xref: /openbmc/linux/fs/ext4/super.c (revision cd99b9eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io)
165 {
166 	/*
167 	 * buffer's verified bit is no longer valid after reading from
168 	 * disk again due to write out error, clear it to make sure we
169 	 * recheck the buffer contents.
170 	 */
171 	clear_buffer_verified(bh);
172 
173 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 	get_bh(bh);
175 	submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 			 bh_end_io_t *end_io)
180 {
181 	BUG_ON(!buffer_locked(bh));
182 
183 	if (ext4_buffer_uptodate(bh)) {
184 		unlock_buffer(bh);
185 		return;
186 	}
187 	__ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 	BUG_ON(!buffer_locked(bh));
193 
194 	if (ext4_buffer_uptodate(bh)) {
195 		unlock_buffer(bh);
196 		return 0;
197 	}
198 
199 	__ext4_read_bh(bh, op_flags, end_io);
200 
201 	wait_on_buffer(bh);
202 	if (buffer_uptodate(bh))
203 		return 0;
204 	return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 	lock_buffer(bh);
210 	if (!wait) {
211 		ext4_read_bh_nowait(bh, op_flags, NULL);
212 		return 0;
213 	}
214 	return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 					       sector_t block,
225 					       blk_opf_t op_flags, gfp_t gfp)
226 {
227 	struct buffer_head *bh;
228 	int ret;
229 
230 	bh = sb_getblk_gfp(sb, block, gfp);
231 	if (bh == NULL)
232 		return ERR_PTR(-ENOMEM);
233 	if (ext4_buffer_uptodate(bh))
234 		return bh;
235 
236 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 	if (ret) {
238 		put_bh(bh);
239 		return ERR_PTR(ret);
240 	}
241 	return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 				   blk_opf_t op_flags)
246 {
247 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
248 }
249 
250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
251 					    sector_t block)
252 {
253 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
254 }
255 
256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
257 {
258 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
259 
260 	if (likely(bh)) {
261 		if (trylock_buffer(bh))
262 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
263 		brelse(bh);
264 	}
265 }
266 
267 static int ext4_verify_csum_type(struct super_block *sb,
268 				 struct ext4_super_block *es)
269 {
270 	if (!ext4_has_feature_metadata_csum(sb))
271 		return 1;
272 
273 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
274 }
275 
276 __le32 ext4_superblock_csum(struct super_block *sb,
277 			    struct ext4_super_block *es)
278 {
279 	struct ext4_sb_info *sbi = EXT4_SB(sb);
280 	int offset = offsetof(struct ext4_super_block, s_checksum);
281 	__u32 csum;
282 
283 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
284 
285 	return cpu_to_le32(csum);
286 }
287 
288 static int ext4_superblock_csum_verify(struct super_block *sb,
289 				       struct ext4_super_block *es)
290 {
291 	if (!ext4_has_metadata_csum(sb))
292 		return 1;
293 
294 	return es->s_checksum == ext4_superblock_csum(sb, es);
295 }
296 
297 void ext4_superblock_csum_set(struct super_block *sb)
298 {
299 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
300 
301 	if (!ext4_has_metadata_csum(sb))
302 		return;
303 
304 	es->s_checksum = ext4_superblock_csum(sb, es);
305 }
306 
307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
308 			       struct ext4_group_desc *bg)
309 {
310 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
311 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
312 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
313 }
314 
315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
316 			       struct ext4_group_desc *bg)
317 {
318 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
319 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
320 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
321 }
322 
323 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
324 			      struct ext4_group_desc *bg)
325 {
326 	return le32_to_cpu(bg->bg_inode_table_lo) |
327 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
328 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
329 }
330 
331 __u32 ext4_free_group_clusters(struct super_block *sb,
332 			       struct ext4_group_desc *bg)
333 {
334 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
335 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
336 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
337 }
338 
339 __u32 ext4_free_inodes_count(struct super_block *sb,
340 			      struct ext4_group_desc *bg)
341 {
342 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
343 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
344 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
345 }
346 
347 __u32 ext4_used_dirs_count(struct super_block *sb,
348 			      struct ext4_group_desc *bg)
349 {
350 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
351 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
352 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
353 }
354 
355 __u32 ext4_itable_unused_count(struct super_block *sb,
356 			      struct ext4_group_desc *bg)
357 {
358 	return le16_to_cpu(bg->bg_itable_unused_lo) |
359 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
360 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
361 }
362 
363 void ext4_block_bitmap_set(struct super_block *sb,
364 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
365 {
366 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
367 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
368 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
369 }
370 
371 void ext4_inode_bitmap_set(struct super_block *sb,
372 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 {
374 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
375 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
376 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
377 }
378 
379 void ext4_inode_table_set(struct super_block *sb,
380 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 {
382 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
383 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
384 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
385 }
386 
387 void ext4_free_group_clusters_set(struct super_block *sb,
388 				  struct ext4_group_desc *bg, __u32 count)
389 {
390 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
391 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
392 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
393 }
394 
395 void ext4_free_inodes_set(struct super_block *sb,
396 			  struct ext4_group_desc *bg, __u32 count)
397 {
398 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
399 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
400 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
401 }
402 
403 void ext4_used_dirs_set(struct super_block *sb,
404 			  struct ext4_group_desc *bg, __u32 count)
405 {
406 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
407 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
408 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
409 }
410 
411 void ext4_itable_unused_set(struct super_block *sb,
412 			  struct ext4_group_desc *bg, __u32 count)
413 {
414 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
415 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
416 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
417 }
418 
419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
420 {
421 	now = clamp_val(now, 0, (1ull << 40) - 1);
422 
423 	*lo = cpu_to_le32(lower_32_bits(now));
424 	*hi = upper_32_bits(now);
425 }
426 
427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
428 {
429 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
430 }
431 #define ext4_update_tstamp(es, tstamp) \
432 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
433 			     ktime_get_real_seconds())
434 #define ext4_get_tstamp(es, tstamp) \
435 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436 
437 /*
438  * The del_gendisk() function uninitializes the disk-specific data
439  * structures, including the bdi structure, without telling anyone
440  * else.  Once this happens, any attempt to call mark_buffer_dirty()
441  * (for example, by ext4_commit_super), will cause a kernel OOPS.
442  * This is a kludge to prevent these oops until we can put in a proper
443  * hook in del_gendisk() to inform the VFS and file system layers.
444  */
445 static int block_device_ejected(struct super_block *sb)
446 {
447 	struct inode *bd_inode = sb->s_bdev->bd_inode;
448 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
449 
450 	return bdi->dev == NULL;
451 }
452 
453 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
454 {
455 	struct super_block		*sb = journal->j_private;
456 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
457 	int				error = is_journal_aborted(journal);
458 	struct ext4_journal_cb_entry	*jce;
459 
460 	BUG_ON(txn->t_state == T_FINISHED);
461 
462 	ext4_process_freed_data(sb, txn->t_tid);
463 
464 	spin_lock(&sbi->s_md_lock);
465 	while (!list_empty(&txn->t_private_list)) {
466 		jce = list_entry(txn->t_private_list.next,
467 				 struct ext4_journal_cb_entry, jce_list);
468 		list_del_init(&jce->jce_list);
469 		spin_unlock(&sbi->s_md_lock);
470 		jce->jce_func(sb, jce, error);
471 		spin_lock(&sbi->s_md_lock);
472 	}
473 	spin_unlock(&sbi->s_md_lock);
474 }
475 
476 /*
477  * This writepage callback for write_cache_pages()
478  * takes care of a few cases after page cleaning.
479  *
480  * write_cache_pages() already checks for dirty pages
481  * and calls clear_page_dirty_for_io(), which we want,
482  * to write protect the pages.
483  *
484  * However, we may have to redirty a page (see below.)
485  */
486 static int ext4_journalled_writepage_callback(struct folio *folio,
487 					      struct writeback_control *wbc,
488 					      void *data)
489 {
490 	transaction_t *transaction = (transaction_t *) data;
491 	struct buffer_head *bh, *head;
492 	struct journal_head *jh;
493 
494 	bh = head = folio_buffers(folio);
495 	do {
496 		/*
497 		 * We have to redirty a page in these cases:
498 		 * 1) If buffer is dirty, it means the page was dirty because it
499 		 * contains a buffer that needs checkpointing. So the dirty bit
500 		 * needs to be preserved so that checkpointing writes the buffer
501 		 * properly.
502 		 * 2) If buffer is not part of the committing transaction
503 		 * (we may have just accidentally come across this buffer because
504 		 * inode range tracking is not exact) or if the currently running
505 		 * transaction already contains this buffer as well, dirty bit
506 		 * needs to be preserved so that the buffer gets writeprotected
507 		 * properly on running transaction's commit.
508 		 */
509 		jh = bh2jh(bh);
510 		if (buffer_dirty(bh) ||
511 		    (jh && (jh->b_transaction != transaction ||
512 			    jh->b_next_transaction))) {
513 			folio_redirty_for_writepage(wbc, folio);
514 			goto out;
515 		}
516 	} while ((bh = bh->b_this_page) != head);
517 
518 out:
519 	return AOP_WRITEPAGE_ACTIVATE;
520 }
521 
522 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
523 {
524 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
525 	struct writeback_control wbc = {
526 		.sync_mode =  WB_SYNC_ALL,
527 		.nr_to_write = LONG_MAX,
528 		.range_start = jinode->i_dirty_start,
529 		.range_end = jinode->i_dirty_end,
530         };
531 
532 	return write_cache_pages(mapping, &wbc,
533 				 ext4_journalled_writepage_callback,
534 				 jinode->i_transaction);
535 }
536 
537 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
538 {
539 	int ret;
540 
541 	if (ext4_should_journal_data(jinode->i_vfs_inode))
542 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
543 	else
544 		ret = ext4_normal_submit_inode_data_buffers(jinode);
545 	return ret;
546 }
547 
548 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
549 {
550 	int ret = 0;
551 
552 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
553 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
554 
555 	return ret;
556 }
557 
558 static bool system_going_down(void)
559 {
560 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
561 		|| system_state == SYSTEM_RESTART;
562 }
563 
564 struct ext4_err_translation {
565 	int code;
566 	int errno;
567 };
568 
569 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
570 
571 static struct ext4_err_translation err_translation[] = {
572 	EXT4_ERR_TRANSLATE(EIO),
573 	EXT4_ERR_TRANSLATE(ENOMEM),
574 	EXT4_ERR_TRANSLATE(EFSBADCRC),
575 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
576 	EXT4_ERR_TRANSLATE(ENOSPC),
577 	EXT4_ERR_TRANSLATE(ENOKEY),
578 	EXT4_ERR_TRANSLATE(EROFS),
579 	EXT4_ERR_TRANSLATE(EFBIG),
580 	EXT4_ERR_TRANSLATE(EEXIST),
581 	EXT4_ERR_TRANSLATE(ERANGE),
582 	EXT4_ERR_TRANSLATE(EOVERFLOW),
583 	EXT4_ERR_TRANSLATE(EBUSY),
584 	EXT4_ERR_TRANSLATE(ENOTDIR),
585 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
586 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
587 	EXT4_ERR_TRANSLATE(EFAULT),
588 };
589 
590 static int ext4_errno_to_code(int errno)
591 {
592 	int i;
593 
594 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
595 		if (err_translation[i].errno == errno)
596 			return err_translation[i].code;
597 	return EXT4_ERR_UNKNOWN;
598 }
599 
600 static void save_error_info(struct super_block *sb, int error,
601 			    __u32 ino, __u64 block,
602 			    const char *func, unsigned int line)
603 {
604 	struct ext4_sb_info *sbi = EXT4_SB(sb);
605 
606 	/* We default to EFSCORRUPTED error... */
607 	if (error == 0)
608 		error = EFSCORRUPTED;
609 
610 	spin_lock(&sbi->s_error_lock);
611 	sbi->s_add_error_count++;
612 	sbi->s_last_error_code = error;
613 	sbi->s_last_error_line = line;
614 	sbi->s_last_error_ino = ino;
615 	sbi->s_last_error_block = block;
616 	sbi->s_last_error_func = func;
617 	sbi->s_last_error_time = ktime_get_real_seconds();
618 	if (!sbi->s_first_error_time) {
619 		sbi->s_first_error_code = error;
620 		sbi->s_first_error_line = line;
621 		sbi->s_first_error_ino = ino;
622 		sbi->s_first_error_block = block;
623 		sbi->s_first_error_func = func;
624 		sbi->s_first_error_time = sbi->s_last_error_time;
625 	}
626 	spin_unlock(&sbi->s_error_lock);
627 }
628 
629 /* Deal with the reporting of failure conditions on a filesystem such as
630  * inconsistencies detected or read IO failures.
631  *
632  * On ext2, we can store the error state of the filesystem in the
633  * superblock.  That is not possible on ext4, because we may have other
634  * write ordering constraints on the superblock which prevent us from
635  * writing it out straight away; and given that the journal is about to
636  * be aborted, we can't rely on the current, or future, transactions to
637  * write out the superblock safely.
638  *
639  * We'll just use the jbd2_journal_abort() error code to record an error in
640  * the journal instead.  On recovery, the journal will complain about
641  * that error until we've noted it down and cleared it.
642  *
643  * If force_ro is set, we unconditionally force the filesystem into an
644  * ABORT|READONLY state, unless the error response on the fs has been set to
645  * panic in which case we take the easy way out and panic immediately. This is
646  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
647  * at a critical moment in log management.
648  */
649 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
650 			      __u32 ino, __u64 block,
651 			      const char *func, unsigned int line)
652 {
653 	journal_t *journal = EXT4_SB(sb)->s_journal;
654 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
655 
656 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
657 	if (test_opt(sb, WARN_ON_ERROR))
658 		WARN_ON_ONCE(1);
659 
660 	if (!continue_fs && !sb_rdonly(sb)) {
661 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
662 		if (journal)
663 			jbd2_journal_abort(journal, -EIO);
664 	}
665 
666 	if (!bdev_read_only(sb->s_bdev)) {
667 		save_error_info(sb, error, ino, block, func, line);
668 		/*
669 		 * In case the fs should keep running, we need to writeout
670 		 * superblock through the journal. Due to lock ordering
671 		 * constraints, it may not be safe to do it right here so we
672 		 * defer superblock flushing to a workqueue.
673 		 */
674 		if (continue_fs && journal)
675 			schedule_work(&EXT4_SB(sb)->s_error_work);
676 		else
677 			ext4_commit_super(sb);
678 	}
679 
680 	/*
681 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
682 	 * could panic during 'reboot -f' as the underlying device got already
683 	 * disabled.
684 	 */
685 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
686 		panic("EXT4-fs (device %s): panic forced after error\n",
687 			sb->s_id);
688 	}
689 
690 	if (sb_rdonly(sb) || continue_fs)
691 		return;
692 
693 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
694 	/*
695 	 * Make sure updated value of ->s_mount_flags will be visible before
696 	 * ->s_flags update
697 	 */
698 	smp_wmb();
699 	sb->s_flags |= SB_RDONLY;
700 }
701 
702 static void flush_stashed_error_work(struct work_struct *work)
703 {
704 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
705 						s_error_work);
706 	journal_t *journal = sbi->s_journal;
707 	handle_t *handle;
708 
709 	/*
710 	 * If the journal is still running, we have to write out superblock
711 	 * through the journal to avoid collisions of other journalled sb
712 	 * updates.
713 	 *
714 	 * We use directly jbd2 functions here to avoid recursing back into
715 	 * ext4 error handling code during handling of previous errors.
716 	 */
717 	if (!sb_rdonly(sbi->s_sb) && journal) {
718 		struct buffer_head *sbh = sbi->s_sbh;
719 		handle = jbd2_journal_start(journal, 1);
720 		if (IS_ERR(handle))
721 			goto write_directly;
722 		if (jbd2_journal_get_write_access(handle, sbh)) {
723 			jbd2_journal_stop(handle);
724 			goto write_directly;
725 		}
726 		ext4_update_super(sbi->s_sb);
727 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
728 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
729 				 "superblock detected");
730 			clear_buffer_write_io_error(sbh);
731 			set_buffer_uptodate(sbh);
732 		}
733 
734 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
735 			jbd2_journal_stop(handle);
736 			goto write_directly;
737 		}
738 		jbd2_journal_stop(handle);
739 		ext4_notify_error_sysfs(sbi);
740 		return;
741 	}
742 write_directly:
743 	/*
744 	 * Write through journal failed. Write sb directly to get error info
745 	 * out and hope for the best.
746 	 */
747 	ext4_commit_super(sbi->s_sb);
748 	ext4_notify_error_sysfs(sbi);
749 }
750 
751 #define ext4_error_ratelimit(sb)					\
752 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
753 			     "EXT4-fs error")
754 
755 void __ext4_error(struct super_block *sb, const char *function,
756 		  unsigned int line, bool force_ro, int error, __u64 block,
757 		  const char *fmt, ...)
758 {
759 	struct va_format vaf;
760 	va_list args;
761 
762 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
763 		return;
764 
765 	trace_ext4_error(sb, function, line);
766 	if (ext4_error_ratelimit(sb)) {
767 		va_start(args, fmt);
768 		vaf.fmt = fmt;
769 		vaf.va = &args;
770 		printk(KERN_CRIT
771 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
772 		       sb->s_id, function, line, current->comm, &vaf);
773 		va_end(args);
774 	}
775 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
776 
777 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
778 }
779 
780 void __ext4_error_inode(struct inode *inode, const char *function,
781 			unsigned int line, ext4_fsblk_t block, int error,
782 			const char *fmt, ...)
783 {
784 	va_list args;
785 	struct va_format vaf;
786 
787 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
788 		return;
789 
790 	trace_ext4_error(inode->i_sb, function, line);
791 	if (ext4_error_ratelimit(inode->i_sb)) {
792 		va_start(args, fmt);
793 		vaf.fmt = fmt;
794 		vaf.va = &args;
795 		if (block)
796 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
797 			       "inode #%lu: block %llu: comm %s: %pV\n",
798 			       inode->i_sb->s_id, function, line, inode->i_ino,
799 			       block, current->comm, &vaf);
800 		else
801 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
802 			       "inode #%lu: comm %s: %pV\n",
803 			       inode->i_sb->s_id, function, line, inode->i_ino,
804 			       current->comm, &vaf);
805 		va_end(args);
806 	}
807 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
808 
809 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
810 			  function, line);
811 }
812 
813 void __ext4_error_file(struct file *file, const char *function,
814 		       unsigned int line, ext4_fsblk_t block,
815 		       const char *fmt, ...)
816 {
817 	va_list args;
818 	struct va_format vaf;
819 	struct inode *inode = file_inode(file);
820 	char pathname[80], *path;
821 
822 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
823 		return;
824 
825 	trace_ext4_error(inode->i_sb, function, line);
826 	if (ext4_error_ratelimit(inode->i_sb)) {
827 		path = file_path(file, pathname, sizeof(pathname));
828 		if (IS_ERR(path))
829 			path = "(unknown)";
830 		va_start(args, fmt);
831 		vaf.fmt = fmt;
832 		vaf.va = &args;
833 		if (block)
834 			printk(KERN_CRIT
835 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
836 			       "block %llu: comm %s: path %s: %pV\n",
837 			       inode->i_sb->s_id, function, line, inode->i_ino,
838 			       block, current->comm, path, &vaf);
839 		else
840 			printk(KERN_CRIT
841 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
842 			       "comm %s: path %s: %pV\n",
843 			       inode->i_sb->s_id, function, line, inode->i_ino,
844 			       current->comm, path, &vaf);
845 		va_end(args);
846 	}
847 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
848 
849 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
850 			  function, line);
851 }
852 
853 const char *ext4_decode_error(struct super_block *sb, int errno,
854 			      char nbuf[16])
855 {
856 	char *errstr = NULL;
857 
858 	switch (errno) {
859 	case -EFSCORRUPTED:
860 		errstr = "Corrupt filesystem";
861 		break;
862 	case -EFSBADCRC:
863 		errstr = "Filesystem failed CRC";
864 		break;
865 	case -EIO:
866 		errstr = "IO failure";
867 		break;
868 	case -ENOMEM:
869 		errstr = "Out of memory";
870 		break;
871 	case -EROFS:
872 		if (!sb || (EXT4_SB(sb)->s_journal &&
873 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
874 			errstr = "Journal has aborted";
875 		else
876 			errstr = "Readonly filesystem";
877 		break;
878 	default:
879 		/* If the caller passed in an extra buffer for unknown
880 		 * errors, textualise them now.  Else we just return
881 		 * NULL. */
882 		if (nbuf) {
883 			/* Check for truncated error codes... */
884 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
885 				errstr = nbuf;
886 		}
887 		break;
888 	}
889 
890 	return errstr;
891 }
892 
893 /* __ext4_std_error decodes expected errors from journaling functions
894  * automatically and invokes the appropriate error response.  */
895 
896 void __ext4_std_error(struct super_block *sb, const char *function,
897 		      unsigned int line, int errno)
898 {
899 	char nbuf[16];
900 	const char *errstr;
901 
902 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
903 		return;
904 
905 	/* Special case: if the error is EROFS, and we're not already
906 	 * inside a transaction, then there's really no point in logging
907 	 * an error. */
908 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
909 		return;
910 
911 	if (ext4_error_ratelimit(sb)) {
912 		errstr = ext4_decode_error(sb, errno, nbuf);
913 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
914 		       sb->s_id, function, line, errstr);
915 	}
916 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
917 
918 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
919 }
920 
921 void __ext4_msg(struct super_block *sb,
922 		const char *prefix, const char *fmt, ...)
923 {
924 	struct va_format vaf;
925 	va_list args;
926 
927 	if (sb) {
928 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
929 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
930 				  "EXT4-fs"))
931 			return;
932 	}
933 
934 	va_start(args, fmt);
935 	vaf.fmt = fmt;
936 	vaf.va = &args;
937 	if (sb)
938 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
939 	else
940 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
941 	va_end(args);
942 }
943 
944 static int ext4_warning_ratelimit(struct super_block *sb)
945 {
946 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
947 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
948 			    "EXT4-fs warning");
949 }
950 
951 void __ext4_warning(struct super_block *sb, const char *function,
952 		    unsigned int line, const char *fmt, ...)
953 {
954 	struct va_format vaf;
955 	va_list args;
956 
957 	if (!ext4_warning_ratelimit(sb))
958 		return;
959 
960 	va_start(args, fmt);
961 	vaf.fmt = fmt;
962 	vaf.va = &args;
963 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
964 	       sb->s_id, function, line, &vaf);
965 	va_end(args);
966 }
967 
968 void __ext4_warning_inode(const struct inode *inode, const char *function,
969 			  unsigned int line, const char *fmt, ...)
970 {
971 	struct va_format vaf;
972 	va_list args;
973 
974 	if (!ext4_warning_ratelimit(inode->i_sb))
975 		return;
976 
977 	va_start(args, fmt);
978 	vaf.fmt = fmt;
979 	vaf.va = &args;
980 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
981 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
982 	       function, line, inode->i_ino, current->comm, &vaf);
983 	va_end(args);
984 }
985 
986 void __ext4_grp_locked_error(const char *function, unsigned int line,
987 			     struct super_block *sb, ext4_group_t grp,
988 			     unsigned long ino, ext4_fsblk_t block,
989 			     const char *fmt, ...)
990 __releases(bitlock)
991 __acquires(bitlock)
992 {
993 	struct va_format vaf;
994 	va_list args;
995 
996 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
997 		return;
998 
999 	trace_ext4_error(sb, function, line);
1000 	if (ext4_error_ratelimit(sb)) {
1001 		va_start(args, fmt);
1002 		vaf.fmt = fmt;
1003 		vaf.va = &args;
1004 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1005 		       sb->s_id, function, line, grp);
1006 		if (ino)
1007 			printk(KERN_CONT "inode %lu: ", ino);
1008 		if (block)
1009 			printk(KERN_CONT "block %llu:",
1010 			       (unsigned long long) block);
1011 		printk(KERN_CONT "%pV\n", &vaf);
1012 		va_end(args);
1013 	}
1014 
1015 	if (test_opt(sb, ERRORS_CONT)) {
1016 		if (test_opt(sb, WARN_ON_ERROR))
1017 			WARN_ON_ONCE(1);
1018 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1019 		if (!bdev_read_only(sb->s_bdev)) {
1020 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1021 					line);
1022 			schedule_work(&EXT4_SB(sb)->s_error_work);
1023 		}
1024 		return;
1025 	}
1026 	ext4_unlock_group(sb, grp);
1027 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1028 	/*
1029 	 * We only get here in the ERRORS_RO case; relocking the group
1030 	 * may be dangerous, but nothing bad will happen since the
1031 	 * filesystem will have already been marked read/only and the
1032 	 * journal has been aborted.  We return 1 as a hint to callers
1033 	 * who might what to use the return value from
1034 	 * ext4_grp_locked_error() to distinguish between the
1035 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1036 	 * aggressively from the ext4 function in question, with a
1037 	 * more appropriate error code.
1038 	 */
1039 	ext4_lock_group(sb, grp);
1040 	return;
1041 }
1042 
1043 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1044 				     ext4_group_t group,
1045 				     unsigned int flags)
1046 {
1047 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1048 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1049 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1050 	int ret;
1051 
1052 	if (!grp || !gdp)
1053 		return;
1054 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1055 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1056 					    &grp->bb_state);
1057 		if (!ret)
1058 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1059 					   grp->bb_free);
1060 	}
1061 
1062 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1063 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1064 					    &grp->bb_state);
1065 		if (!ret && gdp) {
1066 			int count;
1067 
1068 			count = ext4_free_inodes_count(sb, gdp);
1069 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1070 					   count);
1071 		}
1072 	}
1073 }
1074 
1075 void ext4_update_dynamic_rev(struct super_block *sb)
1076 {
1077 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1078 
1079 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1080 		return;
1081 
1082 	ext4_warning(sb,
1083 		     "updating to rev %d because of new feature flag, "
1084 		     "running e2fsck is recommended",
1085 		     EXT4_DYNAMIC_REV);
1086 
1087 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1088 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1089 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1090 	/* leave es->s_feature_*compat flags alone */
1091 	/* es->s_uuid will be set by e2fsck if empty */
1092 
1093 	/*
1094 	 * The rest of the superblock fields should be zero, and if not it
1095 	 * means they are likely already in use, so leave them alone.  We
1096 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1097 	 */
1098 }
1099 
1100 /*
1101  * Open the external journal device
1102  */
1103 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1104 {
1105 	struct block_device *bdev;
1106 
1107 	bdev = blkdev_get_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
1108 				 &fs_holder_ops);
1109 	if (IS_ERR(bdev))
1110 		goto fail;
1111 	return bdev;
1112 
1113 fail:
1114 	ext4_msg(sb, KERN_ERR,
1115 		 "failed to open journal device unknown-block(%u,%u) %ld",
1116 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1117 	return NULL;
1118 }
1119 
1120 static inline struct inode *orphan_list_entry(struct list_head *l)
1121 {
1122 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1123 }
1124 
1125 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1126 {
1127 	struct list_head *l;
1128 
1129 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1130 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1131 
1132 	printk(KERN_ERR "sb_info orphan list:\n");
1133 	list_for_each(l, &sbi->s_orphan) {
1134 		struct inode *inode = orphan_list_entry(l);
1135 		printk(KERN_ERR "  "
1136 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1137 		       inode->i_sb->s_id, inode->i_ino, inode,
1138 		       inode->i_mode, inode->i_nlink,
1139 		       NEXT_ORPHAN(inode));
1140 	}
1141 }
1142 
1143 #ifdef CONFIG_QUOTA
1144 static int ext4_quota_off(struct super_block *sb, int type);
1145 
1146 static inline void ext4_quotas_off(struct super_block *sb, int type)
1147 {
1148 	BUG_ON(type > EXT4_MAXQUOTAS);
1149 
1150 	/* Use our quota_off function to clear inode flags etc. */
1151 	for (type--; type >= 0; type--)
1152 		ext4_quota_off(sb, type);
1153 }
1154 
1155 /*
1156  * This is a helper function which is used in the mount/remount
1157  * codepaths (which holds s_umount) to fetch the quota file name.
