1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io) 165 { 166 /* 167 * buffer's verified bit is no longer valid after reading from 168 * disk again due to write out error, clear it to make sure we 169 * recheck the buffer contents. 170 */ 171 clear_buffer_verified(bh); 172 173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 174 get_bh(bh); 175 submit_bh(REQ_OP_READ | op_flags, bh); 176 } 177 178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 179 bh_end_io_t *end_io) 180 { 181 BUG_ON(!buffer_locked(bh)); 182 183 if (ext4_buffer_uptodate(bh)) { 184 unlock_buffer(bh); 185 return; 186 } 187 __ext4_read_bh(bh, op_flags, end_io); 188 } 189 190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 191 { 192 BUG_ON(!buffer_locked(bh)); 193 194 if (ext4_buffer_uptodate(bh)) { 195 unlock_buffer(bh); 196 return 0; 197 } 198 199 __ext4_read_bh(bh, op_flags, end_io); 200 201 wait_on_buffer(bh); 202 if (buffer_uptodate(bh)) 203 return 0; 204 return -EIO; 205 } 206 207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 208 { 209 lock_buffer(bh); 210 if (!wait) { 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 return ext4_read_bh(bh, op_flags, NULL); 215 } 216 217 /* 218 * This works like __bread_gfp() except it uses ERR_PTR for error 219 * returns. Currently with sb_bread it's impossible to distinguish 220 * between ENOMEM and EIO situations (since both result in a NULL 221 * return. 222 */ 223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 224 sector_t block, 225 blk_opf_t op_flags, gfp_t gfp) 226 { 227 struct buffer_head *bh; 228 int ret; 229 230 bh = sb_getblk_gfp(sb, block, gfp); 231 if (bh == NULL) 232 return ERR_PTR(-ENOMEM); 233 if (ext4_buffer_uptodate(bh)) 234 return bh; 235 236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 237 if (ret) { 238 put_bh(bh); 239 return ERR_PTR(ret); 240 } 241 return bh; 242 } 243 244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 245 blk_opf_t op_flags) 246 { 247 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 248 } 249 250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 251 sector_t block) 252 { 253 return __ext4_sb_bread_gfp(sb, block, 0, 0); 254 } 255 256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 257 { 258 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 259 260 if (likely(bh)) { 261 if (trylock_buffer(bh)) 262 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 263 brelse(bh); 264 } 265 } 266 267 static int ext4_verify_csum_type(struct super_block *sb, 268 struct ext4_super_block *es) 269 { 270 if (!ext4_has_feature_metadata_csum(sb)) 271 return 1; 272 273 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 274 } 275 276 __le32 ext4_superblock_csum(struct super_block *sb, 277 struct ext4_super_block *es) 278 { 279 struct ext4_sb_info *sbi = EXT4_SB(sb); 280 int offset = offsetof(struct ext4_super_block, s_checksum); 281 __u32 csum; 282 283 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 284 285 return cpu_to_le32(csum); 286 } 287 288 static int ext4_superblock_csum_verify(struct super_block *sb, 289 struct ext4_super_block *es) 290 { 291 if (!ext4_has_metadata_csum(sb)) 292 return 1; 293 294 return es->s_checksum == ext4_superblock_csum(sb, es); 295 } 296 297 void ext4_superblock_csum_set(struct super_block *sb) 298 { 299 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 300 301 if (!ext4_has_metadata_csum(sb)) 302 return; 303 304 es->s_checksum = ext4_superblock_csum(sb, es); 305 } 306 307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 308 struct ext4_group_desc *bg) 309 { 310 return le32_to_cpu(bg->bg_block_bitmap_lo) | 311 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 312 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 313 } 314 315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 316 struct ext4_group_desc *bg) 317 { 318 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 319 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 320 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 321 } 322 323 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 324 struct ext4_group_desc *bg) 325 { 326 return le32_to_cpu(bg->bg_inode_table_lo) | 327 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 328 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 329 } 330 331 __u32 ext4_free_group_clusters(struct super_block *sb, 332 struct ext4_group_desc *bg) 333 { 334 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 335 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 336 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 337 } 338 339 __u32 ext4_free_inodes_count(struct super_block *sb, 340 struct ext4_group_desc *bg) 341 { 342 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 343 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 344 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 345 } 346 347 __u32 ext4_used_dirs_count(struct super_block *sb, 348 struct ext4_group_desc *bg) 349 { 350 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 351 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 352 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 353 } 354 355 __u32 ext4_itable_unused_count(struct super_block *sb, 356 struct ext4_group_desc *bg) 357 { 358 return le16_to_cpu(bg->bg_itable_unused_lo) | 359 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 360 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 361 } 362 363 void ext4_block_bitmap_set(struct super_block *sb, 364 struct ext4_group_desc *bg, ext4_fsblk_t blk) 365 { 366 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 367 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 368 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 369 } 370 371 void ext4_inode_bitmap_set(struct super_block *sb, 372 struct ext4_group_desc *bg, ext4_fsblk_t blk) 373 { 374 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 375 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 376 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 377 } 378 379 void ext4_inode_table_set(struct super_block *sb, 380 struct ext4_group_desc *bg, ext4_fsblk_t blk) 381 { 382 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 383 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 384 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 385 } 386 387 void ext4_free_group_clusters_set(struct super_block *sb, 388 struct ext4_group_desc *bg, __u32 count) 389 { 390 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 391 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 392 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 393 } 394 395 void ext4_free_inodes_set(struct super_block *sb, 396 struct ext4_group_desc *bg, __u32 count) 397 { 398 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 399 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 400 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 401 } 402 403 void ext4_used_dirs_set(struct super_block *sb, 404 struct ext4_group_desc *bg, __u32 count) 405 { 406 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 407 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 408 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 409 } 410 411 void ext4_itable_unused_set(struct super_block *sb, 412 struct ext4_group_desc *bg, __u32 count) 413 { 414 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 415 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 416 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 417 } 418 419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 420 { 421 now = clamp_val(now, 0, (1ull << 40) - 1); 422 423 *lo = cpu_to_le32(lower_32_bits(now)); 424 *hi = upper_32_bits(now); 425 } 426 427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 428 { 429 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 430 } 431 #define ext4_update_tstamp(es, tstamp) \ 432 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 433 ktime_get_real_seconds()) 434 #define ext4_get_tstamp(es, tstamp) \ 435 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 436 437 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 438 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 439 440 /* 441 * The ext4_maybe_update_superblock() function checks and updates the 442 * superblock if needed. 443 * 444 * This function is designed to update the on-disk superblock only under 445 * certain conditions to prevent excessive disk writes and unnecessary 446 * waking of the disk from sleep. The superblock will be updated if: 447 * 1. More than an hour has passed since the last superblock update, and 448 * 2. More than 16MB have been written since the last superblock update. 449 * 450 * @sb: The superblock 451 */ 452 static void ext4_maybe_update_superblock(struct super_block *sb) 453 { 454 struct ext4_sb_info *sbi = EXT4_SB(sb); 455 struct ext4_super_block *es = sbi->s_es; 456 journal_t *journal = sbi->s_journal; 457 time64_t now; 458 __u64 last_update; 459 __u64 lifetime_write_kbytes; 460 __u64 diff_size; 461 462 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 463 !journal || (journal->j_flags & JBD2_UNMOUNT)) 464 return; 465 466 now = ktime_get_real_seconds(); 467 last_update = ext4_get_tstamp(es, s_wtime); 468 469 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 470 return; 471 472 lifetime_write_kbytes = sbi->s_kbytes_written + 473 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 474 sbi->s_sectors_written_start) >> 1); 475 476 /* Get the number of kilobytes not written to disk to account 477 * for statistics and compare with a multiple of 16 MB. This 478 * is used to determine when the next superblock commit should 479 * occur (i.e. not more often than once per 16MB if there was 480 * less written in an hour). 481 */ 482 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 483 484 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 485 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 486 } 487 488 /* 489 * The del_gendisk() function uninitializes the disk-specific data 490 * structures, including the bdi structure, without telling anyone 491 * else. Once this happens, any attempt to call mark_buffer_dirty() 492 * (for example, by ext4_commit_super), will cause a kernel OOPS. 493 * This is a kludge to prevent these oops until we can put in a proper 494 * hook in del_gendisk() to inform the VFS and file system layers. 495 */ 496 static int block_device_ejected(struct super_block *sb) 497 { 498 struct inode *bd_inode = sb->s_bdev->bd_inode; 499 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 500 501 return bdi->dev == NULL; 502 } 503 504 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 505 { 506 struct super_block *sb = journal->j_private; 507 struct ext4_sb_info *sbi = EXT4_SB(sb); 508 int error = is_journal_aborted(journal); 509 struct ext4_journal_cb_entry *jce; 510 511 BUG_ON(txn->t_state == T_FINISHED); 512 513 ext4_process_freed_data(sb, txn->t_tid); 514 ext4_maybe_update_superblock(sb); 515 516 spin_lock(&sbi->s_md_lock); 517 while (!list_empty(&txn->t_private_list)) { 518 jce = list_entry(txn->t_private_list.next, 519 struct ext4_journal_cb_entry, jce_list); 520 list_del_init(&jce->jce_list); 521 spin_unlock(&sbi->s_md_lock); 522 jce->jce_func(sb, jce, error); 523 spin_lock(&sbi->s_md_lock); 524 } 525 spin_unlock(&sbi->s_md_lock); 526 } 527 528 /* 529 * This writepage callback for write_cache_pages() 530 * takes care of a few cases after page cleaning. 531 * 532 * write_cache_pages() already checks for dirty pages 533 * and calls clear_page_dirty_for_io(), which we want, 534 * to write protect the pages. 535 * 536 * However, we may have to redirty a page (see below.) 537 */ 538 static int ext4_journalled_writepage_callback(struct folio *folio, 539 struct writeback_control *wbc, 540 void *data) 541 { 542 transaction_t *transaction = (transaction_t *) data; 543 struct buffer_head *bh, *head; 544 struct journal_head *jh; 545 546 bh = head = folio_buffers(folio); 547 do { 548 /* 549 * We have to redirty a page in these cases: 550 * 1) If buffer is dirty, it means the page was dirty because it 551 * contains a buffer that needs checkpointing. So the dirty bit 552 * needs to be preserved so that checkpointing writes the buffer 553 * properly. 554 * 2) If buffer is not part of the committing transaction 555 * (we may have just accidentally come across this buffer because 556 * inode range tracking is not exact) or if the currently running 557 * transaction already contains this buffer as well, dirty bit 558 * needs to be preserved so that the buffer gets writeprotected 559 * properly on running transaction's commit. 560 */ 561 jh = bh2jh(bh); 562 if (buffer_dirty(bh) || 563 (jh && (jh->b_transaction != transaction || 564 jh->b_next_transaction))) { 565 folio_redirty_for_writepage(wbc, folio); 566 goto out; 567 } 568 } while ((bh = bh->b_this_page) != head); 569 570 out: 571 return AOP_WRITEPAGE_ACTIVATE; 572 } 573 574 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 575 { 576 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 577 struct writeback_control wbc = { 578 .sync_mode = WB_SYNC_ALL, 579 .nr_to_write = LONG_MAX, 580 .range_start = jinode->i_dirty_start, 581 .range_end = jinode->i_dirty_end, 582 }; 583 584 return write_cache_pages(mapping, &wbc, 585 ext4_journalled_writepage_callback, 586 jinode->i_transaction); 587 } 588 589 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 590 { 591 int ret; 592 593 if (ext4_should_journal_data(jinode->i_vfs_inode)) 594 ret = ext4_journalled_submit_inode_data_buffers(jinode); 595 else 596 ret = ext4_normal_submit_inode_data_buffers(jinode); 597 return ret; 598 } 599 600 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 601 { 602 int ret = 0; 603 604 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 605 ret = jbd2_journal_finish_inode_data_buffers(jinode); 606 607 return ret; 608 } 609 610 static bool system_going_down(void) 611 { 612 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 613 || system_state == SYSTEM_RESTART; 614 } 615 616 struct ext4_err_translation { 617 int code; 618 int errno; 619 }; 620 621 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 622 623 static struct ext4_err_translation err_translation[] = { 624 EXT4_ERR_TRANSLATE(EIO), 625 EXT4_ERR_TRANSLATE(ENOMEM), 626 EXT4_ERR_TRANSLATE(EFSBADCRC), 627 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 628 EXT4_ERR_TRANSLATE(ENOSPC), 629 EXT4_ERR_TRANSLATE(ENOKEY), 630 EXT4_ERR_TRANSLATE(EROFS), 631 EXT4_ERR_TRANSLATE(EFBIG), 632 EXT4_ERR_TRANSLATE(EEXIST), 633 EXT4_ERR_TRANSLATE(ERANGE), 634 EXT4_ERR_TRANSLATE(EOVERFLOW), 635 EXT4_ERR_TRANSLATE(EBUSY), 636 EXT4_ERR_TRANSLATE(ENOTDIR), 637 EXT4_ERR_TRANSLATE(ENOTEMPTY), 638 EXT4_ERR_TRANSLATE(ESHUTDOWN), 639 EXT4_ERR_TRANSLATE(EFAULT), 640 }; 641 642 static int ext4_errno_to_code(int errno) 643 { 644 int i; 645 646 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 647 if (err_translation[i].errno == errno) 648 return err_translation[i].code; 649 return EXT4_ERR_UNKNOWN; 650 } 651 652 static void save_error_info(struct super_block *sb, int error, 653 __u32 ino, __u64 block, 654 const char *func, unsigned int line) 655 { 656 struct ext4_sb_info *sbi = EXT4_SB(sb); 657 658 /* We default to EFSCORRUPTED error... */ 659 if (error == 0) 660 error = EFSCORRUPTED; 661 662 spin_lock(&sbi->s_error_lock); 663 sbi->s_add_error_count++; 664 sbi->s_last_error_code = error; 665 sbi->s_last_error_line = line; 666 sbi->s_last_error_ino = ino; 667 sbi->s_last_error_block = block; 668 sbi->s_last_error_func = func; 669 sbi->s_last_error_time = ktime_get_real_seconds(); 670 if (!sbi->s_first_error_time) { 671 sbi->s_first_error_code = error; 672 sbi->s_first_error_line = line; 673 sbi->s_first_error_ino = ino; 674 sbi->s_first_error_block = block; 675 sbi->s_first_error_func = func; 676 sbi->s_first_error_time = sbi->s_last_error_time; 677 } 678 spin_unlock(&sbi->s_error_lock); 679 } 680 681 /* Deal with the reporting of failure conditions on a filesystem such as 682 * inconsistencies detected or read IO failures. 683 * 684 * On ext2, we can store the error state of the filesystem in the 685 * superblock. That is not possible on ext4, because we may have other 686 * write ordering constraints on the superblock which prevent us from 687 * writing it out straight away; and given that the journal is about to 688 * be aborted, we can't rely on the current, or future, transactions to 689 * write out the superblock safely. 690 * 691 * We'll just use the jbd2_journal_abort() error code to record an error in 692 * the journal instead. On recovery, the journal will complain about 693 * that error until we've noted it down and cleared it. 694 * 695 * If force_ro is set, we unconditionally force the filesystem into an 696 * ABORT|READONLY state, unless the error response on the fs has been set to 697 * panic in which case we take the easy way out and panic immediately. This is 698 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 699 * at a critical moment in log management. 700 */ 701 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 702 __u32 ino, __u64 block, 703 const char *func, unsigned int line) 704 { 705 journal_t *journal = EXT4_SB(sb)->s_journal; 706 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 707 708 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 709 if (test_opt(sb, WARN_ON_ERROR)) 710 WARN_ON_ONCE(1); 711 712 if (!continue_fs && !sb_rdonly(sb)) { 713 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 714 if (journal) 715 jbd2_journal_abort(journal, -EIO); 716 } 717 718 if (!bdev_read_only(sb->s_bdev)) { 719 save_error_info(sb, error, ino, block, func, line); 720 /* 721 * In case the fs should keep running, we need to writeout 722 * superblock through the journal. Due to lock ordering 723 * constraints, it may not be safe to do it right here so we 724 * defer superblock flushing to a workqueue. 725 */ 726 if (continue_fs && journal) 727 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 728 else 729 ext4_commit_super(sb); 730 } 731 732 /* 733 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 734 * could panic during 'reboot -f' as the underlying device got already 735 * disabled. 736 */ 737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 738 panic("EXT4-fs (device %s): panic forced after error\n", 739 sb->s_id); 740 } 741 742 if (sb_rdonly(sb) || continue_fs) 743 return; 744 745 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 746 /* 747 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem 748 * modifications. We don't set SB_RDONLY because that requires 749 * sb->s_umount semaphore and setting it without proper remount 750 * procedure is confusing code such as freeze_super() leading to 751 * deadlocks and other problems. 752 */ 753 } 754 755 static void update_super_work(struct work_struct *work) 756 { 757 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 758 s_sb_upd_work); 759 journal_t *journal = sbi->s_journal; 760 handle_t *handle; 761 762 /* 763 * If the journal is still running, we have to write out superblock 764 * through the journal to avoid collisions of other journalled sb 765 * updates. 766 * 767 * We use directly jbd2 functions here to avoid recursing back into 768 * ext4 error handling code during handling of previous errors. 769 */ 770 if (!sb_rdonly(sbi->s_sb) && journal) { 771 struct buffer_head *sbh = sbi->s_sbh; 772 bool call_notify_err = false; 773 774 handle = jbd2_journal_start(journal, 1); 775 if (IS_ERR(handle)) 776 goto write_directly; 777 if (jbd2_journal_get_write_access(handle, sbh)) { 778 jbd2_journal_stop(handle); 779 goto write_directly; 780 } 781 782 if (sbi->s_add_error_count > 0) 783 call_notify_err = true; 784 785 ext4_update_super(sbi->s_sb); 786 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 787 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 788 "superblock detected"); 789 clear_buffer_write_io_error(sbh); 790 set_buffer_uptodate(sbh); 791 } 792 793 if (jbd2_journal_dirty_metadata(handle, sbh)) { 794 jbd2_journal_stop(handle); 795 goto write_directly; 796 } 797 jbd2_journal_stop(handle); 798 799 if (call_notify_err) 800 ext4_notify_error_sysfs(sbi); 801 802 return; 803 } 804 write_directly: 805 /* 806 * Write through journal failed. Write sb directly to get error info 807 * out and hope for the best. 808 */ 809 ext4_commit_super(sbi->s_sb); 810 ext4_notify_error_sysfs(sbi); 811 } 812 813 #define ext4_error_ratelimit(sb) \ 814 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 815 "EXT4-fs error") 816 817 void __ext4_error(struct super_block *sb, const char *function, 818 unsigned int line, bool force_ro, int error, __u64 block, 819 const char *fmt, ...) 820 { 821 struct va_format vaf; 822 va_list args; 823 824 if (unlikely(ext4_forced_shutdown(sb))) 825 return; 826 827 trace_ext4_error(sb, function, line); 828 if (ext4_error_ratelimit(sb)) { 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 printk(KERN_CRIT 833 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 834 sb->s_id, function, line, current->comm, &vaf); 835 va_end(args); 836 } 837 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 838 839 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 840 } 841 842 void __ext4_error_inode(struct inode *inode, const char *function, 843 unsigned int line, ext4_fsblk_t block, int error, 844 const char *fmt, ...) 845 { 846 va_list args; 847 struct va_format vaf; 848 849 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 850 return; 851 852 trace_ext4_error(inode->i_sb, function, line); 853 if (ext4_error_ratelimit(inode->i_sb)) { 854 va_start(args, fmt); 855 vaf.fmt = fmt; 856 vaf.va = &args; 857 if (block) 858 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 859 "inode #%lu: block %llu: comm %s: %pV\n", 860 inode->i_sb->s_id, function, line, inode->i_ino, 861 block, current->comm, &vaf); 862 else 863 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 864 "inode #%lu: comm %s: %pV\n", 865 inode->i_sb->s_id, function, line, inode->i_ino, 866 current->comm, &vaf); 867 va_end(args); 868 } 869 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 870 871 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 872 function, line); 873 } 874 875 void __ext4_error_file(struct file *file, const char *function, 876 unsigned int line, ext4_fsblk_t block, 877 const char *fmt, ...) 878 { 879 va_list args; 880 struct va_format vaf; 881 struct inode *inode = file_inode(file); 882 char pathname[80], *path; 883 884 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 885 return; 886 887 trace_ext4_error(inode->i_sb, function, line); 888 if (ext4_error_ratelimit(inode->i_sb)) { 889 path = file_path(file, pathname, sizeof(pathname)); 890 if (IS_ERR(path)) 891 path = "(unknown)"; 892 va_start(args, fmt); 893 vaf.fmt = fmt; 894 vaf.va = &args; 895 if (block) 896 printk(KERN_CRIT 897 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 898 "block %llu: comm %s: path %s: %pV\n", 899 inode->i_sb->s_id, function, line, inode->i_ino, 900 block, current->comm, path, &vaf); 901 else 902 printk(KERN_CRIT 903 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 904 "comm %s: path %s: %pV\n", 905 inode->i_sb->s_id, function, line, inode->i_ino, 906 current->comm, path, &vaf); 907 va_end(args); 908 } 909 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 910 911 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 912 function, line); 913 } 914 915 const char *ext4_decode_error(struct super_block *sb, int errno, 916 char nbuf[16]) 917 { 918 char *errstr = NULL; 919 920 switch (errno) { 921 case -EFSCORRUPTED: 922 errstr = "Corrupt filesystem"; 923 break; 924 case -EFSBADCRC: 925 errstr = "Filesystem failed CRC"; 926 break; 927 case -EIO: 928 errstr = "IO failure"; 929 break; 930 case -ENOMEM: 931 errstr = "Out of memory"; 932 break; 933 case -EROFS: 934 if (!sb || (EXT4_SB(sb)->s_journal && 935 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 936 errstr = "Journal has aborted"; 937 else 938 errstr = "Readonly filesystem"; 939 break; 940 default: 941 /* If the caller passed in an extra buffer for unknown 942 * errors, textualise them now. Else we just return 943 * NULL. */ 944 if (nbuf) { 945 /* Check for truncated error codes... */ 946 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 947 errstr = nbuf; 948 } 949 break; 950 } 951 952 return errstr; 953 } 954 955 /* __ext4_std_error decodes expected errors from journaling functions 956 * automatically and invokes the appropriate error response. */ 957 958 void __ext4_std_error(struct super_block *sb, const char *function, 959 unsigned int line, int errno) 960 { 961 char nbuf[16]; 962 const char *errstr; 963 964 if (unlikely(ext4_forced_shutdown(sb))) 965 return; 966 967 /* Special case: if the error is EROFS, and we're not already 968 * inside a transaction, then there's really no point in logging 969 * an error. */ 970 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 971 return; 972 973 if (ext4_error_ratelimit(sb)) { 974 errstr = ext4_decode_error(sb, errno, nbuf); 975 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 976 sb->s_id, function, line, errstr); 977 } 978 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 979 980 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 981 } 982 983 void __ext4_msg(struct super_block *sb, 984 const char *prefix, const char *fmt, ...) 985 { 986 struct va_format vaf; 987 va_list args; 988 989 if (sb) { 990 atomic_inc(&EXT4_SB(sb)->s_msg_count); 991 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 992 "EXT4-fs")) 993 return; 994 } 995 996 va_start(args, fmt); 997 vaf.fmt = fmt; 998 vaf.va = &args; 999 if (sb) 1000 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 1001 else 1002 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 1003 va_end(args); 1004 } 1005 1006 static int ext4_warning_ratelimit(struct super_block *sb) 1007 { 1008 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1009 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1010 "EXT4-fs warning"); 1011 } 1012 1013 void __ext4_warning(struct super_block *sb, const char *function, 1014 unsigned int line, const char *fmt, ...) 1015 { 1016 struct va_format vaf; 1017 va_list args; 1018 1019 if (!ext4_warning_ratelimit(sb)) 1020 return; 1021 1022 va_start(args, fmt); 1023 vaf.fmt = fmt; 1024 vaf.va = &args; 1025 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1026 sb->s_id, function, line, &vaf); 1027 va_end(args); 1028 } 1029 1030 void __ext4_warning_inode(const struct inode *inode, const char *function, 1031 unsigned int line, const char *fmt, ...) 1032 { 1033 struct va_format vaf; 1034 va_list args; 1035 1036 if (!ext4_warning_ratelimit(inode->i_sb)) 1037 return; 1038 1039 va_start(args, fmt); 1040 vaf.fmt = fmt; 1041 vaf.va = &args; 1042 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1043 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1044 function, line, inode->i_ino, current->comm, &vaf); 1045 va_end(args); 1046 } 1047 1048 void __ext4_grp_locked_error(const char *function, unsigned int line, 1049 struct super_block *sb, ext4_group_t grp, 1050 unsigned long ino, ext4_fsblk_t block, 1051 const char *fmt, ...) 