xref: /openbmc/linux/fs/ext4/super.c (revision d061864b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 
49 #include "ext4.h"
50 #include "ext4_extents.h"	/* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59 
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 				   struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 
88 /*
89  * Lock ordering
90  *
91  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92  * i_mmap_rwsem (inode->i_mmap_rwsem)!
93  *
94  * page fault path:
95  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96  *   page lock -> i_data_sem (rw)
97  *
98  * buffered write path:
99  * sb_start_write -> i_mutex -> mmap_sem
100  * sb_start_write -> i_mutex -> transaction start -> page lock ->
101  *   i_data_sem (rw)
102  *
103  * truncate:
104  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106  *   i_data_sem (rw)
107  *
108  * direct IO:
109  * sb_start_write -> i_mutex -> mmap_sem
110  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 static int ext4_verify_csum_type(struct super_block *sb,
144 				 struct ext4_super_block *es)
145 {
146 	if (!ext4_has_feature_metadata_csum(sb))
147 		return 1;
148 
149 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151 
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 				   struct ext4_super_block *es)
154 {
155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
156 	int offset = offsetof(struct ext4_super_block, s_checksum);
157 	__u32 csum;
158 
159 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160 
161 	return cpu_to_le32(csum);
162 }
163 
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 				       struct ext4_super_block *es)
166 {
167 	if (!ext4_has_metadata_csum(sb))
168 		return 1;
169 
170 	return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172 
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176 
177 	if (!ext4_has_metadata_csum(sb))
178 		return;
179 
180 	es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182 
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 	void *ret;
186 
187 	ret = kmalloc(size, flags | __GFP_NOWARN);
188 	if (!ret)
189 		ret = __vmalloc(size, flags, PAGE_KERNEL);
190 	return ret;
191 }
192 
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 	void *ret;
196 
197 	ret = kzalloc(size, flags | __GFP_NOWARN);
198 	if (!ret)
199 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 	return ret;
201 }
202 
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 			       struct ext4_group_desc *bg)
205 {
206 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210 
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 			       struct ext4_group_desc *bg)
213 {
214 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218 
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 			      struct ext4_group_desc *bg)
221 {
222 	return le32_to_cpu(bg->bg_inode_table_lo) |
223 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226 
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 			       struct ext4_group_desc *bg)
229 {
230 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234 
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 			      struct ext4_group_desc *bg)
237 {
238 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242 
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 			      struct ext4_group_desc *bg)
245 {
246 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250 
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 			      struct ext4_group_desc *bg)
253 {
254 	return le16_to_cpu(bg->bg_itable_unused_lo) |
255 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258 
259 void ext4_block_bitmap_set(struct super_block *sb,
260 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266 
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
271 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274 
275 void ext4_inode_table_set(struct super_block *sb,
276 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282 
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 				  struct ext4_group_desc *bg, __u32 count)
285 {
286 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290 
291 void ext4_free_inodes_set(struct super_block *sb,
292 			  struct ext4_group_desc *bg, __u32 count)
293 {
294 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298 
299 void ext4_used_dirs_set(struct super_block *sb,
300 			  struct ext4_group_desc *bg, __u32 count)
301 {
302 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306 
307 void ext4_itable_unused_set(struct super_block *sb,
308 			  struct ext4_group_desc *bg, __u32 count)
309 {
310 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314 
315 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
316 {
317 	time64_t now = ktime_get_real_seconds();
318 
319 	now = clamp_val(now, 0, (1ull << 40) - 1);
320 
321 	*lo = cpu_to_le32(lower_32_bits(now));
322 	*hi = upper_32_bits(now);
323 }
324 
325 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
326 {
327 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
328 }
329 #define ext4_update_tstamp(es, tstamp) \
330 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
331 #define ext4_get_tstamp(es, tstamp) \
332 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
333 
334 static void __save_error_info(struct super_block *sb, const char *func,
335 			    unsigned int line)
336 {
337 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
338 
339 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
340 	if (bdev_read_only(sb->s_bdev))
341 		return;
342 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
343 	ext4_update_tstamp(es, s_last_error_time);
344 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
345 	es->s_last_error_line = cpu_to_le32(line);
346 	if (!es->s_first_error_time) {
347 		es->s_first_error_time = es->s_last_error_time;
348 		es->s_first_error_time_hi = es->s_last_error_time_hi;
349 		strncpy(es->s_first_error_func, func,
350 			sizeof(es->s_first_error_func));
351 		es->s_first_error_line = cpu_to_le32(line);
352 		es->s_first_error_ino = es->s_last_error_ino;
353 		es->s_first_error_block = es->s_last_error_block;
354 	}
355 	/*
356 	 * Start the daily error reporting function if it hasn't been
357 	 * started already
358 	 */
359 	if (!es->s_error_count)
360 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
361 	le32_add_cpu(&es->s_error_count, 1);
362 }
363 
364 static void save_error_info(struct super_block *sb, const char *func,
365 			    unsigned int line)
366 {
367 	__save_error_info(sb, func, line);
368 	ext4_commit_super(sb, 1);
369 }
370 
371 /*
372  * The del_gendisk() function uninitializes the disk-specific data
373  * structures, including the bdi structure, without telling anyone
374  * else.  Once this happens, any attempt to call mark_buffer_dirty()
375  * (for example, by ext4_commit_super), will cause a kernel OOPS.
376  * This is a kludge to prevent these oops until we can put in a proper
377  * hook in del_gendisk() to inform the VFS and file system layers.
378  */
379 static int block_device_ejected(struct super_block *sb)
380 {
381 	struct inode *bd_inode = sb->s_bdev->bd_inode;
382 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
383 
384 	return bdi->dev == NULL;
385 }
386 
387 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
388 {
389 	struct super_block		*sb = journal->j_private;
390 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
391 	int				error = is_journal_aborted(journal);
392 	struct ext4_journal_cb_entry	*jce;
393 
394 	BUG_ON(txn->t_state == T_FINISHED);
395 
396 	ext4_process_freed_data(sb, txn->t_tid);
397 
398 	spin_lock(&sbi->s_md_lock);
399 	while (!list_empty(&txn->t_private_list)) {
400 		jce = list_entry(txn->t_private_list.next,
401 				 struct ext4_journal_cb_entry, jce_list);
402 		list_del_init(&jce->jce_list);
403 		spin_unlock(&sbi->s_md_lock);
404 		jce->jce_func(sb, jce, error);
405 		spin_lock(&sbi->s_md_lock);
406 	}
407 	spin_unlock(&sbi->s_md_lock);
408 }
409 
410 /* Deal with the reporting of failure conditions on a filesystem such as
411  * inconsistencies detected or read IO failures.
412  *
413  * On ext2, we can store the error state of the filesystem in the
414  * superblock.  That is not possible on ext4, because we may have other
415  * write ordering constraints on the superblock which prevent us from
416  * writing it out straight away; and given that the journal is about to
417  * be aborted, we can't rely on the current, or future, transactions to
418  * write out the superblock safely.
419  *
420  * We'll just use the jbd2_journal_abort() error code to record an error in
421  * the journal instead.  On recovery, the journal will complain about
422  * that error until we've noted it down and cleared it.
423  */
424 
425 static void ext4_handle_error(struct super_block *sb)
426 {
427 	if (test_opt(sb, WARN_ON_ERROR))
428 		WARN_ON_ONCE(1);
429 
430 	if (sb_rdonly(sb))
431 		return;
432 
433 	if (!test_opt(sb, ERRORS_CONT)) {
434 		journal_t *journal = EXT4_SB(sb)->s_journal;
435 
436 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 		if (journal)
438 			jbd2_journal_abort(journal, -EIO);
439 	}
440 	if (test_opt(sb, ERRORS_RO)) {
441 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
442 		/*
443 		 * Make sure updated value of ->s_mount_flags will be visible
444 		 * before ->s_flags update
445 		 */
446 		smp_wmb();
447 		sb->s_flags |= SB_RDONLY;
448 	}
449 	if (test_opt(sb, ERRORS_PANIC)) {
450 		if (EXT4_SB(sb)->s_journal &&
451 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
452 			return;
453 		panic("EXT4-fs (device %s): panic forced after error\n",
454 			sb->s_id);
455 	}
456 }
457 
458 #define ext4_error_ratelimit(sb)					\
459 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
460 			     "EXT4-fs error")
461 
462 void __ext4_error(struct super_block *sb, const char *function,
463 		  unsigned int line, const char *fmt, ...)
464 {
465 	struct va_format vaf;
466 	va_list args;
467 
468 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
469 		return;
470 
471 	trace_ext4_error(sb, function, line);
472 	if (ext4_error_ratelimit(sb)) {
473 		va_start(args, fmt);
474 		vaf.fmt = fmt;
475 		vaf.va = &args;
476 		printk(KERN_CRIT
477 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
478 		       sb->s_id, function, line, current->comm, &vaf);
479 		va_end(args);
480 	}
481 	save_error_info(sb, function, line);
482 	ext4_handle_error(sb);
483 }
484 
485 void __ext4_error_inode(struct inode *inode, const char *function,
486 			unsigned int line, ext4_fsblk_t block,
487 			const char *fmt, ...)
488 {
489 	va_list args;
490 	struct va_format vaf;
491 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
492 
493 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
494 		return;
495 
496 	trace_ext4_error(inode->i_sb, function, line);
497 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
498 	es->s_last_error_block = cpu_to_le64(block);
499 	if (ext4_error_ratelimit(inode->i_sb)) {
500 		va_start(args, fmt);
501 		vaf.fmt = fmt;
502 		vaf.va = &args;
503 		if (block)
504 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
505 			       "inode #%lu: block %llu: comm %s: %pV\n",
506 			       inode->i_sb->s_id, function, line, inode->i_ino,
507 			       block, current->comm, &vaf);
508 		else
509 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
510 			       "inode #%lu: comm %s: %pV\n",
511 			       inode->i_sb->s_id, function, line, inode->i_ino,
512 			       current->comm, &vaf);
513 		va_end(args);
514 	}
515 	save_error_info(inode->i_sb, function, line);
516 	ext4_handle_error(inode->i_sb);
517 }
518 
519 void __ext4_error_file(struct file *file, const char *function,
520 		       unsigned int line, ext4_fsblk_t block,
521 		       const char *fmt, ...)
522 {
523 	va_list args;
524 	struct va_format vaf;
525 	struct ext4_super_block *es;
526 	struct inode *inode = file_inode(file);
527 	char pathname[80], *path;
528 
529 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
530 		return;
531 
532 	trace_ext4_error(inode->i_sb, function, line);
533 	es = EXT4_SB(inode->i_sb)->s_es;
534 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
535 	if (ext4_error_ratelimit(inode->i_sb)) {
536 		path = file_path(file, pathname, sizeof(pathname));
537 		if (IS_ERR(path))
538 			path = "(unknown)";
539 		va_start(args, fmt);
540 		vaf.fmt = fmt;
541 		vaf.va = &args;
542 		if (block)
543 			printk(KERN_CRIT
544 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
545 			       "block %llu: comm %s: path %s: %pV\n",
546 			       inode->i_sb->s_id, function, line, inode->i_ino,
547 			       block, current->comm, path, &vaf);
548 		else
549 			printk(KERN_CRIT
550 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
551 			       "comm %s: path %s: %pV\n",
552 			       inode->i_sb->s_id, function, line, inode->i_ino,
553 			       current->comm, path, &vaf);
554 		va_end(args);
555 	}
556 	save_error_info(inode->i_sb, function, line);
557 	ext4_handle_error(inode->i_sb);
558 }
559 
560 const char *ext4_decode_error(struct super_block *sb, int errno,
561 			      char nbuf[16])
562 {
563 	char *errstr = NULL;
564 
565 	switch (errno) {
566 	case -EFSCORRUPTED:
567 		errstr = "Corrupt filesystem";
568 		break;
569 	case -EFSBADCRC:
570 		errstr = "Filesystem failed CRC";
571 		break;
572 	case -EIO:
573 		errstr = "IO failure";
574 		break;
575 	case -ENOMEM:
576 		errstr = "Out of memory";
577 		break;
578 	case -EROFS:
579 		if (!sb || (EXT4_SB(sb)->s_journal &&
580 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
581 			errstr = "Journal has aborted";
582 		else
583 			errstr = "Readonly filesystem";
584 		break;
585 	default:
586 		/* If the caller passed in an extra buffer for unknown
587 		 * errors, textualise them now.  Else we just return
588 		 * NULL. */
589 		if (nbuf) {
590 			/* Check for truncated error codes... */
591 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
592 				errstr = nbuf;
593 		}
594 		break;
595 	}
596 
597 	return errstr;
598 }
599 
600 /* __ext4_std_error decodes expected errors from journaling functions
601  * automatically and invokes the appropriate error response.  */
602 
603 void __ext4_std_error(struct super_block *sb, const char *function,
604 		      unsigned int line, int errno)
605 {
606 	char nbuf[16];
607 	const char *errstr;
608 
609 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
610 		return;
611 
612 	/* Special case: if the error is EROFS, and we're not already
613 	 * inside a transaction, then there's really no point in logging
614 	 * an error. */
615 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
616 		return;
617 
618 	if (ext4_error_ratelimit(sb)) {
619 		errstr = ext4_decode_error(sb, errno, nbuf);
620 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
621 		       sb->s_id, function, line, errstr);
622 	}
623 
624 	save_error_info(sb, function, line);
625 	ext4_handle_error(sb);
626 }
627 
628 /*
629  * ext4_abort is a much stronger failure handler than ext4_error.  The
630  * abort function may be used to deal with unrecoverable failures such
631  * as journal IO errors or ENOMEM at a critical moment in log management.
632  *
633  * We unconditionally force the filesystem into an ABORT|READONLY state,
634  * unless the error response on the fs has been set to panic in which
635  * case we take the easy way out and panic immediately.
636  */
637 
638 void __ext4_abort(struct super_block *sb, const char *function,
639 		unsigned int line, const char *fmt, ...)
640 {
641 	struct va_format vaf;
642 	va_list args;
643 
644 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
645 		return;
646 
647 	save_error_info(sb, function, line);
648 	va_start(args, fmt);
649 	vaf.fmt = fmt;
650 	vaf.va = &args;
651 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
652 	       sb->s_id, function, line, &vaf);
653 	va_end(args);
654 
655 	if (sb_rdonly(sb) == 0) {
656 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
657 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
658 		/*
659 		 * Make sure updated value of ->s_mount_flags will be visible
660 		 * before ->s_flags update
661 		 */
662 		smp_wmb();
663 		sb->s_flags |= SB_RDONLY;
664 		if (EXT4_SB(sb)->s_journal)
665 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
666 		save_error_info(sb, function, line);
667 	}
668 	if (test_opt(sb, ERRORS_PANIC)) {
669 		if (EXT4_SB(sb)->s_journal &&
670 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
671 			return;
672 		panic("EXT4-fs panic from previous error\n");
673 	}
674 }
675 
676 void __ext4_msg(struct super_block *sb,
677 		const char *prefix, const char *fmt, ...)
678 {
679 	struct va_format vaf;
680 	va_list args;
681 
682 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
683 		return;
684 
685 	va_start(args, fmt);
686 	vaf.fmt = fmt;
687 	vaf.va = &args;
688 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
689 	va_end(args);
690 }
691 
692 #define ext4_warning_ratelimit(sb)					\
693 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
694 			     "EXT4-fs warning")
695 
696 void __ext4_warning(struct super_block *sb, const char *function,
697 		    unsigned int line, const char *fmt, ...)
698 {
699 	struct va_format vaf;
700 	va_list args;
701 
702 	if (!ext4_warning_ratelimit(sb))
703 		return;
704 
705 	va_start(args, fmt);
706 	vaf.fmt = fmt;
707 	vaf.va = &args;
708 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
709 	       sb->s_id, function, line, &vaf);
710 	va_end(args);
711 }
712 
713 void __ext4_warning_inode(const struct inode *inode, const char *function,
714 			  unsigned int line, const char *fmt, ...)
715 {
716 	struct va_format vaf;
717 	va_list args;
718 
719 	if (!ext4_warning_ratelimit(inode->i_sb))
720 		return;
721 
722 	va_start(args, fmt);
723 	vaf.fmt = fmt;
724 	vaf.va = &args;
725 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
726 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
727 	       function, line, inode->i_ino, current->comm, &vaf);
728 	va_end(args);
729 }
730 
731 void __ext4_grp_locked_error(const char *function, unsigned int line,
732 			     struct super_block *sb, ext4_group_t grp,
733 			     unsigned long ino, ext4_fsblk_t block,
734 			     const char *fmt, ...)
735 __releases(bitlock)
736 __acquires(bitlock)
737 {
738 	struct va_format vaf;
739 	va_list args;
740 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741 
742 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
743 		return;
744 
745 	trace_ext4_error(sb, function, line);
746 	es->s_last_error_ino = cpu_to_le32(ino);
747 	es->s_last_error_block = cpu_to_le64(block);
748 	__save_error_info(sb, function, line);
749 
750 	if (ext4_error_ratelimit(sb)) {
751 		va_start(args, fmt);
752 		vaf.fmt = fmt;
753 		vaf.va = &args;
754 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
755 		       sb->s_id, function, line, grp);
756 		if (ino)
757 			printk(KERN_CONT "inode %lu: ", ino);
758 		if (block)
759 			printk(KERN_CONT "block %llu:",
760 			       (unsigned long long) block);
761 		printk(KERN_CONT "%pV\n", &vaf);
762 		va_end(args);
763 	}
764 
765 	if (test_opt(sb, WARN_ON_ERROR))
766 		WARN_ON_ONCE(1);
767 
768 	if (test_opt(sb, ERRORS_CONT)) {
769 		ext4_commit_super(sb, 0);
770 		return;
771 	}
772 
773 	ext4_unlock_group(sb, grp);
774 	ext4_commit_super(sb, 1);
775 	ext4_handle_error(sb);
776 	/*
777 	 * We only get here in the ERRORS_RO case; relocking the group
778 	 * may be dangerous, but nothing bad will happen since the
779 	 * filesystem will have already been marked read/only and the
780 	 * journal has been aborted.  We return 1 as a hint to callers
781 	 * who might what to use the return value from
782 	 * ext4_grp_locked_error() to distinguish between the
783 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
784 	 * aggressively from the ext4 function in question, with a
785 	 * more appropriate error code.
786 	 */
787 	ext4_lock_group(sb, grp);
788 	return;
789 }
790 
791 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
792 				     ext4_group_t group,
793 				     unsigned int flags)
794 {
795 	struct ext4_sb_info *sbi = EXT4_SB(sb);
796 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
797 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
798 	int ret;
799 
800 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
801 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
802 					    &grp->bb_state);
803 		if (!ret)
804 			percpu_counter_sub(&sbi->s_freeclusters_counter,
805 					   grp->bb_free);
806 	}
807 
808 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
809 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
810 					    &grp->bb_state);
811 		if (!ret && gdp) {
812 			int count;
813 
814 			count = ext4_free_inodes_count(sb, gdp);
815 			percpu_counter_sub(&sbi->s_freeinodes_counter,
816 					   count);
817 		}
818 	}
819 }
820 
821 void ext4_update_dynamic_rev(struct super_block *sb)
822 {
823 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
824 
825 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
826 		return;
827 
828 	ext4_warning(sb,
829 		     "updating to rev %d because of new feature flag, "
830 		     "running e2fsck is recommended",
831 		     EXT4_DYNAMIC_REV);
832 
833 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
834 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
835 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
836 	/* leave es->s_feature_*compat flags alone */
837 	/* es->s_uuid will be set by e2fsck if empty */
838 
839 	/*
840 	 * The rest of the superblock fields should be zero, and if not it
841 	 * means they are likely already in use, so leave them alone.  We
842 	 * can leave it up to e2fsck to clean up any inconsistencies there.
843 	 */
844 }
845 
846 /*
847  * Open the external journal device
848  */
849 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
850 {
851 	struct block_device *bdev;
852 	char b[BDEVNAME_SIZE];
853 
854 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
855 	if (IS_ERR(bdev))
856 		goto fail;
857 	return bdev;
858 
859 fail:
860 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
861 			__bdevname(dev, b), PTR_ERR(bdev));
862 	return NULL;
863 }
864 
865 /*
866  * Release the journal device
867  */
868 static void ext4_blkdev_put(struct block_device *bdev)
869 {
870 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
871 }
872 
873 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
874 {
875 	struct block_device *bdev;
876 	bdev = sbi->journal_bdev;
877 	if (bdev) {
878 		ext4_blkdev_put(bdev);
879 		sbi->journal_bdev = NULL;
880 	}
881 }
882 
883 static inline struct inode *orphan_list_entry(struct list_head *l)
884 {
885 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
886 }
887 
888 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
889 {
890 	struct list_head *l;
891 
892 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
893 		 le32_to_cpu(sbi->s_es->s_last_orphan));
894 
895 	printk(KERN_ERR "sb_info orphan list:\n");
896 	list_for_each(l, &sbi->s_orphan) {
897 		struct inode *inode = orphan_list_entry(l);
898 		printk(KERN_ERR "  "
899 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
900 		       inode->i_sb->s_id, inode->i_ino, inode,
901 		       inode->i_mode, inode->i_nlink,
902 		       NEXT_ORPHAN(inode));
903 	}
904 }
905 
906 #ifdef CONFIG_QUOTA
907 static int ext4_quota_off(struct super_block *sb, int type);
908 
909 static inline void ext4_quota_off_umount(struct super_block *sb)
910 {
911 	int type;
912 
913 	/* Use our quota_off function to clear inode flags etc. */
914 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
915 		ext4_quota_off(sb, type);
916 }
917 #else
918 static inline void ext4_quota_off_umount(struct super_block *sb)
919 {
920 }
921 #endif
922 
923 static void ext4_put_super(struct super_block *sb)
924 {
925 	struct ext4_sb_info *sbi = EXT4_SB(sb);
926 	struct ext4_super_block *es = sbi->s_es;
927 	int aborted = 0;
928 	int i, err;
929 
930 	ext4_unregister_li_request(sb);
931 	ext4_quota_off_umount(sb);
932 
933 	destroy_workqueue(sbi->rsv_conversion_wq);
934 
935 	if (sbi->s_journal) {
936 		aborted = is_journal_aborted(sbi->s_journal);
937 		err = jbd2_journal_destroy(sbi->s_journal);
938 		sbi->s_journal = NULL;
939 		if ((err < 0) && !aborted)
940 			ext4_abort(sb, "Couldn't clean up the journal");
941 	}
942 
943 	ext4_unregister_sysfs(sb);
944 	ext4_es_unregister_shrinker(sbi);
945 	del_timer_sync(&sbi->s_err_report);
946 	ext4_release_system_zone(sb);
947 	ext4_mb_release(sb);
948 	ext4_ext_release(sb);
949 
950 	if (!sb_rdonly(sb) && !aborted) {
951 		ext4_clear_feature_journal_needs_recovery(sb);
952 		es->s_state = cpu_to_le16(sbi->s_mount_state);
953 	}
954 	if (!sb_rdonly(sb))
955 		ext4_commit_super(sb, 1);
956 
957 	for (i = 0; i < sbi->s_gdb_count; i++)
958 		brelse(sbi->s_group_desc[i]);
959 	kvfree(sbi->s_group_desc);
960 	kvfree(sbi->s_flex_groups);
961 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
962 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
963 	percpu_counter_destroy(&sbi->s_dirs_counter);
964 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
965 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
966 #ifdef CONFIG_QUOTA
967 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
968 		kfree(sbi->s_qf_names[i]);
969 #endif
970 
971 	/* Debugging code just in case the in-memory inode orphan list
972 	 * isn't empty.  The on-disk one can be non-empty if we've
973 	 * detected an error and taken the fs readonly, but the
974 	 * in-memory list had better be clean by this point. */
975 	if (!list_empty(&sbi->s_orphan))
976 		dump_orphan_list(sb, sbi);
977 	J_ASSERT(list_empty(&sbi->s_orphan));
978 
979 	sync_blockdev(sb->s_bdev);
980 	invalidate_bdev(sb->s_bdev);
981 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
982 		/*
983 		 * Invalidate the journal device's buffers.  We don't want them
984 		 * floating about in memory - the physical journal device may
985 		 * hotswapped, and it breaks the `ro-after' testing code.
