1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 #include "fsmap.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ext4.h> 57 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ratelimit_state ext4_mount_msg_ratelimit; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 76 const char *dev_name, void *data); 77 static inline int ext2_feature_set_ok(struct super_block *sb); 78 static inline int ext3_feature_set_ok(struct super_block *sb); 79 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 80 static void ext4_destroy_lazyinit_thread(void); 81 static void ext4_unregister_li_request(struct super_block *sb); 82 static void ext4_clear_request_list(void); 83 static struct inode *ext4_get_journal_inode(struct super_block *sb, 84 unsigned int journal_inum); 85 86 /* 87 * Lock ordering 88 * 89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 90 * i_mmap_rwsem (inode->i_mmap_rwsem)! 91 * 92 * page fault path: 93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 94 * page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_sem 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * i_mmap_rwsem (w) -> page lock 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * transaction start -> i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 110 * transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 spin_lock(&sbi->s_md_lock); 377 while (!list_empty(&txn->t_private_list)) { 378 jce = list_entry(txn->t_private_list.next, 379 struct ext4_journal_cb_entry, jce_list); 380 list_del_init(&jce->jce_list); 381 spin_unlock(&sbi->s_md_lock); 382 jce->jce_func(sb, jce, error); 383 spin_lock(&sbi->s_md_lock); 384 } 385 spin_unlock(&sbi->s_md_lock); 386 } 387 388 /* Deal with the reporting of failure conditions on a filesystem such as 389 * inconsistencies detected or read IO failures. 390 * 391 * On ext2, we can store the error state of the filesystem in the 392 * superblock. That is not possible on ext4, because we may have other 393 * write ordering constraints on the superblock which prevent us from 394 * writing it out straight away; and given that the journal is about to 395 * be aborted, we can't rely on the current, or future, transactions to 396 * write out the superblock safely. 397 * 398 * We'll just use the jbd2_journal_abort() error code to record an error in 399 * the journal instead. On recovery, the journal will complain about 400 * that error until we've noted it down and cleared it. 401 */ 402 403 static void ext4_handle_error(struct super_block *sb) 404 { 405 if (sb->s_flags & MS_RDONLY) 406 return; 407 408 if (!test_opt(sb, ERRORS_CONT)) { 409 journal_t *journal = EXT4_SB(sb)->s_journal; 410 411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 412 if (journal) 413 jbd2_journal_abort(journal, -EIO); 414 } 415 if (test_opt(sb, ERRORS_RO)) { 416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 417 /* 418 * Make sure updated value of ->s_mount_flags will be visible 419 * before ->s_flags update 420 */ 421 smp_wmb(); 422 sb->s_flags |= MS_RDONLY; 423 } 424 if (test_opt(sb, ERRORS_PANIC)) { 425 if (EXT4_SB(sb)->s_journal && 426 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 427 return; 428 panic("EXT4-fs (device %s): panic forced after error\n", 429 sb->s_id); 430 } 431 } 432 433 #define ext4_error_ratelimit(sb) \ 434 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 435 "EXT4-fs error") 436 437 void __ext4_error(struct super_block *sb, const char *function, 438 unsigned int line, const char *fmt, ...) 439 { 440 struct va_format vaf; 441 va_list args; 442 443 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 444 return; 445 446 if (ext4_error_ratelimit(sb)) { 447 va_start(args, fmt); 448 vaf.fmt = fmt; 449 vaf.va = &args; 450 printk(KERN_CRIT 451 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 452 sb->s_id, function, line, current->comm, &vaf); 453 va_end(args); 454 } 455 save_error_info(sb, function, line); 456 ext4_handle_error(sb); 457 } 458 459 void __ext4_error_inode(struct inode *inode, const char *function, 460 unsigned int line, ext4_fsblk_t block, 461 const char *fmt, ...) 462 { 463 va_list args; 464 struct va_format vaf; 465 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 466 467 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 468 return; 469 470 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 471 es->s_last_error_block = cpu_to_le64(block); 472 if (ext4_error_ratelimit(inode->i_sb)) { 473 va_start(args, fmt); 474 vaf.fmt = fmt; 475 vaf.va = &args; 476 if (block) 477 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 478 "inode #%lu: block %llu: comm %s: %pV\n", 479 inode->i_sb->s_id, function, line, inode->i_ino, 480 block, current->comm, &vaf); 481 else 482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 483 "inode #%lu: comm %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 current->comm, &vaf); 486 va_end(args); 487 } 488 save_error_info(inode->i_sb, function, line); 489 ext4_handle_error(inode->i_sb); 490 } 491 492 void __ext4_error_file(struct file *file, const char *function, 493 unsigned int line, ext4_fsblk_t block, 494 const char *fmt, ...) 495 { 496 va_list args; 497 struct va_format vaf; 498 struct ext4_super_block *es; 499 struct inode *inode = file_inode(file); 500 char pathname[80], *path; 501 502 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 503 return; 504 505 es = EXT4_SB(inode->i_sb)->s_es; 506 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 507 if (ext4_error_ratelimit(inode->i_sb)) { 508 path = file_path(file, pathname, sizeof(pathname)); 509 if (IS_ERR(path)) 510 path = "(unknown)"; 511 va_start(args, fmt); 512 vaf.fmt = fmt; 513 vaf.va = &args; 514 if (block) 515 printk(KERN_CRIT 516 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 517 "block %llu: comm %s: path %s: %pV\n", 518 inode->i_sb->s_id, function, line, inode->i_ino, 519 block, current->comm, path, &vaf); 520 else 521 printk(KERN_CRIT 522 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 523 "comm %s: path %s: %pV\n", 524 inode->i_sb->s_id, function, line, inode->i_ino, 525 current->comm, path, &vaf); 526 va_end(args); 527 } 528 save_error_info(inode->i_sb, function, line); 529 ext4_handle_error(inode->i_sb); 530 } 531 532 const char *ext4_decode_error(struct super_block *sb, int errno, 533 char nbuf[16]) 534 { 535 char *errstr = NULL; 536 537 switch (errno) { 538 case -EFSCORRUPTED: 539 errstr = "Corrupt filesystem"; 540 break; 541 case -EFSBADCRC: 542 errstr = "Filesystem failed CRC"; 543 break; 544 case -EIO: 545 errstr = "IO failure"; 546 break; 547 case -ENOMEM: 548 errstr = "Out of memory"; 549 break; 550 case -EROFS: 551 if (!sb || (EXT4_SB(sb)->s_journal && 552 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 553 errstr = "Journal has aborted"; 554 else 555 errstr = "Readonly filesystem"; 556 break; 557 default: 558 /* If the caller passed in an extra buffer for unknown 559 * errors, textualise them now. Else we just return 560 * NULL. */ 561 if (nbuf) { 562 /* Check for truncated error codes... */ 563 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 564 errstr = nbuf; 565 } 566 break; 567 } 568 569 return errstr; 570 } 571 572 /* __ext4_std_error decodes expected errors from journaling functions 573 * automatically and invokes the appropriate error response. */ 574 575 void __ext4_std_error(struct super_block *sb, const char *function, 576 unsigned int line, int errno) 577 { 578 char nbuf[16]; 579 const char *errstr; 580 581 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 582 return; 583 584 /* Special case: if the error is EROFS, and we're not already 585 * inside a transaction, then there's really no point in logging 586 * an error. */ 587 if (errno == -EROFS && journal_current_handle() == NULL && 588 (sb->s_flags & MS_RDONLY)) 589 return; 590 591 if (ext4_error_ratelimit(sb)) { 592 errstr = ext4_decode_error(sb, errno, nbuf); 593 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 594 sb->s_id, function, line, errstr); 595 } 596 597 save_error_info(sb, function, line); 598 ext4_handle_error(sb); 599 } 600 601 /* 602 * ext4_abort is a much stronger failure handler than ext4_error. The 603 * abort function may be used to deal with unrecoverable failures such 604 * as journal IO errors or ENOMEM at a critical moment in log management. 605 * 606 * We unconditionally force the filesystem into an ABORT|READONLY state, 607 * unless the error response on the fs has been set to panic in which 608 * case we take the easy way out and panic immediately. 609 */ 610 611 void __ext4_abort(struct super_block *sb, const char *function, 612 unsigned int line, const char *fmt, ...) 613 { 614 struct va_format vaf; 615 va_list args; 616 617 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 618 return; 619 620 save_error_info(sb, function, line); 621 va_start(args, fmt); 622 vaf.fmt = fmt; 623 vaf.va = &args; 624 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 625 sb->s_id, function, line, &vaf); 626 va_end(args); 627 628 if ((sb->s_flags & MS_RDONLY) == 0) { 629 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 630 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 631 /* 632 * Make sure updated value of ->s_mount_flags will be visible 633 * before ->s_flags update 634 */ 635 smp_wmb(); 636 sb->s_flags |= MS_RDONLY; 637 if (EXT4_SB(sb)->s_journal) 638 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 639 save_error_info(sb, function, line); 640 } 641 if (test_opt(sb, ERRORS_PANIC)) { 642 if (EXT4_SB(sb)->s_journal && 643 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 644 return; 645 panic("EXT4-fs panic from previous error\n"); 646 } 647 } 648 649 void __ext4_msg(struct super_block *sb, 650 const char *prefix, const char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 656 return; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 662 va_end(args); 663 } 664 665 #define ext4_warning_ratelimit(sb) \ 666 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 667 "EXT4-fs warning") 668 669 void __ext4_warning(struct super_block *sb, const char *function, 670 unsigned int line, const char *fmt, ...) 671 { 672 struct va_format vaf; 673 va_list args; 674 675 if (!ext4_warning_ratelimit(sb)) 676 return; 677 678 va_start(args, fmt); 679 vaf.fmt = fmt; 680 vaf.va = &args; 681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 682 sb->s_id, function, line, &vaf); 683 va_end(args); 684 } 685 686 void __ext4_warning_inode(const struct inode *inode, const char *function, 687 unsigned int line, const char *fmt, ...) 688 { 689 struct va_format vaf; 690 va_list args; 691 692 if (!ext4_warning_ratelimit(inode->i_sb)) 693 return; 694 695 va_start(args, fmt); 696 vaf.fmt = fmt; 697 vaf.va = &args; 698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 699 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 700 function, line, inode->i_ino, current->comm, &vaf); 701 va_end(args); 702 } 703 704 void __ext4_grp_locked_error(const char *function, unsigned int line, 705 struct super_block *sb, ext4_group_t grp, 706 unsigned long ino, ext4_fsblk_t block, 707 const char *fmt, ...) 708 __releases(bitlock) 709 __acquires(bitlock) 710 { 711 struct va_format vaf; 712 va_list args; 713 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 714 715 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 716 return; 717 718 es->s_last_error_ino = cpu_to_le32(ino); 719 es->s_last_error_block = cpu_to_le64(block); 720 __save_error_info(sb, function, line); 721 722 if (ext4_error_ratelimit(sb)) { 723 va_start(args, fmt); 724 vaf.fmt = fmt; 725 vaf.va = &args; 726 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 727 sb->s_id, function, line, grp); 728 if (ino) 729 printk(KERN_CONT "inode %lu: ", ino); 730 if (block) 731 printk(KERN_CONT "block %llu:", 732 (unsigned long long) block); 733 printk(KERN_CONT "%pV\n", &vaf); 734 va_end(args); 735 } 736 737 if (test_opt(sb, ERRORS_CONT)) { 738 ext4_commit_super(sb, 0); 739 return; 740 } 741 742 ext4_unlock_group(sb, grp); 743 ext4_handle_error(sb); 744 /* 745 * We only get here in the ERRORS_RO case; relocking the group 746 * may be dangerous, but nothing bad will happen since the 747 * filesystem will have already been marked read/only and the 748 * journal has been aborted. We return 1 as a hint to callers 749 * who might what to use the return value from 750 * ext4_grp_locked_error() to distinguish between the 751 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 752 * aggressively from the ext4 function in question, with a 753 * more appropriate error code. 754 */ 755 ext4_lock_group(sb, grp); 756 return; 757 } 758 759 void ext4_update_dynamic_rev(struct super_block *sb) 760 { 761 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 762 763 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 764 return; 765 766 ext4_warning(sb, 767 "updating to rev %d because of new feature flag, " 768 "running e2fsck is recommended", 769 EXT4_DYNAMIC_REV); 770 771 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 772 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 773 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 774 /* leave es->s_feature_*compat flags alone */ 775 /* es->s_uuid will be set by e2fsck if empty */ 776 777 /* 778 * The rest of the superblock fields should be zero, and if not it 779 * means they are likely already in use, so leave them alone. We 780 * can leave it up to e2fsck to clean up any inconsistencies there. 781 */ 782 } 783 784 /* 785 * Open the external journal device 786 */ 787 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 788 { 789 struct block_device *bdev; 790 char b[BDEVNAME_SIZE]; 791 792 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 793 if (IS_ERR(bdev)) 794 goto fail; 795 return bdev; 796 797 fail: 798 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 799 __bdevname(dev, b), PTR_ERR(bdev)); 800 return NULL; 801 } 802 803 /* 804 * Release the journal device 805 */ 806 static void ext4_blkdev_put(struct block_device *bdev) 807 { 808 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 809 } 810 811 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 812 { 813 struct block_device *bdev; 814 bdev = sbi->journal_bdev; 815 if (bdev) { 816 ext4_blkdev_put(bdev); 817 sbi->journal_bdev = NULL; 818 } 819 } 820 821 static inline struct inode *orphan_list_entry(struct list_head *l) 822 { 823 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 824 } 825 826 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 827 { 828 struct list_head *l; 829 830 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 831 le32_to_cpu(sbi->s_es->s_last_orphan)); 832 833 printk(KERN_ERR "sb_info orphan list:\n"); 834 list_for_each(l, &sbi->s_orphan) { 835 struct inode *inode = orphan_list_entry(l); 836 printk(KERN_ERR " " 837 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 838 inode->i_sb->s_id, inode->i_ino, inode, 839 inode->i_mode, inode->i_nlink, 840 NEXT_ORPHAN(inode)); 841 } 842 } 843 844 #ifdef CONFIG_QUOTA 845 static int ext4_quota_off(struct super_block *sb, int type); 846 847 static inline void ext4_quota_off_umount(struct super_block *sb) 848 { 849 int type; 850 851 if (ext4_has_feature_quota(sb)) { 852 dquot_disable(sb, -1, 853 DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 854 } else { 855 /* Use our quota_off function to clear inode flags etc. */ 856 for (type = 0; type < EXT4_MAXQUOTAS; type++) 857 ext4_quota_off(sb, type); 858 } 859 } 860 #else 861 static inline void ext4_quota_off_umount(struct super_block *sb) 862 { 863 } 864 #endif 865 866 static void ext4_put_super(struct super_block *sb) 867 { 868 struct ext4_sb_info *sbi = EXT4_SB(sb); 869 struct ext4_super_block *es = sbi->s_es; 870 int aborted = 0; 871 int i, err; 872 873 ext4_unregister_li_request(sb); 874 ext4_quota_off_umount(sb); 875 876 flush_workqueue(sbi->rsv_conversion_wq); 877 destroy_workqueue(sbi->rsv_conversion_wq); 878 879 if (sbi->s_journal) { 880 aborted = is_journal_aborted(sbi->s_journal); 881 err = jbd2_journal_destroy(sbi->s_journal); 882 sbi->s_journal = NULL; 883 if ((err < 0) && !aborted) 884 ext4_abort(sb, "Couldn't clean up the journal"); 885 } 886 887 ext4_unregister_sysfs(sb); 888 ext4_es_unregister_shrinker(sbi); 889 del_timer_sync(&sbi->s_err_report); 890 ext4_release_system_zone(sb); 891 ext4_mb_release(sb); 892 ext4_ext_release(sb); 893 894 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 895 ext4_clear_feature_journal_needs_recovery(sb); 896 es->s_state = cpu_to_le16(sbi->s_mount_state); 897 } 898 if (!(sb->s_flags & MS_RDONLY)) 899 ext4_commit_super(sb, 1); 900 901 for (i = 0; i < sbi->s_gdb_count; i++) 902 brelse(sbi->s_group_desc[i]); 903 kvfree(sbi->s_group_desc); 904 kvfree(sbi->s_flex_groups); 905 percpu_counter_destroy(&sbi->s_freeclusters_counter); 906 percpu_counter_destroy(&sbi->s_freeinodes_counter); 907 percpu_counter_destroy(&sbi->s_dirs_counter); 908 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 909 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 910 #ifdef CONFIG_QUOTA 911 for (i = 0; i < EXT4_MAXQUOTAS; i++) 912 kfree(sbi->s_qf_names[i]); 913 #endif 914 915 /* Debugging code just in case the in-memory inode orphan list 916 * isn't empty. The on-disk one can be non-empty if we've 917 * detected an error and taken the fs readonly, but the 918 * in-memory list had better be clean by this point. */ 919 if (!list_empty(&sbi->s_orphan)) 920 dump_orphan_list(sb, sbi); 921 J_ASSERT(list_empty(&sbi->s_orphan)); 922 923 sync_blockdev(sb->s_bdev); 924 invalidate_bdev(sb->s_bdev); 925 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 926 /* 927 * Invalidate the journal device's buffers. We don't want them 928 * floating about in memory - the physical journal device may 929 * hotswapped, and it breaks the `ro-after' testing code. 930 */ 931 sync_blockdev(sbi->journal_bdev); 932 invalidate_bdev(sbi->journal_bdev); 933 ext4_blkdev_remove(sbi); 934 } 935 if (sbi->s_mb_cache) { 936 ext4_xattr_destroy_cache(sbi->s_mb_cache); 937 sbi->s_mb_cache = NULL; 938 } 939 if (sbi->s_mmp_tsk) 940 kthread_stop(sbi->s_mmp_tsk); 941 brelse(sbi->s_sbh); 942 sb->s_fs_info = NULL; 943 /* 944 * Now that we are completely done shutting down the 945 * superblock, we need to actually destroy the kobject. 946 */ 947 kobject_put(&sbi->s_kobj); 948 wait_for_completion(&sbi->s_kobj_unregister); 949 if (sbi->s_chksum_driver) 950 crypto_free_shash(sbi->s_chksum_driver); 951 kfree(sbi->s_blockgroup_lock); 952 kfree(sbi); 953 } 954 955 static struct kmem_cache *ext4_inode_cachep; 956 957 /* 958 * Called inside transaction, so use GFP_NOFS 959 */ 960 static struct inode *ext4_alloc_inode(struct super_block *sb) 961 { 962 struct ext4_inode_info *ei; 963 964 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 965 if (!ei) 966 return NULL; 967 968 ei->vfs_inode.i_version = 1; 969 spin_lock_init(&ei->i_raw_lock); 970 INIT_LIST_HEAD(&ei->i_prealloc_list); 971 spin_lock_init(&ei->i_prealloc_lock); 972 ext4_es_init_tree(&ei->i_es_tree); 973 rwlock_init(&ei->i_es_lock); 974 INIT_LIST_HEAD(&ei->i_es_list); 975 ei->i_es_all_nr = 0; 976 ei->i_es_shk_nr = 0; 977 ei->i_es_shrink_lblk = 0; 978 ei->i_reserved_data_blocks = 0; 979 ei->i_reserved_meta_blocks = 0; 980 ei->i_allocated_meta_blocks = 0; 981 ei->i_da_metadata_calc_len = 0; 982 ei->i_da_metadata_calc_last_lblock = 0; 983 spin_lock_init(&(ei->i_block_reservation_lock)); 984 #ifdef CONFIG_QUOTA 985 ei->i_reserved_quota = 0; 986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 987 #endif 988 ei->jinode = NULL; 989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 990 spin_lock_init(&ei->i_completed_io_lock); 991 ei->i_sync_tid = 0; 992 ei->i_datasync_tid = 0; 993 atomic_set(&ei->i_unwritten, 0); 994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 995 return &ei->vfs_inode; 996 } 997 998 static int ext4_drop_inode(struct inode *inode) 999 { 1000 int drop = generic_drop_inode(inode); 1001 1002 trace_ext4_drop_inode(inode, drop); 1003 return drop; 1004 } 1005 1006 static void ext4_i_callback(struct rcu_head *head) 1007 { 1008 struct inode *inode = container_of(head, struct inode, i_rcu); 1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1010 } 1011 1012 static void ext4_destroy_inode(struct inode *inode) 1013 { 1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1015 ext4_msg(inode->i_sb, KERN_ERR, 1016 "Inode %lu (%p): orphan list check failed!", 1017 inode->i_ino, EXT4_I(inode)); 1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1019 EXT4_I(inode), sizeof(struct ext4_inode_info), 1020 true); 1021 dump_stack(); 1022 } 1023 call_rcu(&inode->i_rcu, ext4_i_callback); 1024 } 1025 1026 static void init_once(void *foo) 1027 { 1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1029 1030 INIT_LIST_HEAD(&ei->i_orphan); 1031 init_rwsem(&ei->xattr_sem); 1032 init_rwsem(&ei->i_data_sem); 1033 init_rwsem(&ei->i_mmap_sem); 1034 inode_init_once(&ei->vfs_inode); 1035 } 1036 1037 static int __init init_inodecache(void) 1038 { 1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1040 sizeof(struct ext4_inode_info), 1041 0, (SLAB_RECLAIM_ACCOUNT| 1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1043 init_once); 1044 if (ext4_inode_cachep == NULL) 1045 return -ENOMEM; 1046 return 0; 1047 } 1048 1049 static void destroy_inodecache(void) 1050 { 1051 /* 1052 * Make sure all delayed rcu free inodes are flushed before we 1053 * destroy cache. 