but nothing bad will happen since the 652 * filesystem will have already been marked read/only and the 653 * journal has been aborted. We return 1 as a hint to callers 654 * who might what to use the return value from 655 * ext4_grp_locked_error() to distinguish between the 656 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 657 * aggressively from the ext4 function in question, with a 658 * more appropriate error code. 659 */ 660 ext4_lock_group(sb, grp); 661 return; 662 } 663 664 void ext4_update_dynamic_rev(struct super_block *sb) 665 { 666 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 667 668 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 669 return; 670 671 ext4_warning(sb, 672 "updating to rev %d because of new feature flag, " 673 "running e2fsck is recommended", 674 EXT4_DYNAMIC_REV); 675 676 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 677 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 678 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 679 /* leave es->s_feature_*compat flags alone */ 680 /* es->s_uuid will be set by e2fsck if empty */ 681 682 /* 683 * The rest of the superblock fields should be zero, and if not it 684 * means they are likely already in use, so leave them alone. We 685 * can leave it up to e2fsck to clean up any inconsistencies there. 686 */ 687 } 688 689 /* 690 * Open the external journal device 691 */ 692 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 693 { 694 struct block_device *bdev; 695 char b[BDEVNAME_SIZE]; 696 697 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 698 if (IS_ERR(bdev)) 699 goto fail; 700 return bdev; 701 702 fail: 703 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 704 __bdevname(dev, b), PTR_ERR(bdev)); 705 return NULL; 706 } 707 708 /* 709 * Release the journal device 710 */ 711 static void ext4_blkdev_put(struct block_device *bdev) 712 { 713 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 714 } 715 716 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 717 { 718 struct block_device *bdev; 719 bdev = sbi->journal_bdev; 720 if (bdev) { 721 ext4_blkdev_put(bdev); 722 sbi->journal_bdev = NULL; 723 } 724 } 725 726 static inline struct inode *orphan_list_entry(struct list_head *l) 727 { 728 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 729 } 730 731 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 732 { 733 struct list_head *l; 734 735 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 736 le32_to_cpu(sbi->s_es->s_last_orphan)); 737 738 printk(KERN_ERR "sb_info orphan list:\n"); 739 list_for_each(l, &sbi->s_orphan) { 740 struct inode *inode = orphan_list_entry(l); 741 printk(KERN_ERR " " 742 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 743 inode->i_sb->s_id, inode->i_ino, inode, 744 inode->i_mode, inode->i_nlink, 745 NEXT_ORPHAN(inode)); 746 } 747 } 748 749 static void ext4_put_super(struct super_block *sb) 750 { 751 struct ext4_sb_info *sbi = EXT4_SB(sb); 752 struct ext4_super_block *es = sbi->s_es; 753 int i, err; 754 755 ext4_unregister_li_request(sb); 756 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 757 758 flush_workqueue(sbi->rsv_conversion_wq); 759 destroy_workqueue(sbi->rsv_conversion_wq); 760 761 if (sbi->s_journal) { 762 err = jbd2_journal_destroy(sbi->s_journal); 763 sbi->s_journal = NULL; 764 if (err < 0) 765 ext4_abort(sb, "Couldn't clean up the journal"); 766 } 767 768 ext4_es_unregister_shrinker(sbi); 769 del_timer_sync(&sbi->s_err_report); 770 ext4_release_system_zone(sb); 771 ext4_mb_release(sb); 772 ext4_ext_release(sb); 773 ext4_xattr_put_super(sb); 774 775 if (!(sb->s_flags & MS_RDONLY)) { 776 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 777 es->s_state = cpu_to_le16(sbi->s_mount_state); 778 } 779 if (!(sb->s_flags & MS_RDONLY)) 780 ext4_commit_super(sb, 1); 781 782 if (sbi->s_proc) { 783 remove_proc_entry("options", sbi->s_proc); 784 remove_proc_entry(sb->s_id, ext4_proc_root); 785 } 786 kobject_del(&sbi->s_kobj); 787 788 for (i = 0; i < sbi->s_gdb_count; i++) 789 brelse(sbi->s_group_desc[i]); 790 kvfree(sbi->s_group_desc); 791 kvfree(sbi->s_flex_groups); 792 percpu_counter_destroy(&sbi->s_freeclusters_counter); 793 percpu_counter_destroy(&sbi->s_freeinodes_counter); 794 percpu_counter_destroy(&sbi->s_dirs_counter); 795 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 796 brelse(sbi->s_sbh); 797 #ifdef CONFIG_QUOTA 798 for (i = 0; i < EXT4_MAXQUOTAS; i++) 799 kfree(sbi->s_qf_names[i]); 800 #endif 801 802 /* Debugging code just in case the in-memory inode orphan list 803 * isn't empty. The on-disk one can be non-empty if we've 804 * detected an error and taken the fs readonly, but the 805 * in-memory list had better be clean by this point. */ 806 if (!list_empty(&sbi->s_orphan)) 807 dump_orphan_list(sb, sbi); 808 J_ASSERT(list_empty(&sbi->s_orphan)); 809 810 invalidate_bdev(sb->s_bdev); 811 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 812 /* 813 * Invalidate the journal device's buffers. We don't want them 814 * floating about in memory - the physical journal device may 815 * hotswapped, and it breaks the `ro-after' testing code. 816 */ 817 sync_blockdev(sbi->journal_bdev); 818 invalidate_bdev(sbi->journal_bdev); 819 ext4_blkdev_remove(sbi); 820 } 821 if (sbi->s_mb_cache) { 822 ext4_xattr_destroy_cache(sbi->s_mb_cache); 823 sbi->s_mb_cache = NULL; 824 } 825 if (sbi->s_mmp_tsk) 826 kthread_stop(sbi->s_mmp_tsk); 827 sb->s_fs_info = NULL; 828 /* 829 * Now that we are completely done shutting down the 830 * superblock, we need to actually destroy the kobject. 831 */ 832 kobject_put(&sbi->s_kobj); 833 wait_for_completion(&sbi->s_kobj_unregister); 834 if (sbi->s_chksum_driver) 835 crypto_free_shash(sbi->s_chksum_driver); 836 kfree(sbi->s_blockgroup_lock); 837 kfree(sbi); 838 } 839 840 static struct kmem_cache *ext4_inode_cachep; 841 842 /* 843 * Called inside transaction, so use GFP_NOFS 844 */ 845 static struct inode *ext4_alloc_inode(struct super_block *sb) 846 { 847 struct ext4_inode_info *ei; 848 849 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 850 if (!ei) 851 return NULL; 852 853 ei->vfs_inode.i_version = 1; 854 spin_lock_init(&ei->i_raw_lock); 855 INIT_LIST_HEAD(&ei->i_prealloc_list); 856 spin_lock_init(&ei->i_prealloc_lock); 857 ext4_es_init_tree(&ei->i_es_tree); 858 rwlock_init(&ei->i_es_lock); 859 INIT_LIST_HEAD(&ei->i_es_list); 860 ei->i_es_all_nr = 0; 861 ei->i_es_shk_nr = 0; 862 ei->i_es_shrink_lblk = 0; 863 ei->i_reserved_data_blocks = 0; 864 ei->i_reserved_meta_blocks = 0; 865 ei->i_allocated_meta_blocks = 0; 866 ei->i_da_metadata_calc_len = 0; 867 ei->i_da_metadata_calc_last_lblock = 0; 868 spin_lock_init(&(ei->i_block_reservation_lock)); 869 #ifdef CONFIG_QUOTA 870 ei->i_reserved_quota = 0; 871 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 872 #endif 873 ei->jinode = NULL; 874 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 875 spin_lock_init(&ei->i_completed_io_lock); 876 ei->i_sync_tid = 0; 877 ei->i_datasync_tid = 0; 878 atomic_set(&ei->i_ioend_count, 0); 879 atomic_set(&ei->i_unwritten, 0); 880 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 881 #ifdef CONFIG_EXT4_FS_ENCRYPTION 882 ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID; 883 #endif 884 885 return &ei->vfs_inode; 886 } 887 888 static int ext4_drop_inode(struct inode *inode) 889 { 890 int drop = generic_drop_inode(inode); 891 892 trace_ext4_drop_inode(inode, drop); 893 return drop; 894 } 895 896 static void ext4_i_callback(struct rcu_head *head) 897 { 898 struct inode *inode = container_of(head, struct inode, i_rcu); 899 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 900 } 901 902 static void ext4_destroy_inode(struct inode *inode) 903 { 904 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 905 ext4_msg(inode->i_sb, KERN_ERR, 906 "Inode %lu (%p): orphan list check failed!", 907 inode->i_ino, EXT4_I(inode)); 908 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 909 EXT4_I(inode), sizeof(struct ext4_inode_info), 910 true); 911 dump_stack(); 912 } 913 call_rcu(&inode->i_rcu, ext4_i_callback); 914 } 915 916 static void init_once(void *foo) 917 { 918 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 919 920 INIT_LIST_HEAD(&ei->i_orphan); 921 init_rwsem(&ei->xattr_sem); 922 init_rwsem(&ei->i_data_sem); 923 inode_init_once(&ei->vfs_inode); 924 } 925 926 static int __init init_inodecache(void) 927 { 928 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 929 sizeof(struct ext4_inode_info), 930 0, (SLAB_RECLAIM_ACCOUNT| 931 SLAB_MEM_SPREAD), 932 init_once); 933 if (ext4_inode_cachep == NULL) 934 return -ENOMEM; 935 return 0; 936 } 937 938 static void destroy_inodecache(void) 939 { 940 /* 941 * Make sure all delayed rcu free inodes are flushed before we 942 * destroy cache. 943 */ 944 rcu_barrier(); 945 kmem_cache_destroy(ext4_inode_cachep); 946 } 947 948 void ext4_clear_inode(struct inode *inode) 949 { 950 invalidate_inode_buffers(inode); 951 clear_inode(inode); 952 dquot_drop(inode); 953 ext4_discard_preallocations(inode); 954 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 955 if (EXT4_I(inode)->jinode) { 956 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 957 EXT4_I(inode)->jinode); 958 jbd2_free_inode(EXT4_I(inode)->jinode); 959 EXT4_I(inode)->jinode = NULL; 960 } 961 } 962 963 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 964 u64 ino, u32 generation) 965 { 966 struct inode *inode; 967 968 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 969 return ERR_PTR(-ESTALE); 970 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 971 return ERR_PTR(-ESTALE); 972 973 /* iget isn't really right if the inode is currently unallocated!! 974 * 975 * ext4_read_inode will return a bad_inode if the inode had been 976 * deleted, so we should be safe. 977 * 978 * Currently we don't know the generation for parent directory, so 979 * a generation of 0 means "accept any" 980 */ 981 inode = ext4_iget_normal(sb, ino); 982 if (IS_ERR(inode)) 983 return ERR_CAST(inode); 984 if (generation && inode->i_generation != generation) { 985 iput(inode); 986 return ERR_PTR(-ESTALE); 987 } 988 989 return inode; 990 } 991 992 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 993 int fh_len, int fh_type) 994 { 995 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 996 ext4_nfs_get_inode); 997 } 998 999 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1000 int fh_len, int fh_type) 1001 { 1002 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1003 ext4_nfs_get_inode); 1004 } 1005 1006 /* 1007 * Try to release metadata pages (indirect blocks, directories) which are 1008 * mapped via the block device. Since these pages could have journal heads 1009 * which would prevent try_to_free_buffers() from freeing them, we must use 1010 * jbd2 layer's try_to_free_buffers() function to release them. 1011 */ 1012 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1013 gfp_t wait) 1014 { 1015 journal_t *journal = EXT4_SB(sb)->s_journal; 1016 1017 WARN_ON(PageChecked(page)); 1018 if (!page_has_buffers(page)) 1019 return 0; 1020 if (journal) 1021 return jbd2_journal_try_to_free_buffers(journal, page, 1022 wait & ~__GFP_WAIT); 1023 return try_to_free_buffers(page); 1024 } 1025 1026 #ifdef CONFIG_QUOTA 1027 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1028 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1029 1030 static int ext4_write_dquot(struct dquot *dquot); 1031 static int ext4_acquire_dquot(struct dquot *dquot); 1032 static int ext4_release_dquot(struct dquot *dquot); 1033 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1034 static int ext4_write_info(struct super_block *sb, int type); 1035 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1036 struct path *path); 1037 static int ext4_quota_off(struct super_block *sb, int type); 1038 static int ext4_quota_on_mount(struct super_block *sb, int type); 1039 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1040 size_t len, loff_t off); 1041 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1042 const char *data, size_t len, loff_t off); 1043 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1044 unsigned int flags); 1045 static int ext4_enable_quotas(struct super_block *sb); 1046 1047 static struct dquot **ext4_get_dquots(struct inode *inode) 1048 { 1049 return EXT4_I(inode)->i_dquot; 1050 } 1051 1052 static const struct dquot_operations ext4_quota_operations = { 1053 .get_reserved_space = ext4_get_reserved_space, 1054 .write_dquot = ext4_write_dquot, 1055 .acquire_dquot = ext4_acquire_dquot, 1056 .release_dquot = ext4_release_dquot, 1057 .mark_dirty = ext4_mark_dquot_dirty, 1058 .write_info = ext4_write_info, 1059 .alloc_dquot = dquot_alloc, 1060 .destroy_dquot = dquot_destroy, 1061 }; 1062 1063 static const struct quotactl_ops ext4_qctl_operations = { 1064 .quota_on = ext4_quota_on, 1065 .quota_off = ext4_quota_off, 1066 .quota_sync = dquot_quota_sync, 1067 .get_state = dquot_get_state, 1068 .set_info = dquot_set_dqinfo, 1069 .get_dqblk = dquot_get_dqblk, 1070 .set_dqblk = dquot_set_dqblk 1071 }; 1072 #endif 1073 1074 static const struct super_operations ext4_sops = { 1075 .alloc_inode = ext4_alloc_inode, 1076 .destroy_inode = ext4_destroy_inode, 1077 .write_inode = ext4_write_inode, 1078 .dirty_inode = ext4_dirty_inode, 1079 .drop_inode = ext4_drop_inode, 1080 .evict_inode = ext4_evict_inode, 1081 .put_super = ext4_put_super, 1082 .sync_fs = ext4_sync_fs, 1083 .freeze_fs = ext4_freeze, 1084 .unfreeze_fs = ext4_unfreeze, 1085 .statfs = ext4_statfs, 1086 .remount_fs = ext4_remount, 1087 .show_options = ext4_show_options, 1088 #ifdef CONFIG_QUOTA 1089 .quota_read = ext4_quota_read, 1090 .quota_write = ext4_quota_write, 1091 .get_dquots = ext4_get_dquots, 1092 #endif 1093 .bdev_try_to_free_page = bdev_try_to_free_page, 1094 }; 1095 1096 static const struct export_operations ext4_export_ops = { 1097 .fh_to_dentry = ext4_fh_to_dentry, 1098 .fh_to_parent = ext4_fh_to_parent, 1099 .get_parent = ext4_get_parent, 1100 }; 1101 1102 enum { 1103 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1104 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1105 Opt_nouid32, Opt_debug, Opt_removed, 1106 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1107 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1108 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1109 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1110 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1111 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1112 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1113 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1114 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1115 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1116 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1117 Opt_lazytime, Opt_nolazytime, 1118 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1119 Opt_inode_readahead_blks, Opt_journal_ioprio, 1120 Opt_dioread_nolock, Opt_dioread_lock, 1121 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1122 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1123 }; 1124 1125 static const match_table_t tokens = { 1126 {Opt_bsd_df, "bsddf"}, 1127 {Opt_minix_df, "minixdf"}, 1128 {Opt_grpid, "grpid"}, 1129 {Opt_grpid, "bsdgroups"}, 1130 {Opt_nogrpid, "nogrpid"}, 1131 {Opt_nogrpid, "sysvgroups"}, 1132 {Opt_resgid, "resgid=%u"}, 1133 {Opt_resuid, "resuid=%u"}, 1134 {Opt_sb, "sb=%u"}, 1135 {Opt_err_cont, "errors=continue"}, 1136 {Opt_err_panic, "errors=panic"}, 1137 {Opt_err_ro, "errors=remount-ro"}, 1138 {Opt_nouid32, "nouid32"}, 1139 {Opt_debug, "debug"}, 1140 {Opt_removed, "oldalloc"}, 1141 {Opt_removed, "orlov"}, 1142 {Opt_user_xattr, "user_xattr"}, 1143 {Opt_nouser_xattr, "nouser_xattr"}, 1144 {Opt_acl, "acl"}, 1145 {Opt_noacl, "noacl"}, 1146 {Opt_noload, "norecovery"}, 1147 {Opt_noload, "noload"}, 1148 {Opt_removed, "nobh"}, 1149 {Opt_removed, "bh"}, 1150 {Opt_commit, "commit=%u"}, 1151 {Opt_min_batch_time, "min_batch_time=%u"}, 1152 {Opt_max_batch_time, "max_batch_time=%u"}, 1153 {Opt_journal_dev, "journal_dev=%u"}, 1154 {Opt_journal_path, "journal_path=%s"}, 1155 {Opt_journal_checksum, "journal_checksum"}, 1156 {Opt_nojournal_checksum, "nojournal_checksum"}, 1157 {Opt_journal_async_commit, "journal_async_commit"}, 1158 {Opt_abort, "abort"}, 1159 {Opt_data_journal, "data=journal"}, 1160 {Opt_data_ordered, "data=ordered"}, 1161 {Opt_data_writeback, "data=writeback"}, 1162 {Opt_data_err_abort, "data_err=abort"}, 1163 {Opt_data_err_ignore, "data_err=ignore"}, 1164 {Opt_offusrjquota, "usrjquota="}, 1165 {Opt_usrjquota, "usrjquota=%s"}, 1166 {Opt_offgrpjquota, "grpjquota="}, 1167 {Opt_grpjquota, "grpjquota=%s"}, 1168 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1169 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1170 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1171 {Opt_grpquota, "grpquota"}, 1172 {Opt_noquota, "noquota"}, 1173 {Opt_quota, "quota"}, 1174 {Opt_usrquota, "usrquota"}, 1175 {Opt_barrier, "barrier=%u"}, 1176 {Opt_barrier, "barrier"}, 1177 {Opt_nobarrier, "nobarrier"}, 1178 {Opt_i_version, "i_version"}, 1179 {Opt_dax, "dax"}, 1180 {Opt_stripe, "stripe=%u"}, 1181 {Opt_delalloc, "delalloc"}, 1182 {Opt_lazytime, "lazytime"}, 1183 {Opt_nolazytime, "nolazytime"}, 1184 {Opt_nodelalloc, "nodelalloc"}, 1185 {Opt_removed, "mblk_io_submit"}, 1186 {Opt_removed, "nomblk_io_submit"}, 1187 {Opt_block_validity, "block_validity"}, 1188 {Opt_noblock_validity, "noblock_validity"}, 1189 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1190 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1191 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1192 {Opt_auto_da_alloc, "auto_da_alloc"}, 1193 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1194 {Opt_dioread_nolock, "dioread_nolock"}, 1195 {Opt_dioread_lock, "dioread_lock"}, 1196 {Opt_discard, "discard"}, 1197 {Opt_nodiscard, "nodiscard"}, 1198 {Opt_init_itable, "init_itable=%u"}, 1199 {Opt_init_itable, "init_itable"}, 1200 {Opt_noinit_itable, "noinit_itable"}, 1201 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1202 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1203 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1204 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1205 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1206 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1207 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1208 {Opt_err, NULL}, 1209 }; 1210 1211 static ext4_fsblk_t get_sb_block(void **data) 1212 { 1213 ext4_fsblk_t sb_block; 1214 char *options = (char *) *data; 1215 1216 if (!options || strncmp(options, "sb=", 3) != 0) 1217 return 1; /* Default location */ 1218 1219 options += 3; 1220 /* TODO: use simple_strtoll with >32bit ext4 */ 1221 sb_block = simple_strtoul(options, &options, 0); 1222 if (*options && *options != ',') { 1223 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1224 (char *) *data); 1225 return 1; 1226 } 1227 if (*options == ',') 1228 options++; 1229 *data = (void *) options; 1230 1231 return sb_block; 1232 } 1233 1234 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1235 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1236 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1237 1238 #ifdef CONFIG_QUOTA 1239 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1240 { 1241 struct ext4_sb_info *sbi = EXT4_SB(sb); 1242 char *qname; 1243 int ret = -1; 1244 1245 if (sb_any_quota_loaded(sb) && 1246 !sbi->s_qf_names[qtype]) { 1247 ext4_msg(sb, KERN_ERR, 1248 "Cannot change journaled " 1249 "quota options when quota turned on"); 1250 return -1; 1251 } 1252 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1253 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1254 "when QUOTA feature is enabled"); 1255 return -1; 1256 } 1257 qname = match_strdup(args); 