xref: /openbmc/linux/fs/ext4/super.c (revision cd4d09ec)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static int ext4_mballoc_ready;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60 
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 			     unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 					struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 				   struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 		       const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82 
83 /*
84  * Lock ordering
85  *
86  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
87  * i_mmap_rwsem (inode->i_mmap_rwsem)!
88  *
89  * page fault path:
90  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
91  *   page lock -> i_data_sem (rw)
92  *
93  * buffered write path:
94  * sb_start_write -> i_mutex -> mmap_sem
95  * sb_start_write -> i_mutex -> transaction start -> page lock ->
96  *   i_data_sem (rw)
97  *
98  * truncate:
99  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
100  *   i_mmap_rwsem (w) -> page lock
101  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
102  *   transaction start -> i_data_sem (rw)
103  *
104  * direct IO:
105  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
106  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
107  *   transaction start -> i_data_sem (rw)
108  *
109  * writepages:
110  * transaction start -> page lock(s) -> i_data_sem (rw)
111  */
112 
113 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
114 static struct file_system_type ext2_fs_type = {
115 	.owner		= THIS_MODULE,
116 	.name		= "ext2",
117 	.mount		= ext4_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 MODULE_ALIAS_FS("ext2");
122 MODULE_ALIAS("ext2");
123 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
124 #else
125 #define IS_EXT2_SB(sb) (0)
126 #endif
127 
128 
129 static struct file_system_type ext3_fs_type = {
130 	.owner		= THIS_MODULE,
131 	.name		= "ext3",
132 	.mount		= ext4_mount,
133 	.kill_sb	= kill_block_super,
134 	.fs_flags	= FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("ext3");
137 MODULE_ALIAS("ext3");
138 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
139 
140 static int ext4_verify_csum_type(struct super_block *sb,
141 				 struct ext4_super_block *es)
142 {
143 	if (!ext4_has_feature_metadata_csum(sb))
144 		return 1;
145 
146 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
147 }
148 
149 static __le32 ext4_superblock_csum(struct super_block *sb,
150 				   struct ext4_super_block *es)
151 {
152 	struct ext4_sb_info *sbi = EXT4_SB(sb);
153 	int offset = offsetof(struct ext4_super_block, s_checksum);
154 	__u32 csum;
155 
156 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
157 
158 	return cpu_to_le32(csum);
159 }
160 
161 static int ext4_superblock_csum_verify(struct super_block *sb,
162 				       struct ext4_super_block *es)
163 {
164 	if (!ext4_has_metadata_csum(sb))
165 		return 1;
166 
167 	return es->s_checksum == ext4_superblock_csum(sb, es);
168 }
169 
170 void ext4_superblock_csum_set(struct super_block *sb)
171 {
172 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
173 
174 	if (!ext4_has_metadata_csum(sb))
175 		return;
176 
177 	es->s_checksum = ext4_superblock_csum(sb, es);
178 }
179 
180 void *ext4_kvmalloc(size_t size, gfp_t flags)
181 {
182 	void *ret;
183 
184 	ret = kmalloc(size, flags | __GFP_NOWARN);
185 	if (!ret)
186 		ret = __vmalloc(size, flags, PAGE_KERNEL);
187 	return ret;
188 }
189 
190 void *ext4_kvzalloc(size_t size, gfp_t flags)
191 {
192 	void *ret;
193 
194 	ret = kzalloc(size, flags | __GFP_NOWARN);
195 	if (!ret)
196 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
197 	return ret;
198 }
199 
200 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
201 			       struct ext4_group_desc *bg)
202 {
203 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
204 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
205 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
206 }
207 
208 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
209 			       struct ext4_group_desc *bg)
210 {
211 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
212 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
213 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
214 }
215 
216 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
217 			      struct ext4_group_desc *bg)
218 {
219 	return le32_to_cpu(bg->bg_inode_table_lo) |
220 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
221 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
222 }
223 
224 __u32 ext4_free_group_clusters(struct super_block *sb,
225 			       struct ext4_group_desc *bg)
226 {
227 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
228 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
229 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
230 }
231 
232 __u32 ext4_free_inodes_count(struct super_block *sb,
233 			      struct ext4_group_desc *bg)
234 {
235 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
236 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
237 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
238 }
239 
240 __u32 ext4_used_dirs_count(struct super_block *sb,
241 			      struct ext4_group_desc *bg)
242 {
243 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
244 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
245 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
246 }
247 
248 __u32 ext4_itable_unused_count(struct super_block *sb,
249 			      struct ext4_group_desc *bg)
250 {
251 	return le16_to_cpu(bg->bg_itable_unused_lo) |
252 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
253 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
254 }
255 
256 void ext4_block_bitmap_set(struct super_block *sb,
257 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
258 {
259 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
260 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
261 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
262 }
263 
264 void ext4_inode_bitmap_set(struct super_block *sb,
265 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
266 {
267 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
268 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
269 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
270 }
271 
272 void ext4_inode_table_set(struct super_block *sb,
273 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
274 {
275 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
276 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
277 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
278 }
279 
280 void ext4_free_group_clusters_set(struct super_block *sb,
281 				  struct ext4_group_desc *bg, __u32 count)
282 {
283 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
284 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
285 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
286 }
287 
288 void ext4_free_inodes_set(struct super_block *sb,
289 			  struct ext4_group_desc *bg, __u32 count)
290 {
291 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
292 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
293 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
294 }
295 
296 void ext4_used_dirs_set(struct super_block *sb,
297 			  struct ext4_group_desc *bg, __u32 count)
298 {
299 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
300 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
301 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
302 }
303 
304 void ext4_itable_unused_set(struct super_block *sb,
305 			  struct ext4_group_desc *bg, __u32 count)
306 {
307 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
308 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
309 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
310 }
311 
312 
313 static void __save_error_info(struct super_block *sb, const char *func,
314 			    unsigned int line)
315 {
316 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
317 
318 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
319 	if (bdev_read_only(sb->s_bdev))
320 		return;
321 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
322 	es->s_last_error_time = cpu_to_le32(get_seconds());
323 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
324 	es->s_last_error_line = cpu_to_le32(line);
325 	if (!es->s_first_error_time) {
326 		es->s_first_error_time = es->s_last_error_time;
327 		strncpy(es->s_first_error_func, func,
328 			sizeof(es->s_first_error_func));
329 		es->s_first_error_line = cpu_to_le32(line);
330 		es->s_first_error_ino = es->s_last_error_ino;
331 		es->s_first_error_block = es->s_last_error_block;
332 	}
333 	/*
334 	 * Start the daily error reporting function if it hasn't been
335 	 * started already
336 	 */
337 	if (!es->s_error_count)
338 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
339 	le32_add_cpu(&es->s_error_count, 1);
340 }
341 
342 static void save_error_info(struct super_block *sb, const char *func,
343 			    unsigned int line)
344 {
345 	__save_error_info(sb, func, line);
346 	ext4_commit_super(sb, 1);
347 }
348 
349 /*
350  * The del_gendisk() function uninitializes the disk-specific data
351  * structures, including the bdi structure, without telling anyone
352  * else.  Once this happens, any attempt to call mark_buffer_dirty()
353  * (for example, by ext4_commit_super), will cause a kernel OOPS.
354  * This is a kludge to prevent these oops until we can put in a proper
355  * hook in del_gendisk() to inform the VFS and file system layers.
356  */
357 static int block_device_ejected(struct super_block *sb)
358 {
359 	struct inode *bd_inode = sb->s_bdev->bd_inode;
360 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
361 
362 	return bdi->dev == NULL;
363 }
364 
365 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
366 {
367 	struct super_block		*sb = journal->j_private;
368 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
369 	int				error = is_journal_aborted(journal);
370 	struct ext4_journal_cb_entry	*jce;
371 
372 	BUG_ON(txn->t_state == T_FINISHED);
373 	spin_lock(&sbi->s_md_lock);
374 	while (!list_empty(&txn->t_private_list)) {
375 		jce = list_entry(txn->t_private_list.next,
376 				 struct ext4_journal_cb_entry, jce_list);
377 		list_del_init(&jce->jce_list);
378 		spin_unlock(&sbi->s_md_lock);
379 		jce->jce_func(sb, jce, error);
380 		spin_lock(&sbi->s_md_lock);
381 	}
382 	spin_unlock(&sbi->s_md_lock);
383 }
384 
385 /* Deal with the reporting of failure conditions on a filesystem such as
386  * inconsistencies detected or read IO failures.
387  *
388  * On ext2, we can store the error state of the filesystem in the
389  * superblock.  That is not possible on ext4, because we may have other
390  * write ordering constraints on the superblock which prevent us from
391  * writing it out straight away; and given that the journal is about to
392  * be aborted, we can't rely on the current, or future, transactions to
393  * write out the superblock safely.
394  *
395  * We'll just use the jbd2_journal_abort() error code to record an error in
396  * the journal instead.  On recovery, the journal will complain about
397  * that error until we've noted it down and cleared it.
398  */
399 
400 static void ext4_handle_error(struct super_block *sb)
401 {
402 	if (sb->s_flags & MS_RDONLY)
403 		return;
404 
405 	if (!test_opt(sb, ERRORS_CONT)) {
406 		journal_t *journal = EXT4_SB(sb)->s_journal;
407 
408 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
409 		if (journal)
410 			jbd2_journal_abort(journal, -EIO);
411 	}
412 	if (test_opt(sb, ERRORS_RO)) {
413 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
414 		/*
415 		 * Make sure updated value of ->s_mount_flags will be visible
416 		 * before ->s_flags update
417 		 */
418 		smp_wmb();
419 		sb->s_flags |= MS_RDONLY;
420 	}
421 	if (test_opt(sb, ERRORS_PANIC)) {
422 		if (EXT4_SB(sb)->s_journal &&
423 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
424 			return;
425 		panic("EXT4-fs (device %s): panic forced after error\n",
426 			sb->s_id);
427 	}
428 }
429 
430 #define ext4_error_ratelimit(sb)					\
431 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
432 			     "EXT4-fs error")
433 
434 void __ext4_error(struct super_block *sb, const char *function,
435 		  unsigned int line, const char *fmt, ...)
436 {
437 	struct va_format vaf;
438 	va_list args;
439 
440 	if (ext4_error_ratelimit(sb)) {
441 		va_start(args, fmt);
442 		vaf.fmt = fmt;
443 		vaf.va = &args;
444 		printk(KERN_CRIT
445 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
446 		       sb->s_id, function, line, current->comm, &vaf);
447 		va_end(args);
448 	}
449 	save_error_info(sb, function, line);
450 	ext4_handle_error(sb);
451 }
452 
453 void __ext4_error_inode(struct inode *inode, const char *function,
454 			unsigned int line, ext4_fsblk_t block,
455 			const char *fmt, ...)
456 {
457 	va_list args;
458 	struct va_format vaf;
459 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
460 
461 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
462 	es->s_last_error_block = cpu_to_le64(block);
463 	if (ext4_error_ratelimit(inode->i_sb)) {
464 		va_start(args, fmt);
465 		vaf.fmt = fmt;
466 		vaf.va = &args;
467 		if (block)
468 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
469 			       "inode #%lu: block %llu: comm %s: %pV\n",
470 			       inode->i_sb->s_id, function, line, inode->i_ino,
471 			       block, current->comm, &vaf);
472 		else
473 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
474 			       "inode #%lu: comm %s: %pV\n",
475 			       inode->i_sb->s_id, function, line, inode->i_ino,
476 			       current->comm, &vaf);
477 		va_end(args);
478 	}
479 	save_error_info(inode->i_sb, function, line);
480 	ext4_handle_error(inode->i_sb);
481 }
482 
483 void __ext4_error_file(struct file *file, const char *function,
484 		       unsigned int line, ext4_fsblk_t block,
485 		       const char *fmt, ...)
486 {
487 	va_list args;
488 	struct va_format vaf;
489 	struct ext4_super_block *es;
490 	struct inode *inode = file_inode(file);
491 	char pathname[80], *path;
492 
493 	es = EXT4_SB(inode->i_sb)->s_es;
494 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
495 	if (ext4_error_ratelimit(inode->i_sb)) {
496 		path = file_path(file, pathname, sizeof(pathname));
497 		if (IS_ERR(path))
498 			path = "(unknown)";
499 		va_start(args, fmt);
500 		vaf.fmt = fmt;
501 		vaf.va = &args;
502 		if (block)
503 			printk(KERN_CRIT
504 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
505 			       "block %llu: comm %s: path %s: %pV\n",
506 			       inode->i_sb->s_id, function, line, inode->i_ino,
507 			       block, current->comm, path, &vaf);
508 		else
509 			printk(KERN_CRIT
510 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
511 			       "comm %s: path %s: %pV\n",
512 			       inode->i_sb->s_id, function, line, inode->i_ino,
513 			       current->comm, path, &vaf);
514 		va_end(args);
515 	}
516 	save_error_info(inode->i_sb, function, line);
517 	ext4_handle_error(inode->i_sb);
518 }
519 
520 const char *ext4_decode_error(struct super_block *sb, int errno,
521 			      char nbuf[16])
522 {
523 	char *errstr = NULL;
524 
525 	switch (errno) {
526 	case -EFSCORRUPTED:
527 		errstr = "Corrupt filesystem";
528 		break;
529 	case -EFSBADCRC:
530 		errstr = "Filesystem failed CRC";
531 		break;
532 	case -EIO:
533 		errstr = "IO failure";
534 		break;
535 	case -ENOMEM:
536 		errstr = "Out of memory";
537 		break;
538 	case -EROFS:
539 		if (!sb || (EXT4_SB(sb)->s_journal &&
540 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
541 			errstr = "Journal has aborted";
542 		else
543 			errstr = "Readonly filesystem";
544 		break;
545 	default:
546 		/* If the caller passed in an extra buffer for unknown
547 		 * errors, textualise them now.  Else we just return
548 		 * NULL. */
549 		if (nbuf) {
550 			/* Check for truncated error codes... */
551 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
552 				errstr = nbuf;
553 		}
554 		break;
555 	}
556 
557 	return errstr;
558 }
559 
560 /* __ext4_std_error decodes expected errors from journaling functions
561  * automatically and invokes the appropriate error response.  */
562 
563 void __ext4_std_error(struct super_block *sb, const char *function,
564 		      unsigned int line, int errno)
565 {
566 	char nbuf[16];
567 	const char *errstr;
568 
569 	/* Special case: if the error is EROFS, and we're not already
570 	 * inside a transaction, then there's really no point in logging
571 	 * an error. */
572 	if (errno == -EROFS && journal_current_handle() == NULL &&
573 	    (sb->s_flags & MS_RDONLY))
574 		return;
575 
576 	if (ext4_error_ratelimit(sb)) {
577 		errstr = ext4_decode_error(sb, errno, nbuf);
578 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
579 		       sb->s_id, function, line, errstr);
580 	}
581 
582 	save_error_info(sb, function, line);
583 	ext4_handle_error(sb);
584 }
585 
586 /*
587  * ext4_abort is a much stronger failure handler than ext4_error.  The
588  * abort function may be used to deal with unrecoverable failures such
589  * as journal IO errors or ENOMEM at a critical moment in log management.
590  *
591  * We unconditionally force the filesystem into an ABORT|READONLY state,
592  * unless the error response on the fs has been set to panic in which
593  * case we take the easy way out and panic immediately.
594  */
595 
596 void __ext4_abort(struct super_block *sb, const char *function,
597 		unsigned int line, const char *fmt, ...)
598 {
599 	va_list args;
600 
601 	save_error_info(sb, function, line);
602 	va_start(args, fmt);
603 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
604 	       function, line);
605 	vprintk(fmt, args);
606 	printk("\n");
607 	va_end(args);
608 
609 	if ((sb->s_flags & MS_RDONLY) == 0) {
610 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
611 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
612 		/*
613 		 * Make sure updated value of ->s_mount_flags will be visible
614 		 * before ->s_flags update
615 		 */
616 		smp_wmb();
617 		sb->s_flags |= MS_RDONLY;
618 		if (EXT4_SB(sb)->s_journal)
619 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
620 		save_error_info(sb, function, line);
621 	}
622 	if (test_opt(sb, ERRORS_PANIC)) {
623 		if (EXT4_SB(sb)->s_journal &&
624 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
625 			return;
626 		panic("EXT4-fs panic from previous error\n");
627 	}
628 }
629 
630 void __ext4_msg(struct super_block *sb,
631 		const char *prefix, const char *fmt, ...)
632 {
633 	struct va_format vaf;
634 	va_list args;
635 
636 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
637 		return;
638 
639 	va_start(args, fmt);
640 	vaf.fmt = fmt;
641 	vaf.va = &args;
642 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
643 	va_end(args);
644 }
645 
646 #define ext4_warning_ratelimit(sb)					\
647 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
648 			     "EXT4-fs warning")
649 
650 void __ext4_warning(struct super_block *sb, const char *function,
651 		    unsigned int line, const char *fmt, ...)
652 {
653 	struct va_format vaf;
654 	va_list args;
655 
656 	if (!ext4_warning_ratelimit(sb))
657 		return;
658 
659 	va_start(args, fmt);
660 	vaf.fmt = fmt;
661 	vaf.va = &args;
662 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
663 	       sb->s_id, function, line, &vaf);
664 	va_end(args);
665 }
666 
667 void __ext4_warning_inode(const struct inode *inode, const char *function,
668 			  unsigned int line, const char *fmt, ...)
669 {
670 	struct va_format vaf;
671 	va_list args;
672 
673 	if (!ext4_warning_ratelimit(inode->i_sb))
674 		return;
675 
676 	va_start(args, fmt);
677 	vaf.fmt = fmt;
678 	vaf.va = &args;
679 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
680 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
681 	       function, line, inode->i_ino, current->comm, &vaf);
682 	va_end(args);
683 }
684 
685 void __ext4_grp_locked_error(const char *function, unsigned int line,
686 			     struct super_block *sb, ext4_group_t grp,
687 			     unsigned long ino, ext4_fsblk_t block,
688 			     const char *fmt, ...)
689 __releases(bitlock)
690 __acquires(bitlock)
691 {
692 	struct va_format vaf;
693 	va_list args;
694 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
695 
696 	es->s_last_error_ino = cpu_to_le32(ino);
697 	es->s_last_error_block = cpu_to_le64(block);
698 	__save_error_info(sb, function, line);
699 
700 	if (ext4_error_ratelimit(sb)) {
701 		va_start(args, fmt);
702 		vaf.fmt = fmt;
703 		vaf.va = &args;
704 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
705 		       sb->s_id, function, line, grp);
706 		if (ino)
707 			printk(KERN_CONT "inode %lu: ", ino);
708 		if (block)
709 			printk(KERN_CONT "block %llu:",
710 			       (unsigned long long) block);
711 		printk(KERN_CONT "%pV\n", &vaf);
712 		va_end(args);
713 	}
714 
715 	if (test_opt(sb, ERRORS_CONT)) {
716 		ext4_commit_super(sb, 0);
717 		return;
718 	}
719 
720 	ext4_unlock_group(sb, grp);
721 	ext4_handle_error(sb);
722 	/*
723 	 * We only get here in the ERRORS_RO case; relocking the group
724 	 * may be dangerous, but nothing bad will happen since the
725 	 * filesystem will have already been marked read/only and the
726 	 * journal has been aborted.  We return 1 as a hint to callers
727 	 * who might what to use the return value from
728 	 * ext4_grp_locked_error() to distinguish between the
729 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
730 	 * aggressively from the ext4 function in question, with a
731 	 * more appropriate error code.
732 	 */
733 	ext4_lock_group(sb, grp);
734 	return;
735 }
736 
737 void ext4_update_dynamic_rev(struct super_block *sb)
738 {
739 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
740 
741 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
742 		return;
743 
744 	ext4_warning(sb,
745 		     "updating to rev %d because of new feature flag, "
746 		     "running e2fsck is recommended",
747 		     EXT4_DYNAMIC_REV);
748 
749 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
750 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
751 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
752 	/* leave es->s_feature_*compat flags alone */
753 	/* es->s_uuid will be set by e2fsck if empty */
754 
755 	/*
756 	 * The rest of the superblock fields should be zero, and if not it
757 	 * means they are likely already in use, so leave them alone.  We
758 	 * can leave it up to e2fsck to clean up any inconsistencies there.