1054 */ 1055 rcu_barrier(); 1056 kmem_cache_destroy(ext4_inode_cachep); 1057 } 1058 1059 void ext4_clear_inode(struct inode *inode) 1060 { 1061 invalidate_inode_buffers(inode); 1062 clear_inode(inode); 1063 dquot_drop(inode); 1064 ext4_discard_preallocations(inode); 1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1066 if (EXT4_I(inode)->jinode) { 1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1068 EXT4_I(inode)->jinode); 1069 jbd2_free_inode(EXT4_I(inode)->jinode); 1070 EXT4_I(inode)->jinode = NULL; 1071 } 1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1073 fscrypt_put_encryption_info(inode, NULL); 1074 #endif 1075 } 1076 1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1078 u64 ino, u32 generation) 1079 { 1080 struct inode *inode; 1081 1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1083 return ERR_PTR(-ESTALE); 1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1085 return ERR_PTR(-ESTALE); 1086 1087 /* iget isn't really right if the inode is currently unallocated!! 1088 * 1089 * ext4_read_inode will return a bad_inode if the inode had been 1090 * deleted, so we should be safe. 1091 * 1092 * Currently we don't know the generation for parent directory, so 1093 * a generation of 0 means "accept any" 1094 */ 1095 inode = ext4_iget_normal(sb, ino); 1096 if (IS_ERR(inode)) 1097 return ERR_CAST(inode); 1098 if (generation && inode->i_generation != generation) { 1099 iput(inode); 1100 return ERR_PTR(-ESTALE); 1101 } 1102 1103 return inode; 1104 } 1105 1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1107 int fh_len, int fh_type) 1108 { 1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1110 ext4_nfs_get_inode); 1111 } 1112 1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1114 int fh_len, int fh_type) 1115 { 1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1117 ext4_nfs_get_inode); 1118 } 1119 1120 /* 1121 * Try to release metadata pages (indirect blocks, directories) which are 1122 * mapped via the block device. Since these pages could have journal heads 1123 * which would prevent try_to_free_buffers() from freeing them, we must use 1124 * jbd2 layer's try_to_free_buffers() function to release them. 1125 */ 1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1127 gfp_t wait) 1128 { 1129 journal_t *journal = EXT4_SB(sb)->s_journal; 1130 1131 WARN_ON(PageChecked(page)); 1132 if (!page_has_buffers(page)) 1133 return 0; 1134 if (journal) 1135 return jbd2_journal_try_to_free_buffers(journal, page, 1136 wait & ~__GFP_DIRECT_RECLAIM); 1137 return try_to_free_buffers(page); 1138 } 1139 1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1142 { 1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1145 } 1146 1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1148 void *fs_data) 1149 { 1150 handle_t *handle = fs_data; 1151 int res, res2, retries = 0; 1152 1153 res = ext4_convert_inline_data(inode); 1154 if (res) 1155 return res; 1156 1157 /* 1158 * If a journal handle was specified, then the encryption context is 1159 * being set on a new inode via inheritance and is part of a larger 1160 * transaction to create the inode. Otherwise the encryption context is 1161 * being set on an existing inode in its own transaction. Only in the 1162 * latter case should the "retry on ENOSPC" logic be used. 1163 */ 1164 1165 if (handle) { 1166 res = ext4_xattr_set_handle(handle, inode, 1167 EXT4_XATTR_INDEX_ENCRYPTION, 1168 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1169 ctx, len, 0); 1170 if (!res) { 1171 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1172 ext4_clear_inode_state(inode, 1173 EXT4_STATE_MAY_INLINE_DATA); 1174 /* 1175 * Update inode->i_flags - e.g. S_DAX may get disabled 1176 */ 1177 ext4_set_inode_flags(inode); 1178 } 1179 return res; 1180 } 1181 1182 retry: 1183 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1184 ext4_jbd2_credits_xattr(inode)); 1185 if (IS_ERR(handle)) 1186 return PTR_ERR(handle); 1187 1188 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1189 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1190 ctx, len, 0); 1191 if (!res) { 1192 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1193 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1194 ext4_set_inode_flags(inode); 1195 res = ext4_mark_inode_dirty(handle, inode); 1196 if (res) 1197 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1198 } 1199 res2 = ext4_journal_stop(handle); 1200 1201 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1202 goto retry; 1203 if (!res) 1204 res = res2; 1205 return res; 1206 } 1207 1208 static int ext4_dummy_context(struct inode *inode) 1209 { 1210 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1211 } 1212 1213 static unsigned ext4_max_namelen(struct inode *inode) 1214 { 1215 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1216 EXT4_NAME_LEN; 1217 } 1218 1219 static const struct fscrypt_operations ext4_cryptops = { 1220 .key_prefix = "ext4:", 1221 .get_context = ext4_get_context, 1222 .set_context = ext4_set_context, 1223 .dummy_context = ext4_dummy_context, 1224 .is_encrypted = ext4_encrypted_inode, 1225 .empty_dir = ext4_empty_dir, 1226 .max_namelen = ext4_max_namelen, 1227 }; 1228 #else 1229 static const struct fscrypt_operations ext4_cryptops = { 1230 .is_encrypted = ext4_encrypted_inode, 1231 }; 1232 #endif 1233 1234 #ifdef CONFIG_QUOTA 1235 static const char * const quotatypes[] = INITQFNAMES; 1236 #define QTYPE2NAME(t) (quotatypes[t]) 1237 1238 static int ext4_write_dquot(struct dquot *dquot); 1239 static int ext4_acquire_dquot(struct dquot *dquot); 1240 static int ext4_release_dquot(struct dquot *dquot); 1241 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1242 static int ext4_write_info(struct super_block *sb, int type); 1243 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1244 const struct path *path); 1245 static int ext4_quota_on_mount(struct super_block *sb, int type); 1246 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1247 size_t len, loff_t off); 1248 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1249 const char *data, size_t len, loff_t off); 1250 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1251 unsigned int flags); 1252 static int ext4_enable_quotas(struct super_block *sb); 1253 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1254 1255 static struct dquot **ext4_get_dquots(struct inode *inode) 1256 { 1257 return EXT4_I(inode)->i_dquot; 1258 } 1259 1260 static const struct dquot_operations ext4_quota_operations = { 1261 .get_reserved_space = ext4_get_reserved_space, 1262 .write_dquot = ext4_write_dquot, 1263 .acquire_dquot = ext4_acquire_dquot, 1264 .release_dquot = ext4_release_dquot, 1265 .mark_dirty = ext4_mark_dquot_dirty, 1266 .write_info = ext4_write_info, 1267 .alloc_dquot = dquot_alloc, 1268 .destroy_dquot = dquot_destroy, 1269 .get_projid = ext4_get_projid, 1270 .get_next_id = ext4_get_next_id, 1271 }; 1272 1273 static const struct quotactl_ops ext4_qctl_operations = { 1274 .quota_on = ext4_quota_on, 1275 .quota_off = ext4_quota_off, 1276 .quota_sync = dquot_quota_sync, 1277 .get_state = dquot_get_state, 1278 .set_info = dquot_set_dqinfo, 1279 .get_dqblk = dquot_get_dqblk, 1280 .set_dqblk = dquot_set_dqblk, 1281 .get_nextdqblk = dquot_get_next_dqblk, 1282 }; 1283 #endif 1284 1285 static const struct super_operations ext4_sops = { 1286 .alloc_inode = ext4_alloc_inode, 1287 .destroy_inode = ext4_destroy_inode, 1288 .write_inode = ext4_write_inode, 1289 .dirty_inode = ext4_dirty_inode, 1290 .drop_inode = ext4_drop_inode, 1291 .evict_inode = ext4_evict_inode, 1292 .put_super = ext4_put_super, 1293 .sync_fs = ext4_sync_fs, 1294 .freeze_fs = ext4_freeze, 1295 .unfreeze_fs = ext4_unfreeze, 1296 .statfs = ext4_statfs, 1297 .remount_fs = ext4_remount, 1298 .show_options = ext4_show_options, 1299 #ifdef CONFIG_QUOTA 1300 .quota_read = ext4_quota_read, 1301 .quota_write = ext4_quota_write, 1302 .get_dquots = ext4_get_dquots, 1303 #endif 1304 .bdev_try_to_free_page = bdev_try_to_free_page, 1305 }; 1306 1307 static const struct export_operations ext4_export_ops = { 1308 .fh_to_dentry = ext4_fh_to_dentry, 1309 .fh_to_parent = ext4_fh_to_parent, 1310 .get_parent = ext4_get_parent, 1311 }; 1312 1313 enum { 1314 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1315 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1316 Opt_nouid32, Opt_debug, Opt_removed, 1317 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1318 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1319 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1320 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1321 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1322 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1323 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1324 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1325 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1326 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1327 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1328 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1329 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1330 Opt_inode_readahead_blks, Opt_journal_ioprio, 1331 Opt_dioread_nolock, Opt_dioread_lock, 1332 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1333 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1334 }; 1335 1336 static const match_table_t tokens = { 1337 {Opt_bsd_df, "bsddf"}, 1338 {Opt_minix_df, "minixdf"}, 1339 {Opt_grpid, "grpid"}, 1340 {Opt_grpid, "bsdgroups"}, 1341 {Opt_nogrpid, "nogrpid"}, 1342 {Opt_nogrpid, "sysvgroups"}, 1343 {Opt_resgid, "resgid=%u"}, 1344 {Opt_resuid, "resuid=%u"}, 1345 {Opt_sb, "sb=%u"}, 1346 {Opt_err_cont, "errors=continue"}, 1347 {Opt_err_panic, "errors=panic"}, 1348 {Opt_err_ro, "errors=remount-ro"}, 1349 {Opt_nouid32, "nouid32"}, 1350 {Opt_debug, "debug"}, 1351 {Opt_removed, "oldalloc"}, 1352 {Opt_removed, "orlov"}, 1353 {Opt_user_xattr, "user_xattr"}, 1354 {Opt_nouser_xattr, "nouser_xattr"}, 1355 {Opt_acl, "acl"}, 1356 {Opt_noacl, "noacl"}, 1357 {Opt_noload, "norecovery"}, 1358 {Opt_noload, "noload"}, 1359 {Opt_removed, "nobh"}, 1360 {Opt_removed, "bh"}, 1361 {Opt_commit, "commit=%u"}, 1362 {Opt_min_batch_time, "min_batch_time=%u"}, 1363 {Opt_max_batch_time, "max_batch_time=%u"}, 1364 {Opt_journal_dev, "journal_dev=%u"}, 1365 {Opt_journal_path, "journal_path=%s"}, 1366 {Opt_journal_checksum, "journal_checksum"}, 1367 {Opt_nojournal_checksum, "nojournal_checksum"}, 1368 {Opt_journal_async_commit, "journal_async_commit"}, 1369 {Opt_abort, "abort"}, 1370 {Opt_data_journal, "data=journal"}, 1371 {Opt_data_ordered, "data=ordered"}, 1372 {Opt_data_writeback, "data=writeback"}, 1373 {Opt_data_err_abort, "data_err=abort"}, 1374 {Opt_data_err_ignore, "data_err=ignore"}, 1375 {Opt_offusrjquota, "usrjquota="}, 1376 {Opt_usrjquota, "usrjquota=%s"}, 1377 {Opt_offgrpjquota, "grpjquota="}, 1378 {Opt_grpjquota, "grpjquota=%s"}, 1379 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1380 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1381 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1382 {Opt_grpquota, "grpquota"}, 1383 {Opt_noquota, "noquota"}, 1384 {Opt_quota, "quota"}, 1385 {Opt_usrquota, "usrquota"}, 1386 {Opt_prjquota, "prjquota"}, 1387 {Opt_barrier, "barrier=%u"}, 1388 {Opt_barrier, "barrier"}, 1389 {Opt_nobarrier, "nobarrier"}, 1390 {Opt_i_version, "i_version"}, 1391 {Opt_dax, "dax"}, 1392 {Opt_stripe, "stripe=%u"}, 1393 {Opt_delalloc, "delalloc"}, 1394 {Opt_lazytime, "lazytime"}, 1395 {Opt_nolazytime, "nolazytime"}, 1396 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1397 {Opt_nodelalloc, "nodelalloc"}, 1398 {Opt_removed, "mblk_io_submit"}, 1399 {Opt_removed, "nomblk_io_submit"}, 1400 {Opt_block_validity, "block_validity"}, 1401 {Opt_noblock_validity, "noblock_validity"}, 1402 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1403 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1404 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1405 {Opt_auto_da_alloc, "auto_da_alloc"}, 1406 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1407 {Opt_dioread_nolock, "dioread_nolock"}, 1408 {Opt_dioread_lock, "dioread_lock"}, 1409 {Opt_discard, "discard"}, 1410 {Opt_nodiscard, "nodiscard"}, 1411 {Opt_init_itable, "init_itable=%u"}, 1412 {Opt_init_itable, "init_itable"}, 1413 {Opt_noinit_itable, "noinit_itable"}, 1414 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1415 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1416 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1417 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1418 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1419 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1420 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1421 {Opt_err, NULL}, 1422 }; 1423 1424 static ext4_fsblk_t get_sb_block(void **data) 1425 { 1426 ext4_fsblk_t sb_block; 1427 char *options = (char *) *data; 1428 1429 if (!options || strncmp(options, "sb=", 3) != 0) 1430 return 1; /* Default location */ 1431 1432 options += 3; 1433 /* TODO: use simple_strtoll with >32bit ext4 */ 1434 sb_block = simple_strtoul(options, &options, 0); 1435 if (*options && *options != ',') { 1436 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1437 (char *) *data); 1438 return 1; 1439 } 1440 if (*options == ',') 1441 options++; 1442 *data = (void *) options; 1443 1444 return sb_block; 1445 } 1446 1447 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1448 static const char deprecated_msg[] = 1449 "Mount option \"%s\" will be removed by %s\n" 1450 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1451 1452 #ifdef CONFIG_QUOTA 1453 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1454 { 1455 struct ext4_sb_info *sbi = EXT4_SB(sb); 1456 char *qname; 1457 int ret = -1; 1458 1459 if (sb_any_quota_loaded(sb) && 1460 !sbi->s_qf_names[qtype]) { 1461 ext4_msg(sb, KERN_ERR, 1462 "Cannot change journaled " 1463 "quota options when quota turned on"); 1464 return -1; 1465 } 1466 if (ext4_has_feature_quota(sb)) { 1467 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1468 "ignored when QUOTA feature is enabled"); 1469 return 1; 1470 } 1471 qname = match_strdup(args); 1472 if (!qname) { 1473 ext4_msg(sb, KERN_ERR, 1474 "Not enough memory for storing quotafile name"); 1475 return -1; 1476 } 1477 if (sbi->s_qf_names[qtype]) { 1478 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1479 ret = 1; 1480 else 1481 ext4_msg(sb, KERN_ERR, 1482 "%s quota file already specified", 1483 QTYPE2NAME(qtype)); 1484 goto errout; 1485 } 1486 if (strchr(qname, '/')) { 1487 ext4_msg(sb, KERN_ERR, 1488 "quotafile must be on filesystem root"); 1489 goto errout; 1490 } 1491 sbi->s_qf_names[qtype] = qname; 1492 set_opt(sb, QUOTA); 1493 return 1; 1494 errout: 1495 kfree(qname); 1496 return ret; 1497 } 1498 1499 static int clear_qf_name(struct super_block *sb, int qtype) 1500 { 1501 1502 struct ext4_sb_info *sbi = EXT4_SB(sb); 1503 1504 if (sb_any_quota_loaded(sb) && 1505 sbi->s_qf_names[qtype]) { 1506 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1507 " when quota turned on"); 1508 return -1; 1509 } 1510 kfree(sbi->s_qf_names[qtype]); 1511 sbi->s_qf_names[qtype] = NULL; 1512 return 1; 1513 } 1514 #endif 1515 1516 #define MOPT_SET 0x0001 1517 #define MOPT_CLEAR 0x0002 1518 #define MOPT_NOSUPPORT 0x0004 1519 #define MOPT_EXPLICIT 0x0008 1520 #define MOPT_CLEAR_ERR 0x0010 1521 #define MOPT_GTE0 0x0020 1522 #ifdef CONFIG_QUOTA 1523 #define MOPT_Q 0 1524 #define MOPT_QFMT 0x0040 1525 #else 1526 #define MOPT_Q MOPT_NOSUPPORT 1527 #define MOPT_QFMT MOPT_NOSUPPORT 1528 #endif 1529 #define MOPT_DATAJ 0x0080 1530 #define MOPT_NO_EXT2 0x0100 1531 #define MOPT_NO_EXT3 0x0200 1532 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1533 #define MOPT_STRING 0x0400 1534 1535 static const struct mount_opts { 1536 int token; 1537 int mount_opt; 1538 int flags; 1539 } ext4_mount_opts[] = { 1540 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1541 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1542 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1543 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1544 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1545 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1546 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1547 MOPT_EXT4_ONLY | MOPT_SET}, 1548 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1549 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1550 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1551 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1552 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1553 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1554 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1555 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1556 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1557 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1558 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1559 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1560 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1561 EXT4_MOUNT_JOURNAL_CHECKSUM), 1562 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1563 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1564 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1565 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1566 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1567 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1568 MOPT_NO_EXT2}, 1569 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1570 MOPT_NO_EXT2}, 1571 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1572 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1573 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1574 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1575 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1576 {Opt_commit, 0, MOPT_GTE0}, 1577 {Opt_max_batch_time, 0, MOPT_GTE0}, 1578 {Opt_min_batch_time, 0, MOPT_GTE0}, 1579 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1580 {Opt_init_itable, 0, MOPT_GTE0}, 1581 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1582 {Opt_stripe, 0, MOPT_GTE0}, 1583 {Opt_resuid, 0, MOPT_GTE0}, 1584 {Opt_resgid, 0, MOPT_GTE0}, 1585 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1586 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1587 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1588 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1589 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1590 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1591 MOPT_NO_EXT2 | MOPT_DATAJ}, 1592 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1593 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1594 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1595 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1596 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1597 #else 1598 {Opt_acl, 0, MOPT_NOSUPPORT}, 1599 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1600 #endif 1601 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1602 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1603 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1604 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1605 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1606 MOPT_SET | MOPT_Q}, 1607 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1608 MOPT_SET | MOPT_Q}, 1609 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1610 MOPT_SET | MOPT_Q}, 1611 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1612 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1613 MOPT_CLEAR | MOPT_Q}, 1614 {Opt_usrjquota, 0, MOPT_Q}, 1615 {Opt_grpjquota, 0, MOPT_Q}, 1616 {Opt_offusrjquota, 0, MOPT_Q}, 1617 {Opt_offgrpjquota, 0, MOPT_Q}, 1618 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1619 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1620 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1621 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1622 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1623 {Opt_err, 0, 0} 1624 }; 1625 1626 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1627 substring_t *args, unsigned long *journal_devnum, 1628 unsigned int *journal_ioprio, int is_remount) 1629 { 1630 struct ext4_sb_info *sbi = EXT4_SB(sb); 1631 const struct mount_opts *m; 1632 kuid_t uid; 1633 kgid_t gid; 1634 int arg = 0; 1635 1636 #ifdef CONFIG_QUOTA 1637 if (token == Opt_usrjquota) 1638 return set_qf_name(sb, USRQUOTA, &args[0]); 1639 else if (token == Opt_grpjquota) 1640 return set_qf_name(sb, GRPQUOTA, &args[0]); 1641 else if (token == Opt_offusrjquota) 1642 return clear_qf_name(sb, USRQUOTA); 1643 else if (token == Opt_offgrpjquota) 1644 return clear_qf_name(sb, GRPQUOTA); 1645 #endif 1646 switch (token) { 1647 case Opt_noacl: 1648 case Opt_nouser_xattr: 1649 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1650 break; 1651 case Opt_sb: 1652 return 1; /* handled by get_sb_block() */ 1653 case Opt_removed: 1654 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1655 return 1; 1656 case Opt_abort: 1657 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1658 return 1; 1659 case Opt_i_version: 1660 sb->s_flags |= MS_I_VERSION; 1661 return 1; 1662 case Opt_lazytime: 1663 sb->s_flags |= MS_LAZYTIME; 1664 return 1; 1665 case Opt_nolazytime: 1666 sb->s_flags &= ~MS_LAZYTIME; 1667 return 1; 1668 } 1669 1670 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1671 if (token == m->token) 