1158  */
1159 static inline char *get_qf_name(struct super_block *sb,
1160 				struct ext4_sb_info *sbi,
1161 				int type)
1162 {
1163 	return rcu_dereference_protected(sbi->s_qf_names[type],
1164 					 lockdep_is_held(&sb->s_umount));
1165 }
1166 #else
1167 static inline void ext4_quotas_off(struct super_block *sb, int type)
1168 {
1169 }
1170 #endif
1171 
1172 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1173 {
1174 	ext4_fsblk_t block;
1175 	int err;
1176 
1177 	block = ext4_count_free_clusters(sbi->s_sb);
1178 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1179 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1180 				  GFP_KERNEL);
1181 	if (!err) {
1182 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1183 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1184 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1185 					  GFP_KERNEL);
1186 	}
1187 	if (!err)
1188 		err = percpu_counter_init(&sbi->s_dirs_counter,
1189 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1190 	if (!err)
1191 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1192 					  GFP_KERNEL);
1193 	if (!err)
1194 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1195 					  GFP_KERNEL);
1196 	if (!err)
1197 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1198 
1199 	if (err)
1200 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1201 
1202 	return err;
1203 }
1204 
1205 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1206 {
1207 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1208 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1209 	percpu_counter_destroy(&sbi->s_dirs_counter);
1210 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1211 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1212 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1213 }
1214 
1215 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1216 {
1217 	struct buffer_head **group_desc;
1218 	int i;
1219 
1220 	rcu_read_lock();
1221 	group_desc = rcu_dereference(sbi->s_group_desc);
1222 	for (i = 0; i < sbi->s_gdb_count; i++)
1223 		brelse(group_desc[i]);
1224 	kvfree(group_desc);
1225 	rcu_read_unlock();
1226 }
1227 
1228 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1229 {
1230 	struct flex_groups **flex_groups;
1231 	int i;
1232 
1233 	rcu_read_lock();
1234 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1235 	if (flex_groups) {
1236 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1237 			kvfree(flex_groups[i]);
1238 		kvfree(flex_groups);
1239 	}
1240 	rcu_read_unlock();
1241 }
1242 
1243 static void ext4_put_super(struct super_block *sb)
1244 {
1245 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1246 	struct ext4_super_block *es = sbi->s_es;
1247 	int aborted = 0;
1248 	int err;
1249 
1250 	/*
1251 	 * Unregister sysfs before destroying jbd2 journal.
1252 	 * Since we could still access attr_journal_task attribute via sysfs
1253 	 * path which could have sbi->s_journal->j_task as NULL
1254 	 * Unregister sysfs before flush sbi->s_error_work.
1255 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1256 	 * read metadata verify failed then will queue error work.
1257 	 * flush_stashed_error_work will call start_this_handle may trigger
1258 	 * BUG_ON.
1259 	 */
1260 	ext4_unregister_sysfs(sb);
1261 
1262 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1263 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1264 			 &sb->s_uuid);
1265 
1266 	ext4_unregister_li_request(sb);
1267 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1268 
1269 	flush_work(&sbi->s_error_work);
1270 	destroy_workqueue(sbi->rsv_conversion_wq);
1271 	ext4_release_orphan_info(sb);
1272 
1273 	if (sbi->s_journal) {
1274 		aborted = is_journal_aborted(sbi->s_journal);
1275 		err = jbd2_journal_destroy(sbi->s_journal);
1276 		sbi->s_journal = NULL;
1277 		if ((err < 0) && !aborted) {
1278 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1279 		}
1280 	}
1281 
1282 	ext4_es_unregister_shrinker(sbi);
1283 	timer_shutdown_sync(&sbi->s_err_report);
1284 	ext4_release_system_zone(sb);
1285 	ext4_mb_release(sb);
1286 	ext4_ext_release(sb);
1287 
1288 	if (!sb_rdonly(sb) && !aborted) {
1289 		ext4_clear_feature_journal_needs_recovery(sb);
1290 		ext4_clear_feature_orphan_present(sb);
1291 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1292 	}
1293 	if (!sb_rdonly(sb))
1294 		ext4_commit_super(sb);
1295 
1296 	ext4_group_desc_free(sbi);
1297 	ext4_flex_groups_free(sbi);
1298 	ext4_percpu_param_destroy(sbi);
1299 #ifdef CONFIG_QUOTA
1300 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1301 		kfree(get_qf_name(sb, sbi, i));
1302 #endif
1303 
1304 	/* Debugging code just in case the in-memory inode orphan list
1305 	 * isn't empty.  The on-disk one can be non-empty if we've
1306 	 * detected an error and taken the fs readonly, but the
1307 	 * in-memory list had better be clean by this point. */
1308 	if (!list_empty(&sbi->s_orphan))
1309 		dump_orphan_list(sb, sbi);
1310 	ASSERT(list_empty(&sbi->s_orphan));
1311 
1312 	sync_blockdev(sb->s_bdev);
1313 	invalidate_bdev(sb->s_bdev);
1314 	if (sbi->s_journal_bdev) {
1315 		/*
1316 		 * Invalidate the journal device's buffers.  We don't want them
1317 		 * floating about in memory - the physical journal device may
1318 		 * hotswapped, and it breaks the `ro-after' testing code.
1319 		 */
1320 		sync_blockdev(sbi->s_journal_bdev);
1321 		invalidate_bdev(sbi->s_journal_bdev);
1322 	}
1323 
1324 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1325 	sbi->s_ea_inode_cache = NULL;
1326 
1327 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1328 	sbi->s_ea_block_cache = NULL;
1329 
1330 	ext4_stop_mmpd(sbi);
1331 
1332 	brelse(sbi->s_sbh);
1333 	sb->s_fs_info = NULL;
1334 	/*
1335 	 * Now that we are completely done shutting down the
1336 	 * superblock, we need to actually destroy the kobject.
1337 	 */
1338 	kobject_put(&sbi->s_kobj);
1339 	wait_for_completion(&sbi->s_kobj_unregister);
1340 	if (sbi->s_chksum_driver)
1341 		crypto_free_shash(sbi->s_chksum_driver);
1342 	kfree(sbi->s_blockgroup_lock);
1343 	fs_put_dax(sbi->s_daxdev, NULL);
1344 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1345 #if IS_ENABLED(CONFIG_UNICODE)
1346 	utf8_unload(sb->s_encoding);
1347 #endif
1348 	kfree(sbi);
1349 }
1350 
1351 static struct kmem_cache *ext4_inode_cachep;
1352 
1353 /*
1354  * Called inside transaction, so use GFP_NOFS
1355  */
1356 static struct inode *ext4_alloc_inode(struct super_block *sb)
1357 {
1358 	struct ext4_inode_info *ei;
1359 
1360 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1361 	if (!ei)
1362 		return NULL;
1363 
1364 	inode_set_iversion(&ei->vfs_inode, 1);
1365 	ei->i_flags = 0;
1366 	spin_lock_init(&ei->i_raw_lock);
1367 	ei->i_prealloc_node = RB_ROOT;
1368 	atomic_set(&ei->i_prealloc_active, 0);
1369 	rwlock_init(&ei->i_prealloc_lock);
1370 	ext4_es_init_tree(&ei->i_es_tree);
1371 	rwlock_init(&ei->i_es_lock);
1372 	INIT_LIST_HEAD(&ei->i_es_list);
1373 	ei->i_es_all_nr = 0;
1374 	ei->i_es_shk_nr = 0;
1375 	ei->i_es_shrink_lblk = 0;
1376 	ei->i_reserved_data_blocks = 0;
1377 	spin_lock_init(&(ei->i_block_reservation_lock));
1378 	ext4_init_pending_tree(&ei->i_pending_tree);
1379 #ifdef CONFIG_QUOTA
1380 	ei->i_reserved_quota = 0;
1381 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1382 #endif
1383 	ei->jinode = NULL;
1384 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1385 	spin_lock_init(&ei->i_completed_io_lock);
1386 	ei->i_sync_tid = 0;
1387 	ei->i_datasync_tid = 0;
1388 	atomic_set(&ei->i_unwritten, 0);
1389 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1390 	ext4_fc_init_inode(&ei->vfs_inode);
1391 	mutex_init(&ei->i_fc_lock);
1392 	return &ei->vfs_inode;
1393 }
1394 
1395 static int ext4_drop_inode(struct inode *inode)
1396 {
1397 	int drop = generic_drop_inode(inode);
1398 
1399 	if (!drop)
1400 		drop = fscrypt_drop_inode(inode);
1401 
1402 	trace_ext4_drop_inode(inode, drop);
1403 	return drop;
1404 }
1405 
1406 static void ext4_free_in_core_inode(struct inode *inode)
1407 {
1408 	fscrypt_free_inode(inode);
1409 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1410 		pr_warn("%s: inode %ld still in fc list",
1411 			__func__, inode->i_ino);
1412 	}
1413 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1414 }
1415 
1416 static void ext4_destroy_inode(struct inode *inode)
1417 {
1418 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1419 		ext4_msg(inode->i_sb, KERN_ERR,
1420 			 "Inode %lu (%p): orphan list check failed!",
1421 			 inode->i_ino, EXT4_I(inode));
1422 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1423 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1424 				true);
1425 		dump_stack();
1426 	}
1427 
1428 	if (EXT4_I(inode)->i_reserved_data_blocks)
1429 		ext4_msg(inode->i_sb, KERN_ERR,
1430 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1431 			 inode->i_ino, EXT4_I(inode),
1432 			 EXT4_I(inode)->i_reserved_data_blocks);
1433 }
1434 
1435 static void ext4_shutdown(struct super_block *sb)
1436 {
1437        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1438 }
1439 
1440 static void init_once(void *foo)
1441 {
1442 	struct ext4_inode_info *ei = foo;
1443 
1444 	INIT_LIST_HEAD(&ei->i_orphan);
1445 	init_rwsem(&ei->xattr_sem);
1446 	init_rwsem(&ei->i_data_sem);
1447 	inode_init_once(&ei->vfs_inode);
1448 	ext4_fc_init_inode(&ei->vfs_inode);
1449 }
1450 
1451 static int __init init_inodecache(void)
1452 {
1453 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1454 				sizeof(struct ext4_inode_info), 0,
1455 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1456 					SLAB_ACCOUNT),
1457 				offsetof(struct ext4_inode_info, i_data),
1458 				sizeof_field(struct ext4_inode_info, i_data),
1459 				init_once);
1460 	if (ext4_inode_cachep == NULL)
1461 		return -ENOMEM;
1462 	return 0;
1463 }
1464 
1465 static void destroy_inodecache(void)
1466 {
1467 	/*
1468 	 * Make sure all delayed rcu free inodes are flushed before we
1469 	 * destroy cache.
1470 	 */
1471 	rcu_barrier();
1472 	kmem_cache_destroy(ext4_inode_cachep);
1473 }
1474 
1475 void ext4_clear_inode(struct inode *inode)
1476 {
1477 	ext4_fc_del(inode);
1478 	invalidate_inode_buffers(inode);
1479 	clear_inode(inode);
1480 	ext4_discard_preallocations(inode, 0);
1481 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1482 	dquot_drop(inode);
1483 	if (EXT4_I(inode)->jinode) {
1484 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1485 					       EXT4_I(inode)->jinode);
1486 		jbd2_free_inode(EXT4_I(inode)->jinode);
1487 		EXT4_I(inode)->jinode = NULL;
1488 	}
1489 	fscrypt_put_encryption_info(inode);
1490 	fsverity_cleanup_inode(inode);
1491 }
1492 
1493 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1494 					u64 ino, u32 generation)
1495 {
1496 	struct inode *inode;
1497 
1498 	/*
1499 	 * Currently we don't know the generation for parent directory, so
1500 	 * a generation of 0 means "accept any"
1501 	 */
1502 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1503 	if (IS_ERR(inode))
1504 		return ERR_CAST(inode);
1505 	if (generation && inode->i_generation != generation) {
1506 		iput(inode);
1507 		return ERR_PTR(-ESTALE);
1508 	}
1509 
1510 	return inode;
1511 }
1512 
1513 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1514 					int fh_len, int fh_type)
1515 {
1516 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1517 				    ext4_nfs_get_inode);
1518 }
1519 
1520 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1521 					int fh_len, int fh_type)
1522 {
1523 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1524 				    ext4_nfs_get_inode);
1525 }
1526 
1527 static int ext4_nfs_commit_metadata(struct inode *inode)
1528 {
1529 	struct writeback_control wbc = {
1530 		.sync_mode = WB_SYNC_ALL
1531 	};
1532 
1533 	trace_ext4_nfs_commit_metadata(inode);
1534 	return ext4_write_inode(inode, &wbc);
1535 }
1536 
1537 #ifdef CONFIG_QUOTA
1538 static const char * const quotatypes[] = INITQFNAMES;
1539 #define QTYPE2NAME(t) (quotatypes[t])
1540 
1541 static int ext4_write_dquot(struct dquot *dquot);
1542 static int ext4_acquire_dquot(struct dquot *dquot);
1543 static int ext4_release_dquot(struct dquot *dquot);
1544 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1545 static int ext4_write_info(struct super_block *sb, int type);
1546 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1547 			 const struct path *path);
1548 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1549 			       size_t len, loff_t off);
1550 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1551 				const char *data, size_t len, loff_t off);
1552 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1553 			     unsigned int flags);
1554 
1555 static struct dquot **ext4_get_dquots(struct inode *inode)
1556 {
1557 	return EXT4_I(inode)->i_dquot;
1558 }
1559 
1560 static const struct dquot_operations ext4_quota_operations = {
1561 	.get_reserved_space	= ext4_get_reserved_space,
1562 	.write_dquot		= ext4_write_dquot,
1563 	.acquire_dquot		= ext4_acquire_dquot,
1564 	.release_dquot		= ext4_release_dquot,
1565 	.mark_dirty		= ext4_mark_dquot_dirty,
1566 	.write_info		= ext4_write_info,
1567 	.alloc_dquot		= dquot_alloc,
1568 	.destroy_dquot		= dquot_destroy,
1569 	.get_projid		= ext4_get_projid,
1570 	.get_inode_usage	= ext4_get_inode_usage,
1571 	.get_next_id		= dquot_get_next_id,
1572 };
1573 
1574 static const struct quotactl_ops ext4_qctl_operations = {
1575 	.quota_on	= ext4_quota_on,
1576 	.quota_off	= ext4_quota_off,
1577 	.quota_sync	= dquot_quota_sync,
1578 	.get_state	= dquot_get_state,
1579 	.set_info	= dquot_set_dqinfo,
1580 	.get_dqblk	= dquot_get_dqblk,
1581 	.set_dqblk	= dquot_set_dqblk,
1582 	.get_nextdqblk	= dquot_get_next_dqblk,
1583 };
1584 #endif
1585 
1586 static const struct super_operations ext4_sops = {
1587 	.alloc_inode	= ext4_alloc_inode,
1588 	.free_inode	= ext4_free_in_core_inode,
1589 	.destroy_inode	= ext4_destroy_inode,
1590 	.write_inode	= ext4_write_inode,
1591 	.dirty_inode	= ext4_dirty_inode,
1592 	.drop_inode	= ext4_drop_inode,
1593 	.evict_inode	= ext4_evict_inode,
1594 	.put_super	= ext4_put_super,
1595 	.sync_fs	= ext4_sync_fs,
1596 	.freeze_fs	= ext4_freeze,
1597 	.unfreeze_fs	= ext4_unfreeze,
1598 	.statfs		= ext4_statfs,
1599 	.show_options	= ext4_show_options,
1600 	.shutdown	= ext4_shutdown,
1601 #ifdef CONFIG_QUOTA
1602 	.quota_read	= ext4_quota_read,
1603 	.quota_write	= ext4_quota_write,
1604 	.get_dquots	= ext4_get_dquots,
1605 #endif
1606 };
1607 
1608 static const struct export_operations ext4_export_ops = {
1609 	.fh_to_dentry = ext4_fh_to_dentry,
1610 	.fh_to_parent = ext4_fh_to_parent,
1611 	.get_parent = ext4_get_parent,
1612 	.commit_metadata = ext4_nfs_commit_metadata,
1613 };
1614 
1615 enum {
1616 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1617 	Opt_resgid, Opt_resuid, Opt_sb,
1618 	Opt_nouid32, Opt_debug, Opt_removed,
1619 	Opt_user_xattr, Opt_acl,
1620 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1621 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1622 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1623 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1624 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1625 	Opt_inlinecrypt,
1626 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1627 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1628 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1629 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1630 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1631 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1632 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1633 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1634 	Opt_dioread_nolock, Opt_dioread_lock,
1635 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1636 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1637 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1638 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1639 #ifdef CONFIG_EXT4_DEBUG
1640 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1641 #endif
1642 };
1643 
1644 static const struct constant_table ext4_param_errors[] = {
1645 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1646 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1647 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1648 	{}
1649 };
1650 
1651 static const struct constant_table ext4_param_data[] = {
1652 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1653 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1654 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1655 	{}
1656 };
1657 
1658 static const struct constant_table ext4_param_data_err[] = {
1659 	{"abort",	Opt_data_err_abort},
1660 	{"ignore",	Opt_data_err_ignore},
1661 	{}
1662 };
1663 
1664 static const struct constant_table ext4_param_jqfmt[] = {
1665 	{"vfsold",	QFMT_VFS_OLD},
1666 	{"vfsv0",	QFMT_VFS_V0},
1667 	{"vfsv1",	QFMT_VFS_V1},
1668 	{}
1669 };
1670 
1671 static const struct constant_table ext4_param_dax[] = {
1672 	{"always",	Opt_dax_always},
1673 	{"inode",	Opt_dax_inode},
1674 	{"never",	Opt_dax_never},
1675 	{}
1676 };
1677 
1678 /* String parameter that allows empty argument */
1679 #define fsparam_string_empty(NAME, OPT) \
1680 	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1681 
1682 /*
1683  * Mount option specification
1684  * We don't use fsparam_flag_no because of the way we set the
1685  * options and the way we show them in _ext4_show_options(). To
1686  * keep the changes to a minimum, let's keep the negative options
1687  * separate for now.
1688  */
1689 static const struct fs_parameter_spec ext4_param_specs[] = {
1690 	fsparam_flag	("bsddf",		Opt_bsd_df),
1691 	fsparam_flag	("minixdf",		Opt_minix_df),
1692 	fsparam_flag	("grpid",		Opt_grpid),
1693 	fsparam_flag	("bsdgroups",		Opt_grpid),
1694 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1695 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1696 	fsparam_u32	("resgid",		Opt_resgid),
1697 	fsparam_u32	("resuid",		Opt_resuid),
1698 	fsparam_u32	("sb",			Opt_sb),
1699 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1700 	fsparam_flag	("nouid32",		Opt_nouid32),
1701 	fsparam_flag	("debug",		Opt_debug),
1702 	fsparam_flag	("oldalloc",		Opt_removed),
1703 	fsparam_flag	("orlov",		Opt_removed),
1704 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1705 	fsparam_flag	("acl",			Opt_acl),
1706 	fsparam_flag	("norecovery",		Opt_noload),
1707 	fsparam_flag	("noload",		Opt_noload),
1708 	fsparam_flag	("bh",			Opt_removed),
1709 	fsparam_flag	("nobh",		Opt_removed),
1710 	fsparam_u32	("commit",		Opt_commit),
1711 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1712 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1713 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1714 	fsparam_bdev	("journal_path",	Opt_journal_path),
1715 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1716 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1717 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1718 	fsparam_flag	("abort",		Opt_abort),
1719 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1720 	fsparam_enum	("data_err",		Opt_data_err,
1721 						ext4_param_data_err),
1722 	fsparam_string_empty
1723 			("usrjquota",		Opt_usrjquota),
1724 	fsparam_string_empty
1725 			("grpjquota",		Opt_grpjquota),
1726 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1727 	fsparam_flag	("grpquota",		Opt_grpquota),
1728 	fsparam_flag	("quota",		Opt_quota),
1729 	fsparam_flag	("noquota",		Opt_noquota),
1730 	fsparam_flag	("usrquota",		Opt_usrquota),
1731 	fsparam_flag	("prjquota",		Opt_prjquota),
1732 	fsparam_flag	("barrier",		Opt_barrier),
1733 	fsparam_u32	("barrier",		Opt_barrier),
1734 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1735 	fsparam_flag	("i_version",		Opt_removed),
1736 	fsparam_flag	("dax",			Opt_dax),
1737 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1738 	fsparam_u32	("stripe",		Opt_stripe),
1739 	fsparam_flag	("delalloc",		Opt_delalloc),
1740 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1741 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1742 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1743 	fsparam_u32	("debug_want_extra_isize",
1744 						Opt_debug_want_extra_isize),
1745 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1746 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1747 	fsparam_flag	("block_validity",	Opt_block_validity),
1748 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1749 	fsparam_u32	("inode_readahead_blks",
1750 						Opt_inode_readahead_blks),
1751 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1752 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1753 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1754 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1755 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1756 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1757 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1758 	fsparam_flag	("discard",		Opt_discard),
1759 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1760 	fsparam_u32	("init_itable",		Opt_init_itable),
1761 	fsparam_flag	("init_itable",		Opt_init_itable),
1762 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1763 #ifdef CONFIG_EXT4_DEBUG
1764 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1765 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1766 #endif
1767 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1768 	fsparam_flag	("test_dummy_encryption",
1769 						Opt_test_dummy_encryption),
1770 	fsparam_string	("test_dummy_encryption",
1771 						Opt_test_dummy_encryption),
1772 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1773 	fsparam_flag	("nombcache",		Opt_nombcache),
1774 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1775 	fsparam_flag	("prefetch_block_bitmaps",
1776 						Opt_removed),
1777 	fsparam_flag	("no_prefetch_block_bitmaps",
1778 						Opt_no_prefetch_block_bitmaps),
1779 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1780 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1781 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1782 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1783 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1784 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1785 	{}
1786 };
1787 
1788 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1789 
1790 #define MOPT_SET	0x0001
1791 #define MOPT_CLEAR	0x0002
1792 #define MOPT_NOSUPPORT	0x0004
1793 #define MOPT_EXPLICIT	0x0008
1794 #ifdef CONFIG_QUOTA
1795 #define MOPT_Q		0
1796 #define MOPT_QFMT	0x0010
1797 #else
1798 #define MOPT_Q		MOPT_NOSUPPORT
1799 #define MOPT_QFMT	MOPT_NOSUPPORT
1800 #endif
1801 #define MOPT_NO_EXT2	0x0020
1802 #define MOPT_NO_EXT3	0x0040
1803 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1804 #define MOPT_SKIP	0x0080
1805 #define	MOPT_2		0x0100
1806 
1807 static const struct mount_opts {
1808 	int	token;
1809 	int	mount_opt;
1810 	int	flags;
1811 } ext4_mount_opts[] = {
1812 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1813 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1814 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1815 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1816 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1817 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1818 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1819 	 MOPT_EXT4_ONLY | MOPT_SET},
1820 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1821 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1822 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1823 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1824 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1825 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1826 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1827 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1828 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1829 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1830 	{Opt_commit, 0, MOPT_NO_EXT2},
1831 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1832 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1833 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1834 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1835 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1836 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1837 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1838 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1839 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1840 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1841 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1842 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1843 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1844 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1845 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1846 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1847 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1848 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1849 	{Opt_data, 0, MOPT_NO_EXT2},
1850 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1851 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1852 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1853 #else
1854 	{Opt_acl, 0, MOPT_NOSUPPORT},
1855 #endif
1856 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1857 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1858 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1859 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1860 							MOPT_SET | MOPT_Q},
1861 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1862 							MOPT_SET | MOPT_Q},
1863 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1864 							MOPT_SET | MOPT_Q},
1865 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1866 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1867 							MOPT_CLEAR | MOPT_Q},
1868 	{Opt_usrjquota, 0, MOPT_Q},
1869 	{Opt_grpjquota, 0, MOPT_Q},
1870 	{Opt_jqfmt, 0, MOPT_QFMT},
1871 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1872 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1873 	 MOPT_SET},
1874 #ifdef CONFIG_EXT4_DEBUG
1875 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1876 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1877 #endif
1878 	{Opt_err, 0, 0}
1879 };
1880 
1881 #if IS_ENABLED(CONFIG_UNICODE)
1882 static const struct ext4_sb_encodings {
1883 	__u16 magic;
1884 	char *name;
1885 	unsigned int version;
1886 } ext4_sb_encoding_map[] = {
1887 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1888 };
1889 
1890 static const struct ext4_sb_encodings *
1891 ext4_sb_read_encoding(const struct ext4_super_block *es)
1892 {
1893 	__u16 magic = le16_to_cpu(es->s_encoding);
1894 	int i;
1895 
1896 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1897 		if (magic == ext4_sb_encoding_map[i].magic)
1898 			return &ext4_sb_encoding_map[i];
1899 
1900 	return NULL;
1901 }
1902 #endif
1903 
1904 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1905 #define EXT4_SPEC_JQFMT				(1 <<  1)
1906 #define EXT4_SPEC_DATAJ				(1 <<  2)
1907 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1908 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1909 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1910 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1911 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1912 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1913 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1914 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1915 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1916 #define EXT4_SPEC_s_stripe			(1 << 13)
1917 #define EXT4_SPEC_s_resuid			(1 << 14)
1918 #define EXT4_SPEC_s_resgid			(1 << 15)
1919 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1920 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1921 #define EXT4_SPEC_s_sb_block			(1 << 18)
1922 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1923 
1924 struct ext4_fs_context {
1925 	char		*s_qf_names[EXT4_MAXQUOTAS];
1926 	struct fscrypt_dummy_policy dummy_enc_policy;
1927 	int		s_jquota_fmt;	/* Format of quota to use */
1928 #ifdef CONFIG_EXT4_DEBUG
1929 	int s_fc_debug_max_replay;
1930 #endif
1931 	unsigned short	qname_spec;
1932 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1933 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1934 	unsigned long	journal_devnum;
1935 	unsigned long	s_commit_interval;
1936 	unsigned long	s_stripe;
1937 	unsigned int	s_inode_readahead_blks;
1938 	unsigned int	s_want_extra_isize;
1939 	unsigned int	s_li_wait_mult;
1940 	unsigned int	s_max_dir_size_kb;
1941 	unsigned int	journal_ioprio;
1942 	unsigned int	vals_s_mount_opt;
1943 	unsigned int	mask_s_mount_opt;
1944 	unsigned int	vals_s_mount_opt2;
1945 	unsigned int	mask_s_mount_opt2;
1946 	unsigned long	vals_s_mount_flags;
1947 	unsigned long	mask_s_mount_flags;
1948 	unsigned int	opt_flags;	/* MOPT flags */
1949 	unsigned int	spec;
1950 	u32		s_max_batch_time;
1951 	u32		s_min_batch_time;
1952 	kuid_t		s_resuid;
1953 	kgid_t		s_resgid;
1954 	ext4_fsblk_t	s_sb_block;
1955 };
1956 
1957 static void ext4_fc_free(struct fs_context *fc)
1958 {
1959 	struct ext4_fs_context *ctx = fc->fs_private;
1960 	int i;
1961 
1962 	if (!ctx)
1963 		return;
1964 
1965 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1966 		kfree(ctx->s_qf_names[i]);
1967 
1968 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1969 	kfree(ctx);
1970 }
1971 
1972 int ext4_init_fs_context(struct fs_context *fc)
1973 {
1974 	struct ext4_fs_context *ctx;
1975 
1976 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1977 	if (!ctx)
1978 		return -ENOMEM;
1979 
1980 	fc->fs_private = ctx;
1981 	fc->ops = &ext4_context_ops;
1982 
1983 	return 0;
1984 }
1985 
1986 #ifdef CONFIG_QUOTA
1987 /*
1988  * Note the name of the specified quota file.
