1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_jbd2.h" 48 #include "xattr.h" 49 #include "acl.h" 50 #include "mballoc.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/ext4.h> 54 55 static struct proc_dir_entry *ext4_proc_root; 56 static struct kset *ext4_kset; 57 struct ext4_lazy_init *ext4_li_info; 58 struct mutex ext4_li_mtx; 59 struct ext4_features *ext4_feat; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static const char *ext4_decode_error(struct super_block *sb, int errno, 70 char nbuf[16]); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static void ext4_write_super(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 82 static struct file_system_type ext3_fs_type = { 83 .owner = THIS_MODULE, 84 .name = "ext3", 85 .mount = ext4_mount, 86 .kill_sb = kill_block_super, 87 .fs_flags = FS_REQUIRES_DEV, 88 }; 89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 90 #else 91 #define IS_EXT3_SB(sb) (0) 92 #endif 93 94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 95 struct ext4_group_desc *bg) 96 { 97 return le32_to_cpu(bg->bg_block_bitmap_lo) | 98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 99 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 100 } 101 102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 103 struct ext4_group_desc *bg) 104 { 105 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 107 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 108 } 109 110 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 111 struct ext4_group_desc *bg) 112 { 113 return le32_to_cpu(bg->bg_inode_table_lo) | 114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 115 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 116 } 117 118 __u32 ext4_free_blks_count(struct super_block *sb, 119 struct ext4_group_desc *bg) 120 { 121 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 123 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 124 } 125 126 __u32 ext4_free_inodes_count(struct super_block *sb, 127 struct ext4_group_desc *bg) 128 { 129 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 130 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 131 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 132 } 133 134 __u32 ext4_used_dirs_count(struct super_block *sb, 135 struct ext4_group_desc *bg) 136 { 137 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 138 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 139 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 140 } 141 142 __u32 ext4_itable_unused_count(struct super_block *sb, 143 struct ext4_group_desc *bg) 144 { 145 return le16_to_cpu(bg->bg_itable_unused_lo) | 146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 147 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 148 } 149 150 void ext4_block_bitmap_set(struct super_block *sb, 151 struct ext4_group_desc *bg, ext4_fsblk_t blk) 152 { 153 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 155 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 156 } 157 158 void ext4_inode_bitmap_set(struct super_block *sb, 159 struct ext4_group_desc *bg, ext4_fsblk_t blk) 160 { 161 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 163 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 164 } 165 166 void ext4_inode_table_set(struct super_block *sb, 167 struct ext4_group_desc *bg, ext4_fsblk_t blk) 168 { 169 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 171 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 172 } 173 174 void ext4_free_blks_set(struct super_block *sb, 175 struct ext4_group_desc *bg, __u32 count) 176 { 177 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 179 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 180 } 181 182 void ext4_free_inodes_set(struct super_block *sb, 183 struct ext4_group_desc *bg, __u32 count) 184 { 185 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 186 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 187 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 188 } 189 190 void ext4_used_dirs_set(struct super_block *sb, 191 struct ext4_group_desc *bg, __u32 count) 192 { 193 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 194 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 195 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 196 } 197 198 void ext4_itable_unused_set(struct super_block *sb, 199 struct ext4_group_desc *bg, __u32 count) 200 { 201 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 203 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 204 } 205 206 207 /* Just increment the non-pointer handle value */ 208 static handle_t *ext4_get_nojournal(void) 209 { 210 handle_t *handle = current->journal_info; 211 unsigned long ref_cnt = (unsigned long)handle; 212 213 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 214 215 ref_cnt++; 216 handle = (handle_t *)ref_cnt; 217 218 current->journal_info = handle; 219 return handle; 220 } 221 222 223 /* Decrement the non-pointer handle value */ 224 static void ext4_put_nojournal(handle_t *handle) 225 { 226 unsigned long ref_cnt = (unsigned long)handle; 227 228 BUG_ON(ref_cnt == 0); 229 230 ref_cnt--; 231 handle = (handle_t *)ref_cnt; 232 233 current->journal_info = handle; 234 } 235 236 /* 237 * Wrappers for jbd2_journal_start/end. 238 * 239 * The only special thing we need to do here is to make sure that all 240 * journal_end calls result in the superblock being marked dirty, so 241 * that sync() will call the filesystem's write_super callback if 242 * appropriate. 243 */ 244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 245 { 246 journal_t *journal; 247 248 if (sb->s_flags & MS_RDONLY) 249 return ERR_PTR(-EROFS); 250 251 vfs_check_frozen(sb, SB_FREEZE_TRANS); 252 /* Special case here: if the journal has aborted behind our 253 * backs (eg. EIO in the commit thread), then we still need to 254 * take the FS itself readonly cleanly. */ 255 journal = EXT4_SB(sb)->s_journal; 256 if (journal) { 257 if (is_journal_aborted(journal)) { 258 ext4_abort(sb, "Detected aborted journal"); 259 return ERR_PTR(-EROFS); 260 } 261 return jbd2_journal_start(journal, nblocks); 262 } 263 return ext4_get_nojournal(); 264 } 265 266 /* 267 * The only special thing we need to do here is to make sure that all 268 * jbd2_journal_stop calls result in the superblock being marked dirty, so 269 * that sync() will call the filesystem's write_super callback if 270 * appropriate. 271 */ 272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 273 { 274 struct super_block *sb; 275 int err; 276 int rc; 277 278 if (!ext4_handle_valid(handle)) { 279 ext4_put_nojournal(handle); 280 return 0; 281 } 282 sb = handle->h_transaction->t_journal->j_private; 283 err = handle->h_err; 284 rc = jbd2_journal_stop(handle); 285 286 if (!err) 287 err = rc; 288 if (err) 289 __ext4_std_error(sb, where, line, err); 290 return err; 291 } 292 293 void ext4_journal_abort_handle(const char *caller, unsigned int line, 294 const char *err_fn, struct buffer_head *bh, 295 handle_t *handle, int err) 296 { 297 char nbuf[16]; 298 const char *errstr = ext4_decode_error(NULL, err, nbuf); 299 300 BUG_ON(!ext4_handle_valid(handle)); 301 302 if (bh) 303 BUFFER_TRACE(bh, "abort"); 304 305 if (!handle->h_err) 306 handle->h_err = err; 307 308 if (is_handle_aborted(handle)) 309 return; 310 311 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n", 312 caller, line, errstr, err_fn); 313 314 jbd2_journal_abort_handle(handle); 315 } 316 317 static void __save_error_info(struct super_block *sb, const char *func, 318 unsigned int line) 319 { 320 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 321 322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 324 es->s_last_error_time = cpu_to_le32(get_seconds()); 325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 326 es->s_last_error_line = cpu_to_le32(line); 327 if (!es->s_first_error_time) { 328 es->s_first_error_time = es->s_last_error_time; 329 strncpy(es->s_first_error_func, func, 330 sizeof(es->s_first_error_func)); 331 es->s_first_error_line = cpu_to_le32(line); 332 es->s_first_error_ino = es->s_last_error_ino; 333 es->s_first_error_block = es->s_last_error_block; 334 } 335 /* 336 * Start the daily error reporting function if it hasn't been 337 * started already 338 */ 339 if (!es->s_error_count) 340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 341 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 342 } 343 344 static void save_error_info(struct super_block *sb, const char *func, 345 unsigned int line) 346 { 347 __save_error_info(sb, func, line); 348 ext4_commit_super(sb, 1); 349 } 350 351 352 /* Deal with the reporting of failure conditions on a filesystem such as 353 * inconsistencies detected or read IO failures. 354 * 355 * On ext2, we can store the error state of the filesystem in the 356 * superblock. That is not possible on ext4, because we may have other 357 * write ordering constraints on the superblock which prevent us from 358 * writing it out straight away; and given that the journal is about to 359 * be aborted, we can't rely on the current, or future, transactions to 360 * write out the superblock safely. 361 * 362 * We'll just use the jbd2_journal_abort() error code to record an error in 363 * the journal instead. On recovery, the journal will complain about 364 * that error until we've noted it down and cleared it. 365 */ 366 367 static void ext4_handle_error(struct super_block *sb) 368 { 369 if (sb->s_flags & MS_RDONLY) 370 return; 371 372 if (!test_opt(sb, ERRORS_CONT)) { 373 journal_t *journal = EXT4_SB(sb)->s_journal; 374 375 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 376 if (journal) 377 jbd2_journal_abort(journal, -EIO); 378 } 379 if (test_opt(sb, ERRORS_RO)) { 380 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 381 sb->s_flags |= MS_RDONLY; 382 } 383 if (test_opt(sb, ERRORS_PANIC)) 384 panic("EXT4-fs (device %s): panic forced after error\n", 385 sb->s_id); 386 } 387 388 void __ext4_error(struct super_block *sb, const char *function, 389 unsigned int line, const char *fmt, ...) 390 { 391 va_list args; 392 393 va_start(args, fmt); 394 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ", 395 sb->s_id, function, line, current->comm); 396 vprintk(fmt, args); 397 printk("\n"); 398 va_end(args); 399 400 ext4_handle_error(sb); 401 } 402 403 void ext4_error_inode(struct inode *inode, const char *function, 404 unsigned int line, ext4_fsblk_t block, 405 const char *fmt, ...) 406 { 407 va_list args; 408 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 409 410 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 411 es->s_last_error_block = cpu_to_le64(block); 412 save_error_info(inode->i_sb, function, line); 413 va_start(args, fmt); 414 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 415 inode->i_sb->s_id, function, line, inode->i_ino); 416 if (block) 417 printk("block %llu: ", block); 418 printk("comm %s: ", current->comm); 419 vprintk(fmt, args); 420 printk("\n"); 421 va_end(args); 422 423 ext4_handle_error(inode->i_sb); 424 } 425 426 void ext4_error_file(struct file *file, const char *function, 427 unsigned int line, const char *fmt, ...) 428 { 429 va_list args; 430 struct ext4_super_block *es; 431 struct inode *inode = file->f_dentry->d_inode; 432 char pathname[80], *path; 433 434 es = EXT4_SB(inode->i_sb)->s_es; 435 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 436 save_error_info(inode->i_sb, function, line); 437 va_start(args, fmt); 438 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 439 if (!path) 440 path = "(unknown)"; 441 printk(KERN_CRIT 442 "EXT4-fs error (device %s): %s:%d: inode #%lu " 443 "(comm %s path %s): ", 444 inode->i_sb->s_id, function, line, inode->i_ino, 445 current->comm, path); 446 vprintk(fmt, args); 447 printk("\n"); 448 va_end(args); 449 450 ext4_handle_error(inode->i_sb); 451 } 452 453 static const char *ext4_decode_error(struct super_block *sb, int errno, 454 char nbuf[16]) 455 { 456 char *errstr = NULL; 457 458 switch (errno) { 459 case -EIO: 460 errstr = "IO failure"; 461 break; 462 case -ENOMEM: 463 errstr = "Out of memory"; 464 break; 465 case -EROFS: 466 if (!sb || (EXT4_SB(sb)->s_journal && 467 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 468 errstr = "Journal has aborted"; 469 else 470 errstr = "Readonly filesystem"; 471 break; 472 default: 473 /* If the caller passed in an extra buffer for unknown 474 * errors, textualise them now. Else we just return 475 * NULL. */ 476 if (nbuf) { 477 /* Check for truncated error codes... */ 478 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 479 errstr = nbuf; 480 } 481 break; 482 } 483 484 return errstr; 485 } 486 487 /* __ext4_std_error decodes expected errors from journaling functions 488 * automatically and invokes the appropriate error response. */ 489 490 void __ext4_std_error(struct super_block *sb, const char *function, 491 unsigned int line, int errno) 492 { 493 char nbuf[16]; 494 const char *errstr; 495 496 /* Special case: if the error is EROFS, and we're not already 497 * inside a transaction, then there's really no point in logging 498 * an error. */ 499 if (errno == -EROFS && journal_current_handle() == NULL && 500 (sb->s_flags & MS_RDONLY)) 501 return; 502 503 errstr = ext4_decode_error(sb, errno, nbuf); 504 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 505 sb->s_id, function, line, errstr); 506 save_error_info(sb, function, line); 507 508 ext4_handle_error(sb); 509 } 510 511 /* 512 * ext4_abort is a much stronger failure handler than ext4_error. The 513 * abort function may be used to deal with unrecoverable failures such 514 * as journal IO errors or ENOMEM at a critical moment in log management. 515 * 516 * We unconditionally force the filesystem into an ABORT|READONLY state, 517 * unless the error response on the fs has been set to panic in which 518 * case we take the easy way out and panic immediately. 519 */ 520 521 void __ext4_abort(struct super_block *sb, const char *function, 522 unsigned int line, const char *fmt, ...) 523 { 524 va_list args; 525 526 save_error_info(sb, function, line); 527 va_start(args, fmt); 528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 529 function, line); 530 vprintk(fmt, args); 531 printk("\n"); 532 va_end(args); 533 534 if ((sb->s_flags & MS_RDONLY) == 0) { 535 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 536 sb->s_flags |= MS_RDONLY; 537 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 538 if (EXT4_SB(sb)->s_journal) 539 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 540 save_error_info(sb, function, line); 541 } 542 if (test_opt(sb, ERRORS_PANIC)) 543 panic("EXT4-fs panic from previous error\n"); 544 } 545 546 void ext4_msg (struct super_block * sb, const char *prefix, 547 const char *fmt, ...) 548 { 549 va_list args; 550 551 va_start(args, fmt); 552 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 553 vprintk(fmt, args); 554 printk("\n"); 555 va_end(args); 556 } 557 558 void __ext4_warning(struct super_block *sb, const char *function, 559 unsigned int line, const char *fmt, ...) 560 { 561 va_list args; 562 563 va_start(args, fmt); 564 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ", 565 sb->s_id, function, line); 566 vprintk(fmt, args); 567 printk("\n"); 568 va_end(args); 569 } 570 571 void __ext4_grp_locked_error(const char *function, unsigned int line, 572 struct super_block *sb, ext4_group_t grp, 573 unsigned long ino, ext4_fsblk_t block, 574 const char *fmt, ...) 575 __releases(bitlock) 576 __acquires(bitlock) 577 { 578 va_list args; 579 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 580 581 es->s_last_error_ino = cpu_to_le32(ino); 582 es->s_last_error_block = cpu_to_le64(block); 583 __save_error_info(sb, function, line); 584 va_start(args, fmt); 585 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u", 586 sb->s_id, function, line, grp); 587 if (ino) 588 printk("inode %lu: ", ino); 589 if (block) 590 printk("block %llu:", (unsigned long long) block); 591 vprintk(fmt, args); 592 printk("\n"); 593 va_end(args); 594 595 if (test_opt(sb, ERRORS_CONT)) { 596 ext4_commit_super(sb, 0); 597 return; 598 } 599 600 ext4_unlock_group(sb, grp); 601 ext4_handle_error(sb); 602 /* 603 * We only get here in the ERRORS_RO case; relocking the group 604 * may be dangerous, but nothing bad will happen since the 605 * filesystem will have already been marked read/only and the 606 * journal has been aborted. We return 1 as a hint to callers 607 * who might what to use the return value from 608 * ext4_grp_locked_error() to distinguish beween the 609 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 610 * aggressively from the ext4 function in question, with a 611 * more appropriate error code. 612 */ 613 ext4_lock_group(sb, grp); 614 return; 615 } 616 617 void ext4_update_dynamic_rev(struct super_block *sb) 618 { 619 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 620 621 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 622 return; 623 624 ext4_warning(sb, 625 "updating to rev %d because of new feature flag, " 626 "running e2fsck is recommended", 627 EXT4_DYNAMIC_REV); 628 629 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 630 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 631 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 632 /* leave es->s_feature_*compat flags alone */ 633 /* es->s_uuid will be set by e2fsck if empty */ 634 635 /* 636 * The rest of the superblock fields should be zero, and if not it 637 * means they are likely already in use, so leave them alone. We 638 * can leave it up to e2fsck to clean up any inconsistencies there. 