1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 /* 144 * This works like sb_bread() except it uses ERR_PTR for error 145 * returns. Currently with sb_bread it's impossible to distinguish 146 * between ENOMEM and EIO situations (since both result in a NULL 147 * return. 148 */ 149 struct buffer_head * 150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 151 { 152 struct buffer_head *bh = sb_getblk(sb, block); 153 154 if (bh == NULL) 155 return ERR_PTR(-ENOMEM); 156 if (buffer_uptodate(bh)) 157 return bh; 158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 159 wait_on_buffer(bh); 160 if (buffer_uptodate(bh)) 161 return bh; 162 put_bh(bh); 163 return ERR_PTR(-EIO); 164 } 165 166 static int ext4_verify_csum_type(struct super_block *sb, 167 struct ext4_super_block *es) 168 { 169 if (!ext4_has_feature_metadata_csum(sb)) 170 return 1; 171 172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 173 } 174 175 static __le32 ext4_superblock_csum(struct super_block *sb, 176 struct ext4_super_block *es) 177 { 178 struct ext4_sb_info *sbi = EXT4_SB(sb); 179 int offset = offsetof(struct ext4_super_block, s_checksum); 180 __u32 csum; 181 182 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 183 184 return cpu_to_le32(csum); 185 } 186 187 static int ext4_superblock_csum_verify(struct super_block *sb, 188 struct ext4_super_block *es) 189 { 190 if (!ext4_has_metadata_csum(sb)) 191 return 1; 192 193 return es->s_checksum == ext4_superblock_csum(sb, es); 194 } 195 196 void ext4_superblock_csum_set(struct super_block *sb) 197 { 198 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 199 200 if (!ext4_has_metadata_csum(sb)) 201 return; 202 203 es->s_checksum = ext4_superblock_csum(sb, es); 204 } 205 206 void *ext4_kvmalloc(size_t size, gfp_t flags) 207 { 208 void *ret; 209 210 ret = kmalloc(size, flags | __GFP_NOWARN); 211 if (!ret) 212 ret = __vmalloc(size, flags, PAGE_KERNEL); 213 return ret; 214 } 215 216 void *ext4_kvzalloc(size_t size, gfp_t flags) 217 { 218 void *ret; 219 220 ret = kzalloc(size, flags | __GFP_NOWARN); 221 if (!ret) 222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 223 return ret; 224 } 225 226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le32_to_cpu(bg->bg_block_bitmap_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 232 } 233 234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 240 } 241 242 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 243 struct ext4_group_desc *bg) 244 { 245 return le32_to_cpu(bg->bg_inode_table_lo) | 246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 248 } 249 250 __u32 ext4_free_group_clusters(struct super_block *sb, 251 struct ext4_group_desc *bg) 252 { 253 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 256 } 257 258 __u32 ext4_free_inodes_count(struct super_block *sb, 259 struct ext4_group_desc *bg) 260 { 261 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 264 } 265 266 __u32 ext4_used_dirs_count(struct super_block *sb, 267 struct ext4_group_desc *bg) 268 { 269 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 272 } 273 274 __u32 ext4_itable_unused_count(struct super_block *sb, 275 struct ext4_group_desc *bg) 276 { 277 return le16_to_cpu(bg->bg_itable_unused_lo) | 278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 280 } 281 282 void ext4_block_bitmap_set(struct super_block *sb, 283 struct ext4_group_desc *bg, ext4_fsblk_t blk) 284 { 285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 288 } 289 290 void ext4_inode_bitmap_set(struct super_block *sb, 291 struct ext4_group_desc *bg, ext4_fsblk_t blk) 292 { 293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 296 } 297 298 void ext4_inode_table_set(struct super_block *sb, 299 struct ext4_group_desc *bg, ext4_fsblk_t blk) 300 { 301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 304 } 305 306 void ext4_free_group_clusters_set(struct super_block *sb, 307 struct ext4_group_desc *bg, __u32 count) 308 { 309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 312 } 313 314 void ext4_free_inodes_set(struct super_block *sb, 315 struct ext4_group_desc *bg, __u32 count) 316 { 317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 320 } 321 322 void ext4_used_dirs_set(struct super_block *sb, 323 struct ext4_group_desc *bg, __u32 count) 324 { 325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 328 } 329 330 void ext4_itable_unused_set(struct super_block *sb, 331 struct ext4_group_desc *bg, __u32 count) 332 { 333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 336 } 337 338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 339 { 340 time64_t now = ktime_get_real_seconds(); 341 342 now = clamp_val(now, 0, (1ull << 40) - 1); 343 344 *lo = cpu_to_le32(lower_32_bits(now)); 345 *hi = upper_32_bits(now); 346 } 347 348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 349 { 350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 351 } 352 #define ext4_update_tstamp(es, tstamp) \ 353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 354 #define ext4_get_tstamp(es, tstamp) \ 355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 356 357 static void __save_error_info(struct super_block *sb, const char *func, 358 unsigned int line) 359 { 360 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 361 362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 363 if (bdev_read_only(sb->s_bdev)) 364 return; 365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 366 ext4_update_tstamp(es, s_last_error_time); 367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 368 es->s_last_error_line = cpu_to_le32(line); 369 if (!es->s_first_error_time) { 370 es->s_first_error_time = es->s_last_error_time; 371 es->s_first_error_time_hi = es->s_last_error_time_hi; 372 strncpy(es->s_first_error_func, func, 373 sizeof(es->s_first_error_func)); 374 es->s_first_error_line = cpu_to_le32(line); 375 es->s_first_error_ino = es->s_last_error_ino; 376 es->s_first_error_block = es->s_last_error_block; 377 } 378 /* 379 * Start the daily error reporting function if it hasn't been 380 * started already 381 */ 382 if (!es->s_error_count) 383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 384 le32_add_cpu(&es->s_error_count, 1); 385 } 386 387 static void save_error_info(struct super_block *sb, const char *func, 388 unsigned int line) 389 { 390 __save_error_info(sb, func, line); 391 ext4_commit_super(sb, 1); 392 } 393 394 /* 395 * The del_gendisk() function uninitializes the disk-specific data 396 * structures, including the bdi structure, without telling anyone 397 * else. Once this happens, any attempt to call mark_buffer_dirty() 398 * (for example, by ext4_commit_super), will cause a kernel OOPS. 399 * This is a kludge to prevent these oops until we can put in a proper 400 * hook in del_gendisk() to inform the VFS and file system layers. 401 */ 402 static int block_device_ejected(struct super_block *sb) 403 { 404 struct inode *bd_inode = sb->s_bdev->bd_inode; 405 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 406 407 return bdi->dev == NULL; 408 } 409 410 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 411 { 412 struct super_block *sb = journal->j_private; 413 struct ext4_sb_info *sbi = EXT4_SB(sb); 414 int error = is_journal_aborted(journal); 415 struct ext4_journal_cb_entry *jce; 416 417 BUG_ON(txn->t_state == T_FINISHED); 418 419 ext4_process_freed_data(sb, txn->t_tid); 420 421 spin_lock(&sbi->s_md_lock); 422 while (!list_empty(&txn->t_private_list)) { 423 jce = list_entry(txn->t_private_list.next, 424 struct ext4_journal_cb_entry, jce_list); 425 list_del_init(&jce->jce_list); 426 spin_unlock(&sbi->s_md_lock); 427 jce->jce_func(sb, jce, error); 428 spin_lock(&sbi->s_md_lock); 429 } 430 spin_unlock(&sbi->s_md_lock); 431 } 432 433 /* Deal with the reporting of failure conditions on a filesystem such as 434 * inconsistencies detected or read IO failures. 435 * 436 * On ext2, we can store the error state of the filesystem in the 437 * superblock. That is not possible on ext4, because we may have other 438 * write ordering constraints on the superblock which prevent us from 439 * writing it out straight away; and given that the journal is about to 440 * be aborted, we can't rely on the current, or future, transactions to 441 * write out the superblock safely. 442 * 443 * We'll just use the jbd2_journal_abort() error code to record an error in 444 * the journal instead. On recovery, the journal will complain about 445 * that error until we've noted it down and cleared it. 446 */ 447 448 static void ext4_handle_error(struct super_block *sb) 449 { 450 if (test_opt(sb, WARN_ON_ERROR)) 451 WARN_ON_ONCE(1); 452 453 if (sb_rdonly(sb)) 454 return; 455 456 if (!test_opt(sb, ERRORS_CONT)) { 457 journal_t *journal = EXT4_SB(sb)->s_journal; 458 459 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 460 if (journal) 461 jbd2_journal_abort(journal, -EIO); 462 } 463 if (test_opt(sb, ERRORS_RO)) { 464 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 465 /* 466 * Make sure updated value of ->s_mount_flags will be visible 467 * before ->s_flags update 468 */ 469 smp_wmb(); 470 sb->s_flags |= SB_RDONLY; 471 } 472 if (test_opt(sb, ERRORS_PANIC)) { 473 if (EXT4_SB(sb)->s_journal && 474 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 475 return; 476 panic("EXT4-fs (device %s): panic forced after error\n", 477 sb->s_id); 478 } 479 } 480 481 #define ext4_error_ratelimit(sb) \ 482 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 483 "EXT4-fs error") 484 485 void __ext4_error(struct super_block *sb, const char *function, 486 unsigned int line, const char *fmt, ...) 487 { 488 struct va_format vaf; 489 va_list args; 490 491 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 492 return; 493 494 trace_ext4_error(sb, function, line); 495 if (ext4_error_ratelimit(sb)) { 496 va_start(args, fmt); 497 vaf.fmt = fmt; 498 vaf.va = &args; 499 printk(KERN_CRIT 500 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 501 sb->s_id, function, line, current->comm, &vaf); 502 va_end(args); 503 } 504 save_error_info(sb, function, line); 505 ext4_handle_error(sb); 506 } 507 508 void __ext4_error_inode(struct inode *inode, const char *function, 509 unsigned int line, ext4_fsblk_t block, 510 const char *fmt, ...) 511 { 512 va_list args; 513 struct va_format vaf; 514 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 515 516 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 517 return; 518 519 trace_ext4_error(inode->i_sb, function, line); 520 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 521 es->s_last_error_block = cpu_to_le64(block); 522 if (ext4_error_ratelimit(inode->i_sb)) { 523 va_start(args, fmt); 524 vaf.fmt = fmt; 525 vaf.va = &args; 526 if (block) 527 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 528 "inode #%lu: block %llu: comm %s: %pV\n", 529 inode->i_sb->s_id, function, line, inode->i_ino, 530 block, current->comm, &vaf); 531 else 532 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 533 "inode #%lu: comm %s: %pV\n", 534 inode->i_sb->s_id, function, line, inode->i_ino, 535 current->comm, &vaf); 536 va_end(args); 537 } 538 save_error_info(inode->i_sb, function, line); 539 ext4_handle_error(inode->i_sb); 540 } 541 542 void __ext4_error_file(struct file *file, const char *function, 543 unsigned int line, ext4_fsblk_t block, 544 const char *fmt, ...) 545 { 546 va_list args; 547 struct va_format vaf; 548 struct ext4_super_block *es; 549 struct inode *inode = file_inode(file); 550 char pathname[80], *path; 551 552 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 553 return; 554 555 trace_ext4_error(inode->i_sb, function, line); 556 es = EXT4_SB(inode->i_sb)->s_es; 557 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 558 if (ext4_error_ratelimit(inode->i_sb)) { 559 path = file_path(file, pathname, sizeof(pathname)); 560 if (IS_ERR(path)) 561 path = "(unknown)"; 562 va_start(args, fmt); 563 vaf.fmt = fmt; 564 vaf.va = &args; 565 if (block) 566 printk(KERN_CRIT 567 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 568 "block %llu: comm %s: path %s: %pV\n", 569 inode->i_sb->s_id, function, line, inode->i_ino, 570 block, current->comm, path, &vaf); 571 else 572 printk(KERN_CRIT 573 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 574 "comm %s: path %s: %pV\n", 575 inode->i_sb->s_id, function, line, inode->i_ino, 576 current->comm, path, &vaf); 577 va_end(args); 578 } 579 save_error_info(inode->i_sb, function, line); 580 ext4_handle_error(inode->i_sb); 581 } 582 583 const char *ext4_decode_error(struct super_block *sb, int errno, 584 char nbuf[16]) 585 { 586 char *errstr = NULL; 587 588 switch (errno) { 589 case -EFSCORRUPTED: 590 errstr = "Corrupt filesystem"; 591 break; 592 case -EFSBADCRC: 593 errstr = "Filesystem failed CRC"; 594 break; 595 case -EIO: 596 errstr = "IO failure"; 597 break; 598 case -ENOMEM: 599 errstr = "Out of memory"; 600 break; 601 case -EROFS: 602 if (!sb || (EXT4_SB(sb)->s_journal && 603 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 604 errstr = "Journal has aborted"; 605 else 606 errstr = "Readonly filesystem"; 607 break; 608 default: 609 /* If the caller passed in an extra buffer for unknown 610 * errors, textualise them now. Else we just return 611 * NULL. */ 612 if (nbuf) { 613 /* Check for truncated error codes... */ 614 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 615 errstr = nbuf; 616 } 617 break; 618 } 619 620 return errstr; 621 } 622 623 /* __ext4_std_error decodes expected errors from journaling functions 624 * automatically and invokes the appropriate error response. */ 625 626 void __ext4_std_error(struct super_block *sb, const char *function, 627 unsigned int line, int errno) 628 { 629 char nbuf[16]; 630 const char *errstr; 631 632 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 633 return; 634 635 /* Special case: if the error is EROFS, and we're not already 636 * inside a transaction, then there's really no point in logging 637 * an error. */ 638 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 639 return; 640 641 if (ext4_error_ratelimit(sb)) { 642 errstr = ext4_decode_error(sb, errno, nbuf); 643 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 644 sb->s_id, function, line, errstr); 645 } 646 647 save_error_info(sb, function, line); 648 ext4_handle_error(sb); 649 } 650 651 /* 652 * ext4_abort is a much stronger failure handler than ext4_error. The 653 * abort function may be used to deal with unrecoverable failures such 654 * as journal IO errors or ENOMEM at a critical moment in log management. 655 * 656 * We unconditionally force the filesystem into an ABORT|READONLY state, 657 * unless the error response on the fs has been set to panic in which 658 * case we take the easy way out and panic immediately. 659 */ 660 661 void __ext4_abort(struct super_block *sb, const char *function, 662 unsigned int line, const char *fmt, ...) 663 { 664 struct va_format vaf; 665 va_list args; 666 667 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 668 return; 669 670 save_error_info(sb, function, line); 671 va_start(args, fmt); 672 vaf.fmt = fmt; 673 vaf.va = &args; 674 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 675 sb->s_id, function, line, &vaf); 676 va_end(args); 677 678 if (sb_rdonly(sb) == 0) { 679 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 680 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 681 /* 682 * Make sure updated value of ->s_mount_flags will be visible 683 * before ->s_flags update 684 */ 685 smp_wmb(); 686 sb->s_flags |= SB_RDONLY; 687 if (EXT4_SB(sb)->s_journal) 688 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 689 save_error_info(sb, function, line); 690 } 691 if (test_opt(sb, ERRORS_PANIC)) { 692 if (EXT4_SB(sb)->s_journal && 693 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 694 return; 695 panic("EXT4-fs panic from previous error\n"); 696 } 697 } 698 699 void __ext4_msg(struct super_block *sb, 700 const char *prefix, const char *fmt, ...) 701 { 702 struct va_format vaf; 703 va_list args; 704 705 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 706 return; 707 708 va_start(args, fmt); 709 vaf.fmt = fmt; 710 vaf.va = &args; 711 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 712 va_end(args); 713 } 714 715 #define ext4_warning_ratelimit(sb) \ 716 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 717 "EXT4-fs warning") 718 719 void __ext4_warning(struct super_block *sb, const char *function, 720 unsigned int line, const char *fmt, ...) 721 { 722 struct va_format vaf; 723 va_list args; 724 725 if (!ext4_warning_ratelimit(sb)) 726 return; 727 728 va_start(args, fmt); 729 vaf.fmt = fmt; 730 vaf.va = &args; 731 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 732 sb->s_id, function, line, &vaf); 733 va_end(args); 734 } 735 736 void __ext4_warning_inode(const struct inode *inode, const char *function, 737 unsigned int line, const char *fmt, ...) 738 { 739 struct va_format vaf; 740 va_list args; 741 742 if (!ext4_warning_ratelimit(inode->i_sb)) 743 return; 744 745 va_start(args, fmt); 746 vaf.fmt = fmt; 747 vaf.va = &args; 748 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 749 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 750 function, line, inode->i_ino, current->comm, &vaf); 751 va_end(args); 752 } 753 754 void __ext4_grp_locked_error(const char *function, unsigned int line, 755 struct super_block *sb, ext4_group_t grp, 756 unsigned long ino, ext4_fsblk_t block, 757 const char *fmt, ...) 758 __releases(bitlock) 759 __acquires(bitlock) 760 { 761 struct va_format vaf; 762 va_list args; 763 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 764 765 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 766 return; 767 768 trace_ext4_error(sb, function, line); 769 es->s_last_error_ino = cpu_to_le32(ino); 770 es->s_last_error_block = cpu_to_le64(block); 771 __save_error_info(sb, function, line); 772 773 if (ext4_error_ratelimit(sb)) { 774 va_start(args, fmt); 775 vaf.fmt = fmt; 776 vaf.va = &args; 777 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 778 sb->s_id, function, line, grp); 779 if (ino) 780 printk(KERN_CONT "inode %lu: ", ino); 781 if (block) 782 printk(KERN_CONT "block %llu:", 783 (unsigned long long) block); 784 printk(KERN_CONT "%pV\n", &vaf); 785 va_end(args); 786 } 787 788 if (test_opt(sb, WARN_ON_ERROR)) 789 WARN_ON_ONCE(1); 790 791 if (test_opt(sb, ERRORS_CONT)) { 792 ext4_commit_super(sb, 0); 793 return; 794 } 795 796 ext4_unlock_group(sb, grp); 797 ext4_commit_super(sb, 1); 798 ext4_handle_error(sb); 799 /* 800 * We only get here in the ERRORS_RO case; relocking the group 801 * may be dangerous, but nothing bad will happen since the 802 * filesystem will have already been marked read/only and the 803 * journal has been aborted. We return 1 as a hint to callers 804 * who might what to use the return value from 805 * ext4_grp_locked_error() to distinguish between the 806 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 807 * aggressively from the ext4 function in question, with a 808 * more appropriate error code. 809 */ 810 ext4_lock_group(sb, grp); 811 return; 812 } 813 814 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 815 ext4_group_t group, 816 unsigned int flags) 817 { 818 struct ext4_sb_info *sbi = EXT4_SB(sb); 819 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 820 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 821 int ret; 822 823 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 824 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 825 &grp->bb_state); 826 if (!ret) 827 percpu_counter_sub(&sbi->s_freeclusters_counter, 828 grp->bb_free); 829 } 830 831 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 832 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 833 &grp->bb_state); 834 if (!ret && gdp) { 835 int count; 836 837 count = ext4_free_inodes_count(sb, gdp); 838 percpu_counter_sub(&sbi->s_freeinodes_counter, 839 count); 840 } 841 } 842 } 843 844 void ext4_update_dynamic_rev(struct super_block *sb) 845 { 846 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 847 848 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 849 return; 850 851 ext4_warning(sb, 852 "updating to rev %d because of new feature flag, " 853 "running e2fsck is recommended", 854 EXT4_DYNAMIC_REV); 855 856 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 857 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 858 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 859 /* leave es->s_feature_*compat flags alone */ 860 /* es->s_uuid will be set by e2fsck if empty */ 861 862 /* 863 * The rest of the superblock fields should be zero, and if not it 864 * means they are likely already in use, so leave them alone. We 865 * can leave it up to e2fsck to clean up any inconsistencies there. 