1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/ext4_fs.h> 25 #include <linux/ext4_jbd2.h> 26 #include <linux/slab.h> 27 #include <linux/init.h> 28 #include <linux/blkdev.h> 29 #include <linux/parser.h> 30 #include <linux/smp_lock.h> 31 #include <linux/buffer_head.h> 32 #include <linux/exportfs.h> 33 #include <linux/vfs.h> 34 #include <linux/random.h> 35 #include <linux/mount.h> 36 #include <linux/namei.h> 37 #include <linux/quotaops.h> 38 #include <linux/seq_file.h> 39 #include <linux/log2.h> 40 41 #include <asm/uaccess.h> 42 43 #include "xattr.h" 44 #include "acl.h" 45 #include "namei.h" 46 47 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 48 unsigned long journal_devnum); 49 static int ext4_create_journal(struct super_block *, struct ext4_super_block *, 50 unsigned int); 51 static void ext4_commit_super (struct super_block * sb, 52 struct ext4_super_block * es, 53 int sync); 54 static void ext4_mark_recovery_complete(struct super_block * sb, 55 struct ext4_super_block * es); 56 static void ext4_clear_journal_err(struct super_block * sb, 57 struct ext4_super_block * es); 58 static int ext4_sync_fs(struct super_block *sb, int wait); 59 static const char *ext4_decode_error(struct super_block * sb, int errno, 60 char nbuf[16]); 61 static int ext4_remount (struct super_block * sb, int * flags, char * data); 62 static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf); 63 static void ext4_unlockfs(struct super_block *sb); 64 static void ext4_write_super (struct super_block * sb); 65 static void ext4_write_super_lockfs(struct super_block *sb); 66 67 68 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 69 struct ext4_group_desc *bg) 70 { 71 return le32_to_cpu(bg->bg_block_bitmap) | 72 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 73 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 74 } 75 76 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 77 struct ext4_group_desc *bg) 78 { 79 return le32_to_cpu(bg->bg_inode_bitmap) | 80 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 81 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 82 } 83 84 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 85 struct ext4_group_desc *bg) 86 { 87 return le32_to_cpu(bg->bg_inode_table) | 88 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 89 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 90 } 91 92 void ext4_block_bitmap_set(struct super_block *sb, 93 struct ext4_group_desc *bg, ext4_fsblk_t blk) 94 { 95 bg->bg_block_bitmap = cpu_to_le32((u32)blk); 96 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 97 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 98 } 99 100 void ext4_inode_bitmap_set(struct super_block *sb, 101 struct ext4_group_desc *bg, ext4_fsblk_t blk) 102 { 103 bg->bg_inode_bitmap = cpu_to_le32((u32)blk); 104 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 105 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 106 } 107 108 void ext4_inode_table_set(struct super_block *sb, 109 struct ext4_group_desc *bg, ext4_fsblk_t blk) 110 { 111 bg->bg_inode_table = cpu_to_le32((u32)blk); 112 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 113 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 114 } 115 116 /* 117 * Wrappers for jbd2_journal_start/end. 118 * 119 * The only special thing we need to do here is to make sure that all 120 * journal_end calls result in the superblock being marked dirty, so 121 * that sync() will call the filesystem's write_super callback if 122 * appropriate. 123 */ 124 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 125 { 126 journal_t *journal; 127 128 if (sb->s_flags & MS_RDONLY) 129 return ERR_PTR(-EROFS); 130 131 /* Special case here: if the journal has aborted behind our 132 * backs (eg. EIO in the commit thread), then we still need to 133 * take the FS itself readonly cleanly. */ 134 journal = EXT4_SB(sb)->s_journal; 135 if (is_journal_aborted(journal)) { 136 ext4_abort(sb, __FUNCTION__, 137 "Detected aborted journal"); 138 return ERR_PTR(-EROFS); 139 } 140 141 return jbd2_journal_start(journal, nblocks); 142 } 143 144 /* 145 * The only special thing we need to do here is to make sure that all 146 * jbd2_journal_stop calls result in the superblock being marked dirty, so 147 * that sync() will call the filesystem's write_super callback if 148 * appropriate. 149 */ 150 int __ext4_journal_stop(const char *where, handle_t *handle) 151 { 152 struct super_block *sb; 153 int err; 154 int rc; 155 156 sb = handle->h_transaction->t_journal->j_private; 157 err = handle->h_err; 158 rc = jbd2_journal_stop(handle); 159 160 if (!err) 161 err = rc; 162 if (err) 163 __ext4_std_error(sb, where, err); 164 return err; 165 } 166 167 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 168 struct buffer_head *bh, handle_t *handle, int err) 169 { 170 char nbuf[16]; 171 const char *errstr = ext4_decode_error(NULL, err, nbuf); 172 173 if (bh) 174 BUFFER_TRACE(bh, "abort"); 175 176 if (!handle->h_err) 177 handle->h_err = err; 178 179 if (is_handle_aborted(handle)) 180 return; 181 182 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 183 caller, errstr, err_fn); 184 185 jbd2_journal_abort_handle(handle); 186 } 187 188 /* Deal with the reporting of failure conditions on a filesystem such as 189 * inconsistencies detected or read IO failures. 190 * 191 * On ext2, we can store the error state of the filesystem in the 192 * superblock. That is not possible on ext4, because we may have other 193 * write ordering constraints on the superblock which prevent us from 194 * writing it out straight away; and given that the journal is about to 195 * be aborted, we can't rely on the current, or future, transactions to 196 * write out the superblock safely. 197 * 198 * We'll just use the jbd2_journal_abort() error code to record an error in 199 * the journal instead. On recovery, the journal will compain about 200 * that error until we've noted it down and cleared it. 201 */ 202 203 static void ext4_handle_error(struct super_block *sb) 204 { 205 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 206 207 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 208 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 209 210 if (sb->s_flags & MS_RDONLY) 211 return; 212 213 if (!test_opt (sb, ERRORS_CONT)) { 214 journal_t *journal = EXT4_SB(sb)->s_journal; 215 216 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 217 if (journal) 218 jbd2_journal_abort(journal, -EIO); 219 } 220 if (test_opt (sb, ERRORS_RO)) { 221 printk (KERN_CRIT "Remounting filesystem read-only\n"); 222 sb->s_flags |= MS_RDONLY; 223 } 224 ext4_commit_super(sb, es, 1); 225 if (test_opt(sb, ERRORS_PANIC)) 226 panic("EXT4-fs (device %s): panic forced after error\n", 227 sb->s_id); 228 } 229 230 void ext4_error (struct super_block * sb, const char * function, 231 const char * fmt, ...) 232 { 233 va_list args; 234 235 va_start(args, fmt); 236 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function); 237 vprintk(fmt, args); 238 printk("\n"); 239 va_end(args); 240 241 ext4_handle_error(sb); 242 } 243 244 static const char *ext4_decode_error(struct super_block * sb, int errno, 245 char nbuf[16]) 246 { 247 char *errstr = NULL; 248 249 switch (errno) { 250 case -EIO: 251 errstr = "IO failure"; 252 break; 253 case -ENOMEM: 254 errstr = "Out of memory"; 255 break; 256 case -EROFS: 257 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) 258 errstr = "Journal has aborted"; 259 else 260 errstr = "Readonly filesystem"; 261 break; 262 default: 263 /* If the caller passed in an extra buffer for unknown 264 * errors, textualise them now. Else we just return 265 * NULL. */ 266 if (nbuf) { 267 /* Check for truncated error codes... */ 268 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 269 errstr = nbuf; 270 } 271 break; 272 } 273 274 return errstr; 275 } 276 277 /* __ext4_std_error decodes expected errors from journaling functions 278 * automatically and invokes the appropriate error response. */ 279 280 void __ext4_std_error (struct super_block * sb, const char * function, 281 int errno) 282 { 283 char nbuf[16]; 284 const char *errstr; 285 286 /* Special case: if the error is EROFS, and we're not already 287 * inside a transaction, then there's really no point in logging 288 * an error. */ 289 if (errno == -EROFS && journal_current_handle() == NULL && 290 (sb->s_flags & MS_RDONLY)) 291 return; 292 293 errstr = ext4_decode_error(sb, errno, nbuf); 294 printk (KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 295 sb->s_id, function, errstr); 296 297 ext4_handle_error(sb); 298 } 299 300 /* 301 * ext4_abort is a much stronger failure handler than ext4_error. The 302 * abort function may be used to deal with unrecoverable failures such 303 * as journal IO errors or ENOMEM at a critical moment in log management. 304 * 305 * We unconditionally force the filesystem into an ABORT|READONLY state, 306 * unless the error response on the fs has been set to panic in which 307 * case we take the easy way out and panic immediately. 308 */ 309 310 void ext4_abort (struct super_block * sb, const char * function, 311 const char * fmt, ...) 312 { 313 va_list args; 314 315 printk (KERN_CRIT "ext4_abort called.\n"); 316 317 va_start(args, fmt); 318 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function); 319 vprintk(fmt, args); 320 printk("\n"); 321 va_end(args); 322 323 if (test_opt(sb, ERRORS_PANIC)) 324 panic("EXT4-fs panic from previous error\n"); 325 326 if (sb->s_flags & MS_RDONLY) 327 return; 328 329 printk(KERN_CRIT "Remounting filesystem read-only\n"); 330 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 331 sb->s_flags |= MS_RDONLY; 332 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 333 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 334 } 335 336 void ext4_warning (struct super_block * sb, const char * function, 337 const char * fmt, ...) 338 { 339 va_list args; 340 341 va_start(args, fmt); 342 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 343 sb->s_id, function); 344 vprintk(fmt, args); 345 printk("\n"); 346 va_end(args); 347 } 348 349 void ext4_update_dynamic_rev(struct super_block *sb) 350 { 351 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 352 353 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 354 return; 355 356 ext4_warning(sb, __FUNCTION__, 357 "updating to rev %d because of new feature flag, " 358 "running e2fsck is recommended", 359 EXT4_DYNAMIC_REV); 360 361 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 362 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 363 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 364 /* leave es->s_feature_*compat flags alone */ 365 /* es->s_uuid will be set by e2fsck if empty */ 366 367 /* 368 * The rest of the superblock fields should be zero, and if not it 369 * means they are likely already in use, so leave them alone. We 370 * can leave it up to e2fsck to clean up any inconsistencies there. 