1672 break; 1673 1674 if (m->token == Opt_err) { 1675 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1676 "or missing value", opt); 1677 return -1; 1678 } 1679 1680 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1681 ext4_msg(sb, KERN_ERR, 1682 "Mount option \"%s\" incompatible with ext2", opt); 1683 return -1; 1684 } 1685 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1686 ext4_msg(sb, KERN_ERR, 1687 "Mount option \"%s\" incompatible with ext3", opt); 1688 return -1; 1689 } 1690 1691 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1692 return -1; 1693 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1694 return -1; 1695 if (m->flags & MOPT_EXPLICIT) { 1696 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1697 set_opt2(sb, EXPLICIT_DELALLOC); 1698 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1699 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1700 } else 1701 return -1; 1702 } 1703 if (m->flags & MOPT_CLEAR_ERR) 1704 clear_opt(sb, ERRORS_MASK); 1705 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1706 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1707 "options when quota turned on"); 1708 return -1; 1709 } 1710 1711 if (m->flags & MOPT_NOSUPPORT) { 1712 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1713 } else if (token == Opt_commit) { 1714 if (arg == 0) 1715 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1716 sbi->s_commit_interval = HZ * arg; 1717 } else if (token == Opt_debug_want_extra_isize) { 1718 sbi->s_want_extra_isize = arg; 1719 } else if (token == Opt_max_batch_time) { 1720 sbi->s_max_batch_time = arg; 1721 } else if (token == Opt_min_batch_time) { 1722 sbi->s_min_batch_time = arg; 1723 } else if (token == Opt_inode_readahead_blks) { 1724 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1725 ext4_msg(sb, KERN_ERR, 1726 "EXT4-fs: inode_readahead_blks must be " 1727 "0 or a power of 2 smaller than 2^31"); 1728 return -1; 1729 } 1730 sbi->s_inode_readahead_blks = arg; 1731 } else if (token == Opt_init_itable) { 1732 set_opt(sb, INIT_INODE_TABLE); 1733 if (!args->from) 1734 arg = EXT4_DEF_LI_WAIT_MULT; 1735 sbi->s_li_wait_mult = arg; 1736 } else if (token == Opt_max_dir_size_kb) { 1737 sbi->s_max_dir_size_kb = arg; 1738 } else if (token == Opt_stripe) { 1739 sbi->s_stripe = arg; 1740 } else if (token == Opt_resuid) { 1741 uid = make_kuid(current_user_ns(), arg); 1742 if (!uid_valid(uid)) { 1743 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1744 return -1; 1745 } 1746 sbi->s_resuid = uid; 1747 } else if (token == Opt_resgid) { 1748 gid = make_kgid(current_user_ns(), arg); 1749 if (!gid_valid(gid)) { 1750 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1751 return -1; 1752 } 1753 sbi->s_resgid = gid; 1754 } else if (token == Opt_journal_dev) { 1755 if (is_remount) { 1756 ext4_msg(sb, KERN_ERR, 1757 "Cannot specify journal on remount"); 1758 return -1; 1759 } 1760 *journal_devnum = arg; 1761 } else if (token == Opt_journal_path) { 1762 char *journal_path; 1763 struct inode *journal_inode; 1764 struct path path; 1765 int error; 1766 1767 if (is_remount) { 1768 ext4_msg(sb, KERN_ERR, 1769 "Cannot specify journal on remount"); 1770 return -1; 1771 } 1772 journal_path = match_strdup(&args[0]); 1773 if (!journal_path) { 1774 ext4_msg(sb, KERN_ERR, "error: could not dup " 1775 "journal device string"); 1776 return -1; 1777 } 1778 1779 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1780 if (error) { 1781 ext4_msg(sb, KERN_ERR, "error: could not find " 1782 "journal device path: error %d", error); 1783 kfree(journal_path); 1784 return -1; 1785 } 1786 1787 journal_inode = d_inode(path.dentry); 1788 if (!S_ISBLK(journal_inode->i_mode)) { 1789 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1790 "is not a block device", journal_path); 1791 path_put(&path); 1792 kfree(journal_path); 1793 return -1; 1794 } 1795 1796 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1797 path_put(&path); 1798 kfree(journal_path); 1799 } else if (token == Opt_journal_ioprio) { 1800 if (arg > 7) { 1801 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1802 " (must be 0-7)"); 1803 return -1; 1804 } 1805 *journal_ioprio = 1806 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1807 } else if (token == Opt_test_dummy_encryption) { 1808 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1809 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1810 ext4_msg(sb, KERN_WARNING, 1811 "Test dummy encryption mode enabled"); 1812 #else 1813 ext4_msg(sb, KERN_WARNING, 1814 "Test dummy encryption mount option ignored"); 1815 #endif 1816 } else if (m->flags & MOPT_DATAJ) { 1817 if (is_remount) { 1818 if (!sbi->s_journal) 1819 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1820 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1821 ext4_msg(sb, KERN_ERR, 1822 "Cannot change data mode on remount"); 1823 return -1; 1824 } 1825 } else { 1826 clear_opt(sb, DATA_FLAGS); 1827 sbi->s_mount_opt |= m->mount_opt; 1828 } 1829 #ifdef CONFIG_QUOTA 1830 } else if (m->flags & MOPT_QFMT) { 1831 if (sb_any_quota_loaded(sb) && 1832 sbi->s_jquota_fmt != m->mount_opt) { 1833 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1834 "quota options when quota turned on"); 1835 return -1; 1836 } 1837 if (ext4_has_feature_quota(sb)) { 1838 ext4_msg(sb, KERN_INFO, 1839 "Quota format mount options ignored " 1840 "when QUOTA feature is enabled"); 1841 return 1; 1842 } 1843 sbi->s_jquota_fmt = m->mount_opt; 1844 #endif 1845 } else if (token == Opt_dax) { 1846 #ifdef CONFIG_FS_DAX 1847 ext4_msg(sb, KERN_WARNING, 1848 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1849 sbi->s_mount_opt |= m->mount_opt; 1850 #else 1851 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1852 return -1; 1853 #endif 1854 } else if (token == Opt_data_err_abort) { 1855 sbi->s_mount_opt |= m->mount_opt; 1856 } else if (token == Opt_data_err_ignore) { 1857 sbi->s_mount_opt &= ~m->mount_opt; 1858 } else { 1859 if (!args->from) 1860 arg = 1; 1861 if (m->flags & MOPT_CLEAR) 1862 arg = !arg; 1863 else if (unlikely(!(m->flags & MOPT_SET))) { 1864 ext4_msg(sb, KERN_WARNING, 1865 "buggy handling of option %s", opt); 1866 WARN_ON(1); 1867 return -1; 1868 } 1869 if (arg != 0) 1870 sbi->s_mount_opt |= m->mount_opt; 1871 else 1872 sbi->s_mount_opt &= ~m->mount_opt; 1873 } 1874 return 1; 1875 } 1876 1877 static int parse_options(char *options, struct super_block *sb, 1878 unsigned long *journal_devnum, 1879 unsigned int *journal_ioprio, 1880 int is_remount) 1881 { 1882 struct ext4_sb_info *sbi = EXT4_SB(sb); 1883 char *p; 1884 substring_t args[MAX_OPT_ARGS]; 1885 int token; 1886 1887 if (!options) 1888 return 1; 1889 1890 while ((p = strsep(&options, ",")) != NULL) { 1891 if (!*p) 1892 continue; 1893 /* 1894 * Initialize args struct so we know whether arg was 1895 * found; some options take optional arguments. 1896 */ 1897 args[0].to = args[0].from = NULL; 1898 token = match_token(p, tokens, args); 1899 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1900 journal_ioprio, is_remount) < 0) 1901 return 0; 1902 } 1903 #ifdef CONFIG_QUOTA 1904 /* 1905 * We do the test below only for project quotas. 'usrquota' and 1906 * 'grpquota' mount options are allowed even without quota feature 1907 * to support legacy quotas in quota files. 1908 */ 1909 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1910 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1911 "Cannot enable project quota enforcement."); 1912 return 0; 1913 } 1914 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1915 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1916 clear_opt(sb, USRQUOTA); 1917 1918 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1919 clear_opt(sb, GRPQUOTA); 1920 1921 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1922 ext4_msg(sb, KERN_ERR, "old and new quota " 1923 "format mixing"); 1924 return 0; 1925 } 1926 1927 if (!sbi->s_jquota_fmt) { 1928 ext4_msg(sb, KERN_ERR, "journaled quota format " 1929 "not specified"); 1930 return 0; 1931 } 1932 } 1933 #endif 1934 if (test_opt(sb, DIOREAD_NOLOCK)) { 1935 int blocksize = 1936 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1937 1938 if (blocksize < PAGE_SIZE) { 1939 ext4_msg(sb, KERN_ERR, "can't mount with " 1940 "dioread_nolock if block size != PAGE_SIZE"); 1941 return 0; 1942 } 1943 } 1944 return 1; 1945 } 1946 1947 static inline void ext4_show_quota_options(struct seq_file *seq, 1948 struct super_block *sb) 1949 { 1950 #if defined(CONFIG_QUOTA) 1951 struct ext4_sb_info *sbi = EXT4_SB(sb); 1952 1953 if (sbi->s_jquota_fmt) { 1954 char *fmtname = ""; 1955 1956 switch (sbi->s_jquota_fmt) { 1957 case QFMT_VFS_OLD: 1958 fmtname = "vfsold"; 1959 break; 1960 case QFMT_VFS_V0: 1961 fmtname = "vfsv0"; 1962 break; 1963 case QFMT_VFS_V1: 1964 fmtname = "vfsv1"; 1965 break; 1966 } 1967 seq_printf(seq, ",jqfmt=%s", fmtname); 1968 } 1969 1970 if (sbi->s_qf_names[USRQUOTA]) 1971 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1972 1973 if (sbi->s_qf_names[GRPQUOTA]) 1974 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1975 #endif 1976 } 1977 1978 static const char *token2str(int token) 1979 { 1980 const struct match_token *t; 1981 1982 for (t = tokens; t->token != Opt_err; t++) 1983 if (t->token == token && !strchr(t->pattern, '=')) 1984 break; 1985 return t->pattern; 1986 } 1987 1988 /* 1989 * Show an option if 1990 * - it's set to a non-default value OR 1991 * - if the per-sb default is different from the global default 1992 */ 1993 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1994 int nodefs) 1995 { 1996 struct ext4_sb_info *sbi = EXT4_SB(sb); 1997 struct ext4_super_block *es = sbi->s_es; 1998 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1999 const struct mount_opts *m; 2000 char sep = nodefs ? '\n' : ','; 2001 2002 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2003 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2004 2005 if (sbi->s_sb_block != 1) 2006 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2007 2008 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2009 int want_set = m->flags & MOPT_SET; 2010 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2011 (m->flags & MOPT_CLEAR_ERR)) 2012 continue; 2013 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2014 continue; /* skip if same as the default */ 2015 if ((want_set && 2016 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2017 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2018 continue; /* select Opt_noFoo vs Opt_Foo */ 2019 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2020 } 2021 2022 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2023 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2024 SEQ_OPTS_PRINT("resuid=%u", 2025 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2026 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2027 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2028 SEQ_OPTS_PRINT("resgid=%u", 2029 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2030 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2031 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2032 SEQ_OPTS_PUTS("errors=remount-ro"); 2033 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2034 SEQ_OPTS_PUTS("errors=continue"); 2035 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2036 SEQ_OPTS_PUTS("errors=panic"); 2037 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2038 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2039 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2040 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2041 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2042 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2043 if (sb->s_flags & MS_I_VERSION) 2044 SEQ_OPTS_PUTS("i_version"); 2045 if (nodefs || sbi->s_stripe) 2046 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2047 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2048 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2049 SEQ_OPTS_PUTS("data=journal"); 2050 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2051 SEQ_OPTS_PUTS("data=ordered"); 2052 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2053 SEQ_OPTS_PUTS("data=writeback"); 2054 } 2055 if (nodefs || 2056 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2057 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2058 sbi->s_inode_readahead_blks); 2059 2060 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2061 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2062 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2063 if (nodefs || sbi->s_max_dir_size_kb) 2064 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2065 if (test_opt(sb, DATA_ERR_ABORT)) 2066 SEQ_OPTS_PUTS("data_err=abort"); 2067 2068 ext4_show_quota_options(seq, sb); 2069 return 0; 2070 } 2071 2072 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2073 { 2074 return _ext4_show_options(seq, root->d_sb, 0); 2075 } 2076 2077 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2078 { 2079 struct super_block *sb = seq->private; 2080 int rc; 2081 2082 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2083 rc = _ext4_show_options(seq, sb, 1); 2084 seq_puts(seq, "\n"); 2085 return rc; 2086 } 2087 2088 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2089 int read_only) 2090 { 2091 struct ext4_sb_info *sbi = EXT4_SB(sb); 2092 int res = 0; 2093 2094 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2095 ext4_msg(sb, KERN_ERR, "revision level too high, " 2096 "forcing read-only mode"); 2097 res = MS_RDONLY; 2098 } 2099 if (read_only) 2100 goto done; 2101 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2102 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2103 "running e2fsck is recommended"); 2104 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2105 ext4_msg(sb, KERN_WARNING, 2106 "warning: mounting fs with errors, " 2107 "running e2fsck is recommended"); 2108 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2109 le16_to_cpu(es->s_mnt_count) >= 2110 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2111 ext4_msg(sb, KERN_WARNING, 2112 "warning: maximal mount count reached, " 2113 "running e2fsck is recommended"); 2114 else if (le32_to_cpu(es->s_checkinterval) && 2115 (le32_to_cpu(es->s_lastcheck) + 2116 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2117 ext4_msg(sb, KERN_WARNING, 2118 "warning: checktime reached, " 2119 "running e2fsck is recommended"); 2120 if (!sbi->s_journal) 2121 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2122 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2123 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2124 le16_add_cpu(&es->s_mnt_count, 1); 2125 es->s_mtime = cpu_to_le32(get_seconds()); 2126 ext4_update_dynamic_rev(sb); 2127 if (sbi->s_journal) 2128 ext4_set_feature_journal_needs_recovery(sb); 2129 2130 ext4_commit_super(sb, 1); 2131 done: 2132 if (test_opt(sb, DEBUG)) 2133 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2134 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2135 sb->s_blocksize, 2136 sbi->s_groups_count, 2137 EXT4_BLOCKS_PER_GROUP(sb), 2138 EXT4_INODES_PER_GROUP(sb), 2139 sbi->s_mount_opt, sbi->s_mount_opt2); 2140 2141 cleancache_init_fs(sb); 2142 return res; 2143 } 2144 2145 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2146 { 2147 struct ext4_sb_info *sbi = EXT4_SB(sb); 2148 struct flex_groups *new_groups; 2149 int size; 2150 2151 if (!sbi->s_log_groups_per_flex) 2152 return 0; 2153 2154 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2155 if (size <= sbi->s_flex_groups_allocated) 2156 return 0; 2157 2158 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2159 new_groups = kvzalloc(size, GFP_KERNEL); 2160 if (!new_groups) { 2161 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2162 size / (int) sizeof(struct flex_groups)); 2163 return -ENOMEM; 2164 } 2165 2166 if (sbi->s_flex_groups) { 2167 memcpy(new_groups, sbi->s_flex_groups, 2168 (sbi->s_flex_groups_allocated * 2169 sizeof(struct flex_groups))); 2170 kvfree(sbi->s_flex_groups); 2171 } 2172 sbi->s_flex_groups = new_groups; 2173 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2174 return 0; 2175 } 2176 2177 static int ext4_fill_flex_info(struct super_block *sb) 2178 { 2179 struct ext4_sb_info *sbi = EXT4_SB(sb); 2180 struct ext4_group_desc *gdp = NULL; 2181 ext4_group_t flex_group; 2182 int i, err; 2183 2184 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2185 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2186 sbi->s_log_groups_per_flex = 0; 2187 return 1; 2188 } 2189 2190 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2191 if (err) 2192 goto failed; 2193 2194 for (i = 0; i < sbi->s_groups_count; i++) { 2195 gdp = ext4_get_group_desc(sb, i, NULL); 2196 2197 flex_group = ext4_flex_group(sbi, i); 2198 atomic_add(ext4_free_inodes_count(sb, gdp), 2199 &sbi->s_flex_groups[flex_group].free_inodes); 2200 atomic64_add(ext4_free_group_clusters(sb, gdp), 2201 &sbi->s_flex_groups[flex_group].free_clusters); 2202 atomic_add(ext4_used_dirs_count(sb, gdp), 2203 &sbi->s_flex_groups[flex_group].used_dirs); 2204 } 2205 2206 return 1; 2207 failed: 2208 return 0; 2209 } 2210 2211 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2212 struct ext4_group_desc *gdp) 2213 { 2214 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2215 __u16 crc = 0; 2216 __le32 le_group = cpu_to_le32(block_group); 2217 struct ext4_sb_info *sbi = EXT4_SB(sb); 2218 2219 if (ext4_has_metadata_csum(sbi->s_sb)) { 2220 /* Use new metadata_csum algorithm */ 2221 __u32 csum32; 2222 __u16 dummy_csum = 0; 2223 2224 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2225 sizeof(le_group)); 2226 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2227 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2228 sizeof(dummy_csum)); 2229 offset += sizeof(dummy_csum); 2230 if (offset < sbi->s_desc_size) 2231 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2232 sbi->s_desc_size - offset); 2233 2234 crc = csum32 & 0xFFFF; 2235 goto out; 2236 } 2237 2238 /* old crc16 code */ 2239 if (!ext4_has_feature_gdt_csum(sb)) 2240 return 0; 2241 2242 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2243 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2244 crc = crc16(crc, (__u8 *)gdp, offset); 2245 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2246 /* for checksum of struct ext4_group_desc do the rest...*/ 2247 if (ext4_has_feature_64bit(sb) && 2248 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2249 crc = crc16(crc, (__u8 *)gdp + offset, 2250 le16_to_cpu(sbi->s_es->s_desc_size) - 2251 offset); 2252 2253 out: 2254 return cpu_to_le16(crc); 2255 } 2256 2257 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2258 struct ext4_group_desc *gdp) 2259 { 2260 if (ext4_has_group_desc_csum(sb) && 2261 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2262 return 0; 2263 2264 return 1; 2265 } 2266 2267 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2268 struct ext4_group_desc *gdp) 2269 { 2270 if (!ext4_has_group_desc_csum(sb)) 2271 return; 2272 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2273 } 2274 2275 /* Called at mount-time, super-block is locked */ 2276 static int ext4_check_descriptors(struct super_block *sb, 2277 ext4_fsblk_t sb_block, 2278 ext4_group_t *first_not_zeroed) 2279 { 2280 struct ext4_sb_info *sbi = EXT4_SB(sb); 2281 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2282 ext4_fsblk_t last_block; 2283 ext4_fsblk_t block_bitmap; 2284 ext4_fsblk_t inode_bitmap; 2285 ext4_fsblk_t inode_table; 2286 int flexbg_flag = 0; 2287 ext4_group_t i, grp = sbi->s_groups_count; 2288 2289 if (ext4_has_feature_flex_bg(sb)) 2290 flexbg_flag = 1; 2291 2292 ext4_debug("Checking group descriptors"); 2293 2294 for (i = 0; i < sbi->s_groups_count; i++) { 2295 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2296 2297 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2298 last_block = ext4_blocks_count(sbi->s_es) - 1; 2299 else 2300 last_block = first_block + 2301 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2302 2303 if ((grp == sbi->s_groups_count) && 2304 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2305 grp = i; 2306 2307 block_bitmap = ext4_block_bitmap(sb, gdp); 2308 if (block_bitmap == sb_block) { 2309 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2310 "Block bitmap for group %u overlaps " 2311 "superblock", i); 2312 } 2313 if (block_bitmap < first_block || block_bitmap > last_block) { 2314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2315 "Block bitmap for group %u not in group " 2316 "(block %llu)!", i, block_bitmap); 2317 return 0; 2318 } 2319 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2320 if (inode_bitmap == sb_block) { 2321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2322 "Inode bitmap for group %u overlaps " 2323 "superblock", i); 2324 } 2325 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2327 "Inode bitmap for group %u not in group " 2328 "(block %llu)!", i, inode_bitmap); 2329 return 0; 2330 } 2331 inode_table = ext4_inode_table(sb, gdp); 2332 if (inode_table == sb_block) { 2333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2334 "Inode table for group %u overlaps " 2335 "superblock", i); 2336 } 2337 if (inode_table < first_block || 2338 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2339 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2340 "Inode table for group %u not in group " 2341 "(block %llu)!", i, inode_table); 2342 return 0; 2343 } 2344 ext4_lock_group(sb, i); 2345 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2347 "Checksum for group %u failed (%u!