xref: /openbmc/linux/fs/ext4/super.c (revision c0e297dc)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"	/* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56 
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 				   struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86 
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 	.owner		= THIS_MODULE,
90 	.name		= "ext2",
91 	.mount		= ext4_mount,
92 	.kill_sb	= kill_block_super,
93 	.fs_flags	= FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101 
102 
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 	.owner		= THIS_MODULE,
106 	.name		= "ext3",
107 	.mount		= ext4_mount,
108 	.kill_sb	= kill_block_super,
109 	.fs_flags	= FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117 
118 static int ext4_verify_csum_type(struct super_block *sb,
119 				 struct ext4_super_block *es)
120 {
121 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 		return 1;
124 
125 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127 
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 				   struct ext4_super_block *es)
130 {
131 	struct ext4_sb_info *sbi = EXT4_SB(sb);
132 	int offset = offsetof(struct ext4_super_block, s_checksum);
133 	__u32 csum;
134 
135 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136 
137 	return cpu_to_le32(csum);
138 }
139 
140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 				       struct ext4_super_block *es)
142 {
143 	if (!ext4_has_metadata_csum(sb))
144 		return 1;
145 
146 	return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148 
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152 
153 	if (!ext4_has_metadata_csum(sb))
154 		return;
155 
156 	es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158 
159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 	void *ret;
162 
163 	ret = kmalloc(size, flags | __GFP_NOWARN);
164 	if (!ret)
165 		ret = __vmalloc(size, flags, PAGE_KERNEL);
166 	return ret;
167 }
168 
169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 	void *ret;
172 
173 	ret = kzalloc(size, flags | __GFP_NOWARN);
174 	if (!ret)
175 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 	return ret;
177 }
178 
179 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
180 			       struct ext4_group_desc *bg)
181 {
182 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
183 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
184 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
185 }
186 
187 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
188 			       struct ext4_group_desc *bg)
189 {
190 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
191 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
192 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
193 }
194 
195 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
196 			      struct ext4_group_desc *bg)
197 {
198 	return le32_to_cpu(bg->bg_inode_table_lo) |
199 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
200 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
201 }
202 
203 __u32 ext4_free_group_clusters(struct super_block *sb,
204 			       struct ext4_group_desc *bg)
205 {
206 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
207 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
209 }
210 
211 __u32 ext4_free_inodes_count(struct super_block *sb,
212 			      struct ext4_group_desc *bg)
213 {
214 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
215 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
217 }
218 
219 __u32 ext4_used_dirs_count(struct super_block *sb,
220 			      struct ext4_group_desc *bg)
221 {
222 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
223 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
225 }
226 
227 __u32 ext4_itable_unused_count(struct super_block *sb,
228 			      struct ext4_group_desc *bg)
229 {
230 	return le16_to_cpu(bg->bg_itable_unused_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
233 }
234 
235 void ext4_block_bitmap_set(struct super_block *sb,
236 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
237 {
238 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
239 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
240 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
241 }
242 
243 void ext4_inode_bitmap_set(struct super_block *sb,
244 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
245 {
246 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
247 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
248 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
249 }
250 
251 void ext4_inode_table_set(struct super_block *sb,
252 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
253 {
254 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
255 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
256 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
257 }
258 
259 void ext4_free_group_clusters_set(struct super_block *sb,
260 				  struct ext4_group_desc *bg, __u32 count)
261 {
262 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
263 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
265 }
266 
267 void ext4_free_inodes_set(struct super_block *sb,
268 			  struct ext4_group_desc *bg, __u32 count)
269 {
270 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
271 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
273 }
274 
275 void ext4_used_dirs_set(struct super_block *sb,
276 			  struct ext4_group_desc *bg, __u32 count)
277 {
278 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
279 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
281 }
282 
283 void ext4_itable_unused_set(struct super_block *sb,
284 			  struct ext4_group_desc *bg, __u32 count)
285 {
286 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
289 }
290 
291 
292 static void __save_error_info(struct super_block *sb, const char *func,
293 			    unsigned int line)
294 {
295 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
296 
297 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
298 	if (bdev_read_only(sb->s_bdev))
299 		return;
300 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
301 	es->s_last_error_time = cpu_to_le32(get_seconds());
302 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
303 	es->s_last_error_line = cpu_to_le32(line);
304 	if (!es->s_first_error_time) {
305 		es->s_first_error_time = es->s_last_error_time;
306 		strncpy(es->s_first_error_func, func,
307 			sizeof(es->s_first_error_func));
308 		es->s_first_error_line = cpu_to_le32(line);
309 		es->s_first_error_ino = es->s_last_error_ino;
310 		es->s_first_error_block = es->s_last_error_block;
311 	}
312 	/*
313 	 * Start the daily error reporting function if it hasn't been
314 	 * started already
315 	 */
316 	if (!es->s_error_count)
317 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
318 	le32_add_cpu(&es->s_error_count, 1);
319 }
320 
321 static void save_error_info(struct super_block *sb, const char *func,
322 			    unsigned int line)
323 {
324 	__save_error_info(sb, func, line);
325 	ext4_commit_super(sb, 1);
326 }
327 
328 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
329 {
330 	struct super_block		*sb = journal->j_private;
331 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
332 	int				error = is_journal_aborted(journal);
333 	struct ext4_journal_cb_entry	*jce;
334 
335 	BUG_ON(txn->t_state == T_FINISHED);
336 	spin_lock(&sbi->s_md_lock);
337 	while (!list_empty(&txn->t_private_list)) {
338 		jce = list_entry(txn->t_private_list.next,
339 				 struct ext4_journal_cb_entry, jce_list);
340 		list_del_init(&jce->jce_list);
341 		spin_unlock(&sbi->s_md_lock);
342 		jce->jce_func(sb, jce, error);
343 		spin_lock(&sbi->s_md_lock);
344 	}
345 	spin_unlock(&sbi->s_md_lock);
346 }
347 
348 /* Deal with the reporting of failure conditions on a filesystem such as
349  * inconsistencies detected or read IO failures.
350  *
351  * On ext2, we can store the error state of the filesystem in the
352  * superblock.  That is not possible on ext4, because we may have other
353  * write ordering constraints on the superblock which prevent us from
354  * writing it out straight away; and given that the journal is about to
355  * be aborted, we can't rely on the current, or future, transactions to
356  * write out the superblock safely.
357  *
358  * We'll just use the jbd2_journal_abort() error code to record an error in
359  * the journal instead.  On recovery, the journal will complain about
360  * that error until we've noted it down and cleared it.
361  */
362 
363 static void ext4_handle_error(struct super_block *sb)
364 {
365 	if (sb->s_flags & MS_RDONLY)
366 		return;
367 
368 	if (!test_opt(sb, ERRORS_CONT)) {
369 		journal_t *journal = EXT4_SB(sb)->s_journal;
370 
371 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
372 		if (journal)
373 			jbd2_journal_abort(journal, -EIO);
374 	}
375 	if (test_opt(sb, ERRORS_RO)) {
376 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
377 		/*
378 		 * Make sure updated value of ->s_mount_flags will be visible
379 		 * before ->s_flags update
380 		 */
381 		smp_wmb();
382 		sb->s_flags |= MS_RDONLY;
383 	}
384 	if (test_opt(sb, ERRORS_PANIC))
385 		panic("EXT4-fs (device %s): panic forced after error\n",
386 			sb->s_id);
387 }
388 
389 #define ext4_error_ratelimit(sb)					\
390 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
391 			     "EXT4-fs error")
392 
393 void __ext4_error(struct super_block *sb, const char *function,
394 		  unsigned int line, const char *fmt, ...)
395 {
396 	struct va_format vaf;
397 	va_list args;
398 
399 	if (ext4_error_ratelimit(sb)) {
400 		va_start(args, fmt);
401 		vaf.fmt = fmt;
402 		vaf.va = &args;
403 		printk(KERN_CRIT
404 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
405 		       sb->s_id, function, line, current->comm, &vaf);
406 		va_end(args);
407 	}
408 	save_error_info(sb, function, line);
409 	ext4_handle_error(sb);
410 }
411 
412 void __ext4_error_inode(struct inode *inode, const char *function,
413 			unsigned int line, ext4_fsblk_t block,
414 			const char *fmt, ...)
415 {
416 	va_list args;
417 	struct va_format vaf;
418 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
419 
420 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
421 	es->s_last_error_block = cpu_to_le64(block);
422 	if (ext4_error_ratelimit(inode->i_sb)) {
423 		va_start(args, fmt);
424 		vaf.fmt = fmt;
425 		vaf.va = &args;
426 		if (block)
427 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
428 			       "inode #%lu: block %llu: comm %s: %pV\n",
429 			       inode->i_sb->s_id, function, line, inode->i_ino,
430 			       block, current->comm, &vaf);
431 		else
432 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
433 			       "inode #%lu: comm %s: %pV\n",
434 			       inode->i_sb->s_id, function, line, inode->i_ino,
435 			       current->comm, &vaf);
436 		va_end(args);
437 	}
438 	save_error_info(inode->i_sb, function, line);
439 	ext4_handle_error(inode->i_sb);
440 }
441 
442 void __ext4_error_file(struct file *file, const char *function,
443 		       unsigned int line, ext4_fsblk_t block,
444 		       const char *fmt, ...)
445 {
446 	va_list args;
447 	struct va_format vaf;
448 	struct ext4_super_block *es;
449 	struct inode *inode = file_inode(file);
450 	char pathname[80], *path;
451 
452 	es = EXT4_SB(inode->i_sb)->s_es;
453 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
454 	if (ext4_error_ratelimit(inode->i_sb)) {
455 		path = file_path(file, pathname, sizeof(pathname));
456 		if (IS_ERR(path))
457 			path = "(unknown)";
458 		va_start(args, fmt);
459 		vaf.fmt = fmt;
460 		vaf.va = &args;
461 		if (block)
462 			printk(KERN_CRIT
463 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
464 			       "block %llu: comm %s: path %s: %pV\n",
465 			       inode->i_sb->s_id, function, line, inode->i_ino,
466 			       block, current->comm, path, &vaf);
467 		else
468 			printk(KERN_CRIT
469 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
470 			       "comm %s: path %s: %pV\n",
471 			       inode->i_sb->s_id, function, line, inode->i_ino,
472 			       current->comm, path, &vaf);
473 		va_end(args);
474 	}
475 	save_error_info(inode->i_sb, function, line);
476 	ext4_handle_error(inode->i_sb);
477 }
478 
479 const char *ext4_decode_error(struct super_block *sb, int errno,
480 			      char nbuf[16])
481 {
482 	char *errstr = NULL;
483 
484 	switch (errno) {
485 	case -EIO:
486 		errstr = "IO failure";
487 		break;
488 	case -ENOMEM:
489 		errstr = "Out of memory";
490 		break;
491 	case -EROFS:
492 		if (!sb || (EXT4_SB(sb)->s_journal &&
493 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
494 			errstr = "Journal has aborted";
495 		else
496 			errstr = "Readonly filesystem";
497 		break;
498 	default:
499 		/* If the caller passed in an extra buffer for unknown
500 		 * errors, textualise them now.  Else we just return
501 		 * NULL. */
502 		if (nbuf) {
503 			/* Check for truncated error codes... */
504 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
505 				errstr = nbuf;
506 		}
507 		break;
508 	}
509 
510 	return errstr;
511 }
512 
513 /* __ext4_std_error decodes expected errors from journaling functions
514  * automatically and invokes the appropriate error response.  */
515 
516 void __ext4_std_error(struct super_block *sb, const char *function,
517 		      unsigned int line, int errno)
518 {
519 	char nbuf[16];
520 	const char *errstr;
521 
522 	/* Special case: if the error is EROFS, and we're not already
523 	 * inside a transaction, then there's really no point in logging
524 	 * an error. */
525 	if (errno == -EROFS && journal_current_handle() == NULL &&
526 	    (sb->s_flags & MS_RDONLY))
527 		return;
528 
529 	if (ext4_error_ratelimit(sb)) {
530 		errstr = ext4_decode_error(sb, errno, nbuf);
531 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
532 		       sb->s_id, function, line, errstr);
533 	}
534 
535 	save_error_info(sb, function, line);
536 	ext4_handle_error(sb);
537 }
538 
539 /*
540  * ext4_abort is a much stronger failure handler than ext4_error.  The
541  * abort function may be used to deal with unrecoverable failures such
542  * as journal IO errors or ENOMEM at a critical moment in log management.
543  *
544  * We unconditionally force the filesystem into an ABORT|READONLY state,
545  * unless the error response on the fs has been set to panic in which
546  * case we take the easy way out and panic immediately.
547  */
548 
549 void __ext4_abort(struct super_block *sb, const char *function,
550 		unsigned int line, const char *fmt, ...)
551 {
552 	va_list args;
553 
554 	save_error_info(sb, function, line);
555 	va_start(args, fmt);
556 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
557 	       function, line);
558 	vprintk(fmt, args);
559 	printk("\n");
560 	va_end(args);
561 
562 	if ((sb->s_flags & MS_RDONLY) == 0) {
563 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
564 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
565 		/*
566 		 * Make sure updated value of ->s_mount_flags will be visible
567 		 * before ->s_flags update
568 		 */
569 		smp_wmb();
570 		sb->s_flags |= MS_RDONLY;
571 		if (EXT4_SB(sb)->s_journal)
572 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
573 		save_error_info(sb, function, line);
574 	}
575 	if (test_opt(sb, ERRORS_PANIC))
576 		panic("EXT4-fs panic from previous error\n");
577 }
578 
579 void __ext4_msg(struct super_block *sb,
580 		const char *prefix, const char *fmt, ...)
581 {
582 	struct va_format vaf;
583 	va_list args;
584 
585 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
586 		return;
587 
588 	va_start(args, fmt);
589 	vaf.fmt = fmt;
590 	vaf.va = &args;
591 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 	va_end(args);
593 }
594 
595 #define ext4_warning_ratelimit(sb)					\
596 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
597 			     "EXT4-fs warning")
598 
599 void __ext4_warning(struct super_block *sb, const char *function,
600 		    unsigned int line, const char *fmt, ...)
601 {
602 	struct va_format vaf;
603 	va_list args;
604 
605 	if (!ext4_warning_ratelimit(sb))
606 		return;
607 
608 	va_start(args, fmt);
609 	vaf.fmt = fmt;
610 	vaf.va = &args;
611 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
612 	       sb->s_id, function, line, &vaf);
613 	va_end(args);
614 }
615 
616 void __ext4_warning_inode(const struct inode *inode, const char *function,
617 			  unsigned int line, const char *fmt, ...)
618 {
619 	struct va_format vaf;
620 	va_list args;
621 
622 	if (!ext4_warning_ratelimit(inode->i_sb))
623 		return;
624 
625 	va_start(args, fmt);
626 	vaf.fmt = fmt;
627 	vaf.va = &args;
628 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
629 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
630 	       function, line, inode->i_ino, current->comm, &vaf);
631 	va_end(args);
632 }
633 
634 void __ext4_grp_locked_error(const char *function, unsigned int line,
635 			     struct super_block *sb, ext4_group_t grp,
636 			     unsigned long ino, ext4_fsblk_t block,
637 			     const char *fmt, ...)
638 __releases(bitlock)
639 __acquires(bitlock)
640 {
641 	struct va_format vaf;
642 	va_list args;
643 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
644 
645 	es->s_last_error_ino = cpu_to_le32(ino);
646 	es->s_last_error_block = cpu_to_le64(block);
647 	__save_error_info(sb, function, line);
648 
649 	if (ext4_error_ratelimit(sb)) {
650 		va_start(args, fmt);
651 		vaf.fmt = fmt;
652 		vaf.va = &args;
653 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
654 		       sb->s_id, function, line, grp);
655 		if (ino)
656 			printk(KERN_CONT "inode %lu: ", ino);
657 		if (block)
658 			printk(KERN_CONT "block %llu:",
659 			       (unsigned long long) block);
660 		printk(KERN_CONT "%pV\n", &vaf);
661 		va_end(args);
662 	}
663 
664 	if (test_opt(sb, ERRORS_CONT)) {
665 		ext4_commit_super(sb, 0);
666 		return;
667 	}
668 
669 	ext4_unlock_group(sb, grp);
670 	ext4_handle_error(sb);
671 	/*
672 	 * We only get here in the ERRORS_RO case; relocking the group
673 	 * may be dangerous, but nothing bad will happen since the
674 	 * filesystem will have already been marked read/only and the
675 	 * journal has been aborted.  We return 1 as a hint to callers
676 	 * who might what to use the return value from
677 	 * ext4_grp_locked_error() to distinguish between the
678 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
679 	 * aggressively from the ext4 function in question, with a
680 	 * more appropriate error code.
681 	 */
682 	ext4_lock_group(sb, grp);
683 	return;
684 }
685 
686 void ext4_update_dynamic_rev(struct super_block *sb)
687 {
688 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
689 
690 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
691 		return;
692 
693 	ext4_warning(sb,
694 		     "updating to rev %d because of new feature flag, "
695 		     "running e2fsck is recommended",
696 		     EXT4_DYNAMIC_REV);
697 
698 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
699 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
700 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
701 	/* leave es->s_feature_*compat flags alone */
702 	/* es->s_uuid will be set by e2fsck if empty */
703 
704 	/*
705 	 * The rest of the superblock fields should be zero, and if not it
706 	 * means they are likely already in use, so leave them alone.  We
707 	 * can leave it up to e2fsck to clean up any inconsistencies there.
708 	 */
709 }
710 
711 /*
712  * Open the external journal device
713  */
714 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
715 {
716 	struct block_device *bdev;
717 	char b[BDEVNAME_SIZE];
718 
719 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
720 	if (IS_ERR(bdev))
721 		goto fail;
722 	return bdev;
723 
724 fail:
725 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
726 			__bdevname(dev, b), PTR_ERR(bdev));
727 	return NULL;
728 }
729 
730 /*
731  * Release the journal device
732  */
733 static void ext4_blkdev_put(struct block_device *bdev)
734 {
735 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
736 }
737 
738 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
739 {
740 	struct block_device *bdev;
741 	bdev = sbi->journal_bdev;
742 	if (bdev) {
743 		ext4_blkdev_put(bdev);
744 		sbi->journal_bdev = NULL;
745 	}
746 }
747 
748 static inline struct inode *orphan_list_entry(struct list_head *l)
749 {
750 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
751 }
752 
753 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
754 {
755 	struct list_head *l;
756 
757 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
758 		 le32_to_cpu(sbi->s_es->s_last_orphan));
759 
760 	printk(KERN_ERR "sb_info orphan list:\n");
761 	list_for_each(l, &sbi->s_orphan) {
762 		struct inode *inode = orphan_list_entry(l);
763 		printk(KERN_ERR "  "
764 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
765 		       inode->i_sb->s_id, inode->i_ino, inode,
766 		       inode->i_mode, inode->i_nlink,
767 		       NEXT_ORPHAN(inode));
768 	}
769 }
770 
771 static void ext4_put_super(struct super_block *sb)
772 {
773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
774 	struct ext4_super_block *es = sbi->s_es;
775 	int i, err;
776 
777 	ext4_unregister_li_request(sb);
778 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
779 
780 	flush_workqueue(sbi->rsv_conversion_wq);
781 	destroy_workqueue(sbi->rsv_conversion_wq);
782 
783 	if (sbi->s_journal) {
784 		err = jbd2_journal_destroy(sbi->s_journal);
785 		sbi->s_journal = NULL;
786 		if (err < 0)
787 			ext4_abort(sb, "Couldn't clean up the journal");
788 	}
789 
790 	ext4_es_unregister_shrinker(sbi);
791 	del_timer_sync(&sbi->s_err_report);
792 	ext4_release_system_zone(sb);
793 	ext4_mb_release(sb);
794 	ext4_ext_release(sb);
795 	ext4_xattr_put_super(sb);
796 
797 	if (!(sb->s_flags & MS_RDONLY)) {
798 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
799 		es->s_state = cpu_to_le16(sbi->s_mount_state);
800 	}
801 	if (!(sb->s_flags & MS_RDONLY))
802 		ext4_commit_super(sb, 1);
803 
804 	if (sbi->s_proc) {
805 		remove_proc_entry("options", sbi->s_proc);
806 		remove_proc_entry(sb->s_id, ext4_proc_root);
807 	}
808 	kobject_del(&sbi->s_kobj);
809 
810 	for (i = 0; i < sbi->s_gdb_count; i++)
811 		brelse(sbi->s_group_desc[i]);
812 	kvfree(sbi->s_group_desc);
813 	kvfree(sbi->s_flex_groups);
814 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
815 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
816 	percpu_counter_destroy(&sbi->s_dirs_counter);
817 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
818 	brelse(sbi->s_sbh);
819 #ifdef CONFIG_QUOTA
820 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
821 		kfree(sbi->s_qf_names[i]);
822 #endif
823 
824 	/* Debugging code just in case the in-memory inode orphan list
825 	 * isn't empty.  The on-disk one can be non-empty if we've
826 	 * detected an error and taken the fs readonly, but the
827 	 * in-memory list had better be clean by this point. */
828 	if (!list_empty(&sbi->s_orphan))
829 		dump_orphan_list(sb, sbi);
830 	J_ASSERT(list_empty(&sbi->s_orphan));
831 
832 	sync_blockdev(sb->s_bdev);
833 	invalidate_bdev(sb->s_bdev);
834 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
835 		/*
836 		 * Invalidate the journal device's buffers.  We don't want them
837 		 * floating about in memory - the physical journal device may
838 		 * hotswapped, and it breaks the `ro-after' testing code.