371 */ 372 } 373 374 /* 375 * Open the external journal device 376 */ 377 static struct block_device *ext4_blkdev_get(dev_t dev) 378 { 379 struct block_device *bdev; 380 char b[BDEVNAME_SIZE]; 381 382 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 383 if (IS_ERR(bdev)) 384 goto fail; 385 return bdev; 386 387 fail: 388 printk(KERN_ERR "EXT4: failed to open journal device %s: %ld\n", 389 __bdevname(dev, b), PTR_ERR(bdev)); 390 return NULL; 391 } 392 393 /* 394 * Release the journal device 395 */ 396 static int ext4_blkdev_put(struct block_device *bdev) 397 { 398 bd_release(bdev); 399 return blkdev_put(bdev); 400 } 401 402 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 403 { 404 struct block_device *bdev; 405 int ret = -ENODEV; 406 407 bdev = sbi->journal_bdev; 408 if (bdev) { 409 ret = ext4_blkdev_put(bdev); 410 sbi->journal_bdev = NULL; 411 } 412 return ret; 413 } 414 415 static inline struct inode *orphan_list_entry(struct list_head *l) 416 { 417 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 418 } 419 420 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 421 { 422 struct list_head *l; 423 424 printk(KERN_ERR "sb orphan head is %d\n", 425 le32_to_cpu(sbi->s_es->s_last_orphan)); 426 427 printk(KERN_ERR "sb_info orphan list:\n"); 428 list_for_each(l, &sbi->s_orphan) { 429 struct inode *inode = orphan_list_entry(l); 430 printk(KERN_ERR " " 431 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 432 inode->i_sb->s_id, inode->i_ino, inode, 433 inode->i_mode, inode->i_nlink, 434 NEXT_ORPHAN(inode)); 435 } 436 } 437 438 static void ext4_put_super (struct super_block * sb) 439 { 440 struct ext4_sb_info *sbi = EXT4_SB(sb); 441 struct ext4_super_block *es = sbi->s_es; 442 int i; 443 444 ext4_ext_release(sb); 445 ext4_xattr_put_super(sb); 446 jbd2_journal_destroy(sbi->s_journal); 447 if (!(sb->s_flags & MS_RDONLY)) { 448 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 449 es->s_state = cpu_to_le16(sbi->s_mount_state); 450 BUFFER_TRACE(sbi->s_sbh, "marking dirty"); 451 mark_buffer_dirty(sbi->s_sbh); 452 ext4_commit_super(sb, es, 1); 453 } 454 455 for (i = 0; i < sbi->s_gdb_count; i++) 456 brelse(sbi->s_group_desc[i]); 457 kfree(sbi->s_group_desc); 458 percpu_counter_destroy(&sbi->s_freeblocks_counter); 459 percpu_counter_destroy(&sbi->s_freeinodes_counter); 460 percpu_counter_destroy(&sbi->s_dirs_counter); 461 brelse(sbi->s_sbh); 462 #ifdef CONFIG_QUOTA 463 for (i = 0; i < MAXQUOTAS; i++) 464 kfree(sbi->s_qf_names[i]); 465 #endif 466 467 /* Debugging code just in case the in-memory inode orphan list 468 * isn't empty. The on-disk one can be non-empty if we've 469 * detected an error and taken the fs readonly, but the 470 * in-memory list had better be clean by this point. */ 471 if (!list_empty(&sbi->s_orphan)) 472 dump_orphan_list(sb, sbi); 473 J_ASSERT(list_empty(&sbi->s_orphan)); 474 475 invalidate_bdev(sb->s_bdev); 476 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 477 /* 478 * Invalidate the journal device's buffers. We don't want them 479 * floating about in memory - the physical journal device may 480 * hotswapped, and it breaks the `ro-after' testing code. 481 */ 482 sync_blockdev(sbi->journal_bdev); 483 invalidate_bdev(sbi->journal_bdev); 484 ext4_blkdev_remove(sbi); 485 } 486 sb->s_fs_info = NULL; 487 kfree(sbi); 488 return; 489 } 490 491 static struct kmem_cache *ext4_inode_cachep; 492 493 /* 494 * Called inside transaction, so use GFP_NOFS 495 */ 496 static struct inode *ext4_alloc_inode(struct super_block *sb) 497 { 498 struct ext4_inode_info *ei; 499 500 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 501 if (!ei) 502 return NULL; 503 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 504 ei->i_acl = EXT4_ACL_NOT_CACHED; 505 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 506 #endif 507 ei->i_block_alloc_info = NULL; 508 ei->vfs_inode.i_version = 1; 509 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 510 return &ei->vfs_inode; 511 } 512 513 static void ext4_destroy_inode(struct inode *inode) 514 { 515 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 516 printk("EXT4 Inode %p: orphan list check failed!\n", 517 EXT4_I(inode)); 518 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 519 EXT4_I(inode), sizeof(struct ext4_inode_info), 520 true); 521 dump_stack(); 522 } 523 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 524 } 525 526 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) 527 { 528 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 529 530 INIT_LIST_HEAD(&ei->i_orphan); 531 #ifdef CONFIG_EXT4DEV_FS_XATTR 532 init_rwsem(&ei->xattr_sem); 533 #endif 534 mutex_init(&ei->truncate_mutex); 535 inode_init_once(&ei->vfs_inode); 536 } 537 538 static int init_inodecache(void) 539 { 540 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 541 sizeof(struct ext4_inode_info), 542 0, (SLAB_RECLAIM_ACCOUNT| 543 SLAB_MEM_SPREAD), 544 init_once); 545 if (ext4_inode_cachep == NULL) 546 return -ENOMEM; 547 return 0; 548 } 549 550 static void destroy_inodecache(void) 551 { 552 kmem_cache_destroy(ext4_inode_cachep); 553 } 554 555 static void ext4_clear_inode(struct inode *inode) 556 { 557 struct ext4_block_alloc_info *rsv = EXT4_I(inode)->i_block_alloc_info; 558 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 559 if (EXT4_I(inode)->i_acl && 560 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) { 561 posix_acl_release(EXT4_I(inode)->i_acl); 562 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED; 563 } 564 if (EXT4_I(inode)->i_default_acl && 565 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) { 566 posix_acl_release(EXT4_I(inode)->i_default_acl); 567 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED; 568 } 569 #endif 570 ext4_discard_reservation(inode); 571 EXT4_I(inode)->i_block_alloc_info = NULL; 572 if (unlikely(rsv)) 573 kfree(rsv); 574 } 575 576 static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb) 577 { 578 #if defined(CONFIG_QUOTA) 579 struct ext4_sb_info *sbi = EXT4_SB(sb); 580 581 if (sbi->s_jquota_fmt) 582 seq_printf(seq, ",jqfmt=%s", 583 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold": "vfsv0"); 584 585 if (sbi->s_qf_names[USRQUOTA]) 586 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 587 588 if (sbi->s_qf_names[GRPQUOTA]) 589 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 590 591 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 592 seq_puts(seq, ",usrquota"); 593 594 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 595 seq_puts(seq, ",grpquota"); 596 #endif 597 } 598 599 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 600 { 601 struct super_block *sb = vfs->mnt_sb; 602 603 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 604 seq_puts(seq, ",data=journal"); 605 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 606 seq_puts(seq, ",data=ordered"); 607 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 608 seq_puts(seq, ",data=writeback"); 609 610 ext4_show_quota_options(seq, sb); 611 612 return 0; 613 } 614 615 616 static struct dentry *ext4_get_dentry(struct super_block *sb, void *vobjp) 617 { 618 __u32 *objp = vobjp; 619 unsigned long ino = objp[0]; 620 __u32 generation = objp[1]; 621 struct inode *inode; 622 struct dentry *result; 623 624 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 625 return ERR_PTR(-ESTALE); 626 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 627 return ERR_PTR(-ESTALE); 628 629 /* iget isn't really right if the inode is currently unallocated!! 630 * 631 * ext4_read_inode will return a bad_inode if the inode had been 632 * deleted, so we should be safe. 633 * 634 * Currently we don't know the generation for parent directory, so 635 * a generation of 0 means "accept any" 636 */ 637 inode = iget(sb, ino); 638 if (inode == NULL) 639 return ERR_PTR(-ENOMEM); 640 if (is_bad_inode(inode) || 641 (generation && inode->i_generation != generation)) { 642 iput(inode); 643 return ERR_PTR(-ESTALE); 644 } 645 /* now to find a dentry. 646 * If possible, get a well-connected one 647 */ 648 result = d_alloc_anon(inode); 649 if (!result) { 650 iput(inode); 651 return ERR_PTR(-ENOMEM); 652 } 653 return result; 654 } 655 656 #ifdef CONFIG_QUOTA 657 #define QTYPE2NAME(t) ((t)==USRQUOTA?"user":"group") 658 #define QTYPE2MOPT(on, t) ((t)==USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 659 660 static int ext4_dquot_initialize(struct inode *inode, int type); 661 static int ext4_dquot_drop(struct inode *inode); 662 static int ext4_write_dquot(struct dquot *dquot); 663 static int ext4_acquire_dquot(struct dquot *dquot); 664 static int ext4_release_dquot(struct dquot *dquot); 665 static int ext4_mark_dquot_dirty(struct dquot *dquot); 666 static int ext4_write_info(struct super_block *sb, int type); 667 static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *path); 668 static int ext4_quota_on_mount(struct super_block *sb, int type); 669 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 670 size_t len, loff_t off); 671 static ssize_t ext4_quota_write(struct super_block *sb, int type, 672 const char *data, size_t len, loff_t off); 673 674 static struct dquot_operations ext4_quota_operations = { 675 .initialize = ext4_dquot_initialize, 676 .drop = ext4_dquot_drop, 677 .alloc_space = dquot_alloc_space, 678 .alloc_inode = dquot_alloc_inode, 679 .free_space = dquot_free_space, 680 .free_inode = dquot_free_inode, 681 .transfer = dquot_transfer, 682 .write_dquot = ext4_write_dquot, 683 .acquire_dquot = ext4_acquire_dquot, 684 .release_dquot = ext4_release_dquot, 685 .mark_dirty = ext4_mark_dquot_dirty, 686 .write_info = ext4_write_info 687 }; 688 689 static struct quotactl_ops ext4_qctl_operations = { 690 .quota_on = ext4_quota_on, 691 .quota_off = vfs_quota_off, 692 .quota_sync = vfs_quota_sync, 693 .get_info = vfs_get_dqinfo, 694 .set_info = vfs_set_dqinfo, 695 .get_dqblk = vfs_get_dqblk, 696 .set_dqblk = vfs_set_dqblk 697 }; 698 #endif 699 700 static const struct super_operations ext4_sops = { 701 .alloc_inode = ext4_alloc_inode, 702 .destroy_inode = ext4_destroy_inode, 703 .read_inode = ext4_read_inode, 704 .write_inode = ext4_write_inode, 705 .dirty_inode = ext4_dirty_inode, 706 .delete_inode = ext4_delete_inode, 707 .put_super = ext4_put_super, 708 .write_super = ext4_write_super, 709 .sync_fs = ext4_sync_fs, 710 .write_super_lockfs = ext4_write_super_lockfs, 711 .unlockfs = ext4_unlockfs, 712 .statfs = ext4_statfs, 713 .remount_fs = ext4_remount, 714 .clear_inode = ext4_clear_inode, 715 .show_options = ext4_show_options, 716 #ifdef CONFIG_QUOTA 717 .quota_read = ext4_quota_read, 718 .quota_write = ext4_quota_write, 719 #endif 720 }; 721 722 static struct export_operations ext4_export_ops = { 723 .get_parent = ext4_get_parent, 724 .get_dentry = ext4_get_dentry, 725 }; 726 727 enum { 728 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 729 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 730 Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov, 731 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 732 Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh, 733 Opt_commit, Opt_journal_update, Opt_journal_inum, Opt_journal_dev, 734 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 735 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 736 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 737 Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota, 738 Opt_grpquota, Opt_extents, Opt_noextents, 739 }; 740 741 static match_table_t tokens = { 742 {Opt_bsd_df, "bsddf"}, 743 {Opt_minix_df, "minixdf"}, 744 {Opt_grpid, "grpid"}, 745 {Opt_grpid, "bsdgroups"}, 746 {Opt_nogrpid, "nogrpid"}, 747 {Opt_nogrpid, "sysvgroups"}, 748 {Opt_resgid, "resgid=%u"}, 749 {Opt_resuid, "resuid=%u"}, 750 {Opt_sb, "sb=%u"}, 751 {Opt_err_cont, "errors=continue"}, 752 {Opt_err_panic, "errors=panic"}, 753 {Opt_err_ro, "errors=remount-ro"}, 754 {Opt_nouid32, "nouid32"}, 755 {Opt_nocheck, "nocheck"}, 756 {Opt_nocheck, "check=none"}, 757 {Opt_debug, "debug"}, 758 {Opt_oldalloc, "oldalloc"}, 759 {Opt_orlov, "orlov"}, 760 {Opt_user_xattr, "user_xattr"}, 761 {Opt_nouser_xattr, "nouser_xattr"}, 762 {Opt_acl, "acl"}, 763 {Opt_noacl, "noacl"}, 764 {Opt_reservation, "reservation"}, 765 {Opt_noreservation, "noreservation"}, 766 {Opt_noload, "noload"}, 767 {Opt_nobh, "nobh"}, 768 {Opt_bh, "bh"}, 769 {Opt_commit, "commit=%u"}, 770 {Opt_journal_update, "journal=update"}, 771 {Opt_journal_inum, "journal=%u"}, 772 {Opt_journal_dev, "journal_dev=%u"}, 773 {Opt_abort, "abort"}, 774 {Opt_data_journal, "data=journal"}, 775 {Opt_data_ordered, "data=ordered"}, 776 {Opt_data_writeback, "data=writeback"}, 777 {Opt_offusrjquota, "usrjquota="}, 778 {Opt_usrjquota, "usrjquota=%s"}, 779 {Opt_offgrpjquota, "grpjquota="}, 780 {Opt_grpjquota, "grpjquota=%s"}, 781 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 782 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 783 {Opt_grpquota, "grpquota"}, 784 {Opt_noquota, "noquota"}, 785 {Opt_quota, "quota"}, 786 {Opt_usrquota, "usrquota"}, 787 {Opt_barrier, "barrier=%u"}, 788 {Opt_extents, "extents"}, 789 {Opt_noextents, "noextents"}, 790 {Opt_err, NULL}, 791 {Opt_resize, "resize"}, 792 }; 793 794 static ext4_fsblk_t get_sb_block(void **data) 795 { 796 ext4_fsblk_t sb_block; 797 char *options = (char *) *data; 798 799 if (!options || strncmp(options, "sb=", 3) != 0) 800 return 1; /* Default location */ 801 options += 3; 802 /*todo: use simple_strtoll with >32bit ext4 */ 803 sb_block = simple_strtoul(options, &options, 0); 804 if (*options && *options != ',') { 805 printk("EXT4-fs: Invalid sb specification: %s\n", 806 (char *) *data); 807 return 1; 808 } 809 if (*options == ',') 810 options++; 811 *data = (void *) options; 812 return sb_block; 813 } 814 815 static int parse_options (char *options, struct super_block *sb, 816 unsigned int *inum, unsigned long *journal_devnum, 817 ext4_fsblk_t *n_blocks_count, int is_remount) 818 { 819 struct ext4_sb_info *sbi = EXT4_SB(sb); 820 char * p; 821 substring_t args[MAX_OPT_ARGS]; 822 int data_opt = 0; 823 int option; 824 #ifdef CONFIG_QUOTA 825 int qtype; 826 char *qname; 827 #endif 828 829 if (!options) 830 return 1; 831 832 while ((p = strsep (&options, ",")) != NULL) { 833 int token; 834 if (!*p) 835 continue; 836 837 token = match_token(p, tokens, args); 838 switch (token) { 839 case Opt_bsd_df: 840 clear_opt (sbi->s_mount_opt, MINIX_DF); 841 break; 842 case Opt_minix_df: 843 set_opt (sbi->s_mount_opt, MINIX_DF); 844 break; 845 case Opt_grpid: 846 set_opt (sbi->s_mount_opt, GRPID); 847 break; 848 case Opt_nogrpid: 849 clear_opt (sbi->s_mount_opt, GRPID); 850 break; 851 case Opt_resuid: 852 if (match_int(&args[0], &option)) 853 return 0; 854 sbi->s_resuid = option; 855 break; 856 case Opt_resgid: 857 if (match_int(&args[0], &option)) 858 return 0; 859 sbi->s_resgid = option; 860 break; 861 case Opt_sb: 862 /* handled by get_sb_block() instead of here */ 863 /* *sb_block = match_int(&args[0]); */ 864 break; 865 case Opt_err_panic: 866 clear_opt (sbi->s_mount_opt, ERRORS_CONT); 867 clear_opt (sbi->s_mount_opt, ERRORS_RO); 868 set_opt (sbi->s_mount_opt, ERRORS_PANIC); 869 break; 870 case Opt_err_ro: 871 clear_opt (sbi->s_mount_opt, ERRORS_CONT); 872 clear_opt (sbi->s_mount_opt, ERRORS_PANIC); 873 set_opt (sbi->s_mount_opt, ERRORS_RO); 874 break; 875 case Opt_err_cont: 876 clear_opt (sbi->s_mount_opt, ERRORS_RO); 877 clear_opt (sbi->s_mount_opt, ERRORS_PANIC); 878 set_opt (sbi->s_mount_opt, ERRORS_CONT); 879 break; 880 case Opt_nouid32: 881 set_opt (sbi->s_mount_opt, NO_UID32); 882 break; 883 case Opt_nocheck: 884 clear_opt (sbi->s_mount_opt, CHECK); 885 break; 886 case Opt_debug: 887 set_opt (sbi->s_mount_opt, DEBUG); 888 break; 889 case Opt_oldalloc: 890 set_opt (sbi->s_mount_opt, OLDALLOC); 891 break; 892 case Opt_orlov: 893 clear_opt (sbi->s_mount_opt, OLDALLOC); 894 break; 895 #ifdef CONFIG_EXT4DEV_FS_XATTR 896 case Opt_user_xattr: 897 set_opt (sbi->s_mount_opt, XATTR_USER); 898 break; 899 case Opt_nouser_xattr: 900 clear_opt (sbi->s_mount_opt, XATTR_USER); 901 break; 902 #else 903 case Opt_user_xattr: 904 case Opt_nouser_xattr: 905 printk("EXT4 (no)user_xattr options not supported\n"); 906 break; 907 #endif 908 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 909 case Opt_acl: 910 set_opt(sbi->s_mount_opt, POSIX_ACL); 911 break; 912 case Opt_noacl: 913 clear_opt(sbi->s_mount_opt, POSIX_ACL); 914 break; 915 #else 916 case Opt_acl: 917 case Opt_noacl: 918 printk("EXT4 (no)acl options not supported\n"); 919 break; 920 #endif 921 case Opt_reservation: 922 set_opt(sbi->s_mount_opt, RESERVATION); 923 break; 924 case Opt_noreservation: 925 clear_opt(sbi->s_mount_opt, RESERVATION); 926 break; 927 case Opt_journal_update: 928 /* @@@ FIXME */ 929 /* Eventually we will want to be able to create 930 a journal file here. For now, only allow the 931 user to specify an existing inode to be the 932 journal file. */ 933 if (is_remount) { 934 printk(KERN_ERR "EXT4-fs: cannot specify " 935 "journal on remount\n"); 936 return 0; 937 } 938 set_opt (sbi->s_mount_opt, UPDATE_JOURNAL); 939 break; 940 case Opt_journal_inum: 941 if (is_remount) { 942 printk(KERN_ERR "EXT4-fs: cannot specify " 943 "journal on remount\n"); 944 return 0; 945 } 946 if (match_int(&args[0], &option)) 947 return 0; 948 *inum = option; 949 break; 950 case Opt_journal_dev: 951 if (is_remount) { 952 printk(KERN_ERR "EXT4-fs: cannot specify " 953 "journal on remount\n"); 954 return 0; 955 } 956 if (match_int(&args[0], &option)) 957 return 0; 958 *journal_devnum = option; 959 break; 960 case Opt_noload: 961 set_opt (sbi->s_mount_opt, NOLOAD); 962 break; 963 case Opt_commit: 964 if (match_int(&args[0], &option)) 965 return 0; 966 if (option < 0) 967 return 0; 968 if (option == 0) 969 option = JBD_DEFAULT_MAX_COMMIT_AGE; 970 sbi->s_commit_interval = HZ * option; 971 break; 972 case Opt_data_journal: 973 data_opt = EXT4_MOUNT_JOURNAL_DATA; 974 goto datacheck; 975 case Opt_data_ordered: 976 data_opt = EXT4_MOUNT_ORDERED_DATA; 977 goto datacheck; 978 case Opt_data_writeback: 979 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 980 datacheck: 981 if (is_remount) { 982 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 983 != data_opt) { 984 printk(KERN_ERR 985 "EXT4-fs: cannot change data " 986 "mode on remount\n"); 987 return 0; 988 } 989 } else { 990 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 991 sbi->s_mount_opt |= data_opt; 992 } 993 break; 994 #ifdef CONFIG_QUOTA 995 case Opt_usrjquota: 996 qtype = USRQUOTA; 997 goto set_qf_name; 998 case Opt_grpjquota: 999 qtype = GRPQUOTA; 1000 set_qf_name: 1001 if (sb_any_quota_enabled(sb)) { 1002 printk(KERN_ERR 1003 "EXT4-fs: Cannot change journalled " 1004 "quota options when quota turned on.\n"); 1005 return 0; 1006 } 1007 qname = match_strdup(&args[0]); 1008 if (!qname) { 1009 printk(KERN_ERR 1010 "EXT4-fs: not enough memory for " 1011 "storing quotafile name.\n"); 1012 return 0; 1013 } 1014 if (sbi->s_qf_names[qtype] && 1015 strcmp(sbi->s_qf_names[qtype], qname)) { 1016 printk(KERN_ERR 1017 "EXT4-fs: %s quota file already " 1018 "specified.\n", QTYPE2NAME(qtype)); 1019 kfree(qname); 1020 return 0; 1021 } 1022 sbi->s_qf_names[qtype] = qname; 1023 if (strchr(sbi->s_qf_names[qtype], '/')) { 1024 printk(KERN_ERR 1025 "EXT4-fs: quotafile must be on " 1026 "filesystem root.\n"); 1027 kfree(sbi->s_qf_names[qtype]); 1028 sbi->s_qf_names[qtype] = NULL; 1029 return 0; 1030 } 1031 set_opt(sbi->s_mount_opt, QUOTA); 1032 break; 1033 case Opt_offusrjquota: 1034 qtype = USRQUOTA; 1035 goto clear_qf_name; 1036 case Opt_offgrpjquota: 1037 qtype = GRPQUOTA; 1038 clear_qf_name: 1039 if (sb_any_quota_enabled(sb)) { 1040 printk(KERN_ERR "EXT4-fs: Cannot change " 1041 "journalled quota options when " 1042 "quota turned on.\n"); 1043 return 0; 1044 } 1045 /* 1046 * The space will be released later when all options 1047 * are confirmed to be correct 1048 */ 1049 sbi->s_qf_names[qtype] = NULL; 1050 break; 1051 case Opt_jqfmt_vfsold: 1052 sbi->s_jquota_fmt = QFMT_VFS_OLD; 1053 break; 1054 case Opt_jqfmt_vfsv0: 1055 sbi->s_jquota_fmt = QFMT_VFS_V0; 1056 break; 1057 case Opt_quota: 1058 case Opt_usrquota: 1059 set_opt(sbi->s_mount_opt, QUOTA); 1060 set_opt(sbi->s_mount_opt, USRQUOTA); 1061 break; 1062 case Opt_grpquota: 1063 set_opt(sbi->s_mount_opt, QUOTA); 1064 set_opt(sbi->s_mount_opt, GRPQUOTA); 1065 break; 1066 case Opt_noquota: 1067 if (sb_any_quota_enabled(sb)) { 1068 printk(KERN_ERR "EXT4-fs: Cannot change quota " 1069 "options when quota turned on.\n"); 1070 return 0; 1071 } 1072 clear_opt(sbi->s_mount_opt, QUOTA); 1073 clear_opt(sbi->s_mount_opt, USRQUOTA); 1074 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1075 break; 1076 #else 1077 case Opt_quota: 1078 case Opt_usrquota: 1079 case Opt_grpquota: 1080 case Opt_usrjquota: 1081 case Opt_grpjquota: 1082 case Opt_offusrjquota: 1083 case Opt_offgrpjquota: 1084 case Opt_jqfmt_vfsold: 1085 case Opt_jqfmt_vfsv0: 1086 printk(KERN_ERR 1087 "EXT4-fs: journalled quota options not " 1088 "supported.\n"); 1089 break; 1090 case Opt_noquota: 1091 break; 1092 #endif 1093 case Opt_abort: 1094 set_opt(sbi->s_mount_opt, ABORT); 1095 break; 1096 case Opt_barrier: 1097 if (match_int(&args[0], &option)) 1098 return 0; 1099 if (option) 1100 set_opt(sbi->s_mount_opt, BARRIER); 1101 else 1102 clear_opt(sbi->s_mount_opt, BARRIER); 1103 break; 1104 case Opt_ignore: 1105 break; 1106 case Opt_resize: 1107 if (!is_remount) { 1108 printk("EXT4-fs: resize option only available " 1109 "for remount\n"); 1110 return 0; 1111 } 1112 if (match_int(&args[0], &option) != 0) 1113 return 0; 1114 *n_blocks_count = option; 1115 break; 1116 case Opt_nobh: 1117 set_opt(sbi->s_mount_opt, NOBH); 1118 break; 1119 case Opt_bh: 1120 clear_opt(sbi->s_mount_opt, NOBH); 1121 break; 1122 case Opt_extents: 1123 set_opt (sbi->s_mount_opt, EXTENTS); 1124 break; 1125 case Opt_noextents: 1126 clear_opt (sbi->s_mount_opt, EXTENTS); 1127 break; 1128 default: 1129 printk (KERN_ERR 1130 "EXT4-fs: Unrecognized mount option \"%s\" " 1131 "or missing value\n", p); 1132 return 0; 1133 } 1134 } 1135 #ifdef CONFIG_QUOTA 1136 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1137 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1138 sbi->s_qf_names[USRQUOTA]) 1139 clear_opt(sbi->s_mount_opt, USRQUOTA); 1140 1141 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1142 sbi->s_qf_names[GRPQUOTA]) 1143 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1144 1145 if ((sbi->s_qf_names[USRQUOTA] && 1146 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1147 (sbi->s_qf_names[GRPQUOTA] && 1148 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1149 printk(KERN_ERR "EXT4-fs: old and new quota " 1150 "format mixing.\n"); 1151 return 0; 1152 } 1153 1154 if (!sbi->s_jquota_fmt) { 1155 printk(KERN_ERR "EXT4-fs: journalled quota format " 1156 "not specified.\n"); 1157 return 0; 1158 } 1159 } else { 1160 if (sbi->s_jquota_fmt) { 1161 printk(KERN_ERR "EXT4-fs: journalled quota format " 1162 "specified with no journalling " 1163 "enabled.