639 */ 640 } 641 642 /* 643 * Open the external journal device 644 */ 645 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 646 { 647 struct block_device *bdev; 648 char b[BDEVNAME_SIZE]; 649 650 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 651 if (IS_ERR(bdev)) 652 goto fail; 653 return bdev; 654 655 fail: 656 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 657 __bdevname(dev, b), PTR_ERR(bdev)); 658 return NULL; 659 } 660 661 /* 662 * Release the journal device 663 */ 664 static int ext4_blkdev_put(struct block_device *bdev) 665 { 666 bd_release(bdev); 667 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 668 } 669 670 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 671 { 672 struct block_device *bdev; 673 int ret = -ENODEV; 674 675 bdev = sbi->journal_bdev; 676 if (bdev) { 677 ret = ext4_blkdev_put(bdev); 678 sbi->journal_bdev = NULL; 679 } 680 return ret; 681 } 682 683 static inline struct inode *orphan_list_entry(struct list_head *l) 684 { 685 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 686 } 687 688 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 689 { 690 struct list_head *l; 691 692 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 693 le32_to_cpu(sbi->s_es->s_last_orphan)); 694 695 printk(KERN_ERR "sb_info orphan list:\n"); 696 list_for_each(l, &sbi->s_orphan) { 697 struct inode *inode = orphan_list_entry(l); 698 printk(KERN_ERR " " 699 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 700 inode->i_sb->s_id, inode->i_ino, inode, 701 inode->i_mode, inode->i_nlink, 702 NEXT_ORPHAN(inode)); 703 } 704 } 705 706 static void ext4_put_super(struct super_block *sb) 707 { 708 struct ext4_sb_info *sbi = EXT4_SB(sb); 709 struct ext4_super_block *es = sbi->s_es; 710 int i, err; 711 712 ext4_unregister_li_request(sb); 713 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 714 715 flush_workqueue(sbi->dio_unwritten_wq); 716 destroy_workqueue(sbi->dio_unwritten_wq); 717 718 lock_super(sb); 719 if (sb->s_dirt) 720 ext4_commit_super(sb, 1); 721 722 if (sbi->s_journal) { 723 err = jbd2_journal_destroy(sbi->s_journal); 724 sbi->s_journal = NULL; 725 if (err < 0) 726 ext4_abort(sb, "Couldn't clean up the journal"); 727 } 728 729 del_timer(&sbi->s_err_report); 730 ext4_release_system_zone(sb); 731 ext4_mb_release(sb); 732 ext4_ext_release(sb); 733 ext4_xattr_put_super(sb); 734 735 if (!(sb->s_flags & MS_RDONLY)) { 736 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 737 es->s_state = cpu_to_le16(sbi->s_mount_state); 738 ext4_commit_super(sb, 1); 739 } 740 if (sbi->s_proc) { 741 remove_proc_entry(sb->s_id, ext4_proc_root); 742 } 743 kobject_del(&sbi->s_kobj); 744 745 for (i = 0; i < sbi->s_gdb_count; i++) 746 brelse(sbi->s_group_desc[i]); 747 kfree(sbi->s_group_desc); 748 if (is_vmalloc_addr(sbi->s_flex_groups)) 749 vfree(sbi->s_flex_groups); 750 else 751 kfree(sbi->s_flex_groups); 752 percpu_counter_destroy(&sbi->s_freeblocks_counter); 753 percpu_counter_destroy(&sbi->s_freeinodes_counter); 754 percpu_counter_destroy(&sbi->s_dirs_counter); 755 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 756 brelse(sbi->s_sbh); 757 #ifdef CONFIG_QUOTA 758 for (i = 0; i < MAXQUOTAS; i++) 759 kfree(sbi->s_qf_names[i]); 760 #endif 761 762 /* Debugging code just in case the in-memory inode orphan list 763 * isn't empty. The on-disk one can be non-empty if we've 764 * detected an error and taken the fs readonly, but the 765 * in-memory list had better be clean by this point. */ 766 if (!list_empty(&sbi->s_orphan)) 767 dump_orphan_list(sb, sbi); 768 J_ASSERT(list_empty(&sbi->s_orphan)); 769 770 invalidate_bdev(sb->s_bdev); 771 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 772 /* 773 * Invalidate the journal device's buffers. We don't want them 774 * floating about in memory - the physical journal device may 775 * hotswapped, and it breaks the `ro-after' testing code. 776 */ 777 sync_blockdev(sbi->journal_bdev); 778 invalidate_bdev(sbi->journal_bdev); 779 ext4_blkdev_remove(sbi); 780 } 781 sb->s_fs_info = NULL; 782 /* 783 * Now that we are completely done shutting down the 784 * superblock, we need to actually destroy the kobject. 785 */ 786 unlock_super(sb); 787 kobject_put(&sbi->s_kobj); 788 wait_for_completion(&sbi->s_kobj_unregister); 789 kfree(sbi->s_blockgroup_lock); 790 kfree(sbi); 791 } 792 793 static struct kmem_cache *ext4_inode_cachep; 794 795 /* 796 * Called inside transaction, so use GFP_NOFS 797 */ 798 static struct inode *ext4_alloc_inode(struct super_block *sb) 799 { 800 struct ext4_inode_info *ei; 801 802 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 803 if (!ei) 804 return NULL; 805 806 ei->vfs_inode.i_version = 1; 807 ei->vfs_inode.i_data.writeback_index = 0; 808 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 809 INIT_LIST_HEAD(&ei->i_prealloc_list); 810 spin_lock_init(&ei->i_prealloc_lock); 811 /* 812 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 813 * therefore it can be null here. Don't check it, just initialize 814 * jinode. 815 */ 816 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 817 ei->i_reserved_data_blocks = 0; 818 ei->i_reserved_meta_blocks = 0; 819 ei->i_allocated_meta_blocks = 0; 820 ei->i_da_metadata_calc_len = 0; 821 ei->i_delalloc_reserved_flag = 0; 822 spin_lock_init(&(ei->i_block_reservation_lock)); 823 #ifdef CONFIG_QUOTA 824 ei->i_reserved_quota = 0; 825 #endif 826 INIT_LIST_HEAD(&ei->i_completed_io_list); 827 spin_lock_init(&ei->i_completed_io_lock); 828 ei->cur_aio_dio = NULL; 829 ei->i_sync_tid = 0; 830 ei->i_datasync_tid = 0; 831 atomic_set(&ei->i_ioend_count, 0); 832 833 return &ei->vfs_inode; 834 } 835 836 static int ext4_drop_inode(struct inode *inode) 837 { 838 int drop = generic_drop_inode(inode); 839 840 trace_ext4_drop_inode(inode, drop); 841 return drop; 842 } 843 844 static void ext4_destroy_inode(struct inode *inode) 845 { 846 ext4_ioend_wait(inode); 847 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 848 ext4_msg(inode->i_sb, KERN_ERR, 849 "Inode %lu (%p): orphan list check failed!", 850 inode->i_ino, EXT4_I(inode)); 851 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 852 EXT4_I(inode), sizeof(struct ext4_inode_info), 853 true); 854 dump_stack(); 855 } 856 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 857 } 858 859 static void init_once(void *foo) 860 { 861 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 862 863 INIT_LIST_HEAD(&ei->i_orphan); 864 #ifdef CONFIG_EXT4_FS_XATTR 865 init_rwsem(&ei->xattr_sem); 866 #endif 867 init_rwsem(&ei->i_data_sem); 868 inode_init_once(&ei->vfs_inode); 869 } 870 871 static int init_inodecache(void) 872 { 873 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 874 sizeof(struct ext4_inode_info), 875 0, (SLAB_RECLAIM_ACCOUNT| 876 SLAB_MEM_SPREAD), 877 init_once); 878 if (ext4_inode_cachep == NULL) 879 return -ENOMEM; 880 return 0; 881 } 882 883 static void destroy_inodecache(void) 884 { 885 kmem_cache_destroy(ext4_inode_cachep); 886 } 887 888 void ext4_clear_inode(struct inode *inode) 889 { 890 invalidate_inode_buffers(inode); 891 end_writeback(inode); 892 dquot_drop(inode); 893 ext4_discard_preallocations(inode); 894 if (EXT4_JOURNAL(inode)) 895 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 896 &EXT4_I(inode)->jinode); 897 } 898 899 static inline void ext4_show_quota_options(struct seq_file *seq, 900 struct super_block *sb) 901 { 902 #if defined(CONFIG_QUOTA) 903 struct ext4_sb_info *sbi = EXT4_SB(sb); 904 905 if (sbi->s_jquota_fmt) { 906 char *fmtname = ""; 907 908 switch (sbi->s_jquota_fmt) { 909 case QFMT_VFS_OLD: 910 fmtname = "vfsold"; 911 break; 912 case QFMT_VFS_V0: 913 fmtname = "vfsv0"; 914 break; 915 case QFMT_VFS_V1: 916 fmtname = "vfsv1"; 917 break; 918 } 919 seq_printf(seq, ",jqfmt=%s", fmtname); 920 } 921 922 if (sbi->s_qf_names[USRQUOTA]) 923 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 924 925 if (sbi->s_qf_names[GRPQUOTA]) 926 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 927 928 if (test_opt(sb, USRQUOTA)) 929 seq_puts(seq, ",usrquota"); 930 931 if (test_opt(sb, GRPQUOTA)) 932 seq_puts(seq, ",grpquota"); 933 #endif 934 } 935 936 /* 937 * Show an option if 938 * - it's set to a non-default value OR 939 * - if the per-sb default is different from the global default 940 */ 941 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 942 { 943 int def_errors; 944 unsigned long def_mount_opts; 945 struct super_block *sb = vfs->mnt_sb; 946 struct ext4_sb_info *sbi = EXT4_SB(sb); 947 struct ext4_super_block *es = sbi->s_es; 948 949 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 950 def_errors = le16_to_cpu(es->s_errors); 951 952 if (sbi->s_sb_block != 1) 953 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 954 if (test_opt(sb, MINIX_DF)) 955 seq_puts(seq, ",minixdf"); 956 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 957 seq_puts(seq, ",grpid"); 958 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 959 seq_puts(seq, ",nogrpid"); 960 if (sbi->s_resuid != EXT4_DEF_RESUID || 961 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 962 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 963 } 964 if (sbi->s_resgid != EXT4_DEF_RESGID || 965 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 966 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 967 } 968 if (test_opt(sb, ERRORS_RO)) { 969 if (def_errors == EXT4_ERRORS_PANIC || 970 def_errors == EXT4_ERRORS_CONTINUE) { 971 seq_puts(seq, ",errors=remount-ro"); 972 } 973 } 974 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 975 seq_puts(seq, ",errors=continue"); 976 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 977 seq_puts(seq, ",errors=panic"); 978 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 979 seq_puts(seq, ",nouid32"); 980 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 981 seq_puts(seq, ",debug"); 982 if (test_opt(sb, OLDALLOC)) 983 seq_puts(seq, ",oldalloc"); 984 #ifdef CONFIG_EXT4_FS_XATTR 985 if (test_opt(sb, XATTR_USER) && 986 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 987 seq_puts(seq, ",user_xattr"); 988 if (!test_opt(sb, XATTR_USER) && 989 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 990 seq_puts(seq, ",nouser_xattr"); 991 } 992 #endif 993 #ifdef CONFIG_EXT4_FS_POSIX_ACL 994 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 995 seq_puts(seq, ",acl"); 996 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 997 seq_puts(seq, ",noacl"); 998 #endif 999 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 1000 seq_printf(seq, ",commit=%u", 1001 (unsigned) (sbi->s_commit_interval / HZ)); 1002 } 1003 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 1004 seq_printf(seq, ",min_batch_time=%u", 1005 (unsigned) sbi->s_min_batch_time); 1006 } 1007 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 1008 seq_printf(seq, ",max_batch_time=%u", 1009 (unsigned) sbi->s_min_batch_time); 1010 } 1011 1012 /* 1013 * We're changing the default of barrier mount option, so 1014 * let's always display its mount state so it's clear what its 1015 * status is. 1016 */ 1017 seq_puts(seq, ",barrier="); 1018 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 1019 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 1020 seq_puts(seq, ",journal_async_commit"); 1021 else if (test_opt(sb, JOURNAL_CHECKSUM)) 1022 seq_puts(seq, ",journal_checksum"); 1023 if (test_opt(sb, I_VERSION)) 1024 seq_puts(seq, ",i_version"); 1025 if (!test_opt(sb, DELALLOC) && 1026 !(def_mount_opts & EXT4_DEFM_NODELALLOC)) 1027 seq_puts(seq, ",nodelalloc"); 1028 1029 if (test_opt(sb, MBLK_IO_SUBMIT)) 1030 seq_puts(seq, ",mblk_io_submit"); 1031 if (sbi->s_stripe) 1032 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 1033 /* 1034 * journal mode get enabled in different ways 1035 * So just print the value even if we didn't specify it 1036 */ 1037 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1038 seq_puts(seq, ",data=journal"); 1039 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1040 seq_puts(seq, ",data=ordered"); 1041 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1042 seq_puts(seq, ",data=writeback"); 1043 1044 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1045 seq_printf(seq, ",inode_readahead_blks=%u", 1046 sbi->s_inode_readahead_blks); 1047 1048 if (test_opt(sb, DATA_ERR_ABORT)) 1049 seq_puts(seq, ",data_err=abort"); 1050 1051 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 1052 seq_puts(seq, ",noauto_da_alloc"); 1053 1054 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD)) 1055 seq_puts(seq, ",discard"); 1056 1057 if (test_opt(sb, NOLOAD)) 1058 seq_puts(seq, ",norecovery"); 1059 1060 if (test_opt(sb, DIOREAD_NOLOCK)) 1061 seq_puts(seq, ",dioread_nolock"); 1062 1063 if (test_opt(sb, BLOCK_VALIDITY) && 1064 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)) 1065 seq_puts(seq, ",block_validity"); 1066 1067 if (!test_opt(sb, INIT_INODE_TABLE)) 1068 seq_puts(seq, ",noinit_inode_table"); 1069 else if (sbi->s_li_wait_mult) 1070 seq_printf(seq, ",init_inode_table=%u", 1071 (unsigned) sbi->s_li_wait_mult); 1072 1073 ext4_show_quota_options(seq, sb); 1074 1075 return 0; 1076 } 1077 1078 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1079 u64 ino, u32 generation) 1080 { 1081 struct inode *inode; 1082 1083 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1084 return ERR_PTR(-ESTALE); 1085 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1086 return ERR_PTR(-ESTALE); 1087 1088 /* iget isn't really right if the inode is currently unallocated!! 1089 * 1090 * ext4_read_inode will return a bad_inode if the inode had been 1091 * deleted, so we should be safe. 1092 * 1093 * Currently we don't know the generation for parent directory, so 1094 * a generation of 0 means "accept any" 1095 */ 1096 inode = ext4_iget(sb, ino); 1097 if (IS_ERR(inode)) 1098 return ERR_CAST(inode); 1099 if (generation && inode->i_generation != generation) { 1100 iput(inode); 1101 return ERR_PTR(-ESTALE); 1102 } 1103 1104 return inode; 1105 } 1106 1107 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1108 int fh_len, int fh_type) 1109 { 1110 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1111 ext4_nfs_get_inode); 1112 } 1113 1114 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1115 int fh_len, int fh_type) 1116 { 1117 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1118 ext4_nfs_get_inode); 1119 } 1120 1121 /* 1122 * Try to release metadata pages (indirect blocks, directories) which are 1123 * mapped via the block device. Since these pages could have journal heads 1124 * which would prevent try_to_free_buffers() from freeing them, we must use 1125 * jbd2 layer's try_to_free_buffers() function to release them. 1126 */ 1127 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1128 gfp_t wait) 1129 { 1130 journal_t *journal = EXT4_SB(sb)->s_journal; 1131 1132 WARN_ON(PageChecked(page)); 1133 if (!page_has_buffers(page)) 1134 return 0; 1135 if (journal) 1136 return jbd2_journal_try_to_free_buffers(journal, page, 1137 wait & ~__GFP_WAIT); 1138 return try_to_free_buffers(page); 1139 } 1140 1141 #ifdef CONFIG_QUOTA 1142 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1143 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1144 1145 static int ext4_write_dquot(struct dquot *dquot); 1146 static int ext4_acquire_dquot(struct dquot *dquot); 1147 static int ext4_release_dquot(struct dquot *dquot); 1148 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1149 static int ext4_write_info(struct super_block *sb, int type); 1150 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1151 char *path); 1152 static int ext4_quota_off(struct super_block *sb, int type); 1153 static int ext4_quota_on_mount(struct super_block *sb, int type); 1154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1155 size_t len, loff_t off); 1156 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1157 const char *data, size_t len, loff_t off); 1158 1159 static const struct dquot_operations ext4_quota_operations = { 1160 #ifdef CONFIG_QUOTA 1161 .get_reserved_space = ext4_get_reserved_space, 1162 #endif 1163 .write_dquot = ext4_write_dquot, 1164 .acquire_dquot = ext4_acquire_dquot, 1165 .release_dquot = ext4_release_dquot, 1166 .mark_dirty = ext4_mark_dquot_dirty, 1167 .write_info = ext4_write_info, 1168 .alloc_dquot = dquot_alloc, 1169 .destroy_dquot = dquot_destroy, 1170 }; 1171 1172 static const struct quotactl_ops ext4_qctl_operations = { 1173 .quota_on = ext4_quota_on, 1174 .quota_off = ext4_quota_off, 1175 .quota_sync = dquot_quota_sync, 1176 .get_info = dquot_get_dqinfo, 1177 .set_info = dquot_set_dqinfo, 1178 .get_dqblk = dquot_get_dqblk, 1179 .set_dqblk = dquot_set_dqblk 1180 }; 1181 #endif 1182 1183 static const struct super_operations ext4_sops = { 1184 .alloc_inode = ext4_alloc_inode, 1185 .destroy_inode = ext4_destroy_inode, 1186 .write_inode = ext4_write_inode, 1187 .dirty_inode = ext4_dirty_inode, 1188 .drop_inode = ext4_drop_inode, 1189 .evict_inode = ext4_evict_inode, 1190 .put_super = ext4_put_super, 1191 .sync_fs = ext4_sync_fs, 1192 .freeze_fs = ext4_freeze, 1193 .unfreeze_fs = ext4_unfreeze, 1194 .statfs = ext4_statfs, 1195 .remount_fs = ext4_remount, 1196 .show_options = ext4_show_options, 1197 #ifdef CONFIG_QUOTA 1198 .quota_read = ext4_quota_read, 1199 .quota_write = ext4_quota_write, 1200 #endif 1201 .bdev_try_to_free_page = bdev_try_to_free_page, 1202 }; 1203 1204 static const struct super_operations ext4_nojournal_sops = { 1205 .alloc_inode = ext4_alloc_inode, 1206 .destroy_inode = ext4_destroy_inode, 1207 .write_inode = ext4_write_inode, 1208 .dirty_inode = ext4_dirty_inode, 1209 .drop_inode = ext4_drop_inode, 1210 .evict_inode = ext4_evict_inode, 1211 .write_super = ext4_write_super, 1212 .put_super = ext4_put_super, 1213 .statfs = ext4_statfs, 1214 .remount_fs = ext4_remount, 1215 .show_options = ext4_show_options, 1216 #ifdef CONFIG_QUOTA 1217 .quota_read = ext4_quota_read, 1218 .quota_write = ext4_quota_write, 1219 #endif 1220 .bdev_try_to_free_page = bdev_try_to_free_page, 1221 }; 1222 1223 static const struct export_operations ext4_export_ops = { 1224 .fh_to_dentry = ext4_fh_to_dentry, 1225 .fh_to_parent = ext4_fh_to_parent, 1226 .get_parent = ext4_get_parent, 1227 }; 1228 