986 		 */
987 		sync_blockdev(sbi->journal_bdev);
988 		invalidate_bdev(sbi->journal_bdev);
989 		ext4_blkdev_remove(sbi);
990 	}
991 	if (sbi->s_ea_inode_cache) {
992 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
993 		sbi->s_ea_inode_cache = NULL;
994 	}
995 	if (sbi->s_ea_block_cache) {
996 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
997 		sbi->s_ea_block_cache = NULL;
998 	}
999 	if (sbi->s_mmp_tsk)
1000 		kthread_stop(sbi->s_mmp_tsk);
1001 	brelse(sbi->s_sbh);
1002 	sb->s_fs_info = NULL;
1003 	/*
1004 	 * Now that we are completely done shutting down the
1005 	 * superblock, we need to actually destroy the kobject.
1006 	 */
1007 	kobject_put(&sbi->s_kobj);
1008 	wait_for_completion(&sbi->s_kobj_unregister);
1009 	if (sbi->s_chksum_driver)
1010 		crypto_free_shash(sbi->s_chksum_driver);
1011 	kfree(sbi->s_blockgroup_lock);
1012 	fs_put_dax(sbi->s_daxdev);
1013 	kfree(sbi);
1014 }
1015 
1016 static struct kmem_cache *ext4_inode_cachep;
1017 
1018 /*
1019  * Called inside transaction, so use GFP_NOFS
1020  */
1021 static struct inode *ext4_alloc_inode(struct super_block *sb)
1022 {
1023 	struct ext4_inode_info *ei;
1024 
1025 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1026 	if (!ei)
1027 		return NULL;
1028 
1029 	inode_set_iversion(&ei->vfs_inode, 1);
1030 	spin_lock_init(&ei->i_raw_lock);
1031 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1032 	spin_lock_init(&ei->i_prealloc_lock);
1033 	ext4_es_init_tree(&ei->i_es_tree);
1034 	rwlock_init(&ei->i_es_lock);
1035 	INIT_LIST_HEAD(&ei->i_es_list);
1036 	ei->i_es_all_nr = 0;
1037 	ei->i_es_shk_nr = 0;
1038 	ei->i_es_shrink_lblk = 0;
1039 	ei->i_reserved_data_blocks = 0;
1040 	ei->i_da_metadata_calc_len = 0;
1041 	ei->i_da_metadata_calc_last_lblock = 0;
1042 	spin_lock_init(&(ei->i_block_reservation_lock));
1043 #ifdef CONFIG_QUOTA
1044 	ei->i_reserved_quota = 0;
1045 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1046 #endif
1047 	ei->jinode = NULL;
1048 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1049 	spin_lock_init(&ei->i_completed_io_lock);
1050 	ei->i_sync_tid = 0;
1051 	ei->i_datasync_tid = 0;
1052 	atomic_set(&ei->i_unwritten, 0);
1053 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1054 	return &ei->vfs_inode;
1055 }
1056 
1057 static int ext4_drop_inode(struct inode *inode)
1058 {
1059 	int drop = generic_drop_inode(inode);
1060 
1061 	trace_ext4_drop_inode(inode, drop);
1062 	return drop;
1063 }
1064 
1065 static void ext4_i_callback(struct rcu_head *head)
1066 {
1067 	struct inode *inode = container_of(head, struct inode, i_rcu);
1068 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1069 }
1070 
1071 static void ext4_destroy_inode(struct inode *inode)
1072 {
1073 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1074 		ext4_msg(inode->i_sb, KERN_ERR,
1075 			 "Inode %lu (%p): orphan list check failed!",
1076 			 inode->i_ino, EXT4_I(inode));
1077 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1078 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1079 				true);
1080 		dump_stack();
1081 	}
1082 	call_rcu(&inode->i_rcu, ext4_i_callback);
1083 }
1084 
1085 static void init_once(void *foo)
1086 {
1087 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1088 
1089 	INIT_LIST_HEAD(&ei->i_orphan);
1090 	init_rwsem(&ei->xattr_sem);
1091 	init_rwsem(&ei->i_data_sem);
1092 	init_rwsem(&ei->i_mmap_sem);
1093 	inode_init_once(&ei->vfs_inode);
1094 }
1095 
1096 static int __init init_inodecache(void)
1097 {
1098 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1099 				sizeof(struct ext4_inode_info), 0,
1100 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1101 					SLAB_ACCOUNT),
1102 				offsetof(struct ext4_inode_info, i_data),
1103 				sizeof_field(struct ext4_inode_info, i_data),
1104 				init_once);
1105 	if (ext4_inode_cachep == NULL)
1106 		return -ENOMEM;
1107 	return 0;
1108 }
1109 
1110 static void destroy_inodecache(void)
1111 {
1112 	/*
1113 	 * Make sure all delayed rcu free inodes are flushed before we
1114 	 * destroy cache.
1115 	 */
1116 	rcu_barrier();
1117 	kmem_cache_destroy(ext4_inode_cachep);
1118 }
1119 
1120 void ext4_clear_inode(struct inode *inode)
1121 {
1122 	invalidate_inode_buffers(inode);
1123 	clear_inode(inode);
1124 	dquot_drop(inode);
1125 	ext4_discard_preallocations(inode);
1126 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1127 	if (EXT4_I(inode)->jinode) {
1128 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1129 					       EXT4_I(inode)->jinode);
1130 		jbd2_free_inode(EXT4_I(inode)->jinode);
1131 		EXT4_I(inode)->jinode = NULL;
1132 	}
1133 	fscrypt_put_encryption_info(inode);
1134 }
1135 
1136 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1137 					u64 ino, u32 generation)
1138 {
1139 	struct inode *inode;
1140 
1141 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1142 		return ERR_PTR(-ESTALE);
1143 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1144 		return ERR_PTR(-ESTALE);
1145 
1146 	/* iget isn't really right if the inode is currently unallocated!!
1147 	 *
1148 	 * ext4_read_inode will return a bad_inode if the inode had been
1149 	 * deleted, so we should be safe.
1150 	 *
1151 	 * Currently we don't know the generation for parent directory, so
1152 	 * a generation of 0 means "accept any"
1153 	 */
1154 	inode = ext4_iget_normal(sb, ino);
1155 	if (IS_ERR(inode))
1156 		return ERR_CAST(inode);
1157 	if (generation && inode->i_generation != generation) {
1158 		iput(inode);
1159 		return ERR_PTR(-ESTALE);
1160 	}
1161 
1162 	return inode;
1163 }
1164 
1165 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1166 					int fh_len, int fh_type)
1167 {
1168 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1169 				    ext4_nfs_get_inode);
1170 }
1171 
1172 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1173 					int fh_len, int fh_type)
1174 {
1175 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1176 				    ext4_nfs_get_inode);
1177 }
1178 
1179 /*
1180  * Try to release metadata pages (indirect blocks, directories) which are
1181  * mapped via the block device.  Since these pages could have journal heads
1182  * which would prevent try_to_free_buffers() from freeing them, we must use
1183  * jbd2 layer's try_to_free_buffers() function to release them.
1184  */
1185 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1186 				 gfp_t wait)
1187 {
1188 	journal_t *journal = EXT4_SB(sb)->s_journal;
1189 
1190 	WARN_ON(PageChecked(page));
1191 	if (!page_has_buffers(page))
1192 		return 0;
1193 	if (journal)
1194 		return jbd2_journal_try_to_free_buffers(journal, page,
1195 						wait & ~__GFP_DIRECT_RECLAIM);
1196 	return try_to_free_buffers(page);
1197 }
1198 
1199 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1200 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1201 {
1202 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1203 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1204 }
1205 
1206 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1207 							void *fs_data)
1208 {
1209 	handle_t *handle = fs_data;
1210 	int res, res2, credits, retries = 0;
1211 
1212 	/*
1213 	 * Encrypting the root directory is not allowed because e2fsck expects
1214 	 * lost+found to exist and be unencrypted, and encrypting the root
1215 	 * directory would imply encrypting the lost+found directory as well as
1216 	 * the filename "lost+found" itself.
1217 	 */
1218 	if (inode->i_ino == EXT4_ROOT_INO)
1219 		return -EPERM;
1220 
1221 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1222 		return -EINVAL;
1223 
1224 	res = ext4_convert_inline_data(inode);
1225 	if (res)
1226 		return res;
1227 
1228 	/*
1229 	 * If a journal handle was specified, then the encryption context is
1230 	 * being set on a new inode via inheritance and is part of a larger
1231 	 * transaction to create the inode.  Otherwise the encryption context is
1232 	 * being set on an existing inode in its own transaction.  Only in the
1233 	 * latter case should the "retry on ENOSPC" logic be used.
1234 	 */
1235 
1236 	if (handle) {
1237 		res = ext4_xattr_set_handle(handle, inode,
1238 					    EXT4_XATTR_INDEX_ENCRYPTION,
1239 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1240 					    ctx, len, 0);
1241 		if (!res) {
1242 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1243 			ext4_clear_inode_state(inode,
1244 					EXT4_STATE_MAY_INLINE_DATA);
1245 			/*
1246 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1247 			 * S_DAX may be disabled
1248 			 */
1249 			ext4_set_inode_flags(inode);
1250 		}
1251 		return res;
1252 	}
1253 
1254 	res = dquot_initialize(inode);
1255 	if (res)
1256 		return res;
1257 retry:
1258 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1259 				     &credits);
1260 	if (res)
1261 		return res;
1262 
1263 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1264 	if (IS_ERR(handle))
1265 		return PTR_ERR(handle);
1266 
1267 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1268 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1269 				    ctx, len, 0);
1270 	if (!res) {
1271 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1272 		/*
1273 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1274 		 * S_DAX may be disabled
1275 		 */
1276 		ext4_set_inode_flags(inode);
1277 		res = ext4_mark_inode_dirty(handle, inode);
1278 		if (res)
1279 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1280 	}
1281 	res2 = ext4_journal_stop(handle);
1282 
1283 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1284 		goto retry;
1285 	if (!res)
1286 		res = res2;
1287 	return res;
1288 }
1289 
1290 static bool ext4_dummy_context(struct inode *inode)
1291 {
1292 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1293 }
1294 
1295 static const struct fscrypt_operations ext4_cryptops = {
1296 	.key_prefix		= "ext4:",
1297 	.get_context		= ext4_get_context,
1298 	.set_context		= ext4_set_context,
1299 	.dummy_context		= ext4_dummy_context,
1300 	.empty_dir		= ext4_empty_dir,
1301 	.max_namelen		= EXT4_NAME_LEN,
1302 };
1303 #endif
1304 
1305 #ifdef CONFIG_QUOTA
1306 static const char * const quotatypes[] = INITQFNAMES;
1307 #define QTYPE2NAME(t) (quotatypes[t])
1308 
1309 static int ext4_write_dquot(struct dquot *dquot);
1310 static int ext4_acquire_dquot(struct dquot *dquot);
1311 static int ext4_release_dquot(struct dquot *dquot);
1312 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1313 static int ext4_write_info(struct super_block *sb, int type);
1314 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1315 			 const struct path *path);
1316 static int ext4_quota_on_mount(struct super_block *sb, int type);
1317 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1318 			       size_t len, loff_t off);
1319 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1320 				const char *data, size_t len, loff_t off);
1321 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1322 			     unsigned int flags);
1323 static int ext4_enable_quotas(struct super_block *sb);
1324 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1325 
1326 static struct dquot **ext4_get_dquots(struct inode *inode)
1327 {
1328 	return EXT4_I(inode)->i_dquot;
1329 }
1330 
1331 static const struct dquot_operations ext4_quota_operations = {
1332 	.get_reserved_space	= ext4_get_reserved_space,
1333 	.write_dquot		= ext4_write_dquot,
1334 	.acquire_dquot		= ext4_acquire_dquot,
1335 	.release_dquot		= ext4_release_dquot,
1336 	.mark_dirty		= ext4_mark_dquot_dirty,
1337 	.write_info		= ext4_write_info,
1338 	.alloc_dquot		= dquot_alloc,
1339 	.destroy_dquot		= dquot_destroy,
1340 	.get_projid		= ext4_get_projid,
1341 	.get_inode_usage	= ext4_get_inode_usage,
1342 	.get_next_id		= ext4_get_next_id,
1343 };
1344 
1345 static const struct quotactl_ops ext4_qctl_operations = {
1346 	.quota_on	= ext4_quota_on,
1347 	.quota_off	= ext4_quota_off,
1348 	.quota_sync	= dquot_quota_sync,
1349 	.get_state	= dquot_get_state,
1350 	.set_info	= dquot_set_dqinfo,
1351 	.get_dqblk	= dquot_get_dqblk,
1352 	.set_dqblk	= dquot_set_dqblk,
1353 	.get_nextdqblk	= dquot_get_next_dqblk,
1354 };
1355 #endif
1356 
1357 static const struct super_operations ext4_sops = {
1358 	.alloc_inode	= ext4_alloc_inode,
1359 	.destroy_inode	= ext4_destroy_inode,
1360 	.write_inode	= ext4_write_inode,
1361 	.dirty_inode	= ext4_dirty_inode,
1362 	.drop_inode	= ext4_drop_inode,
1363 	.evict_inode	= ext4_evict_inode,
1364 	.put_super	= ext4_put_super,
1365 	.sync_fs	= ext4_sync_fs,
1366 	.freeze_fs	= ext4_freeze,
1367 	.unfreeze_fs	= ext4_unfreeze,
1368 	.statfs		= ext4_statfs,
1369 	.remount_fs	= ext4_remount,
1370 	.show_options	= ext4_show_options,
1371 #ifdef CONFIG_QUOTA
1372 	.quota_read	= ext4_quota_read,
1373 	.quota_write	= ext4_quota_write,
1374 	.get_dquots	= ext4_get_dquots,
1375 #endif
1376 	.bdev_try_to_free_page = bdev_try_to_free_page,
1377 };
1378 
1379 static const struct export_operations ext4_export_ops = {
1380 	.fh_to_dentry = ext4_fh_to_dentry,
1381 	.fh_to_parent = ext4_fh_to_parent,
1382 	.get_parent = ext4_get_parent,
1383 };
1384 
1385 enum {
1386 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1387 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1388 	Opt_nouid32, Opt_debug, Opt_removed,
1389 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1390 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1391 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1392 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1393 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1394 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1395 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1396 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1397 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1398 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1399 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1400 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1401 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1402 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1403 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1404 	Opt_dioread_nolock, Opt_dioread_lock,
1405 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1406 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1407 };
1408 
1409 static const match_table_t tokens = {
1410 	{Opt_bsd_df, "bsddf"},
1411 	{Opt_minix_df, "minixdf"},
1412 	{Opt_grpid, "grpid"},
1413 	{Opt_grpid, "bsdgroups"},
1414 	{Opt_nogrpid, "nogrpid"},
1415 	{Opt_nogrpid, "sysvgroups"},
1416 	{Opt_resgid, "resgid=%u"},
1417 	{Opt_resuid, "resuid=%u"},
1418 	{Opt_sb, "sb=%u"},
1419 	{Opt_err_cont, "errors=continue"},
1420 	{Opt_err_panic, "errors=panic"},
1421 	{Opt_err_ro, "errors=remount-ro"},
1422 	{Opt_nouid32, "nouid32"},
1423 	{Opt_debug, "debug"},
1424 	{Opt_removed, "oldalloc"},
1425 	{Opt_removed, "orlov"},
1426 	{Opt_user_xattr, "user_xattr"},
1427 	{Opt_nouser_xattr, "nouser_xattr"},
1428 	{Opt_acl, "acl"},
1429 	{Opt_noacl, "noacl"},
1430 	{Opt_noload, "norecovery"},
1431 	{Opt_noload, "noload"},
1432 	{Opt_removed, "nobh"},
1433 	{Opt_removed, "bh"},
1434 	{Opt_commit, "commit=%u"},
1435 	{Opt_min_batch_time, "min_batch_time=%u"},
1436 	{Opt_max_batch_time, "max_batch_time=%u"},
1437 	{Opt_journal_dev, "journal_dev=%u"},
1438 	{Opt_journal_path, "journal_path=%s"},
1439 	{Opt_journal_checksum, "journal_checksum"},
1440 	{Opt_nojournal_checksum, "nojournal_checksum"},
1441 	{Opt_journal_async_commit, "journal_async_commit"},
1442 	{Opt_abort, "abort"},
1443 	{Opt_data_journal, "data=journal"},
1444 	{Opt_data_ordered, "data=ordered"},
1445 	{Opt_data_writeback, "data=writeback"},
1446 	{Opt_data_err_abort, "data_err=abort"},
1447 	{Opt_data_err_ignore, "data_err=ignore"},
1448 	{Opt_offusrjquota, "usrjquota="},
1449 	{Opt_usrjquota, "usrjquota=%s"},
1450 	{Opt_offgrpjquota, "grpjquota="},
1451 	{Opt_grpjquota, "grpjquota=%s"},
1452 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1453 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1454 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1455 	{Opt_grpquota, "grpquota"},
1456 	{Opt_noquota, "noquota"},
1457 	{Opt_quota, "quota"},
1458 	{Opt_usrquota, "usrquota"},
1459 	{Opt_prjquota, "prjquota"},
1460 	{Opt_barrier, "barrier=%u"},
1461 	{Opt_barrier, "barrier"},
1462 	{Opt_nobarrier, "nobarrier"},
1463 	{Opt_i_version, "i_version"},
1464 	{Opt_dax, "dax"},
1465 	{Opt_stripe, "stripe=%u"},
1466 	{Opt_delalloc, "delalloc"},
1467 	{Opt_warn_on_error, "warn_on_error"},
1468 	{Opt_nowarn_on_error, "nowarn_on_error"},
1469 	{Opt_lazytime, "lazytime"},
1470 	{Opt_nolazytime, "nolazytime"},
1471 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1472 	{Opt_nodelalloc, "nodelalloc"},
1473 	{Opt_removed, "mblk_io_submit"},
1474 	{Opt_removed, "nomblk_io_submit"},
1475 	{Opt_block_validity, "block_validity"},
1476 	{Opt_noblock_validity, "noblock_validity"},
1477 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1478 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1479 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1480 	{Opt_auto_da_alloc, "auto_da_alloc"},
1481 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1482 	{Opt_dioread_nolock, "dioread_nolock"},
1483 	{Opt_dioread_lock, "dioread_lock"},
1484 	{Opt_discard, "discard"},
1485 	{Opt_nodiscard, "nodiscard"},
1486 	{Opt_init_itable, "init_itable=%u"},
1487 	{Opt_init_itable, "init_itable"},
1488 	{Opt_noinit_itable, "noinit_itable"},
1489 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1490 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1491 	{Opt_nombcache, "nombcache"},
1492 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1493 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1494 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1495 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1496 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1497 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1498 	{Opt_err, NULL},
1499 };
1500 
1501 static ext4_fsblk_t get_sb_block(void **data)
1502 {
1503 	ext4_fsblk_t	sb_block;
1504 	char		*options = (char *) *data;
1505 
1506 	if (!options || strncmp(options, "sb=", 3) != 0)
1507 		return 1;	/* Default location */
1508 
1509 	options += 3;
1510 	/* TODO: use simple_strtoll with >32bit ext4 */
1511 	sb_block = simple_strtoul(options, &options, 0);
1512 	if (*options && *options != ',') {
1513 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1514 		       (char *) *data);
1515 		return 1;
1516 	}
1517 	if (*options == ',')
1518 		options++;
1519 	*data = (void *) options;
1520 
1521 	return sb_block;
1522 }
1523 
1524 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1525 static const char deprecated_msg[] =
1526 	"Mount option \"%s\" will be removed by %s\n"
1527 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1528 
1529 #ifdef CONFIG_QUOTA
1530 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1531 {
1532 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1533 	char *qname;
1534 	int ret = -1;
1535 
1536 	if (sb_any_quota_loaded(sb) &&
1537 		!sbi->s_qf_names[qtype]) {
1538 		ext4_msg(sb, KERN_ERR,
1539 			"Cannot change journaled "
1540 			"quota options when quota turned on");
1541 		return -1;
1542 	}
1543 	if (ext4_has_feature_quota(sb)) {
1544 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1545 			 "ignored when QUOTA feature is enabled");
1546 		return 1;
1547 	}
1548 	qname = match_strdup(args);
1549 	if (!qname) {
1550 		ext4_msg(sb, KERN_ERR,
1551 			"Not enough memory for storing quotafile name");
1552 		return -1;
1553 	}
1554 	if (sbi->s_qf_names[qtype]) {
1555 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1556 			ret = 1;
1557 		else
1558 			ext4_msg(sb, KERN_ERR,
1559 				 "%s quota file already specified",
1560 				 QTYPE2NAME(qtype));
1561 		goto errout;
1562 	}
1563 	if (strchr(qname, '/')) {
1564 		ext4_msg(sb, KERN_ERR,
1565 			"quotafile must be on filesystem root");
1566 		goto errout;
1567 	}
1568 	sbi->s_qf_names[qtype] = qname;
1569 	set_opt(sb, QUOTA);
1570 	return 1;
1571 errout:
1572 	kfree(qname);
1573 	return ret;
1574 }
1575 
1576 static int clear_qf_name(struct super_block *sb, int qtype)
1577 {
1578 
1579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1580 
1581 	if (sb_any_quota_loaded(sb) &&
1582 		sbi->s_qf_names[qtype]) {
1583 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1584 			" when quota turned on");
1585 		return -1;
1586 	}
1587 	kfree(sbi->s_qf_names[qtype]);
1588 	sbi->s_qf_names[qtype] = NULL;
1589 	return 1;
1590 }
1591 #endif
1592 
1593 #define MOPT_SET	0x0001
1594 #define MOPT_CLEAR	0x0002
1595 #define MOPT_NOSUPPORT	0x0004
1596 #define MOPT_EXPLICIT	0x0008
1597 #define MOPT_CLEAR_ERR	0x0010
1598 #define MOPT_GTE0	0x0020
1599 #ifdef CONFIG_QUOTA
1600 #define MOPT_Q		0
1601 #define MOPT_QFMT	0x0040
1602 #else
1603 #define MOPT_Q		MOPT_NOSUPPORT
1604 #define MOPT_QFMT	MOPT_NOSUPPORT
1605 #endif
1606 #define MOPT_DATAJ	0x0080
1607 #define MOPT_NO_EXT2	0x0100
1608 #define MOPT_NO_EXT3	0x0200
1609 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1610 #define MOPT_STRING	0x0400
1611 
1612 static const struct mount_opts {
1613 	int	token;
1614 	int	mount_opt;
1615 	int	flags;
1616 } ext4_mount_opts[] = {
1617 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1618 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1619 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1620 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1621 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1622 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1623 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1624 	 MOPT_EXT4_ONLY | MOPT_SET},
1625 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1626 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1627 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1628 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1629 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1630 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1631 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1632 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1633 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1634 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1635 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1636 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1637 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1638 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1639 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1640 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1641 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1642 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1643 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1644 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1645 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1646 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1647 	 MOPT_NO_EXT2},
1648 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1649 	 MOPT_NO_EXT2},
1650 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1651 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1652 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1653 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1654 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1655 	{Opt_commit, 0, MOPT_GTE0},
1656 	{Opt_max_batch_time, 0, MOPT_GTE0},
1657 	{Opt_min_batch_time, 0, MOPT_GTE0},
1658 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1659 	{Opt_init_itable, 0, MOPT_GTE0},
1660 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1661 	{Opt_stripe, 0, MOPT_GTE0},
1662 	{Opt_resuid, 0, MOPT_GTE0},
1663 	{Opt_resgid, 0, MOPT_GTE0},
1664 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1665 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1666 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1667 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1668 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1669 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1670 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1671 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1672 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1673 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1674 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1675 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1676 #else
1677 	{Opt_acl, 0, MOPT_NOSUPPORT},
1678 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1679 #endif
1680 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1681 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1682 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1683 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1684 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1685 							MOPT_SET | MOPT_Q},
1686 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1687 							MOPT_SET | MOPT_Q},
1688 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1689 							MOPT_SET | MOPT_Q},
1690 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1691 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1692 							MOPT_CLEAR | MOPT_Q},
1693 	{Opt_usrjquota, 0, MOPT_Q},
1694 	{Opt_grpjquota, 0, MOPT_Q},
1695 	{Opt_offusrjquota, 0, MOPT_Q},
1696 	{Opt_offgrpjquota, 0, MOPT_Q},
1697 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1698 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1699 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1700 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1701 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1702 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1703 	{Opt_err, 0, 0}
1704 };
1705 
1706 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1707 			    substring_t *args, unsigned long *journal_devnum,
1708 			    unsigned int *journal_ioprio, int is_remount)
1709 {
1710 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1711 	const struct mount_opts *m;
1712 	kuid_t uid;