1052 __releases(bitlock) 1053 __acquires(bitlock) 1054 { 1055 struct va_format vaf; 1056 va_list args; 1057 1058 if (unlikely(ext4_forced_shutdown(sb))) 1059 return; 1060 1061 trace_ext4_error(sb, function, line); 1062 if (ext4_error_ratelimit(sb)) { 1063 va_start(args, fmt); 1064 vaf.fmt = fmt; 1065 vaf.va = &args; 1066 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1067 sb->s_id, function, line, grp); 1068 if (ino) 1069 printk(KERN_CONT "inode %lu: ", ino); 1070 if (block) 1071 printk(KERN_CONT "block %llu:", 1072 (unsigned long long) block); 1073 printk(KERN_CONT "%pV\n", &vaf); 1074 va_end(args); 1075 } 1076 1077 if (test_opt(sb, ERRORS_CONT)) { 1078 if (test_opt(sb, WARN_ON_ERROR)) 1079 WARN_ON_ONCE(1); 1080 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1081 if (!bdev_read_only(sb->s_bdev)) { 1082 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1083 line); 1084 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1085 } 1086 return; 1087 } 1088 ext4_unlock_group(sb, grp); 1089 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1090 /* 1091 * We only get here in the ERRORS_RO case; relocking the group 1092 * may be dangerous, but nothing bad will happen since the 1093 * filesystem will have already been marked read/only and the 1094 * journal has been aborted. We return 1 as a hint to callers 1095 * who might what to use the return value from 1096 * ext4_grp_locked_error() to distinguish between the 1097 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1098 * aggressively from the ext4 function in question, with a 1099 * more appropriate error code. 1100 */ 1101 ext4_lock_group(sb, grp); 1102 return; 1103 } 1104 1105 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1106 ext4_group_t group, 1107 unsigned int flags) 1108 { 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1111 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1112 int ret; 1113 1114 if (!grp || !gdp) 1115 return; 1116 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1117 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1118 &grp->bb_state); 1119 if (!ret) 1120 percpu_counter_sub(&sbi->s_freeclusters_counter, 1121 grp->bb_free); 1122 } 1123 1124 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1125 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1126 &grp->bb_state); 1127 if (!ret && gdp) { 1128 int count; 1129 1130 count = ext4_free_inodes_count(sb, gdp); 1131 percpu_counter_sub(&sbi->s_freeinodes_counter, 1132 count); 1133 } 1134 } 1135 } 1136 1137 void ext4_update_dynamic_rev(struct super_block *sb) 1138 { 1139 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1140 1141 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1142 return; 1143 1144 ext4_warning(sb, 1145 "updating to rev %d because of new feature flag, " 1146 "running e2fsck is recommended", 1147 EXT4_DYNAMIC_REV); 1148 1149 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1150 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1151 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1152 /* leave es->s_feature_*compat flags alone */ 1153 /* es->s_uuid will be set by e2fsck if empty */ 1154 1155 /* 1156 * The rest of the superblock fields should be zero, and if not it 1157 * means they are likely already in use, so leave them alone. We 1158 * can leave it up to e2fsck to clean up any inconsistencies there. 1159 */ 1160 } 1161 1162 static inline struct inode *orphan_list_entry(struct list_head *l) 1163 { 1164 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1165 } 1166 1167 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1168 { 1169 struct list_head *l; 1170 1171 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1172 le32_to_cpu(sbi->s_es->s_last_orphan)); 1173 1174 printk(KERN_ERR "sb_info orphan list:\n"); 1175 list_for_each(l, &sbi->s_orphan) { 1176 struct inode *inode = orphan_list_entry(l); 1177 printk(KERN_ERR " " 1178 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1179 inode->i_sb->s_id, inode->i_ino, inode, 1180 inode->i_mode, inode->i_nlink, 1181 NEXT_ORPHAN(inode)); 1182 } 1183 } 1184 1185 #ifdef CONFIG_QUOTA 1186 static int ext4_quota_off(struct super_block *sb, int type); 1187 1188 static inline void ext4_quotas_off(struct super_block *sb, int type) 1189 { 1190 BUG_ON(type > EXT4_MAXQUOTAS); 1191 1192 /* Use our quota_off function to clear inode flags etc. */ 1193 for (type--; type >= 0; type--) 1194 ext4_quota_off(sb, type); 1195 } 1196 1197 /* 1198 * This is a helper function which is used in the mount/remount 1199 * codepaths (which holds s_umount) to fetch the quota file name. 1200 */ 1201 static inline char *get_qf_name(struct super_block *sb, 1202 struct ext4_sb_info *sbi, 1203 int type) 1204 { 1205 return rcu_dereference_protected(sbi->s_qf_names[type], 1206 lockdep_is_held(&sb->s_umount)); 1207 } 1208 #else 1209 static inline void ext4_quotas_off(struct super_block *sb, int type) 1210 { 1211 } 1212 #endif 1213 1214 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1215 { 1216 ext4_fsblk_t block; 1217 int err; 1218 1219 block = ext4_count_free_clusters(sbi->s_sb); 1220 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1221 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1222 GFP_KERNEL); 1223 if (!err) { 1224 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1225 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1226 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1227 GFP_KERNEL); 1228 } 1229 if (!err) 1230 err = percpu_counter_init(&sbi->s_dirs_counter, 1231 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1232 if (!err) 1233 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1234 GFP_KERNEL); 1235 if (!err) 1236 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1237 GFP_KERNEL); 1238 if (!err) 1239 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1240 1241 if (err) 1242 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1243 1244 return err; 1245 } 1246 1247 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1248 { 1249 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1250 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1251 percpu_counter_destroy(&sbi->s_dirs_counter); 1252 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1253 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1254 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1255 } 1256 1257 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1258 { 1259 struct buffer_head **group_desc; 1260 int i; 1261 1262 rcu_read_lock(); 1263 group_desc = rcu_dereference(sbi->s_group_desc); 1264 for (i = 0; i < sbi->s_gdb_count; i++) 1265 brelse(group_desc[i]); 1266 kvfree(group_desc); 1267 rcu_read_unlock(); 1268 } 1269 1270 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1271 { 1272 struct flex_groups **flex_groups; 1273 int i; 1274 1275 rcu_read_lock(); 1276 flex_groups = rcu_dereference(sbi->s_flex_groups); 1277 if (flex_groups) { 1278 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1279 kvfree(flex_groups[i]); 1280 kvfree(flex_groups); 1281 } 1282 rcu_read_unlock(); 1283 } 1284 1285 static void ext4_put_super(struct super_block *sb) 1286 { 1287 struct ext4_sb_info *sbi = EXT4_SB(sb); 1288 struct ext4_super_block *es = sbi->s_es; 1289 int aborted = 0; 1290 int err; 1291 1292 /* 1293 * Unregister sysfs before destroying jbd2 journal. 1294 * Since we could still access attr_journal_task attribute via sysfs 1295 * path which could have sbi->s_journal->j_task as NULL 1296 * Unregister sysfs before flush sbi->s_sb_upd_work. 1297 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1298 * read metadata verify failed then will queue error work. 1299 * update_super_work will call start_this_handle may trigger 1300 * BUG_ON. 1301 */ 1302 ext4_unregister_sysfs(sb); 1303 1304 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1305 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1306 &sb->s_uuid); 1307 1308 ext4_unregister_li_request(sb); 1309 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1310 1311 flush_work(&sbi->s_sb_upd_work); 1312 destroy_workqueue(sbi->rsv_conversion_wq); 1313 ext4_release_orphan_info(sb); 1314 1315 if (sbi->s_journal) { 1316 aborted = is_journal_aborted(sbi->s_journal); 1317 err = jbd2_journal_destroy(sbi->s_journal); 1318 sbi->s_journal = NULL; 1319 if ((err < 0) && !aborted) { 1320 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1321 } 1322 } 1323 1324 ext4_es_unregister_shrinker(sbi); 1325 timer_shutdown_sync(&sbi->s_err_report); 1326 ext4_release_system_zone(sb); 1327 ext4_mb_release(sb); 1328 ext4_ext_release(sb); 1329 1330 if (!sb_rdonly(sb) && !aborted) { 1331 ext4_clear_feature_journal_needs_recovery(sb); 1332 ext4_clear_feature_orphan_present(sb); 1333 es->s_state = cpu_to_le16(sbi->s_mount_state); 1334 } 1335 if (!sb_rdonly(sb)) 1336 ext4_commit_super(sb); 1337 1338 ext4_group_desc_free(sbi); 1339 ext4_flex_groups_free(sbi); 1340 ext4_percpu_param_destroy(sbi); 1341 #ifdef CONFIG_QUOTA 1342 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1343 kfree(get_qf_name(sb, sbi, i)); 1344 #endif 1345 1346 /* Debugging code just in case the in-memory inode orphan list 1347 * isn't empty. The on-disk one can be non-empty if we've 1348 * detected an error and taken the fs readonly, but the 1349 * in-memory list had better be clean by this point. */ 1350 if (!list_empty(&sbi->s_orphan)) 1351 dump_orphan_list(sb, sbi); 1352 ASSERT(list_empty(&sbi->s_orphan)); 1353 1354 sync_blockdev(sb->s_bdev); 1355 invalidate_bdev(sb->s_bdev); 1356 if (sbi->s_journal_bdev) { 1357 /* 1358 * Invalidate the journal device's buffers. We don't want them 1359 * floating about in memory - the physical journal device may 1360 * hotswapped, and it breaks the `ro-after' testing code. 1361 */ 1362 sync_blockdev(sbi->s_journal_bdev); 1363 invalidate_bdev(sbi->s_journal_bdev); 1364 } 1365 1366 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1367 sbi->s_ea_inode_cache = NULL; 1368 1369 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1370 sbi->s_ea_block_cache = NULL; 1371 1372 ext4_stop_mmpd(sbi); 1373 1374 brelse(sbi->s_sbh); 1375 sb->s_fs_info = NULL; 1376 /* 1377 * Now that we are completely done shutting down the 1378 * superblock, we need to actually destroy the kobject. 1379 */ 1380 kobject_put(&sbi->s_kobj); 1381 wait_for_completion(&sbi->s_kobj_unregister); 1382 if (sbi->s_chksum_driver) 1383 crypto_free_shash(sbi->s_chksum_driver); 1384 kfree(sbi->s_blockgroup_lock); 1385 fs_put_dax(sbi->s_daxdev, NULL); 1386 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1387 #if IS_ENABLED(CONFIG_UNICODE) 1388 utf8_unload(sb->s_encoding); 1389 #endif 1390 kfree(sbi); 1391 } 1392 1393 static struct kmem_cache *ext4_inode_cachep; 1394 1395 /* 1396 * Called inside transaction, so use GFP_NOFS 1397 */ 1398 static struct inode *ext4_alloc_inode(struct super_block *sb) 1399 { 1400 struct ext4_inode_info *ei; 1401 1402 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1403 if (!ei) 1404 return NULL; 1405 1406 inode_set_iversion(&ei->vfs_inode, 1); 1407 ei->i_flags = 0; 1408 spin_lock_init(&ei->i_raw_lock); 1409 ei->i_prealloc_node = RB_ROOT; 1410 atomic_set(&ei->i_prealloc_active, 0); 1411 rwlock_init(&ei->i_prealloc_lock); 1412 ext4_es_init_tree(&ei->i_es_tree); 1413 rwlock_init(&ei->i_es_lock); 1414 INIT_LIST_HEAD(&ei->i_es_list); 1415 ei->i_es_all_nr = 0; 1416 ei->i_es_shk_nr = 0; 1417 ei->i_es_shrink_lblk = 0; 1418 ei->i_reserved_data_blocks = 0; 1419 spin_lock_init(&(ei->i_block_reservation_lock)); 1420 ext4_init_pending_tree(&ei->i_pending_tree); 1421 #ifdef CONFIG_QUOTA 1422 ei->i_reserved_quota = 0; 1423 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1424 #endif 1425 ei->jinode = NULL; 1426 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1427 spin_lock_init(&ei->i_completed_io_lock); 1428 ei->i_sync_tid = 0; 1429 ei->i_datasync_tid = 0; 1430 atomic_set(&ei->i_unwritten, 0); 1431 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1432 ext4_fc_init_inode(&ei->vfs_inode); 1433 mutex_init(&ei->i_fc_lock); 1434 return &ei->vfs_inode; 1435 } 1436 1437 static int ext4_drop_inode(struct inode *inode) 1438 { 1439 int drop = generic_drop_inode(inode); 1440 1441 if (!drop) 1442 drop = fscrypt_drop_inode(inode); 1443 1444 trace_ext4_drop_inode(inode, drop); 1445 return drop; 1446 } 1447 1448 static void ext4_free_in_core_inode(struct inode *inode) 1449 { 1450 fscrypt_free_inode(inode); 1451 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1452 pr_warn("%s: inode %ld still in fc list", 1453 __func__, inode->i_ino); 1454 } 1455 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1456 } 1457 1458 static void ext4_destroy_inode(struct inode *inode) 1459 { 1460 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1461 ext4_msg(inode->i_sb, KERN_ERR, 1462 "Inode %lu (%p): orphan list check failed!", 1463 inode->i_ino, EXT4_I(inode)); 1464 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1465 EXT4_I(inode), sizeof(struct ext4_inode_info), 1466 true); 1467 dump_stack(); 1468 } 1469 1470 if (EXT4_I(inode)->i_reserved_data_blocks) 1471 ext4_msg(inode->i_sb, KERN_ERR, 1472 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1473 inode->i_ino, EXT4_I(inode), 1474 EXT4_I(inode)->i_reserved_data_blocks); 1475 } 1476 1477 static void ext4_shutdown(struct super_block *sb) 1478 { 1479 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1480 } 1481 1482 static void init_once(void *foo) 1483 { 1484 struct ext4_inode_info *ei = foo; 1485 1486 INIT_LIST_HEAD(&ei->i_orphan); 1487 init_rwsem(&ei->xattr_sem); 1488 init_rwsem(&ei->i_data_sem); 1489 inode_init_once(&ei->vfs_inode); 1490 ext4_fc_init_inode(&ei->vfs_inode); 1491 } 1492 1493 static int __init init_inodecache(void) 1494 { 1495 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1496 sizeof(struct ext4_inode_info), 0, 1497 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1498 SLAB_ACCOUNT), 1499 offsetof(struct ext4_inode_info, i_data), 1500 sizeof_field(struct ext4_inode_info, i_data), 1501 init_once); 1502 if (ext4_inode_cachep == NULL) 1503 return -ENOMEM; 1504 return 0; 1505 } 1506 1507 static void destroy_inodecache(void) 1508 { 1509 /* 1510 * Make sure all delayed rcu free inodes are flushed before we 1511 * destroy cache. 1512 */ 1513 rcu_barrier(); 1514 kmem_cache_destroy(ext4_inode_cachep); 1515 } 1516 1517 void ext4_clear_inode(struct inode *inode) 1518 { 1519 ext4_fc_del(inode); 1520 invalidate_inode_buffers(inode); 1521 clear_inode(inode); 1522 ext4_discard_preallocations(inode, 0); 1523 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1524 dquot_drop(inode); 1525 if (EXT4_I(inode)->jinode) { 1526 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1527 EXT4_I(inode)->jinode); 1528 jbd2_free_inode(EXT4_I(inode)->jinode); 1529 EXT4_I(inode)->jinode = NULL; 1530 } 1531 fscrypt_put_encryption_info(inode); 1532 fsverity_cleanup_inode(inode); 1533 } 1534 1535 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1536 u64 ino, u32 generation) 1537 { 1538 struct inode *inode; 1539 1540 /* 1541 * Currently we don't know the generation for parent directory, so 1542 * a generation of 0 means "accept any" 1543 */ 1544 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1545 if (IS_ERR(inode)) 1546 return ERR_CAST(inode); 1547 if (generation && inode->i_generation != generation) { 1548 iput(inode); 1549 return ERR_PTR(-ESTALE); 1550 } 1551 1552 return inode; 1553 } 1554 1555 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1556 int fh_len, int fh_type) 1557 { 1558 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1559 ext4_nfs_get_inode); 1560 } 1561 1562 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1563 int fh_len, int fh_type) 1564 { 1565 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1566 ext4_nfs_get_inode); 1567 } 1568 1569 static int ext4_nfs_commit_metadata(struct inode *inode) 1570 { 1571 struct writeback_control wbc = { 1572 .sync_mode = WB_SYNC_ALL 1573 }; 1574 1575 trace_ext4_nfs_commit_metadata(inode); 1576 return ext4_write_inode(inode, &wbc); 1577 } 1578 1579 #ifdef CONFIG_QUOTA 1580 static const char * const quotatypes[] = INITQFNAMES; 1581 #define QTYPE2NAME(t) (quotatypes[t]) 1582 1583 static int ext4_write_dquot(struct dquot *dquot); 1584 static int ext4_acquire_dquot(struct dquot *dquot); 1585 static int ext4_release_dquot(struct dquot *dquot); 1586 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1587 static int ext4_write_info(struct super_block *sb, int type); 1588 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1589 const struct path *path); 1590 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1591 size_t len, loff_t off); 1592 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1593 const char *data, size_t len, loff_t off); 1594 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1595 unsigned int flags); 1596 1597 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1598 { 1599 return EXT4_I(inode)->i_dquot; 1600 } 1601 1602 static const struct dquot_operations ext4_quota_operations = { 1603 .get_reserved_space = ext4_get_reserved_space, 1604 .write_dquot = ext4_write_dquot, 1605 .acquire_dquot = ext4_acquire_dquot, 1606 .release_dquot = ext4_release_dquot, 1607 .mark_dirty = ext4_mark_dquot_dirty, 1608 .write_info = ext4_write_info, 1609 .alloc_dquot = dquot_alloc, 1610 .destroy_dquot = dquot_destroy, 1611 .get_projid = ext4_get_projid, 1612 .get_inode_usage = ext4_get_inode_usage, 1613 .get_next_id = dquot_get_next_id, 1614 }; 1615 1616 static const struct quotactl_ops ext4_qctl_operations = { 1617 .quota_on = ext4_quota_on, 1618 .quota_off = ext4_quota_off, 1619 .quota_sync = dquot_quota_sync, 1620 .get_state = dquot_get_state, 1621 .set_info = dquot_set_dqinfo, 1622 .get_dqblk = dquot_get_dqblk, 1623 .set_dqblk = dquot_set_dqblk, 1624 .get_nextdqblk = dquot_get_next_dqblk, 1625 }; 1626 #endif 1627 1628 static const struct super_operations ext4_sops = { 1629 .alloc_inode = ext4_alloc_inode, 1630 .free_inode = ext4_free_in_core_inode, 1631 .destroy_inode = ext4_destroy_inode, 1632 .write_inode = ext4_write_inode, 1633 .dirty_inode = ext4_dirty_inode, 1634 .drop_inode = ext4_drop_inode, 1635 .evict_inode = ext4_evict_inode, 1636 .put_super = ext4_put_super, 1637 .sync_fs = ext4_sync_fs, 1638 .freeze_fs = ext4_freeze, 1639 .unfreeze_fs = ext4_unfreeze, 1640 .statfs = ext4_statfs, 1641 .show_options = ext4_show_options, 1642 .shutdown = ext4_shutdown, 1643 #ifdef CONFIG_QUOTA 1644 .quota_read = ext4_quota_read, 1645 .quota_write = ext4_quota_write, 1646 .get_dquots = ext4_get_dquots, 1647 #endif 1648 }; 1649 1650 static const struct export_operations ext4_export_ops = { 1651 .fh_to_dentry = ext4_fh_to_dentry, 1652 .fh_to_parent = ext4_fh_to_parent, 1653 .get_parent = ext4_get_parent, 1654 .commit_metadata = ext4_nfs_commit_metadata, 1655 }; 1656 1657 enum { 1658 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1659 Opt_resgid, Opt_resuid, Opt_sb, 1660 Opt_nouid32, Opt_debug, Opt_removed, 1661 Opt_user_xattr, Opt_acl, 1662 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1663 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1664 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1665 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1666 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1667 Opt_inlinecrypt, 1668 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1669 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1670 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1671 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1672 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1673 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1674 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1675 Opt_inode_readahead_blks, Opt_journal_ioprio, 1676 Opt_dioread_nolock, Opt_dioread_lock, 1677 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1678 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1679 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1680 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1681 #ifdef CONFIG_EXT4_DEBUG 1682 Opt_fc_debug_max_replay, Opt_fc_debug_force 1683 #endif 1684 }; 1685 1686 static const struct constant_table ext4_param_errors[] = { 1687 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1688 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1689 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1690 {} 1691 }; 1692 1693 static const struct constant_table ext4_param_data[] = { 1694 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1695 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1696 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1697 {} 1698 }; 1699 1700 static const struct constant_table ext4_param_data_err[] = { 1701 {"abort", Opt_data_err_abort}, 1702 {"ignore", Opt_data_err_ignore}, 1703 {} 1704 }; 1705 1706 static const struct constant_table ext4_param_jqfmt[] = { 1707 {"vfsold", QFMT_VFS_OLD}, 1708 {"vfsv0", QFMT_VFS_V0}, 1709 {"vfsv1", QFMT_VFS_V1}, 1710 {} 1711 }; 1712 1713 static const struct constant_table ext4_param_dax[] = { 1714 {"always", Opt_dax_always}, 1715 {"inode", Opt_dax_inode}, 1716 {"never", Opt_dax_never}, 1717 {} 1718 }; 1719 1720 /* String parameter that allows empty argument */ 1721 #define fsparam_string_empty(NAME, OPT) \ 1722 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1723 1724 /* 1725 * Mount option specification 1726 * We don't use fsparam_flag_no because of the way we set the 1727 * options and the way we show them in _ext4_show_options(). To 1728 * keep the changes to a minimum, let's keep the negative options 1729 * separate for now. 1730 */ 1731 static const struct fs_parameter_spec ext4_param_specs[] = { 1732 fsparam_flag ("bsddf", Opt_bsd_df), 1733 fsparam_flag ("minixdf", Opt_minix_df), 1734 fsparam_flag ("grpid", Opt_grpid), 1735 fsparam_flag ("bsdgroups", Opt_grpid), 1736 fsparam_flag ("nogrpid", Opt_nogrpid), 1737 fsparam_flag ("sysvgroups", Opt_nogrpid), 1738 fsparam_u32 ("resgid", Opt_resgid), 1739 fsparam_u32 ("resuid", Opt_resuid), 1740 fsparam_u32 ("sb", Opt_sb), 1741 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1742 fsparam_flag ("nouid32", Opt_nouid32), 1743 fsparam_flag ("debug", Opt_debug), 1744 fsparam_flag ("oldalloc", Opt_removed), 1745 fsparam_flag ("orlov", Opt_removed), 1746 fsparam_flag ("user_xattr", Opt_user_xattr), 1747 fsparam_flag ("acl", Opt_acl), 1748 fsparam_flag ("norecovery", Opt_noload), 1749 fsparam_flag ("noload", Opt_noload), 1750 fsparam_flag ("bh", Opt_removed), 1751 fsparam_flag ("nobh", Opt_removed), 1752 fsparam_u32 ("commit", Opt_commit), 1753 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1754 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1755 fsparam_u32 ("journal_dev", Opt_journal_dev), 1756 fsparam_bdev ("journal_path", Opt_journal_path), 1757 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1758 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1759 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1760 fsparam_flag ("abort", Opt_abort), 1761 fsparam_enum ("data", Opt_data, ext4_param_data), 1762 fsparam_enum ("data_err", Opt_data_err, 1763 ext4_param_data_err), 1764 fsparam_string_empty 1765 ("usrjquota", Opt_usrjquota), 1766 fsparam_string_empty 1767 ("grpjquota", Opt_grpjquota), 1768 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1769 fsparam_flag ("grpquota", Opt_grpquota), 1770 fsparam_flag ("quota", Opt_quota), 1771 fsparam_flag ("noquota", Opt_noquota), 1772 fsparam_flag ("usrquota", Opt_usrquota), 1773 fsparam_flag ("prjquota", Opt_prjquota), 1774 fsparam_flag ("barrier", Opt_barrier), 1775 fsparam_u32 ("barrier", Opt_barrier), 1776 fsparam_flag ("nobarrier", Opt_nobarrier), 1777 fsparam_flag ("i_version", Opt_removed), 1778 fsparam_flag ("dax", Opt_dax), 1779 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1780 fsparam_u32 ("stripe", Opt_stripe), 1781 fsparam_flag ("delalloc", Opt_delalloc), 1782 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1783 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1784 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1785 fsparam_u32 ("debug_want_extra_isize", 1786 Opt_debug_want_extra_isize), 1787 fsparam_flag ("mblk_io_submit", Opt_removed), 1788 fsparam_flag ("nomblk_io_submit", Opt_removed), 1789 fsparam_flag ("block_validity", Opt_block_validity), 1790 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1791 fsparam_u32 ("inode_readahead_blks", 1792 Opt_inode_readahead_blks), 1793 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1794 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1795 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1796 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1797 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1798 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1799 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1800 fsparam_flag ("discard", Opt_discard), 1801 fsparam_flag ("nodiscard", Opt_nodiscard), 1802 fsparam_u32 ("init_itable", Opt_init_itable), 1803 fsparam_flag ("init_itable", Opt_init_itable), 1804 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1805 #ifdef CONFIG_EXT4_DEBUG 1806 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1807 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1808 #endif 1809 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1810 fsparam_flag ("test_dummy_encryption", 1811 Opt_test_dummy_encryption), 1812 fsparam_string ("test_dummy_encryption", 1813 Opt_test_dummy_encryption), 1814 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1815 fsparam_flag ("nombcache", Opt_nombcache), 1816 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1817 fsparam_flag ("prefetch_block_bitmaps", 1818 Opt_removed), 1819 fsparam_flag ("no_prefetch_block_bitmaps", 1820 Opt_no_prefetch_block_bitmaps), 1821 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1822 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1823 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1824 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1825 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1826 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1827 {} 1828 }; 1829 1830 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1831 1832 #define MOPT_SET 0x0001 1833 #define MOPT_CLEAR 0x0002 1834 #define MOPT_NOSUPPORT 0x0004 1835 #define MOPT_EXPLICIT 0x0008 1836 #ifdef CONFIG_QUOTA 1837 #define MOPT_Q 0 1838 #define MOPT_QFMT 0x0010 1839 #else 1840 #define MOPT_Q MOPT_NOSUPPORT 1841 #define MOPT_QFMT MOPT_NOSUPPORT 1842 #endif 1843 #define MOPT_NO_EXT2 0x0020 1844 #define MOPT_NO_EXT3 0x0040 1845 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1846 #define MOPT_SKIP 0x0080 1847 #define MOPT_2 0x0100 1848 1849 static const struct mount_opts { 1850 int token; 1851 int mount_opt; 1852 int flags; 1853 } ext4_mount_opts[] = { 1854 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1855 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1856 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1857 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1858 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1859 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1860 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1861 MOPT_EXT4_ONLY | MOPT_SET}, 1862 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1863 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1864 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1865 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1866 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1867 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1868 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1869 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1870 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1871 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1872 {Opt_commit, 0, MOPT_NO_EXT2}, 1873 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1874 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1875 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1876 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1877 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1878 EXT4_MOUNT_JOURNAL_CHECKSUM), 1879 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1880 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1881 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1882 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1883 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1884 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1885 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1886 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1887 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1888 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1889 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1890 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1891 {Opt_data, 0, MOPT_NO_EXT2}, 1892 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1893 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1894 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1895 #else 1896 {Opt_acl, 0, MOPT_NOSUPPORT}, 1897 #endif 1898 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1899 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1900 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1901 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1902 MOPT_SET | MOPT_Q}, 1903 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1904 MOPT_SET | MOPT_Q}, 1905 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1906 MOPT_SET | MOPT_Q}, 1907 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1908 