759 	 */
760 }
761 
762 /*
763  * Open the external journal device
764  */
765 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
766 {
767 	struct block_device *bdev;
768 	char b[BDEVNAME_SIZE];
769 
770 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
771 	if (IS_ERR(bdev))
772 		goto fail;
773 	return bdev;
774 
775 fail:
776 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
777 			__bdevname(dev, b), PTR_ERR(bdev));
778 	return NULL;
779 }
780 
781 /*
782  * Release the journal device
783  */
784 static void ext4_blkdev_put(struct block_device *bdev)
785 {
786 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
787 }
788 
789 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
790 {
791 	struct block_device *bdev;
792 	bdev = sbi->journal_bdev;
793 	if (bdev) {
794 		ext4_blkdev_put(bdev);
795 		sbi->journal_bdev = NULL;
796 	}
797 }
798 
799 static inline struct inode *orphan_list_entry(struct list_head *l)
800 {
801 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
802 }
803 
804 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
805 {
806 	struct list_head *l;
807 
808 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
809 		 le32_to_cpu(sbi->s_es->s_last_orphan));
810 
811 	printk(KERN_ERR "sb_info orphan list:\n");
812 	list_for_each(l, &sbi->s_orphan) {
813 		struct inode *inode = orphan_list_entry(l);
814 		printk(KERN_ERR "  "
815 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
816 		       inode->i_sb->s_id, inode->i_ino, inode,
817 		       inode->i_mode, inode->i_nlink,
818 		       NEXT_ORPHAN(inode));
819 	}
820 }
821 
822 static void ext4_put_super(struct super_block *sb)
823 {
824 	struct ext4_sb_info *sbi = EXT4_SB(sb);
825 	struct ext4_super_block *es = sbi->s_es;
826 	int i, err;
827 
828 	ext4_unregister_li_request(sb);
829 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
830 
831 	flush_workqueue(sbi->rsv_conversion_wq);
832 	destroy_workqueue(sbi->rsv_conversion_wq);
833 
834 	if (sbi->s_journal) {
835 		err = jbd2_journal_destroy(sbi->s_journal);
836 		sbi->s_journal = NULL;
837 		if (err < 0)
838 			ext4_abort(sb, "Couldn't clean up the journal");
839 	}
840 
841 	ext4_unregister_sysfs(sb);
842 	ext4_es_unregister_shrinker(sbi);
843 	del_timer_sync(&sbi->s_err_report);
844 	ext4_release_system_zone(sb);
845 	ext4_mb_release(sb);
846 	ext4_ext_release(sb);
847 	ext4_xattr_put_super(sb);
848 
849 	if (!(sb->s_flags & MS_RDONLY)) {
850 		ext4_clear_feature_journal_needs_recovery(sb);
851 		es->s_state = cpu_to_le16(sbi->s_mount_state);
852 	}
853 	if (!(sb->s_flags & MS_RDONLY))
854 		ext4_commit_super(sb, 1);
855 
856 	for (i = 0; i < sbi->s_gdb_count; i++)
857 		brelse(sbi->s_group_desc[i]);
858 	kvfree(sbi->s_group_desc);
859 	kvfree(sbi->s_flex_groups);
860 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
861 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
862 	percpu_counter_destroy(&sbi->s_dirs_counter);
863 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
864 	brelse(sbi->s_sbh);
865 #ifdef CONFIG_QUOTA
866 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
867 		kfree(sbi->s_qf_names[i]);
868 #endif
869 
870 	/* Debugging code just in case the in-memory inode orphan list
871 	 * isn't empty.  The on-disk one can be non-empty if we've
872 	 * detected an error and taken the fs readonly, but the
873 	 * in-memory list had better be clean by this point. */
874 	if (!list_empty(&sbi->s_orphan))
875 		dump_orphan_list(sb, sbi);
876 	J_ASSERT(list_empty(&sbi->s_orphan));
877 
878 	sync_blockdev(sb->s_bdev);
879 	invalidate_bdev(sb->s_bdev);
880 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
881 		/*
882 		 * Invalidate the journal device's buffers.  We don't want them
883 		 * floating about in memory - the physical journal device may
884 		 * hotswapped, and it breaks the `ro-after' testing code.
885 		 */
886 		sync_blockdev(sbi->journal_bdev);
887 		invalidate_bdev(sbi->journal_bdev);
888 		ext4_blkdev_remove(sbi);
889 	}
890 	if (sbi->s_mb_cache) {
891 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
892 		sbi->s_mb_cache = NULL;
893 	}
894 	if (sbi->s_mmp_tsk)
895 		kthread_stop(sbi->s_mmp_tsk);
896 	sb->s_fs_info = NULL;
897 	/*
898 	 * Now that we are completely done shutting down the
899 	 * superblock, we need to actually destroy the kobject.
900 	 */
901 	kobject_put(&sbi->s_kobj);
902 	wait_for_completion(&sbi->s_kobj_unregister);
903 	if (sbi->s_chksum_driver)
904 		crypto_free_shash(sbi->s_chksum_driver);
905 	kfree(sbi->s_blockgroup_lock);
906 	kfree(sbi);
907 }
908 
909 static struct kmem_cache *ext4_inode_cachep;
910 
911 /*
912  * Called inside transaction, so use GFP_NOFS
913  */
914 static struct inode *ext4_alloc_inode(struct super_block *sb)
915 {
916 	struct ext4_inode_info *ei;
917 
918 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
919 	if (!ei)
920 		return NULL;
921 
922 	ei->vfs_inode.i_version = 1;
923 	spin_lock_init(&ei->i_raw_lock);
924 	INIT_LIST_HEAD(&ei->i_prealloc_list);
925 	spin_lock_init(&ei->i_prealloc_lock);
926 	ext4_es_init_tree(&ei->i_es_tree);
927 	rwlock_init(&ei->i_es_lock);
928 	INIT_LIST_HEAD(&ei->i_es_list);
929 	ei->i_es_all_nr = 0;
930 	ei->i_es_shk_nr = 0;
931 	ei->i_es_shrink_lblk = 0;
932 	ei->i_reserved_data_blocks = 0;
933 	ei->i_reserved_meta_blocks = 0;
934 	ei->i_allocated_meta_blocks = 0;
935 	ei->i_da_metadata_calc_len = 0;
936 	ei->i_da_metadata_calc_last_lblock = 0;
937 	spin_lock_init(&(ei->i_block_reservation_lock));
938 #ifdef CONFIG_QUOTA
939 	ei->i_reserved_quota = 0;
940 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
941 #endif
942 	ei->jinode = NULL;
943 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
944 	spin_lock_init(&ei->i_completed_io_lock);
945 	ei->i_sync_tid = 0;
946 	ei->i_datasync_tid = 0;
947 	atomic_set(&ei->i_ioend_count, 0);
948 	atomic_set(&ei->i_unwritten, 0);
949 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
950 #ifdef CONFIG_EXT4_FS_ENCRYPTION
951 	ei->i_crypt_info = NULL;
952 #endif
953 	return &ei->vfs_inode;
954 }
955 
956 static int ext4_drop_inode(struct inode *inode)
957 {
958 	int drop = generic_drop_inode(inode);
959 
960 	trace_ext4_drop_inode(inode, drop);
961 	return drop;
962 }
963 
964 static void ext4_i_callback(struct rcu_head *head)
965 {
966 	struct inode *inode = container_of(head, struct inode, i_rcu);
967 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
968 }
969 
970 static void ext4_destroy_inode(struct inode *inode)
971 {
972 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
973 		ext4_msg(inode->i_sb, KERN_ERR,
974 			 "Inode %lu (%p): orphan list check failed!",
975 			 inode->i_ino, EXT4_I(inode));
976 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
977 				EXT4_I(inode), sizeof(struct ext4_inode_info),
978 				true);
979 		dump_stack();
980 	}
981 	call_rcu(&inode->i_rcu, ext4_i_callback);
982 }
983 
984 static void init_once(void *foo)
985 {
986 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
987 
988 	INIT_LIST_HEAD(&ei->i_orphan);
989 	init_rwsem(&ei->xattr_sem);
990 	init_rwsem(&ei->i_data_sem);
991 	init_rwsem(&ei->i_mmap_sem);
992 	inode_init_once(&ei->vfs_inode);
993 }
994 
995 static int __init init_inodecache(void)
996 {
997 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 					     sizeof(struct ext4_inode_info),
999 					     0, (SLAB_RECLAIM_ACCOUNT|
1000 						SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1001 					     init_once);
1002 	if (ext4_inode_cachep == NULL)
1003 		return -ENOMEM;
1004 	return 0;
1005 }
1006 
1007 static void destroy_inodecache(void)
1008 {
1009 	/*
1010 	 * Make sure all delayed rcu free inodes are flushed before we
1011 	 * destroy cache.
1012 	 */
1013 	rcu_barrier();
1014 	kmem_cache_destroy(ext4_inode_cachep);
1015 }
1016 
1017 void ext4_clear_inode(struct inode *inode)
1018 {
1019 	invalidate_inode_buffers(inode);
1020 	clear_inode(inode);
1021 	dquot_drop(inode);
1022 	ext4_discard_preallocations(inode);
1023 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1024 	if (EXT4_I(inode)->jinode) {
1025 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1026 					       EXT4_I(inode)->jinode);
1027 		jbd2_free_inode(EXT4_I(inode)->jinode);
1028 		EXT4_I(inode)->jinode = NULL;
1029 	}
1030 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1031 	if (EXT4_I(inode)->i_crypt_info)
1032 		ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1033 #endif
1034 }
1035 
1036 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1037 					u64 ino, u32 generation)
1038 {
1039 	struct inode *inode;
1040 
1041 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1042 		return ERR_PTR(-ESTALE);
1043 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1044 		return ERR_PTR(-ESTALE);
1045 
1046 	/* iget isn't really right if the inode is currently unallocated!!
1047 	 *
1048 	 * ext4_read_inode will return a bad_inode if the inode had been
1049 	 * deleted, so we should be safe.
1050 	 *
1051 	 * Currently we don't know the generation for parent directory, so
1052 	 * a generation of 0 means "accept any"
1053 	 */
1054 	inode = ext4_iget_normal(sb, ino);
1055 	if (IS_ERR(inode))
1056 		return ERR_CAST(inode);
1057 	if (generation && inode->i_generation != generation) {
1058 		iput(inode);
1059 		return ERR_PTR(-ESTALE);
1060 	}
1061 
1062 	return inode;
1063 }
1064 
1065 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1066 					int fh_len, int fh_type)
1067 {
1068 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1069 				    ext4_nfs_get_inode);
1070 }
1071 
1072 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1073 					int fh_len, int fh_type)
1074 {
1075 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1076 				    ext4_nfs_get_inode);
1077 }
1078 
1079 /*
1080  * Try to release metadata pages (indirect blocks, directories) which are
1081  * mapped via the block device.  Since these pages could have journal heads
1082  * which would prevent try_to_free_buffers() from freeing them, we must use
1083  * jbd2 layer's try_to_free_buffers() function to release them.
1084  */
1085 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1086 				 gfp_t wait)
1087 {
1088 	journal_t *journal = EXT4_SB(sb)->s_journal;
1089 
1090 	WARN_ON(PageChecked(page));
1091 	if (!page_has_buffers(page))
1092 		return 0;
1093 	if (journal)
1094 		return jbd2_journal_try_to_free_buffers(journal, page,
1095 						wait & ~__GFP_DIRECT_RECLAIM);
1096 	return try_to_free_buffers(page);
1097 }
1098 
1099 #ifdef CONFIG_QUOTA
1100 static char *quotatypes[] = INITQFNAMES;
1101 #define QTYPE2NAME(t) (quotatypes[t])
1102 
1103 static int ext4_write_dquot(struct dquot *dquot);
1104 static int ext4_acquire_dquot(struct dquot *dquot);
1105 static int ext4_release_dquot(struct dquot *dquot);
1106 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1107 static int ext4_write_info(struct super_block *sb, int type);
1108 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1109 			 struct path *path);
1110 static int ext4_quota_off(struct super_block *sb, int type);
1111 static int ext4_quota_on_mount(struct super_block *sb, int type);
1112 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1113 			       size_t len, loff_t off);
1114 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1115 				const char *data, size_t len, loff_t off);
1116 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1117 			     unsigned int flags);
1118 static int ext4_enable_quotas(struct super_block *sb);
1119 
1120 static struct dquot **ext4_get_dquots(struct inode *inode)
1121 {
1122 	return EXT4_I(inode)->i_dquot;
1123 }
1124 
1125 static const struct dquot_operations ext4_quota_operations = {
1126 	.get_reserved_space = ext4_get_reserved_space,
1127 	.write_dquot	= ext4_write_dquot,
1128 	.acquire_dquot	= ext4_acquire_dquot,
1129 	.release_dquot	= ext4_release_dquot,
1130 	.mark_dirty	= ext4_mark_dquot_dirty,
1131 	.write_info	= ext4_write_info,
1132 	.alloc_dquot	= dquot_alloc,
1133 	.destroy_dquot	= dquot_destroy,
1134 	.get_projid	= ext4_get_projid,
1135 };
1136 
1137 static const struct quotactl_ops ext4_qctl_operations = {
1138 	.quota_on	= ext4_quota_on,
1139 	.quota_off	= ext4_quota_off,
1140 	.quota_sync	= dquot_quota_sync,
1141 	.get_state	= dquot_get_state,
1142 	.set_info	= dquot_set_dqinfo,
1143 	.get_dqblk	= dquot_get_dqblk,
1144 	.set_dqblk	= dquot_set_dqblk
1145 };
1146 #endif
1147 
1148 static const struct super_operations ext4_sops = {
1149 	.alloc_inode	= ext4_alloc_inode,
1150 	.destroy_inode	= ext4_destroy_inode,
1151 	.write_inode	= ext4_write_inode,
1152 	.dirty_inode	= ext4_dirty_inode,
1153 	.drop_inode	= ext4_drop_inode,
1154 	.evict_inode	= ext4_evict_inode,
1155 	.put_super	= ext4_put_super,
1156 	.sync_fs	= ext4_sync_fs,
1157 	.freeze_fs	= ext4_freeze,
1158 	.unfreeze_fs	= ext4_unfreeze,
1159 	.statfs		= ext4_statfs,
1160 	.remount_fs	= ext4_remount,
1161 	.show_options	= ext4_show_options,
1162 #ifdef CONFIG_QUOTA
1163 	.quota_read	= ext4_quota_read,
1164 	.quota_write	= ext4_quota_write,
1165 	.get_dquots	= ext4_get_dquots,
1166 #endif
1167 	.bdev_try_to_free_page = bdev_try_to_free_page,
1168 };
1169 
1170 static const struct export_operations ext4_export_ops = {
1171 	.fh_to_dentry = ext4_fh_to_dentry,
1172 	.fh_to_parent = ext4_fh_to_parent,
1173 	.get_parent = ext4_get_parent,
1174 };
1175 
1176 enum {
1177 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 	Opt_nouid32, Opt_debug, Opt_removed,
1180 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1183 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1184 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1186 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 	Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1190 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 	Opt_lazytime, Opt_nolazytime,
1192 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1193 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1194 	Opt_dioread_nolock, Opt_dioread_lock,
1195 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1196 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1197 };
1198 
1199 static const match_table_t tokens = {
1200 	{Opt_bsd_df, "bsddf"},
1201 	{Opt_minix_df, "minixdf"},
1202 	{Opt_grpid, "grpid"},
1203 	{Opt_grpid, "bsdgroups"},
1204 	{Opt_nogrpid, "nogrpid"},
1205 	{Opt_nogrpid, "sysvgroups"},
1206 	{Opt_resgid, "resgid=%u"},
1207 	{Opt_resuid, "resuid=%u"},
1208 	{Opt_sb, "sb=%u"},
1209 	{Opt_err_cont, "errors=continue"},
1210 	{Opt_err_panic, "errors=panic"},
1211 	{Opt_err_ro, "errors=remount-ro"},
1212 	{Opt_nouid32, "nouid32"},
1213 	{Opt_debug, "debug"},
1214 	{Opt_removed, "oldalloc"},
1215 	{Opt_removed, "orlov"},
1216 	{Opt_user_xattr, "user_xattr"},
1217 	{Opt_nouser_xattr, "nouser_xattr"},
1218 	{Opt_acl, "acl"},
1219 	{Opt_noacl, "noacl"},
1220 	{Opt_noload, "norecovery"},
1221 	{Opt_noload, "noload"},
1222 	{Opt_removed, "nobh"},
1223 	{Opt_removed, "bh"},
1224 	{Opt_commit, "commit=%u"},
1225 	{Opt_min_batch_time, "min_batch_time=%u"},
1226 	{Opt_max_batch_time, "max_batch_time=%u"},
1227 	{Opt_journal_dev, "journal_dev=%u"},
1228 	{Opt_journal_path, "journal_path=%s"},
1229 	{Opt_journal_checksum, "journal_checksum"},
1230 	{Opt_nojournal_checksum, "nojournal_checksum"},
1231 	{Opt_journal_async_commit, "journal_async_commit"},
1232 	{Opt_abort, "abort"},
1233 	{Opt_data_journal, "data=journal"},
1234 	{Opt_data_ordered, "data=ordered"},
1235 	{Opt_data_writeback, "data=writeback"},
1236 	{Opt_data_err_abort, "data_err=abort"},
1237 	{Opt_data_err_ignore, "data_err=ignore"},
1238 	{Opt_offusrjquota, "usrjquota="},
1239 	{Opt_usrjquota, "usrjquota=%s"},
1240 	{Opt_offgrpjquota, "grpjquota="},
1241 	{Opt_grpjquota, "grpjquota=%s"},
1242 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1243 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1244 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1245 	{Opt_grpquota, "grpquota"},
1246 	{Opt_noquota, "noquota"},
1247 	{Opt_quota, "quota"},
1248 	{Opt_usrquota, "usrquota"},
1249 	{Opt_barrier, "barrier=%u"},
1250 	{Opt_barrier, "barrier"},
1251 	{Opt_nobarrier, "nobarrier"},
1252 	{Opt_i_version, "i_version"},
1253 	{Opt_dax, "dax"},
1254 	{Opt_stripe, "stripe=%u"},
1255 	{Opt_delalloc, "delalloc"},
1256 	{Opt_lazytime, "lazytime"},
1257 	{Opt_nolazytime, "nolazytime"},
1258 	{Opt_nodelalloc, "nodelalloc"},
1259 	{Opt_removed, "mblk_io_submit"},
1260 	{Opt_removed, "nomblk_io_submit"},
1261 	{Opt_block_validity, "block_validity"},
1262 	{Opt_noblock_validity, "noblock_validity"},
1263 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1264 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1265 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1266 	{Opt_auto_da_alloc, "auto_da_alloc"},
1267 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1268 	{Opt_dioread_nolock, "dioread_nolock"},
1269 	{Opt_dioread_lock, "dioread_lock"},
1270 	{Opt_discard, "discard"},
1271 	{Opt_nodiscard, "nodiscard"},
1272 	{Opt_init_itable, "init_itable=%u"},
1273 	{Opt_init_itable, "init_itable"},
1274 	{Opt_noinit_itable, "noinit_itable"},
1275 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1276 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1277 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1278 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1279 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1280 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1281 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1282 	{Opt_err, NULL},
1283 };
1284 
1285 static ext4_fsblk_t get_sb_block(void **data)
1286 {
1287 	ext4_fsblk_t	sb_block;
1288 	char		*options = (char *) *data;
1289 
1290 	if (!options || strncmp(options, "sb=", 3) != 0)
1291 		return 1;	/* Default location */
1292 
1293 	options += 3;
1294 	/* TODO: use simple_strtoll with >32bit ext4 */
1295 	sb_block = simple_strtoul(options, &options, 0);
1296 	if (*options && *options != ',') {
1297 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1298 		       (char *) *data);
1299 		return 1;
1300 	}
1301 	if (*options == ',')
1302 		options++;
1303 	*data = (void *) options;
1304 
1305 	return sb_block;
1306 }
1307 
1308 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1309 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1310 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1311 
1312 #ifdef CONFIG_QUOTA
1313 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1314 {
1315 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1316 	char *qname;
1317 	int ret = -1;
1318 
1319 	if (sb_any_quota_loaded(sb) &&
1320 		!sbi->s_qf_names[qtype]) {
1321 		ext4_msg(sb, KERN_ERR,
1322 			"Cannot change journaled "
1323 			"quota options when quota turned on");
1324 		return -1;
1325 	}
1326 	if (ext4_has_feature_quota(sb)) {
1327 		ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1328 			 "when QUOTA feature is enabled");
1329 		return -1;
1330 	}
1331 	qname = match_strdup(args);
1332 	if (!qname) {
1333 		ext4_msg(sb, KERN_ERR,
1334 			"Not enough memory for storing quotafile name");
1335 		return -1;
1336 	}
1337 	if (sbi->s_qf_names[qtype]) {
1338 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1339 			ret = 1;
1340 		else
1341 			ext4_msg(sb, KERN_ERR,
1342 				 "%s quota file already specified",
1343 				 QTYPE2NAME(qtype));
1344 		goto errout;
1345 	}
1346 	if (strchr(qname, '/')) {
1347 		ext4_msg(sb, KERN_ERR,
1348 			"quotafile must be on filesystem root");
1349 		goto errout;
1350 	}
1351 	sbi->s_qf_names[qtype] = qname;
1352 	set_opt(sb, QUOTA);
1353 	return 1;
1354 errout:
1355 	kfree(qname);
1356 	return ret;
1357 }
1358 
1359 static int clear_qf_name(struct super_block *sb, int qtype)
1360 {
1361 
1362 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1363 
1364 	if (sb_any_quota_loaded(sb) &&
1365 		sbi->s_qf_names[qtype]) {
1366 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1367 			" when quota turned on");
1368 		return -1;
1369 	}
1370 	kfree(sbi->s_qf_names[qtype]);
1371 	sbi->s_qf_names[qtype] = NULL;
1372 	return 1;
1373 }
1374 #endif
1375 
1376 #define MOPT_SET	0x0001
1377 #define MOPT_CLEAR	0x0002
1378 #define MOPT_NOSUPPORT	0x0004
1379 #define MOPT_EXPLICIT	0x0008
1380 #define MOPT_CLEAR_ERR	0x0010
1381 #define MOPT_GTE0	0x0020
1382 #ifdef CONFIG_QUOTA
1383 #define MOPT_Q		0
1384 #define MOPT_QFMT	0x0040
1385 #else
1386 #define MOPT_Q		MOPT_NOSUPPORT
1387 #define MOPT_QFMT	MOPT_NOSUPPORT
1388 #endif
1389 #define MOPT_DATAJ	0x0080
1390 #define MOPT_NO_EXT2	0x0100
1391 #define MOPT_NO_EXT3	0x0200
1392 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1393 #define MOPT_STRING	0x0400
1394 
1395 static const struct mount_opts {
1396 	int	token;
1397 	int	mount_opt;
1398 	int	flags;
1399 } ext4_mount_opts[] = {
1400 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1401 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1402 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1403 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1404 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1405 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1406 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1407 	 MOPT_EXT4_ONLY | MOPT_SET},
1408 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1409 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1410 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1411 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1412 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1413 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1414 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1415 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1416 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1417 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1418 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1419 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1421 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1422 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1423 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1424 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1425 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1426 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1427 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1428 	 MOPT_NO_EXT2 | MOPT_SET},
1429 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1430 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1431 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1432 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1433 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1434 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1435 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1436 	{Opt_commit, 0, MOPT_GTE0},
1437 	{Opt_max_batch_time, 0, MOPT_GTE0},
1438 	{Opt_min_batch_time, 0, MOPT_GTE0},
1439 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1440 	{Opt_init_itable, 0, MOPT_GTE0},
1441 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1442 	{Opt_stripe, 0, MOPT_GTE0},
1443 	{Opt_resuid, 0, MOPT_GTE0},
1444 	{Opt_resgid, 0, MOPT_GTE0},
1445 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1446 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1447 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1448 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1451 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1452 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1453 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1454 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1455 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1456 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1457 #else
1458 	{Opt_acl, 0, MOPT_NOSUPPORT},
1459 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1460 #endif
1461 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1462 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1463 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1464 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1465 							MOPT_SET | MOPT_Q},
1466 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1467 							MOPT_SET | MOPT_Q},
1468 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1469 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1470 	{Opt_usrjquota, 0, MOPT_Q},
1471 	{Opt_grpjquota, 0, MOPT_Q},
1472 	{Opt_offusrjquota, 0, MOPT_Q},
1473 	{Opt_offgrpjquota, 0, MOPT_Q},