1258 if (!qname) { 1259 ext4_msg(sb, KERN_ERR, 1260 "Not enough memory for storing quotafile name"); 1261 return -1; 1262 } 1263 if (sbi->s_qf_names[qtype]) { 1264 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1265 ret = 1; 1266 else 1267 ext4_msg(sb, KERN_ERR, 1268 "%s quota file already specified", 1269 QTYPE2NAME(qtype)); 1270 goto errout; 1271 } 1272 if (strchr(qname, '/')) { 1273 ext4_msg(sb, KERN_ERR, 1274 "quotafile must be on filesystem root"); 1275 goto errout; 1276 } 1277 sbi->s_qf_names[qtype] = qname; 1278 set_opt(sb, QUOTA); 1279 return 1; 1280 errout: 1281 kfree(qname); 1282 return ret; 1283 } 1284 1285 static int clear_qf_name(struct super_block *sb, int qtype) 1286 { 1287 1288 struct ext4_sb_info *sbi = EXT4_SB(sb); 1289 1290 if (sb_any_quota_loaded(sb) && 1291 sbi->s_qf_names[qtype]) { 1292 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1293 " when quota turned on"); 1294 return -1; 1295 } 1296 kfree(sbi->s_qf_names[qtype]); 1297 sbi->s_qf_names[qtype] = NULL; 1298 return 1; 1299 } 1300 #endif 1301 1302 #define MOPT_SET 0x0001 1303 #define MOPT_CLEAR 0x0002 1304 #define MOPT_NOSUPPORT 0x0004 1305 #define MOPT_EXPLICIT 0x0008 1306 #define MOPT_CLEAR_ERR 0x0010 1307 #define MOPT_GTE0 0x0020 1308 #ifdef CONFIG_QUOTA 1309 #define MOPT_Q 0 1310 #define MOPT_QFMT 0x0040 1311 #else 1312 #define MOPT_Q MOPT_NOSUPPORT 1313 #define MOPT_QFMT MOPT_NOSUPPORT 1314 #endif 1315 #define MOPT_DATAJ 0x0080 1316 #define MOPT_NO_EXT2 0x0100 1317 #define MOPT_NO_EXT3 0x0200 1318 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1319 #define MOPT_STRING 0x0400 1320 1321 static const struct mount_opts { 1322 int token; 1323 int mount_opt; 1324 int flags; 1325 } ext4_mount_opts[] = { 1326 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1327 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1328 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1329 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1330 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1331 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1332 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1333 MOPT_EXT4_ONLY | MOPT_SET}, 1334 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1335 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1336 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1337 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1338 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1339 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1340 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1341 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1342 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1343 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1344 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1345 MOPT_EXT4_ONLY | MOPT_SET}, 1346 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1347 EXT4_MOUNT_JOURNAL_CHECKSUM), 1348 MOPT_EXT4_ONLY | MOPT_SET}, 1349 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1350 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1351 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1352 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1353 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1354 MOPT_NO_EXT2 | MOPT_SET}, 1355 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1356 MOPT_NO_EXT2 | MOPT_CLEAR}, 1357 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1358 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1359 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1360 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1361 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1362 {Opt_commit, 0, MOPT_GTE0}, 1363 {Opt_max_batch_time, 0, MOPT_GTE0}, 1364 {Opt_min_batch_time, 0, MOPT_GTE0}, 1365 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1366 {Opt_init_itable, 0, MOPT_GTE0}, 1367 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1368 {Opt_stripe, 0, MOPT_GTE0}, 1369 {Opt_resuid, 0, MOPT_GTE0}, 1370 {Opt_resgid, 0, MOPT_GTE0}, 1371 {Opt_journal_dev, 0, MOPT_GTE0}, 1372 {Opt_journal_path, 0, MOPT_STRING}, 1373 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1374 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1375 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1376 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1377 MOPT_NO_EXT2 | MOPT_DATAJ}, 1378 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1379 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1380 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1381 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1382 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1383 #else 1384 {Opt_acl, 0, MOPT_NOSUPPORT}, 1385 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1386 #endif 1387 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1388 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1389 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1390 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1391 MOPT_SET | MOPT_Q}, 1392 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1393 MOPT_SET | MOPT_Q}, 1394 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1395 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1396 {Opt_usrjquota, 0, MOPT_Q}, 1397 {Opt_grpjquota, 0, MOPT_Q}, 1398 {Opt_offusrjquota, 0, MOPT_Q}, 1399 {Opt_offgrpjquota, 0, MOPT_Q}, 1400 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1401 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1402 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1403 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1404 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1405 {Opt_err, 0, 0} 1406 }; 1407 1408 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1409 substring_t *args, unsigned long *journal_devnum, 1410 unsigned int *journal_ioprio, int is_remount) 1411 { 1412 struct ext4_sb_info *sbi = EXT4_SB(sb); 1413 const struct mount_opts *m; 1414 kuid_t uid; 1415 kgid_t gid; 1416 int arg = 0; 1417 1418 #ifdef CONFIG_QUOTA 1419 if (token == Opt_usrjquota) 1420 return set_qf_name(sb, USRQUOTA, &args[0]); 1421 else if (token == Opt_grpjquota) 1422 return set_qf_name(sb, GRPQUOTA, &args[0]); 1423 else if (token == Opt_offusrjquota) 1424 return clear_qf_name(sb, USRQUOTA); 1425 else if (token == Opt_offgrpjquota) 1426 return clear_qf_name(sb, GRPQUOTA); 1427 #endif 1428 switch (token) { 1429 case Opt_noacl: 1430 case Opt_nouser_xattr: 1431 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1432 break; 1433 case Opt_sb: 1434 return 1; /* handled by get_sb_block() */ 1435 case Opt_removed: 1436 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1437 return 1; 1438 case Opt_abort: 1439 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1440 return 1; 1441 case Opt_i_version: 1442 sb->s_flags |= MS_I_VERSION; 1443 return 1; 1444 case Opt_lazytime: 1445 sb->s_flags |= MS_LAZYTIME; 1446 return 1; 1447 case Opt_nolazytime: 1448 sb->s_flags &= ~MS_LAZYTIME; 1449 return 1; 1450 } 1451 1452 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1453 if (token == m->token) 1454 break; 1455 1456 if (m->token == Opt_err) { 1457 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1458 "or missing value", opt); 1459 return -1; 1460 } 1461 1462 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1463 ext4_msg(sb, KERN_ERR, 1464 "Mount option \"%s\" incompatible with ext2", opt); 1465 return -1; 1466 } 1467 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1468 ext4_msg(sb, KERN_ERR, 1469 "Mount option \"%s\" incompatible with ext3", opt); 1470 return -1; 1471 } 1472 1473 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1474 return -1; 1475 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1476 return -1; 1477 if (m->flags & MOPT_EXPLICIT) 1478 set_opt2(sb, EXPLICIT_DELALLOC); 1479 if (m->flags & MOPT_CLEAR_ERR) 1480 clear_opt(sb, ERRORS_MASK); 1481 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1482 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1483 "options when quota turned on"); 1484 return -1; 1485 } 1486 1487 if (m->flags & MOPT_NOSUPPORT) { 1488 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1489 } else if (token == Opt_commit) { 1490 if (arg == 0) 1491 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1492 sbi->s_commit_interval = HZ * arg; 1493 } else if (token == Opt_max_batch_time) { 1494 sbi->s_max_batch_time = arg; 1495 } else if (token == Opt_min_batch_time) { 1496 sbi->s_min_batch_time = arg; 1497 } else if (token == Opt_inode_readahead_blks) { 1498 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1499 ext4_msg(sb, KERN_ERR, 1500 "EXT4-fs: inode_readahead_blks must be " 1501 "0 or a power of 2 smaller than 2^31"); 1502 return -1; 1503 } 1504 sbi->s_inode_readahead_blks = arg; 1505 } else if (token == Opt_init_itable) { 1506 set_opt(sb, INIT_INODE_TABLE); 1507 if (!args->from) 1508 arg = EXT4_DEF_LI_WAIT_MULT; 1509 sbi->s_li_wait_mult = arg; 1510 } else if (token == Opt_max_dir_size_kb) { 1511 sbi->s_max_dir_size_kb = arg; 1512 } else if (token == Opt_stripe) { 1513 sbi->s_stripe = arg; 1514 } else if (token == Opt_resuid) { 1515 uid = make_kuid(current_user_ns(), arg); 1516 if (!uid_valid(uid)) { 1517 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1518 return -1; 1519 } 1520 sbi->s_resuid = uid; 1521 } else if (token == Opt_resgid) { 1522 gid = make_kgid(current_user_ns(), arg); 1523 if (!gid_valid(gid)) { 1524 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1525 return -1; 1526 } 1527 sbi->s_resgid = gid; 1528 } else if (token == Opt_journal_dev) { 1529 if (is_remount) { 1530 ext4_msg(sb, KERN_ERR, 1531 "Cannot specify journal on remount"); 1532 return -1; 1533 } 1534 *journal_devnum = arg; 1535 } else if (token == Opt_journal_path) { 1536 char *journal_path; 1537 struct inode *journal_inode; 1538 struct path path; 1539 int error; 1540 1541 if (is_remount) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Cannot specify journal on remount"); 1544 return -1; 1545 } 1546 journal_path = match_strdup(&args[0]); 1547 if (!journal_path) { 1548 ext4_msg(sb, KERN_ERR, "error: could not dup " 1549 "journal device string"); 1550 return -1; 1551 } 1552 1553 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1554 if (error) { 1555 ext4_msg(sb, KERN_ERR, "error: could not find " 1556 "journal device path: error %d", error); 1557 kfree(journal_path); 1558 return -1; 1559 } 1560 1561 journal_inode = d_inode(path.dentry); 1562 if (!S_ISBLK(journal_inode->i_mode)) { 1563 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1564 "is not a block device", journal_path); 1565 path_put(&path); 1566 kfree(journal_path); 1567 return -1; 1568 } 1569 1570 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1571 path_put(&path); 1572 kfree(journal_path); 1573 } else if (token == Opt_journal_ioprio) { 1574 if (arg > 7) { 1575 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1576 " (must be 0-7)"); 1577 return -1; 1578 } 1579 *journal_ioprio = 1580 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1581 } else if (token == Opt_test_dummy_encryption) { 1582 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1583 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1584 ext4_msg(sb, KERN_WARNING, 1585 "Test dummy encryption mode enabled"); 1586 #else 1587 ext4_msg(sb, KERN_WARNING, 1588 "Test dummy encryption mount option ignored"); 1589 #endif 1590 } else if (m->flags & MOPT_DATAJ) { 1591 if (is_remount) { 1592 if (!sbi->s_journal) 1593 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1594 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1595 ext4_msg(sb, KERN_ERR, 1596 "Cannot change data mode on remount"); 1597 return -1; 1598 } 1599 } else { 1600 clear_opt(sb, DATA_FLAGS); 1601 sbi->s_mount_opt |= m->mount_opt; 1602 } 1603 #ifdef CONFIG_QUOTA 1604 } else if (m->flags & MOPT_QFMT) { 1605 if (sb_any_quota_loaded(sb) && 1606 sbi->s_jquota_fmt != m->mount_opt) { 1607 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1608 "quota options when quota turned on"); 1609 return -1; 1610 } 1611 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1612 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1613 ext4_msg(sb, KERN_ERR, 1614 "Cannot set journaled quota options " 1615 "when QUOTA feature is enabled"); 1616 return -1; 1617 } 1618 sbi->s_jquota_fmt = m->mount_opt; 1619 #endif 1620 #ifndef CONFIG_FS_DAX 1621 } else if (token == Opt_dax) { 1622 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1623 return -1; 1624 #endif 1625 } else { 1626 if (!args->from) 1627 arg = 1; 1628 if (m->flags & MOPT_CLEAR) 1629 arg = !arg; 1630 else if (unlikely(!(m->flags & MOPT_SET))) { 1631 ext4_msg(sb, KERN_WARNING, 1632 "buggy handling of option %s", opt); 1633 WARN_ON(1); 1634 return -1; 1635 } 1636 if (arg != 0) 1637 sbi->s_mount_opt |= m->mount_opt; 1638 else 1639 sbi->s_mount_opt &= ~m->mount_opt; 1640 } 1641 return 1; 1642 } 1643 1644 static int parse_options(char *options, struct super_block *sb, 1645 unsigned long *journal_devnum, 1646 unsigned int *journal_ioprio, 1647 int is_remount) 1648 { 1649 struct ext4_sb_info *sbi = EXT4_SB(sb); 1650 char *p; 1651 substring_t args[MAX_OPT_ARGS]; 1652 int token; 1653 1654 if (!options) 1655 return 1; 1656 1657 while ((p = strsep(&options, ",")) != NULL) { 1658 if (!*p) 1659 continue; 1660 /* 1661 * Initialize args struct so we know whether arg was 1662 * found; some options take optional arguments. 1663 */ 1664 args[0].to = args[0].from = NULL; 1665 token = match_token(p, tokens, args); 1666 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1667 journal_ioprio, is_remount) < 0) 1668 return 0; 1669 } 1670 #ifdef CONFIG_QUOTA 1671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1672 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1673 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1674 "feature is enabled"); 1675 return 0; 1676 } 1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1679 clear_opt(sb, USRQUOTA); 1680 1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1682 clear_opt(sb, GRPQUOTA); 1683 1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1685 ext4_msg(sb, KERN_ERR, "old and new quota " 1686 "format mixing"); 1687 return 0; 1688 } 1689 1690 if (!sbi->s_jquota_fmt) { 1691 ext4_msg(sb, KERN_ERR, "journaled quota format " 1692 "not specified"); 1693 return 0; 1694 } 1695 } 1696 #endif 1697 if (test_opt(sb, DIOREAD_NOLOCK)) { 1698 int blocksize = 1699 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1700 1701 if (blocksize < PAGE_CACHE_SIZE) { 1702 ext4_msg(sb, KERN_ERR, "can't mount with " 1703 "dioread_nolock if block size != PAGE_SIZE"); 1704 return 0; 1705 } 1706 } 1707 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1708 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1709 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1710 "in data=ordered mode"); 1711 return 0; 1712 } 1713 return 1; 1714 } 1715 1716 static inline void ext4_show_quota_options(struct seq_file *seq, 1717 struct super_block *sb) 1718 { 1719 #if defined(CONFIG_QUOTA) 1720 struct ext4_sb_info *sbi = EXT4_SB(sb); 1721 1722 if (sbi->s_jquota_fmt) { 1723 char *fmtname = ""; 1724 1725 switch (sbi->s_jquota_fmt) { 1726 case QFMT_VFS_OLD: 1727 fmtname = "vfsold"; 1728 break; 1729 case QFMT_VFS_V0: 1730 fmtname = "vfsv0"; 1731 break; 1732 case QFMT_VFS_V1: 1733 fmtname = "vfsv1"; 1734 break; 1735 } 1736 seq_printf(seq, ",jqfmt=%s", fmtname); 1737 } 1738 1739 if (sbi->s_qf_names[USRQUOTA]) 1740 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1741 1742 if (sbi->s_qf_names[GRPQUOTA]) 1743 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1744 #endif 1745 } 1746 1747 static const char *token2str(int token) 1748 { 1749 const struct match_token *t; 1750 1751 for (t = tokens; t->token != Opt_err; t++) 1752 if (t->token == token && !strchr(t->pattern, '=')) 1753 break; 1754 return t->pattern; 1755 } 1756 1757 /* 1758 * Show an option if 1759 * - it's set to a non-default value OR 1760 * - if the per-sb default is different from the global default 1761 */ 1762 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1763 int nodefs) 1764 { 1765 struct ext4_sb_info *sbi = EXT4_SB(sb); 1766 struct ext4_super_block *es = sbi->s_es; 1767 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1768 const struct mount_opts *m; 1769 char sep = nodefs ? '\n' : ','; 1770 1771 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1772 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1773 1774 if (sbi->s_sb_block != 1) 1775 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1776 1777 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1778 int want_set = m->flags & MOPT_SET; 1779 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1780 (m->flags & MOPT_CLEAR_ERR)) 1781 continue; 1782 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1783 continue; /* skip if same as the default */ 1784 if ((want_set && 1785 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1786 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1787 continue; /* select Opt_noFoo vs Opt_Foo */ 1788 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1789 } 1790 1791 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1792 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1793 SEQ_OPTS_PRINT("resuid=%u", 1794 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1795 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1796 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1797 SEQ_OPTS_PRINT("resgid=%u", 1798 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1799 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1800 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1801 SEQ_OPTS_PUTS("errors=remount-ro"); 1802 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1803 SEQ_OPTS_PUTS("errors=continue"); 1804 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1805 SEQ_OPTS_PUTS("errors=panic"); 1806 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1807 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1808 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1809 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1810 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1811 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1812 if (sb->s_flags & MS_I_VERSION) 1813 SEQ_OPTS_PUTS("i_version"); 1814 if (nodefs || sbi->s_stripe) 1815 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1816 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1817 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1818 SEQ_OPTS_PUTS("data=journal"); 1819 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1820 SEQ_OPTS_PUTS("data=ordered"); 1821 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1822 SEQ_OPTS_PUTS("data=writeback"); 1823 } 1824 if (nodefs || 1825 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1826 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1827 sbi->s_inode_readahead_blks); 1828 1829 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1830 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1831 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1832 if (nodefs || sbi->s_max_dir_size_kb) 1833 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1834 1835 ext4_show_quota_options(seq, sb); 1836 return 0; 1837 } 1838 1839 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1840 { 1841 return _ext4_show_options(seq, root->d_sb, 0); 1842 } 1843 1844 static int options_seq_show(struct seq_file *seq, void *offset) 1845 { 1846 struct super_block *sb = seq->private; 1847 int rc; 1848 1849 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1850 rc = _ext4_show_options(seq, sb, 1); 1851 seq_puts(seq, "\n"); 1852 return rc; 1853 } 1854 1855 static int options_open_fs(struct inode *inode, struct file *file) 1856 { 1857 return single_open(file, options_seq_show, PDE_DATA(inode)); 