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1909 MOPT_CLEAR | MOPT_Q}, 1910 {Opt_usrjquota, 0, MOPT_Q}, 1911 {Opt_grpjquota, 0, MOPT_Q}, 1912 {Opt_jqfmt, 0, MOPT_QFMT}, 1913 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1914 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1915 MOPT_SET}, 1916 #ifdef CONFIG_EXT4_DEBUG 1917 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1918 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1919 #endif 1920 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1921 {Opt_err, 0, 0} 1922 }; 1923 1924 #if IS_ENABLED(CONFIG_UNICODE) 1925 static const struct ext4_sb_encodings { 1926 __u16 magic; 1927 char *name; 1928 unsigned int version; 1929 } ext4_sb_encoding_map[] = { 1930 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1931 }; 1932 1933 static const struct ext4_sb_encodings * 1934 ext4_sb_read_encoding(const struct ext4_super_block *es) 1935 { 1936 __u16 magic = le16_to_cpu(es->s_encoding); 1937 int i; 1938 1939 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1940 if (magic == ext4_sb_encoding_map[i].magic) 1941 return &ext4_sb_encoding_map[i]; 1942 1943 return NULL; 1944 } 1945 #endif 1946 1947 #define EXT4_SPEC_JQUOTA (1 << 0) 1948 #define EXT4_SPEC_JQFMT (1 << 1) 1949 #define EXT4_SPEC_DATAJ (1 << 2) 1950 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1951 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1952 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1953 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1954 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1955 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1956 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1957 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1958 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1959 #define EXT4_SPEC_s_stripe (1 << 13) 1960 #define EXT4_SPEC_s_resuid (1 << 14) 1961 #define EXT4_SPEC_s_resgid (1 << 15) 1962 #define EXT4_SPEC_s_commit_interval (1 << 16) 1963 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1964 #define EXT4_SPEC_s_sb_block (1 << 18) 1965 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1966 1967 struct ext4_fs_context { 1968 char *s_qf_names[EXT4_MAXQUOTAS]; 1969 struct fscrypt_dummy_policy dummy_enc_policy; 1970 int s_jquota_fmt; /* Format of quota to use */ 1971 #ifdef CONFIG_EXT4_DEBUG 1972 int s_fc_debug_max_replay; 1973 #endif 1974 unsigned short qname_spec; 1975 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1976 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1977 unsigned long journal_devnum; 1978 unsigned long s_commit_interval; 1979 unsigned long s_stripe; 1980 unsigned int s_inode_readahead_blks; 1981 unsigned int s_want_extra_isize; 1982 unsigned int s_li_wait_mult; 1983 unsigned int s_max_dir_size_kb; 1984 unsigned int journal_ioprio; 1985 unsigned int vals_s_mount_opt; 1986 unsigned int mask_s_mount_opt; 1987 unsigned int vals_s_mount_opt2; 1988 unsigned int mask_s_mount_opt2; 1989 unsigned int opt_flags; /* MOPT flags */ 1990 unsigned int spec; 1991 u32 s_max_batch_time; 1992 u32 s_min_batch_time; 1993 kuid_t s_resuid; 1994 kgid_t s_resgid; 1995 ext4_fsblk_t s_sb_block; 1996 }; 1997 1998 static void ext4_fc_free(struct fs_context *fc) 1999 { 2000 struct ext4_fs_context *ctx = fc->fs_private; 2001 int i; 2002 2003 if (!ctx) 2004 return; 2005 2006 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2007 kfree(ctx->s_qf_names[i]); 2008 2009 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2010 kfree(ctx); 2011 } 2012 2013 int ext4_init_fs_context(struct fs_context *fc) 2014 { 2015 struct ext4_fs_context *ctx; 2016 2017 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2018 if (!ctx) 2019 return -ENOMEM; 2020 2021 fc->fs_private = ctx; 2022 fc->ops = &ext4_context_ops; 2023 2024 return 0; 2025 } 2026 2027 #ifdef CONFIG_QUOTA 2028 /* 2029 * Note the name of the specified quota file. 2030 */ 2031 static int note_qf_name(struct fs_context *fc, int qtype, 2032 struct fs_parameter *param) 2033 { 2034 struct ext4_fs_context *ctx = fc->fs_private; 2035 char *qname; 2036 2037 if (param->size < 1) { 2038 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2039 return -EINVAL; 2040 } 2041 if (strchr(param->string, '/')) { 2042 ext4_msg(NULL, KERN_ERR, 2043 "quotafile must be on filesystem root"); 2044 return -EINVAL; 2045 } 2046 if (ctx->s_qf_names[qtype]) { 2047 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2048 ext4_msg(NULL, KERN_ERR, 2049 "%s quota file already specified", 2050 QTYPE2NAME(qtype)); 2051 return -EINVAL; 2052 } 2053 return 0; 2054 } 2055 2056 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2057 if (!qname) { 2058 ext4_msg(NULL, KERN_ERR, 2059 "Not enough memory for storing quotafile name"); 2060 return -ENOMEM; 2061 } 2062 ctx->s_qf_names[qtype] = qname; 2063 ctx->qname_spec |= 1 << qtype; 2064 ctx->spec |= EXT4_SPEC_JQUOTA; 2065 return 0; 2066 } 2067 2068 /* 2069 * Clear the name of the specified quota file. 2070 */ 2071 static int unnote_qf_name(struct fs_context *fc, int qtype) 2072 { 2073 struct ext4_fs_context *ctx = fc->fs_private; 2074 2075 if (ctx->s_qf_names[qtype]) 2076 kfree(ctx->s_qf_names[qtype]); 2077 2078 ctx->s_qf_names[qtype] = NULL; 2079 ctx->qname_spec |= 1 << qtype; 2080 ctx->spec |= EXT4_SPEC_JQUOTA; 2081 return 0; 2082 } 2083 #endif 2084 2085 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2086 struct ext4_fs_context *ctx) 2087 { 2088 int err; 2089 2090 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2091 ext4_msg(NULL, KERN_WARNING, 2092 "test_dummy_encryption option not supported"); 2093 return -EINVAL; 2094 } 2095 err = fscrypt_parse_test_dummy_encryption(param, 2096 &ctx->dummy_enc_policy); 2097 if (err == -EINVAL) { 2098 ext4_msg(NULL, KERN_WARNING, 2099 "Value of option \"%s\" is unrecognized", param->key); 2100 } else if (err == -EEXIST) { 2101 ext4_msg(NULL, KERN_WARNING, 2102 "Conflicting test_dummy_encryption options"); 2103 return -EINVAL; 2104 } 2105 return err; 2106 } 2107 2108 #define EXT4_SET_CTX(name) \ 2109 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2110 unsigned long flag) \ 2111 { \ 2112 ctx->mask_s_##name |= flag; \ 2113 ctx->vals_s_##name |= flag; \ 2114 } 2115 2116 #define EXT4_CLEAR_CTX(name) \ 2117 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2118 unsigned long flag) \ 2119 { \ 2120 ctx->mask_s_##name |= flag; \ 2121 ctx->vals_s_##name &= ~flag; \ 2122 } 2123 2124 #define EXT4_TEST_CTX(name) \ 2125 static inline unsigned long \ 2126 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2127 { \ 2128 return (ctx->vals_s_##name & flag); \ 2129 } 2130 2131 EXT4_SET_CTX(flags); /* set only */ 2132 EXT4_SET_CTX(mount_opt); 2133 EXT4_CLEAR_CTX(mount_opt); 2134 EXT4_TEST_CTX(mount_opt); 2135 EXT4_SET_CTX(mount_opt2); 2136 EXT4_CLEAR_CTX(mount_opt2); 2137 EXT4_TEST_CTX(mount_opt2); 2138 2139 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2140 { 2141 struct ext4_fs_context *ctx = fc->fs_private; 2142 struct fs_parse_result result; 2143 const struct mount_opts *m; 2144 int is_remount; 2145 kuid_t uid; 2146 kgid_t gid; 2147 int token; 2148 2149 token = fs_parse(fc, ext4_param_specs, param, &result); 2150 if (token < 0) 2151 return token; 2152 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2153 2154 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2155 if (token == m->token) 2156 break; 2157 2158 ctx->opt_flags |= m->flags; 2159 2160 if (m->flags & MOPT_EXPLICIT) { 2161 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2162 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2163 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2164 ctx_set_mount_opt2(ctx, 2165 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2166 } else 2167 return -EINVAL; 2168 } 2169 2170 if (m->flags & MOPT_NOSUPPORT) { 2171 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2172 param->key); 2173 return 0; 2174 } 2175 2176 switch (token) { 2177 #ifdef CONFIG_QUOTA 2178 case Opt_usrjquota: 2179 if (!*param->string) 2180 return unnote_qf_name(fc, USRQUOTA); 2181 else 2182 return note_qf_name(fc, USRQUOTA, param); 2183 case Opt_grpjquota: 2184 if (!*param->string) 2185 return unnote_qf_name(fc, GRPQUOTA); 2186 else 2187 return note_qf_name(fc, GRPQUOTA, param); 2188 #endif 2189 case Opt_sb: 2190 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2191 ext4_msg(NULL, KERN_WARNING, 2192 "Ignoring %s option on remount", param->key); 2193 } else { 2194 ctx->s_sb_block = result.uint_32; 2195 ctx->spec |= EXT4_SPEC_s_sb_block; 2196 } 2197 return 0; 2198 case Opt_removed: 2199 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2200 param->key); 2201 return 0; 2202 case Opt_inlinecrypt: 2203 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2204 ctx_set_flags(ctx, SB_INLINECRYPT); 2205 #else 2206 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2207 #endif 2208 return 0; 2209 case Opt_errors: 2210 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2211 ctx_set_mount_opt(ctx, result.uint_32); 2212 return 0; 2213 #ifdef CONFIG_QUOTA 2214 case Opt_jqfmt: 2215 ctx->s_jquota_fmt = result.uint_32; 2216 ctx->spec |= EXT4_SPEC_JQFMT; 2217 return 0; 2218 #endif 2219 case Opt_data: 2220 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2221 ctx_set_mount_opt(ctx, result.uint_32); 2222 ctx->spec |= EXT4_SPEC_DATAJ; 2223 return 0; 2224 case Opt_commit: 2225 if (result.uint_32 == 0) 2226 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2227 else if (result.uint_32 > INT_MAX / HZ) { 2228 ext4_msg(NULL, KERN_ERR, 2229 "Invalid commit interval %d, " 2230 "must be smaller than %d", 2231 result.uint_32, INT_MAX / HZ); 2232 return -EINVAL; 2233 } 2234 ctx->s_commit_interval = HZ * result.uint_32; 2235 ctx->spec |= EXT4_SPEC_s_commit_interval; 2236 return 0; 2237 case Opt_debug_want_extra_isize: 2238 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2239 ext4_msg(NULL, KERN_ERR, 2240 "Invalid want_extra_isize %d", result.uint_32); 2241 return -EINVAL; 2242 } 2243 ctx->s_want_extra_isize = result.uint_32; 2244 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2245 return 0; 2246 case Opt_max_batch_time: 2247 ctx->s_max_batch_time = result.uint_32; 2248 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2249 return 0; 2250 case Opt_min_batch_time: 2251 ctx->s_min_batch_time = result.uint_32; 2252 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2253 return 0; 2254 case Opt_inode_readahead_blks: 2255 if (result.uint_32 && 2256 (result.uint_32 > (1 << 30) || 2257 !is_power_of_2(result.uint_32))) { 2258 ext4_msg(NULL, KERN_ERR, 2259 "EXT4-fs: inode_readahead_blks must be " 2260 "0 or a power of 2 smaller than 2^31"); 2261 return -EINVAL; 2262 } 2263 ctx->s_inode_readahead_blks = result.uint_32; 2264 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2265 return 0; 2266 case Opt_init_itable: 2267 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2268 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2269 if (param->type == fs_value_is_string) 2270 ctx->s_li_wait_mult = result.uint_32; 2271 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2272 return 0; 2273 case Opt_max_dir_size_kb: 2274 ctx->s_max_dir_size_kb = result.uint_32; 2275 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2276 return 0; 2277 #ifdef CONFIG_EXT4_DEBUG 2278 case Opt_fc_debug_max_replay: 2279 ctx->s_fc_debug_max_replay = result.uint_32; 2280 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2281 return 0; 2282 #endif 2283 case Opt_stripe: 2284 ctx->s_stripe = result.uint_32; 2285 ctx->spec |= EXT4_SPEC_s_stripe; 2286 return 0; 2287 case Opt_resuid: 2288 uid = make_kuid(current_user_ns(), result.uint_32); 2289 if (!uid_valid(uid)) { 2290 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2291 result.uint_32); 2292 return -EINVAL; 2293 } 2294 ctx->s_resuid = uid; 2295 ctx->spec |= EXT4_SPEC_s_resuid; 2296 return 0; 2297 case Opt_resgid: 2298 gid = make_kgid(current_user_ns(), result.uint_32); 2299 if (!gid_valid(gid)) { 2300 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2301 result.uint_32); 2302 return -EINVAL; 2303 } 2304 ctx->s_resgid = gid; 2305 ctx->spec |= EXT4_SPEC_s_resgid; 2306 return 0; 2307 case Opt_journal_dev: 2308 if (is_remount) { 2309 ext4_msg(NULL, KERN_ERR, 2310 "Cannot specify journal on remount"); 2311 return -EINVAL; 2312 } 2313 ctx->journal_devnum = result.uint_32; 2314 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2315 return 0; 2316 case Opt_journal_path: 2317 { 2318 struct inode *journal_inode; 2319 struct path path; 2320 int error; 2321 2322 if (is_remount) { 2323 ext4_msg(NULL, KERN_ERR, 2324 "Cannot specify journal on remount"); 2325 return -EINVAL; 2326 } 2327 2328 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2329 if (error) { 2330 ext4_msg(NULL, KERN_ERR, "error: could not find " 2331 "journal device path"); 2332 return -EINVAL; 2333 } 2334 2335 journal_inode = d_inode(path.dentry); 2336 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2337 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2338 path_put(&path); 2339 return 0; 2340 } 2341 case Opt_journal_ioprio: 2342 if (result.uint_32 > 7) { 2343 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2344 " (must be 0-7)"); 2345 return -EINVAL; 2346 } 2347 ctx->journal_ioprio = 2348 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2349 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2350 return 0; 2351 case Opt_test_dummy_encryption: 2352 return ext4_parse_test_dummy_encryption(param, ctx); 2353 case Opt_dax: 2354 case Opt_dax_type: 2355 #ifdef CONFIG_FS_DAX 2356 { 2357 int type = (token == Opt_dax) ? 2358 Opt_dax : result.uint_32; 2359 2360 switch (type) { 2361 case Opt_dax: 2362 case Opt_dax_always: 2363 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2364 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2365 break; 2366 case Opt_dax_never: 2367 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2368 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2369 break; 2370 case Opt_dax_inode: 2371 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2372 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2373 /* Strictly for printing options */ 2374 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2375 break; 2376 } 2377 return 0; 2378 } 2379 #else 2380 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2381 return -EINVAL; 2382 #endif 2383 case Opt_data_err: 2384 if (result.uint_32 == Opt_data_err_abort) 2385 ctx_set_mount_opt(ctx, m->mount_opt); 2386 else if (result.uint_32 == Opt_data_err_ignore) 2387 ctx_clear_mount_opt(ctx, m->mount_opt); 2388 return 0; 2389 case Opt_mb_optimize_scan: 2390 if (result.int_32 == 1) { 2391 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2392 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2393 } else if (result.int_32 == 0) { 2394 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2395 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2396 } else { 2397 ext4_msg(NULL, KERN_WARNING, 2398 "mb_optimize_scan should be set to 0 or 1."); 2399 return -EINVAL; 2400 } 2401 return 0; 2402 } 2403 2404 /* 2405 * At this point we should only be getting options requiring MOPT_SET, 2406 * or MOPT_CLEAR. Anything else is a bug 2407 */ 2408 if (m->token == Opt_err) { 2409 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2410 param->key); 2411 WARN_ON(1); 2412 return -EINVAL; 2413 } 2414 2415 else { 2416 unsigned int set = 0; 2417 2418 if ((param->type == fs_value_is_flag) || 2419 result.uint_32 > 0) 2420 set = 1; 2421 2422 if (m->flags & MOPT_CLEAR) 2423 set = !set; 2424 else if (unlikely(!(m->flags & MOPT_SET))) { 2425 ext4_msg(NULL, KERN_WARNING, 2426 "buggy handling of option %s", 2427 param->key); 2428 WARN_ON(1); 2429 return -EINVAL; 2430 } 2431 if (m->flags & MOPT_2) { 2432 if (set != 0) 2433 ctx_set_mount_opt2(ctx, m->mount_opt); 2434 else 2435 ctx_clear_mount_opt2(ctx, m->mount_opt); 2436 } else { 2437 if (set != 0) 2438 ctx_set_mount_opt(ctx, m->mount_opt); 2439 else 2440 ctx_clear_mount_opt(ctx, m->mount_opt); 2441 } 2442 } 2443 2444 return 0; 2445 } 2446 2447 static int parse_options(struct fs_context *fc, char *options) 2448 { 2449 struct fs_parameter param; 2450 int ret; 2451 char *key; 2452 2453 if (!options) 2454 return 0; 2455 2456 while ((key = strsep(&options, ",")) != NULL) { 2457 if (*key) { 2458 size_t v_len = 0; 2459 char *value = strchr(key, '='); 2460 2461 param.type = fs_value_is_flag; 2462 param.string = NULL; 2463 2464 if (value) { 2465 if (value == key) 2466 continue; 2467 2468 *value++ = 0; 2469 v_len = strlen(value); 2470 param.string = kmemdup_nul(value, v_len, 2471 GFP_KERNEL); 2472 if (!param.string) 2473 return -ENOMEM; 2474 param.type = fs_value_is_string; 2475 } 2476 2477 param.key = key; 2478 param.size = v_len; 2479 2480 ret = ext4_parse_param(fc, ¶m); 2481 if (param.string) 2482 kfree(param.string); 2483 if (ret < 0) 2484 return ret; 2485 } 2486 } 2487 2488 ret = ext4_validate_options(fc); 2489 if (ret < 0) 2490 return ret; 2491 2492 return 0; 2493 } 2494 2495 static int parse_apply_sb_mount_options(struct super_block *sb, 2496 struct ext4_fs_context *m_ctx) 2497 { 2498 struct ext4_sb_info *sbi = EXT4_SB(sb); 2499 char *s_mount_opts = NULL; 2500 struct ext4_fs_context *s_ctx = NULL; 2501 struct fs_context *fc = NULL; 2502 int ret = -ENOMEM; 2503 2504 if (!sbi->s_es->s_mount_opts[0]) 2505 return 0; 2506 2507 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2508 sizeof(sbi->s_es->s_mount_opts), 2509 GFP_KERNEL); 2510 if (!s_mount_opts) 2511 return ret; 2512 2513 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2514 if (!fc) 2515 goto out_free; 2516 2517 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2518 if (!s_ctx) 2519 goto out_free; 2520 2521 fc->fs_private = s_ctx; 2522 fc->s_fs_info = sbi; 2523 2524 ret = parse_options(fc, s_mount_opts); 2525 if (ret < 0) 2526 goto parse_failed; 2527 2528 ret = ext4_check_opt_consistency(fc, sb); 2529 if (ret < 0) { 2530 parse_failed: 2531 ext4_msg(sb, KERN_WARNING, 2532 "failed to parse options in superblock: %s", 2533 s_mount_opts); 2534 ret = 0; 2535 goto out_free; 2536 } 2537 2538 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2539 m_ctx->journal_devnum = s_ctx->journal_devnum; 2540 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2541 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2542 2543 ext4_apply_options(fc, sb); 2544 ret = 0; 2545 2546 out_free: 2547 if (fc) { 2548 ext4_fc_free(fc); 2549 kfree(fc); 2550 } 2551 kfree(s_mount_opts); 2552 return ret; 2553 } 2554 2555 static void ext4_apply_quota_options(struct fs_context *fc, 2556 struct super_block *sb) 2557 { 2558 #ifdef CONFIG_QUOTA 2559 bool quota_feature = ext4_has_feature_quota(sb); 2560 struct ext4_fs_context *ctx = fc->fs_private; 2561 struct ext4_sb_info *sbi = EXT4_SB(sb); 2562 char *qname; 2563 int i; 2564 2565 if (quota_feature) 2566 return; 2567 2568 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2569 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2570 if (!(ctx->qname_spec & (1 << i))) 2571 continue; 2572 2573 qname = ctx->s_qf_names[i]; /* May be NULL */ 2574 if (qname) 2575 set_opt(sb, QUOTA); 2576 ctx->s_qf_names[i] = NULL; 2577 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2578 lockdep_is_held(&sb->s_umount)); 2579 if (qname) 2580 kfree_rcu_mightsleep(qname); 2581 } 2582 } 2583 2584 if (ctx->spec & EXT4_SPEC_JQFMT) 2585 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2586 #endif 2587 } 2588 2589 /* 2590 * Check quota settings consistency. 2591 */ 2592 static int ext4_check_quota_consistency(struct fs_context *fc, 2593 struct super_block *sb) 2594 { 2595 #ifdef CONFIG_QUOTA 2596 struct ext4_fs_context *ctx = fc->fs_private; 2597 struct ext4_sb_info *sbi = EXT4_SB(sb); 2598 bool quota_feature = ext4_has_feature_quota(sb); 2599 bool quota_loaded = sb_any_quota_loaded(sb); 2600 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2601 int quota_flags, i; 2602 2603 /* 2604 * We do the test below only for project quotas. 'usrquota' and 2605 * 'grpquota' mount options are allowed even without quota feature 2606 * to support legacy quotas in quota files. 2607 */ 2608 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2609 !ext4_has_feature_project(sb)) { 2610 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2611 "Cannot enable project quota enforcement."); 2612 return -EINVAL; 2613 } 2614 2615 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2616 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2617 if (quota_loaded && 2618 ctx->mask_s_mount_opt & quota_flags && 2619 !ctx_test_mount_opt(ctx, quota_flags)) 2620 goto err_quota_change; 2621 2622 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2623 2624 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2625 if (!(ctx->qname_spec & (1 << i))) 2626 continue; 2627 2628 if (quota_loaded && 2629 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2630 goto err_jquota_change; 2631 2632 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2633 strcmp(get_qf_name(sb, sbi, i), 2634 ctx->s_qf_names[i]) != 0) 2635 goto err_jquota_specified; 2636 } 2637 2638 if (quota_feature) { 2639 ext4_msg(NULL, KERN_INFO, 2640 "Journaled quota options ignored when " 2641 "QUOTA feature is enabled"); 2642 return 0; 2643 } 2644 } 2645 2646 if (ctx->spec & EXT4_SPEC_JQFMT) { 2647 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2648 goto err_jquota_change; 2649 if (quota_feature) { 2650 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2651 "ignored when QUOTA feature is enabled"); 2652 return 0; 2653 } 2654 } 2655 2656 /* Make sure we don't mix old and new quota format */ 2657 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2658 ctx->s_qf_names[USRQUOTA]); 2659 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2660 ctx->s_qf_names[GRPQUOTA]); 2661 2662 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2663 test_opt(sb, USRQUOTA)); 2664 2665 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2666 test_opt(sb, GRPQUOTA)); 2667 2668 if (usr_qf_name) { 2669 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2670 usrquota = false; 2671 } 2672 if (grp_qf_name) { 2673 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2674 grpquota = false; 2675 } 2676 2677 if (usr_qf_name || grp_qf_name) { 2678 if (usrquota || grpquota) { 2679 ext4_msg(NULL, KERN_ERR, "old and new quota " 2680 "format mixing"); 2681 return -EINVAL; 2682 } 2683 2684 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2685 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2686 "not specified"); 2687 return -EINVAL; 2688 } 2689 } 2690 2691 return 0; 2692 2693 err_quota_change: 2694 ext4_msg(NULL, KERN_ERR, 2695 "Cannot change quota options when quota turned on"); 2696 return -EINVAL; 2697 err_jquota_change: 2698 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2699 "options when quota turned on"); 2700 return -EINVAL; 2701 err_jquota_specified: 2702 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2703 QTYPE2NAME(i)); 2704 return -EINVAL; 2705 #else 2706 return 0; 2707 #endif 2708 } 2709 2710 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2711 struct super_block *sb) 2712 { 2713 const struct ext4_fs_context *ctx = fc->fs_private; 2714 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2715 2716 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2717 return 0; 2718 2719 if (!ext4_has_feature_encrypt(sb)) { 2720 ext4_msg(NULL, KERN_WARNING, 2721 "test_dummy_encryption requires encrypt feature"); 2722 return -EINVAL; 2723 } 2724 /* 2725 * This mount option is just for testing, and it's not worthwhile to 2726 * implement the extra complexity (e.g. RCU protection) that would be 2727 * needed to allow it to be set or changed during remount. We do allow 2728 * it to be specified during remount, but only if there is no change. 2729 */ 2730 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2731 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2732 &ctx->dummy_enc_policy)) 2733 return 0; 2734 ext4_msg(NULL, KERN_WARNING, 2735 "Can't set or change test_dummy_encryption on remount"); 2736 return -EINVAL; 2737 } 2738 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2739 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2740 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2741 &ctx->dummy_enc_policy)) 2742 return 0; 2743 ext4_msg(NULL, KERN_WARNING, 2744 "Conflicting test_dummy_encryption options"); 2745 return -EINVAL; 2746 } 2747 return 0; 2748 } 2749 2750 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2751 struct super_block *sb) 2752 { 2753 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2754 /* if already set, it was already verified to be the same */ 2755 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2756 return; 2757 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2758 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2759 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2760 } 2761 2762 static int ext4_check_opt_consistency(struct fs_context *fc, 2763 struct super_block *sb) 2764 { 2765 struct ext4_fs_context *ctx = fc->fs_private; 2766 struct ext4_sb_info *sbi = fc->s_fs_info; 2767 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2768 int err; 2769 2770 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2771 ext4_msg(NULL, KERN_ERR, 2772 "Mount option(s) incompatible with ext2"); 2773 return -EINVAL; 2774 } 2775 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2776 ext4_msg(NULL, KERN_ERR, 2777 "Mount option(s) incompatible with ext3"); 2778 return -EINVAL; 2779 } 2780 2781 if (ctx->s_want_extra_isize > 2782 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2783 ext4_msg(NULL, KERN_ERR, 2784 "Invalid want_extra_isize %d", 2785 ctx->s_want_extra_isize); 2786 return -EINVAL; 2787 } 2788 2789 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2790 int blocksize = 2791 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2792 if (blocksize < PAGE_SIZE) 2793 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2794 "experimental mount option 'dioread_nolock' " 2795 "for blocksize < PAGE_SIZE"); 2796 } 2797 2798 err = ext4_check_test_dummy_encryption(fc, sb); 2799 if (err) 2800 return err; 2801 2802 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2803 if (!sbi->s_journal) { 2804 ext4_msg(NULL, KERN_WARNING, 2805 "Remounting file system with no journal " 2806 "so ignoring journalled data option"); 2807 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2808 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2809 test_opt(sb, DATA_FLAGS)) { 2810 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2811 "on remount"); 2812 return -EINVAL; 2813 } 2814 } 2815 2816 if (is_remount) { 2817 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2818 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2819 ext4_msg(NULL, KERN_ERR, "can't mount with " 2820 "both data=journal and dax"); 2821 return -EINVAL; 2822 } 2823 2824 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2825 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2826 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2827 fail_dax_change_remount: 2828 ext4_msg(NULL, KERN_ERR, "can't change " 2829 "dax mount option while remounting"); 2830 return -EINVAL; 2831 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2832 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2833 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2834 goto fail_dax_change_remount; 2835 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2836 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2837 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2838 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2839 goto fail_dax_change_remount; 2840 } 2841 } 2842 2843 return ext4_check_quota_consistency(fc, sb); 2844 } 2845 2846 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2847 { 2848 struct ext4_fs_context *ctx = fc->fs_private; 2849 struct ext4_sb_info *sbi = fc->s_fs_info; 2850 2851 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2852 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2853 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2854 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2855 sb->s_flags &= ~ctx->mask_s_flags; 2856 sb->s_flags |= ctx->vals_s_flags; 2857 2858 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2859 APPLY(s_commit_interval); 2860 APPLY(s_stripe); 2861 