1989  */
1990 static int note_qf_name(struct fs_context *fc, int qtype,
1991 		       struct fs_parameter *param)
1992 {
1993 	struct ext4_fs_context *ctx = fc->fs_private;
1994 	char *qname;
1995 
1996 	if (param->size < 1) {
1997 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
1998 		return -EINVAL;
1999 	}
2000 	if (strchr(param->string, '/')) {
2001 		ext4_msg(NULL, KERN_ERR,
2002 			 "quotafile must be on filesystem root");
2003 		return -EINVAL;
2004 	}
2005 	if (ctx->s_qf_names[qtype]) {
2006 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2007 			ext4_msg(NULL, KERN_ERR,
2008 				 "%s quota file already specified",
2009 				 QTYPE2NAME(qtype));
2010 			return -EINVAL;
2011 		}
2012 		return 0;
2013 	}
2014 
2015 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2016 	if (!qname) {
2017 		ext4_msg(NULL, KERN_ERR,
2018 			 "Not enough memory for storing quotafile name");
2019 		return -ENOMEM;
2020 	}
2021 	ctx->s_qf_names[qtype] = qname;
2022 	ctx->qname_spec |= 1 << qtype;
2023 	ctx->spec |= EXT4_SPEC_JQUOTA;
2024 	return 0;
2025 }
2026 
2027 /*
2028  * Clear the name of the specified quota file.
2029  */
2030 static int unnote_qf_name(struct fs_context *fc, int qtype)
2031 {
2032 	struct ext4_fs_context *ctx = fc->fs_private;
2033 
2034 	if (ctx->s_qf_names[qtype])
2035 		kfree(ctx->s_qf_names[qtype]);
2036 
2037 	ctx->s_qf_names[qtype] = NULL;
2038 	ctx->qname_spec |= 1 << qtype;
2039 	ctx->spec |= EXT4_SPEC_JQUOTA;
2040 	return 0;
2041 }
2042 #endif
2043 
2044 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2045 					    struct ext4_fs_context *ctx)
2046 {
2047 	int err;
2048 
2049 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2050 		ext4_msg(NULL, KERN_WARNING,
2051 			 "test_dummy_encryption option not supported");
2052 		return -EINVAL;
2053 	}
2054 	err = fscrypt_parse_test_dummy_encryption(param,
2055 						  &ctx->dummy_enc_policy);
2056 	if (err == -EINVAL) {
2057 		ext4_msg(NULL, KERN_WARNING,
2058 			 "Value of option \"%s\" is unrecognized", param->key);
2059 	} else if (err == -EEXIST) {
2060 		ext4_msg(NULL, KERN_WARNING,
2061 			 "Conflicting test_dummy_encryption options");
2062 		return -EINVAL;
2063 	}
2064 	return err;
2065 }
2066 
2067 #define EXT4_SET_CTX(name)						\
2068 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2069 				  unsigned long flag)			\
2070 {									\
2071 	ctx->mask_s_##name |= flag;					\
2072 	ctx->vals_s_##name |= flag;					\
2073 }
2074 
2075 #define EXT4_CLEAR_CTX(name)						\
2076 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2077 				    unsigned long flag)			\
2078 {									\
2079 	ctx->mask_s_##name |= flag;					\
2080 	ctx->vals_s_##name &= ~flag;					\
2081 }
2082 
2083 #define EXT4_TEST_CTX(name)						\
2084 static inline unsigned long						\
2085 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2086 {									\
2087 	return (ctx->vals_s_##name & flag);				\
2088 }
2089 
2090 EXT4_SET_CTX(flags); /* set only */
2091 EXT4_SET_CTX(mount_opt);
2092 EXT4_CLEAR_CTX(mount_opt);
2093 EXT4_TEST_CTX(mount_opt);
2094 EXT4_SET_CTX(mount_opt2);
2095 EXT4_CLEAR_CTX(mount_opt2);
2096 EXT4_TEST_CTX(mount_opt2);
2097 
2098 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2099 {
2100 	set_bit(bit, &ctx->mask_s_mount_flags);
2101 	set_bit(bit, &ctx->vals_s_mount_flags);
2102 }
2103 
2104 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2105 {
2106 	struct ext4_fs_context *ctx = fc->fs_private;
2107 	struct fs_parse_result result;
2108 	const struct mount_opts *m;
2109 	int is_remount;
2110 	kuid_t uid;
2111 	kgid_t gid;
2112 	int token;
2113 
2114 	token = fs_parse(fc, ext4_param_specs, param, &result);
2115 	if (token < 0)
2116 		return token;
2117 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2118 
2119 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2120 		if (token == m->token)
2121 			break;
2122 
2123 	ctx->opt_flags |= m->flags;
2124 
2125 	if (m->flags & MOPT_EXPLICIT) {
2126 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2127 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2128 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2129 			ctx_set_mount_opt2(ctx,
2130 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2131 		} else
2132 			return -EINVAL;
2133 	}
2134 
2135 	if (m->flags & MOPT_NOSUPPORT) {
2136 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2137 			 param->key);
2138 		return 0;
2139 	}
2140 
2141 	switch (token) {
2142 #ifdef CONFIG_QUOTA
2143 	case Opt_usrjquota:
2144 		if (!*param->string)
2145 			return unnote_qf_name(fc, USRQUOTA);
2146 		else
2147 			return note_qf_name(fc, USRQUOTA, param);
2148 	case Opt_grpjquota:
2149 		if (!*param->string)
2150 			return unnote_qf_name(fc, GRPQUOTA);
2151 		else
2152 			return note_qf_name(fc, GRPQUOTA, param);
2153 #endif
2154 	case Opt_sb:
2155 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2156 			ext4_msg(NULL, KERN_WARNING,
2157 				 "Ignoring %s option on remount", param->key);
2158 		} else {
2159 			ctx->s_sb_block = result.uint_32;
2160 			ctx->spec |= EXT4_SPEC_s_sb_block;
2161 		}
2162 		return 0;
2163 	case Opt_removed:
2164 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2165 			 param->key);
2166 		return 0;
2167 	case Opt_abort:
2168 		ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2169 		return 0;
2170 	case Opt_inlinecrypt:
2171 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2172 		ctx_set_flags(ctx, SB_INLINECRYPT);
2173 #else
2174 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2175 #endif
2176 		return 0;
2177 	case Opt_errors:
2178 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2179 		ctx_set_mount_opt(ctx, result.uint_32);
2180 		return 0;
2181 #ifdef CONFIG_QUOTA
2182 	case Opt_jqfmt:
2183 		ctx->s_jquota_fmt = result.uint_32;
2184 		ctx->spec |= EXT4_SPEC_JQFMT;
2185 		return 0;
2186 #endif
2187 	case Opt_data:
2188 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2189 		ctx_set_mount_opt(ctx, result.uint_32);
2190 		ctx->spec |= EXT4_SPEC_DATAJ;
2191 		return 0;
2192 	case Opt_commit:
2193 		if (result.uint_32 == 0)
2194 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2195 		else if (result.uint_32 > INT_MAX / HZ) {
2196 			ext4_msg(NULL, KERN_ERR,
2197 				 "Invalid commit interval %d, "
2198 				 "must be smaller than %d",
2199 				 result.uint_32, INT_MAX / HZ);
2200 			return -EINVAL;
2201 		}
2202 		ctx->s_commit_interval = HZ * result.uint_32;
2203 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2204 		return 0;
2205 	case Opt_debug_want_extra_isize:
2206 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2207 			ext4_msg(NULL, KERN_ERR,
2208 				 "Invalid want_extra_isize %d", result.uint_32);
2209 			return -EINVAL;
2210 		}
2211 		ctx->s_want_extra_isize = result.uint_32;
2212 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2213 		return 0;
2214 	case Opt_max_batch_time:
2215 		ctx->s_max_batch_time = result.uint_32;
2216 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2217 		return 0;
2218 	case Opt_min_batch_time:
2219 		ctx->s_min_batch_time = result.uint_32;
2220 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2221 		return 0;
2222 	case Opt_inode_readahead_blks:
2223 		if (result.uint_32 &&
2224 		    (result.uint_32 > (1 << 30) ||
2225 		     !is_power_of_2(result.uint_32))) {
2226 			ext4_msg(NULL, KERN_ERR,
2227 				 "EXT4-fs: inode_readahead_blks must be "
2228 				 "0 or a power of 2 smaller than 2^31");
2229 			return -EINVAL;
2230 		}
2231 		ctx->s_inode_readahead_blks = result.uint_32;
2232 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2233 		return 0;
2234 	case Opt_init_itable:
2235 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2236 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2237 		if (param->type == fs_value_is_string)
2238 			ctx->s_li_wait_mult = result.uint_32;
2239 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2240 		return 0;
2241 	case Opt_max_dir_size_kb:
2242 		ctx->s_max_dir_size_kb = result.uint_32;
2243 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2244 		return 0;
2245 #ifdef CONFIG_EXT4_DEBUG
2246 	case Opt_fc_debug_max_replay:
2247 		ctx->s_fc_debug_max_replay = result.uint_32;
2248 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2249 		return 0;
2250 #endif
2251 	case Opt_stripe:
2252 		ctx->s_stripe = result.uint_32;
2253 		ctx->spec |= EXT4_SPEC_s_stripe;
2254 		return 0;
2255 	case Opt_resuid:
2256 		uid = make_kuid(current_user_ns(), result.uint_32);
2257 		if (!uid_valid(uid)) {
2258 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2259 				 result.uint_32);
2260 			return -EINVAL;
2261 		}
2262 		ctx->s_resuid = uid;
2263 		ctx->spec |= EXT4_SPEC_s_resuid;
2264 		return 0;
2265 	case Opt_resgid:
2266 		gid = make_kgid(current_user_ns(), result.uint_32);
2267 		if (!gid_valid(gid)) {
2268 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2269 				 result.uint_32);
2270 			return -EINVAL;
2271 		}
2272 		ctx->s_resgid = gid;
2273 		ctx->spec |= EXT4_SPEC_s_resgid;
2274 		return 0;
2275 	case Opt_journal_dev:
2276 		if (is_remount) {
2277 			ext4_msg(NULL, KERN_ERR,
2278 				 "Cannot specify journal on remount");
2279 			return -EINVAL;
2280 		}
2281 		ctx->journal_devnum = result.uint_32;
2282 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2283 		return 0;
2284 	case Opt_journal_path:
2285 	{
2286 		struct inode *journal_inode;
2287 		struct path path;
2288 		int error;
2289 
2290 		if (is_remount) {
2291 			ext4_msg(NULL, KERN_ERR,
2292 				 "Cannot specify journal on remount");
2293 			return -EINVAL;
2294 		}
2295 
2296 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2297 		if (error) {
2298 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2299 				 "journal device path");
2300 			return -EINVAL;
2301 		}
2302 
2303 		journal_inode = d_inode(path.dentry);
2304 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2305 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2306 		path_put(&path);
2307 		return 0;
2308 	}
2309 	case Opt_journal_ioprio:
2310 		if (result.uint_32 > 7) {
2311 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2312 				 " (must be 0-7)");
2313 			return -EINVAL;
2314 		}
2315 		ctx->journal_ioprio =
2316 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2317 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2318 		return 0;
2319 	case Opt_test_dummy_encryption:
2320 		return ext4_parse_test_dummy_encryption(param, ctx);
2321 	case Opt_dax:
2322 	case Opt_dax_type:
2323 #ifdef CONFIG_FS_DAX
2324 	{
2325 		int type = (token == Opt_dax) ?
2326 			   Opt_dax : result.uint_32;
2327 
2328 		switch (type) {
2329 		case Opt_dax:
2330 		case Opt_dax_always:
2331 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2332 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2333 			break;
2334 		case Opt_dax_never:
2335 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2336 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2337 			break;
2338 		case Opt_dax_inode:
2339 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2340 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2341 			/* Strictly for printing options */
2342 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2343 			break;
2344 		}
2345 		return 0;
2346 	}
2347 #else
2348 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2349 		return -EINVAL;
2350 #endif
2351 	case Opt_data_err:
2352 		if (result.uint_32 == Opt_data_err_abort)
2353 			ctx_set_mount_opt(ctx, m->mount_opt);
2354 		else if (result.uint_32 == Opt_data_err_ignore)
2355 			ctx_clear_mount_opt(ctx, m->mount_opt);
2356 		return 0;
2357 	case Opt_mb_optimize_scan:
2358 		if (result.int_32 == 1) {
2359 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2360 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2361 		} else if (result.int_32 == 0) {
2362 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2363 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2364 		} else {
2365 			ext4_msg(NULL, KERN_WARNING,
2366 				 "mb_optimize_scan should be set to 0 or 1.");
2367 			return -EINVAL;
2368 		}
2369 		return 0;
2370 	}
2371 
2372 	/*
2373 	 * At this point we should only be getting options requiring MOPT_SET,
2374 	 * or MOPT_CLEAR. Anything else is a bug
2375 	 */
2376 	if (m->token == Opt_err) {
2377 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2378 			 param->key);
2379 		WARN_ON(1);
2380 		return -EINVAL;
2381 	}
2382 
2383 	else {
2384 		unsigned int set = 0;
2385 
2386 		if ((param->type == fs_value_is_flag) ||
2387 		    result.uint_32 > 0)
2388 			set = 1;
2389 
2390 		if (m->flags & MOPT_CLEAR)
2391 			set = !set;
2392 		else if (unlikely(!(m->flags & MOPT_SET))) {
2393 			ext4_msg(NULL, KERN_WARNING,
2394 				 "buggy handling of option %s",
2395 				 param->key);
2396 			WARN_ON(1);
2397 			return -EINVAL;
2398 		}
2399 		if (m->flags & MOPT_2) {
2400 			if (set != 0)
2401 				ctx_set_mount_opt2(ctx, m->mount_opt);
2402 			else
2403 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2404 		} else {
2405 			if (set != 0)
2406 				ctx_set_mount_opt(ctx, m->mount_opt);
2407 			else
2408 				ctx_clear_mount_opt(ctx, m->mount_opt);
2409 		}
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 static int parse_options(struct fs_context *fc, char *options)
2416 {
2417 	struct fs_parameter param;
2418 	int ret;
2419 	char *key;
2420 
2421 	if (!options)
2422 		return 0;
2423 
2424 	while ((key = strsep(&options, ",")) != NULL) {
2425 		if (*key) {
2426 			size_t v_len = 0;
2427 			char *value = strchr(key, '=');
2428 
2429 			param.type = fs_value_is_flag;
2430 			param.string = NULL;
2431 
2432 			if (value) {
2433 				if (value == key)
2434 					continue;
2435 
2436 				*value++ = 0;
2437 				v_len = strlen(value);
2438 				param.string = kmemdup_nul(value, v_len,
2439 							   GFP_KERNEL);
2440 				if (!param.string)
2441 					return -ENOMEM;
2442 				param.type = fs_value_is_string;
2443 			}
2444 
2445 			param.key = key;
2446 			param.size = v_len;
2447 
2448 			ret = ext4_parse_param(fc, &param);
2449 			if (param.string)
2450 				kfree(param.string);
2451 			if (ret < 0)
2452 				return ret;
2453 		}
2454 	}
2455 
2456 	ret = ext4_validate_options(fc);
2457 	if (ret < 0)
2458 		return ret;
2459 
2460 	return 0;
2461 }
2462 
2463 static int parse_apply_sb_mount_options(struct super_block *sb,
2464 					struct ext4_fs_context *m_ctx)
2465 {
2466 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2467 	char *s_mount_opts = NULL;
2468 	struct ext4_fs_context *s_ctx = NULL;
2469 	struct fs_context *fc = NULL;
2470 	int ret = -ENOMEM;
2471 
2472 	if (!sbi->s_es->s_mount_opts[0])
2473 		return 0;
2474 
2475 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2476 				sizeof(sbi->s_es->s_mount_opts),
2477 				GFP_KERNEL);
2478 	if (!s_mount_opts)
2479 		return ret;
2480 
2481 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2482 	if (!fc)
2483 		goto out_free;
2484 
2485 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2486 	if (!s_ctx)
2487 		goto out_free;
2488 
2489 	fc->fs_private = s_ctx;
2490 	fc->s_fs_info = sbi;
2491 
2492 	ret = parse_options(fc, s_mount_opts);
2493 	if (ret < 0)
2494 		goto parse_failed;
2495 
2496 	ret = ext4_check_opt_consistency(fc, sb);
2497 	if (ret < 0) {
2498 parse_failed:
2499 		ext4_msg(sb, KERN_WARNING,
2500 			 "failed to parse options in superblock: %s",
2501 			 s_mount_opts);
2502 		ret = 0;
2503 		goto out_free;
2504 	}
2505 
2506 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2507 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2508 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2509 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2510 
2511 	ext4_apply_options(fc, sb);
2512 	ret = 0;
2513 
2514 out_free:
2515 	if (fc) {
2516 		ext4_fc_free(fc);
2517 		kfree(fc);
2518 	}
2519 	kfree(s_mount_opts);
2520 	return ret;
2521 }
2522 
2523 static void ext4_apply_quota_options(struct fs_context *fc,
2524 				     struct super_block *sb)
2525 {
2526 #ifdef CONFIG_QUOTA
2527 	bool quota_feature = ext4_has_feature_quota(sb);
2528 	struct ext4_fs_context *ctx = fc->fs_private;
2529 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2530 	char *qname;
2531 	int i;
2532 
2533 	if (quota_feature)
2534 		return;
2535 
2536 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2537 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2538 			if (!(ctx->qname_spec & (1 << i)))
2539 				continue;
2540 
2541 			qname = ctx->s_qf_names[i]; /* May be NULL */
2542 			if (qname)
2543 				set_opt(sb, QUOTA);
2544 			ctx->s_qf_names[i] = NULL;
2545 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2546 						lockdep_is_held(&sb->s_umount));
2547 			if (qname)
2548 				kfree_rcu_mightsleep(qname);
2549 		}
2550 	}
2551 
2552 	if (ctx->spec & EXT4_SPEC_JQFMT)
2553 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2554 #endif
2555 }
2556 
2557 /*
2558  * Check quota settings consistency.
2559  */
2560 static int ext4_check_quota_consistency(struct fs_context *fc,
2561 					struct super_block *sb)
2562 {
2563 #ifdef CONFIG_QUOTA
2564 	struct ext4_fs_context *ctx = fc->fs_private;
2565 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2566 	bool quota_feature = ext4_has_feature_quota(sb);
2567 	bool quota_loaded = sb_any_quota_loaded(sb);
2568 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2569 	int quota_flags, i;
2570 
2571 	/*
2572 	 * We do the test below only for project quotas. 'usrquota' and
2573 	 * 'grpquota' mount options are allowed even without quota feature
2574 	 * to support legacy quotas in quota files.
2575 	 */
2576 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2577 	    !ext4_has_feature_project(sb)) {
2578 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2579 			 "Cannot enable project quota enforcement.");
2580 		return -EINVAL;
2581 	}
2582 
2583 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2584 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2585 	if (quota_loaded &&
2586 	    ctx->mask_s_mount_opt & quota_flags &&
2587 	    !ctx_test_mount_opt(ctx, quota_flags))
2588 		goto err_quota_change;
2589 
2590 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2591 
2592 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2593 			if (!(ctx->qname_spec & (1 << i)))
2594 				continue;
2595 
2596 			if (quota_loaded &&
2597 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2598 				goto err_jquota_change;
2599 
2600 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2601 			    strcmp(get_qf_name(sb, sbi, i),
2602 				   ctx->s_qf_names[i]) != 0)
2603 				goto err_jquota_specified;
2604 		}
2605 
2606 		if (quota_feature) {
2607 			ext4_msg(NULL, KERN_INFO,
2608 				 "Journaled quota options ignored when "
2609 				 "QUOTA feature is enabled");
2610 			return 0;
2611 		}
2612 	}
2613 
2614 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2615 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2616 			goto err_jquota_change;
2617 		if (quota_feature) {
2618 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2619 				 "ignored when QUOTA feature is enabled");
2620 			return 0;
2621 		}
2622 	}
2623 
2624 	/* Make sure we don't mix old and new quota format */
2625 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2626 		       ctx->s_qf_names[USRQUOTA]);
2627 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2628 		       ctx->s_qf_names[GRPQUOTA]);
2629 
2630 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2631 		    test_opt(sb, USRQUOTA));
2632 
2633 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2634 		    test_opt(sb, GRPQUOTA));
2635 
2636 	if (usr_qf_name) {
2637 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2638 		usrquota = false;
2639 	}
2640 	if (grp_qf_name) {
2641 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2642 		grpquota = false;
2643 	}
2644 
2645 	if (usr_qf_name || grp_qf_name) {
2646 		if (usrquota || grpquota) {
2647 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2648 				 "format mixing");
2649 			return -EINVAL;
2650 		}
2651 
2652 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2653 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2654 				 "not specified");
2655 			return -EINVAL;
2656 		}
2657 	}
2658 
2659 	return 0;
2660 
2661 err_quota_change:
2662 	ext4_msg(NULL, KERN_ERR,
2663 		 "Cannot change quota options when quota turned on");
2664 	return -EINVAL;
2665 err_jquota_change:
2666 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2667 		 "options when quota turned on");
2668 	return -EINVAL;
2669 err_jquota_specified:
2670 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2671 		 QTYPE2NAME(i));
2672 	return -EINVAL;
2673 #else
2674 	return 0;
2675 #endif
2676 }
2677 
2678 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2679 					    struct super_block *sb)
2680 {
2681 	const struct ext4_fs_context *ctx = fc->fs_private;
2682 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2683 
2684 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2685 		return 0;
2686 
2687 	if (!ext4_has_feature_encrypt(sb)) {
2688 		ext4_msg(NULL, KERN_WARNING,
2689 			 "test_dummy_encryption requires encrypt feature");
2690 		return -EINVAL;
2691 	}
2692 	/*
2693 	 * This mount option is just for testing, and it's not worthwhile to
2694 	 * implement the extra complexity (e.g. RCU protection) that would be
2695 	 * needed to allow it to be set or changed during remount.  We do allow
2696 	 * it to be specified during remount, but only if there is no change.