1713 	kgid_t gid;
1714 	int arg = 0;
1715 
1716 #ifdef CONFIG_QUOTA
1717 	if (token == Opt_usrjquota)
1718 		return set_qf_name(sb, USRQUOTA, &args[0]);
1719 	else if (token == Opt_grpjquota)
1720 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1721 	else if (token == Opt_offusrjquota)
1722 		return clear_qf_name(sb, USRQUOTA);
1723 	else if (token == Opt_offgrpjquota)
1724 		return clear_qf_name(sb, GRPQUOTA);
1725 #endif
1726 	switch (token) {
1727 	case Opt_noacl:
1728 	case Opt_nouser_xattr:
1729 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1730 		break;
1731 	case Opt_sb:
1732 		return 1;	/* handled by get_sb_block() */
1733 	case Opt_removed:
1734 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1735 		return 1;
1736 	case Opt_abort:
1737 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1738 		return 1;
1739 	case Opt_i_version:
1740 		sb->s_flags |= SB_I_VERSION;
1741 		return 1;
1742 	case Opt_lazytime:
1743 		sb->s_flags |= SB_LAZYTIME;
1744 		return 1;
1745 	case Opt_nolazytime:
1746 		sb->s_flags &= ~SB_LAZYTIME;
1747 		return 1;
1748 	}
1749 
1750 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1751 		if (token == m->token)
1752 			break;
1753 
1754 	if (m->token == Opt_err) {
1755 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1756 			 "or missing value", opt);
1757 		return -1;
1758 	}
1759 
1760 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1761 		ext4_msg(sb, KERN_ERR,
1762 			 "Mount option \"%s\" incompatible with ext2", opt);
1763 		return -1;
1764 	}
1765 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1766 		ext4_msg(sb, KERN_ERR,
1767 			 "Mount option \"%s\" incompatible with ext3", opt);
1768 		return -1;
1769 	}
1770 
1771 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1772 		return -1;
1773 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1774 		return -1;
1775 	if (m->flags & MOPT_EXPLICIT) {
1776 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1777 			set_opt2(sb, EXPLICIT_DELALLOC);
1778 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1779 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1780 		} else
1781 			return -1;
1782 	}
1783 	if (m->flags & MOPT_CLEAR_ERR)
1784 		clear_opt(sb, ERRORS_MASK);
1785 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1786 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1787 			 "options when quota turned on");
1788 		return -1;
1789 	}
1790 
1791 	if (m->flags & MOPT_NOSUPPORT) {
1792 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1793 	} else if (token == Opt_commit) {
1794 		if (arg == 0)
1795 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1796 		sbi->s_commit_interval = HZ * arg;
1797 	} else if (token == Opt_debug_want_extra_isize) {
1798 		sbi->s_want_extra_isize = arg;
1799 	} else if (token == Opt_max_batch_time) {
1800 		sbi->s_max_batch_time = arg;
1801 	} else if (token == Opt_min_batch_time) {
1802 		sbi->s_min_batch_time = arg;
1803 	} else if (token == Opt_inode_readahead_blks) {
1804 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1805 			ext4_msg(sb, KERN_ERR,
1806 				 "EXT4-fs: inode_readahead_blks must be "
1807 				 "0 or a power of 2 smaller than 2^31");
1808 			return -1;
1809 		}
1810 		sbi->s_inode_readahead_blks = arg;
1811 	} else if (token == Opt_init_itable) {
1812 		set_opt(sb, INIT_INODE_TABLE);
1813 		if (!args->from)
1814 			arg = EXT4_DEF_LI_WAIT_MULT;
1815 		sbi->s_li_wait_mult = arg;
1816 	} else if (token == Opt_max_dir_size_kb) {
1817 		sbi->s_max_dir_size_kb = arg;
1818 	} else if (token == Opt_stripe) {
1819 		sbi->s_stripe = arg;
1820 	} else if (token == Opt_resuid) {
1821 		uid = make_kuid(current_user_ns(), arg);
1822 		if (!uid_valid(uid)) {
1823 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1824 			return -1;
1825 		}
1826 		sbi->s_resuid = uid;
1827 	} else if (token == Opt_resgid) {
1828 		gid = make_kgid(current_user_ns(), arg);
1829 		if (!gid_valid(gid)) {
1830 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1831 			return -1;
1832 		}
1833 		sbi->s_resgid = gid;
1834 	} else if (token == Opt_journal_dev) {
1835 		if (is_remount) {
1836 			ext4_msg(sb, KERN_ERR,
1837 				 "Cannot specify journal on remount");
1838 			return -1;
1839 		}
1840 		*journal_devnum = arg;
1841 	} else if (token == Opt_journal_path) {
1842 		char *journal_path;
1843 		struct inode *journal_inode;
1844 		struct path path;
1845 		int error;
1846 
1847 		if (is_remount) {
1848 			ext4_msg(sb, KERN_ERR,
1849 				 "Cannot specify journal on remount");
1850 			return -1;
1851 		}
1852 		journal_path = match_strdup(&args[0]);
1853 		if (!journal_path) {
1854 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1855 				"journal device string");
1856 			return -1;
1857 		}
1858 
1859 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1860 		if (error) {
1861 			ext4_msg(sb, KERN_ERR, "error: could not find "
1862 				"journal device path: error %d", error);
1863 			kfree(journal_path);
1864 			return -1;
1865 		}
1866 
1867 		journal_inode = d_inode(path.dentry);
1868 		if (!S_ISBLK(journal_inode->i_mode)) {
1869 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1870 				"is not a block device", journal_path);
1871 			path_put(&path);
1872 			kfree(journal_path);
1873 			return -1;
1874 		}
1875 
1876 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1877 		path_put(&path);
1878 		kfree(journal_path);
1879 	} else if (token == Opt_journal_ioprio) {
1880 		if (arg > 7) {
1881 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1882 				 " (must be 0-7)");
1883 			return -1;
1884 		}
1885 		*journal_ioprio =
1886 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1887 	} else if (token == Opt_test_dummy_encryption) {
1888 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1889 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1890 		ext4_msg(sb, KERN_WARNING,
1891 			 "Test dummy encryption mode enabled");
1892 #else
1893 		ext4_msg(sb, KERN_WARNING,
1894 			 "Test dummy encryption mount option ignored");
1895 #endif
1896 	} else if (m->flags & MOPT_DATAJ) {
1897 		if (is_remount) {
1898 			if (!sbi->s_journal)
1899 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1900 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1901 				ext4_msg(sb, KERN_ERR,
1902 					 "Cannot change data mode on remount");
1903 				return -1;
1904 			}
1905 		} else {
1906 			clear_opt(sb, DATA_FLAGS);
1907 			sbi->s_mount_opt |= m->mount_opt;
1908 		}
1909 #ifdef CONFIG_QUOTA
1910 	} else if (m->flags & MOPT_QFMT) {
1911 		if (sb_any_quota_loaded(sb) &&
1912 		    sbi->s_jquota_fmt != m->mount_opt) {
1913 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1914 				 "quota options when quota turned on");
1915 			return -1;
1916 		}
1917 		if (ext4_has_feature_quota(sb)) {
1918 			ext4_msg(sb, KERN_INFO,
1919 				 "Quota format mount options ignored "
1920 				 "when QUOTA feature is enabled");
1921 			return 1;
1922 		}
1923 		sbi->s_jquota_fmt = m->mount_opt;
1924 #endif
1925 	} else if (token == Opt_dax) {
1926 #ifdef CONFIG_FS_DAX
1927 		ext4_msg(sb, KERN_WARNING,
1928 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1929 			sbi->s_mount_opt |= m->mount_opt;
1930 #else
1931 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1932 		return -1;
1933 #endif
1934 	} else if (token == Opt_data_err_abort) {
1935 		sbi->s_mount_opt |= m->mount_opt;
1936 	} else if (token == Opt_data_err_ignore) {
1937 		sbi->s_mount_opt &= ~m->mount_opt;
1938 	} else {
1939 		if (!args->from)
1940 			arg = 1;
1941 		if (m->flags & MOPT_CLEAR)
1942 			arg = !arg;
1943 		else if (unlikely(!(m->flags & MOPT_SET))) {
1944 			ext4_msg(sb, KERN_WARNING,
1945 				 "buggy handling of option %s", opt);
1946 			WARN_ON(1);
1947 			return -1;
1948 		}
1949 		if (arg != 0)
1950 			sbi->s_mount_opt |= m->mount_opt;
1951 		else
1952 			sbi->s_mount_opt &= ~m->mount_opt;
1953 	}
1954 	return 1;
1955 }
1956 
1957 static int parse_options(char *options, struct super_block *sb,
1958 			 unsigned long *journal_devnum,
1959 			 unsigned int *journal_ioprio,
1960 			 int is_remount)
1961 {
1962 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1963 	char *p;
1964 	substring_t args[MAX_OPT_ARGS];
1965 	int token;
1966 
1967 	if (!options)
1968 		return 1;
1969 
1970 	while ((p = strsep(&options, ",")) != NULL) {
1971 		if (!*p)
1972 			continue;
1973 		/*
1974 		 * Initialize args struct so we know whether arg was
1975 		 * found; some options take optional arguments.
1976 		 */
1977 		args[0].to = args[0].from = NULL;
1978 		token = match_token(p, tokens, args);
1979 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1980 				     journal_ioprio, is_remount) < 0)
1981 			return 0;
1982 	}
1983 #ifdef CONFIG_QUOTA
1984 	/*
1985 	 * We do the test below only for project quotas. 'usrquota' and
1986 	 * 'grpquota' mount options are allowed even without quota feature
1987 	 * to support legacy quotas in quota files.
1988 	 */
1989 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1990 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1991 			 "Cannot enable project quota enforcement.");
1992 		return 0;
1993 	}
1994 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1995 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1996 			clear_opt(sb, USRQUOTA);
1997 
1998 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1999 			clear_opt(sb, GRPQUOTA);
2000 
2001 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2002 			ext4_msg(sb, KERN_ERR, "old and new quota "
2003 					"format mixing");
2004 			return 0;
2005 		}
2006 
2007 		if (!sbi->s_jquota_fmt) {
2008 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2009 					"not specified");
2010 			return 0;
2011 		}
2012 	}
2013 #endif
2014 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2015 		int blocksize =
2016 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2017 
2018 		if (blocksize < PAGE_SIZE) {
2019 			ext4_msg(sb, KERN_ERR, "can't mount with "
2020 				 "dioread_nolock if block size != PAGE_SIZE");
2021 			return 0;
2022 		}
2023 	}
2024 	return 1;
2025 }
2026 
2027 static inline void ext4_show_quota_options(struct seq_file *seq,
2028 					   struct super_block *sb)
2029 {
2030 #if defined(CONFIG_QUOTA)
2031 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2032 
2033 	if (sbi->s_jquota_fmt) {
2034 		char *fmtname = "";
2035 
2036 		switch (sbi->s_jquota_fmt) {
2037 		case QFMT_VFS_OLD:
2038 			fmtname = "vfsold";
2039 			break;
2040 		case QFMT_VFS_V0:
2041 			fmtname = "vfsv0";
2042 			break;
2043 		case QFMT_VFS_V1:
2044 			fmtname = "vfsv1";
2045 			break;
2046 		}
2047 		seq_printf(seq, ",jqfmt=%s", fmtname);
2048 	}
2049 
2050 	if (sbi->s_qf_names[USRQUOTA])
2051 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
2052 
2053 	if (sbi->s_qf_names[GRPQUOTA])
2054 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2055 #endif
2056 }
2057 
2058 static const char *token2str(int token)
2059 {
2060 	const struct match_token *t;
2061 
2062 	for (t = tokens; t->token != Opt_err; t++)
2063 		if (t->token == token && !strchr(t->pattern, '='))
2064 			break;
2065 	return t->pattern;
2066 }
2067 
2068 /*
2069  * Show an option if
2070  *  - it's set to a non-default value OR
2071  *  - if the per-sb default is different from the global default
2072  */
2073 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2074 			      int nodefs)
2075 {
2076 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2077 	struct ext4_super_block *es = sbi->s_es;
2078 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2079 	const struct mount_opts *m;
2080 	char sep = nodefs ? '\n' : ',';
2081 
2082 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2083 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2084 
2085 	if (sbi->s_sb_block != 1)
2086 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2087 
2088 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2089 		int want_set = m->flags & MOPT_SET;
2090 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2091 		    (m->flags & MOPT_CLEAR_ERR))
2092 			continue;
2093 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2094 			continue; /* skip if same as the default */
2095 		if ((want_set &&
2096 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2097 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2098 			continue; /* select Opt_noFoo vs Opt_Foo */
2099 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2100 	}
2101 
2102 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2103 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2104 		SEQ_OPTS_PRINT("resuid=%u",
2105 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2106 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2107 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2108 		SEQ_OPTS_PRINT("resgid=%u",
2109 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2110 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2111 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2112 		SEQ_OPTS_PUTS("errors=remount-ro");
2113 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2114 		SEQ_OPTS_PUTS("errors=continue");
2115 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2116 		SEQ_OPTS_PUTS("errors=panic");
2117 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2118 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2119 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2120 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2121 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2122 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2123 	if (sb->s_flags & SB_I_VERSION)
2124 		SEQ_OPTS_PUTS("i_version");
2125 	if (nodefs || sbi->s_stripe)
2126 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2127 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2128 			(sbi->s_mount_opt ^ def_mount_opt)) {
2129 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2130 			SEQ_OPTS_PUTS("data=journal");
2131 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2132 			SEQ_OPTS_PUTS("data=ordered");
2133 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2134 			SEQ_OPTS_PUTS("data=writeback");
2135 	}
2136 	if (nodefs ||
2137 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2138 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2139 			       sbi->s_inode_readahead_blks);
2140 
2141 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2142 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2143 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2144 	if (nodefs || sbi->s_max_dir_size_kb)
2145 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2146 	if (test_opt(sb, DATA_ERR_ABORT))
2147 		SEQ_OPTS_PUTS("data_err=abort");
2148 
2149 	ext4_show_quota_options(seq, sb);
2150 	return 0;
2151 }
2152 
2153 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2154 {
2155 	return _ext4_show_options(seq, root->d_sb, 0);
2156 }
2157 
2158 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2159 {
2160 	struct super_block *sb = seq->private;
2161 	int rc;
2162 
2163 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2164 	rc = _ext4_show_options(seq, sb, 1);
2165 	seq_puts(seq, "\n");
2166 	return rc;
2167 }
2168 
2169 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2170 			    int read_only)
2171 {
2172 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2173 	int err = 0;
2174 
2175 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2176 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2177 			 "forcing read-only mode");
2178 		err = -EROFS;
2179 	}
2180 	if (read_only)
2181 		goto done;
2182 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2183 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2184 			 "running e2fsck is recommended");
2185 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2186 		ext4_msg(sb, KERN_WARNING,
2187 			 "warning: mounting fs with errors, "
2188 			 "running e2fsck is recommended");
2189 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2190 		 le16_to_cpu(es->s_mnt_count) >=
2191 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2192 		ext4_msg(sb, KERN_WARNING,
2193 			 "warning: maximal mount count reached, "
2194 			 "running e2fsck is recommended");
2195 	else if (le32_to_cpu(es->s_checkinterval) &&
2196 		 (ext4_get_tstamp(es, s_lastcheck) +
2197 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2198 		ext4_msg(sb, KERN_WARNING,
2199 			 "warning: checktime reached, "
2200 			 "running e2fsck is recommended");
2201 	if (!sbi->s_journal)
2202 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2203 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2204 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2205 	le16_add_cpu(&es->s_mnt_count, 1);
2206 	ext4_update_tstamp(es, s_mtime);
2207 	ext4_update_dynamic_rev(sb);
2208 	if (sbi->s_journal)
2209 		ext4_set_feature_journal_needs_recovery(sb);
2210 
2211 	err = ext4_commit_super(sb, 1);
2212 done:
2213 	if (test_opt(sb, DEBUG))
2214 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2215 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2216 			sb->s_blocksize,
2217 			sbi->s_groups_count,
2218 			EXT4_BLOCKS_PER_GROUP(sb),
2219 			EXT4_INODES_PER_GROUP(sb),
2220 			sbi->s_mount_opt, sbi->s_mount_opt2);
2221 
2222 	cleancache_init_fs(sb);
2223 	return err;
2224 }
2225 
2226 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2227 {
2228 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2229 	struct flex_groups *new_groups;
2230 	int size;
2231 
2232 	if (!sbi->s_log_groups_per_flex)
2233 		return 0;
2234 
2235 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2236 	if (size <= sbi->s_flex_groups_allocated)
2237 		return 0;
2238 
2239 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2240 	new_groups = kvzalloc(size, GFP_KERNEL);
2241 	if (!new_groups) {
2242 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2243 			 size / (int) sizeof(struct flex_groups));
2244 		return -ENOMEM;
2245 	}
2246 
2247 	if (sbi->s_flex_groups) {
2248 		memcpy(new_groups, sbi->s_flex_groups,
2249 		       (sbi->s_flex_groups_allocated *
2250 			sizeof(struct flex_groups)));
2251 		kvfree(sbi->s_flex_groups);
2252 	}
2253 	sbi->s_flex_groups = new_groups;
2254 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2255 	return 0;
2256 }
2257 
2258 static int ext4_fill_flex_info(struct super_block *sb)
2259 {
2260 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2261 	struct ext4_group_desc *gdp = NULL;
2262 	ext4_group_t flex_group;
2263 	int i, err;
2264 
2265 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2266 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2267 		sbi->s_log_groups_per_flex = 0;
2268 		return 1;
2269 	}
2270 
2271 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2272 	if (err)
2273 		goto failed;
2274 
2275 	for (i = 0; i < sbi->s_groups_count; i++) {
2276 		gdp = ext4_get_group_desc(sb, i, NULL);
2277 
2278 		flex_group = ext4_flex_group(sbi, i);
2279 		atomic_add(ext4_free_inodes_count(sb, gdp),
2280 			   &sbi->s_flex_groups[flex_group].free_inodes);
2281 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2282 			     &sbi->s_flex_groups[flex_group].free_clusters);
2283 		atomic_add(ext4_used_dirs_count(sb, gdp),
2284 			   &sbi->s_flex_groups[flex_group].used_dirs);
2285 	}
2286 
2287 	return 1;
2288 failed:
2289 	return 0;
2290 }
2291 
2292 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2293 				   struct ext4_group_desc *gdp)
2294 {
2295 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2296 	__u16 crc = 0;
2297 	__le32 le_group = cpu_to_le32(block_group);
2298 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2299 
2300 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2301 		/* Use new metadata_csum algorithm */
2302 		__u32 csum32;
2303 		__u16 dummy_csum = 0;
2304 
2305 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2306 				     sizeof(le_group));
2307 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2308 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2309 				     sizeof(dummy_csum));
2310 		offset += sizeof(dummy_csum);
2311 		if (offset < sbi->s_desc_size)
2312 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2313 					     sbi->s_desc_size - offset);
2314 
2315 		crc = csum32 & 0xFFFF;
2316 		goto out;
2317 	}
2318 
2319 	/* old crc16 code */
2320 	if (!ext4_has_feature_gdt_csum(sb))
2321 		return 0;
2322 
2323 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2324 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2325 	crc = crc16(crc, (__u8 *)gdp, offset);
2326 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2327 	/* for checksum of struct ext4_group_desc do the rest...*/
2328 	if (ext4_has_feature_64bit(sb) &&
2329 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2330 		crc = crc16(crc, (__u8 *)gdp + offset,
2331 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2332 				offset);
2333 
2334 out:
2335 	return cpu_to_le16(crc);
2336 }
2337 
2338 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2339 				struct ext4_group_desc *gdp)
2340 {
2341 	if (ext4_has_group_desc_csum(sb) &&
2342 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2343 		return 0;
2344 
2345 	return 1;
2346 }
2347 
2348 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2349 			      struct ext4_group_desc *gdp)
2350 {
2351 	if (!ext4_has_group_desc_csum(sb))
2352 		return;
2353 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2354 }
2355 
2356 /* Called at mount-time, super-block is locked */
2357 static int ext4_check_descriptors(struct super_block *sb,
2358 				  ext4_fsblk_t sb_block,
2359 				  ext4_group_t *first_not_zeroed)
2360 {
2361 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2362 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2363 	ext4_fsblk_t last_block;
2364 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2365 	ext4_fsblk_t block_bitmap;
2366 	ext4_fsblk_t inode_bitmap;
2367 	ext4_fsblk_t inode_table;
2368 	int flexbg_flag = 0;
2369 	ext4_group_t i, grp = sbi->s_groups_count;
2370 
2371 	if (ext4_has_feature_flex_bg(sb))
2372 		flexbg_flag = 1;
2373 
2374 	ext4_debug("Checking group descriptors");
2375 
2376 	for (i = 0; i < sbi->s_groups_count; i++) {
2377 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2378 
2379 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2380 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2381 		else
2382 			last_block = first_block +
2383 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2384 
2385 		if ((grp == sbi->s_groups_count) &&
2386 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2387 			grp = i;
2388 
2389 		block_bitmap = ext4_block_bitmap(sb, gdp);
2390 		if (block_bitmap == sb_block) {
2391 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2392 				 "Block bitmap for group %u overlaps "
2393 				 "superblock", i);
2394 			if (!sb_rdonly(sb))
2395 				return 0;
2396 		}
2397 		if (block_bitmap >= sb_block + 1 &&
2398 		    block_bitmap <= last_bg_block) {
2399 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2400 				 "Block bitmap for group %u overlaps "
2401 				 "block group descriptors", i);
2402 			if (!sb_rdonly(sb))
2403 				return 0;
2404 		}
2405 		if (block_bitmap < first_block || block_bitmap > last_block) {
2406 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2407 			       "Block bitmap for group %u not in group "
2408 			       "(block %llu)!", i, block_bitmap);
2409 			return 0;
2410 		}
2411 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2412 		if (inode_bitmap == sb_block) {
2413 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2414 				 "Inode bitmap for group %u overlaps "
2415 				 "superblock", i);
2416 			if (!sb_rdonly(sb))
2417 				return 0;
2418 		}
2419 		if (inode_bitmap >= sb_block + 1 &&
2420 		    inode_bitmap <= last_bg_block) {
2421 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2422 				 "Inode bitmap for group %u overlaps "
2423 				 "block group descriptors", i);
2424 			if (!sb_rdonly(sb))
2425 				return 0;
2426 		}
2427 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2428 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2429 			       "Inode bitmap for group %u not in group "
2430 			       "(block %llu)!", i, inode_bitmap);
2431 			return 0;
2432 		}
2433 		inode_table = ext4_inode_table(sb, gdp);
2434 		if (inode_table == sb_block) {
2435 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2436 				 "Inode table for group %u overlaps "
2437 				 "superblock", i);
2438 			if (!sb_rdonly(sb))
2439 				return 0;
2440 		}
2441 		if (inode_table >= sb_block + 1 &&
2442 		    inode_table <= last_bg_block) {
2443 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2444 				 "Inode table for group %u overlaps "
2445 				 "block group descriptors", i);
2446 			if (!sb_rdonly(sb))
2447 				return 0;
2448 		}
2449 		if (inode_table < first_block ||
2450 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2451 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2452 			       "Inode table for group %u not in group "
2453 			       "(block %llu)!", i, inode_table);
2454 			return 0;
2455 		}
2456 		ext4_lock_group(sb, i);
2457 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2458 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2459 				 "Checksum for group %u failed (%u!=%u)",
2460 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2461 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2462 			if (!sb_rdonly(sb)) {
2463 				ext4_unlock_group(sb, i);
2464 				return 0;
2465 			}
2466 		}
2467 		ext4_unlock_group(sb, i);
2468 		if (!flexbg_flag)
2469 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2470 	}
2471 	if (NULL != first_not_zeroed)
2472 		*first_not_zeroed = grp;
2473 	return 1;
2474 }
2475 
2476 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2477  * the superblock) which were deleted from all directories, but held open by
2478  * a process at the time of a crash.  We walk the list and try to delete these
2479  * inodes at recovery time (only with a read-write filesystem).