\n"); 1164 return 0; 1165 } 1166 } 1167 #endif 1168 return 1; 1169 } 1170 1171 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1172 int read_only) 1173 { 1174 struct ext4_sb_info *sbi = EXT4_SB(sb); 1175 int res = 0; 1176 1177 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1178 printk (KERN_ERR "EXT4-fs warning: revision level too high, " 1179 "forcing read-only mode\n"); 1180 res = MS_RDONLY; 1181 } 1182 if (read_only) 1183 return res; 1184 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1185 printk (KERN_WARNING "EXT4-fs warning: mounting unchecked fs, " 1186 "running e2fsck is recommended\n"); 1187 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1188 printk (KERN_WARNING 1189 "EXT4-fs warning: mounting fs with errors, " 1190 "running e2fsck is recommended\n"); 1191 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1192 le16_to_cpu(es->s_mnt_count) >= 1193 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1194 printk (KERN_WARNING 1195 "EXT4-fs warning: maximal mount count reached, " 1196 "running e2fsck is recommended\n"); 1197 else if (le32_to_cpu(es->s_checkinterval) && 1198 (le32_to_cpu(es->s_lastcheck) + 1199 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1200 printk (KERN_WARNING 1201 "EXT4-fs warning: checktime reached, " 1202 "running e2fsck is recommended\n"); 1203 #if 0 1204 /* @@@ We _will_ want to clear the valid bit if we find 1205 * inconsistencies, to force a fsck at reboot. But for 1206 * a plain journaled filesystem we can keep it set as 1207 * valid forever! :) 1208 */ 1209 es->s_state = cpu_to_le16(le16_to_cpu(es->s_state) & ~EXT4_VALID_FS); 1210 #endif 1211 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1212 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1213 es->s_mnt_count=cpu_to_le16(le16_to_cpu(es->s_mnt_count) + 1); 1214 es->s_mtime = cpu_to_le32(get_seconds()); 1215 ext4_update_dynamic_rev(sb); 1216 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1217 1218 ext4_commit_super(sb, es, 1); 1219 if (test_opt(sb, DEBUG)) 1220 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%lu, " 1221 "bpg=%lu, ipg=%lu, mo=%04lx]\n", 1222 sb->s_blocksize, 1223 sbi->s_groups_count, 1224 EXT4_BLOCKS_PER_GROUP(sb), 1225 EXT4_INODES_PER_GROUP(sb), 1226 sbi->s_mount_opt); 1227 1228 printk(KERN_INFO "EXT4 FS on %s, ", sb->s_id); 1229 if (EXT4_SB(sb)->s_journal->j_inode == NULL) { 1230 char b[BDEVNAME_SIZE]; 1231 1232 printk("external journal on %s\n", 1233 bdevname(EXT4_SB(sb)->s_journal->j_dev, b)); 1234 } else { 1235 printk("internal journal\n"); 1236 } 1237 return res; 1238 } 1239 1240 /* Called at mount-time, super-block is locked */ 1241 static int ext4_check_descriptors (struct super_block * sb) 1242 { 1243 struct ext4_sb_info *sbi = EXT4_SB(sb); 1244 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1245 ext4_fsblk_t last_block; 1246 ext4_fsblk_t block_bitmap; 1247 ext4_fsblk_t inode_bitmap; 1248 ext4_fsblk_t inode_table; 1249 struct ext4_group_desc * gdp = NULL; 1250 int desc_block = 0; 1251 int i; 1252 1253 ext4_debug ("Checking group descriptors"); 1254 1255 for (i = 0; i < sbi->s_groups_count; i++) 1256 { 1257 if (i == sbi->s_groups_count - 1) 1258 last_block = ext4_blocks_count(sbi->s_es) - 1; 1259 else 1260 last_block = first_block + 1261 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1262 1263 if ((i % EXT4_DESC_PER_BLOCK(sb)) == 0) 1264 gdp = (struct ext4_group_desc *) 1265 sbi->s_group_desc[desc_block++]->b_data; 1266 block_bitmap = ext4_block_bitmap(sb, gdp); 1267 if (block_bitmap < first_block || block_bitmap > last_block) 1268 { 1269 ext4_error (sb, "ext4_check_descriptors", 1270 "Block bitmap for group %d" 1271 " not in group (block %llu)!", 1272 i, block_bitmap); 1273 return 0; 1274 } 1275 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1276 if (inode_bitmap < first_block || inode_bitmap > last_block) 1277 { 1278 ext4_error (sb, "ext4_check_descriptors", 1279 "Inode bitmap for group %d" 1280 " not in group (block %llu)!", 1281 i, inode_bitmap); 1282 return 0; 1283 } 1284 inode_table = ext4_inode_table(sb, gdp); 1285 if (inode_table < first_block || 1286 inode_table + sbi->s_itb_per_group - 1 > last_block) 1287 { 1288 ext4_error (sb, "ext4_check_descriptors", 1289 "Inode table for group %d" 1290 " not in group (block %llu)!", 1291 i, inode_table); 1292 return 0; 1293 } 1294 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1295 gdp = (struct ext4_group_desc *) 1296 ((__u8 *)gdp + EXT4_DESC_SIZE(sb)); 1297 } 1298 1299 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1300 sbi->s_es->s_free_inodes_count=cpu_to_le32(ext4_count_free_inodes(sb)); 1301 return 1; 1302 } 1303 1304 1305 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1306 * the superblock) which were deleted from all directories, but held open by 1307 * a process at the time of a crash. We walk the list and try to delete these 1308 * inodes at recovery time (only with a read-write filesystem). 1309 * 1310 * In order to keep the orphan inode chain consistent during traversal (in 1311 * case of crash during recovery), we link each inode into the superblock 1312 * orphan list_head and handle it the same way as an inode deletion during 1313 * normal operation (which journals the operations for us). 1314 * 1315 * We only do an iget() and an iput() on each inode, which is very safe if we 1316 * accidentally point at an in-use or already deleted inode. The worst that 1317 * can happen in this case is that we get a "bit already cleared" message from 1318 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1319 * e2fsck was run on this filesystem, and it must have already done the orphan 1320 * inode cleanup for us, so we can safely abort without any further action. 1321 */ 1322 static void ext4_orphan_cleanup (struct super_block * sb, 1323 struct ext4_super_block * es) 1324 { 1325 unsigned int s_flags = sb->s_flags; 1326 int nr_orphans = 0, nr_truncates = 0; 1327 #ifdef CONFIG_QUOTA 1328 int i; 1329 #endif 1330 if (!es->s_last_orphan) { 1331 jbd_debug(4, "no orphan inodes to clean up\n"); 1332 return; 1333 } 1334 1335 if (bdev_read_only(sb->s_bdev)) { 1336 printk(KERN_ERR "EXT4-fs: write access " 1337 "unavailable, skipping orphan cleanup.\n"); 1338 return; 1339 } 1340 1341 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1342 if (es->s_last_orphan) 1343 jbd_debug(1, "Errors on filesystem, " 1344 "clearing orphan list.\n"); 1345 es->s_last_orphan = 0; 1346 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1347 return; 1348 } 1349 1350 if (s_flags & MS_RDONLY) { 1351 printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n", 1352 sb->s_id); 1353 sb->s_flags &= ~MS_RDONLY; 1354 } 1355 #ifdef CONFIG_QUOTA 1356 /* Needed for iput() to work correctly and not trash data */ 1357 sb->s_flags |= MS_ACTIVE; 1358 /* Turn on quotas so that they are updated correctly */ 1359 for (i = 0; i < MAXQUOTAS; i++) { 1360 if (EXT4_SB(sb)->s_qf_names[i]) { 1361 int ret = ext4_quota_on_mount(sb, i); 1362 if (ret < 0) 1363 printk(KERN_ERR 1364 "EXT4-fs: Cannot turn on journalled " 1365 "quota: error %d\n", ret); 1366 } 1367 } 1368 #endif 1369 1370 while (es->s_last_orphan) { 1371 struct inode *inode; 1372 1373 if (!(inode = 1374 ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)))) { 1375 es->s_last_orphan = 0; 1376 break; 1377 } 1378 1379 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1380 DQUOT_INIT(inode); 1381 if (inode->i_nlink) { 1382 printk(KERN_DEBUG 1383 "%s: truncating inode %lu to %Ld bytes\n", 1384 __FUNCTION__, inode->i_ino, inode->i_size); 1385 jbd_debug(2, "truncating inode %lu to %Ld bytes\n", 1386 inode->i_ino, inode->i_size); 1387 ext4_truncate(inode); 1388 nr_truncates++; 1389 } else { 1390 printk(KERN_DEBUG 1391 "%s: deleting unreferenced inode %lu\n", 1392 __FUNCTION__, inode->i_ino); 1393 jbd_debug(2, "deleting unreferenced inode %lu\n", 1394 inode->i_ino); 1395 nr_orphans++; 1396 } 1397 iput(inode); /* The delete magic happens here! */ 1398 } 1399 1400 #define PLURAL(x) (x), ((x)==1) ? "" : "s" 1401 1402 if (nr_orphans) 1403 printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n", 1404 sb->s_id, PLURAL(nr_orphans)); 1405 if (nr_truncates) 1406 printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n", 1407 sb->s_id, PLURAL(nr_truncates)); 1408 #ifdef CONFIG_QUOTA 1409 /* Turn quotas off */ 1410 for (i = 0; i < MAXQUOTAS; i++) { 1411 if (sb_dqopt(sb)->files[i]) 1412 vfs_quota_off(sb, i); 1413 } 1414 #endif 1415 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1416 } 1417 1418 #define log2(n) ffz(~(n)) 1419 1420 /* 1421 * Maximal file size. There is a direct, and {,double-,triple-}indirect 1422 * block limit, and also a limit of (2^32 - 1) 512-byte sectors in i_blocks. 1423 * We need to be 1 filesystem block less than the 2^32 sector limit. 1424 */ 1425 static loff_t ext4_max_size(int bits) 1426 { 1427 loff_t res = EXT4_NDIR_BLOCKS; 1428 /* This constant is calculated to be the largest file size for a 1429 * dense, 4k-blocksize file such that the total number of 1430 * sectors in the file, including data and all indirect blocks, 1431 * does not exceed 2^32. */ 1432 const loff_t upper_limit = 0x1ff7fffd000LL; 1433 1434 res += 1LL << (bits-2); 1435 res += 1LL << (2*(bits-2)); 1436 res += 1LL << (3*(bits-2)); 1437 res <<= bits; 1438 if (res > upper_limit) 1439 res = upper_limit; 1440 return res; 1441 } 1442 1443 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 1444 ext4_fsblk_t logical_sb_block, int nr) 1445 { 1446 struct ext4_sb_info *sbi = EXT4_SB(sb); 1447 unsigned long bg, first_meta_bg; 1448 int has_super = 0; 1449 1450 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 1451 1452 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 1453 nr < first_meta_bg) 1454 return logical_sb_block + nr + 1; 1455 bg = sbi->s_desc_per_block * nr; 1456 if (ext4_bg_has_super(sb, bg)) 1457 has_super = 1; 1458 return (has_super + ext4_group_first_block_no(sb, bg)); 1459 } 1460 1461 1462 static int ext4_fill_super (struct super_block *sb, void *data, int silent) 1463 { 1464 struct buffer_head * bh; 1465 struct ext4_super_block *es = NULL; 1466 struct ext4_sb_info *sbi; 1467 ext4_fsblk_t block; 1468 ext4_fsblk_t sb_block = get_sb_block(&data); 1469 ext4_fsblk_t logical_sb_block; 1470 unsigned long offset = 0; 1471 unsigned int journal_inum = 0; 1472 unsigned long journal_devnum = 0; 1473 unsigned long def_mount_opts; 1474 struct inode *root; 1475 int blocksize; 1476 int hblock; 1477 int db_count; 1478 int i; 1479 int needs_recovery; 1480 __le32 features; 1481 __u64 blocks_count; 1482 1483 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1484 if (!sbi) 1485 return -ENOMEM; 1486 sb->s_fs_info = sbi; 1487 sbi->s_mount_opt = 0; 1488 sbi->s_resuid = EXT4_DEF_RESUID; 1489 sbi->s_resgid = EXT4_DEF_RESGID; 1490 1491 unlock_kernel(); 1492 1493 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 1494 if (!blocksize) { 1495 printk(KERN_ERR "EXT4-fs: unable to set blocksize\n"); 1496 goto out_fail; 1497 } 1498 1499 /* 1500 * The ext4 superblock will not be buffer aligned for other than 1kB 1501 * block sizes. We need to calculate the offset from buffer start. 1502 */ 1503 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 1504 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 1505 offset = do_div(logical_sb_block, blocksize); 1506 } else { 1507 logical_sb_block = sb_block; 1508 } 1509 1510 if (!