1474 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1475 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1476 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1477 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1478 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1479 	{Opt_err, 0, 0}
1480 };
1481 
1482 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1483 			    substring_t *args, unsigned long *journal_devnum,
1484 			    unsigned int *journal_ioprio, int is_remount)
1485 {
1486 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1487 	const struct mount_opts *m;
1488 	kuid_t uid;
1489 	kgid_t gid;
1490 	int arg = 0;
1491 
1492 #ifdef CONFIG_QUOTA
1493 	if (token == Opt_usrjquota)
1494 		return set_qf_name(sb, USRQUOTA, &args[0]);
1495 	else if (token == Opt_grpjquota)
1496 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1497 	else if (token == Opt_offusrjquota)
1498 		return clear_qf_name(sb, USRQUOTA);
1499 	else if (token == Opt_offgrpjquota)
1500 		return clear_qf_name(sb, GRPQUOTA);
1501 #endif
1502 	switch (token) {
1503 	case Opt_noacl:
1504 	case Opt_nouser_xattr:
1505 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1506 		break;
1507 	case Opt_sb:
1508 		return 1;	/* handled by get_sb_block() */
1509 	case Opt_removed:
1510 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1511 		return 1;
1512 	case Opt_abort:
1513 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1514 		return 1;
1515 	case Opt_i_version:
1516 		sb->s_flags |= MS_I_VERSION;
1517 		return 1;
1518 	case Opt_lazytime:
1519 		sb->s_flags |= MS_LAZYTIME;
1520 		return 1;
1521 	case Opt_nolazytime:
1522 		sb->s_flags &= ~MS_LAZYTIME;
1523 		return 1;
1524 	}
1525 
1526 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1527 		if (token == m->token)
1528 			break;
1529 
1530 	if (m->token == Opt_err) {
1531 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1532 			 "or missing value", opt);
1533 		return -1;
1534 	}
1535 
1536 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1537 		ext4_msg(sb, KERN_ERR,
1538 			 "Mount option \"%s\" incompatible with ext2", opt);
1539 		return -1;
1540 	}
1541 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1542 		ext4_msg(sb, KERN_ERR,
1543 			 "Mount option \"%s\" incompatible with ext3", opt);
1544 		return -1;
1545 	}
1546 
1547 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1548 		return -1;
1549 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1550 		return -1;
1551 	if (m->flags & MOPT_EXPLICIT) {
1552 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1553 			set_opt2(sb, EXPLICIT_DELALLOC);
1554 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1555 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1556 		} else
1557 			return -1;
1558 	}
1559 	if (m->flags & MOPT_CLEAR_ERR)
1560 		clear_opt(sb, ERRORS_MASK);
1561 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1562 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1563 			 "options when quota turned on");
1564 		return -1;
1565 	}
1566 
1567 	if (m->flags & MOPT_NOSUPPORT) {
1568 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1569 	} else if (token == Opt_commit) {
1570 		if (arg == 0)
1571 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1572 		sbi->s_commit_interval = HZ * arg;
1573 	} else if (token == Opt_max_batch_time) {
1574 		sbi->s_max_batch_time = arg;
1575 	} else if (token == Opt_min_batch_time) {
1576 		sbi->s_min_batch_time = arg;
1577 	} else if (token == Opt_inode_readahead_blks) {
1578 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1579 			ext4_msg(sb, KERN_ERR,
1580 				 "EXT4-fs: inode_readahead_blks must be "
1581 				 "0 or a power of 2 smaller than 2^31");
1582 			return -1;
1583 		}
1584 		sbi->s_inode_readahead_blks = arg;
1585 	} else if (token == Opt_init_itable) {
1586 		set_opt(sb, INIT_INODE_TABLE);
1587 		if (!args->from)
1588 			arg = EXT4_DEF_LI_WAIT_MULT;
1589 		sbi->s_li_wait_mult = arg;
1590 	} else if (token == Opt_max_dir_size_kb) {
1591 		sbi->s_max_dir_size_kb = arg;
1592 	} else if (token == Opt_stripe) {
1593 		sbi->s_stripe = arg;
1594 	} else if (token == Opt_resuid) {
1595 		uid = make_kuid(current_user_ns(), arg);
1596 		if (!uid_valid(uid)) {
1597 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1598 			return -1;
1599 		}
1600 		sbi->s_resuid = uid;
1601 	} else if (token == Opt_resgid) {
1602 		gid = make_kgid(current_user_ns(), arg);
1603 		if (!gid_valid(gid)) {
1604 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1605 			return -1;
1606 		}
1607 		sbi->s_resgid = gid;
1608 	} else if (token == Opt_journal_dev) {
1609 		if (is_remount) {
1610 			ext4_msg(sb, KERN_ERR,
1611 				 "Cannot specify journal on remount");
1612 			return -1;
1613 		}
1614 		*journal_devnum = arg;
1615 	} else if (token == Opt_journal_path) {
1616 		char *journal_path;
1617 		struct inode *journal_inode;
1618 		struct path path;
1619 		int error;
1620 
1621 		if (is_remount) {
1622 			ext4_msg(sb, KERN_ERR,
1623 				 "Cannot specify journal on remount");
1624 			return -1;
1625 		}
1626 		journal_path = match_strdup(&args[0]);
1627 		if (!journal_path) {
1628 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1629 				"journal device string");
1630 			return -1;
1631 		}
1632 
1633 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1634 		if (error) {
1635 			ext4_msg(sb, KERN_ERR, "error: could not find "
1636 				"journal device path: error %d", error);
1637 			kfree(journal_path);
1638 			return -1;
1639 		}
1640 
1641 		journal_inode = d_inode(path.dentry);
1642 		if (!S_ISBLK(journal_inode->i_mode)) {
1643 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1644 				"is not a block device", journal_path);
1645 			path_put(&path);
1646 			kfree(journal_path);
1647 			return -1;
1648 		}
1649 
1650 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1651 		path_put(&path);
1652 		kfree(journal_path);
1653 	} else if (token == Opt_journal_ioprio) {
1654 		if (arg > 7) {
1655 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1656 				 " (must be 0-7)");
1657 			return -1;
1658 		}
1659 		*journal_ioprio =
1660 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1661 	} else if (token == Opt_test_dummy_encryption) {
1662 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1663 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1664 		ext4_msg(sb, KERN_WARNING,
1665 			 "Test dummy encryption mode enabled");
1666 #else
1667 		ext4_msg(sb, KERN_WARNING,
1668 			 "Test dummy encryption mount option ignored");
1669 #endif
1670 	} else if (m->flags & MOPT_DATAJ) {
1671 		if (is_remount) {
1672 			if (!sbi->s_journal)
1673 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1674 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1675 				ext4_msg(sb, KERN_ERR,
1676 					 "Cannot change data mode on remount");
1677 				return -1;
1678 			}
1679 		} else {
1680 			clear_opt(sb, DATA_FLAGS);
1681 			sbi->s_mount_opt |= m->mount_opt;
1682 		}
1683 #ifdef CONFIG_QUOTA
1684 	} else if (m->flags & MOPT_QFMT) {
1685 		if (sb_any_quota_loaded(sb) &&
1686 		    sbi->s_jquota_fmt != m->mount_opt) {
1687 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1688 				 "quota options when quota turned on");
1689 			return -1;
1690 		}
1691 		if (ext4_has_feature_quota(sb)) {
1692 			ext4_msg(sb, KERN_ERR,
1693 				 "Cannot set journaled quota options "
1694 				 "when QUOTA feature is enabled");
1695 			return -1;
1696 		}
1697 		sbi->s_jquota_fmt = m->mount_opt;
1698 #endif
1699 	} else if (token == Opt_dax) {
1700 #ifdef CONFIG_FS_DAX
1701 		ext4_msg(sb, KERN_WARNING,
1702 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1703 			sbi->s_mount_opt |= m->mount_opt;
1704 #else
1705 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1706 		return -1;
1707 #endif
1708 	} else {
1709 		if (!args->from)
1710 			arg = 1;
1711 		if (m->flags & MOPT_CLEAR)
1712 			arg = !arg;
1713 		else if (unlikely(!(m->flags & MOPT_SET))) {
1714 			ext4_msg(sb, KERN_WARNING,
1715 				 "buggy handling of option %s", opt);
1716 			WARN_ON(1);
1717 			return -1;
1718 		}
1719 		if (arg != 0)
1720 			sbi->s_mount_opt |= m->mount_opt;
1721 		else
1722 			sbi->s_mount_opt &= ~m->mount_opt;
1723 	}
1724 	return 1;
1725 }
1726 
1727 static int parse_options(char *options, struct super_block *sb,
1728 			 unsigned long *journal_devnum,
1729 			 unsigned int *journal_ioprio,
1730 			 int is_remount)
1731 {
1732 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1733 	char *p;
1734 	substring_t args[MAX_OPT_ARGS];
1735 	int token;
1736 
1737 	if (!options)
1738 		return 1;
1739 
1740 	while ((p = strsep(&options, ",")) != NULL) {
1741 		if (!*p)
1742 			continue;
1743 		/*
1744 		 * Initialize args struct so we know whether arg was
1745 		 * found; some options take optional arguments.
1746 		 */
1747 		args[0].to = args[0].from = NULL;
1748 		token = match_token(p, tokens, args);
1749 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1750 				     journal_ioprio, is_remount) < 0)
1751 			return 0;
1752 	}
1753 #ifdef CONFIG_QUOTA
1754 	if (ext4_has_feature_quota(sb) &&
1755 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1756 		ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1757 			 "feature is enabled");
1758 		return 0;
1759 	}
1760 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1761 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1762 			clear_opt(sb, USRQUOTA);
1763 
1764 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1765 			clear_opt(sb, GRPQUOTA);
1766 
1767 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1768 			ext4_msg(sb, KERN_ERR, "old and new quota "
1769 					"format mixing");
1770 			return 0;
1771 		}
1772 
1773 		if (!sbi->s_jquota_fmt) {
1774 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1775 					"not specified");
1776 			return 0;
1777 		}
1778 	}
1779 #endif
1780 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1781 		int blocksize =
1782 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1783 
1784 		if (blocksize < PAGE_CACHE_SIZE) {
1785 			ext4_msg(sb, KERN_ERR, "can't mount with "
1786 				 "dioread_nolock if block size != PAGE_SIZE");
1787 			return 0;
1788 		}
1789 	}
1790 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1791 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1792 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1793 			 "in data=ordered mode");
1794 		return 0;
1795 	}
1796 	return 1;
1797 }
1798 
1799 static inline void ext4_show_quota_options(struct seq_file *seq,
1800 					   struct super_block *sb)
1801 {
1802 #if defined(CONFIG_QUOTA)
1803 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1804 
1805 	if (sbi->s_jquota_fmt) {
1806 		char *fmtname = "";
1807 
1808 		switch (sbi->s_jquota_fmt) {
1809 		case QFMT_VFS_OLD:
1810 			fmtname = "vfsold";
1811 			break;
1812 		case QFMT_VFS_V0:
1813 			fmtname = "vfsv0";
1814 			break;
1815 		case QFMT_VFS_V1:
1816 			fmtname = "vfsv1";
1817 			break;
1818 		}
1819 		seq_printf(seq, ",jqfmt=%s", fmtname);
1820 	}
1821 
1822 	if (sbi->s_qf_names[USRQUOTA])
1823 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1824 
1825 	if (sbi->s_qf_names[GRPQUOTA])
1826 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1827 #endif
1828 }
1829 
1830 static const char *token2str(int token)
1831 {
1832 	const struct match_token *t;
1833 
1834 	for (t = tokens; t->token != Opt_err; t++)
1835 		if (t->token == token && !strchr(t->pattern, '='))
1836 			break;
1837 	return t->pattern;
1838 }
1839 
1840 /*
1841  * Show an option if
1842  *  - it's set to a non-default value OR
1843  *  - if the per-sb default is different from the global default
1844  */
1845 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1846 			      int nodefs)
1847 {
1848 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1849 	struct ext4_super_block *es = sbi->s_es;
1850 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1851 	const struct mount_opts *m;
1852 	char sep = nodefs ? '\n' : ',';
1853 
1854 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1855 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1856 
1857 	if (sbi->s_sb_block != 1)
1858 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1859 
1860 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1861 		int want_set = m->flags & MOPT_SET;
1862 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1863 		    (m->flags & MOPT_CLEAR_ERR))
1864 			continue;
1865 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1866 			continue; /* skip if same as the default */
1867 		if ((want_set &&
1868 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1869 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1870 			continue; /* select Opt_noFoo vs Opt_Foo */
1871 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1872 	}
1873 
1874 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1875 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1876 		SEQ_OPTS_PRINT("resuid=%u",
1877 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1878 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1879 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1880 		SEQ_OPTS_PRINT("resgid=%u",
1881 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1882 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1883 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1884 		SEQ_OPTS_PUTS("errors=remount-ro");
1885 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1886 		SEQ_OPTS_PUTS("errors=continue");
1887 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1888 		SEQ_OPTS_PUTS("errors=panic");
1889 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1890 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1891 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1892 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1893 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1894 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1895 	if (sb->s_flags & MS_I_VERSION)
1896 		SEQ_OPTS_PUTS("i_version");
1897 	if (nodefs || sbi->s_stripe)
1898 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1899 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1900 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1901 			SEQ_OPTS_PUTS("data=journal");
1902 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1903 			SEQ_OPTS_PUTS("data=ordered");
1904 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1905 			SEQ_OPTS_PUTS("data=writeback");
1906 	}
1907 	if (nodefs ||
1908 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1909 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1910 			       sbi->s_inode_readahead_blks);
1911 
1912 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1913 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1914 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1915 	if (nodefs || sbi->s_max_dir_size_kb)
1916 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1917 
1918 	ext4_show_quota_options(seq, sb);
1919 	return 0;
1920 }
1921 
1922 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1923 {
1924 	return _ext4_show_options(seq, root->d_sb, 0);
1925 }
1926 
1927 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1928 {
1929 	struct super_block *sb = seq->private;
1930 	int rc;
1931 
1932 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1933 	rc = _ext4_show_options(seq, sb, 1);
1934 	seq_puts(seq, "\n");
1935 	return rc;
1936 }
1937 
1938 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1939 			    int read_only)
1940 {
1941 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1942 	int res = 0;
1943 
1944 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1945 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1946 			 "forcing read-only mode");
1947 		res = MS_RDONLY;
1948 	}
1949 	if (read_only)
1950 		goto done;
1951 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1952 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1953 			 "running e2fsck is recommended");
1954 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1955 		ext4_msg(sb, KERN_WARNING,
1956 			 "warning: mounting fs with errors, "
1957 			 "running e2fsck is recommended");
1958 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1959 		 le16_to_cpu(es->s_mnt_count) >=
1960 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1961 		ext4_msg(sb, KERN_WARNING,
1962 			 "warning: maximal mount count reached, "
1963 			 "running e2fsck is recommended");
1964 	else if (le32_to_cpu(es->s_checkinterval) &&
1965 		(le32_to_cpu(es->s_lastcheck) +
1966 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1967 		ext4_msg(sb, KERN_WARNING,
1968 			 "warning: checktime reached, "
1969 			 "running e2fsck is recommended");
1970 	if (!sbi->s_journal)
1971 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1972 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1973 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1974 	le16_add_cpu(&es->s_mnt_count, 1);
1975 	es->s_mtime = cpu_to_le32(get_seconds());
1976 	ext4_update_dynamic_rev(sb);
1977 	if (sbi->s_journal)
1978 		ext4_set_feature_journal_needs_recovery(sb);
1979 
1980 	ext4_commit_super(sb, 1);
1981 done:
1982 	if (test_opt(sb, DEBUG))
1983 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1984 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1985 			sb->s_blocksize,
1986 			sbi->s_groups_count,
1987 			EXT4_BLOCKS_PER_GROUP(sb),
1988 			EXT4_INODES_PER_GROUP(sb),
1989 			sbi->s_mount_opt, sbi->s_mount_opt2);
1990 
1991 	cleancache_init_fs(sb);
1992 	return res;
1993 }
1994 
1995 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1996 {
1997 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1998 	struct flex_groups *new_groups;
1999 	int size;
2000 
2001 	if (!sbi->s_log_groups_per_flex)
2002 		return 0;
2003 
2004 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2005 	if (size <= sbi->s_flex_groups_allocated)
2006 		return 0;
2007 
2008 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2009 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2010 	if (!new_groups) {
2011 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2012 			 size / (int) sizeof(struct flex_groups));
2013 		return -ENOMEM;
2014 	}
2015 
2016 	if (sbi->s_flex_groups) {
2017 		memcpy(new_groups, sbi->s_flex_groups,
2018 		       (sbi->s_flex_groups_allocated *
2019 			sizeof(struct flex_groups)));
2020 		kvfree(sbi->s_flex_groups);
2021 	}
2022 	sbi->s_flex_groups = new_groups;
2023 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2024 	return 0;
2025 }
2026 
2027 static int ext4_fill_flex_info(struct super_block *sb)
2028 {
2029 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2030 	struct ext4_group_desc *gdp = NULL;
2031 	ext4_group_t flex_group;
2032 	int i, err;
2033 
2034 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2035 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2036 		sbi->s_log_groups_per_flex = 0;
2037 		return 1;
2038 	}
2039 
2040 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2041 	if (err)
2042 		goto failed;
2043 
2044 	for (i = 0; i < sbi->s_groups_count; i++) {
2045 		gdp = ext4_get_group_desc(sb, i, NULL);
2046 
2047 		flex_group = ext4_flex_group(sbi, i);
2048 		atomic_add(ext4_free_inodes_count(sb, gdp),
2049 			   &sbi->s_flex_groups[flex_group].free_inodes);
2050 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2051 			     &sbi->s_flex_groups[flex_group].free_clusters);
2052 		atomic_add(ext4_used_dirs_count(sb, gdp),
2053 			   &sbi->s_flex_groups[flex_group].used_dirs);
2054 	}
2055 
2056 	return 1;
2057 failed:
2058 	return 0;
2059 }
2060 
2061 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2062 				   struct ext4_group_desc *gdp)
2063 {
2064 	int offset;
2065 	__u16 crc = 0;
2066 	__le32 le_group = cpu_to_le32(block_group);
2067 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2068 
2069 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2070 		/* Use new metadata_csum algorithm */
2071 		__le16 save_csum;
2072 		__u32 csum32;
2073 
2074 		save_csum = gdp->bg_checksum;
2075 		gdp->bg_checksum = 0;
2076 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2077 				     sizeof(le_group));
2078 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2079 				     sbi->s_desc_size);
2080 		gdp->bg_checksum = save_csum;
2081 
2082 		crc = csum32 & 0xFFFF;
2083 		goto out;
2084 	}
2085 
2086 	/* old crc16 code */
2087 	if (!ext4_has_feature_gdt_csum(sb))
2088 		return 0;
2089 
2090 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2091 
2092 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2093 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2094 	crc = crc16(crc, (__u8 *)gdp, offset);
2095 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2096 	/* for checksum of struct ext4_group_desc do the rest...*/
2097 	if (ext4_has_feature_64bit(sb) &&
2098 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2099 		crc = crc16(crc, (__u8 *)gdp + offset,
2100 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2101 				offset);
2102 
2103 out:
2104 	return cpu_to_le16(crc);
2105 }
2106 
2107 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2108 				struct ext4_group_desc *gdp)
2109 {
2110 	if (ext4_has_group_desc_csum(sb) &&
2111 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2112 		return 0;
2113 
2114 	return 1;
2115 }
2116 
2117 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2118 			      struct ext4_group_desc *gdp)
2119 {
2120 	if (!ext4_has_group_desc_csum(sb))
2121 		return;
2122 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2123 }
2124 
2125 /* Called at mount-time, super-block is locked */
2126 static int ext4_check_descriptors(struct super_block *sb,
2127 				  ext4_group_t *first_not_zeroed)
2128 {
2129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2131 	ext4_fsblk_t last_block;
2132 	ext4_fsblk_t block_bitmap;
2133 	ext4_fsblk_t inode_bitmap;
2134 	ext4_fsblk_t inode_table;
2135 	int flexbg_flag = 0;
2136 	ext4_group_t i, grp = sbi->s_groups_count;
2137 
2138 	if (ext4_has_feature_flex_bg(sb))
2139 		flexbg_flag = 1;
2140 
2141 	ext4_debug("Checking group descriptors");
2142 
2143 	for (i = 0; i < sbi->s_groups_count; i++) {
2144 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2145 
2146 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2147 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2148 		else
2149 			last_block = first_block +
2150 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2151 
2152 		if ((grp == sbi->s_groups_count) &&
2153 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2154 			grp = i;
2155 
2156 		block_bitmap = ext4_block_bitmap(sb, gdp);
2157 		if (block_bitmap < first_block || block_bitmap > last_block) {
2158 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2159 			       "Block bitmap for group %u not in group "
2160 			       "(block %llu)!", i, block_bitmap);
2161 			return 0;
2162 		}
2163 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2164 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2165 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2166 			       "Inode bitmap for group %u not in group "
2167 			       "(block %llu)!", i, inode_bitmap);
2168 			return 0;
2169 		}
2170 		inode_table = ext4_inode_table(sb, gdp);
2171 		if (inode_table < first_block ||
2172 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2173 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2174 			       "Inode table for group %u not in group "
2175 			       "(block %llu)!", i, inode_table);
2176 			return 0;
2177 		}
2178 		ext4_lock_group(sb, i);
2179 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2180 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2181 				 "Checksum for group %u failed (%u!=%u)",
2182 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2183 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2184 			if (!(sb->s_flags & MS_RDONLY)) {
2185 				ext4_unlock_group(sb, i);
2186 				return 0;
2187 			}
2188 		}
2189 		ext4_unlock_group(sb, i);
2190 		if (!flexbg_flag)
2191 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2192 	}
2193 	if (NULL != first_not_zeroed)
2194 		*first_not_zeroed = grp;
2195 	return 1;
2196 }
2197 
2198 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2199  * the superblock) which were deleted from all directories, but held open by
2200  * a process at the time of a crash.  We walk the list and try to delete these
2201  * inodes at recovery time (only with a read-write filesystem).