839 		 */
840 		sync_blockdev(sbi->journal_bdev);
841 		invalidate_bdev(sbi->journal_bdev);
842 		ext4_blkdev_remove(sbi);
843 	}
844 	if (sbi->s_mb_cache) {
845 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
846 		sbi->s_mb_cache = NULL;
847 	}
848 	if (sbi->s_mmp_tsk)
849 		kthread_stop(sbi->s_mmp_tsk);
850 	sb->s_fs_info = NULL;
851 	/*
852 	 * Now that we are completely done shutting down the
853 	 * superblock, we need to actually destroy the kobject.
854 	 */
855 	kobject_put(&sbi->s_kobj);
856 	wait_for_completion(&sbi->s_kobj_unregister);
857 	if (sbi->s_chksum_driver)
858 		crypto_free_shash(sbi->s_chksum_driver);
859 	kfree(sbi->s_blockgroup_lock);
860 	kfree(sbi);
861 }
862 
863 static struct kmem_cache *ext4_inode_cachep;
864 
865 /*
866  * Called inside transaction, so use GFP_NOFS
867  */
868 static struct inode *ext4_alloc_inode(struct super_block *sb)
869 {
870 	struct ext4_inode_info *ei;
871 
872 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
873 	if (!ei)
874 		return NULL;
875 
876 	ei->vfs_inode.i_version = 1;
877 	spin_lock_init(&ei->i_raw_lock);
878 	INIT_LIST_HEAD(&ei->i_prealloc_list);
879 	spin_lock_init(&ei->i_prealloc_lock);
880 	ext4_es_init_tree(&ei->i_es_tree);
881 	rwlock_init(&ei->i_es_lock);
882 	INIT_LIST_HEAD(&ei->i_es_list);
883 	ei->i_es_all_nr = 0;
884 	ei->i_es_shk_nr = 0;
885 	ei->i_es_shrink_lblk = 0;
886 	ei->i_reserved_data_blocks = 0;
887 	ei->i_reserved_meta_blocks = 0;
888 	ei->i_allocated_meta_blocks = 0;
889 	ei->i_da_metadata_calc_len = 0;
890 	ei->i_da_metadata_calc_last_lblock = 0;
891 	spin_lock_init(&(ei->i_block_reservation_lock));
892 #ifdef CONFIG_QUOTA
893 	ei->i_reserved_quota = 0;
894 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
895 #endif
896 	ei->jinode = NULL;
897 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
898 	spin_lock_init(&ei->i_completed_io_lock);
899 	ei->i_sync_tid = 0;
900 	ei->i_datasync_tid = 0;
901 	atomic_set(&ei->i_ioend_count, 0);
902 	atomic_set(&ei->i_unwritten, 0);
903 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
904 #ifdef CONFIG_EXT4_FS_ENCRYPTION
905 	ei->i_crypt_info = NULL;
906 #endif
907 	return &ei->vfs_inode;
908 }
909 
910 static int ext4_drop_inode(struct inode *inode)
911 {
912 	int drop = generic_drop_inode(inode);
913 
914 	trace_ext4_drop_inode(inode, drop);
915 	return drop;
916 }
917 
918 static void ext4_i_callback(struct rcu_head *head)
919 {
920 	struct inode *inode = container_of(head, struct inode, i_rcu);
921 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
922 }
923 
924 static void ext4_destroy_inode(struct inode *inode)
925 {
926 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
927 		ext4_msg(inode->i_sb, KERN_ERR,
928 			 "Inode %lu (%p): orphan list check failed!",
929 			 inode->i_ino, EXT4_I(inode));
930 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
931 				EXT4_I(inode), sizeof(struct ext4_inode_info),
932 				true);
933 		dump_stack();
934 	}
935 	call_rcu(&inode->i_rcu, ext4_i_callback);
936 }
937 
938 static void init_once(void *foo)
939 {
940 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
941 
942 	INIT_LIST_HEAD(&ei->i_orphan);
943 	init_rwsem(&ei->xattr_sem);
944 	init_rwsem(&ei->i_data_sem);
945 	inode_init_once(&ei->vfs_inode);
946 }
947 
948 static int __init init_inodecache(void)
949 {
950 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
951 					     sizeof(struct ext4_inode_info),
952 					     0, (SLAB_RECLAIM_ACCOUNT|
953 						SLAB_MEM_SPREAD),
954 					     init_once);
955 	if (ext4_inode_cachep == NULL)
956 		return -ENOMEM;
957 	return 0;
958 }
959 
960 static void destroy_inodecache(void)
961 {
962 	/*
963 	 * Make sure all delayed rcu free inodes are flushed before we
964 	 * destroy cache.
965 	 */
966 	rcu_barrier();
967 	kmem_cache_destroy(ext4_inode_cachep);
968 }
969 
970 void ext4_clear_inode(struct inode *inode)
971 {
972 	invalidate_inode_buffers(inode);
973 	clear_inode(inode);
974 	dquot_drop(inode);
975 	ext4_discard_preallocations(inode);
976 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
977 	if (EXT4_I(inode)->jinode) {
978 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
979 					       EXT4_I(inode)->jinode);
980 		jbd2_free_inode(EXT4_I(inode)->jinode);
981 		EXT4_I(inode)->jinode = NULL;
982 	}
983 #ifdef CONFIG_EXT4_FS_ENCRYPTION
984 	if (EXT4_I(inode)->i_crypt_info)
985 		ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
986 #endif
987 }
988 
989 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
990 					u64 ino, u32 generation)
991 {
992 	struct inode *inode;
993 
994 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
995 		return ERR_PTR(-ESTALE);
996 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
997 		return ERR_PTR(-ESTALE);
998 
999 	/* iget isn't really right if the inode is currently unallocated!!
1000 	 *
1001 	 * ext4_read_inode will return a bad_inode if the inode had been
1002 	 * deleted, so we should be safe.
1003 	 *
1004 	 * Currently we don't know the generation for parent directory, so
1005 	 * a generation of 0 means "accept any"
1006 	 */
1007 	inode = ext4_iget_normal(sb, ino);
1008 	if (IS_ERR(inode))
1009 		return ERR_CAST(inode);
1010 	if (generation && inode->i_generation != generation) {
1011 		iput(inode);
1012 		return ERR_PTR(-ESTALE);
1013 	}
1014 
1015 	return inode;
1016 }
1017 
1018 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1019 					int fh_len, int fh_type)
1020 {
1021 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1022 				    ext4_nfs_get_inode);
1023 }
1024 
1025 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1026 					int fh_len, int fh_type)
1027 {
1028 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1029 				    ext4_nfs_get_inode);
1030 }
1031 
1032 /*
1033  * Try to release metadata pages (indirect blocks, directories) which are
1034  * mapped via the block device.  Since these pages could have journal heads
1035  * which would prevent try_to_free_buffers() from freeing them, we must use
1036  * jbd2 layer's try_to_free_buffers() function to release them.
1037  */
1038 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1039 				 gfp_t wait)
1040 {
1041 	journal_t *journal = EXT4_SB(sb)->s_journal;
1042 
1043 	WARN_ON(PageChecked(page));
1044 	if (!page_has_buffers(page))
1045 		return 0;
1046 	if (journal)
1047 		return jbd2_journal_try_to_free_buffers(journal, page,
1048 							wait & ~__GFP_WAIT);
1049 	return try_to_free_buffers(page);
1050 }
1051 
1052 #ifdef CONFIG_QUOTA
1053 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1054 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1055 
1056 static int ext4_write_dquot(struct dquot *dquot);
1057 static int ext4_acquire_dquot(struct dquot *dquot);
1058 static int ext4_release_dquot(struct dquot *dquot);
1059 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1060 static int ext4_write_info(struct super_block *sb, int type);
1061 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1062 			 struct path *path);
1063 static int ext4_quota_off(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 			       size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 				const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 			     unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072 
1073 static struct dquot **ext4_get_dquots(struct inode *inode)
1074 {
1075 	return EXT4_I(inode)->i_dquot;
1076 }
1077 
1078 static const struct dquot_operations ext4_quota_operations = {
1079 	.get_reserved_space = ext4_get_reserved_space,
1080 	.write_dquot	= ext4_write_dquot,
1081 	.acquire_dquot	= ext4_acquire_dquot,
1082 	.release_dquot	= ext4_release_dquot,
1083 	.mark_dirty	= ext4_mark_dquot_dirty,
1084 	.write_info	= ext4_write_info,
1085 	.alloc_dquot	= dquot_alloc,
1086 	.destroy_dquot	= dquot_destroy,
1087 };
1088 
1089 static const struct quotactl_ops ext4_qctl_operations = {
1090 	.quota_on	= ext4_quota_on,
1091 	.quota_off	= ext4_quota_off,
1092 	.quota_sync	= dquot_quota_sync,
1093 	.get_state	= dquot_get_state,
1094 	.set_info	= dquot_set_dqinfo,
1095 	.get_dqblk	= dquot_get_dqblk,
1096 	.set_dqblk	= dquot_set_dqblk
1097 };
1098 #endif
1099 
1100 static const struct super_operations ext4_sops = {
1101 	.alloc_inode	= ext4_alloc_inode,
1102 	.destroy_inode	= ext4_destroy_inode,
1103 	.write_inode	= ext4_write_inode,
1104 	.dirty_inode	= ext4_dirty_inode,
1105 	.drop_inode	= ext4_drop_inode,
1106 	.evict_inode	= ext4_evict_inode,
1107 	.put_super	= ext4_put_super,
1108 	.sync_fs	= ext4_sync_fs,
1109 	.freeze_fs	= ext4_freeze,
1110 	.unfreeze_fs	= ext4_unfreeze,
1111 	.statfs		= ext4_statfs,
1112 	.remount_fs	= ext4_remount,
1113 	.show_options	= ext4_show_options,
1114 #ifdef CONFIG_QUOTA
1115 	.quota_read	= ext4_quota_read,
1116 	.quota_write	= ext4_quota_write,
1117 	.get_dquots	= ext4_get_dquots,
1118 #endif
1119 	.bdev_try_to_free_page = bdev_try_to_free_page,
1120 };
1121 
1122 static const struct export_operations ext4_export_ops = {
1123 	.fh_to_dentry = ext4_fh_to_dentry,
1124 	.fh_to_parent = ext4_fh_to_parent,
1125 	.get_parent = ext4_get_parent,
1126 };
1127 
1128 enum {
1129 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1130 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1131 	Opt_nouid32, Opt_debug, Opt_removed,
1132 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1133 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1134 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1135 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1136 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1137 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1138 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1139 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1140 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1141 	Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1142 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1143 	Opt_lazytime, Opt_nolazytime,
1144 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1145 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1146 	Opt_dioread_nolock, Opt_dioread_lock,
1147 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1148 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1149 };
1150 
1151 static const match_table_t tokens = {
1152 	{Opt_bsd_df, "bsddf"},
1153 	{Opt_minix_df, "minixdf"},
1154 	{Opt_grpid, "grpid"},
1155 	{Opt_grpid, "bsdgroups"},
1156 	{Opt_nogrpid, "nogrpid"},
1157 	{Opt_nogrpid, "sysvgroups"},
1158 	{Opt_resgid, "resgid=%u"},
1159 	{Opt_resuid, "resuid=%u"},
1160 	{Opt_sb, "sb=%u"},
1161 	{Opt_err_cont, "errors=continue"},
1162 	{Opt_err_panic, "errors=panic"},
1163 	{Opt_err_ro, "errors=remount-ro"},
1164 	{Opt_nouid32, "nouid32"},
1165 	{Opt_debug, "debug"},
1166 	{Opt_removed, "oldalloc"},
1167 	{Opt_removed, "orlov"},
1168 	{Opt_user_xattr, "user_xattr"},
1169 	{Opt_nouser_xattr, "nouser_xattr"},
1170 	{Opt_acl, "acl"},
1171 	{Opt_noacl, "noacl"},
1172 	{Opt_noload, "norecovery"},
1173 	{Opt_noload, "noload"},
1174 	{Opt_removed, "nobh"},
1175 	{Opt_removed, "bh"},
1176 	{Opt_commit, "commit=%u"},
1177 	{Opt_min_batch_time, "min_batch_time=%u"},
1178 	{Opt_max_batch_time, "max_batch_time=%u"},
1179 	{Opt_journal_dev, "journal_dev=%u"},
1180 	{Opt_journal_path, "journal_path=%s"},
1181 	{Opt_journal_checksum, "journal_checksum"},
1182 	{Opt_nojournal_checksum, "nojournal_checksum"},
1183 	{Opt_journal_async_commit, "journal_async_commit"},
1184 	{Opt_abort, "abort"},
1185 	{Opt_data_journal, "data=journal"},
1186 	{Opt_data_ordered, "data=ordered"},
1187 	{Opt_data_writeback, "data=writeback"},
1188 	{Opt_data_err_abort, "data_err=abort"},
1189 	{Opt_data_err_ignore, "data_err=ignore"},
1190 	{Opt_offusrjquota, "usrjquota="},
1191 	{Opt_usrjquota, "usrjquota=%s"},
1192 	{Opt_offgrpjquota, "grpjquota="},
1193 	{Opt_grpjquota, "grpjquota=%s"},
1194 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1195 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1196 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1197 	{Opt_grpquota, "grpquota"},
1198 	{Opt_noquota, "noquota"},
1199 	{Opt_quota, "quota"},
1200 	{Opt_usrquota, "usrquota"},
1201 	{Opt_barrier, "barrier=%u"},
1202 	{Opt_barrier, "barrier"},
1203 	{Opt_nobarrier, "nobarrier"},
1204 	{Opt_i_version, "i_version"},
1205 	{Opt_dax, "dax"},
1206 	{Opt_stripe, "stripe=%u"},
1207 	{Opt_delalloc, "delalloc"},
1208 	{Opt_lazytime, "lazytime"},
1209 	{Opt_nolazytime, "nolazytime"},
1210 	{Opt_nodelalloc, "nodelalloc"},
1211 	{Opt_removed, "mblk_io_submit"},
1212 	{Opt_removed, "nomblk_io_submit"},
1213 	{Opt_block_validity, "block_validity"},
1214 	{Opt_noblock_validity, "noblock_validity"},
1215 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1216 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1217 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1218 	{Opt_auto_da_alloc, "auto_da_alloc"},
1219 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1220 	{Opt_dioread_nolock, "dioread_nolock"},
1221 	{Opt_dioread_lock, "dioread_lock"},
1222 	{Opt_discard, "discard"},
1223 	{Opt_nodiscard, "nodiscard"},
1224 	{Opt_init_itable, "init_itable=%u"},
1225 	{Opt_init_itable, "init_itable"},
1226 	{Opt_noinit_itable, "noinit_itable"},
1227 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1228 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1229 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1230 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1231 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1232 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1233 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1234 	{Opt_err, NULL},
1235 };
1236 
1237 static ext4_fsblk_t get_sb_block(void **data)
1238 {
1239 	ext4_fsblk_t	sb_block;
1240 	char		*options = (char *) *data;
1241 
1242 	if (!options || strncmp(options, "sb=", 3) != 0)
1243 		return 1;	/* Default location */
1244 
1245 	options += 3;
1246 	/* TODO: use simple_strtoll with >32bit ext4 */
1247 	sb_block = simple_strtoul(options, &options, 0);
1248 	if (*options && *options != ',') {
1249 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1250 		       (char *) *data);
1251 		return 1;
1252 	}
1253 	if (*options == ',')
1254 		options++;
1255 	*data = (void *) options;
1256 
1257 	return sb_block;
1258 }
1259 
1260 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1261 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1262 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1263 
1264 #ifdef CONFIG_QUOTA
1265 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1266 {
1267 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1268 	char *qname;
1269 	int ret = -1;
1270 
1271 	if (sb_any_quota_loaded(sb) &&
1272 		!sbi->s_qf_names[qtype]) {
1273 		ext4_msg(sb, KERN_ERR,
1274 			"Cannot change journaled "
1275 			"quota options when quota turned on");
1276 		return -1;
1277 	}
1278 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1279 		ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1280 			 "when QUOTA feature is enabled");
1281 		return -1;
1282 	}
1283 	qname = match_strdup(args);
1284 	if (!qname) {
1285 		ext4_msg(sb, KERN_ERR,
1286 			"Not enough memory for storing quotafile name");
1287 		return -1;
1288 	}
1289 	if (sbi->s_qf_names[qtype]) {
1290 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1291 			ret = 1;
1292 		else
1293 			ext4_msg(sb, KERN_ERR,
1294 				 "%s quota file already specified",
1295 				 QTYPE2NAME(qtype));
1296 		goto errout;
1297 	}
1298 	if (strchr(qname, '/')) {
1299 		ext4_msg(sb, KERN_ERR,
1300 			"quotafile must be on filesystem root");
1301 		goto errout;
1302 	}
1303 	sbi->s_qf_names[qtype] = qname;
1304 	set_opt(sb, QUOTA);
1305 	return 1;
1306 errout:
1307 	kfree(qname);
1308 	return ret;
1309 }
1310 
1311 static int clear_qf_name(struct super_block *sb, int qtype)
1312 {
1313 
1314 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1315 
1316 	if (sb_any_quota_loaded(sb) &&
1317 		sbi->s_qf_names[qtype]) {
1318 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1319 			" when quota turned on");
1320 		return -1;
1321 	}
1322 	kfree(sbi->s_qf_names[qtype]);
1323 	sbi->s_qf_names[qtype] = NULL;
1324 	return 1;
1325 }
1326 #endif
1327 
1328 #define MOPT_SET	0x0001
1329 #define MOPT_CLEAR	0x0002
1330 #define MOPT_NOSUPPORT	0x0004
1331 #define MOPT_EXPLICIT	0x0008
1332 #define MOPT_CLEAR_ERR	0x0010
1333 #define MOPT_GTE0	0x0020
1334 #ifdef CONFIG_QUOTA
1335 #define MOPT_Q		0
1336 #define MOPT_QFMT	0x0040
1337 #else
1338 #define MOPT_Q		MOPT_NOSUPPORT
1339 #define MOPT_QFMT	MOPT_NOSUPPORT
1340 #endif
1341 #define MOPT_DATAJ	0x0080
1342 #define MOPT_NO_EXT2	0x0100
1343 #define MOPT_NO_EXT3	0x0200
1344 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1345 #define MOPT_STRING	0x0400
1346 
1347 static const struct mount_opts {
1348 	int	token;
1349 	int	mount_opt;
1350 	int	flags;
1351 } ext4_mount_opts[] = {
1352 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1353 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1354 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1355 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1356 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1357 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1358 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1359 	 MOPT_EXT4_ONLY | MOPT_SET},
1360 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1361 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1362 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1363 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1364 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1365 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1366 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1367 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1368 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1369 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1370 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1371 	 MOPT_EXT4_ONLY | MOPT_SET},
1372 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1373 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1374 	 MOPT_EXT4_ONLY | MOPT_SET},
1375 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1376 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1377 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1378 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1379 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1380 	 MOPT_NO_EXT2 | MOPT_SET},
1381 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1382 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1383 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1384 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1385 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1386 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1387 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1388 	{Opt_commit, 0, MOPT_GTE0},
1389 	{Opt_max_batch_time, 0, MOPT_GTE0},
1390 	{Opt_min_batch_time, 0, MOPT_GTE0},
1391 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1392 	{Opt_init_itable, 0, MOPT_GTE0},
1393 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1394 	{Opt_stripe, 0, MOPT_GTE0},
1395 	{Opt_resuid, 0, MOPT_GTE0},
1396 	{Opt_resgid, 0, MOPT_GTE0},
1397 	{Opt_journal_dev, 0, MOPT_GTE0},
1398 	{Opt_journal_path, 0, MOPT_STRING},
1399 	{Opt_journal_ioprio, 0, MOPT_GTE0},
1400 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1401 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1402 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1403 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1404 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1405 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1406 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1407 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1408 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1409 #else
1410 	{Opt_acl, 0, MOPT_NOSUPPORT},
1411 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1412 #endif
1413 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1414 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1415 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1416 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1417 							MOPT_SET | MOPT_Q},
1418 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1419 							MOPT_SET | MOPT_Q},
1420 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1421 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1422 	{Opt_usrjquota, 0, MOPT_Q},
1423 	{Opt_grpjquota, 0, MOPT_Q},
1424 	{Opt_offusrjquota, 0, MOPT_Q},
1425 	{Opt_offgrpjquota, 0, MOPT_Q},
1426 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1427 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1428 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1429 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1430 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1431 	{Opt_err, 0, 0}
1432 };
1433 
1434 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1435 			    substring_t *args, unsigned long *journal_devnum,
1436 			    unsigned int *journal_ioprio, int is_remount)
1437 {
1438 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1439 	const struct mount_opts *m;
1440 	kuid_t uid;
1441 	kgid_t gid;
1442 	int arg = 0;
1443 
1444 #ifdef CONFIG_QUOTA
1445 	if (token == Opt_usrjquota)
1446 		return set_qf_name(sb, USRQUOTA, &args[0]);
1447 	else if (token == Opt_grpjquota)
1448 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1449 	else if (token == Opt_offusrjquota)
1450 		return clear_qf_name(sb, USRQUOTA);
1451 	else if (token == Opt_offgrpjquota)
1452 		return clear_qf_name(sb, GRPQUOTA);
1453 #endif
1454 	switch (token) {
1455 	case Opt_noacl:
1456 	case Opt_nouser_xattr:
1457 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1458 		break;
1459 	case Opt_sb:
1460 		return 1;	/* handled by get_sb_block() */
1461 	case Opt_removed:
1462 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1463 		return 1;
1464 	case Opt_abort:
1465 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1466 		return 1;
1467 	case Opt_i_version:
1468 		sb->s_flags |= MS_I_VERSION;
1469 		return 1;
1470 	case Opt_lazytime:
1471 		sb->s_flags |= MS_LAZYTIME;
1472 		return 1;
1473 	case Opt_nolazytime:
1474 		sb->s_flags &= ~MS_LAZYTIME;
1475 		return 1;
1476 	}
1477 
1478 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1479 		if (token == m->token)
1480 			break;
1481 
1482 	if (m->token == Opt_err) {
1483 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1484 			 "or missing value", opt);
1485 		return -1;
1486 	}
1487 
1488 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1489 		ext4_msg(sb, KERN_ERR,
1490 			 "Mount option \"%s\" incompatible with ext2", opt);
1491 		return -1;
1492 	}
1493 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1494 		ext4_msg(sb, KERN_ERR,
1495 			 "Mount option \"%s\" incompatible with ext3", opt);
1496 		return -1;
1497 	}
1498 
1499 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1500 		return -1;