2697 	 */
2698 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2699 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2700 						 &ctx->dummy_enc_policy))
2701 			return 0;
2702 		ext4_msg(NULL, KERN_WARNING,
2703 			 "Can't set or change test_dummy_encryption on remount");
2704 		return -EINVAL;
2705 	}
2706 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2707 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2708 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2709 						 &ctx->dummy_enc_policy))
2710 			return 0;
2711 		ext4_msg(NULL, KERN_WARNING,
2712 			 "Conflicting test_dummy_encryption options");
2713 		return -EINVAL;
2714 	}
2715 	return 0;
2716 }
2717 
2718 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2719 					     struct super_block *sb)
2720 {
2721 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2722 	    /* if already set, it was already verified to be the same */
2723 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2724 		return;
2725 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2726 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2727 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2728 }
2729 
2730 static int ext4_check_opt_consistency(struct fs_context *fc,
2731 				      struct super_block *sb)
2732 {
2733 	struct ext4_fs_context *ctx = fc->fs_private;
2734 	struct ext4_sb_info *sbi = fc->s_fs_info;
2735 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2736 	int err;
2737 
2738 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2739 		ext4_msg(NULL, KERN_ERR,
2740 			 "Mount option(s) incompatible with ext2");
2741 		return -EINVAL;
2742 	}
2743 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2744 		ext4_msg(NULL, KERN_ERR,
2745 			 "Mount option(s) incompatible with ext3");
2746 		return -EINVAL;
2747 	}
2748 
2749 	if (ctx->s_want_extra_isize >
2750 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2751 		ext4_msg(NULL, KERN_ERR,
2752 			 "Invalid want_extra_isize %d",
2753 			 ctx->s_want_extra_isize);
2754 		return -EINVAL;
2755 	}
2756 
2757 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2758 		int blocksize =
2759 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2760 		if (blocksize < PAGE_SIZE)
2761 			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2762 				 "experimental mount option 'dioread_nolock' "
2763 				 "for blocksize < PAGE_SIZE");
2764 	}
2765 
2766 	err = ext4_check_test_dummy_encryption(fc, sb);
2767 	if (err)
2768 		return err;
2769 
2770 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2771 		if (!sbi->s_journal) {
2772 			ext4_msg(NULL, KERN_WARNING,
2773 				 "Remounting file system with no journal "
2774 				 "so ignoring journalled data option");
2775 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2776 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2777 			   test_opt(sb, DATA_FLAGS)) {
2778 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2779 				 "on remount");
2780 			return -EINVAL;
2781 		}
2782 	}
2783 
2784 	if (is_remount) {
2785 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2786 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2787 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2788 				 "both data=journal and dax");
2789 			return -EINVAL;
2790 		}
2791 
2792 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2793 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2794 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2795 fail_dax_change_remount:
2796 			ext4_msg(NULL, KERN_ERR, "can't change "
2797 				 "dax mount option while remounting");
2798 			return -EINVAL;
2799 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2800 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2801 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2802 			goto fail_dax_change_remount;
2803 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2804 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2805 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2806 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2807 			goto fail_dax_change_remount;
2808 		}
2809 	}
2810 
2811 	return ext4_check_quota_consistency(fc, sb);
2812 }
2813 
2814 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2815 {
2816 	struct ext4_fs_context *ctx = fc->fs_private;
2817 	struct ext4_sb_info *sbi = fc->s_fs_info;
2818 
2819 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2820 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2821 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2822 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2823 	sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2824 	sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2825 	sb->s_flags &= ~ctx->mask_s_flags;
2826 	sb->s_flags |= ctx->vals_s_flags;
2827 
2828 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2829 	APPLY(s_commit_interval);
2830 	APPLY(s_stripe);
2831 	APPLY(s_max_batch_time);
2832 	APPLY(s_min_batch_time);
2833 	APPLY(s_want_extra_isize);
2834 	APPLY(s_inode_readahead_blks);
2835 	APPLY(s_max_dir_size_kb);
2836 	APPLY(s_li_wait_mult);
2837 	APPLY(s_resgid);
2838 	APPLY(s_resuid);
2839 
2840 #ifdef CONFIG_EXT4_DEBUG
2841 	APPLY(s_fc_debug_max_replay);
2842 #endif
2843 
2844 	ext4_apply_quota_options(fc, sb);
2845 	ext4_apply_test_dummy_encryption(ctx, sb);
2846 }
2847 
2848 
2849 static int ext4_validate_options(struct fs_context *fc)
2850 {
2851 #ifdef CONFIG_QUOTA
2852 	struct ext4_fs_context *ctx = fc->fs_private;
2853 	char *usr_qf_name, *grp_qf_name;
2854 
2855 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2856 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2857 
2858 	if (usr_qf_name || grp_qf_name) {
2859 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2860 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2861 
2862 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2863 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2864 
2865 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2866 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2867 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2868 				 "format mixing");
2869 			return -EINVAL;
2870 		}
2871 	}
2872 #endif
2873 	return 1;
2874 }
2875 
2876 static inline void ext4_show_quota_options(struct seq_file *seq,
2877 					   struct super_block *sb)
2878 {
2879 #if defined(CONFIG_QUOTA)
2880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2881 	char *usr_qf_name, *grp_qf_name;
2882 
2883 	if (sbi->s_jquota_fmt) {
2884 		char *fmtname = "";
2885 
2886 		switch (sbi->s_jquota_fmt) {
2887 		case QFMT_VFS_OLD:
2888 			fmtname = "vfsold";
2889 			break;
2890 		case QFMT_VFS_V0:
2891 			fmtname = "vfsv0";
2892 			break;
2893 		case QFMT_VFS_V1:
2894 			fmtname = "vfsv1";
2895 			break;
2896 		}
2897 		seq_printf(seq, ",jqfmt=%s", fmtname);
2898 	}
2899 
2900 	rcu_read_lock();
2901 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2902 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2903 	if (usr_qf_name)
2904 		seq_show_option(seq, "usrjquota", usr_qf_name);
2905 	if (grp_qf_name)
2906 		seq_show_option(seq, "grpjquota", grp_qf_name);
2907 	rcu_read_unlock();
2908 #endif
2909 }
2910 
2911 static const char *token2str(int token)
2912 {
2913 	const struct fs_parameter_spec *spec;
2914 
2915 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2916 		if (spec->opt == token && !spec->type)
2917 			break;
2918 	return spec->name;
2919 }
2920 
2921 /*
2922  * Show an option if
2923  *  - it's set to a non-default value OR
2924  *  - if the per-sb default is different from the global default
2925  */
2926 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2927 			      int nodefs)
2928 {
2929 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2930 	struct ext4_super_block *es = sbi->s_es;
2931 	int def_errors;
2932 	const struct mount_opts *m;
2933 	char sep = nodefs ? '\n' : ',';
2934 
2935 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2936 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2937 
2938 	if (sbi->s_sb_block != 1)
2939 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2940 
2941 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2942 		int want_set = m->flags & MOPT_SET;
2943 		int opt_2 = m->flags & MOPT_2;
2944 		unsigned int mount_opt, def_mount_opt;
2945 
2946 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2947 		    m->flags & MOPT_SKIP)
2948 			continue;
2949 
2950 		if (opt_2) {
2951 			mount_opt = sbi->s_mount_opt2;
2952 			def_mount_opt = sbi->s_def_mount_opt2;
2953 		} else {
2954 			mount_opt = sbi->s_mount_opt;
2955 			def_mount_opt = sbi->s_def_mount_opt;
2956 		}
2957 		/* skip if same as the default */
2958 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2959 			continue;
2960 		/* select Opt_noFoo vs Opt_Foo */
2961 		if ((want_set &&
2962 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2963 		    (!want_set && (mount_opt & m->mount_opt)))
2964 			continue;
2965 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2966 	}
2967 
2968 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2969 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2970 		SEQ_OPTS_PRINT("resuid=%u",
2971 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2972 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2973 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2974 		SEQ_OPTS_PRINT("resgid=%u",
2975 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2976 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2977 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2978 		SEQ_OPTS_PUTS("errors=remount-ro");
2979 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2980 		SEQ_OPTS_PUTS("errors=continue");
2981 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2982 		SEQ_OPTS_PUTS("errors=panic");
2983 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2984 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2985 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2986 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2987 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2988 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2989 	if (nodefs || sbi->s_stripe)
2990 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2991 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2992 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2993 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2994 			SEQ_OPTS_PUTS("data=journal");
2995 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2996 			SEQ_OPTS_PUTS("data=ordered");
2997 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2998 			SEQ_OPTS_PUTS("data=writeback");
2999 	}
3000 	if (nodefs ||
3001 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3002 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3003 			       sbi->s_inode_readahead_blks);
3004 
3005 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3006 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3007 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3008 	if (nodefs || sbi->s_max_dir_size_kb)
3009 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3010 	if (test_opt(sb, DATA_ERR_ABORT))
3011 		SEQ_OPTS_PUTS("data_err=abort");
3012 
3013 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3014 
3015 	if (sb->s_flags & SB_INLINECRYPT)
3016 		SEQ_OPTS_PUTS("inlinecrypt");
3017 
3018 	if (test_opt(sb, DAX_ALWAYS)) {
3019 		if (IS_EXT2_SB(sb))
3020 			SEQ_OPTS_PUTS("dax");
3021 		else
3022 			SEQ_OPTS_PUTS("dax=always");
3023 	} else if (test_opt2(sb, DAX_NEVER)) {
3024 		SEQ_OPTS_PUTS("dax=never");
3025 	} else if (test_opt2(sb, DAX_INODE)) {
3026 		SEQ_OPTS_PUTS("dax=inode");
3027 	}
3028 
3029 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3030 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3031 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3032 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3033 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3034 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3035 	}
3036 
3037 	ext4_show_quota_options(seq, sb);
3038 	return 0;
3039 }
3040 
3041 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3042 {
3043 	return _ext4_show_options(seq, root->d_sb, 0);
3044 }
3045 
3046 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3047 {
3048 	struct super_block *sb = seq->private;
3049 	int rc;
3050 
3051 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3052 	rc = _ext4_show_options(seq, sb, 1);
3053 	seq_puts(seq, "\n");
3054 	return rc;
3055 }
3056 
3057 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3058 			    int read_only)
3059 {
3060 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3061 	int err = 0;
3062 
3063 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3064 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3065 			 "forcing read-only mode");
3066 		err = -EROFS;
3067 		goto done;
3068 	}
3069 	if (read_only)
3070 		goto done;
3071 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3072 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3073 			 "running e2fsck is recommended");
3074 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3075 		ext4_msg(sb, KERN_WARNING,
3076 			 "warning: mounting fs with errors, "
3077 			 "running e2fsck is recommended");
3078 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3079 		 le16_to_cpu(es->s_mnt_count) >=
3080 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3081 		ext4_msg(sb, KERN_WARNING,
3082 			 "warning: maximal mount count reached, "
3083 			 "running e2fsck is recommended");
3084 	else if (le32_to_cpu(es->s_checkinterval) &&
3085 		 (ext4_get_tstamp(es, s_lastcheck) +
3086 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3087 		ext4_msg(sb, KERN_WARNING,
3088 			 "warning: checktime reached, "
3089 			 "running e2fsck is recommended");
3090 	if (!sbi->s_journal)
3091 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3092 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3093 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3094 	le16_add_cpu(&es->s_mnt_count, 1);
3095 	ext4_update_tstamp(es, s_mtime);
3096 	if (sbi->s_journal) {
3097 		ext4_set_feature_journal_needs_recovery(sb);
3098 		if (ext4_has_feature_orphan_file(sb))
3099 			ext4_set_feature_orphan_present(sb);
3100 	}
3101 
3102 	err = ext4_commit_super(sb);
3103 done:
3104 	if (test_opt(sb, DEBUG))
3105 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3106 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3107 			sb->s_blocksize,
3108 			sbi->s_groups_count,
3109 			EXT4_BLOCKS_PER_GROUP(sb),
3110 			EXT4_INODES_PER_GROUP(sb),
3111 			sbi->s_mount_opt, sbi->s_mount_opt2);
3112 	return err;
3113 }
3114 
3115 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3116 {
3117 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 	struct flex_groups **old_groups, **new_groups;
3119 	int size, i, j;
3120 
3121 	if (!sbi->s_log_groups_per_flex)
3122 		return 0;
3123 
3124 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3125 	if (size <= sbi->s_flex_groups_allocated)
3126 		return 0;
3127 
3128 	new_groups = kvzalloc(roundup_pow_of_two(size *
3129 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3130 	if (!new_groups) {
3131 		ext4_msg(sb, KERN_ERR,
3132 			 "not enough memory for %d flex group pointers", size);
3133 		return -ENOMEM;
3134 	}
3135 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3136 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3137 					 sizeof(struct flex_groups)),
3138 					 GFP_KERNEL);
3139 		if (!new_groups[i]) {
3140 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3141 				kvfree(new_groups[j]);
3142 			kvfree(new_groups);
3143 			ext4_msg(sb, KERN_ERR,
3144 				 "not enough memory for %d flex groups", size);
3145 			return -ENOMEM;
3146 		}
3147 	}
3148 	rcu_read_lock();
3149 	old_groups = rcu_dereference(sbi->s_flex_groups);
3150 	if (old_groups)
3151 		memcpy(new_groups, old_groups,
3152 		       (sbi->s_flex_groups_allocated *
3153 			sizeof(struct flex_groups *)));
3154 	rcu_read_unlock();
3155 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3156 	sbi->s_flex_groups_allocated = size;
3157 	if (old_groups)
3158 		ext4_kvfree_array_rcu(old_groups);
3159 	return 0;
3160 }
3161 
3162 static int ext4_fill_flex_info(struct super_block *sb)
3163 {
3164 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3165 	struct ext4_group_desc *gdp = NULL;
3166 	struct flex_groups *fg;
3167 	ext4_group_t flex_group;
3168 	int i, err;
3169 
3170 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3171 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3172 		sbi->s_log_groups_per_flex = 0;
3173 		return 1;
3174 	}
3175 
3176 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3177 	if (err)
3178 		goto failed;
3179 
3180 	for (i = 0; i < sbi->s_groups_count; i++) {
3181 		gdp = ext4_get_group_desc(sb, i, NULL);
3182 
3183 		flex_group = ext4_flex_group(sbi, i);
3184 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3185 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3186 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3187 			     &fg->free_clusters);
3188 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3189 	}
3190 
3191 	return 1;
3192 failed:
3193 	return 0;
3194 }
3195 
3196 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3197 				   struct ext4_group_desc *gdp)
3198 {
3199 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3200 	__u16 crc = 0;
3201 	__le32 le_group = cpu_to_le32(block_group);
3202 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3203 
3204 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3205 		/* Use new metadata_csum algorithm */
3206 		__u32 csum32;
3207 		__u16 dummy_csum = 0;
3208 
3209 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3210 				     sizeof(le_group));
3211 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3212 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3213 				     sizeof(dummy_csum));
3214 		offset += sizeof(dummy_csum);
3215 		if (offset < sbi->s_desc_size)
3216 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3217 					     sbi->s_desc_size - offset);
3218 
3219 		crc = csum32 & 0xFFFF;
3220 		goto out;
3221 	}
3222 
3223 	/* old crc16 code */
3224 	if (!ext4_has_feature_gdt_csum(sb))
3225 		return 0;
3226 
3227 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3228 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3229 	crc = crc16(crc, (__u8 *)gdp, offset);
3230 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3231 	/* for checksum of struct ext4_group_desc do the rest...*/
3232 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3233 		crc = crc16(crc, (__u8 *)gdp + offset,
3234 			    sbi->s_desc_size - offset);
3235 
3236 out:
3237 	return cpu_to_le16(crc);
3238 }
3239 
3240 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3241 				struct ext4_group_desc *gdp)
3242 {
3243 	if (ext4_has_group_desc_csum(sb) &&
3244 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3245 		return 0;
3246 
3247 	return 1;
3248 }
3249 
3250 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3251 			      struct ext4_group_desc *gdp)
3252 {
3253 	if (!ext4_has_group_desc_csum(sb))
3254 		return;
3255 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3256 }
3257 
3258 /* Called at mount-time, super-block is locked */
3259 static int ext4_check_descriptors(struct super_block *sb,
3260 				  ext4_fsblk_t sb_block,
3261 				  ext4_group_t *first_not_zeroed)
3262 {
3263 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3264 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3265 	ext4_fsblk_t last_block;
3266 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3267 	ext4_fsblk_t block_bitmap;
3268 	ext4_fsblk_t inode_bitmap;
3269 	ext4_fsblk_t inode_table;
3270 	int flexbg_flag = 0;
3271 	ext4_group_t i, grp = sbi->s_groups_count;
3272 
3273 	if (ext4_has_feature_flex_bg(sb))
3274 		flexbg_flag = 1;
3275 
3276 	ext4_debug("Checking group descriptors");
3277 
3278 	for (i = 0; i < sbi->s_groups_count; i++) {
3279 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3280 
3281 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3282 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3283 		else
3284 			last_block = first_block +
3285 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3286 
3287 		if ((grp == sbi->s_groups_count) &&
3288 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3289 			grp = i;
3290 
3291 		block_bitmap = ext4_block_bitmap(sb, gdp);
3292 		if (block_bitmap == sb_block) {
3293 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3294 				 "Block bitmap for group %u overlaps "
3295 				 "superblock", i);
3296 			if (!sb_rdonly(sb))
3297 				return 0;
3298 		}
3299 		if (block_bitmap >= sb_block + 1 &&
3300 		    block_bitmap <= last_bg_block) {
3301 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3302 				 "Block bitmap for group %u overlaps "
3303 				 "block group descriptors", i);
3304 			if (!sb_rdonly(sb))
3305 				return 0;
3306 		}
3307 		if (block_bitmap < first_block || block_bitmap > last_block) {
3308 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 			       "Block bitmap for group %u not in group "
3310 			       "(block %llu)!", i, block_bitmap);
3311 			return 0;
3312 		}
3313 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3314 		if (inode_bitmap == sb_block) {
3315 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 				 "Inode bitmap for group %u overlaps "
3317 				 "superblock", i);
3318 			if (!sb_rdonly(sb))
3319 				return 0;
3320 		}
3321 		if (inode_bitmap >= sb_block + 1 &&
3322 		    inode_bitmap <= last_bg_block) {
3323 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3324 				 "Inode bitmap for group %u overlaps "
3325 				 "block group descriptors", i);
3326 			if (!sb_rdonly(sb))
3327 				return 0;
3328 		}
3329 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3330 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3331 			       "Inode bitmap for group %u not in group "
3332 			       "(block %llu)!", i, inode_bitmap);
3333 			return 0;
3334 		}
3335 		inode_table = ext4_inode_table(sb, gdp);
3336 		if (inode_table == sb_block) {
3337 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338 				 "Inode table for group %u overlaps "
3339 				 "superblock", i);
3340 			if (!sb_rdonly(sb))
3341 				return 0;
3342 		}
3343 		if (inode_table >= sb_block + 1 &&
3344 		    inode_table <= last_bg_block) {
3345 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3346 				 "Inode table for group %u overlaps "
3347 				 "block group descriptors", i);
3348 			if (!sb_rdonly(sb))
3349 				return 0;
3350 		}
3351 		if (inode_table < first_block ||
3352 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3353 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3354 			       "Inode table for group %u not in group "
3355 			       "(block %llu)!", i, inode_table);
3356 			return 0;
3357 		}
3358 		ext4_lock_group(sb, i);
3359 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3360 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 				 "Checksum for group %u failed (%u!=%u)",
3362 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3363 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3364 			if (!sb_rdonly(sb)) {
3365 				ext4_unlock_group(sb, i);
3366 				return 0;
3367 			}
3368 		}
3369 		ext4_unlock_group(sb, i);
3370 		if (!flexbg_flag)
3371 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3372 	}
3373 	if (NULL != first_not_zeroed)
3374 		*first_not_zeroed = grp;
3375 	return 1;
3376 }
3377 
3378 /*
3379  * Maximal extent format file size.
3380  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3381  * extent format containers, within a sector_t, and within i_blocks
3382  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3383  * so that won't be a limiting factor.
3384  *
3385  * However there is other limiting factor. We do store extents in the form
3386  * of starting block and length, hence the resulting length of the extent
3387  * covering maximum file size must fit into on-disk format containers as
3388  * well. Given that length is always by 1 unit bigger than max unit (because
3389  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3390  *
3391  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3392  */
3393 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3394 {
3395 	loff_t res;
3396 	loff_t upper_limit = MAX_LFS_FILESIZE;
3397 
3398 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3399 
3400 	if (!has_huge_files) {
3401 		upper_limit = (1LL << 32) - 1;
3402 
3403 		/* total blocks in file system block size */
3404 		upper_limit >>= (blkbits - 9);
3405 		upper_limit <<= blkbits;
3406 	}
3407 
3408 	/*
3409 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3410 	 * by one fs block, so ee_len can cover the extent of maximum file
3411 	 * size
3412 	 */
3413 	res = (1LL << 32) - 1;
3414 	res <<= blkbits;
3415 
3416 	/* Sanity check against vm- & vfs- imposed limits */
3417 	if (res > upper_limit)
3418 		res = upper_limit;
3419 
3420 	return res;
3421 }
3422 
3423 /*
3424  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3425  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3426  * We need to be 1 filesystem block less than the 2^48 sector limit.
3427  */
3428 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3429 {
3430 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3431 	int meta_blocks;
3432 	unsigned int ppb = 1 << (bits - 2);
3433 
3434 	/*
3435 	 * This is calculated to be the largest file size for a dense, block
3436 	 * mapped file such that the file's total number of 512-byte sectors,
3437 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3438 	 *
3439 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3440 	 * number of 512-byte sectors of the file.
3441 	 */
3442 	if (!has_huge_files) {
3443 		/*
3444 		 * !has_huge_files or implies that the inode i_block field
3445 		 * represents total file blocks in 2^32 512-byte sectors ==
3446 		 * size of vfs inode i_blocks * 8
3447 		 */
3448 		upper_limit = (1LL << 32) - 1;
3449 
3450 		/* total blocks in file system block size */
3451 		upper_limit >>= (bits - 9);
3452 
3453 	} else {
3454 		/*
3455 		 * We use 48 bit ext4_inode i_blocks
3456 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3457 		 * represent total number of blocks in
3458 		 * file system block size
3459 		 */
3460 		upper_limit = (1LL << 48) - 1;
3461 
3462 	}
3463 
3464 	/* Compute how many blocks we can address by block tree */
3465 	res += ppb;
3466 	res += ppb * ppb;
3467 	res += ((loff_t)ppb) * ppb * ppb;
3468 	/* Compute how many metadata blocks are needed */
3469 	meta_blocks = 1;
3470 	meta_blocks += 1 + ppb;
3471 	meta_blocks += 1 + ppb + ppb * ppb;
3472 	/* Does block tree limit file size? */
3473 	if (res + meta_blocks <= upper_limit)
3474 		goto check_lfs;
3475 
3476 	res = upper_limit;
3477 	/* How many metadata blocks are needed for addressing upper_limit? */
3478 	upper_limit -= EXT4_NDIR_BLOCKS;
3479 	/* indirect blocks */
3480 	meta_blocks = 1;
3481 	upper_limit -= ppb;
3482 	/* double indirect blocks */
3483 	if (upper_limit < ppb * ppb) {
3484 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3485 		res -= meta_blocks;
3486 		goto check_lfs;
3487 	}
3488 	meta_blocks += 1 + ppb;
3489 	upper_limit -= ppb * ppb;
3490 	/* tripple indirect blocks for the rest */
3491 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3492 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3493 	res -= meta_blocks;
3494 check_lfs:
3495 	res <<= bits;
3496 	if (res > MAX_LFS_FILESIZE)
3497 		res = MAX_LFS_FILESIZE;
3498 
3499 	return res;
3500 }
3501 
3502 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3503 				   ext4_fsblk_t logical_sb_block, int nr)
3504 {
3505 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3506 	ext4_group_t bg, first_meta_bg;
3507 	int has_super = 0;
3508 
3509 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3510 
3511 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3512 		return logical_sb_block + nr + 1;
3513 	bg = sbi->s_desc_per_block * nr;
3514 	if (ext4_bg_has_super(sb, bg))
3515 		has_super = 1;
3516 
3517 	/*
3518 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3519 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3520 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3521 	 * compensate.
3522 	 */
3523 	if (sb->s_blocksize == 1024 && nr == 0 &&
3524 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3525 		has_super++;
3526 
3527 	return (has_super + ext4_group_first_block_no(sb, bg));
3528 }
3529 
3530 /**
3531  * ext4_get_stripe_size: Get the stripe size.
3532  * @sbi: In memory super block info
3533  *
3534  * If we have specified it via mount option, then
3535  * use the mount option value. If the value specified at mount time is
3536  * greater than the blocks per group use the super block value.
3537  * If the super block value is greater than blocks per group return 0.
3538  * Allocator needs it be less than blocks per group.
3539  *
3540  */
3541 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3542 {
3543 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3544 	unsigned long stripe_width =
3545 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3546 	int ret;
3547 
3548 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3549 		ret = sbi->s_stripe;
3550 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3551 		ret = stripe_width;
3552 	else if (stride && stride <= sbi->s_blocks_per_group)
3553 		ret = stride;
3554 	else
3555 		ret = 0;
3556 
3557 	/*
3558 	 * If the stripe width is 1, this makes no sense and
3559 	 * we set it to 0 to turn off stripe handling code.
3560 	 */
3561 	if (ret <= 1)
3562 		ret = 0;
3563 
3564 	return ret;
3565 }
3566 
3567 /*
3568  * Check whether this filesystem can be mounted based on
3569  * the features present and the RDONLY/RDWR mount requested.
3570  * Returns 1 if this filesystem can be mounted as requested,
3571  * 0 if it cannot be.
3572  */
3573 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3574 {
3575 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3576 		ext4_msg(sb, KERN_ERR,
3577 			"Couldn't mount because of "
3578 			"unsupported optional features (%x)",
3579 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3580 			~EXT4_FEATURE_INCOMPAT_SUPP));
3581 		return 0;
3582 	}
3583 
3584 #if !IS_ENABLED(CONFIG_UNICODE)
3585 	if (ext4_has_feature_casefold(sb)) {
3586 		ext4_msg(sb, KERN_ERR,
3587 			 "Filesystem with casefold feature cannot be "
3588 			 "mounted without CONFIG_UNICODE");
3589 		return 0;
3590 	}
3591 #endif
3592 
3593 	if (readonly)
3594 		return 1;
3595 
3596 	if (ext4_has_feature_readonly(sb)) {
3597 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3598 		sb->s_flags |= SB_RDONLY;
3599 		return 1;
3600 	}
3601 
3602 	/* Check that feature set is OK for a read-write mount */
3603 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3604 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3605 			 "unsupported optional features (%x)",
3606 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3607 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3608 		return 0;
3609 	}
3610 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3611 		ext4_msg(sb, KERN_ERR,
3612 			 "Can't support bigalloc feature without "
3613 			 "extents feature\n");
3614 		return 0;
3615 	}
3616 
3617 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3618 	if (!readonly && (ext4_has_feature_quota(sb) ||
3619 			  ext4_has_feature_project(sb))) {
3620 		ext4_msg(sb, KERN_ERR,
3621 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3622 		return 0;
3623 	}
3624 #endif  /* CONFIG_QUOTA */
3625 	return 1;
3626 }
3627 
3628 /*
3629  * This function is called once a day if we have errors logged
3630  * on the file system
3631  */
3632 static void print_daily_error_info(struct timer_list *t)
3633 {
3634 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3635 	struct super_block *sb = sbi->s_sb;
3636 	struct ext4_super_block *es = sbi->s_es;
3637 
3638 	if (es->s_error_count)
3639 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3640 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3641 			 le32_to_cpu(es->s_error_count));
3642 	if (es->s_first_error_time) {
3643 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3644 		       sb->s_id,
3645 		       ext4_get_tstamp(es, s_first_error_time),
3646 		       (int) sizeof(es->s_first_error_func),
3647 		       es->s_first_error_func,
3648 		       le32_to_cpu(es->s_first_error_line));
3649 		if (es->s_first_error_ino)
3650 			printk(KERN_CONT ": inode %u",
3651 			       le32_to_cpu(es->s_first_error_ino));
3652 		if (es->s_first_error_block)
3653 			printk(KERN_CONT ": block %llu", (unsigned long long)
3654 			       le64_to_cpu(es->s_first_error_block));
3655 		printk(KERN_CONT "\n");
3656 	}
3657 	if (es->s_last_error_time) {
3658 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3659 		       sb->s_id,
3660 		       ext4_get_tstamp(es, s_last_error_time),
3661 		       (int) sizeof(es->s_last_error_func),
3662 		       es->s_last_error_func,
3663 		       le32_to_cpu(es->s_last_error_line));
3664 		if (es->s_last_error_ino)
3665 			printk(KERN_CONT ": inode %u",
3666 			       le32_to_cpu(es->s_last_error_ino));
3667 		if (es->s_last_error_block)
3668 			printk(KERN_CONT ": block %llu", (unsigned long long)
3669 			       le64_to_cpu(es->s_last_error_block));
3670 		printk(KERN_CONT "\n");
3671 	}
3672 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3673 }
3674 
3675 /* Find next suitable group and run ext4_init_inode_table */
3676 static int ext4_run_li_request(struct ext4_li_request *elr)
3677 {
3678 	struct ext4_group_desc *gdp = NULL;
3679 	struct super_block *sb = elr->lr_super;
3680 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3681 	ext4_group_t group = elr->lr_next_group;
3682 	unsigned int prefetch_ios = 0;
3683 	int ret = 0;
3684 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3685 	u64 start_time;
3686 
3687 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3688 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3689 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3690 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3691 		if (group >= elr->lr_next_group) {
3692 			ret = 1;
3693 			if (elr->lr_first_not_zeroed != ngroups &&
3694 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3695 				elr->lr_next_group = elr->lr_first_not_zeroed;
3696 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3697 				ret = 0;
3698 			}
3699 		}
3700 		return ret;
3701 	}
3702 
3703 	for (; group < ngroups; group++) {
3704 		gdp = ext4_get_group_desc(sb, group, NULL);
3705 		if (!gdp) {
3706 			ret = 1;
3707 			break;
3708 		}
3709 
3710 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3711 			break;
3712 	}
3713 
3714 	if (group >= ngroups)
3715 		ret = 1;
3716 
3717 	if (!ret) {
3718 		start_time = ktime_get_real_ns();
3719 		ret = ext4_init_inode_table(sb, group,
3720 					    elr->lr_timeout ? 0 : 1);
3721 		trace_ext4_lazy_itable_init(sb, group);
3722 		if (elr->lr_timeout == 0) {
3723 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3724 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3725 		}
3726 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3727 		elr->lr_next_group = group + 1;
3728 	}
3729 	return ret;
3730 }
3731 
3732 /*
3733  * Remove lr_request from the list_request and free the
3734  * request structure. Should be called with li_list_mtx held
3735  */
3736 static void ext4_remove_li_request(struct ext4_li_request *elr)
3737 {
3738 	if (!elr)
3739 		return;
3740 
3741 	list_del(&elr->lr_request);
3742 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3743 	kfree(elr);
3744 }
3745 
3746 static void ext4_unregister_li_request(struct super_block *sb)
3747 {
3748 	mutex_lock(&ext4_li_mtx);
3749 	if (!ext4_li_info) {
3750 		mutex_unlock(&ext4_li_mtx);
3751 		return;
3752 	}
3753 
3754 	mutex_lock(&ext4_li_info->li_list_mtx);
3755 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3756 	mutex_unlock(&ext4_li_info->li_list_mtx);
3757 	mutex_unlock(&ext4_li_mtx);
3758 }
3759 
3760 static struct task_struct *ext4_lazyinit_task;
3761 
3762 /*
3763  * This is the function where ext4lazyinit thread lives. It walks
3764  * through the request list searching for next scheduled filesystem.
3765  * When such a fs is found, run the lazy initialization request
3766  * (ext4_rn_li_request) and keep track of the time spend in this
3767  * function. Based on that time we compute next schedule time of
3768  * the request. When walking through the list is complete, compute
3769  * next waking time and put itself into sleep.