1229 enum { 1230 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1231 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1232 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1233 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1234 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1235 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1236 Opt_journal_update, Opt_journal_dev, 1237 Opt_journal_checksum, Opt_journal_async_commit, 1238 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1239 Opt_data_err_abort, Opt_data_err_ignore, 1240 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1241 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1242 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1243 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1244 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1245 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1246 Opt_inode_readahead_blks, Opt_journal_ioprio, 1247 Opt_dioread_nolock, Opt_dioread_lock, 1248 Opt_discard, Opt_nodiscard, 1249 Opt_init_inode_table, Opt_noinit_inode_table, 1250 }; 1251 1252 static const match_table_t tokens = { 1253 {Opt_bsd_df, "bsddf"}, 1254 {Opt_minix_df, "minixdf"}, 1255 {Opt_grpid, "grpid"}, 1256 {Opt_grpid, "bsdgroups"}, 1257 {Opt_nogrpid, "nogrpid"}, 1258 {Opt_nogrpid, "sysvgroups"}, 1259 {Opt_resgid, "resgid=%u"}, 1260 {Opt_resuid, "resuid=%u"}, 1261 {Opt_sb, "sb=%u"}, 1262 {Opt_err_cont, "errors=continue"}, 1263 {Opt_err_panic, "errors=panic"}, 1264 {Opt_err_ro, "errors=remount-ro"}, 1265 {Opt_nouid32, "nouid32"}, 1266 {Opt_debug, "debug"}, 1267 {Opt_oldalloc, "oldalloc"}, 1268 {Opt_orlov, "orlov"}, 1269 {Opt_user_xattr, "user_xattr"}, 1270 {Opt_nouser_xattr, "nouser_xattr"}, 1271 {Opt_acl, "acl"}, 1272 {Opt_noacl, "noacl"}, 1273 {Opt_noload, "noload"}, 1274 {Opt_noload, "norecovery"}, 1275 {Opt_nobh, "nobh"}, 1276 {Opt_bh, "bh"}, 1277 {Opt_commit, "commit=%u"}, 1278 {Opt_min_batch_time, "min_batch_time=%u"}, 1279 {Opt_max_batch_time, "max_batch_time=%u"}, 1280 {Opt_journal_update, "journal=update"}, 1281 {Opt_journal_dev, "journal_dev=%u"}, 1282 {Opt_journal_checksum, "journal_checksum"}, 1283 {Opt_journal_async_commit, "journal_async_commit"}, 1284 {Opt_abort, "abort"}, 1285 {Opt_data_journal, "data=journal"}, 1286 {Opt_data_ordered, "data=ordered"}, 1287 {Opt_data_writeback, "data=writeback"}, 1288 {Opt_data_err_abort, "data_err=abort"}, 1289 {Opt_data_err_ignore, "data_err=ignore"}, 1290 {Opt_offusrjquota, "usrjquota="}, 1291 {Opt_usrjquota, "usrjquota=%s"}, 1292 {Opt_offgrpjquota, "grpjquota="}, 1293 {Opt_grpjquota, "grpjquota=%s"}, 1294 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1295 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1296 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1297 {Opt_grpquota, "grpquota"}, 1298 {Opt_noquota, "noquota"}, 1299 {Opt_quota, "quota"}, 1300 {Opt_usrquota, "usrquota"}, 1301 {Opt_barrier, "barrier=%u"}, 1302 {Opt_barrier, "barrier"}, 1303 {Opt_nobarrier, "nobarrier"}, 1304 {Opt_i_version, "i_version"}, 1305 {Opt_stripe, "stripe=%u"}, 1306 {Opt_resize, "resize"}, 1307 {Opt_delalloc, "delalloc"}, 1308 {Opt_nodelalloc, "nodelalloc"}, 1309 {Opt_mblk_io_submit, "mblk_io_submit"}, 1310 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1311 {Opt_block_validity, "block_validity"}, 1312 {Opt_noblock_validity, "noblock_validity"}, 1313 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1314 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1315 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1316 {Opt_auto_da_alloc, "auto_da_alloc"}, 1317 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1318 {Opt_dioread_nolock, "dioread_nolock"}, 1319 {Opt_dioread_lock, "dioread_lock"}, 1320 {Opt_discard, "discard"}, 1321 {Opt_nodiscard, "nodiscard"}, 1322 {Opt_init_inode_table, "init_itable=%u"}, 1323 {Opt_init_inode_table, "init_itable"}, 1324 {Opt_noinit_inode_table, "noinit_itable"}, 1325 {Opt_err, NULL}, 1326 }; 1327 1328 static ext4_fsblk_t get_sb_block(void **data) 1329 { 1330 ext4_fsblk_t sb_block; 1331 char *options = (char *) *data; 1332 1333 if (!options || strncmp(options, "sb=", 3) != 0) 1334 return 1; /* Default location */ 1335 1336 options += 3; 1337 /* TODO: use simple_strtoll with >32bit ext4 */ 1338 sb_block = simple_strtoul(options, &options, 0); 1339 if (*options && *options != ',') { 1340 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1341 (char *) *data); 1342 return 1; 1343 } 1344 if (*options == ',') 1345 options++; 1346 *data = (void *) options; 1347 1348 return sb_block; 1349 } 1350 1351 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1352 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1353 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1354 1355 #ifdef CONFIG_QUOTA 1356 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1357 { 1358 struct ext4_sb_info *sbi = EXT4_SB(sb); 1359 char *qname; 1360 1361 if (sb_any_quota_loaded(sb) && 1362 !sbi->s_qf_names[qtype]) { 1363 ext4_msg(sb, KERN_ERR, 1364 "Cannot change journaled " 1365 "quota options when quota turned on"); 1366 return 0; 1367 } 1368 qname = match_strdup(args); 1369 if (!qname) { 1370 ext4_msg(sb, KERN_ERR, 1371 "Not enough memory for storing quotafile name"); 1372 return 0; 1373 } 1374 if (sbi->s_qf_names[qtype] && 1375 strcmp(sbi->s_qf_names[qtype], qname)) { 1376 ext4_msg(sb, KERN_ERR, 1377 "%s quota file already specified", QTYPE2NAME(qtype)); 1378 kfree(qname); 1379 return 0; 1380 } 1381 sbi->s_qf_names[qtype] = qname; 1382 if (strchr(sbi->s_qf_names[qtype], '/')) { 1383 ext4_msg(sb, KERN_ERR, 1384 "quotafile must be on filesystem root"); 1385 kfree(sbi->s_qf_names[qtype]); 1386 sbi->s_qf_names[qtype] = NULL; 1387 return 0; 1388 } 1389 set_opt(sbi->s_mount_opt, QUOTA); 1390 return 1; 1391 } 1392 1393 static int clear_qf_name(struct super_block *sb, int qtype) 1394 { 1395 1396 struct ext4_sb_info *sbi = EXT4_SB(sb); 1397 1398 if (sb_any_quota_loaded(sb) && 1399 sbi->s_qf_names[qtype]) { 1400 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1401 " when quota turned on"); 1402 return 0; 1403 } 1404 /* 1405 * The space will be released later when all options are confirmed 1406 * to be correct 1407 */ 1408 sbi->s_qf_names[qtype] = NULL; 1409 return 1; 1410 } 1411 #endif 1412 1413 static int parse_options(char *options, struct super_block *sb, 1414 unsigned long *journal_devnum, 1415 unsigned int *journal_ioprio, 1416 ext4_fsblk_t *n_blocks_count, int is_remount) 1417 { 1418 struct ext4_sb_info *sbi = EXT4_SB(sb); 1419 char *p; 1420 substring_t args[MAX_OPT_ARGS]; 1421 int data_opt = 0; 1422 int option; 1423 #ifdef CONFIG_QUOTA 1424 int qfmt; 1425 #endif 1426 1427 if (!options) 1428 return 1; 1429 1430 while ((p = strsep(&options, ",")) != NULL) { 1431 int token; 1432 if (!*p) 1433 continue; 1434 1435 /* 1436 * Initialize args struct so we know whether arg was 1437 * found; some options take optional arguments. 1438 */ 1439 args[0].to = args[0].from = 0; 1440 token = match_token(p, tokens, args); 1441 switch (token) { 1442 case Opt_bsd_df: 1443 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1444 clear_opt(sbi->s_mount_opt, MINIX_DF); 1445 break; 1446 case Opt_minix_df: 1447 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1448 set_opt(sbi->s_mount_opt, MINIX_DF); 1449 1450 break; 1451 case Opt_grpid: 1452 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1453 set_opt(sbi->s_mount_opt, GRPID); 1454 1455 break; 1456 case Opt_nogrpid: 1457 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1458 clear_opt(sbi->s_mount_opt, GRPID); 1459 1460 break; 1461 case Opt_resuid: 1462 if (match_int(&args[0], &option)) 1463 return 0; 1464 sbi->s_resuid = option; 1465 break; 1466 case Opt_resgid: 1467 if (match_int(&args[0], &option)) 1468 return 0; 1469 sbi->s_resgid = option; 1470 break; 1471 case Opt_sb: 1472 /* handled by get_sb_block() instead of here */ 1473 /* *sb_block = match_int(&args[0]); */ 1474 break; 1475 case Opt_err_panic: 1476 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1477 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1478 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1479 break; 1480 case Opt_err_ro: 1481 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1482 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1483 set_opt(sbi->s_mount_opt, ERRORS_RO); 1484 break; 1485 case Opt_err_cont: 1486 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1487 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1488 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1489 break; 1490 case Opt_nouid32: 1491 set_opt(sbi->s_mount_opt, NO_UID32); 1492 break; 1493 case Opt_debug: 1494 set_opt(sbi->s_mount_opt, DEBUG); 1495 break; 1496 case Opt_oldalloc: 1497 set_opt(sbi->s_mount_opt, OLDALLOC); 1498 break; 1499 case Opt_orlov: 1500 clear_opt(sbi->s_mount_opt, OLDALLOC); 1501 break; 1502 #ifdef CONFIG_EXT4_FS_XATTR 1503 case Opt_user_xattr: 1504 set_opt(sbi->s_mount_opt, XATTR_USER); 1505 break; 1506 case Opt_nouser_xattr: 1507 clear_opt(sbi->s_mount_opt, XATTR_USER); 1508 break; 1509 #else 1510 case Opt_user_xattr: 1511 case Opt_nouser_xattr: 1512 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1513 break; 1514 #endif 1515 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1516 case Opt_acl: 1517 set_opt(sbi->s_mount_opt, POSIX_ACL); 1518 break; 1519 case Opt_noacl: 1520 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1521 break; 1522 #else 1523 case Opt_acl: 1524 case Opt_noacl: 1525 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1526 break; 1527 #endif 1528 case Opt_journal_update: 1529 /* @@@ FIXME */ 1530 /* Eventually we will want to be able to create 1531 a journal file here. For now, only allow the 1532 user to specify an existing inode to be the 1533 journal file. */ 1534 if (is_remount) { 1535 ext4_msg(sb, KERN_ERR, 1536 "Cannot specify journal on remount"); 1537 return 0; 1538 } 1539 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1540 break; 1541 case Opt_journal_dev: 1542 if (is_remount) { 1543 ext4_msg(sb, KERN_ERR, 1544 "Cannot specify journal on remount"); 1545 return 0; 1546 } 1547 if (match_int(&args[0], &option)) 1548 return 0; 1549 *journal_devnum = option; 1550 break; 1551 case Opt_journal_checksum: 1552 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1553 break; 1554 case Opt_journal_async_commit: 1555 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1556 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1557 break; 1558 case Opt_noload: 1559 set_opt(sbi->s_mount_opt, NOLOAD); 1560 break; 1561 case Opt_commit: 1562 if (match_int(&args[0], &option)) 1563 return 0; 1564 if (option < 0) 1565 return 0; 1566 if (option == 0) 1567 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1568 sbi->s_commit_interval = HZ * option; 1569 break; 1570 case Opt_max_batch_time: 1571 if (match_int(&args[0], &option)) 1572 return 0; 1573 if (option < 0) 1574 return 0; 1575 if (option == 0) 1576 option = EXT4_DEF_MAX_BATCH_TIME; 1577 sbi->s_max_batch_time = option; 1578 break; 1579 case Opt_min_batch_time: 1580 if (match_int(&args[0], &option)) 1581 return 0; 1582 if (option < 0) 1583 return 0; 1584 sbi->s_min_batch_time = option; 1585 break; 1586 case Opt_data_journal: 1587 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1588 goto datacheck; 1589 case Opt_data_ordered: 1590 data_opt = EXT4_MOUNT_ORDERED_DATA; 1591 goto datacheck; 1592 case Opt_data_writeback: 1593 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1594 datacheck: 1595 if (is_remount) { 1596 if (test_opt(sb, DATA_FLAGS) != data_opt) { 1597 ext4_msg(sb, KERN_ERR, 1598 "Cannot change data mode on remount"); 1599 return 0; 1600 } 1601 } else { 1602 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 1603 sbi->s_mount_opt |= data_opt; 1604 } 1605 break; 1606 case Opt_data_err_abort: 1607 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1608 break; 1609 case Opt_data_err_ignore: 1610 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1611 break; 1612 #ifdef CONFIG_QUOTA 1613 case Opt_usrjquota: 1614 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1615 return 0; 1616 break; 1617 case Opt_grpjquota: 1618 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1619 return 0; 1620 break; 1621 case Opt_offusrjquota: 1622 if (!clear_qf_name(sb, USRQUOTA)) 1623 return 0; 1624 break; 1625 case Opt_offgrpjquota: 1626 if (!clear_qf_name(sb, GRPQUOTA)) 1627 return 0; 1628 break; 1629 1630 case Opt_jqfmt_vfsold: 1631 qfmt = QFMT_VFS_OLD; 1632 goto set_qf_format; 1633 case Opt_jqfmt_vfsv0: 1634 qfmt = QFMT_VFS_V0; 1635 goto set_qf_format; 1636 case Opt_jqfmt_vfsv1: 1637 qfmt = QFMT_VFS_V1; 1638 set_qf_format: 1639 if (sb_any_quota_loaded(sb) && 1640 sbi->s_jquota_fmt != qfmt) { 1641 ext4_msg(sb, KERN_ERR, "Cannot change " 1642 "journaled quota options when " 1643 "quota turned on"); 1644 return 0; 1645 } 1646 sbi->s_jquota_fmt = qfmt; 1647 break; 1648 case Opt_quota: 1649 case Opt_usrquota: 1650 set_opt(sbi->s_mount_opt, QUOTA); 1651 set_opt(sbi->s_mount_opt, USRQUOTA); 1652 break; 1653 case Opt_grpquota: 1654 set_opt(sbi->s_mount_opt, QUOTA); 1655 set_opt(sbi->s_mount_opt, GRPQUOTA); 1656 break; 1657 case Opt_noquota: 1658 if (sb_any_quota_loaded(sb)) { 1659 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1660 "options when quota turned on"); 1661 return 0; 1662 } 1663 clear_opt(sbi->s_mount_opt, QUOTA); 1664 clear_opt(sbi->s_mount_opt, USRQUOTA); 1665 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1666 break; 1667 #else 1668 case Opt_quota: 1669 case Opt_usrquota: 1670 case Opt_grpquota: 1671 ext4_msg(sb, KERN_ERR, 1672 "quota options not supported"); 1673 break; 1674 case Opt_usrjquota: 1675 case Opt_grpjquota: 1676 case Opt_offusrjquota: 1677 case Opt_offgrpjquota: 1678 case Opt_jqfmt_vfsold: 1679 case Opt_jqfmt_vfsv0: 1680 case Opt_jqfmt_vfsv1: 1681 ext4_msg(sb, KERN_ERR, 1682 "journaled quota options not supported"); 1683 break; 1684 case Opt_noquota: 1685 break; 1686 #endif 1687 case Opt_abort: 1688 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1689 break; 1690 case Opt_nobarrier: 1691 clear_opt(sbi->s_mount_opt, BARRIER); 1692 break; 1693 case Opt_barrier: 1694 if (args[0].from) { 1695 if (match_int(&args[0], &option)) 1696 return 0; 1697 } else 1698 option = 1; /* No argument, default to 1 */ 1699 if (option) 1700 set_opt(sbi->s_mount_opt, BARRIER); 1701 else 1702 clear_opt(sbi->s_mount_opt, BARRIER); 1703 break; 1704 case Opt_ignore: 1705 break; 1706 case Opt_resize: 1707 if (!is_remount) { 1708 ext4_msg(sb, KERN_ERR, 1709 "resize option only available " 1710 "for remount"); 1711 return 0; 1712 } 1713 if (match_int(&args[0], &option) != 0) 1714 return 0; 1715 *n_blocks_count = option; 1716 break; 1717 case Opt_nobh: 1718 ext4_msg(sb, KERN_WARNING, 1719 "Ignoring deprecated nobh option"); 1720 break; 1721 case Opt_bh: 1722 ext4_msg(sb, KERN_WARNING, 1723 "Ignoring deprecated bh option"); 1724 break; 1725 case Opt_i_version: 1726 set_opt(sbi->s_mount_opt, I_VERSION); 1727 sb->s_flags |= MS_I_VERSION; 1728 break; 1729 case Opt_nodelalloc: 1730 clear_opt(sbi->s_mount_opt, DELALLOC); 1731 break; 1732 case Opt_mblk_io_submit: 1733 set_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT); 1734 break; 1735 case Opt_nomblk_io_submit: 1736 clear_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT); 1737 break; 1738 case Opt_stripe: 1739 if (match_int(&args[0], &option)) 1740 return 0; 1741 if (option < 0) 1742 return 0; 1743 sbi->s_stripe = option; 1744 break; 1745 case Opt_delalloc: 1746 set_opt(sbi->s_mount_opt, DELALLOC); 1747 break; 1748 case Opt_block_validity: 1749 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1750 break; 1751 case Opt_noblock_validity: 1752 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1753 break; 1754 case Opt_inode_readahead_blks: 1755 if (match_int(&args[0], &option)) 1756 return 0; 1757 if (option < 0 || option > (1 << 30)) 1758 return 0; 1759 if (!is_power_of_2(option)) { 1760 ext4_msg(sb, KERN_ERR, 1761 "EXT4-fs: inode_readahead_blks" 1762 " must be a power of 2"); 1763 return 0; 1764 } 1765 sbi->s_inode_readahead_blks = option; 1766 break; 1767 case Opt_journal_ioprio: 1768 if (match_int(&args[0], &option)) 1769 return 0; 1770 if (option < 0 || option > 7) 1771 break; 1772 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1773 option); 1774 break; 1775 case Opt_noauto_da_alloc: 1776 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1777 break; 1778 case Opt_auto_da_alloc: 1779 if (args[0].from) { 1780 if (match_int(&args[0], &option)) 1781 return 0; 1782 } else 1783 option = 1; /* No argument, default to 1 */ 1784 if (option) 1785 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1786 else 1787 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1788 break; 1789 case Opt_discard: 1790 set_opt(sbi->s_mount_opt, DISCARD); 1791 break; 1792 case Opt_nodiscard: 1793 clear_opt(sbi->s_mount_opt, DISCARD); 1794 break; 1795 case Opt_dioread_nolock: 1796 set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 1797 break; 1798 case Opt_dioread_lock: 1799 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 1800 break; 1801 case Opt_init_inode_table: 1802 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE); 1803 if (args[0].from) { 1804 if (match_int(&args[0], &option)) 1805 return 0; 1806 } else 1807 option = EXT4_DEF_LI_WAIT_MULT; 1808 if (option < 0) 1809 return 0; 1810 sbi->s_li_wait_mult = option; 1811 break; 1812 case Opt_noinit_inode_table: 1813 clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE); 1814 break; 1815 default: 1816 ext4_msg(sb, KERN_ERR, 1817 "Unrecognized mount option \"%s\" " 1818 "or missing value", p); 1819 return 0; 1820 } 1821 } 1822 #ifdef CONFIG_QUOTA 1823 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1824 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1825 clear_opt(sbi->s_mount_opt, USRQUOTA); 