APPLY(s_max_batch_time); 2862 APPLY(s_min_batch_time); 2863 APPLY(s_want_extra_isize); 2864 APPLY(s_inode_readahead_blks); 2865 APPLY(s_max_dir_size_kb); 2866 APPLY(s_li_wait_mult); 2867 APPLY(s_resgid); 2868 APPLY(s_resuid); 2869 2870 #ifdef CONFIG_EXT4_DEBUG 2871 APPLY(s_fc_debug_max_replay); 2872 #endif 2873 2874 ext4_apply_quota_options(fc, sb); 2875 ext4_apply_test_dummy_encryption(ctx, sb); 2876 } 2877 2878 2879 static int ext4_validate_options(struct fs_context *fc) 2880 { 2881 #ifdef CONFIG_QUOTA 2882 struct ext4_fs_context *ctx = fc->fs_private; 2883 char *usr_qf_name, *grp_qf_name; 2884 2885 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2886 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2887 2888 if (usr_qf_name || grp_qf_name) { 2889 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2890 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2891 2892 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2893 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2894 2895 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2896 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2897 ext4_msg(NULL, KERN_ERR, "old and new quota " 2898 "format mixing"); 2899 return -EINVAL; 2900 } 2901 } 2902 #endif 2903 return 1; 2904 } 2905 2906 static inline void ext4_show_quota_options(struct seq_file *seq, 2907 struct super_block *sb) 2908 { 2909 #if defined(CONFIG_QUOTA) 2910 struct ext4_sb_info *sbi = EXT4_SB(sb); 2911 char *usr_qf_name, *grp_qf_name; 2912 2913 if (sbi->s_jquota_fmt) { 2914 char *fmtname = ""; 2915 2916 switch (sbi->s_jquota_fmt) { 2917 case QFMT_VFS_OLD: 2918 fmtname = "vfsold"; 2919 break; 2920 case QFMT_VFS_V0: 2921 fmtname = "vfsv0"; 2922 break; 2923 case QFMT_VFS_V1: 2924 fmtname = "vfsv1"; 2925 break; 2926 } 2927 seq_printf(seq, ",jqfmt=%s", fmtname); 2928 } 2929 2930 rcu_read_lock(); 2931 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2932 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2933 if (usr_qf_name) 2934 seq_show_option(seq, "usrjquota", usr_qf_name); 2935 if (grp_qf_name) 2936 seq_show_option(seq, "grpjquota", grp_qf_name); 2937 rcu_read_unlock(); 2938 #endif 2939 } 2940 2941 static const char *token2str(int token) 2942 { 2943 const struct fs_parameter_spec *spec; 2944 2945 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2946 if (spec->opt == token && !spec->type) 2947 break; 2948 return spec->name; 2949 } 2950 2951 /* 2952 * Show an option if 2953 * - it's set to a non-default value OR 2954 * - if the per-sb default is different from the global default 2955 */ 2956 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2957 int nodefs) 2958 { 2959 struct ext4_sb_info *sbi = EXT4_SB(sb); 2960 struct ext4_super_block *es = sbi->s_es; 2961 int def_errors; 2962 const struct mount_opts *m; 2963 char sep = nodefs ? '\n' : ','; 2964 2965 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2966 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2967 2968 if (sbi->s_sb_block != 1) 2969 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2970 2971 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2972 int want_set = m->flags & MOPT_SET; 2973 int opt_2 = m->flags & MOPT_2; 2974 unsigned int mount_opt, def_mount_opt; 2975 2976 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2977 m->flags & MOPT_SKIP) 2978 continue; 2979 2980 if (opt_2) { 2981 mount_opt = sbi->s_mount_opt2; 2982 def_mount_opt = sbi->s_def_mount_opt2; 2983 } else { 2984 mount_opt = sbi->s_mount_opt; 2985 def_mount_opt = sbi->s_def_mount_opt; 2986 } 2987 /* skip if same as the default */ 2988 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2989 continue; 2990 /* select Opt_noFoo vs Opt_Foo */ 2991 if ((want_set && 2992 (mount_opt & m->mount_opt) != m->mount_opt) || 2993 (!want_set && (mount_opt & m->mount_opt))) 2994 continue; 2995 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2996 } 2997 2998 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2999 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 3000 SEQ_OPTS_PRINT("resuid=%u", 3001 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 3002 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 3003 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 3004 SEQ_OPTS_PRINT("resgid=%u", 3005 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 3006 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 3007 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3008 SEQ_OPTS_PUTS("errors=remount-ro"); 3009 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3010 SEQ_OPTS_PUTS("errors=continue"); 3011 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3012 SEQ_OPTS_PUTS("errors=panic"); 3013 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3014 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3015 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3016 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3017 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3018 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3019 if (nodefs || sbi->s_stripe) 3020 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3021 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3022 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3023 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3024 SEQ_OPTS_PUTS("data=journal"); 3025 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3026 SEQ_OPTS_PUTS("data=ordered"); 3027 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3028 SEQ_OPTS_PUTS("data=writeback"); 3029 } 3030 if (nodefs || 3031 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3032 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3033 sbi->s_inode_readahead_blks); 3034 3035 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3036 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3037 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3038 if (nodefs || sbi->s_max_dir_size_kb) 3039 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3040 if (test_opt(sb, DATA_ERR_ABORT)) 3041 SEQ_OPTS_PUTS("data_err=abort"); 3042 3043 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3044 3045 if (sb->s_flags & SB_INLINECRYPT) 3046 SEQ_OPTS_PUTS("inlinecrypt"); 3047 3048 if (test_opt(sb, DAX_ALWAYS)) { 3049 if (IS_EXT2_SB(sb)) 3050 SEQ_OPTS_PUTS("dax"); 3051 else 3052 SEQ_OPTS_PUTS("dax=always"); 3053 } else if (test_opt2(sb, DAX_NEVER)) { 3054 SEQ_OPTS_PUTS("dax=never"); 3055 } else if (test_opt2(sb, DAX_INODE)) { 3056 SEQ_OPTS_PUTS("dax=inode"); 3057 } 3058 3059 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3060 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3061 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3062 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3063 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3064 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3065 } 3066 3067 ext4_show_quota_options(seq, sb); 3068 return 0; 3069 } 3070 3071 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3072 { 3073 return _ext4_show_options(seq, root->d_sb, 0); 3074 } 3075 3076 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3077 { 3078 struct super_block *sb = seq->private; 3079 int rc; 3080 3081 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3082 rc = _ext4_show_options(seq, sb, 1); 3083 seq_puts(seq, "\n"); 3084 return rc; 3085 } 3086 3087 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3088 int read_only) 3089 { 3090 struct ext4_sb_info *sbi = EXT4_SB(sb); 3091 int err = 0; 3092 3093 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3094 ext4_msg(sb, KERN_ERR, "revision level too high, " 3095 "forcing read-only mode"); 3096 err = -EROFS; 3097 goto done; 3098 } 3099 if (read_only) 3100 goto done; 3101 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3102 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3103 "running e2fsck is recommended"); 3104 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3105 ext4_msg(sb, KERN_WARNING, 3106 "warning: mounting fs with errors, " 3107 "running e2fsck is recommended"); 3108 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3109 le16_to_cpu(es->s_mnt_count) >= 3110 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3111 ext4_msg(sb, KERN_WARNING, 3112 "warning: maximal mount count reached, " 3113 "running e2fsck is recommended"); 3114 else if (le32_to_cpu(es->s_checkinterval) && 3115 (ext4_get_tstamp(es, s_lastcheck) + 3116 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3117 ext4_msg(sb, KERN_WARNING, 3118 "warning: checktime reached, " 3119 "running e2fsck is recommended"); 3120 if (!sbi->s_journal) 3121 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3122 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3123 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3124 le16_add_cpu(&es->s_mnt_count, 1); 3125 ext4_update_tstamp(es, s_mtime); 3126 if (sbi->s_journal) { 3127 ext4_set_feature_journal_needs_recovery(sb); 3128 if (ext4_has_feature_orphan_file(sb)) 3129 ext4_set_feature_orphan_present(sb); 3130 } 3131 3132 err = ext4_commit_super(sb); 3133 done: 3134 if (test_opt(sb, DEBUG)) 3135 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3136 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3137 sb->s_blocksize, 3138 sbi->s_groups_count, 3139 EXT4_BLOCKS_PER_GROUP(sb), 3140 EXT4_INODES_PER_GROUP(sb), 3141 sbi->s_mount_opt, sbi->s_mount_opt2); 3142 return err; 3143 } 3144 3145 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3146 { 3147 struct ext4_sb_info *sbi = EXT4_SB(sb); 3148 struct flex_groups **old_groups, **new_groups; 3149 int size, i, j; 3150 3151 if (!sbi->s_log_groups_per_flex) 3152 return 0; 3153 3154 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3155 if (size <= sbi->s_flex_groups_allocated) 3156 return 0; 3157 3158 new_groups = kvzalloc(roundup_pow_of_two(size * 3159 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3160 if (!new_groups) { 3161 ext4_msg(sb, KERN_ERR, 3162 "not enough memory for %d flex group pointers", size); 3163 return -ENOMEM; 3164 } 3165 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3166 new_groups[i] = kvzalloc(roundup_pow_of_two( 3167 sizeof(struct flex_groups)), 3168 GFP_KERNEL); 3169 if (!new_groups[i]) { 3170 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3171 kvfree(new_groups[j]); 3172 kvfree(new_groups); 3173 ext4_msg(sb, KERN_ERR, 3174 "not enough memory for %d flex groups", size); 3175 return -ENOMEM; 3176 } 3177 } 3178 rcu_read_lock(); 3179 old_groups = rcu_dereference(sbi->s_flex_groups); 3180 if (old_groups) 3181 memcpy(new_groups, old_groups, 3182 (sbi->s_flex_groups_allocated * 3183 sizeof(struct flex_groups *))); 3184 rcu_read_unlock(); 3185 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3186 sbi->s_flex_groups_allocated = size; 3187 if (old_groups) 3188 ext4_kvfree_array_rcu(old_groups); 3189 return 0; 3190 } 3191 3192 static int ext4_fill_flex_info(struct super_block *sb) 3193 { 3194 struct ext4_sb_info *sbi = EXT4_SB(sb); 3195 struct ext4_group_desc *gdp = NULL; 3196 struct flex_groups *fg; 3197 ext4_group_t flex_group; 3198 int i, err; 3199 3200 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3201 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3202 sbi->s_log_groups_per_flex = 0; 3203 return 1; 3204 } 3205 3206 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3207 if (err) 3208 goto failed; 3209 3210 for (i = 0; i < sbi->s_groups_count; i++) { 3211 gdp = ext4_get_group_desc(sb, i, NULL); 3212 3213 flex_group = ext4_flex_group(sbi, i); 3214 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3215 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3216 atomic64_add(ext4_free_group_clusters(sb, gdp), 3217 &fg->free_clusters); 3218 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3219 } 3220 3221 return 1; 3222 failed: 3223 return 0; 3224 } 3225 3226 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3227 struct ext4_group_desc *gdp) 3228 { 3229 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3230 __u16 crc = 0; 3231 __le32 le_group = cpu_to_le32(block_group); 3232 struct ext4_sb_info *sbi = EXT4_SB(sb); 3233 3234 if (ext4_has_metadata_csum(sbi->s_sb)) { 3235 /* Use new metadata_csum algorithm */ 3236 __u32 csum32; 3237 __u16 dummy_csum = 0; 3238 3239 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3240 sizeof(le_group)); 3241 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3242 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3243 sizeof(dummy_csum)); 3244 offset += sizeof(dummy_csum); 3245 if (offset < sbi->s_desc_size) 3246 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3247 sbi->s_desc_size - offset); 3248 3249 crc = csum32 & 0xFFFF; 3250 goto out; 3251 } 3252 3253 /* old crc16 code */ 3254 if (!ext4_has_feature_gdt_csum(sb)) 3255 return 0; 3256 3257 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3258 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3259 crc = crc16(crc, (__u8 *)gdp, offset); 3260 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3261 /* for checksum of struct ext4_group_desc do the rest...*/ 3262 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3263 crc = crc16(crc, (__u8 *)gdp + offset, 3264 sbi->s_desc_size - offset); 3265 3266 out: 3267 return cpu_to_le16(crc); 3268 } 3269 3270 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3271 struct ext4_group_desc *gdp) 3272 { 3273 if (ext4_has_group_desc_csum(sb) && 3274 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3275 return 0; 3276 3277 return 1; 3278 } 3279 3280 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3281 struct ext4_group_desc *gdp) 3282 { 3283 if (!ext4_has_group_desc_csum(sb)) 3284 return; 3285 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3286 } 3287 3288 /* Called at mount-time, super-block is locked */ 3289 static int ext4_check_descriptors(struct super_block *sb, 3290 ext4_fsblk_t sb_block, 3291 ext4_group_t *first_not_zeroed) 3292 { 3293 struct ext4_sb_info *sbi = EXT4_SB(sb); 3294 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3295 ext4_fsblk_t last_block; 3296 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3297 ext4_fsblk_t block_bitmap; 3298 ext4_fsblk_t inode_bitmap; 3299 ext4_fsblk_t inode_table; 3300 int flexbg_flag = 0; 3301 ext4_group_t i, grp = sbi->s_groups_count; 3302 3303 if (ext4_has_feature_flex_bg(sb)) 3304 flexbg_flag = 1; 3305 3306 ext4_debug("Checking group descriptors"); 3307 3308 for (i = 0; i < sbi->s_groups_count; i++) { 3309 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3310 3311 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3312 last_block = ext4_blocks_count(sbi->s_es) - 1; 3313 else 3314 last_block = first_block + 3315 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3316 3317 if ((grp == sbi->s_groups_count) && 3318 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3319 grp = i; 3320 3321 block_bitmap = ext4_block_bitmap(sb, gdp); 3322 if (block_bitmap == sb_block) { 3323 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3324 "Block bitmap for group %u overlaps " 3325 "superblock", i); 3326 if (!sb_rdonly(sb)) 3327 return 0; 3328 } 3329 if (block_bitmap >= sb_block + 1 && 3330 block_bitmap <= last_bg_block) { 3331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3332 "Block bitmap for group %u overlaps " 3333 "block group descriptors", i); 3334 if (!sb_rdonly(sb)) 3335 return 0; 3336 } 3337 if (block_bitmap < first_block || block_bitmap > last_block) { 3338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3339 "Block bitmap for group %u not in group " 3340 "(block %llu)!", i, block_bitmap); 3341 return 0; 3342 } 3343 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3344 if (inode_bitmap == sb_block) { 3345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3346 "Inode bitmap for group %u overlaps " 3347 "superblock", i); 3348 if (!sb_rdonly(sb)) 3349 return 0; 3350 } 3351 if (inode_bitmap >= sb_block + 1 && 3352 inode_bitmap <= last_bg_block) { 3353 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3354 "Inode bitmap for group %u overlaps " 3355 "block group descriptors", i); 3356 if (!sb_rdonly(sb)) 3357 return 0; 3358 } 3359 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3361 "Inode bitmap for group %u not in group " 3362 "(block %llu)!", i, inode_bitmap); 3363 return 0; 3364 } 3365 inode_table = ext4_inode_table(sb, gdp); 3366 if (inode_table == sb_block) { 3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3368 "Inode table for group %u overlaps " 3369 "superblock", i); 3370 if (!sb_rdonly(sb)) 3371 return 0; 3372 } 3373 if (inode_table >= sb_block + 1 && 3374 inode_table <= last_bg_block) { 3375 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3376 "Inode table for group %u overlaps " 3377 "block group descriptors", i); 3378 if (!sb_rdonly(sb)) 3379 return 0; 3380 } 3381 if (inode_table < first_block || 3382 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3383 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3384 "Inode table for group %u not in group " 3385 "(block %llu)!", i, inode_table); 3386 return 0; 3387 } 3388 ext4_lock_group(sb, i); 3389 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3390 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3391 "Checksum for group %u failed (%u!=%u)", 3392 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3393 gdp)), le16_to_cpu(gdp->bg_checksum)); 3394 if (!sb_rdonly(sb)) { 3395 ext4_unlock_group(sb, i); 3396 return 0; 3397 } 3398 } 3399 ext4_unlock_group(sb, i); 3400 if (!flexbg_flag) 3401 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3402 } 3403 if (NULL != first_not_zeroed) 3404 *first_not_zeroed = grp; 3405 return 1; 3406 } 3407 3408 /* 3409 * Maximal extent format file size. 3410 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3411 * extent format containers, within a sector_t, and within i_blocks 3412 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3413 * so that won't be a limiting factor. 3414 * 3415 * However there is other limiting factor. We do store extents in the form 3416 * of starting block and length, hence the resulting length of the extent 3417 * covering maximum file size must fit into on-disk format containers as 3418 * well. Given that length is always by 1 unit bigger than max unit (because 3419 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3420 * 3421 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3422 */ 3423 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3424 { 3425 loff_t res; 3426 loff_t upper_limit = MAX_LFS_FILESIZE; 3427 3428 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3429 3430 if (!has_huge_files) { 3431 upper_limit = (1LL << 32) - 1; 3432 3433 /* total blocks in file system block size */ 3434 upper_limit >>= (blkbits - 9); 3435 upper_limit <<= blkbits; 3436 } 3437 3438 /* 3439 * 32-bit extent-start container, ee_block. We lower the maxbytes 3440 * by one fs block, so ee_len can cover the extent of maximum file 3441 * size 3442 */ 3443 res = (1LL << 32) - 1; 3444 res <<= blkbits; 3445 3446 /* Sanity check against vm- & vfs- imposed limits */ 3447 if (res > upper_limit) 3448 res = upper_limit; 3449 3450 return res; 3451 } 3452 3453 /* 3454 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3455 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3456 * We need to be 1 filesystem block less than the 2^48 sector limit. 3457 */ 3458 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3459 { 3460 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3461 int meta_blocks; 3462 unsigned int ppb = 1 << (bits - 2); 3463 3464 /* 3465 * This is calculated to be the largest file size for a dense, block 3466 * mapped file such that the file's total number of 512-byte sectors, 3467 * including data and all indirect blocks, does not exceed (2^48 - 1). 3468 * 3469 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3470 * number of 512-byte sectors of the file. 3471 */ 3472 if (!has_huge_files) { 3473 /* 3474 * !has_huge_files or implies that the inode i_block field 3475 * represents total file blocks in 2^32 512-byte sectors == 3476 * size of vfs inode i_blocks * 8 3477 */ 3478 upper_limit = (1LL << 32) - 1; 3479 3480 /* total blocks in file system block size */ 3481 upper_limit >>= (bits - 9); 3482 3483 } else { 3484 /* 3485 * We use 48 bit ext4_inode i_blocks 3486 * With EXT4_HUGE_FILE_FL set the i_blocks 3487 * represent total number of blocks in 3488 * file system block size 3489 */ 3490 upper_limit = (1LL << 48) - 1; 3491 3492 } 3493 3494 /* Compute how many blocks we can address by block tree */ 3495 res += ppb; 3496 res += ppb * ppb; 3497 res += ((loff_t)ppb) * ppb * ppb; 3498 /* Compute how many metadata blocks are needed */ 3499 meta_blocks = 1; 3500 meta_blocks += 1 + ppb; 3501 meta_blocks += 1 + ppb + ppb * ppb; 3502 /* Does block tree limit file size? */ 3503 if (res + meta_blocks <= upper_limit) 3504 goto check_lfs; 3505 3506 res = upper_limit; 3507 /* How many metadata blocks are needed for addressing upper_limit? */ 3508 upper_limit -= EXT4_NDIR_BLOCKS; 3509 /* indirect blocks */ 3510 meta_blocks = 1; 3511 upper_limit -= ppb; 3512 /* double indirect blocks */ 3513 if (upper_limit < ppb * ppb) { 3514 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3515 res -= meta_blocks; 3516 goto check_lfs; 3517 } 3518 meta_blocks += 1 + ppb; 3519 upper_limit -= ppb * ppb; 3520 /* tripple indirect blocks for the rest */ 3521 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3522 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3523 res -= meta_blocks; 3524 check_lfs: 3525 res <<= bits; 3526 if (res > MAX_LFS_FILESIZE) 3527 res = MAX_LFS_FILESIZE; 3528 3529 return res; 3530 } 3531 3532 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3533 ext4_fsblk_t logical_sb_block, int nr) 3534 { 3535 struct ext4_sb_info *sbi = EXT4_SB(sb); 3536 ext4_group_t bg, first_meta_bg; 3537 int has_super = 0; 3538 3539 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3540 3541 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3542 return logical_sb_block + nr + 1; 3543 bg = sbi->s_desc_per_block * nr; 3544 if (ext4_bg_has_super(sb, bg)) 3545 has_super = 1; 3546 3547 /* 3548 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3549 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3550 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3551 * compensate. 3552 */ 3553 if (sb->s_blocksize == 1024 && nr == 0 && 3554 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3555 has_super++; 3556 3557 return (has_super + ext4_group_first_block_no(sb, bg)); 3558 } 3559 3560 /** 3561 * ext4_get_stripe_size: Get the stripe size. 3562 * @sbi: In memory super block info 3563 * 3564 * If we have specified it via mount option, then 3565 * use the mount option value. If the value specified at mount time is 3566 * greater than the blocks per group use the super block value. 3567 * If the super block value is greater than blocks per group return 0. 3568 * Allocator needs it be less than blocks per group. 3569 * 3570 */ 3571 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3572 { 3573 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3574 unsigned long stripe_width = 3575 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3576 int ret; 3577 3578 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3579 ret = sbi->s_stripe; 3580 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3581 ret = stripe_width; 3582 else if (stride && stride <= sbi->s_blocks_per_group) 3583 ret = stride; 3584 else 3585 ret = 0; 3586 3587 /* 3588 * If the stripe width is 1, this makes no sense and 3589 * we set it to 0 to turn off stripe handling code. 3590 */ 3591 if (ret <= 1) 3592 ret = 0; 3593 3594 return ret; 3595 } 3596 3597 /* 3598 * Check whether this filesystem can be mounted based on 3599 * the features present and the RDONLY/RDWR mount requested. 3600 * Returns 1 if this filesystem can be mounted as requested, 3601 * 0 if it cannot be. 3602 */ 3603 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3604 { 3605 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3606 ext4_msg(sb, KERN_ERR, 3607 "Couldn't mount because of " 3608 "unsupported optional features (%x)", 3609 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3610 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3611 return 0; 3612 } 3613 3614 #if !IS_ENABLED(CONFIG_UNICODE) 3615 if (ext4_has_feature_casefold(sb)) { 3616 ext4_msg(sb, KERN_ERR, 3617 "Filesystem with casefold feature cannot be " 3618 "mounted without CONFIG_UNICODE"); 3619 return 0; 3620 } 3621 #endif 3622 3623 if (readonly) 3624 return 1; 3625 3626 if (ext4_has_feature_readonly(sb)) { 3627 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3628 sb->s_flags |= SB_RDONLY; 3629 return 1; 3630 } 3631 3632 /* Check that feature set is OK for a read-write mount */ 3633 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3634 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3635 "unsupported optional features (%x)", 3636 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3637 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3638 return 0; 3639 } 3640 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3641 ext4_msg(sb, KERN_ERR, 3642 "Can't support bigalloc feature without " 3643 "extents feature\n"); 3644 return 0; 3645 } 3646 3647 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3648 if (!readonly && (ext4_has_feature_quota(sb) || 3649 ext4_has_feature_project(sb))) { 3650 ext4_msg(sb, KERN_ERR, 3651 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3652 return 0; 3653 } 3654 #endif /* CONFIG_QUOTA */ 3655 return 1; 3656 } 3657 3658 /* 3659 * This function is called once a day if we have errors logged 3660 * on the file system 3661 */ 3662 static void print_daily_error_info(struct timer_list *t) 3663 { 3664 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3665 struct super_block *sb = sbi->s_sb; 3666 struct ext4_super_block *es = sbi->s_es; 3667 3668 if (es->s_error_count) 3669 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3670 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3671 le32_to_cpu(es->s_error_count)); 3672 if (es->s_first_error_time) { 3673 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3674 sb->s_id, 3675 ext4_get_tstamp(es, s_first_error_time), 3676 (int) sizeof(es->s_first_error_func), 3677 es->s_first_error_func, 3678 le32_to_cpu(es->s_first_error_line)); 3679 if (es->s_first_error_ino) 3680 printk(KERN_CONT ": inode %u", 3681 le32_to_cpu(es->s_first_error_ino)); 3682 if (es->s_first_error_block) 3683 printk(KERN_CONT ": block %llu", (unsigned long long) 3684 le64_to_cpu(es->s_first_error_block)); 3685 printk(KERN_CONT "\n"); 3686 } 3687 if (es->s_last_error_time) { 3688 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3689 sb->s_id, 3690 ext4_get_tstamp(es, s_last_error_time), 3691 (int) sizeof(es->s_last_error_func), 3692 es->s_last_error_func, 3693 le32_to_cpu(es->s_last_error_line)); 3694 if (es->s_last_error_ino) 3695 printk(KERN_CONT ": inode %u", 3696 le32_to_cpu(es->s_last_error_ino)); 3697 if (es->s_last_error_block) 3698 printk(KERN_CONT ": block %llu", (unsigned long long) 3699 le64_to_cpu(es->s_last_error_block)); 3700 printk(KERN_CONT "\n"); 3701 } 3702 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3703 } 3704 3705 /* Find next suitable group and run ext4_init_inode_table */ 3706 static int ext4_run_li_request(struct ext4_li_request *elr) 3707 { 3708 struct ext4_group_desc *gdp = NULL; 3709 struct super_block *sb = elr->lr_super; 3710 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3711 ext4_group_t group = elr->lr_next_group; 3712 unsigned int prefetch_ios = 0; 3713 int ret = 0; 3714 int nr = EXT4_SB(sb)->s_mb_prefetch; 3715 u64 start_time; 3716 3717 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3718 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3719 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3720 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3721 if (group >= elr->lr_next_group) { 3722 ret = 1; 3723 if (elr->lr_first_not_zeroed != ngroups && 3724 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3725 elr->lr_next_group = elr->lr_first_not_zeroed; 3726 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3727 ret = 0; 3728 } 3729 } 3730 return ret; 3731 } 3732 3733 for (; group < ngroups; group++) { 3734 gdp = ext4_get_group_desc(sb, group, NULL); 3735 if (!gdp) { 3736 ret = 1; 3737 break; 3738 } 3739 3740 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3741 break; 3742 } 3743 3744 if (group >= ngroups) 3745 ret = 1; 3746 3747 if (!ret) { 3748 start_time = ktime_get_real_ns(); 3749 ret = ext4_init_inode_table(sb, group, 3750 elr->lr_timeout ? 