=%u)", 2348 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2349 gdp)), le16_to_cpu(gdp->bg_checksum)); 2350 if (!(sb->s_flags & MS_RDONLY)) { 2351 ext4_unlock_group(sb, i); 2352 return 0; 2353 } 2354 } 2355 ext4_unlock_group(sb, i); 2356 if (!flexbg_flag) 2357 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2358 } 2359 if (NULL != first_not_zeroed) 2360 *first_not_zeroed = grp; 2361 return 1; 2362 } 2363 2364 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2365 * the superblock) which were deleted from all directories, but held open by 2366 * a process at the time of a crash. We walk the list and try to delete these 2367 * inodes at recovery time (only with a read-write filesystem). 2368 * 2369 * In order to keep the orphan inode chain consistent during traversal (in 2370 * case of crash during recovery), we link each inode into the superblock 2371 * orphan list_head and handle it the same way as an inode deletion during 2372 * normal operation (which journals the operations for us). 2373 * 2374 * We only do an iget() and an iput() on each inode, which is very safe if we 2375 * accidentally point at an in-use or already deleted inode. The worst that 2376 * can happen in this case is that we get a "bit already cleared" message from 2377 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2378 * e2fsck was run on this filesystem, and it must have already done the orphan 2379 * inode cleanup for us, so we can safely abort without any further action. 2380 */ 2381 static void ext4_orphan_cleanup(struct super_block *sb, 2382 struct ext4_super_block *es) 2383 { 2384 unsigned int s_flags = sb->s_flags; 2385 int ret, nr_orphans = 0, nr_truncates = 0; 2386 #ifdef CONFIG_QUOTA 2387 int i; 2388 #endif 2389 if (!es->s_last_orphan) { 2390 jbd_debug(4, "no orphan inodes to clean up\n"); 2391 return; 2392 } 2393 2394 if (bdev_read_only(sb->s_bdev)) { 2395 ext4_msg(sb, KERN_ERR, "write access " 2396 "unavailable, skipping orphan cleanup"); 2397 return; 2398 } 2399 2400 /* Check if feature set would not allow a r/w mount */ 2401 if (!ext4_feature_set_ok(sb, 0)) { 2402 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2403 "unknown ROCOMPAT features"); 2404 return; 2405 } 2406 2407 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2408 /* don't clear list on RO mount w/ errors */ 2409 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2410 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2411 "clearing orphan list.\n"); 2412 es->s_last_orphan = 0; 2413 } 2414 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2415 return; 2416 } 2417 2418 if (s_flags & MS_RDONLY) { 2419 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2420 sb->s_flags &= ~MS_RDONLY; 2421 } 2422 #ifdef CONFIG_QUOTA 2423 /* Needed for iput() to work correctly and not trash data */ 2424 sb->s_flags |= MS_ACTIVE; 2425 /* Turn on quotas so that they are updated correctly */ 2426 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2427 if (EXT4_SB(sb)->s_qf_names[i]) { 2428 int ret = ext4_quota_on_mount(sb, i); 2429 if (ret < 0) 2430 ext4_msg(sb, KERN_ERR, 2431 "Cannot turn on journaled " 2432 "quota: error %d", ret); 2433 } 2434 } 2435 #endif 2436 2437 while (es->s_last_orphan) { 2438 struct inode *inode; 2439 2440 /* 2441 * We may have encountered an error during cleanup; if 2442 * so, skip the rest. 2443 */ 2444 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2445 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2446 es->s_last_orphan = 0; 2447 break; 2448 } 2449 2450 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2451 if (IS_ERR(inode)) { 2452 es->s_last_orphan = 0; 2453 break; 2454 } 2455 2456 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2457 dquot_initialize(inode); 2458 if (inode->i_nlink) { 2459 if (test_opt(sb, DEBUG)) 2460 ext4_msg(sb, KERN_DEBUG, 2461 "%s: truncating inode %lu to %lld bytes", 2462 __func__, inode->i_ino, inode->i_size); 2463 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2464 inode->i_ino, inode->i_size); 2465 inode_lock(inode); 2466 truncate_inode_pages(inode->i_mapping, inode->i_size); 2467 ret = ext4_truncate(inode); 2468 if (ret) 2469 ext4_std_error(inode->i_sb, ret); 2470 inode_unlock(inode); 2471 nr_truncates++; 2472 } else { 2473 if (test_opt(sb, DEBUG)) 2474 ext4_msg(sb, KERN_DEBUG, 2475 "%s: deleting unreferenced inode %lu", 2476 __func__, inode->i_ino); 2477 jbd_debug(2, "deleting unreferenced inode %lu\n", 2478 inode->i_ino); 2479 nr_orphans++; 2480 } 2481 iput(inode); /* The delete magic happens here! */ 2482 } 2483 2484 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2485 2486 if (nr_orphans) 2487 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2488 PLURAL(nr_orphans)); 2489 if (nr_truncates) 2490 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2491 PLURAL(nr_truncates)); 2492 #ifdef CONFIG_QUOTA 2493 /* Turn quotas off */ 2494 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2495 if (sb_dqopt(sb)->files[i]) 2496 dquot_quota_off(sb, i); 2497 } 2498 #endif 2499 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2500 } 2501 2502 /* 2503 * Maximal extent format file size. 2504 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2505 * extent format containers, within a sector_t, and within i_blocks 2506 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2507 * so that won't be a limiting factor. 2508 * 2509 * However there is other limiting factor. We do store extents in the form 2510 * of starting block and length, hence the resulting length of the extent 2511 * covering maximum file size must fit into on-disk format containers as 2512 * well. Given that length is always by 1 unit bigger than max unit (because 2513 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2514 * 2515 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2516 */ 2517 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2518 { 2519 loff_t res; 2520 loff_t upper_limit = MAX_LFS_FILESIZE; 2521 2522 /* small i_blocks in vfs inode? */ 2523 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2524 /* 2525 * CONFIG_LBDAF is not enabled implies the inode 2526 * i_block represent total blocks in 512 bytes 2527 * 32 == size of vfs inode i_blocks * 8 2528 */ 2529 upper_limit = (1LL << 32) - 1; 2530 2531 /* total blocks in file system block size */ 2532 upper_limit >>= (blkbits - 9); 2533 upper_limit <<= blkbits; 2534 } 2535 2536 /* 2537 * 32-bit extent-start container, ee_block. We lower the maxbytes 2538 * by one fs block, so ee_len can cover the extent of maximum file 2539 * size 2540 */ 2541 res = (1LL << 32) - 1; 2542 res <<= blkbits; 2543 2544 /* Sanity check against vm- & vfs- imposed limits */ 2545 if (res > upper_limit) 2546 res = upper_limit; 2547 2548 return res; 2549 } 2550 2551 /* 2552 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2553 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2554 * We need to be 1 filesystem block less than the 2^48 sector limit. 2555 */ 2556 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2557 { 2558 loff_t res = EXT4_NDIR_BLOCKS; 2559 int meta_blocks; 2560 loff_t upper_limit; 2561 /* This is calculated to be the largest file size for a dense, block 2562 * mapped file such that the file's total number of 512-byte sectors, 2563 * including data and all indirect blocks, does not exceed (2^48 - 1). 2564 * 2565 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2566 * number of 512-byte sectors of the file. 2567 */ 2568 2569 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2570 /* 2571 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2572 * the inode i_block field represents total file blocks in 2573 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2574 */ 2575 upper_limit = (1LL << 32) - 1; 2576 2577 /* total blocks in file system block size */ 2578 upper_limit >>= (bits - 9); 2579 2580 } else { 2581 /* 2582 * We use 48 bit ext4_inode i_blocks 2583 * With EXT4_HUGE_FILE_FL set the i_blocks 2584 * represent total number of blocks in 2585 * file system block size 2586 */ 2587 upper_limit = (1LL << 48) - 1; 2588 2589 } 2590 2591 /* indirect blocks */ 2592 meta_blocks = 1; 2593 /* double indirect blocks */ 2594 meta_blocks += 1 + (1LL << (bits-2)); 2595 /* tripple indirect blocks */ 2596 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2597 2598 upper_limit -= meta_blocks; 2599 upper_limit <<= bits; 2600 2601 res += 1LL << (bits-2); 2602 res += 1LL << (2*(bits-2)); 2603 res += 1LL << (3*(bits-2)); 2604 res <<= bits; 2605 if (res > upper_limit) 2606 res = upper_limit; 2607 2608 if (res > MAX_LFS_FILESIZE) 2609 res = MAX_LFS_FILESIZE; 2610 2611 return res; 2612 } 2613 2614 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2615 ext4_fsblk_t logical_sb_block, int nr) 2616 { 2617 struct ext4_sb_info *sbi = EXT4_SB(sb); 2618 ext4_group_t bg, first_meta_bg; 2619 int has_super = 0; 2620 2621 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2622 2623 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2624 return logical_sb_block + nr + 1; 2625 bg = sbi->s_desc_per_block * nr; 2626 if (ext4_bg_has_super(sb, bg)) 2627 has_super = 1; 2628 2629 /* 2630 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2631 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2632 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2633 * compensate. 2634 */ 2635 if (sb->s_blocksize == 1024 && nr == 0 && 2636 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2637 has_super++; 2638 2639 return (has_super + ext4_group_first_block_no(sb, bg)); 2640 } 2641 2642 /** 2643 * ext4_get_stripe_size: Get the stripe size. 2644 * @sbi: In memory super block info 2645 * 2646 * If we have specified it via mount option, then 2647 * use the mount option value. If the value specified at mount time is 2648 * greater than the blocks per group use the super block value. 2649 * If the super block value is greater than blocks per group return 0. 2650 * Allocator needs it be less than blocks per group. 2651 * 2652 */ 2653 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2654 { 2655 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2656 unsigned long stripe_width = 2657 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2658 int ret; 2659 2660 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2661 ret = sbi->s_stripe; 2662 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2663 ret = stripe_width; 2664 else if (stride && stride <= sbi->s_blocks_per_group) 2665 ret = stride; 2666 else 2667 ret = 0; 2668 2669 /* 2670 * If the stripe width is 1, this makes no sense and 2671 * we set it to 0 to turn off stripe handling code. 2672 */ 2673 if (ret <= 1) 2674 ret = 0; 2675 2676 return ret; 2677 } 2678 2679 /* 2680 * Check whether this filesystem can be mounted based on 2681 * the features present and the RDONLY/RDWR mount requested. 2682 * Returns 1 if this filesystem can be mounted as requested, 2683 * 0 if it cannot be. 2684 */ 2685 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2686 { 2687 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2688 ext4_msg(sb, KERN_ERR, 2689 "Couldn't mount because of " 2690 "unsupported optional features (%x)", 2691 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2692 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2693 return 0; 2694 } 2695 2696 if (readonly) 2697 return 1; 2698 2699 if (ext4_has_feature_readonly(sb)) { 2700 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2701 sb->s_flags |= MS_RDONLY; 2702 return 1; 2703 } 2704 2705 /* Check that feature set is OK for a read-write mount */ 2706 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2707 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2708 "unsupported optional features (%x)", 2709 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2710 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2711 return 0; 2712 } 2713 /* 2714 * Large file size enabled file system can only be mounted 2715 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2716 */ 2717 if (ext4_has_feature_huge_file(sb)) { 2718 if (sizeof(blkcnt_t) < sizeof(u64)) { 2719 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2720 "cannot be mounted RDWR without " 2721 "CONFIG_LBDAF"); 2722 return 0; 2723 } 2724 } 2725 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2726 ext4_msg(sb, KERN_ERR, 2727 "Can't support bigalloc feature without " 2728 "extents feature\n"); 2729 return 0; 2730 } 2731 2732 #ifndef CONFIG_QUOTA 2733 if (ext4_has_feature_quota(sb) && !readonly) { 2734 ext4_msg(sb, KERN_ERR, 2735 "Filesystem with quota feature cannot be mounted RDWR " 2736 "without CONFIG_QUOTA"); 2737 return 0; 2738 } 2739 if (ext4_has_feature_project(sb) && !readonly) { 2740 ext4_msg(sb, KERN_ERR, 2741 "Filesystem with project quota feature cannot be mounted RDWR " 2742 "without CONFIG_QUOTA"); 2743 return 0; 2744 } 2745 #endif /* CONFIG_QUOTA */ 2746 return 1; 2747 } 2748 2749 /* 2750 * This function is called once a day if we have errors logged 2751 * on the file system 2752 */ 2753 static void print_daily_error_info(unsigned long arg) 2754 { 2755 struct super_block *sb = (struct super_block *) arg; 2756 struct ext4_sb_info *sbi; 2757 struct ext4_super_block *es; 2758 2759 sbi = EXT4_SB(sb); 2760 es = sbi->s_es; 2761 2762 if (es->s_error_count) 2763 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2764 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2765 le32_to_cpu(es->s_error_count)); 2766 if (es->s_first_error_time) { 2767 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2768 sb->s_id, le32_to_cpu(es->s_first_error_time), 2769 (int) sizeof(es->s_first_error_func), 2770 es->s_first_error_func, 2771 le32_to_cpu(es->s_first_error_line)); 2772 if (es->s_first_error_ino) 2773 printk(KERN_CONT ": inode %u", 2774 le32_to_cpu(es->s_first_error_ino)); 2775 if (es->s_first_error_block) 2776 printk(KERN_CONT ": block %llu", (unsigned long long) 2777 le64_to_cpu(es->s_first_error_block)); 2778 printk(KERN_CONT "\n"); 2779 } 2780 if (es->s_last_error_time) { 2781 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2782 sb->s_id, le32_to_cpu(es->s_last_error_time), 2783 (int) sizeof(es->s_last_error_func), 2784 es->s_last_error_func, 2785 le32_to_cpu(es->s_last_error_line)); 2786 if (es->s_last_error_ino) 2787 printk(KERN_CONT ": inode %u", 2788 le32_to_cpu(es->s_last_error_ino)); 2789 if (es->s_last_error_block) 2790 printk(KERN_CONT ": block %llu", (unsigned long long) 2791 le64_to_cpu(es->s_last_error_block)); 2792 printk(KERN_CONT "\n"); 2793 } 2794 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2795 } 2796 2797 /* Find next suitable group and run ext4_init_inode_table */ 2798 static int ext4_run_li_request(struct ext4_li_request *elr) 2799 { 2800 struct ext4_group_desc *gdp = NULL; 2801 ext4_group_t group, ngroups; 2802 struct super_block *sb; 2803 unsigned long timeout = 0; 2804 int ret = 0; 2805 2806 sb = elr->lr_super; 2807 ngroups = EXT4_SB(sb)->s_groups_count; 2808 2809 for (group = elr->lr_next_group; group < ngroups; group++) { 2810 gdp = ext4_get_group_desc(sb, group, NULL); 2811 if (!gdp) { 2812 ret = 1; 2813 break; 2814 } 2815 2816 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2817 break; 2818 } 2819 2820 if (group >= ngroups) 2821 ret = 1; 2822 2823 if (!ret) { 2824 timeout = jiffies; 2825 ret = ext4_init_inode_table(sb, group, 2826 elr->lr_timeout ? 0 : 1); 2827 if (elr->lr_timeout == 0) { 2828 timeout = (jiffies - timeout) * 2829 elr->lr_sbi->s_li_wait_mult; 2830 elr->lr_timeout = timeout; 2831 } 2832 elr->lr_next_sched = jiffies + elr->lr_timeout; 2833 elr->lr_next_group = group + 1; 2834 } 2835 return ret; 2836 } 2837 2838 /* 2839 * Remove lr_request from the list_request and free the 2840 * request structure. Should be called with li_list_mtx held 2841 */ 2842 static void ext4_remove_li_request(struct ext4_li_request *elr) 2843 { 2844 struct ext4_sb_info *sbi; 2845 2846 if (!elr) 2847 return; 2848 2849 sbi = elr->lr_sbi; 2850 2851 list_del(&elr->lr_request); 2852 sbi->s_li_request = NULL; 2853 kfree(elr); 2854 } 2855 2856 static void ext4_unregister_li_request(struct super_block *sb) 2857 { 2858 mutex_lock(&ext4_li_mtx); 2859 if (!ext4_li_info) { 2860 mutex_unlock(&ext4_li_mtx); 2861 return; 2862 } 2863 2864 mutex_lock(&ext4_li_info->li_list_mtx); 2865 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2866 mutex_unlock(&ext4_li_info->li_list_mtx); 2867 mutex_unlock(&ext4_li_mtx); 2868 } 2869 2870 static struct task_struct *ext4_lazyinit_task; 2871 2872 /* 2873 * This is the function where ext4lazyinit thread lives. It walks 2874 * through the request list searching for next scheduled filesystem. 2875 * When such a fs is found, run the lazy initialization request 2876 * (ext4_rn_li_request) and keep track of the time spend in this 2877 * function. Based on that time we compute next schedule time of 2878 * the request. When walking through the list is complete, compute 2879 * next waking time and put itself into sleep. 2880 */ 2881 static int ext4_lazyinit_thread(void *arg) 2882 { 2883 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2884 struct list_head *pos, *n; 2885 struct ext4_li_request *elr; 2886 unsigned long next_wakeup, cur; 2887 2888 BUG_ON(NULL == eli); 2889 2890 cont_thread: 2891 while (true) { 2892 next_wakeup = MAX_JIFFY_OFFSET; 2893 2894 mutex_lock(&eli->li_list_mtx); 2895 if (list_empty(&eli->li_request_list)) { 2896 mutex_unlock(&eli->li_list_mtx); 2897 goto exit_thread; 2898 } 2899 list_for_each_safe(pos, n, &eli->li_request_list) { 2900 int err = 0; 2901 int progress = 0; 2902 elr = list_entry(pos, struct ext4_li_request, 2903 lr_request); 2904 2905 if (time_before(jiffies, elr->lr_next_sched)) { 2906 if (time_before(elr->lr_next_sched, next_wakeup)) 2907 next_wakeup = elr->lr_next_sched; 2908 continue; 2909 } 2910 if (down_read_trylock(&elr->lr_super->s_umount)) { 2911 if (sb_start_write_trylock(elr->lr_super)) { 2912 progress = 1; 2913 /* 2914 * We hold sb->s_umount, sb can not 2915 * be removed from the list, it is 2916 * now safe to drop li_list_mtx 2917 */ 2918 mutex_unlock(&eli->li_list_mtx); 2919 err = ext4_run_li_request(elr); 2920 sb_end_write(elr->lr_super); 2921 mutex_lock(&eli->li_list_mtx); 2922 n = pos->next; 2923 } 2924 up_read((&elr->lr_super->s_umount)); 2925 } 2926 /* error, remove the lazy_init job */ 2927 if (err) { 2928 ext4_remove_li_request(elr); 2929 continue; 2930 } 2931 if (!progress) { 2932 elr->lr_next_sched = jiffies + 2933 (prandom_u32() 2934 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2935 } 2936 if (time_before(elr->lr_next_sched, next_wakeup)) 2937 next_wakeup = elr->lr_next_sched; 2938 } 2939 mutex_unlock(&eli->li_list_mtx); 2940 2941 try_to_freeze(); 2942 2943 cur = jiffies; 2944 if ((time_after_eq(cur, next_wakeup)) || 2945 (MAX_JIFFY_OFFSET == next_wakeup)) { 2946 cond_resched(); 2947 continue; 2948 } 2949 2950 schedule_timeout_interruptible(next_wakeup - cur); 2951 2952 if (kthread_should_stop()) { 2953 ext4_clear_request_list(); 2954 goto exit_thread; 2955 } 2956 } 2957 2958 exit_thread: 2959 /* 2960 * It looks like the request list is empty, but we need 2961 * to check it under the li_list_mtx lock, to prevent any 2962 * additions into it, and of course we should lock ext4_li_mtx 2963 * to atomically free the list and ext4_li_info, because at 2964 * this point another ext4 filesystem could be registering 2965 * new one. 2966 */ 2967 mutex_lock(&ext4_li_mtx); 2968 mutex_lock(&eli->li_list_mtx); 2969 if (!list_empty(&eli->li_request_list)) { 2970 mutex_unlock(&eli->li_list_mtx); 2971 mutex_unlock(&ext4_li_mtx); 2972 goto cont_thread; 2973 } 2974 mutex_unlock(&eli->li_list_mtx); 2975 kfree(ext4_li_info); 2976 ext4_li_info = NULL; 2977 mutex_unlock(&ext4_li_mtx); 2978 2979 return 0; 2980 } 2981 2982 static void ext4_clear_request_list(void) 2983 { 2984 struct list_head *pos, *n; 2985 struct ext4_li_request *elr; 2986 2987 mutex_lock(&ext4_li_info->li_list_mtx); 2988 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2989 elr = list_entry(pos, struct ext4_li_request, 2990 lr_request); 2991 ext4_remove_li_request(elr); 2992 } 2993 mutex_unlock(&ext4_li_info->li_list_mtx); 2994 } 2995 2996 static int ext4_run_lazyinit_thread(void) 2997 { 2998 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2999 ext4_li_info, "ext4lazyinit"); 3000 if (IS_ERR(ext4_lazyinit_task)) { 3001 int err = PTR_ERR(ext4_lazyinit_task); 3002 ext4_clear_request_list(); 3003 kfree(ext4_li_info); 3004 ext4_li_info = NULL; 3005 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3006 "initialization thread\n", 3007 err); 3008 return err; 3009 } 3010 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3011 return 0; 3012 } 3013 3014 /* 3015 * Check whether it make sense to run itable init. thread or not. 3016 * If there is at least one uninitialized inode table, return 3017 * corresponding group number, else the loop goes through all 3018 * groups and return total number of groups. 