2480  *
2481  * In order to keep the orphan inode chain consistent during traversal (in
2482  * case of crash during recovery), we link each inode into the superblock
2483  * orphan list_head and handle it the same way as an inode deletion during
2484  * normal operation (which journals the operations for us).
2485  *
2486  * We only do an iget() and an iput() on each inode, which is very safe if we
2487  * accidentally point at an in-use or already deleted inode.  The worst that
2488  * can happen in this case is that we get a "bit already cleared" message from
2489  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2490  * e2fsck was run on this filesystem, and it must have already done the orphan
2491  * inode cleanup for us, so we can safely abort without any further action.
2492  */
2493 static void ext4_orphan_cleanup(struct super_block *sb,
2494 				struct ext4_super_block *es)
2495 {
2496 	unsigned int s_flags = sb->s_flags;
2497 	int ret, nr_orphans = 0, nr_truncates = 0;
2498 #ifdef CONFIG_QUOTA
2499 	int quota_update = 0;
2500 	int i;
2501 #endif
2502 	if (!es->s_last_orphan) {
2503 		jbd_debug(4, "no orphan inodes to clean up\n");
2504 		return;
2505 	}
2506 
2507 	if (bdev_read_only(sb->s_bdev)) {
2508 		ext4_msg(sb, KERN_ERR, "write access "
2509 			"unavailable, skipping orphan cleanup");
2510 		return;
2511 	}
2512 
2513 	/* Check if feature set would not allow a r/w mount */
2514 	if (!ext4_feature_set_ok(sb, 0)) {
2515 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2516 			 "unknown ROCOMPAT features");
2517 		return;
2518 	}
2519 
2520 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2521 		/* don't clear list on RO mount w/ errors */
2522 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2523 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2524 				  "clearing orphan list.\n");
2525 			es->s_last_orphan = 0;
2526 		}
2527 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2528 		return;
2529 	}
2530 
2531 	if (s_flags & SB_RDONLY) {
2532 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2533 		sb->s_flags &= ~SB_RDONLY;
2534 	}
2535 #ifdef CONFIG_QUOTA
2536 	/* Needed for iput() to work correctly and not trash data */
2537 	sb->s_flags |= SB_ACTIVE;
2538 
2539 	/*
2540 	 * Turn on quotas which were not enabled for read-only mounts if
2541 	 * filesystem has quota feature, so that they are updated correctly.
2542 	 */
2543 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2544 		int ret = ext4_enable_quotas(sb);
2545 
2546 		if (!ret)
2547 			quota_update = 1;
2548 		else
2549 			ext4_msg(sb, KERN_ERR,
2550 				"Cannot turn on quotas: error %d", ret);
2551 	}
2552 
2553 	/* Turn on journaled quotas used for old sytle */
2554 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2555 		if (EXT4_SB(sb)->s_qf_names[i]) {
2556 			int ret = ext4_quota_on_mount(sb, i);
2557 
2558 			if (!ret)
2559 				quota_update = 1;
2560 			else
2561 				ext4_msg(sb, KERN_ERR,
2562 					"Cannot turn on journaled "
2563 					"quota: type %d: error %d", i, ret);
2564 		}
2565 	}
2566 #endif
2567 
2568 	while (es->s_last_orphan) {
2569 		struct inode *inode;
2570 
2571 		/*
2572 		 * We may have encountered an error during cleanup; if
2573 		 * so, skip the rest.
2574 		 */
2575 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2576 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2577 			es->s_last_orphan = 0;
2578 			break;
2579 		}
2580 
2581 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2582 		if (IS_ERR(inode)) {
2583 			es->s_last_orphan = 0;
2584 			break;
2585 		}
2586 
2587 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2588 		dquot_initialize(inode);
2589 		if (inode->i_nlink) {
2590 			if (test_opt(sb, DEBUG))
2591 				ext4_msg(sb, KERN_DEBUG,
2592 					"%s: truncating inode %lu to %lld bytes",
2593 					__func__, inode->i_ino, inode->i_size);
2594 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2595 				  inode->i_ino, inode->i_size);
2596 			inode_lock(inode);
2597 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2598 			ret = ext4_truncate(inode);
2599 			if (ret)
2600 				ext4_std_error(inode->i_sb, ret);
2601 			inode_unlock(inode);
2602 			nr_truncates++;
2603 		} else {
2604 			if (test_opt(sb, DEBUG))
2605 				ext4_msg(sb, KERN_DEBUG,
2606 					"%s: deleting unreferenced inode %lu",
2607 					__func__, inode->i_ino);
2608 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2609 				  inode->i_ino);
2610 			nr_orphans++;
2611 		}
2612 		iput(inode);  /* The delete magic happens here! */
2613 	}
2614 
2615 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2616 
2617 	if (nr_orphans)
2618 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2619 		       PLURAL(nr_orphans));
2620 	if (nr_truncates)
2621 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2622 		       PLURAL(nr_truncates));
2623 #ifdef CONFIG_QUOTA
2624 	/* Turn off quotas if they were enabled for orphan cleanup */
2625 	if (quota_update) {
2626 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2627 			if (sb_dqopt(sb)->files[i])
2628 				dquot_quota_off(sb, i);
2629 		}
2630 	}
2631 #endif
2632 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2633 }
2634 
2635 /*
2636  * Maximal extent format file size.
2637  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2638  * extent format containers, within a sector_t, and within i_blocks
2639  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2640  * so that won't be a limiting factor.
2641  *
2642  * However there is other limiting factor. We do store extents in the form
2643  * of starting block and length, hence the resulting length of the extent
2644  * covering maximum file size must fit into on-disk format containers as
2645  * well. Given that length is always by 1 unit bigger than max unit (because
2646  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2647  *
2648  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2649  */
2650 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2651 {
2652 	loff_t res;
2653 	loff_t upper_limit = MAX_LFS_FILESIZE;
2654 
2655 	/* small i_blocks in vfs inode? */
2656 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2657 		/*
2658 		 * CONFIG_LBDAF is not enabled implies the inode
2659 		 * i_block represent total blocks in 512 bytes
2660 		 * 32 == size of vfs inode i_blocks * 8
2661 		 */
2662 		upper_limit = (1LL << 32) - 1;
2663 
2664 		/* total blocks in file system block size */
2665 		upper_limit >>= (blkbits - 9);
2666 		upper_limit <<= blkbits;
2667 	}
2668 
2669 	/*
2670 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2671 	 * by one fs block, so ee_len can cover the extent of maximum file
2672 	 * size
2673 	 */
2674 	res = (1LL << 32) - 1;
2675 	res <<= blkbits;
2676 
2677 	/* Sanity check against vm- & vfs- imposed limits */
2678 	if (res > upper_limit)
2679 		res = upper_limit;
2680 
2681 	return res;
2682 }
2683 
2684 /*
2685  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2686  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2687  * We need to be 1 filesystem block less than the 2^48 sector limit.
2688  */
2689 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2690 {
2691 	loff_t res = EXT4_NDIR_BLOCKS;
2692 	int meta_blocks;
2693 	loff_t upper_limit;
2694 	/* This is calculated to be the largest file size for a dense, block
2695 	 * mapped file such that the file's total number of 512-byte sectors,
2696 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2697 	 *
2698 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2699 	 * number of 512-byte sectors of the file.
2700 	 */
2701 
2702 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2703 		/*
2704 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2705 		 * the inode i_block field represents total file blocks in
2706 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2707 		 */
2708 		upper_limit = (1LL << 32) - 1;
2709 
2710 		/* total blocks in file system block size */
2711 		upper_limit >>= (bits - 9);
2712 
2713 	} else {
2714 		/*
2715 		 * We use 48 bit ext4_inode i_blocks
2716 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2717 		 * represent total number of blocks in
2718 		 * file system block size
2719 		 */
2720 		upper_limit = (1LL << 48) - 1;
2721 
2722 	}
2723 
2724 	/* indirect blocks */
2725 	meta_blocks = 1;
2726 	/* double indirect blocks */
2727 	meta_blocks += 1 + (1LL << (bits-2));
2728 	/* tripple indirect blocks */
2729 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2730 
2731 	upper_limit -= meta_blocks;
2732 	upper_limit <<= bits;
2733 
2734 	res += 1LL << (bits-2);
2735 	res += 1LL << (2*(bits-2));
2736 	res += 1LL << (3*(bits-2));
2737 	res <<= bits;
2738 	if (res > upper_limit)
2739 		res = upper_limit;
2740 
2741 	if (res > MAX_LFS_FILESIZE)
2742 		res = MAX_LFS_FILESIZE;
2743 
2744 	return res;
2745 }
2746 
2747 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2748 				   ext4_fsblk_t logical_sb_block, int nr)
2749 {
2750 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2751 	ext4_group_t bg, first_meta_bg;
2752 	int has_super = 0;
2753 
2754 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2755 
2756 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2757 		return logical_sb_block + nr + 1;
2758 	bg = sbi->s_desc_per_block * nr;
2759 	if (ext4_bg_has_super(sb, bg))
2760 		has_super = 1;
2761 
2762 	/*
2763 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2764 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2765 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2766 	 * compensate.
2767 	 */
2768 	if (sb->s_blocksize == 1024 && nr == 0 &&
2769 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2770 		has_super++;
2771 
2772 	return (has_super + ext4_group_first_block_no(sb, bg));
2773 }
2774 
2775 /**
2776  * ext4_get_stripe_size: Get the stripe size.
2777  * @sbi: In memory super block info
2778  *
2779  * If we have specified it via mount option, then
2780  * use the mount option value. If the value specified at mount time is
2781  * greater than the blocks per group use the super block value.
2782  * If the super block value is greater than blocks per group return 0.
2783  * Allocator needs it be less than blocks per group.
2784  *
2785  */
2786 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2787 {
2788 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2789 	unsigned long stripe_width =
2790 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2791 	int ret;
2792 
2793 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2794 		ret = sbi->s_stripe;
2795 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2796 		ret = stripe_width;
2797 	else if (stride && stride <= sbi->s_blocks_per_group)
2798 		ret = stride;
2799 	else
2800 		ret = 0;
2801 
2802 	/*
2803 	 * If the stripe width is 1, this makes no sense and
2804 	 * we set it to 0 to turn off stripe handling code.
2805 	 */
2806 	if (ret <= 1)
2807 		ret = 0;
2808 
2809 	return ret;
2810 }
2811 
2812 /*
2813  * Check whether this filesystem can be mounted based on
2814  * the features present and the RDONLY/RDWR mount requested.
2815  * Returns 1 if this filesystem can be mounted as requested,
2816  * 0 if it cannot be.
2817  */
2818 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2819 {
2820 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2821 		ext4_msg(sb, KERN_ERR,
2822 			"Couldn't mount because of "
2823 			"unsupported optional features (%x)",
2824 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2825 			~EXT4_FEATURE_INCOMPAT_SUPP));
2826 		return 0;
2827 	}
2828 
2829 	if (readonly)
2830 		return 1;
2831 
2832 	if (ext4_has_feature_readonly(sb)) {
2833 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2834 		sb->s_flags |= SB_RDONLY;
2835 		return 1;
2836 	}
2837 
2838 	/* Check that feature set is OK for a read-write mount */
2839 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2840 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2841 			 "unsupported optional features (%x)",
2842 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2843 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2844 		return 0;
2845 	}
2846 	/*
2847 	 * Large file size enabled file system can only be mounted
2848 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2849 	 */
2850 	if (ext4_has_feature_huge_file(sb)) {
2851 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2852 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2853 				 "cannot be mounted RDWR without "
2854 				 "CONFIG_LBDAF");
2855 			return 0;
2856 		}
2857 	}
2858 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2859 		ext4_msg(sb, KERN_ERR,
2860 			 "Can't support bigalloc feature without "
2861 			 "extents feature\n");
2862 		return 0;
2863 	}
2864 
2865 #ifndef CONFIG_QUOTA
2866 	if (ext4_has_feature_quota(sb) && !readonly) {
2867 		ext4_msg(sb, KERN_ERR,
2868 			 "Filesystem with quota feature cannot be mounted RDWR "
2869 			 "without CONFIG_QUOTA");
2870 		return 0;
2871 	}
2872 	if (ext4_has_feature_project(sb) && !readonly) {
2873 		ext4_msg(sb, KERN_ERR,
2874 			 "Filesystem with project quota feature cannot be mounted RDWR "
2875 			 "without CONFIG_QUOTA");
2876 		return 0;
2877 	}
2878 #endif  /* CONFIG_QUOTA */
2879 	return 1;
2880 }
2881 
2882 /*
2883  * This function is called once a day if we have errors logged
2884  * on the file system
2885  */
2886 static void print_daily_error_info(struct timer_list *t)
2887 {
2888 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2889 	struct super_block *sb = sbi->s_sb;
2890 	struct ext4_super_block *es = sbi->s_es;
2891 
2892 	if (es->s_error_count)
2893 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2894 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2895 			 le32_to_cpu(es->s_error_count));
2896 	if (es->s_first_error_time) {
2897 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2898 		       sb->s_id,
2899 		       ext4_get_tstamp(es, s_first_error_time),
2900 		       (int) sizeof(es->s_first_error_func),
2901 		       es->s_first_error_func,
2902 		       le32_to_cpu(es->s_first_error_line));
2903 		if (es->s_first_error_ino)
2904 			printk(KERN_CONT ": inode %u",
2905 			       le32_to_cpu(es->s_first_error_ino));
2906 		if (es->s_first_error_block)
2907 			printk(KERN_CONT ": block %llu", (unsigned long long)
2908 			       le64_to_cpu(es->s_first_error_block));
2909 		printk(KERN_CONT "\n");
2910 	}
2911 	if (es->s_last_error_time) {
2912 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2913 		       sb->s_id,
2914 		       ext4_get_tstamp(es, s_last_error_time),
2915 		       (int) sizeof(es->s_last_error_func),
2916 		       es->s_last_error_func,
2917 		       le32_to_cpu(es->s_last_error_line));
2918 		if (es->s_last_error_ino)
2919 			printk(KERN_CONT ": inode %u",
2920 			       le32_to_cpu(es->s_last_error_ino));
2921 		if (es->s_last_error_block)
2922 			printk(KERN_CONT ": block %llu", (unsigned long long)
2923 			       le64_to_cpu(es->s_last_error_block));
2924 		printk(KERN_CONT "\n");
2925 	}
2926 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2927 }
2928 
2929 /* Find next suitable group and run ext4_init_inode_table */
2930 static int ext4_run_li_request(struct ext4_li_request *elr)
2931 {
2932 	struct ext4_group_desc *gdp = NULL;
2933 	ext4_group_t group, ngroups;
2934 	struct super_block *sb;
2935 	unsigned long timeout = 0;
2936 	int ret = 0;
2937 
2938 	sb = elr->lr_super;
2939 	ngroups = EXT4_SB(sb)->s_groups_count;
2940 
2941 	for (group = elr->lr_next_group; group < ngroups; group++) {
2942 		gdp = ext4_get_group_desc(sb, group, NULL);
2943 		if (!gdp) {
2944 			ret = 1;
2945 			break;
2946 		}
2947 
2948 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2949 			break;
2950 	}
2951 
2952 	if (group >= ngroups)
2953 		ret = 1;
2954 
2955 	if (!ret) {
2956 		timeout = jiffies;
2957 		ret = ext4_init_inode_table(sb, group,
2958 					    elr->lr_timeout ? 0 : 1);
2959 		if (elr->lr_timeout == 0) {
2960 			timeout = (jiffies - timeout) *
2961 				  elr->lr_sbi->s_li_wait_mult;
2962 			elr->lr_timeout = timeout;
2963 		}
2964 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2965 		elr->lr_next_group = group + 1;
2966 	}
2967 	return ret;
2968 }
2969 
2970 /*
2971  * Remove lr_request from the list_request and free the
2972  * request structure. Should be called with li_list_mtx held
2973  */
2974 static void ext4_remove_li_request(struct ext4_li_request *elr)
2975 {
2976 	struct ext4_sb_info *sbi;
2977 
2978 	if (!elr)
2979 		return;
2980 
2981 	sbi = elr->lr_sbi;
2982 
2983 	list_del(&elr->lr_request);
2984 	sbi->s_li_request = NULL;
2985 	kfree(elr);
2986 }
2987 
2988 static void ext4_unregister_li_request(struct super_block *sb)
2989 {
2990 	mutex_lock(&ext4_li_mtx);
2991 	if (!ext4_li_info) {
2992 		mutex_unlock(&ext4_li_mtx);
2993 		return;
2994 	}
2995 
2996 	mutex_lock(&ext4_li_info->li_list_mtx);
2997 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2998 	mutex_unlock(&ext4_li_info->li_list_mtx);
2999 	mutex_unlock(&ext4_li_mtx);
3000 }
3001 
3002 static struct task_struct *ext4_lazyinit_task;
3003 
3004 /*
3005  * This is the function where ext4lazyinit thread lives. It walks
3006  * through the request list searching for next scheduled filesystem.
3007  * When such a fs is found, run the lazy initialization request
3008  * (ext4_rn_li_request) and keep track of the time spend in this
3009  * function. Based on that time we compute next schedule time of
3010  * the request. When walking through the list is complete, compute
3011  * next waking time and put itself into sleep.
3012  */
3013 static int ext4_lazyinit_thread(void *arg)
3014 {
3015 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3016 	struct list_head *pos, *n;
3017 	struct ext4_li_request *elr;
3018 	unsigned long next_wakeup, cur;
3019 
3020 	BUG_ON(NULL == eli);
3021 
3022 cont_thread:
3023 	while (true) {
3024 		next_wakeup = MAX_JIFFY_OFFSET;
3025 
3026 		mutex_lock(&eli->li_list_mtx);
3027 		if (list_empty(&eli->li_request_list)) {
3028 			mutex_unlock(&eli->li_list_mtx);
3029 			goto exit_thread;
3030 		}
3031 		list_for_each_safe(pos, n, &eli->li_request_list) {
3032 			int err = 0;
3033 			int progress = 0;
3034 			elr = list_entry(pos, struct ext4_li_request,
3035 					 lr_request);
3036 
3037 			if (time_before(jiffies, elr->lr_next_sched)) {
3038 				if (time_before(elr->lr_next_sched, next_wakeup))
3039 					next_wakeup = elr->lr_next_sched;
3040 				continue;
3041 			}
3042 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3043 				if (sb_start_write_trylock(elr->lr_super)) {
3044 					progress = 1;
3045 					/*
3046 					 * We hold sb->s_umount, sb can not
3047 					 * be removed from the list, it is
3048 					 * now safe to drop li_list_mtx
3049 					 */
3050 					mutex_unlock(&eli->li_list_mtx);
3051 					err = ext4_run_li_request(elr);
3052 					sb_end_write(elr->lr_super);
3053 					mutex_lock(&eli->li_list_mtx);
3054 					n = pos->next;
3055 				}
3056 				up_read((&elr->lr_super->s_umount));
3057 			}
3058 			/* error, remove the lazy_init job */
3059 			if (err) {
3060 				ext4_remove_li_request(elr);
3061 				continue;
3062 			}
3063 			if (!progress) {
3064 				elr->lr_next_sched = jiffies +
3065 					(prandom_u32()
3066 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3067 			}
3068 			if (time_before(elr->lr_next_sched, next_wakeup))
3069 				next_wakeup = elr->lr_next_sched;
3070 		}
3071 		mutex_unlock(&eli->li_list_mtx);
3072 
3073 		try_to_freeze();
3074 
3075 		cur = jiffies;
3076 		if ((time_after_eq(cur, next_wakeup)) ||
3077 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3078 			cond_resched();
3079 			continue;
3080 		}
3081 
3082 		schedule_timeout_interruptible(next_wakeup - cur);
3083 
3084 		if (kthread_should_stop()) {
3085 			ext4_clear_request_list();
3086 			goto exit_thread;
3087 		}
3088 	}
3089 
3090 exit_thread:
3091 	/*
3092 	 * It looks like the request list is empty, but we need
3093 	 * to check it under the li_list_mtx lock, to prevent any
3094 	 * additions into it, and of course we should lock ext4_li_mtx
3095 	 * to atomically free the list and ext4_li_info, because at
3096 	 * this point another ext4 filesystem could be registering
3097 	 * new one.