0 : 1); 3751 trace_ext4_lazy_itable_init(sb, group); 3752 if (elr->lr_timeout == 0) { 3753 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3754 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3755 } 3756 elr->lr_next_sched = jiffies + elr->lr_timeout; 3757 elr->lr_next_group = group + 1; 3758 } 3759 return ret; 3760 } 3761 3762 /* 3763 * Remove lr_request from the list_request and free the 3764 * request structure. Should be called with li_list_mtx held 3765 */ 3766 static void ext4_remove_li_request(struct ext4_li_request *elr) 3767 { 3768 if (!elr) 3769 return; 3770 3771 list_del(&elr->lr_request); 3772 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3773 kfree(elr); 3774 } 3775 3776 static void ext4_unregister_li_request(struct super_block *sb) 3777 { 3778 mutex_lock(&ext4_li_mtx); 3779 if (!ext4_li_info) { 3780 mutex_unlock(&ext4_li_mtx); 3781 return; 3782 } 3783 3784 mutex_lock(&ext4_li_info->li_list_mtx); 3785 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3786 mutex_unlock(&ext4_li_info->li_list_mtx); 3787 mutex_unlock(&ext4_li_mtx); 3788 } 3789 3790 static struct task_struct *ext4_lazyinit_task; 3791 3792 /* 3793 * This is the function where ext4lazyinit thread lives. It walks 3794 * through the request list searching for next scheduled filesystem. 3795 * When such a fs is found, run the lazy initialization request 3796 * (ext4_rn_li_request) and keep track of the time spend in this 3797 * function. Based on that time we compute next schedule time of 3798 * the request. When walking through the list is complete, compute 3799 * next waking time and put itself into sleep. 3800 */ 3801 static int ext4_lazyinit_thread(void *arg) 3802 { 3803 struct ext4_lazy_init *eli = arg; 3804 struct list_head *pos, *n; 3805 struct ext4_li_request *elr; 3806 unsigned long next_wakeup, cur; 3807 3808 BUG_ON(NULL == eli); 3809 set_freezable(); 3810 3811 cont_thread: 3812 while (true) { 3813 next_wakeup = MAX_JIFFY_OFFSET; 3814 3815 mutex_lock(&eli->li_list_mtx); 3816 if (list_empty(&eli->li_request_list)) { 3817 mutex_unlock(&eli->li_list_mtx); 3818 goto exit_thread; 3819 } 3820 list_for_each_safe(pos, n, &eli->li_request_list) { 3821 int err = 0; 3822 int progress = 0; 3823 elr = list_entry(pos, struct ext4_li_request, 3824 lr_request); 3825 3826 if (time_before(jiffies, elr->lr_next_sched)) { 3827 if (time_before(elr->lr_next_sched, next_wakeup)) 3828 next_wakeup = elr->lr_next_sched; 3829 continue; 3830 } 3831 if (down_read_trylock(&elr->lr_super->s_umount)) { 3832 if (sb_start_write_trylock(elr->lr_super)) { 3833 progress = 1; 3834 /* 3835 * We hold sb->s_umount, sb can not 3836 * be removed from the list, it is 3837 * now safe to drop li_list_mtx 3838 */ 3839 mutex_unlock(&eli->li_list_mtx); 3840 err = ext4_run_li_request(elr); 3841 sb_end_write(elr->lr_super); 3842 mutex_lock(&eli->li_list_mtx); 3843 n = pos->next; 3844 } 3845 up_read((&elr->lr_super->s_umount)); 3846 } 3847 /* error, remove the lazy_init job */ 3848 if (err) { 3849 ext4_remove_li_request(elr); 3850 continue; 3851 } 3852 if (!progress) { 3853 elr->lr_next_sched = jiffies + 3854 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3855 } 3856 if (time_before(elr->lr_next_sched, next_wakeup)) 3857 next_wakeup = elr->lr_next_sched; 3858 } 3859 mutex_unlock(&eli->li_list_mtx); 3860 3861 try_to_freeze(); 3862 3863 cur = jiffies; 3864 if ((time_after_eq(cur, next_wakeup)) || 3865 (MAX_JIFFY_OFFSET == next_wakeup)) { 3866 cond_resched(); 3867 continue; 3868 } 3869 3870 schedule_timeout_interruptible(next_wakeup - cur); 3871 3872 if (kthread_should_stop()) { 3873 ext4_clear_request_list(); 3874 goto exit_thread; 3875 } 3876 } 3877 3878 exit_thread: 3879 /* 3880 * It looks like the request list is empty, but we need 3881 * to check it under the li_list_mtx lock, to prevent any 3882 * additions into it, and of course we should lock ext4_li_mtx 3883 * to atomically free the list and ext4_li_info, because at 3884 * this point another ext4 filesystem could be registering 3885 * new one. 3886 */ 3887 mutex_lock(&ext4_li_mtx); 3888 mutex_lock(&eli->li_list_mtx); 3889 if (!list_empty(&eli->li_request_list)) { 3890 mutex_unlock(&eli->li_list_mtx); 3891 mutex_unlock(&ext4_li_mtx); 3892 goto cont_thread; 3893 } 3894 mutex_unlock(&eli->li_list_mtx); 3895 kfree(ext4_li_info); 3896 ext4_li_info = NULL; 3897 mutex_unlock(&ext4_li_mtx); 3898 3899 return 0; 3900 } 3901 3902 static void ext4_clear_request_list(void) 3903 { 3904 struct list_head *pos, *n; 3905 struct ext4_li_request *elr; 3906 3907 mutex_lock(&ext4_li_info->li_list_mtx); 3908 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3909 elr = list_entry(pos, struct ext4_li_request, 3910 lr_request); 3911 ext4_remove_li_request(elr); 3912 } 3913 mutex_unlock(&ext4_li_info->li_list_mtx); 3914 } 3915 3916 static int ext4_run_lazyinit_thread(void) 3917 { 3918 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3919 ext4_li_info, "ext4lazyinit"); 3920 if (IS_ERR(ext4_lazyinit_task)) { 3921 int err = PTR_ERR(ext4_lazyinit_task); 3922 ext4_clear_request_list(); 3923 kfree(ext4_li_info); 3924 ext4_li_info = NULL; 3925 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3926 "initialization thread\n", 3927 err); 3928 return err; 3929 } 3930 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3931 return 0; 3932 } 3933 3934 /* 3935 * Check whether it make sense to run itable init. thread or not. 3936 * If there is at least one uninitialized inode table, return 3937 * corresponding group number, else the loop goes through all 3938 * groups and return total number of groups. 3939 */ 3940 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3941 { 3942 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3943 struct ext4_group_desc *gdp = NULL; 3944 3945 if (!ext4_has_group_desc_csum(sb)) 3946 return ngroups; 3947 3948 for (group = 0; group < ngroups; group++) { 3949 gdp = ext4_get_group_desc(sb, group, NULL); 3950 if (!gdp) 3951 continue; 3952 3953 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3954 break; 3955 } 3956 3957 return group; 3958 } 3959 3960 static int ext4_li_info_new(void) 3961 { 3962 struct ext4_lazy_init *eli = NULL; 3963 3964 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3965 if (!eli) 3966 return -ENOMEM; 3967 3968 INIT_LIST_HEAD(&eli->li_request_list); 3969 mutex_init(&eli->li_list_mtx); 3970 3971 eli->li_state |= EXT4_LAZYINIT_QUIT; 3972 3973 ext4_li_info = eli; 3974 3975 return 0; 3976 } 3977 3978 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3979 ext4_group_t start) 3980 { 3981 struct ext4_li_request *elr; 3982 3983 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3984 if (!elr) 3985 return NULL; 3986 3987 elr->lr_super = sb; 3988 elr->lr_first_not_zeroed = start; 3989 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3990 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3991 elr->lr_next_group = start; 3992 } else { 3993 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3994 } 3995 3996 /* 3997 * Randomize first schedule time of the request to 3998 * spread the inode table initialization requests 3999 * better. 4000 */ 4001 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 4002 return elr; 4003 } 4004 4005 int ext4_register_li_request(struct super_block *sb, 4006 ext4_group_t first_not_zeroed) 4007 { 4008 struct ext4_sb_info *sbi = EXT4_SB(sb); 4009 struct ext4_li_request *elr = NULL; 4010 ext4_group_t ngroups = sbi->s_groups_count; 4011 int ret = 0; 4012 4013 mutex_lock(&ext4_li_mtx); 4014 if (sbi->s_li_request != NULL) { 4015 /* 4016 * Reset timeout so it can be computed again, because 4017 * s_li_wait_mult might have changed. 4018 */ 4019 sbi->s_li_request->lr_timeout = 0; 4020 goto out; 4021 } 4022 4023 if (sb_rdonly(sb) || 4024 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4025 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4026 goto out; 4027 4028 elr = ext4_li_request_new(sb, first_not_zeroed); 4029 if (!elr) { 4030 ret = -ENOMEM; 4031 goto out; 4032 } 4033 4034 if (NULL == ext4_li_info) { 4035 ret = ext4_li_info_new(); 4036 if (ret) 4037 goto out; 4038 } 4039 4040 mutex_lock(&ext4_li_info->li_list_mtx); 4041 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4042 mutex_unlock(&ext4_li_info->li_list_mtx); 4043 4044 sbi->s_li_request = elr; 4045 /* 4046 * set elr to NULL here since it has been inserted to 4047 * the request_list and the removal and free of it is 4048 * handled by ext4_clear_request_list from now on. 4049 */ 4050 elr = NULL; 4051 4052 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4053 ret = ext4_run_lazyinit_thread(); 4054 if (ret) 4055 goto out; 4056 } 4057 out: 4058 mutex_unlock(&ext4_li_mtx); 4059 if (ret) 4060 kfree(elr); 4061 return ret; 4062 } 4063 4064 /* 4065 * We do not need to lock anything since this is called on 4066 * module unload. 4067 */ 4068 static void ext4_destroy_lazyinit_thread(void) 4069 { 4070 /* 4071 * If thread exited earlier 4072 * there's nothing to be done. 4073 */ 4074 if (!ext4_li_info || !ext4_lazyinit_task) 4075 return; 4076 4077 kthread_stop(ext4_lazyinit_task); 4078 } 4079 4080 static int set_journal_csum_feature_set(struct super_block *sb) 4081 { 4082 int ret = 1; 4083 int compat, incompat; 4084 struct ext4_sb_info *sbi = EXT4_SB(sb); 4085 4086 if (ext4_has_metadata_csum(sb)) { 4087 /* journal checksum v3 */ 4088 compat = 0; 4089 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4090 } else { 4091 /* journal checksum v1 */ 4092 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4093 incompat = 0; 4094 } 4095 4096 jbd2_journal_clear_features(sbi->s_journal, 4097 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4098 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4099 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4100 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4101 ret = jbd2_journal_set_features(sbi->s_journal, 4102 compat, 0, 4103 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4104 incompat); 4105 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4106 ret = jbd2_journal_set_features(sbi->s_journal, 4107 compat, 0, 4108 incompat); 4109 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4111 } else { 4112 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4113 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4114 } 4115 4116 return ret; 4117 } 4118 4119 /* 4120 * Note: calculating the overhead so we can be compatible with 4121 * historical BSD practice is quite difficult in the face of 4122 * clusters/bigalloc. This is because multiple metadata blocks from 4123 * different block group can end up in the same allocation cluster. 4124 * Calculating the exact overhead in the face of clustered allocation 4125 * requires either O(all block bitmaps) in memory or O(number of block 4126 * groups**2) in time. We will still calculate the superblock for 4127 * older file systems --- and if we come across with a bigalloc file 4128 * system with zero in s_overhead_clusters the estimate will be close to 4129 * correct especially for very large cluster sizes --- but for newer 4130 * file systems, it's better to calculate this figure once at mkfs 4131 * time, and store it in the superblock. If the superblock value is 4132 * present (even for non-bigalloc file systems), we will use it. 4133 */ 4134 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4135 char *buf) 4136 { 4137 struct ext4_sb_info *sbi = EXT4_SB(sb); 4138 struct ext4_group_desc *gdp; 4139 ext4_fsblk_t first_block, last_block, b; 4140 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4141 int s, j, count = 0; 4142 int has_super = ext4_bg_has_super(sb, grp); 4143 4144 if (!ext4_has_feature_bigalloc(sb)) 4145 return (has_super + ext4_bg_num_gdb(sb, grp) + 4146 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4147 sbi->s_itb_per_group + 2); 4148 4149 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4150 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4151 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4152 for (i = 0; i < ngroups; i++) { 4153 gdp = ext4_get_group_desc(sb, i, NULL); 4154 b = ext4_block_bitmap(sb, gdp); 4155 if (b >= first_block && b <= last_block) { 4156 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4157 count++; 4158 } 4159 b = ext4_inode_bitmap(sb, gdp); 4160 if (b >= first_block && b <= last_block) { 4161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4162 count++; 4163 } 4164 b = ext4_inode_table(sb, gdp); 4165 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4166 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4167 int c = EXT4_B2C(sbi, b - first_block); 4168 ext4_set_bit(c, buf); 4169 count++; 4170 } 4171 if (i != grp) 4172 continue; 4173 s = 0; 4174 if (ext4_bg_has_super(sb, grp)) { 4175 ext4_set_bit(s++, buf); 4176 count++; 4177 } 4178 j = ext4_bg_num_gdb(sb, grp); 4179 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4180 ext4_error(sb, "Invalid number of block group " 4181 "descriptor blocks: %d", j); 4182 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4183 } 4184 count += j; 4185 for (; j > 0; j--) 4186 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4187 } 4188 if (!count) 4189 return 0; 4190 return EXT4_CLUSTERS_PER_GROUP(sb) - 4191 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4192 } 4193 4194 /* 4195 * Compute the overhead and stash it in sbi->s_overhead 4196 */ 4197 int ext4_calculate_overhead(struct super_block *sb) 4198 { 4199 struct ext4_sb_info *sbi = EXT4_SB(sb); 4200 struct ext4_super_block *es = sbi->s_es; 4201 struct inode *j_inode; 4202 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4203 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4204 ext4_fsblk_t overhead = 0; 4205 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4206 4207 if (!buf) 4208 return -ENOMEM; 4209 4210 /* 4211 * Compute the overhead (FS structures). This is constant 4212 * for a given filesystem unless the number of block groups 4213 * changes so we cache the previous value until it does. 4214 */ 4215 4216 /* 4217 * All of the blocks before first_data_block are overhead 4218 */ 4219 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4220 4221 /* 4222 * Add the overhead found in each block group 4223 */ 4224 for (i = 0; i < ngroups; i++) { 4225 int blks; 4226 4227 blks = count_overhead(sb, i, buf); 4228 overhead += blks; 4229 if (blks) 4230 memset(buf, 0, PAGE_SIZE); 4231 cond_resched(); 4232 } 4233 4234 /* 4235 * Add the internal journal blocks whether the journal has been 4236 * loaded or not 4237 */ 4238 if (sbi->s_journal && !sbi->s_journal_bdev) 4239 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4240 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4241 /* j_inum for internal journal is non-zero */ 4242 j_inode = ext4_get_journal_inode(sb, j_inum); 4243 if (!IS_ERR(j_inode)) { 4244 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4245 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4246 iput(j_inode); 4247 } else { 4248 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4249 } 4250 } 4251 sbi->s_overhead = overhead; 4252 smp_wmb(); 4253 free_page((unsigned long) buf); 4254 return 0; 4255 } 4256 4257 static void ext4_set_resv_clusters(struct super_block *sb) 4258 { 4259 ext4_fsblk_t resv_clusters; 4260 struct ext4_sb_info *sbi = EXT4_SB(sb); 4261 4262 /* 4263 * There's no need to reserve anything when we aren't using extents. 4264 * The space estimates are exact, there are no unwritten extents, 4265 * hole punching doesn't need new metadata... This is needed especially 4266 * to keep ext2/3 backward compatibility. 4267 */ 4268 if (!ext4_has_feature_extents(sb)) 4269 return; 4270 /* 4271 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4272 * This should cover the situations where we can not afford to run 4273 * out of space like for example punch hole, or converting 4274 * unwritten extents in delalloc path. In most cases such 4275 * allocation would require 1, or 2 blocks, higher numbers are 4276 * very rare. 4277 */ 4278 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4279 sbi->s_cluster_bits); 4280 4281 do_div(resv_clusters, 50); 4282 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4283 4284 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4285 } 4286 4287 static const char *ext4_quota_mode(struct super_block *sb) 4288 { 4289 #ifdef CONFIG_QUOTA 4290 if (!ext4_quota_capable(sb)) 4291 return "none"; 4292 4293 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4294 return "journalled"; 4295 else 4296 return "writeback"; 4297 #else 4298 return "disabled"; 4299 #endif 4300 } 4301 4302 static void ext4_setup_csum_trigger(struct super_block *sb, 4303 enum ext4_journal_trigger_type type, 4304 void (*trigger)( 4305 struct jbd2_buffer_trigger_type *type, 4306 struct buffer_head *bh, 4307 void *mapped_data, 4308 size_t size)) 4309 { 4310 struct ext4_sb_info *sbi = EXT4_SB(sb); 4311 4312 sbi->s_journal_triggers[type].sb = sb; 4313 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4314 } 4315 4316 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4317 { 4318 if (!sbi) 4319 return; 4320 4321 kfree(sbi->s_blockgroup_lock); 4322 fs_put_dax(sbi->s_daxdev, NULL); 4323 kfree(sbi); 4324 } 4325 4326 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4327 { 4328 struct ext4_sb_info *sbi; 4329 4330 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4331 if (!sbi) 4332 return NULL; 4333 4334 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4335 NULL, NULL); 4336 4337 sbi->s_blockgroup_lock = 4338 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4339 4340 if (!sbi->s_blockgroup_lock) 4341 goto err_out; 4342 4343 sb->s_fs_info = sbi; 4344 sbi->s_sb = sb; 4345 return sbi; 4346 err_out: 4347 fs_put_dax(sbi->s_daxdev, NULL); 4348 kfree(sbi); 4349 return NULL; 4350 } 4351 4352 static void ext4_set_def_opts(struct super_block *sb, 4353 struct ext4_super_block *es) 4354 { 4355 unsigned long def_mount_opts; 4356 4357 /* Set defaults before we parse the mount options */ 4358 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4359 set_opt(sb, INIT_INODE_TABLE); 4360 if (def_mount_opts & EXT4_DEFM_DEBUG) 4361 set_opt(sb, DEBUG); 4362 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4363 set_opt(sb, GRPID); 4364 if (def_mount_opts & EXT4_DEFM_UID16) 4365 set_opt(sb, NO_UID32); 4366 /* xattr user namespace & acls are now defaulted on */ 4367 set_opt(sb, XATTR_USER); 4368 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4369 set_opt(sb, POSIX_ACL); 4370 #endif 4371 if (ext4_has_feature_fast_commit(sb)) 4372 set_opt2(sb, JOURNAL_FAST_COMMIT); 4373 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4374 if (ext4_has_metadata_csum(sb)) 4375 set_opt(sb, JOURNAL_CHECKSUM); 4376 4377 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4378 set_opt(sb, JOURNAL_DATA); 4379 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4380 set_opt(sb, ORDERED_DATA); 4381 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4382 set_opt(sb, WRITEBACK_DATA); 4383 4384 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4385 set_opt(sb, ERRORS_PANIC); 4386 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4387 set_opt(sb, ERRORS_CONT); 4388 else 4389 set_opt(sb, ERRORS_RO); 4390 /* block_validity enabled by default; disable with noblock_validity */ 4391 set_opt(sb, BLOCK_VALIDITY); 4392 if (def_mount_opts & EXT4_DEFM_DISCARD) 4393 set_opt(sb, DISCARD); 4394 4395 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4396 set_opt(sb, BARRIER); 4397 4398 /* 4399 * enable delayed allocation by default 4400 * Use -o nodelalloc to turn it off 4401 */ 4402 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4403 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4404 set_opt(sb, DELALLOC); 4405 4406 if (sb->s_blocksize == PAGE_SIZE) 4407 set_opt(sb, DIOREAD_NOLOCK); 4408 } 4409 4410 static int ext4_handle_clustersize(struct super_block *sb) 4411 { 4412 struct ext4_sb_info *sbi = EXT4_SB(sb); 4413 struct ext4_super_block *es = sbi->s_es; 4414 int clustersize; 4415 4416 /* Handle clustersize */ 4417 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4418 if (ext4_has_feature_bigalloc(sb)) { 4419 if (clustersize < sb->s_blocksize) { 4420 ext4_msg(sb, KERN_ERR, 4421 "cluster size (%d) smaller than " 4422 "block size (%lu)", clustersize, sb->s_blocksize); 4423 return -EINVAL; 4424 } 4425 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4426 le32_to_cpu(es->s_log_block_size); 4427 sbi->s_clusters_per_group = 4428 le32_to_cpu(es->s_clusters_per_group); 4429 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4430 ext4_msg(sb, KERN_ERR, 4431 "#clusters per group too big: %lu", 4432 sbi->s_clusters_per_group); 4433 return -EINVAL; 4434 } 4435 if (sbi->s_blocks_per_group != 4436 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4437 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4438 "clusters per group (%lu) inconsistent", 4439 sbi->s_blocks_per_group, 4440 sbi->s_clusters_per_group); 4441 return -EINVAL; 4442 } 4443 } else { 4444 if (clustersize != sb->s_blocksize) { 4445 ext4_msg(sb, KERN_ERR, 4446 "fragment/cluster size (%d) != " 4447 "block size (%lu)", clustersize, sb->s_blocksize); 4448 return -EINVAL; 4449 } 4450 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4451 ext4_msg(sb, KERN_ERR, 4452 "#blocks per group too big: %lu", 4453 sbi->s_blocks_per_group); 4454 return -EINVAL; 4455 } 4456 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4457 sbi->s_cluster_bits = 0; 4458 } 4459 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4460 4461 /* Do we have standard group size of clustersize * 8 blocks ? */ 4462 if (sbi->s_blocks_per_group == clustersize << 3) 4463 set_opt2(sb, STD_GROUP_SIZE); 4464 4465 return 0; 4466 } 4467 4468 static void ext4_fast_commit_init(struct super_block *sb) 4469 { 4470 struct ext4_sb_info *sbi = EXT4_SB(sb); 4471 4472 /* Initialize fast commit stuff */ 4473 atomic_set(&sbi->s_fc_subtid, 0); 4474 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4475 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4476 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4477 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4478 sbi->s_fc_bytes = 0; 4479 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4480 sbi->s_fc_ineligible_tid = 0; 4481 spin_lock_init(&sbi->s_fc_lock); 4482 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4483 sbi->s_fc_replay_state.fc_regions = NULL; 4484 sbi->s_fc_replay_state.fc_regions_size = 0; 4485 sbi->s_fc_replay_state.fc_regions_used = 0; 4486 sbi->s_fc_replay_state.fc_regions_valid = 0; 4487 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4488 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4489 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4490 } 4491 4492 static int ext4_inode_info_init(struct super_block *sb, 4493 struct ext4_super_block *es) 4494 { 4495 struct ext4_sb_info *sbi = EXT4_SB(sb); 4496 4497 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4498 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4499 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4500 } else { 4501 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4502 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4503 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4504 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4505 sbi->s_first_ino); 4506 return -EINVAL; 4507 } 4508 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4509 (!is_power_of_2(sbi->s_inode_size)) || 4510 (sbi->s_inode_size > sb->s_blocksize)) { 4511 ext4_msg(sb, KERN_ERR, 4512 "unsupported inode size: %d", 4513 sbi->s_inode_size); 4514 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4515 return -EINVAL; 4516 } 4517 /* 4518 * i_atime_extra is the last extra field available for 4519 * [acm]times in struct ext4_inode. Checking for that 4520 * field should suffice to ensure we have extra space 4521 * for all three. 4522 */ 4523 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4524 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4525 sb->s_time_gran = 1; 4526 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4527 } else { 4528 sb->s_time_gran = NSEC_PER_SEC; 4529 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4530 } 4531 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4532 } 4533 4534 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4535 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4536 EXT4_GOOD_OLD_INODE_SIZE; 4537 if (ext4_has_feature_extra_isize(sb)) { 4538 unsigned v, max = (sbi->s_inode_size - 4539 EXT4_GOOD_OLD_INODE_SIZE); 4540 4541 v = le16_to_cpu(es->s_want_extra_isize); 4542 if (v > max) { 4543 ext4_msg(sb, KERN_ERR, 4544 "bad s_want_extra_isize: %d", v); 4545 return -EINVAL; 4546 } 4547 if (sbi->s_want_extra_isize < v) 4548 sbi->s_want_extra_isize = v; 4549 4550 v = le16_to_cpu(es->s_min_extra_isize); 4551 if (v > max) { 4552 ext4_msg(sb, KERN_ERR, 4553 "bad s_min_extra_isize: %d", v); 4554 return -EINVAL; 4555 } 4556 if (sbi->s_want_extra_isize < v) 4557 sbi->s_want_extra_isize = v; 4558 } 4559 } 4560 4561 return 0; 4562 } 4563 4564 #if IS_ENABLED(CONFIG_UNICODE) 4565 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4566 { 4567 const struct ext4_sb_encodings *encoding_info; 4568 struct unicode_map *encoding; 4569 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4570 4571 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4572 return 0; 4573 4574 encoding_info = ext4_sb_read_encoding(es); 4575 if (!encoding_info) { 4576 ext4_msg(sb, KERN_ERR, 4577 "Encoding requested by superblock is unknown"); 4578 return -EINVAL; 4579 } 4580 4581 encoding = utf8_load(encoding_info->version); 4582 if (IS_ERR(encoding)) { 4583 ext4_msg(sb, KERN_ERR, 4584 "can't mount with superblock charset: %s-%u.%u.%u " 4585 "not supported by the kernel. flags: 0x%x.", 4586 encoding_info->name, 4587 unicode_major(encoding_info->version), 4588 unicode_minor(encoding_info->version), 4589 unicode_rev(encoding_info->version), 4590 encoding_flags); 4591 return -EINVAL; 4592 } 4593 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4594 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4595 unicode_major(encoding_info->version), 4596 unicode_minor(encoding_info->version), 4597 unicode_rev(encoding_info->version), 4598 encoding_flags); 4599 4600 sb->s_encoding = encoding; 4601 sb->s_encoding_flags = encoding_flags; 4602 4603 return 0; 4604 } 4605 #else 4606 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4607 { 4608 return 0; 4609 } 4610 #endif 4611 4612 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4613 { 4614 struct ext4_sb_info *sbi = EXT4_SB(sb); 4615 4616 /* Warn if metadata_csum and gdt_csum are both set. */ 4617 if (ext4_has_feature_metadata_csum(sb) && 4618 ext4_has_feature_gdt_csum(sb)) 4619 ext4_warning(sb, "metadata_csum and uninit_bg are " 4620 "redundant flags; please run fsck."); 4621 4622 /* Check for a known checksum algorithm */ 4623 if (!ext4_verify_csum_type(sb, es)) { 4624 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4625 "unknown checksum algorithm."); 4626 return -EINVAL; 4627 } 4628 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4629 ext4_orphan_file_block_trigger); 4630 4631 /* Load the checksum driver */ 4632 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4633 if (IS_ERR(sbi->s_chksum_driver)) { 4634 int ret = PTR_ERR(sbi->s_chksum_driver); 4635 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4636 sbi->s_chksum_driver = NULL; 4637 return ret; 4638 } 4639 4640 /* Check superblock checksum */ 4641 if (!ext4_superblock_csum_verify(sb, es)) { 4642 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4643 "invalid superblock checksum. Run e2fsck?"); 4644 return -EFSBADCRC; 4645 } 4646 4647 /* Precompute checksum seed for all metadata */ 4648 if (ext4_has_feature_csum_seed(sb)) 4649 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4650 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4651 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4652 sizeof(es->s_uuid)); 4653 return 0; 4654 } 4655 4656 static int ext4_check_feature_compatibility(struct super_block *sb, 4657 struct ext4_super_block *es, 4658 int silent) 4659 { 4660 struct ext4_sb_info *sbi = EXT4_SB(sb); 4661 4662 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4663 (ext4_has_compat_features(sb) || 4664 ext4_has_ro_compat_features(sb) || 4665 ext4_has_incompat_features(sb))) 4666 ext4_msg(sb, KERN_WARNING, 4667 "feature flags set on rev 0 fs, " 4668 "running e2fsck is recommended"); 4669 4670 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4671 set_opt2(sb, HURD_COMPAT); 4672 if (ext4_has_feature_64bit(sb)) { 4673 ext4_msg(sb, KERN_ERR, 4674 "The Hurd can't support 64-bit file systems"); 4675 return -EINVAL; 4676 } 4677 4678 /* 4679 * ea_inode feature uses l_i_version field which is not 4680 * available in HURD_COMPAT mode. 4681 */ 4682 if (ext4_has_feature_ea_inode(sb)) { 4683 ext4_msg(sb, KERN_ERR, 4684 "ea_inode feature is not supported for Hurd"); 4685 return -EINVAL; 4686 } 4687 } 4688 4689 if (IS_EXT2_SB(sb)) { 4690 if (ext2_feature_set_ok(sb)) 4691 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4692 "using the ext4 subsystem"); 4693 else { 4694 /* 4695 * If we're probing be silent, if this looks like 4696 * it's actually an ext[34] filesystem. 