1858 } 1859 1860 static const struct file_operations ext4_seq_options_fops = { 1861 .owner = THIS_MODULE, 1862 .open = options_open_fs, 1863 .read = seq_read, 1864 .llseek = seq_lseek, 1865 .release = single_release, 1866 }; 1867 1868 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1869 int read_only) 1870 { 1871 struct ext4_sb_info *sbi = EXT4_SB(sb); 1872 int res = 0; 1873 1874 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1875 ext4_msg(sb, KERN_ERR, "revision level too high, " 1876 "forcing read-only mode"); 1877 res = MS_RDONLY; 1878 } 1879 if (read_only) 1880 goto done; 1881 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1882 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1883 "running e2fsck is recommended"); 1884 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1885 ext4_msg(sb, KERN_WARNING, 1886 "warning: mounting fs with errors, " 1887 "running e2fsck is recommended"); 1888 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1889 le16_to_cpu(es->s_mnt_count) >= 1890 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1891 ext4_msg(sb, KERN_WARNING, 1892 "warning: maximal mount count reached, " 1893 "running e2fsck is recommended"); 1894 else if (le32_to_cpu(es->s_checkinterval) && 1895 (le32_to_cpu(es->s_lastcheck) + 1896 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1897 ext4_msg(sb, KERN_WARNING, 1898 "warning: checktime reached, " 1899 "running e2fsck is recommended"); 1900 if (!sbi->s_journal) 1901 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1902 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1903 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1904 le16_add_cpu(&es->s_mnt_count, 1); 1905 es->s_mtime = cpu_to_le32(get_seconds()); 1906 ext4_update_dynamic_rev(sb); 1907 if (sbi->s_journal) 1908 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1909 1910 ext4_commit_super(sb, 1); 1911 done: 1912 if (test_opt(sb, DEBUG)) 1913 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1914 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1915 sb->s_blocksize, 1916 sbi->s_groups_count, 1917 EXT4_BLOCKS_PER_GROUP(sb), 1918 EXT4_INODES_PER_GROUP(sb), 1919 sbi->s_mount_opt, sbi->s_mount_opt2); 1920 1921 cleancache_init_fs(sb); 1922 return res; 1923 } 1924 1925 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1926 { 1927 struct ext4_sb_info *sbi = EXT4_SB(sb); 1928 struct flex_groups *new_groups; 1929 int size; 1930 1931 if (!sbi->s_log_groups_per_flex) 1932 return 0; 1933 1934 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1935 if (size <= sbi->s_flex_groups_allocated) 1936 return 0; 1937 1938 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1939 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1940 if (!new_groups) { 1941 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1942 size / (int) sizeof(struct flex_groups)); 1943 return -ENOMEM; 1944 } 1945 1946 if (sbi->s_flex_groups) { 1947 memcpy(new_groups, sbi->s_flex_groups, 1948 (sbi->s_flex_groups_allocated * 1949 sizeof(struct flex_groups))); 1950 kvfree(sbi->s_flex_groups); 1951 } 1952 sbi->s_flex_groups = new_groups; 1953 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1954 return 0; 1955 } 1956 1957 static int ext4_fill_flex_info(struct super_block *sb) 1958 { 1959 struct ext4_sb_info *sbi = EXT4_SB(sb); 1960 struct ext4_group_desc *gdp = NULL; 1961 ext4_group_t flex_group; 1962 int i, err; 1963 1964 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1965 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1966 sbi->s_log_groups_per_flex = 0; 1967 return 1; 1968 } 1969 1970 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1971 if (err) 1972 goto failed; 1973 1974 for (i = 0; i < sbi->s_groups_count; i++) { 1975 gdp = ext4_get_group_desc(sb, i, NULL); 1976 1977 flex_group = ext4_flex_group(sbi, i); 1978 atomic_add(ext4_free_inodes_count(sb, gdp), 1979 &sbi->s_flex_groups[flex_group].free_inodes); 1980 atomic64_add(ext4_free_group_clusters(sb, gdp), 1981 &sbi->s_flex_groups[flex_group].free_clusters); 1982 atomic_add(ext4_used_dirs_count(sb, gdp), 1983 &sbi->s_flex_groups[flex_group].used_dirs); 1984 } 1985 1986 return 1; 1987 failed: 1988 return 0; 1989 } 1990 1991 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1992 struct ext4_group_desc *gdp) 1993 { 1994 int offset; 1995 __u16 crc = 0; 1996 __le32 le_group = cpu_to_le32(block_group); 1997 1998 if (ext4_has_metadata_csum(sbi->s_sb)) { 1999 /* Use new metadata_csum algorithm */ 2000 __le16 save_csum; 2001 __u32 csum32; 2002 2003 save_csum = gdp->bg_checksum; 2004 gdp->bg_checksum = 0; 2005 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2006 sizeof(le_group)); 2007 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2008 sbi->s_desc_size); 2009 gdp->bg_checksum = save_csum; 2010 2011 crc = csum32 & 0xFFFF; 2012 goto out; 2013 } 2014 2015 /* old crc16 code */ 2016 if (!(sbi->s_es->s_feature_ro_compat & 2017 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2018 return 0; 2019 2020 offset = offsetof(struct ext4_group_desc, bg_checksum); 2021 2022 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2023 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2024 crc = crc16(crc, (__u8 *)gdp, offset); 2025 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2026 /* for checksum of struct ext4_group_desc do the rest...*/ 2027 if ((sbi->s_es->s_feature_incompat & 2028 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2029 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2030 crc = crc16(crc, (__u8 *)gdp + offset, 2031 le16_to_cpu(sbi->s_es->s_desc_size) - 2032 offset); 2033 2034 out: 2035 return cpu_to_le16(crc); 2036 } 2037 2038 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2039 struct ext4_group_desc *gdp) 2040 { 2041 if (ext4_has_group_desc_csum(sb) && 2042 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2043 block_group, gdp))) 2044 return 0; 2045 2046 return 1; 2047 } 2048 2049 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2050 struct ext4_group_desc *gdp) 2051 { 2052 if (!ext4_has_group_desc_csum(sb)) 2053 return; 2054 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2055 } 2056 2057 /* Called at mount-time, super-block is locked */ 2058 static int ext4_check_descriptors(struct super_block *sb, 2059 ext4_group_t *first_not_zeroed) 2060 { 2061 struct ext4_sb_info *sbi = EXT4_SB(sb); 2062 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2063 ext4_fsblk_t last_block; 2064 ext4_fsblk_t block_bitmap; 2065 ext4_fsblk_t inode_bitmap; 2066 ext4_fsblk_t inode_table; 2067 int flexbg_flag = 0; 2068 ext4_group_t i, grp = sbi->s_groups_count; 2069 2070 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2071 flexbg_flag = 1; 2072 2073 ext4_debug("Checking group descriptors"); 2074 2075 for (i = 0; i < sbi->s_groups_count; i++) { 2076 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2077 2078 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2079 last_block = ext4_blocks_count(sbi->s_es) - 1; 2080 else 2081 last_block = first_block + 2082 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2083 2084 if ((grp == sbi->s_groups_count) && 2085 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2086 grp = i; 2087 2088 block_bitmap = ext4_block_bitmap(sb, gdp); 2089 if (block_bitmap < first_block || block_bitmap > last_block) { 2090 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2091 "Block bitmap for group %u not in group " 2092 "(block %llu)!", i, block_bitmap); 2093 return 0; 2094 } 2095 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2096 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2097 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2098 "Inode bitmap for group %u not in group " 2099 "(block %llu)!", i, inode_bitmap); 2100 return 0; 2101 } 2102 inode_table = ext4_inode_table(sb, gdp); 2103 if (inode_table < first_block || 2104 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2105 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2106 "Inode table for group %u not in group " 2107 "(block %llu)!", i, inode_table); 2108 return 0; 2109 } 2110 ext4_lock_group(sb, i); 2111 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2112 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2113 "Checksum for group %u failed (%u!=%u)", 2114 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2115 gdp)), le16_to_cpu(gdp->bg_checksum)); 2116 if (!(sb->s_flags & MS_RDONLY)) { 2117 ext4_unlock_group(sb, i); 2118 return 0; 2119 } 2120 } 2121 ext4_unlock_group(sb, i); 2122 if (!flexbg_flag) 2123 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2124 } 2125 if (NULL != first_not_zeroed) 2126 *first_not_zeroed = grp; 2127 return 1; 2128 } 2129 2130 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2131 * the superblock) which were deleted from all directories, but held open by 2132 * a process at the time of a crash. We walk the list and try to delete these 2133 * inodes at recovery time (only with a read-write filesystem). 2134 * 2135 * In order to keep the orphan inode chain consistent during traversal (in 2136 * case of crash during recovery), we link each inode into the superblock 2137 * orphan list_head and handle it the same way as an inode deletion during 2138 * normal operation (which journals the operations for us). 2139 * 2140 * We only do an iget() and an iput() on each inode, which is very safe if we 2141 * accidentally point at an in-use or already deleted inode. The worst that 2142 * can happen in this case is that we get a "bit already cleared" message from 2143 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2144 * e2fsck was run on this filesystem, and it must have already done the orphan 2145 * inode cleanup for us, so we can safely abort without any further action. 2146 */ 2147 static void ext4_orphan_cleanup(struct super_block *sb, 2148 struct ext4_super_block *es) 2149 { 2150 unsigned int s_flags = sb->s_flags; 2151 int nr_orphans = 0, nr_truncates = 0; 2152 #ifdef CONFIG_QUOTA 2153 int i; 2154 #endif 2155 if (!es->s_last_orphan) { 2156 jbd_debug(4, "no orphan inodes to clean up\n"); 2157 return; 2158 } 2159 2160 if (bdev_read_only(sb->s_bdev)) { 2161 ext4_msg(sb, KERN_ERR, "write access " 2162 "unavailable, skipping orphan cleanup"); 2163 return; 2164 } 2165 2166 /* Check if feature set would not allow a r/w mount */ 2167 if (!ext4_feature_set_ok(sb, 0)) { 2168 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2169 "unknown ROCOMPAT features"); 2170 return; 2171 } 2172 2173 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2174 /* don't clear list on RO mount w/ errors */ 2175 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2176 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2177 "clearing orphan list.\n"); 2178 es->s_last_orphan = 0; 2179 } 2180 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2181 return; 2182 } 2183 2184 if (s_flags & MS_RDONLY) { 2185 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2186 sb->s_flags &= ~MS_RDONLY; 2187 } 2188 #ifdef CONFIG_QUOTA 2189 /* Needed for iput() to work correctly and not trash data */ 2190 sb->s_flags |= MS_ACTIVE; 2191 /* Turn on quotas so that they are updated correctly */ 2192 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2193 if (EXT4_SB(sb)->s_qf_names[i]) { 2194 int ret = ext4_quota_on_mount(sb, i); 2195 if (ret < 0) 2196 ext4_msg(sb, KERN_ERR, 2197 "Cannot turn on journaled " 2198 "quota: error %d", ret); 2199 } 2200 } 2201 #endif 2202 2203 while (es->s_last_orphan) { 2204 struct inode *inode; 2205 2206 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2207 if (IS_ERR(inode)) { 2208 es->s_last_orphan = 0; 2209 break; 2210 } 2211 2212 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2213 dquot_initialize(inode); 2214 if (inode->i_nlink) { 2215 if (test_opt(sb, DEBUG)) 2216 ext4_msg(sb, KERN_DEBUG, 2217 "%s: truncating inode %lu to %lld bytes", 2218 __func__, inode->i_ino, inode->i_size); 2219 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2220 inode->i_ino, inode->i_size); 2221 mutex_lock(&inode->i_mutex); 2222 truncate_inode_pages(inode->i_mapping, inode->i_size); 2223 ext4_truncate(inode); 2224 mutex_unlock(&inode->i_mutex); 2225 nr_truncates++; 2226 } else { 2227 if (test_opt(sb, DEBUG)) 2228 ext4_msg(sb, KERN_DEBUG, 2229 "%s: deleting unreferenced inode %lu", 2230 __func__, inode->i_ino); 2231 jbd_debug(2, "deleting unreferenced inode %lu\n", 2232 inode->i_ino); 2233 nr_orphans++; 2234 } 2235 iput(inode); /* The delete magic happens here! */ 2236 } 2237 2238 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2239 2240 if (nr_orphans) 2241 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2242 PLURAL(nr_orphans)); 2243 if (nr_truncates) 2244 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2245 PLURAL(nr_truncates)); 2246 #ifdef CONFIG_QUOTA 2247 /* Turn quotas off */ 2248 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2249 if (sb_dqopt(sb)->files[i]) 2250 dquot_quota_off(sb, i); 2251 } 2252 #endif 2253 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2254 } 2255 2256 /* 2257 * Maximal extent format file size. 2258 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2259 * extent format containers, within a sector_t, and within i_blocks 2260 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2261 * so that won't be a limiting factor. 2262 * 2263 * However there is other limiting factor. We do store extents in the form 2264 * of starting block and length, hence the resulting length of the extent 2265 * covering maximum file size must fit into on-disk format containers as 2266 * well. Given that length is always by 1 unit bigger than max unit (because 2267 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2268 * 2269 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2270 */ 2271 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2272 { 2273 loff_t res; 2274 loff_t upper_limit = MAX_LFS_FILESIZE; 2275 2276 /* small i_blocks in vfs inode? */ 2277 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2278 /* 2279 * CONFIG_LBDAF is not enabled implies the inode 2280 * i_block represent total blocks in 512 bytes 2281 * 32 == size of vfs inode i_blocks * 8 2282 */ 2283 upper_limit = (1LL << 32) - 1; 2284 2285 /* total blocks in file system block size */ 2286 upper_limit >>= (blkbits - 9); 2287 upper_limit <<= blkbits; 2288 } 2289 2290 /* 2291 * 32-bit extent-start container, ee_block. We lower the maxbytes 2292 * by one fs block, so ee_len can cover the extent of maximum file 2293 * size 2294 */ 2295 res = (1LL << 32) - 1; 2296 res <<= blkbits; 2297 2298 /* Sanity check against vm- & vfs- imposed limits */ 2299 if (res > upper_limit) 2300 res = upper_limit; 2301 2302 return res; 2303 } 2304 2305 /* 2306 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2307 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2308 * We need to be 1 filesystem block less than the 2^48 sector limit. 2309 */ 2310 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2311 { 2312 loff_t res = EXT4_NDIR_BLOCKS; 2313 int meta_blocks; 2314 loff_t upper_limit; 2315 /* This is calculated to be the largest file size for a dense, block 2316 * mapped file such that the file's total number of 512-byte sectors, 2317 * including data and all indirect blocks, does not exceed (2^48 - 1). 2318 * 2319 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2320 * number of 512-byte sectors of the file. 2321 */ 2322 2323 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2324 /* 2325 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2326 * the inode i_block field represents total file blocks in 2327 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2328 */ 2329 upper_limit = (1LL << 32) - 1; 2330 2331 /* total blocks in file system block size */ 2332 upper_limit >>= (bits - 9); 2333 2334 } else { 2335 /* 2336 * We use 48 bit ext4_inode i_blocks 2337 * With EXT4_HUGE_FILE_FL set the i_blocks 2338 * represent total number of blocks in 2339 * file system block size 2340 */ 2341 upper_limit = (1LL << 48) - 1; 2342 2343 } 2344 2345 /* indirect blocks */ 2346 meta_blocks = 1; 2347 /* double indirect blocks */ 2348 meta_blocks += 1 + (1LL << (bits-2)); 2349 /* tripple indirect blocks */ 2350 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2351 2352 upper_limit -= meta_blocks; 2353 upper_limit <<= bits; 2354 2355 res += 1LL << (bits-2); 2356 res += 1LL << (2*(bits-2)); 2357 res += 1LL << (3*(bits-2)); 2358 res <<= bits; 2359 if (res > upper_limit) 2360 res = upper_limit; 2361 2362 if (res > MAX_LFS_FILESIZE) 2363 res = MAX_LFS_FILESIZE; 2364 2365 return res; 2366 } 2367 2368 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2369 ext4_fsblk_t logical_sb_block, int nr) 2370 { 2371 struct ext4_sb_info *sbi = EXT4_SB(sb); 2372 ext4_group_t bg, first_meta_bg; 2373 int has_super = 0; 2374 2375 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2376 2377 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2378 nr < first_meta_bg) 2379 return logical_sb_block + nr + 1; 2380 bg = sbi->s_desc_per_block * nr; 2381 if (ext4_bg_has_super(sb, bg)) 2382 has_super = 1; 2383 2384 /* 2385 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2386 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2387 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2388 * compensate. 2389 */ 2390 if (sb->s_blocksize == 1024 && nr == 0 && 2391 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2392 has_super++; 2393 2394 return (has_super + ext4_group_first_block_no(sb, bg)); 2395 } 2396 2397 /** 2398 * ext4_get_stripe_size: Get the stripe size. 2399 * @sbi: In memory super block info 2400 * 2401 * If we have specified it via mount option, then 2402 * use the mount option value. If the value specified at mount time is 2403 * greater than the blocks per group use the super block value. 2404 * If the super block value is greater than blocks per group return 0. 2405 * Allocator needs it be less than blocks per group. 