3770  */
3771 static int ext4_lazyinit_thread(void *arg)
3772 {
3773 	struct ext4_lazy_init *eli = arg;
3774 	struct list_head *pos, *n;
3775 	struct ext4_li_request *elr;
3776 	unsigned long next_wakeup, cur;
3777 
3778 	BUG_ON(NULL == eli);
3779 	set_freezable();
3780 
3781 cont_thread:
3782 	while (true) {
3783 		next_wakeup = MAX_JIFFY_OFFSET;
3784 
3785 		mutex_lock(&eli->li_list_mtx);
3786 		if (list_empty(&eli->li_request_list)) {
3787 			mutex_unlock(&eli->li_list_mtx);
3788 			goto exit_thread;
3789 		}
3790 		list_for_each_safe(pos, n, &eli->li_request_list) {
3791 			int err = 0;
3792 			int progress = 0;
3793 			elr = list_entry(pos, struct ext4_li_request,
3794 					 lr_request);
3795 
3796 			if (time_before(jiffies, elr->lr_next_sched)) {
3797 				if (time_before(elr->lr_next_sched, next_wakeup))
3798 					next_wakeup = elr->lr_next_sched;
3799 				continue;
3800 			}
3801 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3802 				if (sb_start_write_trylock(elr->lr_super)) {
3803 					progress = 1;
3804 					/*
3805 					 * We hold sb->s_umount, sb can not
3806 					 * be removed from the list, it is
3807 					 * now safe to drop li_list_mtx
3808 					 */
3809 					mutex_unlock(&eli->li_list_mtx);
3810 					err = ext4_run_li_request(elr);
3811 					sb_end_write(elr->lr_super);
3812 					mutex_lock(&eli->li_list_mtx);
3813 					n = pos->next;
3814 				}
3815 				up_read((&elr->lr_super->s_umount));
3816 			}
3817 			/* error, remove the lazy_init job */
3818 			if (err) {
3819 				ext4_remove_li_request(elr);
3820 				continue;
3821 			}
3822 			if (!progress) {
3823 				elr->lr_next_sched = jiffies +
3824 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3825 			}
3826 			if (time_before(elr->lr_next_sched, next_wakeup))
3827 				next_wakeup = elr->lr_next_sched;
3828 		}
3829 		mutex_unlock(&eli->li_list_mtx);
3830 
3831 		try_to_freeze();
3832 
3833 		cur = jiffies;
3834 		if ((time_after_eq(cur, next_wakeup)) ||
3835 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3836 			cond_resched();
3837 			continue;
3838 		}
3839 
3840 		schedule_timeout_interruptible(next_wakeup - cur);
3841 
3842 		if (kthread_should_stop()) {
3843 			ext4_clear_request_list();
3844 			goto exit_thread;
3845 		}
3846 	}
3847 
3848 exit_thread:
3849 	/*
3850 	 * It looks like the request list is empty, but we need
3851 	 * to check it under the li_list_mtx lock, to prevent any
3852 	 * additions into it, and of course we should lock ext4_li_mtx
3853 	 * to atomically free the list and ext4_li_info, because at
3854 	 * this point another ext4 filesystem could be registering
3855 	 * new one.
3856 	 */
3857 	mutex_lock(&ext4_li_mtx);
3858 	mutex_lock(&eli->li_list_mtx);
3859 	if (!list_empty(&eli->li_request_list)) {
3860 		mutex_unlock(&eli->li_list_mtx);
3861 		mutex_unlock(&ext4_li_mtx);
3862 		goto cont_thread;
3863 	}
3864 	mutex_unlock(&eli->li_list_mtx);
3865 	kfree(ext4_li_info);
3866 	ext4_li_info = NULL;
3867 	mutex_unlock(&ext4_li_mtx);
3868 
3869 	return 0;
3870 }
3871 
3872 static void ext4_clear_request_list(void)
3873 {
3874 	struct list_head *pos, *n;
3875 	struct ext4_li_request *elr;
3876 
3877 	mutex_lock(&ext4_li_info->li_list_mtx);
3878 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3879 		elr = list_entry(pos, struct ext4_li_request,
3880 				 lr_request);
3881 		ext4_remove_li_request(elr);
3882 	}
3883 	mutex_unlock(&ext4_li_info->li_list_mtx);
3884 }
3885 
3886 static int ext4_run_lazyinit_thread(void)
3887 {
3888 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3889 					 ext4_li_info, "ext4lazyinit");
3890 	if (IS_ERR(ext4_lazyinit_task)) {
3891 		int err = PTR_ERR(ext4_lazyinit_task);
3892 		ext4_clear_request_list();
3893 		kfree(ext4_li_info);
3894 		ext4_li_info = NULL;
3895 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3896 				 "initialization thread\n",
3897 				 err);
3898 		return err;
3899 	}
3900 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3901 	return 0;
3902 }
3903 
3904 /*
3905  * Check whether it make sense to run itable init. thread or not.
3906  * If there is at least one uninitialized inode table, return
3907  * corresponding group number, else the loop goes through all
3908  * groups and return total number of groups.
3909  */
3910 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3911 {
3912 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3913 	struct ext4_group_desc *gdp = NULL;
3914 
3915 	if (!ext4_has_group_desc_csum(sb))
3916 		return ngroups;
3917 
3918 	for (group = 0; group < ngroups; group++) {
3919 		gdp = ext4_get_group_desc(sb, group, NULL);
3920 		if (!gdp)
3921 			continue;
3922 
3923 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3924 			break;
3925 	}
3926 
3927 	return group;
3928 }
3929 
3930 static int ext4_li_info_new(void)
3931 {
3932 	struct ext4_lazy_init *eli = NULL;
3933 
3934 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3935 	if (!eli)
3936 		return -ENOMEM;
3937 
3938 	INIT_LIST_HEAD(&eli->li_request_list);
3939 	mutex_init(&eli->li_list_mtx);
3940 
3941 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3942 
3943 	ext4_li_info = eli;
3944 
3945 	return 0;
3946 }
3947 
3948 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3949 					    ext4_group_t start)
3950 {
3951 	struct ext4_li_request *elr;
3952 
3953 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3954 	if (!elr)
3955 		return NULL;
3956 
3957 	elr->lr_super = sb;
3958 	elr->lr_first_not_zeroed = start;
3959 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3960 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3961 		elr->lr_next_group = start;
3962 	} else {
3963 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3964 	}
3965 
3966 	/*
3967 	 * Randomize first schedule time of the request to
3968 	 * spread the inode table initialization requests
3969 	 * better.
3970 	 */
3971 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3972 	return elr;
3973 }
3974 
3975 int ext4_register_li_request(struct super_block *sb,
3976 			     ext4_group_t first_not_zeroed)
3977 {
3978 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3979 	struct ext4_li_request *elr = NULL;
3980 	ext4_group_t ngroups = sbi->s_groups_count;
3981 	int ret = 0;
3982 
3983 	mutex_lock(&ext4_li_mtx);
3984 	if (sbi->s_li_request != NULL) {
3985 		/*
3986 		 * Reset timeout so it can be computed again, because
3987 		 * s_li_wait_mult might have changed.
3988 		 */
3989 		sbi->s_li_request->lr_timeout = 0;
3990 		goto out;
3991 	}
3992 
3993 	if (sb_rdonly(sb) ||
3994 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3995 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3996 		goto out;
3997 
3998 	elr = ext4_li_request_new(sb, first_not_zeroed);
3999 	if (!elr) {
4000 		ret = -ENOMEM;
4001 		goto out;
4002 	}
4003 
4004 	if (NULL == ext4_li_info) {
4005 		ret = ext4_li_info_new();
4006 		if (ret)
4007 			goto out;
4008 	}
4009 
4010 	mutex_lock(&ext4_li_info->li_list_mtx);
4011 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4012 	mutex_unlock(&ext4_li_info->li_list_mtx);
4013 
4014 	sbi->s_li_request = elr;
4015 	/*
4016 	 * set elr to NULL here since it has been inserted to
4017 	 * the request_list and the removal and free of it is
4018 	 * handled by ext4_clear_request_list from now on.
4019 	 */
4020 	elr = NULL;
4021 
4022 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4023 		ret = ext4_run_lazyinit_thread();
4024 		if (ret)
4025 			goto out;
4026 	}
4027 out:
4028 	mutex_unlock(&ext4_li_mtx);
4029 	if (ret)
4030 		kfree(elr);
4031 	return ret;
4032 }
4033 
4034 /*
4035  * We do not need to lock anything since this is called on
4036  * module unload.
4037  */
4038 static void ext4_destroy_lazyinit_thread(void)
4039 {
4040 	/*
4041 	 * If thread exited earlier
4042 	 * there's nothing to be done.
4043 	 */
4044 	if (!ext4_li_info || !ext4_lazyinit_task)
4045 		return;
4046 
4047 	kthread_stop(ext4_lazyinit_task);
4048 }
4049 
4050 static int set_journal_csum_feature_set(struct super_block *sb)
4051 {
4052 	int ret = 1;
4053 	int compat, incompat;
4054 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4055 
4056 	if (ext4_has_metadata_csum(sb)) {
4057 		/* journal checksum v3 */
4058 		compat = 0;
4059 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4060 	} else {
4061 		/* journal checksum v1 */
4062 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4063 		incompat = 0;
4064 	}
4065 
4066 	jbd2_journal_clear_features(sbi->s_journal,
4067 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4068 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4069 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4070 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4071 		ret = jbd2_journal_set_features(sbi->s_journal,
4072 				compat, 0,
4073 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4074 				incompat);
4075 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4076 		ret = jbd2_journal_set_features(sbi->s_journal,
4077 				compat, 0,
4078 				incompat);
4079 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4080 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4081 	} else {
4082 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4083 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4084 	}
4085 
4086 	return ret;
4087 }
4088 
4089 /*
4090  * Note: calculating the overhead so we can be compatible with
4091  * historical BSD practice is quite difficult in the face of
4092  * clusters/bigalloc.  This is because multiple metadata blocks from
4093  * different block group can end up in the same allocation cluster.
4094  * Calculating the exact overhead in the face of clustered allocation
4095  * requires either O(all block bitmaps) in memory or O(number of block
4096  * groups**2) in time.  We will still calculate the superblock for
4097  * older file systems --- and if we come across with a bigalloc file
4098  * system with zero in s_overhead_clusters the estimate will be close to
4099  * correct especially for very large cluster sizes --- but for newer
4100  * file systems, it's better to calculate this figure once at mkfs
4101  * time, and store it in the superblock.  If the superblock value is
4102  * present (even for non-bigalloc file systems), we will use it.
4103  */
4104 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4105 			  char *buf)
4106 {
4107 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4108 	struct ext4_group_desc	*gdp;
4109 	ext4_fsblk_t		first_block, last_block, b;
4110 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4111 	int			s, j, count = 0;
4112 	int			has_super = ext4_bg_has_super(sb, grp);
4113 
4114 	if (!ext4_has_feature_bigalloc(sb))
4115 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4116 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4117 			sbi->s_itb_per_group + 2);
4118 
4119 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4120 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4121 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4122 	for (i = 0; i < ngroups; i++) {
4123 		gdp = ext4_get_group_desc(sb, i, NULL);
4124 		b = ext4_block_bitmap(sb, gdp);
4125 		if (b >= first_block && b <= last_block) {
4126 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4127 			count++;
4128 		}
4129 		b = ext4_inode_bitmap(sb, gdp);
4130 		if (b >= first_block && b <= last_block) {
4131 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4132 			count++;
4133 		}
4134 		b = ext4_inode_table(sb, gdp);
4135 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4136 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4137 				int c = EXT4_B2C(sbi, b - first_block);
4138 				ext4_set_bit(c, buf);
4139 				count++;
4140 			}
4141 		if (i != grp)
4142 			continue;
4143 		s = 0;
4144 		if (ext4_bg_has_super(sb, grp)) {
4145 			ext4_set_bit(s++, buf);
4146 			count++;
4147 		}
4148 		j = ext4_bg_num_gdb(sb, grp);
4149 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4150 			ext4_error(sb, "Invalid number of block group "
4151 				   "descriptor blocks: %d", j);
4152 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4153 		}
4154 		count += j;
4155 		for (; j > 0; j--)
4156 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4157 	}
4158 	if (!count)
4159 		return 0;
4160 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4161 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4162 }
4163 
4164 /*
4165  * Compute the overhead and stash it in sbi->s_overhead
4166  */
4167 int ext4_calculate_overhead(struct super_block *sb)
4168 {
4169 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4170 	struct ext4_super_block *es = sbi->s_es;
4171 	struct inode *j_inode;
4172 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4173 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4174 	ext4_fsblk_t overhead = 0;
4175 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4176 
4177 	if (!buf)
4178 		return -ENOMEM;
4179 
4180 	/*
4181 	 * Compute the overhead (FS structures).  This is constant
4182 	 * for a given filesystem unless the number of block groups
4183 	 * changes so we cache the previous value until it does.
4184 	 */
4185 
4186 	/*
4187 	 * All of the blocks before first_data_block are overhead
4188 	 */
4189 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4190 
4191 	/*
4192 	 * Add the overhead found in each block group
4193 	 */
4194 	for (i = 0; i < ngroups; i++) {
4195 		int blks;
4196 
4197 		blks = count_overhead(sb, i, buf);
4198 		overhead += blks;
4199 		if (blks)
4200 			memset(buf, 0, PAGE_SIZE);
4201 		cond_resched();
4202 	}
4203 
4204 	/*
4205 	 * Add the internal journal blocks whether the journal has been
4206 	 * loaded or not
4207 	 */
4208 	if (sbi->s_journal && !sbi->s_journal_bdev)
4209 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4210 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4211 		/* j_inum for internal journal is non-zero */
4212 		j_inode = ext4_get_journal_inode(sb, j_inum);
4213 		if (j_inode) {
4214 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4215 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4216 			iput(j_inode);
4217 		} else {
4218 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4219 		}
4220 	}
4221 	sbi->s_overhead = overhead;
4222 	smp_wmb();
4223 	free_page((unsigned long) buf);
4224 	return 0;
4225 }
4226 
4227 static void ext4_set_resv_clusters(struct super_block *sb)
4228 {
4229 	ext4_fsblk_t resv_clusters;
4230 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4231 
4232 	/*
4233 	 * There's no need to reserve anything when we aren't using extents.
4234 	 * The space estimates are exact, there are no unwritten extents,
4235 	 * hole punching doesn't need new metadata... This is needed especially
4236 	 * to keep ext2/3 backward compatibility.
4237 	 */
4238 	if (!ext4_has_feature_extents(sb))
4239 		return;
4240 	/*
4241 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4242 	 * This should cover the situations where we can not afford to run
4243 	 * out of space like for example punch hole, or converting
4244 	 * unwritten extents in delalloc path. In most cases such
4245 	 * allocation would require 1, or 2 blocks, higher numbers are
4246 	 * very rare.
4247 	 */
4248 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4249 			 sbi->s_cluster_bits);
4250 
4251 	do_div(resv_clusters, 50);
4252 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4253 
4254 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4255 }
4256 
4257 static const char *ext4_quota_mode(struct super_block *sb)
4258 {
4259 #ifdef CONFIG_QUOTA
4260 	if (!ext4_quota_capable(sb))
4261 		return "none";
4262 
4263 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4264 		return "journalled";
4265 	else
4266 		return "writeback";
4267 #else
4268 	return "disabled";
4269 #endif
4270 }
4271 
4272 static void ext4_setup_csum_trigger(struct super_block *sb,
4273 				    enum ext4_journal_trigger_type type,
4274 				    void (*trigger)(
4275 					struct jbd2_buffer_trigger_type *type,
4276 					struct buffer_head *bh,
4277 					void *mapped_data,
4278 					size_t size))
4279 {
4280 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4281 
4282 	sbi->s_journal_triggers[type].sb = sb;
4283 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4284 }
4285 
4286 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4287 {
4288 	if (!sbi)
4289 		return;
4290 
4291 	kfree(sbi->s_blockgroup_lock);
4292 	fs_put_dax(sbi->s_daxdev, NULL);
4293 	kfree(sbi);
4294 }
4295 
4296 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4297 {
4298 	struct ext4_sb_info *sbi;
4299 
4300 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4301 	if (!sbi)
4302 		return NULL;
4303 
4304 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4305 					   NULL, NULL);
4306 
4307 	sbi->s_blockgroup_lock =
4308 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4309 
4310 	if (!sbi->s_blockgroup_lock)
4311 		goto err_out;
4312 
4313 	sb->s_fs_info = sbi;
4314 	sbi->s_sb = sb;
4315 	return sbi;
4316 err_out:
4317 	fs_put_dax(sbi->s_daxdev, NULL);
4318 	kfree(sbi);
4319 	return NULL;
4320 }
4321 
4322 static void ext4_set_def_opts(struct super_block *sb,
4323 			      struct ext4_super_block *es)
4324 {
4325 	unsigned long def_mount_opts;
4326 
4327 	/* Set defaults before we parse the mount options */
4328 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4329 	set_opt(sb, INIT_INODE_TABLE);
4330 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4331 		set_opt(sb, DEBUG);
4332 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4333 		set_opt(sb, GRPID);
4334 	if (def_mount_opts & EXT4_DEFM_UID16)
4335 		set_opt(sb, NO_UID32);
4336 	/* xattr user namespace & acls are now defaulted on */
4337 	set_opt(sb, XATTR_USER);
4338 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4339 	set_opt(sb, POSIX_ACL);
4340 #endif
4341 	if (ext4_has_feature_fast_commit(sb))
4342 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4343 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4344 	if (ext4_has_metadata_csum(sb))
4345 		set_opt(sb, JOURNAL_CHECKSUM);
4346 
4347 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4348 		set_opt(sb, JOURNAL_DATA);
4349 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4350 		set_opt(sb, ORDERED_DATA);
4351 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4352 		set_opt(sb, WRITEBACK_DATA);
4353 
4354 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4355 		set_opt(sb, ERRORS_PANIC);
4356 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4357 		set_opt(sb, ERRORS_CONT);
4358 	else
4359 		set_opt(sb, ERRORS_RO);
4360 	/* block_validity enabled by default; disable with noblock_validity */
4361 	set_opt(sb, BLOCK_VALIDITY);
4362 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4363 		set_opt(sb, DISCARD);
4364 
4365 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4366 		set_opt(sb, BARRIER);
4367 
4368 	/*
4369 	 * enable delayed allocation by default
4370 	 * Use -o nodelalloc to turn it off
4371 	 */
4372 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4373 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4374 		set_opt(sb, DELALLOC);
4375 
4376 	if (sb->s_blocksize == PAGE_SIZE)
4377 		set_opt(sb, DIOREAD_NOLOCK);
4378 }
4379 
4380 static int ext4_handle_clustersize(struct super_block *sb)
4381 {
4382 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4383 	struct ext4_super_block *es = sbi->s_es;
4384 	int clustersize;
4385 
4386 	/* Handle clustersize */
4387 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4388 	if (ext4_has_feature_bigalloc(sb)) {
4389 		if (clustersize < sb->s_blocksize) {
4390 			ext4_msg(sb, KERN_ERR,
4391 				 "cluster size (%d) smaller than "
4392 				 "block size (%lu)", clustersize, sb->s_blocksize);
4393 			return -EINVAL;
4394 		}
4395 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4396 			le32_to_cpu(es->s_log_block_size);
4397 		sbi->s_clusters_per_group =
4398 			le32_to_cpu(es->s_clusters_per_group);
4399 		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4400 			ext4_msg(sb, KERN_ERR,
4401 				 "#clusters per group too big: %lu",
4402 				 sbi->s_clusters_per_group);
4403 			return -EINVAL;
4404 		}
4405 		if (sbi->s_blocks_per_group !=
4406 		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4407 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4408 				 "clusters per group (%lu) inconsistent",
4409 				 sbi->s_blocks_per_group,
4410 				 sbi->s_clusters_per_group);
4411 			return -EINVAL;
4412 		}
4413 	} else {
4414 		if (clustersize != sb->s_blocksize) {
4415 			ext4_msg(sb, KERN_ERR,
4416 				 "fragment/cluster size (%d) != "
4417 				 "block size (%lu)", clustersize, sb->s_blocksize);
4418 			return -EINVAL;
4419 		}
4420 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4421 			ext4_msg(sb, KERN_ERR,
4422 				 "#blocks per group too big: %lu",
4423 				 sbi->s_blocks_per_group);
4424 			return -EINVAL;
4425 		}
4426 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4427 		sbi->s_cluster_bits = 0;
4428 	}
4429 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4430 
4431 	/* Do we have standard group size of clustersize * 8 blocks ? */
4432 	if (sbi->s_blocks_per_group == clustersize << 3)
4433 		set_opt2(sb, STD_GROUP_SIZE);
4434 
4435 	return 0;
4436 }
4437 
4438 static void ext4_fast_commit_init(struct super_block *sb)
4439 {
4440 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4441 
4442 	/* Initialize fast commit stuff */
4443 	atomic_set(&sbi->s_fc_subtid, 0);
4444 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4445 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4446 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4447 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4448 	sbi->s_fc_bytes = 0;
4449 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4450 	sbi->s_fc_ineligible_tid = 0;
4451 	spin_lock_init(&sbi->s_fc_lock);
4452 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4453 	sbi->s_fc_replay_state.fc_regions = NULL;
4454 	sbi->s_fc_replay_state.fc_regions_size = 0;
4455 	sbi->s_fc_replay_state.fc_regions_used = 0;
4456 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4457 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4458 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4459 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4460 }
4461 
4462 static int ext4_inode_info_init(struct super_block *sb,
4463 				struct ext4_super_block *es)
4464 {
4465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4466 
4467 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4468 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4469 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4470 	} else {
4471 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4472 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4473 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4474 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4475 				 sbi->s_first_ino);
4476 			return -EINVAL;
4477 		}
4478 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4479 		    (!is_power_of_2(sbi->s_inode_size)) ||
4480 		    (sbi->s_inode_size > sb->s_blocksize)) {
4481 			ext4_msg(sb, KERN_ERR,
4482 			       "unsupported inode size: %d",
4483 			       sbi->s_inode_size);
4484 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4485 			return -EINVAL;
4486 		}
4487 		/*
4488 		 * i_atime_extra is the last extra field available for
4489 		 * [acm]times in struct ext4_inode. Checking for that
4490 		 * field should suffice to ensure we have extra space
4491 		 * for all three.
4492 		 */
4493 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4494 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4495 			sb->s_time_gran = 1;
4496 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4497 		} else {
4498 			sb->s_time_gran = NSEC_PER_SEC;
4499 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4500 		}
4501 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4502 	}
4503 
4504 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4505 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4506 			EXT4_GOOD_OLD_INODE_SIZE;
4507 		if (ext4_has_feature_extra_isize(sb)) {
4508 			unsigned v, max = (sbi->s_inode_size -
4509 					   EXT4_GOOD_OLD_INODE_SIZE);
4510 
4511 			v = le16_to_cpu(es->s_want_extra_isize);
4512 			if (v > max) {
4513 				ext4_msg(sb, KERN_ERR,
4514 					 "bad s_want_extra_isize: %d", v);
4515 				return -EINVAL;
4516 			}
4517 			if (sbi->s_want_extra_isize < v)
4518 				sbi->s_want_extra_isize = v;
4519 
4520 			v = le16_to_cpu(es->s_min_extra_isize);
4521 			if (v > max) {
4522 				ext4_msg(sb, KERN_ERR,
4523 					 "bad s_min_extra_isize: %d", v);
4524 				return -EINVAL;
4525 			}
4526 			if (sbi->s_want_extra_isize < v)
4527 				sbi->s_want_extra_isize = v;
4528 		}
4529 	}
4530 
4531 	return 0;
4532 }
4533 
4534 #if IS_ENABLED(CONFIG_UNICODE)
4535 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4536 {
4537 	const struct ext4_sb_encodings *encoding_info;
4538 	struct unicode_map *encoding;
4539 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4540 
4541 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4542 		return 0;
4543 
4544 	encoding_info = ext4_sb_read_encoding(es);
4545 	if (!encoding_info) {
4546 		ext4_msg(sb, KERN_ERR,
4547 			"Encoding requested by superblock is unknown");
4548 		return -EINVAL;
4549 	}
4550 
4551 	encoding = utf8_load(encoding_info->version);
4552 	if (IS_ERR(encoding)) {
4553 		ext4_msg(sb, KERN_ERR,
4554 			"can't mount with superblock charset: %s-%u.%u.%u "
4555 			"not supported by the kernel. flags: 0x%x.",
4556 			encoding_info->name,
4557 			unicode_major(encoding_info->version),
4558 			unicode_minor(encoding_info->version),
4559 			unicode_rev(encoding_info->version),
4560 			encoding_flags);
4561 		return -EINVAL;
4562 	}
4563 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4564 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4565 		unicode_major(encoding_info->version),
4566 		unicode_minor(encoding_info->version),
4567 		unicode_rev(encoding_info->version),
4568 		encoding_flags);
4569 
4570 	sb->s_encoding = encoding;
4571 	sb->s_encoding_flags = encoding_flags;
4572 
4573 	return 0;
4574 }
4575 #else
4576 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4577 {
4578 	return 0;
4579 }
4580 #endif
4581 
4582 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4583 {
4584 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4585 
4586 	/* Warn if metadata_csum and gdt_csum are both set. */
4587 	if (ext4_has_feature_metadata_csum(sb) &&
4588 	    ext4_has_feature_gdt_csum(sb))
4589 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4590 			     "redundant flags; please run fsck.");
4591 
4592 	/* Check for a known checksum algorithm */
4593 	if (!ext4_verify_csum_type(sb, es)) {
4594 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4595 			 "unknown checksum algorithm.");
4596 		return -EINVAL;
4597 	}
4598 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4599 				ext4_orphan_file_block_trigger);
4600 
4601 	/* Load the checksum driver */
4602 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4603 	if (IS_ERR(sbi->s_chksum_driver)) {
4604 		int ret = PTR_ERR(sbi->s_chksum_driver);
4605 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4606 		sbi->s_chksum_driver = NULL;
4607 		return ret;
4608 	}
4609 
4610 	/* Check superblock checksum */
4611 	if (!ext4_superblock_csum_verify(sb, es)) {
4612 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4613 			 "invalid superblock checksum.  Run e2fsck?");
4614 		return -EFSBADCRC;
4615 	}
4616 
4617 	/* Precompute checksum seed for all metadata */
4618 	if (ext4_has_feature_csum_seed(sb))
4619 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4620 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4621 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4622 					       sizeof(es->s_uuid));
4623 	return 0;
4624 }
4625 
4626 static int ext4_check_feature_compatibility(struct super_block *sb,
4627 					    struct ext4_super_block *es,
4628 					    int silent)
4629 {
4630 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4631 
4632 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4633 	    (ext4_has_compat_features(sb) ||
4634 	     ext4_has_ro_compat_features(sb) ||
4635 	     ext4_has_incompat_features(sb)))
4636 		ext4_msg(sb, KERN_WARNING,
4637 		       "feature flags set on rev 0 fs, "
4638 		       "running e2fsck is recommended");
4639 
4640 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4641 		set_opt2(sb, HURD_COMPAT);
4642 		if (ext4_has_feature_64bit(sb)) {
4643 			ext4_msg(sb, KERN_ERR,
4644 				 "The Hurd can't support 64-bit file systems");
4645 			return -EINVAL;
4646 		}
4647 
4648 		/*
4649 		 * ea_inode feature uses l_i_version field which is not
4650 		 * available in HURD_COMPAT mode.
4651 		 */
4652 		if (ext4_has_feature_ea_inode(sb)) {
4653 			ext4_msg(sb, KERN_ERR,
4654 				 "ea_inode feature is not supported for Hurd");
4655 			return -EINVAL;
4656 		}
4657 	}
4658 
4659 	if (IS_EXT2_SB(sb)) {
4660 		if (ext2_feature_set_ok(sb))
4661 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4662 				 "using the ext4 subsystem");
4663 		else {
4664 			/*
4665 			 * If we're probing be silent, if this looks like
4666 			 * it's actually an ext[34] filesystem.
4667 			 */
4668 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4669 				return -EINVAL;
4670 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4671 				 "to feature incompatibilities");
4672 			return -EINVAL;
4673 		}
4674 	}
4675 
4676 	if (IS_EXT3_SB(sb)) {
4677 		if (ext3_feature_set_ok(sb))
4678 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4679 				 "using the ext4 subsystem");
4680 		else {
4681 			/*
4682 			 * If we're probing be silent, if this looks like
4683 			 * it's actually an ext4 filesystem.