3098 	 */
3099 	mutex_lock(&ext4_li_mtx);
3100 	mutex_lock(&eli->li_list_mtx);
3101 	if (!list_empty(&eli->li_request_list)) {
3102 		mutex_unlock(&eli->li_list_mtx);
3103 		mutex_unlock(&ext4_li_mtx);
3104 		goto cont_thread;
3105 	}
3106 	mutex_unlock(&eli->li_list_mtx);
3107 	kfree(ext4_li_info);
3108 	ext4_li_info = NULL;
3109 	mutex_unlock(&ext4_li_mtx);
3110 
3111 	return 0;
3112 }
3113 
3114 static void ext4_clear_request_list(void)
3115 {
3116 	struct list_head *pos, *n;
3117 	struct ext4_li_request *elr;
3118 
3119 	mutex_lock(&ext4_li_info->li_list_mtx);
3120 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3121 		elr = list_entry(pos, struct ext4_li_request,
3122 				 lr_request);
3123 		ext4_remove_li_request(elr);
3124 	}
3125 	mutex_unlock(&ext4_li_info->li_list_mtx);
3126 }
3127 
3128 static int ext4_run_lazyinit_thread(void)
3129 {
3130 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3131 					 ext4_li_info, "ext4lazyinit");
3132 	if (IS_ERR(ext4_lazyinit_task)) {
3133 		int err = PTR_ERR(ext4_lazyinit_task);
3134 		ext4_clear_request_list();
3135 		kfree(ext4_li_info);
3136 		ext4_li_info = NULL;
3137 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3138 				 "initialization thread\n",
3139 				 err);
3140 		return err;
3141 	}
3142 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3143 	return 0;
3144 }
3145 
3146 /*
3147  * Check whether it make sense to run itable init. thread or not.
3148  * If there is at least one uninitialized inode table, return
3149  * corresponding group number, else the loop goes through all
3150  * groups and return total number of groups.
3151  */
3152 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3153 {
3154 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3155 	struct ext4_group_desc *gdp = NULL;
3156 
3157 	if (!ext4_has_group_desc_csum(sb))
3158 		return ngroups;
3159 
3160 	for (group = 0; group < ngroups; group++) {
3161 		gdp = ext4_get_group_desc(sb, group, NULL);
3162 		if (!gdp)
3163 			continue;
3164 
3165 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3166 			break;
3167 	}
3168 
3169 	return group;
3170 }
3171 
3172 static int ext4_li_info_new(void)
3173 {
3174 	struct ext4_lazy_init *eli = NULL;
3175 
3176 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3177 	if (!eli)
3178 		return -ENOMEM;
3179 
3180 	INIT_LIST_HEAD(&eli->li_request_list);
3181 	mutex_init(&eli->li_list_mtx);
3182 
3183 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3184 
3185 	ext4_li_info = eli;
3186 
3187 	return 0;
3188 }
3189 
3190 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3191 					    ext4_group_t start)
3192 {
3193 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3194 	struct ext4_li_request *elr;
3195 
3196 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3197 	if (!elr)
3198 		return NULL;
3199 
3200 	elr->lr_super = sb;
3201 	elr->lr_sbi = sbi;
3202 	elr->lr_next_group = start;
3203 
3204 	/*
3205 	 * Randomize first schedule time of the request to
3206 	 * spread the inode table initialization requests
3207 	 * better.
3208 	 */
3209 	elr->lr_next_sched = jiffies + (prandom_u32() %
3210 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3211 	return elr;
3212 }
3213 
3214 int ext4_register_li_request(struct super_block *sb,
3215 			     ext4_group_t first_not_zeroed)
3216 {
3217 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3218 	struct ext4_li_request *elr = NULL;
3219 	ext4_group_t ngroups = sbi->s_groups_count;
3220 	int ret = 0;
3221 
3222 	mutex_lock(&ext4_li_mtx);
3223 	if (sbi->s_li_request != NULL) {
3224 		/*
3225 		 * Reset timeout so it can be computed again, because
3226 		 * s_li_wait_mult might have changed.
3227 		 */
3228 		sbi->s_li_request->lr_timeout = 0;
3229 		goto out;
3230 	}
3231 
3232 	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3233 	    !test_opt(sb, INIT_INODE_TABLE))
3234 		goto out;
3235 
3236 	elr = ext4_li_request_new(sb, first_not_zeroed);
3237 	if (!elr) {
3238 		ret = -ENOMEM;
3239 		goto out;
3240 	}
3241 
3242 	if (NULL == ext4_li_info) {
3243 		ret = ext4_li_info_new();
3244 		if (ret)
3245 			goto out;
3246 	}
3247 
3248 	mutex_lock(&ext4_li_info->li_list_mtx);
3249 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3250 	mutex_unlock(&ext4_li_info->li_list_mtx);
3251 
3252 	sbi->s_li_request = elr;
3253 	/*
3254 	 * set elr to NULL here since it has been inserted to
3255 	 * the request_list and the removal and free of it is
3256 	 * handled by ext4_clear_request_list from now on.
3257 	 */
3258 	elr = NULL;
3259 
3260 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3261 		ret = ext4_run_lazyinit_thread();
3262 		if (ret)
3263 			goto out;
3264 	}
3265 out:
3266 	mutex_unlock(&ext4_li_mtx);
3267 	if (ret)
3268 		kfree(elr);
3269 	return ret;
3270 }
3271 
3272 /*
3273  * We do not need to lock anything since this is called on
3274  * module unload.
3275  */
3276 static void ext4_destroy_lazyinit_thread(void)
3277 {
3278 	/*
3279 	 * If thread exited earlier
3280 	 * there's nothing to be done.
3281 	 */
3282 	if (!ext4_li_info || !ext4_lazyinit_task)
3283 		return;
3284 
3285 	kthread_stop(ext4_lazyinit_task);
3286 }
3287 
3288 static int set_journal_csum_feature_set(struct super_block *sb)
3289 {
3290 	int ret = 1;
3291 	int compat, incompat;
3292 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3293 
3294 	if (ext4_has_metadata_csum(sb)) {
3295 		/* journal checksum v3 */
3296 		compat = 0;
3297 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3298 	} else {
3299 		/* journal checksum v1 */
3300 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3301 		incompat = 0;
3302 	}
3303 
3304 	jbd2_journal_clear_features(sbi->s_journal,
3305 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3306 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3307 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3308 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3309 		ret = jbd2_journal_set_features(sbi->s_journal,
3310 				compat, 0,
3311 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3312 				incompat);
3313 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3314 		ret = jbd2_journal_set_features(sbi->s_journal,
3315 				compat, 0,
3316 				incompat);
3317 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3318 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3319 	} else {
3320 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3321 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3322 	}
3323 
3324 	return ret;
3325 }
3326 
3327 /*
3328  * Note: calculating the overhead so we can be compatible with
3329  * historical BSD practice is quite difficult in the face of
3330  * clusters/bigalloc.  This is because multiple metadata blocks from
3331  * different block group can end up in the same allocation cluster.
3332  * Calculating the exact overhead in the face of clustered allocation
3333  * requires either O(all block bitmaps) in memory or O(number of block
3334  * groups**2) in time.  We will still calculate the superblock for
3335  * older file systems --- and if we come across with a bigalloc file
3336  * system with zero in s_overhead_clusters the estimate will be close to
3337  * correct especially for very large cluster sizes --- but for newer
3338  * file systems, it's better to calculate this figure once at mkfs
3339  * time, and store it in the superblock.  If the superblock value is
3340  * present (even for non-bigalloc file systems), we will use it.
3341  */
3342 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3343 			  char *buf)
3344 {
3345 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3346 	struct ext4_group_desc	*gdp;
3347 	ext4_fsblk_t		first_block, last_block, b;
3348 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3349 	int			s, j, count = 0;
3350 
3351 	if (!ext4_has_feature_bigalloc(sb))
3352 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3353 			sbi->s_itb_per_group + 2);
3354 
3355 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3356 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3357 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3358 	for (i = 0; i < ngroups; i++) {
3359 		gdp = ext4_get_group_desc(sb, i, NULL);
3360 		b = ext4_block_bitmap(sb, gdp);
3361 		if (b >= first_block && b <= last_block) {
3362 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3363 			count++;
3364 		}
3365 		b = ext4_inode_bitmap(sb, gdp);
3366 		if (b >= first_block && b <= last_block) {
3367 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3368 			count++;
3369 		}
3370 		b = ext4_inode_table(sb, gdp);
3371 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3372 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3373 				int c = EXT4_B2C(sbi, b - first_block);
3374 				ext4_set_bit(c, buf);
3375 				count++;
3376 			}
3377 		if (i != grp)
3378 			continue;
3379 		s = 0;
3380 		if (ext4_bg_has_super(sb, grp)) {
3381 			ext4_set_bit(s++, buf);
3382 			count++;
3383 		}
3384 		j = ext4_bg_num_gdb(sb, grp);
3385 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3386 			ext4_error(sb, "Invalid number of block group "
3387 				   "descriptor blocks: %d", j);
3388 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3389 		}
3390 		count += j;
3391 		for (; j > 0; j--)
3392 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3393 	}
3394 	if (!count)
3395 		return 0;
3396 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3397 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3398 }
3399 
3400 /*
3401  * Compute the overhead and stash it in sbi->s_overhead
3402  */
3403 int ext4_calculate_overhead(struct super_block *sb)
3404 {
3405 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3406 	struct ext4_super_block *es = sbi->s_es;
3407 	struct inode *j_inode;
3408 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3409 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3410 	ext4_fsblk_t overhead = 0;
3411 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3412 
3413 	if (!buf)
3414 		return -ENOMEM;
3415 
3416 	/*
3417 	 * Compute the overhead (FS structures).  This is constant
3418 	 * for a given filesystem unless the number of block groups
3419 	 * changes so we cache the previous value until it does.
3420 	 */
3421 
3422 	/*
3423 	 * All of the blocks before first_data_block are overhead
3424 	 */
3425 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3426 
3427 	/*
3428 	 * Add the overhead found in each block group
3429 	 */
3430 	for (i = 0; i < ngroups; i++) {
3431 		int blks;
3432 
3433 		blks = count_overhead(sb, i, buf);
3434 		overhead += blks;
3435 		if (blks)
3436 			memset(buf, 0, PAGE_SIZE);
3437 		cond_resched();
3438 	}
3439 
3440 	/*
3441 	 * Add the internal journal blocks whether the journal has been
3442 	 * loaded or not
3443 	 */
3444 	if (sbi->s_journal && !sbi->journal_bdev)
3445 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3446 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3447 		j_inode = ext4_get_journal_inode(sb, j_inum);
3448 		if (j_inode) {
3449 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3450 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3451 			iput(j_inode);
3452 		} else {
3453 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3454 		}
3455 	}
3456 	sbi->s_overhead = overhead;
3457 	smp_wmb();
3458 	free_page((unsigned long) buf);
3459 	return 0;
3460 }
3461 
3462 static void ext4_set_resv_clusters(struct super_block *sb)
3463 {
3464 	ext4_fsblk_t resv_clusters;
3465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3466 
3467 	/*
3468 	 * There's no need to reserve anything when we aren't using extents.
3469 	 * The space estimates are exact, there are no unwritten extents,
3470 	 * hole punching doesn't need new metadata... This is needed especially
3471 	 * to keep ext2/3 backward compatibility.
3472 	 */
3473 	if (!ext4_has_feature_extents(sb))
3474 		return;
3475 	/*
3476 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3477 	 * This should cover the situations where we can not afford to run
3478 	 * out of space like for example punch hole, or converting
3479 	 * unwritten extents in delalloc path. In most cases such
3480 	 * allocation would require 1, or 2 blocks, higher numbers are
3481 	 * very rare.
3482 	 */
3483 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3484 			 sbi->s_cluster_bits);
3485 
3486 	do_div(resv_clusters, 50);
3487 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3488 
3489 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3490 }
3491 
3492 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3493 {
3494 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3495 	char *orig_data = kstrdup(data, GFP_KERNEL);
3496 	struct buffer_head *bh;
3497 	struct ext4_super_block *es = NULL;
3498 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3499 	ext4_fsblk_t block;
3500 	ext4_fsblk_t sb_block = get_sb_block(&data);
3501 	ext4_fsblk_t logical_sb_block;
3502 	unsigned long offset = 0;
3503 	unsigned long journal_devnum = 0;
3504 	unsigned long def_mount_opts;
3505 	struct inode *root;
3506 	const char *descr;
3507 	int ret = -ENOMEM;
3508 	int blocksize, clustersize;
3509 	unsigned int db_count;
3510 	unsigned int i;
3511 	int needs_recovery, has_huge_files, has_bigalloc;
3512 	__u64 blocks_count;
3513 	int err = 0;
3514 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3515 	ext4_group_t first_not_zeroed;
3516 
3517 	if ((data && !orig_data) || !sbi)
3518 		goto out_free_base;
3519 
3520 	sbi->s_daxdev = dax_dev;
3521 	sbi->s_blockgroup_lock =
3522 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3523 	if (!sbi->s_blockgroup_lock)
3524 		goto out_free_base;
3525 
3526 	sb->s_fs_info = sbi;
3527 	sbi->s_sb = sb;
3528 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3529 	sbi->s_sb_block = sb_block;
3530 	if (sb->s_bdev->bd_part)
3531 		sbi->s_sectors_written_start =
3532 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3533 
3534 	/* Cleanup superblock name */
3535 	strreplace(sb->s_id, '/', '!');
3536 
3537 	/* -EINVAL is default */
3538 	ret = -EINVAL;
3539 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3540 	if (!blocksize) {
3541 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3542 		goto out_fail;
3543 	}
3544 
3545 	/*
3546 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3547 	 * block sizes.  We need to calculate the offset from buffer start.
3548 	 */
3549 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3550 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3551 		offset = do_div(logical_sb_block, blocksize);
3552 	} else {
3553 		logical_sb_block = sb_block;
3554 	}
3555 
3556 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3557 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3558 		goto out_fail;
3559 	}
3560 	/*
3561 	 * Note: s_es must be initialized as soon as possible because
3562 	 *       some ext4 macro-instructions depend on its value
3563 	 */
3564 	es = (struct ext4_super_block *) (bh->b_data + offset);
3565 	sbi->s_es = es;
3566 	sb->s_magic = le16_to_cpu(es->s_magic);
3567 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3568 		goto cantfind_ext4;
3569 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3570 
3571 	/* Warn if metadata_csum and gdt_csum are both set. */
3572 	if (ext4_has_feature_metadata_csum(sb) &&
3573 	    ext4_has_feature_gdt_csum(sb))
3574 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3575 			     "redundant flags; please run fsck.");
3576 
3577 	/* Check for a known checksum algorithm */
3578 	if (!ext4_verify_csum_type(sb, es)) {
3579 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3580 			 "unknown checksum algorithm.");
3581 		silent = 1;
3582 		goto cantfind_ext4;
3583 	}
3584 
3585 	/* Load the checksum driver */
3586 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3587 	if (IS_ERR(sbi->s_chksum_driver)) {
3588 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3589 		ret = PTR_ERR(sbi->s_chksum_driver);
3590 		sbi->s_chksum_driver = NULL;
3591 		goto failed_mount;
3592 	}
3593 
3594 	/* Check superblock checksum */
3595 	if (!ext4_superblock_csum_verify(sb, es)) {
3596 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3597 			 "invalid superblock checksum.  Run e2fsck?");
3598 		silent = 1;
3599 		ret = -EFSBADCRC;
3600 		goto cantfind_ext4;
3601 	}
3602 
3603 	/* Precompute checksum seed for all metadata */
3604 	if (ext4_has_feature_csum_seed(sb))
3605 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3606 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3607 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3608 					       sizeof(es->s_uuid));
3609 
3610 	/* Set defaults before we parse the mount options */
3611 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3612 	set_opt(sb, INIT_INODE_TABLE);
3613 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3614 		set_opt(sb, DEBUG);
3615 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3616 		set_opt(sb, GRPID);
3617 	if (def_mount_opts & EXT4_DEFM_UID16)
3618 		set_opt(sb, NO_UID32);
3619 	/* xattr user namespace & acls are now defaulted on */
3620 	set_opt(sb, XATTR_USER);
3621 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3622 	set_opt(sb, POSIX_ACL);
3623 #endif
3624 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3625 	if (ext4_has_metadata_csum(sb))
3626 		set_opt(sb, JOURNAL_CHECKSUM);
3627 
3628 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3629 		set_opt(sb, JOURNAL_DATA);
3630 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3631 		set_opt(sb, ORDERED_DATA);
3632 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3633 		set_opt(sb, WRITEBACK_DATA);
3634 
3635 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3636 		set_opt(sb, ERRORS_PANIC);
3637 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3638 		set_opt(sb, ERRORS_CONT);
3639 	else
3640 		set_opt(sb, ERRORS_RO);
3641 	/* block_validity enabled by default; disable with noblock_validity */
3642 	set_opt(sb, BLOCK_VALIDITY);
3643 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3644 		set_opt(sb, DISCARD);
3645 
3646 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3647 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3648 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3649 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3650 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3651 
3652 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3653 		set_opt(sb, BARRIER);
3654 
3655 	/*
3656 	 * enable delayed allocation by default
3657 	 * Use -o nodelalloc to turn it off
3658 	 */
3659 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3660 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3661 		set_opt(sb, DELALLOC);
3662 
3663 	/*
3664 	 * set default s_li_wait_mult for lazyinit, for the case there is
3665 	 * no mount option specified.
3666 	 */
3667 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3668 
3669 	if (sbi->s_es->s_mount_opts[0]) {
3670 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3671 					      sizeof(sbi->s_es->s_mount_opts),
3672 					      GFP_KERNEL);
3673 		if (!s_mount_opts)
3674 			goto failed_mount;
3675 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3676 				   &journal_ioprio, 0)) {
3677 			ext4_msg(sb, KERN_WARNING,
3678 				 "failed to parse options in superblock: %s",
3679 				 s_mount_opts);
3680 		}
3681 		kfree(s_mount_opts);
3682 	}
3683 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3684 	if (!parse_options((char *) data, sb, &journal_devnum,
3685 			   &journal_ioprio, 0))
3686 		goto failed_mount;
3687 
3688 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3689 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3690 			    "with data=journal disables delayed "
3691 			    "allocation and O_DIRECT support!\n");
3692 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3693 			ext4_msg(sb, KERN_ERR, "can't mount with "
3694 				 "both data=journal and delalloc");
3695 			goto failed_mount;
3696 		}
3697 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3698 			ext4_msg(sb, KERN_ERR, "can't mount with "
3699 				 "both data=journal and dioread_nolock");
3700 			goto failed_mount;
3701 		}
3702 		if (test_opt(sb, DAX)) {
3703 			ext4_msg(sb, KERN_ERR, "can't mount with "
3704 				 "both data=journal and dax");
3705 			goto failed_mount;
3706 		}
3707 		if (ext4_has_feature_encrypt(sb)) {
3708 			ext4_msg(sb, KERN_WARNING,
3709 				 "encrypted files will use data=ordered "
3710 				 "instead of data journaling mode");
3711 		}
3712 		if (test_opt(sb, DELALLOC))
3713 			clear_opt(sb, DELALLOC);
3714 	} else {
3715 		sb->s_iflags |= SB_I_CGROUPWB;
3716 	}
3717 
3718 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3719 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3720 
3721 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3722 	    (ext4_has_compat_features(sb) ||
3723 	     ext4_has_ro_compat_features(sb) ||
3724 	     ext4_has_incompat_features(sb)))
3725 		ext4_msg(sb, KERN_WARNING,
3726 		       "feature flags set on rev 0 fs, "
3727 		       "running e2fsck is recommended");
3728 
3729 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3730 		set_opt2(sb, HURD_COMPAT);
3731 		if (ext4_has_feature_64bit(sb)) {
3732 			ext4_msg(sb, KERN_ERR,
3733 				 "The Hurd can't support 64-bit file systems");
3734 			goto failed_mount;
3735 		}
3736 
3737 		/*
3738 		 * ea_inode feature uses l_i_version field which is not
3739 		 * available in HURD_COMPAT mode.
3740 		 */
3741 		if (ext4_has_feature_ea_inode(sb)) {
3742 			ext4_msg(sb, KERN_ERR,
3743 				 "ea_inode feature is not supported for Hurd");
3744 			goto failed_mount;
3745 		}
3746 	}
3747 
3748 	if (IS_EXT2_SB(sb)) {
3749 		if (ext2_feature_set_ok(sb))
3750 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3751 				 "using the ext4 subsystem");
3752 		else {
3753 			/*
3754 			 * If we're probing be silent, if this looks like
3755 			 * it's actually an ext[34] filesystem.
3756 			 */
3757 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3758 				goto failed_mount;
3759 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3760 				 "to feature incompatibilities");
3761 			goto failed_mount;
3762 		}
3763 	}
3764 
3765 	if (IS_EXT3_SB(sb)) {
3766 		if (ext3_feature_set_ok(sb))
3767 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3768 				 "using the ext4 subsystem");
3769 		else {
3770 			/*
3771 			 * If we're probing be silent, if this looks like
3772 			 * it's actually an ext4 filesystem.