1501 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1502 		return -1;
1503 	if (m->flags & MOPT_EXPLICIT)
1504 		set_opt2(sb, EXPLICIT_DELALLOC);
1505 	if (m->flags & MOPT_CLEAR_ERR)
1506 		clear_opt(sb, ERRORS_MASK);
1507 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1508 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1509 			 "options when quota turned on");
1510 		return -1;
1511 	}
1512 
1513 	if (m->flags & MOPT_NOSUPPORT) {
1514 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1515 	} else if (token == Opt_commit) {
1516 		if (arg == 0)
1517 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1518 		sbi->s_commit_interval = HZ * arg;
1519 	} else if (token == Opt_max_batch_time) {
1520 		sbi->s_max_batch_time = arg;
1521 	} else if (token == Opt_min_batch_time) {
1522 		sbi->s_min_batch_time = arg;
1523 	} else if (token == Opt_inode_readahead_blks) {
1524 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1525 			ext4_msg(sb, KERN_ERR,
1526 				 "EXT4-fs: inode_readahead_blks must be "
1527 				 "0 or a power of 2 smaller than 2^31");
1528 			return -1;
1529 		}
1530 		sbi->s_inode_readahead_blks = arg;
1531 	} else if (token == Opt_init_itable) {
1532 		set_opt(sb, INIT_INODE_TABLE);
1533 		if (!args->from)
1534 			arg = EXT4_DEF_LI_WAIT_MULT;
1535 		sbi->s_li_wait_mult = arg;
1536 	} else if (token == Opt_max_dir_size_kb) {
1537 		sbi->s_max_dir_size_kb = arg;
1538 	} else if (token == Opt_stripe) {
1539 		sbi->s_stripe = arg;
1540 	} else if (token == Opt_resuid) {
1541 		uid = make_kuid(current_user_ns(), arg);
1542 		if (!uid_valid(uid)) {
1543 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1544 			return -1;
1545 		}
1546 		sbi->s_resuid = uid;
1547 	} else if (token == Opt_resgid) {
1548 		gid = make_kgid(current_user_ns(), arg);
1549 		if (!gid_valid(gid)) {
1550 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1551 			return -1;
1552 		}
1553 		sbi->s_resgid = gid;
1554 	} else if (token == Opt_journal_dev) {
1555 		if (is_remount) {
1556 			ext4_msg(sb, KERN_ERR,
1557 				 "Cannot specify journal on remount");
1558 			return -1;
1559 		}
1560 		*journal_devnum = arg;
1561 	} else if (token == Opt_journal_path) {
1562 		char *journal_path;
1563 		struct inode *journal_inode;
1564 		struct path path;
1565 		int error;
1566 
1567 		if (is_remount) {
1568 			ext4_msg(sb, KERN_ERR,
1569 				 "Cannot specify journal on remount");
1570 			return -1;
1571 		}
1572 		journal_path = match_strdup(&args[0]);
1573 		if (!journal_path) {
1574 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1575 				"journal device string");
1576 			return -1;
1577 		}
1578 
1579 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1580 		if (error) {
1581 			ext4_msg(sb, KERN_ERR, "error: could not find "
1582 				"journal device path: error %d", error);
1583 			kfree(journal_path);
1584 			return -1;
1585 		}
1586 
1587 		journal_inode = d_inode(path.dentry);
1588 		if (!S_ISBLK(journal_inode->i_mode)) {
1589 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1590 				"is not a block device", journal_path);
1591 			path_put(&path);
1592 			kfree(journal_path);
1593 			return -1;
1594 		}
1595 
1596 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1597 		path_put(&path);
1598 		kfree(journal_path);
1599 	} else if (token == Opt_journal_ioprio) {
1600 		if (arg > 7) {
1601 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1602 				 " (must be 0-7)");
1603 			return -1;
1604 		}
1605 		*journal_ioprio =
1606 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1607 	} else if (token == Opt_test_dummy_encryption) {
1608 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1609 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1610 		ext4_msg(sb, KERN_WARNING,
1611 			 "Test dummy encryption mode enabled");
1612 #else
1613 		ext4_msg(sb, KERN_WARNING,
1614 			 "Test dummy encryption mount option ignored");
1615 #endif
1616 	} else if (m->flags & MOPT_DATAJ) {
1617 		if (is_remount) {
1618 			if (!sbi->s_journal)
1619 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 				ext4_msg(sb, KERN_ERR,
1622 					 "Cannot change data mode on remount");
1623 				return -1;
1624 			}
1625 		} else {
1626 			clear_opt(sb, DATA_FLAGS);
1627 			sbi->s_mount_opt |= m->mount_opt;
1628 		}
1629 #ifdef CONFIG_QUOTA
1630 	} else if (m->flags & MOPT_QFMT) {
1631 		if (sb_any_quota_loaded(sb) &&
1632 		    sbi->s_jquota_fmt != m->mount_opt) {
1633 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 				 "quota options when quota turned on");
1635 			return -1;
1636 		}
1637 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 					       EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 			ext4_msg(sb, KERN_ERR,
1640 				 "Cannot set journaled quota options "
1641 				 "when QUOTA feature is enabled");
1642 			return -1;
1643 		}
1644 		sbi->s_jquota_fmt = m->mount_opt;
1645 #endif
1646 #ifndef CONFIG_FS_DAX
1647 	} else if (token == Opt_dax) {
1648 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1649 		return -1;
1650 #endif
1651 	} else {
1652 		if (!args->from)
1653 			arg = 1;
1654 		if (m->flags & MOPT_CLEAR)
1655 			arg = !arg;
1656 		else if (unlikely(!(m->flags & MOPT_SET))) {
1657 			ext4_msg(sb, KERN_WARNING,
1658 				 "buggy handling of option %s", opt);
1659 			WARN_ON(1);
1660 			return -1;
1661 		}
1662 		if (arg != 0)
1663 			sbi->s_mount_opt |= m->mount_opt;
1664 		else
1665 			sbi->s_mount_opt &= ~m->mount_opt;
1666 	}
1667 	return 1;
1668 }
1669 
1670 static int parse_options(char *options, struct super_block *sb,
1671 			 unsigned long *journal_devnum,
1672 			 unsigned int *journal_ioprio,
1673 			 int is_remount)
1674 {
1675 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1676 	char *p;
1677 	substring_t args[MAX_OPT_ARGS];
1678 	int token;
1679 
1680 	if (!options)
1681 		return 1;
1682 
1683 	while ((p = strsep(&options, ",")) != NULL) {
1684 		if (!*p)
1685 			continue;
1686 		/*
1687 		 * Initialize args struct so we know whether arg was
1688 		 * found; some options take optional arguments.
1689 		 */
1690 		args[0].to = args[0].from = NULL;
1691 		token = match_token(p, tokens, args);
1692 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1693 				     journal_ioprio, is_remount) < 0)
1694 			return 0;
1695 	}
1696 #ifdef CONFIG_QUOTA
1697 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1698 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1699 		ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1700 			 "feature is enabled");
1701 		return 0;
1702 	}
1703 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1704 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1705 			clear_opt(sb, USRQUOTA);
1706 
1707 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1708 			clear_opt(sb, GRPQUOTA);
1709 
1710 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1711 			ext4_msg(sb, KERN_ERR, "old and new quota "
1712 					"format mixing");
1713 			return 0;
1714 		}
1715 
1716 		if (!sbi->s_jquota_fmt) {
1717 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1718 					"not specified");
1719 			return 0;
1720 		}
1721 	}
1722 #endif
1723 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1724 		int blocksize =
1725 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1726 
1727 		if (blocksize < PAGE_CACHE_SIZE) {
1728 			ext4_msg(sb, KERN_ERR, "can't mount with "
1729 				 "dioread_nolock if block size != PAGE_SIZE");
1730 			return 0;
1731 		}
1732 	}
1733 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1734 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1735 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1736 			 "in data=ordered mode");
1737 		return 0;
1738 	}
1739 	return 1;
1740 }
1741 
1742 static inline void ext4_show_quota_options(struct seq_file *seq,
1743 					   struct super_block *sb)
1744 {
1745 #if defined(CONFIG_QUOTA)
1746 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1747 
1748 	if (sbi->s_jquota_fmt) {
1749 		char *fmtname = "";
1750 
1751 		switch (sbi->s_jquota_fmt) {
1752 		case QFMT_VFS_OLD:
1753 			fmtname = "vfsold";
1754 			break;
1755 		case QFMT_VFS_V0:
1756 			fmtname = "vfsv0";
1757 			break;
1758 		case QFMT_VFS_V1:
1759 			fmtname = "vfsv1";
1760 			break;
1761 		}
1762 		seq_printf(seq, ",jqfmt=%s", fmtname);
1763 	}
1764 
1765 	if (sbi->s_qf_names[USRQUOTA])
1766 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1767 
1768 	if (sbi->s_qf_names[GRPQUOTA])
1769 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1770 #endif
1771 }
1772 
1773 static const char *token2str(int token)
1774 {
1775 	const struct match_token *t;
1776 
1777 	for (t = tokens; t->token != Opt_err; t++)
1778 		if (t->token == token && !strchr(t->pattern, '='))
1779 			break;
1780 	return t->pattern;
1781 }
1782 
1783 /*
1784  * Show an option if
1785  *  - it's set to a non-default value OR
1786  *  - if the per-sb default is different from the global default
1787  */
1788 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1789 			      int nodefs)
1790 {
1791 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1792 	struct ext4_super_block *es = sbi->s_es;
1793 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1794 	const struct mount_opts *m;
1795 	char sep = nodefs ? '\n' : ',';
1796 
1797 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1798 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1799 
1800 	if (sbi->s_sb_block != 1)
1801 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1802 
1803 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1804 		int want_set = m->flags & MOPT_SET;
1805 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1806 		    (m->flags & MOPT_CLEAR_ERR))
1807 			continue;
1808 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1809 			continue; /* skip if same as the default */
1810 		if ((want_set &&
1811 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1812 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1813 			continue; /* select Opt_noFoo vs Opt_Foo */
1814 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1815 	}
1816 
1817 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1818 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1819 		SEQ_OPTS_PRINT("resuid=%u",
1820 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1821 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1822 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1823 		SEQ_OPTS_PRINT("resgid=%u",
1824 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1825 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1826 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1827 		SEQ_OPTS_PUTS("errors=remount-ro");
1828 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1829 		SEQ_OPTS_PUTS("errors=continue");
1830 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1831 		SEQ_OPTS_PUTS("errors=panic");
1832 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1833 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1834 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1835 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1836 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1837 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1838 	if (sb->s_flags & MS_I_VERSION)
1839 		SEQ_OPTS_PUTS("i_version");
1840 	if (nodefs || sbi->s_stripe)
1841 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1842 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1843 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1844 			SEQ_OPTS_PUTS("data=journal");
1845 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1846 			SEQ_OPTS_PUTS("data=ordered");
1847 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1848 			SEQ_OPTS_PUTS("data=writeback");
1849 	}
1850 	if (nodefs ||
1851 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1852 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1853 			       sbi->s_inode_readahead_blks);
1854 
1855 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1856 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1857 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1858 	if (nodefs || sbi->s_max_dir_size_kb)
1859 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1860 
1861 	ext4_show_quota_options(seq, sb);
1862 	return 0;
1863 }
1864 
1865 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1866 {
1867 	return _ext4_show_options(seq, root->d_sb, 0);
1868 }
1869 
1870 static int options_seq_show(struct seq_file *seq, void *offset)
1871 {
1872 	struct super_block *sb = seq->private;
1873 	int rc;
1874 
1875 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1876 	rc = _ext4_show_options(seq, sb, 1);
1877 	seq_puts(seq, "\n");
1878 	return rc;
1879 }
1880 
1881 static int options_open_fs(struct inode *inode, struct file *file)
1882 {
1883 	return single_open(file, options_seq_show, PDE_DATA(inode));
1884 }
1885 
1886 static const struct file_operations ext4_seq_options_fops = {
1887 	.owner = THIS_MODULE,
1888 	.open = options_open_fs,
1889 	.read = seq_read,
1890 	.llseek = seq_lseek,
1891 	.release = single_release,
1892 };
1893 
1894 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1895 			    int read_only)
1896 {
1897 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1898 	int res = 0;
1899 
1900 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1901 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1902 			 "forcing read-only mode");
1903 		res = MS_RDONLY;
1904 	}
1905 	if (read_only)
1906 		goto done;
1907 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1908 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1909 			 "running e2fsck is recommended");
1910 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1911 		ext4_msg(sb, KERN_WARNING,
1912 			 "warning: mounting fs with errors, "
1913 			 "running e2fsck is recommended");
1914 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1915 		 le16_to_cpu(es->s_mnt_count) >=
1916 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1917 		ext4_msg(sb, KERN_WARNING,
1918 			 "warning: maximal mount count reached, "
1919 			 "running e2fsck is recommended");
1920 	else if (le32_to_cpu(es->s_checkinterval) &&
1921 		(le32_to_cpu(es->s_lastcheck) +
1922 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1923 		ext4_msg(sb, KERN_WARNING,
1924 			 "warning: checktime reached, "
1925 			 "running e2fsck is recommended");
1926 	if (!sbi->s_journal)
1927 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1928 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1929 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1930 	le16_add_cpu(&es->s_mnt_count, 1);
1931 	es->s_mtime = cpu_to_le32(get_seconds());
1932 	ext4_update_dynamic_rev(sb);
1933 	if (sbi->s_journal)
1934 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1935 
1936 	ext4_commit_super(sb, 1);
1937 done:
1938 	if (test_opt(sb, DEBUG))
1939 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1940 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1941 			sb->s_blocksize,
1942 			sbi->s_groups_count,
1943 			EXT4_BLOCKS_PER_GROUP(sb),
1944 			EXT4_INODES_PER_GROUP(sb),
1945 			sbi->s_mount_opt, sbi->s_mount_opt2);
1946 
1947 	cleancache_init_fs(sb);
1948 	return res;
1949 }
1950 
1951 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1952 {
1953 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1954 	struct flex_groups *new_groups;
1955 	int size;
1956 
1957 	if (!sbi->s_log_groups_per_flex)
1958 		return 0;
1959 
1960 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1961 	if (size <= sbi->s_flex_groups_allocated)
1962 		return 0;
1963 
1964 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1965 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1966 	if (!new_groups) {
1967 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1968 			 size / (int) sizeof(struct flex_groups));
1969 		return -ENOMEM;
1970 	}
1971 
1972 	if (sbi->s_flex_groups) {
1973 		memcpy(new_groups, sbi->s_flex_groups,
1974 		       (sbi->s_flex_groups_allocated *
1975 			sizeof(struct flex_groups)));
1976 		kvfree(sbi->s_flex_groups);
1977 	}
1978 	sbi->s_flex_groups = new_groups;
1979 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1980 	return 0;
1981 }
1982 
1983 static int ext4_fill_flex_info(struct super_block *sb)
1984 {
1985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 	struct ext4_group_desc *gdp = NULL;
1987 	ext4_group_t flex_group;
1988 	int i, err;
1989 
1990 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1991 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1992 		sbi->s_log_groups_per_flex = 0;
1993 		return 1;
1994 	}
1995 
1996 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1997 	if (err)
1998 		goto failed;
1999 
2000 	for (i = 0; i < sbi->s_groups_count; i++) {
2001 		gdp = ext4_get_group_desc(sb, i, NULL);
2002 
2003 		flex_group = ext4_flex_group(sbi, i);
2004 		atomic_add(ext4_free_inodes_count(sb, gdp),
2005 			   &sbi->s_flex_groups[flex_group].free_inodes);
2006 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2007 			     &sbi->s_flex_groups[flex_group].free_clusters);
2008 		atomic_add(ext4_used_dirs_count(sb, gdp),
2009 			   &sbi->s_flex_groups[flex_group].used_dirs);
2010 	}
2011 
2012 	return 1;
2013 failed:
2014 	return 0;
2015 }
2016 
2017 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2018 				   struct ext4_group_desc *gdp)
2019 {
2020 	int offset;
2021 	__u16 crc = 0;
2022 	__le32 le_group = cpu_to_le32(block_group);
2023 
2024 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2025 		/* Use new metadata_csum algorithm */
2026 		__le16 save_csum;
2027 		__u32 csum32;
2028 
2029 		save_csum = gdp->bg_checksum;
2030 		gdp->bg_checksum = 0;
2031 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2032 				     sizeof(le_group));
2033 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2034 				     sbi->s_desc_size);
2035 		gdp->bg_checksum = save_csum;
2036 
2037 		crc = csum32 & 0xFFFF;
2038 		goto out;
2039 	}
2040 
2041 	/* old crc16 code */
2042 	if (!(sbi->s_es->s_feature_ro_compat &
2043 	      cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2044 		return 0;
2045 
2046 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2047 
2048 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2049 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2050 	crc = crc16(crc, (__u8 *)gdp, offset);
2051 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2052 	/* for checksum of struct ext4_group_desc do the rest...*/
2053 	if ((sbi->s_es->s_feature_incompat &
2054 	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2055 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2056 		crc = crc16(crc, (__u8 *)gdp + offset,
2057 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2058 				offset);
2059 
2060 out:
2061 	return cpu_to_le16(crc);
2062 }
2063 
2064 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2065 				struct ext4_group_desc *gdp)
2066 {
2067 	if (ext4_has_group_desc_csum(sb) &&
2068 	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2069 						      block_group, gdp)))
2070 		return 0;
2071 
2072 	return 1;
2073 }
2074 
2075 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2076 			      struct ext4_group_desc *gdp)
2077 {
2078 	if (!ext4_has_group_desc_csum(sb))
2079 		return;
2080 	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2081 }
2082 
2083 /* Called at mount-time, super-block is locked */
2084 static int ext4_check_descriptors(struct super_block *sb,
2085 				  ext4_group_t *first_not_zeroed)
2086 {
2087 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2088 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2089 	ext4_fsblk_t last_block;
2090 	ext4_fsblk_t block_bitmap;
2091 	ext4_fsblk_t inode_bitmap;
2092 	ext4_fsblk_t inode_table;
2093 	int flexbg_flag = 0;
2094 	ext4_group_t i, grp = sbi->s_groups_count;
2095 
2096 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2097 		flexbg_flag = 1;
2098 
2099 	ext4_debug("Checking group descriptors");
2100 
2101 	for (i = 0; i < sbi->s_groups_count; i++) {
2102 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2103 
2104 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2105 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2106 		else
2107 			last_block = first_block +
2108 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2109 
2110 		if ((grp == sbi->s_groups_count) &&
2111 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2112 			grp = i;
2113 
2114 		block_bitmap = ext4_block_bitmap(sb, gdp);
2115 		if (block_bitmap < first_block || block_bitmap > last_block) {
2116 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 			       "Block bitmap for group %u not in group "
2118 			       "(block %llu)!", i, block_bitmap);
2119 			return 0;
2120 		}
2121 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2122 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2123 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 			       "Inode bitmap for group %u not in group "
2125 			       "(block %llu)!", i, inode_bitmap);
2126 			return 0;
2127 		}
2128 		inode_table = ext4_inode_table(sb, gdp);
2129 		if (inode_table < first_block ||
2130 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2131 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 			       "Inode table for group %u not in group "
2133 			       "(block %llu)!", i, inode_table);
2134 			return 0;
2135 		}
2136 		ext4_lock_group(sb, i);
2137 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2138 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2139 				 "Checksum for group %u failed (%u!=%u)",
2140 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2141 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2142 			if (!(sb->s_flags & MS_RDONLY)) {
2143 				ext4_unlock_group(sb, i);
2144 				return 0;
2145 			}
2146 		}
2147 		ext4_unlock_group(sb, i);
2148 		if (!flexbg_flag)
2149 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2150 	}
2151 	if (NULL != first_not_zeroed)
2152 		*first_not_zeroed = grp;
2153 	return 1;
2154 }
2155 
2156 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2157  * the superblock) which were deleted from all directories, but held open by
2158  * a process at the time of a crash.  We walk the list and try to delete these
2159  * inodes at recovery time (only with a read-write filesystem).
2160  *
2161  * In order to keep the orphan inode chain consistent during traversal (in
2162  * case of crash during recovery), we link each inode into the superblock
2163  * orphan list_head and handle it the same way as an inode deletion during
2164  * normal operation (which journals the operations for us).
2165  *
2166  * We only do an iget() and an iput() on each inode, which is very safe if we
2167  * accidentally point at an in-use or already deleted inode.  The worst that
2168  * can happen in this case is that we get a "bit already cleared" message from
2169  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2170  * e2fsck was run on this filesystem, and it must have already done the orphan
2171  * inode cleanup for us, so we can safely abort without any further action.