(bh = sb_bread(sb, logical_sb_block))) { 1511 printk (KERN_ERR "EXT4-fs: unable to read superblock\n"); 1512 goto out_fail; 1513 } 1514 /* 1515 * Note: s_es must be initialized as soon as possible because 1516 * some ext4 macro-instructions depend on its value 1517 */ 1518 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 1519 sbi->s_es = es; 1520 sb->s_magic = le16_to_cpu(es->s_magic); 1521 if (sb->s_magic != EXT4_SUPER_MAGIC) 1522 goto cantfind_ext4; 1523 1524 /* Set defaults before we parse the mount options */ 1525 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 1526 if (def_mount_opts & EXT4_DEFM_DEBUG) 1527 set_opt(sbi->s_mount_opt, DEBUG); 1528 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 1529 set_opt(sbi->s_mount_opt, GRPID); 1530 if (def_mount_opts & EXT4_DEFM_UID16) 1531 set_opt(sbi->s_mount_opt, NO_UID32); 1532 #ifdef CONFIG_EXT4DEV_FS_XATTR 1533 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 1534 set_opt(sbi->s_mount_opt, XATTR_USER); 1535 #endif 1536 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 1537 if (def_mount_opts & EXT4_DEFM_ACL) 1538 set_opt(sbi->s_mount_opt, POSIX_ACL); 1539 #endif 1540 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 1541 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 1542 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 1543 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 1544 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 1545 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 1546 1547 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 1548 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1549 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_RO) 1550 set_opt(sbi->s_mount_opt, ERRORS_RO); 1551 else 1552 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1553 1554 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 1555 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 1556 1557 set_opt(sbi->s_mount_opt, RESERVATION); 1558 1559 /* 1560 * turn on extents feature by default in ext4 filesystem 1561 * User -o noextents to turn it off 1562 */ 1563 set_opt(sbi->s_mount_opt, EXTENTS); 1564 1565 if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum, 1566 NULL, 0)) 1567 goto failed_mount; 1568 1569 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1570 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 1571 1572 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 1573 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 1574 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 1575 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 1576 printk(KERN_WARNING 1577 "EXT4-fs warning: feature flags set on rev 0 fs, " 1578 "running e2fsck is recommended\n"); 1579 /* 1580 * Check feature flags regardless of the revision level, since we 1581 * previously didn't change the revision level when setting the flags, 1582 * so there is a chance incompat flags are set on a rev 0 filesystem. 1583 */ 1584 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); 1585 if (features) { 1586 printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of " 1587 "unsupported optional features (%x).\n", 1588 sb->s_id, le32_to_cpu(features)); 1589 goto failed_mount; 1590 } 1591 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); 1592 if (!(sb->s_flags & MS_RDONLY) && features) { 1593 printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of " 1594 "unsupported optional features (%x).\n", 1595 sb->s_id, le32_to_cpu(features)); 1596 goto failed_mount; 1597 } 1598 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 1599 1600 if (blocksize < EXT4_MIN_BLOCK_SIZE || 1601 blocksize > EXT4_MAX_BLOCK_SIZE) { 1602 printk(KERN_ERR 1603 "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n", 1604 blocksize, sb->s_id); 1605 goto failed_mount; 1606 } 1607 1608 hblock = bdev_hardsect_size(sb->s_bdev); 1609 if (sb->s_blocksize != blocksize) { 1610 /* 1611 * Make sure the blocksize for the filesystem is larger 1612 * than the hardware sectorsize for the machine. 1613 */ 1614 if (blocksize < hblock) { 1615 printk(KERN_ERR "EXT4-fs: blocksize %d too small for " 1616 "device blocksize %d.\n", blocksize, hblock); 1617 goto failed_mount; 1618 } 1619 1620 brelse (bh); 1621 sb_set_blocksize(sb, blocksize); 1622 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 1623 offset = do_div(logical_sb_block, blocksize); 1624 bh = sb_bread(sb, logical_sb_block); 1625 if (!bh) { 1626 printk(KERN_ERR 1627 "EXT4-fs: Can't read superblock on 2nd try.\n"); 1628 goto failed_mount; 1629 } 1630 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 1631 sbi->s_es = es; 1632 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 1633 printk (KERN_ERR 1634 "EXT4-fs: Magic mismatch, very weird !\n"); 1635 goto failed_mount; 1636 } 1637 } 1638 1639 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits); 1640 1641 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 1642 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 1643 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 1644 } else { 1645 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 1646 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 1647 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 1648 (!is_power_of_2(sbi->s_inode_size)) || 1649 (sbi->s_inode_size > blocksize)) { 1650 printk (KERN_ERR 1651 "EXT4-fs: unsupported inode size: %d\n", 1652 sbi->s_inode_size); 1653 goto failed_mount; 1654 } 1655 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 1656 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 1657 } 1658 sbi->s_frag_size = EXT4_MIN_FRAG_SIZE << 1659 le32_to_cpu(es->s_log_frag_size); 1660 if (blocksize != sbi->s_frag_size) { 1661 printk(KERN_ERR 1662 "EXT4-fs: fragsize %lu != blocksize %u (unsupported)\n", 1663 sbi->s_frag_size, blocksize); 1664 goto failed_mount; 1665 } 1666 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 1667 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 1668 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 1669 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 1670 sbi->s_desc_size & (sbi->s_desc_size - 1)) { 1671 printk(KERN_ERR 1672 "EXT4-fs: unsupported descriptor size %lu\n", 1673 sbi->s_desc_size); 1674 goto failed_mount; 1675 } 1676 } else 1677 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 1678 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 1679 sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group); 1680 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 1681 if (EXT4_INODE_SIZE(sb) == 0) 1682 goto cantfind_ext4; 1683 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 1684 if (sbi->s_inodes_per_block == 0) 1685 goto cantfind_ext4; 1686 sbi->s_itb_per_group = sbi->s_inodes_per_group / 1687 sbi->s_inodes_per_block; 1688 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 1689 sbi->s_sbh = bh; 1690 sbi->s_mount_state = le16_to_cpu(es->s_state); 1691 sbi->s_addr_per_block_bits = log2(EXT4_ADDR_PER_BLOCK(sb)); 1692 sbi->s_desc_per_block_bits = log2(EXT4_DESC_PER_BLOCK(sb)); 1693 for (i=0; i < 4; i++) 1694 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 1695 sbi->s_def_hash_version = es->s_def_hash_version; 1696 1697 if (sbi->s_blocks_per_group > blocksize * 8) { 1698 printk (KERN_ERR 1699 "EXT4-fs: #blocks per group too big: %lu\n", 1700 sbi->s_blocks_per_group); 1701 goto failed_mount; 1702 } 1703 if (sbi->s_frags_per_group > blocksize * 8) { 1704 printk (KERN_ERR 1705 "EXT4-fs: #fragments per group too big: %lu\n", 1706 sbi->s_frags_per_group); 1707 goto failed_mount; 1708 } 1709 if (sbi->s_inodes_per_group > blocksize * 8) { 1710 printk (KERN_ERR 1711 "EXT4-fs: #inodes per group too big: %lu\n", 1712 sbi->s_inodes_per_group); 1713 goto failed_mount; 1714 } 1715 1716 if (ext4_blocks_count(es) > 1717 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { 1718 printk(KERN_ERR "EXT4-fs: filesystem on %s:" 1719 " too large to mount safely\n", sb->s_id); 1720 if (sizeof(sector_t) < 8) 1721 printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not " 1722 "enabled\n"); 1723 goto failed_mount; 1724 } 1725 1726 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 1727 goto cantfind_ext4; 1728 blocks_count = (ext4_blocks_count(es) - 1729 le32_to_cpu(es->s_first_data_block) + 1730 EXT4_BLOCKS_PER_GROUP(sb) - 1); 1731 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 1732 sbi->s_groups_count = blocks_count; 1733 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 1734 EXT4_DESC_PER_BLOCK(sb); 1735 sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *), 1736 GFP_KERNEL); 1737 if (sbi->s_group_desc == NULL) { 1738 printk (KERN_ERR "EXT4-fs: not enough memory\n"); 1739 goto failed_mount; 1740 } 1741 1742 bgl_lock_init(&sbi->s_blockgroup_lock); 1743 1744 for (i = 0; i < db_count; i++) { 1745 block = descriptor_loc(sb, logical_sb_block, i); 1746 sbi->s_group_desc[i] = sb_bread(sb, block); 1747 if (!sbi->s_group_desc[i]) { 1748 printk (KERN_ERR "EXT4-fs: " 1749 "can't read group descriptor %d\n", i); 1750 db_count = i; 1751 goto failed_mount2; 1752 } 1753 } 1754 if (!ext4_check_descriptors (sb)) { 1755 printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n"); 1756 goto failed_mount2; 1757 } 1758 sbi->s_gdb_count = db_count; 1759 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1760 spin_lock_init(&sbi->s_next_gen_lock); 1761 1762 percpu_counter_init(&sbi->s_freeblocks_counter, 1763 ext4_count_free_blocks(sb)); 1764 percpu_counter_init(&sbi->s_freeinodes_counter, 1765 ext4_count_free_inodes(sb)); 1766 percpu_counter_init(&sbi->s_dirs_counter, 1767 ext4_count_dirs(sb)); 1768 1769 /* per fileystem reservation list head & lock */ 1770 spin_lock_init(&sbi->s_rsv_window_lock); 1771 sbi->s_rsv_window_root = RB_ROOT; 1772 /* Add a single, static dummy reservation to the start of the 1773 * reservation window list --- it gives us a placeholder for 1774 * append-at-start-of-list which makes the allocation logic 1775 * _much_ simpler. */ 1776 sbi->s_rsv_window_head.rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 1777 sbi->s_rsv_window_head.rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 1778 sbi->s_rsv_window_head.rsv_alloc_hit = 0; 1779 sbi->s_rsv_window_head.rsv_goal_size = 0; 1780 ext4_rsv_window_add(sb, &sbi->s_rsv_window_head); 1781 1782 /* 1783 * set up enough so that it can read an inode 1784 */ 1785 sb->s_op = &ext4_sops; 1786 sb->s_export_op = &ext4_export_ops; 1787 sb->s_xattr = ext4_xattr_handlers; 1788 #ifdef CONFIG_QUOTA 1789 sb->s_qcop = &ext4_qctl_operations; 1790 sb->dq_op = &ext4_quota_operations; 1791 #endif 1792 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 1793 1794 sb->s_root = NULL; 1795 1796 needs_recovery = (es->s_last_orphan != 0 || 1797 EXT4_HAS_INCOMPAT_FEATURE(sb, 1798 EXT4_FEATURE_INCOMPAT_RECOVER)); 1799 1800 /* 1801 * The first inode we look at is the journal inode. Don't try 1802 * root first: it may be modified in the journal! 