2406 * 2407 */ 2408 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2409 { 2410 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2411 unsigned long stripe_width = 2412 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2413 int ret; 2414 2415 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2416 ret = sbi->s_stripe; 2417 else if (stripe_width <= sbi->s_blocks_per_group) 2418 ret = stripe_width; 2419 else if (stride <= sbi->s_blocks_per_group) 2420 ret = stride; 2421 else 2422 ret = 0; 2423 2424 /* 2425 * If the stripe width is 1, this makes no sense and 2426 * we set it to 0 to turn off stripe handling code. 2427 */ 2428 if (ret <= 1) 2429 ret = 0; 2430 2431 return ret; 2432 } 2433 2434 /* sysfs supprt */ 2435 2436 struct ext4_attr { 2437 struct attribute attr; 2438 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2439 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2440 const char *, size_t); 2441 union { 2442 int offset; 2443 int deprecated_val; 2444 } u; 2445 }; 2446 2447 static int parse_strtoull(const char *buf, 2448 unsigned long long max, unsigned long long *value) 2449 { 2450 int ret; 2451 2452 ret = kstrtoull(skip_spaces(buf), 0, value); 2453 if (!ret && *value > max) 2454 ret = -EINVAL; 2455 return ret; 2456 } 2457 2458 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2459 struct ext4_sb_info *sbi, 2460 char *buf) 2461 { 2462 return snprintf(buf, PAGE_SIZE, "%llu\n", 2463 (s64) EXT4_C2B(sbi, 2464 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2465 } 2466 2467 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2468 struct ext4_sb_info *sbi, char *buf) 2469 { 2470 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2471 2472 if (!sb->s_bdev->bd_part) 2473 return snprintf(buf, PAGE_SIZE, "0\n"); 2474 return snprintf(buf, PAGE_SIZE, "%lu\n", 2475 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2476 sbi->s_sectors_written_start) >> 1); 2477 } 2478 2479 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2480 struct ext4_sb_info *sbi, char *buf) 2481 { 2482 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2483 2484 if (!sb->s_bdev->bd_part) 2485 return snprintf(buf, PAGE_SIZE, "0\n"); 2486 return snprintf(buf, PAGE_SIZE, "%llu\n", 2487 (unsigned long long)(sbi->s_kbytes_written + 2488 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2489 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2490 } 2491 2492 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2493 struct ext4_sb_info *sbi, 2494 const char *buf, size_t count) 2495 { 2496 unsigned long t; 2497 int ret; 2498 2499 ret = kstrtoul(skip_spaces(buf), 0, &t); 2500 if (ret) 2501 return ret; 2502 2503 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2504 return -EINVAL; 2505 2506 sbi->s_inode_readahead_blks = t; 2507 return count; 2508 } 2509 2510 static ssize_t sbi_ui_show(struct ext4_attr *a, 2511 struct ext4_sb_info *sbi, char *buf) 2512 { 2513 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2514 2515 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2516 } 2517 2518 static ssize_t sbi_ui_store(struct ext4_attr *a, 2519 struct ext4_sb_info *sbi, 2520 const char *buf, size_t count) 2521 { 2522 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2523 unsigned long t; 2524 int ret; 2525 2526 ret = kstrtoul(skip_spaces(buf), 0, &t); 2527 if (ret) 2528 return ret; 2529 *ui = t; 2530 return count; 2531 } 2532 2533 static ssize_t es_ui_show(struct ext4_attr *a, 2534 struct ext4_sb_info *sbi, char *buf) 2535 { 2536 2537 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2538 a->u.offset); 2539 2540 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2541 } 2542 2543 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2544 struct ext4_sb_info *sbi, char *buf) 2545 { 2546 return snprintf(buf, PAGE_SIZE, "%llu\n", 2547 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2548 } 2549 2550 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2551 struct ext4_sb_info *sbi, 2552 const char *buf, size_t count) 2553 { 2554 unsigned long long val; 2555 int ret; 2556 2557 if (parse_strtoull(buf, -1ULL, &val)) 2558 return -EINVAL; 2559 ret = ext4_reserve_clusters(sbi, val); 2560 2561 return ret ? ret : count; 2562 } 2563 2564 static ssize_t trigger_test_error(struct ext4_attr *a, 2565 struct ext4_sb_info *sbi, 2566 const char *buf, size_t count) 2567 { 2568 int len = count; 2569 2570 if (!capable(CAP_SYS_ADMIN)) 2571 return -EPERM; 2572 2573 if (len && buf[len-1] == '\n') 2574 len--; 2575 2576 if (len) 2577 ext4_error(sbi->s_sb, "%.*s", len, buf); 2578 return count; 2579 } 2580 2581 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2582 struct ext4_sb_info *sbi, char *buf) 2583 { 2584 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2585 } 2586 2587 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2588 static struct ext4_attr ext4_attr_##_name = { \ 2589 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2590 .show = _show, \ 2591 .store = _store, \ 2592 .u = { \ 2593 .offset = offsetof(struct ext4_sb_info, _elname),\ 2594 }, \ 2595 } 2596 2597 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2598 static struct ext4_attr ext4_attr_##_name = { \ 2599 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2600 .show = _show, \ 2601 .store = _store, \ 2602 .u = { \ 2603 .offset = offsetof(struct ext4_super_block, _elname), \ 2604 }, \ 2605 } 2606 2607 #define EXT4_ATTR(name, mode, show, store) \ 2608 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2609 2610 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2611 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2612 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2613 2614 #define EXT4_RO_ATTR_ES_UI(name, elname) \ 2615 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2616 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2617 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2618 2619 #define ATTR_LIST(name) &ext4_attr_##name.attr 2620 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2621 static struct ext4_attr ext4_attr_##_name = { \ 2622 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2623 .show = sbi_deprecated_show, \ 2624 .u = { \ 2625 .deprecated_val = _val, \ 2626 }, \ 2627 } 2628 2629 EXT4_RO_ATTR(delayed_allocation_blocks); 2630 EXT4_RO_ATTR(session_write_kbytes); 2631 EXT4_RO_ATTR(lifetime_write_kbytes); 2632 EXT4_RW_ATTR(reserved_clusters); 2633 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2634 inode_readahead_blks_store, s_inode_readahead_blks); 2635 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2636 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2637 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2638 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2639 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2640 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2641 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2642 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2643 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2644 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2645 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2646 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2647 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2648 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2649 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2650 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2651 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2652 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2653 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2654 2655 static struct attribute *ext4_attrs[] = { 2656 ATTR_LIST(delayed_allocation_blocks), 2657 ATTR_LIST(session_write_kbytes), 2658 ATTR_LIST(lifetime_write_kbytes), 2659 ATTR_LIST(reserved_clusters), 2660 ATTR_LIST(inode_readahead_blks), 2661 ATTR_LIST(inode_goal), 2662 ATTR_LIST(mb_stats), 2663 ATTR_LIST(mb_max_to_scan), 2664 ATTR_LIST(mb_min_to_scan), 2665 ATTR_LIST(mb_order2_req), 2666 ATTR_LIST(mb_stream_req), 2667 ATTR_LIST(mb_group_prealloc), 2668 ATTR_LIST(max_writeback_mb_bump), 2669 ATTR_LIST(extent_max_zeroout_kb), 2670 ATTR_LIST(trigger_fs_error), 2671 ATTR_LIST(err_ratelimit_interval_ms), 2672 ATTR_LIST(err_ratelimit_burst), 2673 ATTR_LIST(warning_ratelimit_interval_ms), 2674 ATTR_LIST(warning_ratelimit_burst), 2675 ATTR_LIST(msg_ratelimit_interval_ms), 2676 ATTR_LIST(msg_ratelimit_burst), 2677 ATTR_LIST(errors_count), 2678 ATTR_LIST(first_error_time), 2679 ATTR_LIST(last_error_time), 2680 NULL, 2681 }; 2682 2683 /* Features this copy of ext4 supports */ 2684 EXT4_INFO_ATTR(lazy_itable_init); 2685 EXT4_INFO_ATTR(batched_discard); 2686 EXT4_INFO_ATTR(meta_bg_resize); 2687 EXT4_INFO_ATTR(encryption); 2688 2689 static struct attribute *ext4_feat_attrs[] = { 2690 ATTR_LIST(lazy_itable_init), 2691 ATTR_LIST(batched_discard), 2692 ATTR_LIST(meta_bg_resize), 2693 ATTR_LIST(encryption), 2694 NULL, 2695 }; 2696 2697 static ssize_t ext4_attr_show(struct kobject *kobj, 2698 struct attribute *attr, char *buf) 2699 { 2700 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2701 s_kobj); 2702 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2703 2704 return a->show ? a->show(a, sbi, buf) : 0; 2705 } 2706 2707 static ssize_t ext4_attr_store(struct kobject *kobj, 2708 struct attribute *attr, 2709 const char *buf, size_t len) 2710 { 2711 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2712 s_kobj); 2713 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2714 2715 return a->store ? a->store(a, sbi, buf, len) : 0; 2716 } 2717 2718 static void ext4_sb_release(struct kobject *kobj) 2719 { 2720 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2721 s_kobj); 2722 complete(&sbi->s_kobj_unregister); 2723 } 2724 2725 static const struct sysfs_ops ext4_attr_ops = { 2726 .show = ext4_attr_show, 2727 .store = ext4_attr_store, 2728 }; 2729 2730 static struct kobj_type ext4_ktype = { 2731 .default_attrs = ext4_attrs, 2732 .sysfs_ops = &ext4_attr_ops, 2733 .release = ext4_sb_release, 2734 }; 2735 2736 static void ext4_feat_release(struct kobject *kobj) 2737 { 2738 complete(&ext4_feat->f_kobj_unregister); 2739 } 2740 2741 static ssize_t ext4_feat_show(struct kobject *kobj, 2742 struct attribute *attr, char *buf) 2743 { 2744 return snprintf(buf, PAGE_SIZE, "supported\n"); 2745 } 2746 2747 /* 2748 * We can not use ext4_attr_show/store because it relies on the kobject 2749 * being embedded in the ext4_sb_info structure which is definitely not 2750 * true in this case. 2751 */ 2752 static const struct sysfs_ops ext4_feat_ops = { 2753 .show = ext4_feat_show, 2754 .store = NULL, 2755 }; 2756 2757 static struct kobj_type ext4_feat_ktype = { 2758 .default_attrs = ext4_feat_attrs, 2759 .sysfs_ops = &ext4_feat_ops, 2760 .release = ext4_feat_release, 2761 }; 2762 2763 /* 2764 * Check whether this filesystem can be mounted based on 2765 * the features present and the RDONLY/RDWR mount requested. 2766 * Returns 1 if this filesystem can be mounted as requested, 2767 * 0 if it cannot be. 2768 */ 2769 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2770 { 2771 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2772 ext4_msg(sb, KERN_ERR, 2773 "Couldn't mount because of " 2774 "unsupported optional features (%x)", 2775 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2776 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2777 return 0; 2778 } 2779 2780 if (readonly) 2781 return 1; 2782 2783 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) { 2784 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2785 sb->s_flags |= MS_RDONLY; 2786 return 1; 2787 } 2788 2789 /* Check that feature set is OK for a read-write mount */ 2790 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2791 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2792 "unsupported optional features (%x)", 2793 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2794 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2795 return 0; 2796 } 2797 /* 2798 * Large file size enabled file system can only be mounted 2799 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2800 */ 2801 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2802 if (sizeof(blkcnt_t) < sizeof(u64)) { 2803 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2804 "cannot be mounted RDWR without " 2805 "CONFIG_LBDAF"); 2806 return 0; 2807 } 2808 } 2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2810 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2811 ext4_msg(sb, KERN_ERR, 2812 "Can't support bigalloc feature without " 2813 "extents feature\n"); 2814 return 0; 2815 } 2816 2817 #ifndef CONFIG_QUOTA 2818 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2819 !readonly) { 2820 ext4_msg(sb, KERN_ERR, 2821 "Filesystem with quota feature cannot be mounted RDWR " 2822 "without CONFIG_QUOTA"); 2823 return 0; 2824 } 2825 #endif /* CONFIG_QUOTA */ 2826 return 1; 2827 } 2828 2829 /* 2830 * This function is called once a day if we have errors logged 2831 * on the file system 2832 */ 2833 static void print_daily_error_info(unsigned long arg) 2834 { 2835 struct super_block *sb = (struct super_block *) arg; 2836 struct ext4_sb_info *sbi; 2837 struct ext4_super_block *es; 2838 2839 sbi = EXT4_SB(sb); 2840 es = sbi->s_es; 2841 2842 if (es->s_error_count) 2843 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2844 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2845 le32_to_cpu(es->s_error_count)); 2846 if (es->s_first_error_time) { 2847 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2848 sb->s_id, le32_to_cpu(es->s_first_error_time), 2849 (int) sizeof(es->s_first_error_func), 2850 es->s_first_error_func, 2851 le32_to_cpu(es->s_first_error_line)); 2852 if (es->s_first_error_ino) 2853 printk(": inode %u", 2854 le32_to_cpu(es->s_first_error_ino)); 2855 if (es->s_first_error_block) 2856 printk(": block %llu", (unsigned long long) 2857 le64_to_cpu(es->s_first_error_block)); 2858 printk("\n"); 2859 } 2860 if (es->s_last_error_time) { 2861 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2862 sb->s_id, le32_to_cpu(es->s_last_error_time), 2863 (int) sizeof(es->s_last_error_func), 2864 es->s_last_error_func, 2865 le32_to_cpu(es->s_last_error_line)); 2866 if (es->s_last_error_ino) 2867 printk(": inode %u", 2868 le32_to_cpu(es->s_last_error_ino)); 2869 if (es->s_last_error_block) 2870 printk(": block %llu", (unsigned long long) 2871 le64_to_cpu(es->s_last_error_block)); 2872 printk("\n"); 2873 } 2874 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2875 } 2876 2877 /* Find next suitable group and run ext4_init_inode_table */ 2878 static int ext4_run_li_request(struct ext4_li_request *elr) 2879 { 2880 struct ext4_group_desc *gdp = NULL; 2881 ext4_group_t group, ngroups; 2882 struct super_block *sb; 2883 unsigned long timeout = 0; 2884 int ret = 0; 2885 2886 sb = elr->lr_super; 2887 ngroups = EXT4_SB(sb)->s_groups_count; 2888 2889 sb_start_write(sb); 2890 for (group = elr->lr_next_group; group < ngroups; group++) { 2891 gdp = ext4_get_group_desc(sb, group, NULL); 2892 if (!gdp) { 2893 ret = 1; 2894 break; 2895 } 2896 2897 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2898 break; 2899 } 2900 2901 if (group >= ngroups) 2902 ret = 1; 2903 2904 if (!ret) { 2905 timeout = jiffies; 2906 ret = ext4_init_inode_table(sb, group, 2907 elr->lr_timeout ? 0 : 1); 2908 if (elr->lr_timeout == 0) { 2909 timeout = (jiffies - timeout) * 2910 elr->lr_sbi->s_li_wait_mult; 2911 elr->lr_timeout = timeout; 2912 } 2913 elr->lr_next_sched = jiffies + elr->lr_timeout; 2914 elr->lr_next_group = group + 1; 2915 } 2916 sb_end_write(sb); 2917 2918 return ret; 2919 } 2920 2921 /* 2922 * Remove lr_request from the list_request and free the 2923 * request structure. Should be called with li_list_mtx held 2924 */ 2925 static void ext4_remove_li_request(struct ext4_li_request *elr) 2926 { 2927 struct ext4_sb_info *sbi; 2928 2929 if (!elr) 2930 return; 2931 2932 sbi = elr->lr_sbi; 2933 2934 list_del(&elr->lr_request); 2935 sbi->s_li_request = NULL; 2936 kfree(elr); 2937 } 2938 2939 static void ext4_unregister_li_request(struct super_block *sb) 2940 { 2941 mutex_lock(&ext4_li_mtx); 2942 if (!ext4_li_info) { 2943 mutex_unlock(&ext4_li_mtx); 2944 return; 2945 } 2946 2947 mutex_lock(&ext4_li_info->li_list_mtx); 2948 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2949 mutex_unlock(&ext4_li_info->li_list_mtx); 2950 mutex_unlock(&ext4_li_mtx); 2951 } 2952 2953 static struct task_struct *ext4_lazyinit_task; 2954 2955 /* 2956 * This is the function where ext4lazyinit thread lives. It walks 2957 * through the request list searching for next scheduled filesystem. 2958 * When such a fs is found, run the lazy initialization request 2959 * (ext4_rn_li_request) and keep track of the time spend in this 2960 * function. Based on that time we compute next schedule time of 2961 * the request. When walking through the list is complete, compute 2962 * next waking time and put itself into sleep. 2963 */ 2964 static int ext4_lazyinit_thread(void *arg) 2965 { 2966 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2967 struct list_head *pos, *n; 2968 struct ext4_li_request *elr; 2969 unsigned long next_wakeup, cur; 2970 2971 BUG_ON(NULL == eli); 2972 2973 cont_thread: 2974 while (true) { 2975 next_wakeup = MAX_JIFFY_OFFSET; 2976 2977 mutex_lock(&eli->li_list_mtx); 2978 if (list_empty(&eli->li_request_list)) { 2979 mutex_unlock(&eli->li_list_mtx); 2980 goto exit_thread; 2981 } 2982 2983 list_for_each_safe(pos, n, &eli->li_request_list) { 2984 elr = list_entry(pos, struct ext4_li_request, 2985 lr_request); 2986 2987 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2988 if (ext4_run_li_request(elr) != 0) { 2989 /* error, remove the lazy_init job */ 2990 ext4_remove_li_request(elr); 2991 continue; 2992 } 2993 } 2994 2995 if (time_before(elr->lr_next_sched, next_wakeup)) 2996 next_wakeup = elr->lr_next_sched; 2997 } 2998 mutex_unlock(&eli->li_list_mtx); 2999 3000 try_to_freeze(); 3001 3002 cur = jiffies; 3003 if ((time_after_eq(cur, next_wakeup)) || 3004 (MAX_JIFFY_OFFSET == next_wakeup)) { 3005 cond_resched(); 3006 continue; 3007 } 3008 3009 schedule_timeout_interruptible(next_wakeup - cur); 3010 3011 if (kthread_should_stop()) { 3012 ext4_clear_request_list(); 3013 goto exit_thread; 3014 } 3015 } 3016 3017 exit_thread: 3018 /* 3019 * It looks like the request list is empty, but we need 3020 * to check it under the li_list_mtx lock, to prevent any 3021 * additions into it, and of course we should lock ext4_li_mtx 3022 * to atomically free the list and ext4_li_info, because at 3023 * this point another ext4 filesystem could be registering 3024 * new one. 3025 */ 3026 mutex_lock(&ext4_li_mtx); 3027 mutex_lock(&eli->li_list_mtx); 3028 if (!list_empty(&eli->li_request_list)) { 3029 mutex_unlock(&eli->li_list_mtx); 3030 mutex_unlock(&ext4_li_mtx); 3031 goto cont_thread; 3032 } 3033 mutex_unlock(&eli->li_list_mtx); 3034 kfree(ext4_li_info); 3035 ext4_li_info = NULL; 3036 mutex_unlock(&ext4_li_mtx); 3037 3038 return 0; 3039 } 3040 3041 static void ext4_clear_request_list(void) 3042 { 3043 struct list_head *pos, *n; 3044 struct ext4_li_request *elr; 3045 3046 mutex_lock(&ext4_li_info->li_list_mtx); 3047 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3048 elr = list_entry(pos, struct ext4_li_request, 3049 lr_request); 3050 ext4_remove_li_request(elr); 3051 } 3052 mutex_unlock(&ext4_li_info->li_list_mtx); 3053 } 3054 3055 static int ext4_run_lazyinit_thread(void) 3056 { 3057 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3058 ext4_li_info, "ext4lazyinit"); 3059 if (IS_ERR(ext4_lazyinit_task)) { 3060 int err = PTR_ERR(ext4_lazyinit_task); 3061 ext4_clear_request_list(); 3062 kfree(ext4_li_info); 3063 ext4_li_info = NULL; 3064 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3065 "initialization thread\n", 3066 err); 3067 return err; 3068 } 3069 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3070 return 0; 3071 } 3072 3073 /* 3074 * Check whether it make sense to run itable init. thread or not. 3075 * If there is at least one uninitialized inode table, return 3076 * corresponding group number, else the loop goes through all 3077 * groups and return total number of groups. 3078 */ 3079 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3080 { 3081 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3082 struct ext4_group_desc *gdp = NULL; 3083 3084 for (group = 0; group < ngroups; group++) { 3085 gdp = ext4_get_group_desc(sb, group, NULL); 3086 if (!gdp) 3087 continue; 3088 3089 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3090 break; 3091 } 3092 3093 return group; 3094 } 3095 3096 static int ext4_li_info_new(void) 3097 { 3098 struct ext4_lazy_init *eli = NULL; 3099 3100 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3101 if (!eli) 3102 return -ENOMEM; 3103 3104 INIT_LIST_HEAD(&eli->li_request_list); 3105 mutex_init(&eli->li_list_mtx); 3106 3107 eli->li_state |= EXT4_LAZYINIT_QUIT; 3108 3109 ext4_li_info = eli; 3110 3111 return 0; 3112 } 3113 3114 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3115 ext4_group_t start) 3116 { 3117 struct ext4_sb_info *sbi = EXT4_SB(sb); 3118 struct ext4_li_request *elr; 3119 3120 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3121 if (!elr) 3122 return NULL; 3123 3124 elr->lr_super = sb; 3125 elr->lr_sbi = sbi; 3126 elr->lr_next_group = start; 3127 3128 /* 3129 * Randomize first schedule time of the request to 3130 * spread the inode table initialization requests 3131 * better. 