3019 */ 3020 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3021 { 3022 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3023 struct ext4_group_desc *gdp = NULL; 3024 3025 for (group = 0; group < ngroups; group++) { 3026 gdp = ext4_get_group_desc(sb, group, NULL); 3027 if (!gdp) 3028 continue; 3029 3030 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3031 break; 3032 } 3033 3034 return group; 3035 } 3036 3037 static int ext4_li_info_new(void) 3038 { 3039 struct ext4_lazy_init *eli = NULL; 3040 3041 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3042 if (!eli) 3043 return -ENOMEM; 3044 3045 INIT_LIST_HEAD(&eli->li_request_list); 3046 mutex_init(&eli->li_list_mtx); 3047 3048 eli->li_state |= EXT4_LAZYINIT_QUIT; 3049 3050 ext4_li_info = eli; 3051 3052 return 0; 3053 } 3054 3055 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3056 ext4_group_t start) 3057 { 3058 struct ext4_sb_info *sbi = EXT4_SB(sb); 3059 struct ext4_li_request *elr; 3060 3061 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3062 if (!elr) 3063 return NULL; 3064 3065 elr->lr_super = sb; 3066 elr->lr_sbi = sbi; 3067 elr->lr_next_group = start; 3068 3069 /* 3070 * Randomize first schedule time of the request to 3071 * spread the inode table initialization requests 3072 * better. 3073 */ 3074 elr->lr_next_sched = jiffies + (prandom_u32() % 3075 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3076 return elr; 3077 } 3078 3079 int ext4_register_li_request(struct super_block *sb, 3080 ext4_group_t first_not_zeroed) 3081 { 3082 struct ext4_sb_info *sbi = EXT4_SB(sb); 3083 struct ext4_li_request *elr = NULL; 3084 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3085 int ret = 0; 3086 3087 mutex_lock(&ext4_li_mtx); 3088 if (sbi->s_li_request != NULL) { 3089 /* 3090 * Reset timeout so it can be computed again, because 3091 * s_li_wait_mult might have changed. 3092 */ 3093 sbi->s_li_request->lr_timeout = 0; 3094 goto out; 3095 } 3096 3097 if (first_not_zeroed == ngroups || 3098 (sb->s_flags & MS_RDONLY) || 3099 !test_opt(sb, INIT_INODE_TABLE)) 3100 goto out; 3101 3102 elr = ext4_li_request_new(sb, first_not_zeroed); 3103 if (!elr) { 3104 ret = -ENOMEM; 3105 goto out; 3106 } 3107 3108 if (NULL == ext4_li_info) { 3109 ret = ext4_li_info_new(); 3110 if (ret) 3111 goto out; 3112 } 3113 3114 mutex_lock(&ext4_li_info->li_list_mtx); 3115 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3116 mutex_unlock(&ext4_li_info->li_list_mtx); 3117 3118 sbi->s_li_request = elr; 3119 /* 3120 * set elr to NULL here since it has been inserted to 3121 * the request_list and the removal and free of it is 3122 * handled by ext4_clear_request_list from now on. 3123 */ 3124 elr = NULL; 3125 3126 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3127 ret = ext4_run_lazyinit_thread(); 3128 if (ret) 3129 goto out; 3130 } 3131 out: 3132 mutex_unlock(&ext4_li_mtx); 3133 if (ret) 3134 kfree(elr); 3135 return ret; 3136 } 3137 3138 /* 3139 * We do not need to lock anything since this is called on 3140 * module unload. 3141 */ 3142 static void ext4_destroy_lazyinit_thread(void) 3143 { 3144 /* 3145 * If thread exited earlier 3146 * there's nothing to be done. 3147 */ 3148 if (!ext4_li_info || !ext4_lazyinit_task) 3149 return; 3150 3151 kthread_stop(ext4_lazyinit_task); 3152 } 3153 3154 static int set_journal_csum_feature_set(struct super_block *sb) 3155 { 3156 int ret = 1; 3157 int compat, incompat; 3158 struct ext4_sb_info *sbi = EXT4_SB(sb); 3159 3160 if (ext4_has_metadata_csum(sb)) { 3161 /* journal checksum v3 */ 3162 compat = 0; 3163 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3164 } else { 3165 /* journal checksum v1 */ 3166 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3167 incompat = 0; 3168 } 3169 3170 jbd2_journal_clear_features(sbi->s_journal, 3171 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3172 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3173 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3174 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3175 ret = jbd2_journal_set_features(sbi->s_journal, 3176 compat, 0, 3177 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3178 incompat); 3179 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3180 ret = jbd2_journal_set_features(sbi->s_journal, 3181 compat, 0, 3182 incompat); 3183 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3184 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3185 } else { 3186 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3187 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3188 } 3189 3190 return ret; 3191 } 3192 3193 /* 3194 * Note: calculating the overhead so we can be compatible with 3195 * historical BSD practice is quite difficult in the face of 3196 * clusters/bigalloc. This is because multiple metadata blocks from 3197 * different block group can end up in the same allocation cluster. 3198 * Calculating the exact overhead in the face of clustered allocation 3199 * requires either O(all block bitmaps) in memory or O(number of block 3200 * groups**2) in time. We will still calculate the superblock for 3201 * older file systems --- and if we come across with a bigalloc file 3202 * system with zero in s_overhead_clusters the estimate will be close to 3203 * correct especially for very large cluster sizes --- but for newer 3204 * file systems, it's better to calculate this figure once at mkfs 3205 * time, and store it in the superblock. If the superblock value is 3206 * present (even for non-bigalloc file systems), we will use it. 3207 */ 3208 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3209 char *buf) 3210 { 3211 struct ext4_sb_info *sbi = EXT4_SB(sb); 3212 struct ext4_group_desc *gdp; 3213 ext4_fsblk_t first_block, last_block, b; 3214 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3215 int s, j, count = 0; 3216 3217 if (!ext4_has_feature_bigalloc(sb)) 3218 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3219 sbi->s_itb_per_group + 2); 3220 3221 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3222 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3223 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3224 for (i = 0; i < ngroups; i++) { 3225 gdp = ext4_get_group_desc(sb, i, NULL); 3226 b = ext4_block_bitmap(sb, gdp); 3227 if (b >= first_block && b <= last_block) { 3228 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3229 count++; 3230 } 3231 b = ext4_inode_bitmap(sb, gdp); 3232 if (b >= first_block && b <= last_block) { 3233 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3234 count++; 3235 } 3236 b = ext4_inode_table(sb, gdp); 3237 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3238 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3239 int c = EXT4_B2C(sbi, b - first_block); 3240 ext4_set_bit(c, buf); 3241 count++; 3242 } 3243 if (i != grp) 3244 continue; 3245 s = 0; 3246 if (ext4_bg_has_super(sb, grp)) { 3247 ext4_set_bit(s++, buf); 3248 count++; 3249 } 3250 j = ext4_bg_num_gdb(sb, grp); 3251 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3252 ext4_error(sb, "Invalid number of block group " 3253 "descriptor blocks: %d", j); 3254 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3255 } 3256 count += j; 3257 for (; j > 0; j--) 3258 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3259 } 3260 if (!count) 3261 return 0; 3262 return EXT4_CLUSTERS_PER_GROUP(sb) - 3263 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3264 } 3265 3266 /* 3267 * Compute the overhead and stash it in sbi->s_overhead 3268 */ 3269 int ext4_calculate_overhead(struct super_block *sb) 3270 { 3271 struct ext4_sb_info *sbi = EXT4_SB(sb); 3272 struct ext4_super_block *es = sbi->s_es; 3273 struct inode *j_inode; 3274 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3275 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3276 ext4_fsblk_t overhead = 0; 3277 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3278 3279 if (!buf) 3280 return -ENOMEM; 3281 3282 /* 3283 * Compute the overhead (FS structures). This is constant 3284 * for a given filesystem unless the number of block groups 3285 * changes so we cache the previous value until it does. 3286 */ 3287 3288 /* 3289 * All of the blocks before first_data_block are overhead 3290 */ 3291 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3292 3293 /* 3294 * Add the overhead found in each block group 3295 */ 3296 for (i = 0; i < ngroups; i++) { 3297 int blks; 3298 3299 blks = count_overhead(sb, i, buf); 3300 overhead += blks; 3301 if (blks) 3302 memset(buf, 0, PAGE_SIZE); 3303 cond_resched(); 3304 } 3305 3306 /* 3307 * Add the internal journal blocks whether the journal has been 3308 * loaded or not 3309 */ 3310 if (sbi->s_journal && !sbi->journal_bdev) 3311 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3312 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3313 j_inode = ext4_get_journal_inode(sb, j_inum); 3314 if (j_inode) { 3315 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3316 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3317 iput(j_inode); 3318 } else { 3319 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3320 } 3321 } 3322 sbi->s_overhead = overhead; 3323 smp_wmb(); 3324 free_page((unsigned long) buf); 3325 return 0; 3326 } 3327 3328 static void ext4_set_resv_clusters(struct super_block *sb) 3329 { 3330 ext4_fsblk_t resv_clusters; 3331 struct ext4_sb_info *sbi = EXT4_SB(sb); 3332 3333 /* 3334 * There's no need to reserve anything when we aren't using extents. 3335 * The space estimates are exact, there are no unwritten extents, 3336 * hole punching doesn't need new metadata... This is needed especially 3337 * to keep ext2/3 backward compatibility. 3338 */ 3339 if (!ext4_has_feature_extents(sb)) 3340 return; 3341 /* 3342 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3343 * This should cover the situations where we can not afford to run 3344 * out of space like for example punch hole, or converting 3345 * unwritten extents in delalloc path. In most cases such 3346 * allocation would require 1, or 2 blocks, higher numbers are 3347 * very rare. 3348 */ 3349 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3350 sbi->s_cluster_bits); 3351 3352 do_div(resv_clusters, 50); 3353 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3354 3355 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3356 } 3357 3358 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3359 { 3360 char *orig_data = kstrdup(data, GFP_KERNEL); 3361 struct buffer_head *bh; 3362 struct ext4_super_block *es = NULL; 3363 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3364 ext4_fsblk_t block; 3365 ext4_fsblk_t sb_block = get_sb_block(&data); 3366 ext4_fsblk_t logical_sb_block; 3367 unsigned long offset = 0; 3368 unsigned long journal_devnum = 0; 3369 unsigned long def_mount_opts; 3370 struct inode *root; 3371 const char *descr; 3372 int ret = -ENOMEM; 3373 int blocksize, clustersize; 3374 unsigned int db_count; 3375 unsigned int i; 3376 int needs_recovery, has_huge_files, has_bigalloc; 3377 __u64 blocks_count; 3378 int err = 0; 3379 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3380 ext4_group_t first_not_zeroed; 3381 3382 if ((data && !orig_data) || !sbi) 3383 goto out_free_base; 3384 3385 sbi->s_blockgroup_lock = 3386 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3387 if (!sbi->s_blockgroup_lock) 3388 goto out_free_base; 3389 3390 sb->s_fs_info = sbi; 3391 sbi->s_sb = sb; 3392 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3393 sbi->s_sb_block = sb_block; 3394 if (sb->s_bdev->bd_part) 3395 sbi->s_sectors_written_start = 3396 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3397 3398 /* Cleanup superblock name */ 3399 strreplace(sb->s_id, '/', '!'); 3400 3401 /* -EINVAL is default */ 3402 ret = -EINVAL; 3403 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3404 if (!blocksize) { 3405 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3406 goto out_fail; 3407 } 3408 3409 /* 3410 * The ext4 superblock will not be buffer aligned for other than 1kB 3411 * block sizes. We need to calculate the offset from buffer start. 3412 */ 3413 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3414 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3415 offset = do_div(logical_sb_block, blocksize); 3416 } else { 3417 logical_sb_block = sb_block; 3418 } 3419 3420 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3421 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3422 goto out_fail; 3423 } 3424 /* 3425 * Note: s_es must be initialized as soon as possible because 3426 * some ext4 macro-instructions depend on its value 3427 */ 3428 es = (struct ext4_super_block *) (bh->b_data + offset); 3429 sbi->s_es = es; 3430 sb->s_magic = le16_to_cpu(es->s_magic); 3431 if (sb->s_magic != EXT4_SUPER_MAGIC) 3432 goto cantfind_ext4; 3433 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3434 3435 /* Warn if metadata_csum and gdt_csum are both set. */ 3436 if (ext4_has_feature_metadata_csum(sb) && 3437 ext4_has_feature_gdt_csum(sb)) 3438 ext4_warning(sb, "metadata_csum and uninit_bg are " 3439 "redundant flags; please run fsck."); 3440 3441 /* Check for a known checksum algorithm */ 3442 if (!ext4_verify_csum_type(sb, es)) { 3443 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3444 "unknown checksum algorithm."); 3445 silent = 1; 3446 goto cantfind_ext4; 3447 } 3448 3449 /* Load the checksum driver */ 3450 if (ext4_has_feature_metadata_csum(sb)) { 3451 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3452 if (IS_ERR(sbi->s_chksum_driver)) { 3453 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3454 ret = PTR_ERR(sbi->s_chksum_driver); 3455 sbi->s_chksum_driver = NULL; 3456 goto failed_mount; 3457 } 3458 } 3459 3460 /* Check superblock checksum */ 3461 if (!ext4_superblock_csum_verify(sb, es)) { 3462 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3463 "invalid superblock checksum. Run e2fsck?"); 3464 silent = 1; 3465 ret = -EFSBADCRC; 3466 goto cantfind_ext4; 3467 } 3468 3469 /* Precompute checksum seed for all metadata */ 3470 if (ext4_has_feature_csum_seed(sb)) 3471 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3472 else if (ext4_has_metadata_csum(sb)) 3473 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3474 sizeof(es->s_uuid)); 3475 3476 /* Set defaults before we parse the mount options */ 3477 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3478 set_opt(sb, INIT_INODE_TABLE); 3479 if (def_mount_opts & EXT4_DEFM_DEBUG) 3480 set_opt(sb, DEBUG); 3481 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3482 set_opt(sb, GRPID); 3483 if (def_mount_opts & EXT4_DEFM_UID16) 3484 set_opt(sb, NO_UID32); 3485 /* xattr user namespace & acls are now defaulted on */ 3486 set_opt(sb, XATTR_USER); 3487 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3488 set_opt(sb, POSIX_ACL); 3489 #endif 3490 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3491 if (ext4_has_metadata_csum(sb)) 3492 set_opt(sb, JOURNAL_CHECKSUM); 3493 3494 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3495 set_opt(sb, JOURNAL_DATA); 3496 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3497 set_opt(sb, ORDERED_DATA); 3498 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3499 set_opt(sb, WRITEBACK_DATA); 3500 3501 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3502 set_opt(sb, ERRORS_PANIC); 3503 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3504 set_opt(sb, ERRORS_CONT); 3505 else 3506 set_opt(sb, ERRORS_RO); 3507 /* block_validity enabled by default; disable with noblock_validity */ 3508 set_opt(sb, BLOCK_VALIDITY); 3509 if (def_mount_opts & EXT4_DEFM_DISCARD) 3510 set_opt(sb, DISCARD); 3511 3512 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3513 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3514 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3515 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3516 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3517 3518 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3519 set_opt(sb, BARRIER); 3520 3521 /* 3522 * enable delayed allocation by default 3523 * Use -o nodelalloc to turn it off 3524 */ 3525 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3526 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3527 set_opt(sb, DELALLOC); 3528 3529 /* 3530 * set default s_li_wait_mult for lazyinit, for the case there is 3531 * no mount option specified. 3532 */ 3533 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3534 3535 if (sbi->s_es->s_mount_opts[0]) { 3536 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3537 sizeof(sbi->s_es->s_mount_opts), 3538 GFP_KERNEL); 3539 if (!s_mount_opts) 3540 goto failed_mount; 3541 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3542 &journal_ioprio, 0)) { 3543 ext4_msg(sb, KERN_WARNING, 3544 "failed to parse options in superblock: %s", 3545 s_mount_opts); 3546 } 3547 kfree(s_mount_opts); 3548 } 3549 sbi->s_def_mount_opt = sbi->s_mount_opt; 3550 if (!parse_options((char *) data, sb, &journal_devnum, 3551 &journal_ioprio, 0)) 3552 goto failed_mount; 3553 3554 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3555 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3556 "with data=journal disables delayed " 3557 "allocation and O_DIRECT support!\n"); 3558 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3559 ext4_msg(sb, KERN_ERR, "can't mount with " 3560 "both data=journal and delalloc"); 3561 goto failed_mount; 3562 } 3563 if (test_opt(sb, DIOREAD_NOLOCK)) { 3564 ext4_msg(sb, KERN_ERR, "can't mount with " 3565 "both data=journal and dioread_nolock"); 3566 goto failed_mount; 3567 } 3568 if (test_opt(sb, DAX)) { 3569 ext4_msg(sb, KERN_ERR, "can't mount with " 3570 "both data=journal and dax"); 3571 goto failed_mount; 3572 } 3573 if (ext4_has_feature_encrypt(sb)) { 3574 ext4_msg(sb, KERN_WARNING, 3575 "encrypted files will use data=ordered " 3576 "instead of data journaling mode"); 3577 } 3578 if (test_opt(sb, DELALLOC)) 3579 clear_opt(sb, DELALLOC); 3580 } else { 3581 sb->s_iflags |= SB_I_CGROUPWB; 3582 } 3583 3584 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3585 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3586 3587 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3588 (ext4_has_compat_features(sb) || 3589 ext4_has_ro_compat_features(sb) || 3590 ext4_has_incompat_features(sb))) 3591 ext4_msg(sb, KERN_WARNING, 3592 "feature flags set on rev 0 fs, " 3593 "running e2fsck is recommended"); 3594 3595 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3596 set_opt2(sb, HURD_COMPAT); 3597 if (ext4_has_feature_64bit(sb)) { 3598 ext4_msg(sb, KERN_ERR, 3599 "The Hurd can't support 64-bit file systems"); 3600 goto failed_mount; 3601 } 3602 } 3603 3604 if (IS_EXT2_SB(sb)) { 3605 if (ext2_feature_set_ok(sb)) 3606 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3607 "using the ext4 subsystem"); 3608 else { 3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3610 "to feature incompatibilities"); 3611 goto failed_mount; 3612 } 3613 } 3614 3615 if (IS_EXT3_SB(sb)) { 3616 if (ext3_feature_set_ok(sb)) 3617 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3618 "using the ext4 subsystem"); 3619 else { 3620 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3621 "to feature incompatibilities"); 3622 goto failed_mount; 3623 } 3624 } 3625 3626 /* 3627 * Check feature flags regardless of the revision level, since we 3628 * previously didn't change the revision level when setting the flags, 3629 * so there is a chance incompat flags are set on a rev 0 filesystem. 3630 */ 3631 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3632 goto failed_mount; 3633 3634 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3635 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3636 blocksize > EXT4_MAX_BLOCK_SIZE) { 3637 ext4_msg(sb, KERN_ERR, 3638 "Unsupported filesystem blocksize %d (%d log_block_size)", 3639 blocksize, le32_to_cpu(es->s_log_block_size)); 3640 goto failed_mount; 3641 } 3642 if (le32_to_cpu(es->s_log_block_size) > 3643 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3644 ext4_msg(sb, KERN_ERR, 3645 "Invalid log block size: %u", 3646 le32_to_cpu(es->s_log_block_size)); 3647 goto failed_mount; 3648 } 3649 3650 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3651 ext4_msg(sb, KERN_ERR, 3652 "Number of reserved GDT blocks insanely large: %d", 3653 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3654 goto failed_mount; 3655 } 3656 3657 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3658 err = bdev_dax_supported(sb, blocksize); 3659 if (err) 3660 goto failed_mount; 3661 } 3662 3663 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3664 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3665 es->s_encryption_level); 3666 goto failed_mount; 3667 } 3668 3669 if (sb->s_blocksize != blocksize) { 3670 /* Validate the filesystem blocksize */ 3671 if (!sb_set_blocksize(sb, blocksize)) { 3672 ext4_msg(sb, KERN_ERR, "bad block size %d", 3673 blocksize); 3674 goto failed_mount; 3675 } 3676 3677 brelse(bh); 3678 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3679 offset = do_div(logical_sb_block, blocksize); 3680 bh = sb_bread_unmovable(sb, logical_sb_block); 3681 if (!bh) { 3682 ext4_msg(sb, KERN_ERR, 3683 "Can't read superblock on 2nd try"); 3684 goto failed_mount; 3685 } 3686 es = (struct ext4_super_block *)(bh->b_data + offset); 3687 sbi->s_es = es; 3688 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3689 ext4_msg(sb, KERN_ERR, 3690 "Magic mismatch, very weird!"); 3691 goto failed_mount; 3692 } 3693 } 3694 3695 has_huge_files = ext4_has_feature_huge_file(sb); 3696 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3697 has_huge_files); 3698 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3699 3700 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3701 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3702 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3703 } else { 3704 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3705 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3706 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3707 (!is_power_of_2(sbi->s_inode_size)) || 3708 (sbi->s_inode_size > blocksize)) { 3709 ext4_msg(sb, KERN_ERR, 3710 "unsupported inode size: %d", 3711 sbi->s_inode_size); 3712 goto failed_mount; 3713 } 3714 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3715 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3716 } 3717 3718 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3719 if (ext4_has_feature_64bit(sb)) { 3720 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3721 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3722 !is_power_of_2(sbi->s_desc_size)) { 3723 ext4_msg(sb, KERN_ERR, 3724 "unsupported descriptor size %lu", 3725 sbi->s_desc_size); 3726 goto failed_mount; 3727 } 3728 } else 3729 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3730 3731 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3732 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3733 3734 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3735 if (sbi->s_inodes_per_block == 0) 3736 goto cantfind_ext4; 3737 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3738 sbi->s_inodes_per_group > blocksize * 8) { 3739 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3740 sbi->s_blocks_per_group); 3741 goto failed_mount; 3742 } 3743 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3744 sbi->s_inodes_per_block; 3745 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3746 sbi->s_sbh = bh; 3747 sbi->s_mount_state = le16_to_cpu(es->s_state); 3748 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3749 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3750 3751 for (i = 0; i < 4; i++) 3752 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3753 sbi->s_def_hash_version = es->s_def_hash_version; 3754 if (ext4_has_feature_dir_index(sb)) { 3755 i = le32_to_cpu(es->s_flags); 3756 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3757 sbi->s_hash_unsigned = 3; 3758 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3759 #ifdef __CHAR_UNSIGNED__ 3760 if (!