2202  *
2203  * In order to keep the orphan inode chain consistent during traversal (in
2204  * case of crash during recovery), we link each inode into the superblock
2205  * orphan list_head and handle it the same way as an inode deletion during
2206  * normal operation (which journals the operations for us).
2207  *
2208  * We only do an iget() and an iput() on each inode, which is very safe if we
2209  * accidentally point at an in-use or already deleted inode.  The worst that
2210  * can happen in this case is that we get a "bit already cleared" message from
2211  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2212  * e2fsck was run on this filesystem, and it must have already done the orphan
2213  * inode cleanup for us, so we can safely abort without any further action.
2214  */
2215 static void ext4_orphan_cleanup(struct super_block *sb,
2216 				struct ext4_super_block *es)
2217 {
2218 	unsigned int s_flags = sb->s_flags;
2219 	int nr_orphans = 0, nr_truncates = 0;
2220 #ifdef CONFIG_QUOTA
2221 	int i;
2222 #endif
2223 	if (!es->s_last_orphan) {
2224 		jbd_debug(4, "no orphan inodes to clean up\n");
2225 		return;
2226 	}
2227 
2228 	if (bdev_read_only(sb->s_bdev)) {
2229 		ext4_msg(sb, KERN_ERR, "write access "
2230 			"unavailable, skipping orphan cleanup");
2231 		return;
2232 	}
2233 
2234 	/* Check if feature set would not allow a r/w mount */
2235 	if (!ext4_feature_set_ok(sb, 0)) {
2236 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2237 			 "unknown ROCOMPAT features");
2238 		return;
2239 	}
2240 
2241 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2242 		/* don't clear list on RO mount w/ errors */
2243 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2244 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2245 				  "clearing orphan list.\n");
2246 			es->s_last_orphan = 0;
2247 		}
2248 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2249 		return;
2250 	}
2251 
2252 	if (s_flags & MS_RDONLY) {
2253 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2254 		sb->s_flags &= ~MS_RDONLY;
2255 	}
2256 #ifdef CONFIG_QUOTA
2257 	/* Needed for iput() to work correctly and not trash data */
2258 	sb->s_flags |= MS_ACTIVE;
2259 	/* Turn on quotas so that they are updated correctly */
2260 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2261 		if (EXT4_SB(sb)->s_qf_names[i]) {
2262 			int ret = ext4_quota_on_mount(sb, i);
2263 			if (ret < 0)
2264 				ext4_msg(sb, KERN_ERR,
2265 					"Cannot turn on journaled "
2266 					"quota: error %d", ret);
2267 		}
2268 	}
2269 #endif
2270 
2271 	while (es->s_last_orphan) {
2272 		struct inode *inode;
2273 
2274 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2275 		if (IS_ERR(inode)) {
2276 			es->s_last_orphan = 0;
2277 			break;
2278 		}
2279 
2280 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2281 		dquot_initialize(inode);
2282 		if (inode->i_nlink) {
2283 			if (test_opt(sb, DEBUG))
2284 				ext4_msg(sb, KERN_DEBUG,
2285 					"%s: truncating inode %lu to %lld bytes",
2286 					__func__, inode->i_ino, inode->i_size);
2287 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2288 				  inode->i_ino, inode->i_size);
2289 			inode_lock(inode);
2290 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2291 			ext4_truncate(inode);
2292 			inode_unlock(inode);
2293 			nr_truncates++;
2294 		} else {
2295 			if (test_opt(sb, DEBUG))
2296 				ext4_msg(sb, KERN_DEBUG,
2297 					"%s: deleting unreferenced inode %lu",
2298 					__func__, inode->i_ino);
2299 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2300 				  inode->i_ino);
2301 			nr_orphans++;
2302 		}
2303 		iput(inode);  /* The delete magic happens here! */
2304 	}
2305 
2306 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2307 
2308 	if (nr_orphans)
2309 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2310 		       PLURAL(nr_orphans));
2311 	if (nr_truncates)
2312 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2313 		       PLURAL(nr_truncates));
2314 #ifdef CONFIG_QUOTA
2315 	/* Turn quotas off */
2316 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2317 		if (sb_dqopt(sb)->files[i])
2318 			dquot_quota_off(sb, i);
2319 	}
2320 #endif
2321 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2322 }
2323 
2324 /*
2325  * Maximal extent format file size.
2326  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2327  * extent format containers, within a sector_t, and within i_blocks
2328  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2329  * so that won't be a limiting factor.
2330  *
2331  * However there is other limiting factor. We do store extents in the form
2332  * of starting block and length, hence the resulting length of the extent
2333  * covering maximum file size must fit into on-disk format containers as
2334  * well. Given that length is always by 1 unit bigger than max unit (because
2335  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2336  *
2337  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2338  */
2339 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2340 {
2341 	loff_t res;
2342 	loff_t upper_limit = MAX_LFS_FILESIZE;
2343 
2344 	/* small i_blocks in vfs inode? */
2345 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2346 		/*
2347 		 * CONFIG_LBDAF is not enabled implies the inode
2348 		 * i_block represent total blocks in 512 bytes
2349 		 * 32 == size of vfs inode i_blocks * 8
2350 		 */
2351 		upper_limit = (1LL << 32) - 1;
2352 
2353 		/* total blocks in file system block size */
2354 		upper_limit >>= (blkbits - 9);
2355 		upper_limit <<= blkbits;
2356 	}
2357 
2358 	/*
2359 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2360 	 * by one fs block, so ee_len can cover the extent of maximum file
2361 	 * size
2362 	 */
2363 	res = (1LL << 32) - 1;
2364 	res <<= blkbits;
2365 
2366 	/* Sanity check against vm- & vfs- imposed limits */
2367 	if (res > upper_limit)
2368 		res = upper_limit;
2369 
2370 	return res;
2371 }
2372 
2373 /*
2374  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2375  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2376  * We need to be 1 filesystem block less than the 2^48 sector limit.
2377  */
2378 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2379 {
2380 	loff_t res = EXT4_NDIR_BLOCKS;
2381 	int meta_blocks;
2382 	loff_t upper_limit;
2383 	/* This is calculated to be the largest file size for a dense, block
2384 	 * mapped file such that the file's total number of 512-byte sectors,
2385 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2386 	 *
2387 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2388 	 * number of 512-byte sectors of the file.
2389 	 */
2390 
2391 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2392 		/*
2393 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2394 		 * the inode i_block field represents total file blocks in
2395 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2396 		 */
2397 		upper_limit = (1LL << 32) - 1;
2398 
2399 		/* total blocks in file system block size */
2400 		upper_limit >>= (bits - 9);
2401 
2402 	} else {
2403 		/*
2404 		 * We use 48 bit ext4_inode i_blocks
2405 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2406 		 * represent total number of blocks in
2407 		 * file system block size
2408 		 */
2409 		upper_limit = (1LL << 48) - 1;
2410 
2411 	}
2412 
2413 	/* indirect blocks */
2414 	meta_blocks = 1;
2415 	/* double indirect blocks */
2416 	meta_blocks += 1 + (1LL << (bits-2));
2417 	/* tripple indirect blocks */
2418 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2419 
2420 	upper_limit -= meta_blocks;
2421 	upper_limit <<= bits;
2422 
2423 	res += 1LL << (bits-2);
2424 	res += 1LL << (2*(bits-2));
2425 	res += 1LL << (3*(bits-2));
2426 	res <<= bits;
2427 	if (res > upper_limit)
2428 		res = upper_limit;
2429 
2430 	if (res > MAX_LFS_FILESIZE)
2431 		res = MAX_LFS_FILESIZE;
2432 
2433 	return res;
2434 }
2435 
2436 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2437 				   ext4_fsblk_t logical_sb_block, int nr)
2438 {
2439 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2440 	ext4_group_t bg, first_meta_bg;
2441 	int has_super = 0;
2442 
2443 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2444 
2445 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2446 		return logical_sb_block + nr + 1;
2447 	bg = sbi->s_desc_per_block * nr;
2448 	if (ext4_bg_has_super(sb, bg))
2449 		has_super = 1;
2450 
2451 	/*
2452 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2453 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2454 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2455 	 * compensate.
2456 	 */
2457 	if (sb->s_blocksize == 1024 && nr == 0 &&
2458 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2459 		has_super++;
2460 
2461 	return (has_super + ext4_group_first_block_no(sb, bg));
2462 }
2463 
2464 /**
2465  * ext4_get_stripe_size: Get the stripe size.
2466  * @sbi: In memory super block info
2467  *
2468  * If we have specified it via mount option, then
2469  * use the mount option value. If the value specified at mount time is
2470  * greater than the blocks per group use the super block value.
2471  * If the super block value is greater than blocks per group return 0.
2472  * Allocator needs it be less than blocks per group.
2473  *
2474  */
2475 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2476 {
2477 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2478 	unsigned long stripe_width =
2479 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2480 	int ret;
2481 
2482 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2483 		ret = sbi->s_stripe;
2484 	else if (stripe_width <= sbi->s_blocks_per_group)
2485 		ret = stripe_width;
2486 	else if (stride <= sbi->s_blocks_per_group)
2487 		ret = stride;
2488 	else
2489 		ret = 0;
2490 
2491 	/*
2492 	 * If the stripe width is 1, this makes no sense and
2493 	 * we set it to 0 to turn off stripe handling code.
2494 	 */
2495 	if (ret <= 1)
2496 		ret = 0;
2497 
2498 	return ret;
2499 }
2500 
2501 /*
2502  * Check whether this filesystem can be mounted based on
2503  * the features present and the RDONLY/RDWR mount requested.
2504  * Returns 1 if this filesystem can be mounted as requested,
2505  * 0 if it cannot be.
2506  */
2507 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2508 {
2509 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2510 		ext4_msg(sb, KERN_ERR,
2511 			"Couldn't mount because of "
2512 			"unsupported optional features (%x)",
2513 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2514 			~EXT4_FEATURE_INCOMPAT_SUPP));
2515 		return 0;
2516 	}
2517 
2518 	if (readonly)
2519 		return 1;
2520 
2521 	if (ext4_has_feature_readonly(sb)) {
2522 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2523 		sb->s_flags |= MS_RDONLY;
2524 		return 1;
2525 	}
2526 
2527 	/* Check that feature set is OK for a read-write mount */
2528 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2529 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2530 			 "unsupported optional features (%x)",
2531 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2532 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2533 		return 0;
2534 	}
2535 	/*
2536 	 * Large file size enabled file system can only be mounted
2537 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2538 	 */
2539 	if (ext4_has_feature_huge_file(sb)) {
2540 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2541 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2542 				 "cannot be mounted RDWR without "
2543 				 "CONFIG_LBDAF");
2544 			return 0;
2545 		}
2546 	}
2547 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2548 		ext4_msg(sb, KERN_ERR,
2549 			 "Can't support bigalloc feature without "
2550 			 "extents feature\n");
2551 		return 0;
2552 	}
2553 
2554 #ifndef CONFIG_QUOTA
2555 	if (ext4_has_feature_quota(sb) && !readonly) {
2556 		ext4_msg(sb, KERN_ERR,
2557 			 "Filesystem with quota feature cannot be mounted RDWR "
2558 			 "without CONFIG_QUOTA");
2559 		return 0;
2560 	}
2561 	if (ext4_has_feature_project(sb) && !readonly) {
2562 		ext4_msg(sb, KERN_ERR,
2563 			 "Filesystem with project quota feature cannot be mounted RDWR "
2564 			 "without CONFIG_QUOTA");
2565 		return 0;
2566 	}
2567 #endif  /* CONFIG_QUOTA */
2568 	return 1;
2569 }
2570 
2571 /*
2572  * This function is called once a day if we have errors logged
2573  * on the file system
2574  */
2575 static void print_daily_error_info(unsigned long arg)
2576 {
2577 	struct super_block *sb = (struct super_block *) arg;
2578 	struct ext4_sb_info *sbi;
2579 	struct ext4_super_block *es;
2580 
2581 	sbi = EXT4_SB(sb);
2582 	es = sbi->s_es;
2583 
2584 	if (es->s_error_count)
2585 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2586 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2587 			 le32_to_cpu(es->s_error_count));
2588 	if (es->s_first_error_time) {
2589 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2590 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2591 		       (int) sizeof(es->s_first_error_func),
2592 		       es->s_first_error_func,
2593 		       le32_to_cpu(es->s_first_error_line));
2594 		if (es->s_first_error_ino)
2595 			printk(": inode %u",
2596 			       le32_to_cpu(es->s_first_error_ino));
2597 		if (es->s_first_error_block)
2598 			printk(": block %llu", (unsigned long long)
2599 			       le64_to_cpu(es->s_first_error_block));
2600 		printk("\n");
2601 	}
2602 	if (es->s_last_error_time) {
2603 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2604 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2605 		       (int) sizeof(es->s_last_error_func),
2606 		       es->s_last_error_func,
2607 		       le32_to_cpu(es->s_last_error_line));
2608 		if (es->s_last_error_ino)
2609 			printk(": inode %u",
2610 			       le32_to_cpu(es->s_last_error_ino));
2611 		if (es->s_last_error_block)
2612 			printk(": block %llu", (unsigned long long)
2613 			       le64_to_cpu(es->s_last_error_block));
2614 		printk("\n");
2615 	}
2616 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2617 }
2618 
2619 /* Find next suitable group and run ext4_init_inode_table */
2620 static int ext4_run_li_request(struct ext4_li_request *elr)
2621 {
2622 	struct ext4_group_desc *gdp = NULL;
2623 	ext4_group_t group, ngroups;
2624 	struct super_block *sb;
2625 	unsigned long timeout = 0;
2626 	int ret = 0;
2627 
2628 	sb = elr->lr_super;
2629 	ngroups = EXT4_SB(sb)->s_groups_count;
2630 
2631 	sb_start_write(sb);
2632 	for (group = elr->lr_next_group; group < ngroups; group++) {
2633 		gdp = ext4_get_group_desc(sb, group, NULL);
2634 		if (!gdp) {
2635 			ret = 1;
2636 			break;
2637 		}
2638 
2639 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2640 			break;
2641 	}
2642 
2643 	if (group >= ngroups)
2644 		ret = 1;
2645 
2646 	if (!ret) {
2647 		timeout = jiffies;
2648 		ret = ext4_init_inode_table(sb, group,
2649 					    elr->lr_timeout ? 0 : 1);
2650 		if (elr->lr_timeout == 0) {
2651 			timeout = (jiffies - timeout) *
2652 				  elr->lr_sbi->s_li_wait_mult;
2653 			elr->lr_timeout = timeout;
2654 		}
2655 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2656 		elr->lr_next_group = group + 1;
2657 	}
2658 	sb_end_write(sb);
2659 
2660 	return ret;
2661 }
2662 
2663 /*
2664  * Remove lr_request from the list_request and free the
2665  * request structure. Should be called with li_list_mtx held
2666  */
2667 static void ext4_remove_li_request(struct ext4_li_request *elr)
2668 {
2669 	struct ext4_sb_info *sbi;
2670 
2671 	if (!elr)
2672 		return;
2673 
2674 	sbi = elr->lr_sbi;
2675 
2676 	list_del(&elr->lr_request);
2677 	sbi->s_li_request = NULL;
2678 	kfree(elr);
2679 }
2680 
2681 static void ext4_unregister_li_request(struct super_block *sb)
2682 {
2683 	mutex_lock(&ext4_li_mtx);
2684 	if (!ext4_li_info) {
2685 		mutex_unlock(&ext4_li_mtx);
2686 		return;
2687 	}
2688 
2689 	mutex_lock(&ext4_li_info->li_list_mtx);
2690 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2691 	mutex_unlock(&ext4_li_info->li_list_mtx);
2692 	mutex_unlock(&ext4_li_mtx);
2693 }
2694 
2695 static struct task_struct *ext4_lazyinit_task;
2696 
2697 /*
2698  * This is the function where ext4lazyinit thread lives. It walks
2699  * through the request list searching for next scheduled filesystem.
2700  * When such a fs is found, run the lazy initialization request
2701  * (ext4_rn_li_request) and keep track of the time spend in this
2702  * function. Based on that time we compute next schedule time of
2703  * the request. When walking through the list is complete, compute
2704  * next waking time and put itself into sleep.
2705  */
2706 static int ext4_lazyinit_thread(void *arg)
2707 {
2708 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2709 	struct list_head *pos, *n;
2710 	struct ext4_li_request *elr;
2711 	unsigned long next_wakeup, cur;
2712 
2713 	BUG_ON(NULL == eli);
2714 
2715 cont_thread:
2716 	while (true) {
2717 		next_wakeup = MAX_JIFFY_OFFSET;
2718 
2719 		mutex_lock(&eli->li_list_mtx);
2720 		if (list_empty(&eli->li_request_list)) {
2721 			mutex_unlock(&eli->li_list_mtx);
2722 			goto exit_thread;
2723 		}
2724 
2725 		list_for_each_safe(pos, n, &eli->li_request_list) {
2726 			elr = list_entry(pos, struct ext4_li_request,
2727 					 lr_request);
2728 
2729 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2730 				if (ext4_run_li_request(elr) != 0) {
2731 					/* error, remove the lazy_init job */
2732 					ext4_remove_li_request(elr);
2733 					continue;
2734 				}
2735 			}
2736 
2737 			if (time_before(elr->lr_next_sched, next_wakeup))
2738 				next_wakeup = elr->lr_next_sched;
2739 		}
2740 		mutex_unlock(&eli->li_list_mtx);
2741 
2742 		try_to_freeze();
2743 
2744 		cur = jiffies;
2745 		if ((time_after_eq(cur, next_wakeup)) ||
2746 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2747 			cond_resched();
2748 			continue;
2749 		}
2750 
2751 		schedule_timeout_interruptible(next_wakeup - cur);
2752 
2753 		if (kthread_should_stop()) {
2754 			ext4_clear_request_list();
2755 			goto exit_thread;
2756 		}
2757 	}
2758 
2759 exit_thread:
2760 	/*
2761 	 * It looks like the request list is empty, but we need
2762 	 * to check it under the li_list_mtx lock, to prevent any
2763 	 * additions into it, and of course we should lock ext4_li_mtx
2764 	 * to atomically free the list and ext4_li_info, because at
2765 	 * this point another ext4 filesystem could be registering
2766 	 * new one.