3132 */ 3133 elr->lr_next_sched = jiffies + (prandom_u32() % 3134 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3135 return elr; 3136 } 3137 3138 int ext4_register_li_request(struct super_block *sb, 3139 ext4_group_t first_not_zeroed) 3140 { 3141 struct ext4_sb_info *sbi = EXT4_SB(sb); 3142 struct ext4_li_request *elr = NULL; 3143 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3144 int ret = 0; 3145 3146 mutex_lock(&ext4_li_mtx); 3147 if (sbi->s_li_request != NULL) { 3148 /* 3149 * Reset timeout so it can be computed again, because 3150 * s_li_wait_mult might have changed. 3151 */ 3152 sbi->s_li_request->lr_timeout = 0; 3153 goto out; 3154 } 3155 3156 if (first_not_zeroed == ngroups || 3157 (sb->s_flags & MS_RDONLY) || 3158 !test_opt(sb, INIT_INODE_TABLE)) 3159 goto out; 3160 3161 elr = ext4_li_request_new(sb, first_not_zeroed); 3162 if (!elr) { 3163 ret = -ENOMEM; 3164 goto out; 3165 } 3166 3167 if (NULL == ext4_li_info) { 3168 ret = ext4_li_info_new(); 3169 if (ret) 3170 goto out; 3171 } 3172 3173 mutex_lock(&ext4_li_info->li_list_mtx); 3174 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3175 mutex_unlock(&ext4_li_info->li_list_mtx); 3176 3177 sbi->s_li_request = elr; 3178 /* 3179 * set elr to NULL here since it has been inserted to 3180 * the request_list and the removal and free of it is 3181 * handled by ext4_clear_request_list from now on. 3182 */ 3183 elr = NULL; 3184 3185 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3186 ret = ext4_run_lazyinit_thread(); 3187 if (ret) 3188 goto out; 3189 } 3190 out: 3191 mutex_unlock(&ext4_li_mtx); 3192 if (ret) 3193 kfree(elr); 3194 return ret; 3195 } 3196 3197 /* 3198 * We do not need to lock anything since this is called on 3199 * module unload. 3200 */ 3201 static void ext4_destroy_lazyinit_thread(void) 3202 { 3203 /* 3204 * If thread exited earlier 3205 * there's nothing to be done. 3206 */ 3207 if (!ext4_li_info || !ext4_lazyinit_task) 3208 return; 3209 3210 kthread_stop(ext4_lazyinit_task); 3211 } 3212 3213 static int set_journal_csum_feature_set(struct super_block *sb) 3214 { 3215 int ret = 1; 3216 int compat, incompat; 3217 struct ext4_sb_info *sbi = EXT4_SB(sb); 3218 3219 if (ext4_has_metadata_csum(sb)) { 3220 /* journal checksum v3 */ 3221 compat = 0; 3222 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3223 } else { 3224 /* journal checksum v1 */ 3225 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3226 incompat = 0; 3227 } 3228 3229 jbd2_journal_clear_features(sbi->s_journal, 3230 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3231 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3232 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3233 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3234 ret = jbd2_journal_set_features(sbi->s_journal, 3235 compat, 0, 3236 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3237 incompat); 3238 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3239 ret = jbd2_journal_set_features(sbi->s_journal, 3240 compat, 0, 3241 incompat); 3242 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3243 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3244 } else { 3245 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3246 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3247 } 3248 3249 return ret; 3250 } 3251 3252 /* 3253 * Note: calculating the overhead so we can be compatible with 3254 * historical BSD practice is quite difficult in the face of 3255 * clusters/bigalloc. This is because multiple metadata blocks from 3256 * different block group can end up in the same allocation cluster. 3257 * Calculating the exact overhead in the face of clustered allocation 3258 * requires either O(all block bitmaps) in memory or O(number of block 3259 * groups**2) in time. We will still calculate the superblock for 3260 * older file systems --- and if we come across with a bigalloc file 3261 * system with zero in s_overhead_clusters the estimate will be close to 3262 * correct especially for very large cluster sizes --- but for newer 3263 * file systems, it's better to calculate this figure once at mkfs 3264 * time, and store it in the superblock. If the superblock value is 3265 * present (even for non-bigalloc file systems), we will use it. 3266 */ 3267 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3268 char *buf) 3269 { 3270 struct ext4_sb_info *sbi = EXT4_SB(sb); 3271 struct ext4_group_desc *gdp; 3272 ext4_fsblk_t first_block, last_block, b; 3273 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3274 int s, j, count = 0; 3275 3276 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3277 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3278 sbi->s_itb_per_group + 2); 3279 3280 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3281 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3282 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3283 for (i = 0; i < ngroups; i++) { 3284 gdp = ext4_get_group_desc(sb, i, NULL); 3285 b = ext4_block_bitmap(sb, gdp); 3286 if (b >= first_block && b <= last_block) { 3287 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3288 count++; 3289 } 3290 b = ext4_inode_bitmap(sb, gdp); 3291 if (b >= first_block && b <= last_block) { 3292 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3293 count++; 3294 } 3295 b = ext4_inode_table(sb, gdp); 3296 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3297 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3298 int c = EXT4_B2C(sbi, b - first_block); 3299 ext4_set_bit(c, buf); 3300 count++; 3301 } 3302 if (i != grp) 3303 continue; 3304 s = 0; 3305 if (ext4_bg_has_super(sb, grp)) { 3306 ext4_set_bit(s++, buf); 3307 count++; 3308 } 3309 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3310 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3311 count++; 3312 } 3313 } 3314 if (!count) 3315 return 0; 3316 return EXT4_CLUSTERS_PER_GROUP(sb) - 3317 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3318 } 3319 3320 /* 3321 * Compute the overhead and stash it in sbi->s_overhead 3322 */ 3323 int ext4_calculate_overhead(struct super_block *sb) 3324 { 3325 struct ext4_sb_info *sbi = EXT4_SB(sb); 3326 struct ext4_super_block *es = sbi->s_es; 3327 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3328 ext4_fsblk_t overhead = 0; 3329 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3330 3331 if (!buf) 3332 return -ENOMEM; 3333 3334 /* 3335 * Compute the overhead (FS structures). This is constant 3336 * for a given filesystem unless the number of block groups 3337 * changes so we cache the previous value until it does. 3338 */ 3339 3340 /* 3341 * All of the blocks before first_data_block are overhead 3342 */ 3343 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3344 3345 /* 3346 * Add the overhead found in each block group 3347 */ 3348 for (i = 0; i < ngroups; i++) { 3349 int blks; 3350 3351 blks = count_overhead(sb, i, buf); 3352 overhead += blks; 3353 if (blks) 3354 memset(buf, 0, PAGE_SIZE); 3355 cond_resched(); 3356 } 3357 /* Add the internal journal blocks as well */ 3358 if (sbi->s_journal && !sbi->journal_bdev) 3359 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3360 3361 sbi->s_overhead = overhead; 3362 smp_wmb(); 3363 free_page((unsigned long) buf); 3364 return 0; 3365 } 3366 3367 3368 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3369 { 3370 ext4_fsblk_t resv_clusters; 3371 3372 /* 3373 * There's no need to reserve anything when we aren't using extents. 3374 * The space estimates are exact, there are no unwritten extents, 3375 * hole punching doesn't need new metadata... This is needed especially 3376 * to keep ext2/3 backward compatibility. 3377 */ 3378 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3379 return 0; 3380 /* 3381 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3382 * This should cover the situations where we can not afford to run 3383 * out of space like for example punch hole, or converting 3384 * unwritten extents in delalloc path. In most cases such 3385 * allocation would require 1, or 2 blocks, higher numbers are 3386 * very rare. 3387 */ 3388 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3389 EXT4_SB(sb)->s_cluster_bits; 3390 3391 do_div(resv_clusters, 50); 3392 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3393 3394 return resv_clusters; 3395 } 3396 3397 3398 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3399 { 3400 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3401 sbi->s_cluster_bits; 3402 3403 if (count >= clusters) 3404 return -EINVAL; 3405 3406 atomic64_set(&sbi->s_resv_clusters, count); 3407 return 0; 3408 } 3409 3410 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3411 { 3412 char *orig_data = kstrdup(data, GFP_KERNEL); 3413 struct buffer_head *bh; 3414 struct ext4_super_block *es = NULL; 3415 struct ext4_sb_info *sbi; 3416 ext4_fsblk_t block; 3417 ext4_fsblk_t sb_block = get_sb_block(&data); 3418 ext4_fsblk_t logical_sb_block; 3419 unsigned long offset = 0; 3420 unsigned long journal_devnum = 0; 3421 unsigned long def_mount_opts; 3422 struct inode *root; 3423 char *cp; 3424 const char *descr; 3425 int ret = -ENOMEM; 3426 int blocksize, clustersize; 3427 unsigned int db_count; 3428 unsigned int i; 3429 int needs_recovery, has_huge_files, has_bigalloc; 3430 __u64 blocks_count; 3431 int err = 0; 3432 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3433 ext4_group_t first_not_zeroed; 3434 3435 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3436 if (!sbi) 3437 goto out_free_orig; 3438 3439 sbi->s_blockgroup_lock = 3440 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3441 if (!sbi->s_blockgroup_lock) { 3442 kfree(sbi); 3443 goto out_free_orig; 3444 } 3445 sb->s_fs_info = sbi; 3446 sbi->s_sb = sb; 3447 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3448 sbi->s_sb_block = sb_block; 3449 if (sb->s_bdev->bd_part) 3450 sbi->s_sectors_written_start = 3451 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3452 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3453 /* Modes of operations for file and directory encryption. */ 3454 sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS; 3455 sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID; 3456 #endif 3457 3458 /* Cleanup superblock name */ 3459 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3460 *cp = '!'; 3461 3462 /* -EINVAL is default */ 3463 ret = -EINVAL; 3464 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3465 if (!blocksize) { 3466 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3467 goto out_fail; 3468 } 3469 3470 /* 3471 * The ext4 superblock will not be buffer aligned for other than 1kB 3472 * block sizes. We need to calculate the offset from buffer start. 3473 */ 3474 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3475 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3476 offset = do_div(logical_sb_block, blocksize); 3477 } else { 3478 logical_sb_block = sb_block; 3479 } 3480 3481 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3482 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3483 goto out_fail; 3484 } 3485 /* 3486 * Note: s_es must be initialized as soon as possible because 3487 * some ext4 macro-instructions depend on its value 3488 */ 3489 es = (struct ext4_super_block *) (bh->b_data + offset); 3490 sbi->s_es = es; 3491 sb->s_magic = le16_to_cpu(es->s_magic); 3492 if (sb->s_magic != EXT4_SUPER_MAGIC) 3493 goto cantfind_ext4; 3494 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3495 3496 /* Warn if metadata_csum and gdt_csum are both set. */ 3497 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3498 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3499 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3500 ext4_warning(sb, "metadata_csum and uninit_bg are " 3501 "redundant flags; please run fsck."); 3502 3503 /* Check for a known checksum algorithm */ 3504 if (!ext4_verify_csum_type(sb, es)) { 3505 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3506 "unknown checksum algorithm."); 3507 silent = 1; 3508 goto cantfind_ext4; 3509 } 3510 3511 /* Load the checksum driver */ 3512 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3513 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3514 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3515 if (IS_ERR(sbi->s_chksum_driver)) { 3516 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3517 ret = PTR_ERR(sbi->s_chksum_driver); 3518 sbi->s_chksum_driver = NULL; 3519 goto failed_mount; 3520 } 3521 } 3522 3523 /* Check superblock checksum */ 3524 if (!ext4_superblock_csum_verify(sb, es)) { 3525 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3526 "invalid superblock checksum. Run e2fsck?"); 3527 silent = 1; 3528 goto cantfind_ext4; 3529 } 3530 3531 /* Precompute checksum seed for all metadata */ 3532 if (ext4_has_metadata_csum(sb)) 3533 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3534 sizeof(es->s_uuid)); 3535 3536 /* Set defaults before we parse the mount options */ 3537 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3538 set_opt(sb, INIT_INODE_TABLE); 3539 if (def_mount_opts & EXT4_DEFM_DEBUG) 3540 set_opt(sb, DEBUG); 3541 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3542 set_opt(sb, GRPID); 3543 if (def_mount_opts & EXT4_DEFM_UID16) 3544 set_opt(sb, NO_UID32); 3545 /* xattr user namespace & acls are now defaulted on */ 3546 set_opt(sb, XATTR_USER); 3547 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3548 set_opt(sb, POSIX_ACL); 3549 #endif 3550 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3551 if (ext4_has_metadata_csum(sb)) 3552 set_opt(sb, JOURNAL_CHECKSUM); 3553 3554 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3555 set_opt(sb, JOURNAL_DATA); 3556 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3557 set_opt(sb, ORDERED_DATA); 3558 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3559 set_opt(sb, WRITEBACK_DATA); 3560 3561 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3562 set_opt(sb, ERRORS_PANIC); 3563 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3564 set_opt(sb, ERRORS_CONT); 3565 else 3566 set_opt(sb, ERRORS_RO); 3567 /* block_validity enabled by default; disable with noblock_validity */ 3568 set_opt(sb, BLOCK_VALIDITY); 3569 if (def_mount_opts & EXT4_DEFM_DISCARD) 3570 set_opt(sb, DISCARD); 3571 3572 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3573 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3574 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3575 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3576 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3577 3578 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3579 set_opt(sb, BARRIER); 3580 3581 /* 3582 * enable delayed allocation by default 3583 * Use -o nodelalloc to turn it off 3584 */ 3585 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3586 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3587 set_opt(sb, DELALLOC); 3588 3589 /* 3590 * set default s_li_wait_mult for lazyinit, for the case there is 3591 * no mount option specified. 3592 */ 3593 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3594 3595 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3596 &journal_devnum, &journal_ioprio, 0)) { 3597 ext4_msg(sb, KERN_WARNING, 3598 "failed to parse options in superblock: %s", 3599 sbi->s_es->s_mount_opts); 3600 } 3601 sbi->s_def_mount_opt = sbi->s_mount_opt; 3602 if (!parse_options((char *) data, sb, &journal_devnum, 3603 &journal_ioprio, 0)) 3604 goto failed_mount; 3605 3606 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3607 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3608 "with data=journal disables delayed " 3609 "allocation and O_DIRECT support!\n"); 3610 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3611 ext4_msg(sb, KERN_ERR, "can't mount with " 3612 "both data=journal and delalloc"); 3613 goto failed_mount; 3614 } 3615 if (test_opt(sb, DIOREAD_NOLOCK)) { 3616 ext4_msg(sb, KERN_ERR, "can't mount with " 3617 "both data=journal and dioread_nolock"); 3618 goto failed_mount; 3619 } 3620 if (test_opt(sb, DAX)) { 3621 ext4_msg(sb, KERN_ERR, "can't mount with " 3622 "both data=journal and dax"); 3623 goto failed_mount; 3624 } 3625 if (test_opt(sb, DELALLOC)) 3626 clear_opt(sb, DELALLOC); 3627 } 3628 3629 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3630 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3631 3632 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3633 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3634 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3635 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3636 ext4_msg(sb, KERN_WARNING, 3637 "feature flags set on rev 0 fs, " 3638 "running e2fsck is recommended"); 3639 3640 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3641 set_opt2(sb, HURD_COMPAT); 3642 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3643 EXT4_FEATURE_INCOMPAT_64BIT)) { 3644 ext4_msg(sb, KERN_ERR, 3645 "The Hurd can't support 64-bit file systems"); 3646 goto failed_mount; 3647 } 3648 } 3649 3650 if (IS_EXT2_SB(sb)) { 3651 if (ext2_feature_set_ok(sb)) 3652 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3653 "using the ext4 subsystem"); 3654 else { 3655 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3656 "to feature incompatibilities"); 3657 goto failed_mount; 3658 } 3659 } 3660 3661 if (IS_EXT3_SB(sb)) { 3662 if (ext3_feature_set_ok(sb)) 3663 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3664 "using the ext4 subsystem"); 3665 else { 3666 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3667 "to feature incompatibilities"); 3668 goto failed_mount; 3669 } 3670 } 3671 3672 /* 3673 * Check feature flags regardless of the revision level, since we 3674 * previously didn't change the revision level when setting the flags, 3675 * so there is a chance incompat flags are set on a rev 0 filesystem. 3676 */ 3677 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3678 goto failed_mount; 3679 3680 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3681 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3682 blocksize > EXT4_MAX_BLOCK_SIZE) { 3683 ext4_msg(sb, KERN_ERR, 3684 "Unsupported filesystem blocksize %d", blocksize); 3685 goto failed_mount; 3686 } 3687 3688 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3689 if (blocksize != PAGE_SIZE) { 3690 ext4_msg(sb, KERN_ERR, 3691 "error: unsupported blocksize for dax"); 3692 goto failed_mount; 3693 } 3694 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3695 ext4_msg(sb, KERN_ERR, 3696 "error: device does not support dax"); 3697 goto failed_mount; 3698 } 3699 } 3700 3701 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) && 3702 es->s_encryption_level) { 3703 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3704 es->s_encryption_level); 3705 goto failed_mount; 3706 } 3707 3708 if (sb->s_blocksize != blocksize) { 3709 /* Validate the filesystem blocksize */ 3710 if (!sb_set_blocksize(sb, blocksize)) { 3711 ext4_msg(sb, KERN_ERR, "bad block size %d", 3712 blocksize); 3713 goto failed_mount; 3714 } 3715 3716 brelse(bh); 3717 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3718 offset = do_div(logical_sb_block, blocksize); 3719 bh = sb_bread_unmovable(sb, logical_sb_block); 3720 if (!bh) { 3721 ext4_msg(sb, KERN_ERR, 3722 "Can't read superblock on 2nd try"); 3723 goto failed_mount; 3724 } 3725 es = (struct ext4_super_block *)(bh->b_data + offset); 3726 sbi->s_es = es; 3727 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3728 ext4_msg(sb, KERN_ERR, 3729 "Magic mismatch, very weird!"); 3730 goto failed_mount; 3731 } 3732 } 3733 3734 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3735 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3736 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3737 has_huge_files); 3738 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3739 3740 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3741 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3742 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3743 } else { 3744 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3745 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3746 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3747 (!is_power_of_2(sbi->s_inode_size)) || 3748 (sbi->s_inode_size > blocksize)) { 3749 ext4_msg(sb, KERN_ERR, 3750 "unsupported inode size: %d", 3751 sbi->s_inode_size); 3752 goto failed_mount; 3753 } 3754 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3755 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3756 } 3757 3758 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3759 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3760 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3761 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3762 !is_power_of_2(sbi->s_desc_size)) { 3763 ext4_msg(sb, KERN_ERR, 3764 "unsupported descriptor size %lu", 3765 sbi->s_desc_size); 3766 goto failed_mount; 3767 } 3768 } else 3769 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3770 3771 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3772 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3773 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3774 goto cantfind_ext4; 3775 3776 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3777 if (sbi->s_inodes_per_block == 0) 3778 goto cantfind_ext4; 3779 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3780 sbi->s_inodes_per_block; 3781 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3782 sbi->s_sbh = bh; 3783 sbi->s_mount_state = le16_to_cpu(es->s_state); 3784 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3785 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3786 3787 for (i = 0; i < 4; i++) 3788 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3789 sbi->s_def_hash_version = es->s_def_hash_version; 3790 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3791 i = le32_to_cpu(es->s_flags); 3792 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3793 sbi->s_hash_unsigned = 3; 3794 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3795 #ifdef __CHAR_UNSIGNED__ 3796 if (!