4684 			 */
4685 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4686 				return -EINVAL;
4687 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4688 				 "to feature incompatibilities");
4689 			return -EINVAL;
4690 		}
4691 	}
4692 
4693 	/*
4694 	 * Check feature flags regardless of the revision level, since we
4695 	 * previously didn't change the revision level when setting the flags,
4696 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4697 	 */
4698 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4699 		return -EINVAL;
4700 
4701 	if (sbi->s_daxdev) {
4702 		if (sb->s_blocksize == PAGE_SIZE)
4703 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4704 		else
4705 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4706 	}
4707 
4708 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4709 		if (ext4_has_feature_inline_data(sb)) {
4710 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4711 					" that may contain inline data");
4712 			return -EINVAL;
4713 		}
4714 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4715 			ext4_msg(sb, KERN_ERR,
4716 				"DAX unsupported by block device.");
4717 			return -EINVAL;
4718 		}
4719 	}
4720 
4721 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4722 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4723 			 es->s_encryption_level);
4724 		return -EINVAL;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
4730 static int ext4_check_geometry(struct super_block *sb,
4731 			       struct ext4_super_block *es)
4732 {
4733 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4734 	__u64 blocks_count;
4735 	int err;
4736 
4737 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4738 		ext4_msg(sb, KERN_ERR,
4739 			 "Number of reserved GDT blocks insanely large: %d",
4740 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4741 		return -EINVAL;
4742 	}
4743 	/*
4744 	 * Test whether we have more sectors than will fit in sector_t,
4745 	 * and whether the max offset is addressable by the page cache.
4746 	 */
4747 	err = generic_check_addressable(sb->s_blocksize_bits,
4748 					ext4_blocks_count(es));
4749 	if (err) {
4750 		ext4_msg(sb, KERN_ERR, "filesystem"
4751 			 " too large to mount safely on this system");
4752 		return err;
4753 	}
4754 
4755 	/* check blocks count against device size */
4756 	blocks_count = sb_bdev_nr_blocks(sb);
4757 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4758 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4759 		       "exceeds size of device (%llu blocks)",
4760 		       ext4_blocks_count(es), blocks_count);
4761 		return -EINVAL;
4762 	}
4763 
4764 	/*
4765 	 * It makes no sense for the first data block to be beyond the end
4766 	 * of the filesystem.
4767 	 */
4768 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4769 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4770 			 "block %u is beyond end of filesystem (%llu)",
4771 			 le32_to_cpu(es->s_first_data_block),
4772 			 ext4_blocks_count(es));
4773 		return -EINVAL;
4774 	}
4775 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4776 	    (sbi->s_cluster_ratio == 1)) {
4777 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4778 			 "block is 0 with a 1k block and cluster size");
4779 		return -EINVAL;
4780 	}
4781 
4782 	blocks_count = (ext4_blocks_count(es) -
4783 			le32_to_cpu(es->s_first_data_block) +
4784 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4785 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4786 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4787 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4788 		       "(block count %llu, first data block %u, "
4789 		       "blocks per group %lu)", blocks_count,
4790 		       ext4_blocks_count(es),
4791 		       le32_to_cpu(es->s_first_data_block),
4792 		       EXT4_BLOCKS_PER_GROUP(sb));
4793 		return -EINVAL;
4794 	}
4795 	sbi->s_groups_count = blocks_count;
4796 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4797 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4798 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4799 	    le32_to_cpu(es->s_inodes_count)) {
4800 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4801 			 le32_to_cpu(es->s_inodes_count),
4802 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4803 		return -EINVAL;
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 static int ext4_group_desc_init(struct super_block *sb,
4810 				struct ext4_super_block *es,
4811 				ext4_fsblk_t logical_sb_block,
4812 				ext4_group_t *first_not_zeroed)
4813 {
4814 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4815 	unsigned int db_count;
4816 	ext4_fsblk_t block;
4817 	int i;
4818 
4819 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4820 		   EXT4_DESC_PER_BLOCK(sb);
4821 	if (ext4_has_feature_meta_bg(sb)) {
4822 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4823 			ext4_msg(sb, KERN_WARNING,
4824 				 "first meta block group too large: %u "
4825 				 "(group descriptor block count %u)",
4826 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4827 			return -EINVAL;
4828 		}
4829 	}
4830 	rcu_assign_pointer(sbi->s_group_desc,
4831 			   kvmalloc_array(db_count,
4832 					  sizeof(struct buffer_head *),
4833 					  GFP_KERNEL));
4834 	if (sbi->s_group_desc == NULL) {
4835 		ext4_msg(sb, KERN_ERR, "not enough memory");
4836 		return -ENOMEM;
4837 	}
4838 
4839 	bgl_lock_init(sbi->s_blockgroup_lock);
4840 
4841 	/* Pre-read the descriptors into the buffer cache */
4842 	for (i = 0; i < db_count; i++) {
4843 		block = descriptor_loc(sb, logical_sb_block, i);
4844 		ext4_sb_breadahead_unmovable(sb, block);
4845 	}
4846 
4847 	for (i = 0; i < db_count; i++) {
4848 		struct buffer_head *bh;
4849 
4850 		block = descriptor_loc(sb, logical_sb_block, i);
4851 		bh = ext4_sb_bread_unmovable(sb, block);
4852 		if (IS_ERR(bh)) {
4853 			ext4_msg(sb, KERN_ERR,
4854 			       "can't read group descriptor %d", i);
4855 			sbi->s_gdb_count = i;
4856 			return PTR_ERR(bh);
4857 		}
4858 		rcu_read_lock();
4859 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4860 		rcu_read_unlock();
4861 	}
4862 	sbi->s_gdb_count = db_count;
4863 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4864 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4865 		return -EFSCORRUPTED;
4866 	}
4867 
4868 	return 0;
4869 }
4870 
4871 static int ext4_load_and_init_journal(struct super_block *sb,
4872 				      struct ext4_super_block *es,
4873 				      struct ext4_fs_context *ctx)
4874 {
4875 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4876 	int err;
4877 
4878 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4879 	if (err)
4880 		return err;
4881 
4882 	if (ext4_has_feature_64bit(sb) &&
4883 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4884 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4885 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4886 		goto out;
4887 	}
4888 
4889 	if (!set_journal_csum_feature_set(sb)) {
4890 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4891 			 "feature set");
4892 		goto out;
4893 	}
4894 
4895 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4896 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4897 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4898 		ext4_msg(sb, KERN_ERR,
4899 			"Failed to set fast commit journal feature");
4900 		goto out;
4901 	}
4902 
4903 	/* We have now updated the journal if required, so we can
4904 	 * validate the data journaling mode. */
4905 	switch (test_opt(sb, DATA_FLAGS)) {
4906 	case 0:
4907 		/* No mode set, assume a default based on the journal
4908 		 * capabilities: ORDERED_DATA if the journal can
4909 		 * cope, else JOURNAL_DATA
4910 		 */
4911 		if (jbd2_journal_check_available_features
4912 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4913 			set_opt(sb, ORDERED_DATA);
4914 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4915 		} else {
4916 			set_opt(sb, JOURNAL_DATA);
4917 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4918 		}
4919 		break;
4920 
4921 	case EXT4_MOUNT_ORDERED_DATA:
4922 	case EXT4_MOUNT_WRITEBACK_DATA:
4923 		if (!jbd2_journal_check_available_features
4924 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4925 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4926 			       "requested data journaling mode");
4927 			goto out;
4928 		}
4929 		break;
4930 	default:
4931 		break;
4932 	}
4933 
4934 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4935 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4936 		ext4_msg(sb, KERN_ERR, "can't mount with "
4937 			"journal_async_commit in data=ordered mode");
4938 		goto out;
4939 	}
4940 
4941 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4942 
4943 	sbi->s_journal->j_submit_inode_data_buffers =
4944 		ext4_journal_submit_inode_data_buffers;
4945 	sbi->s_journal->j_finish_inode_data_buffers =
4946 		ext4_journal_finish_inode_data_buffers;
4947 
4948 	return 0;
4949 
4950 out:
4951 	/* flush s_error_work before journal destroy. */
4952 	flush_work(&sbi->s_error_work);
4953 	jbd2_journal_destroy(sbi->s_journal);
4954 	sbi->s_journal = NULL;
4955 	return -EINVAL;
4956 }
4957 
4958 static int ext4_check_journal_data_mode(struct super_block *sb)
4959 {
4960 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4961 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4962 			    "data=journal disables delayed allocation, "
4963 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4964 		/* can't mount with both data=journal and dioread_nolock. */
4965 		clear_opt(sb, DIOREAD_NOLOCK);
4966 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4967 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4968 			ext4_msg(sb, KERN_ERR, "can't mount with "
4969 				 "both data=journal and delalloc");
4970 			return -EINVAL;
4971 		}
4972 		if (test_opt(sb, DAX_ALWAYS)) {
4973 			ext4_msg(sb, KERN_ERR, "can't mount with "
4974 				 "both data=journal and dax");
4975 			return -EINVAL;
4976 		}
4977 		if (ext4_has_feature_encrypt(sb)) {
4978 			ext4_msg(sb, KERN_WARNING,
4979 				 "encrypted files will use data=ordered "
4980 				 "instead of data journaling mode");
4981 		}
4982 		if (test_opt(sb, DELALLOC))
4983 			clear_opt(sb, DELALLOC);
4984 	} else {
4985 		sb->s_iflags |= SB_I_CGROUPWB;
4986 	}
4987 
4988 	return 0;
4989 }
4990 
4991 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4992 			   int silent)
4993 {
4994 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4995 	struct ext4_super_block *es;
4996 	ext4_fsblk_t logical_sb_block;
4997 	unsigned long offset = 0;
4998 	struct buffer_head *bh;
4999 	int ret = -EINVAL;
5000 	int blocksize;
5001 
5002 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5003 	if (!blocksize) {
5004 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5005 		return -EINVAL;
5006 	}
5007 
5008 	/*
5009 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5010 	 * block sizes.  We need to calculate the offset from buffer start.
5011 	 */
5012 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5013 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5014 		offset = do_div(logical_sb_block, blocksize);
5015 	} else {
5016 		logical_sb_block = sbi->s_sb_block;
5017 	}
5018 
5019 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5020 	if (IS_ERR(bh)) {
5021 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5022 		return PTR_ERR(bh);
5023 	}
5024 	/*
5025 	 * Note: s_es must be initialized as soon as possible because
5026 	 *       some ext4 macro-instructions depend on its value
5027 	 */
5028 	es = (struct ext4_super_block *) (bh->b_data + offset);
5029 	sbi->s_es = es;
5030 	sb->s_magic = le16_to_cpu(es->s_magic);
5031 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5032 		if (!silent)
5033 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5034 		goto out;
5035 	}
5036 
5037 	if (le32_to_cpu(es->s_log_block_size) >
5038 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5039 		ext4_msg(sb, KERN_ERR,
5040 			 "Invalid log block size: %u",
5041 			 le32_to_cpu(es->s_log_block_size));
5042 		goto out;
5043 	}
5044 	if (le32_to_cpu(es->s_log_cluster_size) >
5045 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5046 		ext4_msg(sb, KERN_ERR,
5047 			 "Invalid log cluster size: %u",
5048 			 le32_to_cpu(es->s_log_cluster_size));
5049 		goto out;
5050 	}
5051 
5052 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5053 
5054 	/*
5055 	 * If the default block size is not the same as the real block size,
5056 	 * we need to reload it.
5057 	 */
5058 	if (sb->s_blocksize == blocksize) {
5059 		*lsb = logical_sb_block;
5060 		sbi->s_sbh = bh;
5061 		return 0;
5062 	}
5063 
5064 	/*
5065 	 * bh must be released before kill_bdev(), otherwise
5066 	 * it won't be freed and its page also. kill_bdev()
5067 	 * is called by sb_set_blocksize().
5068 	 */
5069 	brelse(bh);
5070 	/* Validate the filesystem blocksize */
5071 	if (!sb_set_blocksize(sb, blocksize)) {
5072 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5073 				blocksize);
5074 		bh = NULL;
5075 		goto out;
5076 	}
5077 
5078 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5079 	offset = do_div(logical_sb_block, blocksize);
5080 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5081 	if (IS_ERR(bh)) {
5082 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5083 		ret = PTR_ERR(bh);
5084 		bh = NULL;
5085 		goto out;
5086 	}
5087 	es = (struct ext4_super_block *)(bh->b_data + offset);
5088 	sbi->s_es = es;
5089 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5090 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5091 		goto out;
5092 	}
5093 	*lsb = logical_sb_block;
5094 	sbi->s_sbh = bh;
5095 	return 0;
5096 out:
5097 	brelse(bh);
5098 	return ret;
5099 }
5100 
5101 static void ext4_hash_info_init(struct super_block *sb)
5102 {
5103 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5104 	struct ext4_super_block *es = sbi->s_es;
5105 	unsigned int i;
5106 
5107 	for (i = 0; i < 4; i++)
5108 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5109 
5110 	sbi->s_def_hash_version = es->s_def_hash_version;
5111 	if (ext4_has_feature_dir_index(sb)) {
5112 		i = le32_to_cpu(es->s_flags);
5113 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5114 			sbi->s_hash_unsigned = 3;
5115 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5116 #ifdef __CHAR_UNSIGNED__
5117 			if (!sb_rdonly(sb))
5118 				es->s_flags |=
5119 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5120 			sbi->s_hash_unsigned = 3;
5121 #else
5122 			if (!sb_rdonly(sb))
5123 				es->s_flags |=
5124 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5125 #endif
5126 		}
5127 	}
5128 }
5129 
5130 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5131 {
5132 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5133 	struct ext4_super_block *es = sbi->s_es;
5134 	int has_huge_files;
5135 
5136 	has_huge_files = ext4_has_feature_huge_file(sb);
5137 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5138 						      has_huge_files);
5139 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5140 
5141 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5142 	if (ext4_has_feature_64bit(sb)) {
5143 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5144 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5145 		    !is_power_of_2(sbi->s_desc_size)) {
5146 			ext4_msg(sb, KERN_ERR,
5147 			       "unsupported descriptor size %lu",
5148 			       sbi->s_desc_size);
5149 			return -EINVAL;
5150 		}
5151 	} else
5152 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5153 
5154 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5155 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5156 
5157 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5158 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5159 		if (!silent)
5160 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5161 		return -EINVAL;
5162 	}
5163 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5164 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5165 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5166 			 sbi->s_inodes_per_group);
5167 		return -EINVAL;
5168 	}
5169 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5170 					sbi->s_inodes_per_block;
5171 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5172 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5173 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5174 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5175 
5176 	return 0;
5177 }
5178 
5179 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5180 {
5181 	struct ext4_super_block *es = NULL;
5182 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5183 	ext4_fsblk_t logical_sb_block;
5184 	struct inode *root;
5185 	int needs_recovery;
5186 	int err;
5187 	ext4_group_t first_not_zeroed;
5188 	struct ext4_fs_context *ctx = fc->fs_private;
5189 	int silent = fc->sb_flags & SB_SILENT;
5190 
5191 	/* Set defaults for the variables that will be set during parsing */
5192 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5193 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5194 
5195 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5196 	sbi->s_sectors_written_start =
5197 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5198 
5199 	err = ext4_load_super(sb, &logical_sb_block, silent);
5200 	if (err)
5201 		goto out_fail;
5202 
5203 	es = sbi->s_es;
5204 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5205 
5206 	err = ext4_init_metadata_csum(sb, es);
5207 	if (err)
5208 		goto failed_mount;
5209 
5210 	ext4_set_def_opts(sb, es);
5211 
5212 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5213 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5214 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5215 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5216 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5217 
5218 	/*
5219 	 * set default s_li_wait_mult for lazyinit, for the case there is
5220 	 * no mount option specified.
5221 	 */
5222 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5223 
5224 	err = ext4_inode_info_init(sb, es);
5225 	if (err)
5226 		goto failed_mount;
5227 
5228 	err = parse_apply_sb_mount_options(sb, ctx);
5229 	if (err < 0)
5230 		goto failed_mount;
5231 
5232 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5233 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5234 
5235 	err = ext4_check_opt_consistency(fc, sb);
5236 	if (err < 0)
5237 		goto failed_mount;
5238 
5239 	ext4_apply_options(fc, sb);
5240 
5241 	err = ext4_encoding_init(sb, es);
5242 	if (err)
5243 		goto failed_mount;
5244 
5245 	err = ext4_check_journal_data_mode(sb);
5246 	if (err)
5247 		goto failed_mount;
5248 
5249 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5250 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5251 
5252 	/* i_version is always enabled now */
5253 	sb->s_flags |= SB_I_VERSION;
5254 
5255 	err = ext4_check_feature_compatibility(sb, es, silent);
5256 	if (err)
5257 		goto failed_mount;
5258 
5259 	err = ext4_block_group_meta_init(sb, silent);
5260 	if (err)
5261 		goto failed_mount;
5262 
5263 	ext4_hash_info_init(sb);
5264 
5265 	err = ext4_handle_clustersize(sb);
5266 	if (err)
5267 		goto failed_mount;
5268 
5269 	err = ext4_check_geometry(sb, es);
5270 	if (err)
5271 		goto failed_mount;
5272 
5273 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5274 	spin_lock_init(&sbi->s_error_lock);
5275 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5276 
5277 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5278 	if (err)
5279 		goto failed_mount3;
5280 
5281 	err = ext4_es_register_shrinker(sbi);
5282 	if (err)
5283 		goto failed_mount3;
5284 
5285 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5286 	/*
5287 	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5288 	 * cluster, just disable stripe and alert user to simpfy code and avoid
5289 	 * stripe aligned allocation which will rarely successes.
5290 	 */
5291 	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5292 	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5293 		ext4_msg(sb, KERN_WARNING,
5294 			 "stripe (%lu) is not aligned with cluster size (%u), "
5295 			 "stripe is disabled",
5296 			 sbi->s_stripe, sbi->s_cluster_ratio);
5297 		sbi->s_stripe = 0;
5298 	}
5299 	sbi->s_extent_max_zeroout_kb = 32;
5300 
5301 	/*
5302 	 * set up enough so that it can read an inode
5303 	 */
5304 	sb->s_op = &ext4_sops;
5305 	sb->s_export_op = &ext4_export_ops;
5306 	sb->s_xattr = ext4_xattr_handlers;
5307 #ifdef CONFIG_FS_ENCRYPTION
5308 	sb->s_cop = &ext4_cryptops;
5309 #endif
5310 #ifdef CONFIG_FS_VERITY
5311 	sb->s_vop = &ext4_verityops;
5312 #endif
5313 #ifdef CONFIG_QUOTA
5314 	sb->dq_op = &ext4_quota_operations;
5315 	if (ext4_has_feature_quota(sb))
5316 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5317 	else
5318 		sb->s_qcop = &ext4_qctl_operations;
5319 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5320 #endif
5321 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5322 
5323 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5324 	mutex_init(&sbi->s_orphan_lock);
5325 
5326 	ext4_fast_commit_init(sb);
5327 
5328 	sb->s_root = NULL;
5329 
5330 	needs_recovery = (es->s_last_orphan != 0 ||
5331 			  ext4_has_feature_orphan_present(sb) ||
5332 			  ext4_has_feature_journal_needs_recovery(sb));
5333 
5334 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5335 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5336 		if (err)
5337 			goto failed_mount3a;
5338 	}
5339 
5340 	err = -EINVAL;
5341 	/*
5342 	 * The first inode we look at is the journal inode.  Don't try
5343 	 * root first: it may be modified in the journal!
5344 	 */
5345 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5346 		err = ext4_load_and_init_journal(sb, es, ctx);
5347 		if (err)
5348 			goto failed_mount3a;
5349 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5350 		   ext4_has_feature_journal_needs_recovery(sb)) {
5351 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5352 		       "suppressed and not mounted read-only");
5353 		goto failed_mount3a;
5354 	} else {
5355 		/* Nojournal mode, all journal mount options are illegal */
5356 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5357 			ext4_msg(sb, KERN_ERR, "can't mount with "
5358 				 "journal_async_commit, fs mounted w/o journal");
5359 			goto failed_mount3a;
5360 		}
5361 
5362 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5363 			ext4_msg(sb, KERN_ERR, "can't mount with "
5364 				 "journal_checksum, fs mounted w/o journal");
5365 			goto failed_mount3a;
5366 		}
5367 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5368 			ext4_msg(sb, KERN_ERR, "can't mount with "
5369 				 "commit=%lu, fs mounted w/o journal",
5370 				 sbi->s_commit_interval / HZ);
5371 			goto failed_mount3a;
5372 		}
5373 		if (EXT4_MOUNT_DATA_FLAGS &
5374 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5375 			ext4_msg(sb, KERN_ERR, "can't mount with "
5376 				 "data=, fs mounted w/o journal");
5377 			goto failed_mount3a;
5378 		}
5379 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5380 		clear_opt(sb, JOURNAL_CHECKSUM);
5381 		clear_opt(sb, DATA_FLAGS);
5382 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5383 		sbi->s_journal = NULL;
5384 		needs_recovery = 0;
5385 	}
5386 
5387 	if (!test_opt(sb, NO_MBCACHE)) {
5388 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5389 		if (!sbi->s_ea_block_cache) {
5390 			ext4_msg(sb, KERN_ERR,
5391 				 "Failed to create ea_block_cache");
5392 			err = -EINVAL;
5393 			goto failed_mount_wq;
5394 		}
5395 
5396 		if (ext4_has_feature_ea_inode(sb)) {
5397 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5398 			if (!sbi->s_ea_inode_cache) {
5399 				ext4_msg(sb, KERN_ERR,
5400 					 "Failed to create ea_inode_cache");
5401 				err = -EINVAL;
5402 				goto failed_mount_wq;
5403 			}
5404 		}
5405 	}
5406 
5407 	/*
5408 	 * Get the # of file system overhead blocks from the
5409 	 * superblock if present.
5410 	 */
5411 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5412 	/* ignore the precalculated value if it is ridiculous */
5413 	if (sbi->s_overhead > ext4_blocks_count(es))
5414 		sbi->s_overhead = 0;
5415 	/*
5416 	 * If the bigalloc feature is not enabled recalculating the
5417 	 * overhead doesn't take long, so we might as well just redo
5418 	 * it to make sure we are using the correct value.
5419 	 */
5420 	if (!ext4_has_feature_bigalloc(sb))
5421 		sbi->s_overhead = 0;
5422 	if (sbi->s_overhead == 0) {
5423 		err = ext4_calculate_overhead(sb);
5424 		if (err)
5425 			goto failed_mount_wq;
5426 	}
5427 
5428 	/*
5429 	 * The maximum number of concurrent works can be high and
5430 	 * concurrency isn't really necessary.  Limit it to 1.
5431 	 */
5432 	EXT4_SB(sb)->rsv_conversion_wq =
5433 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5434 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5435 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5436 		err = -ENOMEM;
5437 		goto failed_mount4;
5438 	}
5439 
5440 	/*
5441 	 * The jbd2_journal_load will have done any necessary log recovery,
5442 	 * so we can safely mount the rest of the filesystem now.
5443 	 */
5444 
5445 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5446 	if (IS_ERR(root)) {
5447 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5448 		err = PTR_ERR(root);
5449 		root = NULL;
5450 		goto failed_mount4;
5451 	}
5452 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5453 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5454 		iput(root);
5455 		err = -EFSCORRUPTED;
5456 		goto failed_mount4;
5457 	}
5458 
5459 	sb->s_root = d_make_root(root);
5460 	if (!sb->s_root) {
5461 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5462 		err = -ENOMEM;
5463 		goto failed_mount4;
5464 	}
5465 
5466 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5467 	if (err == -EROFS) {
5468 		sb->s_flags |= SB_RDONLY;
5469 	} else if (err)
5470 		goto failed_mount4a;
5471 
5472 	ext4_set_resv_clusters(sb);
5473 
5474 	if (test_opt(sb, BLOCK_VALIDITY)) {
5475 		err = ext4_setup_system_zone(sb);
5476 		if (err) {
5477 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5478 				 "zone (%d)", err);
5479 			goto failed_mount4a;
5480 		}
5481 	}
5482 	ext4_fc_replay_cleanup(sb);
5483 
5484 	ext4_ext_init(sb);
5485 
5486 	/*
5487 	 * Enable optimize_scan if number of groups is > threshold. This can be
5488 	 * turned off by passing "mb_optimize_scan=0". This can also be
5489 	 * turned on forcefully by passing "mb_optimize_scan=1".
5490 	 */
5491 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5492 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5493 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5494 		else
5495 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5496 	}
5497 
5498 	err = ext4_mb_init(sb);
5499 	if (err) {
5500 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5501 			 err);
5502 		goto failed_mount5;
5503 	}
5504 
5505 	/*
5506 	 * We can only set up the journal commit callback once
5507 	 * mballoc is initialized
5508 	 */
5509 	if (sbi->s_journal)
5510 		sbi->s_journal->j_commit_callback =
5511 			ext4_journal_commit_callback;
5512 
5513 	err = ext4_percpu_param_init(sbi);
5514 	if (err)
5515 		goto failed_mount6;
5516 
5517 	if (ext4_has_feature_flex_bg(sb))
5518 		if (!ext4_fill_flex_info(sb)) {
5519 			ext4_msg(sb, KERN_ERR,
5520 			       "unable to initialize "
5521 			       "flex_bg meta info!");
5522 			err = -ENOMEM;
5523 			goto failed_mount6;
5524 		}
5525 
5526 	err = ext4_register_li_request(sb, first_not_zeroed);
5527 	if (err)
5528 		goto failed_mount6;
5529 
5530 	err = ext4_register_sysfs(sb);
5531 	if (err)
5532 		goto failed_mount7;
5533 
5534 	err = ext4_init_orphan_info(sb);
5535 	if (err)
5536 		goto failed_mount8;
5537 #ifdef CONFIG_QUOTA
5538 	/* Enable quota usage during mount. */
5539 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5540 		err = ext4_enable_quotas(sb);
5541 		if (err)
5542 			goto failed_mount9;
5543 	}
5544 #endif  /* CONFIG_QUOTA */
5545 
5546 	/*
5547 	 * Save the original bdev mapping's wb_err value which could be
5548 	 * used to detect the metadata async write error.
5549 	 */
5550 	spin_lock_init(&sbi->s_bdev_wb_lock);
5551 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5552 				 &sbi->s_bdev_wb_err);
5553 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5554 	ext4_orphan_cleanup(sb, es);
5555 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5556 	/*
5557 	 * Update the checksum after updating free space/inode counters and
5558 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5559 	 * checksum in the buffer cache until it is written out and
5560 	 * e2fsprogs programs trying to open a file system immediately
5561 	 * after it is mounted can fail.