2767 	 */
2768 	mutex_lock(&ext4_li_mtx);
2769 	mutex_lock(&eli->li_list_mtx);
2770 	if (!list_empty(&eli->li_request_list)) {
2771 		mutex_unlock(&eli->li_list_mtx);
2772 		mutex_unlock(&ext4_li_mtx);
2773 		goto cont_thread;
2774 	}
2775 	mutex_unlock(&eli->li_list_mtx);
2776 	kfree(ext4_li_info);
2777 	ext4_li_info = NULL;
2778 	mutex_unlock(&ext4_li_mtx);
2779 
2780 	return 0;
2781 }
2782 
2783 static void ext4_clear_request_list(void)
2784 {
2785 	struct list_head *pos, *n;
2786 	struct ext4_li_request *elr;
2787 
2788 	mutex_lock(&ext4_li_info->li_list_mtx);
2789 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2790 		elr = list_entry(pos, struct ext4_li_request,
2791 				 lr_request);
2792 		ext4_remove_li_request(elr);
2793 	}
2794 	mutex_unlock(&ext4_li_info->li_list_mtx);
2795 }
2796 
2797 static int ext4_run_lazyinit_thread(void)
2798 {
2799 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2800 					 ext4_li_info, "ext4lazyinit");
2801 	if (IS_ERR(ext4_lazyinit_task)) {
2802 		int err = PTR_ERR(ext4_lazyinit_task);
2803 		ext4_clear_request_list();
2804 		kfree(ext4_li_info);
2805 		ext4_li_info = NULL;
2806 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2807 				 "initialization thread\n",
2808 				 err);
2809 		return err;
2810 	}
2811 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2812 	return 0;
2813 }
2814 
2815 /*
2816  * Check whether it make sense to run itable init. thread or not.
2817  * If there is at least one uninitialized inode table, return
2818  * corresponding group number, else the loop goes through all
2819  * groups and return total number of groups.
2820  */
2821 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2822 {
2823 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2824 	struct ext4_group_desc *gdp = NULL;
2825 
2826 	for (group = 0; group < ngroups; group++) {
2827 		gdp = ext4_get_group_desc(sb, group, NULL);
2828 		if (!gdp)
2829 			continue;
2830 
2831 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2832 			break;
2833 	}
2834 
2835 	return group;
2836 }
2837 
2838 static int ext4_li_info_new(void)
2839 {
2840 	struct ext4_lazy_init *eli = NULL;
2841 
2842 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2843 	if (!eli)
2844 		return -ENOMEM;
2845 
2846 	INIT_LIST_HEAD(&eli->li_request_list);
2847 	mutex_init(&eli->li_list_mtx);
2848 
2849 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2850 
2851 	ext4_li_info = eli;
2852 
2853 	return 0;
2854 }
2855 
2856 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2857 					    ext4_group_t start)
2858 {
2859 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2860 	struct ext4_li_request *elr;
2861 
2862 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2863 	if (!elr)
2864 		return NULL;
2865 
2866 	elr->lr_super = sb;
2867 	elr->lr_sbi = sbi;
2868 	elr->lr_next_group = start;
2869 
2870 	/*
2871 	 * Randomize first schedule time of the request to
2872 	 * spread the inode table initialization requests
2873 	 * better.
2874 	 */
2875 	elr->lr_next_sched = jiffies + (prandom_u32() %
2876 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
2877 	return elr;
2878 }
2879 
2880 int ext4_register_li_request(struct super_block *sb,
2881 			     ext4_group_t first_not_zeroed)
2882 {
2883 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2884 	struct ext4_li_request *elr = NULL;
2885 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2886 	int ret = 0;
2887 
2888 	mutex_lock(&ext4_li_mtx);
2889 	if (sbi->s_li_request != NULL) {
2890 		/*
2891 		 * Reset timeout so it can be computed again, because
2892 		 * s_li_wait_mult might have changed.
2893 		 */
2894 		sbi->s_li_request->lr_timeout = 0;
2895 		goto out;
2896 	}
2897 
2898 	if (first_not_zeroed == ngroups ||
2899 	    (sb->s_flags & MS_RDONLY) ||
2900 	    !test_opt(sb, INIT_INODE_TABLE))
2901 		goto out;
2902 
2903 	elr = ext4_li_request_new(sb, first_not_zeroed);
2904 	if (!elr) {
2905 		ret = -ENOMEM;
2906 		goto out;
2907 	}
2908 
2909 	if (NULL == ext4_li_info) {
2910 		ret = ext4_li_info_new();
2911 		if (ret)
2912 			goto out;
2913 	}
2914 
2915 	mutex_lock(&ext4_li_info->li_list_mtx);
2916 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2917 	mutex_unlock(&ext4_li_info->li_list_mtx);
2918 
2919 	sbi->s_li_request = elr;
2920 	/*
2921 	 * set elr to NULL here since it has been inserted to
2922 	 * the request_list and the removal and free of it is
2923 	 * handled by ext4_clear_request_list from now on.
2924 	 */
2925 	elr = NULL;
2926 
2927 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2928 		ret = ext4_run_lazyinit_thread();
2929 		if (ret)
2930 			goto out;
2931 	}
2932 out:
2933 	mutex_unlock(&ext4_li_mtx);
2934 	if (ret)
2935 		kfree(elr);
2936 	return ret;
2937 }
2938 
2939 /*
2940  * We do not need to lock anything since this is called on
2941  * module unload.
2942  */
2943 static void ext4_destroy_lazyinit_thread(void)
2944 {
2945 	/*
2946 	 * If thread exited earlier
2947 	 * there's nothing to be done.
2948 	 */
2949 	if (!ext4_li_info || !ext4_lazyinit_task)
2950 		return;
2951 
2952 	kthread_stop(ext4_lazyinit_task);
2953 }
2954 
2955 static int set_journal_csum_feature_set(struct super_block *sb)
2956 {
2957 	int ret = 1;
2958 	int compat, incompat;
2959 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2960 
2961 	if (ext4_has_metadata_csum(sb)) {
2962 		/* journal checksum v3 */
2963 		compat = 0;
2964 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2965 	} else {
2966 		/* journal checksum v1 */
2967 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2968 		incompat = 0;
2969 	}
2970 
2971 	jbd2_journal_clear_features(sbi->s_journal,
2972 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2973 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2974 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
2975 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2976 		ret = jbd2_journal_set_features(sbi->s_journal,
2977 				compat, 0,
2978 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2979 				incompat);
2980 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2981 		ret = jbd2_journal_set_features(sbi->s_journal,
2982 				compat, 0,
2983 				incompat);
2984 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2985 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2986 	} else {
2987 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2988 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2989 	}
2990 
2991 	return ret;
2992 }
2993 
2994 /*
2995  * Note: calculating the overhead so we can be compatible with
2996  * historical BSD practice is quite difficult in the face of
2997  * clusters/bigalloc.  This is because multiple metadata blocks from
2998  * different block group can end up in the same allocation cluster.
2999  * Calculating the exact overhead in the face of clustered allocation
3000  * requires either O(all block bitmaps) in memory or O(number of block
3001  * groups**2) in time.  We will still calculate the superblock for
3002  * older file systems --- and if we come across with a bigalloc file
3003  * system with zero in s_overhead_clusters the estimate will be close to
3004  * correct especially for very large cluster sizes --- but for newer
3005  * file systems, it's better to calculate this figure once at mkfs
3006  * time, and store it in the superblock.  If the superblock value is
3007  * present (even for non-bigalloc file systems), we will use it.
3008  */
3009 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3010 			  char *buf)
3011 {
3012 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3013 	struct ext4_group_desc	*gdp;
3014 	ext4_fsblk_t		first_block, last_block, b;
3015 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3016 	int			s, j, count = 0;
3017 
3018 	if (!ext4_has_feature_bigalloc(sb))
3019 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3020 			sbi->s_itb_per_group + 2);
3021 
3022 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3023 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3024 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3025 	for (i = 0; i < ngroups; i++) {
3026 		gdp = ext4_get_group_desc(sb, i, NULL);
3027 		b = ext4_block_bitmap(sb, gdp);
3028 		if (b >= first_block && b <= last_block) {
3029 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3030 			count++;
3031 		}
3032 		b = ext4_inode_bitmap(sb, gdp);
3033 		if (b >= first_block && b <= last_block) {
3034 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3035 			count++;
3036 		}
3037 		b = ext4_inode_table(sb, gdp);
3038 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3039 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3040 				int c = EXT4_B2C(sbi, b - first_block);
3041 				ext4_set_bit(c, buf);
3042 				count++;
3043 			}
3044 		if (i != grp)
3045 			continue;
3046 		s = 0;
3047 		if (ext4_bg_has_super(sb, grp)) {
3048 			ext4_set_bit(s++, buf);
3049 			count++;
3050 		}
3051 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3052 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3053 			count++;
3054 		}
3055 	}
3056 	if (!count)
3057 		return 0;
3058 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3059 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3060 }
3061 
3062 /*
3063  * Compute the overhead and stash it in sbi->s_overhead
3064  */
3065 int ext4_calculate_overhead(struct super_block *sb)
3066 {
3067 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3068 	struct ext4_super_block *es = sbi->s_es;
3069 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3070 	ext4_fsblk_t overhead = 0;
3071 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3072 
3073 	if (!buf)
3074 		return -ENOMEM;
3075 
3076 	/*
3077 	 * Compute the overhead (FS structures).  This is constant
3078 	 * for a given filesystem unless the number of block groups
3079 	 * changes so we cache the previous value until it does.
3080 	 */
3081 
3082 	/*
3083 	 * All of the blocks before first_data_block are overhead
3084 	 */
3085 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3086 
3087 	/*
3088 	 * Add the overhead found in each block group
3089 	 */
3090 	for (i = 0; i < ngroups; i++) {
3091 		int blks;
3092 
3093 		blks = count_overhead(sb, i, buf);
3094 		overhead += blks;
3095 		if (blks)
3096 			memset(buf, 0, PAGE_SIZE);
3097 		cond_resched();
3098 	}
3099 	/* Add the internal journal blocks as well */
3100 	if (sbi->s_journal && !sbi->journal_bdev)
3101 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3102 
3103 	sbi->s_overhead = overhead;
3104 	smp_wmb();
3105 	free_page((unsigned long) buf);
3106 	return 0;
3107 }
3108 
3109 static void ext4_set_resv_clusters(struct super_block *sb)
3110 {
3111 	ext4_fsblk_t resv_clusters;
3112 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3113 
3114 	/*
3115 	 * There's no need to reserve anything when we aren't using extents.
3116 	 * The space estimates are exact, there are no unwritten extents,
3117 	 * hole punching doesn't need new metadata... This is needed especially
3118 	 * to keep ext2/3 backward compatibility.
3119 	 */
3120 	if (!ext4_has_feature_extents(sb))
3121 		return;
3122 	/*
3123 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3124 	 * This should cover the situations where we can not afford to run
3125 	 * out of space like for example punch hole, or converting
3126 	 * unwritten extents in delalloc path. In most cases such
3127 	 * allocation would require 1, or 2 blocks, higher numbers are
3128 	 * very rare.
3129 	 */
3130 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3131 			 sbi->s_cluster_bits);
3132 
3133 	do_div(resv_clusters, 50);
3134 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3135 
3136 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3137 }
3138 
3139 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3140 {
3141 	char *orig_data = kstrdup(data, GFP_KERNEL);
3142 	struct buffer_head *bh;
3143 	struct ext4_super_block *es = NULL;
3144 	struct ext4_sb_info *sbi;
3145 	ext4_fsblk_t block;
3146 	ext4_fsblk_t sb_block = get_sb_block(&data);
3147 	ext4_fsblk_t logical_sb_block;
3148 	unsigned long offset = 0;
3149 	unsigned long journal_devnum = 0;
3150 	unsigned long def_mount_opts;
3151 	struct inode *root;
3152 	const char *descr;
3153 	int ret = -ENOMEM;
3154 	int blocksize, clustersize;
3155 	unsigned int db_count;
3156 	unsigned int i;
3157 	int needs_recovery, has_huge_files, has_bigalloc;
3158 	__u64 blocks_count;
3159 	int err = 0;
3160 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3161 	ext4_group_t first_not_zeroed;
3162 
3163 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3164 	if (!sbi)
3165 		goto out_free_orig;
3166 
3167 	sbi->s_blockgroup_lock =
3168 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3169 	if (!sbi->s_blockgroup_lock) {
3170 		kfree(sbi);
3171 		goto out_free_orig;
3172 	}
3173 	sb->s_fs_info = sbi;
3174 	sbi->s_sb = sb;
3175 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3176 	sbi->s_sb_block = sb_block;
3177 	if (sb->s_bdev->bd_part)
3178 		sbi->s_sectors_written_start =
3179 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3180 
3181 	/* Cleanup superblock name */
3182 	strreplace(sb->s_id, '/', '!');
3183 
3184 	/* -EINVAL is default */
3185 	ret = -EINVAL;
3186 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3187 	if (!blocksize) {
3188 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3189 		goto out_fail;
3190 	}
3191 
3192 	/*
3193 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3194 	 * block sizes.  We need to calculate the offset from buffer start.
3195 	 */
3196 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3197 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3198 		offset = do_div(logical_sb_block, blocksize);
3199 	} else {
3200 		logical_sb_block = sb_block;
3201 	}
3202 
3203 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3204 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3205 		goto out_fail;
3206 	}
3207 	/*
3208 	 * Note: s_es must be initialized as soon as possible because
3209 	 *       some ext4 macro-instructions depend on its value
3210 	 */
3211 	es = (struct ext4_super_block *) (bh->b_data + offset);
3212 	sbi->s_es = es;
3213 	sb->s_magic = le16_to_cpu(es->s_magic);
3214 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3215 		goto cantfind_ext4;
3216 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3217 
3218 	/* Warn if metadata_csum and gdt_csum are both set. */
3219 	if (ext4_has_feature_metadata_csum(sb) &&
3220 	    ext4_has_feature_gdt_csum(sb))
3221 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3222 			     "redundant flags; please run fsck.");
3223 
3224 	/* Check for a known checksum algorithm */
3225 	if (!ext4_verify_csum_type(sb, es)) {
3226 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3227 			 "unknown checksum algorithm.");
3228 		silent = 1;
3229 		goto cantfind_ext4;
3230 	}
3231 
3232 	/* Load the checksum driver */
3233 	if (ext4_has_feature_metadata_csum(sb)) {
3234 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3235 		if (IS_ERR(sbi->s_chksum_driver)) {
3236 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3237 			ret = PTR_ERR(sbi->s_chksum_driver);
3238 			sbi->s_chksum_driver = NULL;
3239 			goto failed_mount;
3240 		}
3241 	}
3242 
3243 	/* Check superblock checksum */
3244 	if (!ext4_superblock_csum_verify(sb, es)) {
3245 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3246 			 "invalid superblock checksum.  Run e2fsck?");
3247 		silent = 1;
3248 		ret = -EFSBADCRC;
3249 		goto cantfind_ext4;
3250 	}
3251 
3252 	/* Precompute checksum seed for all metadata */
3253 	if (ext4_has_feature_csum_seed(sb))
3254 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3255 	else if (ext4_has_metadata_csum(sb))
3256 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3257 					       sizeof(es->s_uuid));
3258 
3259 	/* Set defaults before we parse the mount options */
3260 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3261 	set_opt(sb, INIT_INODE_TABLE);
3262 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3263 		set_opt(sb, DEBUG);
3264 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3265 		set_opt(sb, GRPID);
3266 	if (def_mount_opts & EXT4_DEFM_UID16)
3267 		set_opt(sb, NO_UID32);
3268 	/* xattr user namespace & acls are now defaulted on */
3269 	set_opt(sb, XATTR_USER);
3270 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3271 	set_opt(sb, POSIX_ACL);
3272 #endif
3273 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3274 	if (ext4_has_metadata_csum(sb))
3275 		set_opt(sb, JOURNAL_CHECKSUM);
3276 
3277 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3278 		set_opt(sb, JOURNAL_DATA);
3279 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3280 		set_opt(sb, ORDERED_DATA);
3281 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3282 		set_opt(sb, WRITEBACK_DATA);
3283 
3284 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3285 		set_opt(sb, ERRORS_PANIC);
3286 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3287 		set_opt(sb, ERRORS_CONT);
3288 	else
3289 		set_opt(sb, ERRORS_RO);
3290 	/* block_validity enabled by default; disable with noblock_validity */
3291 	set_opt(sb, BLOCK_VALIDITY);
3292 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3293 		set_opt(sb, DISCARD);
3294 
3295 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3296 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3297 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3298 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3299 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3300 
3301 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3302 		set_opt(sb, BARRIER);
3303 
3304 	/*
3305 	 * enable delayed allocation by default
3306 	 * Use -o nodelalloc to turn it off
3307 	 */
3308 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3309 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3310 		set_opt(sb, DELALLOC);
3311 
3312 	/*
3313 	 * set default s_li_wait_mult for lazyinit, for the case there is
3314 	 * no mount option specified.