(sb->s_flags & MS_RDONLY)) 3797 es->s_flags |= 3798 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3799 sbi->s_hash_unsigned = 3; 3800 #else 3801 if (!(sb->s_flags & MS_RDONLY)) 3802 es->s_flags |= 3803 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3804 #endif 3805 } 3806 } 3807 3808 /* Handle clustersize */ 3809 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3810 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3811 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3812 if (has_bigalloc) { 3813 if (clustersize < blocksize) { 3814 ext4_msg(sb, KERN_ERR, 3815 "cluster size (%d) smaller than " 3816 "block size (%d)", clustersize, blocksize); 3817 goto failed_mount; 3818 } 3819 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3820 le32_to_cpu(es->s_log_block_size); 3821 sbi->s_clusters_per_group = 3822 le32_to_cpu(es->s_clusters_per_group); 3823 if (sbi->s_clusters_per_group > blocksize * 8) { 3824 ext4_msg(sb, KERN_ERR, 3825 "#clusters per group too big: %lu", 3826 sbi->s_clusters_per_group); 3827 goto failed_mount; 3828 } 3829 if (sbi->s_blocks_per_group != 3830 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3831 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3832 "clusters per group (%lu) inconsistent", 3833 sbi->s_blocks_per_group, 3834 sbi->s_clusters_per_group); 3835 goto failed_mount; 3836 } 3837 } else { 3838 if (clustersize != blocksize) { 3839 ext4_warning(sb, "fragment/cluster size (%d) != " 3840 "block size (%d)", clustersize, 3841 blocksize); 3842 clustersize = blocksize; 3843 } 3844 if (sbi->s_blocks_per_group > blocksize * 8) { 3845 ext4_msg(sb, KERN_ERR, 3846 "#blocks per group too big: %lu", 3847 sbi->s_blocks_per_group); 3848 goto failed_mount; 3849 } 3850 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3851 sbi->s_cluster_bits = 0; 3852 } 3853 sbi->s_cluster_ratio = clustersize / blocksize; 3854 3855 if (sbi->s_inodes_per_group > blocksize * 8) { 3856 ext4_msg(sb, KERN_ERR, 3857 "#inodes per group too big: %lu", 3858 sbi->s_inodes_per_group); 3859 goto failed_mount; 3860 } 3861 3862 /* Do we have standard group size of clustersize * 8 blocks ? */ 3863 if (sbi->s_blocks_per_group == clustersize << 3) 3864 set_opt2(sb, STD_GROUP_SIZE); 3865 3866 /* 3867 * Test whether we have more sectors than will fit in sector_t, 3868 * and whether the max offset is addressable by the page cache. 3869 */ 3870 err = generic_check_addressable(sb->s_blocksize_bits, 3871 ext4_blocks_count(es)); 3872 if (err) { 3873 ext4_msg(sb, KERN_ERR, "filesystem" 3874 " too large to mount safely on this system"); 3875 if (sizeof(sector_t) < 8) 3876 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3877 goto failed_mount; 3878 } 3879 3880 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3881 goto cantfind_ext4; 3882 3883 /* check blocks count against device size */ 3884 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3885 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3886 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3887 "exceeds size of device (%llu blocks)", 3888 ext4_blocks_count(es), blocks_count); 3889 goto failed_mount; 3890 } 3891 3892 /* 3893 * It makes no sense for the first data block to be beyond the end 3894 * of the filesystem. 3895 */ 3896 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3897 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3898 "block %u is beyond end of filesystem (%llu)", 3899 le32_to_cpu(es->s_first_data_block), 3900 ext4_blocks_count(es)); 3901 goto failed_mount; 3902 } 3903 blocks_count = (ext4_blocks_count(es) - 3904 le32_to_cpu(es->s_first_data_block) + 3905 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3906 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3907 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3908 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3909 "(block count %llu, first data block %u, " 3910 "blocks per group %lu)", sbi->s_groups_count, 3911 ext4_blocks_count(es), 3912 le32_to_cpu(es->s_first_data_block), 3913 EXT4_BLOCKS_PER_GROUP(sb)); 3914 goto failed_mount; 3915 } 3916 sbi->s_groups_count = blocks_count; 3917 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3918 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3919 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3920 EXT4_DESC_PER_BLOCK(sb); 3921 sbi->s_group_desc = ext4_kvmalloc(db_count * 3922 sizeof(struct buffer_head *), 3923 GFP_KERNEL); 3924 if (sbi->s_group_desc == NULL) { 3925 ext4_msg(sb, KERN_ERR, "not enough memory"); 3926 ret = -ENOMEM; 3927 goto failed_mount; 3928 } 3929 3930 if (ext4_proc_root) 3931 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3932 3933 if (sbi->s_proc) 3934 proc_create_data("options", S_IRUGO, sbi->s_proc, 3935 &ext4_seq_options_fops, sb); 3936 3937 bgl_lock_init(sbi->s_blockgroup_lock); 3938 3939 for (i = 0; i < db_count; i++) { 3940 block = descriptor_loc(sb, logical_sb_block, i); 3941 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3942 if (!sbi->s_group_desc[i]) { 3943 ext4_msg(sb, KERN_ERR, 3944 "can't read group descriptor %d", i); 3945 db_count = i; 3946 goto failed_mount2; 3947 } 3948 } 3949 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3950 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3951 goto failed_mount2; 3952 } 3953 3954 sbi->s_gdb_count = db_count; 3955 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3956 spin_lock_init(&sbi->s_next_gen_lock); 3957 3958 setup_timer(&sbi->s_err_report, print_daily_error_info, 3959 (unsigned long) sb); 3960 3961 /* Register extent status tree shrinker */ 3962 if (ext4_es_register_shrinker(sbi)) 3963 goto failed_mount3; 3964 3965 sbi->s_stripe = ext4_get_stripe_size(sbi); 3966 sbi->s_extent_max_zeroout_kb = 32; 3967 3968 /* 3969 * set up enough so that it can read an inode 3970 */ 3971 sb->s_op = &ext4_sops; 3972 sb->s_export_op = &ext4_export_ops; 3973 sb->s_xattr = ext4_xattr_handlers; 3974 #ifdef CONFIG_QUOTA 3975 sb->dq_op = &ext4_quota_operations; 3976 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3977 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3978 else 3979 sb->s_qcop = &ext4_qctl_operations; 3980 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 3981 #endif 3982 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3983 3984 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3985 mutex_init(&sbi->s_orphan_lock); 3986 3987 sb->s_root = NULL; 3988 3989 needs_recovery = (es->s_last_orphan != 0 || 3990 EXT4_HAS_INCOMPAT_FEATURE(sb, 3991 EXT4_FEATURE_INCOMPAT_RECOVER)); 3992 3993 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3994 !(sb->s_flags & MS_RDONLY)) 3995 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3996 goto failed_mount3a; 3997 3998 /* 3999 * The first inode we look at is the journal inode. Don't try 4000 * root first: it may be modified in the journal! 4001 */ 4002 if (!test_opt(sb, NOLOAD) && 4003 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4004 if (ext4_load_journal(sb, es, journal_devnum)) 4005 goto failed_mount3a; 4006 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 4007 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4008 ext4_msg(sb, KERN_ERR, "required journal recovery " 4009 "suppressed and not mounted read-only"); 4010 goto failed_mount_wq; 4011 } else { 4012 clear_opt(sb, DATA_FLAGS); 4013 sbi->s_journal = NULL; 4014 needs_recovery = 0; 4015 goto no_journal; 4016 } 4017 4018 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 4019 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4020 JBD2_FEATURE_INCOMPAT_64BIT)) { 4021 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4022 goto failed_mount_wq; 4023 } 4024 4025 if (!set_journal_csum_feature_set(sb)) { 4026 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4027 "feature set"); 4028 goto failed_mount_wq; 4029 } 4030 4031 /* We have now updated the journal if required, so we can 4032 * validate the data journaling mode. */ 4033 switch (test_opt(sb, DATA_FLAGS)) { 4034 case 0: 4035 /* No mode set, assume a default based on the journal 4036 * capabilities: ORDERED_DATA if the journal can 4037 * cope, else JOURNAL_DATA 4038 */ 4039 if (jbd2_journal_check_available_features 4040 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4041 set_opt(sb, ORDERED_DATA); 4042 else 4043 set_opt(sb, JOURNAL_DATA); 4044 break; 4045 4046 case EXT4_MOUNT_ORDERED_DATA: 4047 case EXT4_MOUNT_WRITEBACK_DATA: 4048 if (!jbd2_journal_check_available_features 4049 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4050 ext4_msg(sb, KERN_ERR, "Journal does not support " 4051 "requested data journaling mode"); 4052 goto failed_mount_wq; 4053 } 4054 default: 4055 break; 4056 } 4057 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4058 4059 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4060 4061 no_journal: 4062 if (ext4_mballoc_ready) { 4063 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4064 if (!sbi->s_mb_cache) { 4065 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4066 goto failed_mount_wq; 4067 } 4068 } 4069 4070 if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) && 4071 !(sb->s_flags & MS_RDONLY) && 4072 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) { 4073 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT); 4074 ext4_commit_super(sb, 1); 4075 } 4076 4077 /* 4078 * Get the # of file system overhead blocks from the 4079 * superblock if present. 4080 */ 4081 if (es->s_overhead_clusters) 4082 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4083 else { 4084 err = ext4_calculate_overhead(sb); 4085 if (err) 4086 goto failed_mount_wq; 4087 } 4088 4089 /* 4090 * The maximum number of concurrent works can be high and 4091 * concurrency isn't really necessary. Limit it to 1. 4092 */ 4093 EXT4_SB(sb)->rsv_conversion_wq = 4094 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4095 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4096 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4097 ret = -ENOMEM; 4098 goto failed_mount4; 4099 } 4100 4101 /* 4102 * The jbd2_journal_load will have done any necessary log recovery, 4103 * so we can safely mount the rest of the filesystem now. 4104 */ 4105 4106 root = ext4_iget(sb, EXT4_ROOT_INO); 4107 if (IS_ERR(root)) { 4108 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4109 ret = PTR_ERR(root); 4110 root = NULL; 4111 goto failed_mount4; 4112 } 4113 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4114 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4115 iput(root); 4116 goto failed_mount4; 4117 } 4118 sb->s_root = d_make_root(root); 4119 if (!sb->s_root) { 4120 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4121 ret = -ENOMEM; 4122 goto failed_mount4; 4123 } 4124 4125 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4126 sb->s_flags |= MS_RDONLY; 4127 4128 /* determine the minimum size of new large inodes, if present */ 4129 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4130 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4131 EXT4_GOOD_OLD_INODE_SIZE; 4132 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4133 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4134 if (sbi->s_want_extra_isize < 4135 le16_to_cpu(es->s_want_extra_isize)) 4136 sbi->s_want_extra_isize = 4137 le16_to_cpu(es->s_want_extra_isize); 4138 if (sbi->s_want_extra_isize < 4139 le16_to_cpu(es->s_min_extra_isize)) 4140 sbi->s_want_extra_isize = 4141 le16_to_cpu(es->s_min_extra_isize); 4142 } 4143 } 4144 /* Check if enough inode space is available */ 4145 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4146 sbi->s_inode_size) { 4147 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4148 EXT4_GOOD_OLD_INODE_SIZE; 4149 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4150 "available"); 4151 } 4152 4153 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4154 if (err) { 4155 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4156 "reserved pool", ext4_calculate_resv_clusters(sb)); 4157 goto failed_mount4a; 4158 } 4159 4160 err = ext4_setup_system_zone(sb); 4161 if (err) { 4162 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4163 "zone (%d)", err); 4164 goto failed_mount4a; 4165 } 4166 4167 ext4_ext_init(sb); 4168 err = ext4_mb_init(sb); 4169 if (err) { 4170 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4171 err); 4172 goto failed_mount5; 4173 } 4174 4175 block = ext4_count_free_clusters(sb); 4176 ext4_free_blocks_count_set(sbi->s_es, 4177 EXT4_C2B(sbi, block)); 4178 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4179 GFP_KERNEL); 4180 if (!err) { 4181 unsigned long freei = ext4_count_free_inodes(sb); 4182 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4183 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4184 GFP_KERNEL); 4185 } 4186 if (!err) 4187 err = percpu_counter_init(&sbi->s_dirs_counter, 4188 ext4_count_dirs(sb), GFP_KERNEL); 4189 if (!err) 4190 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4191 GFP_KERNEL); 4192 if (err) { 4193 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4194 goto failed_mount6; 4195 } 4196 4197 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4198 if (!ext4_fill_flex_info(sb)) { 4199 ext4_msg(sb, KERN_ERR, 4200 "unable to initialize " 4201 "flex_bg meta info!"); 4202 goto failed_mount6; 4203 } 4204 4205 err = ext4_register_li_request(sb, first_not_zeroed); 4206 if (err) 4207 goto failed_mount6; 4208 4209 sbi->s_kobj.kset = ext4_kset; 4210 init_completion(&sbi->s_kobj_unregister); 4211 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4212 "%s", sb->s_id); 4213 if (err) 4214 goto failed_mount7; 4215 4216 #ifdef CONFIG_QUOTA 4217 /* Enable quota usage during mount. */ 4218 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4219 !(sb->s_flags & MS_RDONLY)) { 4220 err = ext4_enable_quotas(sb); 4221 if (err) 4222 goto failed_mount8; 4223 } 4224 #endif /* CONFIG_QUOTA */ 4225 4226 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4227 ext4_orphan_cleanup(sb, es); 4228 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4229 if (needs_recovery) { 4230 ext4_msg(sb, KERN_INFO, "recovery complete"); 4231 ext4_mark_recovery_complete(sb, es); 4232 } 4233 if (EXT4_SB(sb)->s_journal) { 4234 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4235 descr = " journalled data mode"; 4236 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4237 descr = " ordered data mode"; 4238 else 4239 descr = " writeback data mode"; 4240 } else 4241 descr = "out journal"; 4242 4243 if (test_opt(sb, DISCARD)) { 4244 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4245 if (!blk_queue_discard(q)) 4246 ext4_msg(sb, KERN_WARNING, 4247 "mounting with \"discard\" option, but " 4248 "the device does not support discard"); 4249 } 4250 4251 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4252 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4253 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4254 4255 if (es->s_error_count) 4256 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4257 4258 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4259 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4260 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4261 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4262 4263 kfree(orig_data); 4264 return 0; 4265 4266 cantfind_ext4: 4267 if (!silent) 4268 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4269 goto failed_mount; 4270 4271 #ifdef CONFIG_QUOTA 4272 failed_mount8: 4273 kobject_del(&sbi->s_kobj); 4274 #endif 4275 failed_mount7: 4276 ext4_unregister_li_request(sb); 4277 failed_mount6: 4278 ext4_mb_release(sb); 4279 if (sbi->s_flex_groups) 4280 kvfree(sbi->s_flex_groups); 4281 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4282 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4283 percpu_counter_destroy(&sbi->s_dirs_counter); 4284 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4285 failed_mount5: 4286 ext4_ext_release(sb); 4287 ext4_release_system_zone(sb); 4288 failed_mount4a: 4289 dput(sb->s_root); 4290 sb->s_root = NULL; 4291 failed_mount4: 4292 ext4_msg(sb, KERN_ERR, "mount failed"); 4293 if (EXT4_SB(sb)->rsv_conversion_wq) 4294 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4295 failed_mount_wq: 4296 if (sbi->s_journal) { 4297 jbd2_journal_destroy(sbi->s_journal); 4298 sbi->s_journal = NULL; 4299 } 4300 failed_mount3a: 4301 ext4_es_unregister_shrinker(sbi); 4302 failed_mount3: 4303 del_timer_sync(&sbi->s_err_report); 4304 if (sbi->s_mmp_tsk) 4305 kthread_stop(sbi->s_mmp_tsk); 4306 failed_mount2: 4307 for (i = 0; i < db_count; i++) 4308 brelse(sbi->s_group_desc[i]); 4309 kvfree(sbi->s_group_desc); 4310 failed_mount: 4311 if (sbi->s_chksum_driver) 4312 crypto_free_shash(sbi->s_chksum_driver); 4313 if (sbi->s_proc) { 4314 remove_proc_entry("options", sbi->s_proc); 4315 remove_proc_entry(sb->s_id, ext4_proc_root); 4316 } 4317 #ifdef CONFIG_QUOTA 4318 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4319 kfree(sbi->s_qf_names[i]); 4320 #endif 4321 ext4_blkdev_remove(sbi); 4322 brelse(bh); 4323 out_fail: 4324 sb->s_fs_info = NULL; 4325 kfree(sbi->s_blockgroup_lock); 4326 kfree(sbi); 4327 out_free_orig: 4328 kfree(orig_data); 4329 return err ? err : ret; 4330 } 4331 4332 /* 4333 * Setup any per-fs journal parameters now. We'll do this both on 4334 * initial mount, once the journal has been initialised but before we've 4335 * done any recovery; and again on any subsequent remount. 