(sb->s_flags & MS_RDONLY)) 3761 es->s_flags |= 3762 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3763 sbi->s_hash_unsigned = 3; 3764 #else 3765 if (!(sb->s_flags & MS_RDONLY)) 3766 es->s_flags |= 3767 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3768 #endif 3769 } 3770 } 3771 3772 /* Handle clustersize */ 3773 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3774 has_bigalloc = ext4_has_feature_bigalloc(sb); 3775 if (has_bigalloc) { 3776 if (clustersize < blocksize) { 3777 ext4_msg(sb, KERN_ERR, 3778 "cluster size (%d) smaller than " 3779 "block size (%d)", clustersize, blocksize); 3780 goto failed_mount; 3781 } 3782 if (le32_to_cpu(es->s_log_cluster_size) > 3783 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3784 ext4_msg(sb, KERN_ERR, 3785 "Invalid log cluster size: %u", 3786 le32_to_cpu(es->s_log_cluster_size)); 3787 goto failed_mount; 3788 } 3789 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3790 le32_to_cpu(es->s_log_block_size); 3791 sbi->s_clusters_per_group = 3792 le32_to_cpu(es->s_clusters_per_group); 3793 if (sbi->s_clusters_per_group > blocksize * 8) { 3794 ext4_msg(sb, KERN_ERR, 3795 "#clusters per group too big: %lu", 3796 sbi->s_clusters_per_group); 3797 goto failed_mount; 3798 } 3799 if (sbi->s_blocks_per_group != 3800 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3801 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3802 "clusters per group (%lu) inconsistent", 3803 sbi->s_blocks_per_group, 3804 sbi->s_clusters_per_group); 3805 goto failed_mount; 3806 } 3807 } else { 3808 if (clustersize != blocksize) { 3809 ext4_warning(sb, "fragment/cluster size (%d) != " 3810 "block size (%d)", clustersize, 3811 blocksize); 3812 clustersize = blocksize; 3813 } 3814 if (sbi->s_blocks_per_group > blocksize * 8) { 3815 ext4_msg(sb, KERN_ERR, 3816 "#blocks per group too big: %lu", 3817 sbi->s_blocks_per_group); 3818 goto failed_mount; 3819 } 3820 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3821 sbi->s_cluster_bits = 0; 3822 } 3823 sbi->s_cluster_ratio = clustersize / blocksize; 3824 3825 /* Do we have standard group size of clustersize * 8 blocks ? */ 3826 if (sbi->s_blocks_per_group == clustersize << 3) 3827 set_opt2(sb, STD_GROUP_SIZE); 3828 3829 /* 3830 * Test whether we have more sectors than will fit in sector_t, 3831 * and whether the max offset is addressable by the page cache. 3832 */ 3833 err = generic_check_addressable(sb->s_blocksize_bits, 3834 ext4_blocks_count(es)); 3835 if (err) { 3836 ext4_msg(sb, KERN_ERR, "filesystem" 3837 " too large to mount safely on this system"); 3838 if (sizeof(sector_t) < 8) 3839 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3840 goto failed_mount; 3841 } 3842 3843 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3844 goto cantfind_ext4; 3845 3846 /* check blocks count against device size */ 3847 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3848 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3849 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3850 "exceeds size of device (%llu blocks)", 3851 ext4_blocks_count(es), blocks_count); 3852 goto failed_mount; 3853 } 3854 3855 /* 3856 * It makes no sense for the first data block to be beyond the end 3857 * of the filesystem. 3858 */ 3859 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3860 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3861 "block %u is beyond end of filesystem (%llu)", 3862 le32_to_cpu(es->s_first_data_block), 3863 ext4_blocks_count(es)); 3864 goto failed_mount; 3865 } 3866 blocks_count = (ext4_blocks_count(es) - 3867 le32_to_cpu(es->s_first_data_block) + 3868 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3869 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3870 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3871 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3872 "(block count %llu, first data block %u, " 3873 "blocks per group %lu)", sbi->s_groups_count, 3874 ext4_blocks_count(es), 3875 le32_to_cpu(es->s_first_data_block), 3876 EXT4_BLOCKS_PER_GROUP(sb)); 3877 goto failed_mount; 3878 } 3879 sbi->s_groups_count = blocks_count; 3880 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3881 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3882 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3883 EXT4_DESC_PER_BLOCK(sb); 3884 if (ext4_has_feature_meta_bg(sb)) { 3885 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3886 ext4_msg(sb, KERN_WARNING, 3887 "first meta block group too large: %u " 3888 "(group descriptor block count %u)", 3889 le32_to_cpu(es->s_first_meta_bg), db_count); 3890 goto failed_mount; 3891 } 3892 } 3893 sbi->s_group_desc = kvmalloc(db_count * 3894 sizeof(struct buffer_head *), 3895 GFP_KERNEL); 3896 if (sbi->s_group_desc == NULL) { 3897 ext4_msg(sb, KERN_ERR, "not enough memory"); 3898 ret = -ENOMEM; 3899 goto failed_mount; 3900 } 3901 3902 bgl_lock_init(sbi->s_blockgroup_lock); 3903 3904 /* Pre-read the descriptors into the buffer cache */ 3905 for (i = 0; i < db_count; i++) { 3906 block = descriptor_loc(sb, logical_sb_block, i); 3907 sb_breadahead(sb, block); 3908 } 3909 3910 for (i = 0; i < db_count; i++) { 3911 block = descriptor_loc(sb, logical_sb_block, i); 3912 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3913 if (!sbi->s_group_desc[i]) { 3914 ext4_msg(sb, KERN_ERR, 3915 "can't read group descriptor %d", i); 3916 db_count = i; 3917 goto failed_mount2; 3918 } 3919 } 3920 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3921 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3922 ret = -EFSCORRUPTED; 3923 goto failed_mount2; 3924 } 3925 3926 sbi->s_gdb_count = db_count; 3927 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3928 spin_lock_init(&sbi->s_next_gen_lock); 3929 3930 setup_timer(&sbi->s_err_report, print_daily_error_info, 3931 (unsigned long) sb); 3932 3933 /* Register extent status tree shrinker */ 3934 if (ext4_es_register_shrinker(sbi)) 3935 goto failed_mount3; 3936 3937 sbi->s_stripe = ext4_get_stripe_size(sbi); 3938 sbi->s_extent_max_zeroout_kb = 32; 3939 3940 /* 3941 * set up enough so that it can read an inode 3942 */ 3943 sb->s_op = &ext4_sops; 3944 sb->s_export_op = &ext4_export_ops; 3945 sb->s_xattr = ext4_xattr_handlers; 3946 sb->s_cop = &ext4_cryptops; 3947 #ifdef CONFIG_QUOTA 3948 sb->dq_op = &ext4_quota_operations; 3949 if (ext4_has_feature_quota(sb)) 3950 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3951 else 3952 sb->s_qcop = &ext4_qctl_operations; 3953 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3954 #endif 3955 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3956 3957 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3958 mutex_init(&sbi->s_orphan_lock); 3959 3960 sb->s_root = NULL; 3961 3962 needs_recovery = (es->s_last_orphan != 0 || 3963 ext4_has_feature_journal_needs_recovery(sb)); 3964 3965 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3966 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3967 goto failed_mount3a; 3968 3969 /* 3970 * The first inode we look at is the journal inode. Don't try 3971 * root first: it may be modified in the journal! 3972 */ 3973 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3974 err = ext4_load_journal(sb, es, journal_devnum); 3975 if (err) 3976 goto failed_mount3a; 3977 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3978 ext4_has_feature_journal_needs_recovery(sb)) { 3979 ext4_msg(sb, KERN_ERR, "required journal recovery " 3980 "suppressed and not mounted read-only"); 3981 goto failed_mount_wq; 3982 } else { 3983 /* Nojournal mode, all journal mount options are illegal */ 3984 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3985 ext4_msg(sb, KERN_ERR, "can't mount with " 3986 "journal_checksum, fs mounted w/o journal"); 3987 goto failed_mount_wq; 3988 } 3989 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3990 ext4_msg(sb, KERN_ERR, "can't mount with " 3991 "journal_async_commit, fs mounted w/o journal"); 3992 goto failed_mount_wq; 3993 } 3994 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3995 ext4_msg(sb, KERN_ERR, "can't mount with " 3996 "commit=%lu, fs mounted w/o journal", 3997 sbi->s_commit_interval / HZ); 3998 goto failed_mount_wq; 3999 } 4000 if (EXT4_MOUNT_DATA_FLAGS & 4001 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4002 ext4_msg(sb, KERN_ERR, "can't mount with " 4003 "data=, fs mounted w/o journal"); 4004 goto failed_mount_wq; 4005 } 4006 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4007 clear_opt(sb, JOURNAL_CHECKSUM); 4008 clear_opt(sb, DATA_FLAGS); 4009 sbi->s_journal = NULL; 4010 needs_recovery = 0; 4011 goto no_journal; 4012 } 4013 4014 if (ext4_has_feature_64bit(sb) && 4015 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4016 JBD2_FEATURE_INCOMPAT_64BIT)) { 4017 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4018 goto failed_mount_wq; 4019 } 4020 4021 if (!set_journal_csum_feature_set(sb)) { 4022 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4023 "feature set"); 4024 goto failed_mount_wq; 4025 } 4026 4027 /* We have now updated the journal if required, so we can 4028 * validate the data journaling mode. */ 4029 switch (test_opt(sb, DATA_FLAGS)) { 4030 case 0: 4031 /* No mode set, assume a default based on the journal 4032 * capabilities: ORDERED_DATA if the journal can 4033 * cope, else JOURNAL_DATA 4034 */ 4035 if (jbd2_journal_check_available_features 4036 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4037 set_opt(sb, ORDERED_DATA); 4038 else 4039 set_opt(sb, JOURNAL_DATA); 4040 break; 4041 4042 case EXT4_MOUNT_ORDERED_DATA: 4043 case EXT4_MOUNT_WRITEBACK_DATA: 4044 if (!jbd2_journal_check_available_features 4045 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4046 ext4_msg(sb, KERN_ERR, "Journal does not support " 4047 "requested data journaling mode"); 4048 goto failed_mount_wq; 4049 } 4050 default: 4051 break; 4052 } 4053 4054 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4055 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4056 ext4_msg(sb, KERN_ERR, "can't mount with " 4057 "journal_async_commit in data=ordered mode"); 4058 goto failed_mount_wq; 4059 } 4060 4061 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4062 4063 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4064 4065 no_journal: 4066 sbi->s_mb_cache = ext4_xattr_create_cache(); 4067 if (!sbi->s_mb_cache) { 4068 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4069 goto failed_mount_wq; 4070 } 4071 4072 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4073 (blocksize != PAGE_SIZE)) { 4074 ext4_msg(sb, KERN_ERR, 4075 "Unsupported blocksize for fs encryption"); 4076 goto failed_mount_wq; 4077 } 4078 4079 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4080 !ext4_has_feature_encrypt(sb)) { 4081 ext4_set_feature_encrypt(sb); 4082 ext4_commit_super(sb, 1); 4083 } 4084 4085 /* 4086 * Get the # of file system overhead blocks from the 4087 * superblock if present. 4088 */ 4089 if (es->s_overhead_clusters) 4090 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4091 else { 4092 err = ext4_calculate_overhead(sb); 4093 if (err) 4094 goto failed_mount_wq; 4095 } 4096 4097 /* 4098 * The maximum number of concurrent works can be high and 4099 * concurrency isn't really necessary. Limit it to 1. 4100 */ 4101 EXT4_SB(sb)->rsv_conversion_wq = 4102 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4103 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4104 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4105 ret = -ENOMEM; 4106 goto failed_mount4; 4107 } 4108 4109 /* 4110 * The jbd2_journal_load will have done any necessary log recovery, 4111 * so we can safely mount the rest of the filesystem now. 4112 */ 4113 4114 root = ext4_iget(sb, EXT4_ROOT_INO); 4115 if (IS_ERR(root)) { 4116 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4117 ret = PTR_ERR(root); 4118 root = NULL; 4119 goto failed_mount4; 4120 } 4121 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4122 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4123 iput(root); 4124 goto failed_mount4; 4125 } 4126 sb->s_root = d_make_root(root); 4127 if (!sb->s_root) { 4128 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4129 ret = -ENOMEM; 4130 goto failed_mount4; 4131 } 4132 4133 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4134 sb->s_flags |= MS_RDONLY; 4135 4136 /* determine the minimum size of new large inodes, if present */ 4137 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4138 sbi->s_want_extra_isize == 0) { 4139 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4140 EXT4_GOOD_OLD_INODE_SIZE; 4141 if (ext4_has_feature_extra_isize(sb)) { 4142 if (sbi->s_want_extra_isize < 4143 le16_to_cpu(es->s_want_extra_isize)) 4144 sbi->s_want_extra_isize = 4145 le16_to_cpu(es->s_want_extra_isize); 4146 if (sbi->s_want_extra_isize < 4147 le16_to_cpu(es->s_min_extra_isize)) 4148 sbi->s_want_extra_isize = 4149 le16_to_cpu(es->s_min_extra_isize); 4150 } 4151 } 4152 /* Check if enough inode space is available */ 4153 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4154 sbi->s_inode_size) { 4155 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4156 EXT4_GOOD_OLD_INODE_SIZE; 4157 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4158 "available"); 4159 } 4160 4161 ext4_set_resv_clusters(sb); 4162 4163 err = ext4_setup_system_zone(sb); 4164 if (err) { 4165 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4166 "zone (%d)", err); 4167 goto failed_mount4a; 4168 } 4169 4170 ext4_ext_init(sb); 4171 err = ext4_mb_init(sb); 4172 if (err) { 4173 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4174 err); 4175 goto failed_mount5; 4176 } 4177 4178 block = ext4_count_free_clusters(sb); 4179 ext4_free_blocks_count_set(sbi->s_es, 4180 EXT4_C2B(sbi, block)); 4181 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4182 GFP_KERNEL); 4183 if (!err) { 4184 unsigned long freei = ext4_count_free_inodes(sb); 4185 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4186 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4187 GFP_KERNEL); 4188 } 4189 if (!err) 4190 err = percpu_counter_init(&sbi->s_dirs_counter, 4191 ext4_count_dirs(sb), GFP_KERNEL); 4192 if (!err) 4193 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4194 GFP_KERNEL); 4195 if (!err) 4196 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4197 4198 if (err) { 4199 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4200 goto failed_mount6; 4201 } 4202 4203 if (ext4_has_feature_flex_bg(sb)) 4204 if (!ext4_fill_flex_info(sb)) { 4205 ext4_msg(sb, KERN_ERR, 4206 "unable to initialize " 4207 "flex_bg meta info!"); 4208 goto failed_mount6; 4209 } 4210 4211 err = ext4_register_li_request(sb, first_not_zeroed); 4212 if (err) 4213 goto failed_mount6; 4214 4215 err = ext4_register_sysfs(sb); 4216 if (err) 4217 goto failed_mount7; 4218 4219 #ifdef CONFIG_QUOTA 4220 /* Enable quota usage during mount. */ 4221 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4222 err = ext4_enable_quotas(sb); 4223 if (err) 4224 goto failed_mount8; 4225 } 4226 #endif /* CONFIG_QUOTA */ 4227 4228 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4229 ext4_orphan_cleanup(sb, es); 4230 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4231 if (needs_recovery) { 4232 ext4_msg(sb, KERN_INFO, "recovery complete"); 4233 ext4_mark_recovery_complete(sb, es); 4234 } 4235 if (EXT4_SB(sb)->s_journal) { 4236 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4237 descr = " journalled data mode"; 4238 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4239 descr = " ordered data mode"; 4240 else 4241 descr = " writeback data mode"; 4242 } else 4243 descr = "out journal"; 4244 4245 if (test_opt(sb, DISCARD)) { 4246 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4247 if (!blk_queue_discard(q)) 4248 ext4_msg(sb, KERN_WARNING, 4249 "mounting with \"discard\" option, but " 4250 "the device does not support discard"); 4251 } 4252 4253 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4254 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4255 "Opts: %.*s%s%s", descr, 4256 (int) sizeof(sbi->s_es->s_mount_opts), 4257 sbi->s_es->s_mount_opts, 4258 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4259 4260 if (es->s_error_count) 4261 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4262 4263 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4264 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4265 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4266 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4267 4268 kfree(orig_data); 4269 return 0; 4270 4271 cantfind_ext4: 4272 if (!silent) 4273 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4274 goto failed_mount; 4275 4276 #ifdef CONFIG_QUOTA 4277 failed_mount8: 4278 ext4_unregister_sysfs(sb); 4279 #endif 4280 failed_mount7: 4281 ext4_unregister_li_request(sb); 4282 failed_mount6: 4283 ext4_mb_release(sb); 4284 if (sbi->s_flex_groups) 4285 kvfree(sbi->s_flex_groups); 4286 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4287 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4288 percpu_counter_destroy(&sbi->s_dirs_counter); 4289 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4290 failed_mount5: 4291 ext4_ext_release(sb); 4292 ext4_release_system_zone(sb); 4293 failed_mount4a: 4294 dput(sb->s_root); 4295 sb->s_root = NULL; 4296 failed_mount4: 4297 ext4_msg(sb, KERN_ERR, "mount failed"); 4298 if (EXT4_SB(sb)->rsv_conversion_wq) 4299 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4300 failed_mount_wq: 4301 if (sbi->s_mb_cache) { 4302 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4303 sbi->s_mb_cache = NULL; 4304 } 4305 if (sbi->s_journal) { 4306 jbd2_journal_destroy(sbi->s_journal); 4307 sbi->s_journal = NULL; 4308 } 4309 failed_mount3a: 4310 ext4_es_unregister_shrinker(sbi); 4311 failed_mount3: 4312 del_timer_sync(&sbi->s_err_report); 4313 if (sbi->s_mmp_tsk) 4314 kthread_stop(sbi->s_mmp_tsk); 4315 failed_mount2: 4316 for (i = 0; i < db_count; i++) 4317 brelse(sbi->s_group_desc[i]); 4318 kvfree(sbi->s_group_desc); 4319 failed_mount: 4320 if (sbi->s_chksum_driver) 4321 crypto_free_shash(sbi->s_chksum_driver); 4322 #ifdef CONFIG_QUOTA 4323 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4324 kfree(sbi->s_qf_names[i]); 4325 #endif 4326 ext4_blkdev_remove(sbi); 4327 brelse(bh); 4328 out_fail: 4329 sb->s_fs_info = NULL; 4330 kfree(sbi->s_blockgroup_lock); 4331 out_free_base: 4332 kfree(sbi); 4333 kfree(orig_data); 4334 return err ? err : ret; 4335 } 4336 4337 /* 4338 * Setup any per-fs journal parameters now. We'll do this both on 4339 * initial mount, once the journal has been initialised but before we've 4340 * done any recovery; and again on any subsequent remount. 