3315 	 */
3316 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3317 
3318 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3319 			   &journal_devnum, &journal_ioprio, 0)) {
3320 		ext4_msg(sb, KERN_WARNING,
3321 			 "failed to parse options in superblock: %s",
3322 			 sbi->s_es->s_mount_opts);
3323 	}
3324 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3325 	if (!parse_options((char *) data, sb, &journal_devnum,
3326 			   &journal_ioprio, 0))
3327 		goto failed_mount;
3328 
3329 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3330 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3331 			    "with data=journal disables delayed "
3332 			    "allocation and O_DIRECT support!\n");
3333 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3334 			ext4_msg(sb, KERN_ERR, "can't mount with "
3335 				 "both data=journal and delalloc");
3336 			goto failed_mount;
3337 		}
3338 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3339 			ext4_msg(sb, KERN_ERR, "can't mount with "
3340 				 "both data=journal and dioread_nolock");
3341 			goto failed_mount;
3342 		}
3343 		if (test_opt(sb, DAX)) {
3344 			ext4_msg(sb, KERN_ERR, "can't mount with "
3345 				 "both data=journal and dax");
3346 			goto failed_mount;
3347 		}
3348 		if (test_opt(sb, DELALLOC))
3349 			clear_opt(sb, DELALLOC);
3350 	} else {
3351 		sb->s_iflags |= SB_I_CGROUPWB;
3352 	}
3353 
3354 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3355 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3356 
3357 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3358 	    (ext4_has_compat_features(sb) ||
3359 	     ext4_has_ro_compat_features(sb) ||
3360 	     ext4_has_incompat_features(sb)))
3361 		ext4_msg(sb, KERN_WARNING,
3362 		       "feature flags set on rev 0 fs, "
3363 		       "running e2fsck is recommended");
3364 
3365 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3366 		set_opt2(sb, HURD_COMPAT);
3367 		if (ext4_has_feature_64bit(sb)) {
3368 			ext4_msg(sb, KERN_ERR,
3369 				 "The Hurd can't support 64-bit file systems");
3370 			goto failed_mount;
3371 		}
3372 	}
3373 
3374 	if (IS_EXT2_SB(sb)) {
3375 		if (ext2_feature_set_ok(sb))
3376 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3377 				 "using the ext4 subsystem");
3378 		else {
3379 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3380 				 "to feature incompatibilities");
3381 			goto failed_mount;
3382 		}
3383 	}
3384 
3385 	if (IS_EXT3_SB(sb)) {
3386 		if (ext3_feature_set_ok(sb))
3387 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3388 				 "using the ext4 subsystem");
3389 		else {
3390 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3391 				 "to feature incompatibilities");
3392 			goto failed_mount;
3393 		}
3394 	}
3395 
3396 	/*
3397 	 * Check feature flags regardless of the revision level, since we
3398 	 * previously didn't change the revision level when setting the flags,
3399 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3400 	 */
3401 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3402 		goto failed_mount;
3403 
3404 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3405 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3406 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3407 		ext4_msg(sb, KERN_ERR,
3408 		       "Unsupported filesystem blocksize %d", blocksize);
3409 		goto failed_mount;
3410 	}
3411 
3412 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3413 		if (blocksize != PAGE_SIZE) {
3414 			ext4_msg(sb, KERN_ERR,
3415 					"error: unsupported blocksize for dax");
3416 			goto failed_mount;
3417 		}
3418 		if (!sb->s_bdev->bd_disk->fops->direct_access) {
3419 			ext4_msg(sb, KERN_ERR,
3420 					"error: device does not support dax");
3421 			goto failed_mount;
3422 		}
3423 	}
3424 
3425 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3426 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3427 			 es->s_encryption_level);
3428 		goto failed_mount;
3429 	}
3430 
3431 	if (sb->s_blocksize != blocksize) {
3432 		/* Validate the filesystem blocksize */
3433 		if (!sb_set_blocksize(sb, blocksize)) {
3434 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3435 					blocksize);
3436 			goto failed_mount;
3437 		}
3438 
3439 		brelse(bh);
3440 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3441 		offset = do_div(logical_sb_block, blocksize);
3442 		bh = sb_bread_unmovable(sb, logical_sb_block);
3443 		if (!bh) {
3444 			ext4_msg(sb, KERN_ERR,
3445 			       "Can't read superblock on 2nd try");
3446 			goto failed_mount;
3447 		}
3448 		es = (struct ext4_super_block *)(bh->b_data + offset);
3449 		sbi->s_es = es;
3450 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3451 			ext4_msg(sb, KERN_ERR,
3452 			       "Magic mismatch, very weird!");
3453 			goto failed_mount;
3454 		}
3455 	}
3456 
3457 	has_huge_files = ext4_has_feature_huge_file(sb);
3458 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3459 						      has_huge_files);
3460 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3461 
3462 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3463 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3464 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3465 	} else {
3466 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3467 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3468 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3469 		    (!is_power_of_2(sbi->s_inode_size)) ||
3470 		    (sbi->s_inode_size > blocksize)) {
3471 			ext4_msg(sb, KERN_ERR,
3472 			       "unsupported inode size: %d",
3473 			       sbi->s_inode_size);
3474 			goto failed_mount;
3475 		}
3476 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3477 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3478 	}
3479 
3480 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3481 	if (ext4_has_feature_64bit(sb)) {
3482 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3483 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3484 		    !is_power_of_2(sbi->s_desc_size)) {
3485 			ext4_msg(sb, KERN_ERR,
3486 			       "unsupported descriptor size %lu",
3487 			       sbi->s_desc_size);
3488 			goto failed_mount;
3489 		}
3490 	} else
3491 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3492 
3493 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3494 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3495 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3496 		goto cantfind_ext4;
3497 
3498 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3499 	if (sbi->s_inodes_per_block == 0)
3500 		goto cantfind_ext4;
3501 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3502 					sbi->s_inodes_per_block;
3503 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3504 	sbi->s_sbh = bh;
3505 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3506 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3507 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3508 
3509 	for (i = 0; i < 4; i++)
3510 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3511 	sbi->s_def_hash_version = es->s_def_hash_version;
3512 	if (ext4_has_feature_dir_index(sb)) {
3513 		i = le32_to_cpu(es->s_flags);
3514 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3515 			sbi->s_hash_unsigned = 3;
3516 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3517 #ifdef __CHAR_UNSIGNED__
3518 			if (!(sb->s_flags & MS_RDONLY))
3519 				es->s_flags |=
3520 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3521 			sbi->s_hash_unsigned = 3;
3522 #else
3523 			if (!(sb->s_flags & MS_RDONLY))
3524 				es->s_flags |=
3525 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3526 #endif
3527 		}
3528 	}
3529 
3530 	/* Handle clustersize */
3531 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3532 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3533 	if (has_bigalloc) {
3534 		if (clustersize < blocksize) {
3535 			ext4_msg(sb, KERN_ERR,
3536 				 "cluster size (%d) smaller than "
3537 				 "block size (%d)", clustersize, blocksize);
3538 			goto failed_mount;
3539 		}
3540 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3541 			le32_to_cpu(es->s_log_block_size);
3542 		sbi->s_clusters_per_group =
3543 			le32_to_cpu(es->s_clusters_per_group);
3544 		if (sbi->s_clusters_per_group > blocksize * 8) {
3545 			ext4_msg(sb, KERN_ERR,
3546 				 "#clusters per group too big: %lu",
3547 				 sbi->s_clusters_per_group);
3548 			goto failed_mount;
3549 		}
3550 		if (sbi->s_blocks_per_group !=
3551 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3552 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3553 				 "clusters per group (%lu) inconsistent",
3554 				 sbi->s_blocks_per_group,
3555 				 sbi->s_clusters_per_group);
3556 			goto failed_mount;
3557 		}
3558 	} else {
3559 		if (clustersize != blocksize) {
3560 			ext4_warning(sb, "fragment/cluster size (%d) != "
3561 				     "block size (%d)", clustersize,
3562 				     blocksize);
3563 			clustersize = blocksize;
3564 		}
3565 		if (sbi->s_blocks_per_group > blocksize * 8) {
3566 			ext4_msg(sb, KERN_ERR,
3567 				 "#blocks per group too big: %lu",
3568 				 sbi->s_blocks_per_group);
3569 			goto failed_mount;
3570 		}
3571 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3572 		sbi->s_cluster_bits = 0;
3573 	}
3574 	sbi->s_cluster_ratio = clustersize / blocksize;
3575 
3576 	if (sbi->s_inodes_per_group > blocksize * 8) {
3577 		ext4_msg(sb, KERN_ERR,
3578 		       "#inodes per group too big: %lu",
3579 		       sbi->s_inodes_per_group);
3580 		goto failed_mount;
3581 	}
3582 
3583 	/* Do we have standard group size of clustersize * 8 blocks ? */
3584 	if (sbi->s_blocks_per_group == clustersize << 3)
3585 		set_opt2(sb, STD_GROUP_SIZE);
3586 
3587 	/*
3588 	 * Test whether we have more sectors than will fit in sector_t,
3589 	 * and whether the max offset is addressable by the page cache.
3590 	 */
3591 	err = generic_check_addressable(sb->s_blocksize_bits,
3592 					ext4_blocks_count(es));
3593 	if (err) {
3594 		ext4_msg(sb, KERN_ERR, "filesystem"
3595 			 " too large to mount safely on this system");
3596 		if (sizeof(sector_t) < 8)
3597 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3598 		goto failed_mount;
3599 	}
3600 
3601 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3602 		goto cantfind_ext4;
3603 
3604 	/* check blocks count against device size */
3605 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3606 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3607 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3608 		       "exceeds size of device (%llu blocks)",
3609 		       ext4_blocks_count(es), blocks_count);
3610 		goto failed_mount;
3611 	}
3612 
3613 	/*
3614 	 * It makes no sense for the first data block to be beyond the end
3615 	 * of the filesystem.
3616 	 */
3617 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3618 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3619 			 "block %u is beyond end of filesystem (%llu)",
3620 			 le32_to_cpu(es->s_first_data_block),
3621 			 ext4_blocks_count(es));
3622 		goto failed_mount;
3623 	}
3624 	blocks_count = (ext4_blocks_count(es) -
3625 			le32_to_cpu(es->s_first_data_block) +
3626 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3627 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3628 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3629 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3630 		       "(block count %llu, first data block %u, "
3631 		       "blocks per group %lu)", sbi->s_groups_count,
3632 		       ext4_blocks_count(es),
3633 		       le32_to_cpu(es->s_first_data_block),
3634 		       EXT4_BLOCKS_PER_GROUP(sb));
3635 		goto failed_mount;
3636 	}
3637 	sbi->s_groups_count = blocks_count;
3638 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3639 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3640 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3641 		   EXT4_DESC_PER_BLOCK(sb);
3642 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3643 					  sizeof(struct buffer_head *),
3644 					  GFP_KERNEL);
3645 	if (sbi->s_group_desc == NULL) {
3646 		ext4_msg(sb, KERN_ERR, "not enough memory");
3647 		ret = -ENOMEM;
3648 		goto failed_mount;
3649 	}
3650 
3651 	bgl_lock_init(sbi->s_blockgroup_lock);
3652 
3653 	for (i = 0; i < db_count; i++) {
3654 		block = descriptor_loc(sb, logical_sb_block, i);
3655 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3656 		if (!sbi->s_group_desc[i]) {
3657 			ext4_msg(sb, KERN_ERR,
3658 			       "can't read group descriptor %d", i);
3659 			db_count = i;
3660 			goto failed_mount2;
3661 		}
3662 	}
3663 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3664 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3665 		ret = -EFSCORRUPTED;
3666 		goto failed_mount2;
3667 	}
3668 
3669 	sbi->s_gdb_count = db_count;
3670 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3671 	spin_lock_init(&sbi->s_next_gen_lock);
3672 
3673 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3674 		(unsigned long) sb);
3675 
3676 	/* Register extent status tree shrinker */
3677 	if (ext4_es_register_shrinker(sbi))
3678 		goto failed_mount3;
3679 
3680 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3681 	sbi->s_extent_max_zeroout_kb = 32;
3682 
3683 	/*
3684 	 * set up enough so that it can read an inode
3685 	 */
3686 	sb->s_op = &ext4_sops;
3687 	sb->s_export_op = &ext4_export_ops;
3688 	sb->s_xattr = ext4_xattr_handlers;
3689 #ifdef CONFIG_QUOTA
3690 	sb->dq_op = &ext4_quota_operations;
3691 	if (ext4_has_feature_quota(sb))
3692 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3693 	else
3694 		sb->s_qcop = &ext4_qctl_operations;
3695 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3696 #endif
3697 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3698 
3699 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3700 	mutex_init(&sbi->s_orphan_lock);
3701 
3702 	sb->s_root = NULL;
3703 
3704 	needs_recovery = (es->s_last_orphan != 0 ||
3705 			  ext4_has_feature_journal_needs_recovery(sb));
3706 
3707 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3708 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3709 			goto failed_mount3a;
3710 
3711 	/*
3712 	 * The first inode we look at is the journal inode.  Don't try
3713 	 * root first: it may be modified in the journal!
3714 	 */
3715 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3716 		if (ext4_load_journal(sb, es, journal_devnum))
3717 			goto failed_mount3a;
3718 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3719 		   ext4_has_feature_journal_needs_recovery(sb)) {
3720 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3721 		       "suppressed and not mounted read-only");
3722 		goto failed_mount_wq;
3723 	} else {
3724 		/* Nojournal mode, all journal mount options are illegal */
3725 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3726 			ext4_msg(sb, KERN_ERR, "can't mount with "
3727 				 "journal_checksum, fs mounted w/o journal");
3728 			goto failed_mount_wq;
3729 		}
3730 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3731 			ext4_msg(sb, KERN_ERR, "can't mount with "
3732 				 "journal_async_commit, fs mounted w/o journal");
3733 			goto failed_mount_wq;
3734 		}
3735 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3736 			ext4_msg(sb, KERN_ERR, "can't mount with "
3737 				 "commit=%lu, fs mounted w/o journal",
3738 				 sbi->s_commit_interval / HZ);
3739 			goto failed_mount_wq;
3740 		}
3741 		if (EXT4_MOUNT_DATA_FLAGS &
3742 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3743 			ext4_msg(sb, KERN_ERR, "can't mount with "
3744 				 "data=, fs mounted w/o journal");
3745 			goto failed_mount_wq;
3746 		}
3747 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3748 		clear_opt(sb, JOURNAL_CHECKSUM);
3749 		clear_opt(sb, DATA_FLAGS);
3750 		sbi->s_journal = NULL;
3751 		needs_recovery = 0;
3752 		goto no_journal;
3753 	}
3754 
3755 	if (ext4_has_feature_64bit(sb) &&
3756 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3757 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3758 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3759 		goto failed_mount_wq;
3760 	}
3761 
3762 	if (!set_journal_csum_feature_set(sb)) {
3763 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3764 			 "feature set");
3765 		goto failed_mount_wq;
3766 	}
3767 
3768 	/* We have now updated the journal if required, so we can
3769 	 * validate the data journaling mode. */
3770 	switch (test_opt(sb, DATA_FLAGS)) {
3771 	case 0:
3772 		/* No mode set, assume a default based on the journal
3773 		 * capabilities: ORDERED_DATA if the journal can
3774 		 * cope, else JOURNAL_DATA
3775 		 */
3776 		if (jbd2_journal_check_available_features
3777 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3778 			set_opt(sb, ORDERED_DATA);
3779 		else
3780 			set_opt(sb, JOURNAL_DATA);
3781 		break;
3782 
3783 	case EXT4_MOUNT_ORDERED_DATA:
3784 	case EXT4_MOUNT_WRITEBACK_DATA:
3785 		if (!jbd2_journal_check_available_features
3786 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3787 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3788 			       "requested data journaling mode");
3789 			goto failed_mount_wq;
3790 		}
3791 	default:
3792 		break;
3793 	}
3794 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3795 
3796 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3797 
3798 no_journal:
3799 	if (ext4_mballoc_ready) {
3800 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
3801 		if (!sbi->s_mb_cache) {
3802 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3803 			goto failed_mount_wq;
3804 		}
3805 	}
3806 
3807 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3808 	    (blocksize != PAGE_CACHE_SIZE)) {
3809 		ext4_msg(sb, KERN_ERR,
3810 			 "Unsupported blocksize for fs encryption");
3811 		goto failed_mount_wq;
3812 	}
3813 
3814 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3815 	    !ext4_has_feature_encrypt(sb)) {
3816 		ext4_set_feature_encrypt(sb);
3817 		ext4_commit_super(sb, 1);
3818 	}
3819 
3820 	/*
3821 	 * Get the # of file system overhead blocks from the
3822 	 * superblock if present.
3823 	 */
3824 	if (es->s_overhead_clusters)
3825 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3826 	else {
3827 		err = ext4_calculate_overhead(sb);
3828 		if (err)
3829 			goto failed_mount_wq;
3830 	}
3831 
3832 	/*
3833 	 * The maximum number of concurrent works can be high and
3834 	 * concurrency isn't really necessary.  Limit it to 1.
3835 	 */
3836 	EXT4_SB(sb)->rsv_conversion_wq =
3837 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3838 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
3839 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3840 		ret = -ENOMEM;
3841 		goto failed_mount4;
3842 	}
3843 
3844 	/*
3845 	 * The jbd2_journal_load will have done any necessary log recovery,
3846 	 * so we can safely mount the rest of the filesystem now.
3847 	 */
3848 
3849 	root = ext4_iget(sb, EXT4_ROOT_INO);
3850 	if (IS_ERR(root)) {
3851 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3852 		ret = PTR_ERR(root);
3853 		root = NULL;
3854 		goto failed_mount4;
3855 	}
3856 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3857 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3858 		iput(root);
3859 		goto failed_mount4;
3860 	}
3861 	sb->s_root = d_make_root(root);
3862 	if (!sb->s_root) {
3863 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3864 		ret = -ENOMEM;
3865 		goto failed_mount4;
3866 	}
3867 
3868 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3869 		sb->s_flags |= MS_RDONLY;
3870 
3871 	/* determine the minimum size of new large inodes, if present */
3872 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3873 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3874 						     EXT4_GOOD_OLD_INODE_SIZE;
3875 		if (ext4_has_feature_extra_isize(sb)) {
3876 			if (sbi->s_want_extra_isize <
3877 			    le16_to_cpu(es->s_want_extra_isize))
3878 				sbi->s_want_extra_isize =
3879 					le16_to_cpu(es->s_want_extra_isize);
3880 			if (sbi->s_want_extra_isize <
3881 			    le16_to_cpu(es->s_min_extra_isize))
3882 				sbi->s_want_extra_isize =
3883 					le16_to_cpu(es->s_min_extra_isize);
3884 		}
3885 	}
3886 	/* Check if enough inode space is available */
3887 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3888 							sbi->s_inode_size) {
3889 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3890 						       EXT4_GOOD_OLD_INODE_SIZE;
3891 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3892 			 "available");
3893 	}
3894 
3895 	ext4_set_resv_clusters(sb);
3896 
3897 	err = ext4_setup_system_zone(sb);
3898 	if (err) {
3899 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3900 			 "zone (%d)", err);
3901 		goto failed_mount4a;
3902 	}
3903 
3904 	ext4_ext_init(sb);
3905 	err = ext4_mb_init(sb);
3906 	if (err) {
3907 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3908 			 err);
3909 		goto failed_mount5;
3910 	}
3911 
3912 	block = ext4_count_free_clusters(sb);
3913 	ext4_free_blocks_count_set(sbi->s_es,
3914 				   EXT4_C2B(sbi, block));
3915 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3916 				  GFP_KERNEL);
3917 	if (!err) {
3918 		unsigned long freei = ext4_count_free_inodes(sb);
3919 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3920 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3921 					  GFP_KERNEL);
3922 	}
3923 	if (!err)
3924 		err = percpu_counter_init(&sbi->s_dirs_counter,
3925 					  ext4_count_dirs(sb), GFP_KERNEL);
3926 	if (!err)
3927 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3928 					  GFP_KERNEL);
3929 	if (err) {
3930 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3931 		goto failed_mount6;
3932 	}
3933 
3934 	if (ext4_has_feature_flex_bg(sb))
3935 		if (!ext4_fill_flex_info(sb)) {
3936 			ext4_msg(sb, KERN_ERR,
3937 			       "unable to initialize "
3938 			       "flex_bg meta info!");
3939 			goto failed_mount6;
3940 		}
3941 
3942 	err = ext4_register_li_request(sb, first_not_zeroed);
3943 	if (err)
3944 		goto failed_mount6;
3945 
3946 	err = ext4_register_sysfs(sb);
3947 	if (err)
3948 		goto failed_mount7;
3949 
3950 #ifdef CONFIG_QUOTA
3951 	/* Enable quota usage during mount. */
3952 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3953 		err = ext4_enable_quotas(sb);
3954 		if (err)
3955 			goto failed_mount8;
3956 	}
3957 #endif  /* CONFIG_QUOTA */
3958 
3959 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3960 	ext4_orphan_cleanup(sb, es);
3961 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3962 	if (needs_recovery) {
3963 		ext4_msg(sb, KERN_INFO, "recovery complete");
3964 		ext4_mark_recovery_complete(sb, es);
3965 	}
3966 	if (EXT4_SB(sb)->s_journal) {
3967 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3968 			descr = " journalled data mode";
3969 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3970 			descr = " ordered data mode";
3971 		else
3972 			descr = " writeback data mode";
3973 	} else
3974 		descr = "out journal";
3975 
3976 	if (test_opt(sb, DISCARD)) {
3977 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
3978 		if (!blk_queue_discard(q))
3979 			ext4_msg(sb, KERN_WARNING,
3980 				 "mounting with \"discard\" option, but "
3981 				 "the device does not support discard");
3982 	}
3983 
3984 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3985 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3986 			 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3987 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3988 
3989 	if (es->s_error_count)
3990 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3991 
3992 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3993 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3994 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3995 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3996 
3997 	kfree(orig_data);
3998 	return 0;
3999 
4000 cantfind_ext4:
4001 	if (!silent)
4002 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4003 	goto failed_mount;
4004 
4005 #ifdef CONFIG_QUOTA
4006 failed_mount8:
4007 	ext4_unregister_sysfs(sb);
4008 #endif
4009 failed_mount7:
4010 	ext4_unregister_li_request(sb);
4011 failed_mount6:
4012 	ext4_mb_release(sb);
4013 	if (sbi->s_flex_groups)
4014 		kvfree(sbi->s_flex_groups);
4015 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4016 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4017 	percpu_counter_destroy(&sbi->s_dirs_counter);
4018 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4019 failed_mount5:
4020 	ext4_ext_release(sb);
4021 	ext4_release_system_zone(sb);
4022 failed_mount4a:
4023 	dput(sb->s_root);
4024 	sb->s_root = NULL;
4025 failed_mount4:
4026 	ext4_msg(sb, KERN_ERR, "mount failed");
4027 	if (EXT4_SB(sb)->rsv_conversion_wq)
4028 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4029 failed_mount_wq:
4030 	if (sbi->s_journal) {
4031 		jbd2_journal_destroy(sbi->s_journal);
4032 		sbi->s_journal = NULL;
4033 	}
4034 failed_mount3a:
4035 	ext4_es_unregister_shrinker(sbi);
4036 failed_mount3:
4037 	del_timer_sync(&sbi->s_err_report);
4038 	if (sbi->s_mmp_tsk)
4039 		kthread_stop(sbi->s_mmp_tsk);
4040 failed_mount2:
4041 	for (i = 0; i < db_count; i++)
4042 		brelse(sbi->s_group_desc[i]);
4043 	kvfree(sbi->s_group_desc);
4044 failed_mount:
4045 	if (sbi->s_chksum_driver)
4046 		crypto_free_shash(sbi->s_chksum_driver);
4047 #ifdef CONFIG_QUOTA
4048 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4049 		kfree(sbi->s_qf_names[i]);
4050 #endif
4051 	ext4_blkdev_remove(sbi);
4052 	brelse(bh);
4053 out_fail:
4054 	sb->s_fs_info = NULL;
4055 	kfree(sbi->s_blockgroup_lock);
4056 	kfree(sbi);
4057 out_free_orig:
4058 	kfree(orig_data);
4059 	return err ? err : ret;
4060 }
4061 
4062 /*
4063  * Setup any per-fs journal parameters now.  We'll do this both on
4064  * initial mount, once the journal has been initialised but before we've
4065  * done any recovery; and again on any subsequent remount.