4336 */ 4337 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4338 { 4339 struct ext4_sb_info *sbi = EXT4_SB(sb); 4340 4341 journal->j_commit_interval = sbi->s_commit_interval; 4342 journal->j_min_batch_time = sbi->s_min_batch_time; 4343 journal->j_max_batch_time = sbi->s_max_batch_time; 4344 4345 write_lock(&journal->j_state_lock); 4346 if (test_opt(sb, BARRIER)) 4347 journal->j_flags |= JBD2_BARRIER; 4348 else 4349 journal->j_flags &= ~JBD2_BARRIER; 4350 if (test_opt(sb, DATA_ERR_ABORT)) 4351 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4352 else 4353 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4354 write_unlock(&journal->j_state_lock); 4355 } 4356 4357 static journal_t *ext4_get_journal(struct super_block *sb, 4358 unsigned int journal_inum) 4359 { 4360 struct inode *journal_inode; 4361 journal_t *journal; 4362 4363 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4364 4365 /* First, test for the existence of a valid inode on disk. Bad 4366 * things happen if we iget() an unused inode, as the subsequent 4367 * iput() will try to delete it. */ 4368 4369 journal_inode = ext4_iget(sb, journal_inum); 4370 if (IS_ERR(journal_inode)) { 4371 ext4_msg(sb, KERN_ERR, "no journal found"); 4372 return NULL; 4373 } 4374 if (!journal_inode->i_nlink) { 4375 make_bad_inode(journal_inode); 4376 iput(journal_inode); 4377 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4378 return NULL; 4379 } 4380 4381 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4382 journal_inode, journal_inode->i_size); 4383 if (!S_ISREG(journal_inode->i_mode)) { 4384 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4385 iput(journal_inode); 4386 return NULL; 4387 } 4388 4389 journal = jbd2_journal_init_inode(journal_inode); 4390 if (!journal) { 4391 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4392 iput(journal_inode); 4393 return NULL; 4394 } 4395 journal->j_private = sb; 4396 ext4_init_journal_params(sb, journal); 4397 return journal; 4398 } 4399 4400 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4401 dev_t j_dev) 4402 { 4403 struct buffer_head *bh; 4404 journal_t *journal; 4405 ext4_fsblk_t start; 4406 ext4_fsblk_t len; 4407 int hblock, blocksize; 4408 ext4_fsblk_t sb_block; 4409 unsigned long offset; 4410 struct ext4_super_block *es; 4411 struct block_device *bdev; 4412 4413 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4414 4415 bdev = ext4_blkdev_get(j_dev, sb); 4416 if (bdev == NULL) 4417 return NULL; 4418 4419 blocksize = sb->s_blocksize; 4420 hblock = bdev_logical_block_size(bdev); 4421 if (blocksize < hblock) { 4422 ext4_msg(sb, KERN_ERR, 4423 "blocksize too small for journal device"); 4424 goto out_bdev; 4425 } 4426 4427 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4428 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4429 set_blocksize(bdev, blocksize); 4430 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4431 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4432 "external journal"); 4433 goto out_bdev; 4434 } 4435 4436 es = (struct ext4_super_block *) (bh->b_data + offset); 4437 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4438 !(le32_to_cpu(es->s_feature_incompat) & 4439 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4440 ext4_msg(sb, KERN_ERR, "external journal has " 4441 "bad superblock"); 4442 brelse(bh); 4443 goto out_bdev; 4444 } 4445 4446 if ((le32_to_cpu(es->s_feature_ro_compat) & 4447 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4448 es->s_checksum != ext4_superblock_csum(sb, es)) { 4449 ext4_msg(sb, KERN_ERR, "external journal has " 4450 "corrupt superblock"); 4451 brelse(bh); 4452 goto out_bdev; 4453 } 4454 4455 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4456 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4457 brelse(bh); 4458 goto out_bdev; 4459 } 4460 4461 len = ext4_blocks_count(es); 4462 start = sb_block + 1; 4463 brelse(bh); /* we're done with the superblock */ 4464 4465 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4466 start, len, blocksize); 4467 if (!journal) { 4468 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4469 goto out_bdev; 4470 } 4471 journal->j_private = sb; 4472 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4473 wait_on_buffer(journal->j_sb_buffer); 4474 if (!buffer_uptodate(journal->j_sb_buffer)) { 4475 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4476 goto out_journal; 4477 } 4478 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4479 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4480 "user (unsupported) - %d", 4481 be32_to_cpu(journal->j_superblock->s_nr_users)); 4482 goto out_journal; 4483 } 4484 EXT4_SB(sb)->journal_bdev = bdev; 4485 ext4_init_journal_params(sb, journal); 4486 return journal; 4487 4488 out_journal: 4489 jbd2_journal_destroy(journal); 4490 out_bdev: 4491 ext4_blkdev_put(bdev); 4492 return NULL; 4493 } 4494 4495 static int ext4_load_journal(struct super_block *sb, 4496 struct ext4_super_block *es, 4497 unsigned long journal_devnum) 4498 { 4499 journal_t *journal; 4500 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4501 dev_t journal_dev; 4502 int err = 0; 4503 int really_read_only; 4504 4505 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4506 4507 if (journal_devnum && 4508 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4509 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4510 "numbers have changed"); 4511 journal_dev = new_decode_dev(journal_devnum); 4512 } else 4513 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4514 4515 really_read_only = bdev_read_only(sb->s_bdev); 4516 4517 /* 4518 * Are we loading a blank journal or performing recovery after a 4519 * crash? For recovery, we need to check in advance whether we 4520 * can get read-write access to the device. 4521 */ 4522 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4523 if (sb->s_flags & MS_RDONLY) { 4524 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4525 "required on readonly filesystem"); 4526 if (really_read_only) { 4527 ext4_msg(sb, KERN_ERR, "write access " 4528 "unavailable, cannot proceed"); 4529 return -EROFS; 4530 } 4531 ext4_msg(sb, KERN_INFO, "write access will " 4532 "be enabled during recovery"); 4533 } 4534 } 4535 4536 if (journal_inum && journal_dev) { 4537 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4538 "and inode journals!"); 4539 return -EINVAL; 4540 } 4541 4542 if (journal_inum) { 4543 if (!(journal = ext4_get_journal(sb, journal_inum))) 4544 return -EINVAL; 4545 } else { 4546 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4547 return -EINVAL; 4548 } 4549 4550 if (!(journal->j_flags & JBD2_BARRIER)) 4551 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4552 4553 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4554 err = jbd2_journal_wipe(journal, !really_read_only); 4555 if (!err) { 4556 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4557 if (save) 4558 memcpy(save, ((char *) es) + 4559 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4560 err = jbd2_journal_load(journal); 4561 if (save) 4562 memcpy(((char *) es) + EXT4_S_ERR_START, 4563 save, EXT4_S_ERR_LEN); 4564 kfree(save); 4565 } 4566 4567 if (err) { 4568 ext4_msg(sb, KERN_ERR, "error loading journal"); 4569 jbd2_journal_destroy(journal); 4570 return err; 4571 } 4572 4573 EXT4_SB(sb)->s_journal = journal; 4574 ext4_clear_journal_err(sb, es); 4575 4576 if (!really_read_only && journal_devnum && 4577 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4578 es->s_journal_dev = cpu_to_le32(journal_devnum); 4579 4580 /* Make sure we flush the recovery flag to disk. */ 4581 ext4_commit_super(sb, 1); 4582 } 4583 4584 return 0; 4585 } 4586 4587 static int ext4_commit_super(struct super_block *sb, int sync) 4588 { 4589 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4590 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4591 int error = 0; 4592 4593 if (!sbh) 4594 return error; 4595 if (buffer_write_io_error(sbh)) { 4596 /* 4597 * Oh, dear. A previous attempt to write the 4598 * superblock failed. This could happen because the 4599 * USB device was yanked out. Or it could happen to 4600 * be a transient write error and maybe the block will 4601 * be remapped. Nothing we can do but to retry the 4602 * write and hope for the best. 4603 */ 4604 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4605 "superblock detected"); 4606 clear_buffer_write_io_error(sbh); 4607 set_buffer_uptodate(sbh); 4608 } 4609 /* 4610 * If the file system is mounted read-only, don't update the 4611 * superblock write time. This avoids updating the superblock 4612 * write time when we are mounting the root file system 4613 * read/only but we need to replay the journal; at that point, 4614 * for people who are east of GMT and who make their clock 4615 * tick in localtime for Windows bug-for-bug compatibility, 4616 * the clock is set in the future, and this will cause e2fsck 4617 * to complain and force a full file system check. 4618 */ 4619 if (!(sb->s_flags & MS_RDONLY)) 4620 es->s_wtime = cpu_to_le32(get_seconds()); 4621 if (sb->s_bdev->bd_part) 4622 es->s_kbytes_written = 4623 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4624 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4625 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4626 else 4627 es->s_kbytes_written = 4628 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4629 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4630 ext4_free_blocks_count_set(es, 4631 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4632 &EXT4_SB(sb)->s_freeclusters_counter))); 4633 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4634 es->s_free_inodes_count = 4635 cpu_to_le32(percpu_counter_sum_positive( 4636 &EXT4_SB(sb)->s_freeinodes_counter)); 4637 BUFFER_TRACE(sbh, "marking dirty"); 4638 ext4_superblock_csum_set(sb); 4639 mark_buffer_dirty(sbh); 4640 if (sync) { 4641 error = sync_dirty_buffer(sbh); 4642 if (error) 4643 return error; 4644 4645 error = buffer_write_io_error(sbh); 4646 if (error) { 4647 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4648 "superblock"); 4649 clear_buffer_write_io_error(sbh); 4650 set_buffer_uptodate(sbh); 4651 } 4652 } 4653 return error; 4654 } 4655 4656 /* 4657 * Have we just finished recovery? If so, and if we are mounting (or 4658 * remounting) the filesystem readonly, then we will end up with a 4659 * consistent fs on disk. Record that fact. 4660 */ 4661 static void ext4_mark_recovery_complete(struct super_block *sb, 4662 struct ext4_super_block *es) 4663 { 4664 journal_t *journal = EXT4_SB(sb)->s_journal; 4665 4666 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4667 BUG_ON(journal != NULL); 4668 return; 4669 } 4670 jbd2_journal_lock_updates(journal); 4671 if (jbd2_journal_flush(journal) < 0) 4672 goto out; 4673 4674 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4675 sb->s_flags & MS_RDONLY) { 4676 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4677 ext4_commit_super(sb, 1); 4678 } 4679 4680 out: 4681 jbd2_journal_unlock_updates(journal); 4682 } 4683 4684 /* 4685 * If we are mounting (or read-write remounting) a filesystem whose journal 4686 * has recorded an error from a previous lifetime, move that error to the 4687 * main filesystem now. 4688 */ 4689 static void ext4_clear_journal_err(struct super_block *sb, 4690 struct ext4_super_block *es) 4691 { 4692 journal_t *journal; 4693 int j_errno; 4694 const char *errstr; 4695 4696 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4697 4698 journal = EXT4_SB(sb)->s_journal; 4699 4700 /* 4701 * Now check for any error status which may have been recorded in the 4702 * journal by a prior ext4_error() or ext4_abort() 4703 */ 4704 4705 j_errno = jbd2_journal_errno(journal); 4706 if (j_errno) { 4707 char nbuf[16]; 4708 4709 errstr = ext4_decode_error(sb, j_errno, nbuf); 4710 ext4_warning(sb, "Filesystem error recorded " 4711 "from previous mount: %s", errstr); 4712 ext4_warning(sb, "Marking fs in need of filesystem check."); 4713 4714 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4715 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4716 ext4_commit_super(sb, 1); 4717 4718 jbd2_journal_clear_err(journal); 4719 jbd2_journal_update_sb_errno(journal); 4720 } 4721 } 4722 4723 /* 4724 * Force the running and committing transactions to commit, 4725 * and wait on the commit. 4726 */ 4727 int ext4_force_commit(struct super_block *sb) 4728 { 4729 journal_t *journal; 4730 4731 if (sb->s_flags & MS_RDONLY) 4732 return 0; 4733 4734 journal = EXT4_SB(sb)->s_journal; 4735 return ext4_journal_force_commit(journal); 4736 } 4737 4738 static int ext4_sync_fs(struct super_block *sb, int wait) 4739 { 4740 int ret = 0; 4741 tid_t target; 4742 bool needs_barrier = false; 4743 struct ext4_sb_info *sbi = EXT4_SB(sb); 4744 4745 trace_ext4_sync_fs(sb, wait); 4746 flush_workqueue(sbi->rsv_conversion_wq); 4747 /* 4748 * Writeback quota in non-journalled quota case - journalled quota has 4749 * no dirty dquots 4750 */ 4751 dquot_writeback_dquots(sb, -1); 4752 /* 4753 * Data writeback is possible w/o journal transaction, so barrier must 4754 * being sent at the end of the function. But we can skip it if 4755 * transaction_commit will do it for us. 4756 */ 4757 if (sbi->s_journal) { 4758 target = jbd2_get_latest_transaction(sbi->s_journal); 4759 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4760 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4761 needs_barrier = true; 4762 4763 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4764 if (wait) 4765 ret = jbd2_log_wait_commit(sbi->s_journal, 4766 target); 4767 } 4768 } else if (wait && test_opt(sb, BARRIER)) 4769 needs_barrier = true; 4770 if (needs_barrier) { 4771 int err; 4772 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4773 if (!ret) 4774 ret = err; 4775 } 4776 4777 return ret; 4778 } 4779 4780 /* 4781 * LVM calls this function before a (read-only) snapshot is created. This 4782 * gives us a chance to flush the journal completely and mark the fs clean. 4783 * 4784 * Note that only this function cannot bring a filesystem to be in a clean 4785 * state independently. It relies on upper layer to stop all data & metadata 4786 * modifications. 4787 */ 4788 static int ext4_freeze(struct super_block *sb) 4789 { 4790 int error = 0; 4791 journal_t *journal; 4792 4793 if (sb->s_flags & MS_RDONLY) 4794 return 0; 4795 4796 journal = EXT4_SB(sb)->s_journal; 4797 4798 if (journal) { 4799 /* Now we set up the journal barrier. */ 4800 jbd2_journal_lock_updates(journal); 4801 4802 /* 4803 * Don't clear the needs_recovery flag if we failed to 4804 * flush the journal. 4805 */ 4806 error = jbd2_journal_flush(journal); 4807 if (error < 0) 4808 goto out; 4809 } 4810 4811 /* Journal blocked and flushed, clear needs_recovery flag. */ 4812 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4813 error = ext4_commit_super(sb, 1); 4814 out: 4815 if (journal) 4816 /* we rely on upper layer to stop further updates */ 4817 jbd2_journal_unlock_updates(journal); 4818 return error; 4819 } 4820 4821 /* 4822 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4823 * flag here, even though the filesystem is not technically dirty yet. 4824 */ 4825 static int ext4_unfreeze(struct super_block *sb) 4826 { 4827 if (sb->s_flags & MS_RDONLY) 4828 return 0; 4829 4830 /* Reset the needs_recovery flag before the fs is unlocked. */ 4831 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4832 ext4_commit_super(sb, 1); 4833 return 0; 4834 } 4835 4836 /* 4837 * Structure to save mount options for ext4_remount's benefit 4838 */ 4839 struct ext4_mount_options { 4840 unsigned long s_mount_opt; 4841 unsigned long s_mount_opt2; 4842 kuid_t s_resuid; 4843 kgid_t s_resgid; 4844 unsigned long s_commit_interval; 4845 u32 s_min_batch_time, s_max_batch_time; 4846 #ifdef CONFIG_QUOTA 4847 int s_jquota_fmt; 4848 char *s_qf_names[EXT4_MAXQUOTAS]; 4849 #endif 4850 }; 4851 4852 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4853 { 4854 struct ext4_super_block *es; 4855 struct ext4_sb_info *sbi = EXT4_SB(sb); 4856 unsigned long old_sb_flags; 4857 struct ext4_mount_options old_opts; 4858 int enable_quota = 0; 4859 ext4_group_t g; 4860 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4861 int err = 0; 4862 #ifdef CONFIG_QUOTA 4863 int i, j; 4864 #endif 4865 char *orig_data = kstrdup(data, GFP_KERNEL); 4866 4867 /* Store the original options */ 4868 old_sb_flags = sb->s_flags; 4869 old_opts.s_mount_opt = sbi->s_mount_opt; 4870 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4871 old_opts.s_resuid = sbi->s_resuid; 4872 old_opts.s_resgid = sbi->s_resgid; 4873 old_opts.s_commit_interval = sbi->s_commit_interval; 4874 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4875 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4876 #ifdef CONFIG_QUOTA 4877 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4878 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4879 if (sbi->s_qf_names[i]) { 4880 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4881 GFP_KERNEL); 4882 if (!old_opts.s_qf_names[i]) { 4883 for (j = 0; j < i; j++) 4884 kfree(old_opts.s_qf_names[j]); 4885 kfree(orig_data); 4886 return -ENOMEM; 4887 } 4888 } else 4889 old_opts.s_qf_names[i] = NULL; 4890 #endif 4891 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4892 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4893 4894 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4895 err = -EINVAL; 4896 goto restore_opts; 4897 } 4898 4899 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4900 test_opt(sb, JOURNAL_CHECKSUM)) { 4901 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4902 "during remount not supported; ignoring"); 4903 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4904 } 4905 4906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4907 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4908 ext4_msg(sb, KERN_ERR, "can't mount with " 4909 "both data=journal and delalloc"); 4910 err = -EINVAL; 4911 goto restore_opts; 4912 } 4913 if (test_opt(sb, DIOREAD_NOLOCK)) { 4914 ext4_msg(sb, KERN_ERR, "can't mount with " 4915 "both data=journal and dioread_nolock"); 4916 err = -EINVAL; 4917 goto restore_opts; 4918 } 4919 if (test_opt(sb, DAX)) { 4920 ext4_msg(sb, KERN_ERR, "can't mount with " 4921 "both data=journal and dax"); 4922 err = -EINVAL; 4923 goto restore_opts; 4924 } 4925 } 4926 4927 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4928 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4929 "dax flag with busy inodes while remounting"); 4930 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4931 } 4932 4933 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4934 ext4_abort(sb, "Abort forced by user"); 4935 4936 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4937 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4938 4939 es = sbi->s_es; 4940 4941 if (sbi->s_journal) { 4942 ext4_init_journal_params(sb, sbi->s_journal); 4943 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4944 } 4945 4946 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4947 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4948 err = -EROFS; 4949 goto restore_opts; 4950 } 4951 4952 if (*flags & MS_RDONLY) { 4953 err = sync_filesystem(sb); 4954 if (err < 0) 4955 goto restore_opts; 4956 err = dquot_suspend(sb, -1); 4957 if (err < 0) 4958 goto restore_opts; 4959 4960 /* 4961 * First of all, the unconditional stuff we have to do 4962 * to disable replay of the journal when we next remount 4963 */ 4964 sb->s_flags |= MS_RDONLY; 4965 4966 /* 4967 * OK, test if we are remounting a valid rw partition 4968 * readonly, and if so set the rdonly flag and then 4969 * mark the partition as valid again. 