866 */ 867 } 868 869 /* 870 * Open the external journal device 871 */ 872 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 873 { 874 struct block_device *bdev; 875 char b[BDEVNAME_SIZE]; 876 877 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 878 if (IS_ERR(bdev)) 879 goto fail; 880 return bdev; 881 882 fail: 883 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 884 __bdevname(dev, b), PTR_ERR(bdev)); 885 return NULL; 886 } 887 888 /* 889 * Release the journal device 890 */ 891 static void ext4_blkdev_put(struct block_device *bdev) 892 { 893 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 894 } 895 896 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 897 { 898 struct block_device *bdev; 899 bdev = sbi->journal_bdev; 900 if (bdev) { 901 ext4_blkdev_put(bdev); 902 sbi->journal_bdev = NULL; 903 } 904 } 905 906 static inline struct inode *orphan_list_entry(struct list_head *l) 907 { 908 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 909 } 910 911 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 912 { 913 struct list_head *l; 914 915 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 916 le32_to_cpu(sbi->s_es->s_last_orphan)); 917 918 printk(KERN_ERR "sb_info orphan list:\n"); 919 list_for_each(l, &sbi->s_orphan) { 920 struct inode *inode = orphan_list_entry(l); 921 printk(KERN_ERR " " 922 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 923 inode->i_sb->s_id, inode->i_ino, inode, 924 inode->i_mode, inode->i_nlink, 925 NEXT_ORPHAN(inode)); 926 } 927 } 928 929 #ifdef CONFIG_QUOTA 930 static int ext4_quota_off(struct super_block *sb, int type); 931 932 static inline void ext4_quota_off_umount(struct super_block *sb) 933 { 934 int type; 935 936 /* Use our quota_off function to clear inode flags etc. */ 937 for (type = 0; type < EXT4_MAXQUOTAS; type++) 938 ext4_quota_off(sb, type); 939 } 940 941 /* 942 * This is a helper function which is used in the mount/remount 943 * codepaths (which holds s_umount) to fetch the quota file name. 944 */ 945 static inline char *get_qf_name(struct super_block *sb, 946 struct ext4_sb_info *sbi, 947 int type) 948 { 949 return rcu_dereference_protected(sbi->s_qf_names[type], 950 lockdep_is_held(&sb->s_umount)); 951 } 952 #else 953 static inline void ext4_quota_off_umount(struct super_block *sb) 954 { 955 } 956 #endif 957 958 static void ext4_put_super(struct super_block *sb) 959 { 960 struct ext4_sb_info *sbi = EXT4_SB(sb); 961 struct ext4_super_block *es = sbi->s_es; 962 int aborted = 0; 963 int i, err; 964 965 ext4_unregister_li_request(sb); 966 ext4_quota_off_umount(sb); 967 968 destroy_workqueue(sbi->rsv_conversion_wq); 969 970 if (sbi->s_journal) { 971 aborted = is_journal_aborted(sbi->s_journal); 972 err = jbd2_journal_destroy(sbi->s_journal); 973 sbi->s_journal = NULL; 974 if ((err < 0) && !aborted) 975 ext4_abort(sb, "Couldn't clean up the journal"); 976 } 977 978 ext4_unregister_sysfs(sb); 979 ext4_es_unregister_shrinker(sbi); 980 del_timer_sync(&sbi->s_err_report); 981 ext4_release_system_zone(sb); 982 ext4_mb_release(sb); 983 ext4_ext_release(sb); 984 985 if (!sb_rdonly(sb) && !aborted) { 986 ext4_clear_feature_journal_needs_recovery(sb); 987 es->s_state = cpu_to_le16(sbi->s_mount_state); 988 } 989 if (!sb_rdonly(sb)) 990 ext4_commit_super(sb, 1); 991 992 for (i = 0; i < sbi->s_gdb_count; i++) 993 brelse(sbi->s_group_desc[i]); 994 kvfree(sbi->s_group_desc); 995 kvfree(sbi->s_flex_groups); 996 percpu_counter_destroy(&sbi->s_freeclusters_counter); 997 percpu_counter_destroy(&sbi->s_freeinodes_counter); 998 percpu_counter_destroy(&sbi->s_dirs_counter); 999 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1000 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 1001 #ifdef CONFIG_QUOTA 1002 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1003 kfree(get_qf_name(sb, sbi, i)); 1004 #endif 1005 1006 /* Debugging code just in case the in-memory inode orphan list 1007 * isn't empty. The on-disk one can be non-empty if we've 1008 * detected an error and taken the fs readonly, but the 1009 * in-memory list had better be clean by this point. */ 1010 if (!list_empty(&sbi->s_orphan)) 1011 dump_orphan_list(sb, sbi); 1012 J_ASSERT(list_empty(&sbi->s_orphan)); 1013 1014 sync_blockdev(sb->s_bdev); 1015 invalidate_bdev(sb->s_bdev); 1016 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1017 /* 1018 * Invalidate the journal device's buffers. We don't want them 1019 * floating about in memory - the physical journal device may 1020 * hotswapped, and it breaks the `ro-after' testing code. 1021 */ 1022 sync_blockdev(sbi->journal_bdev); 1023 invalidate_bdev(sbi->journal_bdev); 1024 ext4_blkdev_remove(sbi); 1025 } 1026 1027 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1028 sbi->s_ea_inode_cache = NULL; 1029 1030 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1031 sbi->s_ea_block_cache = NULL; 1032 1033 if (sbi->s_mmp_tsk) 1034 kthread_stop(sbi->s_mmp_tsk); 1035 brelse(sbi->s_sbh); 1036 sb->s_fs_info = NULL; 1037 /* 1038 * Now that we are completely done shutting down the 1039 * superblock, we need to actually destroy the kobject. 1040 */ 1041 kobject_put(&sbi->s_kobj); 1042 wait_for_completion(&sbi->s_kobj_unregister); 1043 if (sbi->s_chksum_driver) 1044 crypto_free_shash(sbi->s_chksum_driver); 1045 kfree(sbi->s_blockgroup_lock); 1046 fs_put_dax(sbi->s_daxdev); 1047 kfree(sbi); 1048 } 1049 1050 static struct kmem_cache *ext4_inode_cachep; 1051 1052 /* 1053 * Called inside transaction, so use GFP_NOFS 1054 */ 1055 static struct inode *ext4_alloc_inode(struct super_block *sb) 1056 { 1057 struct ext4_inode_info *ei; 1058 1059 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1060 if (!ei) 1061 return NULL; 1062 1063 inode_set_iversion(&ei->vfs_inode, 1); 1064 spin_lock_init(&ei->i_raw_lock); 1065 INIT_LIST_HEAD(&ei->i_prealloc_list); 1066 spin_lock_init(&ei->i_prealloc_lock); 1067 ext4_es_init_tree(&ei->i_es_tree); 1068 rwlock_init(&ei->i_es_lock); 1069 INIT_LIST_HEAD(&ei->i_es_list); 1070 ei->i_es_all_nr = 0; 1071 ei->i_es_shk_nr = 0; 1072 ei->i_es_shrink_lblk = 0; 1073 ei->i_reserved_data_blocks = 0; 1074 ei->i_da_metadata_calc_len = 0; 1075 ei->i_da_metadata_calc_last_lblock = 0; 1076 spin_lock_init(&(ei->i_block_reservation_lock)); 1077 ext4_init_pending_tree(&ei->i_pending_tree); 1078 #ifdef CONFIG_QUOTA 1079 ei->i_reserved_quota = 0; 1080 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1081 #endif 1082 ei->jinode = NULL; 1083 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1084 spin_lock_init(&ei->i_completed_io_lock); 1085 ei->i_sync_tid = 0; 1086 ei->i_datasync_tid = 0; 1087 atomic_set(&ei->i_unwritten, 0); 1088 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1089 return &ei->vfs_inode; 1090 } 1091 1092 static int ext4_drop_inode(struct inode *inode) 1093 { 1094 int drop = generic_drop_inode(inode); 1095 1096 trace_ext4_drop_inode(inode, drop); 1097 return drop; 1098 } 1099 1100 static void ext4_i_callback(struct rcu_head *head) 1101 { 1102 struct inode *inode = container_of(head, struct inode, i_rcu); 1103 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1104 } 1105 1106 static void ext4_destroy_inode(struct inode *inode) 1107 { 1108 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1109 ext4_msg(inode->i_sb, KERN_ERR, 1110 "Inode %lu (%p): orphan list check failed!", 1111 inode->i_ino, EXT4_I(inode)); 1112 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1113 EXT4_I(inode), sizeof(struct ext4_inode_info), 1114 true); 1115 dump_stack(); 1116 } 1117 call_rcu(&inode->i_rcu, ext4_i_callback); 1118 } 1119 1120 static void init_once(void *foo) 1121 { 1122 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1123 1124 INIT_LIST_HEAD(&ei->i_orphan); 1125 init_rwsem(&ei->xattr_sem); 1126 init_rwsem(&ei->i_data_sem); 1127 init_rwsem(&ei->i_mmap_sem); 1128 inode_init_once(&ei->vfs_inode); 1129 } 1130 1131 static int __init init_inodecache(void) 1132 { 1133 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1134 sizeof(struct ext4_inode_info), 0, 1135 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1136 SLAB_ACCOUNT), 1137 offsetof(struct ext4_inode_info, i_data), 1138 sizeof_field(struct ext4_inode_info, i_data), 1139 init_once); 1140 if (ext4_inode_cachep == NULL) 1141 return -ENOMEM; 1142 return 0; 1143 } 1144 1145 static void destroy_inodecache(void) 1146 { 1147 /* 1148 * Make sure all delayed rcu free inodes are flushed before we 1149 * destroy cache. 1150 */ 1151 rcu_barrier(); 1152 kmem_cache_destroy(ext4_inode_cachep); 1153 } 1154 1155 void ext4_clear_inode(struct inode *inode) 1156 { 1157 invalidate_inode_buffers(inode); 1158 clear_inode(inode); 1159 dquot_drop(inode); 1160 ext4_discard_preallocations(inode); 1161 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1162 if (EXT4_I(inode)->jinode) { 1163 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1164 EXT4_I(inode)->jinode); 1165 jbd2_free_inode(EXT4_I(inode)->jinode); 1166 EXT4_I(inode)->jinode = NULL; 1167 } 1168 fscrypt_put_encryption_info(inode); 1169 } 1170 1171 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1172 u64 ino, u32 generation) 1173 { 1174 struct inode *inode; 1175 1176 /* 1177 * Currently we don't know the generation for parent directory, so 1178 * a generation of 0 means "accept any" 1179 */ 1180 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1181 if (IS_ERR(inode)) 1182 return ERR_CAST(inode); 1183 if (generation && inode->i_generation != generation) { 1184 iput(inode); 1185 return ERR_PTR(-ESTALE); 1186 } 1187 1188 return inode; 1189 } 1190 1191 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1192 int fh_len, int fh_type) 1193 { 1194 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1195 ext4_nfs_get_inode); 1196 } 1197 1198 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1199 int fh_len, int fh_type) 1200 { 1201 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1202 ext4_nfs_get_inode); 1203 } 1204 1205 static int ext4_nfs_commit_metadata(struct inode *inode) 1206 { 1207 struct writeback_control wbc = { 1208 .sync_mode = WB_SYNC_ALL 1209 }; 1210 1211 trace_ext4_nfs_commit_metadata(inode); 1212 return ext4_write_inode(inode, &wbc); 1213 } 1214 1215 /* 1216 * Try to release metadata pages (indirect blocks, directories) which are 1217 * mapped via the block device. Since these pages could have journal heads 1218 * which would prevent try_to_free_buffers() from freeing them, we must use 1219 * jbd2 layer's try_to_free_buffers() function to release them. 1220 */ 1221 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1222 gfp_t wait) 1223 { 1224 journal_t *journal = EXT4_SB(sb)->s_journal; 1225 1226 WARN_ON(PageChecked(page)); 1227 if (!page_has_buffers(page)) 1228 return 0; 1229 if (journal) 1230 return jbd2_journal_try_to_free_buffers(journal, page, 1231 wait & ~__GFP_DIRECT_RECLAIM); 1232 return try_to_free_buffers(page); 1233 } 1234 1235 #ifdef CONFIG_FS_ENCRYPTION 1236 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1237 { 1238 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1239 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1240 } 1241 1242 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1243 void *fs_data) 1244 { 1245 handle_t *handle = fs_data; 1246 int res, res2, credits, retries = 0; 1247 1248 /* 1249 * Encrypting the root directory is not allowed because e2fsck expects 1250 * lost+found to exist and be unencrypted, and encrypting the root 1251 * directory would imply encrypting the lost+found directory as well as 1252 * the filename "lost+found" itself. 1253 */ 1254 if (inode->i_ino == EXT4_ROOT_INO) 1255 return -EPERM; 1256 1257 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1258 return -EINVAL; 1259 1260 res = ext4_convert_inline_data(inode); 1261 if (res) 1262 return res; 1263 1264 /* 1265 * If a journal handle was specified, then the encryption context is 1266 * being set on a new inode via inheritance and is part of a larger 1267 * transaction to create the inode. Otherwise the encryption context is 1268 * being set on an existing inode in its own transaction. Only in the 1269 * latter case should the "retry on ENOSPC" logic be used. 1270 */ 1271 1272 if (handle) { 1273 res = ext4_xattr_set_handle(handle, inode, 1274 EXT4_XATTR_INDEX_ENCRYPTION, 1275 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1276 ctx, len, 0); 1277 if (!res) { 1278 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1279 ext4_clear_inode_state(inode, 1280 EXT4_STATE_MAY_INLINE_DATA); 1281 /* 1282 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1283 * S_DAX may be disabled 1284 */ 1285 ext4_set_inode_flags(inode); 1286 } 1287 return res; 1288 } 1289 1290 res = dquot_initialize(inode); 1291 if (res) 1292 return res; 1293 retry: 1294 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1295 &credits); 1296 if (res) 1297 return res; 1298 1299 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1300 if (IS_ERR(handle)) 1301 return PTR_ERR(handle); 1302 1303 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1304 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1305 ctx, len, 0); 1306 if (!res) { 1307 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1308 /* 1309 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1310 * S_DAX may be disabled 1311 */ 1312 ext4_set_inode_flags(inode); 1313 res = ext4_mark_inode_dirty(handle, inode); 1314 if (res) 1315 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1316 } 1317 res2 = ext4_journal_stop(handle); 1318 1319 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1320 goto retry; 1321 if (!res) 1322 res = res2; 1323 return res; 1324 } 1325 1326 static bool ext4_dummy_context(struct inode *inode) 1327 { 1328 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1329 } 1330 1331 static const struct fscrypt_operations ext4_cryptops = { 1332 .key_prefix = "ext4:", 1333 .get_context = ext4_get_context, 1334 .set_context = ext4_set_context, 1335 .dummy_context = ext4_dummy_context, 1336 .empty_dir = ext4_empty_dir, 1337 .max_namelen = EXT4_NAME_LEN, 1338 }; 1339 #endif 1340 1341 #ifdef CONFIG_QUOTA 1342 static const char * const quotatypes[] = INITQFNAMES; 1343 #define QTYPE2NAME(t) (quotatypes[t]) 1344 1345 static int ext4_write_dquot(struct dquot *dquot); 1346 static int ext4_acquire_dquot(struct dquot *dquot); 1347 static int ext4_release_dquot(struct dquot *dquot); 1348 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1349 static int ext4_write_info(struct super_block *sb, int type); 1350 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1351 const struct path *path); 1352 static int ext4_quota_on_mount(struct super_block *sb, int type); 1353 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1354 size_t len, loff_t off); 1355 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1356 const char *data, size_t len, loff_t off); 1357 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1358 unsigned int flags); 1359 static int ext4_enable_quotas(struct super_block *sb); 1360 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1361 1362 static struct dquot **ext4_get_dquots(struct inode *inode) 1363 { 1364 return EXT4_I(inode)->i_dquot; 1365 } 1366 1367 static const struct dquot_operations ext4_quota_operations = { 1368 .get_reserved_space = ext4_get_reserved_space, 1369 .write_dquot = ext4_write_dquot, 1370 .acquire_dquot = ext4_acquire_dquot, 1371 .release_dquot = ext4_release_dquot, 1372 .mark_dirty = ext4_mark_dquot_dirty, 1373 .write_info = ext4_write_info, 1374 .alloc_dquot = dquot_alloc, 1375 .destroy_dquot = dquot_destroy, 1376 .get_projid = ext4_get_projid, 1377 .get_inode_usage = ext4_get_inode_usage, 1378 .get_next_id = ext4_get_next_id, 1379 }; 1380 1381 static const struct quotactl_ops ext4_qctl_operations = { 1382 .quota_on = ext4_quota_on, 1383 .quota_off = ext4_quota_off, 1384 .quota_sync = dquot_quota_sync, 1385 .get_state = dquot_get_state, 1386 .set_info = dquot_set_dqinfo, 1387 .get_dqblk = dquot_get_dqblk, 1388 .set_dqblk = dquot_set_dqblk, 1389 .get_nextdqblk = dquot_get_next_dqblk, 1390 }; 1391 #endif 1392 1393 static const struct super_operations ext4_sops = { 1394 .alloc_inode = ext4_alloc_inode, 1395 .destroy_inode = ext4_destroy_inode, 1396 .write_inode = ext4_write_inode, 1397 .dirty_inode = ext4_dirty_inode, 1398 .drop_inode = ext4_drop_inode, 1399 .evict_inode = ext4_evict_inode, 1400 .put_super = ext4_put_super, 1401 .sync_fs = ext4_sync_fs, 1402 .freeze_fs = ext4_freeze, 1403 .unfreeze_fs = ext4_unfreeze, 1404 .statfs = ext4_statfs, 1405 .remount_fs = ext4_remount, 1406 .show_options = ext4_show_options, 1407 #ifdef CONFIG_QUOTA 1408 .quota_read = ext4_quota_read, 1409 .quota_write = ext4_quota_write, 1410 .get_dquots = ext4_get_dquots, 1411 #endif 1412 .bdev_try_to_free_page = bdev_try_to_free_page, 1413 }; 1414 1415 static const struct export_operations ext4_export_ops = { 1416 .fh_to_dentry = ext4_fh_to_dentry, 1417 .fh_to_parent = ext4_fh_to_parent, 1418 .get_parent = ext4_get_parent, 1419 .commit_metadata = ext4_nfs_commit_metadata, 1420 }; 1421 1422 enum { 1423 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1424 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1425 Opt_nouid32, Opt_debug, Opt_removed, 1426 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1427 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1428 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1429 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1430 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1431 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1432 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1433 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1434 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1435 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1436 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1437 Opt_nowarn_on_error, Opt_mblk_io_submit, 1438 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1439 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1440 Opt_inode_readahead_blks, Opt_journal_ioprio, 1441 Opt_dioread_nolock, Opt_dioread_lock, 1442 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1443 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1444 }; 1445 1446 static const match_table_t tokens = { 1447 {Opt_bsd_df, "bsddf"}, 1448 {Opt_minix_df, "minixdf"}, 1449 {Opt_grpid, "grpid"}, 1450 {Opt_grpid, "bsdgroups"}, 1451 {Opt_nogrpid, "nogrpid"}, 1452 {Opt_nogrpid, "sysvgroups"}, 1453 {Opt_resgid, "resgid=%u"}, 1454 {Opt_resuid, "resuid=%u"}, 1455 {Opt_sb, "sb=%u"}, 1456 {Opt_err_cont, "errors=continue"}, 1457 {Opt_err_panic, "errors=panic"}, 1458 {Opt_err_ro, "errors=remount-ro"}, 1459 {Opt_nouid32, "nouid32"}, 1460 {Opt_debug, "debug"}, 1461 {Opt_removed, "oldalloc"}, 1462 {Opt_removed, "orlov"}, 1463 {Opt_user_xattr, "user_xattr"}, 1464 {Opt_nouser_xattr, "nouser_xattr"}, 1465 {Opt_acl, "acl"}, 1466 {Opt_noacl, "noacl"}, 1467 {Opt_noload, "norecovery"}, 1468 {Opt_noload, "noload"}, 1469 {Opt_removed, "nobh"}, 1470 {Opt_removed, "bh"}, 1471 {Opt_commit, "commit=%u"}, 1472 {Opt_min_batch_time, "min_batch_time=%u"}, 1473 {Opt_max_batch_time, "max_batch_time=%u"}, 1474 {Opt_journal_dev, "journal_dev=%u"}, 1475 {Opt_journal_path, "journal_path=%s"}, 1476 {Opt_journal_checksum, "journal_checksum"}, 1477 {Opt_nojournal_checksum, "nojournal_checksum"}, 1478 {Opt_journal_async_commit, "journal_async_commit"}, 1479 {Opt_abort, "abort"}, 1480 {Opt_data_journal, "data=journal"}, 1481 {Opt_data_ordered, "data=ordered"}, 1482 {Opt_data_writeback, "data=writeback"}, 1483 {Opt_data_err_abort, "data_err=abort"}, 1484 {Opt_data_err_ignore, "data_err=ignore"}, 1485 {Opt_offusrjquota, "usrjquota="}, 1486 {Opt_usrjquota, "usrjquota=%s"}, 1487 {Opt_offgrpjquota, "grpjquota="}, 1488 {Opt_grpjquota, "grpjquota=%s"}, 1489 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1490 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1491 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1492 {Opt_grpquota, "grpquota"}, 1493 {Opt_noquota, "noquota"}, 1494 {Opt_quota, "quota"}, 1495 {Opt_usrquota, "usrquota"}, 1496 {Opt_prjquota, "prjquota"}, 1497 {Opt_barrier, "barrier=%u"}, 1498 {Opt_barrier, "barrier"}, 1499 {Opt_nobarrier, "nobarrier"}, 1500 {Opt_i_version, "i_version"}, 1501 {Opt_dax, "dax"}, 1502 {Opt_stripe, "stripe=%u"}, 1503 {Opt_delalloc, "delalloc"}, 1504 {Opt_warn_on_error, "warn_on_error"}, 1505 {Opt_nowarn_on_error, "nowarn_on_error"}, 1506 {Opt_lazytime, "lazytime"}, 1507 {Opt_nolazytime, "nolazytime"}, 1508 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1509 {Opt_nodelalloc, "nodelalloc"}, 1510 {Opt_removed, "mblk_io_submit"}, 1511 {Opt_removed, "nomblk_io_submit"}, 1512 {Opt_block_validity, "block_validity"}, 1513 {Opt_noblock_validity, "noblock_validity"}, 1514 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1515 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1516 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1517 {Opt_auto_da_alloc, "auto_da_alloc"}, 1518 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1519 {Opt_dioread_nolock, "dioread_nolock"}, 1520 {Opt_dioread_lock, "dioread_lock"}, 1521 {Opt_discard, "discard"}, 1522 {Opt_nodiscard, "nodiscard"}, 1523 {Opt_init_itable, "init_itable=%u"}, 1524 {Opt_init_itable, "init_itable"}, 1525 {Opt_noinit_itable, "noinit_itable"}, 1526 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1527 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1528 {Opt_nombcache, "nombcache"}, 1529 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1530 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1531 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1532 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1533 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1534 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1535 {Opt_err, NULL}, 1536 }; 1537 1538 static ext4_fsblk_t get_sb_block(void **data) 1539 { 1540 ext4_fsblk_t sb_block; 1541 char *options = (char *) *data; 1542 1543 if (!options || strncmp(options, "sb=", 3) != 0) 1544 return 1; /* Default location */ 1545 1546 options += 3; 1547 /* TODO: use simple_strtoll with >32bit ext4 */ 1548 sb_block = simple_strtoul(options, &options, 0); 1549 if (*options && *options != ',') { 1550 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1551 (char *) *data); 1552 return 1; 1553 } 1554 if (*options == ',') 1555 options++; 1556 *data = (void *) options; 1557 1558 return sb_block; 1559 } 1560 1561 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1562 static const char deprecated_msg[] = 1563 "Mount option \"%s\" will be removed by %s\n" 1564 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1565 1566 #ifdef CONFIG_QUOTA 1567 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1568 { 1569 struct ext4_sb_info *sbi = EXT4_SB(sb); 1570 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1571 int ret = -1; 1572 1573 if (sb_any_quota_loaded(sb) && !old_qname) { 1574 ext4_msg(sb, KERN_ERR, 1575 "Cannot change journaled " 1576 "quota options when quota turned on"); 1577 return -1; 1578 } 1579 if (ext4_has_feature_quota(sb)) { 1580 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1581 "ignored when QUOTA feature is enabled"); 1582 return 1; 1583 } 1584 qname = match_strdup(args); 1585 if (!qname) { 1586 ext4_msg(sb, KERN_ERR, 1587 "Not enough memory for storing quotafile name"); 1588 return -1; 1589 } 1590 if (old_qname) { 1591 if (strcmp(old_qname, qname) == 0) 1592 ret = 1; 1593 else 1594 ext4_msg(sb, KERN_ERR, 1595 "%s quota file already specified", 1596 QTYPE2NAME(qtype)); 1597 goto errout; 1598 } 1599 if (strchr(qname, '/')) { 1600 ext4_msg(sb, KERN_ERR, 1601 "quotafile must be on filesystem root"); 1602 goto errout; 1603 } 1604 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1605 set_opt(sb, QUOTA); 1606 return 1; 1607 errout: 1608 kfree(qname); 1609 return ret; 1610 } 1611 1612 static int clear_qf_name(struct super_block *sb, int qtype) 1613 { 1614 1615 struct ext4_sb_info *sbi = EXT4_SB(sb); 1616 char *old_qname = get_qf_name(sb, sbi, qtype); 1617 1618 if (sb_any_quota_loaded(sb) && old_qname) { 1619 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1620 " when quota turned on"); 1621 return -1; 1622 } 1623 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1624 synchronize_rcu(); 1625 kfree(old_qname); 1626 return 1; 1627 } 1628 #endif 1629 1630 #define MOPT_SET 0x0001 1631 #define MOPT_CLEAR 0x0002 1632 #define MOPT_NOSUPPORT 0x0004 1633 #define MOPT_EXPLICIT 0x0008 1634 #define MOPT_CLEAR_ERR 0x0010 1635 #define MOPT_GTE0 0x0020 1636 #ifdef CONFIG_QUOTA 1637 #define MOPT_Q 0 1638 #define MOPT_QFMT 0x0040 1639 #else 1640 #define MOPT_Q MOPT_NOSUPPORT 1641 #define MOPT_QFMT MOPT_NOSUPPORT 1642 #endif 1643 #define MOPT_DATAJ 0x0080 1644 #define MOPT_NO_EXT2 0x0100 1645 #define MOPT_NO_EXT3 0x0200 1646 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1647 #define MOPT_STRING 0x0400 1648 1649 static const struct mount_opts { 1650 int token; 1651 int mount_opt; 1652 int flags; 1653 } ext4_mount_opts[] = { 1654 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1655 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1656 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1657 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1658 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1659 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1660 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1661 MOPT_EXT4_ONLY | MOPT_SET}, 1662 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1663 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1664 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1665 