4066  */
4067 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4068 {
4069 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4070 
4071 	journal->j_commit_interval = sbi->s_commit_interval;
4072 	journal->j_min_batch_time = sbi->s_min_batch_time;
4073 	journal->j_max_batch_time = sbi->s_max_batch_time;
4074 
4075 	write_lock(&journal->j_state_lock);
4076 	if (test_opt(sb, BARRIER))
4077 		journal->j_flags |= JBD2_BARRIER;
4078 	else
4079 		journal->j_flags &= ~JBD2_BARRIER;
4080 	if (test_opt(sb, DATA_ERR_ABORT))
4081 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4082 	else
4083 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4084 	write_unlock(&journal->j_state_lock);
4085 }
4086 
4087 static journal_t *ext4_get_journal(struct super_block *sb,
4088 				   unsigned int journal_inum)
4089 {
4090 	struct inode *journal_inode;
4091 	journal_t *journal;
4092 
4093 	BUG_ON(!ext4_has_feature_journal(sb));
4094 
4095 	/* First, test for the existence of a valid inode on disk.  Bad
4096 	 * things happen if we iget() an unused inode, as the subsequent
4097 	 * iput() will try to delete it. */
4098 
4099 	journal_inode = ext4_iget(sb, journal_inum);
4100 	if (IS_ERR(journal_inode)) {
4101 		ext4_msg(sb, KERN_ERR, "no journal found");
4102 		return NULL;
4103 	}
4104 	if (!journal_inode->i_nlink) {
4105 		make_bad_inode(journal_inode);
4106 		iput(journal_inode);
4107 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4108 		return NULL;
4109 	}
4110 
4111 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4112 		  journal_inode, journal_inode->i_size);
4113 	if (!S_ISREG(journal_inode->i_mode)) {
4114 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4115 		iput(journal_inode);
4116 		return NULL;
4117 	}
4118 
4119 	journal = jbd2_journal_init_inode(journal_inode);
4120 	if (!journal) {
4121 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4122 		iput(journal_inode);
4123 		return NULL;
4124 	}
4125 	journal->j_private = sb;
4126 	ext4_init_journal_params(sb, journal);
4127 	return journal;
4128 }
4129 
4130 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4131 				       dev_t j_dev)
4132 {
4133 	struct buffer_head *bh;
4134 	journal_t *journal;
4135 	ext4_fsblk_t start;
4136 	ext4_fsblk_t len;
4137 	int hblock, blocksize;
4138 	ext4_fsblk_t sb_block;
4139 	unsigned long offset;
4140 	struct ext4_super_block *es;
4141 	struct block_device *bdev;
4142 
4143 	BUG_ON(!ext4_has_feature_journal(sb));
4144 
4145 	bdev = ext4_blkdev_get(j_dev, sb);
4146 	if (bdev == NULL)
4147 		return NULL;
4148 
4149 	blocksize = sb->s_blocksize;
4150 	hblock = bdev_logical_block_size(bdev);
4151 	if (blocksize < hblock) {
4152 		ext4_msg(sb, KERN_ERR,
4153 			"blocksize too small for journal device");
4154 		goto out_bdev;
4155 	}
4156 
4157 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4158 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4159 	set_blocksize(bdev, blocksize);
4160 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4161 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4162 		       "external journal");
4163 		goto out_bdev;
4164 	}
4165 
4166 	es = (struct ext4_super_block *) (bh->b_data + offset);
4167 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4168 	    !(le32_to_cpu(es->s_feature_incompat) &
4169 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4170 		ext4_msg(sb, KERN_ERR, "external journal has "
4171 					"bad superblock");
4172 		brelse(bh);
4173 		goto out_bdev;
4174 	}
4175 
4176 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4177 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4178 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4179 		ext4_msg(sb, KERN_ERR, "external journal has "
4180 				       "corrupt superblock");
4181 		brelse(bh);
4182 		goto out_bdev;
4183 	}
4184 
4185 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4186 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4187 		brelse(bh);
4188 		goto out_bdev;
4189 	}
4190 
4191 	len = ext4_blocks_count(es);
4192 	start = sb_block + 1;
4193 	brelse(bh);	/* we're done with the superblock */
4194 
4195 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4196 					start, len, blocksize);
4197 	if (!journal) {
4198 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4199 		goto out_bdev;
4200 	}
4201 	journal->j_private = sb;
4202 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4203 	wait_on_buffer(journal->j_sb_buffer);
4204 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4205 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4206 		goto out_journal;
4207 	}
4208 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4209 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4210 					"user (unsupported) - %d",
4211 			be32_to_cpu(journal->j_superblock->s_nr_users));
4212 		goto out_journal;
4213 	}
4214 	EXT4_SB(sb)->journal_bdev = bdev;
4215 	ext4_init_journal_params(sb, journal);
4216 	return journal;
4217 
4218 out_journal:
4219 	jbd2_journal_destroy(journal);
4220 out_bdev:
4221 	ext4_blkdev_put(bdev);
4222 	return NULL;
4223 }
4224 
4225 static int ext4_load_journal(struct super_block *sb,
4226 			     struct ext4_super_block *es,
4227 			     unsigned long journal_devnum)
4228 {
4229 	journal_t *journal;
4230 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4231 	dev_t journal_dev;
4232 	int err = 0;
4233 	int really_read_only;
4234 
4235 	BUG_ON(!ext4_has_feature_journal(sb));
4236 
4237 	if (journal_devnum &&
4238 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4239 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4240 			"numbers have changed");
4241 		journal_dev = new_decode_dev(journal_devnum);
4242 	} else
4243 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4244 
4245 	really_read_only = bdev_read_only(sb->s_bdev);
4246 
4247 	/*
4248 	 * Are we loading a blank journal or performing recovery after a
4249 	 * crash?  For recovery, we need to check in advance whether we
4250 	 * can get read-write access to the device.
4251 	 */
4252 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4253 		if (sb->s_flags & MS_RDONLY) {
4254 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4255 					"required on readonly filesystem");
4256 			if (really_read_only) {
4257 				ext4_msg(sb, KERN_ERR, "write access "
4258 					"unavailable, cannot proceed");
4259 				return -EROFS;
4260 			}
4261 			ext4_msg(sb, KERN_INFO, "write access will "
4262 			       "be enabled during recovery");
4263 		}
4264 	}
4265 
4266 	if (journal_inum && journal_dev) {
4267 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4268 		       "and inode journals!");
4269 		return -EINVAL;
4270 	}
4271 
4272 	if (journal_inum) {
4273 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4274 			return -EINVAL;
4275 	} else {
4276 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4277 			return -EINVAL;
4278 	}
4279 
4280 	if (!(journal->j_flags & JBD2_BARRIER))
4281 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4282 
4283 	if (!ext4_has_feature_journal_needs_recovery(sb))
4284 		err = jbd2_journal_wipe(journal, !really_read_only);
4285 	if (!err) {
4286 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4287 		if (save)
4288 			memcpy(save, ((char *) es) +
4289 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4290 		err = jbd2_journal_load(journal);
4291 		if (save)
4292 			memcpy(((char *) es) + EXT4_S_ERR_START,
4293 			       save, EXT4_S_ERR_LEN);
4294 		kfree(save);
4295 	}
4296 
4297 	if (err) {
4298 		ext4_msg(sb, KERN_ERR, "error loading journal");
4299 		jbd2_journal_destroy(journal);
4300 		return err;
4301 	}
4302 
4303 	EXT4_SB(sb)->s_journal = journal;
4304 	ext4_clear_journal_err(sb, es);
4305 
4306 	if (!really_read_only && journal_devnum &&
4307 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4308 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4309 
4310 		/* Make sure we flush the recovery flag to disk. */
4311 		ext4_commit_super(sb, 1);
4312 	}
4313 
4314 	return 0;
4315 }
4316 
4317 static int ext4_commit_super(struct super_block *sb, int sync)
4318 {
4319 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4320 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4321 	int error = 0;
4322 
4323 	if (!sbh || block_device_ejected(sb))
4324 		return error;
4325 	if (buffer_write_io_error(sbh)) {
4326 		/*
4327 		 * Oh, dear.  A previous attempt to write the
4328 		 * superblock failed.  This could happen because the
4329 		 * USB device was yanked out.  Or it could happen to
4330 		 * be a transient write error and maybe the block will
4331 		 * be remapped.  Nothing we can do but to retry the
4332 		 * write and hope for the best.
4333 		 */
4334 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4335 		       "superblock detected");
4336 		clear_buffer_write_io_error(sbh);
4337 		set_buffer_uptodate(sbh);
4338 	}
4339 	/*
4340 	 * If the file system is mounted read-only, don't update the
4341 	 * superblock write time.  This avoids updating the superblock
4342 	 * write time when we are mounting the root file system
4343 	 * read/only but we need to replay the journal; at that point,
4344 	 * for people who are east of GMT and who make their clock
4345 	 * tick in localtime for Windows bug-for-bug compatibility,
4346 	 * the clock is set in the future, and this will cause e2fsck
4347 	 * to complain and force a full file system check.
4348 	 */
4349 	if (!(sb->s_flags & MS_RDONLY))
4350 		es->s_wtime = cpu_to_le32(get_seconds());
4351 	if (sb->s_bdev->bd_part)
4352 		es->s_kbytes_written =
4353 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4354 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4355 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4356 	else
4357 		es->s_kbytes_written =
4358 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4359 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4360 		ext4_free_blocks_count_set(es,
4361 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4362 				&EXT4_SB(sb)->s_freeclusters_counter)));
4363 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4364 		es->s_free_inodes_count =
4365 			cpu_to_le32(percpu_counter_sum_positive(
4366 				&EXT4_SB(sb)->s_freeinodes_counter));
4367 	BUFFER_TRACE(sbh, "marking dirty");
4368 	ext4_superblock_csum_set(sb);
4369 	mark_buffer_dirty(sbh);
4370 	if (sync) {
4371 		error = __sync_dirty_buffer(sbh,
4372 			test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4373 		if (error)
4374 			return error;
4375 
4376 		error = buffer_write_io_error(sbh);
4377 		if (error) {
4378 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4379 			       "superblock");
4380 			clear_buffer_write_io_error(sbh);
4381 			set_buffer_uptodate(sbh);
4382 		}
4383 	}
4384 	return error;
4385 }
4386 
4387 /*
4388  * Have we just finished recovery?  If so, and if we are mounting (or
4389  * remounting) the filesystem readonly, then we will end up with a
4390  * consistent fs on disk.  Record that fact.
4391  */
4392 static void ext4_mark_recovery_complete(struct super_block *sb,
4393 					struct ext4_super_block *es)
4394 {
4395 	journal_t *journal = EXT4_SB(sb)->s_journal;
4396 
4397 	if (!ext4_has_feature_journal(sb)) {
4398 		BUG_ON(journal != NULL);
4399 		return;
4400 	}
4401 	jbd2_journal_lock_updates(journal);
4402 	if (jbd2_journal_flush(journal) < 0)
4403 		goto out;
4404 
4405 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4406 	    sb->s_flags & MS_RDONLY) {
4407 		ext4_clear_feature_journal_needs_recovery(sb);
4408 		ext4_commit_super(sb, 1);
4409 	}
4410 
4411 out:
4412 	jbd2_journal_unlock_updates(journal);
4413 }
4414 
4415 /*
4416  * If we are mounting (or read-write remounting) a filesystem whose journal
4417  * has recorded an error from a previous lifetime, move that error to the
4418  * main filesystem now.
4419  */
4420 static void ext4_clear_journal_err(struct super_block *sb,
4421 				   struct ext4_super_block *es)
4422 {
4423 	journal_t *journal;
4424 	int j_errno;
4425 	const char *errstr;
4426 
4427 	BUG_ON(!ext4_has_feature_journal(sb));
4428 
4429 	journal = EXT4_SB(sb)->s_journal;
4430 
4431 	/*
4432 	 * Now check for any error status which may have been recorded in the
4433 	 * journal by a prior ext4_error() or ext4_abort()
4434 	 */
4435 
4436 	j_errno = jbd2_journal_errno(journal);
4437 	if (j_errno) {
4438 		char nbuf[16];
4439 
4440 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4441 		ext4_warning(sb, "Filesystem error recorded "
4442 			     "from previous mount: %s", errstr);
4443 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4444 
4445 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4446 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4447 		ext4_commit_super(sb, 1);
4448 
4449 		jbd2_journal_clear_err(journal);
4450 		jbd2_journal_update_sb_errno(journal);
4451 	}
4452 }
4453 
4454 /*
4455  * Force the running and committing transactions to commit,
4456  * and wait on the commit.
4457  */
4458 int ext4_force_commit(struct super_block *sb)
4459 {
4460 	journal_t *journal;
4461 
4462 	if (sb->s_flags & MS_RDONLY)
4463 		return 0;
4464 
4465 	journal = EXT4_SB(sb)->s_journal;
4466 	return ext4_journal_force_commit(journal);
4467 }
4468 
4469 static int ext4_sync_fs(struct super_block *sb, int wait)
4470 {
4471 	int ret = 0;
4472 	tid_t target;
4473 	bool needs_barrier = false;
4474 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4475 
4476 	trace_ext4_sync_fs(sb, wait);
4477 	flush_workqueue(sbi->rsv_conversion_wq);
4478 	/*
4479 	 * Writeback quota in non-journalled quota case - journalled quota has
4480 	 * no dirty dquots
4481 	 */
4482 	dquot_writeback_dquots(sb, -1);
4483 	/*
4484 	 * Data writeback is possible w/o journal transaction, so barrier must
4485 	 * being sent at the end of the function. But we can skip it if
4486 	 * transaction_commit will do it for us.
4487 	 */
4488 	if (sbi->s_journal) {
4489 		target = jbd2_get_latest_transaction(sbi->s_journal);
4490 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4491 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4492 			needs_barrier = true;
4493 
4494 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4495 			if (wait)
4496 				ret = jbd2_log_wait_commit(sbi->s_journal,
4497 							   target);
4498 		}
4499 	} else if (wait && test_opt(sb, BARRIER))
4500 		needs_barrier = true;
4501 	if (needs_barrier) {
4502 		int err;
4503 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4504 		if (!ret)
4505 			ret = err;
4506 	}
4507 
4508 	return ret;
4509 }
4510 
4511 /*
4512  * LVM calls this function before a (read-only) snapshot is created.  This
4513  * gives us a chance to flush the journal completely and mark the fs clean.
4514  *
4515  * Note that only this function cannot bring a filesystem to be in a clean
4516  * state independently. It relies on upper layer to stop all data & metadata
4517  * modifications.
4518  */
4519 static int ext4_freeze(struct super_block *sb)
4520 {
4521 	int error = 0;
4522 	journal_t *journal;
4523 
4524 	if (sb->s_flags & MS_RDONLY)
4525 		return 0;
4526 
4527 	journal = EXT4_SB(sb)->s_journal;
4528 
4529 	if (journal) {
4530 		/* Now we set up the journal barrier. */
4531 		jbd2_journal_lock_updates(journal);
4532 
4533 		/*
4534 		 * Don't clear the needs_recovery flag if we failed to
4535 		 * flush the journal.
4536 		 */
4537 		error = jbd2_journal_flush(journal);
4538 		if (error < 0)
4539 			goto out;
4540 
4541 		/* Journal blocked and flushed, clear needs_recovery flag. */
4542 		ext4_clear_feature_journal_needs_recovery(sb);
4543 	}
4544 
4545 	error = ext4_commit_super(sb, 1);
4546 out:
4547 	if (journal)
4548 		/* we rely on upper layer to stop further updates */
4549 		jbd2_journal_unlock_updates(journal);
4550 	return error;
4551 }
4552 
4553 /*
4554  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4555  * flag here, even though the filesystem is not technically dirty yet.
4556  */
4557 static int ext4_unfreeze(struct super_block *sb)
4558 {
4559 	if (sb->s_flags & MS_RDONLY)
4560 		return 0;
4561 
4562 	if (EXT4_SB(sb)->s_journal) {
4563 		/* Reset the needs_recovery flag before the fs is unlocked. */
4564 		ext4_set_feature_journal_needs_recovery(sb);
4565 	}
4566 
4567 	ext4_commit_super(sb, 1);
4568 	return 0;
4569 }
4570 
4571 /*
4572  * Structure to save mount options for ext4_remount's benefit
4573  */
4574 struct ext4_mount_options {
4575 	unsigned long s_mount_opt;
4576 	unsigned long s_mount_opt2;
4577 	kuid_t s_resuid;
4578 	kgid_t s_resgid;
4579 	unsigned long s_commit_interval;
4580 	u32 s_min_batch_time, s_max_batch_time;
4581 #ifdef CONFIG_QUOTA
4582 	int s_jquota_fmt;
4583 	char *s_qf_names[EXT4_MAXQUOTAS];
4584 #endif
4585 };
4586 
4587 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4588 {
4589 	struct ext4_super_block *es;
4590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4591 	unsigned long old_sb_flags;
4592 	struct ext4_mount_options old_opts;
4593 	int enable_quota = 0;
4594 	ext4_group_t g;
4595 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4596 	int err = 0;
4597 #ifdef CONFIG_QUOTA
4598 	int i, j;
4599 #endif
4600 	char *orig_data = kstrdup(data, GFP_KERNEL);
4601 
4602 	/* Store the original options */
4603 	old_sb_flags = sb->s_flags;
4604 	old_opts.s_mount_opt = sbi->s_mount_opt;
4605 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4606 	old_opts.s_resuid = sbi->s_resuid;
4607 	old_opts.s_resgid = sbi->s_resgid;
4608 	old_opts.s_commit_interval = sbi->s_commit_interval;
4609 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4610 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4611 #ifdef CONFIG_QUOTA
4612 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4613 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4614 		if (sbi->s_qf_names[i]) {
4615 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4616 							 GFP_KERNEL);
4617 			if (!old_opts.s_qf_names[i]) {
4618 				for (j = 0; j < i; j++)
4619 					kfree(old_opts.s_qf_names[j]);
4620 				kfree(orig_data);
4621 				return -ENOMEM;
4622 			}
4623 		} else
4624 			old_opts.s_qf_names[i] = NULL;
4625 #endif
4626 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4627 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4628 
4629 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4630 		err = -EINVAL;
4631 		goto restore_opts;
4632 	}
4633 
4634 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4635 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4636 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4637 			 "during remount not supported; ignoring");
4638 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4639 	}
4640 
4641 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4642 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4643 			ext4_msg(sb, KERN_ERR, "can't mount with "
4644 				 "both data=journal and delalloc");
4645 			err = -EINVAL;
4646 			goto restore_opts;
4647 		}
4648 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4649 			ext4_msg(sb, KERN_ERR, "can't mount with "
4650 				 "both data=journal and dioread_nolock");
4651 			err = -EINVAL;
4652 			goto restore_opts;
4653 		}
4654 		if (test_opt(sb, DAX)) {
4655 			ext4_msg(sb, KERN_ERR, "can't mount with "
4656 				 "both data=journal and dax");
4657 			err = -EINVAL;
4658 			goto restore_opts;
4659 		}
4660 	}
4661 
4662 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4663 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4664 			"dax flag with busy inodes while remounting");
4665 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4666 	}
4667 
4668 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4669 		ext4_abort(sb, "Abort forced by user");
4670 
4671 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4672 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4673 
4674 	es = sbi->s_es;
4675 
4676 	if (sbi->s_journal) {
4677 		ext4_init_journal_params(sb, sbi->s_journal);
4678 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4679 	}
4680 
4681 	if (*flags & MS_LAZYTIME)
4682 		sb->s_flags |= MS_LAZYTIME;
4683 
4684 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4685 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4686 			err = -EROFS;
4687 			goto restore_opts;
4688 		}
4689 
4690 		if (*flags & MS_RDONLY) {
4691 			err = sync_filesystem(sb);
4692 			if (err < 0)
4693 				goto restore_opts;
4694 			err = dquot_suspend(sb, -1);
4695 			if (err < 0)
4696 				goto restore_opts;
4697 
4698 			/*
4699 			 * First of all, the unconditional stuff we have to do
4700 			 * to disable replay of the journal when we next remount
4701 			 */
4702 			sb->s_flags |= MS_RDONLY;
4703 
4704 			/*
4705 			 * OK, test if we are remounting a valid rw partition
4706 			 * readonly, and if so set the rdonly flag and then
4707 			 * mark the partition as valid again.
4708 			 */
4709 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4710 			    (sbi->s_mount_state & EXT4_VALID_FS))
4711 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4712 
4713 			if (sbi->s_journal)
4714 				ext4_mark_recovery_complete(sb, es);
4715 		} else {
4716 			/* Make sure we can mount this feature set readwrite */
4717 			if (ext4_has_feature_readonly(sb) ||
4718 			    !ext4_feature_set_ok(sb, 0)) {
4719 				err = -EROFS;
4720 				goto restore_opts;
4721 			}
4722 			/*
4723 			 * Make sure the group descriptor checksums
4724 			 * are sane.  If they aren't, refuse to remount r/w.