1803 */ 1804 if (!test_opt(sb, NOLOAD) && 1805 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 1806 if (ext4_load_journal(sb, es, journal_devnum)) 1807 goto failed_mount3; 1808 } else if (journal_inum) { 1809 if (ext4_create_journal(sb, es, journal_inum)) 1810 goto failed_mount3; 1811 } else { 1812 if (!silent) 1813 printk (KERN_ERR 1814 "ext4: No journal on filesystem on %s\n", 1815 sb->s_id); 1816 goto failed_mount3; 1817 } 1818 1819 if (ext4_blocks_count(es) > 0xffffffffULL && 1820 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 1821 JBD2_FEATURE_INCOMPAT_64BIT)) { 1822 printk(KERN_ERR "ext4: Failed to set 64-bit journal feature\n"); 1823 goto failed_mount4; 1824 } 1825 1826 /* We have now updated the journal if required, so we can 1827 * validate the data journaling mode. */ 1828 switch (test_opt(sb, DATA_FLAGS)) { 1829 case 0: 1830 /* No mode set, assume a default based on the journal 1831 * capabilities: ORDERED_DATA if the journal can 1832 * cope, else JOURNAL_DATA 1833 */ 1834 if (jbd2_journal_check_available_features 1835 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 1836 set_opt(sbi->s_mount_opt, ORDERED_DATA); 1837 else 1838 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 1839 break; 1840 1841 case EXT4_MOUNT_ORDERED_DATA: 1842 case EXT4_MOUNT_WRITEBACK_DATA: 1843 if (!jbd2_journal_check_available_features 1844 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 1845 printk(KERN_ERR "EXT4-fs: Journal does not support " 1846 "requested data journaling mode\n"); 1847 goto failed_mount4; 1848 } 1849 default: 1850 break; 1851 } 1852 1853 if (test_opt(sb, NOBH)) { 1854 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 1855 printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - " 1856 "its supported only with writeback mode\n"); 1857 clear_opt(sbi->s_mount_opt, NOBH); 1858 } 1859 } 1860 /* 1861 * The jbd2_journal_load will have done any necessary log recovery, 1862 * so we can safely mount the rest of the filesystem now. 1863 */ 1864 1865 root = iget(sb, EXT4_ROOT_INO); 1866 sb->s_root = d_alloc_root(root); 1867 if (!sb->s_root) { 1868 printk(KERN_ERR "EXT4-fs: get root inode failed\n"); 1869 iput(root); 1870 goto failed_mount4; 1871 } 1872 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1873 dput(sb->s_root); 1874 sb->s_root = NULL; 1875 printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n"); 1876 goto failed_mount4; 1877 } 1878 1879 ext4_setup_super (sb, es, sb->s_flags & MS_RDONLY); 1880 1881 /* determine the minimum size of new large inodes, if present */ 1882 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 1883 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 1884 EXT4_GOOD_OLD_INODE_SIZE; 1885 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1886 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 1887 if (sbi->s_want_extra_isize < 1888 le16_to_cpu(es->s_want_extra_isize)) 1889 sbi->s_want_extra_isize = 1890 le16_to_cpu(es->s_want_extra_isize); 1891 if (sbi->s_want_extra_isize < 1892 le16_to_cpu(es->s_min_extra_isize)) 1893 sbi->s_want_extra_isize = 1894 le16_to_cpu(es->s_min_extra_isize); 1895 } 1896 } 1897 /* Check if enough inode space is available */ 1898 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 1899 sbi->s_inode_size) { 1900 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 1901 EXT4_GOOD_OLD_INODE_SIZE; 1902 printk(KERN_INFO "EXT4-fs: required extra inode space not" 1903 "available.\n"); 1904 } 1905 1906 /* 1907 * akpm: core read_super() calls in here with the superblock locked. 1908 * That deadlocks, because orphan cleanup needs to lock the superblock 1909 * in numerous places. Here we just pop the lock - it's relatively 1910 * harmless, because we are now ready to accept write_super() requests, 1911 * and aviro says that's the only reason for hanging onto the 1912 * superblock lock. 1913 */ 1914 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 1915 ext4_orphan_cleanup(sb, es); 1916 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 1917 if (needs_recovery) 1918 printk (KERN_INFO "EXT4-fs: recovery complete.\n"); 1919 ext4_mark_recovery_complete(sb, es); 1920 printk (KERN_INFO "EXT4-fs: mounted filesystem with %s data mode.\n", 1921 test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ? "journal": 1922 test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA ? "ordered": 1923 "writeback"); 1924 1925 ext4_ext_init(sb); 1926 1927 lock_kernel(); 1928 return 0; 1929 1930 cantfind_ext4: 1931 if (!silent) 1932 printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n", 1933 sb->s_id); 1934 goto failed_mount; 1935 1936 failed_mount4: 1937 jbd2_journal_destroy(sbi->s_journal); 1938 failed_mount3: 1939 percpu_counter_destroy(&sbi->s_freeblocks_counter); 1940 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1941 percpu_counter_destroy(&sbi->s_dirs_counter); 1942 failed_mount2: 1943 for (i = 0; i < db_count; i++) 1944 brelse(sbi->s_group_desc[i]); 1945 kfree(sbi->s_group_desc); 1946 failed_mount: 1947 #ifdef CONFIG_QUOTA 1948 for (i = 0; i < MAXQUOTAS; i++) 1949 kfree(sbi->s_qf_names[i]); 1950 #endif 1951 ext4_blkdev_remove(sbi); 1952 brelse(bh); 1953 out_fail: 1954 sb->s_fs_info = NULL; 1955 kfree(sbi); 1956 lock_kernel(); 1957 return -EINVAL; 1958 } 1959 1960 /* 1961 * Setup any per-fs journal parameters now. We'll do this both on 1962 * initial mount, once the journal has been initialised but before we've 1963 * done any recovery; and again on any subsequent remount. 1964 */ 1965 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 1966 { 1967 struct ext4_sb_info *sbi = EXT4_SB(sb); 1968 1969 if (sbi->s_commit_interval) 1970 journal->j_commit_interval = sbi->s_commit_interval; 1971 /* We could also set up an ext4-specific default for the commit 1972 * interval here, but for now we'll just fall back to the jbd 1973 * default. */ 1974 1975 spin_lock(&journal->j_state_lock); 1976 if (test_opt(sb, BARRIER)) 1977 journal->j_flags |= JBD2_BARRIER; 1978 else 1979 journal->j_flags &= ~JBD2_BARRIER; 1980 spin_unlock(&journal->j_state_lock); 1981 } 1982 1983 static journal_t *ext4_get_journal(struct super_block *sb, 1984 unsigned int journal_inum) 1985 { 1986 struct inode *journal_inode; 1987 journal_t *journal; 1988 1989 /* First, test for the existence of a valid inode on disk. Bad 1990 * things happen if we iget() an unused inode, as the subsequent 1991 * iput() will try to delete it. */ 1992 1993 journal_inode = iget(sb, journal_inum); 1994 if (!journal_inode) { 1995 printk(KERN_ERR "EXT4-fs: no journal found.\n"); 1996 return NULL; 1997 } 1998 if (!journal_inode->i_nlink) { 1999 make_bad_inode(journal_inode); 2000 iput(journal_inode); 2001 printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n"); 2002 return NULL; 2003 } 2004 2005 jbd_debug(2, "Journal inode found at %p: %Ld bytes\n", 2006 journal_inode, journal_inode->i_size); 2007 if (is_bad_inode(journal_inode) || !S_ISREG(journal_inode->i_mode)) { 2008 printk(KERN_ERR "EXT4-fs: invalid journal inode.\n"); 2009 iput(journal_inode); 2010 return NULL; 2011 } 2012 2013 journal = jbd2_journal_init_inode(journal_inode); 2014 if (!journal) { 2015 printk(KERN_ERR "EXT4-fs: Could not load journal inode\n"); 2016 iput(journal_inode); 2017 return NULL; 2018 } 2019 journal->j_private = sb; 2020 ext4_init_journal_params(sb, journal); 2021 return journal; 2022 } 2023 2024 static journal_t *ext4_get_dev_journal(struct super_block *sb, 2025 dev_t j_dev) 2026 { 2027 struct buffer_head * bh; 2028 journal_t *journal; 2029 ext4_fsblk_t start; 2030 ext4_fsblk_t len; 2031 int hblock, blocksize; 2032 ext4_fsblk_t sb_block; 2033 unsigned long offset; 2034 struct ext4_super_block * es; 2035 struct block_device *bdev; 2036 2037 bdev = ext4_blkdev_get(j_dev); 2038 if (bdev == NULL) 2039 return NULL; 2040 2041 if (bd_claim(bdev, sb)) { 2042 printk(KERN_ERR 2043 "EXT4: failed to claim external journal device.\n"); 2044 blkdev_put(bdev); 2045 return NULL; 2046 } 2047 2048 blocksize = sb->s_blocksize; 2049 hblock = bdev_hardsect_size(bdev); 2050 if (blocksize < hblock) { 2051 printk(KERN_ERR 2052 "EXT4-fs: blocksize too small for journal device.\n"); 2053 goto out_bdev; 2054 } 2055 2056 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 2057 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 2058 set_blocksize(bdev, blocksize); 2059 if (!(bh = __bread(bdev, sb_block, blocksize))) { 2060 printk(KERN_ERR "EXT4-fs: couldn't read superblock of " 2061 "external journal\n"); 2062 goto out_bdev; 2063 } 2064 2065 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2066 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 2067 !(le32_to_cpu(es->s_feature_incompat) & 2068 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 2069 printk(KERN_ERR "EXT4-fs: external journal has " 2070 "bad superblock\n"); 2071 brelse(bh); 2072 goto out_bdev; 2073 } 2074 2075 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 2076 printk(KERN_ERR "EXT4-fs: journal UUID does not match\n"); 2077 brelse(bh); 2078 goto out_bdev; 2079 } 2080 2081 len = ext4_blocks_count(es); 2082 start = sb_block + 1; 2083 brelse(bh); /* we're done with the superblock */ 2084 2085 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 2086 start, len, blocksize); 2087 if (!journal) { 2088 printk(KERN_ERR "EXT4-fs: failed to create device journal\n"); 2089 goto out_bdev; 2090 } 2091 journal->j_private = sb; 2092 ll_rw_block(READ, 1, &journal->j_sb_buffer); 2093 wait_on_buffer(journal->j_sb_buffer); 2094 if (!buffer_uptodate(journal->j_sb_buffer)) { 2095 printk(KERN_ERR "EXT4-fs: I/O error on journal device\n"); 2096 goto out_journal; 2097 } 2098 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 2099 printk(KERN_ERR "EXT4-fs: External journal has more than one " 2100 "user (unsupported) - %d\n", 2101 be32_to_cpu(journal->j_superblock->s_nr_users)); 2102 goto out_journal; 2103 } 2104 EXT4_SB(sb)->journal_bdev = bdev; 2105 ext4_init_journal_params(sb, journal); 2106 return journal; 2107 out_journal: 2108 jbd2_journal_destroy(journal); 2109 out_bdev: 2110 ext4_blkdev_put(bdev); 2111 return NULL; 2112 } 2113 2114 static int ext4_load_journal(struct super_block *sb, 2115 struct ext4_super_block *es, 2116 unsigned long journal_devnum) 2117 { 2118 journal_t *journal; 2119 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 2120 dev_t journal_dev; 2121 int err = 0; 2122 int really_read_only; 2123 2124 if (journal_devnum && 2125 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 2126 printk(KERN_INFO "EXT4-fs: external journal device major/minor " 2127 "numbers have changed\n"); 2128 journal_dev = new_decode_dev(journal_devnum); 2129 } else 2130 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 2131 2132 really_read_only = bdev_read_only(sb->s_bdev); 2133 2134 /* 2135 * Are we loading a blank journal or performing recovery after a 2136 * crash? For recovery, we need to check in advance whether we 2137 * can get read-write access to the device. 2138 */ 2139 2140 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2141 if (sb->s_flags & MS_RDONLY) { 2142 printk(KERN_INFO "EXT4-fs: INFO: recovery " 2143 "required on readonly filesystem.\n"); 2144 if (really_read_only) { 2145 printk(KERN_ERR "EXT4-fs: write access " 2146 "unavailable, cannot proceed.\n"); 2147 return -EROFS; 2148 } 2149 printk (KERN_INFO "EXT4-fs: write access will " 2150 "be enabled during recovery.\n"); 2151 } 2152 } 2153 2154 if (journal_inum && journal_dev) { 2155 printk(KERN_ERR "EXT4-fs: filesystem has both journal " 2156 "and inode journals!\n"); 2157 return -EINVAL; 2158 } 2159 2160 if (journal_inum) { 2161 if (!