2172  */
2173 static void ext4_orphan_cleanup(struct super_block *sb,
2174 				struct ext4_super_block *es)
2175 {
2176 	unsigned int s_flags = sb->s_flags;
2177 	int nr_orphans = 0, nr_truncates = 0;
2178 #ifdef CONFIG_QUOTA
2179 	int i;
2180 #endif
2181 	if (!es->s_last_orphan) {
2182 		jbd_debug(4, "no orphan inodes to clean up\n");
2183 		return;
2184 	}
2185 
2186 	if (bdev_read_only(sb->s_bdev)) {
2187 		ext4_msg(sb, KERN_ERR, "write access "
2188 			"unavailable, skipping orphan cleanup");
2189 		return;
2190 	}
2191 
2192 	/* Check if feature set would not allow a r/w mount */
2193 	if (!ext4_feature_set_ok(sb, 0)) {
2194 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2195 			 "unknown ROCOMPAT features");
2196 		return;
2197 	}
2198 
2199 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2200 		/* don't clear list on RO mount w/ errors */
2201 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2202 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2203 				  "clearing orphan list.\n");
2204 			es->s_last_orphan = 0;
2205 		}
2206 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2207 		return;
2208 	}
2209 
2210 	if (s_flags & MS_RDONLY) {
2211 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2212 		sb->s_flags &= ~MS_RDONLY;
2213 	}
2214 #ifdef CONFIG_QUOTA
2215 	/* Needed for iput() to work correctly and not trash data */
2216 	sb->s_flags |= MS_ACTIVE;
2217 	/* Turn on quotas so that they are updated correctly */
2218 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2219 		if (EXT4_SB(sb)->s_qf_names[i]) {
2220 			int ret = ext4_quota_on_mount(sb, i);
2221 			if (ret < 0)
2222 				ext4_msg(sb, KERN_ERR,
2223 					"Cannot turn on journaled "
2224 					"quota: error %d", ret);
2225 		}
2226 	}
2227 #endif
2228 
2229 	while (es->s_last_orphan) {
2230 		struct inode *inode;
2231 
2232 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2233 		if (IS_ERR(inode)) {
2234 			es->s_last_orphan = 0;
2235 			break;
2236 		}
2237 
2238 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2239 		dquot_initialize(inode);
2240 		if (inode->i_nlink) {
2241 			if (test_opt(sb, DEBUG))
2242 				ext4_msg(sb, KERN_DEBUG,
2243 					"%s: truncating inode %lu to %lld bytes",
2244 					__func__, inode->i_ino, inode->i_size);
2245 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2246 				  inode->i_ino, inode->i_size);
2247 			mutex_lock(&inode->i_mutex);
2248 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2249 			ext4_truncate(inode);
2250 			mutex_unlock(&inode->i_mutex);
2251 			nr_truncates++;
2252 		} else {
2253 			if (test_opt(sb, DEBUG))
2254 				ext4_msg(sb, KERN_DEBUG,
2255 					"%s: deleting unreferenced inode %lu",
2256 					__func__, inode->i_ino);
2257 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2258 				  inode->i_ino);
2259 			nr_orphans++;
2260 		}
2261 		iput(inode);  /* The delete magic happens here! */
2262 	}
2263 
2264 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2265 
2266 	if (nr_orphans)
2267 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2268 		       PLURAL(nr_orphans));
2269 	if (nr_truncates)
2270 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2271 		       PLURAL(nr_truncates));
2272 #ifdef CONFIG_QUOTA
2273 	/* Turn quotas off */
2274 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2275 		if (sb_dqopt(sb)->files[i])
2276 			dquot_quota_off(sb, i);
2277 	}
2278 #endif
2279 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2280 }
2281 
2282 /*
2283  * Maximal extent format file size.
2284  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2285  * extent format containers, within a sector_t, and within i_blocks
2286  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2287  * so that won't be a limiting factor.
2288  *
2289  * However there is other limiting factor. We do store extents in the form
2290  * of starting block and length, hence the resulting length of the extent
2291  * covering maximum file size must fit into on-disk format containers as
2292  * well. Given that length is always by 1 unit bigger than max unit (because
2293  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2294  *
2295  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2296  */
2297 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2298 {
2299 	loff_t res;
2300 	loff_t upper_limit = MAX_LFS_FILESIZE;
2301 
2302 	/* small i_blocks in vfs inode? */
2303 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2304 		/*
2305 		 * CONFIG_LBDAF is not enabled implies the inode
2306 		 * i_block represent total blocks in 512 bytes
2307 		 * 32 == size of vfs inode i_blocks * 8
2308 		 */
2309 		upper_limit = (1LL << 32) - 1;
2310 
2311 		/* total blocks in file system block size */
2312 		upper_limit >>= (blkbits - 9);
2313 		upper_limit <<= blkbits;
2314 	}
2315 
2316 	/*
2317 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2318 	 * by one fs block, so ee_len can cover the extent of maximum file
2319 	 * size
2320 	 */
2321 	res = (1LL << 32) - 1;
2322 	res <<= blkbits;
2323 
2324 	/* Sanity check against vm- & vfs- imposed limits */
2325 	if (res > upper_limit)
2326 		res = upper_limit;
2327 
2328 	return res;
2329 }
2330 
2331 /*
2332  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2333  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2334  * We need to be 1 filesystem block less than the 2^48 sector limit.
2335  */
2336 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2337 {
2338 	loff_t res = EXT4_NDIR_BLOCKS;
2339 	int meta_blocks;
2340 	loff_t upper_limit;
2341 	/* This is calculated to be the largest file size for a dense, block
2342 	 * mapped file such that the file's total number of 512-byte sectors,
2343 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2344 	 *
2345 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2346 	 * number of 512-byte sectors of the file.
2347 	 */
2348 
2349 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2350 		/*
2351 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2352 		 * the inode i_block field represents total file blocks in
2353 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2354 		 */
2355 		upper_limit = (1LL << 32) - 1;
2356 
2357 		/* total blocks in file system block size */
2358 		upper_limit >>= (bits - 9);
2359 
2360 	} else {
2361 		/*
2362 		 * We use 48 bit ext4_inode i_blocks
2363 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2364 		 * represent total number of blocks in
2365 		 * file system block size
2366 		 */
2367 		upper_limit = (1LL << 48) - 1;
2368 
2369 	}
2370 
2371 	/* indirect blocks */
2372 	meta_blocks = 1;
2373 	/* double indirect blocks */
2374 	meta_blocks += 1 + (1LL << (bits-2));
2375 	/* tripple indirect blocks */
2376 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2377 
2378 	upper_limit -= meta_blocks;
2379 	upper_limit <<= bits;
2380 
2381 	res += 1LL << (bits-2);
2382 	res += 1LL << (2*(bits-2));
2383 	res += 1LL << (3*(bits-2));
2384 	res <<= bits;
2385 	if (res > upper_limit)
2386 		res = upper_limit;
2387 
2388 	if (res > MAX_LFS_FILESIZE)
2389 		res = MAX_LFS_FILESIZE;
2390 
2391 	return res;
2392 }
2393 
2394 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2395 				   ext4_fsblk_t logical_sb_block, int nr)
2396 {
2397 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2398 	ext4_group_t bg, first_meta_bg;
2399 	int has_super = 0;
2400 
2401 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2402 
2403 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2404 	    nr < first_meta_bg)
2405 		return logical_sb_block + nr + 1;
2406 	bg = sbi->s_desc_per_block * nr;
2407 	if (ext4_bg_has_super(sb, bg))
2408 		has_super = 1;
2409 
2410 	/*
2411 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2412 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2413 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2414 	 * compensate.
2415 	 */
2416 	if (sb->s_blocksize == 1024 && nr == 0 &&
2417 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2418 		has_super++;
2419 
2420 	return (has_super + ext4_group_first_block_no(sb, bg));
2421 }
2422 
2423 /**
2424  * ext4_get_stripe_size: Get the stripe size.
2425  * @sbi: In memory super block info
2426  *
2427  * If we have specified it via mount option, then
2428  * use the mount option value. If the value specified at mount time is
2429  * greater than the blocks per group use the super block value.
2430  * If the super block value is greater than blocks per group return 0.
2431  * Allocator needs it be less than blocks per group.
2432  *
2433  */
2434 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2435 {
2436 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2437 	unsigned long stripe_width =
2438 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2439 	int ret;
2440 
2441 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2442 		ret = sbi->s_stripe;
2443 	else if (stripe_width <= sbi->s_blocks_per_group)
2444 		ret = stripe_width;
2445 	else if (stride <= sbi->s_blocks_per_group)
2446 		ret = stride;
2447 	else
2448 		ret = 0;
2449 
2450 	/*
2451 	 * If the stripe width is 1, this makes no sense and
2452 	 * we set it to 0 to turn off stripe handling code.
2453 	 */
2454 	if (ret <= 1)
2455 		ret = 0;
2456 
2457 	return ret;
2458 }
2459 
2460 /* sysfs supprt */
2461 
2462 struct ext4_attr {
2463 	struct attribute attr;
2464 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2465 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2466 			 const char *, size_t);
2467 	union {
2468 		int offset;
2469 		int deprecated_val;
2470 	} u;
2471 };
2472 
2473 static int parse_strtoull(const char *buf,
2474 		unsigned long long max, unsigned long long *value)
2475 {
2476 	int ret;
2477 
2478 	ret = kstrtoull(skip_spaces(buf), 0, value);
2479 	if (!ret && *value > max)
2480 		ret = -EINVAL;
2481 	return ret;
2482 }
2483 
2484 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2485 					      struct ext4_sb_info *sbi,
2486 					      char *buf)
2487 {
2488 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2489 		(s64) EXT4_C2B(sbi,
2490 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2491 }
2492 
2493 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2494 					 struct ext4_sb_info *sbi, char *buf)
2495 {
2496 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2497 
2498 	if (!sb->s_bdev->bd_part)
2499 		return snprintf(buf, PAGE_SIZE, "0\n");
2500 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2501 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 			 sbi->s_sectors_written_start) >> 1);
2503 }
2504 
2505 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2506 					  struct ext4_sb_info *sbi, char *buf)
2507 {
2508 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2509 
2510 	if (!sb->s_bdev->bd_part)
2511 		return snprintf(buf, PAGE_SIZE, "0\n");
2512 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2513 			(unsigned long long)(sbi->s_kbytes_written +
2514 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2515 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2516 }
2517 
2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2519 					  struct ext4_sb_info *sbi,
2520 					  const char *buf, size_t count)
2521 {
2522 	unsigned long t;
2523 	int ret;
2524 
2525 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2526 	if (ret)
2527 		return ret;
2528 
2529 	if (t && (!is_power_of_2(t) || t > 0x40000000))
2530 		return -EINVAL;
2531 
2532 	sbi->s_inode_readahead_blks = t;
2533 	return count;
2534 }
2535 
2536 static ssize_t sbi_ui_show(struct ext4_attr *a,
2537 			   struct ext4_sb_info *sbi, char *buf)
2538 {
2539 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2540 
2541 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2542 }
2543 
2544 static ssize_t sbi_ui_store(struct ext4_attr *a,
2545 			    struct ext4_sb_info *sbi,
2546 			    const char *buf, size_t count)
2547 {
2548 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2549 	unsigned long t;
2550 	int ret;
2551 
2552 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2553 	if (ret)
2554 		return ret;
2555 	*ui = t;
2556 	return count;
2557 }
2558 
2559 static ssize_t es_ui_show(struct ext4_attr *a,
2560 			   struct ext4_sb_info *sbi, char *buf)
2561 {
2562 
2563 	unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2564 			   a->u.offset);
2565 
2566 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2567 }
2568 
2569 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2570 				  struct ext4_sb_info *sbi, char *buf)
2571 {
2572 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2573 		(unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2574 }
2575 
2576 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2577 				   struct ext4_sb_info *sbi,
2578 				   const char *buf, size_t count)
2579 {
2580 	unsigned long long val;
2581 	int ret;
2582 
2583 	if (parse_strtoull(buf, -1ULL, &val))
2584 		return -EINVAL;
2585 	ret = ext4_reserve_clusters(sbi, val);
2586 
2587 	return ret ? ret : count;
2588 }
2589 
2590 static ssize_t trigger_test_error(struct ext4_attr *a,
2591 				  struct ext4_sb_info *sbi,
2592 				  const char *buf, size_t count)
2593 {
2594 	int len = count;
2595 
2596 	if (!capable(CAP_SYS_ADMIN))
2597 		return -EPERM;
2598 
2599 	if (len && buf[len-1] == '\n')
2600 		len--;
2601 
2602 	if (len)
2603 		ext4_error(sbi->s_sb, "%.*s", len, buf);
2604 	return count;
2605 }
2606 
2607 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2608 				   struct ext4_sb_info *sbi, char *buf)
2609 {
2610 	return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2611 }
2612 
2613 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2614 static struct ext4_attr ext4_attr_##_name = {			\
2615 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2616 	.show	= _show,					\
2617 	.store	= _store,					\
2618 	.u = {							\
2619 		.offset = offsetof(struct ext4_sb_info, _elname),\
2620 	},							\
2621 }
2622 
2623 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname)		\
2624 static struct ext4_attr ext4_attr_##_name = {				\
2625 	.attr = {.name = __stringify(_name), .mode = _mode },		\
2626 	.show	= _show,						\
2627 	.store	= _store,						\
2628 	.u = {								\
2629 		.offset = offsetof(struct ext4_super_block, _elname),	\
2630 	},								\
2631 }
2632 
2633 #define EXT4_ATTR(name, mode, show, store) \
2634 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2635 
2636 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2637 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2638 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2639 
2640 #define EXT4_RO_ATTR_ES_UI(name, elname)	\
2641 	EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2642 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2643 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2644 
2645 #define ATTR_LIST(name) &ext4_attr_##name.attr
2646 #define EXT4_DEPRECATED_ATTR(_name, _val)	\
2647 static struct ext4_attr ext4_attr_##_name = {			\
2648 	.attr = {.name = __stringify(_name), .mode = 0444 },	\
2649 	.show	= sbi_deprecated_show,				\
2650 	.u = {							\
2651 		.deprecated_val = _val,				\
2652 	},							\
2653 }
2654 
2655 EXT4_RO_ATTR(delayed_allocation_blocks);
2656 EXT4_RO_ATTR(session_write_kbytes);
2657 EXT4_RO_ATTR(lifetime_write_kbytes);
2658 EXT4_RW_ATTR(reserved_clusters);
2659 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2660 		 inode_readahead_blks_store, s_inode_readahead_blks);
2661 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2662 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2663 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2664 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2665 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2666 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2667 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2668 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2669 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2670 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2671 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2672 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2673 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2674 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2675 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2676 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2677 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2678 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2679 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2680 
2681 static struct attribute *ext4_attrs[] = {
2682 	ATTR_LIST(delayed_allocation_blocks),
2683 	ATTR_LIST(session_write_kbytes),
2684 	ATTR_LIST(lifetime_write_kbytes),
2685 	ATTR_LIST(reserved_clusters),
2686 	ATTR_LIST(inode_readahead_blks),
2687 	ATTR_LIST(inode_goal),
2688 	ATTR_LIST(mb_stats),
2689 	ATTR_LIST(mb_max_to_scan),
2690 	ATTR_LIST(mb_min_to_scan),
2691 	ATTR_LIST(mb_order2_req),
2692 	ATTR_LIST(mb_stream_req),
2693 	ATTR_LIST(mb_group_prealloc),
2694 	ATTR_LIST(max_writeback_mb_bump),
2695 	ATTR_LIST(extent_max_zeroout_kb),
2696 	ATTR_LIST(trigger_fs_error),
2697 	ATTR_LIST(err_ratelimit_interval_ms),
2698 	ATTR_LIST(err_ratelimit_burst),
2699 	ATTR_LIST(warning_ratelimit_interval_ms),
2700 	ATTR_LIST(warning_ratelimit_burst),
2701 	ATTR_LIST(msg_ratelimit_interval_ms),
2702 	ATTR_LIST(msg_ratelimit_burst),
2703 	ATTR_LIST(errors_count),
2704 	ATTR_LIST(first_error_time),
2705 	ATTR_LIST(last_error_time),
2706 	NULL,
2707 };
2708 
2709 /* Features this copy of ext4 supports */
2710 EXT4_INFO_ATTR(lazy_itable_init);
2711 EXT4_INFO_ATTR(batched_discard);
2712 EXT4_INFO_ATTR(meta_bg_resize);
2713 EXT4_INFO_ATTR(encryption);
2714 
2715 static struct attribute *ext4_feat_attrs[] = {
2716 	ATTR_LIST(lazy_itable_init),
2717 	ATTR_LIST(batched_discard),
2718 	ATTR_LIST(meta_bg_resize),
2719 	ATTR_LIST(encryption),
2720 	NULL,
2721 };
2722 
2723 static ssize_t ext4_attr_show(struct kobject *kobj,
2724 			      struct attribute *attr, char *buf)
2725 {
2726 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2727 						s_kobj);
2728 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2729 
2730 	return a->show ? a->show(a, sbi, buf) : 0;
2731 }
2732 
2733 static ssize_t ext4_attr_store(struct kobject *kobj,
2734 			       struct attribute *attr,
2735 			       const char *buf, size_t len)
2736 {
2737 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2738 						s_kobj);
2739 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2740 
2741 	return a->store ? a->store(a, sbi, buf, len) : 0;
2742 }
2743 
2744 static void ext4_sb_release(struct kobject *kobj)
2745 {
2746 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2747 						s_kobj);
2748 	complete(&sbi->s_kobj_unregister);
2749 }
2750 
2751 static const struct sysfs_ops ext4_attr_ops = {
2752 	.show	= ext4_attr_show,
2753 	.store	= ext4_attr_store,
2754 };
2755 
2756 static struct kobj_type ext4_ktype = {
2757 	.default_attrs	= ext4_attrs,
2758 	.sysfs_ops	= &ext4_attr_ops,
2759 	.release	= ext4_sb_release,
2760 };
2761 
2762 static void ext4_feat_release(struct kobject *kobj)
2763 {
2764 	complete(&ext4_feat->f_kobj_unregister);
2765 }
2766 
2767 static ssize_t ext4_feat_show(struct kobject *kobj,
2768 			      struct attribute *attr, char *buf)
2769 {
2770 	return snprintf(buf, PAGE_SIZE, "supported\n");
2771 }
2772 
2773 /*
2774  * We can not use ext4_attr_show/store because it relies on the kobject
2775  * being embedded in the ext4_sb_info structure which is definitely not
2776  * true in this case.
2777  */
2778 static const struct sysfs_ops ext4_feat_ops = {
2779 	.show	= ext4_feat_show,
2780 	.store	= NULL,
2781 };
2782 
2783 static struct kobj_type ext4_feat_ktype = {
2784 	.default_attrs	= ext4_feat_attrs,
2785 	.sysfs_ops	= &ext4_feat_ops,
2786 	.release	= ext4_feat_release,
2787 };
2788 
2789 /*
2790  * Check whether this filesystem can be mounted based on
2791  * the features present and the RDONLY/RDWR mount requested.
2792  * Returns 1 if this filesystem can be mounted as requested,
2793  * 0 if it cannot be.
2794  */
2795 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2796 {
2797 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2798 		ext4_msg(sb, KERN_ERR,
2799 			"Couldn't mount because of "
2800 			"unsupported optional features (%x)",
2801 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2802 			~EXT4_FEATURE_INCOMPAT_SUPP));
2803 		return 0;
2804 	}
2805 
2806 	if (readonly)
2807 		return 1;
2808 
2809 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2810 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2811 		sb->s_flags |= MS_RDONLY;
2812 		return 1;
2813 	}
2814 
2815 	/* Check that feature set is OK for a read-write mount */
2816 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2817 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2818 			 "unsupported optional features (%x)",
2819 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2820 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2821 		return 0;
2822 	}
2823 	/*
2824 	 * Large file size enabled file system can only be mounted
2825 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2826 	 */
2827 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2828 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2829 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2830 				 "cannot be mounted RDWR without "
2831 				 "CONFIG_LBDAF");
2832 			return 0;
2833 		}
2834 	}
2835 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2836 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2837 		ext4_msg(sb, KERN_ERR,
2838 			 "Can't support bigalloc feature without "
2839 			 "extents feature\n");
2840 		return 0;
2841 	}
2842 
2843 #ifndef CONFIG_QUOTA
2844 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2845 	    !readonly) {
2846 		ext4_msg(sb, KERN_ERR,
2847 			 "Filesystem with quota feature cannot be mounted RDWR "
2848 			 "without CONFIG_QUOTA");
2849 		return 0;
2850 	}
2851 #endif  /* CONFIG_QUOTA */
2852 	return 1;
2853 }
2854 
2855 /*
2856  * This function is called once a day if we have errors logged
2857  * on the file system
2858  */
2859 static void print_daily_error_info(unsigned long arg)
2860 {
2861 	struct super_block *sb = (struct super_block *) arg;
2862 	struct ext4_sb_info *sbi;
2863 	struct ext4_super_block *es;
2864 
2865 	sbi = EXT4_SB(sb);
2866 	es = sbi->s_es;
2867 
2868 	if (es->s_error_count)
2869 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2870 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2871 			 le32_to_cpu(es->s_error_count));
2872 	if (es->s_first_error_time) {
2873 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2874 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2875 		       (int) sizeof(es->s_first_error_func),
2876 		       es->s_first_error_func,
2877 		       le32_to_cpu(es->s_first_error_line));
2878 		if (es->s_first_error_ino)
2879 			printk(": inode %u",
2880 			       le32_to_cpu(es->s_first_error_ino));
2881 		if (es->s_first_error_block)
2882 			printk(": block %llu", (unsigned long long)
2883 			       le64_to_cpu(es->s_first_error_block));
2884 		printk("\n");
2885 	}
2886 	if (es->s_last_error_time) {
2887 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2888 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2889 		       (int) sizeof(es->s_last_error_func),
2890 		       es->s_last_error_func,
2891 		       le32_to_cpu(es->s_last_error_line));
2892 		if (es->s_last_error_ino)
2893 			printk(": inode %u",
2894 			       le32_to_cpu(es->s_last_error_ino));
2895 		if (es->s_last_error_block)
2896 			printk(": block %llu", (unsigned long long)
2897 			       le64_to_cpu(es->s_last_error_block));
2898 		printk("\n");
2899 	}
2900 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2901 }
2902 
2903 /* Find next suitable group and run ext4_init_inode_table */
2904 static int ext4_run_li_request(struct ext4_li_request *elr)
2905 {
2906 	struct ext4_group_desc *gdp = NULL;
2907 	ext4_group_t group, ngroups;
2908 	struct super_block *sb;
2909 	unsigned long timeout = 0;
2910 	int ret = 0;
2911 
2912 	sb = elr->lr_super;
2913 	ngroups = EXT4_SB(sb)->s_groups_count;
2914 
2915 	sb_start_write(sb);
2916 	for (group = elr->lr_next_group; group < ngroups; group++) {
2917 		gdp = ext4_get_group_desc(sb, group, NULL);
2918 		if (!gdp) {
2919 			ret = 1;
2920 			break;
2921 		}
2922 
2923 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2924 			break;
2925 	}
2926 
2927 	if (group >= ngroups)
2928 		ret = 1;
2929 
2930 	if (!ret) {
2931 		timeout = jiffies;
2932 		ret = ext4_init_inode_table(sb, group,
2933 					    elr->lr_timeout ? 0 : 1);
2934 		if (elr->lr_timeout == 0) {
2935 			timeout = (jiffies - timeout) *
2936 				  elr->lr_sbi->s_li_wait_mult;
2937 			elr->lr_timeout = timeout;
2938 		}
2939 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2940 		elr->lr_next_group = group + 1;
2941 	}
2942 	sb_end_write(sb);
2943 
2944 	return ret;
2945 }
2946 
2947 /*
2948  * Remove lr_request from the list_request and free the
2949  * request structure. Should be called with li_list_mtx held
2950  */
2951 static void ext4_remove_li_request(struct ext4_li_request *elr)
2952 {
2953 	struct ext4_sb_info *sbi;
2954 
2955 	if (!elr)
2956 		return;
2957 
2958 	sbi = elr->lr_sbi;
2959 
2960 	list_del(&elr->lr_request);
2961 	sbi->s_li_request = NULL;
2962 	kfree(elr);
2963 }
2964 
2965 static void ext4_unregister_li_request(struct super_block *sb)
2966 {
2967 	mutex_lock(&ext4_li_mtx);
2968 	if (!ext4_li_info) {
2969 		mutex_unlock(&ext4_li_mtx);
2970 		return;
2971 	}
2972 
2973 	mutex_lock(&ext4_li_info->li_list_mtx);
2974 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2975 	mutex_unlock(&ext4_li_info->li_list_mtx);
2976 	mutex_unlock(&ext4_li_mtx);
2977 }
2978 
2979 static struct task_struct *ext4_lazyinit_task;
2980 
2981 /*
2982  * This is the function where ext4lazyinit thread lives. It walks
2983  * through the request list searching for next scheduled filesystem.