1826 1827 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1828 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1829 1830 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1831 ext4_msg(sb, KERN_ERR, "old and new quota " 1832 "format mixing"); 1833 return 0; 1834 } 1835 1836 if (!sbi->s_jquota_fmt) { 1837 ext4_msg(sb, KERN_ERR, "journaled quota format " 1838 "not specified"); 1839 return 0; 1840 } 1841 } else { 1842 if (sbi->s_jquota_fmt) { 1843 ext4_msg(sb, KERN_ERR, "journaled quota format " 1844 "specified with no journaling " 1845 "enabled"); 1846 return 0; 1847 } 1848 } 1849 #endif 1850 return 1; 1851 } 1852 1853 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1854 int read_only) 1855 { 1856 struct ext4_sb_info *sbi = EXT4_SB(sb); 1857 int res = 0; 1858 1859 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1860 ext4_msg(sb, KERN_ERR, "revision level too high, " 1861 "forcing read-only mode"); 1862 res = MS_RDONLY; 1863 } 1864 if (read_only) 1865 return res; 1866 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1867 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1868 "running e2fsck is recommended"); 1869 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1870 ext4_msg(sb, KERN_WARNING, 1871 "warning: mounting fs with errors, " 1872 "running e2fsck is recommended"); 1873 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1874 le16_to_cpu(es->s_mnt_count) >= 1875 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1876 ext4_msg(sb, KERN_WARNING, 1877 "warning: maximal mount count reached, " 1878 "running e2fsck is recommended"); 1879 else if (le32_to_cpu(es->s_checkinterval) && 1880 (le32_to_cpu(es->s_lastcheck) + 1881 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1882 ext4_msg(sb, KERN_WARNING, 1883 "warning: checktime reached, " 1884 "running e2fsck is recommended"); 1885 if (!sbi->s_journal) 1886 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1887 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1888 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1889 le16_add_cpu(&es->s_mnt_count, 1); 1890 es->s_mtime = cpu_to_le32(get_seconds()); 1891 ext4_update_dynamic_rev(sb); 1892 if (sbi->s_journal) 1893 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1894 1895 ext4_commit_super(sb, 1); 1896 if (test_opt(sb, DEBUG)) 1897 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1898 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1899 sb->s_blocksize, 1900 sbi->s_groups_count, 1901 EXT4_BLOCKS_PER_GROUP(sb), 1902 EXT4_INODES_PER_GROUP(sb), 1903 sbi->s_mount_opt); 1904 1905 return res; 1906 } 1907 1908 static int ext4_fill_flex_info(struct super_block *sb) 1909 { 1910 struct ext4_sb_info *sbi = EXT4_SB(sb); 1911 struct ext4_group_desc *gdp = NULL; 1912 ext4_group_t flex_group_count; 1913 ext4_group_t flex_group; 1914 int groups_per_flex = 0; 1915 size_t size; 1916 int i; 1917 1918 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1919 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1920 1921 if (groups_per_flex < 2) { 1922 sbi->s_log_groups_per_flex = 0; 1923 return 1; 1924 } 1925 1926 /* We allocate both existing and potentially added groups */ 1927 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1928 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1929 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1930 size = flex_group_count * sizeof(struct flex_groups); 1931 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1932 if (sbi->s_flex_groups == NULL) { 1933 sbi->s_flex_groups = vmalloc(size); 1934 if (sbi->s_flex_groups) 1935 memset(sbi->s_flex_groups, 0, size); 1936 } 1937 if (sbi->s_flex_groups == NULL) { 1938 ext4_msg(sb, KERN_ERR, "not enough memory for " 1939 "%u flex groups", flex_group_count); 1940 goto failed; 1941 } 1942 1943 for (i = 0; i < sbi->s_groups_count; i++) { 1944 gdp = ext4_get_group_desc(sb, i, NULL); 1945 1946 flex_group = ext4_flex_group(sbi, i); 1947 atomic_add(ext4_free_inodes_count(sb, gdp), 1948 &sbi->s_flex_groups[flex_group].free_inodes); 1949 atomic_add(ext4_free_blks_count(sb, gdp), 1950 &sbi->s_flex_groups[flex_group].free_blocks); 1951 atomic_add(ext4_used_dirs_count(sb, gdp), 1952 &sbi->s_flex_groups[flex_group].used_dirs); 1953 } 1954 1955 return 1; 1956 failed: 1957 return 0; 1958 } 1959 1960 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1961 struct ext4_group_desc *gdp) 1962 { 1963 __u16 crc = 0; 1964 1965 if (sbi->s_es->s_feature_ro_compat & 1966 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1967 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1968 __le32 le_group = cpu_to_le32(block_group); 1969 1970 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1971 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1972 crc = crc16(crc, (__u8 *)gdp, offset); 1973 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1974 /* for checksum of struct ext4_group_desc do the rest...*/ 1975 if ((sbi->s_es->s_feature_incompat & 1976 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1977 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1978 crc = crc16(crc, (__u8 *)gdp + offset, 1979 le16_to_cpu(sbi->s_es->s_desc_size) - 1980 offset); 1981 } 1982 1983 return cpu_to_le16(crc); 1984 } 1985 1986 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1987 struct ext4_group_desc *gdp) 1988 { 1989 if ((sbi->s_es->s_feature_ro_compat & 1990 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1991 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1992 return 0; 1993 1994 return 1; 1995 } 1996 1997 /* Called at mount-time, super-block is locked */ 1998 static int ext4_check_descriptors(struct super_block *sb, 1999 ext4_group_t *first_not_zeroed) 2000 { 2001 struct ext4_sb_info *sbi = EXT4_SB(sb); 2002 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2003 ext4_fsblk_t last_block; 2004 ext4_fsblk_t block_bitmap; 2005 ext4_fsblk_t inode_bitmap; 2006 ext4_fsblk_t inode_table; 2007 int flexbg_flag = 0; 2008 ext4_group_t i, grp = sbi->s_groups_count; 2009 2010 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2011 flexbg_flag = 1; 2012 2013 ext4_debug("Checking group descriptors"); 2014 2015 for (i = 0; i < sbi->s_groups_count; i++) { 2016 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2017 2018 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2019 last_block = ext4_blocks_count(sbi->s_es) - 1; 2020 else 2021 last_block = first_block + 2022 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2023 2024 if ((grp == sbi->s_groups_count) && 2025 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2026 grp = i; 2027 2028 block_bitmap = ext4_block_bitmap(sb, gdp); 2029 if (block_bitmap < first_block || block_bitmap > last_block) { 2030 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2031 "Block bitmap for group %u not in group " 2032 "(block %llu)!", i, block_bitmap); 2033 return 0; 2034 } 2035 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2036 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2037 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2038 "Inode bitmap for group %u not in group " 2039 "(block %llu)!", i, inode_bitmap); 2040 return 0; 2041 } 2042 inode_table = ext4_inode_table(sb, gdp); 2043 if (inode_table < first_block || 2044 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2045 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2046 "Inode table for group %u not in group " 2047 "(block %llu)!", i, inode_table); 2048 return 0; 2049 } 2050 ext4_lock_group(sb, i); 2051 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2052 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2053 "Checksum for group %u failed (%u!=%u)", 2054 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2055 gdp)), le16_to_cpu(gdp->bg_checksum)); 2056 if (!(sb->s_flags & MS_RDONLY)) { 2057 ext4_unlock_group(sb, i); 2058 return 0; 2059 } 2060 } 2061 ext4_unlock_group(sb, i); 2062 if (!flexbg_flag) 2063 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2064 } 2065 if (NULL != first_not_zeroed) 2066 *first_not_zeroed = grp; 2067 2068 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 2069 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2070 return 1; 2071 } 2072 2073 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2074 * the superblock) which were deleted from all directories, but held open by 2075 * a process at the time of a crash. We walk the list and try to delete these 2076 * inodes at recovery time (only with a read-write filesystem). 2077 * 2078 * In order to keep the orphan inode chain consistent during traversal (in 2079 * case of crash during recovery), we link each inode into the superblock 2080 * orphan list_head and handle it the same way as an inode deletion during 2081 * normal operation (which journals the operations for us). 2082 * 2083 * We only do an iget() and an iput() on each inode, which is very safe if we 2084 * accidentally point at an in-use or already deleted inode. The worst that 2085 * can happen in this case is that we get a "bit already cleared" message from 2086 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2087 * e2fsck was run on this filesystem, and it must have already done the orphan 2088 * inode cleanup for us, so we can safely abort without any further action. 2089 */ 2090 static void ext4_orphan_cleanup(struct super_block *sb, 2091 struct ext4_super_block *es) 2092 { 2093 unsigned int s_flags = sb->s_flags; 2094 int nr_orphans = 0, nr_truncates = 0; 2095 #ifdef CONFIG_QUOTA 2096 int i; 2097 #endif 2098 if (!es->s_last_orphan) { 2099 jbd_debug(4, "no orphan inodes to clean up\n"); 2100 return; 2101 } 2102 2103 if (bdev_read_only(sb->s_bdev)) { 2104 ext4_msg(sb, KERN_ERR, "write access " 2105 "unavailable, skipping orphan cleanup"); 2106 return; 2107 } 2108 2109 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2110 if (es->s_last_orphan) 2111 jbd_debug(1, "Errors on filesystem, " 2112 "clearing orphan list.\n"); 2113 es->s_last_orphan = 0; 2114 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2115 return; 2116 } 2117 2118 if (s_flags & MS_RDONLY) { 2119 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2120 sb->s_flags &= ~MS_RDONLY; 2121 } 2122 #ifdef CONFIG_QUOTA 2123 /* Needed for iput() to work correctly and not trash data */ 2124 sb->s_flags |= MS_ACTIVE; 2125 /* Turn on quotas so that they are updated correctly */ 2126 for (i = 0; i < MAXQUOTAS; i++) { 2127 if (EXT4_SB(sb)->s_qf_names[i]) { 2128 int ret = ext4_quota_on_mount(sb, i); 2129 if (ret < 0) 2130 ext4_msg(sb, KERN_ERR, 2131 "Cannot turn on journaled " 2132 "quota: error %d", ret); 2133 } 2134 } 2135 #endif 2136 2137 while (es->s_last_orphan) { 2138 struct inode *inode; 2139 2140 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2141 if (IS_ERR(inode)) { 2142 es->s_last_orphan = 0; 2143 break; 2144 } 2145 2146 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2147 dquot_initialize(inode); 2148 if (inode->i_nlink) { 2149 ext4_msg(sb, KERN_DEBUG, 2150 "%s: truncating inode %lu to %lld bytes", 2151 __func__, inode->i_ino, inode->i_size); 2152 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2153 inode->i_ino, inode->i_size); 2154 ext4_truncate(inode); 2155 nr_truncates++; 2156 } else { 2157 ext4_msg(sb, KERN_DEBUG, 2158 "%s: deleting unreferenced inode %lu", 2159 __func__, inode->i_ino); 2160 jbd_debug(2, "deleting unreferenced inode %lu\n", 2161 inode->i_ino); 2162 nr_orphans++; 2163 } 2164 iput(inode); /* The delete magic happens here! */ 2165 } 2166 2167 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2168 2169 if (nr_orphans) 2170 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2171 PLURAL(nr_orphans)); 2172 if (nr_truncates) 2173 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2174 PLURAL(nr_truncates)); 2175 #ifdef CONFIG_QUOTA 2176 /* Turn quotas off */ 2177 for (i = 0; i < MAXQUOTAS; i++) { 2178 if (sb_dqopt(sb)->files[i]) 2179 dquot_quota_off(sb, i); 2180 } 2181 #endif 2182 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2183 } 2184 2185 /* 2186 * Maximal extent format file size. 2187 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2188 * extent format containers, within a sector_t, and within i_blocks 2189 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2190 * so that won't be a limiting factor. 2191 * 2192 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2193 */ 2194 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2195 { 2196 loff_t res; 2197 loff_t upper_limit = MAX_LFS_FILESIZE; 2198 2199 /* small i_blocks in vfs inode? */ 2200 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2201 /* 2202 * CONFIG_LBDAF is not enabled implies the inode 2203 * i_block represent total blocks in 512 bytes 2204 * 32 == size of vfs inode i_blocks * 8 2205 */ 2206 upper_limit = (1LL << 32) - 1; 2207 2208 /* total blocks in file system block size */ 2209 upper_limit >>= (blkbits - 9); 2210 upper_limit <<= blkbits; 2211 } 2212 2213 /* 32-bit extent-start container, ee_block */ 2214 res = 1LL << 32; 2215 res <<= blkbits; 2216 res -= 1; 2217 2218 /* Sanity check against vm- & vfs- imposed limits */ 2219 if (res > upper_limit) 2220 res = upper_limit; 2221 2222 return res; 2223 } 2224 2225 /* 2226 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2227 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2228 * We need to be 1 filesystem block less than the 2^48 sector limit. 2229 */ 2230 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2231 { 2232 loff_t res = EXT4_NDIR_BLOCKS; 2233 int meta_blocks; 2234 loff_t upper_limit; 2235 /* This is calculated to be the largest file size for a dense, block 2236 * mapped file such that the file's total number of 512-byte sectors, 2237 * including data and all indirect blocks, does not exceed (2^48 - 1). 2238 * 2239 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2240 * number of 512-byte sectors of the file. 2241 */ 2242 2243 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2244 /* 2245 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2246 * the inode i_block field represents total file blocks in 2247 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2248 */ 2249 upper_limit = (1LL << 32) - 1; 2250 2251 /* total blocks in file system block size */ 2252 upper_limit >>= (bits - 9); 2253 2254 } else { 2255 /* 2256 * We use 48 bit ext4_inode i_blocks 2257 * With EXT4_HUGE_FILE_FL set the i_blocks 2258 * represent total number of blocks in 2259 * file system block size 2260 */ 2261 upper_limit = (1LL << 48) - 1; 2262 2263 } 2264 2265 /* indirect blocks */ 2266 meta_blocks = 1; 2267 /* double indirect blocks */ 2268 meta_blocks += 1 + (1LL << (bits-2)); 2269 /* tripple indirect blocks */ 2270 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2271 2272 upper_limit -= meta_blocks; 2273 upper_limit <<= bits; 2274 2275 res += 1LL << (bits-2); 2276 res += 1LL << (2*(bits-2)); 2277 res += 1LL << (3*(bits-2)); 2278 res <<= bits; 2279 if (res > upper_limit) 2280 res = upper_limit; 2281 2282 if (res > MAX_LFS_FILESIZE) 2283 res = MAX_LFS_FILESIZE; 2284 2285 return res; 2286 } 2287 2288 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2289 ext4_fsblk_t logical_sb_block, int nr) 2290 { 2291 struct ext4_sb_info *sbi = EXT4_SB(sb); 2292 ext4_group_t bg, first_meta_bg; 2293 int has_super = 0; 2294 2295 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2296 2297 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2298 nr < first_meta_bg) 2299 return logical_sb_block + nr + 1; 2300 bg = sbi->s_desc_per_block * nr; 2301 if (ext4_bg_has_super(sb, bg)) 2302 has_super = 1; 2303 2304 return (has_super + ext4_group_first_block_no(sb, bg)); 2305 } 2306 2307 /** 2308 * ext4_get_stripe_size: Get the stripe size. 2309 * @sbi: In memory super block info 2310 * 2311 * If we have specified it via mount option, then 2312 * use the mount option value. If the value specified at mount time is 2313 * greater than the blocks per group use the super block value. 2314 * If the super block value is greater than blocks per group return 0. 2315 * Allocator needs it be less than blocks per group. 