4725 			 */
4726 			for (g = 0; g < sbi->s_groups_count; g++) {
4727 				struct ext4_group_desc *gdp =
4728 					ext4_get_group_desc(sb, g, NULL);
4729 
4730 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4731 					ext4_msg(sb, KERN_ERR,
4732 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4733 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4734 					       le16_to_cpu(gdp->bg_checksum));
4735 					err = -EFSBADCRC;
4736 					goto restore_opts;
4737 				}
4738 			}
4739 
4740 			/*
4741 			 * If we have an unprocessed orphan list hanging
4742 			 * around from a previously readonly bdev mount,
4743 			 * require a full umount/remount for now.
4744 			 */
4745 			if (es->s_last_orphan) {
4746 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4747 				       "remount RDWR because of unprocessed "
4748 				       "orphan inode list.  Please "
4749 				       "umount/remount instead");
4750 				err = -EINVAL;
4751 				goto restore_opts;
4752 			}
4753 
4754 			/*
4755 			 * Mounting a RDONLY partition read-write, so reread
4756 			 * and store the current valid flag.  (It may have
4757 			 * been changed by e2fsck since we originally mounted
4758 			 * the partition.)
4759 			 */
4760 			if (sbi->s_journal)
4761 				ext4_clear_journal_err(sb, es);
4762 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4763 			if (!ext4_setup_super(sb, es, 0))
4764 				sb->s_flags &= ~MS_RDONLY;
4765 			if (ext4_has_feature_mmp(sb))
4766 				if (ext4_multi_mount_protect(sb,
4767 						le64_to_cpu(es->s_mmp_block))) {
4768 					err = -EROFS;
4769 					goto restore_opts;
4770 				}
4771 			enable_quota = 1;
4772 		}
4773 	}
4774 
4775 	/*
4776 	 * Reinitialize lazy itable initialization thread based on
4777 	 * current settings
4778 	 */
4779 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4780 		ext4_unregister_li_request(sb);
4781 	else {
4782 		ext4_group_t first_not_zeroed;
4783 		first_not_zeroed = ext4_has_uninit_itable(sb);
4784 		ext4_register_li_request(sb, first_not_zeroed);
4785 	}
4786 
4787 	ext4_setup_system_zone(sb);
4788 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4789 		ext4_commit_super(sb, 1);
4790 
4791 #ifdef CONFIG_QUOTA
4792 	/* Release old quota file names */
4793 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4794 		kfree(old_opts.s_qf_names[i]);
4795 	if (enable_quota) {
4796 		if (sb_any_quota_suspended(sb))
4797 			dquot_resume(sb, -1);
4798 		else if (ext4_has_feature_quota(sb)) {
4799 			err = ext4_enable_quotas(sb);
4800 			if (err)
4801 				goto restore_opts;
4802 		}
4803 	}
4804 #endif
4805 
4806 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4807 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4808 	kfree(orig_data);
4809 	return 0;
4810 
4811 restore_opts:
4812 	sb->s_flags = old_sb_flags;
4813 	sbi->s_mount_opt = old_opts.s_mount_opt;
4814 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4815 	sbi->s_resuid = old_opts.s_resuid;
4816 	sbi->s_resgid = old_opts.s_resgid;
4817 	sbi->s_commit_interval = old_opts.s_commit_interval;
4818 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4819 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4820 #ifdef CONFIG_QUOTA
4821 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4822 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4823 		kfree(sbi->s_qf_names[i]);
4824 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4825 	}
4826 #endif
4827 	kfree(orig_data);
4828 	return err;
4829 }
4830 
4831 #ifdef CONFIG_QUOTA
4832 static int ext4_statfs_project(struct super_block *sb,
4833 			       kprojid_t projid, struct kstatfs *buf)
4834 {
4835 	struct kqid qid;
4836 	struct dquot *dquot;
4837 	u64 limit;
4838 	u64 curblock;
4839 
4840 	qid = make_kqid_projid(projid);
4841 	dquot = dqget(sb, qid);
4842 	if (IS_ERR(dquot))
4843 		return PTR_ERR(dquot);
4844 	spin_lock(&dq_data_lock);
4845 
4846 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4847 		 dquot->dq_dqb.dqb_bsoftlimit :
4848 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4849 	if (limit && buf->f_blocks > limit) {
4850 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4851 		buf->f_blocks = limit;
4852 		buf->f_bfree = buf->f_bavail =
4853 			(buf->f_blocks > curblock) ?
4854 			 (buf->f_blocks - curblock) : 0;
4855 	}
4856 
4857 	limit = dquot->dq_dqb.dqb_isoftlimit ?
4858 		dquot->dq_dqb.dqb_isoftlimit :
4859 		dquot->dq_dqb.dqb_ihardlimit;
4860 	if (limit && buf->f_files > limit) {
4861 		buf->f_files = limit;
4862 		buf->f_ffree =
4863 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4864 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4865 	}
4866 
4867 	spin_unlock(&dq_data_lock);
4868 	dqput(dquot);
4869 	return 0;
4870 }
4871 #endif
4872 
4873 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4874 {
4875 	struct super_block *sb = dentry->d_sb;
4876 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4877 	struct ext4_super_block *es = sbi->s_es;
4878 	ext4_fsblk_t overhead = 0, resv_blocks;
4879 	u64 fsid;
4880 	s64 bfree;
4881 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4882 
4883 	if (!test_opt(sb, MINIX_DF))
4884 		overhead = sbi->s_overhead;
4885 
4886 	buf->f_type = EXT4_SUPER_MAGIC;
4887 	buf->f_bsize = sb->s_blocksize;
4888 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4889 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4890 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4891 	/* prevent underflow in case that few free space is available */
4892 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4893 	buf->f_bavail = buf->f_bfree -
4894 			(ext4_r_blocks_count(es) + resv_blocks);
4895 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4896 		buf->f_bavail = 0;
4897 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4898 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4899 	buf->f_namelen = EXT4_NAME_LEN;
4900 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4901 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4902 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4903 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4904 
4905 #ifdef CONFIG_QUOTA
4906 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4907 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
4908 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4909 #endif
4910 	return 0;
4911 }
4912 
4913 /* Helper function for writing quotas on sync - we need to start transaction
4914  * before quota file is locked for write. Otherwise the are possible deadlocks:
4915  * Process 1                         Process 2
4916  * ext4_create()                     quota_sync()
4917  *   jbd2_journal_start()                  write_dquot()
4918  *   dquot_initialize()                         down(dqio_mutex)
4919  *     down(dqio_mutex)                    jbd2_journal_start()
4920  *
4921  */
4922 
4923 #ifdef CONFIG_QUOTA
4924 
4925 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4926 {
4927 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4928 }
4929 
4930 static int ext4_write_dquot(struct dquot *dquot)
4931 {
4932 	int ret, err;
4933 	handle_t *handle;
4934 	struct inode *inode;
4935 
4936 	inode = dquot_to_inode(dquot);
4937 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4938 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4939 	if (IS_ERR(handle))
4940 		return PTR_ERR(handle);
4941 	ret = dquot_commit(dquot);
4942 	err = ext4_journal_stop(handle);
4943 	if (!ret)
4944 		ret = err;
4945 	return ret;
4946 }
4947 
4948 static int ext4_acquire_dquot(struct dquot *dquot)
4949 {
4950 	int ret, err;
4951 	handle_t *handle;
4952 
4953 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4954 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4955 	if (IS_ERR(handle))
4956 		return PTR_ERR(handle);
4957 	ret = dquot_acquire(dquot);
4958 	err = ext4_journal_stop(handle);
4959 	if (!ret)
4960 		ret = err;
4961 	return ret;
4962 }
4963 
4964 static int ext4_release_dquot(struct dquot *dquot)
4965 {
4966 	int ret, err;
4967 	handle_t *handle;
4968 
4969 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4970 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4971 	if (IS_ERR(handle)) {
4972 		/* Release dquot anyway to avoid endless cycle in dqput() */
4973 		dquot_release(dquot);
4974 		return PTR_ERR(handle);
4975 	}
4976 	ret = dquot_release(dquot);
4977 	err = ext4_journal_stop(handle);
4978 	if (!ret)
4979 		ret = err;
4980 	return ret;
4981 }
4982 
4983 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4984 {
4985 	struct super_block *sb = dquot->dq_sb;
4986 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4987 
4988 	/* Are we journaling quotas? */
4989 	if (ext4_has_feature_quota(sb) ||
4990 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4991 		dquot_mark_dquot_dirty(dquot);
4992 		return ext4_write_dquot(dquot);
4993 	} else {
4994 		return dquot_mark_dquot_dirty(dquot);
4995 	}
4996 }
4997 
4998 static int ext4_write_info(struct super_block *sb, int type)
4999 {
5000 	int ret, err;
5001 	handle_t *handle;
5002 
5003 	/* Data block + inode block */
5004 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5005 	if (IS_ERR(handle))
5006 		return PTR_ERR(handle);
5007 	ret = dquot_commit_info(sb, type);
5008 	err = ext4_journal_stop(handle);
5009 	if (!ret)
5010 		ret = err;
5011 	return ret;
5012 }
5013 
5014 /*
5015  * Turn on quotas during mount time - we need to find
5016  * the quota file and such...
5017  */
5018 static int ext4_quota_on_mount(struct super_block *sb, int type)
5019 {
5020 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5021 					EXT4_SB(sb)->s_jquota_fmt, type);
5022 }
5023 
5024 /*
5025  * Standard function to be called on quota_on
5026  */
5027 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5028 			 struct path *path)
5029 {
5030 	int err;
5031 
5032 	if (!test_opt(sb, QUOTA))
5033 		return -EINVAL;
5034 
5035 	/* Quotafile not on the same filesystem? */
5036 	if (path->dentry->d_sb != sb)
5037 		return -EXDEV;
5038 	/* Journaling quota? */
5039 	if (EXT4_SB(sb)->s_qf_names[type]) {
5040 		/* Quotafile not in fs root? */
5041 		if (path->dentry->d_parent != sb->s_root)
5042 			ext4_msg(sb, KERN_WARNING,
5043 				"Quota file not on filesystem root. "
5044 				"Journaled quota will not work");
5045 	}
5046 
5047 	/*
5048 	 * When we journal data on quota file, we have to flush journal to see
5049 	 * all updates to the file when we bypass pagecache...
5050 	 */
5051 	if (EXT4_SB(sb)->s_journal &&
5052 	    ext4_should_journal_data(d_inode(path->dentry))) {
5053 		/*
5054 		 * We don't need to lock updates but journal_flush() could
5055 		 * otherwise be livelocked...
5056 		 */
5057 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5058 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5059 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5060 		if (err)
5061 			return err;
5062 	}
5063 
5064 	return dquot_quota_on(sb, type, format_id, path);
5065 }
5066 
5067 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5068 			     unsigned int flags)
5069 {
5070 	int err;
5071 	struct inode *qf_inode;
5072 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5073 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5074 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5075 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5076 	};
5077 
5078 	BUG_ON(!ext4_has_feature_quota(sb));
5079 
5080 	if (!qf_inums[type])
5081 		return -EPERM;
5082 
5083 	qf_inode = ext4_iget(sb, qf_inums[type]);
5084 	if (IS_ERR(qf_inode)) {
5085 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5086 		return PTR_ERR(qf_inode);
5087 	}
5088 
5089 	/* Don't account quota for quota files to avoid recursion */
5090 	qf_inode->i_flags |= S_NOQUOTA;
5091 	err = dquot_enable(qf_inode, type, format_id, flags);
5092 	iput(qf_inode);
5093 
5094 	return err;
5095 }
5096 
5097 /* Enable usage tracking for all quota types. */
5098 static int ext4_enable_quotas(struct super_block *sb)
5099 {
5100 	int type, err = 0;
5101 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5102 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5103 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5104 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5105 	};
5106 
5107 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5108 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5109 		if (qf_inums[type]) {
5110 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5111 						DQUOT_USAGE_ENABLED);
5112 			if (err) {
5113 				ext4_warning(sb,
5114 					"Failed to enable quota tracking "
5115 					"(type=%d, err=%d). Please run "
5116 					"e2fsck to fix.", type, err);
5117 				return err;
5118 			}
5119 		}
5120 	}
5121 	return 0;
5122 }
5123 
5124 static int ext4_quota_off(struct super_block *sb, int type)
5125 {
5126 	struct inode *inode = sb_dqopt(sb)->files[type];
5127 	handle_t *handle;
5128 
5129 	/* Force all delayed allocation blocks to be allocated.
5130 	 * Caller already holds s_umount sem */
5131 	if (test_opt(sb, DELALLOC))
5132 		sync_filesystem(sb);
5133 
5134 	if (!inode)
5135 		goto out;
5136 
5137 	/* Update modification times of quota files when userspace can
5138 	 * start looking at them */
5139 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5140 	if (IS_ERR(handle))
5141 		goto out;
5142 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5143 	ext4_mark_inode_dirty(handle, inode);
5144 	ext4_journal_stop(handle);
5145 
5146 out:
5147 	return dquot_quota_off(sb, type);
5148 }
5149 
5150 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5151  * acquiring the locks... As quota files are never truncated and quota code
5152  * itself serializes the operations (and no one else should touch the files)
5153  * we don't have to be afraid of races */
5154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5155 			       size_t len, loff_t off)
5156 {
5157 	struct inode *inode = sb_dqopt(sb)->files[type];
5158 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5159 	int offset = off & (sb->s_blocksize - 1);
5160 	int tocopy;
5161 	size_t toread;
5162 	struct buffer_head *bh;
5163 	loff_t i_size = i_size_read(inode);
5164 
5165 	if (off > i_size)
5166 		return 0;
5167 	if (off+len > i_size)
5168 		len = i_size-off;
5169 	toread = len;
5170 	while (toread > 0) {
5171 		tocopy = sb->s_blocksize - offset < toread ?
5172 				sb->s_blocksize - offset : toread;
5173 		bh = ext4_bread(NULL, inode, blk, 0);
5174 		if (IS_ERR(bh))
5175 			return PTR_ERR(bh);
5176 		if (!bh)	/* A hole? */
5177 			memset(data, 0, tocopy);
5178 		else
5179 			memcpy(data, bh->b_data+offset, tocopy);
5180 		brelse(bh);
5181 		offset = 0;
5182 		toread -= tocopy;
5183 		data += tocopy;
5184 		blk++;
5185 	}
5186 	return len;
5187 }
5188 
5189 /* Write to quotafile (we know the transaction is already started and has
5190  * enough credits) */
5191 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5192 				const char *data, size_t len, loff_t off)
5193 {
5194 	struct inode *inode = sb_dqopt(sb)->files[type];
5195 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5196 	int err, offset = off & (sb->s_blocksize - 1);
5197 	int retries = 0;
5198 	struct buffer_head *bh;
5199 	handle_t *handle = journal_current_handle();
5200 
5201 	if (EXT4_SB(sb)->s_journal && !handle) {
5202 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5203 			" cancelled because transaction is not started",
5204 			(unsigned long long)off, (unsigned long long)len);
5205 		return -EIO;
5206 	}
5207 	/*
5208 	 * Since we account only one data block in transaction credits,
5209 	 * then it is impossible to cross a block boundary.
5210 	 */
5211 	if (sb->s_blocksize - offset < len) {
5212 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5213 			" cancelled because not block aligned",
5214 			(unsigned long long)off, (unsigned long long)len);
5215 		return -EIO;
5216 	}
5217 
5218 	do {
5219 		bh = ext4_bread(handle, inode, blk,
5220 				EXT4_GET_BLOCKS_CREATE |
5221 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5222 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5223 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5224 	if (IS_ERR(bh))
5225 		return PTR_ERR(bh);
5226 	if (!bh)
5227 		goto out;
5228 	BUFFER_TRACE(bh, "get write access");
5229 	err = ext4_journal_get_write_access(handle, bh);
5230 	if (err) {
5231 		brelse(bh);
5232 		return err;
5233 	}
5234 	lock_buffer(bh);
5235 	memcpy(bh->b_data+offset, data, len);
5236 	flush_dcache_page(bh->b_page);
5237 	unlock_buffer(bh);
5238 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5239 	brelse(bh);
5240 out:
5241 	if (inode->i_size < off + len) {
5242 		i_size_write(inode, off + len);
5243 		EXT4_I(inode)->i_disksize = inode->i_size;
5244 		ext4_mark_inode_dirty(handle, inode);
5245 	}
5246 	return len;
5247 }
5248 
5249 #endif
5250 
5251 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5252 		       const char *dev_name, void *data)
5253 {
5254 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5255 }
5256 
5257 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5258 static inline void register_as_ext2(void)
5259 {
5260 	int err = register_filesystem(&ext2_fs_type);
5261 	if (err)
5262 		printk(KERN_WARNING
5263 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5264 }
5265 
5266 static inline void unregister_as_ext2(void)
5267 {
5268 	unregister_filesystem(&ext2_fs_type);
5269 }
5270 
5271 static inline int ext2_feature_set_ok(struct super_block *sb)
5272 {
5273 	if (ext4_has_unknown_ext2_incompat_features(sb))
5274 		return 0;
5275 	if (sb->s_flags & MS_RDONLY)
5276 		return 1;
5277 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5278 		return 0;
5279 	return 1;
5280 }
5281 #else
5282 static inline void register_as_ext2(void) { }
5283 static inline void unregister_as_ext2(void) { }
5284 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5285 #endif
5286 
5287 static inline void register_as_ext3(void)
5288 {
5289 	int err = register_filesystem(&ext3_fs_type);
5290 	if (err)
5291 		printk(KERN_WARNING
5292 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5293 }
5294 
5295 static inline void unregister_as_ext3(void)
5296 {
5297 	unregister_filesystem(&ext3_fs_type);
5298 }
5299 
5300 static inline int ext3_feature_set_ok(struct super_block *sb)
5301 {
5302 	if (ext4_has_unknown_ext3_incompat_features(sb))
5303 		return 0;
5304 	if (!ext4_has_feature_journal(sb))
5305 		return 0;
5306 	if (sb->s_flags & MS_RDONLY)
5307 		return 1;
5308 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5309 		return 0;
5310 	return 1;
5311 }
5312 
5313 static struct file_system_type ext4_fs_type = {
5314 	.owner		= THIS_MODULE,
5315 	.name		= "ext4",
5316 	.mount		= ext4_mount,
5317 	.kill_sb	= kill_block_super,
5318 	.fs_flags	= FS_REQUIRES_DEV,
5319 };
5320 MODULE_ALIAS_FS("ext4");
5321 
5322 /* Shared across all ext4 file systems */
5323 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5324 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5325 
5326 static int __init ext4_init_fs(void)
5327 {
5328 	int i, err;
5329 
5330 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5331 	ext4_li_info = NULL;
5332 	mutex_init(&ext4_li_mtx);
5333 
5334 	/* Build-time check for flags consistency */
5335 	ext4_check_flag_values();
5336 
5337 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5338 		mutex_init(&ext4__aio_mutex[i]);
5339 		init_waitqueue_head(&ext4__ioend_wq[i]);
5340 	}
5341 
5342 	err = ext4_init_es();
5343 	if (err)
5344 		return err;
5345 
5346 	err = ext4_init_pageio();
5347 	if (err)
5348 		goto out5;
5349 
5350 	err = ext4_init_system_zone();
5351 	if (err)
5352 		goto out4;
5353 
5354 	err = ext4_init_sysfs();
5355 	if (err)
5356 		goto out3;
5357 
5358 	err = ext4_init_mballoc();
5359 	if (err)
5360 		goto out2;
5361 	else
5362 		ext4_mballoc_ready = 1;
5363 	err = init_inodecache();
5364 	if (err)
5365 		goto out1;
5366 	register_as_ext3();
5367 	register_as_ext2();
5368 	err = register_filesystem(&ext4_fs_type);
5369 	if (err)
5370 		goto out;
5371 
5372 	return 0;
5373 out:
5374 	unregister_as_ext2();
5375 	unregister_as_ext3();
5376 	destroy_inodecache();
5377 out1:
5378 	ext4_mballoc_ready = 0;
5379 	ext4_exit_mballoc();
5380 out2:
5381 	ext4_exit_sysfs();
5382 out3:
5383 	ext4_exit_system_zone();
5384 out4:
5385 	ext4_exit_pageio();
5386 out5:
5387 	ext4_exit_es();
5388 
5389 	return err;
5390 }
5391 
5392 static void __exit ext4_exit_fs(void)
5393 {
5394 	ext4_exit_crypto();
5395 	ext4_destroy_lazyinit_thread();
5396 	unregister_as_ext2();
5397 	unregister_as_ext3();
5398 	unregister_filesystem(&ext4_fs_type);
5399 	destroy_inodecache();
5400 	ext4_exit_mballoc();
5401 	ext4_exit_sysfs();
5402 	ext4_exit_system_zone();
5403 	ext4_exit_pageio();
5404 	ext4_exit_es();
5405 }
5406 
5407 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5408 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5409 MODULE_LICENSE("GPL");
5410 module_init(ext4_init_fs)
5411 module_exit(ext4_exit_fs)
5412