2984  * When such a fs is found, run the lazy initialization request
2985  * (ext4_rn_li_request) and keep track of the time spend in this
2986  * function. Based on that time we compute next schedule time of
2987  * the request. When walking through the list is complete, compute
2988  * next waking time and put itself into sleep.
2989  */
2990 static int ext4_lazyinit_thread(void *arg)
2991 {
2992 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2993 	struct list_head *pos, *n;
2994 	struct ext4_li_request *elr;
2995 	unsigned long next_wakeup, cur;
2996 
2997 	BUG_ON(NULL == eli);
2998 
2999 cont_thread:
3000 	while (true) {
3001 		next_wakeup = MAX_JIFFY_OFFSET;
3002 
3003 		mutex_lock(&eli->li_list_mtx);
3004 		if (list_empty(&eli->li_request_list)) {
3005 			mutex_unlock(&eli->li_list_mtx);
3006 			goto exit_thread;
3007 		}
3008 
3009 		list_for_each_safe(pos, n, &eli->li_request_list) {
3010 			elr = list_entry(pos, struct ext4_li_request,
3011 					 lr_request);
3012 
3013 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
3014 				if (ext4_run_li_request(elr) != 0) {
3015 					/* error, remove the lazy_init job */
3016 					ext4_remove_li_request(elr);
3017 					continue;
3018 				}
3019 			}
3020 
3021 			if (time_before(elr->lr_next_sched, next_wakeup))
3022 				next_wakeup = elr->lr_next_sched;
3023 		}
3024 		mutex_unlock(&eli->li_list_mtx);
3025 
3026 		try_to_freeze();
3027 
3028 		cur = jiffies;
3029 		if ((time_after_eq(cur, next_wakeup)) ||
3030 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3031 			cond_resched();
3032 			continue;
3033 		}
3034 
3035 		schedule_timeout_interruptible(next_wakeup - cur);
3036 
3037 		if (kthread_should_stop()) {
3038 			ext4_clear_request_list();
3039 			goto exit_thread;
3040 		}
3041 	}
3042 
3043 exit_thread:
3044 	/*
3045 	 * It looks like the request list is empty, but we need
3046 	 * to check it under the li_list_mtx lock, to prevent any
3047 	 * additions into it, and of course we should lock ext4_li_mtx
3048 	 * to atomically free the list and ext4_li_info, because at
3049 	 * this point another ext4 filesystem could be registering
3050 	 * new one.
3051 	 */
3052 	mutex_lock(&ext4_li_mtx);
3053 	mutex_lock(&eli->li_list_mtx);
3054 	if (!list_empty(&eli->li_request_list)) {
3055 		mutex_unlock(&eli->li_list_mtx);
3056 		mutex_unlock(&ext4_li_mtx);
3057 		goto cont_thread;
3058 	}
3059 	mutex_unlock(&eli->li_list_mtx);
3060 	kfree(ext4_li_info);
3061 	ext4_li_info = NULL;
3062 	mutex_unlock(&ext4_li_mtx);
3063 
3064 	return 0;
3065 }
3066 
3067 static void ext4_clear_request_list(void)
3068 {
3069 	struct list_head *pos, *n;
3070 	struct ext4_li_request *elr;
3071 
3072 	mutex_lock(&ext4_li_info->li_list_mtx);
3073 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3074 		elr = list_entry(pos, struct ext4_li_request,
3075 				 lr_request);
3076 		ext4_remove_li_request(elr);
3077 	}
3078 	mutex_unlock(&ext4_li_info->li_list_mtx);
3079 }
3080 
3081 static int ext4_run_lazyinit_thread(void)
3082 {
3083 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3084 					 ext4_li_info, "ext4lazyinit");
3085 	if (IS_ERR(ext4_lazyinit_task)) {
3086 		int err = PTR_ERR(ext4_lazyinit_task);
3087 		ext4_clear_request_list();
3088 		kfree(ext4_li_info);
3089 		ext4_li_info = NULL;
3090 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3091 				 "initialization thread\n",
3092 				 err);
3093 		return err;
3094 	}
3095 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3096 	return 0;
3097 }
3098 
3099 /*
3100  * Check whether it make sense to run itable init. thread or not.
3101  * If there is at least one uninitialized inode table, return
3102  * corresponding group number, else the loop goes through all
3103  * groups and return total number of groups.
3104  */
3105 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3106 {
3107 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3108 	struct ext4_group_desc *gdp = NULL;
3109 
3110 	for (group = 0; group < ngroups; group++) {
3111 		gdp = ext4_get_group_desc(sb, group, NULL);
3112 		if (!gdp)
3113 			continue;
3114 
3115 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3116 			break;
3117 	}
3118 
3119 	return group;
3120 }
3121 
3122 static int ext4_li_info_new(void)
3123 {
3124 	struct ext4_lazy_init *eli = NULL;
3125 
3126 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3127 	if (!eli)
3128 		return -ENOMEM;
3129 
3130 	INIT_LIST_HEAD(&eli->li_request_list);
3131 	mutex_init(&eli->li_list_mtx);
3132 
3133 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3134 
3135 	ext4_li_info = eli;
3136 
3137 	return 0;
3138 }
3139 
3140 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3141 					    ext4_group_t start)
3142 {
3143 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3144 	struct ext4_li_request *elr;
3145 
3146 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3147 	if (!elr)
3148 		return NULL;
3149 
3150 	elr->lr_super = sb;
3151 	elr->lr_sbi = sbi;
3152 	elr->lr_next_group = start;
3153 
3154 	/*
3155 	 * Randomize first schedule time of the request to
3156 	 * spread the inode table initialization requests
3157 	 * better.
3158 	 */
3159 	elr->lr_next_sched = jiffies + (prandom_u32() %
3160 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3161 	return elr;
3162 }
3163 
3164 int ext4_register_li_request(struct super_block *sb,
3165 			     ext4_group_t first_not_zeroed)
3166 {
3167 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 	struct ext4_li_request *elr = NULL;
3169 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3170 	int ret = 0;
3171 
3172 	mutex_lock(&ext4_li_mtx);
3173 	if (sbi->s_li_request != NULL) {
3174 		/*
3175 		 * Reset timeout so it can be computed again, because
3176 		 * s_li_wait_mult might have changed.
3177 		 */
3178 		sbi->s_li_request->lr_timeout = 0;
3179 		goto out;
3180 	}
3181 
3182 	if (first_not_zeroed == ngroups ||
3183 	    (sb->s_flags & MS_RDONLY) ||
3184 	    !test_opt(sb, INIT_INODE_TABLE))
3185 		goto out;
3186 
3187 	elr = ext4_li_request_new(sb, first_not_zeroed);
3188 	if (!elr) {
3189 		ret = -ENOMEM;
3190 		goto out;
3191 	}
3192 
3193 	if (NULL == ext4_li_info) {
3194 		ret = ext4_li_info_new();
3195 		if (ret)
3196 			goto out;
3197 	}
3198 
3199 	mutex_lock(&ext4_li_info->li_list_mtx);
3200 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3201 	mutex_unlock(&ext4_li_info->li_list_mtx);
3202 
3203 	sbi->s_li_request = elr;
3204 	/*
3205 	 * set elr to NULL here since it has been inserted to
3206 	 * the request_list and the removal and free of it is
3207 	 * handled by ext4_clear_request_list from now on.
3208 	 */
3209 	elr = NULL;
3210 
3211 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3212 		ret = ext4_run_lazyinit_thread();
3213 		if (ret)
3214 			goto out;
3215 	}
3216 out:
3217 	mutex_unlock(&ext4_li_mtx);
3218 	if (ret)
3219 		kfree(elr);
3220 	return ret;
3221 }
3222 
3223 /*
3224  * We do not need to lock anything since this is called on
3225  * module unload.
3226  */
3227 static void ext4_destroy_lazyinit_thread(void)
3228 {
3229 	/*
3230 	 * If thread exited earlier
3231 	 * there's nothing to be done.
3232 	 */
3233 	if (!ext4_li_info || !ext4_lazyinit_task)
3234 		return;
3235 
3236 	kthread_stop(ext4_lazyinit_task);
3237 }
3238 
3239 static int set_journal_csum_feature_set(struct super_block *sb)
3240 {
3241 	int ret = 1;
3242 	int compat, incompat;
3243 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3244 
3245 	if (ext4_has_metadata_csum(sb)) {
3246 		/* journal checksum v3 */
3247 		compat = 0;
3248 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3249 	} else {
3250 		/* journal checksum v1 */
3251 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3252 		incompat = 0;
3253 	}
3254 
3255 	jbd2_journal_clear_features(sbi->s_journal,
3256 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3257 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3258 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3259 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3260 		ret = jbd2_journal_set_features(sbi->s_journal,
3261 				compat, 0,
3262 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3263 				incompat);
3264 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3265 		ret = jbd2_journal_set_features(sbi->s_journal,
3266 				compat, 0,
3267 				incompat);
3268 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3269 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3270 	} else {
3271 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3272 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3273 	}
3274 
3275 	return ret;
3276 }
3277 
3278 /*
3279  * Note: calculating the overhead so we can be compatible with
3280  * historical BSD practice is quite difficult in the face of
3281  * clusters/bigalloc.  This is because multiple metadata blocks from
3282  * different block group can end up in the same allocation cluster.
3283  * Calculating the exact overhead in the face of clustered allocation
3284  * requires either O(all block bitmaps) in memory or O(number of block
3285  * groups**2) in time.  We will still calculate the superblock for
3286  * older file systems --- and if we come across with a bigalloc file
3287  * system with zero in s_overhead_clusters the estimate will be close to
3288  * correct especially for very large cluster sizes --- but for newer
3289  * file systems, it's better to calculate this figure once at mkfs
3290  * time, and store it in the superblock.  If the superblock value is
3291  * present (even for non-bigalloc file systems), we will use it.
3292  */
3293 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3294 			  char *buf)
3295 {
3296 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3297 	struct ext4_group_desc	*gdp;
3298 	ext4_fsblk_t		first_block, last_block, b;
3299 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3300 	int			s, j, count = 0;
3301 
3302 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3303 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3304 			sbi->s_itb_per_group + 2);
3305 
3306 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3307 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3308 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3309 	for (i = 0; i < ngroups; i++) {
3310 		gdp = ext4_get_group_desc(sb, i, NULL);
3311 		b = ext4_block_bitmap(sb, gdp);
3312 		if (b >= first_block && b <= last_block) {
3313 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3314 			count++;
3315 		}
3316 		b = ext4_inode_bitmap(sb, gdp);
3317 		if (b >= first_block && b <= last_block) {
3318 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3319 			count++;
3320 		}
3321 		b = ext4_inode_table(sb, gdp);
3322 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3323 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3324 				int c = EXT4_B2C(sbi, b - first_block);
3325 				ext4_set_bit(c, buf);
3326 				count++;
3327 			}
3328 		if (i != grp)
3329 			continue;
3330 		s = 0;
3331 		if (ext4_bg_has_super(sb, grp)) {
3332 			ext4_set_bit(s++, buf);
3333 			count++;
3334 		}
3335 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3336 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3337 			count++;
3338 		}
3339 	}
3340 	if (!count)
3341 		return 0;
3342 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3343 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3344 }
3345 
3346 /*
3347  * Compute the overhead and stash it in sbi->s_overhead
3348  */
3349 int ext4_calculate_overhead(struct super_block *sb)
3350 {
3351 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3352 	struct ext4_super_block *es = sbi->s_es;
3353 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3354 	ext4_fsblk_t overhead = 0;
3355 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3356 
3357 	if (!buf)
3358 		return -ENOMEM;
3359 
3360 	/*
3361 	 * Compute the overhead (FS structures).  This is constant
3362 	 * for a given filesystem unless the number of block groups
3363 	 * changes so we cache the previous value until it does.
3364 	 */
3365 
3366 	/*
3367 	 * All of the blocks before first_data_block are overhead
3368 	 */
3369 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3370 
3371 	/*
3372 	 * Add the overhead found in each block group
3373 	 */
3374 	for (i = 0; i < ngroups; i++) {
3375 		int blks;
3376 
3377 		blks = count_overhead(sb, i, buf);
3378 		overhead += blks;
3379 		if (blks)
3380 			memset(buf, 0, PAGE_SIZE);
3381 		cond_resched();
3382 	}
3383 	/* Add the internal journal blocks as well */
3384 	if (sbi->s_journal && !sbi->journal_bdev)
3385 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3386 
3387 	sbi->s_overhead = overhead;
3388 	smp_wmb();
3389 	free_page((unsigned long) buf);
3390 	return 0;
3391 }
3392 
3393 
3394 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3395 {
3396 	ext4_fsblk_t resv_clusters;
3397 
3398 	/*
3399 	 * There's no need to reserve anything when we aren't using extents.
3400 	 * The space estimates are exact, there are no unwritten extents,
3401 	 * hole punching doesn't need new metadata... This is needed especially
3402 	 * to keep ext2/3 backward compatibility.
3403 	 */
3404 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3405 		return 0;
3406 	/*
3407 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3408 	 * This should cover the situations where we can not afford to run
3409 	 * out of space like for example punch hole, or converting
3410 	 * unwritten extents in delalloc path. In most cases such
3411 	 * allocation would require 1, or 2 blocks, higher numbers are
3412 	 * very rare.
3413 	 */
3414 	resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3415 			EXT4_SB(sb)->s_cluster_bits;
3416 
3417 	do_div(resv_clusters, 50);
3418 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3419 
3420 	return resv_clusters;
3421 }
3422 
3423 
3424 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3425 {
3426 	ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3427 				sbi->s_cluster_bits;
3428 
3429 	if (count >= clusters)
3430 		return -EINVAL;
3431 
3432 	atomic64_set(&sbi->s_resv_clusters, count);
3433 	return 0;
3434 }
3435 
3436 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3437 {
3438 	char *orig_data = kstrdup(data, GFP_KERNEL);
3439 	struct buffer_head *bh;
3440 	struct ext4_super_block *es = NULL;
3441 	struct ext4_sb_info *sbi;
3442 	ext4_fsblk_t block;
3443 	ext4_fsblk_t sb_block = get_sb_block(&data);
3444 	ext4_fsblk_t logical_sb_block;
3445 	unsigned long offset = 0;
3446 	unsigned long journal_devnum = 0;
3447 	unsigned long def_mount_opts;
3448 	struct inode *root;
3449 	const char *descr;
3450 	int ret = -ENOMEM;
3451 	int blocksize, clustersize;
3452 	unsigned int db_count;
3453 	unsigned int i;
3454 	int needs_recovery, has_huge_files, has_bigalloc;
3455 	__u64 blocks_count;
3456 	int err = 0;
3457 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3458 	ext4_group_t first_not_zeroed;
3459 
3460 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3461 	if (!sbi)
3462 		goto out_free_orig;
3463 
3464 	sbi->s_blockgroup_lock =
3465 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3466 	if (!sbi->s_blockgroup_lock) {
3467 		kfree(sbi);
3468 		goto out_free_orig;
3469 	}
3470 	sb->s_fs_info = sbi;
3471 	sbi->s_sb = sb;
3472 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3473 	sbi->s_sb_block = sb_block;
3474 	if (sb->s_bdev->bd_part)
3475 		sbi->s_sectors_written_start =
3476 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3477 
3478 	/* Cleanup superblock name */
3479 	strreplace(sb->s_id, '/', '!');
3480 
3481 	/* -EINVAL is default */
3482 	ret = -EINVAL;
3483 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3484 	if (!blocksize) {
3485 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3486 		goto out_fail;
3487 	}
3488 
3489 	/*
3490 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3491 	 * block sizes.  We need to calculate the offset from buffer start.
3492 	 */
3493 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3494 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3495 		offset = do_div(logical_sb_block, blocksize);
3496 	} else {
3497 		logical_sb_block = sb_block;
3498 	}
3499 
3500 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3501 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3502 		goto out_fail;
3503 	}
3504 	/*
3505 	 * Note: s_es must be initialized as soon as possible because
3506 	 *       some ext4 macro-instructions depend on its value
3507 	 */
3508 	es = (struct ext4_super_block *) (bh->b_data + offset);
3509 	sbi->s_es = es;
3510 	sb->s_magic = le16_to_cpu(es->s_magic);
3511 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3512 		goto cantfind_ext4;
3513 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3514 
3515 	/* Warn if metadata_csum and gdt_csum are both set. */
3516 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3517 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3518 	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3519 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3520 			     "redundant flags; please run fsck.");
3521 
3522 	/* Check for a known checksum algorithm */
3523 	if (!ext4_verify_csum_type(sb, es)) {
3524 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3525 			 "unknown checksum algorithm.");
3526 		silent = 1;
3527 		goto cantfind_ext4;
3528 	}
3529 
3530 	/* Load the checksum driver */
3531 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3532 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3533 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3534 		if (IS_ERR(sbi->s_chksum_driver)) {
3535 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3536 			ret = PTR_ERR(sbi->s_chksum_driver);
3537 			sbi->s_chksum_driver = NULL;
3538 			goto failed_mount;
3539 		}
3540 	}
3541 
3542 	/* Check superblock checksum */
3543 	if (!ext4_superblock_csum_verify(sb, es)) {
3544 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3545 			 "invalid superblock checksum.  Run e2fsck?");
3546 		silent = 1;
3547 		goto cantfind_ext4;
3548 	}
3549 
3550 	/* Precompute checksum seed for all metadata */
3551 	if (ext4_has_metadata_csum(sb))
3552 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3553 					       sizeof(es->s_uuid));
3554 
3555 	/* Set defaults before we parse the mount options */
3556 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3557 	set_opt(sb, INIT_INODE_TABLE);
3558 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3559 		set_opt(sb, DEBUG);
3560 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3561 		set_opt(sb, GRPID);
3562 	if (def_mount_opts & EXT4_DEFM_UID16)
3563 		set_opt(sb, NO_UID32);
3564 	/* xattr user namespace & acls are now defaulted on */
3565 	set_opt(sb, XATTR_USER);
3566 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3567 	set_opt(sb, POSIX_ACL);
3568 #endif
3569 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3570 	if (ext4_has_metadata_csum(sb))
3571 		set_opt(sb, JOURNAL_CHECKSUM);
3572 
3573 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3574 		set_opt(sb, JOURNAL_DATA);
3575 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3576 		set_opt(sb, ORDERED_DATA);
3577 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3578 		set_opt(sb, WRITEBACK_DATA);
3579 
3580 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3581 		set_opt(sb, ERRORS_PANIC);
3582 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3583 		set_opt(sb, ERRORS_CONT);
3584 	else
3585 		set_opt(sb, ERRORS_RO);
3586 	/* block_validity enabled by default; disable with noblock_validity */
3587 	set_opt(sb, BLOCK_VALIDITY);
3588 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3589 		set_opt(sb, DISCARD);
3590 
3591 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3592 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3593 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3594 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3595 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3596 
3597 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3598 		set_opt(sb, BARRIER);
3599 
3600 	/*
3601 	 * enable delayed allocation by default
3602 	 * Use -o nodelalloc to turn it off
3603 	 */
3604 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3605 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3606 		set_opt(sb, DELALLOC);
3607 
3608 	/*
3609 	 * set default s_li_wait_mult for lazyinit, for the case there is
3610 	 * no mount option specified.