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1666 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1667 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1668 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1669 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1670 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1671 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1672 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1673 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1674 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1675 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1676 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1677 EXT4_MOUNT_JOURNAL_CHECKSUM), 1678 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1679 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1680 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1681 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1682 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1683 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1684 MOPT_NO_EXT2}, 1685 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1686 MOPT_NO_EXT2}, 1687 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1688 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1689 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1690 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1691 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1692 {Opt_commit, 0, MOPT_GTE0}, 1693 {Opt_max_batch_time, 0, MOPT_GTE0}, 1694 {Opt_min_batch_time, 0, MOPT_GTE0}, 1695 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1696 {Opt_init_itable, 0, MOPT_GTE0}, 1697 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1698 {Opt_stripe, 0, MOPT_GTE0}, 1699 {Opt_resuid, 0, MOPT_GTE0}, 1700 {Opt_resgid, 0, MOPT_GTE0}, 1701 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1702 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1703 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1704 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1705 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1706 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1707 MOPT_NO_EXT2 | MOPT_DATAJ}, 1708 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1709 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1710 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1711 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1712 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1713 #else 1714 {Opt_acl, 0, MOPT_NOSUPPORT}, 1715 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1716 #endif 1717 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1718 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1719 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1720 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1721 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1722 MOPT_SET | MOPT_Q}, 1723 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1724 MOPT_SET | MOPT_Q}, 1725 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1726 MOPT_SET | MOPT_Q}, 1727 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1728 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1729 MOPT_CLEAR | MOPT_Q}, 1730 {Opt_usrjquota, 0, MOPT_Q}, 1731 {Opt_grpjquota, 0, MOPT_Q}, 1732 {Opt_offusrjquota, 0, MOPT_Q}, 1733 {Opt_offgrpjquota, 0, MOPT_Q}, 1734 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1735 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1736 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1737 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1738 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1739 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1740 {Opt_err, 0, 0} 1741 }; 1742 1743 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1744 substring_t *args, unsigned long *journal_devnum, 1745 unsigned int *journal_ioprio, int is_remount) 1746 { 1747 struct ext4_sb_info *sbi = EXT4_SB(sb); 1748 const struct mount_opts *m; 1749 kuid_t uid; 1750 kgid_t gid; 1751 int arg = 0; 1752 1753 #ifdef CONFIG_QUOTA 1754 if (token == Opt_usrjquota) 1755 return set_qf_name(sb, USRQUOTA, &args[0]); 1756 else if (token == Opt_grpjquota) 1757 return set_qf_name(sb, GRPQUOTA, &args[0]); 1758 else if (token == Opt_offusrjquota) 1759 return clear_qf_name(sb, USRQUOTA); 1760 else if (token == Opt_offgrpjquota) 1761 return clear_qf_name(sb, GRPQUOTA); 1762 #endif 1763 switch (token) { 1764 case Opt_noacl: 1765 case Opt_nouser_xattr: 1766 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1767 break; 1768 case Opt_sb: 1769 return 1; /* handled by get_sb_block() */ 1770 case Opt_removed: 1771 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1772 return 1; 1773 case Opt_abort: 1774 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1775 return 1; 1776 case Opt_i_version: 1777 sb->s_flags |= SB_I_VERSION; 1778 return 1; 1779 case Opt_lazytime: 1780 sb->s_flags |= SB_LAZYTIME; 1781 return 1; 1782 case Opt_nolazytime: 1783 sb->s_flags &= ~SB_LAZYTIME; 1784 return 1; 1785 } 1786 1787 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1788 if (token == m->token) 1789 break; 1790 1791 if (m->token == Opt_err) { 1792 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1793 "or missing value", opt); 1794 return -1; 1795 } 1796 1797 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1798 ext4_msg(sb, KERN_ERR, 1799 "Mount option \"%s\" incompatible with ext2", opt); 1800 return -1; 1801 } 1802 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1803 ext4_msg(sb, KERN_ERR, 1804 "Mount option \"%s\" incompatible with ext3", opt); 1805 return -1; 1806 } 1807 1808 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1809 return -1; 1810 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1811 return -1; 1812 if (m->flags & MOPT_EXPLICIT) { 1813 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1814 set_opt2(sb, EXPLICIT_DELALLOC); 1815 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1816 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1817 } else 1818 return -1; 1819 } 1820 if (m->flags & MOPT_CLEAR_ERR) 1821 clear_opt(sb, ERRORS_MASK); 1822 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1823 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1824 "options when quota turned on"); 1825 return -1; 1826 } 1827 1828 if (m->flags & MOPT_NOSUPPORT) { 1829 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1830 } else if (token == Opt_commit) { 1831 if (arg == 0) 1832 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1833 sbi->s_commit_interval = HZ * arg; 1834 } else if (token == Opt_debug_want_extra_isize) { 1835 sbi->s_want_extra_isize = arg; 1836 } else if (token == Opt_max_batch_time) { 1837 sbi->s_max_batch_time = arg; 1838 } else if (token == Opt_min_batch_time) { 1839 sbi->s_min_batch_time = arg; 1840 } else if (token == Opt_inode_readahead_blks) { 1841 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1842 ext4_msg(sb, KERN_ERR, 1843 "EXT4-fs: inode_readahead_blks must be " 1844 "0 or a power of 2 smaller than 2^31"); 1845 return -1; 1846 } 1847 sbi->s_inode_readahead_blks = arg; 1848 } else if (token == Opt_init_itable) { 1849 set_opt(sb, INIT_INODE_TABLE); 1850 if (!args->from) 1851 arg = EXT4_DEF_LI_WAIT_MULT; 1852 sbi->s_li_wait_mult = arg; 1853 } else if (token == Opt_max_dir_size_kb) { 1854 sbi->s_max_dir_size_kb = arg; 1855 } else if (token == Opt_stripe) { 1856 sbi->s_stripe = arg; 1857 } else if (token == Opt_resuid) { 1858 uid = make_kuid(current_user_ns(), arg); 1859 if (!uid_valid(uid)) { 1860 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1861 return -1; 1862 } 1863 sbi->s_resuid = uid; 1864 } else if (token == Opt_resgid) { 1865 gid = make_kgid(current_user_ns(), arg); 1866 if (!gid_valid(gid)) { 1867 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1868 return -1; 1869 } 1870 sbi->s_resgid = gid; 1871 } else if (token == Opt_journal_dev) { 1872 if (is_remount) { 1873 ext4_msg(sb, KERN_ERR, 1874 "Cannot specify journal on remount"); 1875 return -1; 1876 } 1877 *journal_devnum = arg; 1878 } else if (token == Opt_journal_path) { 1879 char *journal_path; 1880 struct inode *journal_inode; 1881 struct path path; 1882 int error; 1883 1884 if (is_remount) { 1885 ext4_msg(sb, KERN_ERR, 1886 "Cannot specify journal on remount"); 1887 return -1; 1888 } 1889 journal_path = match_strdup(&args[0]); 1890 if (!journal_path) { 1891 ext4_msg(sb, KERN_ERR, "error: could not dup " 1892 "journal device string"); 1893 return -1; 1894 } 1895 1896 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1897 if (error) { 1898 ext4_msg(sb, KERN_ERR, "error: could not find " 1899 "journal device path: error %d", error); 1900 kfree(journal_path); 1901 return -1; 1902 } 1903 1904 journal_inode = d_inode(path.dentry); 1905 if (!S_ISBLK(journal_inode->i_mode)) { 1906 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1907 "is not a block device", journal_path); 1908 path_put(&path); 1909 kfree(journal_path); 1910 return -1; 1911 } 1912 1913 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1914 path_put(&path); 1915 kfree(journal_path); 1916 } else if (token == Opt_journal_ioprio) { 1917 if (arg > 7) { 1918 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1919 " (must be 0-7)"); 1920 return -1; 1921 } 1922 *journal_ioprio = 1923 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1924 } else if (token == Opt_test_dummy_encryption) { 1925 #ifdef CONFIG_FS_ENCRYPTION 1926 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1927 ext4_msg(sb, KERN_WARNING, 1928 "Test dummy encryption mode enabled"); 1929 #else 1930 ext4_msg(sb, KERN_WARNING, 1931 "Test dummy encryption mount option ignored"); 1932 #endif 1933 } else if (m->flags & MOPT_DATAJ) { 1934 if (is_remount) { 1935 if (!sbi->s_journal) 1936 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1937 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1938 ext4_msg(sb, KERN_ERR, 1939 "Cannot change data mode on remount"); 1940 return -1; 1941 } 1942 } else { 1943 clear_opt(sb, DATA_FLAGS); 1944 sbi->s_mount_opt |= m->mount_opt; 1945 } 1946 #ifdef CONFIG_QUOTA 1947 } else if (m->flags & MOPT_QFMT) { 1948 if (sb_any_quota_loaded(sb) && 1949 sbi->s_jquota_fmt != m->mount_opt) { 1950 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1951 "quota options when quota turned on"); 1952 return -1; 1953 } 1954 if (ext4_has_feature_quota(sb)) { 1955 ext4_msg(sb, KERN_INFO, 1956 "Quota format mount options ignored " 1957 "when QUOTA feature is enabled"); 1958 return 1; 1959 } 1960 sbi->s_jquota_fmt = m->mount_opt; 1961 #endif 1962 } else if (token == Opt_dax) { 1963 #ifdef CONFIG_FS_DAX 1964 ext4_msg(sb, KERN_WARNING, 1965 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1966 sbi->s_mount_opt |= m->mount_opt; 1967 #else 1968 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1969 return -1; 1970 #endif 1971 } else if (token == Opt_data_err_abort) { 1972 sbi->s_mount_opt |= m->mount_opt; 1973 } else if (token == Opt_data_err_ignore) { 1974 sbi->s_mount_opt &= ~m->mount_opt; 1975 } else { 1976 if (!args->from) 1977 arg = 1; 1978 if (m->flags & MOPT_CLEAR) 1979 arg = !arg; 1980 else if (unlikely(!(m->flags & MOPT_SET))) { 1981 ext4_msg(sb, KERN_WARNING, 1982 "buggy handling of option %s", opt); 1983 WARN_ON(1); 1984 return -1; 1985 } 1986 if (arg != 0) 1987 sbi->s_mount_opt |= m->mount_opt; 1988 else 1989 sbi->s_mount_opt &= ~m->mount_opt; 1990 } 1991 return 1; 1992 } 1993 1994 static int parse_options(char *options, struct super_block *sb, 1995 unsigned long *journal_devnum, 1996 unsigned int *journal_ioprio, 1997 int is_remount) 1998 { 1999 struct ext4_sb_info *sbi = EXT4_SB(sb); 2000 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2001 substring_t args[MAX_OPT_ARGS]; 2002 int token; 2003 2004 if (!options) 2005 return 1; 2006 2007 while ((p = strsep(&options, ",")) != NULL) { 2008 if (!*p) 2009 continue; 2010 /* 2011 * Initialize args struct so we know whether arg was 2012 * found; some options take optional arguments. 2013 */ 2014 args[0].to = args[0].from = NULL; 2015 token = match_token(p, tokens, args); 2016 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2017 journal_ioprio, is_remount) < 0) 2018 return 0; 2019 } 2020 #ifdef CONFIG_QUOTA 2021 /* 2022 * We do the test below only for project quotas. 'usrquota' and 2023 * 'grpquota' mount options are allowed even without quota feature 2024 * to support legacy quotas in quota files. 2025 */ 2026 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2027 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2028 "Cannot enable project quota enforcement."); 2029 return 0; 2030 } 2031 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2032 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2033 if (usr_qf_name || grp_qf_name) { 2034 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2035 clear_opt(sb, USRQUOTA); 2036 2037 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2038 clear_opt(sb, GRPQUOTA); 2039 2040 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2041 ext4_msg(sb, KERN_ERR, "old and new quota " 2042 "format mixing"); 2043 return 0; 2044 } 2045 2046 if (!sbi->s_jquota_fmt) { 2047 ext4_msg(sb, KERN_ERR, "journaled quota format " 2048 "not specified"); 2049 return 0; 2050 } 2051 } 2052 #endif 2053 if (test_opt(sb, DIOREAD_NOLOCK)) { 2054 int blocksize = 2055 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2056 2057 if (blocksize < PAGE_SIZE) { 2058 ext4_msg(sb, KERN_ERR, "can't mount with " 2059 "dioread_nolock if block size != PAGE_SIZE"); 2060 return 0; 2061 } 2062 } 2063 return 1; 2064 } 2065 2066 static inline void ext4_show_quota_options(struct seq_file *seq, 2067 struct super_block *sb) 2068 { 2069 #if defined(CONFIG_QUOTA) 2070 struct ext4_sb_info *sbi = EXT4_SB(sb); 2071 char *usr_qf_name, *grp_qf_name; 2072 2073 if (sbi->s_jquota_fmt) { 2074 char *fmtname = ""; 2075 2076 switch (sbi->s_jquota_fmt) { 2077 case QFMT_VFS_OLD: 2078 fmtname = "vfsold"; 2079 break; 2080 case QFMT_VFS_V0: 2081 fmtname = "vfsv0"; 2082 break; 2083 case QFMT_VFS_V1: 2084 fmtname = "vfsv1"; 2085 break; 2086 } 2087 seq_printf(seq, ",jqfmt=%s", fmtname); 2088 } 2089 2090 rcu_read_lock(); 2091 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2092 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2093 if (usr_qf_name) 2094 seq_show_option(seq, "usrjquota", usr_qf_name); 2095 if (grp_qf_name) 2096 seq_show_option(seq, "grpjquota", grp_qf_name); 2097 rcu_read_unlock(); 2098 #endif 2099 } 2100 2101 static const char *token2str(int token) 2102 { 2103 const struct match_token *t; 2104 2105 for (t = tokens; t->token != Opt_err; t++) 2106 if (t->token == token && !strchr(t->pattern, '=')) 2107 break; 2108 return t->pattern; 2109 } 2110 2111 /* 2112 * Show an option if 2113 * - it's set to a non-default value OR 2114 * - if the per-sb default is different from the global default 2115 */ 2116 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2117 int nodefs) 2118 { 2119 struct ext4_sb_info *sbi = EXT4_SB(sb); 2120 struct ext4_super_block *es = sbi->s_es; 2121 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2122 const struct mount_opts *m; 2123 char sep = nodefs ? '\n' : ','; 2124 2125 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2126 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2127 2128 if (sbi->s_sb_block != 1) 2129 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2130 2131 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2132 int want_set = m->flags & MOPT_SET; 2133 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2134 (m->flags & MOPT_CLEAR_ERR)) 2135 continue; 2136 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2137 continue; /* skip if same as the default */ 2138 if ((want_set && 2139 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2140 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2141 continue; /* select Opt_noFoo vs Opt_Foo */ 2142 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2143 } 2144 2145 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2146 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2147 SEQ_OPTS_PRINT("resuid=%u", 2148 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2149 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2150 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2151 SEQ_OPTS_PRINT("resgid=%u", 2152 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2153 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2154 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2155 SEQ_OPTS_PUTS("errors=remount-ro"); 2156 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2157 SEQ_OPTS_PUTS("errors=continue"); 2158 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2159 SEQ_OPTS_PUTS("errors=panic"); 2160 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2161 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2162 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2163 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2164 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2165 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2166 if (sb->s_flags & SB_I_VERSION) 2167 SEQ_OPTS_PUTS("i_version"); 2168 if (nodefs || sbi->s_stripe) 2169 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2170 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2171 (sbi->s_mount_opt ^ def_mount_opt)) { 2172 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2173 SEQ_OPTS_PUTS("data=journal"); 2174 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2175 SEQ_OPTS_PUTS("data=ordered"); 2176 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2177 SEQ_OPTS_PUTS("data=writeback"); 2178 } 2179 if (nodefs || 2180 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2181 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2182 sbi->s_inode_readahead_blks); 2183 2184 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2185 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2186 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2187 if (nodefs || sbi->s_max_dir_size_kb) 2188 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2189 if (test_opt(sb, DATA_ERR_ABORT)) 2190 SEQ_OPTS_PUTS("data_err=abort"); 2191 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2192 SEQ_OPTS_PUTS("test_dummy_encryption"); 2193 2194 ext4_show_quota_options(seq, sb); 2195 return 0; 2196 } 2197 2198 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2199 { 2200 return _ext4_show_options(seq, root->d_sb, 0); 2201 } 2202 2203 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2204 { 2205 struct super_block *sb = seq->private; 2206 int rc; 2207 2208 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2209 rc = _ext4_show_options(seq, sb, 1); 2210 seq_puts(seq, "\n"); 2211 return rc; 2212 } 2213 2214 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2215 int read_only) 2216 { 2217 struct ext4_sb_info *sbi = EXT4_SB(sb); 2218 int err = 0; 2219 2220 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2221 ext4_msg(sb, KERN_ERR, "revision level too high, " 2222 "forcing read-only mode"); 2223 err = -EROFS; 2224 } 2225 if (read_only) 2226 goto done; 2227 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2228 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2229 "running e2fsck is recommended"); 2230 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2231 ext4_msg(sb, KERN_WARNING, 2232 "warning: mounting fs with errors, " 2233 "running e2fsck is recommended"); 2234 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2235 le16_to_cpu(es->s_mnt_count) >= 2236 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2237 ext4_msg(sb, KERN_WARNING, 2238 "warning: maximal mount count reached, " 2239 "running e2fsck is recommended"); 2240 else if (le32_to_cpu(es->s_checkinterval) && 2241 (ext4_get_tstamp(es, s_lastcheck) + 2242 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2243 ext4_msg(sb, KERN_WARNING, 2244 "warning: checktime reached, " 2245 "running e2fsck is recommended"); 2246 if (!sbi->s_journal) 2247 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2248 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2249 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2250 le16_add_cpu(&es->s_mnt_count, 1); 2251 ext4_update_tstamp(es, s_mtime); 2252 if (sbi->s_journal) 2253 ext4_set_feature_journal_needs_recovery(sb); 2254 2255 err = ext4_commit_super(sb, 1); 2256 done: 2257 if (test_opt(sb, DEBUG)) 2258 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2259 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2260 sb->s_blocksize, 2261 sbi->s_groups_count, 2262 EXT4_BLOCKS_PER_GROUP(sb), 2263 EXT4_INODES_PER_GROUP(sb), 2264 sbi->s_mount_opt, sbi->s_mount_opt2); 2265 2266 cleancache_init_fs(sb); 2267 return err; 2268 } 2269 2270 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2271 { 2272 struct ext4_sb_info *sbi = EXT4_SB(sb); 2273 struct flex_groups *new_groups; 2274 int size; 2275 2276 if (!sbi->s_log_groups_per_flex) 2277 return 0; 2278 2279 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2280 if (size <= sbi->s_flex_groups_allocated) 2281 return 0; 2282 2283 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2284 new_groups = kvzalloc(size, GFP_KERNEL); 2285 if (!new_groups) { 2286 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2287 size / (int) sizeof(struct flex_groups)); 2288 return -ENOMEM; 2289 } 2290 2291 if (sbi->s_flex_groups) { 2292 memcpy(new_groups, sbi->s_flex_groups, 2293 (sbi->s_flex_groups_allocated * 2294 sizeof(struct flex_groups))); 2295 kvfree(sbi->s_flex_groups); 2296 } 2297 sbi->s_flex_groups = new_groups; 2298 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2299 return 0; 2300 } 2301 2302 static int ext4_fill_flex_info(struct super_block *sb) 2303 { 2304 struct ext4_sb_info *sbi = EXT4_SB(sb); 2305 struct ext4_group_desc *gdp = NULL; 2306 ext4_group_t flex_group; 2307 int i, err; 2308 2309 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2310 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2311 sbi->s_log_groups_per_flex = 0; 2312 return 1; 2313 } 2314 2315 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2316 if (err) 2317 goto failed; 2318 2319 for (i = 0; i < sbi->s_groups_count; i++) { 2320 gdp = ext4_get_group_desc(sb, i, NULL); 2321 2322 flex_group = ext4_flex_group(sbi, i); 2323 atomic_add(ext4_free_inodes_count(sb, gdp), 2324 &sbi->s_flex_groups[flex_group].free_inodes); 2325 atomic64_add(ext4_free_group_clusters(sb, gdp), 2326 &sbi->s_flex_groups[flex_group].free_clusters); 2327 atomic_add(ext4_used_dirs_count(sb, gdp), 2328 &sbi->s_flex_groups[flex_group].used_dirs); 2329 } 2330 2331 return 1; 2332 failed: 2333 return 0; 2334 } 2335 2336 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2337 struct ext4_group_desc *gdp) 2338 { 2339 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2340 __u16 crc = 0; 2341 __le32 le_group = cpu_to_le32(block_group); 2342 struct ext4_sb_info *sbi = EXT4_SB(sb); 2343 2344 if (ext4_has_metadata_csum(sbi->s_sb)) { 2345 /* Use new metadata_csum algorithm */ 2346 __u32 csum32; 2347 __u16 dummy_csum = 0; 2348 2349 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2350 sizeof(le_group)); 2351 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2352 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2353 sizeof(dummy_csum)); 2354 offset += sizeof(dummy_csum); 2355 if (offset < sbi->s_desc_size) 2356 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2357 sbi->s_desc_size - offset); 2358 2359 crc = csum32 & 0xFFFF; 2360 goto out; 2361 } 2362 2363 /* old crc16 code */ 2364 if (!ext4_has_feature_gdt_csum(sb)) 2365 return 0; 2366 2367 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2368 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2369 crc = crc16(crc, (__u8 *)gdp, offset); 2370 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2371 /* for checksum of struct ext4_group_desc do the rest...