4341 */ 4342 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4343 { 4344 struct ext4_sb_info *sbi = EXT4_SB(sb); 4345 4346 journal->j_commit_interval = sbi->s_commit_interval; 4347 journal->j_min_batch_time = sbi->s_min_batch_time; 4348 journal->j_max_batch_time = sbi->s_max_batch_time; 4349 4350 write_lock(&journal->j_state_lock); 4351 if (test_opt(sb, BARRIER)) 4352 journal->j_flags |= JBD2_BARRIER; 4353 else 4354 journal->j_flags &= ~JBD2_BARRIER; 4355 if (test_opt(sb, DATA_ERR_ABORT)) 4356 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4357 else 4358 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4359 write_unlock(&journal->j_state_lock); 4360 } 4361 4362 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4363 unsigned int journal_inum) 4364 { 4365 struct inode *journal_inode; 4366 4367 /* 4368 * Test for the existence of a valid inode on disk. Bad things 4369 * happen if we iget() an unused inode, as the subsequent iput() 4370 * will try to delete it. 4371 */ 4372 journal_inode = ext4_iget(sb, journal_inum); 4373 if (IS_ERR(journal_inode)) { 4374 ext4_msg(sb, KERN_ERR, "no journal found"); 4375 return NULL; 4376 } 4377 if (!journal_inode->i_nlink) { 4378 make_bad_inode(journal_inode); 4379 iput(journal_inode); 4380 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4381 return NULL; 4382 } 4383 4384 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4385 journal_inode, journal_inode->i_size); 4386 if (!S_ISREG(journal_inode->i_mode)) { 4387 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4388 iput(journal_inode); 4389 return NULL; 4390 } 4391 return journal_inode; 4392 } 4393 4394 static journal_t *ext4_get_journal(struct super_block *sb, 4395 unsigned int journal_inum) 4396 { 4397 struct inode *journal_inode; 4398 journal_t *journal; 4399 4400 BUG_ON(!ext4_has_feature_journal(sb)); 4401 4402 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4403 if (!journal_inode) 4404 return NULL; 4405 4406 journal = jbd2_journal_init_inode(journal_inode); 4407 if (!journal) { 4408 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4409 iput(journal_inode); 4410 return NULL; 4411 } 4412 journal->j_private = sb; 4413 ext4_init_journal_params(sb, journal); 4414 return journal; 4415 } 4416 4417 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4418 dev_t j_dev) 4419 { 4420 struct buffer_head *bh; 4421 journal_t *journal; 4422 ext4_fsblk_t start; 4423 ext4_fsblk_t len; 4424 int hblock, blocksize; 4425 ext4_fsblk_t sb_block; 4426 unsigned long offset; 4427 struct ext4_super_block *es; 4428 struct block_device *bdev; 4429 4430 BUG_ON(!ext4_has_feature_journal(sb)); 4431 4432 bdev = ext4_blkdev_get(j_dev, sb); 4433 if (bdev == NULL) 4434 return NULL; 4435 4436 blocksize = sb->s_blocksize; 4437 hblock = bdev_logical_block_size(bdev); 4438 if (blocksize < hblock) { 4439 ext4_msg(sb, KERN_ERR, 4440 "blocksize too small for journal device"); 4441 goto out_bdev; 4442 } 4443 4444 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4445 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4446 set_blocksize(bdev, blocksize); 4447 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4448 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4449 "external journal"); 4450 goto out_bdev; 4451 } 4452 4453 es = (struct ext4_super_block *) (bh->b_data + offset); 4454 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4455 !(le32_to_cpu(es->s_feature_incompat) & 4456 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4457 ext4_msg(sb, KERN_ERR, "external journal has " 4458 "bad superblock"); 4459 brelse(bh); 4460 goto out_bdev; 4461 } 4462 4463 if ((le32_to_cpu(es->s_feature_ro_compat) & 4464 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4465 es->s_checksum != ext4_superblock_csum(sb, es)) { 4466 ext4_msg(sb, KERN_ERR, "external journal has " 4467 "corrupt superblock"); 4468 brelse(bh); 4469 goto out_bdev; 4470 } 4471 4472 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4473 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4474 brelse(bh); 4475 goto out_bdev; 4476 } 4477 4478 len = ext4_blocks_count(es); 4479 start = sb_block + 1; 4480 brelse(bh); /* we're done with the superblock */ 4481 4482 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4483 start, len, blocksize); 4484 if (!journal) { 4485 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4486 goto out_bdev; 4487 } 4488 journal->j_private = sb; 4489 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4490 wait_on_buffer(journal->j_sb_buffer); 4491 if (!buffer_uptodate(journal->j_sb_buffer)) { 4492 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4493 goto out_journal; 4494 } 4495 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4496 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4497 "user (unsupported) - %d", 4498 be32_to_cpu(journal->j_superblock->s_nr_users)); 4499 goto out_journal; 4500 } 4501 EXT4_SB(sb)->journal_bdev = bdev; 4502 ext4_init_journal_params(sb, journal); 4503 return journal; 4504 4505 out_journal: 4506 jbd2_journal_destroy(journal); 4507 out_bdev: 4508 ext4_blkdev_put(bdev); 4509 return NULL; 4510 } 4511 4512 static int ext4_load_journal(struct super_block *sb, 4513 struct ext4_super_block *es, 4514 unsigned long journal_devnum) 4515 { 4516 journal_t *journal; 4517 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4518 dev_t journal_dev; 4519 int err = 0; 4520 int really_read_only; 4521 4522 BUG_ON(!ext4_has_feature_journal(sb)); 4523 4524 if (journal_devnum && 4525 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4526 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4527 "numbers have changed"); 4528 journal_dev = new_decode_dev(journal_devnum); 4529 } else 4530 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4531 4532 really_read_only = bdev_read_only(sb->s_bdev); 4533 4534 /* 4535 * Are we loading a blank journal or performing recovery after a 4536 * crash? For recovery, we need to check in advance whether we 4537 * can get read-write access to the device. 4538 */ 4539 if (ext4_has_feature_journal_needs_recovery(sb)) { 4540 if (sb->s_flags & MS_RDONLY) { 4541 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4542 "required on readonly filesystem"); 4543 if (really_read_only) { 4544 ext4_msg(sb, KERN_ERR, "write access " 4545 "unavailable, cannot proceed"); 4546 return -EROFS; 4547 } 4548 ext4_msg(sb, KERN_INFO, "write access will " 4549 "be enabled during recovery"); 4550 } 4551 } 4552 4553 if (journal_inum && journal_dev) { 4554 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4555 "and inode journals!"); 4556 return -EINVAL; 4557 } 4558 4559 if (journal_inum) { 4560 if (!(journal = ext4_get_journal(sb, journal_inum))) 4561 return -EINVAL; 4562 } else { 4563 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4564 return -EINVAL; 4565 } 4566 4567 if (!(journal->j_flags & JBD2_BARRIER)) 4568 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4569 4570 if (!ext4_has_feature_journal_needs_recovery(sb)) 4571 err = jbd2_journal_wipe(journal, !really_read_only); 4572 if (!err) { 4573 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4574 if (save) 4575 memcpy(save, ((char *) es) + 4576 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4577 err = jbd2_journal_load(journal); 4578 if (save) 4579 memcpy(((char *) es) + EXT4_S_ERR_START, 4580 save, EXT4_S_ERR_LEN); 4581 kfree(save); 4582 } 4583 4584 if (err) { 4585 ext4_msg(sb, KERN_ERR, "error loading journal"); 4586 jbd2_journal_destroy(journal); 4587 return err; 4588 } 4589 4590 EXT4_SB(sb)->s_journal = journal; 4591 ext4_clear_journal_err(sb, es); 4592 4593 if (!really_read_only && journal_devnum && 4594 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4595 es->s_journal_dev = cpu_to_le32(journal_devnum); 4596 4597 /* Make sure we flush the recovery flag to disk. */ 4598 ext4_commit_super(sb, 1); 4599 } 4600 4601 return 0; 4602 } 4603 4604 static int ext4_commit_super(struct super_block *sb, int sync) 4605 { 4606 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4607 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4608 int error = 0; 4609 4610 if (!sbh || block_device_ejected(sb)) 4611 return error; 4612 /* 4613 * If the file system is mounted read-only, don't update the 4614 * superblock write time. This avoids updating the superblock 4615 * write time when we are mounting the root file system 4616 * read/only but we need to replay the journal; at that point, 4617 * for people who are east of GMT and who make their clock 4618 * tick in localtime for Windows bug-for-bug compatibility, 4619 * the clock is set in the future, and this will cause e2fsck 4620 * to complain and force a full file system check. 4621 */ 4622 if (!(sb->s_flags & MS_RDONLY)) 4623 es->s_wtime = cpu_to_le32(get_seconds()); 4624 if (sb->s_bdev->bd_part) 4625 es->s_kbytes_written = 4626 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4627 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4628 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4629 else 4630 es->s_kbytes_written = 4631 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4632 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4633 ext4_free_blocks_count_set(es, 4634 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4635 &EXT4_SB(sb)->s_freeclusters_counter))); 4636 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4637 es->s_free_inodes_count = 4638 cpu_to_le32(percpu_counter_sum_positive( 4639 &EXT4_SB(sb)->s_freeinodes_counter)); 4640 BUFFER_TRACE(sbh, "marking dirty"); 4641 ext4_superblock_csum_set(sb); 4642 if (sync) 4643 lock_buffer(sbh); 4644 if (buffer_write_io_error(sbh)) { 4645 /* 4646 * Oh, dear. A previous attempt to write the 4647 * superblock failed. This could happen because the 4648 * USB device was yanked out. Or it could happen to 4649 * be a transient write error and maybe the block will 4650 * be remapped. Nothing we can do but to retry the 4651 * write and hope for the best. 4652 */ 4653 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4654 "superblock detected"); 4655 clear_buffer_write_io_error(sbh); 4656 set_buffer_uptodate(sbh); 4657 } 4658 mark_buffer_dirty(sbh); 4659 if (sync) { 4660 unlock_buffer(sbh); 4661 error = __sync_dirty_buffer(sbh, 4662 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4663 if (error) 4664 return error; 4665 4666 error = buffer_write_io_error(sbh); 4667 if (error) { 4668 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4669 "superblock"); 4670 clear_buffer_write_io_error(sbh); 4671 set_buffer_uptodate(sbh); 4672 } 4673 } 4674 return error; 4675 } 4676 4677 /* 4678 * Have we just finished recovery? If so, and if we are mounting (or 4679 * remounting) the filesystem readonly, then we will end up with a 4680 * consistent fs on disk. Record that fact. 4681 */ 4682 static void ext4_mark_recovery_complete(struct super_block *sb, 4683 struct ext4_super_block *es) 4684 { 4685 journal_t *journal = EXT4_SB(sb)->s_journal; 4686 4687 if (!ext4_has_feature_journal(sb)) { 4688 BUG_ON(journal != NULL); 4689 return; 4690 } 4691 jbd2_journal_lock_updates(journal); 4692 if (jbd2_journal_flush(journal) < 0) 4693 goto out; 4694 4695 if (ext4_has_feature_journal_needs_recovery(sb) && 4696 sb->s_flags & MS_RDONLY) { 4697 ext4_clear_feature_journal_needs_recovery(sb); 4698 ext4_commit_super(sb, 1); 4699 } 4700 4701 out: 4702 jbd2_journal_unlock_updates(journal); 4703 } 4704 4705 /* 4706 * If we are mounting (or read-write remounting) a filesystem whose journal 4707 * has recorded an error from a previous lifetime, move that error to the 4708 * main filesystem now. 4709 */ 4710 static void ext4_clear_journal_err(struct super_block *sb, 4711 struct ext4_super_block *es) 4712 { 4713 journal_t *journal; 4714 int j_errno; 4715 const char *errstr; 4716 4717 BUG_ON(!ext4_has_feature_journal(sb)); 4718 4719 journal = EXT4_SB(sb)->s_journal; 4720 4721 /* 4722 * Now check for any error status which may have been recorded in the 4723 * journal by a prior ext4_error() or ext4_abort() 4724 */ 4725 4726 j_errno = jbd2_journal_errno(journal); 4727 if (j_errno) { 4728 char nbuf[16]; 4729 4730 errstr = ext4_decode_error(sb, j_errno, nbuf); 4731 ext4_warning(sb, "Filesystem error recorded " 4732 "from previous mount: %s", errstr); 4733 ext4_warning(sb, "Marking fs in need of filesystem check."); 4734 4735 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4736 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4737 ext4_commit_super(sb, 1); 4738 4739 jbd2_journal_clear_err(journal); 4740 jbd2_journal_update_sb_errno(journal); 4741 } 4742 } 4743 4744 /* 4745 * Force the running and committing transactions to commit, 4746 * and wait on the commit. 4747 */ 4748 int ext4_force_commit(struct super_block *sb) 4749 { 4750 journal_t *journal; 4751 4752 if (sb->s_flags & MS_RDONLY) 4753 return 0; 4754 4755 journal = EXT4_SB(sb)->s_journal; 4756 return ext4_journal_force_commit(journal); 4757 } 4758 4759 static int ext4_sync_fs(struct super_block *sb, int wait) 4760 { 4761 int ret = 0; 4762 tid_t target; 4763 bool needs_barrier = false; 4764 struct ext4_sb_info *sbi = EXT4_SB(sb); 4765 4766 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4767 return 0; 4768 4769 trace_ext4_sync_fs(sb, wait); 4770 flush_workqueue(sbi->rsv_conversion_wq); 4771 /* 4772 * Writeback quota in non-journalled quota case - journalled quota has 4773 * no dirty dquots 4774 */ 4775 dquot_writeback_dquots(sb, -1); 4776 /* 4777 * Data writeback is possible w/o journal transaction, so barrier must 4778 * being sent at the end of the function. But we can skip it if 4779 * transaction_commit will do it for us. 4780 */ 4781 if (sbi->s_journal) { 4782 target = jbd2_get_latest_transaction(sbi->s_journal); 4783 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4784 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4785 needs_barrier = true; 4786 4787 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4788 if (wait) 4789 ret = jbd2_log_wait_commit(sbi->s_journal, 4790 target); 4791 } 4792 } else if (wait && test_opt(sb, BARRIER)) 4793 needs_barrier = true; 4794 if (needs_barrier) { 4795 int err; 4796 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4797 if (!ret) 4798 ret = err; 4799 } 4800 4801 return ret; 4802 } 4803 4804 /* 4805 * LVM calls this function before a (read-only) snapshot is created. This 4806 * gives us a chance to flush the journal completely and mark the fs clean. 4807 * 4808 * Note that only this function cannot bring a filesystem to be in a clean 4809 * state independently. It relies on upper layer to stop all data & metadata 4810 * modifications. 4811 */ 4812 static int ext4_freeze(struct super_block *sb) 4813 { 4814 int error = 0; 4815 journal_t *journal; 4816 4817 if (sb->s_flags & MS_RDONLY) 4818 return 0; 4819 4820 journal = EXT4_SB(sb)->s_journal; 4821 4822 if (journal) { 4823 /* Now we set up the journal barrier. */ 4824 jbd2_journal_lock_updates(journal); 4825 4826 /* 4827 * Don't clear the needs_recovery flag if we failed to 4828 * flush the journal. 4829 */ 4830 error = jbd2_journal_flush(journal); 4831 if (error < 0) 4832 goto out; 4833 4834 /* Journal blocked and flushed, clear needs_recovery flag. */ 4835 ext4_clear_feature_journal_needs_recovery(sb); 4836 } 4837 4838 error = ext4_commit_super(sb, 1); 4839 out: 4840 if (journal) 4841 /* we rely on upper layer to stop further updates */ 4842 jbd2_journal_unlock_updates(journal); 4843 return error; 4844 } 4845 4846 /* 4847 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4848 * flag here, even though the filesystem is not technically dirty yet. 4849 */ 4850 static int ext4_unfreeze(struct super_block *sb) 4851 { 4852 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4853 return 0; 4854 4855 if (EXT4_SB(sb)->s_journal) { 4856 /* Reset the needs_recovery flag before the fs is unlocked. */ 4857 ext4_set_feature_journal_needs_recovery(sb); 4858 } 4859 4860 ext4_commit_super(sb, 1); 4861 return 0; 4862 } 4863 4864 /* 4865 * Structure to save mount options for ext4_remount's benefit 4866 */ 4867 struct ext4_mount_options { 4868 unsigned long s_mount_opt; 4869 unsigned long s_mount_opt2; 4870 kuid_t s_resuid; 4871 kgid_t s_resgid; 4872 unsigned long s_commit_interval; 4873 u32 s_min_batch_time, s_max_batch_time; 4874 #ifdef CONFIG_QUOTA 4875 int s_jquota_fmt; 4876 char *s_qf_names[EXT4_MAXQUOTAS]; 4877 #endif 4878 }; 4879 4880 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4881 { 4882 struct ext4_super_block *es; 4883 struct ext4_sb_info *sbi = EXT4_SB(sb); 4884 unsigned long old_sb_flags; 4885 struct ext4_mount_options old_opts; 4886 int enable_quota = 0; 4887 ext4_group_t g; 4888 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4889 int err = 0; 4890 #ifdef CONFIG_QUOTA 4891 int i, j; 4892 #endif 4893 char *orig_data = kstrdup(data, GFP_KERNEL); 4894 4895 /* Store the original options */ 4896 old_sb_flags = sb->s_flags; 4897 old_opts.s_mount_opt = sbi->s_mount_opt; 4898 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4899 old_opts.s_resuid = sbi->s_resuid; 4900 old_opts.s_resgid = sbi->s_resgid; 4901 old_opts.s_commit_interval = sbi->s_commit_interval; 4902 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4903 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4904 #ifdef CONFIG_QUOTA 4905 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4906 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4907 if (sbi->s_qf_names[i]) { 4908 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4909 GFP_KERNEL); 4910 if (!old_opts.s_qf_names[i]) { 4911 for (j = 0; j < i; j++) 4912 kfree(old_opts.s_qf_names[j]); 4913 kfree(orig_data); 4914 return -ENOMEM; 4915 } 4916 } else 4917 old_opts.s_qf_names[i] = NULL; 4918 #endif 4919 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4920 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4921 4922 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4923 err = -EINVAL; 4924 goto restore_opts; 4925 } 4926 4927 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4928 test_opt(sb, JOURNAL_CHECKSUM)) { 4929 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4930 "during remount not supported; ignoring"); 4931 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4932 } 4933 4934 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4935 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4936 ext4_msg(sb, KERN_ERR, "can't mount with " 4937 "both data=journal and delalloc"); 4938 err = -EINVAL; 4939 goto restore_opts; 4940 } 4941 if (test_opt(sb, DIOREAD_NOLOCK)) { 4942 ext4_msg(sb, KERN_ERR, "can't mount with " 4943 "both data=journal and dioread_nolock"); 4944 err = -EINVAL; 4945 goto restore_opts; 4946 } 4947 if (test_opt(sb, DAX)) { 4948 ext4_msg(sb, KERN_ERR, "can't mount with " 4949 "both data=journal and dax"); 4950 err = -EINVAL; 4951 goto restore_opts; 4952 } 4953 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 4954 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4955 ext4_msg(sb, KERN_ERR, "can't mount with " 4956 "journal_async_commit in data=ordered mode"); 4957 err = -EINVAL; 4958 goto restore_opts; 4959 } 4960 } 4961 4962 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4963 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4964 "dax flag with busy inodes while remounting"); 4965 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4966 } 4967 4968 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4969 ext4_abort(sb, "Abort forced by user"); 4970 4971 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4972 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4973 4974 es = sbi->s_es; 4975 4976 if (sbi->s_journal) { 4977 ext4_init_journal_params(sb, sbi->s_journal); 4978 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4979 } 4980 4981 if (*flags & MS_LAZYTIME) 4982 sb->s_flags |= MS_LAZYTIME; 4983 4984 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4985 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4986 err = -EROFS; 4987 goto restore_opts; 4988 } 4989 4990 if (*flags & MS_RDONLY) { 4991 err = sync_filesystem(sb); 4992 if (err < 0) 4993 goto restore_opts; 4994 err = dquot_suspend(sb, -1); 4995 if (err < 0) 4996 goto restore_opts; 4997 4998 /* 4999 * First of all, the unconditional stuff we have to do 5000 * to disable replay of the journal when we next remount 5001 */ 5002 sb->s_flags |= MS_RDONLY; 5003 5004 /* 5005 * OK, test if we are remounting a valid rw partition 5006 * readonly, and if so set the rdonly flag and then 5007 * mark the partition as valid again. 5008 */ 5009 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5010 (sbi->s_mount_state & EXT4_VALID_FS)) 5011 es->s_state = cpu_to_le16(sbi->s_mount_state); 5012 5013 if (sbi->s_journal) 5014 ext4_mark_recovery_complete(sb, es); 5015 } else { 5016 /* Make sure we can mount this feature set readwrite */ 5017 if (ext4_has_feature_readonly(sb) || 5018 !ext4_feature_set_ok(sb, 0)) { 5019 err = -EROFS; 5020 goto restore_opts; 5021 } 5022 /* 5023 * Make sure the group descriptor checksums 5024 * are sane. If they aren't, refuse to remount r/w. 5025 */ 5026 for (g = 0; g < sbi->s_groups_count; g++) { 5027 struct ext4_group_desc *gdp = 5028 ext4_get_group_desc(sb, g, NULL); 5029 5030 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5031 ext4_msg(sb, KERN_ERR, 5032 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5033 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5034 le16_to_cpu(gdp->bg_checksum)); 5035 err = -EFSBADCRC; 5036 goto restore_opts; 5037 } 5038 } 5039 5040 /* 5041 * If we have an unprocessed orphan list hanging 5042 * around from a previously readonly bdev mount, 5043 * require a full umount/remount for now. 5044 */ 5045 if (es->s_last_orphan) { 5046 ext4_msg(sb, KERN_WARNING, "Couldn't " 5047 "remount RDWR because of unprocessed " 5048 "orphan inode list. Please " 5049 "umount/remount instead"); 5050 err = -EINVAL; 5051 goto restore_opts; 5052 } 5053 5054 /* 5055 * Mounting a RDONLY partition read-write, so reread 5056 * and store the current valid flag. (It may have 5057 * been changed by e2fsck since we originally mounted 5058 * the partition.) 