5562 	 */
5563 	ext4_superblock_csum_set(sb);
5564 	if (needs_recovery) {
5565 		ext4_msg(sb, KERN_INFO, "recovery complete");
5566 		err = ext4_mark_recovery_complete(sb, es);
5567 		if (err)
5568 			goto failed_mount10;
5569 	}
5570 
5571 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5572 		ext4_msg(sb, KERN_WARNING,
5573 			 "mounting with \"discard\" option, but the device does not support discard");
5574 
5575 	if (es->s_error_count)
5576 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5577 
5578 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5579 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5580 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5581 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5582 	atomic_set(&sbi->s_warning_count, 0);
5583 	atomic_set(&sbi->s_msg_count, 0);
5584 
5585 	return 0;
5586 
5587 failed_mount10:
5588 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5589 failed_mount9: __maybe_unused
5590 	ext4_release_orphan_info(sb);
5591 failed_mount8:
5592 	ext4_unregister_sysfs(sb);
5593 	kobject_put(&sbi->s_kobj);
5594 failed_mount7:
5595 	ext4_unregister_li_request(sb);
5596 failed_mount6:
5597 	ext4_mb_release(sb);
5598 	ext4_flex_groups_free(sbi);
5599 	ext4_percpu_param_destroy(sbi);
5600 failed_mount5:
5601 	ext4_ext_release(sb);
5602 	ext4_release_system_zone(sb);
5603 failed_mount4a:
5604 	dput(sb->s_root);
5605 	sb->s_root = NULL;
5606 failed_mount4:
5607 	ext4_msg(sb, KERN_ERR, "mount failed");
5608 	if (EXT4_SB(sb)->rsv_conversion_wq)
5609 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5610 failed_mount_wq:
5611 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5612 	sbi->s_ea_inode_cache = NULL;
5613 
5614 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5615 	sbi->s_ea_block_cache = NULL;
5616 
5617 	if (sbi->s_journal) {
5618 		/* flush s_error_work before journal destroy. */
5619 		flush_work(&sbi->s_error_work);
5620 		jbd2_journal_destroy(sbi->s_journal);
5621 		sbi->s_journal = NULL;
5622 	}
5623 failed_mount3a:
5624 	ext4_es_unregister_shrinker(sbi);
5625 failed_mount3:
5626 	/* flush s_error_work before sbi destroy */
5627 	flush_work(&sbi->s_error_work);
5628 	del_timer_sync(&sbi->s_err_report);
5629 	ext4_stop_mmpd(sbi);
5630 	ext4_group_desc_free(sbi);
5631 failed_mount:
5632 	if (sbi->s_chksum_driver)
5633 		crypto_free_shash(sbi->s_chksum_driver);
5634 
5635 #if IS_ENABLED(CONFIG_UNICODE)
5636 	utf8_unload(sb->s_encoding);
5637 #endif
5638 
5639 #ifdef CONFIG_QUOTA
5640 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5641 		kfree(get_qf_name(sb, sbi, i));
5642 #endif
5643 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5644 	brelse(sbi->s_sbh);
5645 	if (sbi->s_journal_bdev) {
5646 		invalidate_bdev(sbi->s_journal_bdev);
5647 		blkdev_put(sbi->s_journal_bdev, sb);
5648 	}
5649 out_fail:
5650 	invalidate_bdev(sb->s_bdev);
5651 	sb->s_fs_info = NULL;
5652 	return err;
5653 }
5654 
5655 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5656 {
5657 	struct ext4_fs_context *ctx = fc->fs_private;
5658 	struct ext4_sb_info *sbi;
5659 	const char *descr;
5660 	int ret;
5661 
5662 	sbi = ext4_alloc_sbi(sb);
5663 	if (!sbi)
5664 		return -ENOMEM;
5665 
5666 	fc->s_fs_info = sbi;
5667 
5668 	/* Cleanup superblock name */
5669 	strreplace(sb->s_id, '/', '!');
5670 
5671 	sbi->s_sb_block = 1;	/* Default super block location */
5672 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5673 		sbi->s_sb_block = ctx->s_sb_block;
5674 
5675 	ret = __ext4_fill_super(fc, sb);
5676 	if (ret < 0)
5677 		goto free_sbi;
5678 
5679 	if (sbi->s_journal) {
5680 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5681 			descr = " journalled data mode";
5682 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5683 			descr = " ordered data mode";
5684 		else
5685 			descr = " writeback data mode";
5686 	} else
5687 		descr = "out journal";
5688 
5689 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5690 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5691 			 "Quota mode: %s.", &sb->s_uuid,
5692 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5693 			 ext4_quota_mode(sb));
5694 
5695 	/* Update the s_overhead_clusters if necessary */
5696 	ext4_update_overhead(sb, false);
5697 	return 0;
5698 
5699 free_sbi:
5700 	ext4_free_sbi(sbi);
5701 	fc->s_fs_info = NULL;
5702 	return ret;
5703 }
5704 
5705 static int ext4_get_tree(struct fs_context *fc)
5706 {
5707 	return get_tree_bdev(fc, ext4_fill_super);
5708 }
5709 
5710 /*
5711  * Setup any per-fs journal parameters now.  We'll do this both on
5712  * initial mount, once the journal has been initialised but before we've
5713  * done any recovery; and again on any subsequent remount.
5714  */
5715 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5716 {
5717 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5718 
5719 	journal->j_commit_interval = sbi->s_commit_interval;
5720 	journal->j_min_batch_time = sbi->s_min_batch_time;
5721 	journal->j_max_batch_time = sbi->s_max_batch_time;
5722 	ext4_fc_init(sb, journal);
5723 
5724 	write_lock(&journal->j_state_lock);
5725 	if (test_opt(sb, BARRIER))
5726 		journal->j_flags |= JBD2_BARRIER;
5727 	else
5728 		journal->j_flags &= ~JBD2_BARRIER;
5729 	if (test_opt(sb, DATA_ERR_ABORT))
5730 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5731 	else
5732 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5733 	/*
5734 	 * Always enable journal cycle record option, letting the journal
5735 	 * records log transactions continuously between each mount.
5736 	 */
5737 	journal->j_flags |= JBD2_CYCLE_RECORD;
5738 	write_unlock(&journal->j_state_lock);
5739 }
5740 
5741 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5742 					     unsigned int journal_inum)
5743 {
5744 	struct inode *journal_inode;
5745 
5746 	/*
5747 	 * Test for the existence of a valid inode on disk.  Bad things
5748 	 * happen if we iget() an unused inode, as the subsequent iput()
5749 	 * will try to delete it.
5750 	 */
5751 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5752 	if (IS_ERR(journal_inode)) {
5753 		ext4_msg(sb, KERN_ERR, "no journal found");
5754 		return NULL;
5755 	}
5756 	if (!journal_inode->i_nlink) {
5757 		make_bad_inode(journal_inode);
5758 		iput(journal_inode);
5759 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5760 		return NULL;
5761 	}
5762 
5763 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5764 		  journal_inode, journal_inode->i_size);
5765 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5766 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5767 		iput(journal_inode);
5768 		return NULL;
5769 	}
5770 	return journal_inode;
5771 }
5772 
5773 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5774 {
5775 	struct ext4_map_blocks map;
5776 	int ret;
5777 
5778 	if (journal->j_inode == NULL)
5779 		return 0;
5780 
5781 	map.m_lblk = *block;
5782 	map.m_len = 1;
5783 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5784 	if (ret <= 0) {
5785 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5786 			 "journal bmap failed: block %llu ret %d\n",
5787 			 *block, ret);
5788 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5789 		return ret;
5790 	}
5791 	*block = map.m_pblk;
5792 	return 0;
5793 }
5794 
5795 static journal_t *ext4_get_journal(struct super_block *sb,
5796 				   unsigned int journal_inum)
5797 {
5798 	struct inode *journal_inode;
5799 	journal_t *journal;
5800 
5801 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5802 		return NULL;
5803 
5804 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5805 	if (!journal_inode)
5806 		return NULL;
5807 
5808 	journal = jbd2_journal_init_inode(journal_inode);
5809 	if (!journal) {
5810 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5811 		iput(journal_inode);
5812 		return NULL;
5813 	}
5814 	journal->j_private = sb;
5815 	journal->j_bmap = ext4_journal_bmap;
5816 	ext4_init_journal_params(sb, journal);
5817 	return journal;
5818 }
5819 
5820 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5821 				       dev_t j_dev)
5822 {
5823 	struct buffer_head *bh;
5824 	journal_t *journal;
5825 	ext4_fsblk_t start;
5826 	ext4_fsblk_t len;
5827 	int hblock, blocksize;
5828 	ext4_fsblk_t sb_block;
5829 	unsigned long offset;
5830 	struct ext4_super_block *es;
5831 	struct block_device *bdev;
5832 
5833 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5834 		return NULL;
5835 
5836 	/* see get_tree_bdev why this is needed and safe */
5837 	up_write(&sb->s_umount);
5838 	bdev = ext4_blkdev_get(j_dev, sb);
5839 	down_write(&sb->s_umount);
5840 	if (bdev == NULL)
5841 		return NULL;
5842 
5843 	blocksize = sb->s_blocksize;
5844 	hblock = bdev_logical_block_size(bdev);
5845 	if (blocksize < hblock) {
5846 		ext4_msg(sb, KERN_ERR,
5847 			"blocksize too small for journal device");
5848 		goto out_bdev;
5849 	}
5850 
5851 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5852 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5853 	set_blocksize(bdev, blocksize);
5854 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5855 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5856 		       "external journal");
5857 		goto out_bdev;
5858 	}
5859 
5860 	es = (struct ext4_super_block *) (bh->b_data + offset);
5861 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5862 	    !(le32_to_cpu(es->s_feature_incompat) &
5863 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5864 		ext4_msg(sb, KERN_ERR, "external journal has "
5865 					"bad superblock");
5866 		brelse(bh);
5867 		goto out_bdev;
5868 	}
5869 
5870 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5871 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5872 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5873 		ext4_msg(sb, KERN_ERR, "external journal has "
5874 				       "corrupt superblock");
5875 		brelse(bh);
5876 		goto out_bdev;
5877 	}
5878 
5879 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5880 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5881 		brelse(bh);
5882 		goto out_bdev;
5883 	}
5884 
5885 	len = ext4_blocks_count(es);
5886 	start = sb_block + 1;
5887 	brelse(bh);	/* we're done with the superblock */
5888 
5889 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5890 					start, len, blocksize);
5891 	if (!journal) {
5892 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5893 		goto out_bdev;
5894 	}
5895 	journal->j_private = sb;
5896 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5897 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5898 		goto out_journal;
5899 	}
5900 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5901 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5902 					"user (unsupported) - %d",
5903 			be32_to_cpu(journal->j_superblock->s_nr_users));
5904 		goto out_journal;
5905 	}
5906 	EXT4_SB(sb)->s_journal_bdev = bdev;
5907 	ext4_init_journal_params(sb, journal);
5908 	return journal;
5909 
5910 out_journal:
5911 	jbd2_journal_destroy(journal);
5912 out_bdev:
5913 	blkdev_put(bdev, sb);
5914 	return NULL;
5915 }
5916 
5917 static int ext4_load_journal(struct super_block *sb,
5918 			     struct ext4_super_block *es,
5919 			     unsigned long journal_devnum)
5920 {
5921 	journal_t *journal;
5922 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5923 	dev_t journal_dev;
5924 	int err = 0;
5925 	int really_read_only;
5926 	int journal_dev_ro;
5927 
5928 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5929 		return -EFSCORRUPTED;
5930 
5931 	if (journal_devnum &&
5932 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5933 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5934 			"numbers have changed");
5935 		journal_dev = new_decode_dev(journal_devnum);
5936 	} else
5937 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5938 
5939 	if (journal_inum && journal_dev) {
5940 		ext4_msg(sb, KERN_ERR,
5941 			 "filesystem has both journal inode and journal device!");
5942 		return -EINVAL;
5943 	}
5944 
5945 	if (journal_inum) {
5946 		journal = ext4_get_journal(sb, journal_inum);
5947 		if (!journal)
5948 			return -EINVAL;
5949 	} else {
5950 		journal = ext4_get_dev_journal(sb, journal_dev);
5951 		if (!journal)
5952 			return -EINVAL;
5953 	}
5954 
5955 	journal_dev_ro = bdev_read_only(journal->j_dev);
5956 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5957 
5958 	if (journal_dev_ro && !sb_rdonly(sb)) {
5959 		ext4_msg(sb, KERN_ERR,
5960 			 "journal device read-only, try mounting with '-o ro'");
5961 		err = -EROFS;
5962 		goto err_out;
5963 	}
5964 
5965 	/*
5966 	 * Are we loading a blank journal or performing recovery after a
5967 	 * crash?  For recovery, we need to check in advance whether we
5968 	 * can get read-write access to the device.
5969 	 */
5970 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5971 		if (sb_rdonly(sb)) {
5972 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5973 					"required on readonly filesystem");
5974 			if (really_read_only) {
5975 				ext4_msg(sb, KERN_ERR, "write access "
5976 					"unavailable, cannot proceed "
5977 					"(try mounting with noload)");
5978 				err = -EROFS;
5979 				goto err_out;
5980 			}
5981 			ext4_msg(sb, KERN_INFO, "write access will "
5982 			       "be enabled during recovery");
5983 		}
5984 	}
5985 
5986 	if (!(journal->j_flags & JBD2_BARRIER))
5987 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5988 
5989 	if (!ext4_has_feature_journal_needs_recovery(sb))
5990 		err = jbd2_journal_wipe(journal, !really_read_only);
5991 	if (!err) {
5992 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5993 		__le16 orig_state;
5994 		bool changed = false;
5995 
5996 		if (save)
5997 			memcpy(save, ((char *) es) +
5998 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5999 		err = jbd2_journal_load(journal);
6000 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6001 				   save, EXT4_S_ERR_LEN)) {
6002 			memcpy(((char *) es) + EXT4_S_ERR_START,
6003 			       save, EXT4_S_ERR_LEN);
6004 			changed = true;
6005 		}
6006 		kfree(save);
6007 		orig_state = es->s_state;
6008 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6009 					   EXT4_ERROR_FS);
6010 		if (orig_state != es->s_state)
6011 			changed = true;
6012 		/* Write out restored error information to the superblock */
6013 		if (changed && !really_read_only) {
6014 			int err2;
6015 			err2 = ext4_commit_super(sb);
6016 			err = err ? : err2;
6017 		}
6018 	}
6019 
6020 	if (err) {
6021 		ext4_msg(sb, KERN_ERR, "error loading journal");
6022 		goto err_out;
6023 	}
6024 
6025 	EXT4_SB(sb)->s_journal = journal;
6026 	err = ext4_clear_journal_err(sb, es);
6027 	if (err) {
6028 		EXT4_SB(sb)->s_journal = NULL;
6029 		jbd2_journal_destroy(journal);
6030 		return err;
6031 	}
6032 
6033 	if (!really_read_only && journal_devnum &&
6034 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6035 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6036 		ext4_commit_super(sb);
6037 	}
6038 	if (!really_read_only && journal_inum &&
6039 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6040 		es->s_journal_inum = cpu_to_le32(journal_inum);
6041 		ext4_commit_super(sb);
6042 	}
6043 
6044 	return 0;
6045 
6046 err_out:
6047 	jbd2_journal_destroy(journal);
6048 	return err;
6049 }
6050 
6051 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6052 static void ext4_update_super(struct super_block *sb)
6053 {
6054 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6055 	struct ext4_super_block *es = sbi->s_es;
6056 	struct buffer_head *sbh = sbi->s_sbh;
6057 
6058 	lock_buffer(sbh);
6059 	/*
6060 	 * If the file system is mounted read-only, don't update the
6061 	 * superblock write time.  This avoids updating the superblock
6062 	 * write time when we are mounting the root file system
6063 	 * read/only but we need to replay the journal; at that point,
6064 	 * for people who are east of GMT and who make their clock
6065 	 * tick in localtime for Windows bug-for-bug compatibility,
6066 	 * the clock is set in the future, and this will cause e2fsck
6067 	 * to complain and force a full file system check.
6068 	 */
6069 	if (!(sb->s_flags & SB_RDONLY))
6070 		ext4_update_tstamp(es, s_wtime);
6071 	es->s_kbytes_written =
6072 		cpu_to_le64(sbi->s_kbytes_written +
6073 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6074 		      sbi->s_sectors_written_start) >> 1));
6075 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6076 		ext4_free_blocks_count_set(es,
6077 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6078 				&sbi->s_freeclusters_counter)));
6079 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6080 		es->s_free_inodes_count =
6081 			cpu_to_le32(percpu_counter_sum_positive(
6082 				&sbi->s_freeinodes_counter));
6083 	/* Copy error information to the on-disk superblock */
6084 	spin_lock(&sbi->s_error_lock);
6085 	if (sbi->s_add_error_count > 0) {
6086 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6087 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6088 			__ext4_update_tstamp(&es->s_first_error_time,
6089 					     &es->s_first_error_time_hi,
6090 					     sbi->s_first_error_time);
6091 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6092 				sizeof(es->s_first_error_func));
6093 			es->s_first_error_line =
6094 				cpu_to_le32(sbi->s_first_error_line);
6095 			es->s_first_error_ino =
6096 				cpu_to_le32(sbi->s_first_error_ino);
6097 			es->s_first_error_block =
6098 				cpu_to_le64(sbi->s_first_error_block);
6099 			es->s_first_error_errcode =
6100 				ext4_errno_to_code(sbi->s_first_error_code);
6101 		}
6102 		__ext4_update_tstamp(&es->s_last_error_time,
6103 				     &es->s_last_error_time_hi,
6104 				     sbi->s_last_error_time);
6105 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6106 			sizeof(es->s_last_error_func));
6107 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6108 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6109 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6110 		es->s_last_error_errcode =
6111 				ext4_errno_to_code(sbi->s_last_error_code);
6112 		/*
6113 		 * Start the daily error reporting function if it hasn't been
6114 		 * started already
6115 		 */
6116 		if (!es->s_error_count)
6117 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6118 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6119 		sbi->s_add_error_count = 0;
6120 	}
6121 	spin_unlock(&sbi->s_error_lock);
6122 
6123 	ext4_superblock_csum_set(sb);
6124 	unlock_buffer(sbh);
6125 }
6126 
6127 static int ext4_commit_super(struct super_block *sb)
6128 {
6129 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6130 
6131 	if (!sbh)
6132 		return -EINVAL;
6133 	if (block_device_ejected(sb))
6134 		return -ENODEV;
6135 
6136 	ext4_update_super(sb);
6137 
6138 	lock_buffer(sbh);
6139 	/* Buffer got discarded which means block device got invalidated */
6140 	if (!buffer_mapped(sbh)) {
6141 		unlock_buffer(sbh);
6142 		return -EIO;
6143 	}
6144 
6145 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6146 		/*
6147 		 * Oh, dear.  A previous attempt to write the
6148 		 * superblock failed.  This could happen because the
6149 		 * USB device was yanked out.  Or it could happen to
6150 		 * be a transient write error and maybe the block will
6151 		 * be remapped.  Nothing we can do but to retry the
6152 		 * write and hope for the best.
6153 		 */
6154 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6155 		       "superblock detected");
6156 		clear_buffer_write_io_error(sbh);
6157 		set_buffer_uptodate(sbh);
6158 	}
6159 	get_bh(sbh);
6160 	/* Clear potential dirty bit if it was journalled update */
6161 	clear_buffer_dirty(sbh);
6162 	sbh->b_end_io = end_buffer_write_sync;
6163 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6164 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6165 	wait_on_buffer(sbh);
6166 	if (buffer_write_io_error(sbh)) {
6167 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6168 		       "superblock");
6169 		clear_buffer_write_io_error(sbh);
6170 		set_buffer_uptodate(sbh);
6171 		return -EIO;
6172 	}
6173 	return 0;
6174 }
6175 
6176 /*
6177  * Have we just finished recovery?  If so, and if we are mounting (or
6178  * remounting) the filesystem readonly, then we will end up with a
6179  * consistent fs on disk.  Record that fact.
6180  */
6181 static int ext4_mark_recovery_complete(struct super_block *sb,
6182 				       struct ext4_super_block *es)
6183 {
6184 	int err;
6185 	journal_t *journal = EXT4_SB(sb)->s_journal;
6186 
6187 	if (!ext4_has_feature_journal(sb)) {
6188 		if (journal != NULL) {
6189 			ext4_error(sb, "Journal got removed while the fs was "
6190 				   "mounted!");
6191 			return -EFSCORRUPTED;
6192 		}
6193 		return 0;
6194 	}
6195 	jbd2_journal_lock_updates(journal);
6196 	err = jbd2_journal_flush(journal, 0);
6197 	if (err < 0)
6198 		goto out;
6199 
6200 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6201 	    ext4_has_feature_orphan_present(sb))) {
6202 		if (!ext4_orphan_file_empty(sb)) {
6203 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6204 			err = -EFSCORRUPTED;
6205 			goto out;
6206 		}
6207 		ext4_clear_feature_journal_needs_recovery(sb);
6208 		ext4_clear_feature_orphan_present(sb);
6209 		ext4_commit_super(sb);
6210 	}
6211 out:
6212 	jbd2_journal_unlock_updates(journal);
6213 	return err;
6214 }
6215 
6216 /*
6217  * If we are mounting (or read-write remounting) a filesystem whose journal
6218  * has recorded an error from a previous lifetime, move that error to the
6219  * main filesystem now.
6220  */
6221 static int ext4_clear_journal_err(struct super_block *sb,
6222 				   struct ext4_super_block *es)
6223 {
6224 	journal_t *journal;
6225 	int j_errno;
6226 	const char *errstr;
6227 
6228 	if (!ext4_has_feature_journal(sb)) {
6229 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6230 		return -EFSCORRUPTED;
6231 	}
6232 
6233 	journal = EXT4_SB(sb)->s_journal;
6234 
6235 	/*
6236 	 * Now check for any error status which may have been recorded in the
6237 	 * journal by a prior ext4_error() or ext4_abort()
6238 	 */
6239 
6240 	j_errno = jbd2_journal_errno(journal);
6241 	if (j_errno) {
6242 		char nbuf[16];
6243 
6244 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6245 		ext4_warning(sb, "Filesystem error recorded "
6246 			     "from previous mount: %s", errstr);
6247 
6248 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6249 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6250 		j_errno = ext4_commit_super(sb);
6251 		if (j_errno)
6252 			return j_errno;
6253 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6254 
6255 		jbd2_journal_clear_err(journal);
6256 		jbd2_journal_update_sb_errno(journal);
6257 	}
6258 	return 0;
6259 }
6260 
6261 /*
6262  * Force the running and committing transactions to commit,
6263  * and wait on the commit.
6264  */
6265 int ext4_force_commit(struct super_block *sb)
6266 {
6267 	journal_t *journal;
6268 
6269 	if (sb_rdonly(sb))
6270 		return 0;
6271 
6272 	journal = EXT4_SB(sb)->s_journal;
6273 	return ext4_journal_force_commit(journal);
6274 }
6275 
6276 static int ext4_sync_fs(struct super_block *sb, int wait)
6277 {
6278 	int ret = 0;
6279 	tid_t target;
6280 	bool needs_barrier = false;
6281 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6282 
6283 	if (unlikely(ext4_forced_shutdown(sbi)))
6284 		return 0;
6285 
6286 	trace_ext4_sync_fs(sb, wait);
6287 	flush_workqueue(sbi->rsv_conversion_wq);
6288 	/*
6289 	 * Writeback quota in non-journalled quota case - journalled quota has
6290 	 * no dirty dquots
6291 	 */
6292 	dquot_writeback_dquots(sb, -1);
6293 	/*
6294 	 * Data writeback is possible w/o journal transaction, so barrier must
6295 	 * being sent at the end of the function. But we can skip it if
6296 	 * transaction_commit will do it for us.
6297 	 */
6298 	if (sbi->s_journal) {
6299 		target = jbd2_get_latest_transaction(sbi->s_journal);
6300 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6301 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6302 			needs_barrier = true;
6303 
6304 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6305 			if (wait)
6306 				ret = jbd2_log_wait_commit(sbi->s_journal,
6307 							   target);
6308 		}
6309 	} else if (wait && test_opt(sb, BARRIER))
6310 		needs_barrier = true;
6311 	if (needs_barrier) {
6312 		int err;
6313 		err = blkdev_issue_flush(sb->s_bdev);
6314 		if (!ret)
6315 			ret = err;
6316 	}
6317 
6318 	return ret;
6319 }
6320 
6321 /*
6322  * LVM calls this function before a (read-only) snapshot is created.  This
6323  * gives us a chance to flush the journal completely and mark the fs clean.
6324  *
6325  * Note that only this function cannot bring a filesystem to be in a clean
6326  * state independently. It relies on upper layer to stop all data & metadata
6327  * modifications.
6328  */
6329 static int ext4_freeze(struct super_block *sb)
6330 {
6331 	int error = 0;
6332 	journal_t *journal;
6333 
6334 	if (sb_rdonly(sb))
6335 		return 0;
6336 
6337 	journal = EXT4_SB(sb)->s_journal;
6338 
6339 	if (journal) {
6340 		/* Now we set up the journal barrier. */
6341 		jbd2_journal_lock_updates(journal);
6342 
6343 		/*
6344 		 * Don't clear the needs_recovery flag if we failed to
6345 		 * flush the journal.
6346 		 */
6347 		error = jbd2_journal_flush(journal, 0);
6348 		if (error < 0)
6349 			goto out;
6350 
6351 		/* Journal blocked and flushed, clear needs_recovery flag. */
6352 		ext4_clear_feature_journal_needs_recovery(sb);
6353 		if (ext4_orphan_file_empty(sb))
6354 			ext4_clear_feature_orphan_present(sb);
6355 	}
6356 
6357 	error = ext4_commit_super(sb);
6358 out:
6359 	if (journal)
6360 		/* we rely on upper layer to stop further updates */
6361 		jbd2_journal_unlock_updates(journal);
6362 	return error;
6363 }
6364 
6365 /*
6366  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6367  * flag here, even though the filesystem is not technically dirty yet.
6368  */
6369 static int ext4_unfreeze(struct super_block *sb)
6370 {
6371 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6372 		return 0;
6373 
6374 	if (EXT4_SB(sb)->s_journal) {
6375 		/* Reset the needs_recovery flag before the fs is unlocked. */
6376 		ext4_set_feature_journal_needs_recovery(sb);
6377 		if (ext4_has_feature_orphan_file(sb))
6378 			ext4_set_feature_orphan_present(sb);
6379 	}
6380 
6381 	ext4_commit_super(sb);
6382 	return 0;
6383 }
6384 
6385 /*
6386  * Structure to save mount options for ext4_remount's benefit
6387  */
6388 struct ext4_mount_options {
6389 	unsigned long s_mount_opt;
6390 	unsigned long s_mount_opt2;
6391 	kuid_t s_resuid;
6392 	kgid_t s_resgid;
6393 	unsigned long s_commit_interval;
6394 	u32 s_min_batch_time, s_max_batch_time;
6395 #ifdef CONFIG_QUOTA
6396 	int s_jquota_fmt;
6397 	char *s_qf_names[EXT4_MAXQUOTAS];
6398 #endif
6399 };
6400 
6401 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6402 {
6403 	struct ext4_fs_context *ctx = fc->fs_private;
6404 	struct ext4_super_block *es;
6405 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6406 	unsigned long old_sb_flags;
6407 	struct ext4_mount_options old_opts;
6408 	ext4_group_t g;
6409 	int err = 0;
6410 #ifdef CONFIG_QUOTA
6411 	int enable_quota = 0;
6412 	int i, j;
6413 	char *to_free[EXT4_MAXQUOTAS];
6414 #endif
6415 
6416 
6417 	/* Store the original options */
6418 	old_sb_flags = sb->s_flags;
6419 	old_opts.s_mount_opt = sbi->s_mount_opt;
6420 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6421 	old_opts.s_resuid = sbi->s_resuid;
6422 	old_opts.s_resgid = sbi->s_resgid;
6423 	old_opts.s_commit_interval = sbi->s_commit_interval;
6424 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6425 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6426 #ifdef CONFIG_QUOTA
6427 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6428 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6429 		if (sbi->s_qf_names[i]) {
6430 			char *qf_name = get_qf_name(sb, sbi, i);
6431 
6432 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6433 			if (!old_opts.s_qf_names[i]) {
6434 				for (j = 0; j < i; j++)
6435 					kfree(old_opts.s_qf_names[j]);
6436 				return -ENOMEM;
6437 			}
6438 		} else
6439 			old_opts.s_qf_names[i] = NULL;
6440 #endif
6441 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6442 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6443 			ctx->journal_ioprio =
6444 				sbi->s_journal->j_task->io_context->ioprio;
6445 		else
6446 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6447 
6448 	}
6449 
6450 	ext4_apply_options(fc, sb);
6451 
6452 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6453 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6454 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6455 			 "during remount not supported; ignoring");
6456 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6457 	}
6458 
6459 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6460 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6461 			ext4_msg(sb, KERN_ERR, "can't mount with "
6462 				 "both data=journal and delalloc");
6463 			err = -EINVAL;
6464 			goto restore_opts;
6465 		}
6466 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6467 			ext4_msg(sb, KERN_ERR, "can't mount with "
6468 				 "both data=journal and dioread_nolock");
6469 			err = -EINVAL;
6470 			goto restore_opts;
6471 		}
6472 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6473 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6474 			ext4_msg(sb, KERN_ERR, "can't mount with "
6475 				"journal_async_commit in data=ordered mode");
6476 			err = -EINVAL;
6477 			goto restore_opts;
6478 		}
6479 	}
6480 
6481 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6482 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6483 		err = -EINVAL;
6484 		goto restore_opts;
6485 	}
6486 
6487 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6488 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6489 
6490 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6491 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6492 
6493 	es = sbi->s_es;
6494 
6495 	if (sbi->s_journal) {
6496 		ext4_init_journal_params(sb, sbi->s_journal);
6497 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6498 	}
6499 
6500 	/* Flush outstanding errors before changing fs state */
6501 	flush_work(&sbi->s_error_work);
6502 
6503 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6504 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6505 			err = -EROFS;
6506 			goto restore_opts;
6507 		}
6508 
6509 		if (fc->sb_flags & SB_RDONLY) {
6510 			err = sync_filesystem(sb);
6511 			if (err < 0)
6512 				goto restore_opts;
6513 			err = dquot_suspend(sb, -1);
6514 			if (err < 0)
6515 				goto restore_opts;
6516 
6517 			/*
6518 			 * First of all, the unconditional stuff we have to do
6519 			 * to disable replay of the journal when we next remount
6520 			 */
6521 			sb->s_flags |= SB_RDONLY;
6522 
6523 			/*
6524 			 * OK, test if we are remounting a valid rw partition
6525 			 * readonly, and if so set the rdonly flag and then
6526 			 * mark the partition as valid again.