*/ 2372 if (ext4_has_feature_64bit(sb) && 2373 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2374 crc = crc16(crc, (__u8 *)gdp + offset, 2375 le16_to_cpu(sbi->s_es->s_desc_size) - 2376 offset); 2377 2378 out: 2379 return cpu_to_le16(crc); 2380 } 2381 2382 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2383 struct ext4_group_desc *gdp) 2384 { 2385 if (ext4_has_group_desc_csum(sb) && 2386 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2387 return 0; 2388 2389 return 1; 2390 } 2391 2392 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2393 struct ext4_group_desc *gdp) 2394 { 2395 if (!ext4_has_group_desc_csum(sb)) 2396 return; 2397 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2398 } 2399 2400 /* Called at mount-time, super-block is locked */ 2401 static int ext4_check_descriptors(struct super_block *sb, 2402 ext4_fsblk_t sb_block, 2403 ext4_group_t *first_not_zeroed) 2404 { 2405 struct ext4_sb_info *sbi = EXT4_SB(sb); 2406 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2407 ext4_fsblk_t last_block; 2408 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2409 ext4_fsblk_t block_bitmap; 2410 ext4_fsblk_t inode_bitmap; 2411 ext4_fsblk_t inode_table; 2412 int flexbg_flag = 0; 2413 ext4_group_t i, grp = sbi->s_groups_count; 2414 2415 if (ext4_has_feature_flex_bg(sb)) 2416 flexbg_flag = 1; 2417 2418 ext4_debug("Checking group descriptors"); 2419 2420 for (i = 0; i < sbi->s_groups_count; i++) { 2421 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2422 2423 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2424 last_block = ext4_blocks_count(sbi->s_es) - 1; 2425 else 2426 last_block = first_block + 2427 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2428 2429 if ((grp == sbi->s_groups_count) && 2430 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2431 grp = i; 2432 2433 block_bitmap = ext4_block_bitmap(sb, gdp); 2434 if (block_bitmap == sb_block) { 2435 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2436 "Block bitmap for group %u overlaps " 2437 "superblock", i); 2438 if (!sb_rdonly(sb)) 2439 return 0; 2440 } 2441 if (block_bitmap >= sb_block + 1 && 2442 block_bitmap <= last_bg_block) { 2443 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2444 "Block bitmap for group %u overlaps " 2445 "block group descriptors", i); 2446 if (!sb_rdonly(sb)) 2447 return 0; 2448 } 2449 if (block_bitmap < first_block || block_bitmap > last_block) { 2450 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2451 "Block bitmap for group %u not in group " 2452 "(block %llu)!", i, block_bitmap); 2453 return 0; 2454 } 2455 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2456 if (inode_bitmap == sb_block) { 2457 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2458 "Inode bitmap for group %u overlaps " 2459 "superblock", i); 2460 if (!sb_rdonly(sb)) 2461 return 0; 2462 } 2463 if (inode_bitmap >= sb_block + 1 && 2464 inode_bitmap <= last_bg_block) { 2465 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2466 "Inode bitmap for group %u overlaps " 2467 "block group descriptors", i); 2468 if (!sb_rdonly(sb)) 2469 return 0; 2470 } 2471 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2472 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2473 "Inode bitmap for group %u not in group " 2474 "(block %llu)!", i, inode_bitmap); 2475 return 0; 2476 } 2477 inode_table = ext4_inode_table(sb, gdp); 2478 if (inode_table == sb_block) { 2479 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2480 "Inode table for group %u overlaps " 2481 "superblock", i); 2482 if (!sb_rdonly(sb)) 2483 return 0; 2484 } 2485 if (inode_table >= sb_block + 1 && 2486 inode_table <= last_bg_block) { 2487 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2488 "Inode table for group %u overlaps " 2489 "block group descriptors", i); 2490 if (!sb_rdonly(sb)) 2491 return 0; 2492 } 2493 if (inode_table < first_block || 2494 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2495 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2496 "Inode table for group %u not in group " 2497 "(block %llu)!", i, inode_table); 2498 return 0; 2499 } 2500 ext4_lock_group(sb, i); 2501 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2502 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2503 "Checksum for group %u failed (%u!=%u)", 2504 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2505 gdp)), le16_to_cpu(gdp->bg_checksum)); 2506 if (!sb_rdonly(sb)) { 2507 ext4_unlock_group(sb, i); 2508 return 0; 2509 } 2510 } 2511 ext4_unlock_group(sb, i); 2512 if (!flexbg_flag) 2513 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2514 } 2515 if (NULL != first_not_zeroed) 2516 *first_not_zeroed = grp; 2517 return 1; 2518 } 2519 2520 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2521 * the superblock) which were deleted from all directories, but held open by 2522 * a process at the time of a crash. We walk the list and try to delete these 2523 * inodes at recovery time (only with a read-write filesystem). 2524 * 2525 * In order to keep the orphan inode chain consistent during traversal (in 2526 * case of crash during recovery), we link each inode into the superblock 2527 * orphan list_head and handle it the same way as an inode deletion during 2528 * normal operation (which journals the operations for us). 2529 * 2530 * We only do an iget() and an iput() on each inode, which is very safe if we 2531 * accidentally point at an in-use or already deleted inode. The worst that 2532 * can happen in this case is that we get a "bit already cleared" message from 2533 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2534 * e2fsck was run on this filesystem, and it must have already done the orphan 2535 * inode cleanup for us, so we can safely abort without any further action. 2536 */ 2537 static void ext4_orphan_cleanup(struct super_block *sb, 2538 struct ext4_super_block *es) 2539 { 2540 unsigned int s_flags = sb->s_flags; 2541 int ret, nr_orphans = 0, nr_truncates = 0; 2542 #ifdef CONFIG_QUOTA 2543 int quota_update = 0; 2544 int i; 2545 #endif 2546 if (!es->s_last_orphan) { 2547 jbd_debug(4, "no orphan inodes to clean up\n"); 2548 return; 2549 } 2550 2551 if (bdev_read_only(sb->s_bdev)) { 2552 ext4_msg(sb, KERN_ERR, "write access " 2553 "unavailable, skipping orphan cleanup"); 2554 return; 2555 } 2556 2557 /* Check if feature set would not allow a r/w mount */ 2558 if (!ext4_feature_set_ok(sb, 0)) { 2559 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2560 "unknown ROCOMPAT features"); 2561 return; 2562 } 2563 2564 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2565 /* don't clear list on RO mount w/ errors */ 2566 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2567 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2568 "clearing orphan list.\n"); 2569 es->s_last_orphan = 0; 2570 } 2571 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2572 return; 2573 } 2574 2575 if (s_flags & SB_RDONLY) { 2576 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2577 sb->s_flags &= ~SB_RDONLY; 2578 } 2579 #ifdef CONFIG_QUOTA 2580 /* Needed for iput() to work correctly and not trash data */ 2581 sb->s_flags |= SB_ACTIVE; 2582 2583 /* 2584 * Turn on quotas which were not enabled for read-only mounts if 2585 * filesystem has quota feature, so that they are updated correctly. 2586 */ 2587 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2588 int ret = ext4_enable_quotas(sb); 2589 2590 if (!ret) 2591 quota_update = 1; 2592 else 2593 ext4_msg(sb, KERN_ERR, 2594 "Cannot turn on quotas: error %d", ret); 2595 } 2596 2597 /* Turn on journaled quotas used for old sytle */ 2598 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2599 if (EXT4_SB(sb)->s_qf_names[i]) { 2600 int ret = ext4_quota_on_mount(sb, i); 2601 2602 if (!ret) 2603 quota_update = 1; 2604 else 2605 ext4_msg(sb, KERN_ERR, 2606 "Cannot turn on journaled " 2607 "quota: type %d: error %d", i, ret); 2608 } 2609 } 2610 #endif 2611 2612 while (es->s_last_orphan) { 2613 struct inode *inode; 2614 2615 /* 2616 * We may have encountered an error during cleanup; if 2617 * so, skip the rest. 2618 */ 2619 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2620 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2621 es->s_last_orphan = 0; 2622 break; 2623 } 2624 2625 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2626 if (IS_ERR(inode)) { 2627 es->s_last_orphan = 0; 2628 break; 2629 } 2630 2631 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2632 dquot_initialize(inode); 2633 if (inode->i_nlink) { 2634 if (test_opt(sb, DEBUG)) 2635 ext4_msg(sb, KERN_DEBUG, 2636 "%s: truncating inode %lu to %lld bytes", 2637 __func__, inode->i_ino, inode->i_size); 2638 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2639 inode->i_ino, inode->i_size); 2640 inode_lock(inode); 2641 truncate_inode_pages(inode->i_mapping, inode->i_size); 2642 ret = ext4_truncate(inode); 2643 if (ret) 2644 ext4_std_error(inode->i_sb, ret); 2645 inode_unlock(inode); 2646 nr_truncates++; 2647 } else { 2648 if (test_opt(sb, DEBUG)) 2649 ext4_msg(sb, KERN_DEBUG, 2650 "%s: deleting unreferenced inode %lu", 2651 __func__, inode->i_ino); 2652 jbd_debug(2, "deleting unreferenced inode %lu\n", 2653 inode->i_ino); 2654 nr_orphans++; 2655 } 2656 iput(inode); /* The delete magic happens here! */ 2657 } 2658 2659 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2660 2661 if (nr_orphans) 2662 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2663 PLURAL(nr_orphans)); 2664 if (nr_truncates) 2665 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2666 PLURAL(nr_truncates)); 2667 #ifdef CONFIG_QUOTA 2668 /* Turn off quotas if they were enabled for orphan cleanup */ 2669 if (quota_update) { 2670 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2671 if (sb_dqopt(sb)->files[i]) 2672 dquot_quota_off(sb, i); 2673 } 2674 } 2675 #endif 2676 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2677 } 2678 2679 /* 2680 * Maximal extent format file size. 2681 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2682 * extent format containers, within a sector_t, and within i_blocks 2683 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2684 * so that won't be a limiting factor. 2685 * 2686 * However there is other limiting factor. We do store extents in the form 2687 * of starting block and length, hence the resulting length of the extent 2688 * covering maximum file size must fit into on-disk format containers as 2689 * well. Given that length is always by 1 unit bigger than max unit (because 2690 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2691 * 2692 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2693 */ 2694 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2695 { 2696 loff_t res; 2697 loff_t upper_limit = MAX_LFS_FILESIZE; 2698 2699 /* small i_blocks in vfs inode? */ 2700 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2701 /* 2702 * CONFIG_LBDAF is not enabled implies the inode 2703 * i_block represent total blocks in 512 bytes 2704 * 32 == size of vfs inode i_blocks * 8 2705 */ 2706 upper_limit = (1LL << 32) - 1; 2707 2708 /* total blocks in file system block size */ 2709 upper_limit >>= (blkbits - 9); 2710 upper_limit <<= blkbits; 2711 } 2712 2713 /* 2714 * 32-bit extent-start container, ee_block. We lower the maxbytes 2715 * by one fs block, so ee_len can cover the extent of maximum file 2716 * size 2717 */ 2718 res = (1LL << 32) - 1; 2719 res <<= blkbits; 2720 2721 /* Sanity check against vm- & vfs- imposed limits */ 2722 if (res > upper_limit) 2723 res = upper_limit; 2724 2725 return res; 2726 } 2727 2728 /* 2729 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2730 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2731 * We need to be 1 filesystem block less than the 2^48 sector limit. 2732 */ 2733 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2734 { 2735 loff_t res = EXT4_NDIR_BLOCKS; 2736 int meta_blocks; 2737 loff_t upper_limit; 2738 /* This is calculated to be the largest file size for a dense, block 2739 * mapped file such that the file's total number of 512-byte sectors, 2740 * including data and all indirect blocks, does not exceed (2^48 - 1). 2741 * 2742 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2743 * number of 512-byte sectors of the file. 2744 */ 2745 2746 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2747 /* 2748 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2749 * the inode i_block field represents total file blocks in 2750 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2751 */ 2752 upper_limit = (1LL << 32) - 1; 2753 2754 /* total blocks in file system block size */ 2755 upper_limit >>= (bits - 9); 2756 2757 } else { 2758 /* 2759 * We use 48 bit ext4_inode i_blocks 2760 * With EXT4_HUGE_FILE_FL set the i_blocks 2761 * represent total number of blocks in 2762 * file system block size 2763 */ 2764 upper_limit = (1LL << 48) - 1; 2765 2766 } 2767 2768 /* indirect blocks */ 2769 meta_blocks = 1; 2770 /* double indirect blocks */ 2771 meta_blocks += 1 + (1LL << (bits-2)); 2772 /* tripple indirect blocks */ 2773 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2774 2775 upper_limit -= meta_blocks; 2776 upper_limit <<= bits; 2777 2778 res += 1LL << (bits-2); 2779 res += 1LL << (2*(bits-2)); 2780 res += 1LL << (3*(bits-2)); 2781 res <<= bits; 2782 if (res > upper_limit) 2783 res = upper_limit; 2784 2785 if (res > MAX_LFS_FILESIZE) 2786 res = MAX_LFS_FILESIZE; 2787 2788 return res; 2789 } 2790 2791 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2792 ext4_fsblk_t logical_sb_block, int nr) 2793 { 2794 struct ext4_sb_info *sbi = EXT4_SB(sb); 2795 ext4_group_t bg, first_meta_bg; 2796 int has_super = 0; 2797 2798 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2799 2800 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2801 return logical_sb_block + nr + 1; 2802 bg = sbi->s_desc_per_block * nr; 2803 if (ext4_bg_has_super(sb, bg)) 2804 has_super = 1; 2805 2806 /* 2807 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2808 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2809 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2810 * compensate. 2811 */ 2812 if (sb->s_blocksize == 1024 && nr == 0 && 2813 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2814 has_super++; 2815 2816 return (has_super + ext4_group_first_block_no(sb, bg)); 2817 } 2818 2819 /** 2820 * ext4_get_stripe_size: Get the stripe size. 2821 * @sbi: In memory super block info 2822 * 2823 * If we have specified it via mount option, then 2824 * use the mount option value. If the value specified at mount time is 2825 * greater than the blocks per group use the super block value. 2826 * If the super block value is greater than blocks per group return 0. 2827 * Allocator needs it be less than blocks per group. 2828 * 2829 */ 2830 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2831 { 2832 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2833 unsigned long stripe_width = 2834 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2835 int ret; 2836 2837 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2838 ret = sbi->s_stripe; 2839 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2840 ret = stripe_width; 2841 else if (stride && stride <= sbi->s_blocks_per_group) 2842 ret = stride; 2843 else 2844 ret = 0; 2845 2846 /* 2847 * If the stripe width is 1, this makes no sense and 2848 * we set it to 0 to turn off stripe handling code. 2849 */ 2850 if (ret <= 1) 2851 ret = 0; 2852 2853 return ret; 2854 } 2855 2856 /* 2857 * Check whether this filesystem can be mounted based on 2858 * the features present and the RDONLY/RDWR mount requested. 2859 * Returns 1 if this filesystem can be mounted as requested, 2860 * 0 if it cannot be. 2861 */ 2862 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2863 { 2864 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2865 ext4_msg(sb, KERN_ERR, 2866 "Couldn't mount because of " 2867 "unsupported optional features (%x)", 2868 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2869 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2870 return 0; 2871 } 2872 2873 if (readonly) 2874 return 1; 2875 2876 if (ext4_has_feature_readonly(sb)) { 2877 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2878 sb->s_flags |= SB_RDONLY; 2879 return 1; 2880 } 2881 2882 /* Check that feature set is OK for a read-write mount */ 2883 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2884 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2885 "unsupported optional features (%x)", 2886 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2887 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2888 return 0; 2889 } 2890 /* 2891 * Large file size enabled file system can only be mounted 2892 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2893 */ 2894 if (ext4_has_feature_huge_file(sb)) { 2895 if (sizeof(blkcnt_t) < sizeof(u64)) { 2896 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2897 "cannot be mounted RDWR without " 2898 "CONFIG_LBDAF"); 2899 return 0; 2900 } 2901 } 2902 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2903 ext4_msg(sb, KERN_ERR, 2904 "Can't support bigalloc feature without " 2905 "extents feature\n"); 2906 return 0; 2907 } 2908 2909 #ifndef CONFIG_QUOTA 2910 if (ext4_has_feature_quota(sb) && !readonly) { 2911 ext4_msg(sb, KERN_ERR, 2912 "Filesystem with quota feature cannot be mounted RDWR " 2913 "without CONFIG_QUOTA"); 2914 return 0; 2915 } 2916 if (ext4_has_feature_project(sb) && !readonly) { 2917 ext4_msg(sb, KERN_ERR, 2918 "Filesystem with project quota feature cannot be mounted RDWR " 2919 "without CONFIG_QUOTA"); 2920 return 0; 2921 } 2922 #endif /* CONFIG_QUOTA */ 2923 return 1; 2924 } 2925 2926 /* 2927 * This function is called once a day if we have errors logged 2928 * on the file system 2929 */ 2930 static void print_daily_error_info(struct timer_list *t) 2931 { 2932 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2933 struct super_block *sb = sbi->s_sb; 2934 struct ext4_super_block *es = sbi->s_es; 2935 2936 if (es->s_error_count) 2937 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2938 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2939 le32_to_cpu(es->s_error_count)); 2940 if (es->s_first_error_time) { 2941 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 2942 sb->s_id, 2943 ext4_get_tstamp(es, s_first_error_time), 2944 (int) sizeof(es->s_first_error_func), 2945 es->s_first_error_func, 2946 le32_to_cpu(es->s_first_error_line)); 2947 if (es->s_first_error_ino) 2948 printk(KERN_CONT ": inode %u", 2949 le32_to_cpu(es->s_first_error_ino)); 2950 if (es->s_first_error_block) 2951 printk(KERN_CONT ": block %llu", (unsigned long long) 2952 le64_to_cpu(es->s_first_error_block)); 2953 printk(KERN_CONT "\n"); 2954 } 2955 if (es->s_last_error_time) { 2956 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 2957 sb->s_id, 2958 ext4_get_tstamp(es, s_last_error_time), 2959 (int) sizeof(es->s_last_error_func), 2960 es->s_last_error_func, 2961 le32_to_cpu(es->s_last_error_line)); 2962 if (es->s_last_error_ino) 2963 printk(KERN_CONT ": inode %u", 2964 le32_to_cpu(es->s_last_error_ino)); 2965 if (es->s_last_error_block) 2966 printk(KERN_CONT ": block %llu", (unsigned long long) 2967 le64_to_cpu(es->s_last_error_block)); 2968 printk(KERN_CONT "\n"); 2969 } 2970 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2971 } 2972 2973 /* Find next suitable group and run ext4_init_inode_table */ 2974 static int ext4_run_li_request(struct ext4_li_request *elr) 2975 { 2976 struct ext4_group_desc *gdp = NULL; 2977 ext4_group_t group, ngroups; 2978 struct super_block *sb; 2979 unsigned long timeout = 0; 2980 int ret = 0; 2981 2982 sb = elr->lr_super; 2983 ngroups = EXT4_SB(sb)->s_groups_count; 2984 2985 for (group = elr->lr_next_group; group < ngroups; group++) { 2986 gdp = ext4_get_group_desc(sb, group, NULL); 2987 if (!gdp) { 2988 ret = 1; 2989 break; 2990 } 2991 2992 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2993 break; 2994 } 2995 2996 if (group >= ngroups) 2997 ret = 1; 2998 2999 if (!ret) { 3000 timeout = jiffies; 3001 ret = ext4_init_inode_table(sb, group, 3002 elr->lr_timeout ? 0 : 1); 3003 if (elr->lr_timeout == 0) { 3004 timeout = (jiffies - timeout) * 3005 elr->lr_sbi->s_li_wait_mult; 3006 elr->lr_timeout = timeout; 3007 } 3008 elr->lr_next_sched = jiffies + elr->lr_timeout; 3009 elr->lr_next_group = group + 1; 3010 } 3011 return ret; 3012 } 3013 3014 /* 3015 * Remove lr_request from the list_request and free the 3016 * request structure. Should be called with li_list_mtx held 3017 */ 3018 static void ext4_remove_li_request(struct ext4_li_request *elr) 3019 { 3020 struct ext4_sb_info *sbi; 3021 3022 if (!elr) 3023 return; 3024 3025 sbi = elr->lr_sbi; 3026 3027 list_del(&elr->lr_request); 3028 sbi->s_li_request = NULL; 3029 kfree(elr); 3030 } 3031 3032 static void ext4_unregister_li_request(struct super_block *sb) 3033 { 3034 mutex_lock(&ext4_li_mtx); 3035 if (!ext4_li_info) { 3036 mutex_unlock(&ext4_li_mtx); 3037 return; 3038 } 3039 3040 mutex_lock(&ext4_li_info->li_list_mtx); 3041 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3042 mutex_unlock(&ext4_li_info->li_list_mtx); 3043 mutex_unlock(&ext4_li_mtx); 3044 } 3045 3046 static struct task_struct *ext4_lazyinit_task; 3047 3048 /* 3049 * This is the function where ext4lazyinit thread lives. It walks 3050 * through the request list searching for next scheduled filesystem. 3051 * When such a fs is found, run the lazy initialization request 3052 * (ext4_rn_li_request) and keep track of the time spend in this 3053 * function. Based on that time we compute next schedule time of 3054 * the request. When walking through the list is complete, compute 3055 * next waking time and put itself into sleep. 