4697 */ 4698 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4699 return -EINVAL; 4700 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4701 "to feature incompatibilities"); 4702 return -EINVAL; 4703 } 4704 } 4705 4706 if (IS_EXT3_SB(sb)) { 4707 if (ext3_feature_set_ok(sb)) 4708 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4709 "using the ext4 subsystem"); 4710 else { 4711 /* 4712 * If we're probing be silent, if this looks like 4713 * it's actually an ext4 filesystem. 4714 */ 4715 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4716 return -EINVAL; 4717 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4718 "to feature incompatibilities"); 4719 return -EINVAL; 4720 } 4721 } 4722 4723 /* 4724 * Check feature flags regardless of the revision level, since we 4725 * previously didn't change the revision level when setting the flags, 4726 * so there is a chance incompat flags are set on a rev 0 filesystem. 4727 */ 4728 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4729 return -EINVAL; 4730 4731 if (sbi->s_daxdev) { 4732 if (sb->s_blocksize == PAGE_SIZE) 4733 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4734 else 4735 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4736 } 4737 4738 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4739 if (ext4_has_feature_inline_data(sb)) { 4740 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4741 " that may contain inline data"); 4742 return -EINVAL; 4743 } 4744 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4745 ext4_msg(sb, KERN_ERR, 4746 "DAX unsupported by block device."); 4747 return -EINVAL; 4748 } 4749 } 4750 4751 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4752 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4753 es->s_encryption_level); 4754 return -EINVAL; 4755 } 4756 4757 return 0; 4758 } 4759 4760 static int ext4_check_geometry(struct super_block *sb, 4761 struct ext4_super_block *es) 4762 { 4763 struct ext4_sb_info *sbi = EXT4_SB(sb); 4764 __u64 blocks_count; 4765 int err; 4766 4767 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4768 ext4_msg(sb, KERN_ERR, 4769 "Number of reserved GDT blocks insanely large: %d", 4770 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4771 return -EINVAL; 4772 } 4773 /* 4774 * Test whether we have more sectors than will fit in sector_t, 4775 * and whether the max offset is addressable by the page cache. 4776 */ 4777 err = generic_check_addressable(sb->s_blocksize_bits, 4778 ext4_blocks_count(es)); 4779 if (err) { 4780 ext4_msg(sb, KERN_ERR, "filesystem" 4781 " too large to mount safely on this system"); 4782 return err; 4783 } 4784 4785 /* check blocks count against device size */ 4786 blocks_count = sb_bdev_nr_blocks(sb); 4787 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4788 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4789 "exceeds size of device (%llu blocks)", 4790 ext4_blocks_count(es), blocks_count); 4791 return -EINVAL; 4792 } 4793 4794 /* 4795 * It makes no sense for the first data block to be beyond the end 4796 * of the filesystem. 4797 */ 4798 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4799 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4800 "block %u is beyond end of filesystem (%llu)", 4801 le32_to_cpu(es->s_first_data_block), 4802 ext4_blocks_count(es)); 4803 return -EINVAL; 4804 } 4805 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4806 (sbi->s_cluster_ratio == 1)) { 4807 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4808 "block is 0 with a 1k block and cluster size"); 4809 return -EINVAL; 4810 } 4811 4812 blocks_count = (ext4_blocks_count(es) - 4813 le32_to_cpu(es->s_first_data_block) + 4814 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4815 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4816 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4817 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4818 "(block count %llu, first data block %u, " 4819 "blocks per group %lu)", blocks_count, 4820 ext4_blocks_count(es), 4821 le32_to_cpu(es->s_first_data_block), 4822 EXT4_BLOCKS_PER_GROUP(sb)); 4823 return -EINVAL; 4824 } 4825 sbi->s_groups_count = blocks_count; 4826 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4827 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4828 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4829 le32_to_cpu(es->s_inodes_count)) { 4830 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4831 le32_to_cpu(es->s_inodes_count), 4832 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4833 return -EINVAL; 4834 } 4835 4836 return 0; 4837 } 4838 4839 static int ext4_group_desc_init(struct super_block *sb, 4840 struct ext4_super_block *es, 4841 ext4_fsblk_t logical_sb_block, 4842 ext4_group_t *first_not_zeroed) 4843 { 4844 struct ext4_sb_info *sbi = EXT4_SB(sb); 4845 unsigned int db_count; 4846 ext4_fsblk_t block; 4847 int i; 4848 4849 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4850 EXT4_DESC_PER_BLOCK(sb); 4851 if (ext4_has_feature_meta_bg(sb)) { 4852 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4853 ext4_msg(sb, KERN_WARNING, 4854 "first meta block group too large: %u " 4855 "(group descriptor block count %u)", 4856 le32_to_cpu(es->s_first_meta_bg), db_count); 4857 return -EINVAL; 4858 } 4859 } 4860 rcu_assign_pointer(sbi->s_group_desc, 4861 kvmalloc_array(db_count, 4862 sizeof(struct buffer_head *), 4863 GFP_KERNEL)); 4864 if (sbi->s_group_desc == NULL) { 4865 ext4_msg(sb, KERN_ERR, "not enough memory"); 4866 return -ENOMEM; 4867 } 4868 4869 bgl_lock_init(sbi->s_blockgroup_lock); 4870 4871 /* Pre-read the descriptors into the buffer cache */ 4872 for (i = 0; i < db_count; i++) { 4873 block = descriptor_loc(sb, logical_sb_block, i); 4874 ext4_sb_breadahead_unmovable(sb, block); 4875 } 4876 4877 for (i = 0; i < db_count; i++) { 4878 struct buffer_head *bh; 4879 4880 block = descriptor_loc(sb, logical_sb_block, i); 4881 bh = ext4_sb_bread_unmovable(sb, block); 4882 if (IS_ERR(bh)) { 4883 ext4_msg(sb, KERN_ERR, 4884 "can't read group descriptor %d", i); 4885 sbi->s_gdb_count = i; 4886 return PTR_ERR(bh); 4887 } 4888 rcu_read_lock(); 4889 rcu_dereference(sbi->s_group_desc)[i] = bh; 4890 rcu_read_unlock(); 4891 } 4892 sbi->s_gdb_count = db_count; 4893 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4894 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4895 return -EFSCORRUPTED; 4896 } 4897 4898 return 0; 4899 } 4900 4901 static int ext4_load_and_init_journal(struct super_block *sb, 4902 struct ext4_super_block *es, 4903 struct ext4_fs_context *ctx) 4904 { 4905 struct ext4_sb_info *sbi = EXT4_SB(sb); 4906 int err; 4907 4908 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4909 if (err) 4910 return err; 4911 4912 if (ext4_has_feature_64bit(sb) && 4913 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4914 JBD2_FEATURE_INCOMPAT_64BIT)) { 4915 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4916 goto out; 4917 } 4918 4919 if (!set_journal_csum_feature_set(sb)) { 4920 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4921 "feature set"); 4922 goto out; 4923 } 4924 4925 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4926 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4927 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4928 ext4_msg(sb, KERN_ERR, 4929 "Failed to set fast commit journal feature"); 4930 goto out; 4931 } 4932 4933 /* We have now updated the journal if required, so we can 4934 * validate the data journaling mode. */ 4935 switch (test_opt(sb, DATA_FLAGS)) { 4936 case 0: 4937 /* No mode set, assume a default based on the journal 4938 * capabilities: ORDERED_DATA if the journal can 4939 * cope, else JOURNAL_DATA 4940 */ 4941 if (jbd2_journal_check_available_features 4942 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4943 set_opt(sb, ORDERED_DATA); 4944 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4945 } else { 4946 set_opt(sb, JOURNAL_DATA); 4947 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4948 } 4949 break; 4950 4951 case EXT4_MOUNT_ORDERED_DATA: 4952 case EXT4_MOUNT_WRITEBACK_DATA: 4953 if (!jbd2_journal_check_available_features 4954 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4955 ext4_msg(sb, KERN_ERR, "Journal does not support " 4956 "requested data journaling mode"); 4957 goto out; 4958 } 4959 break; 4960 default: 4961 break; 4962 } 4963 4964 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4965 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4966 ext4_msg(sb, KERN_ERR, "can't mount with " 4967 "journal_async_commit in data=ordered mode"); 4968 goto out; 4969 } 4970 4971 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4972 4973 sbi->s_journal->j_submit_inode_data_buffers = 4974 ext4_journal_submit_inode_data_buffers; 4975 sbi->s_journal->j_finish_inode_data_buffers = 4976 ext4_journal_finish_inode_data_buffers; 4977 4978 return 0; 4979 4980 out: 4981 /* flush s_sb_upd_work before destroying the journal. */ 4982 flush_work(&sbi->s_sb_upd_work); 4983 jbd2_journal_destroy(sbi->s_journal); 4984 sbi->s_journal = NULL; 4985 return -EINVAL; 4986 } 4987 4988 static int ext4_check_journal_data_mode(struct super_block *sb) 4989 { 4990 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4991 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4992 "data=journal disables delayed allocation, " 4993 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4994 /* can't mount with both data=journal and dioread_nolock. */ 4995 clear_opt(sb, DIOREAD_NOLOCK); 4996 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4997 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4998 ext4_msg(sb, KERN_ERR, "can't mount with " 4999 "both data=journal and delalloc"); 5000 return -EINVAL; 5001 } 5002 if (test_opt(sb, DAX_ALWAYS)) { 5003 ext4_msg(sb, KERN_ERR, "can't mount with " 5004 "both data=journal and dax"); 5005 return -EINVAL; 5006 } 5007 if (ext4_has_feature_encrypt(sb)) { 5008 ext4_msg(sb, KERN_WARNING, 5009 "encrypted files will use data=ordered " 5010 "instead of data journaling mode"); 5011 } 5012 if (test_opt(sb, DELALLOC)) 5013 clear_opt(sb, DELALLOC); 5014 } else { 5015 sb->s_iflags |= SB_I_CGROUPWB; 5016 } 5017 5018 return 0; 5019 } 5020 5021 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5022 int silent) 5023 { 5024 struct ext4_sb_info *sbi = EXT4_SB(sb); 5025 struct ext4_super_block *es; 5026 ext4_fsblk_t logical_sb_block; 5027 unsigned long offset = 0; 5028 struct buffer_head *bh; 5029 int ret = -EINVAL; 5030 int blocksize; 5031 5032 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5033 if (!blocksize) { 5034 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5035 return -EINVAL; 5036 } 5037 5038 /* 5039 * The ext4 superblock will not be buffer aligned for other than 1kB 5040 * block sizes. We need to calculate the offset from buffer start. 5041 */ 5042 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5043 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5044 offset = do_div(logical_sb_block, blocksize); 5045 } else { 5046 logical_sb_block = sbi->s_sb_block; 5047 } 5048 5049 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5050 if (IS_ERR(bh)) { 5051 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5052 return PTR_ERR(bh); 5053 } 5054 /* 5055 * Note: s_es must be initialized as soon as possible because 5056 * some ext4 macro-instructions depend on its value 5057 */ 5058 es = (struct ext4_super_block *) (bh->b_data + offset); 5059 sbi->s_es = es; 5060 sb->s_magic = le16_to_cpu(es->s_magic); 5061 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5062 if (!silent) 5063 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5064 goto out; 5065 } 5066 5067 if (le32_to_cpu(es->s_log_block_size) > 5068 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5069 ext4_msg(sb, KERN_ERR, 5070 "Invalid log block size: %u", 5071 le32_to_cpu(es->s_log_block_size)); 5072 goto out; 5073 } 5074 if (le32_to_cpu(es->s_log_cluster_size) > 5075 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5076 ext4_msg(sb, KERN_ERR, 5077 "Invalid log cluster size: %u", 5078 le32_to_cpu(es->s_log_cluster_size)); 5079 goto out; 5080 } 5081 5082 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5083 5084 /* 5085 * If the default block size is not the same as the real block size, 5086 * we need to reload it. 5087 */ 5088 if (sb->s_blocksize == blocksize) { 5089 *lsb = logical_sb_block; 5090 sbi->s_sbh = bh; 5091 return 0; 5092 } 5093 5094 /* 5095 * bh must be released before kill_bdev(), otherwise 5096 * it won't be freed and its page also. kill_bdev() 5097 * is called by sb_set_blocksize(). 5098 */ 5099 brelse(bh); 5100 /* Validate the filesystem blocksize */ 5101 if (!sb_set_blocksize(sb, blocksize)) { 5102 ext4_msg(sb, KERN_ERR, "bad block size %d", 5103 blocksize); 5104 bh = NULL; 5105 goto out; 5106 } 5107 5108 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5109 offset = do_div(logical_sb_block, blocksize); 5110 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5111 if (IS_ERR(bh)) { 5112 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5113 ret = PTR_ERR(bh); 5114 bh = NULL; 5115 goto out; 5116 } 5117 es = (struct ext4_super_block *)(bh->b_data + offset); 5118 sbi->s_es = es; 5119 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5120 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5121 goto out; 5122 } 5123 *lsb = logical_sb_block; 5124 sbi->s_sbh = bh; 5125 return 0; 5126 out: 5127 brelse(bh); 5128 return ret; 5129 } 5130 5131 static void ext4_hash_info_init(struct super_block *sb) 5132 { 5133 struct ext4_sb_info *sbi = EXT4_SB(sb); 5134 struct ext4_super_block *es = sbi->s_es; 5135 unsigned int i; 5136 5137 for (i = 0; i < 4; i++) 5138 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5139 5140 sbi->s_def_hash_version = es->s_def_hash_version; 5141 if (ext4_has_feature_dir_index(sb)) { 5142 i = le32_to_cpu(es->s_flags); 5143 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5144 sbi->s_hash_unsigned = 3; 5145 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5146 #ifdef __CHAR_UNSIGNED__ 5147 if (!sb_rdonly(sb)) 5148 es->s_flags |= 5149 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5150 sbi->s_hash_unsigned = 3; 5151 #else 5152 if (!sb_rdonly(sb)) 5153 es->s_flags |= 5154 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5155 #endif 5156 } 5157 } 5158 } 5159 5160 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5161 { 5162 struct ext4_sb_info *sbi = EXT4_SB(sb); 5163 struct ext4_super_block *es = sbi->s_es; 5164 int has_huge_files; 5165 5166 has_huge_files = ext4_has_feature_huge_file(sb); 5167 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5168 has_huge_files); 5169 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5170 5171 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5172 if (ext4_has_feature_64bit(sb)) { 5173 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5174 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5175 !is_power_of_2(sbi->s_desc_size)) { 5176 ext4_msg(sb, KERN_ERR, 5177 "unsupported descriptor size %lu", 5178 sbi->s_desc_size); 5179 return -EINVAL; 5180 } 5181 } else 5182 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5183 5184 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5185 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5186 5187 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5188 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5189 if (!silent) 5190 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5191 return -EINVAL; 5192 } 5193 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5194 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5195 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5196 sbi->s_inodes_per_group); 5197 return -EINVAL; 5198 } 5199 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5200 sbi->s_inodes_per_block; 5201 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5202 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5203 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5204 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5205 5206 return 0; 5207 } 5208 5209 /* 5210 * It's hard to get stripe aligned blocks if stripe is not aligned with 5211 * cluster, just disable stripe and alert user to simplify code and avoid 5212 * stripe aligned allocation which will rarely succeed. 5213 */ 5214 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe) 5215 { 5216 struct ext4_sb_info *sbi = EXT4_SB(sb); 5217 return (stripe > 0 && sbi->s_cluster_ratio > 1 && 5218 stripe % sbi->s_cluster_ratio != 0); 5219 } 5220 5221 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5222 { 5223 struct ext4_super_block *es = NULL; 5224 struct ext4_sb_info *sbi = EXT4_SB(sb); 5225 ext4_fsblk_t logical_sb_block; 5226 struct inode *root; 5227 int needs_recovery; 5228 int err; 5229 ext4_group_t first_not_zeroed; 5230 struct ext4_fs_context *ctx = fc->fs_private; 5231 int silent = fc->sb_flags & SB_SILENT; 5232 5233 /* Set defaults for the variables that will be set during parsing */ 5234 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5235 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5236 5237 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5238 sbi->s_sectors_written_start = 5239 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5240 5241 err = ext4_load_super(sb, &logical_sb_block, silent); 5242 if (err) 5243 goto out_fail; 5244 5245 es = sbi->s_es; 5246 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5247 5248 err = ext4_init_metadata_csum(sb, es); 5249 if (err) 5250 goto failed_mount; 5251 5252 ext4_set_def_opts(sb, es); 5253 5254 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5255 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5256 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5257 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5258 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5259 5260 /* 5261 * set default s_li_wait_mult for lazyinit, for the case there is 5262 * no mount option specified. 5263 */ 5264 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5265 5266 err = ext4_inode_info_init(sb, es); 5267 if (err) 5268 goto failed_mount; 5269 5270 err = parse_apply_sb_mount_options(sb, ctx); 5271 if (err < 0) 5272 goto failed_mount; 5273 5274 sbi->s_def_mount_opt = sbi->s_mount_opt; 5275 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5276 5277 err = ext4_check_opt_consistency(fc, sb); 5278 if (err < 0) 5279 goto failed_mount; 5280 5281 ext4_apply_options(fc, sb); 5282 5283 err = ext4_encoding_init(sb, es); 5284 if (err) 5285 goto failed_mount; 5286 5287 err = ext4_check_journal_data_mode(sb); 5288 if (err) 5289 goto failed_mount; 5290 5291 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5292 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5293 5294 /* i_version is always enabled now */ 5295 sb->s_flags |= SB_I_VERSION; 5296 5297 err = ext4_check_feature_compatibility(sb, es, silent); 5298 if (err) 5299 goto failed_mount; 5300 5301 err = ext4_block_group_meta_init(sb, silent); 5302 if (err) 5303 goto failed_mount; 5304 5305 ext4_hash_info_init(sb); 5306 5307 err = ext4_handle_clustersize(sb); 5308 if (err) 5309 goto failed_mount; 5310 5311 err = ext4_check_geometry(sb, es); 5312 if (err) 5313 goto failed_mount; 5314 5315 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5316 spin_lock_init(&sbi->s_error_lock); 5317 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5318 5319 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5320 if (err) 5321 goto failed_mount3; 5322 5323 err = ext4_es_register_shrinker(sbi); 5324 if (err) 5325 goto failed_mount3; 5326 5327 sbi->s_stripe = ext4_get_stripe_size(sbi); 5328 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) { 5329 ext4_msg(sb, KERN_WARNING, 5330 "stripe (%lu) is not aligned with cluster size (%u), " 5331 "stripe is disabled", 5332 sbi->s_stripe, sbi->s_cluster_ratio); 5333 sbi->s_stripe = 0; 5334 } 5335 sbi->s_extent_max_zeroout_kb = 32; 5336 5337 /* 5338 * set up enough so that it can read an inode 5339 */ 5340 sb->s_op = &ext4_sops; 5341 sb->s_export_op = &ext4_export_ops; 5342 sb->s_xattr = ext4_xattr_handlers; 5343 #ifdef CONFIG_FS_ENCRYPTION 5344 sb->s_cop = &ext4_cryptops; 5345 #endif 5346 #ifdef CONFIG_FS_VERITY 5347 sb->s_vop = &ext4_verityops; 5348 #endif 5349 #ifdef CONFIG_QUOTA 5350 sb->dq_op = &ext4_quota_operations; 5351 if (ext4_has_feature_quota(sb)) 5352 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5353 else 5354 sb->s_qcop = &ext4_qctl_operations; 5355 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5356 #endif 5357 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5358 5359 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5360 mutex_init(&sbi->s_orphan_lock); 5361 5362 ext4_fast_commit_init(sb); 5363 5364 sb->s_root = NULL; 5365 5366 needs_recovery = (es->s_last_orphan != 0 || 5367 ext4_has_feature_orphan_present(sb) || 5368 ext4_has_feature_journal_needs_recovery(sb)); 5369 5370 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5371 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5372 if (err) 5373 goto failed_mount3a; 5374 } 5375 5376 err = -EINVAL; 5377 /* 5378 * The first inode we look at is the journal inode. Don't try 5379 * root first: it may be modified in the journal! 5380 */ 5381 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5382 err = ext4_load_and_init_journal(sb, es, ctx); 5383 if (err) 5384 goto failed_mount3a; 5385 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5386 ext4_has_feature_journal_needs_recovery(sb)) { 5387 ext4_msg(sb, KERN_ERR, "required journal recovery " 5388 "suppressed and not mounted read-only"); 5389 goto failed_mount3a; 5390 } else { 5391 /* Nojournal mode, all journal mount options are illegal */ 5392 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5393 ext4_msg(sb, KERN_ERR, "can't mount with " 5394 "journal_async_commit, fs mounted w/o journal"); 5395 goto failed_mount3a; 5396 } 5397 5398 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5399 ext4_msg(sb, KERN_ERR, "can't mount with " 5400 "journal_checksum, fs mounted w/o journal"); 5401 goto failed_mount3a; 5402 } 5403 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5404 ext4_msg(sb, KERN_ERR, "can't mount with " 5405 "commit=%lu, fs mounted w/o journal", 5406 sbi->s_commit_interval / HZ); 5407 goto failed_mount3a; 5408 } 5409 if (EXT4_MOUNT_DATA_FLAGS & 5410 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5411 ext4_msg(sb, KERN_ERR, "can't mount with " 5412 "data=, fs mounted w/o journal"); 5413 goto failed_mount3a; 5414 } 5415 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5416 clear_opt(sb, JOURNAL_CHECKSUM); 5417 clear_opt(sb, DATA_FLAGS); 5418 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5419 sbi->s_journal = NULL; 5420 needs_recovery = 0; 5421 } 5422 5423 if (!test_opt(sb, NO_MBCACHE)) { 5424 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5425 if (!sbi->s_ea_block_cache) { 5426 ext4_msg(sb, KERN_ERR, 5427 "Failed to create ea_block_cache"); 5428 err = -EINVAL; 5429 goto failed_mount_wq; 5430 } 5431 5432 if (ext4_has_feature_ea_inode(sb)) { 5433 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5434 if (!sbi->s_ea_inode_cache) { 5435 ext4_msg(sb, KERN_ERR, 5436 "Failed to create ea_inode_cache"); 5437 err = -EINVAL; 5438 goto failed_mount_wq; 5439 } 5440 } 5441 } 5442 5443 /* 5444 * Get the # of file system overhead blocks from the 5445 * superblock if present. 5446 */ 5447 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5448 /* ignore the precalculated value if it is ridiculous */ 5449 if (sbi->s_overhead > ext4_blocks_count(es)) 5450 sbi->s_overhead = 0; 5451 /* 5452 * If the bigalloc feature is not enabled recalculating the 5453 * overhead doesn't take long, so we might as well just redo 5454 * it to make sure we are using the correct value. 5455 */ 5456 if (!ext4_has_feature_bigalloc(sb)) 5457 sbi->s_overhead = 0; 5458 if (sbi->s_overhead == 0) { 5459 err = ext4_calculate_overhead(sb); 5460 if (err) 5461 goto failed_mount_wq; 5462 } 5463 5464 /* 5465 * The maximum number of concurrent works can be high and 5466 * concurrency isn't really necessary. Limit it to 1. 5467 */ 5468 EXT4_SB(sb)->rsv_conversion_wq = 5469 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5470 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5471 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5472 err = -ENOMEM; 5473 goto failed_mount4; 5474 } 5475 5476 /* 5477 * The jbd2_journal_load will have done any necessary log recovery, 5478 * so we can safely mount the rest of the filesystem now. 5479 */ 5480 5481 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5482 if (IS_ERR(root)) { 5483 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5484 err = PTR_ERR(root); 5485 root = NULL; 5486 goto failed_mount4; 5487 } 5488 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5489 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5490 iput(root); 5491 err = -EFSCORRUPTED; 5492 goto failed_mount4; 5493 } 5494 5495 sb->s_root = d_make_root(root); 5496 if (!sb->s_root) { 5497 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5498 err = -ENOMEM; 5499 goto failed_mount4; 5500 } 5501 5502 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5503 if (err == -EROFS) { 5504 sb->s_flags |= SB_RDONLY; 5505 } else if (err) 5506 goto failed_mount4a; 5507 5508 ext4_set_resv_clusters(sb); 5509 5510 if (test_opt(sb, BLOCK_VALIDITY)) { 5511 err = ext4_setup_system_zone(sb); 5512 if (err) { 5513 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5514 "zone (%d)", err); 5515 goto failed_mount4a; 5516 } 5517 } 5518 ext4_fc_replay_cleanup(sb); 5519 5520 ext4_ext_init(sb); 5521 5522 /* 5523 * Enable optimize_scan if number of groups is > threshold. This can be 5524 * turned off by passing "mb_optimize_scan=0". This can also be 5525 * turned on forcefully by passing "mb_optimize_scan=1". 5526 */ 5527 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5528 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5529 set_opt2(sb, MB_OPTIMIZE_SCAN); 5530 else 5531 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5532 } 5533 5534 err = ext4_mb_init(sb); 5535 if (err) { 5536 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5537 err); 5538 goto failed_mount5; 5539 } 5540 5541 /* 5542 * We can only set up the journal commit callback once 5543 * mballoc is initialized 5544 */ 5545 if (sbi->s_journal) 5546 sbi->s_journal->j_commit_callback = 5547 ext4_journal_commit_callback; 5548 5549 err = ext4_percpu_param_init(sbi); 5550 if (err) 5551 goto failed_mount6; 5552 5553 if (ext4_has_feature_flex_bg(sb)) 5554 if (!ext4_fill_flex_info(sb)) { 5555 ext4_msg(sb, KERN_ERR, 5556 "unable to initialize " 5557 "flex_bg meta info!"); 5558 err = -ENOMEM; 5559 goto failed_mount6; 5560 } 5561 5562 err = ext4_register_li_request(sb, first_not_zeroed); 5563 if (err) 5564 goto failed_mount6; 5565 5566 err = ext4_init_orphan_info(sb); 5567 if (err) 5568 goto failed_mount7; 5569 #ifdef CONFIG_QUOTA 5570 /* Enable quota usage during mount. */ 5571 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5572 err = ext4_enable_quotas(sb); 5573 if (err) 5574 goto failed_mount8; 5575 } 5576 #endif /* CONFIG_QUOTA */ 5577 5578 /* 5579 * Save the original bdev mapping's wb_err value which could be 5580 * used to detect the metadata async write error. 