3611 	 */
3612 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3613 
3614 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3615 			   &journal_devnum, &journal_ioprio, 0)) {
3616 		ext4_msg(sb, KERN_WARNING,
3617 			 "failed to parse options in superblock: %s",
3618 			 sbi->s_es->s_mount_opts);
3619 	}
3620 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3621 	if (!parse_options((char *) data, sb, &journal_devnum,
3622 			   &journal_ioprio, 0))
3623 		goto failed_mount;
3624 
3625 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3626 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3627 			    "with data=journal disables delayed "
3628 			    "allocation and O_DIRECT support!\n");
3629 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3630 			ext4_msg(sb, KERN_ERR, "can't mount with "
3631 				 "both data=journal and delalloc");
3632 			goto failed_mount;
3633 		}
3634 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3635 			ext4_msg(sb, KERN_ERR, "can't mount with "
3636 				 "both data=journal and dioread_nolock");
3637 			goto failed_mount;
3638 		}
3639 		if (test_opt(sb, DAX)) {
3640 			ext4_msg(sb, KERN_ERR, "can't mount with "
3641 				 "both data=journal and dax");
3642 			goto failed_mount;
3643 		}
3644 		if (test_opt(sb, DELALLOC))
3645 			clear_opt(sb, DELALLOC);
3646 	}
3647 
3648 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3649 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3650 
3651 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3652 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3653 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3654 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3655 		ext4_msg(sb, KERN_WARNING,
3656 		       "feature flags set on rev 0 fs, "
3657 		       "running e2fsck is recommended");
3658 
3659 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3660 		set_opt2(sb, HURD_COMPAT);
3661 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3662 					      EXT4_FEATURE_INCOMPAT_64BIT)) {
3663 			ext4_msg(sb, KERN_ERR,
3664 				 "The Hurd can't support 64-bit file systems");
3665 			goto failed_mount;
3666 		}
3667 	}
3668 
3669 	if (IS_EXT2_SB(sb)) {
3670 		if (ext2_feature_set_ok(sb))
3671 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3672 				 "using the ext4 subsystem");
3673 		else {
3674 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3675 				 "to feature incompatibilities");
3676 			goto failed_mount;
3677 		}
3678 	}
3679 
3680 	if (IS_EXT3_SB(sb)) {
3681 		if (ext3_feature_set_ok(sb))
3682 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3683 				 "using the ext4 subsystem");
3684 		else {
3685 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3686 				 "to feature incompatibilities");
3687 			goto failed_mount;
3688 		}
3689 	}
3690 
3691 	/*
3692 	 * Check feature flags regardless of the revision level, since we
3693 	 * previously didn't change the revision level when setting the flags,
3694 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3695 	 */
3696 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3697 		goto failed_mount;
3698 
3699 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3700 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3701 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3702 		ext4_msg(sb, KERN_ERR,
3703 		       "Unsupported filesystem blocksize %d", blocksize);
3704 		goto failed_mount;
3705 	}
3706 
3707 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3708 		if (blocksize != PAGE_SIZE) {
3709 			ext4_msg(sb, KERN_ERR,
3710 					"error: unsupported blocksize for dax");
3711 			goto failed_mount;
3712 		}
3713 		if (!sb->s_bdev->bd_disk->fops->direct_access) {
3714 			ext4_msg(sb, KERN_ERR,
3715 					"error: device does not support dax");
3716 			goto failed_mount;
3717 		}
3718 	}
3719 
3720 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3721 	    es->s_encryption_level) {
3722 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3723 			 es->s_encryption_level);
3724 		goto failed_mount;
3725 	}
3726 
3727 	if (sb->s_blocksize != blocksize) {
3728 		/* Validate the filesystem blocksize */
3729 		if (!sb_set_blocksize(sb, blocksize)) {
3730 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3731 					blocksize);
3732 			goto failed_mount;
3733 		}
3734 
3735 		brelse(bh);
3736 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3737 		offset = do_div(logical_sb_block, blocksize);
3738 		bh = sb_bread_unmovable(sb, logical_sb_block);
3739 		if (!bh) {
3740 			ext4_msg(sb, KERN_ERR,
3741 			       "Can't read superblock on 2nd try");
3742 			goto failed_mount;
3743 		}
3744 		es = (struct ext4_super_block *)(bh->b_data + offset);
3745 		sbi->s_es = es;
3746 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3747 			ext4_msg(sb, KERN_ERR,
3748 			       "Magic mismatch, very weird!");
3749 			goto failed_mount;
3750 		}
3751 	}
3752 
3753 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3754 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3755 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3756 						      has_huge_files);
3757 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3758 
3759 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3760 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3761 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3762 	} else {
3763 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3764 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3765 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3766 		    (!is_power_of_2(sbi->s_inode_size)) ||
3767 		    (sbi->s_inode_size > blocksize)) {
3768 			ext4_msg(sb, KERN_ERR,
3769 			       "unsupported inode size: %d",
3770 			       sbi->s_inode_size);
3771 			goto failed_mount;
3772 		}
3773 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3774 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3775 	}
3776 
3777 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3778 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3779 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3780 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3781 		    !is_power_of_2(sbi->s_desc_size)) {
3782 			ext4_msg(sb, KERN_ERR,
3783 			       "unsupported descriptor size %lu",
3784 			       sbi->s_desc_size);
3785 			goto failed_mount;
3786 		}
3787 	} else
3788 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3789 
3790 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3791 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3792 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3793 		goto cantfind_ext4;
3794 
3795 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3796 	if (sbi->s_inodes_per_block == 0)
3797 		goto cantfind_ext4;
3798 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3799 					sbi->s_inodes_per_block;
3800 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3801 	sbi->s_sbh = bh;
3802 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3803 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3804 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3805 
3806 	for (i = 0; i < 4; i++)
3807 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3808 	sbi->s_def_hash_version = es->s_def_hash_version;
3809 	if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3810 		i = le32_to_cpu(es->s_flags);
3811 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3812 			sbi->s_hash_unsigned = 3;
3813 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3814 #ifdef __CHAR_UNSIGNED__
3815 			if (!(sb->s_flags & MS_RDONLY))
3816 				es->s_flags |=
3817 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3818 			sbi->s_hash_unsigned = 3;
3819 #else
3820 			if (!(sb->s_flags & MS_RDONLY))
3821 				es->s_flags |=
3822 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3823 #endif
3824 		}
3825 	}
3826 
3827 	/* Handle clustersize */
3828 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3829 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3830 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3831 	if (has_bigalloc) {
3832 		if (clustersize < blocksize) {
3833 			ext4_msg(sb, KERN_ERR,
3834 				 "cluster size (%d) smaller than "
3835 				 "block size (%d)", clustersize, blocksize);
3836 			goto failed_mount;
3837 		}
3838 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3839 			le32_to_cpu(es->s_log_block_size);
3840 		sbi->s_clusters_per_group =
3841 			le32_to_cpu(es->s_clusters_per_group);
3842 		if (sbi->s_clusters_per_group > blocksize * 8) {
3843 			ext4_msg(sb, KERN_ERR,
3844 				 "#clusters per group too big: %lu",
3845 				 sbi->s_clusters_per_group);
3846 			goto failed_mount;
3847 		}
3848 		if (sbi->s_blocks_per_group !=
3849 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3850 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3851 				 "clusters per group (%lu) inconsistent",
3852 				 sbi->s_blocks_per_group,
3853 				 sbi->s_clusters_per_group);
3854 			goto failed_mount;
3855 		}
3856 	} else {
3857 		if (clustersize != blocksize) {
3858 			ext4_warning(sb, "fragment/cluster size (%d) != "
3859 				     "block size (%d)", clustersize,
3860 				     blocksize);
3861 			clustersize = blocksize;
3862 		}
3863 		if (sbi->s_blocks_per_group > blocksize * 8) {
3864 			ext4_msg(sb, KERN_ERR,
3865 				 "#blocks per group too big: %lu",
3866 				 sbi->s_blocks_per_group);
3867 			goto failed_mount;
3868 		}
3869 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3870 		sbi->s_cluster_bits = 0;
3871 	}
3872 	sbi->s_cluster_ratio = clustersize / blocksize;
3873 
3874 	if (sbi->s_inodes_per_group > blocksize * 8) {
3875 		ext4_msg(sb, KERN_ERR,
3876 		       "#inodes per group too big: %lu",
3877 		       sbi->s_inodes_per_group);
3878 		goto failed_mount;
3879 	}
3880 
3881 	/* Do we have standard group size of clustersize * 8 blocks ? */
3882 	if (sbi->s_blocks_per_group == clustersize << 3)
3883 		set_opt2(sb, STD_GROUP_SIZE);
3884 
3885 	/*
3886 	 * Test whether we have more sectors than will fit in sector_t,
3887 	 * and whether the max offset is addressable by the page cache.
3888 	 */
3889 	err = generic_check_addressable(sb->s_blocksize_bits,
3890 					ext4_blocks_count(es));
3891 	if (err) {
3892 		ext4_msg(sb, KERN_ERR, "filesystem"
3893 			 " too large to mount safely on this system");
3894 		if (sizeof(sector_t) < 8)
3895 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3896 		goto failed_mount;
3897 	}
3898 
3899 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3900 		goto cantfind_ext4;
3901 
3902 	/* check blocks count against device size */
3903 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3904 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3905 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3906 		       "exceeds size of device (%llu blocks)",
3907 		       ext4_blocks_count(es), blocks_count);
3908 		goto failed_mount;
3909 	}
3910 
3911 	/*
3912 	 * It makes no sense for the first data block to be beyond the end
3913 	 * of the filesystem.
3914 	 */
3915 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3916 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3917 			 "block %u is beyond end of filesystem (%llu)",
3918 			 le32_to_cpu(es->s_first_data_block),
3919 			 ext4_blocks_count(es));
3920 		goto failed_mount;
3921 	}
3922 	blocks_count = (ext4_blocks_count(es) -
3923 			le32_to_cpu(es->s_first_data_block) +
3924 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3925 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3926 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3927 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3928 		       "(block count %llu, first data block %u, "
3929 		       "blocks per group %lu)", sbi->s_groups_count,
3930 		       ext4_blocks_count(es),
3931 		       le32_to_cpu(es->s_first_data_block),
3932 		       EXT4_BLOCKS_PER_GROUP(sb));
3933 		goto failed_mount;
3934 	}
3935 	sbi->s_groups_count = blocks_count;
3936 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3937 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3938 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3939 		   EXT4_DESC_PER_BLOCK(sb);
3940 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3941 					  sizeof(struct buffer_head *),
3942 					  GFP_KERNEL);
3943 	if (sbi->s_group_desc == NULL) {
3944 		ext4_msg(sb, KERN_ERR, "not enough memory");
3945 		ret = -ENOMEM;
3946 		goto failed_mount;
3947 	}
3948 
3949 	if (ext4_proc_root)
3950 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3951 
3952 	if (sbi->s_proc)
3953 		proc_create_data("options", S_IRUGO, sbi->s_proc,
3954 				 &ext4_seq_options_fops, sb);
3955 
3956 	bgl_lock_init(sbi->s_blockgroup_lock);
3957 
3958 	for (i = 0; i < db_count; i++) {
3959 		block = descriptor_loc(sb, logical_sb_block, i);
3960 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3961 		if (!sbi->s_group_desc[i]) {
3962 			ext4_msg(sb, KERN_ERR,
3963 			       "can't read group descriptor %d", i);
3964 			db_count = i;
3965 			goto failed_mount2;
3966 		}
3967 	}
3968 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3969 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3970 		goto failed_mount2;
3971 	}
3972 
3973 	sbi->s_gdb_count = db_count;
3974 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3975 	spin_lock_init(&sbi->s_next_gen_lock);
3976 
3977 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3978 		(unsigned long) sb);
3979 
3980 	/* Register extent status tree shrinker */
3981 	if (ext4_es_register_shrinker(sbi))
3982 		goto failed_mount3;
3983 
3984 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3985 	sbi->s_extent_max_zeroout_kb = 32;
3986 
3987 	/*
3988 	 * set up enough so that it can read an inode
3989 	 */
3990 	sb->s_op = &ext4_sops;
3991 	sb->s_export_op = &ext4_export_ops;
3992 	sb->s_xattr = ext4_xattr_handlers;
3993 #ifdef CONFIG_QUOTA
3994 	sb->dq_op = &ext4_quota_operations;
3995 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3996 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3997 	else
3998 		sb->s_qcop = &ext4_qctl_operations;
3999 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4000 #endif
4001 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4002 
4003 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4004 	mutex_init(&sbi->s_orphan_lock);
4005 
4006 	sb->s_root = NULL;
4007 
4008 	needs_recovery = (es->s_last_orphan != 0 ||
4009 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
4010 				    EXT4_FEATURE_INCOMPAT_RECOVER));
4011 
4012 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4013 	    !(sb->s_flags & MS_RDONLY))
4014 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4015 			goto failed_mount3a;
4016 
4017 	/*
4018 	 * The first inode we look at is the journal inode.  Don't try
4019 	 * root first: it may be modified in the journal!
4020 	 */
4021 	if (!test_opt(sb, NOLOAD) &&
4022 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4023 		if (ext4_load_journal(sb, es, journal_devnum))
4024 			goto failed_mount3a;
4025 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4026 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4027 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4028 		       "suppressed and not mounted read-only");
4029 		goto failed_mount_wq;
4030 	} else {
4031 		clear_opt(sb, DATA_FLAGS);
4032 		sbi->s_journal = NULL;
4033 		needs_recovery = 0;
4034 		goto no_journal;
4035 	}
4036 
4037 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4038 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4039 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4040 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4041 		goto failed_mount_wq;
4042 	}
4043 
4044 	if (!set_journal_csum_feature_set(sb)) {
4045 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4046 			 "feature set");
4047 		goto failed_mount_wq;
4048 	}
4049 
4050 	/* We have now updated the journal if required, so we can
4051 	 * validate the data journaling mode. */
4052 	switch (test_opt(sb, DATA_FLAGS)) {
4053 	case 0:
4054 		/* No mode set, assume a default based on the journal
4055 		 * capabilities: ORDERED_DATA if the journal can
4056 		 * cope, else JOURNAL_DATA
4057 		 */
4058 		if (jbd2_journal_check_available_features
4059 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4060 			set_opt(sb, ORDERED_DATA);
4061 		else
4062 			set_opt(sb, JOURNAL_DATA);
4063 		break;
4064 
4065 	case EXT4_MOUNT_ORDERED_DATA:
4066 	case EXT4_MOUNT_WRITEBACK_DATA:
4067 		if (!jbd2_journal_check_available_features
4068 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4069 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4070 			       "requested data journaling mode");
4071 			goto failed_mount_wq;
4072 		}
4073 	default:
4074 		break;
4075 	}
4076 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4077 
4078 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4079 
4080 no_journal:
4081 	if (ext4_mballoc_ready) {
4082 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4083 		if (!sbi->s_mb_cache) {
4084 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4085 			goto failed_mount_wq;
4086 		}
4087 	}
4088 
4089 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) ||
4090 	     EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) &&
4091 	    (blocksize != PAGE_CACHE_SIZE)) {
4092 		ext4_msg(sb, KERN_ERR,
4093 			 "Unsupported blocksize for fs encryption");
4094 		goto failed_mount_wq;
4095 	}
4096 
4097 	if (DUMMY_ENCRYPTION_ENABLED(sbi) &&
4098 	    !(sb->s_flags & MS_RDONLY) &&
4099 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4100 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4101 		ext4_commit_super(sb, 1);
4102 	}
4103 
4104 	/*
4105 	 * Get the # of file system overhead blocks from the
4106 	 * superblock if present.
4107 	 */
4108 	if (es->s_overhead_clusters)
4109 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4110 	else {
4111 		err = ext4_calculate_overhead(sb);
4112 		if (err)
4113 			goto failed_mount_wq;
4114 	}
4115 
4116 	/*
4117 	 * The maximum number of concurrent works can be high and
4118 	 * concurrency isn't really necessary.  Limit it to 1.
4119 	 */
4120 	EXT4_SB(sb)->rsv_conversion_wq =
4121 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4122 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4123 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4124 		ret = -ENOMEM;
4125 		goto failed_mount4;
4126 	}
4127 
4128 	/*
4129 	 * The jbd2_journal_load will have done any necessary log recovery,
4130 	 * so we can safely mount the rest of the filesystem now.
4131 	 */
4132 
4133 	root = ext4_iget(sb, EXT4_ROOT_INO);
4134 	if (IS_ERR(root)) {
4135 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4136 		ret = PTR_ERR(root);
4137 		root = NULL;
4138 		goto failed_mount4;
4139 	}
4140 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4141 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4142 		iput(root);
4143 		goto failed_mount4;
4144 	}
4145 	sb->s_root = d_make_root(root);
4146 	if (!sb->s_root) {
4147 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4148 		ret = -ENOMEM;
4149 		goto failed_mount4;
4150 	}
4151 
4152 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4153 		sb->s_flags |= MS_RDONLY;
4154 
4155 	/* determine the minimum size of new large inodes, if present */
4156 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4157 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4158 						     EXT4_GOOD_OLD_INODE_SIZE;
4159 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4160 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4161 			if (sbi->s_want_extra_isize <
4162 			    le16_to_cpu(es->s_want_extra_isize))
4163 				sbi->s_want_extra_isize =
4164 					le16_to_cpu(es->s_want_extra_isize);
4165 			if (sbi->s_want_extra_isize <
4166 			    le16_to_cpu(es->s_min_extra_isize))
4167 				sbi->s_want_extra_isize =
4168 					le16_to_cpu(es->s_min_extra_isize);
4169 		}
4170 	}
4171 	/* Check if enough inode space is available */
4172 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4173 							sbi->s_inode_size) {
4174 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4175 						       EXT4_GOOD_OLD_INODE_SIZE;
4176 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4177 			 "available");
4178 	}
4179 
4180 	err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4181 	if (err) {
4182 		ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4183 			 "reserved pool", ext4_calculate_resv_clusters(sb));
4184 		goto failed_mount4a;
4185 	}
4186 
4187 	err = ext4_setup_system_zone(sb);
4188 	if (err) {
4189 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4190 			 "zone (%d)", err);
4191 		goto failed_mount4a;
4192 	}
4193 
4194 	ext4_ext_init(sb);
4195 	err = ext4_mb_init(sb);
4196 	if (err) {
4197 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4198 			 err);
4199 		goto failed_mount5;
4200 	}
4201 
4202 	block = ext4_count_free_clusters(sb);
4203 	ext4_free_blocks_count_set(sbi->s_es,
4204 				   EXT4_C2B(sbi, block));
4205 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4206 				  GFP_KERNEL);
4207 	if (!err) {
4208 		unsigned long freei = ext4_count_free_inodes(sb);
4209 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4210 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4211 					  GFP_KERNEL);
4212 	}
4213 	if (!err)
4214 		err = percpu_counter_init(&sbi->s_dirs_counter,
4215 					  ext4_count_dirs(sb), GFP_KERNEL);
4216 	if (!err)
4217 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4218 					  GFP_KERNEL);
4219 	if (err) {
4220 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4221 		goto failed_mount6;
4222 	}
4223 
4224 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4225 		if (!ext4_fill_flex_info(sb)) {
4226 			ext4_msg(sb, KERN_ERR,
4227 			       "unable to initialize "
4228 			       "flex_bg meta info!");
4229 			goto failed_mount6;
4230 		}
4231 
4232 	err = ext4_register_li_request(sb, first_not_zeroed);
4233 	if (err)
4234 		goto failed_mount6;
4235 
4236 	sbi->s_kobj.kset = ext4_kset;
4237 	init_completion(&sbi->s_kobj_unregister);
4238 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4239 				   "%s", sb->s_id);
4240 	if (err)
4241 		goto failed_mount7;
4242 
4243 #ifdef CONFIG_QUOTA
4244 	/* Enable quota usage during mount. */
4245 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4246 	    !(sb->s_flags & MS_RDONLY)) {
4247 		err = ext4_enable_quotas(sb);
4248 		if (err)
4249 			goto failed_mount8;
4250 	}
4251 #endif  /* CONFIG_QUOTA */
4252 
4253 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4254 	ext4_orphan_cleanup(sb, es);
4255 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4256 	if (needs_recovery) {
4257 		ext4_msg(sb, KERN_INFO, "recovery complete");
4258 		ext4_mark_recovery_complete(sb, es);
4259 	}
4260 	if (EXT4_SB(sb)->s_journal) {
4261 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4262 			descr = " journalled data mode";
4263 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4264 			descr = " ordered data mode";
4265 		else
4266 			descr = " writeback data mode";
4267 	} else
4268 		descr = "out journal";
4269 
4270 	if (test_opt(sb, DISCARD)) {
4271 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4272 		if (!blk_queue_discard(q))
4273 			ext4_msg(sb, KERN_WARNING,
4274 				 "mounting with \"discard\" option, but "
4275 				 "the device does not support discard");
4276 	}
4277 
4278 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4279 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4280 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4281 
4282 	if (es->s_error_count)
4283 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4284 
4285 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4286 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4287 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4288 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4289 
4290 	kfree(orig_data);
4291 	return 0;
4292 
4293 cantfind_ext4:
4294 	if (!silent)
4295 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4296 	goto failed_mount;
4297 
4298 #ifdef CONFIG_QUOTA
4299 failed_mount8:
4300 	kobject_del(&sbi->s_kobj);
4301 #endif
4302 failed_mount7:
4303 	ext4_unregister_li_request(sb);
4304 failed_mount6:
4305 	ext4_mb_release(sb);
4306 	if (sbi->s_flex_groups)
4307 		kvfree(sbi->s_flex_groups);
4308 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4309 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4310 	percpu_counter_destroy(&sbi->s_dirs_counter);
4311 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4312 failed_mount5:
4313 	ext4_ext_release(sb);
4314 	ext4_release_system_zone(sb);
4315 failed_mount4a:
4316 	dput(sb->s_root);
4317 	sb->s_root = NULL;
4318 failed_mount4:
4319 	ext4_msg(sb, KERN_ERR, "mount failed");
4320 	if (EXT4_SB(sb)->rsv_conversion_wq)
4321 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4322 failed_mount_wq:
4323 	if (sbi->s_journal) {
4324 		jbd2_journal_destroy(sbi->s_journal);
4325 		sbi->s_journal = NULL;
4326 	}
4327 failed_mount3a:
4328 	ext4_es_unregister_shrinker(sbi);
4329 failed_mount3:
4330 	del_timer_sync(&sbi->s_err_report);
4331 	if (sbi->s_mmp_tsk)
4332 		kthread_stop(sbi->s_mmp_tsk);
4333 failed_mount2:
4334 	for (i = 0; i < db_count; i++)
4335 		brelse(sbi->s_group_desc[i]);
4336 	kvfree(sbi->s_group_desc);
4337 failed_mount:
4338 	if (sbi->s_chksum_driver)
4339 		crypto_free_shash(sbi->s_chksum_driver);
4340 	if (sbi->s_proc) {
4341 		remove_proc_entry("options", sbi->s_proc);
4342 		remove_proc_entry(sb->s_id, ext4_proc_root);
4343 	}
4344 #ifdef CONFIG_QUOTA
4345 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4346 		kfree(sbi->s_qf_names[i]);
4347 #endif
4348 	ext4_blkdev_remove(sbi);
4349 	brelse(bh);
4350 out_fail:
4351 	sb->s_fs_info = NULL;
4352 	kfree(sbi->s_blockgroup_lock);
4353 	kfree(sbi);
4354 out_free_orig:
4355 	kfree(orig_data);
4356 	return err ? err : ret;
4357 }
4358 
4359 /*
4360  * Setup any per-fs journal parameters now.  We'll do this both on
4361  * initial mount, once the journal has been initialised but before we've
4362  * done any recovery; and again on any subsequent remount.