3056 */ 3057 static int ext4_lazyinit_thread(void *arg) 3058 { 3059 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3060 struct list_head *pos, *n; 3061 struct ext4_li_request *elr; 3062 unsigned long next_wakeup, cur; 3063 3064 BUG_ON(NULL == eli); 3065 3066 cont_thread: 3067 while (true) { 3068 next_wakeup = MAX_JIFFY_OFFSET; 3069 3070 mutex_lock(&eli->li_list_mtx); 3071 if (list_empty(&eli->li_request_list)) { 3072 mutex_unlock(&eli->li_list_mtx); 3073 goto exit_thread; 3074 } 3075 list_for_each_safe(pos, n, &eli->li_request_list) { 3076 int err = 0; 3077 int progress = 0; 3078 elr = list_entry(pos, struct ext4_li_request, 3079 lr_request); 3080 3081 if (time_before(jiffies, elr->lr_next_sched)) { 3082 if (time_before(elr->lr_next_sched, next_wakeup)) 3083 next_wakeup = elr->lr_next_sched; 3084 continue; 3085 } 3086 if (down_read_trylock(&elr->lr_super->s_umount)) { 3087 if (sb_start_write_trylock(elr->lr_super)) { 3088 progress = 1; 3089 /* 3090 * We hold sb->s_umount, sb can not 3091 * be removed from the list, it is 3092 * now safe to drop li_list_mtx 3093 */ 3094 mutex_unlock(&eli->li_list_mtx); 3095 err = ext4_run_li_request(elr); 3096 sb_end_write(elr->lr_super); 3097 mutex_lock(&eli->li_list_mtx); 3098 n = pos->next; 3099 } 3100 up_read((&elr->lr_super->s_umount)); 3101 } 3102 /* error, remove the lazy_init job */ 3103 if (err) { 3104 ext4_remove_li_request(elr); 3105 continue; 3106 } 3107 if (!progress) { 3108 elr->lr_next_sched = jiffies + 3109 (prandom_u32() 3110 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3111 } 3112 if (time_before(elr->lr_next_sched, next_wakeup)) 3113 next_wakeup = elr->lr_next_sched; 3114 } 3115 mutex_unlock(&eli->li_list_mtx); 3116 3117 try_to_freeze(); 3118 3119 cur = jiffies; 3120 if ((time_after_eq(cur, next_wakeup)) || 3121 (MAX_JIFFY_OFFSET == next_wakeup)) { 3122 cond_resched(); 3123 continue; 3124 } 3125 3126 schedule_timeout_interruptible(next_wakeup - cur); 3127 3128 if (kthread_should_stop()) { 3129 ext4_clear_request_list(); 3130 goto exit_thread; 3131 } 3132 } 3133 3134 exit_thread: 3135 /* 3136 * It looks like the request list is empty, but we need 3137 * to check it under the li_list_mtx lock, to prevent any 3138 * additions into it, and of course we should lock ext4_li_mtx 3139 * to atomically free the list and ext4_li_info, because at 3140 * this point another ext4 filesystem could be registering 3141 * new one. 3142 */ 3143 mutex_lock(&ext4_li_mtx); 3144 mutex_lock(&eli->li_list_mtx); 3145 if (!list_empty(&eli->li_request_list)) { 3146 mutex_unlock(&eli->li_list_mtx); 3147 mutex_unlock(&ext4_li_mtx); 3148 goto cont_thread; 3149 } 3150 mutex_unlock(&eli->li_list_mtx); 3151 kfree(ext4_li_info); 3152 ext4_li_info = NULL; 3153 mutex_unlock(&ext4_li_mtx); 3154 3155 return 0; 3156 } 3157 3158 static void ext4_clear_request_list(void) 3159 { 3160 struct list_head *pos, *n; 3161 struct ext4_li_request *elr; 3162 3163 mutex_lock(&ext4_li_info->li_list_mtx); 3164 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3165 elr = list_entry(pos, struct ext4_li_request, 3166 lr_request); 3167 ext4_remove_li_request(elr); 3168 } 3169 mutex_unlock(&ext4_li_info->li_list_mtx); 3170 } 3171 3172 static int ext4_run_lazyinit_thread(void) 3173 { 3174 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3175 ext4_li_info, "ext4lazyinit"); 3176 if (IS_ERR(ext4_lazyinit_task)) { 3177 int err = PTR_ERR(ext4_lazyinit_task); 3178 ext4_clear_request_list(); 3179 kfree(ext4_li_info); 3180 ext4_li_info = NULL; 3181 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3182 "initialization thread\n", 3183 err); 3184 return err; 3185 } 3186 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3187 return 0; 3188 } 3189 3190 /* 3191 * Check whether it make sense to run itable init. thread or not. 3192 * If there is at least one uninitialized inode table, return 3193 * corresponding group number, else the loop goes through all 3194 * groups and return total number of groups. 3195 */ 3196 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3197 { 3198 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3199 struct ext4_group_desc *gdp = NULL; 3200 3201 if (!ext4_has_group_desc_csum(sb)) 3202 return ngroups; 3203 3204 for (group = 0; group < ngroups; group++) { 3205 gdp = ext4_get_group_desc(sb, group, NULL); 3206 if (!gdp) 3207 continue; 3208 3209 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3210 break; 3211 } 3212 3213 return group; 3214 } 3215 3216 static int ext4_li_info_new(void) 3217 { 3218 struct ext4_lazy_init *eli = NULL; 3219 3220 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3221 if (!eli) 3222 return -ENOMEM; 3223 3224 INIT_LIST_HEAD(&eli->li_request_list); 3225 mutex_init(&eli->li_list_mtx); 3226 3227 eli->li_state |= EXT4_LAZYINIT_QUIT; 3228 3229 ext4_li_info = eli; 3230 3231 return 0; 3232 } 3233 3234 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3235 ext4_group_t start) 3236 { 3237 struct ext4_sb_info *sbi = EXT4_SB(sb); 3238 struct ext4_li_request *elr; 3239 3240 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3241 if (!elr) 3242 return NULL; 3243 3244 elr->lr_super = sb; 3245 elr->lr_sbi = sbi; 3246 elr->lr_next_group = start; 3247 3248 /* 3249 * Randomize first schedule time of the request to 3250 * spread the inode table initialization requests 3251 * better. 3252 */ 3253 elr->lr_next_sched = jiffies + (prandom_u32() % 3254 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3255 return elr; 3256 } 3257 3258 int ext4_register_li_request(struct super_block *sb, 3259 ext4_group_t first_not_zeroed) 3260 { 3261 struct ext4_sb_info *sbi = EXT4_SB(sb); 3262 struct ext4_li_request *elr = NULL; 3263 ext4_group_t ngroups = sbi->s_groups_count; 3264 int ret = 0; 3265 3266 mutex_lock(&ext4_li_mtx); 3267 if (sbi->s_li_request != NULL) { 3268 /* 3269 * Reset timeout so it can be computed again, because 3270 * s_li_wait_mult might have changed. 3271 */ 3272 sbi->s_li_request->lr_timeout = 0; 3273 goto out; 3274 } 3275 3276 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3277 !test_opt(sb, INIT_INODE_TABLE)) 3278 goto out; 3279 3280 elr = ext4_li_request_new(sb, first_not_zeroed); 3281 if (!elr) { 3282 ret = -ENOMEM; 3283 goto out; 3284 } 3285 3286 if (NULL == ext4_li_info) { 3287 ret = ext4_li_info_new(); 3288 if (ret) 3289 goto out; 3290 } 3291 3292 mutex_lock(&ext4_li_info->li_list_mtx); 3293 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3294 mutex_unlock(&ext4_li_info->li_list_mtx); 3295 3296 sbi->s_li_request = elr; 3297 /* 3298 * set elr to NULL here since it has been inserted to 3299 * the request_list and the removal and free of it is 3300 * handled by ext4_clear_request_list from now on. 3301 */ 3302 elr = NULL; 3303 3304 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3305 ret = ext4_run_lazyinit_thread(); 3306 if (ret) 3307 goto out; 3308 } 3309 out: 3310 mutex_unlock(&ext4_li_mtx); 3311 if (ret) 3312 kfree(elr); 3313 return ret; 3314 } 3315 3316 /* 3317 * We do not need to lock anything since this is called on 3318 * module unload. 3319 */ 3320 static void ext4_destroy_lazyinit_thread(void) 3321 { 3322 /* 3323 * If thread exited earlier 3324 * there's nothing to be done. 3325 */ 3326 if (!ext4_li_info || !ext4_lazyinit_task) 3327 return; 3328 3329 kthread_stop(ext4_lazyinit_task); 3330 } 3331 3332 static int set_journal_csum_feature_set(struct super_block *sb) 3333 { 3334 int ret = 1; 3335 int compat, incompat; 3336 struct ext4_sb_info *sbi = EXT4_SB(sb); 3337 3338 if (ext4_has_metadata_csum(sb)) { 3339 /* journal checksum v3 */ 3340 compat = 0; 3341 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3342 } else { 3343 /* journal checksum v1 */ 3344 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3345 incompat = 0; 3346 } 3347 3348 jbd2_journal_clear_features(sbi->s_journal, 3349 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3350 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3351 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3352 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3353 ret = jbd2_journal_set_features(sbi->s_journal, 3354 compat, 0, 3355 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3356 incompat); 3357 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3358 ret = jbd2_journal_set_features(sbi->s_journal, 3359 compat, 0, 3360 incompat); 3361 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3362 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3363 } else { 3364 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3365 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3366 } 3367 3368 return ret; 3369 } 3370 3371 /* 3372 * Note: calculating the overhead so we can be compatible with 3373 * historical BSD practice is quite difficult in the face of 3374 * clusters/bigalloc. This is because multiple metadata blocks from 3375 * different block group can end up in the same allocation cluster. 3376 * Calculating the exact overhead in the face of clustered allocation 3377 * requires either O(all block bitmaps) in memory or O(number of block 3378 * groups**2) in time. We will still calculate the superblock for 3379 * older file systems --- and if we come across with a bigalloc file 3380 * system with zero in s_overhead_clusters the estimate will be close to 3381 * correct especially for very large cluster sizes --- but for newer 3382 * file systems, it's better to calculate this figure once at mkfs 3383 * time, and store it in the superblock. If the superblock value is 3384 * present (even for non-bigalloc file systems), we will use it. 3385 */ 3386 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3387 char *buf) 3388 { 3389 struct ext4_sb_info *sbi = EXT4_SB(sb); 3390 struct ext4_group_desc *gdp; 3391 ext4_fsblk_t first_block, last_block, b; 3392 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3393 int s, j, count = 0; 3394 3395 if (!ext4_has_feature_bigalloc(sb)) 3396 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3397 sbi->s_itb_per_group + 2); 3398 3399 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3400 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3401 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3402 for (i = 0; i < ngroups; i++) { 3403 gdp = ext4_get_group_desc(sb, i, NULL); 3404 b = ext4_block_bitmap(sb, gdp); 3405 if (b >= first_block && b <= last_block) { 3406 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3407 count++; 3408 } 3409 b = ext4_inode_bitmap(sb, gdp); 3410 if (b >= first_block && b <= last_block) { 3411 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3412 count++; 3413 } 3414 b = ext4_inode_table(sb, gdp); 3415 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3416 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3417 int c = EXT4_B2C(sbi, b - first_block); 3418 ext4_set_bit(c, buf); 3419 count++; 3420 } 3421 if (i != grp) 3422 continue; 3423 s = 0; 3424 if (ext4_bg_has_super(sb, grp)) { 3425 ext4_set_bit(s++, buf); 3426 count++; 3427 } 3428 j = ext4_bg_num_gdb(sb, grp); 3429 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3430 ext4_error(sb, "Invalid number of block group " 3431 "descriptor blocks: %d", j); 3432 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3433 } 3434 count += j; 3435 for (; j > 0; j--) 3436 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3437 } 3438 if (!count) 3439 return 0; 3440 return EXT4_CLUSTERS_PER_GROUP(sb) - 3441 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3442 } 3443 3444 /* 3445 * Compute the overhead and stash it in sbi->s_overhead 3446 */ 3447 int ext4_calculate_overhead(struct super_block *sb) 3448 { 3449 struct ext4_sb_info *sbi = EXT4_SB(sb); 3450 struct ext4_super_block *es = sbi->s_es; 3451 struct inode *j_inode; 3452 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3453 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3454 ext4_fsblk_t overhead = 0; 3455 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3456 3457 if (!buf) 3458 return -ENOMEM; 3459 3460 /* 3461 * Compute the overhead (FS structures). This is constant 3462 * for a given filesystem unless the number of block groups 3463 * changes so we cache the previous value until it does. 3464 */ 3465 3466 /* 3467 * All of the blocks before first_data_block are overhead 3468 */ 3469 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3470 3471 /* 3472 * Add the overhead found in each block group 3473 */ 3474 for (i = 0; i < ngroups; i++) { 3475 int blks; 3476 3477 blks = count_overhead(sb, i, buf); 3478 overhead += blks; 3479 if (blks) 3480 memset(buf, 0, PAGE_SIZE); 3481 cond_resched(); 3482 } 3483 3484 /* 3485 * Add the internal journal blocks whether the journal has been 3486 * loaded or not 3487 */ 3488 if (sbi->s_journal && !sbi->journal_bdev) 3489 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3490 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3491 j_inode = ext4_get_journal_inode(sb, j_inum); 3492 if (j_inode) { 3493 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3494 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3495 iput(j_inode); 3496 } else { 3497 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3498 } 3499 } 3500 sbi->s_overhead = overhead; 3501 smp_wmb(); 3502 free_page((unsigned long) buf); 3503 return 0; 3504 } 3505 3506 static void ext4_set_resv_clusters(struct super_block *sb) 3507 { 3508 ext4_fsblk_t resv_clusters; 3509 struct ext4_sb_info *sbi = EXT4_SB(sb); 3510 3511 /* 3512 * There's no need to reserve anything when we aren't using extents. 3513 * The space estimates are exact, there are no unwritten extents, 3514 * hole punching doesn't need new metadata... This is needed especially 3515 * to keep ext2/3 backward compatibility. 3516 */ 3517 if (!ext4_has_feature_extents(sb)) 3518 return; 3519 /* 3520 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3521 * This should cover the situations where we can not afford to run 3522 * out of space like for example punch hole, or converting 3523 * unwritten extents in delalloc path. In most cases such 3524 * allocation would require 1, or 2 blocks, higher numbers are 3525 * very rare. 3526 */ 3527 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3528 sbi->s_cluster_bits); 3529 3530 do_div(resv_clusters, 50); 3531 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3532 3533 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3534 } 3535 3536 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3537 { 3538 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3539 char *orig_data = kstrdup(data, GFP_KERNEL); 3540 struct buffer_head *bh; 3541 struct ext4_super_block *es = NULL; 3542 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3543 ext4_fsblk_t block; 3544 ext4_fsblk_t sb_block = get_sb_block(&data); 3545 ext4_fsblk_t logical_sb_block; 3546 unsigned long offset = 0; 3547 unsigned long journal_devnum = 0; 3548 unsigned long def_mount_opts; 3549 struct inode *root; 3550 const char *descr; 3551 int ret = -ENOMEM; 3552 int blocksize, clustersize; 3553 unsigned int db_count; 3554 unsigned int i; 3555 int needs_recovery, has_huge_files, has_bigalloc; 3556 __u64 blocks_count; 3557 int err = 0; 3558 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3559 ext4_group_t first_not_zeroed; 3560 3561 if ((data && !orig_data) || !sbi) 3562 goto out_free_base; 3563 3564 sbi->s_daxdev = dax_dev; 3565 sbi->s_blockgroup_lock = 3566 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3567 if (!sbi->s_blockgroup_lock) 3568 goto out_free_base; 3569 3570 sb->s_fs_info = sbi; 3571 sbi->s_sb = sb; 3572 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3573 sbi->s_sb_block = sb_block; 3574 if (sb->s_bdev->bd_part) 3575 sbi->s_sectors_written_start = 3576 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3577 3578 /* Cleanup superblock name */ 3579 strreplace(sb->s_id, '/', '!'); 3580 3581 /* -EINVAL is default */ 3582 ret = -EINVAL; 3583 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3584 if (!blocksize) { 3585 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3586 goto out_fail; 3587 } 3588 3589 /* 3590 * The ext4 superblock will not be buffer aligned for other than 1kB 3591 * block sizes. We need to calculate the offset from buffer start. 3592 */ 3593 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3594 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3595 offset = do_div(logical_sb_block, blocksize); 3596 } else { 3597 logical_sb_block = sb_block; 3598 } 3599 3600 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3601 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3602 goto out_fail; 3603 } 3604 /* 3605 * Note: s_es must be initialized as soon as possible because 3606 * some ext4 macro-instructions depend on its value 3607 */ 3608 es = (struct ext4_super_block *) (bh->b_data + offset); 3609 sbi->s_es = es; 3610 sb->s_magic = le16_to_cpu(es->s_magic); 3611 if (sb->s_magic != EXT4_SUPER_MAGIC) 3612 goto cantfind_ext4; 3613 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3614 3615 /* Warn if metadata_csum and gdt_csum are both set. */ 3616 if (ext4_has_feature_metadata_csum(sb) && 3617 ext4_has_feature_gdt_csum(sb)) 3618 ext4_warning(sb, "metadata_csum and uninit_bg are " 3619 "redundant flags; please run fsck."); 3620 3621 /* Check for a known checksum algorithm */ 3622 if (!ext4_verify_csum_type(sb, es)) { 3623 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3624 "unknown checksum algorithm."); 3625 silent = 1; 3626 goto cantfind_ext4; 3627 } 3628 3629 /* Load the checksum driver */ 3630 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3631 if (IS_ERR(sbi->s_chksum_driver)) { 3632 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3633 ret = PTR_ERR(sbi->s_chksum_driver); 3634 sbi->s_chksum_driver = NULL; 3635 goto failed_mount; 3636 } 3637 3638 /* Check superblock checksum */ 3639 if (!ext4_superblock_csum_verify(sb, es)) { 3640 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3641 "invalid superblock checksum. Run e2fsck?"); 3642 silent = 1; 3643 ret = -EFSBADCRC; 3644 goto cantfind_ext4; 3645 } 3646 3647 /* Precompute checksum seed for all metadata */ 3648 if (ext4_has_feature_csum_seed(sb)) 3649 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3650 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3651 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3652 sizeof(es->s_uuid)); 3653 3654 /* Set defaults before we parse the mount options */ 3655 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3656 set_opt(sb, INIT_INODE_TABLE); 3657 if (def_mount_opts & EXT4_DEFM_DEBUG) 3658 set_opt(sb, DEBUG); 3659 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3660 set_opt(sb, GRPID); 3661 if (def_mount_opts & EXT4_DEFM_UID16) 3662 set_opt(sb, NO_UID32); 3663 /* xattr user namespace & acls are now defaulted on */ 3664 set_opt(sb, XATTR_USER); 3665 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3666 set_opt(sb, POSIX_ACL); 3667 #endif 3668 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3669 if (ext4_has_metadata_csum(sb)) 3670 set_opt(sb, JOURNAL_CHECKSUM); 3671 3672 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3673 set_opt(sb, JOURNAL_DATA); 3674 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3675 set_opt(sb, ORDERED_DATA); 3676 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3677 set_opt(sb, WRITEBACK_DATA); 3678 3679 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3680 set_opt(sb, ERRORS_PANIC); 3681 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3682 set_opt(sb, ERRORS_CONT); 3683 else 3684 set_opt(sb, ERRORS_RO); 3685 /* block_validity enabled by default; disable with noblock_validity */ 3686 set_opt(sb, BLOCK_VALIDITY); 3687 if (def_mount_opts & EXT4_DEFM_DISCARD) 3688 set_opt(sb, DISCARD); 3689 3690 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3691 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3692 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3693 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3694 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3695 3696 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3697 set_opt(sb, BARRIER); 3698 3699 /* 3700 * enable delayed allocation by default 3701 * Use -o nodelalloc to turn it off 3702 */ 3703 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3704 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3705 set_opt(sb, DELALLOC); 3706 3707 /* 3708 * set default s_li_wait_mult for lazyinit, for the case there is 3709 * no mount option specified. 3710 */ 3711 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3712 3713 if (sbi->s_es->s_mount_opts[0]) { 3714 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3715 sizeof(sbi->s_es->s_mount_opts), 3716 GFP_KERNEL); 3717 if (!s_mount_opts) 3718 goto failed_mount; 3719 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3720 &journal_ioprio, 0)) { 3721 ext4_msg(sb, KERN_WARNING, 3722 "failed to parse options in superblock: %s", 3723 s_mount_opts); 3724 } 3725 kfree(s_mount_opts); 3726 } 3727 sbi->s_def_mount_opt = sbi->s_mount_opt; 3728 if (!parse_options((char *) data, sb, &journal_devnum, 3729 &journal_ioprio, 0)) 3730 goto failed_mount; 3731 3732 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3733 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3734 "with data=journal disables delayed " 3735 "allocation and O_DIRECT support!\n"); 3736 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3737 ext4_msg(sb, KERN_ERR, "can't mount with " 3738 "both data=journal and delalloc"); 3739 goto failed_mount; 3740 } 3741 if (test_opt(sb, DIOREAD_NOLOCK)) { 3742 ext4_msg(sb, KERN_ERR, "can't mount with " 3743 "both data=journal and dioread_nolock"); 3744 goto failed_mount; 3745 } 3746 if (test_opt(sb, DAX)) { 3747 ext4_msg(sb, KERN_ERR, "can't mount with " 3748 "both data=journal and dax"); 3749 goto failed_mount; 3750 } 3751 if (ext4_has_feature_encrypt(sb)) { 3752 ext4_msg(sb, KERN_WARNING, 3753 "encrypted files will use data=ordered " 3754 "instead of data journaling mode"); 3755 } 3756 if (test_opt(sb, DELALLOC)) 3757 clear_opt(sb, DELALLOC); 3758 } else { 3759 sb->s_iflags |= SB_I_CGROUPWB; 3760 } 3761 3762 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3763 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3764 3765 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3766 (ext4_has_compat_features(sb) || 3767 ext4_has_ro_compat_features(sb) || 3768 ext4_has_incompat_features(sb))) 3769 ext4_msg(sb, KERN_WARNING, 3770 "feature flags set on rev 0 fs, " 3771 "running e2fsck is recommended"); 3772 3773 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3774 set_opt2(sb, HURD_COMPAT); 3775 if (ext4_has_feature_64bit(sb)) { 3776 ext4_msg(sb, KERN_ERR, 3777 "The Hurd can't support 64-bit file systems"); 3778 goto failed_mount; 3779 } 3780 3781 /* 3782 * ea_inode feature uses l_i_version field which is not 3783 * available in HURD_COMPAT mode. 3784 */ 3785 if (ext4_has_feature_ea_inode(sb)) { 3786 ext4_msg(sb, KERN_ERR, 3787 "ea_inode feature is not supported for Hurd"); 3788 goto failed_mount; 3789 } 3790 } 3791 3792 if (IS_EXT2_SB(sb)) { 3793 if (ext2_feature_set_ok(sb)) 3794 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3795 "using the ext4 subsystem"); 3796 else { 3797 /* 3798 * If we're probing be silent, if this looks like 3799 * it's actually an ext[34] filesystem. 3800 */ 3801 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3802 goto failed_mount; 3803 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3804 "to feature incompatibilities"); 3805 goto failed_mount; 3806 } 3807 } 3808 3809 if (IS_EXT3_SB(sb)) { 3810 if (ext3_feature_set_ok(sb)) 3811 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3812 "using the ext4 subsystem"); 3813 else { 3814 /* 3815 * If we're probing be silent, if this looks like 3816 * it's actually an ext4 filesystem. 