6527 			 */
6528 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6529 			    (sbi->s_mount_state & EXT4_VALID_FS))
6530 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6531 
6532 			if (sbi->s_journal) {
6533 				/*
6534 				 * We let remount-ro finish even if marking fs
6535 				 * as clean failed...
6536 				 */
6537 				ext4_mark_recovery_complete(sb, es);
6538 			}
6539 		} else {
6540 			/* Make sure we can mount this feature set readwrite */
6541 			if (ext4_has_feature_readonly(sb) ||
6542 			    !ext4_feature_set_ok(sb, 0)) {
6543 				err = -EROFS;
6544 				goto restore_opts;
6545 			}
6546 			/*
6547 			 * Make sure the group descriptor checksums
6548 			 * are sane.  If they aren't, refuse to remount r/w.
6549 			 */
6550 			for (g = 0; g < sbi->s_groups_count; g++) {
6551 				struct ext4_group_desc *gdp =
6552 					ext4_get_group_desc(sb, g, NULL);
6553 
6554 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6555 					ext4_msg(sb, KERN_ERR,
6556 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6557 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6558 					       le16_to_cpu(gdp->bg_checksum));
6559 					err = -EFSBADCRC;
6560 					goto restore_opts;
6561 				}
6562 			}
6563 
6564 			/*
6565 			 * If we have an unprocessed orphan list hanging
6566 			 * around from a previously readonly bdev mount,
6567 			 * require a full umount/remount for now.
6568 			 */
6569 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6570 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6571 				       "remount RDWR because of unprocessed "
6572 				       "orphan inode list.  Please "
6573 				       "umount/remount instead");
6574 				err = -EINVAL;
6575 				goto restore_opts;
6576 			}
6577 
6578 			/*
6579 			 * Mounting a RDONLY partition read-write, so reread
6580 			 * and store the current valid flag.  (It may have
6581 			 * been changed by e2fsck since we originally mounted
6582 			 * the partition.)
6583 			 */
6584 			if (sbi->s_journal) {
6585 				err = ext4_clear_journal_err(sb, es);
6586 				if (err)
6587 					goto restore_opts;
6588 			}
6589 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6590 					      ~EXT4_FC_REPLAY);
6591 
6592 			err = ext4_setup_super(sb, es, 0);
6593 			if (err)
6594 				goto restore_opts;
6595 
6596 			sb->s_flags &= ~SB_RDONLY;
6597 			if (ext4_has_feature_mmp(sb)) {
6598 				err = ext4_multi_mount_protect(sb,
6599 						le64_to_cpu(es->s_mmp_block));
6600 				if (err)
6601 					goto restore_opts;
6602 			}
6603 #ifdef CONFIG_QUOTA
6604 			enable_quota = 1;
6605 #endif
6606 		}
6607 	}
6608 
6609 	/*
6610 	 * Handle creation of system zone data early because it can fail.
6611 	 * Releasing of existing data is done when we are sure remount will
6612 	 * succeed.
6613 	 */
6614 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6615 		err = ext4_setup_system_zone(sb);
6616 		if (err)
6617 			goto restore_opts;
6618 	}
6619 
6620 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6621 		err = ext4_commit_super(sb);
6622 		if (err)
6623 			goto restore_opts;
6624 	}
6625 
6626 #ifdef CONFIG_QUOTA
6627 	if (enable_quota) {
6628 		if (sb_any_quota_suspended(sb))
6629 			dquot_resume(sb, -1);
6630 		else if (ext4_has_feature_quota(sb)) {
6631 			err = ext4_enable_quotas(sb);
6632 			if (err)
6633 				goto restore_opts;
6634 		}
6635 	}
6636 	/* Release old quota file names */
6637 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6638 		kfree(old_opts.s_qf_names[i]);
6639 #endif
6640 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6641 		ext4_release_system_zone(sb);
6642 
6643 	/*
6644 	 * Reinitialize lazy itable initialization thread based on
6645 	 * current settings
6646 	 */
6647 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6648 		ext4_unregister_li_request(sb);
6649 	else {
6650 		ext4_group_t first_not_zeroed;
6651 		first_not_zeroed = ext4_has_uninit_itable(sb);
6652 		ext4_register_li_request(sb, first_not_zeroed);
6653 	}
6654 
6655 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6656 		ext4_stop_mmpd(sbi);
6657 
6658 	return 0;
6659 
6660 restore_opts:
6661 	/*
6662 	 * If there was a failing r/w to ro transition, we may need to
6663 	 * re-enable quota
6664 	 */
6665 	if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6666 	    sb_any_quota_suspended(sb))
6667 		dquot_resume(sb, -1);
6668 	sb->s_flags = old_sb_flags;
6669 	sbi->s_mount_opt = old_opts.s_mount_opt;
6670 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6671 	sbi->s_resuid = old_opts.s_resuid;
6672 	sbi->s_resgid = old_opts.s_resgid;
6673 	sbi->s_commit_interval = old_opts.s_commit_interval;
6674 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6675 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6676 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6677 		ext4_release_system_zone(sb);
6678 #ifdef CONFIG_QUOTA
6679 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6680 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6681 		to_free[i] = get_qf_name(sb, sbi, i);
6682 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6683 	}
6684 	synchronize_rcu();
6685 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6686 		kfree(to_free[i]);
6687 #endif
6688 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6689 		ext4_stop_mmpd(sbi);
6690 	return err;
6691 }
6692 
6693 static int ext4_reconfigure(struct fs_context *fc)
6694 {
6695 	struct super_block *sb = fc->root->d_sb;
6696 	int ret;
6697 
6698 	fc->s_fs_info = EXT4_SB(sb);
6699 
6700 	ret = ext4_check_opt_consistency(fc, sb);
6701 	if (ret < 0)
6702 		return ret;
6703 
6704 	ret = __ext4_remount(fc, sb);
6705 	if (ret < 0)
6706 		return ret;
6707 
6708 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6709 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6710 		 ext4_quota_mode(sb));
6711 
6712 	return 0;
6713 }
6714 
6715 #ifdef CONFIG_QUOTA
6716 static int ext4_statfs_project(struct super_block *sb,
6717 			       kprojid_t projid, struct kstatfs *buf)
6718 {
6719 	struct kqid qid;
6720 	struct dquot *dquot;
6721 	u64 limit;
6722 	u64 curblock;
6723 
6724 	qid = make_kqid_projid(projid);
6725 	dquot = dqget(sb, qid);
6726 	if (IS_ERR(dquot))
6727 		return PTR_ERR(dquot);
6728 	spin_lock(&dquot->dq_dqb_lock);
6729 
6730 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6731 			     dquot->dq_dqb.dqb_bhardlimit);
6732 	limit >>= sb->s_blocksize_bits;
6733 
6734 	if (limit && buf->f_blocks > limit) {
6735 		curblock = (dquot->dq_dqb.dqb_curspace +
6736 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6737 		buf->f_blocks = limit;
6738 		buf->f_bfree = buf->f_bavail =
6739 			(buf->f_blocks > curblock) ?
6740 			 (buf->f_blocks - curblock) : 0;
6741 	}
6742 
6743 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6744 			     dquot->dq_dqb.dqb_ihardlimit);
6745 	if (limit && buf->f_files > limit) {
6746 		buf->f_files = limit;
6747 		buf->f_ffree =
6748 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6749 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6750 	}
6751 
6752 	spin_unlock(&dquot->dq_dqb_lock);
6753 	dqput(dquot);
6754 	return 0;
6755 }
6756 #endif
6757 
6758 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6759 {
6760 	struct super_block *sb = dentry->d_sb;
6761 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6762 	struct ext4_super_block *es = sbi->s_es;
6763 	ext4_fsblk_t overhead = 0, resv_blocks;
6764 	s64 bfree;
6765 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6766 
6767 	if (!test_opt(sb, MINIX_DF))
6768 		overhead = sbi->s_overhead;
6769 
6770 	buf->f_type = EXT4_SUPER_MAGIC;
6771 	buf->f_bsize = sb->s_blocksize;
6772 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6773 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6774 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6775 	/* prevent underflow in case that few free space is available */
6776 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6777 	buf->f_bavail = buf->f_bfree -
6778 			(ext4_r_blocks_count(es) + resv_blocks);
6779 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6780 		buf->f_bavail = 0;
6781 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6782 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6783 	buf->f_namelen = EXT4_NAME_LEN;
6784 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6785 
6786 #ifdef CONFIG_QUOTA
6787 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6788 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6789 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6790 #endif
6791 	return 0;
6792 }
6793 
6794 
6795 #ifdef CONFIG_QUOTA
6796 
6797 /*
6798  * Helper functions so that transaction is started before we acquire dqio_sem
6799  * to keep correct lock ordering of transaction > dqio_sem
6800  */
6801 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6802 {
6803 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6804 }
6805 
6806 static int ext4_write_dquot(struct dquot *dquot)
6807 {
6808 	int ret, err;
6809 	handle_t *handle;
6810 	struct inode *inode;
6811 
6812 	inode = dquot_to_inode(dquot);
6813 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6814 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6815 	if (IS_ERR(handle))
6816 		return PTR_ERR(handle);
6817 	ret = dquot_commit(dquot);
6818 	err = ext4_journal_stop(handle);
6819 	if (!ret)
6820 		ret = err;
6821 	return ret;
6822 }
6823 
6824 static int ext4_acquire_dquot(struct dquot *dquot)
6825 {
6826 	int ret, err;
6827 	handle_t *handle;
6828 
6829 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6830 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6831 	if (IS_ERR(handle))
6832 		return PTR_ERR(handle);
6833 	ret = dquot_acquire(dquot);
6834 	err = ext4_journal_stop(handle);
6835 	if (!ret)
6836 		ret = err;
6837 	return ret;
6838 }
6839 
6840 static int ext4_release_dquot(struct dquot *dquot)
6841 {
6842 	int ret, err;
6843 	handle_t *handle;
6844 
6845 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6846 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6847 	if (IS_ERR(handle)) {
6848 		/* Release dquot anyway to avoid endless cycle in dqput() */
6849 		dquot_release(dquot);
6850 		return PTR_ERR(handle);
6851 	}
6852 	ret = dquot_release(dquot);
6853 	err = ext4_journal_stop(handle);
6854 	if (!ret)
6855 		ret = err;
6856 	return ret;
6857 }
6858 
6859 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6860 {
6861 	struct super_block *sb = dquot->dq_sb;
6862 
6863 	if (ext4_is_quota_journalled(sb)) {
6864 		dquot_mark_dquot_dirty(dquot);
6865 		return ext4_write_dquot(dquot);
6866 	} else {
6867 		return dquot_mark_dquot_dirty(dquot);
6868 	}
6869 }
6870 
6871 static int ext4_write_info(struct super_block *sb, int type)
6872 {
6873 	int ret, err;
6874 	handle_t *handle;
6875 
6876 	/* Data block + inode block */
6877 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6878 	if (IS_ERR(handle))
6879 		return PTR_ERR(handle);
6880 	ret = dquot_commit_info(sb, type);
6881 	err = ext4_journal_stop(handle);
6882 	if (!ret)
6883 		ret = err;
6884 	return ret;
6885 }
6886 
6887 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6888 {
6889 	struct ext4_inode_info *ei = EXT4_I(inode);
6890 
6891 	/* The first argument of lockdep_set_subclass has to be
6892 	 * *exactly* the same as the argument to init_rwsem() --- in
6893 	 * this case, in init_once() --- or lockdep gets unhappy
6894 	 * because the name of the lock is set using the
6895 	 * stringification of the argument to init_rwsem().
6896 	 */
6897 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6898 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6899 }
6900 
6901 /*
6902  * Standard function to be called on quota_on
6903  */
6904 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6905 			 const struct path *path)
6906 {
6907 	int err;
6908 
6909 	if (!test_opt(sb, QUOTA))
6910 		return -EINVAL;
6911 
6912 	/* Quotafile not on the same filesystem? */
6913 	if (path->dentry->d_sb != sb)
6914 		return -EXDEV;
6915 
6916 	/* Quota already enabled for this file? */
6917 	if (IS_NOQUOTA(d_inode(path->dentry)))
6918 		return -EBUSY;
6919 
6920 	/* Journaling quota? */
6921 	if (EXT4_SB(sb)->s_qf_names[type]) {
6922 		/* Quotafile not in fs root? */
6923 		if (path->dentry->d_parent != sb->s_root)
6924 			ext4_msg(sb, KERN_WARNING,
6925 				"Quota file not on filesystem root. "
6926 				"Journaled quota will not work");
6927 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6928 	} else {
6929 		/*
6930 		 * Clear the flag just in case mount options changed since
6931 		 * last time.
6932 		 */
6933 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6934 	}
6935 
6936 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6937 	err = dquot_quota_on(sb, type, format_id, path);
6938 	if (!err) {
6939 		struct inode *inode = d_inode(path->dentry);
6940 		handle_t *handle;
6941 
6942 		/*
6943 		 * Set inode flags to prevent userspace from messing with quota
6944 		 * files. If this fails, we return success anyway since quotas
6945 		 * are already enabled and this is not a hard failure.
6946 		 */
6947 		inode_lock(inode);
6948 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6949 		if (IS_ERR(handle))
6950 			goto unlock_inode;
6951 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6952 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6953 				S_NOATIME | S_IMMUTABLE);
6954 		err = ext4_mark_inode_dirty(handle, inode);
6955 		ext4_journal_stop(handle);
6956 	unlock_inode:
6957 		inode_unlock(inode);
6958 		if (err)
6959 			dquot_quota_off(sb, type);
6960 	}
6961 	if (err)
6962 		lockdep_set_quota_inode(path->dentry->d_inode,
6963 					     I_DATA_SEM_NORMAL);
6964 	return err;
6965 }
6966 
6967 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6968 {
6969 	switch (type) {
6970 	case USRQUOTA:
6971 		return qf_inum == EXT4_USR_QUOTA_INO;
6972 	case GRPQUOTA:
6973 		return qf_inum == EXT4_GRP_QUOTA_INO;
6974 	case PRJQUOTA:
6975 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6976 	default:
6977 		BUG();
6978 	}
6979 }
6980 
6981 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6982 			     unsigned int flags)
6983 {
6984 	int err;
6985 	struct inode *qf_inode;
6986 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6987 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6988 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6989 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6990 	};
6991 
6992 	BUG_ON(!ext4_has_feature_quota(sb));
6993 
6994 	if (!qf_inums[type])
6995 		return -EPERM;
6996 
6997 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6998 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6999 				qf_inums[type], type);
7000 		return -EUCLEAN;
7001 	}
7002 
7003 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7004 	if (IS_ERR(qf_inode)) {
7005 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7006 				qf_inums[type], type);
7007 		return PTR_ERR(qf_inode);
7008 	}
7009 
7010 	/* Don't account quota for quota files to avoid recursion */
7011 	qf_inode->i_flags |= S_NOQUOTA;
7012 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7013 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7014 	if (err)
7015 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7016 	iput(qf_inode);
7017 
7018 	return err;
7019 }
7020 
7021 /* Enable usage tracking for all quota types. */
7022 int ext4_enable_quotas(struct super_block *sb)
7023 {
7024 	int type, err = 0;
7025 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7026 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7027 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7028 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7029 	};
7030 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7031 		test_opt(sb, USRQUOTA),
7032 		test_opt(sb, GRPQUOTA),
7033 		test_opt(sb, PRJQUOTA),
7034 	};
7035 
7036 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7037 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7038 		if (qf_inums[type]) {
7039 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7040 				DQUOT_USAGE_ENABLED |
7041 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7042 			if (err) {
7043 				ext4_warning(sb,
7044 					"Failed to enable quota tracking "
7045 					"(type=%d, err=%d, ino=%lu). "
7046 					"Please run e2fsck to fix.", type,
7047 					err, qf_inums[type]);
7048 
7049 				ext4_quotas_off(sb, type);
7050 				return err;
7051 			}
7052 		}
7053 	}
7054 	return 0;
7055 }
7056 
7057 static int ext4_quota_off(struct super_block *sb, int type)
7058 {
7059 	struct inode *inode = sb_dqopt(sb)->files[type];
7060 	handle_t *handle;
7061 	int err;
7062 
7063 	/* Force all delayed allocation blocks to be allocated.
7064 	 * Caller already holds s_umount sem */
7065 	if (test_opt(sb, DELALLOC))
7066 		sync_filesystem(sb);
7067 
7068 	if (!inode || !igrab(inode))
7069 		goto out;
7070 
7071 	err = dquot_quota_off(sb, type);
7072 	if (err || ext4_has_feature_quota(sb))
7073 		goto out_put;
7074 
7075 	inode_lock(inode);
7076 	/*
7077 	 * Update modification times of quota files when userspace can
7078 	 * start looking at them. If we fail, we return success anyway since
7079 	 * this is not a hard failure and quotas are already disabled.
7080 	 */
7081 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7082 	if (IS_ERR(handle)) {
7083 		err = PTR_ERR(handle);
7084 		goto out_unlock;
7085 	}
7086 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7087 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7088 	inode->i_mtime = inode_set_ctime_current(inode);
7089 	err = ext4_mark_inode_dirty(handle, inode);
7090 	ext4_journal_stop(handle);
7091 out_unlock:
7092 	inode_unlock(inode);
7093 out_put:
7094 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7095 	iput(inode);
7096 	return err;
7097 out:
7098 	return dquot_quota_off(sb, type);
7099 }
7100 
7101 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7102  * acquiring the locks... As quota files are never truncated and quota code
7103  * itself serializes the operations (and no one else should touch the files)
7104  * we don't have to be afraid of races */
7105 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7106 			       size_t len, loff_t off)
7107 {
7108 	struct inode *inode = sb_dqopt(sb)->files[type];
7109 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7110 	int offset = off & (sb->s_blocksize - 1);
7111 	int tocopy;
7112 	size_t toread;
7113 	struct buffer_head *bh;
7114 	loff_t i_size = i_size_read(inode);
7115 
7116 	if (off > i_size)
7117 		return 0;
7118 	if (off+len > i_size)
7119 		len = i_size-off;
7120 	toread = len;
7121 	while (toread > 0) {
7122 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7123 		bh = ext4_bread(NULL, inode, blk, 0);
7124 		if (IS_ERR(bh))
7125 			return PTR_ERR(bh);
7126 		if (!bh)	/* A hole? */
7127 			memset(data, 0, tocopy);
7128 		else
7129 			memcpy(data, bh->b_data+offset, tocopy);
7130 		brelse(bh);
7131 		offset = 0;
7132 		toread -= tocopy;
7133 		data += tocopy;
7134 		blk++;
7135 	}
7136 	return len;
7137 }
7138 
7139 /* Write to quotafile (we know the transaction is already started and has
7140  * enough credits) */
7141 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7142 				const char *data, size_t len, loff_t off)
7143 {
7144 	struct inode *inode = sb_dqopt(sb)->files[type];
7145 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7146 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7147 	int retries = 0;
7148 	struct buffer_head *bh;
7149 	handle_t *handle = journal_current_handle();
7150 
7151 	if (!handle) {
7152 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7153 			" cancelled because transaction is not started",
7154 			(unsigned long long)off, (unsigned long long)len);
7155 		return -EIO;
7156 	}
7157 	/*
7158 	 * Since we account only one data block in transaction credits,
7159 	 * then it is impossible to cross a block boundary.
7160 	 */
7161 	if (sb->s_blocksize - offset < len) {
7162 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7163 			" cancelled because not block aligned",
7164 			(unsigned long long)off, (unsigned long long)len);
7165 		return -EIO;
7166 	}
7167 
7168 	do {
7169 		bh = ext4_bread(handle, inode, blk,
7170 				EXT4_GET_BLOCKS_CREATE |
7171 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7172 	} while (PTR_ERR(bh) == -ENOSPC &&
7173 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7174 	if (IS_ERR(bh))
7175 		return PTR_ERR(bh);
7176 	if (!bh)
7177 		goto out;
7178 	BUFFER_TRACE(bh, "get write access");
7179 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7180 	if (err) {
7181 		brelse(bh);
7182 		return err;
7183 	}
7184 	lock_buffer(bh);
7185 	memcpy(bh->b_data+offset, data, len);
7186 	flush_dcache_page(bh->b_page);
7187 	unlock_buffer(bh);
7188 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7189 	brelse(bh);
7190 out:
7191 	if (inode->i_size < off + len) {
7192 		i_size_write(inode, off + len);
7193 		EXT4_I(inode)->i_disksize = inode->i_size;
7194 		err2 = ext4_mark_inode_dirty(handle, inode);
7195 		if (unlikely(err2 && !err))
7196 			err = err2;
7197 	}
7198 	return err ? err : len;
7199 }
7200 #endif
7201 
7202 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7203 static inline void register_as_ext2(void)
7204 {
7205 	int err = register_filesystem(&ext2_fs_type);
7206 	if (err)
7207 		printk(KERN_WARNING
7208 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7209 }
7210 
7211 static inline void unregister_as_ext2(void)
7212 {
7213 	unregister_filesystem(&ext2_fs_type);
7214 }
7215 
7216 static inline int ext2_feature_set_ok(struct super_block *sb)
7217 {
7218 	if (ext4_has_unknown_ext2_incompat_features(sb))
7219 		return 0;
7220 	if (sb_rdonly(sb))
7221 		return 1;
7222 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7223 		return 0;
7224 	return 1;
7225 }
7226 #else
7227 static inline void register_as_ext2(void) { }
7228 static inline void unregister_as_ext2(void) { }
7229 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7230 #endif
7231 
7232 static inline void register_as_ext3(void)
7233 {
7234 	int err = register_filesystem(&ext3_fs_type);
7235 	if (err)
7236 		printk(KERN_WARNING
7237 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7238 }
7239 
7240 static inline void unregister_as_ext3(void)
7241 {
7242 	unregister_filesystem(&ext3_fs_type);
7243 }
7244 
7245 static inline int ext3_feature_set_ok(struct super_block *sb)
7246 {
7247 	if (ext4_has_unknown_ext3_incompat_features(sb))
7248 		return 0;
7249 	if (!ext4_has_feature_journal(sb))
7250 		return 0;
7251 	if (sb_rdonly(sb))
7252 		return 1;
7253 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7254 		return 0;
7255 	return 1;
7256 }
7257 
7258 static void ext4_kill_sb(struct super_block *sb)
7259 {
7260 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7261 	struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7262 
7263 	kill_block_super(sb);
7264 
7265 	if (journal_bdev)
7266 		blkdev_put(journal_bdev, sb);
7267 }
7268 
7269 static struct file_system_type ext4_fs_type = {
7270 	.owner			= THIS_MODULE,
7271 	.name			= "ext4",
7272 	.init_fs_context	= ext4_init_fs_context,
7273 	.parameters		= ext4_param_specs,
7274 	.kill_sb		= ext4_kill_sb,
7275 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7276 };
7277 MODULE_ALIAS_FS("ext4");
7278 
7279 /* Shared across all ext4 file systems */
7280 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7281 
7282 static int __init ext4_init_fs(void)
7283 {
7284 	int i, err;
7285 
7286 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7287 	ext4_li_info = NULL;
7288 
7289 	/* Build-time check for flags consistency */
7290 	ext4_check_flag_values();
7291 
7292 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7293 		init_waitqueue_head(&ext4__ioend_wq[i]);
7294 
7295 	err = ext4_init_es();
7296 	if (err)
7297 		return err;
7298 
7299 	err = ext4_init_pending();
7300 	if (err)
7301 		goto out7;
7302 
7303 	err = ext4_init_post_read_processing();
7304 	if (err)
7305 		goto out6;
7306 
7307 	err = ext4_init_pageio();
7308 	if (err)
7309 		goto out5;
7310 
7311 	err = ext4_init_system_zone();
7312 	if (err)
7313 		goto out4;
7314 
7315 	err = ext4_init_sysfs();
7316 	if (err)
7317 		goto out3;
7318 
7319 	err = ext4_init_mballoc();
7320 	if (err)
7321 		goto out2;
7322 	err = init_inodecache();
7323 	if (err)
7324 		goto out1;
7325 
7326 	err = ext4_fc_init_dentry_cache();
7327 	if (err)
7328 		goto out05;
7329 
7330 	register_as_ext3();
7331 	register_as_ext2();
7332 	err = register_filesystem(&ext4_fs_type);
7333 	if (err)
7334 		goto out;
7335 
7336 	return 0;
7337 out:
7338 	unregister_as_ext2();
7339 	unregister_as_ext3();
7340 	ext4_fc_destroy_dentry_cache();
7341 out05:
7342 	destroy_inodecache();
7343 out1:
7344 	ext4_exit_mballoc();
7345 out2:
7346 	ext4_exit_sysfs();
7347 out3:
7348 	ext4_exit_system_zone();
7349 out4:
7350 	ext4_exit_pageio();
7351 out5:
7352 	ext4_exit_post_read_processing();
7353 out6:
7354 	ext4_exit_pending();
7355 out7:
7356 	ext4_exit_es();
7357 
7358 	return err;
7359 }
7360 
7361 static void __exit ext4_exit_fs(void)
7362 {
7363 	ext4_destroy_lazyinit_thread();
7364 	unregister_as_ext2();
7365 	unregister_as_ext3();
7366 	unregister_filesystem(&ext4_fs_type);
7367 	ext4_fc_destroy_dentry_cache();
7368 	destroy_inodecache();
7369 	ext4_exit_mballoc();
7370 	ext4_exit_sysfs();
7371 	ext4_exit_system_zone();
7372 	ext4_exit_pageio();
7373 	ext4_exit_post_read_processing();
7374 	ext4_exit_es();
7375 	ext4_exit_pending();
7376 }
7377 
7378 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7379 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7380 MODULE_LICENSE("GPL");
7381 MODULE_SOFTDEP("pre: crc32c");
7382 module_init(ext4_init_fs)
7383 module_exit(ext4_exit_fs)
7384