(journal = ext4_get_journal(sb, journal_inum))) 2162 return -EINVAL; 2163 } else { 2164 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 2165 return -EINVAL; 2166 } 2167 2168 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 2169 err = jbd2_journal_update_format(journal); 2170 if (err) { 2171 printk(KERN_ERR "EXT4-fs: error updating journal.\n"); 2172 jbd2_journal_destroy(journal); 2173 return err; 2174 } 2175 } 2176 2177 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 2178 err = jbd2_journal_wipe(journal, !really_read_only); 2179 if (!err) 2180 err = jbd2_journal_load(journal); 2181 2182 if (err) { 2183 printk(KERN_ERR "EXT4-fs: error loading journal.\n"); 2184 jbd2_journal_destroy(journal); 2185 return err; 2186 } 2187 2188 EXT4_SB(sb)->s_journal = journal; 2189 ext4_clear_journal_err(sb, es); 2190 2191 if (journal_devnum && 2192 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 2193 es->s_journal_dev = cpu_to_le32(journal_devnum); 2194 sb->s_dirt = 1; 2195 2196 /* Make sure we flush the recovery flag to disk. */ 2197 ext4_commit_super(sb, es, 1); 2198 } 2199 2200 return 0; 2201 } 2202 2203 static int ext4_create_journal(struct super_block * sb, 2204 struct ext4_super_block * es, 2205 unsigned int journal_inum) 2206 { 2207 journal_t *journal; 2208 int err; 2209 2210 if (sb->s_flags & MS_RDONLY) { 2211 printk(KERN_ERR "EXT4-fs: readonly filesystem when trying to " 2212 "create journal.\n"); 2213 return -EROFS; 2214 } 2215 2216 journal = ext4_get_journal(sb, journal_inum); 2217 if (!journal) 2218 return -EINVAL; 2219 2220 printk(KERN_INFO "EXT4-fs: creating new journal on inode %u\n", 2221 journal_inum); 2222 2223 err = jbd2_journal_create(journal); 2224 if (err) { 2225 printk(KERN_ERR "EXT4-fs: error creating journal.\n"); 2226 jbd2_journal_destroy(journal); 2227 return -EIO; 2228 } 2229 2230 EXT4_SB(sb)->s_journal = journal; 2231 2232 ext4_update_dynamic_rev(sb); 2233 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2234 EXT4_SET_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL); 2235 2236 es->s_journal_inum = cpu_to_le32(journal_inum); 2237 sb->s_dirt = 1; 2238 2239 /* Make sure we flush the recovery flag to disk. */ 2240 ext4_commit_super(sb, es, 1); 2241 2242 return 0; 2243 } 2244 2245 static void ext4_commit_super (struct super_block * sb, 2246 struct ext4_super_block * es, 2247 int sync) 2248 { 2249 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 2250 2251 if (!sbh) 2252 return; 2253 es->s_wtime = cpu_to_le32(get_seconds()); 2254 ext4_free_blocks_count_set(es, ext4_count_free_blocks(sb)); 2255 es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb)); 2256 BUFFER_TRACE(sbh, "marking dirty"); 2257 mark_buffer_dirty(sbh); 2258 if (sync) 2259 sync_dirty_buffer(sbh); 2260 } 2261 2262 2263 /* 2264 * Have we just finished recovery? If so, and if we are mounting (or 2265 * remounting) the filesystem readonly, then we will end up with a 2266 * consistent fs on disk. Record that fact. 2267 */ 2268 static void ext4_mark_recovery_complete(struct super_block * sb, 2269 struct ext4_super_block * es) 2270 { 2271 journal_t *journal = EXT4_SB(sb)->s_journal; 2272 2273 jbd2_journal_lock_updates(journal); 2274 jbd2_journal_flush(journal); 2275 lock_super(sb); 2276 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 2277 sb->s_flags & MS_RDONLY) { 2278 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2279 sb->s_dirt = 0; 2280 ext4_commit_super(sb, es, 1); 2281 } 2282 unlock_super(sb); 2283 jbd2_journal_unlock_updates(journal); 2284 } 2285 2286 /* 2287 * If we are mounting (or read-write remounting) a filesystem whose journal 2288 * has recorded an error from a previous lifetime, move that error to the 2289 * main filesystem now. 2290 */ 2291 static void ext4_clear_journal_err(struct super_block * sb, 2292 struct ext4_super_block * es) 2293 { 2294 journal_t *journal; 2295 int j_errno; 2296 const char *errstr; 2297 2298 journal = EXT4_SB(sb)->s_journal; 2299 2300 /* 2301 * Now check for any error status which may have been recorded in the 2302 * journal by a prior ext4_error() or ext4_abort() 2303 */ 2304 2305 j_errno = jbd2_journal_errno(journal); 2306 if (j_errno) { 2307 char nbuf[16]; 2308 2309 errstr = ext4_decode_error(sb, j_errno, nbuf); 2310 ext4_warning(sb, __FUNCTION__, "Filesystem error recorded " 2311 "from previous mount: %s", errstr); 2312 ext4_warning(sb, __FUNCTION__, "Marking fs in need of " 2313 "filesystem check."); 2314 2315 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2316 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2317 ext4_commit_super (sb, es, 1); 2318 2319 jbd2_journal_clear_err(journal); 2320 } 2321 } 2322 2323 /* 2324 * Force the running and committing transactions to commit, 2325 * and wait on the commit. 2326 */ 2327 int ext4_force_commit(struct super_block *sb) 2328 { 2329 journal_t *journal; 2330 int ret; 2331 2332 if (sb->s_flags & MS_RDONLY) 2333 return 0; 2334 2335 journal = EXT4_SB(sb)->s_journal; 2336 sb->s_dirt = 0; 2337 ret = ext4_journal_force_commit(journal); 2338 return ret; 2339 } 2340 2341 /* 2342 * Ext4 always journals updates to the superblock itself, so we don't 2343 * have to propagate any other updates to the superblock on disk at this 2344 * point. Just start an async writeback to get the buffers on their way 2345 * to the disk. 2346 * 2347 * This implicitly triggers the writebehind on sync(). 2348 */ 2349 2350 static void ext4_write_super (struct super_block * sb) 2351 { 2352 if (mutex_trylock(&sb->s_lock) != 0) 2353 BUG(); 2354 sb->s_dirt = 0; 2355 } 2356 2357 static int ext4_sync_fs(struct super_block *sb, int wait) 2358 { 2359 tid_t target; 2360 2361 sb->s_dirt = 0; 2362 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) { 2363 if (wait) 2364 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target); 2365 } 2366 return 0; 2367 } 2368 2369 /* 2370 * LVM calls this function before a (read-only) snapshot is created. This 2371 * gives us a chance to flush the journal completely and mark the fs clean. 2372 */ 2373 static void ext4_write_super_lockfs(struct super_block *sb) 2374 { 2375 sb->s_dirt = 0; 2376 2377 if (!(sb->s_flags & MS_RDONLY)) { 2378 journal_t *journal = EXT4_SB(sb)->s_journal; 2379 2380 /* Now we set up the journal barrier. */ 2381 jbd2_journal_lock_updates(journal); 2382 jbd2_journal_flush(journal); 2383 2384 /* Journal blocked and flushed, clear needs_recovery flag. */ 2385 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2386 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 2387 } 2388 } 2389 2390 /* 2391 * Called by LVM after the snapshot is done. We need to reset the RECOVER 2392 * flag here, even though the filesystem is not technically dirty yet. 2393 */ 2394 static void ext4_unlockfs(struct super_block *sb) 2395 { 2396 if (!(sb->s_flags & MS_RDONLY)) { 2397 lock_super(sb); 2398 /* Reser the needs_recovery flag before the fs is unlocked. */ 2399 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 2400 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 2401 unlock_super(sb); 2402 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 2403 } 2404 } 2405 2406 static int ext4_remount (struct super_block * sb, int * flags, char * data) 2407 { 2408 struct ext4_super_block * es; 2409 struct ext4_sb_info *sbi = EXT4_SB(sb); 2410 ext4_fsblk_t n_blocks_count = 0; 2411 unsigned long old_sb_flags; 2412 struct ext4_mount_options old_opts; 2413 int err; 2414 #ifdef CONFIG_QUOTA 2415 int i; 2416 #endif 2417 2418 /* Store the original options */ 2419 old_sb_flags = sb->s_flags; 2420 old_opts.s_mount_opt = sbi->s_mount_opt; 2421 old_opts.s_resuid = sbi->s_resuid; 2422 old_opts.s_resgid = sbi->s_resgid; 2423 old_opts.s_commit_interval = sbi->s_commit_interval; 2424 #ifdef CONFIG_QUOTA 2425 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 2426 for (i = 0; i < MAXQUOTAS; i++) 2427 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 2428 #endif 2429 2430 /* 2431 * Allow the "check" option to be passed as a remount option. 2432 */ 2433 if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) { 2434 err = -EINVAL; 2435 goto restore_opts; 2436 } 2437 2438 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) 2439 ext4_abort(sb, __FUNCTION__, "Abort forced by user"); 2440 2441 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2442 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2443 2444 es = sbi->s_es; 2445 2446 ext4_init_journal_params(sb, sbi->s_journal); 2447 2448 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 2449 n_blocks_count > ext4_blocks_count(es)) { 2450 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) { 2451 err = -EROFS; 2452 goto restore_opts; 2453 } 2454 2455 if (*flags & MS_RDONLY) { 2456 /* 2457 * First of all, the unconditional stuff we have to do 2458 * to disable replay of the journal when we next remount 2459 */ 2460 sb->s_flags |= MS_RDONLY; 2461 2462 /* 2463 * OK, test if we are remounting a valid rw partition 2464 * readonly, and if so set the rdonly flag and then 2465 * mark the partition as valid again. 2466 */ 2467 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 2468 (sbi->s_mount_state & EXT4_VALID_FS)) 2469 es->s_state = cpu_to_le16(sbi->s_mount_state); 2470 2471 /* 2472 * We have to unlock super so that we can wait for 2473 * transactions. 2474 */ 2475 unlock_super(sb); 2476 ext4_mark_recovery_complete(sb, es); 2477 lock_super(sb); 2478 } else { 2479 __le32 ret; 2480 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2481 ~EXT4_FEATURE_RO_COMPAT_SUPP))) { 2482 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 2483 "remount RDWR because of unsupported " 2484 "optional features (%x).\n", 2485 sb->s_id, le32_to_cpu(ret)); 2486 err = -EROFS; 2487 goto restore_opts; 2488 } 2489 2490 /* 2491 * If we have an unprocessed orphan list hanging 2492 * around from a previously readonly bdev mount, 2493 * require a full umount/remount for now. 2494 */ 2495 if (es->s_last_orphan) { 2496 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 2497 "remount RDWR because of unprocessed " 2498 "orphan inode list. Please " 2499 "umount/remount instead.\n", 2500 sb->s_id); 2501 err = -EINVAL; 2502 goto restore_opts; 2503 } 2504 2505 /* 2506 * Mounting a RDONLY partition read-write, so reread 2507 * and store the current valid flag. (It may have 2508 * been changed by e2fsck since we originally mounted 2509 * the partition.) 