3817 */ 3818 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3819 goto failed_mount; 3820 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3821 "to feature incompatibilities"); 3822 goto failed_mount; 3823 } 3824 } 3825 3826 /* 3827 * Check feature flags regardless of the revision level, since we 3828 * previously didn't change the revision level when setting the flags, 3829 * so there is a chance incompat flags are set on a rev 0 filesystem. 3830 */ 3831 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3832 goto failed_mount; 3833 3834 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3835 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3836 blocksize > EXT4_MAX_BLOCK_SIZE) { 3837 ext4_msg(sb, KERN_ERR, 3838 "Unsupported filesystem blocksize %d (%d log_block_size)", 3839 blocksize, le32_to_cpu(es->s_log_block_size)); 3840 goto failed_mount; 3841 } 3842 if (le32_to_cpu(es->s_log_block_size) > 3843 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3844 ext4_msg(sb, KERN_ERR, 3845 "Invalid log block size: %u", 3846 le32_to_cpu(es->s_log_block_size)); 3847 goto failed_mount; 3848 } 3849 if (le32_to_cpu(es->s_log_cluster_size) > 3850 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3851 ext4_msg(sb, KERN_ERR, 3852 "Invalid log cluster size: %u", 3853 le32_to_cpu(es->s_log_cluster_size)); 3854 goto failed_mount; 3855 } 3856 3857 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3858 ext4_msg(sb, KERN_ERR, 3859 "Number of reserved GDT blocks insanely large: %d", 3860 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3861 goto failed_mount; 3862 } 3863 3864 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3865 if (ext4_has_feature_inline_data(sb)) { 3866 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3867 " that may contain inline data"); 3868 goto failed_mount; 3869 } 3870 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3871 ext4_msg(sb, KERN_ERR, 3872 "DAX unsupported by block device."); 3873 goto failed_mount; 3874 } 3875 } 3876 3877 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3878 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3879 es->s_encryption_level); 3880 goto failed_mount; 3881 } 3882 3883 if (sb->s_blocksize != blocksize) { 3884 /* Validate the filesystem blocksize */ 3885 if (!sb_set_blocksize(sb, blocksize)) { 3886 ext4_msg(sb, KERN_ERR, "bad block size %d", 3887 blocksize); 3888 goto failed_mount; 3889 } 3890 3891 brelse(bh); 3892 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3893 offset = do_div(logical_sb_block, blocksize); 3894 bh = sb_bread_unmovable(sb, logical_sb_block); 3895 if (!bh) { 3896 ext4_msg(sb, KERN_ERR, 3897 "Can't read superblock on 2nd try"); 3898 goto failed_mount; 3899 } 3900 es = (struct ext4_super_block *)(bh->b_data + offset); 3901 sbi->s_es = es; 3902 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3903 ext4_msg(sb, KERN_ERR, 3904 "Magic mismatch, very weird!"); 3905 goto failed_mount; 3906 } 3907 } 3908 3909 has_huge_files = ext4_has_feature_huge_file(sb); 3910 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3911 has_huge_files); 3912 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3913 3914 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3915 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3916 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3917 } else { 3918 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3919 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3920 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3921 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3922 sbi->s_first_ino); 3923 goto failed_mount; 3924 } 3925 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3926 (!is_power_of_2(sbi->s_inode_size)) || 3927 (sbi->s_inode_size > blocksize)) { 3928 ext4_msg(sb, KERN_ERR, 3929 "unsupported inode size: %d", 3930 sbi->s_inode_size); 3931 goto failed_mount; 3932 } 3933 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3934 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3935 } 3936 3937 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3938 if (ext4_has_feature_64bit(sb)) { 3939 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3940 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3941 !is_power_of_2(sbi->s_desc_size)) { 3942 ext4_msg(sb, KERN_ERR, 3943 "unsupported descriptor size %lu", 3944 sbi->s_desc_size); 3945 goto failed_mount; 3946 } 3947 } else 3948 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3949 3950 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3951 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3952 3953 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3954 if (sbi->s_inodes_per_block == 0) 3955 goto cantfind_ext4; 3956 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3957 sbi->s_inodes_per_group > blocksize * 8) { 3958 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3959 sbi->s_blocks_per_group); 3960 goto failed_mount; 3961 } 3962 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3963 sbi->s_inodes_per_block; 3964 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3965 sbi->s_sbh = bh; 3966 sbi->s_mount_state = le16_to_cpu(es->s_state); 3967 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3968 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3969 3970 for (i = 0; i < 4; i++) 3971 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3972 sbi->s_def_hash_version = es->s_def_hash_version; 3973 if (ext4_has_feature_dir_index(sb)) { 3974 i = le32_to_cpu(es->s_flags); 3975 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3976 sbi->s_hash_unsigned = 3; 3977 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3978 #ifdef __CHAR_UNSIGNED__ 3979 if (!sb_rdonly(sb)) 3980 es->s_flags |= 3981 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3982 sbi->s_hash_unsigned = 3; 3983 #else 3984 if (!sb_rdonly(sb)) 3985 es->s_flags |= 3986 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3987 #endif 3988 } 3989 } 3990 3991 /* Handle clustersize */ 3992 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3993 has_bigalloc = ext4_has_feature_bigalloc(sb); 3994 if (has_bigalloc) { 3995 if (clustersize < blocksize) { 3996 ext4_msg(sb, KERN_ERR, 3997 "cluster size (%d) smaller than " 3998 "block size (%d)", clustersize, blocksize); 3999 goto failed_mount; 4000 } 4001 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4002 le32_to_cpu(es->s_log_block_size); 4003 sbi->s_clusters_per_group = 4004 le32_to_cpu(es->s_clusters_per_group); 4005 if (sbi->s_clusters_per_group > blocksize * 8) { 4006 ext4_msg(sb, KERN_ERR, 4007 "#clusters per group too big: %lu", 4008 sbi->s_clusters_per_group); 4009 goto failed_mount; 4010 } 4011 if (sbi->s_blocks_per_group != 4012 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4013 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4014 "clusters per group (%lu) inconsistent", 4015 sbi->s_blocks_per_group, 4016 sbi->s_clusters_per_group); 4017 goto failed_mount; 4018 } 4019 } else { 4020 if (clustersize != blocksize) { 4021 ext4_msg(sb, KERN_ERR, 4022 "fragment/cluster size (%d) != " 4023 "block size (%d)", clustersize, blocksize); 4024 goto failed_mount; 4025 } 4026 if (sbi->s_blocks_per_group > blocksize * 8) { 4027 ext4_msg(sb, KERN_ERR, 4028 "#blocks per group too big: %lu", 4029 sbi->s_blocks_per_group); 4030 goto failed_mount; 4031 } 4032 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4033 sbi->s_cluster_bits = 0; 4034 } 4035 sbi->s_cluster_ratio = clustersize / blocksize; 4036 4037 /* Do we have standard group size of clustersize * 8 blocks ? */ 4038 if (sbi->s_blocks_per_group == clustersize << 3) 4039 set_opt2(sb, STD_GROUP_SIZE); 4040 4041 /* 4042 * Test whether we have more sectors than will fit in sector_t, 4043 * and whether the max offset is addressable by the page cache. 4044 */ 4045 err = generic_check_addressable(sb->s_blocksize_bits, 4046 ext4_blocks_count(es)); 4047 if (err) { 4048 ext4_msg(sb, KERN_ERR, "filesystem" 4049 " too large to mount safely on this system"); 4050 if (sizeof(sector_t) < 8) 4051 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 4052 goto failed_mount; 4053 } 4054 4055 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4056 goto cantfind_ext4; 4057 4058 /* check blocks count against device size */ 4059 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4060 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4061 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4062 "exceeds size of device (%llu blocks)", 4063 ext4_blocks_count(es), blocks_count); 4064 goto failed_mount; 4065 } 4066 4067 /* 4068 * It makes no sense for the first data block to be beyond the end 4069 * of the filesystem. 4070 */ 4071 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4072 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4073 "block %u is beyond end of filesystem (%llu)", 4074 le32_to_cpu(es->s_first_data_block), 4075 ext4_blocks_count(es)); 4076 goto failed_mount; 4077 } 4078 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4079 (sbi->s_cluster_ratio == 1)) { 4080 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4081 "block is 0 with a 1k block and cluster size"); 4082 goto failed_mount; 4083 } 4084 4085 blocks_count = (ext4_blocks_count(es) - 4086 le32_to_cpu(es->s_first_data_block) + 4087 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4088 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4089 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4090 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4091 "(block count %llu, first data block %u, " 4092 "blocks per group %lu)", sbi->s_groups_count, 4093 ext4_blocks_count(es), 4094 le32_to_cpu(es->s_first_data_block), 4095 EXT4_BLOCKS_PER_GROUP(sb)); 4096 goto failed_mount; 4097 } 4098 sbi->s_groups_count = blocks_count; 4099 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4100 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4101 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4102 le32_to_cpu(es->s_inodes_count)) { 4103 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4104 le32_to_cpu(es->s_inodes_count), 4105 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4106 ret = -EINVAL; 4107 goto failed_mount; 4108 } 4109 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4110 EXT4_DESC_PER_BLOCK(sb); 4111 if (ext4_has_feature_meta_bg(sb)) { 4112 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4113 ext4_msg(sb, KERN_WARNING, 4114 "first meta block group too large: %u " 4115 "(group descriptor block count %u)", 4116 le32_to_cpu(es->s_first_meta_bg), db_count); 4117 goto failed_mount; 4118 } 4119 } 4120 sbi->s_group_desc = kvmalloc_array(db_count, 4121 sizeof(struct buffer_head *), 4122 GFP_KERNEL); 4123 if (sbi->s_group_desc == NULL) { 4124 ext4_msg(sb, KERN_ERR, "not enough memory"); 4125 ret = -ENOMEM; 4126 goto failed_mount; 4127 } 4128 4129 bgl_lock_init(sbi->s_blockgroup_lock); 4130 4131 /* Pre-read the descriptors into the buffer cache */ 4132 for (i = 0; i < db_count; i++) { 4133 block = descriptor_loc(sb, logical_sb_block, i); 4134 sb_breadahead(sb, block); 4135 } 4136 4137 for (i = 0; i < db_count; i++) { 4138 block = descriptor_loc(sb, logical_sb_block, i); 4139 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4140 if (!sbi->s_group_desc[i]) { 4141 ext4_msg(sb, KERN_ERR, 4142 "can't read group descriptor %d", i); 4143 db_count = i; 4144 goto failed_mount2; 4145 } 4146 } 4147 sbi->s_gdb_count = db_count; 4148 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4149 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4150 ret = -EFSCORRUPTED; 4151 goto failed_mount2; 4152 } 4153 4154 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4155 4156 /* Register extent status tree shrinker */ 4157 if (ext4_es_register_shrinker(sbi)) 4158 goto failed_mount3; 4159 4160 sbi->s_stripe = ext4_get_stripe_size(sbi); 4161 sbi->s_extent_max_zeroout_kb = 32; 4162 4163 /* 4164 * set up enough so that it can read an inode 4165 */ 4166 sb->s_op = &ext4_sops; 4167 sb->s_export_op = &ext4_export_ops; 4168 sb->s_xattr = ext4_xattr_handlers; 4169 #ifdef CONFIG_FS_ENCRYPTION 4170 sb->s_cop = &ext4_cryptops; 4171 #endif 4172 #ifdef CONFIG_QUOTA 4173 sb->dq_op = &ext4_quota_operations; 4174 if (ext4_has_feature_quota(sb)) 4175 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4176 else 4177 sb->s_qcop = &ext4_qctl_operations; 4178 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4179 #endif 4180 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4181 4182 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4183 mutex_init(&sbi->s_orphan_lock); 4184 4185 sb->s_root = NULL; 4186 4187 needs_recovery = (es->s_last_orphan != 0 || 4188 ext4_has_feature_journal_needs_recovery(sb)); 4189 4190 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4191 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4192 goto failed_mount3a; 4193 4194 /* 4195 * The first inode we look at is the journal inode. Don't try 4196 * root first: it may be modified in the journal! 4197 */ 4198 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4199 err = ext4_load_journal(sb, es, journal_devnum); 4200 if (err) 4201 goto failed_mount3a; 4202 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4203 ext4_has_feature_journal_needs_recovery(sb)) { 4204 ext4_msg(sb, KERN_ERR, "required journal recovery " 4205 "suppressed and not mounted read-only"); 4206 goto failed_mount_wq; 4207 } else { 4208 /* Nojournal mode, all journal mount options are illegal */ 4209 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4210 ext4_msg(sb, KERN_ERR, "can't mount with " 4211 "journal_checksum, fs mounted w/o journal"); 4212 goto failed_mount_wq; 4213 } 4214 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4215 ext4_msg(sb, KERN_ERR, "can't mount with " 4216 "journal_async_commit, fs mounted w/o journal"); 4217 goto failed_mount_wq; 4218 } 4219 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4220 ext4_msg(sb, KERN_ERR, "can't mount with " 4221 "commit=%lu, fs mounted w/o journal", 4222 sbi->s_commit_interval / HZ); 4223 goto failed_mount_wq; 4224 } 4225 if (EXT4_MOUNT_DATA_FLAGS & 4226 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4227 ext4_msg(sb, KERN_ERR, "can't mount with " 4228 "data=, fs mounted w/o journal"); 4229 goto failed_mount_wq; 4230 } 4231 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4232 clear_opt(sb, JOURNAL_CHECKSUM); 4233 clear_opt(sb, DATA_FLAGS); 4234 sbi->s_journal = NULL; 4235 needs_recovery = 0; 4236 goto no_journal; 4237 } 4238 4239 if (ext4_has_feature_64bit(sb) && 4240 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4241 JBD2_FEATURE_INCOMPAT_64BIT)) { 4242 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4243 goto failed_mount_wq; 4244 } 4245 4246 if (!set_journal_csum_feature_set(sb)) { 4247 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4248 "feature set"); 4249 goto failed_mount_wq; 4250 } 4251 4252 /* We have now updated the journal if required, so we can 4253 * validate the data journaling mode. */ 4254 switch (test_opt(sb, DATA_FLAGS)) { 4255 case 0: 4256 /* No mode set, assume a default based on the journal 4257 * capabilities: ORDERED_DATA if the journal can 4258 * cope, else JOURNAL_DATA 4259 */ 4260 if (jbd2_journal_check_available_features 4261 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4262 set_opt(sb, ORDERED_DATA); 4263 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4264 } else { 4265 set_opt(sb, JOURNAL_DATA); 4266 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4267 } 4268 break; 4269 4270 case EXT4_MOUNT_ORDERED_DATA: 4271 case EXT4_MOUNT_WRITEBACK_DATA: 4272 if (!jbd2_journal_check_available_features 4273 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4274 ext4_msg(sb, KERN_ERR, "Journal does not support " 4275 "requested data journaling mode"); 4276 goto failed_mount_wq; 4277 } 4278 default: 4279 break; 4280 } 4281 4282 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4283 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4284 ext4_msg(sb, KERN_ERR, "can't mount with " 4285 "journal_async_commit in data=ordered mode"); 4286 goto failed_mount_wq; 4287 } 4288 4289 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4290 4291 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4292 4293 no_journal: 4294 if (!test_opt(sb, NO_MBCACHE)) { 4295 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4296 if (!sbi->s_ea_block_cache) { 4297 ext4_msg(sb, KERN_ERR, 4298 "Failed to create ea_block_cache"); 4299 goto failed_mount_wq; 4300 } 4301 4302 if (ext4_has_feature_ea_inode(sb)) { 4303 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4304 if (!sbi->s_ea_inode_cache) { 4305 ext4_msg(sb, KERN_ERR, 4306 "Failed to create ea_inode_cache"); 4307 goto failed_mount_wq; 4308 } 4309 } 4310 } 4311 4312 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4313 (blocksize != PAGE_SIZE)) { 4314 ext4_msg(sb, KERN_ERR, 4315 "Unsupported blocksize for fs encryption"); 4316 goto failed_mount_wq; 4317 } 4318 4319 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4320 !ext4_has_feature_encrypt(sb)) { 4321 ext4_set_feature_encrypt(sb); 4322 ext4_commit_super(sb, 1); 4323 } 4324 4325 /* 4326 * Get the # of file system overhead blocks from the 4327 * superblock if present. 4328 */ 4329 if (es->s_overhead_clusters) 4330 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4331 else { 4332 err = ext4_calculate_overhead(sb); 4333 if (err) 4334 goto failed_mount_wq; 4335 } 4336 4337 /* 4338 * The maximum number of concurrent works can be high and 4339 * concurrency isn't really necessary. Limit it to 1. 4340 */ 4341 EXT4_SB(sb)->rsv_conversion_wq = 4342 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4343 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4344 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4345 ret = -ENOMEM; 4346 goto failed_mount4; 4347 } 4348 4349 /* 4350 * The jbd2_journal_load will have done any necessary log recovery, 4351 * so we can safely mount the rest of the filesystem now. 4352 */ 4353 4354 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4355 if (IS_ERR(root)) { 4356 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4357 ret = PTR_ERR(root); 4358 root = NULL; 4359 goto failed_mount4; 4360 } 4361 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4362 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4363 iput(root); 4364 goto failed_mount4; 4365 } 4366 sb->s_root = d_make_root(root); 4367 if (!sb->s_root) { 4368 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4369 ret = -ENOMEM; 4370 goto failed_mount4; 4371 } 4372 4373 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4374 if (ret == -EROFS) { 4375 sb->s_flags |= SB_RDONLY; 4376 ret = 0; 4377 } else if (ret) 4378 goto failed_mount4a; 4379 4380 /* determine the minimum size of new large inodes, if present */ 4381 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4382 sbi->s_want_extra_isize == 0) { 4383 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4384 EXT4_GOOD_OLD_INODE_SIZE; 4385 if (ext4_has_feature_extra_isize(sb)) { 4386 if (sbi->s_want_extra_isize < 4387 le16_to_cpu(es->s_want_extra_isize)) 4388 sbi->s_want_extra_isize = 4389 le16_to_cpu(es->s_want_extra_isize); 4390 if (sbi->s_want_extra_isize < 4391 le16_to_cpu(es->s_min_extra_isize)) 4392 sbi->s_want_extra_isize = 4393 le16_to_cpu(es->s_min_extra_isize); 4394 } 4395 } 4396 /* Check if enough inode space is available */ 4397 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4398 sbi->s_inode_size) { 4399 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4400 EXT4_GOOD_OLD_INODE_SIZE; 4401 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4402 "available"); 4403 } 4404 4405 ext4_set_resv_clusters(sb); 4406 4407 err = ext4_setup_system_zone(sb); 4408 if (err) { 4409 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4410 "zone (%d)", err); 4411 goto failed_mount4a; 4412 } 4413 4414 ext4_ext_init(sb); 4415 err = ext4_mb_init(sb); 4416 if (err) { 4417 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4418 err); 4419 goto failed_mount5; 4420 } 4421 4422 block = ext4_count_free_clusters(sb); 4423 ext4_free_blocks_count_set(sbi->s_es, 4424 EXT4_C2B(sbi, block)); 4425 ext4_superblock_csum_set(sb); 4426 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4427 GFP_KERNEL); 4428 if (!err) { 4429 unsigned long freei = ext4_count_free_inodes(sb); 4430 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4431 ext4_superblock_csum_set(sb); 4432 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4433 GFP_KERNEL); 4434 } 4435 if (!err) 4436 err = percpu_counter_init(&sbi->s_dirs_counter, 4437 ext4_count_dirs(sb), GFP_KERNEL); 4438 if (!err) 4439 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4440 GFP_KERNEL); 4441 if (!err) 4442 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4443 4444 if (err) { 4445 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4446 goto failed_mount6; 4447 } 4448 4449 if (ext4_has_feature_flex_bg(sb)) 4450 if (!ext4_fill_flex_info(sb)) { 4451 ext4_msg(sb, KERN_ERR, 4452 "unable to initialize " 4453 "flex_bg meta info!"); 4454 goto failed_mount6; 4455 } 4456 4457 err = ext4_register_li_request(sb, first_not_zeroed); 4458 if (err) 4459 goto failed_mount6; 4460 4461 err = ext4_register_sysfs(sb); 4462 if (err) 4463 goto failed_mount7; 4464 4465 #ifdef CONFIG_QUOTA 4466 /* Enable quota usage during mount. */ 4467 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4468 err = ext4_enable_quotas(sb); 4469 if (err) 4470 goto failed_mount8; 4471 } 4472 #endif /* CONFIG_QUOTA */ 4473 4474 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4475 ext4_orphan_cleanup(sb, es); 4476 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4477 if (needs_recovery) { 4478 ext4_msg(sb, KERN_INFO, "recovery complete"); 4479 ext4_mark_recovery_complete(sb, es); 4480 } 4481 if (EXT4_SB(sb)->s_journal) { 4482 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4483 descr = " journalled data mode"; 4484 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4485 descr = " ordered data mode"; 4486 else 4487 descr = " writeback data mode"; 4488 } else 4489 descr = "out journal"; 4490 4491 if (test_opt(sb, DISCARD)) { 4492 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4493 if (!blk_queue_discard(q)) 4494 ext4_msg(sb, KERN_WARNING, 4495 "mounting with \"discard\" option, but " 4496 "the device does not support discard"); 4497 } 4498 4499 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4500 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4501 "Opts: %.