3773 			 */
3774 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3775 				goto failed_mount;
3776 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3777 				 "to feature incompatibilities");
3778 			goto failed_mount;
3779 		}
3780 	}
3781 
3782 	/*
3783 	 * Check feature flags regardless of the revision level, since we
3784 	 * previously didn't change the revision level when setting the flags,
3785 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3786 	 */
3787 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3788 		goto failed_mount;
3789 
3790 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3791 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3792 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3793 		ext4_msg(sb, KERN_ERR,
3794 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3795 			 blocksize, le32_to_cpu(es->s_log_block_size));
3796 		goto failed_mount;
3797 	}
3798 	if (le32_to_cpu(es->s_log_block_size) >
3799 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3800 		ext4_msg(sb, KERN_ERR,
3801 			 "Invalid log block size: %u",
3802 			 le32_to_cpu(es->s_log_block_size));
3803 		goto failed_mount;
3804 	}
3805 	if (le32_to_cpu(es->s_log_cluster_size) >
3806 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3807 		ext4_msg(sb, KERN_ERR,
3808 			 "Invalid log cluster size: %u",
3809 			 le32_to_cpu(es->s_log_cluster_size));
3810 		goto failed_mount;
3811 	}
3812 
3813 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3814 		ext4_msg(sb, KERN_ERR,
3815 			 "Number of reserved GDT blocks insanely large: %d",
3816 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3817 		goto failed_mount;
3818 	}
3819 
3820 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3821 		if (ext4_has_feature_inline_data(sb)) {
3822 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3823 					" that may contain inline data");
3824 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3825 		}
3826 		if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3827 			ext4_msg(sb, KERN_ERR,
3828 				"DAX unsupported by block device. Turning off DAX.");
3829 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3830 		}
3831 	}
3832 
3833 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3834 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3835 			 es->s_encryption_level);
3836 		goto failed_mount;
3837 	}
3838 
3839 	if (sb->s_blocksize != blocksize) {
3840 		/* Validate the filesystem blocksize */
3841 		if (!sb_set_blocksize(sb, blocksize)) {
3842 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3843 					blocksize);
3844 			goto failed_mount;
3845 		}
3846 
3847 		brelse(bh);
3848 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3849 		offset = do_div(logical_sb_block, blocksize);
3850 		bh = sb_bread_unmovable(sb, logical_sb_block);
3851 		if (!bh) {
3852 			ext4_msg(sb, KERN_ERR,
3853 			       "Can't read superblock on 2nd try");
3854 			goto failed_mount;
3855 		}
3856 		es = (struct ext4_super_block *)(bh->b_data + offset);
3857 		sbi->s_es = es;
3858 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3859 			ext4_msg(sb, KERN_ERR,
3860 			       "Magic mismatch, very weird!");
3861 			goto failed_mount;
3862 		}
3863 	}
3864 
3865 	has_huge_files = ext4_has_feature_huge_file(sb);
3866 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3867 						      has_huge_files);
3868 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3869 
3870 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3871 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3872 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3873 	} else {
3874 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3875 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3876 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3877 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3878 				 sbi->s_first_ino);
3879 			goto failed_mount;
3880 		}
3881 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3882 		    (!is_power_of_2(sbi->s_inode_size)) ||
3883 		    (sbi->s_inode_size > blocksize)) {
3884 			ext4_msg(sb, KERN_ERR,
3885 			       "unsupported inode size: %d",
3886 			       sbi->s_inode_size);
3887 			goto failed_mount;
3888 		}
3889 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3890 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3891 	}
3892 
3893 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3894 	if (ext4_has_feature_64bit(sb)) {
3895 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3896 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3897 		    !is_power_of_2(sbi->s_desc_size)) {
3898 			ext4_msg(sb, KERN_ERR,
3899 			       "unsupported descriptor size %lu",
3900 			       sbi->s_desc_size);
3901 			goto failed_mount;
3902 		}
3903 	} else
3904 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3905 
3906 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3907 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3908 
3909 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3910 	if (sbi->s_inodes_per_block == 0)
3911 		goto cantfind_ext4;
3912 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3913 	    sbi->s_inodes_per_group > blocksize * 8) {
3914 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3915 			 sbi->s_blocks_per_group);
3916 		goto failed_mount;
3917 	}
3918 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3919 					sbi->s_inodes_per_block;
3920 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3921 	sbi->s_sbh = bh;
3922 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3923 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3924 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3925 
3926 	for (i = 0; i < 4; i++)
3927 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3928 	sbi->s_def_hash_version = es->s_def_hash_version;
3929 	if (ext4_has_feature_dir_index(sb)) {
3930 		i = le32_to_cpu(es->s_flags);
3931 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3932 			sbi->s_hash_unsigned = 3;
3933 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3934 #ifdef __CHAR_UNSIGNED__
3935 			if (!sb_rdonly(sb))
3936 				es->s_flags |=
3937 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3938 			sbi->s_hash_unsigned = 3;
3939 #else
3940 			if (!sb_rdonly(sb))
3941 				es->s_flags |=
3942 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3943 #endif
3944 		}
3945 	}
3946 
3947 	/* Handle clustersize */
3948 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3949 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3950 	if (has_bigalloc) {
3951 		if (clustersize < blocksize) {
3952 			ext4_msg(sb, KERN_ERR,
3953 				 "cluster size (%d) smaller than "
3954 				 "block size (%d)", clustersize, blocksize);
3955 			goto failed_mount;
3956 		}
3957 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3958 			le32_to_cpu(es->s_log_block_size);
3959 		sbi->s_clusters_per_group =
3960 			le32_to_cpu(es->s_clusters_per_group);
3961 		if (sbi->s_clusters_per_group > blocksize * 8) {
3962 			ext4_msg(sb, KERN_ERR,
3963 				 "#clusters per group too big: %lu",
3964 				 sbi->s_clusters_per_group);
3965 			goto failed_mount;
3966 		}
3967 		if (sbi->s_blocks_per_group !=
3968 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3969 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3970 				 "clusters per group (%lu) inconsistent",
3971 				 sbi->s_blocks_per_group,
3972 				 sbi->s_clusters_per_group);
3973 			goto failed_mount;
3974 		}
3975 	} else {
3976 		if (clustersize != blocksize) {
3977 			ext4_msg(sb, KERN_ERR,
3978 				 "fragment/cluster size (%d) != "
3979 				 "block size (%d)", clustersize, blocksize);
3980 			goto failed_mount;
3981 		}
3982 		if (sbi->s_blocks_per_group > blocksize * 8) {
3983 			ext4_msg(sb, KERN_ERR,
3984 				 "#blocks per group too big: %lu",
3985 				 sbi->s_blocks_per_group);
3986 			goto failed_mount;
3987 		}
3988 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3989 		sbi->s_cluster_bits = 0;
3990 	}
3991 	sbi->s_cluster_ratio = clustersize / blocksize;
3992 
3993 	/* Do we have standard group size of clustersize * 8 blocks ? */
3994 	if (sbi->s_blocks_per_group == clustersize << 3)
3995 		set_opt2(sb, STD_GROUP_SIZE);
3996 
3997 	/*
3998 	 * Test whether we have more sectors than will fit in sector_t,
3999 	 * and whether the max offset is addressable by the page cache.
4000 	 */
4001 	err = generic_check_addressable(sb->s_blocksize_bits,
4002 					ext4_blocks_count(es));
4003 	if (err) {
4004 		ext4_msg(sb, KERN_ERR, "filesystem"
4005 			 " too large to mount safely on this system");
4006 		if (sizeof(sector_t) < 8)
4007 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4008 		goto failed_mount;
4009 	}
4010 
4011 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4012 		goto cantfind_ext4;
4013 
4014 	/* check blocks count against device size */
4015 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4016 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4017 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4018 		       "exceeds size of device (%llu blocks)",
4019 		       ext4_blocks_count(es), blocks_count);
4020 		goto failed_mount;
4021 	}
4022 
4023 	/*
4024 	 * It makes no sense for the first data block to be beyond the end
4025 	 * of the filesystem.
4026 	 */
4027 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4028 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4029 			 "block %u is beyond end of filesystem (%llu)",
4030 			 le32_to_cpu(es->s_first_data_block),
4031 			 ext4_blocks_count(es));
4032 		goto failed_mount;
4033 	}
4034 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4035 	    (sbi->s_cluster_ratio == 1)) {
4036 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4037 			 "block is 0 with a 1k block and cluster size");
4038 		goto failed_mount;
4039 	}
4040 
4041 	blocks_count = (ext4_blocks_count(es) -
4042 			le32_to_cpu(es->s_first_data_block) +
4043 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4044 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4045 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4046 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4047 		       "(block count %llu, first data block %u, "
4048 		       "blocks per group %lu)", sbi->s_groups_count,
4049 		       ext4_blocks_count(es),
4050 		       le32_to_cpu(es->s_first_data_block),
4051 		       EXT4_BLOCKS_PER_GROUP(sb));
4052 		goto failed_mount;
4053 	}
4054 	sbi->s_groups_count = blocks_count;
4055 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4056 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4057 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4058 		   EXT4_DESC_PER_BLOCK(sb);
4059 	if (ext4_has_feature_meta_bg(sb)) {
4060 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4061 			ext4_msg(sb, KERN_WARNING,
4062 				 "first meta block group too large: %u "
4063 				 "(group descriptor block count %u)",
4064 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4065 			goto failed_mount;
4066 		}
4067 	}
4068 	sbi->s_group_desc = kvmalloc_array(db_count,
4069 					   sizeof(struct buffer_head *),
4070 					   GFP_KERNEL);
4071 	if (sbi->s_group_desc == NULL) {
4072 		ext4_msg(sb, KERN_ERR, "not enough memory");
4073 		ret = -ENOMEM;
4074 		goto failed_mount;
4075 	}
4076 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4077 	    le32_to_cpu(es->s_inodes_count)) {
4078 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4079 			 le32_to_cpu(es->s_inodes_count),
4080 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4081 		ret = -EINVAL;
4082 		goto failed_mount;
4083 	}
4084 
4085 	bgl_lock_init(sbi->s_blockgroup_lock);
4086 
4087 	/* Pre-read the descriptors into the buffer cache */
4088 	for (i = 0; i < db_count; i++) {
4089 		block = descriptor_loc(sb, logical_sb_block, i);
4090 		sb_breadahead(sb, block);
4091 	}
4092 
4093 	for (i = 0; i < db_count; i++) {
4094 		block = descriptor_loc(sb, logical_sb_block, i);
4095 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4096 		if (!sbi->s_group_desc[i]) {
4097 			ext4_msg(sb, KERN_ERR,
4098 			       "can't read group descriptor %d", i);
4099 			db_count = i;
4100 			goto failed_mount2;
4101 		}
4102 	}
4103 	sbi->s_gdb_count = db_count;
4104 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4105 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4106 		ret = -EFSCORRUPTED;
4107 		goto failed_mount2;
4108 	}
4109 
4110 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4111 
4112 	/* Register extent status tree shrinker */
4113 	if (ext4_es_register_shrinker(sbi))
4114 		goto failed_mount3;
4115 
4116 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4117 	sbi->s_extent_max_zeroout_kb = 32;
4118 
4119 	/*
4120 	 * set up enough so that it can read an inode
4121 	 */
4122 	sb->s_op = &ext4_sops;
4123 	sb->s_export_op = &ext4_export_ops;
4124 	sb->s_xattr = ext4_xattr_handlers;
4125 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4126 	sb->s_cop = &ext4_cryptops;
4127 #endif
4128 #ifdef CONFIG_QUOTA
4129 	sb->dq_op = &ext4_quota_operations;
4130 	if (ext4_has_feature_quota(sb))
4131 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4132 	else
4133 		sb->s_qcop = &ext4_qctl_operations;
4134 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4135 #endif
4136 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4137 
4138 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4139 	mutex_init(&sbi->s_orphan_lock);
4140 
4141 	sb->s_root = NULL;
4142 
4143 	needs_recovery = (es->s_last_orphan != 0 ||
4144 			  ext4_has_feature_journal_needs_recovery(sb));
4145 
4146 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4147 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4148 			goto failed_mount3a;
4149 
4150 	/*
4151 	 * The first inode we look at is the journal inode.  Don't try
4152 	 * root first: it may be modified in the journal!
4153 	 */
4154 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4155 		err = ext4_load_journal(sb, es, journal_devnum);
4156 		if (err)
4157 			goto failed_mount3a;
4158 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4159 		   ext4_has_feature_journal_needs_recovery(sb)) {
4160 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4161 		       "suppressed and not mounted read-only");
4162 		goto failed_mount_wq;
4163 	} else {
4164 		/* Nojournal mode, all journal mount options are illegal */
4165 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4166 			ext4_msg(sb, KERN_ERR, "can't mount with "
4167 				 "journal_checksum, fs mounted w/o journal");
4168 			goto failed_mount_wq;
4169 		}
4170 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4171 			ext4_msg(sb, KERN_ERR, "can't mount with "
4172 				 "journal_async_commit, fs mounted w/o journal");
4173 			goto failed_mount_wq;
4174 		}
4175 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4176 			ext4_msg(sb, KERN_ERR, "can't mount with "
4177 				 "commit=%lu, fs mounted w/o journal",
4178 				 sbi->s_commit_interval / HZ);
4179 			goto failed_mount_wq;
4180 		}
4181 		if (EXT4_MOUNT_DATA_FLAGS &
4182 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4183 			ext4_msg(sb, KERN_ERR, "can't mount with "
4184 				 "data=, fs mounted w/o journal");
4185 			goto failed_mount_wq;
4186 		}
4187 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4188 		clear_opt(sb, JOURNAL_CHECKSUM);
4189 		clear_opt(sb, DATA_FLAGS);
4190 		sbi->s_journal = NULL;
4191 		needs_recovery = 0;
4192 		goto no_journal;
4193 	}
4194 
4195 	if (ext4_has_feature_64bit(sb) &&
4196 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4197 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4198 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4199 		goto failed_mount_wq;
4200 	}
4201 
4202 	if (!set_journal_csum_feature_set(sb)) {
4203 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4204 			 "feature set");
4205 		goto failed_mount_wq;
4206 	}
4207 
4208 	/* We have now updated the journal if required, so we can
4209 	 * validate the data journaling mode. */
4210 	switch (test_opt(sb, DATA_FLAGS)) {
4211 	case 0:
4212 		/* No mode set, assume a default based on the journal
4213 		 * capabilities: ORDERED_DATA if the journal can
4214 		 * cope, else JOURNAL_DATA
4215 		 */
4216 		if (jbd2_journal_check_available_features
4217 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4218 			set_opt(sb, ORDERED_DATA);
4219 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4220 		} else {
4221 			set_opt(sb, JOURNAL_DATA);
4222 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4223 		}
4224 		break;
4225 
4226 	case EXT4_MOUNT_ORDERED_DATA:
4227 	case EXT4_MOUNT_WRITEBACK_DATA:
4228 		if (!jbd2_journal_check_available_features
4229 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4230 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4231 			       "requested data journaling mode");
4232 			goto failed_mount_wq;
4233 		}
4234 	default:
4235 		break;
4236 	}
4237 
4238 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4239 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4240 		ext4_msg(sb, KERN_ERR, "can't mount with "
4241 			"journal_async_commit in data=ordered mode");
4242 		goto failed_mount_wq;
4243 	}
4244 
4245 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4246 
4247 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4248 
4249 no_journal:
4250 	if (!test_opt(sb, NO_MBCACHE)) {
4251 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4252 		if (!sbi->s_ea_block_cache) {
4253 			ext4_msg(sb, KERN_ERR,
4254 				 "Failed to create ea_block_cache");
4255 			goto failed_mount_wq;
4256 		}
4257 
4258 		if (ext4_has_feature_ea_inode(sb)) {
4259 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4260 			if (!sbi->s_ea_inode_cache) {
4261 				ext4_msg(sb, KERN_ERR,
4262 					 "Failed to create ea_inode_cache");
4263 				goto failed_mount_wq;
4264 			}
4265 		}
4266 	}
4267 
4268 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4269 	    (blocksize != PAGE_SIZE)) {
4270 		ext4_msg(sb, KERN_ERR,
4271 			 "Unsupported blocksize for fs encryption");
4272 		goto failed_mount_wq;
4273 	}
4274 
4275 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4276 	    !ext4_has_feature_encrypt(sb)) {
4277 		ext4_set_feature_encrypt(sb);
4278 		ext4_commit_super(sb, 1);
4279 	}
4280 
4281 	/*
4282 	 * Get the # of file system overhead blocks from the
4283 	 * superblock if present.
4284 	 */
4285 	if (es->s_overhead_clusters)
4286 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4287 	else {
4288 		err = ext4_calculate_overhead(sb);
4289 		if (err)
4290 			goto failed_mount_wq;
4291 	}
4292 
4293 	/*
4294 	 * The maximum number of concurrent works can be high and
4295 	 * concurrency isn't really necessary.  Limit it to 1.
4296 	 */
4297 	EXT4_SB(sb)->rsv_conversion_wq =
4298 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4299 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4300 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4301 		ret = -ENOMEM;
4302 		goto failed_mount4;
4303 	}
4304 
4305 	/*
4306 	 * The jbd2_journal_load will have done any necessary log recovery,
4307 	 * so we can safely mount the rest of the filesystem now.
4308 	 */
4309 
4310 	root = ext4_iget(sb, EXT4_ROOT_INO);
4311 	if (IS_ERR(root)) {
4312 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4313 		ret = PTR_ERR(root);
4314 		root = NULL;
4315 		goto failed_mount4;
4316 	}
4317 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4318 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4319 		iput(root);
4320 		goto failed_mount4;
4321 	}
4322 	sb->s_root = d_make_root(root);
4323 	if (!sb->s_root) {
4324 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4325 		ret = -ENOMEM;
4326 		goto failed_mount4;
4327 	}
4328 
4329 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4330 	if (ret == -EROFS) {
4331 		sb->s_flags |= SB_RDONLY;
4332 		ret = 0;
4333 	} else if (ret)
4334 		goto failed_mount4a;
4335 
4336 	/* determine the minimum size of new large inodes, if present */
4337 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4338 	    sbi->s_want_extra_isize == 0) {
4339 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4340 						     EXT4_GOOD_OLD_INODE_SIZE;
4341 		if (ext4_has_feature_extra_isize(sb)) {
4342 			if (sbi->s_want_extra_isize <
4343 			    le16_to_cpu(es->s_want_extra_isize))
4344 				sbi->s_want_extra_isize =
4345 					le16_to_cpu(es->s_want_extra_isize);
4346 			if (sbi->s_want_extra_isize <
4347 			    le16_to_cpu(es->s_min_extra_isize))
4348 				sbi->s_want_extra_isize =
4349 					le16_to_cpu(es->s_min_extra_isize);
4350 		}
4351 	}
4352 	/* Check if enough inode space is available */
4353 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4354 							sbi->s_inode_size) {
4355 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4356 						       EXT4_GOOD_OLD_INODE_SIZE;
4357 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4358 			 "available");
4359 	}
4360 
4361 	ext4_set_resv_clusters(sb);
4362 
4363 	err = ext4_setup_system_zone(sb);
4364 	if (err) {
4365 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4366 			 "zone (%d)", err);
4367 		goto failed_mount4a;
4368 	}
4369 
4370 	ext4_ext_init(sb);
4371 	err = ext4_mb_init(sb);
4372 	if (err) {
4373 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4374 			 err);
4375 		goto failed_mount5;
4376 	}
4377 
4378 	block = ext4_count_free_clusters(sb);
4379 	ext4_free_blocks_count_set(sbi->s_es,
4380 				   EXT4_C2B(sbi, block));
4381 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4382 				  GFP_KERNEL);
4383 	if (!err) {
4384 		unsigned long freei = ext4_count_free_inodes(sb);
4385 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4386 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4387 					  GFP_KERNEL);
4388 	}
4389 	if (!err)
4390 		err = percpu_counter_init(&sbi->s_dirs_counter,
4391 					  ext4_count_dirs(sb), GFP_KERNEL);
4392 	if (!err)
4393 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4394 					  GFP_KERNEL);
4395 	if (!err)
4396 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4397 
4398 	if (err) {
4399 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4400 		goto failed_mount6;
4401 	}
4402 
4403 	if (ext4_has_feature_flex_bg(sb))
4404 		if (!ext4_fill_flex_info(sb)) {
4405 			ext4_msg(sb, KERN_ERR,
4406 			       "unable to initialize "
4407 			       "flex_bg meta info!");
4408 			goto failed_mount6;
4409 		}
4410 
4411 	err = ext4_register_li_request(sb, first_not_zeroed);
4412 	if (err)
4413 		goto failed_mount6;
4414 
4415 	err = ext4_register_sysfs(sb);
4416 	if (err)
4417 		goto failed_mount7;
4418 
4419 #ifdef CONFIG_QUOTA
4420 	/* Enable quota usage during mount. */
4421 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4422 		err = ext4_enable_quotas(sb);
4423 		if (err)
4424 			goto failed_mount8;
4425 	}
4426 #endif  /* CONFIG_QUOTA */
4427 
4428 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4429 	ext4_orphan_cleanup(sb, es);
4430 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4431 	if (needs_recovery) {
4432 		ext4_msg(sb, KERN_INFO, "recovery complete");
4433 		ext4_mark_recovery_complete(sb, es);
4434 	}
4435 	if (EXT4_SB(sb)->s_journal) {
4436 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4437 			descr = " journalled data mode";
4438 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4439 			descr = " ordered data mode";
4440 		else
4441 			descr = " writeback data mode";
4442 	} else
4443 		descr = "out journal";
4444 
4445 	if (test_opt(sb, DISCARD)) {
4446 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4447 		if (!blk_queue_discard(q))
4448 			ext4_msg(sb, KERN_WARNING,
4449 				 "mounting with \"discard\" option, but "
4450 				 "the device does not support discard");
4451 	}
4452 
4453 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4454 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4455 			 "Opts: %.*s%s%s", descr,
4456 			 (int) sizeof(sbi->s_es->s_mount_opts),
4457 			 sbi->s_es->s_mount_opts,
4458 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4459 
4460 	if (es->s_error_count)
4461 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4462 
4463 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4464 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4465 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4466 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4467 
4468 	kfree(orig_data);
4469 	return 0;
4470 
4471 cantfind_ext4:
4472 	if (!silent)
4473 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4474 	goto failed_mount;
4475 
4476 #ifdef CONFIG_QUOTA
4477 failed_mount8:
4478 	ext4_unregister_sysfs(sb);
4479 #endif
4480 failed_mount7:
4481 	ext4_unregister_li_request(sb);
4482 failed_mount6:
4483 	ext4_mb_release(sb);
4484 	if (sbi->s_flex_groups)
4485 		kvfree(sbi->s_flex_groups);
4486 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4487 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4488 	percpu_counter_destroy(&sbi->s_dirs_counter);
4489 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4490 failed_mount5:
4491 	ext4_ext_release(sb);
4492 	ext4_release_system_zone(sb);
4493 failed_mount4a:
4494 	dput(sb->s_root);
4495 	sb->s_root = NULL;
4496 failed_mount4:
4497 	ext4_msg(sb, KERN_ERR, "mount failed");
4498 	if (EXT4_SB(sb)->rsv_conversion_wq)
4499 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4500 failed_mount_wq:
4501 	if (sbi->s_ea_inode_cache) {
4502 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4503 		sbi->s_ea_inode_cache = NULL;
4504 	}
4505 	if (sbi->s_ea_block_cache) {
4506 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4507 		sbi->s_ea_block_cache = NULL;
4508 	}
4509 	if (sbi->s_journal) {
4510 		jbd2_journal_destroy(sbi->s_journal);
4511 		sbi->s_journal = NULL;
4512 	}
4513 failed_mount3a:
4514 	ext4_es_unregister_shrinker(sbi);
4515 failed_mount3:
4516 	del_timer_sync(&sbi->s_err_report);
4517 	if (sbi->s_mmp_tsk)
4518 		kthread_stop(sbi->s_mmp_tsk);
4519 failed_mount2:
4520 	for (i = 0; i < db_count; i++)
4521 		brelse(sbi->s_group_desc[i]);
4522 	kvfree(sbi->s_group_desc);
4523 failed_mount:
4524 	if (sbi->s_chksum_driver)
4525 		crypto_free_shash(sbi->s_chksum_driver);
4526 #ifdef CONFIG_QUOTA
4527 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4528 		kfree(sbi->s_qf_names[i]);
4529 #endif
4530 	ext4_blkdev_remove(sbi);
4531 	brelse(bh);
4532 out_fail:
4533 	sb->s_fs_info = NULL;
4534 	kfree(sbi->s_blockgroup_lock);
4535 out_free_base:
4536 	kfree(sbi);
4537 	kfree(orig_data);
4538 	fs_put_dax(dax_dev);
4539 	return err ? err : ret;
4540 }
4541 
4542 /*
4543  * Setup any per-fs journal parameters now.  We'll do this both on
4544  * initial mount, once the journal has been initialised but before we've
4545  * done any recovery; and again on any subsequent remount.