2316 * 2317 */ 2318 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2319 { 2320 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2321 unsigned long stripe_width = 2322 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2323 2324 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2325 return sbi->s_stripe; 2326 2327 if (stripe_width <= sbi->s_blocks_per_group) 2328 return stripe_width; 2329 2330 if (stride <= sbi->s_blocks_per_group) 2331 return stride; 2332 2333 return 0; 2334 } 2335 2336 /* sysfs supprt */ 2337 2338 struct ext4_attr { 2339 struct attribute attr; 2340 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2341 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2342 const char *, size_t); 2343 int offset; 2344 }; 2345 2346 static int parse_strtoul(const char *buf, 2347 unsigned long max, unsigned long *value) 2348 { 2349 char *endp; 2350 2351 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2352 endp = skip_spaces(endp); 2353 if (*endp || *value > max) 2354 return -EINVAL; 2355 2356 return 0; 2357 } 2358 2359 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2360 struct ext4_sb_info *sbi, 2361 char *buf) 2362 { 2363 return snprintf(buf, PAGE_SIZE, "%llu\n", 2364 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2365 } 2366 2367 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2368 struct ext4_sb_info *sbi, char *buf) 2369 { 2370 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2371 2372 if (!sb->s_bdev->bd_part) 2373 return snprintf(buf, PAGE_SIZE, "0\n"); 2374 return snprintf(buf, PAGE_SIZE, "%lu\n", 2375 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2376 sbi->s_sectors_written_start) >> 1); 2377 } 2378 2379 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2380 struct ext4_sb_info *sbi, char *buf) 2381 { 2382 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2383 2384 if (!sb->s_bdev->bd_part) 2385 return snprintf(buf, PAGE_SIZE, "0\n"); 2386 return snprintf(buf, PAGE_SIZE, "%llu\n", 2387 (unsigned long long)(sbi->s_kbytes_written + 2388 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2389 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2390 } 2391 2392 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2393 struct ext4_sb_info *sbi, 2394 const char *buf, size_t count) 2395 { 2396 unsigned long t; 2397 2398 if (parse_strtoul(buf, 0x40000000, &t)) 2399 return -EINVAL; 2400 2401 if (!is_power_of_2(t)) 2402 return -EINVAL; 2403 2404 sbi->s_inode_readahead_blks = t; 2405 return count; 2406 } 2407 2408 static ssize_t sbi_ui_show(struct ext4_attr *a, 2409 struct ext4_sb_info *sbi, char *buf) 2410 { 2411 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2412 2413 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2414 } 2415 2416 static ssize_t sbi_ui_store(struct ext4_attr *a, 2417 struct ext4_sb_info *sbi, 2418 const char *buf, size_t count) 2419 { 2420 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2421 unsigned long t; 2422 2423 if (parse_strtoul(buf, 0xffffffff, &t)) 2424 return -EINVAL; 2425 *ui = t; 2426 return count; 2427 } 2428 2429 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2430 static struct ext4_attr ext4_attr_##_name = { \ 2431 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2432 .show = _show, \ 2433 .store = _store, \ 2434 .offset = offsetof(struct ext4_sb_info, _elname), \ 2435 } 2436 #define EXT4_ATTR(name, mode, show, store) \ 2437 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2438 2439 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2440 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2441 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2442 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2443 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2444 #define ATTR_LIST(name) &ext4_attr_##name.attr 2445 2446 EXT4_RO_ATTR(delayed_allocation_blocks); 2447 EXT4_RO_ATTR(session_write_kbytes); 2448 EXT4_RO_ATTR(lifetime_write_kbytes); 2449 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2450 inode_readahead_blks_store, s_inode_readahead_blks); 2451 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2452 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2453 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2454 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2455 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2456 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2457 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2458 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2459 2460 static struct attribute *ext4_attrs[] = { 2461 ATTR_LIST(delayed_allocation_blocks), 2462 ATTR_LIST(session_write_kbytes), 2463 ATTR_LIST(lifetime_write_kbytes), 2464 ATTR_LIST(inode_readahead_blks), 2465 ATTR_LIST(inode_goal), 2466 ATTR_LIST(mb_stats), 2467 ATTR_LIST(mb_max_to_scan), 2468 ATTR_LIST(mb_min_to_scan), 2469 ATTR_LIST(mb_order2_req), 2470 ATTR_LIST(mb_stream_req), 2471 ATTR_LIST(mb_group_prealloc), 2472 ATTR_LIST(max_writeback_mb_bump), 2473 NULL, 2474 }; 2475 2476 /* Features this copy of ext4 supports */ 2477 EXT4_INFO_ATTR(lazy_itable_init); 2478 EXT4_INFO_ATTR(batched_discard); 2479 2480 static struct attribute *ext4_feat_attrs[] = { 2481 ATTR_LIST(lazy_itable_init), 2482 ATTR_LIST(batched_discard), 2483 NULL, 2484 }; 2485 2486 static ssize_t ext4_attr_show(struct kobject *kobj, 2487 struct attribute *attr, char *buf) 2488 { 2489 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2490 s_kobj); 2491 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2492 2493 return a->show ? a->show(a, sbi, buf) : 0; 2494 } 2495 2496 static ssize_t ext4_attr_store(struct kobject *kobj, 2497 struct attribute *attr, 2498 const char *buf, size_t len) 2499 { 2500 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2501 s_kobj); 2502 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2503 2504 return a->store ? a->store(a, sbi, buf, len) : 0; 2505 } 2506 2507 static void ext4_sb_release(struct kobject *kobj) 2508 { 2509 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2510 s_kobj); 2511 complete(&sbi->s_kobj_unregister); 2512 } 2513 2514 static const struct sysfs_ops ext4_attr_ops = { 2515 .show = ext4_attr_show, 2516 .store = ext4_attr_store, 2517 }; 2518 2519 static struct kobj_type ext4_ktype = { 2520 .default_attrs = ext4_attrs, 2521 .sysfs_ops = &ext4_attr_ops, 2522 .release = ext4_sb_release, 2523 }; 2524 2525 static void ext4_feat_release(struct kobject *kobj) 2526 { 2527 complete(&ext4_feat->f_kobj_unregister); 2528 } 2529 2530 static struct kobj_type ext4_feat_ktype = { 2531 .default_attrs = ext4_feat_attrs, 2532 .sysfs_ops = &ext4_attr_ops, 2533 .release = ext4_feat_release, 2534 }; 2535 2536 /* 2537 * Check whether this filesystem can be mounted based on 2538 * the features present and the RDONLY/RDWR mount requested. 2539 * Returns 1 if this filesystem can be mounted as requested, 2540 * 0 if it cannot be. 2541 */ 2542 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2543 { 2544 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2545 ext4_msg(sb, KERN_ERR, 2546 "Couldn't mount because of " 2547 "unsupported optional features (%x)", 2548 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2549 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2550 return 0; 2551 } 2552 2553 if (readonly) 2554 return 1; 2555 2556 /* Check that feature set is OK for a read-write mount */ 2557 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2558 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2559 "unsupported optional features (%x)", 2560 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2561 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2562 return 0; 2563 } 2564 /* 2565 * Large file size enabled file system can only be mounted 2566 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2567 */ 2568 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2569 if (sizeof(blkcnt_t) < sizeof(u64)) { 2570 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2571 "cannot be mounted RDWR without " 2572 "CONFIG_LBDAF"); 2573 return 0; 2574 } 2575 } 2576 return 1; 2577 } 2578 2579 /* 2580 * This function is called once a day if we have errors logged 2581 * on the file system 2582 */ 2583 static void print_daily_error_info(unsigned long arg) 2584 { 2585 struct super_block *sb = (struct super_block *) arg; 2586 struct ext4_sb_info *sbi; 2587 struct ext4_super_block *es; 2588 2589 sbi = EXT4_SB(sb); 2590 es = sbi->s_es; 2591 2592 if (es->s_error_count) 2593 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2594 le32_to_cpu(es->s_error_count)); 2595 if (es->s_first_error_time) { 2596 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2597 sb->s_id, le32_to_cpu(es->s_first_error_time), 2598 (int) sizeof(es->s_first_error_func), 2599 es->s_first_error_func, 2600 le32_to_cpu(es->s_first_error_line)); 2601 if (es->s_first_error_ino) 2602 printk(": inode %u", 2603 le32_to_cpu(es->s_first_error_ino)); 2604 if (es->s_first_error_block) 2605 printk(": block %llu", (unsigned long long) 2606 le64_to_cpu(es->s_first_error_block)); 2607 printk("\n"); 2608 } 2609 if (es->s_last_error_time) { 2610 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2611 sb->s_id, le32_to_cpu(es->s_last_error_time), 2612 (int) sizeof(es->s_last_error_func), 2613 es->s_last_error_func, 2614 le32_to_cpu(es->s_last_error_line)); 2615 if (es->s_last_error_ino) 2616 printk(": inode %u", 2617 le32_to_cpu(es->s_last_error_ino)); 2618 if (es->s_last_error_block) 2619 printk(": block %llu", (unsigned long long) 2620 le64_to_cpu(es->s_last_error_block)); 2621 printk("\n"); 2622 } 2623 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2624 } 2625 2626 static void ext4_lazyinode_timeout(unsigned long data) 2627 { 2628 struct task_struct *p = (struct task_struct *)data; 2629 wake_up_process(p); 2630 } 2631 2632 /* Find next suitable group and run ext4_init_inode_table */ 2633 static int ext4_run_li_request(struct ext4_li_request *elr) 2634 { 2635 struct ext4_group_desc *gdp = NULL; 2636 ext4_group_t group, ngroups; 2637 struct super_block *sb; 2638 unsigned long timeout = 0; 2639 int ret = 0; 2640 2641 sb = elr->lr_super; 2642 ngroups = EXT4_SB(sb)->s_groups_count; 2643 2644 for (group = elr->lr_next_group; group < ngroups; group++) { 2645 gdp = ext4_get_group_desc(sb, group, NULL); 2646 if (!gdp) { 2647 ret = 1; 2648 break; 2649 } 2650 2651 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2652 break; 2653 } 2654 2655 if (group == ngroups) 2656 ret = 1; 2657 2658 if (!ret) { 2659 timeout = jiffies; 2660 ret = ext4_init_inode_table(sb, group, 2661 elr->lr_timeout ? 0 : 1); 2662 if (elr->lr_timeout == 0) { 2663 timeout = jiffies - timeout; 2664 if (elr->lr_sbi->s_li_wait_mult) 2665 timeout *= elr->lr_sbi->s_li_wait_mult; 2666 else 2667 timeout *= 20; 2668 elr->lr_timeout = timeout; 2669 } 2670 elr->lr_next_sched = jiffies + elr->lr_timeout; 2671 elr->lr_next_group = group + 1; 2672 } 2673 2674 return ret; 2675 } 2676 2677 /* 2678 * Remove lr_request from the list_request and free the 2679 * request tructure. Should be called with li_list_mtx held 2680 */ 2681 static void ext4_remove_li_request(struct ext4_li_request *elr) 2682 { 2683 struct ext4_sb_info *sbi; 2684 2685 if (!elr) 2686 return; 2687 2688 sbi = elr->lr_sbi; 2689 2690 list_del(&elr->lr_request); 2691 sbi->s_li_request = NULL; 2692 kfree(elr); 2693 } 2694 2695 static void ext4_unregister_li_request(struct super_block *sb) 2696 { 2697 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request; 2698 2699 if (!ext4_li_info) 2700 return; 2701 2702 mutex_lock(&ext4_li_info->li_list_mtx); 2703 ext4_remove_li_request(elr); 2704 mutex_unlock(&ext4_li_info->li_list_mtx); 2705 } 2706 2707 /* 2708 * This is the function where ext4lazyinit thread lives. It walks 2709 * through the request list searching for next scheduled filesystem. 2710 * When such a fs is found, run the lazy initialization request 2711 * (ext4_rn_li_request) and keep track of the time spend in this 2712 * function. Based on that time we compute next schedule time of 2713 * the request. When walking through the list is complete, compute 2714 * next waking time and put itself into sleep. 2715 */ 2716 static int ext4_lazyinit_thread(void *arg) 2717 { 2718 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2719 struct list_head *pos, *n; 2720 struct ext4_li_request *elr; 2721 unsigned long next_wakeup; 2722 DEFINE_WAIT(wait); 2723 2724 BUG_ON(NULL == eli); 2725 2726 eli->li_timer.data = (unsigned long)current; 2727 eli->li_timer.function = ext4_lazyinode_timeout; 2728 2729 eli->li_task = current; 2730 wake_up(&eli->li_wait_task); 2731 2732 cont_thread: 2733 while (true) { 2734 next_wakeup = MAX_JIFFY_OFFSET; 2735 2736 mutex_lock(&eli->li_list_mtx); 2737 if (list_empty(&eli->li_request_list)) { 2738 mutex_unlock(&eli->li_list_mtx); 2739 goto exit_thread; 2740 } 2741 2742 list_for_each_safe(pos, n, &eli->li_request_list) { 2743 elr = list_entry(pos, struct ext4_li_request, 2744 lr_request); 2745 2746 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2747 if (ext4_run_li_request(elr) != 0) { 2748 /* error, remove the lazy_init job */ 2749 ext4_remove_li_request(elr); 2750 continue; 2751 } 2752 } 2753 2754 if (time_before(elr->lr_next_sched, next_wakeup)) 2755 next_wakeup = elr->lr_next_sched; 2756 } 2757 mutex_unlock(&eli->li_list_mtx); 2758 2759 if (freezing(current)) 2760 refrigerator(); 2761 2762 if ((time_after_eq(jiffies, next_wakeup)) || 2763 (MAX_JIFFY_OFFSET == next_wakeup)) { 2764 cond_resched(); 2765 continue; 2766 } 2767 2768 eli->li_timer.expires = next_wakeup; 2769 add_timer(&eli->li_timer); 2770 prepare_to_wait(&eli->li_wait_daemon, &wait, 2771 TASK_INTERRUPTIBLE); 2772 if (time_before(jiffies, next_wakeup)) 2773 schedule(); 2774 finish_wait(&eli->li_wait_daemon, &wait); 2775 } 2776 2777 exit_thread: 2778 /* 2779 * It looks like the request list is empty, but we need 2780 * to check it under the li_list_mtx lock, to prevent any 2781 * additions into it, and of course we should lock ext4_li_mtx 2782 * to atomically free the list and ext4_li_info, because at 2783 * this point another ext4 filesystem could be registering 2784 * new one. 2785 */ 2786 mutex_lock(&ext4_li_mtx); 2787 mutex_lock(&eli->li_list_mtx); 2788 if (!list_empty(&eli->li_request_list)) { 2789 mutex_unlock(&eli->li_list_mtx); 2790 mutex_unlock(&ext4_li_mtx); 2791 goto cont_thread; 2792 } 2793 mutex_unlock(&eli->li_list_mtx); 2794 del_timer_sync(&ext4_li_info->li_timer); 2795 eli->li_task = NULL; 2796 wake_up(&eli->li_wait_task); 2797 2798 kfree(ext4_li_info); 2799 ext4_li_info = NULL; 2800 mutex_unlock(&ext4_li_mtx); 2801 2802 return 0; 2803 } 2804 2805 static void ext4_clear_request_list(void) 2806 { 2807 struct list_head *pos, *n; 2808 struct ext4_li_request *elr; 2809 2810 mutex_lock(&ext4_li_info->li_list_mtx); 2811 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2812 elr = list_entry(pos, struct ext4_li_request, 2813 lr_request); 2814 ext4_remove_li_request(elr); 2815 } 2816 mutex_unlock(&ext4_li_info->li_list_mtx); 2817 } 2818 2819 static int ext4_run_lazyinit_thread(void) 2820 { 2821 struct task_struct *t; 2822 2823 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit"); 2824 if (IS_ERR(t)) { 2825 int err = PTR_ERR(t); 2826 ext4_clear_request_list(); 2827 del_timer_sync(&ext4_li_info->li_timer); 2828 kfree(ext4_li_info); 2829 ext4_li_info = NULL; 2830 printk(KERN_CRIT "EXT4: error %d creating inode table " 2831 "initialization thread\n", 2832 err); 2833 return err; 2834 } 2835 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2836 2837 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL); 2838 return 0; 2839 } 2840 2841 /* 2842 * Check whether it make sense to run itable init. thread or not. 2843 * If there is at least one uninitialized inode table, return 2844 * corresponding group number, else the loop goes through all 2845 * groups and return total number of groups. 2846 */ 2847 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2848 { 2849 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2850 struct ext4_group_desc *gdp = NULL; 2851 2852 for (group = 0; group < ngroups; group++) { 2853 gdp = ext4_get_group_desc(sb, group, NULL); 2854 if (!gdp) 2855 continue; 2856 2857 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2858 break; 2859 } 2860 2861 return group; 2862 } 2863 2864 static int ext4_li_info_new(void) 2865 { 2866 struct ext4_lazy_init *eli = NULL; 2867 2868 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2869 if (!eli) 2870 return -ENOMEM; 2871 2872 eli->li_task = NULL; 2873 INIT_LIST_HEAD(&eli->li_request_list); 2874 mutex_init(&eli->li_list_mtx); 2875 2876 init_waitqueue_head(&eli->li_wait_daemon); 2877 init_waitqueue_head(&eli->li_wait_task); 2878 init_timer(&eli->li_timer); 2879 eli->li_state |= EXT4_LAZYINIT_QUIT; 2880 2881 ext4_li_info = eli; 2882 2883 return 0; 2884 } 2885 2886 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2887 ext4_group_t start) 2888 { 2889 struct ext4_sb_info *sbi = EXT4_SB(sb); 2890 struct ext4_li_request *elr; 2891 unsigned long rnd; 2892 2893 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2894 if (!elr) 2895 return NULL; 2896 2897 elr->lr_super = sb; 2898 elr->lr_sbi = sbi; 2899 elr->lr_next_group = start; 2900 2901 /* 2902 * Randomize first schedule time of the request to 2903 * spread the inode table initialization requests 2904 * better. 2905 */ 2906 get_random_bytes(&rnd, sizeof(rnd)); 2907 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2908 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2909 2910 return elr; 2911 } 2912 2913 static int ext4_register_li_request(struct super_block *sb, 2914 ext4_group_t first_not_zeroed) 2915 { 2916 struct ext4_sb_info *sbi = EXT4_SB(sb); 2917 struct ext4_li_request *elr; 2918 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2919 int ret; 2920 2921 if (sbi->s_li_request != NULL) 2922 return 0; 2923 2924 if (first_not_zeroed == ngroups || 2925 (sb->s_flags & MS_RDONLY) || 2926 !test_opt(sb, INIT_INODE_TABLE)) { 2927 sbi->s_li_request = NULL; 2928 return 0; 2929 } 2930 2931 if (first_not_zeroed == ngroups) { 2932 sbi->s_li_request = NULL; 2933 return 0; 2934 } 2935 2936 elr = ext4_li_request_new(sb, first_not_zeroed); 2937 if (!elr) 2938 return -ENOMEM; 2939 2940 mutex_lock(&ext4_li_mtx); 2941 2942 if (NULL == ext4_li_info) { 2943 ret = ext4_li_info_new(); 2944 if (ret) 2945 goto out; 2946 } 2947 2948 mutex_lock(&ext4_li_info->li_list_mtx); 2949 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2950 mutex_unlock(&ext4_li_info->li_list_mtx); 2951 2952 sbi->s_li_request = elr; 2953 2954 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2955 ret = ext4_run_lazyinit_thread(); 2956 if (ret) 2957 goto out; 2958 } 2959 out: 2960 mutex_unlock(&ext4_li_mtx); 2961 if (ret) 2962 kfree(elr); 2963 return ret; 2964 } 2965 2966 /* 2967 * We do not need to lock anything since this is called on 2968 * module unload. 