2510 */ 2511 ext4_clear_journal_err(sb, es); 2512 sbi->s_mount_state = le16_to_cpu(es->s_state); 2513 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 2514 goto restore_opts; 2515 if (!ext4_setup_super (sb, es, 0)) 2516 sb->s_flags &= ~MS_RDONLY; 2517 } 2518 } 2519 #ifdef CONFIG_QUOTA 2520 /* Release old quota file names */ 2521 for (i = 0; i < MAXQUOTAS; i++) 2522 if (old_opts.s_qf_names[i] && 2523 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 2524 kfree(old_opts.s_qf_names[i]); 2525 #endif 2526 return 0; 2527 restore_opts: 2528 sb->s_flags = old_sb_flags; 2529 sbi->s_mount_opt = old_opts.s_mount_opt; 2530 sbi->s_resuid = old_opts.s_resuid; 2531 sbi->s_resgid = old_opts.s_resgid; 2532 sbi->s_commit_interval = old_opts.s_commit_interval; 2533 #ifdef CONFIG_QUOTA 2534 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 2535 for (i = 0; i < MAXQUOTAS; i++) { 2536 if (sbi->s_qf_names[i] && 2537 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 2538 kfree(sbi->s_qf_names[i]); 2539 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 2540 } 2541 #endif 2542 return err; 2543 } 2544 2545 static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf) 2546 { 2547 struct super_block *sb = dentry->d_sb; 2548 struct ext4_sb_info *sbi = EXT4_SB(sb); 2549 struct ext4_super_block *es = sbi->s_es; 2550 u64 fsid; 2551 2552 if (test_opt(sb, MINIX_DF)) { 2553 sbi->s_overhead_last = 0; 2554 } else if (sbi->s_blocks_last != le32_to_cpu(es->s_blocks_count)) { 2555 unsigned long ngroups = sbi->s_groups_count, i; 2556 ext4_fsblk_t overhead = 0; 2557 smp_rmb(); 2558 2559 /* 2560 * Compute the overhead (FS structures). This is constant 2561 * for a given filesystem unless the number of block groups 2562 * changes so we cache the previous value until it does. 2563 */ 2564 2565 /* 2566 * All of the blocks before first_data_block are 2567 * overhead 2568 */ 2569 overhead = le32_to_cpu(es->s_first_data_block); 2570 2571 /* 2572 * Add the overhead attributed to the superblock and 2573 * block group descriptors. If the sparse superblocks 2574 * feature is turned on, then not all groups have this. 2575 */ 2576 for (i = 0; i < ngroups; i++) { 2577 overhead += ext4_bg_has_super(sb, i) + 2578 ext4_bg_num_gdb(sb, i); 2579 cond_resched(); 2580 } 2581 2582 /* 2583 * Every block group has an inode bitmap, a block 2584 * bitmap, and an inode table. 2585 */ 2586 overhead += ngroups * (2 + sbi->s_itb_per_group); 2587 sbi->s_overhead_last = overhead; 2588 smp_wmb(); 2589 sbi->s_blocks_last = le32_to_cpu(es->s_blocks_count); 2590 } 2591 2592 buf->f_type = EXT4_SUPER_MAGIC; 2593 buf->f_bsize = sb->s_blocksize; 2594 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 2595 buf->f_bfree = percpu_counter_sum(&sbi->s_freeblocks_counter); 2596 es->s_free_blocks_count = cpu_to_le32(buf->f_bfree); 2597 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 2598 if (buf->f_bfree < ext4_r_blocks_count(es)) 2599 buf->f_bavail = 0; 2600 buf->f_files = le32_to_cpu(es->s_inodes_count); 2601 buf->f_ffree = percpu_counter_sum(&sbi->s_freeinodes_counter); 2602 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 2603 buf->f_namelen = EXT4_NAME_LEN; 2604 fsid = le64_to_cpup((void *)es->s_uuid) ^ 2605 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 2606 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 2607 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 2608 return 0; 2609 } 2610 2611 /* Helper function for writing quotas on sync - we need to start transaction before quota file 2612 * is locked for write. Otherwise the are possible deadlocks: 2613 * Process 1 Process 2 2614 * ext4_create() quota_sync() 2615 * jbd2_journal_start() write_dquot() 2616 * DQUOT_INIT() down(dqio_mutex) 2617 * down(dqio_mutex) jbd2_journal_start() 2618 * 2619 */ 2620 2621 #ifdef CONFIG_QUOTA 2622 2623 static inline struct inode *dquot_to_inode(struct dquot *dquot) 2624 { 2625 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 2626 } 2627 2628 static int ext4_dquot_initialize(struct inode *inode, int type) 2629 { 2630 handle_t *handle; 2631 int ret, err; 2632 2633 /* We may create quota structure so we need to reserve enough blocks */ 2634 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)); 2635 if (IS_ERR(handle)) 2636 return PTR_ERR(handle); 2637 ret = dquot_initialize(inode, type); 2638 err = ext4_journal_stop(handle); 2639 if (!ret) 2640 ret = err; 2641 return ret; 2642 } 2643 2644 static int ext4_dquot_drop(struct inode *inode) 2645 { 2646 handle_t *handle; 2647 int ret, err; 2648 2649 /* We may delete quota structure so we need to reserve enough blocks */ 2650 handle = ext4_journal_start(inode, 2*EXT4_QUOTA_DEL_BLOCKS(inode->i_sb)); 2651 if (IS_ERR(handle)) 2652 return PTR_ERR(handle); 2653 ret = dquot_drop(inode); 2654 err = ext4_journal_stop(handle); 2655 if (!ret) 2656 ret = err; 2657 return ret; 2658 } 2659 2660 static int ext4_write_dquot(struct dquot *dquot) 2661 { 2662 int ret, err; 2663 handle_t *handle; 2664 struct inode *inode; 2665 2666 inode = dquot_to_inode(dquot); 2667 handle = ext4_journal_start(inode, 2668 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 2669 if (IS_ERR(handle)) 2670 return PTR_ERR(handle); 2671 ret = dquot_commit(dquot); 2672 err = ext4_journal_stop(handle); 2673 if (!ret) 2674 ret = err; 2675 return ret; 2676 } 2677 2678 static int ext4_acquire_dquot(struct dquot *dquot) 2679 { 2680 int ret, err; 2681 handle_t *handle; 2682 2683 handle = ext4_journal_start(dquot_to_inode(dquot), 2684 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 2685 if (IS_ERR(handle)) 2686 return PTR_ERR(handle); 2687 ret = dquot_acquire(dquot); 2688 err = ext4_journal_stop(handle); 2689 if (!ret) 2690 ret = err; 2691 return ret; 2692 } 2693 2694 static int ext4_release_dquot(struct dquot *dquot) 2695 { 2696 int ret, err; 2697 handle_t *handle; 2698 2699 handle = ext4_journal_start(dquot_to_inode(dquot), 2700 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 2701 if (IS_ERR(handle)) 2702 return PTR_ERR(handle); 2703 ret = dquot_release(dquot); 2704 err = ext4_journal_stop(handle); 2705 if (!ret) 2706 ret = err; 2707 return ret; 2708 } 2709 2710 static int ext4_mark_dquot_dirty(struct dquot *dquot) 2711 { 2712 /* Are we journalling quotas? */ 2713 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 2714 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 2715 dquot_mark_dquot_dirty(dquot); 2716 return ext4_write_dquot(dquot); 2717 } else { 2718 return dquot_mark_dquot_dirty(dquot); 2719 } 2720 } 2721 2722 static int ext4_write_info(struct super_block *sb, int type) 2723 { 2724 int ret, err; 2725 handle_t *handle; 2726 2727 /* Data block + inode block */ 2728 handle = ext4_journal_start(sb->s_root->d_inode, 2); 2729 if (IS_ERR(handle)) 2730 return PTR_ERR(handle); 2731 ret = dquot_commit_info(sb, type); 2732 err = ext4_journal_stop(handle); 2733 if (!ret) 2734 ret = err; 2735 return ret; 2736 } 2737 2738 /* 2739 * Turn on quotas during mount time - we need to find 2740 * the quota file and such... 2741 */ 2742 static int ext4_quota_on_mount(struct super_block *sb, int type) 2743 { 2744 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 2745 EXT4_SB(sb)->s_jquota_fmt, type); 2746 } 2747 2748 /* 2749 * Standard function to be called on quota_on 2750 */ 2751 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 2752 char *path) 2753 { 2754 int err; 2755 struct nameidata nd; 2756 2757 if (!test_opt(sb, QUOTA)) 2758 return -EINVAL; 2759 /* Not journalling quota? */ 2760 if (!EXT4_SB(sb)->s_qf_names[USRQUOTA] && 2761 !EXT4_SB(sb)->s_qf_names[GRPQUOTA]) 2762 return vfs_quota_on(sb, type, format_id, path); 2763 err = path_lookup(path, LOOKUP_FOLLOW, &nd); 2764 if (err) 2765 return err; 2766 /* Quotafile not on the same filesystem? */ 2767 if (nd.mnt->mnt_sb != sb) { 2768 path_release(&nd); 2769 return -EXDEV; 2770 } 2771 /* Quotafile not of fs root? */ 2772 if (nd.dentry->d_parent->d_inode != sb->s_root->d_inode) 2773 printk(KERN_WARNING 2774 "EXT4-fs: Quota file not on filesystem root. " 2775 "Journalled quota will not work.\n"); 2776 path_release(&nd); 2777 return vfs_quota_on(sb, type, format_id, path); 2778 } 2779 2780 /* Read data from quotafile - avoid pagecache and such because we cannot afford 2781 * acquiring the locks... As quota files are never truncated and quota code 2782 * itself serializes the operations (and noone else should touch the files) 2783 * we don't have to be afraid of races */ 2784 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 2785 size_t len, loff_t off) 2786 { 2787 struct inode *inode = sb_dqopt(sb)->files[type]; 2788 sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 2789 int err = 0; 2790 int offset = off & (sb->s_blocksize - 1); 2791 int tocopy; 2792 size_t toread; 2793 struct buffer_head *bh; 2794 loff_t i_size = i_size_read(inode); 2795 2796 if (off > i_size) 2797 return 0; 2798 if (off+len > i_size) 2799 len = i_size-off; 2800 toread = len; 2801 while (toread > 0) { 2802 tocopy = sb->s_blocksize - offset < toread ? 2803 sb->s_blocksize - offset : toread; 2804 bh = ext4_bread(NULL, inode, blk, 0, &err); 2805 if (err) 2806 return err; 2807 if (!bh) /* A hole? */ 2808 memset(data, 0, tocopy); 2809 else 2810 memcpy(data, bh->b_data+offset, tocopy); 2811 brelse(bh); 2812 offset = 0; 2813 toread -= tocopy; 2814 data += tocopy; 2815 blk++; 2816 } 2817 return len; 2818 } 2819 2820 /* Write to quotafile (we know the transaction is already started and has 2821 * enough credits) */ 2822 static ssize_t ext4_quota_write(struct super_block *sb, int type, 2823 const char *data, size_t len, loff_t off) 2824 { 2825 struct inode *inode = sb_dqopt(sb)->files[type]; 2826 sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 2827 int err = 0; 2828 int offset = off & (sb->s_blocksize - 1); 2829 int tocopy; 2830 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 2831 size_t towrite = len; 2832 struct buffer_head *bh; 2833 handle_t *handle = journal_current_handle(); 2834 2835 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 2836 while (towrite > 0) { 2837 tocopy = sb->s_blocksize - offset < towrite ? 2838 sb->s_blocksize - offset : towrite; 2839 bh = ext4_bread(handle, inode, blk, 1, &err); 2840 if (!bh) 2841 goto out; 2842 if (journal_quota) { 2843 err = ext4_journal_get_write_access(handle, bh); 2844 if (err) { 2845 brelse(bh); 2846 goto out; 2847 } 2848 } 2849 lock_buffer(bh); 2850 memcpy(bh->b_data+offset, data, tocopy); 2851 flush_dcache_page(bh->b_page); 2852 unlock_buffer(bh); 2853 if (journal_quota) 2854 err = ext4_journal_dirty_metadata(handle, bh); 2855 else { 2856 /* Always do at least ordered writes for quotas */ 2857 err = ext4_journal_dirty_data(handle, bh); 2858 mark_buffer_dirty(bh); 2859 } 2860 brelse(bh); 2861 if (err) 2862 goto out; 2863 offset = 0; 2864 towrite -= tocopy; 2865 data += tocopy; 2866 blk++; 2867 } 2868 out: 2869 if (len == towrite) 2870 return err; 2871 if (inode->i_size < off+len-towrite) { 2872 i_size_write(inode, off+len-towrite); 2873 EXT4_I(inode)->i_disksize = inode->i_size; 2874 } 2875 inode->i_version++; 2876 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2877 ext4_mark_inode_dirty(handle, inode); 2878 mutex_unlock(&inode->i_mutex); 2879 return len - towrite; 2880 } 2881 2882 #endif 2883 2884 static int ext4_get_sb(struct file_system_type *fs_type, 2885 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2886 { 2887 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); 2888 } 2889 2890 static struct file_system_type ext4dev_fs_type = { 2891 .owner = THIS_MODULE, 2892 .name = "ext4dev", 2893 .get_sb = ext4_get_sb, 2894 .kill_sb = kill_block_super, 2895 .fs_flags = FS_REQUIRES_DEV, 2896 }; 2897 2898 static int __init init_ext4_fs(void) 2899 { 2900 int err = init_ext4_xattr(); 2901 if (err) 2902 return err; 2903 err = init_inodecache(); 2904 if (err) 2905 goto out1; 2906 err = register_filesystem(&ext4dev_fs_type); 2907 if (err) 2908 goto out; 2909 return 0; 2910 out: 2911 destroy_inodecache(); 2912 out1: 2913 exit_ext4_xattr(); 2914 return err; 2915 } 2916 2917 static void __exit exit_ext4_fs(void) 2918 { 2919 unregister_filesystem(&ext4dev_fs_type); 2920 destroy_inodecache(); 2921 exit_ext4_xattr(); 2922 } 2923 2924 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 2925 MODULE_DESCRIPTION("Fourth Extended Filesystem with extents"); 2926 MODULE_LICENSE("GPL"); 2927 module_init(init_ext4_fs) 2928 module_exit(exit_ext4_fs) 2929