4546  */
4547 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4548 {
4549 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4550 
4551 	journal->j_commit_interval = sbi->s_commit_interval;
4552 	journal->j_min_batch_time = sbi->s_min_batch_time;
4553 	journal->j_max_batch_time = sbi->s_max_batch_time;
4554 
4555 	write_lock(&journal->j_state_lock);
4556 	if (test_opt(sb, BARRIER))
4557 		journal->j_flags |= JBD2_BARRIER;
4558 	else
4559 		journal->j_flags &= ~JBD2_BARRIER;
4560 	if (test_opt(sb, DATA_ERR_ABORT))
4561 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4562 	else
4563 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4564 	write_unlock(&journal->j_state_lock);
4565 }
4566 
4567 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4568 					     unsigned int journal_inum)
4569 {
4570 	struct inode *journal_inode;
4571 
4572 	/*
4573 	 * Test for the existence of a valid inode on disk.  Bad things
4574 	 * happen if we iget() an unused inode, as the subsequent iput()
4575 	 * will try to delete it.
4576 	 */
4577 	journal_inode = ext4_iget(sb, journal_inum);
4578 	if (IS_ERR(journal_inode)) {
4579 		ext4_msg(sb, KERN_ERR, "no journal found");
4580 		return NULL;
4581 	}
4582 	if (!journal_inode->i_nlink) {
4583 		make_bad_inode(journal_inode);
4584 		iput(journal_inode);
4585 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4586 		return NULL;
4587 	}
4588 
4589 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4590 		  journal_inode, journal_inode->i_size);
4591 	if (!S_ISREG(journal_inode->i_mode)) {
4592 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4593 		iput(journal_inode);
4594 		return NULL;
4595 	}
4596 	return journal_inode;
4597 }
4598 
4599 static journal_t *ext4_get_journal(struct super_block *sb,
4600 				   unsigned int journal_inum)
4601 {
4602 	struct inode *journal_inode;
4603 	journal_t *journal;
4604 
4605 	BUG_ON(!ext4_has_feature_journal(sb));
4606 
4607 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4608 	if (!journal_inode)
4609 		return NULL;
4610 
4611 	journal = jbd2_journal_init_inode(journal_inode);
4612 	if (!journal) {
4613 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4614 		iput(journal_inode);
4615 		return NULL;
4616 	}
4617 	journal->j_private = sb;
4618 	ext4_init_journal_params(sb, journal);
4619 	return journal;
4620 }
4621 
4622 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4623 				       dev_t j_dev)
4624 {
4625 	struct buffer_head *bh;
4626 	journal_t *journal;
4627 	ext4_fsblk_t start;
4628 	ext4_fsblk_t len;
4629 	int hblock, blocksize;
4630 	ext4_fsblk_t sb_block;
4631 	unsigned long offset;
4632 	struct ext4_super_block *es;
4633 	struct block_device *bdev;
4634 
4635 	BUG_ON(!ext4_has_feature_journal(sb));
4636 
4637 	bdev = ext4_blkdev_get(j_dev, sb);
4638 	if (bdev == NULL)
4639 		return NULL;
4640 
4641 	blocksize = sb->s_blocksize;
4642 	hblock = bdev_logical_block_size(bdev);
4643 	if (blocksize < hblock) {
4644 		ext4_msg(sb, KERN_ERR,
4645 			"blocksize too small for journal device");
4646 		goto out_bdev;
4647 	}
4648 
4649 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4650 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4651 	set_blocksize(bdev, blocksize);
4652 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4653 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4654 		       "external journal");
4655 		goto out_bdev;
4656 	}
4657 
4658 	es = (struct ext4_super_block *) (bh->b_data + offset);
4659 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4660 	    !(le32_to_cpu(es->s_feature_incompat) &
4661 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4662 		ext4_msg(sb, KERN_ERR, "external journal has "
4663 					"bad superblock");
4664 		brelse(bh);
4665 		goto out_bdev;
4666 	}
4667 
4668 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4669 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4670 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4671 		ext4_msg(sb, KERN_ERR, "external journal has "
4672 				       "corrupt superblock");
4673 		brelse(bh);
4674 		goto out_bdev;
4675 	}
4676 
4677 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4678 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4679 		brelse(bh);
4680 		goto out_bdev;
4681 	}
4682 
4683 	len = ext4_blocks_count(es);
4684 	start = sb_block + 1;
4685 	brelse(bh);	/* we're done with the superblock */
4686 
4687 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4688 					start, len, blocksize);
4689 	if (!journal) {
4690 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4691 		goto out_bdev;
4692 	}
4693 	journal->j_private = sb;
4694 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4695 	wait_on_buffer(journal->j_sb_buffer);
4696 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4697 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4698 		goto out_journal;
4699 	}
4700 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4701 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4702 					"user (unsupported) - %d",
4703 			be32_to_cpu(journal->j_superblock->s_nr_users));
4704 		goto out_journal;
4705 	}
4706 	EXT4_SB(sb)->journal_bdev = bdev;
4707 	ext4_init_journal_params(sb, journal);
4708 	return journal;
4709 
4710 out_journal:
4711 	jbd2_journal_destroy(journal);
4712 out_bdev:
4713 	ext4_blkdev_put(bdev);
4714 	return NULL;
4715 }
4716 
4717 static int ext4_load_journal(struct super_block *sb,
4718 			     struct ext4_super_block *es,
4719 			     unsigned long journal_devnum)
4720 {
4721 	journal_t *journal;
4722 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4723 	dev_t journal_dev;
4724 	int err = 0;
4725 	int really_read_only;
4726 
4727 	BUG_ON(!ext4_has_feature_journal(sb));
4728 
4729 	if (journal_devnum &&
4730 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4731 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4732 			"numbers have changed");
4733 		journal_dev = new_decode_dev(journal_devnum);
4734 	} else
4735 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4736 
4737 	really_read_only = bdev_read_only(sb->s_bdev);
4738 
4739 	/*
4740 	 * Are we loading a blank journal or performing recovery after a
4741 	 * crash?  For recovery, we need to check in advance whether we
4742 	 * can get read-write access to the device.
4743 	 */
4744 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4745 		if (sb_rdonly(sb)) {
4746 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4747 					"required on readonly filesystem");
4748 			if (really_read_only) {
4749 				ext4_msg(sb, KERN_ERR, "write access "
4750 					"unavailable, cannot proceed "
4751 					"(try mounting with noload)");
4752 				return -EROFS;
4753 			}
4754 			ext4_msg(sb, KERN_INFO, "write access will "
4755 			       "be enabled during recovery");
4756 		}
4757 	}
4758 
4759 	if (journal_inum && journal_dev) {
4760 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4761 		       "and inode journals!");
4762 		return -EINVAL;
4763 	}
4764 
4765 	if (journal_inum) {
4766 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4767 			return -EINVAL;
4768 	} else {
4769 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4770 			return -EINVAL;
4771 	}
4772 
4773 	if (!(journal->j_flags & JBD2_BARRIER))
4774 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4775 
4776 	if (!ext4_has_feature_journal_needs_recovery(sb))
4777 		err = jbd2_journal_wipe(journal, !really_read_only);
4778 	if (!err) {
4779 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4780 		if (save)
4781 			memcpy(save, ((char *) es) +
4782 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4783 		err = jbd2_journal_load(journal);
4784 		if (save)
4785 			memcpy(((char *) es) + EXT4_S_ERR_START,
4786 			       save, EXT4_S_ERR_LEN);
4787 		kfree(save);
4788 	}
4789 
4790 	if (err) {
4791 		ext4_msg(sb, KERN_ERR, "error loading journal");
4792 		jbd2_journal_destroy(journal);
4793 		return err;
4794 	}
4795 
4796 	EXT4_SB(sb)->s_journal = journal;
4797 	ext4_clear_journal_err(sb, es);
4798 
4799 	if (!really_read_only && journal_devnum &&
4800 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4801 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4802 
4803 		/* Make sure we flush the recovery flag to disk. */
4804 		ext4_commit_super(sb, 1);
4805 	}
4806 
4807 	return 0;
4808 }
4809 
4810 static int ext4_commit_super(struct super_block *sb, int sync)
4811 {
4812 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4813 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4814 	int error = 0;
4815 
4816 	if (!sbh || block_device_ejected(sb))
4817 		return error;
4818 
4819 	/*
4820 	 * The superblock bh should be mapped, but it might not be if the
4821 	 * device was hot-removed. Not much we can do but fail the I/O.
4822 	 */
4823 	if (!buffer_mapped(sbh))
4824 		return error;
4825 
4826 	/*
4827 	 * If the file system is mounted read-only, don't update the
4828 	 * superblock write time.  This avoids updating the superblock
4829 	 * write time when we are mounting the root file system
4830 	 * read/only but we need to replay the journal; at that point,
4831 	 * for people who are east of GMT and who make their clock
4832 	 * tick in localtime for Windows bug-for-bug compatibility,
4833 	 * the clock is set in the future, and this will cause e2fsck
4834 	 * to complain and force a full file system check.
4835 	 */
4836 	if (!(sb->s_flags & SB_RDONLY))
4837 		ext4_update_tstamp(es, s_wtime);
4838 	if (sb->s_bdev->bd_part)
4839 		es->s_kbytes_written =
4840 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4841 			    ((part_stat_read(sb->s_bdev->bd_part,
4842 					     sectors[STAT_WRITE]) -
4843 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4844 	else
4845 		es->s_kbytes_written =
4846 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4847 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4848 		ext4_free_blocks_count_set(es,
4849 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4850 				&EXT4_SB(sb)->s_freeclusters_counter)));
4851 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4852 		es->s_free_inodes_count =
4853 			cpu_to_le32(percpu_counter_sum_positive(
4854 				&EXT4_SB(sb)->s_freeinodes_counter));
4855 	BUFFER_TRACE(sbh, "marking dirty");
4856 	ext4_superblock_csum_set(sb);
4857 	if (sync)
4858 		lock_buffer(sbh);
4859 	if (buffer_write_io_error(sbh)) {
4860 		/*
4861 		 * Oh, dear.  A previous attempt to write the
4862 		 * superblock failed.  This could happen because the
4863 		 * USB device was yanked out.  Or it could happen to
4864 		 * be a transient write error and maybe the block will
4865 		 * be remapped.  Nothing we can do but to retry the
4866 		 * write and hope for the best.
4867 		 */
4868 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4869 		       "superblock detected");
4870 		clear_buffer_write_io_error(sbh);
4871 		set_buffer_uptodate(sbh);
4872 	}
4873 	mark_buffer_dirty(sbh);
4874 	if (sync) {
4875 		unlock_buffer(sbh);
4876 		error = __sync_dirty_buffer(sbh,
4877 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4878 		if (buffer_write_io_error(sbh)) {
4879 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4880 			       "superblock");
4881 			clear_buffer_write_io_error(sbh);
4882 			set_buffer_uptodate(sbh);
4883 		}
4884 	}
4885 	return error;
4886 }
4887 
4888 /*
4889  * Have we just finished recovery?  If so, and if we are mounting (or
4890  * remounting) the filesystem readonly, then we will end up with a
4891  * consistent fs on disk.  Record that fact.
4892  */
4893 static void ext4_mark_recovery_complete(struct super_block *sb,
4894 					struct ext4_super_block *es)
4895 {
4896 	journal_t *journal = EXT4_SB(sb)->s_journal;
4897 
4898 	if (!ext4_has_feature_journal(sb)) {
4899 		BUG_ON(journal != NULL);
4900 		return;
4901 	}
4902 	jbd2_journal_lock_updates(journal);
4903 	if (jbd2_journal_flush(journal) < 0)
4904 		goto out;
4905 
4906 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4907 		ext4_clear_feature_journal_needs_recovery(sb);
4908 		ext4_commit_super(sb, 1);
4909 	}
4910 
4911 out:
4912 	jbd2_journal_unlock_updates(journal);
4913 }
4914 
4915 /*
4916  * If we are mounting (or read-write remounting) a filesystem whose journal
4917  * has recorded an error from a previous lifetime, move that error to the
4918  * main filesystem now.
4919  */
4920 static void ext4_clear_journal_err(struct super_block *sb,
4921 				   struct ext4_super_block *es)
4922 {
4923 	journal_t *journal;
4924 	int j_errno;
4925 	const char *errstr;
4926 
4927 	BUG_ON(!ext4_has_feature_journal(sb));
4928 
4929 	journal = EXT4_SB(sb)->s_journal;
4930 
4931 	/*
4932 	 * Now check for any error status which may have been recorded in the
4933 	 * journal by a prior ext4_error() or ext4_abort()
4934 	 */
4935 
4936 	j_errno = jbd2_journal_errno(journal);
4937 	if (j_errno) {
4938 		char nbuf[16];
4939 
4940 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4941 		ext4_warning(sb, "Filesystem error recorded "
4942 			     "from previous mount: %s", errstr);
4943 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4944 
4945 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4946 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4947 		ext4_commit_super(sb, 1);
4948 
4949 		jbd2_journal_clear_err(journal);
4950 		jbd2_journal_update_sb_errno(journal);
4951 	}
4952 }
4953 
4954 /*
4955  * Force the running and committing transactions to commit,
4956  * and wait on the commit.
4957  */
4958 int ext4_force_commit(struct super_block *sb)
4959 {
4960 	journal_t *journal;
4961 
4962 	if (sb_rdonly(sb))
4963 		return 0;
4964 
4965 	journal = EXT4_SB(sb)->s_journal;
4966 	return ext4_journal_force_commit(journal);
4967 }
4968 
4969 static int ext4_sync_fs(struct super_block *sb, int wait)
4970 {
4971 	int ret = 0;
4972 	tid_t target;
4973 	bool needs_barrier = false;
4974 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4975 
4976 	if (unlikely(ext4_forced_shutdown(sbi)))
4977 		return 0;
4978 
4979 	trace_ext4_sync_fs(sb, wait);
4980 	flush_workqueue(sbi->rsv_conversion_wq);
4981 	/*
4982 	 * Writeback quota in non-journalled quota case - journalled quota has
4983 	 * no dirty dquots
4984 	 */
4985 	dquot_writeback_dquots(sb, -1);
4986 	/*
4987 	 * Data writeback is possible w/o journal transaction, so barrier must
4988 	 * being sent at the end of the function. But we can skip it if
4989 	 * transaction_commit will do it for us.
4990 	 */
4991 	if (sbi->s_journal) {
4992 		target = jbd2_get_latest_transaction(sbi->s_journal);
4993 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4994 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4995 			needs_barrier = true;
4996 
4997 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4998 			if (wait)
4999 				ret = jbd2_log_wait_commit(sbi->s_journal,
5000 							   target);
5001 		}
5002 	} else if (wait && test_opt(sb, BARRIER))
5003 		needs_barrier = true;
5004 	if (needs_barrier) {
5005 		int err;
5006 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5007 		if (!ret)
5008 			ret = err;
5009 	}
5010 
5011 	return ret;
5012 }
5013 
5014 /*
5015  * LVM calls this function before a (read-only) snapshot is created.  This
5016  * gives us a chance to flush the journal completely and mark the fs clean.
5017  *
5018  * Note that only this function cannot bring a filesystem to be in a clean
5019  * state independently. It relies on upper layer to stop all data & metadata
5020  * modifications.
5021  */
5022 static int ext4_freeze(struct super_block *sb)
5023 {
5024 	int error = 0;
5025 	journal_t *journal;
5026 
5027 	if (sb_rdonly(sb))
5028 		return 0;
5029 
5030 	journal = EXT4_SB(sb)->s_journal;
5031 
5032 	if (journal) {
5033 		/* Now we set up the journal barrier. */
5034 		jbd2_journal_lock_updates(journal);
5035 
5036 		/*
5037 		 * Don't clear the needs_recovery flag if we failed to
5038 		 * flush the journal.
5039 		 */
5040 		error = jbd2_journal_flush(journal);
5041 		if (error < 0)
5042 			goto out;
5043 
5044 		/* Journal blocked and flushed, clear needs_recovery flag. */
5045 		ext4_clear_feature_journal_needs_recovery(sb);
5046 	}
5047 
5048 	error = ext4_commit_super(sb, 1);
5049 out:
5050 	if (journal)
5051 		/* we rely on upper layer to stop further updates */
5052 		jbd2_journal_unlock_updates(journal);
5053 	return error;
5054 }
5055 
5056 /*
5057  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5058  * flag here, even though the filesystem is not technically dirty yet.
5059  */
5060 static int ext4_unfreeze(struct super_block *sb)
5061 {
5062 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5063 		return 0;
5064 
5065 	if (EXT4_SB(sb)->s_journal) {
5066 		/* Reset the needs_recovery flag before the fs is unlocked. */
5067 		ext4_set_feature_journal_needs_recovery(sb);
5068 	}
5069 
5070 	ext4_commit_super(sb, 1);
5071 	return 0;
5072 }
5073 
5074 /*
5075  * Structure to save mount options for ext4_remount's benefit
5076  */
5077 struct ext4_mount_options {
5078 	unsigned long s_mount_opt;
5079 	unsigned long s_mount_opt2;
5080 	kuid_t s_resuid;
5081 	kgid_t s_resgid;
5082 	unsigned long s_commit_interval;
5083 	u32 s_min_batch_time, s_max_batch_time;
5084 #ifdef CONFIG_QUOTA
5085 	int s_jquota_fmt;
5086 	char *s_qf_names[EXT4_MAXQUOTAS];
5087 #endif
5088 };
5089 
5090 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5091 {
5092 	struct ext4_super_block *es;
5093 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5094 	unsigned long old_sb_flags;
5095 	struct ext4_mount_options old_opts;
5096 	int enable_quota = 0;
5097 	ext4_group_t g;
5098 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5099 	int err = 0;
5100 #ifdef CONFIG_QUOTA
5101 	int i, j;
5102 #endif
5103 	char *orig_data = kstrdup(data, GFP_KERNEL);
5104 
5105 	if (data && !orig_data)
5106 		return -ENOMEM;
5107 
5108 	/* Store the original options */
5109 	old_sb_flags = sb->s_flags;
5110 	old_opts.s_mount_opt = sbi->s_mount_opt;
5111 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5112 	old_opts.s_resuid = sbi->s_resuid;
5113 	old_opts.s_resgid = sbi->s_resgid;
5114 	old_opts.s_commit_interval = sbi->s_commit_interval;
5115 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5116 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5117 #ifdef CONFIG_QUOTA
5118 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5119 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5120 		if (sbi->s_qf_names[i]) {
5121 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5122 							 GFP_KERNEL);
5123 			if (!old_opts.s_qf_names[i]) {
5124 				for (j = 0; j < i; j++)
5125 					kfree(old_opts.s_qf_names[j]);
5126 				kfree(orig_data);
5127 				return -ENOMEM;
5128 			}
5129 		} else
5130 			old_opts.s_qf_names[i] = NULL;
5131 #endif
5132 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5133 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5134 
5135 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5136 		err = -EINVAL;
5137 		goto restore_opts;
5138 	}
5139 
5140 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5141 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5142 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5143 			 "during remount not supported; ignoring");
5144 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5145 	}
5146 
5147 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5148 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5149 			ext4_msg(sb, KERN_ERR, "can't mount with "
5150 				 "both data=journal and delalloc");
5151 			err = -EINVAL;
5152 			goto restore_opts;
5153 		}
5154 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5155 			ext4_msg(sb, KERN_ERR, "can't mount with "
5156 				 "both data=journal and dioread_nolock");
5157 			err = -EINVAL;
5158 			goto restore_opts;
5159 		}
5160 		if (test_opt(sb, DAX)) {
5161 			ext4_msg(sb, KERN_ERR, "can't mount with "
5162 				 "both data=journal and dax");
5163 			err = -EINVAL;
5164 			goto restore_opts;
5165 		}
5166 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5167 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5168 			ext4_msg(sb, KERN_ERR, "can't mount with "
5169 				"journal_async_commit in data=ordered mode");
5170 			err = -EINVAL;
5171 			goto restore_opts;
5172 		}
5173 	}
5174 
5175 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5176 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5177 		err = -EINVAL;
5178 		goto restore_opts;
5179 	}
5180 
5181 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5182 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5183 			"dax flag with busy inodes while remounting");
5184 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5185 	}
5186 
5187 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5188 		ext4_abort(sb, "Abort forced by user");
5189 
5190 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5191 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5192 
5193 	es = sbi->s_es;
5194 
5195 	if (sbi->s_journal) {
5196 		ext4_init_journal_params(sb, sbi->s_journal);
5197 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5198 	}
5199 
5200 	if (*flags & SB_LAZYTIME)
5201 		sb->s_flags |= SB_LAZYTIME;
5202 
5203 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5204 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5205 			err = -EROFS;
5206 			goto restore_opts;
5207 		}
5208 
5209 		if (*flags & SB_RDONLY) {
5210 			err = sync_filesystem(sb);
5211 			if (err < 0)
5212 				goto restore_opts;
5213 			err = dquot_suspend(sb, -1);
5214 			if (err < 0)
5215 				goto restore_opts;
5216 
5217 			/*
5218 			 * First of all, the unconditional stuff we have to do
5219 			 * to disable replay of the journal when we next remount
5220 			 */
5221 			sb->s_flags |= SB_RDONLY;
5222 
5223 			/*
5224 			 * OK, test if we are remounting a valid rw partition
5225 			 * readonly, and if so set the rdonly flag and then
5226 			 * mark the partition as valid again.
5227 			 */
5228 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5229 			    (sbi->s_mount_state & EXT4_VALID_FS))
5230 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5231 
5232 			if (sbi->s_journal)
5233 				ext4_mark_recovery_complete(sb, es);
5234 			if (sbi->s_mmp_tsk)
5235 				kthread_stop(sbi->s_mmp_tsk);
5236 		} else {
5237 			/* Make sure we can mount this feature set readwrite */
5238 			if (ext4_has_feature_readonly(sb) ||
5239 			    !ext4_feature_set_ok(sb, 0)) {
5240 				err = -EROFS;
5241 				goto restore_opts;
5242 			}
5243 			/*
5244 			 * Make sure the group descriptor checksums
5245 			 * are sane.  If they aren't, refuse to remount r/w.
5246 			 */
5247 			for (g = 0; g < sbi->s_groups_count; g++) {
5248 				struct ext4_group_desc *gdp =
5249 					ext4_get_group_desc(sb, g, NULL);
5250 
5251 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5252 					ext4_msg(sb, KERN_ERR,
5253 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5254 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5255 					       le16_to_cpu(gdp->bg_checksum));
5256 					err = -EFSBADCRC;
5257 					goto restore_opts;
5258 				}
5259 			}
5260 
5261 			/*
5262 			 * If we have an unprocessed orphan list hanging
5263 			 * around from a previously readonly bdev mount,
5264 			 * require a full umount/remount for now.