2969 */ 2970 static void ext4_destroy_lazyinit_thread(void) 2971 { 2972 /* 2973 * If thread exited earlier 2974 * there's nothing to be done. 2975 */ 2976 if (!ext4_li_info) 2977 return; 2978 2979 ext4_clear_request_list(); 2980 2981 while (ext4_li_info->li_task) { 2982 wake_up(&ext4_li_info->li_wait_daemon); 2983 wait_event(ext4_li_info->li_wait_task, 2984 ext4_li_info->li_task == NULL); 2985 } 2986 } 2987 2988 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2989 __releases(kernel_lock) 2990 __acquires(kernel_lock) 2991 { 2992 char *orig_data = kstrdup(data, GFP_KERNEL); 2993 struct buffer_head *bh; 2994 struct ext4_super_block *es = NULL; 2995 struct ext4_sb_info *sbi; 2996 ext4_fsblk_t block; 2997 ext4_fsblk_t sb_block = get_sb_block(&data); 2998 ext4_fsblk_t logical_sb_block; 2999 unsigned long offset = 0; 3000 unsigned long journal_devnum = 0; 3001 unsigned long def_mount_opts; 3002 struct inode *root; 3003 char *cp; 3004 const char *descr; 3005 int ret = -ENOMEM; 3006 int blocksize; 3007 unsigned int db_count; 3008 unsigned int i; 3009 int needs_recovery, has_huge_files; 3010 __u64 blocks_count; 3011 int err; 3012 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3013 ext4_group_t first_not_zeroed; 3014 3015 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3016 if (!sbi) 3017 goto out_free_orig; 3018 3019 sbi->s_blockgroup_lock = 3020 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3021 if (!sbi->s_blockgroup_lock) { 3022 kfree(sbi); 3023 goto out_free_orig; 3024 } 3025 sb->s_fs_info = sbi; 3026 sbi->s_mount_opt = 0; 3027 sbi->s_resuid = EXT4_DEF_RESUID; 3028 sbi->s_resgid = EXT4_DEF_RESGID; 3029 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3030 sbi->s_sb_block = sb_block; 3031 if (sb->s_bdev->bd_part) 3032 sbi->s_sectors_written_start = 3033 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3034 3035 /* Cleanup superblock name */ 3036 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3037 *cp = '!'; 3038 3039 ret = -EINVAL; 3040 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3041 if (!blocksize) { 3042 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3043 goto out_fail; 3044 } 3045 3046 /* 3047 * The ext4 superblock will not be buffer aligned for other than 1kB 3048 * block sizes. We need to calculate the offset from buffer start. 3049 */ 3050 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3051 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3052 offset = do_div(logical_sb_block, blocksize); 3053 } else { 3054 logical_sb_block = sb_block; 3055 } 3056 3057 if (!(bh = sb_bread(sb, logical_sb_block))) { 3058 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3059 goto out_fail; 3060 } 3061 /* 3062 * Note: s_es must be initialized as soon as possible because 3063 * some ext4 macro-instructions depend on its value 3064 */ 3065 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3066 sbi->s_es = es; 3067 sb->s_magic = le16_to_cpu(es->s_magic); 3068 if (sb->s_magic != EXT4_SUPER_MAGIC) 3069 goto cantfind_ext4; 3070 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3071 3072 /* Set defaults before we parse the mount options */ 3073 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3074 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE); 3075 if (def_mount_opts & EXT4_DEFM_DEBUG) 3076 set_opt(sbi->s_mount_opt, DEBUG); 3077 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) { 3078 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups", 3079 "2.6.38"); 3080 set_opt(sbi->s_mount_opt, GRPID); 3081 } 3082 if (def_mount_opts & EXT4_DEFM_UID16) 3083 set_opt(sbi->s_mount_opt, NO_UID32); 3084 #ifdef CONFIG_EXT4_FS_XATTR 3085 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 3086 set_opt(sbi->s_mount_opt, XATTR_USER); 3087 #endif 3088 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3089 if (def_mount_opts & EXT4_DEFM_ACL) 3090 set_opt(sbi->s_mount_opt, POSIX_ACL); 3091 #endif 3092 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3093 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 3094 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3095 set_opt(sbi->s_mount_opt, ORDERED_DATA); 3096 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3097 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 3098 3099 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3100 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 3101 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3102 set_opt(sbi->s_mount_opt, ERRORS_CONT); 3103 else 3104 set_opt(sbi->s_mount_opt, ERRORS_RO); 3105 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3106 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 3107 if (def_mount_opts & EXT4_DEFM_DISCARD) 3108 set_opt(sbi->s_mount_opt, DISCARD); 3109 3110 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3111 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3112 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3113 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3114 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3115 3116 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3117 set_opt(sbi->s_mount_opt, BARRIER); 3118 3119 /* 3120 * enable delayed allocation by default 3121 * Use -o nodelalloc to turn it off 3122 */ 3123 if (!IS_EXT3_SB(sb) && 3124 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3125 set_opt(sbi->s_mount_opt, DELALLOC); 3126 3127 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3128 &journal_devnum, &journal_ioprio, NULL, 0)) { 3129 ext4_msg(sb, KERN_WARNING, 3130 "failed to parse options in superblock: %s", 3131 sbi->s_es->s_mount_opts); 3132 } 3133 if (!parse_options((char *) data, sb, &journal_devnum, 3134 &journal_ioprio, NULL, 0)) 3135 goto failed_mount; 3136 3137 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3138 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3139 3140 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3141 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3142 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3143 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3144 ext4_msg(sb, KERN_WARNING, 3145 "feature flags set on rev 0 fs, " 3146 "running e2fsck is recommended"); 3147 3148 /* 3149 * Check feature flags regardless of the revision level, since we 3150 * previously didn't change the revision level when setting the flags, 3151 * so there is a chance incompat flags are set on a rev 0 filesystem. 3152 */ 3153 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3154 goto failed_mount; 3155 3156 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3157 3158 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3159 blocksize > EXT4_MAX_BLOCK_SIZE) { 3160 ext4_msg(sb, KERN_ERR, 3161 "Unsupported filesystem blocksize %d", blocksize); 3162 goto failed_mount; 3163 } 3164 3165 if (sb->s_blocksize != blocksize) { 3166 /* Validate the filesystem blocksize */ 3167 if (!sb_set_blocksize(sb, blocksize)) { 3168 ext4_msg(sb, KERN_ERR, "bad block size %d", 3169 blocksize); 3170 goto failed_mount; 3171 } 3172 3173 brelse(bh); 3174 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3175 offset = do_div(logical_sb_block, blocksize); 3176 bh = sb_bread(sb, logical_sb_block); 3177 if (!bh) { 3178 ext4_msg(sb, KERN_ERR, 3179 "Can't read superblock on 2nd try"); 3180 goto failed_mount; 3181 } 3182 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3183 sbi->s_es = es; 3184 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3185 ext4_msg(sb, KERN_ERR, 3186 "Magic mismatch, very weird!"); 3187 goto failed_mount; 3188 } 3189 } 3190 3191 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3192 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3193 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3194 has_huge_files); 3195 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3196 3197 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3198 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3199 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3200 } else { 3201 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3202 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3203 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3204 (!is_power_of_2(sbi->s_inode_size)) || 3205 (sbi->s_inode_size > blocksize)) { 3206 ext4_msg(sb, KERN_ERR, 3207 "unsupported inode size: %d", 3208 sbi->s_inode_size); 3209 goto failed_mount; 3210 } 3211 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3212 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3213 } 3214 3215 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3216 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3217 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3218 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3219 !is_power_of_2(sbi->s_desc_size)) { 3220 ext4_msg(sb, KERN_ERR, 3221 "unsupported descriptor size %lu", 3222 sbi->s_desc_size); 3223 goto failed_mount; 3224 } 3225 } else 3226 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3227 3228 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3229 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3230 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3231 goto cantfind_ext4; 3232 3233 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3234 if (sbi->s_inodes_per_block == 0) 3235 goto cantfind_ext4; 3236 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3237 sbi->s_inodes_per_block; 3238 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3239 sbi->s_sbh = bh; 3240 sbi->s_mount_state = le16_to_cpu(es->s_state); 3241 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3242 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3243 3244 for (i = 0; i < 4; i++) 3245 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3246 sbi->s_def_hash_version = es->s_def_hash_version; 3247 i = le32_to_cpu(es->s_flags); 3248 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3249 sbi->s_hash_unsigned = 3; 3250 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3251 #ifdef __CHAR_UNSIGNED__ 3252 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3253 sbi->s_hash_unsigned = 3; 3254 #else 3255 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3256 #endif 3257 sb->s_dirt = 1; 3258 } 3259 3260 if (sbi->s_blocks_per_group > blocksize * 8) { 3261 ext4_msg(sb, KERN_ERR, 3262 "#blocks per group too big: %lu", 3263 sbi->s_blocks_per_group); 3264 goto failed_mount; 3265 } 3266 if (sbi->s_inodes_per_group > blocksize * 8) { 3267 ext4_msg(sb, KERN_ERR, 3268 "#inodes per group too big: %lu", 3269 sbi->s_inodes_per_group); 3270 goto failed_mount; 3271 } 3272 3273 /* 3274 * Test whether we have more sectors than will fit in sector_t, 3275 * and whether the max offset is addressable by the page cache. 3276 */ 3277 err = generic_check_addressable(sb->s_blocksize_bits, 3278 ext4_blocks_count(es)); 3279 if (err) { 3280 ext4_msg(sb, KERN_ERR, "filesystem" 3281 " too large to mount safely on this system"); 3282 if (sizeof(sector_t) < 8) 3283 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3284 ret = err; 3285 goto failed_mount; 3286 } 3287 3288 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3289 goto cantfind_ext4; 3290 3291 /* check blocks count against device size */ 3292 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3293 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3294 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3295 "exceeds size of device (%llu blocks)", 3296 ext4_blocks_count(es), blocks_count); 3297 goto failed_mount; 3298 } 3299 3300 /* 3301 * It makes no sense for the first data block to be beyond the end 3302 * of the filesystem. 3303 */ 3304 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3305 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 3306 "block %u is beyond end of filesystem (%llu)", 3307 le32_to_cpu(es->s_first_data_block), 3308 ext4_blocks_count(es)); 3309 goto failed_mount; 3310 } 3311 blocks_count = (ext4_blocks_count(es) - 3312 le32_to_cpu(es->s_first_data_block) + 3313 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3314 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3315 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3316 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3317 "(block count %llu, first data block %u, " 3318 "blocks per group %lu)", sbi->s_groups_count, 3319 ext4_blocks_count(es), 3320 le32_to_cpu(es->s_first_data_block), 3321 EXT4_BLOCKS_PER_GROUP(sb)); 3322 goto failed_mount; 3323 } 3324 sbi->s_groups_count = blocks_count; 3325 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3326 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3327 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3328 EXT4_DESC_PER_BLOCK(sb); 3329 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 3330 GFP_KERNEL); 3331 if (sbi->s_group_desc == NULL) { 3332 ext4_msg(sb, KERN_ERR, "not enough memory"); 3333 goto failed_mount; 3334 } 3335 3336 #ifdef CONFIG_PROC_FS 3337 if (ext4_proc_root) 3338 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3339 #endif 3340 3341 bgl_lock_init(sbi->s_blockgroup_lock); 3342 3343 for (i = 0; i < db_count; i++) { 3344 block = descriptor_loc(sb, logical_sb_block, i); 3345 sbi->s_group_desc[i] = sb_bread(sb, block); 3346 if (!sbi->s_group_desc[i]) { 3347 ext4_msg(sb, KERN_ERR, 3348 "can't read group descriptor %d", i); 3349 db_count = i; 3350 goto failed_mount2; 3351 } 3352 } 3353 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3354 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3355 goto failed_mount2; 3356 } 3357 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3358 if (!ext4_fill_flex_info(sb)) { 3359 ext4_msg(sb, KERN_ERR, 3360 "unable to initialize " 3361 "flex_bg meta info!"); 3362 goto failed_mount2; 3363 } 3364 3365 sbi->s_gdb_count = db_count; 3366 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3367 spin_lock_init(&sbi->s_next_gen_lock); 3368 3369 err = percpu_counter_init(&sbi->s_freeblocks_counter, 3370 ext4_count_free_blocks(sb)); 3371 if (!err) { 3372 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3373 ext4_count_free_inodes(sb)); 3374 } 3375 if (!err) { 3376 err = percpu_counter_init(&sbi->s_dirs_counter, 3377 ext4_count_dirs(sb)); 3378 } 3379 if (!err) { 3380 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 3381 } 3382 if (err) { 3383 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3384 goto failed_mount3; 3385 } 3386 3387 sbi->s_stripe = ext4_get_stripe_size(sbi); 3388 sbi->s_max_writeback_mb_bump = 128; 3389 3390 /* 3391 * set up enough so that it can read an inode 3392 */ 3393 if (!test_opt(sb, NOLOAD) && 3394 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3395 sb->s_op = &ext4_sops; 3396 else 3397 sb->s_op = &ext4_nojournal_sops; 3398 sb->s_export_op = &ext4_export_ops; 3399 sb->s_xattr = ext4_xattr_handlers; 3400 #ifdef CONFIG_QUOTA 3401 sb->s_qcop = &ext4_qctl_operations; 3402 sb->dq_op = &ext4_quota_operations; 3403 #endif 3404 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3405 mutex_init(&sbi->s_orphan_lock); 3406 mutex_init(&sbi->s_resize_lock); 3407 3408 sb->s_root = NULL; 3409 3410 needs_recovery = (es->s_last_orphan != 0 || 3411 EXT4_HAS_INCOMPAT_FEATURE(sb, 3412 EXT4_FEATURE_INCOMPAT_RECOVER)); 3413 3414 /* 3415 * The first inode we look at is the journal inode. Don't try 3416 * root first: it may be modified in the journal! 3417 */ 3418 if (!test_opt(sb, NOLOAD) && 3419 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3420 if (ext4_load_journal(sb, es, journal_devnum)) 3421 goto failed_mount3; 3422 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3423 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3424 ext4_msg(sb, KERN_ERR, "required journal recovery " 3425 "suppressed and not mounted read-only"); 3426 goto failed_mount_wq; 3427 } else { 3428 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 3429 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 3430 sbi->s_journal = NULL; 3431 needs_recovery = 0; 3432 goto no_journal; 3433 } 3434 3435 if (ext4_blocks_count(es) > 0xffffffffULL && 3436 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3437 JBD2_FEATURE_INCOMPAT_64BIT)) { 3438 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3439 goto failed_mount_wq; 3440 } 3441 3442 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3443 jbd2_journal_set_features(sbi->s_journal, 3444 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3445 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3446 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3447 jbd2_journal_set_features(sbi->s_journal, 3448 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3449 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3450 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3451 } else { 3452 jbd2_journal_clear_features(sbi->s_journal, 3453 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3454 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3455 } 3456 3457 /* We have now updated the journal if required, so we can 3458 * validate the data journaling mode. */ 3459 switch (test_opt(sb, DATA_FLAGS)) { 3460 case 0: 3461 /* No mode set, assume a default based on the journal 3462 * capabilities: ORDERED_DATA if the journal can 3463 * cope, else JOURNAL_DATA 3464 */ 3465 if (jbd2_journal_check_available_features 3466 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3467 set_opt(sbi->s_mount_opt, ORDERED_DATA); 3468 else 3469 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 3470 break; 3471 3472 case EXT4_MOUNT_ORDERED_DATA: 3473 case EXT4_MOUNT_WRITEBACK_DATA: 3474 if (!jbd2_journal_check_available_features 3475 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3476 ext4_msg(sb, KERN_ERR, "Journal does not support " 3477 "requested data journaling mode"); 3478 goto failed_mount_wq; 3479 } 3480 default: 3481 break; 3482 } 3483 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3484 3485 /* 3486 * The journal may have updated the bg summary counts, so we 3487 * need to update the global counters. 