5581 */ 5582 spin_lock_init(&sbi->s_bdev_wb_lock); 5583 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5584 &sbi->s_bdev_wb_err); 5585 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5586 ext4_orphan_cleanup(sb, es); 5587 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5588 /* 5589 * Update the checksum after updating free space/inode counters and 5590 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5591 * checksum in the buffer cache until it is written out and 5592 * e2fsprogs programs trying to open a file system immediately 5593 * after it is mounted can fail. 5594 */ 5595 ext4_superblock_csum_set(sb); 5596 if (needs_recovery) { 5597 ext4_msg(sb, KERN_INFO, "recovery complete"); 5598 err = ext4_mark_recovery_complete(sb, es); 5599 if (err) 5600 goto failed_mount9; 5601 } 5602 5603 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5604 ext4_msg(sb, KERN_WARNING, 5605 "mounting with \"discard\" option, but the device does not support discard"); 5606 5607 if (es->s_error_count) 5608 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5609 5610 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5611 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5612 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5613 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5614 atomic_set(&sbi->s_warning_count, 0); 5615 atomic_set(&sbi->s_msg_count, 0); 5616 5617 /* Register sysfs after all initializations are complete. */ 5618 err = ext4_register_sysfs(sb); 5619 if (err) 5620 goto failed_mount9; 5621 5622 return 0; 5623 5624 failed_mount9: 5625 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5626 failed_mount8: __maybe_unused 5627 ext4_release_orphan_info(sb); 5628 failed_mount7: 5629 ext4_unregister_li_request(sb); 5630 failed_mount6: 5631 ext4_mb_release(sb); 5632 ext4_flex_groups_free(sbi); 5633 ext4_percpu_param_destroy(sbi); 5634 failed_mount5: 5635 ext4_ext_release(sb); 5636 ext4_release_system_zone(sb); 5637 failed_mount4a: 5638 dput(sb->s_root); 5639 sb->s_root = NULL; 5640 failed_mount4: 5641 ext4_msg(sb, KERN_ERR, "mount failed"); 5642 if (EXT4_SB(sb)->rsv_conversion_wq) 5643 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5644 failed_mount_wq: 5645 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5646 sbi->s_ea_inode_cache = NULL; 5647 5648 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5649 sbi->s_ea_block_cache = NULL; 5650 5651 if (sbi->s_journal) { 5652 /* flush s_sb_upd_work before journal destroy. */ 5653 flush_work(&sbi->s_sb_upd_work); 5654 jbd2_journal_destroy(sbi->s_journal); 5655 sbi->s_journal = NULL; 5656 } 5657 failed_mount3a: 5658 ext4_es_unregister_shrinker(sbi); 5659 failed_mount3: 5660 /* flush s_sb_upd_work before sbi destroy */ 5661 flush_work(&sbi->s_sb_upd_work); 5662 ext4_stop_mmpd(sbi); 5663 del_timer_sync(&sbi->s_err_report); 5664 ext4_group_desc_free(sbi); 5665 failed_mount: 5666 if (sbi->s_chksum_driver) 5667 crypto_free_shash(sbi->s_chksum_driver); 5668 5669 #if IS_ENABLED(CONFIG_UNICODE) 5670 utf8_unload(sb->s_encoding); 5671 #endif 5672 5673 #ifdef CONFIG_QUOTA 5674 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5675 kfree(get_qf_name(sb, sbi, i)); 5676 #endif 5677 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5678 brelse(sbi->s_sbh); 5679 if (sbi->s_journal_bdev) { 5680 invalidate_bdev(sbi->s_journal_bdev); 5681 blkdev_put(sbi->s_journal_bdev, sb); 5682 } 5683 out_fail: 5684 invalidate_bdev(sb->s_bdev); 5685 sb->s_fs_info = NULL; 5686 return err; 5687 } 5688 5689 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5690 { 5691 struct ext4_fs_context *ctx = fc->fs_private; 5692 struct ext4_sb_info *sbi; 5693 const char *descr; 5694 int ret; 5695 5696 sbi = ext4_alloc_sbi(sb); 5697 if (!sbi) 5698 return -ENOMEM; 5699 5700 fc->s_fs_info = sbi; 5701 5702 /* Cleanup superblock name */ 5703 strreplace(sb->s_id, '/', '!'); 5704 5705 sbi->s_sb_block = 1; /* Default super block location */ 5706 if (ctx->spec & EXT4_SPEC_s_sb_block) 5707 sbi->s_sb_block = ctx->s_sb_block; 5708 5709 ret = __ext4_fill_super(fc, sb); 5710 if (ret < 0) 5711 goto free_sbi; 5712 5713 if (sbi->s_journal) { 5714 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5715 descr = " journalled data mode"; 5716 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5717 descr = " ordered data mode"; 5718 else 5719 descr = " writeback data mode"; 5720 } else 5721 descr = "out journal"; 5722 5723 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5724 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5725 "Quota mode: %s.", &sb->s_uuid, 5726 sb_rdonly(sb) ? "ro" : "r/w", descr, 5727 ext4_quota_mode(sb)); 5728 5729 /* Update the s_overhead_clusters if necessary */ 5730 ext4_update_overhead(sb, false); 5731 return 0; 5732 5733 free_sbi: 5734 ext4_free_sbi(sbi); 5735 fc->s_fs_info = NULL; 5736 return ret; 5737 } 5738 5739 static int ext4_get_tree(struct fs_context *fc) 5740 { 5741 return get_tree_bdev(fc, ext4_fill_super); 5742 } 5743 5744 /* 5745 * Setup any per-fs journal parameters now. We'll do this both on 5746 * initial mount, once the journal has been initialised but before we've 5747 * done any recovery; and again on any subsequent remount. 5748 */ 5749 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5750 { 5751 struct ext4_sb_info *sbi = EXT4_SB(sb); 5752 5753 journal->j_commit_interval = sbi->s_commit_interval; 5754 journal->j_min_batch_time = sbi->s_min_batch_time; 5755 journal->j_max_batch_time = sbi->s_max_batch_time; 5756 ext4_fc_init(sb, journal); 5757 5758 write_lock(&journal->j_state_lock); 5759 if (test_opt(sb, BARRIER)) 5760 journal->j_flags |= JBD2_BARRIER; 5761 else 5762 journal->j_flags &= ~JBD2_BARRIER; 5763 if (test_opt(sb, DATA_ERR_ABORT)) 5764 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5765 else 5766 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5767 /* 5768 * Always enable journal cycle record option, letting the journal 5769 * records log transactions continuously between each mount. 5770 */ 5771 journal->j_flags |= JBD2_CYCLE_RECORD; 5772 write_unlock(&journal->j_state_lock); 5773 } 5774 5775 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5776 unsigned int journal_inum) 5777 { 5778 struct inode *journal_inode; 5779 5780 /* 5781 * Test for the existence of a valid inode on disk. Bad things 5782 * happen if we iget() an unused inode, as the subsequent iput() 5783 * will try to delete it. 5784 */ 5785 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5786 if (IS_ERR(journal_inode)) { 5787 ext4_msg(sb, KERN_ERR, "no journal found"); 5788 return ERR_CAST(journal_inode); 5789 } 5790 if (!journal_inode->i_nlink) { 5791 make_bad_inode(journal_inode); 5792 iput(journal_inode); 5793 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5794 return ERR_PTR(-EFSCORRUPTED); 5795 } 5796 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5797 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5798 iput(journal_inode); 5799 return ERR_PTR(-EFSCORRUPTED); 5800 } 5801 5802 ext4_debug("Journal inode found at %p: %lld bytes\n", 5803 journal_inode, journal_inode->i_size); 5804 return journal_inode; 5805 } 5806 5807 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5808 { 5809 struct ext4_map_blocks map; 5810 int ret; 5811 5812 if (journal->j_inode == NULL) 5813 return 0; 5814 5815 map.m_lblk = *block; 5816 map.m_len = 1; 5817 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5818 if (ret <= 0) { 5819 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5820 "journal bmap failed: block %llu ret %d\n", 5821 *block, ret); 5822 jbd2_journal_abort(journal, ret ? ret : -EIO); 5823 return ret; 5824 } 5825 *block = map.m_pblk; 5826 return 0; 5827 } 5828 5829 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5830 unsigned int journal_inum) 5831 { 5832 struct inode *journal_inode; 5833 journal_t *journal; 5834 5835 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5836 if (IS_ERR(journal_inode)) 5837 return ERR_CAST(journal_inode); 5838 5839 journal = jbd2_journal_init_inode(journal_inode); 5840 if (IS_ERR(journal)) { 5841 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5842 iput(journal_inode); 5843 return ERR_CAST(journal); 5844 } 5845 journal->j_private = sb; 5846 journal->j_bmap = ext4_journal_bmap; 5847 ext4_init_journal_params(sb, journal); 5848 return journal; 5849 } 5850 5851 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb, 5852 dev_t j_dev, ext4_fsblk_t *j_start, 5853 ext4_fsblk_t *j_len) 5854 { 5855 struct buffer_head *bh; 5856 struct block_device *bdev; 5857 int hblock, blocksize; 5858 ext4_fsblk_t sb_block; 5859 unsigned long offset; 5860 struct ext4_super_block *es; 5861 int errno; 5862 5863 /* see get_tree_bdev why this is needed and safe */ 5864 up_write(&sb->s_umount); 5865 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb, 5866 &fs_holder_ops); 5867 down_write(&sb->s_umount); 5868 if (IS_ERR(bdev)) { 5869 ext4_msg(sb, KERN_ERR, 5870 "failed to open journal device unknown-block(%u,%u) %ld", 5871 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev)); 5872 return ERR_CAST(bdev); 5873 } 5874 5875 blocksize = sb->s_blocksize; 5876 hblock = bdev_logical_block_size(bdev); 5877 if (blocksize < hblock) { 5878 ext4_msg(sb, KERN_ERR, 5879 "blocksize too small for journal device"); 5880 errno = -EINVAL; 5881 goto out_bdev; 5882 } 5883 5884 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5885 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5886 set_blocksize(bdev, blocksize); 5887 bh = __bread(bdev, sb_block, blocksize); 5888 if (!bh) { 5889 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5890 "external journal"); 5891 errno = -EINVAL; 5892 goto out_bdev; 5893 } 5894 5895 es = (struct ext4_super_block *) (bh->b_data + offset); 5896 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5897 !(le32_to_cpu(es->s_feature_incompat) & 5898 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5899 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5900 errno = -EFSCORRUPTED; 5901 goto out_bh; 5902 } 5903 5904 if ((le32_to_cpu(es->s_feature_ro_compat) & 5905 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5906 es->s_checksum != ext4_superblock_csum(sb, es)) { 5907 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5908 errno = -EFSCORRUPTED; 5909 goto out_bh; 5910 } 5911 5912 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5913 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5914 errno = -EFSCORRUPTED; 5915 goto out_bh; 5916 } 5917 5918 *j_start = sb_block + 1; 5919 *j_len = ext4_blocks_count(es); 5920 brelse(bh); 5921 return bdev; 5922 5923 out_bh: 5924 brelse(bh); 5925 out_bdev: 5926 blkdev_put(bdev, sb); 5927 return ERR_PTR(errno); 5928 } 5929 5930 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5931 dev_t j_dev) 5932 { 5933 journal_t *journal; 5934 ext4_fsblk_t j_start; 5935 ext4_fsblk_t j_len; 5936 struct block_device *journal_bdev; 5937 int errno = 0; 5938 5939 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5940 if (IS_ERR(journal_bdev)) 5941 return ERR_CAST(journal_bdev); 5942 5943 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start, 5944 j_len, sb->s_blocksize); 5945 if (IS_ERR(journal)) { 5946 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5947 errno = PTR_ERR(journal); 5948 goto out_bdev; 5949 } 5950 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5951 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5952 "user (unsupported) - %d", 5953 be32_to_cpu(journal->j_superblock->s_nr_users)); 5954 errno = -EINVAL; 5955 goto out_journal; 5956 } 5957 journal->j_private = sb; 5958 EXT4_SB(sb)->s_journal_bdev = journal_bdev; 5959 ext4_init_journal_params(sb, journal); 5960 return journal; 5961 5962 out_journal: 5963 jbd2_journal_destroy(journal); 5964 out_bdev: 5965 blkdev_put(journal_bdev, sb); 5966 return ERR_PTR(errno); 5967 } 5968 5969 static int ext4_load_journal(struct super_block *sb, 5970 struct ext4_super_block *es, 5971 unsigned long journal_devnum) 5972 { 5973 journal_t *journal; 5974 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5975 dev_t journal_dev; 5976 int err = 0; 5977 int really_read_only; 5978 int journal_dev_ro; 5979 5980 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5981 return -EFSCORRUPTED; 5982 5983 if (journal_devnum && 5984 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5985 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5986 "numbers have changed"); 5987 journal_dev = new_decode_dev(journal_devnum); 5988 } else 5989 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5990 5991 if (journal_inum && journal_dev) { 5992 ext4_msg(sb, KERN_ERR, 5993 "filesystem has both journal inode and journal device!"); 5994 return -EINVAL; 5995 } 5996 5997 if (journal_inum) { 5998 journal = ext4_open_inode_journal(sb, journal_inum); 5999 if (IS_ERR(journal)) 6000 return PTR_ERR(journal); 6001 } else { 6002 journal = ext4_open_dev_journal(sb, journal_dev); 6003 if (IS_ERR(journal)) 6004 return PTR_ERR(journal); 6005 } 6006 6007 journal_dev_ro = bdev_read_only(journal->j_dev); 6008 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 6009 6010 if (journal_dev_ro && !sb_rdonly(sb)) { 6011 ext4_msg(sb, KERN_ERR, 6012 "journal device read-only, try mounting with '-o ro'"); 6013 err = -EROFS; 6014 goto err_out; 6015 } 6016 6017 /* 6018 * Are we loading a blank journal or performing recovery after a 6019 * crash? For recovery, we need to check in advance whether we 6020 * can get read-write access to the device. 6021 */ 6022 if (ext4_has_feature_journal_needs_recovery(sb)) { 6023 if (sb_rdonly(sb)) { 6024 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6025 "required on readonly filesystem"); 6026 if (really_read_only) { 6027 ext4_msg(sb, KERN_ERR, "write access " 6028 "unavailable, cannot proceed " 6029 "(try mounting with noload)"); 6030 err = -EROFS; 6031 goto err_out; 6032 } 6033 ext4_msg(sb, KERN_INFO, "write access will " 6034 "be enabled during recovery"); 6035 } 6036 } 6037 6038 if (!(journal->j_flags & JBD2_BARRIER)) 6039 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6040 6041 if (!ext4_has_feature_journal_needs_recovery(sb)) 6042 err = jbd2_journal_wipe(journal, !really_read_only); 6043 if (!err) { 6044 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6045 __le16 orig_state; 6046 bool changed = false; 6047 6048 if (save) 6049 memcpy(save, ((char *) es) + 6050 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6051 err = jbd2_journal_load(journal); 6052 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6053 save, EXT4_S_ERR_LEN)) { 6054 memcpy(((char *) es) + EXT4_S_ERR_START, 6055 save, EXT4_S_ERR_LEN); 6056 changed = true; 6057 } 6058 kfree(save); 6059 orig_state = es->s_state; 6060 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6061 EXT4_ERROR_FS); 6062 if (orig_state != es->s_state) 6063 changed = true; 6064 /* Write out restored error information to the superblock */ 6065 if (changed && !really_read_only) { 6066 int err2; 6067 err2 = ext4_commit_super(sb); 6068 err = err ? : err2; 6069 } 6070 } 6071 6072 if (err) { 6073 ext4_msg(sb, KERN_ERR, "error loading journal"); 6074 goto err_out; 6075 } 6076 6077 EXT4_SB(sb)->s_journal = journal; 6078 err = ext4_clear_journal_err(sb, es); 6079 if (err) { 6080 EXT4_SB(sb)->s_journal = NULL; 6081 jbd2_journal_destroy(journal); 6082 return err; 6083 } 6084 6085 if (!really_read_only && journal_devnum && 6086 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6087 es->s_journal_dev = cpu_to_le32(journal_devnum); 6088 ext4_commit_super(sb); 6089 } 6090 if (!really_read_only && journal_inum && 6091 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6092 es->s_journal_inum = cpu_to_le32(journal_inum); 6093 ext4_commit_super(sb); 6094 } 6095 6096 return 0; 6097 6098 err_out: 6099 jbd2_journal_destroy(journal); 6100 return err; 6101 } 6102 6103 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6104 static void ext4_update_super(struct super_block *sb) 6105 { 6106 struct ext4_sb_info *sbi = EXT4_SB(sb); 6107 struct ext4_super_block *es = sbi->s_es; 6108 struct buffer_head *sbh = sbi->s_sbh; 6109 6110 lock_buffer(sbh); 6111 /* 6112 * If the file system is mounted read-only, don't update the 6113 * superblock write time. This avoids updating the superblock 6114 * write time when we are mounting the root file system 6115 * read/only but we need to replay the journal; at that point, 6116 * for people who are east of GMT and who make their clock 6117 * tick in localtime for Windows bug-for-bug compatibility, 6118 * the clock is set in the future, and this will cause e2fsck 6119 * to complain and force a full file system check. 6120 */ 6121 if (!sb_rdonly(sb)) 6122 ext4_update_tstamp(es, s_wtime); 6123 es->s_kbytes_written = 6124 cpu_to_le64(sbi->s_kbytes_written + 6125 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6126 sbi->s_sectors_written_start) >> 1)); 6127 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6128 ext4_free_blocks_count_set(es, 6129 EXT4_C2B(sbi, percpu_counter_sum_positive( 6130 &sbi->s_freeclusters_counter))); 6131 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6132 es->s_free_inodes_count = 6133 cpu_to_le32(percpu_counter_sum_positive( 6134 &sbi->s_freeinodes_counter)); 6135 /* Copy error information to the on-disk superblock */ 6136 spin_lock(&sbi->s_error_lock); 6137 if (sbi->s_add_error_count > 0) { 6138 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6139 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6140 __ext4_update_tstamp(&es->s_first_error_time, 6141 &es->s_first_error_time_hi, 6142 sbi->s_first_error_time); 6143 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6144 sizeof(es->s_first_error_func)); 6145 es->s_first_error_line = 6146 cpu_to_le32(sbi->s_first_error_line); 6147 es->s_first_error_ino = 6148 cpu_to_le32(sbi->s_first_error_ino); 6149 es->s_first_error_block = 6150 cpu_to_le64(sbi->s_first_error_block); 6151 es->s_first_error_errcode = 6152 ext4_errno_to_code(sbi->s_first_error_code); 6153 } 6154 __ext4_update_tstamp(&es->s_last_error_time, 6155 &es->s_last_error_time_hi, 6156 sbi->s_last_error_time); 6157 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6158 sizeof(es->s_last_error_func)); 6159 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6160 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6161 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6162 es->s_last_error_errcode = 6163 ext4_errno_to_code(sbi->s_last_error_code); 6164 /* 6165 * Start the daily error reporting function if it hasn't been 6166 * started already 6167 */ 6168 if (!es->s_error_count) 6169 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6170 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6171 sbi->s_add_error_count = 0; 6172 } 6173 spin_unlock(&sbi->s_error_lock); 6174 6175 ext4_superblock_csum_set(sb); 6176 unlock_buffer(sbh); 6177 } 6178 6179 static int ext4_commit_super(struct super_block *sb) 6180 { 6181 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6182 6183 if (!sbh) 6184 return -EINVAL; 6185 if (block_device_ejected(sb)) 6186 return -ENODEV; 6187 6188 ext4_update_super(sb); 6189 6190 lock_buffer(sbh); 6191 /* Buffer got discarded which means block device got invalidated */ 6192 if (!buffer_mapped(sbh)) { 6193 unlock_buffer(sbh); 6194 return -EIO; 6195 } 6196 6197 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6198 /* 6199 * Oh, dear. A previous attempt to write the 6200 * superblock failed. This could happen because the 6201 * USB device was yanked out. Or it could happen to 6202 * be a transient write error and maybe the block will 6203 * be remapped. Nothing we can do but to retry the 6204 * write and hope for the best. 6205 */ 6206 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6207 "superblock detected"); 6208 clear_buffer_write_io_error(sbh); 6209 set_buffer_uptodate(sbh); 6210 } 6211 get_bh(sbh); 6212 /* Clear potential dirty bit if it was journalled update */ 6213 clear_buffer_dirty(sbh); 6214 sbh->b_end_io = end_buffer_write_sync; 6215 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6216 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6217 wait_on_buffer(sbh); 6218 if (buffer_write_io_error(sbh)) { 6219 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6220 "superblock"); 6221 clear_buffer_write_io_error(sbh); 6222 set_buffer_uptodate(sbh); 6223 return -EIO; 6224 } 6225 return 0; 6226 } 6227 6228 /* 6229 * Have we just finished recovery? If so, and if we are mounting (or 6230 * remounting) the filesystem readonly, then we will end up with a 6231 * consistent fs on disk. Record that fact. 6232 */ 6233 static int ext4_mark_recovery_complete(struct super_block *sb, 6234 struct ext4_super_block *es) 6235 { 6236 int err; 6237 journal_t *journal = EXT4_SB(sb)->s_journal; 6238 6239 if (!ext4_has_feature_journal(sb)) { 6240 if (journal != NULL) { 6241 ext4_error(sb, "Journal got removed while the fs was " 6242 "mounted!"); 6243 return -EFSCORRUPTED; 6244 } 6245 return 0; 6246 } 6247 jbd2_journal_lock_updates(journal); 6248 err = jbd2_journal_flush(journal, 0); 6249 if (err < 0) 6250 goto out; 6251 6252 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6253 ext4_has_feature_orphan_present(sb))) { 6254 if (!ext4_orphan_file_empty(sb)) { 6255 ext4_error(sb, "Orphan file not empty on read-only fs."); 6256 err = -EFSCORRUPTED; 6257 goto out; 6258 } 6259 ext4_clear_feature_journal_needs_recovery(sb); 6260 ext4_clear_feature_orphan_present(sb); 6261 ext4_commit_super(sb); 6262 } 6263 out: 6264 jbd2_journal_unlock_updates(journal); 6265 return err; 6266 } 6267 6268 /* 6269 * If we are mounting (or read-write remounting) a filesystem whose journal 6270 * has recorded an error from a previous lifetime, move that error to the 6271 * main filesystem now. 6272 */ 6273 static int ext4_clear_journal_err(struct super_block *sb, 6274 struct ext4_super_block *es) 6275 { 6276 journal_t *journal; 6277 int j_errno; 6278 const char *errstr; 6279 6280 if (!ext4_has_feature_journal(sb)) { 6281 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6282 return -EFSCORRUPTED; 6283 } 6284 6285 journal = EXT4_SB(sb)->s_journal; 6286 6287 /* 6288 * Now check for any error status which may have been recorded in the 6289 * journal by a prior ext4_error() or ext4_abort() 6290 */ 6291 6292 j_errno = jbd2_journal_errno(journal); 6293 if (j_errno) { 6294 char nbuf[16]; 6295 6296 errstr = ext4_decode_error(sb, j_errno, nbuf); 6297 ext4_warning(sb, "Filesystem error recorded " 6298 "from previous mount: %s", errstr); 6299 6300 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6301 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6302 j_errno = ext4_commit_super(sb); 6303 if (j_errno) 6304 return j_errno; 6305 ext4_warning(sb, "Marked fs in need of filesystem check."); 6306 6307 jbd2_journal_clear_err(journal); 6308 jbd2_journal_update_sb_errno(journal); 6309 } 6310 return 0; 6311 } 6312 6313 /* 6314 * Force the running and committing transactions to commit, 6315 * and wait on the commit. 6316 */ 6317 int ext4_force_commit(struct super_block *sb) 6318 { 6319 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6320 } 6321 6322 static int ext4_sync_fs(struct super_block *sb, int wait) 6323 { 6324 int ret = 0; 6325 tid_t target; 6326 bool needs_barrier = false; 6327 struct ext4_sb_info *sbi = EXT4_SB(sb); 6328 6329 if (unlikely(ext4_forced_shutdown(sb))) 6330 return 0; 6331 6332 trace_ext4_sync_fs(sb, wait); 6333 flush_workqueue(sbi->rsv_conversion_wq); 6334 /* 6335 * Writeback quota in non-journalled quota case - journalled quota has 6336 * no dirty dquots 6337 */ 6338 dquot_writeback_dquots(sb, -1); 6339 /* 6340 * Data writeback is possible w/o journal transaction, so barrier must 6341 * being sent at the end of the function. But we can skip it if 6342 * transaction_commit will do it for us. 6343 */ 6344 if (sbi->s_journal) { 6345 target = jbd2_get_latest_transaction(sbi->s_journal); 6346 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6347 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6348 needs_barrier = true; 6349 6350 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6351 if (wait) 6352 ret = jbd2_log_wait_commit(sbi->s_journal, 6353 target); 6354 } 6355 } else if (wait && test_opt(sb, BARRIER)) 6356 needs_barrier = true; 6357 if (needs_barrier) { 6358 int err; 6359 err = blkdev_issue_flush(sb->s_bdev); 6360 if (!ret) 6361 ret = err; 6362 } 6363 6364 return ret; 6365 } 6366 6367 /* 6368 * LVM calls this function before a (read-only) snapshot is created. This 6369 * gives us a chance to flush the journal completely and mark the fs clean. 6370 * 6371 * Note that only this function cannot bring a filesystem to be in a clean 6372 * state independently. It relies on upper layer to stop all data & metadata 6373 * modifications. 6374 */ 6375 static int ext4_freeze(struct super_block *sb) 6376 { 6377 int error = 0; 6378 journal_t *journal = EXT4_SB(sb)->s_journal; 6379 6380 if (journal) { 6381 /* Now we set up the journal barrier. */ 6382 jbd2_journal_lock_updates(journal); 6383 6384 /* 6385 * Don't clear the needs_recovery flag if we failed to 6386 * flush the journal. 6387 */ 6388 error = jbd2_journal_flush(journal, 0); 6389 if (error < 0) 6390 goto out; 6391 6392 /* Journal blocked and flushed, clear needs_recovery flag. */ 6393 ext4_clear_feature_journal_needs_recovery(sb); 6394 if (ext4_orphan_file_empty(sb)) 6395 ext4_clear_feature_orphan_present(sb); 6396 } 6397 6398 error = ext4_commit_super(sb); 6399 out: 6400 if (journal) 6401 /* we rely on upper layer to stop further updates */ 6402 jbd2_journal_unlock_updates(journal); 6403 return error; 6404 } 6405 6406 /* 6407 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6408 * flag here, even though the filesystem is not technically dirty yet. 6409 */ 6410 static int ext4_unfreeze(struct super_block *sb) 6411 { 6412 if (ext4_forced_shutdown(sb)) 6413 return 0; 6414 6415 if (EXT4_SB(sb)->s_journal) { 6416 /* Reset the needs_recovery flag before the fs is unlocked. */ 6417 ext4_set_feature_journal_needs_recovery(sb); 6418 if (ext4_has_feature_orphan_file(sb)) 6419 ext4_set_feature_orphan_present(sb); 6420 } 6421 6422 ext4_commit_super(sb); 6423 return 0; 6424 } 6425 6426 /* 6427 * Structure to save mount options for ext4_remount's benefit 6428 */ 6429 struct ext4_mount_options { 6430 unsigned long s_mount_opt; 6431 unsigned long s_mount_opt2; 6432 kuid_t s_resuid; 6433 kgid_t s_resgid; 6434 unsigned long s_commit_interval; 6435 u32 s_min_batch_time, s_max_batch_time; 6436 #ifdef CONFIG_QUOTA 6437 int s_jquota_fmt; 6438 char *s_qf_names[EXT4_MAXQUOTAS]; 6439 #endif 6440 }; 6441 6442 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6443 { 6444 struct ext4_fs_context *ctx = fc->fs_private; 6445 struct ext4_super_block *es; 6446 struct ext4_sb_info *sbi = EXT4_SB(sb); 6447 unsigned long old_sb_flags; 6448 struct ext4_mount_options old_opts; 6449 ext4_group_t g; 6450 int err = 0; 6451 int alloc_ctx; 6452 #ifdef CONFIG_QUOTA 6453 int enable_quota = 0; 6454 int i, j; 6455 char *to_free[EXT4_MAXQUOTAS]; 6456 #endif 6457 6458 6459 /* Store the original options */ 6460 old_sb_flags = sb->s_flags; 6461 old_opts.s_mount_opt = sbi->s_mount_opt; 6462 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6463 old_opts.s_resuid = sbi->s_resuid; 6464 old_opts.s_resgid = sbi->s_resgid; 6465 old_opts.s_commit_interval = sbi->s_commit_interval; 6466 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6467 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6468 #ifdef CONFIG_QUOTA 6469 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6470 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6471 if (sbi->s_qf_names[i]) { 6472 char *qf_name = get_qf_name(sb, sbi, i); 6473 6474 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6475 if (!old_opts.s_qf_names[i]) { 6476 for (j = 0; j < i; j++) 6477 kfree(old_opts.s_qf_names[j]); 6478 return -ENOMEM; 6479 } 6480 } else 6481 old_opts.s_qf_names[i] = NULL; 6482 #endif 6483 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6484 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6485 ctx->journal_ioprio = 6486 sbi->s_journal->j_task->io_context->ioprio; 6487 else 6488 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6489 6490 } 6491 6492 if ((ctx->spec & EXT4_SPEC_s_stripe) && 6493 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) { 6494 ext4_msg(sb, KERN_WARNING, 6495 "stripe (%lu) is not aligned with cluster size (%u), " 6496 "stripe is disabled", 6497 ctx->s_stripe, sbi->s_cluster_ratio); 6498 ctx->s_stripe = 0; 6499 } 6500 6501 /* 6502 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6503 * two calls to ext4_should_dioread_nolock() to return inconsistent 6504 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6505 * here s_writepages_rwsem to avoid race between writepages ops and 6506 * remount. 