5265 			 */
5266 			if (es->s_last_orphan) {
5267 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5268 				       "remount RDWR because of unprocessed "
5269 				       "orphan inode list.  Please "
5270 				       "umount/remount instead");
5271 				err = -EINVAL;
5272 				goto restore_opts;
5273 			}
5274 
5275 			/*
5276 			 * Mounting a RDONLY partition read-write, so reread
5277 			 * and store the current valid flag.  (It may have
5278 			 * been changed by e2fsck since we originally mounted
5279 			 * the partition.)
5280 			 */
5281 			if (sbi->s_journal)
5282 				ext4_clear_journal_err(sb, es);
5283 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5284 
5285 			err = ext4_setup_super(sb, es, 0);
5286 			if (err)
5287 				goto restore_opts;
5288 
5289 			sb->s_flags &= ~SB_RDONLY;
5290 			if (ext4_has_feature_mmp(sb))
5291 				if (ext4_multi_mount_protect(sb,
5292 						le64_to_cpu(es->s_mmp_block))) {
5293 					err = -EROFS;
5294 					goto restore_opts;
5295 				}
5296 			enable_quota = 1;
5297 		}
5298 	}
5299 
5300 	/*
5301 	 * Reinitialize lazy itable initialization thread based on
5302 	 * current settings
5303 	 */
5304 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5305 		ext4_unregister_li_request(sb);
5306 	else {
5307 		ext4_group_t first_not_zeroed;
5308 		first_not_zeroed = ext4_has_uninit_itable(sb);
5309 		ext4_register_li_request(sb, first_not_zeroed);
5310 	}
5311 
5312 	ext4_setup_system_zone(sb);
5313 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5314 		err = ext4_commit_super(sb, 1);
5315 		if (err)
5316 			goto restore_opts;
5317 	}
5318 
5319 #ifdef CONFIG_QUOTA
5320 	/* Release old quota file names */
5321 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5322 		kfree(old_opts.s_qf_names[i]);
5323 	if (enable_quota) {
5324 		if (sb_any_quota_suspended(sb))
5325 			dquot_resume(sb, -1);
5326 		else if (ext4_has_feature_quota(sb)) {
5327 			err = ext4_enable_quotas(sb);
5328 			if (err)
5329 				goto restore_opts;
5330 		}
5331 	}
5332 #endif
5333 
5334 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5335 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5336 	kfree(orig_data);
5337 	return 0;
5338 
5339 restore_opts:
5340 	sb->s_flags = old_sb_flags;
5341 	sbi->s_mount_opt = old_opts.s_mount_opt;
5342 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5343 	sbi->s_resuid = old_opts.s_resuid;
5344 	sbi->s_resgid = old_opts.s_resgid;
5345 	sbi->s_commit_interval = old_opts.s_commit_interval;
5346 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5347 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5348 #ifdef CONFIG_QUOTA
5349 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5350 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5351 		kfree(sbi->s_qf_names[i]);
5352 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5353 	}
5354 #endif
5355 	kfree(orig_data);
5356 	return err;
5357 }
5358 
5359 #ifdef CONFIG_QUOTA
5360 static int ext4_statfs_project(struct super_block *sb,
5361 			       kprojid_t projid, struct kstatfs *buf)
5362 {
5363 	struct kqid qid;
5364 	struct dquot *dquot;
5365 	u64 limit;
5366 	u64 curblock;
5367 
5368 	qid = make_kqid_projid(projid);
5369 	dquot = dqget(sb, qid);
5370 	if (IS_ERR(dquot))
5371 		return PTR_ERR(dquot);
5372 	spin_lock(&dquot->dq_dqb_lock);
5373 
5374 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5375 		 dquot->dq_dqb.dqb_bsoftlimit :
5376 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5377 	if (limit && buf->f_blocks > limit) {
5378 		curblock = (dquot->dq_dqb.dqb_curspace +
5379 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5380 		buf->f_blocks = limit;
5381 		buf->f_bfree = buf->f_bavail =
5382 			(buf->f_blocks > curblock) ?
5383 			 (buf->f_blocks - curblock) : 0;
5384 	}
5385 
5386 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5387 		dquot->dq_dqb.dqb_isoftlimit :
5388 		dquot->dq_dqb.dqb_ihardlimit;
5389 	if (limit && buf->f_files > limit) {
5390 		buf->f_files = limit;
5391 		buf->f_ffree =
5392 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5393 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5394 	}
5395 
5396 	spin_unlock(&dquot->dq_dqb_lock);
5397 	dqput(dquot);
5398 	return 0;
5399 }
5400 #endif
5401 
5402 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5403 {
5404 	struct super_block *sb = dentry->d_sb;
5405 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5406 	struct ext4_super_block *es = sbi->s_es;
5407 	ext4_fsblk_t overhead = 0, resv_blocks;
5408 	u64 fsid;
5409 	s64 bfree;
5410 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5411 
5412 	if (!test_opt(sb, MINIX_DF))
5413 		overhead = sbi->s_overhead;
5414 
5415 	buf->f_type = EXT4_SUPER_MAGIC;
5416 	buf->f_bsize = sb->s_blocksize;
5417 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5418 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5419 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5420 	/* prevent underflow in case that few free space is available */
5421 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5422 	buf->f_bavail = buf->f_bfree -
5423 			(ext4_r_blocks_count(es) + resv_blocks);
5424 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5425 		buf->f_bavail = 0;
5426 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5427 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5428 	buf->f_namelen = EXT4_NAME_LEN;
5429 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5430 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5431 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5432 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5433 
5434 #ifdef CONFIG_QUOTA
5435 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5436 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5437 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5438 #endif
5439 	return 0;
5440 }
5441 
5442 
5443 #ifdef CONFIG_QUOTA
5444 
5445 /*
5446  * Helper functions so that transaction is started before we acquire dqio_sem
5447  * to keep correct lock ordering of transaction > dqio_sem
5448  */
5449 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5450 {
5451 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5452 }
5453 
5454 static int ext4_write_dquot(struct dquot *dquot)
5455 {
5456 	int ret, err;
5457 	handle_t *handle;
5458 	struct inode *inode;
5459 
5460 	inode = dquot_to_inode(dquot);
5461 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5462 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5463 	if (IS_ERR(handle))
5464 		return PTR_ERR(handle);
5465 	ret = dquot_commit(dquot);
5466 	err = ext4_journal_stop(handle);
5467 	if (!ret)
5468 		ret = err;
5469 	return ret;
5470 }
5471 
5472 static int ext4_acquire_dquot(struct dquot *dquot)
5473 {
5474 	int ret, err;
5475 	handle_t *handle;
5476 
5477 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5478 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5479 	if (IS_ERR(handle))
5480 		return PTR_ERR(handle);
5481 	ret = dquot_acquire(dquot);
5482 	err = ext4_journal_stop(handle);
5483 	if (!ret)
5484 		ret = err;
5485 	return ret;
5486 }
5487 
5488 static int ext4_release_dquot(struct dquot *dquot)
5489 {
5490 	int ret, err;
5491 	handle_t *handle;
5492 
5493 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5494 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5495 	if (IS_ERR(handle)) {
5496 		/* Release dquot anyway to avoid endless cycle in dqput() */
5497 		dquot_release(dquot);
5498 		return PTR_ERR(handle);
5499 	}
5500 	ret = dquot_release(dquot);
5501 	err = ext4_journal_stop(handle);
5502 	if (!ret)
5503 		ret = err;
5504 	return ret;
5505 }
5506 
5507 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5508 {
5509 	struct super_block *sb = dquot->dq_sb;
5510 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5511 
5512 	/* Are we journaling quotas? */
5513 	if (ext4_has_feature_quota(sb) ||
5514 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5515 		dquot_mark_dquot_dirty(dquot);
5516 		return ext4_write_dquot(dquot);
5517 	} else {
5518 		return dquot_mark_dquot_dirty(dquot);
5519 	}
5520 }
5521 
5522 static int ext4_write_info(struct super_block *sb, int type)
5523 {
5524 	int ret, err;
5525 	handle_t *handle;
5526 
5527 	/* Data block + inode block */
5528 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5529 	if (IS_ERR(handle))
5530 		return PTR_ERR(handle);
5531 	ret = dquot_commit_info(sb, type);
5532 	err = ext4_journal_stop(handle);
5533 	if (!ret)
5534 		ret = err;
5535 	return ret;
5536 }
5537 
5538 /*
5539  * Turn on quotas during mount time - we need to find
5540  * the quota file and such...
5541  */
5542 static int ext4_quota_on_mount(struct super_block *sb, int type)
5543 {
5544 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5545 					EXT4_SB(sb)->s_jquota_fmt, type);
5546 }
5547 
5548 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5549 {
5550 	struct ext4_inode_info *ei = EXT4_I(inode);
5551 
5552 	/* The first argument of lockdep_set_subclass has to be
5553 	 * *exactly* the same as the argument to init_rwsem() --- in
5554 	 * this case, in init_once() --- or lockdep gets unhappy
5555 	 * because the name of the lock is set using the
5556 	 * stringification of the argument to init_rwsem().
5557 	 */
5558 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5559 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5560 }
5561 
5562 /*
5563  * Standard function to be called on quota_on
5564  */
5565 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5566 			 const struct path *path)
5567 {
5568 	int err;
5569 
5570 	if (!test_opt(sb, QUOTA))
5571 		return -EINVAL;
5572 
5573 	/* Quotafile not on the same filesystem? */
5574 	if (path->dentry->d_sb != sb)
5575 		return -EXDEV;
5576 	/* Journaling quota? */
5577 	if (EXT4_SB(sb)->s_qf_names[type]) {
5578 		/* Quotafile not in fs root? */
5579 		if (path->dentry->d_parent != sb->s_root)
5580 			ext4_msg(sb, KERN_WARNING,
5581 				"Quota file not on filesystem root. "
5582 				"Journaled quota will not work");
5583 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5584 	} else {
5585 		/*
5586 		 * Clear the flag just in case mount options changed since
5587 		 * last time.
5588 		 */
5589 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5590 	}
5591 
5592 	/*
5593 	 * When we journal data on quota file, we have to flush journal to see
5594 	 * all updates to the file when we bypass pagecache...
5595 	 */
5596 	if (EXT4_SB(sb)->s_journal &&
5597 	    ext4_should_journal_data(d_inode(path->dentry))) {
5598 		/*
5599 		 * We don't need to lock updates but journal_flush() could
5600 		 * otherwise be livelocked...
5601 		 */
5602 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5603 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5604 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5605 		if (err)
5606 			return err;
5607 	}
5608 
5609 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5610 	err = dquot_quota_on(sb, type, format_id, path);
5611 	if (err) {
5612 		lockdep_set_quota_inode(path->dentry->d_inode,
5613 					     I_DATA_SEM_NORMAL);
5614 	} else {
5615 		struct inode *inode = d_inode(path->dentry);
5616 		handle_t *handle;
5617 
5618 		/*
5619 		 * Set inode flags to prevent userspace from messing with quota
5620 		 * files. If this fails, we return success anyway since quotas
5621 		 * are already enabled and this is not a hard failure.
5622 		 */
5623 		inode_lock(inode);
5624 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5625 		if (IS_ERR(handle))
5626 			goto unlock_inode;
5627 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5628 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5629 				S_NOATIME | S_IMMUTABLE);
5630 		ext4_mark_inode_dirty(handle, inode);
5631 		ext4_journal_stop(handle);
5632 	unlock_inode:
5633 		inode_unlock(inode);
5634 	}
5635 	return err;
5636 }
5637 
5638 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5639 			     unsigned int flags)
5640 {
5641 	int err;
5642 	struct inode *qf_inode;
5643 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5644 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5645 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5646 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5647 	};
5648 
5649 	BUG_ON(!ext4_has_feature_quota(sb));
5650 
5651 	if (!qf_inums[type])
5652 		return -EPERM;
5653 
5654 	qf_inode = ext4_iget(sb, qf_inums[type]);
5655 	if (IS_ERR(qf_inode)) {
5656 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5657 		return PTR_ERR(qf_inode);
5658 	}
5659 
5660 	/* Don't account quota for quota files to avoid recursion */
5661 	qf_inode->i_flags |= S_NOQUOTA;
5662 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5663 	err = dquot_enable(qf_inode, type, format_id, flags);
5664 	iput(qf_inode);
5665 	if (err)
5666 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5667 
5668 	return err;
5669 }
5670 
5671 /* Enable usage tracking for all quota types. */
5672 static int ext4_enable_quotas(struct super_block *sb)
5673 {
5674 	int type, err = 0;
5675 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5676 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5677 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5678 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5679 	};
5680 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5681 		test_opt(sb, USRQUOTA),
5682 		test_opt(sb, GRPQUOTA),
5683 		test_opt(sb, PRJQUOTA),
5684 	};
5685 
5686 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5687 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5688 		if (qf_inums[type]) {
5689 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5690 				DQUOT_USAGE_ENABLED |
5691 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5692 			if (err) {
5693 				ext4_warning(sb,
5694 					"Failed to enable quota tracking "
5695 					"(type=%d, err=%d). Please run "
5696 					"e2fsck to fix.", type, err);
5697 				for (type--; type >= 0; type--)
5698 					dquot_quota_off(sb, type);
5699 
5700 				return err;
5701 			}
5702 		}
5703 	}
5704 	return 0;
5705 }
5706 
5707 static int ext4_quota_off(struct super_block *sb, int type)
5708 {
5709 	struct inode *inode = sb_dqopt(sb)->files[type];
5710 	handle_t *handle;
5711 	int err;
5712 
5713 	/* Force all delayed allocation blocks to be allocated.
5714 	 * Caller already holds s_umount sem */
5715 	if (test_opt(sb, DELALLOC))
5716 		sync_filesystem(sb);
5717 
5718 	if (!inode || !igrab(inode))
5719 		goto out;
5720 
5721 	err = dquot_quota_off(sb, type);
5722 	if (err || ext4_has_feature_quota(sb))
5723 		goto out_put;
5724 
5725 	inode_lock(inode);
5726 	/*
5727 	 * Update modification times of quota files when userspace can
5728 	 * start looking at them. If we fail, we return success anyway since
5729 	 * this is not a hard failure and quotas are already disabled.
5730 	 */
5731 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5732 	if (IS_ERR(handle))
5733 		goto out_unlock;
5734 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5735 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5736 	inode->i_mtime = inode->i_ctime = current_time(inode);
5737 	ext4_mark_inode_dirty(handle, inode);
5738 	ext4_journal_stop(handle);
5739 out_unlock:
5740 	inode_unlock(inode);
5741 out_put:
5742 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5743 	iput(inode);
5744 	return err;
5745 out:
5746 	return dquot_quota_off(sb, type);
5747 }
5748 
5749 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5750  * acquiring the locks... As quota files are never truncated and quota code
5751  * itself serializes the operations (and no one else should touch the files)
5752  * we don't have to be afraid of races */
5753 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5754 			       size_t len, loff_t off)
5755 {
5756 	struct inode *inode = sb_dqopt(sb)->files[type];
5757 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5758 	int offset = off & (sb->s_blocksize - 1);
5759 	int tocopy;
5760 	size_t toread;
5761 	struct buffer_head *bh;
5762 	loff_t i_size = i_size_read(inode);
5763 
5764 	if (off > i_size)
5765 		return 0;
5766 	if (off+len > i_size)
5767 		len = i_size-off;
5768 	toread = len;
5769 	while (toread > 0) {
5770 		tocopy = sb->s_blocksize - offset < toread ?
5771 				sb->s_blocksize - offset : toread;
5772 		bh = ext4_bread(NULL, inode, blk, 0);
5773 		if (IS_ERR(bh))
5774 			return PTR_ERR(bh);
5775 		if (!bh)	/* A hole? */
5776 			memset(data, 0, tocopy);
5777 		else
5778 			memcpy(data, bh->b_data+offset, tocopy);
5779 		brelse(bh);
5780 		offset = 0;
5781 		toread -= tocopy;
5782 		data += tocopy;
5783 		blk++;
5784 	}
5785 	return len;
5786 }
5787 
5788 /* Write to quotafile (we know the transaction is already started and has
5789  * enough credits) */
5790 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5791 				const char *data, size_t len, loff_t off)
5792 {
5793 	struct inode *inode = sb_dqopt(sb)->files[type];
5794 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5795 	int err, offset = off & (sb->s_blocksize - 1);
5796 	int retries = 0;
5797 	struct buffer_head *bh;
5798 	handle_t *handle = journal_current_handle();
5799 
5800 	if (EXT4_SB(sb)->s_journal && !handle) {
5801 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5802 			" cancelled because transaction is not started",
5803 			(unsigned long long)off, (unsigned long long)len);
5804 		return -EIO;
5805 	}
5806 	/*
5807 	 * Since we account only one data block in transaction credits,
5808 	 * then it is impossible to cross a block boundary.
5809 	 */
5810 	if (sb->s_blocksize - offset < len) {
5811 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5812 			" cancelled because not block aligned",
5813 			(unsigned long long)off, (unsigned long long)len);
5814 		return -EIO;
5815 	}
5816 
5817 	do {
5818 		bh = ext4_bread(handle, inode, blk,
5819 				EXT4_GET_BLOCKS_CREATE |
5820 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5821 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5822 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5823 	if (IS_ERR(bh))
5824 		return PTR_ERR(bh);
5825 	if (!bh)
5826 		goto out;
5827 	BUFFER_TRACE(bh, "get write access");
5828 	err = ext4_journal_get_write_access(handle, bh);
5829 	if (err) {
5830 		brelse(bh);
5831 		return err;
5832 	}
5833 	lock_buffer(bh);
5834 	memcpy(bh->b_data+offset, data, len);
5835 	flush_dcache_page(bh->b_page);
5836 	unlock_buffer(bh);
5837 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5838 	brelse(bh);
5839 out:
5840 	if (inode->i_size < off + len) {
5841 		i_size_write(inode, off + len);
5842 		EXT4_I(inode)->i_disksize = inode->i_size;
5843 		ext4_mark_inode_dirty(handle, inode);
5844 	}
5845 	return len;
5846 }
5847 
5848 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5849 {
5850 	const struct quota_format_ops	*ops;
5851 
5852 	if (!sb_has_quota_loaded(sb, qid->type))
5853 		return -ESRCH;
5854 	ops = sb_dqopt(sb)->ops[qid->type];
5855 	if (!ops || !ops->get_next_id)
5856 		return -ENOSYS;
5857 	return dquot_get_next_id(sb, qid);
5858 }
5859 #endif
5860 
5861 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5862 		       const char *dev_name, void *data)
5863 {
5864 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5865 }
5866 
5867 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5868 static inline void register_as_ext2(void)
5869 {
5870 	int err = register_filesystem(&ext2_fs_type);
5871 	if (err)
5872 		printk(KERN_WARNING
5873 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5874 }
5875 
5876 static inline void unregister_as_ext2(void)
5877 {
5878 	unregister_filesystem(&ext2_fs_type);
5879 }
5880 
5881 static inline int ext2_feature_set_ok(struct super_block *sb)
5882 {
5883 	if (ext4_has_unknown_ext2_incompat_features(sb))
5884 		return 0;
5885 	if (sb_rdonly(sb))
5886 		return 1;
5887 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5888 		return 0;
5889 	return 1;
5890 }
5891 #else
5892 static inline void register_as_ext2(void) { }
5893 static inline void unregister_as_ext2(void) { }
5894 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5895 #endif
5896 
5897 static inline void register_as_ext3(void)
5898 {
5899 	int err = register_filesystem(&ext3_fs_type);
5900 	if (err)
5901 		printk(KERN_WARNING
5902 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5903 }
5904 
5905 static inline void unregister_as_ext3(void)
5906 {
5907 	unregister_filesystem(&ext3_fs_type);
5908 }
5909 
5910 static inline int ext3_feature_set_ok(struct super_block *sb)
5911 {
5912 	if (ext4_has_unknown_ext3_incompat_features(sb))
5913 		return 0;
5914 	if (!ext4_has_feature_journal(sb))
5915 		return 0;
5916 	if (sb_rdonly(sb))
5917 		return 1;
5918 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5919 		return 0;
5920 	return 1;
5921 }
5922 
5923 static struct file_system_type ext4_fs_type = {
5924 	.owner		= THIS_MODULE,
5925 	.name		= "ext4",
5926 	.mount		= ext4_mount,
5927 	.kill_sb	= kill_block_super,
5928 	.fs_flags	= FS_REQUIRES_DEV,
5929 };
5930 MODULE_ALIAS_FS("ext4");
5931 
5932 /* Shared across all ext4 file systems */
5933 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5934 
5935 static int __init ext4_init_fs(void)
5936 {
5937 	int i, err;
5938 
5939 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5940 	ext4_li_info = NULL;
5941 	mutex_init(&ext4_li_mtx);
5942 
5943 	/* Build-time check for flags consistency */
5944 	ext4_check_flag_values();
5945 
5946 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5947 		init_waitqueue_head(&ext4__ioend_wq[i]);
5948 
5949 	err = ext4_init_es();
5950 	if (err)
5951 		return err;
5952 
5953 	err = ext4_init_pageio();
5954 	if (err)
5955 		goto out5;
5956 
5957 	err = ext4_init_system_zone();
5958 	if (err)
5959 		goto out4;
5960 
5961 	err = ext4_init_sysfs();
5962 	if (err)
5963 		goto out3;
5964 
5965 	err = ext4_init_mballoc();
5966 	if (err)
5967 		goto out2;
5968 	err = init_inodecache();
5969 	if (err)
5970 		goto out1;
5971 	register_as_ext3();
5972 	register_as_ext2();
5973 	err = register_filesystem(&ext4_fs_type);
5974 	if (err)
5975 		goto out;
5976 
5977 	return 0;
5978 out:
5979 	unregister_as_ext2();
5980 	unregister_as_ext3();
5981 	destroy_inodecache();
5982 out1:
5983 	ext4_exit_mballoc();
5984 out2:
5985 	ext4_exit_sysfs();
5986 out3:
5987 	ext4_exit_system_zone();
5988 out4:
5989 	ext4_exit_pageio();
5990 out5:
5991 	ext4_exit_es();
5992 
5993 	return err;
5994 }
5995 
5996 static void __exit ext4_exit_fs(void)
5997 {
5998 	ext4_destroy_lazyinit_thread();
5999 	unregister_as_ext2();
6000 	unregister_as_ext3();
6001 	unregister_filesystem(&ext4_fs_type);
6002 	destroy_inodecache();
6003 	ext4_exit_mballoc();
6004 	ext4_exit_sysfs();
6005 	ext4_exit_system_zone();
6006 	ext4_exit_pageio();
6007 	ext4_exit_es();
6008 }
6009 
6010 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6011 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6012 MODULE_LICENSE("GPL");
6013 MODULE_SOFTDEP("pre: crc32c");
6014 module_init(ext4_init_fs)
6015 module_exit(ext4_exit_fs)
6016