4363  */
4364 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4365 {
4366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4367 
4368 	journal->j_commit_interval = sbi->s_commit_interval;
4369 	journal->j_min_batch_time = sbi->s_min_batch_time;
4370 	journal->j_max_batch_time = sbi->s_max_batch_time;
4371 
4372 	write_lock(&journal->j_state_lock);
4373 	if (test_opt(sb, BARRIER))
4374 		journal->j_flags |= JBD2_BARRIER;
4375 	else
4376 		journal->j_flags &= ~JBD2_BARRIER;
4377 	if (test_opt(sb, DATA_ERR_ABORT))
4378 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4379 	else
4380 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4381 	write_unlock(&journal->j_state_lock);
4382 }
4383 
4384 static journal_t *ext4_get_journal(struct super_block *sb,
4385 				   unsigned int journal_inum)
4386 {
4387 	struct inode *journal_inode;
4388 	journal_t *journal;
4389 
4390 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4391 
4392 	/* First, test for the existence of a valid inode on disk.  Bad
4393 	 * things happen if we iget() an unused inode, as the subsequent
4394 	 * iput() will try to delete it. */
4395 
4396 	journal_inode = ext4_iget(sb, journal_inum);
4397 	if (IS_ERR(journal_inode)) {
4398 		ext4_msg(sb, KERN_ERR, "no journal found");
4399 		return NULL;
4400 	}
4401 	if (!journal_inode->i_nlink) {
4402 		make_bad_inode(journal_inode);
4403 		iput(journal_inode);
4404 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4405 		return NULL;
4406 	}
4407 
4408 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4409 		  journal_inode, journal_inode->i_size);
4410 	if (!S_ISREG(journal_inode->i_mode)) {
4411 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4412 		iput(journal_inode);
4413 		return NULL;
4414 	}
4415 
4416 	journal = jbd2_journal_init_inode(journal_inode);
4417 	if (!journal) {
4418 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4419 		iput(journal_inode);
4420 		return NULL;
4421 	}
4422 	journal->j_private = sb;
4423 	ext4_init_journal_params(sb, journal);
4424 	return journal;
4425 }
4426 
4427 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4428 				       dev_t j_dev)
4429 {
4430 	struct buffer_head *bh;
4431 	journal_t *journal;
4432 	ext4_fsblk_t start;
4433 	ext4_fsblk_t len;
4434 	int hblock, blocksize;
4435 	ext4_fsblk_t sb_block;
4436 	unsigned long offset;
4437 	struct ext4_super_block *es;
4438 	struct block_device *bdev;
4439 
4440 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4441 
4442 	bdev = ext4_blkdev_get(j_dev, sb);
4443 	if (bdev == NULL)
4444 		return NULL;
4445 
4446 	blocksize = sb->s_blocksize;
4447 	hblock = bdev_logical_block_size(bdev);
4448 	if (blocksize < hblock) {
4449 		ext4_msg(sb, KERN_ERR,
4450 			"blocksize too small for journal device");
4451 		goto out_bdev;
4452 	}
4453 
4454 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4455 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4456 	set_blocksize(bdev, blocksize);
4457 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4458 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4459 		       "external journal");
4460 		goto out_bdev;
4461 	}
4462 
4463 	es = (struct ext4_super_block *) (bh->b_data + offset);
4464 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4465 	    !(le32_to_cpu(es->s_feature_incompat) &
4466 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4467 		ext4_msg(sb, KERN_ERR, "external journal has "
4468 					"bad superblock");
4469 		brelse(bh);
4470 		goto out_bdev;
4471 	}
4472 
4473 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4474 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4475 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4476 		ext4_msg(sb, KERN_ERR, "external journal has "
4477 				       "corrupt superblock");
4478 		brelse(bh);
4479 		goto out_bdev;
4480 	}
4481 
4482 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4483 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4484 		brelse(bh);
4485 		goto out_bdev;
4486 	}
4487 
4488 	len = ext4_blocks_count(es);
4489 	start = sb_block + 1;
4490 	brelse(bh);	/* we're done with the superblock */
4491 
4492 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4493 					start, len, blocksize);
4494 	if (!journal) {
4495 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4496 		goto out_bdev;
4497 	}
4498 	journal->j_private = sb;
4499 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4500 	wait_on_buffer(journal->j_sb_buffer);
4501 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4502 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4503 		goto out_journal;
4504 	}
4505 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4506 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4507 					"user (unsupported) - %d",
4508 			be32_to_cpu(journal->j_superblock->s_nr_users));
4509 		goto out_journal;
4510 	}
4511 	EXT4_SB(sb)->journal_bdev = bdev;
4512 	ext4_init_journal_params(sb, journal);
4513 	return journal;
4514 
4515 out_journal:
4516 	jbd2_journal_destroy(journal);
4517 out_bdev:
4518 	ext4_blkdev_put(bdev);
4519 	return NULL;
4520 }
4521 
4522 static int ext4_load_journal(struct super_block *sb,
4523 			     struct ext4_super_block *es,
4524 			     unsigned long journal_devnum)
4525 {
4526 	journal_t *journal;
4527 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4528 	dev_t journal_dev;
4529 	int err = 0;
4530 	int really_read_only;
4531 
4532 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4533 
4534 	if (journal_devnum &&
4535 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4536 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4537 			"numbers have changed");
4538 		journal_dev = new_decode_dev(journal_devnum);
4539 	} else
4540 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4541 
4542 	really_read_only = bdev_read_only(sb->s_bdev);
4543 
4544 	/*
4545 	 * Are we loading a blank journal or performing recovery after a
4546 	 * crash?  For recovery, we need to check in advance whether we
4547 	 * can get read-write access to the device.
4548 	 */
4549 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4550 		if (sb->s_flags & MS_RDONLY) {
4551 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4552 					"required on readonly filesystem");
4553 			if (really_read_only) {
4554 				ext4_msg(sb, KERN_ERR, "write access "
4555 					"unavailable, cannot proceed");
4556 				return -EROFS;
4557 			}
4558 			ext4_msg(sb, KERN_INFO, "write access will "
4559 			       "be enabled during recovery");
4560 		}
4561 	}
4562 
4563 	if (journal_inum && journal_dev) {
4564 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4565 		       "and inode journals!");
4566 		return -EINVAL;
4567 	}
4568 
4569 	if (journal_inum) {
4570 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4571 			return -EINVAL;
4572 	} else {
4573 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4574 			return -EINVAL;
4575 	}
4576 
4577 	if (!(journal->j_flags & JBD2_BARRIER))
4578 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4579 
4580 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4581 		err = jbd2_journal_wipe(journal, !really_read_only);
4582 	if (!err) {
4583 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4584 		if (save)
4585 			memcpy(save, ((char *) es) +
4586 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4587 		err = jbd2_journal_load(journal);
4588 		if (save)
4589 			memcpy(((char *) es) + EXT4_S_ERR_START,
4590 			       save, EXT4_S_ERR_LEN);
4591 		kfree(save);
4592 	}
4593 
4594 	if (err) {
4595 		ext4_msg(sb, KERN_ERR, "error loading journal");
4596 		jbd2_journal_destroy(journal);
4597 		return err;
4598 	}
4599 
4600 	EXT4_SB(sb)->s_journal = journal;
4601 	ext4_clear_journal_err(sb, es);
4602 
4603 	if (!really_read_only && journal_devnum &&
4604 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4605 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4606 
4607 		/* Make sure we flush the recovery flag to disk. */
4608 		ext4_commit_super(sb, 1);
4609 	}
4610 
4611 	return 0;
4612 }
4613 
4614 static int ext4_commit_super(struct super_block *sb, int sync)
4615 {
4616 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4617 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4618 	int error = 0;
4619 
4620 	if (!sbh)
4621 		return error;
4622 	if (buffer_write_io_error(sbh)) {
4623 		/*
4624 		 * Oh, dear.  A previous attempt to write the
4625 		 * superblock failed.  This could happen because the
4626 		 * USB device was yanked out.  Or it could happen to
4627 		 * be a transient write error and maybe the block will
4628 		 * be remapped.  Nothing we can do but to retry the
4629 		 * write and hope for the best.
4630 		 */
4631 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4632 		       "superblock detected");
4633 		clear_buffer_write_io_error(sbh);
4634 		set_buffer_uptodate(sbh);
4635 	}
4636 	/*
4637 	 * If the file system is mounted read-only, don't update the
4638 	 * superblock write time.  This avoids updating the superblock
4639 	 * write time when we are mounting the root file system
4640 	 * read/only but we need to replay the journal; at that point,
4641 	 * for people who are east of GMT and who make their clock
4642 	 * tick in localtime for Windows bug-for-bug compatibility,
4643 	 * the clock is set in the future, and this will cause e2fsck
4644 	 * to complain and force a full file system check.
4645 	 */
4646 	if (!(sb->s_flags & MS_RDONLY))
4647 		es->s_wtime = cpu_to_le32(get_seconds());
4648 	if (sb->s_bdev->bd_part)
4649 		es->s_kbytes_written =
4650 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4651 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4652 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4653 	else
4654 		es->s_kbytes_written =
4655 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4656 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4657 		ext4_free_blocks_count_set(es,
4658 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4659 				&EXT4_SB(sb)->s_freeclusters_counter)));
4660 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4661 		es->s_free_inodes_count =
4662 			cpu_to_le32(percpu_counter_sum_positive(
4663 				&EXT4_SB(sb)->s_freeinodes_counter));
4664 	BUFFER_TRACE(sbh, "marking dirty");
4665 	ext4_superblock_csum_set(sb);
4666 	mark_buffer_dirty(sbh);
4667 	if (sync) {
4668 		error = sync_dirty_buffer(sbh);
4669 		if (error)
4670 			return error;
4671 
4672 		error = buffer_write_io_error(sbh);
4673 		if (error) {
4674 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4675 			       "superblock");
4676 			clear_buffer_write_io_error(sbh);
4677 			set_buffer_uptodate(sbh);
4678 		}
4679 	}
4680 	return error;
4681 }
4682 
4683 /*
4684  * Have we just finished recovery?  If so, and if we are mounting (or
4685  * remounting) the filesystem readonly, then we will end up with a
4686  * consistent fs on disk.  Record that fact.
4687  */
4688 static void ext4_mark_recovery_complete(struct super_block *sb,
4689 					struct ext4_super_block *es)
4690 {
4691 	journal_t *journal = EXT4_SB(sb)->s_journal;
4692 
4693 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4694 		BUG_ON(journal != NULL);
4695 		return;
4696 	}
4697 	jbd2_journal_lock_updates(journal);
4698 	if (jbd2_journal_flush(journal) < 0)
4699 		goto out;
4700 
4701 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4702 	    sb->s_flags & MS_RDONLY) {
4703 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4704 		ext4_commit_super(sb, 1);
4705 	}
4706 
4707 out:
4708 	jbd2_journal_unlock_updates(journal);
4709 }
4710 
4711 /*
4712  * If we are mounting (or read-write remounting) a filesystem whose journal
4713  * has recorded an error from a previous lifetime, move that error to the
4714  * main filesystem now.
4715  */
4716 static void ext4_clear_journal_err(struct super_block *sb,
4717 				   struct ext4_super_block *es)
4718 {
4719 	journal_t *journal;
4720 	int j_errno;
4721 	const char *errstr;
4722 
4723 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4724 
4725 	journal = EXT4_SB(sb)->s_journal;
4726 
4727 	/*
4728 	 * Now check for any error status which may have been recorded in the
4729 	 * journal by a prior ext4_error() or ext4_abort()
4730 	 */
4731 
4732 	j_errno = jbd2_journal_errno(journal);
4733 	if (j_errno) {
4734 		char nbuf[16];
4735 
4736 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4737 		ext4_warning(sb, "Filesystem error recorded "
4738 			     "from previous mount: %s", errstr);
4739 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4740 
4741 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4742 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4743 		ext4_commit_super(sb, 1);
4744 
4745 		jbd2_journal_clear_err(journal);
4746 		jbd2_journal_update_sb_errno(journal);
4747 	}
4748 }
4749 
4750 /*
4751  * Force the running and committing transactions to commit,
4752  * and wait on the commit.
4753  */
4754 int ext4_force_commit(struct super_block *sb)
4755 {
4756 	journal_t *journal;
4757 
4758 	if (sb->s_flags & MS_RDONLY)
4759 		return 0;
4760 
4761 	journal = EXT4_SB(sb)->s_journal;
4762 	return ext4_journal_force_commit(journal);
4763 }
4764 
4765 static int ext4_sync_fs(struct super_block *sb, int wait)
4766 {
4767 	int ret = 0;
4768 	tid_t target;
4769 	bool needs_barrier = false;
4770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4771 
4772 	trace_ext4_sync_fs(sb, wait);
4773 	flush_workqueue(sbi->rsv_conversion_wq);
4774 	/*
4775 	 * Writeback quota in non-journalled quota case - journalled quota has
4776 	 * no dirty dquots
4777 	 */
4778 	dquot_writeback_dquots(sb, -1);
4779 	/*
4780 	 * Data writeback is possible w/o journal transaction, so barrier must
4781 	 * being sent at the end of the function. But we can skip it if
4782 	 * transaction_commit will do it for us.
4783 	 */
4784 	if (sbi->s_journal) {
4785 		target = jbd2_get_latest_transaction(sbi->s_journal);
4786 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4787 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4788 			needs_barrier = true;
4789 
4790 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4791 			if (wait)
4792 				ret = jbd2_log_wait_commit(sbi->s_journal,
4793 							   target);
4794 		}
4795 	} else if (wait && test_opt(sb, BARRIER))
4796 		needs_barrier = true;
4797 	if (needs_barrier) {
4798 		int err;
4799 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4800 		if (!ret)
4801 			ret = err;
4802 	}
4803 
4804 	return ret;
4805 }
4806 
4807 /*
4808  * LVM calls this function before a (read-only) snapshot is created.  This
4809  * gives us a chance to flush the journal completely and mark the fs clean.
4810  *
4811  * Note that only this function cannot bring a filesystem to be in a clean
4812  * state independently. It relies on upper layer to stop all data & metadata
4813  * modifications.
4814  */
4815 static int ext4_freeze(struct super_block *sb)
4816 {
4817 	int error = 0;
4818 	journal_t *journal;
4819 
4820 	if (sb->s_flags & MS_RDONLY)
4821 		return 0;
4822 
4823 	journal = EXT4_SB(sb)->s_journal;
4824 
4825 	if (journal) {
4826 		/* Now we set up the journal barrier. */
4827 		jbd2_journal_lock_updates(journal);
4828 
4829 		/*
4830 		 * Don't clear the needs_recovery flag if we failed to
4831 		 * flush the journal.
4832 		 */
4833 		error = jbd2_journal_flush(journal);
4834 		if (error < 0)
4835 			goto out;
4836 	}
4837 
4838 	/* Journal blocked and flushed, clear needs_recovery flag. */
4839 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4840 	error = ext4_commit_super(sb, 1);
4841 out:
4842 	if (journal)
4843 		/* we rely on upper layer to stop further updates */
4844 		jbd2_journal_unlock_updates(journal);
4845 	return error;
4846 }
4847 
4848 /*
4849  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4850  * flag here, even though the filesystem is not technically dirty yet.
4851  */
4852 static int ext4_unfreeze(struct super_block *sb)
4853 {
4854 	if (sb->s_flags & MS_RDONLY)
4855 		return 0;
4856 
4857 	/* Reset the needs_recovery flag before the fs is unlocked. */
4858 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4859 	ext4_commit_super(sb, 1);
4860 	return 0;
4861 }
4862 
4863 /*
4864  * Structure to save mount options for ext4_remount's benefit
4865  */
4866 struct ext4_mount_options {
4867 	unsigned long s_mount_opt;
4868 	unsigned long s_mount_opt2;
4869 	kuid_t s_resuid;
4870 	kgid_t s_resgid;
4871 	unsigned long s_commit_interval;
4872 	u32 s_min_batch_time, s_max_batch_time;
4873 #ifdef CONFIG_QUOTA
4874 	int s_jquota_fmt;
4875 	char *s_qf_names[EXT4_MAXQUOTAS];
4876 #endif
4877 };
4878 
4879 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4880 {
4881 	struct ext4_super_block *es;
4882 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4883 	unsigned long old_sb_flags;
4884 	struct ext4_mount_options old_opts;
4885 	int enable_quota = 0;
4886 	ext4_group_t g;
4887 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4888 	int err = 0;
4889 #ifdef CONFIG_QUOTA
4890 	int i, j;
4891 #endif
4892 	char *orig_data = kstrdup(data, GFP_KERNEL);
4893 
4894 	/* Store the original options */
4895 	old_sb_flags = sb->s_flags;
4896 	old_opts.s_mount_opt = sbi->s_mount_opt;
4897 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4898 	old_opts.s_resuid = sbi->s_resuid;
4899 	old_opts.s_resgid = sbi->s_resgid;
4900 	old_opts.s_commit_interval = sbi->s_commit_interval;
4901 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4902 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4903 #ifdef CONFIG_QUOTA
4904 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4905 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4906 		if (sbi->s_qf_names[i]) {
4907 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4908 							 GFP_KERNEL);
4909 			if (!old_opts.s_qf_names[i]) {
4910 				for (j = 0; j < i; j++)
4911 					kfree(old_opts.s_qf_names[j]);
4912 				kfree(orig_data);
4913 				return -ENOMEM;
4914 			}
4915 		} else
4916 			old_opts.s_qf_names[i] = NULL;
4917 #endif
4918 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4919 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4920 
4921 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4922 		err = -EINVAL;
4923 		goto restore_opts;
4924 	}
4925 
4926 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4927 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4928 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4929 			 "during remount not supported; ignoring");
4930 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4931 	}
4932 
4933 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4934 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4935 			ext4_msg(sb, KERN_ERR, "can't mount with "
4936 				 "both data=journal and delalloc");
4937 			err = -EINVAL;
4938 			goto restore_opts;
4939 		}
4940 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4941 			ext4_msg(sb, KERN_ERR, "can't mount with "
4942 				 "both data=journal and dioread_nolock");
4943 			err = -EINVAL;
4944 			goto restore_opts;
4945 		}
4946 		if (test_opt(sb, DAX)) {
4947 			ext4_msg(sb, KERN_ERR, "can't mount with "
4948 				 "both data=journal and dax");
4949 			err = -EINVAL;
4950 			goto restore_opts;
4951 		}
4952 	}
4953 
4954 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4955 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4956 			"dax flag with busy inodes while remounting");
4957 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4958 	}
4959 
4960 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4961 		ext4_abort(sb, "Abort forced by user");
4962 
4963 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4964 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4965 
4966 	es = sbi->s_es;
4967 
4968 	if (sbi->s_journal) {
4969 		ext4_init_journal_params(sb, sbi->s_journal);
4970 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4971 	}
4972 
4973 	if (*flags & MS_LAZYTIME)
4974 		sb->s_flags |= MS_LAZYTIME;
4975 
4976 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4977 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4978 			err = -EROFS;
4979 			goto restore_opts;
4980 		}
4981 
4982 		if (*flags & MS_RDONLY) {
4983 			err = sync_filesystem(sb);
4984 			if (err < 0)
4985 				goto restore_opts;
4986 			err = dquot_suspend(sb, -1);
4987 			if (err < 0)
4988 				goto restore_opts;
4989 
4990 			/*
4991 			 * First of all, the unconditional stuff we have to do
4992 			 * to disable replay of the journal when we next remount
4993 			 */
4994 			sb->s_flags |= MS_RDONLY;
4995 
4996 			/*
4997 			 * OK, test if we are remounting a valid rw partition
4998 			 * readonly, and if so set the rdonly flag and then
4999 			 * mark the partition as valid again.