6507 */ 6508 alloc_ctx = ext4_writepages_down_write(sb); 6509 ext4_apply_options(fc, sb); 6510 ext4_writepages_up_write(sb, alloc_ctx); 6511 6512 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6513 test_opt(sb, JOURNAL_CHECKSUM)) { 6514 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6515 "during remount not supported; ignoring"); 6516 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6517 } 6518 6519 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6520 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6521 ext4_msg(sb, KERN_ERR, "can't mount with " 6522 "both data=journal and delalloc"); 6523 err = -EINVAL; 6524 goto restore_opts; 6525 } 6526 if (test_opt(sb, DIOREAD_NOLOCK)) { 6527 ext4_msg(sb, KERN_ERR, "can't mount with " 6528 "both data=journal and dioread_nolock"); 6529 err = -EINVAL; 6530 goto restore_opts; 6531 } 6532 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6533 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6534 ext4_msg(sb, KERN_ERR, "can't mount with " 6535 "journal_async_commit in data=ordered mode"); 6536 err = -EINVAL; 6537 goto restore_opts; 6538 } 6539 } 6540 6541 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6542 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6543 err = -EINVAL; 6544 goto restore_opts; 6545 } 6546 6547 if (test_opt2(sb, ABORT)) 6548 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6549 6550 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6551 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6552 6553 es = sbi->s_es; 6554 6555 if (sbi->s_journal) { 6556 ext4_init_journal_params(sb, sbi->s_journal); 6557 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6558 } 6559 6560 /* Flush outstanding errors before changing fs state */ 6561 flush_work(&sbi->s_sb_upd_work); 6562 6563 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6564 if (ext4_forced_shutdown(sb)) { 6565 err = -EROFS; 6566 goto restore_opts; 6567 } 6568 6569 if (fc->sb_flags & SB_RDONLY) { 6570 err = sync_filesystem(sb); 6571 if (err < 0) 6572 goto restore_opts; 6573 err = dquot_suspend(sb, -1); 6574 if (err < 0) 6575 goto restore_opts; 6576 6577 /* 6578 * First of all, the unconditional stuff we have to do 6579 * to disable replay of the journal when we next remount 6580 */ 6581 sb->s_flags |= SB_RDONLY; 6582 6583 /* 6584 * OK, test if we are remounting a valid rw partition 6585 * readonly, and if so set the rdonly flag and then 6586 * mark the partition as valid again. 6587 */ 6588 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6589 (sbi->s_mount_state & EXT4_VALID_FS)) 6590 es->s_state = cpu_to_le16(sbi->s_mount_state); 6591 6592 if (sbi->s_journal) { 6593 /* 6594 * We let remount-ro finish even if marking fs 6595 * as clean failed... 6596 */ 6597 ext4_mark_recovery_complete(sb, es); 6598 } 6599 } else { 6600 /* Make sure we can mount this feature set readwrite */ 6601 if (ext4_has_feature_readonly(sb) || 6602 !ext4_feature_set_ok(sb, 0)) { 6603 err = -EROFS; 6604 goto restore_opts; 6605 } 6606 /* 6607 * Make sure the group descriptor checksums 6608 * are sane. If they aren't, refuse to remount r/w. 6609 */ 6610 for (g = 0; g < sbi->s_groups_count; g++) { 6611 struct ext4_group_desc *gdp = 6612 ext4_get_group_desc(sb, g, NULL); 6613 6614 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6615 ext4_msg(sb, KERN_ERR, 6616 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6617 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6618 le16_to_cpu(gdp->bg_checksum)); 6619 err = -EFSBADCRC; 6620 goto restore_opts; 6621 } 6622 } 6623 6624 /* 6625 * If we have an unprocessed orphan list hanging 6626 * around from a previously readonly bdev mount, 6627 * require a full umount/remount for now. 6628 */ 6629 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6630 ext4_msg(sb, KERN_WARNING, "Couldn't " 6631 "remount RDWR because of unprocessed " 6632 "orphan inode list. Please " 6633 "umount/remount instead"); 6634 err = -EINVAL; 6635 goto restore_opts; 6636 } 6637 6638 /* 6639 * Mounting a RDONLY partition read-write, so reread 6640 * and store the current valid flag. (It may have 6641 * been changed by e2fsck since we originally mounted 6642 * the partition.) 6643 */ 6644 if (sbi->s_journal) { 6645 err = ext4_clear_journal_err(sb, es); 6646 if (err) 6647 goto restore_opts; 6648 } 6649 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6650 ~EXT4_FC_REPLAY); 6651 6652 err = ext4_setup_super(sb, es, 0); 6653 if (err) 6654 goto restore_opts; 6655 6656 sb->s_flags &= ~SB_RDONLY; 6657 if (ext4_has_feature_mmp(sb)) { 6658 err = ext4_multi_mount_protect(sb, 6659 le64_to_cpu(es->s_mmp_block)); 6660 if (err) 6661 goto restore_opts; 6662 } 6663 #ifdef CONFIG_QUOTA 6664 enable_quota = 1; 6665 #endif 6666 } 6667 } 6668 6669 /* 6670 * Handle creation of system zone data early because it can fail. 6671 * Releasing of existing data is done when we are sure remount will 6672 * succeed. 6673 */ 6674 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6675 err = ext4_setup_system_zone(sb); 6676 if (err) 6677 goto restore_opts; 6678 } 6679 6680 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6681 err = ext4_commit_super(sb); 6682 if (err) 6683 goto restore_opts; 6684 } 6685 6686 #ifdef CONFIG_QUOTA 6687 if (enable_quota) { 6688 if (sb_any_quota_suspended(sb)) 6689 dquot_resume(sb, -1); 6690 else if (ext4_has_feature_quota(sb)) { 6691 err = ext4_enable_quotas(sb); 6692 if (err) 6693 goto restore_opts; 6694 } 6695 } 6696 /* Release old quota file names */ 6697 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6698 kfree(old_opts.s_qf_names[i]); 6699 #endif 6700 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6701 ext4_release_system_zone(sb); 6702 6703 /* 6704 * Reinitialize lazy itable initialization thread based on 6705 * current settings 6706 */ 6707 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6708 ext4_unregister_li_request(sb); 6709 else { 6710 ext4_group_t first_not_zeroed; 6711 first_not_zeroed = ext4_has_uninit_itable(sb); 6712 ext4_register_li_request(sb, first_not_zeroed); 6713 } 6714 6715 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6716 ext4_stop_mmpd(sbi); 6717 6718 return 0; 6719 6720 restore_opts: 6721 /* 6722 * If there was a failing r/w to ro transition, we may need to 6723 * re-enable quota 6724 */ 6725 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6726 sb_any_quota_suspended(sb)) 6727 dquot_resume(sb, -1); 6728 6729 alloc_ctx = ext4_writepages_down_write(sb); 6730 sb->s_flags = old_sb_flags; 6731 sbi->s_mount_opt = old_opts.s_mount_opt; 6732 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6733 sbi->s_resuid = old_opts.s_resuid; 6734 sbi->s_resgid = old_opts.s_resgid; 6735 sbi->s_commit_interval = old_opts.s_commit_interval; 6736 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6737 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6738 ext4_writepages_up_write(sb, alloc_ctx); 6739 6740 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6741 ext4_release_system_zone(sb); 6742 #ifdef CONFIG_QUOTA 6743 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6744 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6745 to_free[i] = get_qf_name(sb, sbi, i); 6746 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6747 } 6748 synchronize_rcu(); 6749 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6750 kfree(to_free[i]); 6751 #endif 6752 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6753 ext4_stop_mmpd(sbi); 6754 return err; 6755 } 6756 6757 static int ext4_reconfigure(struct fs_context *fc) 6758 { 6759 struct super_block *sb = fc->root->d_sb; 6760 int ret; 6761 6762 fc->s_fs_info = EXT4_SB(sb); 6763 6764 ret = ext4_check_opt_consistency(fc, sb); 6765 if (ret < 0) 6766 return ret; 6767 6768 ret = __ext4_remount(fc, sb); 6769 if (ret < 0) 6770 return ret; 6771 6772 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6773 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6774 ext4_quota_mode(sb)); 6775 6776 return 0; 6777 } 6778 6779 #ifdef CONFIG_QUOTA 6780 static int ext4_statfs_project(struct super_block *sb, 6781 kprojid_t projid, struct kstatfs *buf) 6782 { 6783 struct kqid qid; 6784 struct dquot *dquot; 6785 u64 limit; 6786 u64 curblock; 6787 6788 qid = make_kqid_projid(projid); 6789 dquot = dqget(sb, qid); 6790 if (IS_ERR(dquot)) 6791 return PTR_ERR(dquot); 6792 spin_lock(&dquot->dq_dqb_lock); 6793 6794 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6795 dquot->dq_dqb.dqb_bhardlimit); 6796 limit >>= sb->s_blocksize_bits; 6797 6798 if (limit && buf->f_blocks > limit) { 6799 curblock = (dquot->dq_dqb.dqb_curspace + 6800 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6801 buf->f_blocks = limit; 6802 buf->f_bfree = buf->f_bavail = 6803 (buf->f_blocks > curblock) ? 6804 (buf->f_blocks - curblock) : 0; 6805 } 6806 6807 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6808 dquot->dq_dqb.dqb_ihardlimit); 6809 if (limit && buf->f_files > limit) { 6810 buf->f_files = limit; 6811 buf->f_ffree = 6812 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6813 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6814 } 6815 6816 spin_unlock(&dquot->dq_dqb_lock); 6817 dqput(dquot); 6818 return 0; 6819 } 6820 #endif 6821 6822 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6823 { 6824 struct super_block *sb = dentry->d_sb; 6825 struct ext4_sb_info *sbi = EXT4_SB(sb); 6826 struct ext4_super_block *es = sbi->s_es; 6827 ext4_fsblk_t overhead = 0, resv_blocks; 6828 s64 bfree; 6829 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6830 6831 if (!test_opt(sb, MINIX_DF)) 6832 overhead = sbi->s_overhead; 6833 6834 buf->f_type = EXT4_SUPER_MAGIC; 6835 buf->f_bsize = sb->s_blocksize; 6836 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6837 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6838 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6839 /* prevent underflow in case that few free space is available */ 6840 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6841 buf->f_bavail = buf->f_bfree - 6842 (ext4_r_blocks_count(es) + resv_blocks); 6843 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6844 buf->f_bavail = 0; 6845 buf->f_files = le32_to_cpu(es->s_inodes_count); 6846 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6847 buf->f_namelen = EXT4_NAME_LEN; 6848 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6849 6850 #ifdef CONFIG_QUOTA 6851 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6852 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6853 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6854 #endif 6855 return 0; 6856 } 6857 6858 6859 #ifdef CONFIG_QUOTA 6860 6861 /* 6862 * Helper functions so that transaction is started before we acquire dqio_sem 6863 * to keep correct lock ordering of transaction > dqio_sem 6864 */ 6865 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6866 { 6867 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6868 } 6869 6870 static int ext4_write_dquot(struct dquot *dquot) 6871 { 6872 int ret, err; 6873 handle_t *handle; 6874 struct inode *inode; 6875 6876 inode = dquot_to_inode(dquot); 6877 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6878 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6879 if (IS_ERR(handle)) 6880 return PTR_ERR(handle); 6881 ret = dquot_commit(dquot); 6882 if (ret < 0) 6883 ext4_error_err(dquot->dq_sb, -ret, 6884 "Failed to commit dquot type %d", 6885 dquot->dq_id.type); 6886 err = ext4_journal_stop(handle); 6887 if (!ret) 6888 ret = err; 6889 return ret; 6890 } 6891 6892 static int ext4_acquire_dquot(struct dquot *dquot) 6893 { 6894 int ret, err; 6895 handle_t *handle; 6896 6897 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6898 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6899 if (IS_ERR(handle)) 6900 return PTR_ERR(handle); 6901 ret = dquot_acquire(dquot); 6902 if (ret < 0) 6903 ext4_error_err(dquot->dq_sb, -ret, 6904 "Failed to acquire dquot type %d", 6905 dquot->dq_id.type); 6906 err = ext4_journal_stop(handle); 6907 if (!ret) 6908 ret = err; 6909 return ret; 6910 } 6911 6912 static int ext4_release_dquot(struct dquot *dquot) 6913 { 6914 int ret, err; 6915 handle_t *handle; 6916 6917 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6918 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6919 if (IS_ERR(handle)) { 6920 /* Release dquot anyway to avoid endless cycle in dqput() */ 6921 dquot_release(dquot); 6922 return PTR_ERR(handle); 6923 } 6924 ret = dquot_release(dquot); 6925 if (ret < 0) 6926 ext4_error_err(dquot->dq_sb, -ret, 6927 "Failed to release dquot type %d", 6928 dquot->dq_id.type); 6929 err = ext4_journal_stop(handle); 6930 if (!ret) 6931 ret = err; 6932 return ret; 6933 } 6934 6935 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6936 { 6937 struct super_block *sb = dquot->dq_sb; 6938 6939 if (ext4_is_quota_journalled(sb)) { 6940 dquot_mark_dquot_dirty(dquot); 6941 return ext4_write_dquot(dquot); 6942 } else { 6943 return dquot_mark_dquot_dirty(dquot); 6944 } 6945 } 6946 6947 static int ext4_write_info(struct super_block *sb, int type) 6948 { 6949 int ret, err; 6950 handle_t *handle; 6951 6952 /* Data block + inode block */ 6953 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6954 if (IS_ERR(handle)) 6955 return PTR_ERR(handle); 6956 ret = dquot_commit_info(sb, type); 6957 err = ext4_journal_stop(handle); 6958 if (!ret) 6959 ret = err; 6960 return ret; 6961 } 6962 6963 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6964 { 6965 struct ext4_inode_info *ei = EXT4_I(inode); 6966 6967 /* The first argument of lockdep_set_subclass has to be 6968 * *exactly* the same as the argument to init_rwsem() --- in 6969 * this case, in init_once() --- or lockdep gets unhappy 6970 * because the name of the lock is set using the 6971 * stringification of the argument to init_rwsem(). 6972 */ 6973 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6974 lockdep_set_subclass(&ei->i_data_sem, subclass); 6975 } 6976 6977 /* 6978 * Standard function to be called on quota_on 6979 */ 6980 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6981 const struct path *path) 6982 { 6983 int err; 6984 6985 if (!test_opt(sb, QUOTA)) 6986 return -EINVAL; 6987 6988 /* Quotafile not on the same filesystem? */ 6989 if (path->dentry->d_sb != sb) 6990 return -EXDEV; 6991 6992 /* Quota already enabled for this file? */ 6993 if (IS_NOQUOTA(d_inode(path->dentry))) 6994 return -EBUSY; 6995 6996 /* Journaling quota? */ 6997 if (EXT4_SB(sb)->s_qf_names[type]) { 6998 /* Quotafile not in fs root? */ 6999 if (path->dentry->d_parent != sb->s_root) 7000 ext4_msg(sb, KERN_WARNING, 7001 "Quota file not on filesystem root. " 7002 "Journaled quota will not work"); 7003 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 7004 } else { 7005 /* 7006 * Clear the flag just in case mount options changed since 7007 * last time. 7008 */ 7009 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 7010 } 7011 7012 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 7013 err = dquot_quota_on(sb, type, format_id, path); 7014 if (!err) { 7015 struct inode *inode = d_inode(path->dentry); 7016 handle_t *handle; 7017 7018 /* 7019 * Set inode flags to prevent userspace from messing with quota 7020 * files. If this fails, we return success anyway since quotas 7021 * are already enabled and this is not a hard failure. 7022 */ 7023 inode_lock(inode); 7024 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7025 if (IS_ERR(handle)) 7026 goto unlock_inode; 7027 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7028 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7029 S_NOATIME | S_IMMUTABLE); 7030 err = ext4_mark_inode_dirty(handle, inode); 7031 ext4_journal_stop(handle); 7032 unlock_inode: 7033 inode_unlock(inode); 7034 if (err) 7035 dquot_quota_off(sb, type); 7036 } 7037 if (err) 7038 lockdep_set_quota_inode(path->dentry->d_inode, 7039 I_DATA_SEM_NORMAL); 7040 return err; 7041 } 7042 7043 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7044 { 7045 switch (type) { 7046 case USRQUOTA: 7047 return qf_inum == EXT4_USR_QUOTA_INO; 7048 case GRPQUOTA: 7049 return qf_inum == EXT4_GRP_QUOTA_INO; 7050 case PRJQUOTA: 7051 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7052 default: 7053 BUG(); 7054 } 7055 } 7056 7057 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7058 unsigned int flags) 7059 { 7060 int err; 7061 struct inode *qf_inode; 7062 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7063 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7064 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7065 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7066 }; 7067 7068 BUG_ON(!ext4_has_feature_quota(sb)); 7069 7070 if (!qf_inums[type]) 7071 return -EPERM; 7072 7073 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7074 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7075 qf_inums[type], type); 7076 return -EUCLEAN; 7077 } 7078 7079 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7080 if (IS_ERR(qf_inode)) { 7081 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7082 qf_inums[type], type); 7083 return PTR_ERR(qf_inode); 7084 } 7085 7086 /* Don't account quota for quota files to avoid recursion */ 7087 qf_inode->i_flags |= S_NOQUOTA; 7088 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7089 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7090 if (err) 7091 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7092 iput(qf_inode); 7093 7094 return err; 7095 } 7096 7097 /* Enable usage tracking for all quota types. */ 7098 int ext4_enable_quotas(struct super_block *sb) 7099 { 7100 int type, err = 0; 7101 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7102 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7103 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7104 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7105 }; 7106 bool quota_mopt[EXT4_MAXQUOTAS] = { 7107 test_opt(sb, USRQUOTA), 7108 test_opt(sb, GRPQUOTA), 7109 test_opt(sb, PRJQUOTA), 7110 }; 7111 7112 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7113 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7114 if (qf_inums[type]) { 7115 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7116 DQUOT_USAGE_ENABLED | 7117 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7118 if (err) { 7119 ext4_warning(sb, 7120 "Failed to enable quota tracking " 7121 "(type=%d, err=%d, ino=%lu). " 7122 "Please run e2fsck to fix.", type, 7123 err, qf_inums[type]); 7124 7125 ext4_quotas_off(sb, type); 7126 return err; 7127 } 7128 } 7129 } 7130 return 0; 7131 } 7132 7133 static int ext4_quota_off(struct super_block *sb, int type) 7134 { 7135 struct inode *inode = sb_dqopt(sb)->files[type]; 7136 handle_t *handle; 7137 int err; 7138 7139 /* Force all delayed allocation blocks to be allocated. 7140 * Caller already holds s_umount sem */ 7141 if (test_opt(sb, DELALLOC)) 7142 sync_filesystem(sb); 7143 7144 if (!inode || !igrab(inode)) 7145 goto out; 7146 7147 err = dquot_quota_off(sb, type); 7148 if (err || ext4_has_feature_quota(sb)) 7149 goto out_put; 7150 /* 7151 * When the filesystem was remounted read-only first, we cannot cleanup 7152 * inode flags here. Bad luck but people should be using QUOTA feature 7153 * these days anyway. 7154 */ 7155 if (sb_rdonly(sb)) 7156 goto out_put; 7157 7158 inode_lock(inode); 7159 /* 7160 * Update modification times of quota files when userspace can 7161 * start looking at them. If we fail, we return success anyway since 7162 * this is not a hard failure and quotas are already disabled. 7163 */ 7164 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7165 if (IS_ERR(handle)) { 7166 err = PTR_ERR(handle); 7167 goto out_unlock; 7168 } 7169 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7170 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7171 inode->i_mtime = inode_set_ctime_current(inode); 7172 err = ext4_mark_inode_dirty(handle, inode); 7173 ext4_journal_stop(handle); 7174 out_unlock: 7175 inode_unlock(inode); 7176 out_put: 7177 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7178 iput(inode); 7179 return err; 7180 out: 7181 return dquot_quota_off(sb, type); 7182 } 7183 7184 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7185 * acquiring the locks... As quota files are never truncated and quota code 7186 * itself serializes the operations (and no one else should touch the files) 7187 * we don't have to be afraid of races */ 7188 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7189 size_t len, loff_t off) 7190 { 7191 struct inode *inode = sb_dqopt(sb)->files[type]; 7192 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7193 int offset = off & (sb->s_blocksize - 1); 7194 int tocopy; 7195 size_t toread; 7196 struct buffer_head *bh; 7197 loff_t i_size = i_size_read(inode); 7198 7199 if (off > i_size) 7200 return 0; 7201 if (off+len > i_size) 7202 len = i_size-off; 7203 toread = len; 7204 while (toread > 0) { 7205 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7206 bh = ext4_bread(NULL, inode, blk, 0); 7207 if (IS_ERR(bh)) 7208 return PTR_ERR(bh); 7209 if (!bh) /* A hole? */ 7210 memset(data, 0, tocopy); 7211 else 7212 memcpy(data, bh->b_data+offset, tocopy); 7213 brelse(bh); 7214 offset = 0; 7215 toread -= tocopy; 7216 data += tocopy; 7217 blk++; 7218 } 7219 return len; 7220 } 7221 7222 /* Write to quotafile (we know the transaction is already started and has 7223 * enough credits) */ 7224 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7225 const char *data, size_t len, loff_t off) 7226 { 7227 struct inode *inode = sb_dqopt(sb)->files[type]; 7228 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7229 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7230 int retries = 0; 7231 struct buffer_head *bh; 7232 handle_t *handle = journal_current_handle(); 7233 7234 if (!handle) { 7235 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7236 " cancelled because transaction is not started", 7237 (unsigned long long)off, (unsigned long long)len); 7238 return -EIO; 7239 } 7240 /* 7241 * Since we account only one data block in transaction credits, 7242 * then it is impossible to cross a block boundary. 7243 */ 7244 if (sb->s_blocksize - offset < len) { 7245 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7246 " cancelled because not block aligned", 7247 (unsigned long long)off, (unsigned long long)len); 7248 return -EIO; 7249 } 7250 7251 do { 7252 bh = ext4_bread(handle, inode, blk, 7253 EXT4_GET_BLOCKS_CREATE | 7254 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7255 } while (PTR_ERR(bh) == -ENOSPC && 7256 ext4_should_retry_alloc(inode->i_sb, &retries)); 7257 if (IS_ERR(bh)) 7258 return PTR_ERR(bh); 7259 if (!bh) 7260 goto out; 7261 BUFFER_TRACE(bh, "get write access"); 7262 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7263 if (err) { 7264 brelse(bh); 7265 return err; 7266 } 7267 lock_buffer(bh); 7268 memcpy(bh->b_data+offset, data, len); 7269 flush_dcache_page(bh->b_page); 7270 unlock_buffer(bh); 7271 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7272 brelse(bh); 7273 out: 7274 if (inode->i_size < off + len) { 7275 i_size_write(inode, off + len); 7276 EXT4_I(inode)->i_disksize = inode->i_size; 7277 err2 = ext4_mark_inode_dirty(handle, inode); 7278 if (unlikely(err2 && !err)) 7279 err = err2; 7280 } 7281 return err ? err : len; 7282 } 7283 #endif 7284 7285 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7286 static inline void register_as_ext2(void) 7287 { 7288 int err = register_filesystem(&ext2_fs_type); 7289 if (err) 7290 printk(KERN_WARNING 7291 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7292 } 7293 7294 static inline void unregister_as_ext2(void) 7295 { 7296 unregister_filesystem(&ext2_fs_type); 7297 } 7298 7299 static inline int ext2_feature_set_ok(struct super_block *sb) 7300 { 7301 if (ext4_has_unknown_ext2_incompat_features(sb)) 7302 return 0; 7303 if (sb_rdonly(sb)) 7304 return 1; 7305 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7306 return 0; 7307 return 1; 7308 } 7309 #else 7310 static inline void register_as_ext2(void) { } 7311 static inline void unregister_as_ext2(void) { } 7312 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7313 #endif 7314 7315 static inline void register_as_ext3(void) 7316 { 7317 int err = register_filesystem(&ext3_fs_type); 7318 if (err) 7319 printk(KERN_WARNING 7320 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7321 } 7322 7323 static inline void unregister_as_ext3(void) 7324 { 7325 unregister_filesystem(&ext3_fs_type); 7326 } 7327 7328 static inline int ext3_feature_set_ok(struct super_block *sb) 7329 { 7330 if (ext4_has_unknown_ext3_incompat_features(sb)) 7331 return 0; 7332 if (!ext4_has_feature_journal(sb)) 7333 return 0; 7334 if (sb_rdonly(sb)) 7335 return 1; 7336 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7337 return 0; 7338 return 1; 7339 } 7340 7341 static void ext4_kill_sb(struct super_block *sb) 7342 { 7343 struct ext4_sb_info *sbi = EXT4_SB(sb); 7344 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL; 7345 7346 kill_block_super(sb); 7347 7348 if (journal_bdev) 7349 blkdev_put(journal_bdev, sb); 7350 } 7351 7352 static struct file_system_type ext4_fs_type = { 7353 .owner = THIS_MODULE, 7354 .name = "ext4", 7355 .init_fs_context = ext4_init_fs_context, 7356 .parameters = ext4_param_specs, 7357 .kill_sb = ext4_kill_sb, 7358 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7359 }; 7360 MODULE_ALIAS_FS("ext4"); 7361 7362 /* Shared across all ext4 file systems */ 7363 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7364 7365 static int __init ext4_init_fs(void) 7366 { 7367 int i, err; 7368 7369 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7370 ext4_li_info = NULL; 7371 7372 /* Build-time check for flags consistency */ 7373 ext4_check_flag_values(); 7374 7375 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7376 init_waitqueue_head(&ext4__ioend_wq[i]); 7377 7378 err = ext4_init_es(); 7379 if (err) 7380 return err; 7381 7382 err = ext4_init_pending(); 7383 if (err) 7384 goto out7; 7385 7386 err = ext4_init_post_read_processing(); 7387 if (err) 7388 goto out6; 7389 7390 err = ext4_init_pageio(); 7391 if (err) 7392 goto out5; 7393 7394 err = ext4_init_system_zone(); 7395 if (err) 7396 goto out4; 7397 7398 err = ext4_init_sysfs(); 7399 if (err) 7400 goto out3; 7401 7402 err = ext4_init_mballoc(); 7403 if (err) 7404 goto out2; 7405 err = init_inodecache(); 7406 if (err) 7407 goto out1; 7408 7409 err = ext4_fc_init_dentry_cache(); 7410 if (err) 7411 goto out05; 7412 7413 register_as_ext3(); 7414 register_as_ext2(); 7415 err = register_filesystem(&ext4_fs_type); 7416 if (err) 7417 goto out; 7418 7419 return 0; 7420 out: 7421 unregister_as_ext2(); 7422 unregister_as_ext3(); 7423 ext4_fc_destroy_dentry_cache(); 7424 out05: 7425 destroy_inodecache(); 7426 out1: 7427 ext4_exit_mballoc(); 7428 out2: 7429 ext4_exit_sysfs(); 7430 out3: 7431 ext4_exit_system_zone(); 7432 out4: 7433 ext4_exit_pageio(); 7434 out5: 7435 ext4_exit_post_read_processing(); 7436 out6: 7437 ext4_exit_pending(); 7438 out7: 7439 ext4_exit_es(); 7440 7441 return err; 7442 } 7443 7444 static void __exit ext4_exit_fs(void) 7445 { 7446 ext4_destroy_lazyinit_thread(); 7447 unregister_as_ext2(); 7448 unregister_as_ext3(); 7449 unregister_filesystem(&ext4_fs_type); 7450 ext4_fc_destroy_dentry_cache(); 7451 destroy_inodecache(); 7452 ext4_exit_mballoc(); 7453 ext4_exit_sysfs(); 7454 ext4_exit_system_zone(); 7455 ext4_exit_pageio(); 7456 ext4_exit_post_read_processing(); 7457 ext4_exit_es(); 7458 ext4_exit_pending(); 7459 } 7460 7461 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7462 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7463 MODULE_LICENSE("GPL"); 7464 MODULE_SOFTDEP("pre: crc32c"); 7465 module_init(ext4_init_fs) 7466 module_exit(ext4_exit_fs) 7467