5059 */ 5060 if (sbi->s_journal) 5061 ext4_clear_journal_err(sb, es); 5062 sbi->s_mount_state = le16_to_cpu(es->s_state); 5063 if (!ext4_setup_super(sb, es, 0)) 5064 sb->s_flags &= ~MS_RDONLY; 5065 if (ext4_has_feature_mmp(sb)) 5066 if (ext4_multi_mount_protect(sb, 5067 le64_to_cpu(es->s_mmp_block))) { 5068 err = -EROFS; 5069 goto restore_opts; 5070 } 5071 enable_quota = 1; 5072 } 5073 } 5074 5075 /* 5076 * Reinitialize lazy itable initialization thread based on 5077 * current settings 5078 */ 5079 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5080 ext4_unregister_li_request(sb); 5081 else { 5082 ext4_group_t first_not_zeroed; 5083 first_not_zeroed = ext4_has_uninit_itable(sb); 5084 ext4_register_li_request(sb, first_not_zeroed); 5085 } 5086 5087 ext4_setup_system_zone(sb); 5088 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5089 ext4_commit_super(sb, 1); 5090 5091 #ifdef CONFIG_QUOTA 5092 /* Release old quota file names */ 5093 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5094 kfree(old_opts.s_qf_names[i]); 5095 if (enable_quota) { 5096 if (sb_any_quota_suspended(sb)) 5097 dquot_resume(sb, -1); 5098 else if (ext4_has_feature_quota(sb)) { 5099 err = ext4_enable_quotas(sb); 5100 if (err) 5101 goto restore_opts; 5102 } 5103 } 5104 #endif 5105 5106 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5107 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5108 kfree(orig_data); 5109 return 0; 5110 5111 restore_opts: 5112 sb->s_flags = old_sb_flags; 5113 sbi->s_mount_opt = old_opts.s_mount_opt; 5114 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5115 sbi->s_resuid = old_opts.s_resuid; 5116 sbi->s_resgid = old_opts.s_resgid; 5117 sbi->s_commit_interval = old_opts.s_commit_interval; 5118 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5119 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5120 #ifdef CONFIG_QUOTA 5121 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5122 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5123 kfree(sbi->s_qf_names[i]); 5124 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5125 } 5126 #endif 5127 kfree(orig_data); 5128 return err; 5129 } 5130 5131 #ifdef CONFIG_QUOTA 5132 static int ext4_statfs_project(struct super_block *sb, 5133 kprojid_t projid, struct kstatfs *buf) 5134 { 5135 struct kqid qid; 5136 struct dquot *dquot; 5137 u64 limit; 5138 u64 curblock; 5139 5140 qid = make_kqid_projid(projid); 5141 dquot = dqget(sb, qid); 5142 if (IS_ERR(dquot)) 5143 return PTR_ERR(dquot); 5144 spin_lock(&dq_data_lock); 5145 5146 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5147 dquot->dq_dqb.dqb_bsoftlimit : 5148 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5149 if (limit && buf->f_blocks > limit) { 5150 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5151 buf->f_blocks = limit; 5152 buf->f_bfree = buf->f_bavail = 5153 (buf->f_blocks > curblock) ? 5154 (buf->f_blocks - curblock) : 0; 5155 } 5156 5157 limit = dquot->dq_dqb.dqb_isoftlimit ? 5158 dquot->dq_dqb.dqb_isoftlimit : 5159 dquot->dq_dqb.dqb_ihardlimit; 5160 if (limit && buf->f_files > limit) { 5161 buf->f_files = limit; 5162 buf->f_ffree = 5163 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5164 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5165 } 5166 5167 spin_unlock(&dq_data_lock); 5168 dqput(dquot); 5169 return 0; 5170 } 5171 #endif 5172 5173 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5174 { 5175 struct super_block *sb = dentry->d_sb; 5176 struct ext4_sb_info *sbi = EXT4_SB(sb); 5177 struct ext4_super_block *es = sbi->s_es; 5178 ext4_fsblk_t overhead = 0, resv_blocks; 5179 u64 fsid; 5180 s64 bfree; 5181 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5182 5183 if (!test_opt(sb, MINIX_DF)) 5184 overhead = sbi->s_overhead; 5185 5186 buf->f_type = EXT4_SUPER_MAGIC; 5187 buf->f_bsize = sb->s_blocksize; 5188 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5189 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5190 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5191 /* prevent underflow in case that few free space is available */ 5192 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5193 buf->f_bavail = buf->f_bfree - 5194 (ext4_r_blocks_count(es) + resv_blocks); 5195 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5196 buf->f_bavail = 0; 5197 buf->f_files = le32_to_cpu(es->s_inodes_count); 5198 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5199 buf->f_namelen = EXT4_NAME_LEN; 5200 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5201 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5202 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5203 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5204 5205 #ifdef CONFIG_QUOTA 5206 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5207 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5208 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5209 #endif 5210 return 0; 5211 } 5212 5213 /* Helper function for writing quotas on sync - we need to start transaction 5214 * before quota file is locked for write. Otherwise the are possible deadlocks: 5215 * Process 1 Process 2 5216 * ext4_create() quota_sync() 5217 * jbd2_journal_start() write_dquot() 5218 * dquot_initialize() down(dqio_mutex) 5219 * down(dqio_mutex) jbd2_journal_start() 5220 * 5221 */ 5222 5223 #ifdef CONFIG_QUOTA 5224 5225 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5226 { 5227 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5228 } 5229 5230 static int ext4_write_dquot(struct dquot *dquot) 5231 { 5232 int ret, err; 5233 handle_t *handle; 5234 struct inode *inode; 5235 5236 inode = dquot_to_inode(dquot); 5237 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5238 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5239 if (IS_ERR(handle)) 5240 return PTR_ERR(handle); 5241 ret = dquot_commit(dquot); 5242 err = ext4_journal_stop(handle); 5243 if (!ret) 5244 ret = err; 5245 return ret; 5246 } 5247 5248 static int ext4_acquire_dquot(struct dquot *dquot) 5249 { 5250 int ret, err; 5251 handle_t *handle; 5252 5253 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5254 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5255 if (IS_ERR(handle)) 5256 return PTR_ERR(handle); 5257 ret = dquot_acquire(dquot); 5258 err = ext4_journal_stop(handle); 5259 if (!ret) 5260 ret = err; 5261 return ret; 5262 } 5263 5264 static int ext4_release_dquot(struct dquot *dquot) 5265 { 5266 int ret, err; 5267 handle_t *handle; 5268 5269 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5270 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5271 if (IS_ERR(handle)) { 5272 /* Release dquot anyway to avoid endless cycle in dqput() */ 5273 dquot_release(dquot); 5274 return PTR_ERR(handle); 5275 } 5276 ret = dquot_release(dquot); 5277 err = ext4_journal_stop(handle); 5278 if (!ret) 5279 ret = err; 5280 return ret; 5281 } 5282 5283 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5284 { 5285 struct super_block *sb = dquot->dq_sb; 5286 struct ext4_sb_info *sbi = EXT4_SB(sb); 5287 5288 /* Are we journaling quotas? */ 5289 if (ext4_has_feature_quota(sb) || 5290 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5291 dquot_mark_dquot_dirty(dquot); 5292 return ext4_write_dquot(dquot); 5293 } else { 5294 return dquot_mark_dquot_dirty(dquot); 5295 } 5296 } 5297 5298 static int ext4_write_info(struct super_block *sb, int type) 5299 { 5300 int ret, err; 5301 handle_t *handle; 5302 5303 /* Data block + inode block */ 5304 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5305 if (IS_ERR(handle)) 5306 return PTR_ERR(handle); 5307 ret = dquot_commit_info(sb, type); 5308 err = ext4_journal_stop(handle); 5309 if (!ret) 5310 ret = err; 5311 return ret; 5312 } 5313 5314 /* 5315 * Turn on quotas during mount time - we need to find 5316 * the quota file and such... 5317 */ 5318 static int ext4_quota_on_mount(struct super_block *sb, int type) 5319 { 5320 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5321 EXT4_SB(sb)->s_jquota_fmt, type); 5322 } 5323 5324 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5325 { 5326 struct ext4_inode_info *ei = EXT4_I(inode); 5327 5328 /* The first argument of lockdep_set_subclass has to be 5329 * *exactly* the same as the argument to init_rwsem() --- in 5330 * this case, in init_once() --- or lockdep gets unhappy 5331 * because the name of the lock is set using the 5332 * stringification of the argument to init_rwsem(). 5333 */ 5334 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5335 lockdep_set_subclass(&ei->i_data_sem, subclass); 5336 } 5337 5338 /* 5339 * Standard function to be called on quota_on 5340 */ 5341 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5342 const struct path *path) 5343 { 5344 int err; 5345 5346 if (!test_opt(sb, QUOTA)) 5347 return -EINVAL; 5348 5349 /* Quotafile not on the same filesystem? */ 5350 if (path->dentry->d_sb != sb) 5351 return -EXDEV; 5352 /* Journaling quota? */ 5353 if (EXT4_SB(sb)->s_qf_names[type]) { 5354 /* Quotafile not in fs root? */ 5355 if (path->dentry->d_parent != sb->s_root) 5356 ext4_msg(sb, KERN_WARNING, 5357 "Quota file not on filesystem root. " 5358 "Journaled quota will not work"); 5359 } 5360 5361 /* 5362 * When we journal data on quota file, we have to flush journal to see 5363 * all updates to the file when we bypass pagecache... 5364 */ 5365 if (EXT4_SB(sb)->s_journal && 5366 ext4_should_journal_data(d_inode(path->dentry))) { 5367 /* 5368 * We don't need to lock updates but journal_flush() could 5369 * otherwise be livelocked... 5370 */ 5371 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5372 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5373 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5374 if (err) 5375 return err; 5376 } 5377 5378 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5379 err = dquot_quota_on(sb, type, format_id, path); 5380 if (err) { 5381 lockdep_set_quota_inode(path->dentry->d_inode, 5382 I_DATA_SEM_NORMAL); 5383 } else { 5384 struct inode *inode = d_inode(path->dentry); 5385 handle_t *handle; 5386 5387 /* 5388 * Set inode flags to prevent userspace from messing with quota 5389 * files. If this fails, we return success anyway since quotas 5390 * are already enabled and this is not a hard failure. 5391 */ 5392 inode_lock(inode); 5393 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5394 if (IS_ERR(handle)) 5395 goto unlock_inode; 5396 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5397 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5398 S_NOATIME | S_IMMUTABLE); 5399 ext4_mark_inode_dirty(handle, inode); 5400 ext4_journal_stop(handle); 5401 unlock_inode: 5402 inode_unlock(inode); 5403 } 5404 return err; 5405 } 5406 5407 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5408 unsigned int flags) 5409 { 5410 int err; 5411 struct inode *qf_inode; 5412 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5413 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5414 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5415 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5416 }; 5417 5418 BUG_ON(!ext4_has_feature_quota(sb)); 5419 5420 if (!qf_inums[type]) 5421 return -EPERM; 5422 5423 qf_inode = ext4_iget(sb, qf_inums[type]); 5424 if (IS_ERR(qf_inode)) { 5425 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5426 return PTR_ERR(qf_inode); 5427 } 5428 5429 /* Don't account quota for quota files to avoid recursion */ 5430 qf_inode->i_flags |= S_NOQUOTA; 5431 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5432 err = dquot_enable(qf_inode, type, format_id, flags); 5433 iput(qf_inode); 5434 if (err) 5435 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5436 5437 return err; 5438 } 5439 5440 /* Enable usage tracking for all quota types. */ 5441 static int ext4_enable_quotas(struct super_block *sb) 5442 { 5443 int type, err = 0; 5444 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5445 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5446 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5447 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5448 }; 5449 bool quota_mopt[EXT4_MAXQUOTAS] = { 5450 test_opt(sb, USRQUOTA), 5451 test_opt(sb, GRPQUOTA), 5452 test_opt(sb, PRJQUOTA), 5453 }; 5454 5455 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5456 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5457 if (qf_inums[type]) { 5458 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5459 DQUOT_USAGE_ENABLED | 5460 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5461 if (err) { 5462 ext4_warning(sb, 5463 "Failed to enable quota tracking " 5464 "(type=%d, err=%d). Please run " 5465 "e2fsck to fix.", type, err); 5466 return err; 5467 } 5468 } 5469 } 5470 return 0; 5471 } 5472 5473 static int ext4_quota_off(struct super_block *sb, int type) 5474 { 5475 struct inode *inode = sb_dqopt(sb)->files[type]; 5476 handle_t *handle; 5477 int err; 5478 5479 /* Force all delayed allocation blocks to be allocated. 5480 * Caller already holds s_umount sem */ 5481 if (test_opt(sb, DELALLOC)) 5482 sync_filesystem(sb); 5483 5484 if (!inode || !igrab(inode)) 5485 goto out; 5486 5487 err = dquot_quota_off(sb, type); 5488 if (err) 5489 goto out_put; 5490 5491 inode_lock(inode); 5492 /* 5493 * Update modification times of quota files when userspace can 5494 * start looking at them. If we fail, we return success anyway since 5495 * this is not a hard failure and quotas are already disabled. 5496 */ 5497 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5498 if (IS_ERR(handle)) 5499 goto out_unlock; 5500 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5501 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5502 inode->i_mtime = inode->i_ctime = current_time(inode); 5503 ext4_mark_inode_dirty(handle, inode); 5504 ext4_journal_stop(handle); 5505 out_unlock: 5506 inode_unlock(inode); 5507 out_put: 5508 iput(inode); 5509 return err; 5510 out: 5511 return dquot_quota_off(sb, type); 5512 } 5513 5514 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5515 * acquiring the locks... As quota files are never truncated and quota code 5516 * itself serializes the operations (and no one else should touch the files) 5517 * we don't have to be afraid of races */ 5518 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5519 size_t len, loff_t off) 5520 { 5521 struct inode *inode = sb_dqopt(sb)->files[type]; 5522 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5523 int offset = off & (sb->s_blocksize - 1); 5524 int tocopy; 5525 size_t toread; 5526 struct buffer_head *bh; 5527 loff_t i_size = i_size_read(inode); 5528 5529 if (off > i_size) 5530 return 0; 5531 if (off+len > i_size) 5532 len = i_size-off; 5533 toread = len; 5534 while (toread > 0) { 5535 tocopy = sb->s_blocksize - offset < toread ? 5536 sb->s_blocksize - offset : toread; 5537 bh = ext4_bread(NULL, inode, blk, 0); 5538 if (IS_ERR(bh)) 5539 return PTR_ERR(bh); 5540 if (!bh) /* A hole? */ 5541 memset(data, 0, tocopy); 5542 else 5543 memcpy(data, bh->b_data+offset, tocopy); 5544 brelse(bh); 5545 offset = 0; 5546 toread -= tocopy; 5547 data += tocopy; 5548 blk++; 5549 } 5550 return len; 5551 } 5552 5553 /* Write to quotafile (we know the transaction is already started and has 5554 * enough credits) */ 5555 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5556 const char *data, size_t len, loff_t off) 5557 { 5558 struct inode *inode = sb_dqopt(sb)->files[type]; 5559 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5560 int err, offset = off & (sb->s_blocksize - 1); 5561 int retries = 0; 5562 struct buffer_head *bh; 5563 handle_t *handle = journal_current_handle(); 5564 5565 if (EXT4_SB(sb)->s_journal && !handle) { 5566 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5567 " cancelled because transaction is not started", 5568 (unsigned long long)off, (unsigned long long)len); 5569 return -EIO; 5570 } 5571 /* 5572 * Since we account only one data block in transaction credits, 5573 * then it is impossible to cross a block boundary. 5574 */ 5575 if (sb->s_blocksize - offset < len) { 5576 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5577 " cancelled because not block aligned", 5578 (unsigned long long)off, (unsigned long long)len); 5579 return -EIO; 5580 } 5581 5582 do { 5583 bh = ext4_bread(handle, inode, blk, 5584 EXT4_GET_BLOCKS_CREATE | 5585 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5586 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5587 ext4_should_retry_alloc(inode->i_sb, &retries)); 5588 if (IS_ERR(bh)) 5589 return PTR_ERR(bh); 5590 if (!bh) 5591 goto out; 5592 BUFFER_TRACE(bh, "get write access"); 5593 err = ext4_journal_get_write_access(handle, bh); 5594 if (err) { 5595 brelse(bh); 5596 return err; 5597 } 5598 lock_buffer(bh); 5599 memcpy(bh->b_data+offset, data, len); 5600 flush_dcache_page(bh->b_page); 5601 unlock_buffer(bh); 5602 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5603 brelse(bh); 5604 out: 5605 if (inode->i_size < off + len) { 5606 i_size_write(inode, off + len); 5607 EXT4_I(inode)->i_disksize = inode->i_size; 5608 ext4_mark_inode_dirty(handle, inode); 5609 } 5610 return len; 5611 } 5612 5613 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5614 { 5615 const struct quota_format_ops *ops; 5616 5617 if (!sb_has_quota_loaded(sb, qid->type)) 5618 return -ESRCH; 5619 ops = sb_dqopt(sb)->ops[qid->type]; 5620 if (!ops || !ops->get_next_id) 5621 return -ENOSYS; 5622 return dquot_get_next_id(sb, qid); 5623 } 5624 #endif 5625 5626 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5627 const char *dev_name, void *data) 5628 { 5629 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5630 } 5631 5632 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5633 static inline void register_as_ext2(void) 5634 { 5635 int err = register_filesystem(&ext2_fs_type); 5636 if (err) 5637 printk(KERN_WARNING 5638 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5639 } 5640 5641 static inline void unregister_as_ext2(void) 5642 { 5643 unregister_filesystem(&ext2_fs_type); 5644 } 5645 5646 static inline int ext2_feature_set_ok(struct super_block *sb) 5647 { 5648 if (ext4_has_unknown_ext2_incompat_features(sb)) 5649 return 0; 5650 if (sb->s_flags & MS_RDONLY) 5651 return 1; 5652 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5653 return 0; 5654 return 1; 5655 } 5656 #else 5657 static inline void register_as_ext2(void) { } 5658 static inline void unregister_as_ext2(void) { } 5659 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5660 #endif 5661 5662 static inline void register_as_ext3(void) 5663 { 5664 int err = register_filesystem(&ext3_fs_type); 5665 if (err) 5666 printk(KERN_WARNING 5667 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5668 } 5669 5670 static inline void unregister_as_ext3(void) 5671 { 5672 unregister_filesystem(&ext3_fs_type); 5673 } 5674 5675 static inline int ext3_feature_set_ok(struct super_block *sb) 5676 { 5677 if (ext4_has_unknown_ext3_incompat_features(sb)) 5678 return 0; 5679 if (!ext4_has_feature_journal(sb)) 5680 return 0; 5681 if (sb->s_flags & MS_RDONLY) 5682 return 1; 5683 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5684 return 0; 5685 return 1; 5686 } 5687 5688 static struct file_system_type ext4_fs_type = { 5689 .owner = THIS_MODULE, 5690 .name = "ext4", 5691 .mount = ext4_mount, 5692 .kill_sb = kill_block_super, 5693 .fs_flags = FS_REQUIRES_DEV, 5694 }; 5695 MODULE_ALIAS_FS("ext4"); 5696 5697 /* Shared across all ext4 file systems */ 5698 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5699 5700 static int __init ext4_init_fs(void) 5701 { 5702 int i, err; 5703 5704 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5705 ext4_li_info = NULL; 5706 mutex_init(&ext4_li_mtx); 5707 5708 /* Build-time check for flags consistency */ 5709 ext4_check_flag_values(); 5710 5711 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5712 init_waitqueue_head(&ext4__ioend_wq[i]); 5713 5714 err = ext4_init_es(); 5715 if (err) 5716 return err; 5717 5718 err = ext4_init_pageio(); 5719 if (err) 5720 goto out5; 5721 5722 err = ext4_init_system_zone(); 5723 if (err) 5724 goto out4; 5725 5726 err = ext4_init_sysfs(); 5727 if (err) 5728 goto out3; 5729 5730 err = ext4_init_mballoc(); 5731 if (err) 5732 goto out2; 5733 err = init_inodecache(); 5734 if (err) 5735 goto out1; 5736 register_as_ext3(); 5737 register_as_ext2(); 5738 err = register_filesystem(&ext4_fs_type); 5739 if (err) 5740 goto out; 5741 5742 return 0; 5743 out: 5744 unregister_as_ext2(); 5745 unregister_as_ext3(); 5746 destroy_inodecache(); 5747 out1: 5748 ext4_exit_mballoc(); 5749 out2: 5750 ext4_exit_sysfs(); 5751 out3: 5752 ext4_exit_system_zone(); 5753 out4: 5754 ext4_exit_pageio(); 5755 out5: 5756 ext4_exit_es(); 5757 5758 return err; 5759 } 5760 5761 static void __exit ext4_exit_fs(void) 5762 { 5763 ext4_destroy_lazyinit_thread(); 5764 unregister_as_ext2(); 5765 unregister_as_ext3(); 5766 unregister_filesystem(&ext4_fs_type); 5767 destroy_inodecache(); 5768 ext4_exit_mballoc(); 5769 ext4_exit_sysfs(); 5770 ext4_exit_system_zone(); 5771 ext4_exit_pageio(); 5772 ext4_exit_es(); 5773 } 5774 5775 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5776 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5777 MODULE_LICENSE("GPL"); 5778 module_init(ext4_init_fs) 5779 module_exit(ext4_exit_fs) 5780