3488 */ 3489 percpu_counter_set(&sbi->s_freeblocks_counter, 3490 ext4_count_free_blocks(sb)); 3491 percpu_counter_set(&sbi->s_freeinodes_counter, 3492 ext4_count_free_inodes(sb)); 3493 percpu_counter_set(&sbi->s_dirs_counter, 3494 ext4_count_dirs(sb)); 3495 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0); 3496 3497 no_journal: 3498 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); 3499 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3500 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3501 goto failed_mount_wq; 3502 } 3503 3504 /* 3505 * The jbd2_journal_load will have done any necessary log recovery, 3506 * so we can safely mount the rest of the filesystem now. 3507 */ 3508 3509 root = ext4_iget(sb, EXT4_ROOT_INO); 3510 if (IS_ERR(root)) { 3511 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3512 ret = PTR_ERR(root); 3513 goto failed_mount4; 3514 } 3515 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3516 iput(root); 3517 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3518 goto failed_mount4; 3519 } 3520 sb->s_root = d_alloc_root(root); 3521 if (!sb->s_root) { 3522 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3523 iput(root); 3524 ret = -ENOMEM; 3525 goto failed_mount4; 3526 } 3527 3528 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3529 3530 /* determine the minimum size of new large inodes, if present */ 3531 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3532 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3533 EXT4_GOOD_OLD_INODE_SIZE; 3534 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3535 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3536 if (sbi->s_want_extra_isize < 3537 le16_to_cpu(es->s_want_extra_isize)) 3538 sbi->s_want_extra_isize = 3539 le16_to_cpu(es->s_want_extra_isize); 3540 if (sbi->s_want_extra_isize < 3541 le16_to_cpu(es->s_min_extra_isize)) 3542 sbi->s_want_extra_isize = 3543 le16_to_cpu(es->s_min_extra_isize); 3544 } 3545 } 3546 /* Check if enough inode space is available */ 3547 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3548 sbi->s_inode_size) { 3549 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3550 EXT4_GOOD_OLD_INODE_SIZE; 3551 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3552 "available"); 3553 } 3554 3555 if (test_opt(sb, DELALLOC) && 3556 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 3557 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 3558 "requested data journaling mode"); 3559 clear_opt(sbi->s_mount_opt, DELALLOC); 3560 } 3561 if (test_opt(sb, DIOREAD_NOLOCK)) { 3562 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3563 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3564 "option - requested data journaling mode"); 3565 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 3566 } 3567 if (sb->s_blocksize < PAGE_SIZE) { 3568 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3569 "option - block size is too small"); 3570 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK); 3571 } 3572 } 3573 3574 err = ext4_setup_system_zone(sb); 3575 if (err) { 3576 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3577 "zone (%d)", err); 3578 goto failed_mount4; 3579 } 3580 3581 ext4_ext_init(sb); 3582 err = ext4_mb_init(sb, needs_recovery); 3583 if (err) { 3584 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3585 err); 3586 goto failed_mount4; 3587 } 3588 3589 err = ext4_register_li_request(sb, first_not_zeroed); 3590 if (err) 3591 goto failed_mount4; 3592 3593 sbi->s_kobj.kset = ext4_kset; 3594 init_completion(&sbi->s_kobj_unregister); 3595 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3596 "%s", sb->s_id); 3597 if (err) { 3598 ext4_mb_release(sb); 3599 ext4_ext_release(sb); 3600 goto failed_mount4; 3601 }; 3602 3603 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3604 ext4_orphan_cleanup(sb, es); 3605 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3606 if (needs_recovery) { 3607 ext4_msg(sb, KERN_INFO, "recovery complete"); 3608 ext4_mark_recovery_complete(sb, es); 3609 } 3610 if (EXT4_SB(sb)->s_journal) { 3611 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3612 descr = " journalled data mode"; 3613 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3614 descr = " ordered data mode"; 3615 else 3616 descr = " writeback data mode"; 3617 } else 3618 descr = "out journal"; 3619 3620 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3621 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3622 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3623 3624 init_timer(&sbi->s_err_report); 3625 sbi->s_err_report.function = print_daily_error_info; 3626 sbi->s_err_report.data = (unsigned long) sb; 3627 if (es->s_error_count) 3628 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3629 3630 kfree(orig_data); 3631 return 0; 3632 3633 cantfind_ext4: 3634 if (!silent) 3635 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3636 goto failed_mount; 3637 3638 failed_mount4: 3639 ext4_msg(sb, KERN_ERR, "mount failed"); 3640 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3641 failed_mount_wq: 3642 ext4_release_system_zone(sb); 3643 if (sbi->s_journal) { 3644 jbd2_journal_destroy(sbi->s_journal); 3645 sbi->s_journal = NULL; 3646 } 3647 failed_mount3: 3648 if (sbi->s_flex_groups) { 3649 if (is_vmalloc_addr(sbi->s_flex_groups)) 3650 vfree(sbi->s_flex_groups); 3651 else 3652 kfree(sbi->s_flex_groups); 3653 } 3654 percpu_counter_destroy(&sbi->s_freeblocks_counter); 3655 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3656 percpu_counter_destroy(&sbi->s_dirs_counter); 3657 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 3658 failed_mount2: 3659 for (i = 0; i < db_count; i++) 3660 brelse(sbi->s_group_desc[i]); 3661 kfree(sbi->s_group_desc); 3662 failed_mount: 3663 if (sbi->s_proc) { 3664 remove_proc_entry(sb->s_id, ext4_proc_root); 3665 } 3666 #ifdef CONFIG_QUOTA 3667 for (i = 0; i < MAXQUOTAS; i++) 3668 kfree(sbi->s_qf_names[i]); 3669 #endif 3670 ext4_blkdev_remove(sbi); 3671 brelse(bh); 3672 out_fail: 3673 sb->s_fs_info = NULL; 3674 kfree(sbi->s_blockgroup_lock); 3675 kfree(sbi); 3676 out_free_orig: 3677 kfree(orig_data); 3678 return ret; 3679 } 3680 3681 /* 3682 * Setup any per-fs journal parameters now. We'll do this both on 3683 * initial mount, once the journal has been initialised but before we've 3684 * done any recovery; and again on any subsequent remount. 3685 */ 3686 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3687 { 3688 struct ext4_sb_info *sbi = EXT4_SB(sb); 3689 3690 journal->j_commit_interval = sbi->s_commit_interval; 3691 journal->j_min_batch_time = sbi->s_min_batch_time; 3692 journal->j_max_batch_time = sbi->s_max_batch_time; 3693 3694 write_lock(&journal->j_state_lock); 3695 if (test_opt(sb, BARRIER)) 3696 journal->j_flags |= JBD2_BARRIER; 3697 else 3698 journal->j_flags &= ~JBD2_BARRIER; 3699 if (test_opt(sb, DATA_ERR_ABORT)) 3700 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3701 else 3702 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3703 write_unlock(&journal->j_state_lock); 3704 } 3705 3706 static journal_t *ext4_get_journal(struct super_block *sb, 3707 unsigned int journal_inum) 3708 { 3709 struct inode *journal_inode; 3710 journal_t *journal; 3711 3712 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3713 3714 /* First, test for the existence of a valid inode on disk. Bad 3715 * things happen if we iget() an unused inode, as the subsequent 3716 * iput() will try to delete it. */ 3717 3718 journal_inode = ext4_iget(sb, journal_inum); 3719 if (IS_ERR(journal_inode)) { 3720 ext4_msg(sb, KERN_ERR, "no journal found"); 3721 return NULL; 3722 } 3723 if (!journal_inode->i_nlink) { 3724 make_bad_inode(journal_inode); 3725 iput(journal_inode); 3726 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3727 return NULL; 3728 } 3729 3730 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3731 journal_inode, journal_inode->i_size); 3732 if (!S_ISREG(journal_inode->i_mode)) { 3733 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3734 iput(journal_inode); 3735 return NULL; 3736 } 3737 3738 journal = jbd2_journal_init_inode(journal_inode); 3739 if (!journal) { 3740 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3741 iput(journal_inode); 3742 return NULL; 3743 } 3744 journal->j_private = sb; 3745 ext4_init_journal_params(sb, journal); 3746 return journal; 3747 } 3748 3749 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3750 dev_t j_dev) 3751 { 3752 struct buffer_head *bh; 3753 journal_t *journal; 3754 ext4_fsblk_t start; 3755 ext4_fsblk_t len; 3756 int hblock, blocksize; 3757 ext4_fsblk_t sb_block; 3758 unsigned long offset; 3759 struct ext4_super_block *es; 3760 struct block_device *bdev; 3761 3762 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3763 3764 bdev = ext4_blkdev_get(j_dev, sb); 3765 if (bdev == NULL) 3766 return NULL; 3767 3768 if (bd_claim(bdev, sb)) { 3769 ext4_msg(sb, KERN_ERR, 3770 "failed to claim external journal device"); 3771 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3772 return NULL; 3773 } 3774 3775 blocksize = sb->s_blocksize; 3776 hblock = bdev_logical_block_size(bdev); 3777 if (blocksize < hblock) { 3778 ext4_msg(sb, KERN_ERR, 3779 "blocksize too small for journal device"); 3780 goto out_bdev; 3781 } 3782 3783 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3784 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3785 set_blocksize(bdev, blocksize); 3786 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3787 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3788 "external journal"); 3789 goto out_bdev; 3790 } 3791 3792 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3793 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3794 !(le32_to_cpu(es->s_feature_incompat) & 3795 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3796 ext4_msg(sb, KERN_ERR, "external journal has " 3797 "bad superblock"); 3798 brelse(bh); 3799 goto out_bdev; 3800 } 3801 3802 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3803 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3804 brelse(bh); 3805 goto out_bdev; 3806 } 3807 3808 len = ext4_blocks_count(es); 3809 start = sb_block + 1; 3810 brelse(bh); /* we're done with the superblock */ 3811 3812 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3813 start, len, blocksize); 3814 if (!journal) { 3815 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3816 goto out_bdev; 3817 } 3818 journal->j_private = sb; 3819 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3820 wait_on_buffer(journal->j_sb_buffer); 3821 if (!buffer_uptodate(journal->j_sb_buffer)) { 3822 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3823 goto out_journal; 3824 } 3825 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3826 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3827 "user (unsupported) - %d", 3828 be32_to_cpu(journal->j_superblock->s_nr_users)); 3829 goto out_journal; 3830 } 3831 EXT4_SB(sb)->journal_bdev = bdev; 3832 ext4_init_journal_params(sb, journal); 3833 return journal; 3834 3835 out_journal: 3836 jbd2_journal_destroy(journal); 3837 out_bdev: 3838 ext4_blkdev_put(bdev); 3839 return NULL; 3840 } 3841 3842 static int ext4_load_journal(struct super_block *sb, 3843 struct ext4_super_block *es, 3844 unsigned long journal_devnum) 3845 { 3846 journal_t *journal; 3847 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3848 dev_t journal_dev; 3849 int err = 0; 3850 int really_read_only; 3851 3852 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3853 3854 if (journal_devnum && 3855 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3856 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3857 "numbers have changed"); 3858 journal_dev = new_decode_dev(journal_devnum); 3859 } else 3860 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3861 3862 really_read_only = bdev_read_only(sb->s_bdev); 3863 3864 /* 3865 * Are we loading a blank journal or performing recovery after a 3866 * crash? For recovery, we need to check in advance whether we 3867 * can get read-write access to the device. 3868 */ 3869 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3870 if (sb->s_flags & MS_RDONLY) { 3871 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3872 "required on readonly filesystem"); 3873 if (really_read_only) { 3874 ext4_msg(sb, KERN_ERR, "write access " 3875 "unavailable, cannot proceed"); 3876 return -EROFS; 3877 } 3878 ext4_msg(sb, KERN_INFO, "write access will " 3879 "be enabled during recovery"); 3880 } 3881 } 3882 3883 if (journal_inum && journal_dev) { 3884 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3885 "and inode journals!"); 3886 return -EINVAL; 3887 } 3888 3889 if (journal_inum) { 3890 if (!(journal = ext4_get_journal(sb, journal_inum))) 3891 return -EINVAL; 3892 } else { 3893 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3894 return -EINVAL; 3895 } 3896 3897 if (!(journal->j_flags & JBD2_BARRIER)) 3898 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3899 3900 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3901 err = jbd2_journal_update_format(journal); 3902 if (err) { 3903 ext4_msg(sb, KERN_ERR, "error updating journal"); 3904 jbd2_journal_destroy(journal); 3905 return err; 3906 } 3907 } 3908 3909 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3910 err = jbd2_journal_wipe(journal, !really_read_only); 3911 if (!err) { 3912 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 3913 if (save) 3914 memcpy(save, ((char *) es) + 3915 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 3916 err = jbd2_journal_load(journal); 3917 if (save) 3918 memcpy(((char *) es) + EXT4_S_ERR_START, 3919 save, EXT4_S_ERR_LEN); 3920 kfree(save); 3921 } 3922 3923 if (err) { 3924 ext4_msg(sb, KERN_ERR, "error loading journal"); 3925 jbd2_journal_destroy(journal); 3926 return err; 3927 } 3928 3929 EXT4_SB(sb)->s_journal = journal; 3930 ext4_clear_journal_err(sb, es); 3931 3932 if (!really_read_only && journal_devnum && 3933 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3934 es->s_journal_dev = cpu_to_le32(journal_devnum); 3935 3936 /* Make sure we flush the recovery flag to disk. */ 3937 ext4_commit_super(sb, 1); 3938 } 3939 3940 return 0; 3941 } 3942 3943 static int ext4_commit_super(struct super_block *sb, int sync) 3944 { 3945 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3946 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3947 int error = 0; 3948 3949 if (!sbh) 3950 return error; 3951 if (buffer_write_io_error(sbh)) { 3952 /* 3953 * Oh, dear. A previous attempt to write the 3954 * superblock failed. This could happen because the 3955 * USB device was yanked out. Or it could happen to 3956 * be a transient write error and maybe the block will 3957 * be remapped. Nothing we can do but to retry the 3958 * write and hope for the best. 3959 */ 3960 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3961 "superblock detected"); 3962 clear_buffer_write_io_error(sbh); 3963 set_buffer_uptodate(sbh); 3964 } 3965 /* 3966 * If the file system is mounted read-only, don't update the 3967 * superblock write time. This avoids updating the superblock 3968 * write time when we are mounting the root file system 3969 * read/only but we need to replay the journal; at that point, 3970 * for people who are east of GMT and who make their clock 3971 * tick in localtime for Windows bug-for-bug compatibility, 3972 * the clock is set in the future, and this will cause e2fsck 3973 * to complain and force a full file system check. 3974 */ 3975 if (!(sb->s_flags & MS_RDONLY)) 3976 es->s_wtime = cpu_to_le32(get_seconds()); 3977 if (sb->s_bdev->bd_part) 3978 es->s_kbytes_written = 3979 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3980 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3981 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3982 else 3983 es->s_kbytes_written = 3984 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 3985 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3986 &EXT4_SB(sb)->s_freeblocks_counter)); 3987 es->s_free_inodes_count = 3988 cpu_to_le32(percpu_counter_sum_positive( 3989 &EXT4_SB(sb)->s_freeinodes_counter)); 3990 sb->s_dirt = 0; 3991 BUFFER_TRACE(sbh, "marking dirty"); 3992 mark_buffer_dirty(sbh); 3993 if (sync) { 3994 error = sync_dirty_buffer(sbh); 3995 if (error) 3996 return error; 3997 3998 error = buffer_write_io_error(sbh); 3999 if (error) { 4000 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4001 "superblock"); 4002 clear_buffer_write_io_error(sbh); 4003 set_buffer_uptodate(sbh); 4004 } 4005 } 4006 return error; 4007 } 4008 4009 /* 4010 * Have we just finished recovery? If so, and if we are mounting (or 4011 * remounting) the filesystem readonly, then we will end up with a 4012 * consistent fs on disk. Record that fact. 4013 */ 4014 static void ext4_mark_recovery_complete(struct super_block *sb, 4015 struct ext4_super_block *es) 4016 { 4017 journal_t *journal = EXT4_SB(sb)->s_journal; 4018 4019 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4020 BUG_ON(journal != NULL); 4021 return; 4022 } 4023 jbd2_journal_lock_updates(journal); 4024 if (jbd2_journal_flush(journal) < 0) 4025 goto out; 4026 4027 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4028 sb->s_flags & MS_RDONLY) { 4029 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4030 ext4_commit_super(sb, 1); 4031 } 4032 4033 out: 4034 jbd2_journal_unlock_updates(journal); 4035 } 4036 4037 /* 4038 * If we are mounting (or read-write remounting) a filesystem whose journal 4039 * has recorded an error from a previous lifetime, move that error to the 4040 * main filesystem now. 4041 */ 4042 static void ext4_clear_journal_err(struct super_block *sb, 4043 struct ext4_super_block *es) 4044 { 4045 journal_t *journal; 4046 int j_errno; 4047 const char *errstr; 4048 4049 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4050 4051 journal = EXT4_SB(sb)->s_journal; 4052 4053 /* 4054 * Now check for any error status which may have been recorded in the 4055 * journal by a prior ext4_error() or ext4_abort() 4056 */ 4057 4058 j_errno = jbd2_journal_errno(journal); 4059 if (j_errno) { 4060 char nbuf[16]; 4061 4062 errstr = ext4_decode_error(sb, j_errno, nbuf); 4063 ext4_warning(sb, "Filesystem error recorded " 4064 "from previous mount: %s", errstr); 4065 ext4_warning(sb, "Marking fs in need of filesystem check."); 4066 4067 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4068 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4069 ext4_commit_super(sb, 1); 4070 4071 jbd2_journal_clear_err(journal); 4072 } 4073 } 4074 4075 /* 4076 * Force the running and committing transactions to commit, 4077 * and wait on the commit. 