4970 */ 4971 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4972 (sbi->s_mount_state & EXT4_VALID_FS)) 4973 es->s_state = cpu_to_le16(sbi->s_mount_state); 4974 4975 if (sbi->s_journal) 4976 ext4_mark_recovery_complete(sb, es); 4977 } else { 4978 /* Make sure we can mount this feature set readwrite */ 4979 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4980 EXT4_FEATURE_RO_COMPAT_READONLY) || 4981 !ext4_feature_set_ok(sb, 0)) { 4982 err = -EROFS; 4983 goto restore_opts; 4984 } 4985 /* 4986 * Make sure the group descriptor checksums 4987 * are sane. If they aren't, refuse to remount r/w. 4988 */ 4989 for (g = 0; g < sbi->s_groups_count; g++) { 4990 struct ext4_group_desc *gdp = 4991 ext4_get_group_desc(sb, g, NULL); 4992 4993 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4994 ext4_msg(sb, KERN_ERR, 4995 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4996 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4997 le16_to_cpu(gdp->bg_checksum)); 4998 err = -EINVAL; 4999 goto restore_opts; 5000 } 5001 } 5002 5003 /* 5004 * If we have an unprocessed orphan list hanging 5005 * around from a previously readonly bdev mount, 5006 * require a full umount/remount for now. 5007 */ 5008 if (es->s_last_orphan) { 5009 ext4_msg(sb, KERN_WARNING, "Couldn't " 5010 "remount RDWR because of unprocessed " 5011 "orphan inode list. Please " 5012 "umount/remount instead"); 5013 err = -EINVAL; 5014 goto restore_opts; 5015 } 5016 5017 /* 5018 * Mounting a RDONLY partition read-write, so reread 5019 * and store the current valid flag. (It may have 5020 * been changed by e2fsck since we originally mounted 5021 * the partition.) 5022 */ 5023 if (sbi->s_journal) 5024 ext4_clear_journal_err(sb, es); 5025 sbi->s_mount_state = le16_to_cpu(es->s_state); 5026 if (!ext4_setup_super(sb, es, 0)) 5027 sb->s_flags &= ~MS_RDONLY; 5028 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 5029 EXT4_FEATURE_INCOMPAT_MMP)) 5030 if (ext4_multi_mount_protect(sb, 5031 le64_to_cpu(es->s_mmp_block))) { 5032 err = -EROFS; 5033 goto restore_opts; 5034 } 5035 enable_quota = 1; 5036 } 5037 } 5038 5039 /* 5040 * Reinitialize lazy itable initialization thread based on 5041 * current settings 5042 */ 5043 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5044 ext4_unregister_li_request(sb); 5045 else { 5046 ext4_group_t first_not_zeroed; 5047 first_not_zeroed = ext4_has_uninit_itable(sb); 5048 ext4_register_li_request(sb, first_not_zeroed); 5049 } 5050 5051 ext4_setup_system_zone(sb); 5052 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5053 ext4_commit_super(sb, 1); 5054 5055 #ifdef CONFIG_QUOTA 5056 /* Release old quota file names */ 5057 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5058 kfree(old_opts.s_qf_names[i]); 5059 if (enable_quota) { 5060 if (sb_any_quota_suspended(sb)) 5061 dquot_resume(sb, -1); 5062 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5063 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5064 err = ext4_enable_quotas(sb); 5065 if (err) 5066 goto restore_opts; 5067 } 5068 } 5069 #endif 5070 5071 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5072 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5073 kfree(orig_data); 5074 return 0; 5075 5076 restore_opts: 5077 sb->s_flags = old_sb_flags; 5078 sbi->s_mount_opt = old_opts.s_mount_opt; 5079 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5080 sbi->s_resuid = old_opts.s_resuid; 5081 sbi->s_resgid = old_opts.s_resgid; 5082 sbi->s_commit_interval = old_opts.s_commit_interval; 5083 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5084 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5085 #ifdef CONFIG_QUOTA 5086 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5087 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5088 kfree(sbi->s_qf_names[i]); 5089 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5090 } 5091 #endif 5092 kfree(orig_data); 5093 return err; 5094 } 5095 5096 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5097 { 5098 struct super_block *sb = dentry->d_sb; 5099 struct ext4_sb_info *sbi = EXT4_SB(sb); 5100 struct ext4_super_block *es = sbi->s_es; 5101 ext4_fsblk_t overhead = 0, resv_blocks; 5102 u64 fsid; 5103 s64 bfree; 5104 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5105 5106 if (!test_opt(sb, MINIX_DF)) 5107 overhead = sbi->s_overhead; 5108 5109 buf->f_type = EXT4_SUPER_MAGIC; 5110 buf->f_bsize = sb->s_blocksize; 5111 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5112 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5113 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5114 /* prevent underflow in case that few free space is available */ 5115 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5116 buf->f_bavail = buf->f_bfree - 5117 (ext4_r_blocks_count(es) + resv_blocks); 5118 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5119 buf->f_bavail = 0; 5120 buf->f_files = le32_to_cpu(es->s_inodes_count); 5121 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5122 buf->f_namelen = EXT4_NAME_LEN; 5123 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5124 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5125 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5126 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5127 5128 return 0; 5129 } 5130 5131 /* Helper function for writing quotas on sync - we need to start transaction 5132 * before quota file is locked for write. Otherwise the are possible deadlocks: 5133 * Process 1 Process 2 5134 * ext4_create() quota_sync() 5135 * jbd2_journal_start() write_dquot() 5136 * dquot_initialize() down(dqio_mutex) 5137 * down(dqio_mutex) jbd2_journal_start() 5138 * 5139 */ 5140 5141 #ifdef CONFIG_QUOTA 5142 5143 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5144 { 5145 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5146 } 5147 5148 static int ext4_write_dquot(struct dquot *dquot) 5149 { 5150 int ret, err; 5151 handle_t *handle; 5152 struct inode *inode; 5153 5154 inode = dquot_to_inode(dquot); 5155 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5156 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5157 if (IS_ERR(handle)) 5158 return PTR_ERR(handle); 5159 ret = dquot_commit(dquot); 5160 err = ext4_journal_stop(handle); 5161 if (!ret) 5162 ret = err; 5163 return ret; 5164 } 5165 5166 static int ext4_acquire_dquot(struct dquot *dquot) 5167 { 5168 int ret, err; 5169 handle_t *handle; 5170 5171 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5172 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5173 if (IS_ERR(handle)) 5174 return PTR_ERR(handle); 5175 ret = dquot_acquire(dquot); 5176 err = ext4_journal_stop(handle); 5177 if (!ret) 5178 ret = err; 5179 return ret; 5180 } 5181 5182 static int ext4_release_dquot(struct dquot *dquot) 5183 { 5184 int ret, err; 5185 handle_t *handle; 5186 5187 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5188 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5189 if (IS_ERR(handle)) { 5190 /* Release dquot anyway to avoid endless cycle in dqput() */ 5191 dquot_release(dquot); 5192 return PTR_ERR(handle); 5193 } 5194 ret = dquot_release(dquot); 5195 err = ext4_journal_stop(handle); 5196 if (!ret) 5197 ret = err; 5198 return ret; 5199 } 5200 5201 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5202 { 5203 struct super_block *sb = dquot->dq_sb; 5204 struct ext4_sb_info *sbi = EXT4_SB(sb); 5205 5206 /* Are we journaling quotas? */ 5207 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5208 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5209 dquot_mark_dquot_dirty(dquot); 5210 return ext4_write_dquot(dquot); 5211 } else { 5212 return dquot_mark_dquot_dirty(dquot); 5213 } 5214 } 5215 5216 static int ext4_write_info(struct super_block *sb, int type) 5217 { 5218 int ret, err; 5219 handle_t *handle; 5220 5221 /* Data block + inode block */ 5222 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5223 if (IS_ERR(handle)) 5224 return PTR_ERR(handle); 5225 ret = dquot_commit_info(sb, type); 5226 err = ext4_journal_stop(handle); 5227 if (!ret) 5228 ret = err; 5229 return ret; 5230 } 5231 5232 /* 5233 * Turn on quotas during mount time - we need to find 5234 * the quota file and such... 5235 */ 5236 static int ext4_quota_on_mount(struct super_block *sb, int type) 5237 { 5238 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5239 EXT4_SB(sb)->s_jquota_fmt, type); 5240 } 5241 5242 /* 5243 * Standard function to be called on quota_on 5244 */ 5245 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5246 struct path *path) 5247 { 5248 int err; 5249 5250 if (!test_opt(sb, QUOTA)) 5251 return -EINVAL; 5252 5253 /* Quotafile not on the same filesystem? */ 5254 if (path->dentry->d_sb != sb) 5255 return -EXDEV; 5256 /* Journaling quota? */ 5257 if (EXT4_SB(sb)->s_qf_names[type]) { 5258 /* Quotafile not in fs root? */ 5259 if (path->dentry->d_parent != sb->s_root) 5260 ext4_msg(sb, KERN_WARNING, 5261 "Quota file not on filesystem root. " 5262 "Journaled quota will not work"); 5263 } 5264 5265 /* 5266 * When we journal data on quota file, we have to flush journal to see 5267 * all updates to the file when we bypass pagecache... 5268 */ 5269 if (EXT4_SB(sb)->s_journal && 5270 ext4_should_journal_data(d_inode(path->dentry))) { 5271 /* 5272 * We don't need to lock updates but journal_flush() could 5273 * otherwise be livelocked... 5274 */ 5275 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5276 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5277 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5278 if (err) 5279 return err; 5280 } 5281 5282 return dquot_quota_on(sb, type, format_id, path); 5283 } 5284 5285 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5286 unsigned int flags) 5287 { 5288 int err; 5289 struct inode *qf_inode; 5290 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5291 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5292 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5293 }; 5294 5295 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5296 5297 if (!qf_inums[type]) 5298 return -EPERM; 5299 5300 qf_inode = ext4_iget(sb, qf_inums[type]); 5301 if (IS_ERR(qf_inode)) { 5302 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5303 return PTR_ERR(qf_inode); 5304 } 5305 5306 /* Don't account quota for quota files to avoid recursion */ 5307 qf_inode->i_flags |= S_NOQUOTA; 5308 err = dquot_enable(qf_inode, type, format_id, flags); 5309 iput(qf_inode); 5310 5311 return err; 5312 } 5313 5314 /* Enable usage tracking for all quota types. */ 5315 static int ext4_enable_quotas(struct super_block *sb) 5316 { 5317 int type, err = 0; 5318 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5319 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5320 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5321 }; 5322 5323 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5324 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5325 if (qf_inums[type]) { 5326 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5327 DQUOT_USAGE_ENABLED); 5328 if (err) { 5329 ext4_warning(sb, 5330 "Failed to enable quota tracking " 5331 "(type=%d, err=%d). Please run " 5332 "e2fsck to fix.", type, err); 5333 return err; 5334 } 5335 } 5336 } 5337 return 0; 5338 } 5339 5340 static int ext4_quota_off(struct super_block *sb, int type) 5341 { 5342 struct inode *inode = sb_dqopt(sb)->files[type]; 5343 handle_t *handle; 5344 5345 /* Force all delayed allocation blocks to be allocated. 5346 * Caller already holds s_umount sem */ 5347 if (test_opt(sb, DELALLOC)) 5348 sync_filesystem(sb); 5349 5350 if (!inode) 5351 goto out; 5352 5353 /* Update modification times of quota files when userspace can 5354 * start looking at them */ 5355 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5356 if (IS_ERR(handle)) 5357 goto out; 5358 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5359 ext4_mark_inode_dirty(handle, inode); 5360 ext4_journal_stop(handle); 5361 5362 out: 5363 return dquot_quota_off(sb, type); 5364 } 5365 5366 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5367 * acquiring the locks... As quota files are never truncated and quota code 5368 * itself serializes the operations (and no one else should touch the files) 5369 * we don't have to be afraid of races */ 5370 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5371 size_t len, loff_t off) 5372 { 5373 struct inode *inode = sb_dqopt(sb)->files[type]; 5374 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5375 int offset = off & (sb->s_blocksize - 1); 5376 int tocopy; 5377 size_t toread; 5378 struct buffer_head *bh; 5379 loff_t i_size = i_size_read(inode); 5380 5381 if (off > i_size) 5382 return 0; 5383 if (off+len > i_size) 5384 len = i_size-off; 5385 toread = len; 5386 while (toread > 0) { 5387 tocopy = sb->s_blocksize - offset < toread ? 5388 sb->s_blocksize - offset : toread; 5389 bh = ext4_bread(NULL, inode, blk, 0); 5390 if (IS_ERR(bh)) 5391 return PTR_ERR(bh); 5392 if (!bh) /* A hole? */ 5393 memset(data, 0, tocopy); 5394 else 5395 memcpy(data, bh->b_data+offset, tocopy); 5396 brelse(bh); 5397 offset = 0; 5398 toread -= tocopy; 5399 data += tocopy; 5400 blk++; 5401 } 5402 return len; 5403 } 5404 5405 /* Write to quotafile (we know the transaction is already started and has 5406 * enough credits) */ 5407 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5408 const char *data, size_t len, loff_t off) 5409 { 5410 struct inode *inode = sb_dqopt(sb)->files[type]; 5411 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5412 int err, offset = off & (sb->s_blocksize - 1); 5413 struct buffer_head *bh; 5414 handle_t *handle = journal_current_handle(); 5415 5416 if (EXT4_SB(sb)->s_journal && !handle) { 5417 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5418 " cancelled because transaction is not started", 5419 (unsigned long long)off, (unsigned long long)len); 5420 return -EIO; 5421 } 5422 /* 5423 * Since we account only one data block in transaction credits, 5424 * then it is impossible to cross a block boundary. 5425 */ 5426 if (sb->s_blocksize - offset < len) { 5427 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5428 " cancelled because not block aligned", 5429 (unsigned long long)off, (unsigned long long)len); 5430 return -EIO; 5431 } 5432 5433 bh = ext4_bread(handle, inode, blk, 1); 5434 if (IS_ERR(bh)) 5435 return PTR_ERR(bh); 5436 if (!bh) 5437 goto out; 5438 BUFFER_TRACE(bh, "get write access"); 5439 err = ext4_journal_get_write_access(handle, bh); 5440 if (err) { 5441 brelse(bh); 5442 return err; 5443 } 5444 lock_buffer(bh); 5445 memcpy(bh->b_data+offset, data, len); 5446 flush_dcache_page(bh->b_page); 5447 unlock_buffer(bh); 5448 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5449 brelse(bh); 5450 out: 5451 if (inode->i_size < off + len) { 5452 i_size_write(inode, off + len); 5453 EXT4_I(inode)->i_disksize = inode->i_size; 5454 ext4_mark_inode_dirty(handle, inode); 5455 } 5456 return len; 5457 } 5458 5459 #endif 5460 5461 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5462 const char *dev_name, void *data) 5463 { 5464 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5465 } 5466 5467 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5468 static inline void register_as_ext2(void) 5469 { 5470 int err = register_filesystem(&ext2_fs_type); 5471 if (err) 5472 printk(KERN_WARNING 5473 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5474 } 5475 5476 static inline void unregister_as_ext2(void) 5477 { 5478 unregister_filesystem(&ext2_fs_type); 5479 } 5480 5481 static inline int ext2_feature_set_ok(struct super_block *sb) 5482 { 5483 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5484 return 0; 5485 if (sb->s_flags & MS_RDONLY) 5486 return 1; 5487 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5488 return 0; 5489 return 1; 5490 } 5491 #else 5492 static inline void register_as_ext2(void) { } 5493 static inline void unregister_as_ext2(void) { } 5494 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5495 #endif 5496 5497 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5498 static inline void register_as_ext3(void) 5499 { 5500 int err = register_filesystem(&ext3_fs_type); 5501 if (err) 5502 printk(KERN_WARNING 5503 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5504 } 5505 5506 static inline void unregister_as_ext3(void) 5507 { 5508 unregister_filesystem(&ext3_fs_type); 5509 } 5510 5511 static inline int ext3_feature_set_ok(struct super_block *sb) 5512 { 5513 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5514 return 0; 5515 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5516 return 0; 5517 if (sb->s_flags & MS_RDONLY) 5518 return 1; 5519 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5520 return 0; 5521 return 1; 5522 } 5523 #else 5524 static inline void register_as_ext3(void) { } 5525 static inline void unregister_as_ext3(void) { } 5526 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5527 #endif 5528 5529 static struct file_system_type ext4_fs_type = { 5530 .owner = THIS_MODULE, 5531 .name = "ext4", 5532 .mount = ext4_mount, 5533 .kill_sb = kill_block_super, 5534 .fs_flags = FS_REQUIRES_DEV, 5535 }; 5536 MODULE_ALIAS_FS("ext4"); 5537 5538 static int __init ext4_init_feat_adverts(void) 5539 { 5540 struct ext4_features *ef; 5541 int ret = -ENOMEM; 5542 5543 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5544 if (!ef) 5545 goto out; 5546 5547 ef->f_kobj.kset = ext4_kset; 5548 init_completion(&ef->f_kobj_unregister); 5549 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5550 "features"); 5551 if (ret) { 5552 kfree(ef); 5553 goto out; 5554 } 5555 5556 ext4_feat = ef; 5557 ret = 0; 5558 out: 5559 return ret; 5560 } 5561 5562 static void ext4_exit_feat_adverts(void) 5563 { 5564 kobject_put(&ext4_feat->f_kobj); 5565 wait_for_completion(&ext4_feat->f_kobj_unregister); 5566 kfree(ext4_feat); 5567 } 5568 5569 /* Shared across all ext4 file systems */ 5570 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5571 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5572 5573 static int __init ext4_init_fs(void) 5574 { 5575 int i, err; 5576 5577 ext4_li_info = NULL; 5578 mutex_init(&ext4_li_mtx); 5579 5580 /* Build-time check for flags consistency */ 5581 ext4_check_flag_values(); 5582 5583 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5584 mutex_init(&ext4__aio_mutex[i]); 5585 init_waitqueue_head(&ext4__ioend_wq[i]); 5586 } 5587 5588 err = ext4_init_es(); 5589 if (err) 5590 return err; 5591 5592 err = ext4_init_pageio(); 5593 if (err) 5594 goto out7; 5595 5596 err = ext4_init_system_zone(); 5597 if (err) 5598 goto out6; 5599 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5600 if (!ext4_kset) { 5601 err = -ENOMEM; 5602 goto out5; 5603 } 5604 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5605 5606 err = ext4_init_feat_adverts(); 5607 if (err) 5608 goto out4; 5609 5610 err = ext4_init_mballoc(); 5611 if (err) 5612 goto out2; 5613 else 5614 ext4_mballoc_ready = 1; 5615 err = init_inodecache(); 5616 if (err) 5617 goto out1; 5618 register_as_ext3(); 5619 register_as_ext2(); 5620 err = register_filesystem(&ext4_fs_type); 5621 if (err) 5622 goto out; 5623 5624 return 0; 5625 out: 5626 unregister_as_ext2(); 5627 unregister_as_ext3(); 5628 destroy_inodecache(); 5629 out1: 5630 ext4_mballoc_ready = 0; 5631 ext4_exit_mballoc(); 5632 out2: 5633 ext4_exit_feat_adverts(); 5634 out4: 5635 if (ext4_proc_root) 5636 remove_proc_entry("fs/ext4", NULL); 5637 kset_unregister(ext4_kset); 5638 out5: 5639 ext4_exit_system_zone(); 5640 out6: 5641 ext4_exit_pageio(); 5642 out7: 5643 ext4_exit_es(); 5644 5645 return err; 5646 } 5647 5648 static void __exit ext4_exit_fs(void) 5649 { 5650 ext4_destroy_lazyinit_thread(); 5651 unregister_as_ext2(); 5652 unregister_as_ext3(); 5653 unregister_filesystem(&ext4_fs_type); 5654 destroy_inodecache(); 5655 ext4_exit_mballoc(); 5656 ext4_exit_feat_adverts(); 5657 remove_proc_entry("fs/ext4", NULL); 5658 kset_unregister(ext4_kset); 5659 ext4_exit_system_zone(); 5660 ext4_exit_pageio(); 5661 ext4_exit_es(); 5662 } 5663 5664 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5665 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5666 MODULE_LICENSE("GPL"); 5667 module_init(ext4_init_fs) 5668 module_exit(ext4_exit_fs) 5669