*s%s%s", descr, 4502 (int) sizeof(sbi->s_es->s_mount_opts), 4503 sbi->s_es->s_mount_opts, 4504 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4505 4506 if (es->s_error_count) 4507 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4508 4509 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4510 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4511 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4512 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4513 4514 kfree(orig_data); 4515 return 0; 4516 4517 cantfind_ext4: 4518 if (!silent) 4519 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4520 goto failed_mount; 4521 4522 #ifdef CONFIG_QUOTA 4523 failed_mount8: 4524 ext4_unregister_sysfs(sb); 4525 #endif 4526 failed_mount7: 4527 ext4_unregister_li_request(sb); 4528 failed_mount6: 4529 ext4_mb_release(sb); 4530 if (sbi->s_flex_groups) 4531 kvfree(sbi->s_flex_groups); 4532 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4533 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4534 percpu_counter_destroy(&sbi->s_dirs_counter); 4535 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4536 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 4537 failed_mount5: 4538 ext4_ext_release(sb); 4539 ext4_release_system_zone(sb); 4540 failed_mount4a: 4541 dput(sb->s_root); 4542 sb->s_root = NULL; 4543 failed_mount4: 4544 ext4_msg(sb, KERN_ERR, "mount failed"); 4545 if (EXT4_SB(sb)->rsv_conversion_wq) 4546 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4547 failed_mount_wq: 4548 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4549 sbi->s_ea_inode_cache = NULL; 4550 4551 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4552 sbi->s_ea_block_cache = NULL; 4553 4554 if (sbi->s_journal) { 4555 jbd2_journal_destroy(sbi->s_journal); 4556 sbi->s_journal = NULL; 4557 } 4558 failed_mount3a: 4559 ext4_es_unregister_shrinker(sbi); 4560 failed_mount3: 4561 del_timer_sync(&sbi->s_err_report); 4562 if (sbi->s_mmp_tsk) 4563 kthread_stop(sbi->s_mmp_tsk); 4564 failed_mount2: 4565 for (i = 0; i < db_count; i++) 4566 brelse(sbi->s_group_desc[i]); 4567 kvfree(sbi->s_group_desc); 4568 failed_mount: 4569 if (sbi->s_chksum_driver) 4570 crypto_free_shash(sbi->s_chksum_driver); 4571 #ifdef CONFIG_QUOTA 4572 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4573 kfree(sbi->s_qf_names[i]); 4574 #endif 4575 ext4_blkdev_remove(sbi); 4576 brelse(bh); 4577 out_fail: 4578 sb->s_fs_info = NULL; 4579 kfree(sbi->s_blockgroup_lock); 4580 out_free_base: 4581 kfree(sbi); 4582 kfree(orig_data); 4583 fs_put_dax(dax_dev); 4584 return err ? err : ret; 4585 } 4586 4587 /* 4588 * Setup any per-fs journal parameters now. We'll do this both on 4589 * initial mount, once the journal has been initialised but before we've 4590 * done any recovery; and again on any subsequent remount. 4591 */ 4592 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4593 { 4594 struct ext4_sb_info *sbi = EXT4_SB(sb); 4595 4596 journal->j_commit_interval = sbi->s_commit_interval; 4597 journal->j_min_batch_time = sbi->s_min_batch_time; 4598 journal->j_max_batch_time = sbi->s_max_batch_time; 4599 4600 write_lock(&journal->j_state_lock); 4601 if (test_opt(sb, BARRIER)) 4602 journal->j_flags |= JBD2_BARRIER; 4603 else 4604 journal->j_flags &= ~JBD2_BARRIER; 4605 if (test_opt(sb, DATA_ERR_ABORT)) 4606 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4607 else 4608 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4609 write_unlock(&journal->j_state_lock); 4610 } 4611 4612 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4613 unsigned int journal_inum) 4614 { 4615 struct inode *journal_inode; 4616 4617 /* 4618 * Test for the existence of a valid inode on disk. Bad things 4619 * happen if we iget() an unused inode, as the subsequent iput() 4620 * will try to delete it. 4621 */ 4622 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4623 if (IS_ERR(journal_inode)) { 4624 ext4_msg(sb, KERN_ERR, "no journal found"); 4625 return NULL; 4626 } 4627 if (!journal_inode->i_nlink) { 4628 make_bad_inode(journal_inode); 4629 iput(journal_inode); 4630 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4631 return NULL; 4632 } 4633 4634 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4635 journal_inode, journal_inode->i_size); 4636 if (!S_ISREG(journal_inode->i_mode)) { 4637 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4638 iput(journal_inode); 4639 return NULL; 4640 } 4641 return journal_inode; 4642 } 4643 4644 static journal_t *ext4_get_journal(struct super_block *sb, 4645 unsigned int journal_inum) 4646 { 4647 struct inode *journal_inode; 4648 journal_t *journal; 4649 4650 BUG_ON(!ext4_has_feature_journal(sb)); 4651 4652 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4653 if (!journal_inode) 4654 return NULL; 4655 4656 journal = jbd2_journal_init_inode(journal_inode); 4657 if (!journal) { 4658 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4659 iput(journal_inode); 4660 return NULL; 4661 } 4662 journal->j_private = sb; 4663 ext4_init_journal_params(sb, journal); 4664 return journal; 4665 } 4666 4667 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4668 dev_t j_dev) 4669 { 4670 struct buffer_head *bh; 4671 journal_t *journal; 4672 ext4_fsblk_t start; 4673 ext4_fsblk_t len; 4674 int hblock, blocksize; 4675 ext4_fsblk_t sb_block; 4676 unsigned long offset; 4677 struct ext4_super_block *es; 4678 struct block_device *bdev; 4679 4680 BUG_ON(!ext4_has_feature_journal(sb)); 4681 4682 bdev = ext4_blkdev_get(j_dev, sb); 4683 if (bdev == NULL) 4684 return NULL; 4685 4686 blocksize = sb->s_blocksize; 4687 hblock = bdev_logical_block_size(bdev); 4688 if (blocksize < hblock) { 4689 ext4_msg(sb, KERN_ERR, 4690 "blocksize too small for journal device"); 4691 goto out_bdev; 4692 } 4693 4694 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4695 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4696 set_blocksize(bdev, blocksize); 4697 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4698 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4699 "external journal"); 4700 goto out_bdev; 4701 } 4702 4703 es = (struct ext4_super_block *) (bh->b_data + offset); 4704 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4705 !(le32_to_cpu(es->s_feature_incompat) & 4706 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4707 ext4_msg(sb, KERN_ERR, "external journal has " 4708 "bad superblock"); 4709 brelse(bh); 4710 goto out_bdev; 4711 } 4712 4713 if ((le32_to_cpu(es->s_feature_ro_compat) & 4714 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4715 es->s_checksum != ext4_superblock_csum(sb, es)) { 4716 ext4_msg(sb, KERN_ERR, "external journal has " 4717 "corrupt superblock"); 4718 brelse(bh); 4719 goto out_bdev; 4720 } 4721 4722 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4723 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4724 brelse(bh); 4725 goto out_bdev; 4726 } 4727 4728 len = ext4_blocks_count(es); 4729 start = sb_block + 1; 4730 brelse(bh); /* we're done with the superblock */ 4731 4732 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4733 start, len, blocksize); 4734 if (!journal) { 4735 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4736 goto out_bdev; 4737 } 4738 journal->j_private = sb; 4739 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4740 wait_on_buffer(journal->j_sb_buffer); 4741 if (!buffer_uptodate(journal->j_sb_buffer)) { 4742 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4743 goto out_journal; 4744 } 4745 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4746 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4747 "user (unsupported) - %d", 4748 be32_to_cpu(journal->j_superblock->s_nr_users)); 4749 goto out_journal; 4750 } 4751 EXT4_SB(sb)->journal_bdev = bdev; 4752 ext4_init_journal_params(sb, journal); 4753 return journal; 4754 4755 out_journal: 4756 jbd2_journal_destroy(journal); 4757 out_bdev: 4758 ext4_blkdev_put(bdev); 4759 return NULL; 4760 } 4761 4762 static int ext4_load_journal(struct super_block *sb, 4763 struct ext4_super_block *es, 4764 unsigned long journal_devnum) 4765 { 4766 journal_t *journal; 4767 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4768 dev_t journal_dev; 4769 int err = 0; 4770 int really_read_only; 4771 4772 BUG_ON(!ext4_has_feature_journal(sb)); 4773 4774 if (journal_devnum && 4775 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4776 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4777 "numbers have changed"); 4778 journal_dev = new_decode_dev(journal_devnum); 4779 } else 4780 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4781 4782 really_read_only = bdev_read_only(sb->s_bdev); 4783 4784 /* 4785 * Are we loading a blank journal or performing recovery after a 4786 * crash? For recovery, we need to check in advance whether we 4787 * can get read-write access to the device. 4788 */ 4789 if (ext4_has_feature_journal_needs_recovery(sb)) { 4790 if (sb_rdonly(sb)) { 4791 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4792 "required on readonly filesystem"); 4793 if (really_read_only) { 4794 ext4_msg(sb, KERN_ERR, "write access " 4795 "unavailable, cannot proceed " 4796 "(try mounting with noload)"); 4797 return -EROFS; 4798 } 4799 ext4_msg(sb, KERN_INFO, "write access will " 4800 "be enabled during recovery"); 4801 } 4802 } 4803 4804 if (journal_inum && journal_dev) { 4805 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4806 "and inode journals!"); 4807 return -EINVAL; 4808 } 4809 4810 if (journal_inum) { 4811 if (!(journal = ext4_get_journal(sb, journal_inum))) 4812 return -EINVAL; 4813 } else { 4814 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4815 return -EINVAL; 4816 } 4817 4818 if (!(journal->j_flags & JBD2_BARRIER)) 4819 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4820 4821 if (!ext4_has_feature_journal_needs_recovery(sb)) 4822 err = jbd2_journal_wipe(journal, !really_read_only); 4823 if (!err) { 4824 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4825 if (save) 4826 memcpy(save, ((char *) es) + 4827 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4828 err = jbd2_journal_load(journal); 4829 if (save) 4830 memcpy(((char *) es) + EXT4_S_ERR_START, 4831 save, EXT4_S_ERR_LEN); 4832 kfree(save); 4833 } 4834 4835 if (err) { 4836 ext4_msg(sb, KERN_ERR, "error loading journal"); 4837 jbd2_journal_destroy(journal); 4838 return err; 4839 } 4840 4841 EXT4_SB(sb)->s_journal = journal; 4842 ext4_clear_journal_err(sb, es); 4843 4844 if (!really_read_only && journal_devnum && 4845 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4846 es->s_journal_dev = cpu_to_le32(journal_devnum); 4847 4848 /* Make sure we flush the recovery flag to disk. */ 4849 ext4_commit_super(sb, 1); 4850 } 4851 4852 return 0; 4853 } 4854 4855 static int ext4_commit_super(struct super_block *sb, int sync) 4856 { 4857 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4858 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4859 int error = 0; 4860 4861 if (!sbh || block_device_ejected(sb)) 4862 return error; 4863 4864 /* 4865 * The superblock bh should be mapped, but it might not be if the 4866 * device was hot-removed. Not much we can do but fail the I/O. 4867 */ 4868 if (!buffer_mapped(sbh)) 4869 return error; 4870 4871 /* 4872 * If the file system is mounted read-only, don't update the 4873 * superblock write time. This avoids updating the superblock 4874 * write time when we are mounting the root file system 4875 * read/only but we need to replay the journal; at that point, 4876 * for people who are east of GMT and who make their clock 4877 * tick in localtime for Windows bug-for-bug compatibility, 4878 * the clock is set in the future, and this will cause e2fsck 4879 * to complain and force a full file system check. 4880 */ 4881 if (!(sb->s_flags & SB_RDONLY)) 4882 ext4_update_tstamp(es, s_wtime); 4883 if (sb->s_bdev->bd_part) 4884 es->s_kbytes_written = 4885 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4886 ((part_stat_read(sb->s_bdev->bd_part, 4887 sectors[STAT_WRITE]) - 4888 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4889 else 4890 es->s_kbytes_written = 4891 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4892 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4893 ext4_free_blocks_count_set(es, 4894 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4895 &EXT4_SB(sb)->s_freeclusters_counter))); 4896 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4897 es->s_free_inodes_count = 4898 cpu_to_le32(percpu_counter_sum_positive( 4899 &EXT4_SB(sb)->s_freeinodes_counter)); 4900 BUFFER_TRACE(sbh, "marking dirty"); 4901 ext4_superblock_csum_set(sb); 4902 if (sync) 4903 lock_buffer(sbh); 4904 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 4905 /* 4906 * Oh, dear. A previous attempt to write the 4907 * superblock failed. This could happen because the 4908 * USB device was yanked out. Or it could happen to 4909 * be a transient write error and maybe the block will 4910 * be remapped. Nothing we can do but to retry the 4911 * write and hope for the best. 4912 */ 4913 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4914 "superblock detected"); 4915 clear_buffer_write_io_error(sbh); 4916 set_buffer_uptodate(sbh); 4917 } 4918 mark_buffer_dirty(sbh); 4919 if (sync) { 4920 unlock_buffer(sbh); 4921 error = __sync_dirty_buffer(sbh, 4922 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4923 if (buffer_write_io_error(sbh)) { 4924 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4925 "superblock"); 4926 clear_buffer_write_io_error(sbh); 4927 set_buffer_uptodate(sbh); 4928 } 4929 } 4930 return error; 4931 } 4932 4933 /* 4934 * Have we just finished recovery? If so, and if we are mounting (or 4935 * remounting) the filesystem readonly, then we will end up with a 4936 * consistent fs on disk. Record that fact. 4937 */ 4938 static void ext4_mark_recovery_complete(struct super_block *sb, 4939 struct ext4_super_block *es) 4940 { 4941 journal_t *journal = EXT4_SB(sb)->s_journal; 4942 4943 if (!ext4_has_feature_journal(sb)) { 4944 BUG_ON(journal != NULL); 4945 return; 4946 } 4947 jbd2_journal_lock_updates(journal); 4948 if (jbd2_journal_flush(journal) < 0) 4949 goto out; 4950 4951 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4952 ext4_clear_feature_journal_needs_recovery(sb); 4953 ext4_commit_super(sb, 1); 4954 } 4955 4956 out: 4957 jbd2_journal_unlock_updates(journal); 4958 } 4959 4960 /* 4961 * If we are mounting (or read-write remounting) a filesystem whose journal 4962 * has recorded an error from a previous lifetime, move that error to the 4963 * main filesystem now. 4964 */ 4965 static void ext4_clear_journal_err(struct super_block *sb, 4966 struct ext4_super_block *es) 4967 { 4968 journal_t *journal; 4969 int j_errno; 4970 const char *errstr; 4971 4972 BUG_ON(!ext4_has_feature_journal(sb)); 4973 4974 journal = EXT4_SB(sb)->s_journal; 4975 4976 /* 4977 * Now check for any error status which may have been recorded in the 4978 * journal by a prior ext4_error() or ext4_abort() 4979 */ 4980 4981 j_errno = jbd2_journal_errno(journal); 4982 if (j_errno) { 4983 char nbuf[16]; 4984 4985 errstr = ext4_decode_error(sb, j_errno, nbuf); 4986 ext4_warning(sb, "Filesystem error recorded " 4987 "from previous mount: %s", errstr); 4988 ext4_warning(sb, "Marking fs in need of filesystem check."); 4989 4990 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4991 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4992 ext4_commit_super(sb, 1); 4993 4994 jbd2_journal_clear_err(journal); 4995 jbd2_journal_update_sb_errno(journal); 4996 } 4997 } 4998 4999 /* 5000 * Force the running and committing transactions to commit, 5001 * and wait on the commit. 5002 */ 5003 int ext4_force_commit(struct super_block *sb) 5004 { 5005 journal_t *journal; 5006 5007 if (sb_rdonly(sb)) 5008 return 0; 5009 5010 journal = EXT4_SB(sb)->s_journal; 5011 return ext4_journal_force_commit(journal); 5012 } 5013 5014 static int ext4_sync_fs(struct super_block *sb, int wait) 5015 { 5016 int ret = 0; 5017 tid_t target; 5018 bool needs_barrier = false; 5019 struct ext4_sb_info *sbi = EXT4_SB(sb); 5020 5021 if (unlikely(ext4_forced_shutdown(sbi))) 5022 return 0; 5023 5024 trace_ext4_sync_fs(sb, wait); 5025 flush_workqueue(sbi->rsv_conversion_wq); 5026 /* 5027 * Writeback quota in non-journalled quota case - journalled quota has 5028 * no dirty dquots 5029 */ 5030 dquot_writeback_dquots(sb, -1); 5031 /* 5032 * Data writeback is possible w/o journal transaction, so barrier must 5033 * being sent at the end of the function. But we can skip it if 5034 * transaction_commit will do it for us. 5035 */ 5036 if (sbi->s_journal) { 5037 target = jbd2_get_latest_transaction(sbi->s_journal); 5038 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5039 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5040 needs_barrier = true; 5041 5042 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5043 if (wait) 5044 ret = jbd2_log_wait_commit(sbi->s_journal, 5045 target); 5046 } 5047 } else if (wait && test_opt(sb, BARRIER)) 5048 needs_barrier = true; 5049 if (needs_barrier) { 5050 int err; 5051 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5052 if (!ret) 5053 ret = err; 5054 } 5055 5056 return ret; 5057 } 5058 5059 /* 5060 * LVM calls this function before a (read-only) snapshot is created. This 5061 * gives us a chance to flush the journal completely and mark the fs clean. 5062 * 5063 * Note that only this function cannot bring a filesystem to be in a clean 5064 * state independently. It relies on upper layer to stop all data & metadata 5065 * modifications. 5066 */ 5067 static int ext4_freeze(struct super_block *sb) 5068 { 5069 int error = 0; 5070 journal_t *journal; 5071 5072 if (sb_rdonly(sb)) 5073 return 0; 5074 5075 journal = EXT4_SB(sb)->s_journal; 5076 5077 if (journal) { 5078 /* Now we set up the journal barrier. */ 5079 jbd2_journal_lock_updates(journal); 5080 5081 /* 5082 * Don't clear the needs_recovery flag if we failed to 5083 * flush the journal. 5084 */ 5085 error = jbd2_journal_flush(journal); 5086 if (error < 0) 5087 goto out; 5088 5089 /* Journal blocked and flushed, clear needs_recovery flag. */ 5090 ext4_clear_feature_journal_needs_recovery(sb); 5091 } 5092 5093 error = ext4_commit_super(sb, 1); 5094 out: 5095 if (journal) 5096 /* we rely on upper layer to stop further updates */ 5097 jbd2_journal_unlock_updates(journal); 5098 return error; 5099 } 5100 5101 /* 5102 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5103 * flag here, even though the filesystem is not technically dirty yet. 5104 */ 5105 static int ext4_unfreeze(struct super_block *sb) 5106 { 5107 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5108 return 0; 5109 5110 if (EXT4_SB(sb)->s_journal) { 5111 /* Reset the needs_recovery flag before the fs is unlocked. */ 5112 ext4_set_feature_journal_needs_recovery(sb); 5113 } 5114 5115 ext4_commit_super(sb, 1); 5116 return 0; 5117 } 5118 5119 /* 5120 * Structure to save mount options for ext4_remount's benefit 5121 */ 5122 struct ext4_mount_options { 5123 unsigned long s_mount_opt; 5124 unsigned long s_mount_opt2; 5125 kuid_t s_resuid; 5126 kgid_t s_resgid; 5127 unsigned long s_commit_interval; 5128 u32 s_min_batch_time, s_max_batch_time; 5129 #ifdef CONFIG_QUOTA 5130 int s_jquota_fmt; 5131 char *s_qf_names[EXT4_MAXQUOTAS]; 5132 #endif 5133 }; 5134 5135 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5136 { 5137 struct ext4_super_block *es; 5138 struct ext4_sb_info *sbi = EXT4_SB(sb); 5139 unsigned long old_sb_flags; 5140 struct ext4_mount_options old_opts; 5141 int enable_quota = 0; 5142 ext4_group_t g; 5143 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5144 int err = 0; 5145 #ifdef CONFIG_QUOTA 5146 int i, j; 5147 char *to_free[EXT4_MAXQUOTAS]; 5148 #endif 5149 char *orig_data = kstrdup(data, GFP_KERNEL); 5150 5151 if (data && !orig_data) 5152 return -ENOMEM; 5153 5154 /* Store the original options */ 5155 old_sb_flags = sb->s_flags; 5156 old_opts.s_mount_opt = sbi->s_mount_opt; 5157 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5158 old_opts.s_resuid = sbi->s_resuid; 5159 old_opts.s_resgid = sbi->s_resgid; 5160 old_opts.s_commit_interval = sbi->s_commit_interval; 5161 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5162 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5163 #ifdef CONFIG_QUOTA 5164 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5165 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5166 if (sbi->s_qf_names[i]) { 5167 char *qf_name = get_qf_name(sb, sbi, i); 5168 5169 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5170 if (!old_opts.s_qf_names[i]) { 5171 for (j = 0; j < i; j++) 5172 kfree(old_opts.s_qf_names[j]); 5173 kfree(orig_data); 5174 return -ENOMEM; 5175 } 5176 } else 5177 old_opts.s_qf_names[i] = NULL; 5178 #endif 5179 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5180 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5181 5182 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5183 err = -EINVAL; 5184 goto restore_opts; 5185 } 5186 5187 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5188 test_opt(sb, JOURNAL_CHECKSUM)) { 5189 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5190 "during remount not supported; ignoring"); 5191 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5192 } 5193 5194 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5195 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5196 ext4_msg(sb, KERN_ERR, "can't mount with " 5197 "both data=journal and delalloc"); 5198 err = -EINVAL; 5199 goto restore_opts; 5200 } 5201 if (test_opt(sb, DIOREAD_NOLOCK)) { 5202 ext4_msg(sb, KERN_ERR, "can't mount with " 5203 "both data=journal and dioread_nolock"); 5204 err = -EINVAL; 5205 goto restore_opts; 5206 } 5207 if (test_opt(sb, DAX)) { 5208 ext4_msg(sb, KERN_ERR, "can't mount with " 5209 "both data=journal and dax"); 5210 err = -EINVAL; 5211 goto restore_opts; 5212 } 5213 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5214 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5215 ext4_msg(sb, KERN_ERR, "can't mount with " 5216 "journal_async_commit in data=ordered mode"); 5217 err = -EINVAL; 5218 goto restore_opts; 5219 } 5220 } 5221 5222 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5223 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5224 err = -EINVAL; 5225 goto restore_opts; 5226 } 5227 5228 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5229 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5230 "dax flag with busy inodes while remounting"); 5231 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5232 } 5233 5234 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5235 ext4_abort(sb, "Abort forced by user"); 5236 5237 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5238 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5239 5240 es = sbi->s_es; 5241 5242 if (sbi->s_journal) { 5243 ext4_init_journal_params(sb, sbi->s_journal); 5244 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5245 } 5246 5247 if (*flags & SB_LAZYTIME) 5248 sb->s_flags |= SB_LAZYTIME; 5249 5250 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5251 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5252 err = -EROFS; 5253 goto restore_opts; 5254 } 5255 5256 if (*flags & SB_RDONLY) { 5257 err = sync_filesystem(sb); 5258 if (err < 0) 5259 goto restore_opts; 5260 err = dquot_suspend(sb, -1); 5261 if (err < 0) 5262 goto restore_opts; 5263 5264 /* 5265 * First of all, the unconditional stuff we have to do 5266 * to disable replay of the journal when we next remount 5267 */ 5268 sb->s_flags |= SB_RDONLY; 5269 5270 /* 5271 * OK, test if we are remounting a valid rw partition 5272 * readonly, and if so set the rdonly flag and then 5273 * mark the partition as valid again. 