5000 			 */
5001 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5002 			    (sbi->s_mount_state & EXT4_VALID_FS))
5003 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5004 
5005 			if (sbi->s_journal)
5006 				ext4_mark_recovery_complete(sb, es);
5007 		} else {
5008 			/* Make sure we can mount this feature set readwrite */
5009 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5010 					EXT4_FEATURE_RO_COMPAT_READONLY) ||
5011 			    !ext4_feature_set_ok(sb, 0)) {
5012 				err = -EROFS;
5013 				goto restore_opts;
5014 			}
5015 			/*
5016 			 * Make sure the group descriptor checksums
5017 			 * are sane.  If they aren't, refuse to remount r/w.
5018 			 */
5019 			for (g = 0; g < sbi->s_groups_count; g++) {
5020 				struct ext4_group_desc *gdp =
5021 					ext4_get_group_desc(sb, g, NULL);
5022 
5023 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5024 					ext4_msg(sb, KERN_ERR,
5025 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5026 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5027 					       le16_to_cpu(gdp->bg_checksum));
5028 					err = -EINVAL;
5029 					goto restore_opts;
5030 				}
5031 			}
5032 
5033 			/*
5034 			 * If we have an unprocessed orphan list hanging
5035 			 * around from a previously readonly bdev mount,
5036 			 * require a full umount/remount for now.
5037 			 */
5038 			if (es->s_last_orphan) {
5039 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5040 				       "remount RDWR because of unprocessed "
5041 				       "orphan inode list.  Please "
5042 				       "umount/remount instead");
5043 				err = -EINVAL;
5044 				goto restore_opts;
5045 			}
5046 
5047 			/*
5048 			 * Mounting a RDONLY partition read-write, so reread
5049 			 * and store the current valid flag.  (It may have
5050 			 * been changed by e2fsck since we originally mounted
5051 			 * the partition.)
5052 			 */
5053 			if (sbi->s_journal)
5054 				ext4_clear_journal_err(sb, es);
5055 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5056 			if (!ext4_setup_super(sb, es, 0))
5057 				sb->s_flags &= ~MS_RDONLY;
5058 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5059 						     EXT4_FEATURE_INCOMPAT_MMP))
5060 				if (ext4_multi_mount_protect(sb,
5061 						le64_to_cpu(es->s_mmp_block))) {
5062 					err = -EROFS;
5063 					goto restore_opts;
5064 				}
5065 			enable_quota = 1;
5066 		}
5067 	}
5068 
5069 	/*
5070 	 * Reinitialize lazy itable initialization thread based on
5071 	 * current settings
5072 	 */
5073 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5074 		ext4_unregister_li_request(sb);
5075 	else {
5076 		ext4_group_t first_not_zeroed;
5077 		first_not_zeroed = ext4_has_uninit_itable(sb);
5078 		ext4_register_li_request(sb, first_not_zeroed);
5079 	}
5080 
5081 	ext4_setup_system_zone(sb);
5082 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5083 		ext4_commit_super(sb, 1);
5084 
5085 #ifdef CONFIG_QUOTA
5086 	/* Release old quota file names */
5087 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5088 		kfree(old_opts.s_qf_names[i]);
5089 	if (enable_quota) {
5090 		if (sb_any_quota_suspended(sb))
5091 			dquot_resume(sb, -1);
5092 		else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5093 					EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5094 			err = ext4_enable_quotas(sb);
5095 			if (err)
5096 				goto restore_opts;
5097 		}
5098 	}
5099 #endif
5100 
5101 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5102 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5103 	kfree(orig_data);
5104 	return 0;
5105 
5106 restore_opts:
5107 	sb->s_flags = old_sb_flags;
5108 	sbi->s_mount_opt = old_opts.s_mount_opt;
5109 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5110 	sbi->s_resuid = old_opts.s_resuid;
5111 	sbi->s_resgid = old_opts.s_resgid;
5112 	sbi->s_commit_interval = old_opts.s_commit_interval;
5113 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5114 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5115 #ifdef CONFIG_QUOTA
5116 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5117 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5118 		kfree(sbi->s_qf_names[i]);
5119 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5120 	}
5121 #endif
5122 	kfree(orig_data);
5123 	return err;
5124 }
5125 
5126 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5127 {
5128 	struct super_block *sb = dentry->d_sb;
5129 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5130 	struct ext4_super_block *es = sbi->s_es;
5131 	ext4_fsblk_t overhead = 0, resv_blocks;
5132 	u64 fsid;
5133 	s64 bfree;
5134 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5135 
5136 	if (!test_opt(sb, MINIX_DF))
5137 		overhead = sbi->s_overhead;
5138 
5139 	buf->f_type = EXT4_SUPER_MAGIC;
5140 	buf->f_bsize = sb->s_blocksize;
5141 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5142 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5143 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5144 	/* prevent underflow in case that few free space is available */
5145 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5146 	buf->f_bavail = buf->f_bfree -
5147 			(ext4_r_blocks_count(es) + resv_blocks);
5148 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5149 		buf->f_bavail = 0;
5150 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5151 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5152 	buf->f_namelen = EXT4_NAME_LEN;
5153 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5154 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5155 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5156 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5157 
5158 	return 0;
5159 }
5160 
5161 /* Helper function for writing quotas on sync - we need to start transaction
5162  * before quota file is locked for write. Otherwise the are possible deadlocks:
5163  * Process 1                         Process 2
5164  * ext4_create()                     quota_sync()
5165  *   jbd2_journal_start()                  write_dquot()
5166  *   dquot_initialize()                         down(dqio_mutex)
5167  *     down(dqio_mutex)                    jbd2_journal_start()
5168  *
5169  */
5170 
5171 #ifdef CONFIG_QUOTA
5172 
5173 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5174 {
5175 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5176 }
5177 
5178 static int ext4_write_dquot(struct dquot *dquot)
5179 {
5180 	int ret, err;
5181 	handle_t *handle;
5182 	struct inode *inode;
5183 
5184 	inode = dquot_to_inode(dquot);
5185 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5186 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5187 	if (IS_ERR(handle))
5188 		return PTR_ERR(handle);
5189 	ret = dquot_commit(dquot);
5190 	err = ext4_journal_stop(handle);
5191 	if (!ret)
5192 		ret = err;
5193 	return ret;
5194 }
5195 
5196 static int ext4_acquire_dquot(struct dquot *dquot)
5197 {
5198 	int ret, err;
5199 	handle_t *handle;
5200 
5201 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5202 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5203 	if (IS_ERR(handle))
5204 		return PTR_ERR(handle);
5205 	ret = dquot_acquire(dquot);
5206 	err = ext4_journal_stop(handle);
5207 	if (!ret)
5208 		ret = err;
5209 	return ret;
5210 }
5211 
5212 static int ext4_release_dquot(struct dquot *dquot)
5213 {
5214 	int ret, err;
5215 	handle_t *handle;
5216 
5217 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5218 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5219 	if (IS_ERR(handle)) {
5220 		/* Release dquot anyway to avoid endless cycle in dqput() */
5221 		dquot_release(dquot);
5222 		return PTR_ERR(handle);
5223 	}
5224 	ret = dquot_release(dquot);
5225 	err = ext4_journal_stop(handle);
5226 	if (!ret)
5227 		ret = err;
5228 	return ret;
5229 }
5230 
5231 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5232 {
5233 	struct super_block *sb = dquot->dq_sb;
5234 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5235 
5236 	/* Are we journaling quotas? */
5237 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5238 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5239 		dquot_mark_dquot_dirty(dquot);
5240 		return ext4_write_dquot(dquot);
5241 	} else {
5242 		return dquot_mark_dquot_dirty(dquot);
5243 	}
5244 }
5245 
5246 static int ext4_write_info(struct super_block *sb, int type)
5247 {
5248 	int ret, err;
5249 	handle_t *handle;
5250 
5251 	/* Data block + inode block */
5252 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5253 	if (IS_ERR(handle))
5254 		return PTR_ERR(handle);
5255 	ret = dquot_commit_info(sb, type);
5256 	err = ext4_journal_stop(handle);
5257 	if (!ret)
5258 		ret = err;
5259 	return ret;
5260 }
5261 
5262 /*
5263  * Turn on quotas during mount time - we need to find
5264  * the quota file and such...
5265  */
5266 static int ext4_quota_on_mount(struct super_block *sb, int type)
5267 {
5268 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5269 					EXT4_SB(sb)->s_jquota_fmt, type);
5270 }
5271 
5272 /*
5273  * Standard function to be called on quota_on
5274  */
5275 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5276 			 struct path *path)
5277 {
5278 	int err;
5279 
5280 	if (!test_opt(sb, QUOTA))
5281 		return -EINVAL;
5282 
5283 	/* Quotafile not on the same filesystem? */
5284 	if (path->dentry->d_sb != sb)
5285 		return -EXDEV;
5286 	/* Journaling quota? */
5287 	if (EXT4_SB(sb)->s_qf_names[type]) {
5288 		/* Quotafile not in fs root? */
5289 		if (path->dentry->d_parent != sb->s_root)
5290 			ext4_msg(sb, KERN_WARNING,
5291 				"Quota file not on filesystem root. "
5292 				"Journaled quota will not work");
5293 	}
5294 
5295 	/*
5296 	 * When we journal data on quota file, we have to flush journal to see
5297 	 * all updates to the file when we bypass pagecache...
5298 	 */
5299 	if (EXT4_SB(sb)->s_journal &&
5300 	    ext4_should_journal_data(d_inode(path->dentry))) {
5301 		/*
5302 		 * We don't need to lock updates but journal_flush() could
5303 		 * otherwise be livelocked...
5304 		 */
5305 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5306 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5307 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5308 		if (err)
5309 			return err;
5310 	}
5311 
5312 	return dquot_quota_on(sb, type, format_id, path);
5313 }
5314 
5315 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5316 			     unsigned int flags)
5317 {
5318 	int err;
5319 	struct inode *qf_inode;
5320 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5321 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5322 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5323 	};
5324 
5325 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5326 
5327 	if (!qf_inums[type])
5328 		return -EPERM;
5329 
5330 	qf_inode = ext4_iget(sb, qf_inums[type]);
5331 	if (IS_ERR(qf_inode)) {
5332 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5333 		return PTR_ERR(qf_inode);
5334 	}
5335 
5336 	/* Don't account quota for quota files to avoid recursion */
5337 	qf_inode->i_flags |= S_NOQUOTA;
5338 	err = dquot_enable(qf_inode, type, format_id, flags);
5339 	iput(qf_inode);
5340 
5341 	return err;
5342 }
5343 
5344 /* Enable usage tracking for all quota types. */
5345 static int ext4_enable_quotas(struct super_block *sb)
5346 {
5347 	int type, err = 0;
5348 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5349 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5350 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5351 	};
5352 
5353 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5354 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5355 		if (qf_inums[type]) {
5356 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5357 						DQUOT_USAGE_ENABLED);
5358 			if (err) {
5359 				ext4_warning(sb,
5360 					"Failed to enable quota tracking "
5361 					"(type=%d, err=%d). Please run "
5362 					"e2fsck to fix.", type, err);
5363 				return err;
5364 			}
5365 		}
5366 	}
5367 	return 0;
5368 }
5369 
5370 static int ext4_quota_off(struct super_block *sb, int type)
5371 {
5372 	struct inode *inode = sb_dqopt(sb)->files[type];
5373 	handle_t *handle;
5374 
5375 	/* Force all delayed allocation blocks to be allocated.
5376 	 * Caller already holds s_umount sem */
5377 	if (test_opt(sb, DELALLOC))
5378 		sync_filesystem(sb);
5379 
5380 	if (!inode)
5381 		goto out;
5382 
5383 	/* Update modification times of quota files when userspace can
5384 	 * start looking at them */
5385 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5386 	if (IS_ERR(handle))
5387 		goto out;
5388 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5389 	ext4_mark_inode_dirty(handle, inode);
5390 	ext4_journal_stop(handle);
5391 
5392 out:
5393 	return dquot_quota_off(sb, type);
5394 }
5395 
5396 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5397  * acquiring the locks... As quota files are never truncated and quota code
5398  * itself serializes the operations (and no one else should touch the files)
5399  * we don't have to be afraid of races */
5400 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5401 			       size_t len, loff_t off)
5402 {
5403 	struct inode *inode = sb_dqopt(sb)->files[type];
5404 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5405 	int offset = off & (sb->s_blocksize - 1);
5406 	int tocopy;
5407 	size_t toread;
5408 	struct buffer_head *bh;
5409 	loff_t i_size = i_size_read(inode);
5410 
5411 	if (off > i_size)
5412 		return 0;
5413 	if (off+len > i_size)
5414 		len = i_size-off;
5415 	toread = len;
5416 	while (toread > 0) {
5417 		tocopy = sb->s_blocksize - offset < toread ?
5418 				sb->s_blocksize - offset : toread;
5419 		bh = ext4_bread(NULL, inode, blk, 0);
5420 		if (IS_ERR(bh))
5421 			return PTR_ERR(bh);
5422 		if (!bh)	/* A hole? */
5423 			memset(data, 0, tocopy);
5424 		else
5425 			memcpy(data, bh->b_data+offset, tocopy);
5426 		brelse(bh);
5427 		offset = 0;
5428 		toread -= tocopy;
5429 		data += tocopy;
5430 		blk++;
5431 	}
5432 	return len;
5433 }
5434 
5435 /* Write to quotafile (we know the transaction is already started and has
5436  * enough credits) */
5437 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5438 				const char *data, size_t len, loff_t off)
5439 {
5440 	struct inode *inode = sb_dqopt(sb)->files[type];
5441 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5442 	int err, offset = off & (sb->s_blocksize - 1);
5443 	int retries = 0;
5444 	struct buffer_head *bh;
5445 	handle_t *handle = journal_current_handle();
5446 
5447 	if (EXT4_SB(sb)->s_journal && !handle) {
5448 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5449 			" cancelled because transaction is not started",
5450 			(unsigned long long)off, (unsigned long long)len);
5451 		return -EIO;
5452 	}
5453 	/*
5454 	 * Since we account only one data block in transaction credits,
5455 	 * then it is impossible to cross a block boundary.
5456 	 */
5457 	if (sb->s_blocksize - offset < len) {
5458 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5459 			" cancelled because not block aligned",
5460 			(unsigned long long)off, (unsigned long long)len);
5461 		return -EIO;
5462 	}
5463 
5464 	do {
5465 		bh = ext4_bread(handle, inode, blk,
5466 				EXT4_GET_BLOCKS_CREATE |
5467 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5468 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5469 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5470 	if (IS_ERR(bh))
5471 		return PTR_ERR(bh);
5472 	if (!bh)
5473 		goto out;
5474 	BUFFER_TRACE(bh, "get write access");
5475 	err = ext4_journal_get_write_access(handle, bh);
5476 	if (err) {
5477 		brelse(bh);
5478 		return err;
5479 	}
5480 	lock_buffer(bh);
5481 	memcpy(bh->b_data+offset, data, len);
5482 	flush_dcache_page(bh->b_page);
5483 	unlock_buffer(bh);
5484 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5485 	brelse(bh);
5486 out:
5487 	if (inode->i_size < off + len) {
5488 		i_size_write(inode, off + len);
5489 		EXT4_I(inode)->i_disksize = inode->i_size;
5490 		ext4_mark_inode_dirty(handle, inode);
5491 	}
5492 	return len;
5493 }
5494 
5495 #endif
5496 
5497 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5498 		       const char *dev_name, void *data)
5499 {
5500 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5501 }
5502 
5503 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5504 static inline void register_as_ext2(void)
5505 {
5506 	int err = register_filesystem(&ext2_fs_type);
5507 	if (err)
5508 		printk(KERN_WARNING
5509 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5510 }
5511 
5512 static inline void unregister_as_ext2(void)
5513 {
5514 	unregister_filesystem(&ext2_fs_type);
5515 }
5516 
5517 static inline int ext2_feature_set_ok(struct super_block *sb)
5518 {
5519 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5520 		return 0;
5521 	if (sb->s_flags & MS_RDONLY)
5522 		return 1;
5523 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5524 		return 0;
5525 	return 1;
5526 }
5527 #else
5528 static inline void register_as_ext2(void) { }
5529 static inline void unregister_as_ext2(void) { }
5530 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5531 #endif
5532 
5533 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5534 static inline void register_as_ext3(void)
5535 {
5536 	int err = register_filesystem(&ext3_fs_type);
5537 	if (err)
5538 		printk(KERN_WARNING
5539 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5540 }
5541 
5542 static inline void unregister_as_ext3(void)
5543 {
5544 	unregister_filesystem(&ext3_fs_type);
5545 }
5546 
5547 static inline int ext3_feature_set_ok(struct super_block *sb)
5548 {
5549 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5550 		return 0;
5551 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5552 		return 0;
5553 	if (sb->s_flags & MS_RDONLY)
5554 		return 1;
5555 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5556 		return 0;
5557 	return 1;
5558 }
5559 #else
5560 static inline void register_as_ext3(void) { }
5561 static inline void unregister_as_ext3(void) { }
5562 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5563 #endif
5564 
5565 static struct file_system_type ext4_fs_type = {
5566 	.owner		= THIS_MODULE,
5567 	.name		= "ext4",
5568 	.mount		= ext4_mount,
5569 	.kill_sb	= kill_block_super,
5570 	.fs_flags	= FS_REQUIRES_DEV,
5571 };
5572 MODULE_ALIAS_FS("ext4");
5573 
5574 static int __init ext4_init_feat_adverts(void)
5575 {
5576 	struct ext4_features *ef;
5577 	int ret = -ENOMEM;
5578 
5579 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5580 	if (!ef)
5581 		goto out;
5582 
5583 	ef->f_kobj.kset = ext4_kset;
5584 	init_completion(&ef->f_kobj_unregister);
5585 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5586 				   "features");
5587 	if (ret) {
5588 		kfree(ef);
5589 		goto out;
5590 	}
5591 
5592 	ext4_feat = ef;
5593 	ret = 0;
5594 out:
5595 	return ret;
5596 }
5597 
5598 static void ext4_exit_feat_adverts(void)
5599 {
5600 	kobject_put(&ext4_feat->f_kobj);
5601 	wait_for_completion(&ext4_feat->f_kobj_unregister);
5602 	kfree(ext4_feat);
5603 }
5604 
5605 /* Shared across all ext4 file systems */
5606 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5607 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5608 
5609 static int __init ext4_init_fs(void)
5610 {
5611 	int i, err;
5612 
5613 	ext4_li_info = NULL;
5614 	mutex_init(&ext4_li_mtx);
5615 
5616 	/* Build-time check for flags consistency */
5617 	ext4_check_flag_values();
5618 
5619 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5620 		mutex_init(&ext4__aio_mutex[i]);
5621 		init_waitqueue_head(&ext4__ioend_wq[i]);
5622 	}
5623 
5624 	err = ext4_init_es();
5625 	if (err)
5626 		return err;
5627 
5628 	err = ext4_init_pageio();
5629 	if (err)
5630 		goto out7;
5631 
5632 	err = ext4_init_system_zone();
5633 	if (err)
5634 		goto out6;
5635 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5636 	if (!ext4_kset) {
5637 		err = -ENOMEM;
5638 		goto out5;
5639 	}
5640 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5641 
5642 	err = ext4_init_feat_adverts();
5643 	if (err)
5644 		goto out4;
5645 
5646 	err = ext4_init_mballoc();
5647 	if (err)
5648 		goto out2;
5649 	else
5650 		ext4_mballoc_ready = 1;
5651 	err = init_inodecache();
5652 	if (err)
5653 		goto out1;
5654 	register_as_ext3();
5655 	register_as_ext2();
5656 	err = register_filesystem(&ext4_fs_type);
5657 	if (err)
5658 		goto out;
5659 
5660 	return 0;
5661 out:
5662 	unregister_as_ext2();
5663 	unregister_as_ext3();
5664 	destroy_inodecache();
5665 out1:
5666 	ext4_mballoc_ready = 0;
5667 	ext4_exit_mballoc();
5668 out2:
5669 	ext4_exit_feat_adverts();
5670 out4:
5671 	if (ext4_proc_root)
5672 		remove_proc_entry("fs/ext4", NULL);
5673 	kset_unregister(ext4_kset);
5674 out5:
5675 	ext4_exit_system_zone();
5676 out6:
5677 	ext4_exit_pageio();
5678 out7:
5679 	ext4_exit_es();
5680 
5681 	return err;
5682 }
5683 
5684 static void __exit ext4_exit_fs(void)
5685 {
5686 	ext4_exit_crypto();
5687 	ext4_destroy_lazyinit_thread();
5688 	unregister_as_ext2();
5689 	unregister_as_ext3();
5690 	unregister_filesystem(&ext4_fs_type);
5691 	destroy_inodecache();
5692 	ext4_exit_mballoc();
5693 	ext4_exit_feat_adverts();
5694 	remove_proc_entry("fs/ext4", NULL);
5695 	kset_unregister(ext4_kset);
5696 	ext4_exit_system_zone();
5697 	ext4_exit_pageio();
5698 	ext4_exit_es();
5699 }
5700 
5701 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5702 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5703 MODULE_LICENSE("GPL");
5704 module_init(ext4_init_fs)
5705 module_exit(ext4_exit_fs)
5706