5274 */ 5275 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5276 (sbi->s_mount_state & EXT4_VALID_FS)) 5277 es->s_state = cpu_to_le16(sbi->s_mount_state); 5278 5279 if (sbi->s_journal) 5280 ext4_mark_recovery_complete(sb, es); 5281 if (sbi->s_mmp_tsk) 5282 kthread_stop(sbi->s_mmp_tsk); 5283 } else { 5284 /* Make sure we can mount this feature set readwrite */ 5285 if (ext4_has_feature_readonly(sb) || 5286 !ext4_feature_set_ok(sb, 0)) { 5287 err = -EROFS; 5288 goto restore_opts; 5289 } 5290 /* 5291 * Make sure the group descriptor checksums 5292 * are sane. If they aren't, refuse to remount r/w. 5293 */ 5294 for (g = 0; g < sbi->s_groups_count; g++) { 5295 struct ext4_group_desc *gdp = 5296 ext4_get_group_desc(sb, g, NULL); 5297 5298 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5299 ext4_msg(sb, KERN_ERR, 5300 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5301 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5302 le16_to_cpu(gdp->bg_checksum)); 5303 err = -EFSBADCRC; 5304 goto restore_opts; 5305 } 5306 } 5307 5308 /* 5309 * If we have an unprocessed orphan list hanging 5310 * around from a previously readonly bdev mount, 5311 * require a full umount/remount for now. 5312 */ 5313 if (es->s_last_orphan) { 5314 ext4_msg(sb, KERN_WARNING, "Couldn't " 5315 "remount RDWR because of unprocessed " 5316 "orphan inode list. Please " 5317 "umount/remount instead"); 5318 err = -EINVAL; 5319 goto restore_opts; 5320 } 5321 5322 /* 5323 * Mounting a RDONLY partition read-write, so reread 5324 * and store the current valid flag. (It may have 5325 * been changed by e2fsck since we originally mounted 5326 * the partition.) 5327 */ 5328 if (sbi->s_journal) 5329 ext4_clear_journal_err(sb, es); 5330 sbi->s_mount_state = le16_to_cpu(es->s_state); 5331 5332 err = ext4_setup_super(sb, es, 0); 5333 if (err) 5334 goto restore_opts; 5335 5336 sb->s_flags &= ~SB_RDONLY; 5337 if (ext4_has_feature_mmp(sb)) 5338 if (ext4_multi_mount_protect(sb, 5339 le64_to_cpu(es->s_mmp_block))) { 5340 err = -EROFS; 5341 goto restore_opts; 5342 } 5343 enable_quota = 1; 5344 } 5345 } 5346 5347 /* 5348 * Reinitialize lazy itable initialization thread based on 5349 * current settings 5350 */ 5351 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5352 ext4_unregister_li_request(sb); 5353 else { 5354 ext4_group_t first_not_zeroed; 5355 first_not_zeroed = ext4_has_uninit_itable(sb); 5356 ext4_register_li_request(sb, first_not_zeroed); 5357 } 5358 5359 ext4_setup_system_zone(sb); 5360 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5361 err = ext4_commit_super(sb, 1); 5362 if (err) 5363 goto restore_opts; 5364 } 5365 5366 #ifdef CONFIG_QUOTA 5367 /* Release old quota file names */ 5368 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5369 kfree(old_opts.s_qf_names[i]); 5370 if (enable_quota) { 5371 if (sb_any_quota_suspended(sb)) 5372 dquot_resume(sb, -1); 5373 else if (ext4_has_feature_quota(sb)) { 5374 err = ext4_enable_quotas(sb); 5375 if (err) 5376 goto restore_opts; 5377 } 5378 } 5379 #endif 5380 5381 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5382 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5383 kfree(orig_data); 5384 return 0; 5385 5386 restore_opts: 5387 sb->s_flags = old_sb_flags; 5388 sbi->s_mount_opt = old_opts.s_mount_opt; 5389 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5390 sbi->s_resuid = old_opts.s_resuid; 5391 sbi->s_resgid = old_opts.s_resgid; 5392 sbi->s_commit_interval = old_opts.s_commit_interval; 5393 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5394 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5395 #ifdef CONFIG_QUOTA 5396 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5397 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5398 to_free[i] = get_qf_name(sb, sbi, i); 5399 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5400 } 5401 synchronize_rcu(); 5402 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5403 kfree(to_free[i]); 5404 #endif 5405 kfree(orig_data); 5406 return err; 5407 } 5408 5409 #ifdef CONFIG_QUOTA 5410 static int ext4_statfs_project(struct super_block *sb, 5411 kprojid_t projid, struct kstatfs *buf) 5412 { 5413 struct kqid qid; 5414 struct dquot *dquot; 5415 u64 limit; 5416 u64 curblock; 5417 5418 qid = make_kqid_projid(projid); 5419 dquot = dqget(sb, qid); 5420 if (IS_ERR(dquot)) 5421 return PTR_ERR(dquot); 5422 spin_lock(&dquot->dq_dqb_lock); 5423 5424 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5425 dquot->dq_dqb.dqb_bsoftlimit : 5426 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5427 if (limit && buf->f_blocks > limit) { 5428 curblock = (dquot->dq_dqb.dqb_curspace + 5429 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5430 buf->f_blocks = limit; 5431 buf->f_bfree = buf->f_bavail = 5432 (buf->f_blocks > curblock) ? 5433 (buf->f_blocks - curblock) : 0; 5434 } 5435 5436 limit = dquot->dq_dqb.dqb_isoftlimit ? 5437 dquot->dq_dqb.dqb_isoftlimit : 5438 dquot->dq_dqb.dqb_ihardlimit; 5439 if (limit && buf->f_files > limit) { 5440 buf->f_files = limit; 5441 buf->f_ffree = 5442 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5443 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5444 } 5445 5446 spin_unlock(&dquot->dq_dqb_lock); 5447 dqput(dquot); 5448 return 0; 5449 } 5450 #endif 5451 5452 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5453 { 5454 struct super_block *sb = dentry->d_sb; 5455 struct ext4_sb_info *sbi = EXT4_SB(sb); 5456 struct ext4_super_block *es = sbi->s_es; 5457 ext4_fsblk_t overhead = 0, resv_blocks; 5458 u64 fsid; 5459 s64 bfree; 5460 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5461 5462 if (!test_opt(sb, MINIX_DF)) 5463 overhead = sbi->s_overhead; 5464 5465 buf->f_type = EXT4_SUPER_MAGIC; 5466 buf->f_bsize = sb->s_blocksize; 5467 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5468 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5469 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5470 /* prevent underflow in case that few free space is available */ 5471 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5472 buf->f_bavail = buf->f_bfree - 5473 (ext4_r_blocks_count(es) + resv_blocks); 5474 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5475 buf->f_bavail = 0; 5476 buf->f_files = le32_to_cpu(es->s_inodes_count); 5477 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5478 buf->f_namelen = EXT4_NAME_LEN; 5479 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5480 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5481 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5482 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5483 5484 #ifdef CONFIG_QUOTA 5485 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5486 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5487 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5488 #endif 5489 return 0; 5490 } 5491 5492 5493 #ifdef CONFIG_QUOTA 5494 5495 /* 5496 * Helper functions so that transaction is started before we acquire dqio_sem 5497 * to keep correct lock ordering of transaction > dqio_sem 5498 */ 5499 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5500 { 5501 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5502 } 5503 5504 static int ext4_write_dquot(struct dquot *dquot) 5505 { 5506 int ret, err; 5507 handle_t *handle; 5508 struct inode *inode; 5509 5510 inode = dquot_to_inode(dquot); 5511 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5512 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5513 if (IS_ERR(handle)) 5514 return PTR_ERR(handle); 5515 ret = dquot_commit(dquot); 5516 err = ext4_journal_stop(handle); 5517 if (!ret) 5518 ret = err; 5519 return ret; 5520 } 5521 5522 static int ext4_acquire_dquot(struct dquot *dquot) 5523 { 5524 int ret, err; 5525 handle_t *handle; 5526 5527 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5528 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5529 if (IS_ERR(handle)) 5530 return PTR_ERR(handle); 5531 ret = dquot_acquire(dquot); 5532 err = ext4_journal_stop(handle); 5533 if (!ret) 5534 ret = err; 5535 return ret; 5536 } 5537 5538 static int ext4_release_dquot(struct dquot *dquot) 5539 { 5540 int ret, err; 5541 handle_t *handle; 5542 5543 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5544 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5545 if (IS_ERR(handle)) { 5546 /* Release dquot anyway to avoid endless cycle in dqput() */ 5547 dquot_release(dquot); 5548 return PTR_ERR(handle); 5549 } 5550 ret = dquot_release(dquot); 5551 err = ext4_journal_stop(handle); 5552 if (!ret) 5553 ret = err; 5554 return ret; 5555 } 5556 5557 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5558 { 5559 struct super_block *sb = dquot->dq_sb; 5560 struct ext4_sb_info *sbi = EXT4_SB(sb); 5561 5562 /* Are we journaling quotas? */ 5563 if (ext4_has_feature_quota(sb) || 5564 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5565 dquot_mark_dquot_dirty(dquot); 5566 return ext4_write_dquot(dquot); 5567 } else { 5568 return dquot_mark_dquot_dirty(dquot); 5569 } 5570 } 5571 5572 static int ext4_write_info(struct super_block *sb, int type) 5573 { 5574 int ret, err; 5575 handle_t *handle; 5576 5577 /* Data block + inode block */ 5578 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5579 if (IS_ERR(handle)) 5580 return PTR_ERR(handle); 5581 ret = dquot_commit_info(sb, type); 5582 err = ext4_journal_stop(handle); 5583 if (!ret) 5584 ret = err; 5585 return ret; 5586 } 5587 5588 /* 5589 * Turn on quotas during mount time - we need to find 5590 * the quota file and such... 5591 */ 5592 static int ext4_quota_on_mount(struct super_block *sb, int type) 5593 { 5594 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5595 EXT4_SB(sb)->s_jquota_fmt, type); 5596 } 5597 5598 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5599 { 5600 struct ext4_inode_info *ei = EXT4_I(inode); 5601 5602 /* The first argument of lockdep_set_subclass has to be 5603 * *exactly* the same as the argument to init_rwsem() --- in 5604 * this case, in init_once() --- or lockdep gets unhappy 5605 * because the name of the lock is set using the 5606 * stringification of the argument to init_rwsem(). 5607 */ 5608 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5609 lockdep_set_subclass(&ei->i_data_sem, subclass); 5610 } 5611 5612 /* 5613 * Standard function to be called on quota_on 5614 */ 5615 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5616 const struct path *path) 5617 { 5618 int err; 5619 5620 if (!test_opt(sb, QUOTA)) 5621 return -EINVAL; 5622 5623 /* Quotafile not on the same filesystem? */ 5624 if (path->dentry->d_sb != sb) 5625 return -EXDEV; 5626 /* Journaling quota? */ 5627 if (EXT4_SB(sb)->s_qf_names[type]) { 5628 /* Quotafile not in fs root? */ 5629 if (path->dentry->d_parent != sb->s_root) 5630 ext4_msg(sb, KERN_WARNING, 5631 "Quota file not on filesystem root. " 5632 "Journaled quota will not work"); 5633 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5634 } else { 5635 /* 5636 * Clear the flag just in case mount options changed since 5637 * last time. 5638 */ 5639 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5640 } 5641 5642 /* 5643 * When we journal data on quota file, we have to flush journal to see 5644 * all updates to the file when we bypass pagecache... 5645 */ 5646 if (EXT4_SB(sb)->s_journal && 5647 ext4_should_journal_data(d_inode(path->dentry))) { 5648 /* 5649 * We don't need to lock updates but journal_flush() could 5650 * otherwise be livelocked... 5651 */ 5652 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5653 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5654 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5655 if (err) 5656 return err; 5657 } 5658 5659 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5660 err = dquot_quota_on(sb, type, format_id, path); 5661 if (err) { 5662 lockdep_set_quota_inode(path->dentry->d_inode, 5663 I_DATA_SEM_NORMAL); 5664 } else { 5665 struct inode *inode = d_inode(path->dentry); 5666 handle_t *handle; 5667 5668 /* 5669 * Set inode flags to prevent userspace from messing with quota 5670 * files. If this fails, we return success anyway since quotas 5671 * are already enabled and this is not a hard failure. 5672 */ 5673 inode_lock(inode); 5674 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5675 if (IS_ERR(handle)) 5676 goto unlock_inode; 5677 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5678 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5679 S_NOATIME | S_IMMUTABLE); 5680 ext4_mark_inode_dirty(handle, inode); 5681 ext4_journal_stop(handle); 5682 unlock_inode: 5683 inode_unlock(inode); 5684 } 5685 return err; 5686 } 5687 5688 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5689 unsigned int flags) 5690 { 5691 int err; 5692 struct inode *qf_inode; 5693 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5694 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5695 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5696 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5697 }; 5698 5699 BUG_ON(!ext4_has_feature_quota(sb)); 5700 5701 if (!qf_inums[type]) 5702 return -EPERM; 5703 5704 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5705 if (IS_ERR(qf_inode)) { 5706 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5707 return PTR_ERR(qf_inode); 5708 } 5709 5710 /* Don't account quota for quota files to avoid recursion */ 5711 qf_inode->i_flags |= S_NOQUOTA; 5712 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5713 err = dquot_enable(qf_inode, type, format_id, flags); 5714 if (err) 5715 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5716 iput(qf_inode); 5717 5718 return err; 5719 } 5720 5721 /* Enable usage tracking for all quota types. */ 5722 static int ext4_enable_quotas(struct super_block *sb) 5723 { 5724 int type, err = 0; 5725 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5726 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5727 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5728 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5729 }; 5730 bool quota_mopt[EXT4_MAXQUOTAS] = { 5731 test_opt(sb, USRQUOTA), 5732 test_opt(sb, GRPQUOTA), 5733 test_opt(sb, PRJQUOTA), 5734 }; 5735 5736 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5737 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5738 if (qf_inums[type]) { 5739 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5740 DQUOT_USAGE_ENABLED | 5741 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5742 if (err) { 5743 ext4_warning(sb, 5744 "Failed to enable quota tracking " 5745 "(type=%d, err=%d). Please run " 5746 "e2fsck to fix.", type, err); 5747 for (type--; type >= 0; type--) 5748 dquot_quota_off(sb, type); 5749 5750 return err; 5751 } 5752 } 5753 } 5754 return 0; 5755 } 5756 5757 static int ext4_quota_off(struct super_block *sb, int type) 5758 { 5759 struct inode *inode = sb_dqopt(sb)->files[type]; 5760 handle_t *handle; 5761 int err; 5762 5763 /* Force all delayed allocation blocks to be allocated. 5764 * Caller already holds s_umount sem */ 5765 if (test_opt(sb, DELALLOC)) 5766 sync_filesystem(sb); 5767 5768 if (!inode || !igrab(inode)) 5769 goto out; 5770 5771 err = dquot_quota_off(sb, type); 5772 if (err || ext4_has_feature_quota(sb)) 5773 goto out_put; 5774 5775 inode_lock(inode); 5776 /* 5777 * Update modification times of quota files when userspace can 5778 * start looking at them. If we fail, we return success anyway since 5779 * this is not a hard failure and quotas are already disabled. 5780 */ 5781 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5782 if (IS_ERR(handle)) 5783 goto out_unlock; 5784 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5785 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5786 inode->i_mtime = inode->i_ctime = current_time(inode); 5787 ext4_mark_inode_dirty(handle, inode); 5788 ext4_journal_stop(handle); 5789 out_unlock: 5790 inode_unlock(inode); 5791 out_put: 5792 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5793 iput(inode); 5794 return err; 5795 out: 5796 return dquot_quota_off(sb, type); 5797 } 5798 5799 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5800 * acquiring the locks... As quota files are never truncated and quota code 5801 * itself serializes the operations (and no one else should touch the files) 5802 * we don't have to be afraid of races */ 5803 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5804 size_t len, loff_t off) 5805 { 5806 struct inode *inode = sb_dqopt(sb)->files[type]; 5807 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5808 int offset = off & (sb->s_blocksize - 1); 5809 int tocopy; 5810 size_t toread; 5811 struct buffer_head *bh; 5812 loff_t i_size = i_size_read(inode); 5813 5814 if (off > i_size) 5815 return 0; 5816 if (off+len > i_size) 5817 len = i_size-off; 5818 toread = len; 5819 while (toread > 0) { 5820 tocopy = sb->s_blocksize - offset < toread ? 5821 sb->s_blocksize - offset : toread; 5822 bh = ext4_bread(NULL, inode, blk, 0); 5823 if (IS_ERR(bh)) 5824 return PTR_ERR(bh); 5825 if (!bh) /* A hole? */ 5826 memset(data, 0, tocopy); 5827 else 5828 memcpy(data, bh->b_data+offset, tocopy); 5829 brelse(bh); 5830 offset = 0; 5831 toread -= tocopy; 5832 data += tocopy; 5833 blk++; 5834 } 5835 return len; 5836 } 5837 5838 /* Write to quotafile (we know the transaction is already started and has 5839 * enough credits) */ 5840 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5841 const char *data, size_t len, loff_t off) 5842 { 5843 struct inode *inode = sb_dqopt(sb)->files[type]; 5844 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5845 int err, offset = off & (sb->s_blocksize - 1); 5846 int retries = 0; 5847 struct buffer_head *bh; 5848 handle_t *handle = journal_current_handle(); 5849 5850 if (EXT4_SB(sb)->s_journal && !handle) { 5851 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5852 " cancelled because transaction is not started", 5853 (unsigned long long)off, (unsigned long long)len); 5854 return -EIO; 5855 } 5856 /* 5857 * Since we account only one data block in transaction credits, 5858 * then it is impossible to cross a block boundary. 5859 */ 5860 if (sb->s_blocksize - offset < len) { 5861 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5862 " cancelled because not block aligned", 5863 (unsigned long long)off, (unsigned long long)len); 5864 return -EIO; 5865 } 5866 5867 do { 5868 bh = ext4_bread(handle, inode, blk, 5869 EXT4_GET_BLOCKS_CREATE | 5870 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5871 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5872 ext4_should_retry_alloc(inode->i_sb, &retries)); 5873 if (IS_ERR(bh)) 5874 return PTR_ERR(bh); 5875 if (!bh) 5876 goto out; 5877 BUFFER_TRACE(bh, "get write access"); 5878 err = ext4_journal_get_write_access(handle, bh); 5879 if (err) { 5880 brelse(bh); 5881 return err; 5882 } 5883 lock_buffer(bh); 5884 memcpy(bh->b_data+offset, data, len); 5885 flush_dcache_page(bh->b_page); 5886 unlock_buffer(bh); 5887 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5888 brelse(bh); 5889 out: 5890 if (inode->i_size < off + len) { 5891 i_size_write(inode, off + len); 5892 EXT4_I(inode)->i_disksize = inode->i_size; 5893 ext4_mark_inode_dirty(handle, inode); 5894 } 5895 return len; 5896 } 5897 5898 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5899 { 5900 const struct quota_format_ops *ops; 5901 5902 if (!sb_has_quota_loaded(sb, qid->type)) 5903 return -ESRCH; 5904 ops = sb_dqopt(sb)->ops[qid->type]; 5905 if (!ops || !ops->get_next_id) 5906 return -ENOSYS; 5907 return dquot_get_next_id(sb, qid); 5908 } 5909 #endif 5910 5911 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5912 const char *dev_name, void *data) 5913 { 5914 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5915 } 5916 5917 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5918 static inline void register_as_ext2(void) 5919 { 5920 int err = register_filesystem(&ext2_fs_type); 5921 if (err) 5922 printk(KERN_WARNING 5923 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5924 } 5925 5926 static inline void unregister_as_ext2(void) 5927 { 5928 unregister_filesystem(&ext2_fs_type); 5929 } 5930 5931 static inline int ext2_feature_set_ok(struct super_block *sb) 5932 { 5933 if (ext4_has_unknown_ext2_incompat_features(sb)) 5934 return 0; 5935 if (sb_rdonly(sb)) 5936 return 1; 5937 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5938 return 0; 5939 return 1; 5940 } 5941 #else 5942 static inline void register_as_ext2(void) { } 5943 static inline void unregister_as_ext2(void) { } 5944 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5945 #endif 5946 5947 static inline void register_as_ext3(void) 5948 { 5949 int err = register_filesystem(&ext3_fs_type); 5950 if (err) 5951 printk(KERN_WARNING 5952 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5953 } 5954 5955 static inline void unregister_as_ext3(void) 5956 { 5957 unregister_filesystem(&ext3_fs_type); 5958 } 5959 5960 static inline int ext3_feature_set_ok(struct super_block *sb) 5961 { 5962 if (ext4_has_unknown_ext3_incompat_features(sb)) 5963 return 0; 5964 if (!ext4_has_feature_journal(sb)) 5965 return 0; 5966 if (sb_rdonly(sb)) 5967 return 1; 5968 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5969 return 0; 5970 return 1; 5971 } 5972 5973 static struct file_system_type ext4_fs_type = { 5974 .owner = THIS_MODULE, 5975 .name = "ext4", 5976 .mount = ext4_mount, 5977 .kill_sb = kill_block_super, 5978 .fs_flags = FS_REQUIRES_DEV, 5979 }; 5980 MODULE_ALIAS_FS("ext4"); 5981 5982 /* Shared across all ext4 file systems */ 5983 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5984 5985 static int __init ext4_init_fs(void) 5986 { 5987 int i, err; 5988 5989 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5990 ext4_li_info = NULL; 5991 mutex_init(&ext4_li_mtx); 5992 5993 /* Build-time check for flags consistency */ 5994 ext4_check_flag_values(); 5995 5996 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5997 init_waitqueue_head(&ext4__ioend_wq[i]); 5998 5999 err = ext4_init_es(); 6000 if (err) 6001 return err; 6002 6003 err = ext4_init_pending(); 6004 if (err) 6005 goto out6; 6006 6007 err = ext4_init_pageio(); 6008 if (err) 6009 goto out5; 6010 6011 err = ext4_init_system_zone(); 6012 if (err) 6013 goto out4; 6014 6015 err = ext4_init_sysfs(); 6016 if (err) 6017 goto out3; 6018 6019 err = ext4_init_mballoc(); 6020 if (err) 6021 goto out2; 6022 err = init_inodecache(); 6023 if (err) 6024 goto out1; 6025 register_as_ext3(); 6026 register_as_ext2(); 6027 err = register_filesystem(&ext4_fs_type); 6028 if (err) 6029 goto out; 6030 6031 return 0; 6032 out: 6033 unregister_as_ext2(); 6034 unregister_as_ext3(); 6035 destroy_inodecache(); 6036 out1: 6037 ext4_exit_mballoc(); 6038 out2: 6039 ext4_exit_sysfs(); 6040 out3: 6041 ext4_exit_system_zone(); 6042 out4: 6043 ext4_exit_pageio(); 6044 out5: 6045 ext4_exit_pending(); 6046 out6: 6047 ext4_exit_es(); 6048 6049 return err; 6050 } 6051 6052 static void __exit ext4_exit_fs(void) 6053 { 6054 ext4_destroy_lazyinit_thread(); 6055 unregister_as_ext2(); 6056 unregister_as_ext3(); 6057 unregister_filesystem(&ext4_fs_type); 6058 destroy_inodecache(); 6059 ext4_exit_mballoc(); 6060 ext4_exit_sysfs(); 6061 ext4_exit_system_zone(); 6062 ext4_exit_pageio(); 6063 ext4_exit_es(); 6064 ext4_exit_pending(); 6065 } 6066 6067 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6068 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6069 MODULE_LICENSE("GPL"); 6070 MODULE_SOFTDEP("pre: crc32c"); 6071 module_init(ext4_init_fs) 6072 module_exit(ext4_exit_fs) 6073