4078 */ 4079 int ext4_force_commit(struct super_block *sb) 4080 { 4081 journal_t *journal; 4082 int ret = 0; 4083 4084 if (sb->s_flags & MS_RDONLY) 4085 return 0; 4086 4087 journal = EXT4_SB(sb)->s_journal; 4088 if (journal) { 4089 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4090 ret = ext4_journal_force_commit(journal); 4091 } 4092 4093 return ret; 4094 } 4095 4096 static void ext4_write_super(struct super_block *sb) 4097 { 4098 lock_super(sb); 4099 ext4_commit_super(sb, 1); 4100 unlock_super(sb); 4101 } 4102 4103 static int ext4_sync_fs(struct super_block *sb, int wait) 4104 { 4105 int ret = 0; 4106 tid_t target; 4107 struct ext4_sb_info *sbi = EXT4_SB(sb); 4108 4109 trace_ext4_sync_fs(sb, wait); 4110 flush_workqueue(sbi->dio_unwritten_wq); 4111 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4112 if (wait) 4113 jbd2_log_wait_commit(sbi->s_journal, target); 4114 } 4115 return ret; 4116 } 4117 4118 /* 4119 * LVM calls this function before a (read-only) snapshot is created. This 4120 * gives us a chance to flush the journal completely and mark the fs clean. 4121 */ 4122 static int ext4_freeze(struct super_block *sb) 4123 { 4124 int error = 0; 4125 journal_t *journal; 4126 4127 if (sb->s_flags & MS_RDONLY) 4128 return 0; 4129 4130 journal = EXT4_SB(sb)->s_journal; 4131 4132 /* Now we set up the journal barrier. */ 4133 jbd2_journal_lock_updates(journal); 4134 4135 /* 4136 * Don't clear the needs_recovery flag if we failed to flush 4137 * the journal. 4138 */ 4139 error = jbd2_journal_flush(journal); 4140 if (error < 0) 4141 goto out; 4142 4143 /* Journal blocked and flushed, clear needs_recovery flag. */ 4144 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4145 error = ext4_commit_super(sb, 1); 4146 out: 4147 /* we rely on s_frozen to stop further updates */ 4148 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4149 return error; 4150 } 4151 4152 /* 4153 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4154 * flag here, even though the filesystem is not technically dirty yet. 4155 */ 4156 static int ext4_unfreeze(struct super_block *sb) 4157 { 4158 if (sb->s_flags & MS_RDONLY) 4159 return 0; 4160 4161 lock_super(sb); 4162 /* Reset the needs_recovery flag before the fs is unlocked. */ 4163 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4164 ext4_commit_super(sb, 1); 4165 unlock_super(sb); 4166 return 0; 4167 } 4168 4169 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4170 { 4171 struct ext4_super_block *es; 4172 struct ext4_sb_info *sbi = EXT4_SB(sb); 4173 ext4_fsblk_t n_blocks_count = 0; 4174 unsigned long old_sb_flags; 4175 struct ext4_mount_options old_opts; 4176 int enable_quota = 0; 4177 ext4_group_t g; 4178 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4179 int err; 4180 #ifdef CONFIG_QUOTA 4181 int i; 4182 #endif 4183 char *orig_data = kstrdup(data, GFP_KERNEL); 4184 4185 /* Store the original options */ 4186 lock_super(sb); 4187 old_sb_flags = sb->s_flags; 4188 old_opts.s_mount_opt = sbi->s_mount_opt; 4189 old_opts.s_resuid = sbi->s_resuid; 4190 old_opts.s_resgid = sbi->s_resgid; 4191 old_opts.s_commit_interval = sbi->s_commit_interval; 4192 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4193 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4194 #ifdef CONFIG_QUOTA 4195 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4196 for (i = 0; i < MAXQUOTAS; i++) 4197 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4198 #endif 4199 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4200 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4201 4202 /* 4203 * Allow the "check" option to be passed as a remount option. 4204 */ 4205 if (!parse_options(data, sb, NULL, &journal_ioprio, 4206 &n_blocks_count, 1)) { 4207 err = -EINVAL; 4208 goto restore_opts; 4209 } 4210 4211 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4212 ext4_abort(sb, "Abort forced by user"); 4213 4214 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4215 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4216 4217 es = sbi->s_es; 4218 4219 if (sbi->s_journal) { 4220 ext4_init_journal_params(sb, sbi->s_journal); 4221 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4222 } 4223 4224 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 4225 n_blocks_count > ext4_blocks_count(es)) { 4226 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4227 err = -EROFS; 4228 goto restore_opts; 4229 } 4230 4231 if (*flags & MS_RDONLY) { 4232 err = dquot_suspend(sb, -1); 4233 if (err < 0) 4234 goto restore_opts; 4235 4236 /* 4237 * First of all, the unconditional stuff we have to do 4238 * to disable replay of the journal when we next remount 4239 */ 4240 sb->s_flags |= MS_RDONLY; 4241 4242 /* 4243 * OK, test if we are remounting a valid rw partition 4244 * readonly, and if so set the rdonly flag and then 4245 * mark the partition as valid again. 4246 */ 4247 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4248 (sbi->s_mount_state & EXT4_VALID_FS)) 4249 es->s_state = cpu_to_le16(sbi->s_mount_state); 4250 4251 if (sbi->s_journal) 4252 ext4_mark_recovery_complete(sb, es); 4253 } else { 4254 /* Make sure we can mount this feature set readwrite */ 4255 if (!ext4_feature_set_ok(sb, 0)) { 4256 err = -EROFS; 4257 goto restore_opts; 4258 } 4259 /* 4260 * Make sure the group descriptor checksums 4261 * are sane. If they aren't, refuse to remount r/w. 4262 */ 4263 for (g = 0; g < sbi->s_groups_count; g++) { 4264 struct ext4_group_desc *gdp = 4265 ext4_get_group_desc(sb, g, NULL); 4266 4267 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4268 ext4_msg(sb, KERN_ERR, 4269 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4270 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4271 le16_to_cpu(gdp->bg_checksum)); 4272 err = -EINVAL; 4273 goto restore_opts; 4274 } 4275 } 4276 4277 /* 4278 * If we have an unprocessed orphan list hanging 4279 * around from a previously readonly bdev mount, 4280 * require a full umount/remount for now. 4281 */ 4282 if (es->s_last_orphan) { 4283 ext4_msg(sb, KERN_WARNING, "Couldn't " 4284 "remount RDWR because of unprocessed " 4285 "orphan inode list. Please " 4286 "umount/remount instead"); 4287 err = -EINVAL; 4288 goto restore_opts; 4289 } 4290 4291 /* 4292 * Mounting a RDONLY partition read-write, so reread 4293 * and store the current valid flag. (It may have 4294 * been changed by e2fsck since we originally mounted 4295 * the partition.) 4296 */ 4297 if (sbi->s_journal) 4298 ext4_clear_journal_err(sb, es); 4299 sbi->s_mount_state = le16_to_cpu(es->s_state); 4300 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 4301 goto restore_opts; 4302 if (!ext4_setup_super(sb, es, 0)) 4303 sb->s_flags &= ~MS_RDONLY; 4304 enable_quota = 1; 4305 } 4306 } 4307 4308 /* 4309 * Reinitialize lazy itable initialization thread based on 4310 * current settings 4311 */ 4312 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4313 ext4_unregister_li_request(sb); 4314 else { 4315 ext4_group_t first_not_zeroed; 4316 first_not_zeroed = ext4_has_uninit_itable(sb); 4317 ext4_register_li_request(sb, first_not_zeroed); 4318 } 4319 4320 ext4_setup_system_zone(sb); 4321 if (sbi->s_journal == NULL) 4322 ext4_commit_super(sb, 1); 4323 4324 #ifdef CONFIG_QUOTA 4325 /* Release old quota file names */ 4326 for (i = 0; i < MAXQUOTAS; i++) 4327 if (old_opts.s_qf_names[i] && 4328 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4329 kfree(old_opts.s_qf_names[i]); 4330 #endif 4331 unlock_super(sb); 4332 if (enable_quota) 4333 dquot_resume(sb, -1); 4334 4335 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4336 kfree(orig_data); 4337 return 0; 4338 4339 restore_opts: 4340 sb->s_flags = old_sb_flags; 4341 sbi->s_mount_opt = old_opts.s_mount_opt; 4342 sbi->s_resuid = old_opts.s_resuid; 4343 sbi->s_resgid = old_opts.s_resgid; 4344 sbi->s_commit_interval = old_opts.s_commit_interval; 4345 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4346 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4347 #ifdef CONFIG_QUOTA 4348 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4349 for (i = 0; i < MAXQUOTAS; i++) { 4350 if (sbi->s_qf_names[i] && 4351 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4352 kfree(sbi->s_qf_names[i]); 4353 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4354 } 4355 #endif 4356 unlock_super(sb); 4357 kfree(orig_data); 4358 return err; 4359 } 4360 4361 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4362 { 4363 struct super_block *sb = dentry->d_sb; 4364 struct ext4_sb_info *sbi = EXT4_SB(sb); 4365 struct ext4_super_block *es = sbi->s_es; 4366 u64 fsid; 4367 4368 if (test_opt(sb, MINIX_DF)) { 4369 sbi->s_overhead_last = 0; 4370 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4371 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4372 ext4_fsblk_t overhead = 0; 4373 4374 /* 4375 * Compute the overhead (FS structures). This is constant 4376 * for a given filesystem unless the number of block groups 4377 * changes so we cache the previous value until it does. 4378 */ 4379 4380 /* 4381 * All of the blocks before first_data_block are 4382 * overhead 4383 */ 4384 overhead = le32_to_cpu(es->s_first_data_block); 4385 4386 /* 4387 * Add the overhead attributed to the superblock and 4388 * block group descriptors. If the sparse superblocks 4389 * feature is turned on, then not all groups have this. 4390 */ 4391 for (i = 0; i < ngroups; i++) { 4392 overhead += ext4_bg_has_super(sb, i) + 4393 ext4_bg_num_gdb(sb, i); 4394 cond_resched(); 4395 } 4396 4397 /* 4398 * Every block group has an inode bitmap, a block 4399 * bitmap, and an inode table. 4400 */ 4401 overhead += ngroups * (2 + sbi->s_itb_per_group); 4402 sbi->s_overhead_last = overhead; 4403 smp_wmb(); 4404 sbi->s_blocks_last = ext4_blocks_count(es); 4405 } 4406 4407 buf->f_type = EXT4_SUPER_MAGIC; 4408 buf->f_bsize = sb->s_blocksize; 4409 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 4410 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 4411 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 4412 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4413 if (buf->f_bfree < ext4_r_blocks_count(es)) 4414 buf->f_bavail = 0; 4415 buf->f_files = le32_to_cpu(es->s_inodes_count); 4416 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4417 buf->f_namelen = EXT4_NAME_LEN; 4418 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4419 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4420 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4421 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4422 4423 return 0; 4424 } 4425 4426 /* Helper function for writing quotas on sync - we need to start transaction 4427 * before quota file is locked for write. Otherwise the are possible deadlocks: 4428 * Process 1 Process 2 4429 * ext4_create() quota_sync() 4430 * jbd2_journal_start() write_dquot() 4431 * dquot_initialize() down(dqio_mutex) 4432 * down(dqio_mutex) jbd2_journal_start() 4433 * 4434 */ 4435 4436 #ifdef CONFIG_QUOTA 4437 4438 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4439 { 4440 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4441 } 4442 4443 static int ext4_write_dquot(struct dquot *dquot) 4444 { 4445 int ret, err; 4446 handle_t *handle; 4447 struct inode *inode; 4448 4449 inode = dquot_to_inode(dquot); 4450 handle = ext4_journal_start(inode, 4451 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4452 if (IS_ERR(handle)) 4453 return PTR_ERR(handle); 4454 ret = dquot_commit(dquot); 4455 err = ext4_journal_stop(handle); 4456 if (!ret) 4457 ret = err; 4458 return ret; 4459 } 4460 4461 static int ext4_acquire_dquot(struct dquot *dquot) 4462 { 4463 int ret, err; 4464 handle_t *handle; 4465 4466 handle = ext4_journal_start(dquot_to_inode(dquot), 4467 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4468 if (IS_ERR(handle)) 4469 return PTR_ERR(handle); 4470 ret = dquot_acquire(dquot); 4471 err = ext4_journal_stop(handle); 4472 if (!ret) 4473 ret = err; 4474 return ret; 4475 } 4476 4477 static int ext4_release_dquot(struct dquot *dquot) 4478 { 4479 int ret, err; 4480 handle_t *handle; 4481 4482 handle = ext4_journal_start(dquot_to_inode(dquot), 4483 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4484 if (IS_ERR(handle)) { 4485 /* Release dquot anyway to avoid endless cycle in dqput() */ 4486 dquot_release(dquot); 4487 return PTR_ERR(handle); 4488 } 4489 ret = dquot_release(dquot); 4490 err = ext4_journal_stop(handle); 4491 if (!ret) 4492 ret = err; 4493 return ret; 4494 } 4495 4496 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4497 { 4498 /* Are we journaling quotas? */ 4499 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4500 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4501 dquot_mark_dquot_dirty(dquot); 4502 return ext4_write_dquot(dquot); 4503 } else { 4504 return dquot_mark_dquot_dirty(dquot); 4505 } 4506 } 4507 4508 static int ext4_write_info(struct super_block *sb, int type) 4509 { 4510 int ret, err; 4511 handle_t *handle; 4512 4513 /* Data block + inode block */ 4514 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4515 if (IS_ERR(handle)) 4516 return PTR_ERR(handle); 4517 ret = dquot_commit_info(sb, type); 4518 err = ext4_journal_stop(handle); 4519 if (!ret) 4520 ret = err; 4521 return ret; 4522 } 4523 4524 /* 4525 * Turn on quotas during mount time - we need to find 4526 * the quota file and such... 4527 */ 4528 static int ext4_quota_on_mount(struct super_block *sb, int type) 4529 { 4530 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4531 EXT4_SB(sb)->s_jquota_fmt, type); 4532 } 4533 4534 /* 4535 * Standard function to be called on quota_on 4536 */ 4537 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4538 char *name) 4539 { 4540 int err; 4541 struct path path; 4542 4543 if (!test_opt(sb, QUOTA)) 4544 return -EINVAL; 4545 4546 err = kern_path(name, LOOKUP_FOLLOW, &path); 4547 if (err) 4548 return err; 4549 4550 /* Quotafile not on the same filesystem? */ 4551 if (path.mnt->mnt_sb != sb) { 4552 path_put(&path); 4553 return -EXDEV; 4554 } 4555 /* Journaling quota? */ 4556 if (EXT4_SB(sb)->s_qf_names[type]) { 4557 /* Quotafile not in fs root? */ 4558 if (path.dentry->d_parent != sb->s_root) 4559 ext4_msg(sb, KERN_WARNING, 4560 "Quota file not on filesystem root. " 4561 "Journaled quota will not work"); 4562 } 4563 4564 /* 4565 * When we journal data on quota file, we have to flush journal to see 4566 * all updates to the file when we bypass pagecache... 4567 */ 4568 if (EXT4_SB(sb)->s_journal && 4569 ext4_should_journal_data(path.dentry->d_inode)) { 4570 /* 4571 * We don't need to lock updates but journal_flush() could 4572 * otherwise be livelocked... 4573 */ 4574 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4575 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4576 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4577 if (err) { 4578 path_put(&path); 4579 return err; 4580 } 4581 } 4582 4583 err = dquot_quota_on_path(sb, type, format_id, &path); 4584 path_put(&path); 4585 return err; 4586 } 4587 4588 static int ext4_quota_off(struct super_block *sb, int type) 4589 { 4590 /* Force all delayed allocation blocks to be allocated. 4591 * Caller already holds s_umount sem */ 4592 if (test_opt(sb, DELALLOC)) 4593 sync_filesystem(sb); 4594 4595 return dquot_quota_off(sb, type); 4596 } 4597 4598 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4599 * acquiring the locks... As quota files are never truncated and quota code 4600 * itself serializes the operations (and noone else should touch the files) 4601 * we don't have to be afraid of races */ 4602 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4603 size_t len, loff_t off) 4604 { 4605 struct inode *inode = sb_dqopt(sb)->files[type]; 4606 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4607 int err = 0; 4608 int offset = off & (sb->s_blocksize - 1); 4609 int tocopy; 4610 size_t toread; 4611 struct buffer_head *bh; 4612 loff_t i_size = i_size_read(inode); 4613 4614 if (off > i_size) 4615 return 0; 4616 if (off+len > i_size) 4617 len = i_size-off; 4618 toread = len; 4619 while (toread > 0) { 4620 tocopy = sb->s_blocksize - offset < toread ? 4621 sb->s_blocksize - offset : toread; 4622 bh = ext4_bread(NULL, inode, blk, 0, &err); 4623 if (err) 4624 return err; 4625 if (!bh) /* A hole? */ 4626 memset(data, 0, tocopy); 4627 else 4628 memcpy(data, bh->b_data+offset, tocopy); 4629 brelse(bh); 4630 offset = 0; 4631 toread -= tocopy; 4632 data += tocopy; 4633 blk++; 4634 } 4635 return len; 4636 } 4637 4638 /* Write to quotafile (we know the transaction is already started and has 4639 * enough credits) */ 4640 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4641 const char *data, size_t len, loff_t off) 4642 { 4643 struct inode *inode = sb_dqopt(sb)->files[type]; 4644 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4645 int err = 0; 4646 int offset = off & (sb->s_blocksize - 1); 4647 struct buffer_head *bh; 4648 handle_t *handle = journal_current_handle(); 4649 4650 if (EXT4_SB(sb)->s_journal && !handle) { 4651 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4652 " cancelled because transaction is not started", 4653 (unsigned long long)off, (unsigned long long)len); 4654 return -EIO; 4655 } 4656 /* 4657 * Since we account only one data block in transaction credits, 4658 * then it is impossible to cross a block boundary. 4659 */ 4660 if (sb->s_blocksize - offset < len) { 4661 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4662 " cancelled because not block aligned", 4663 (unsigned long long)off, (unsigned long long)len); 4664 return -EIO; 4665 } 4666 4667 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4668 bh = ext4_bread(handle, inode, blk, 1, &err); 4669 if (!bh) 4670 goto out; 4671 err = ext4_journal_get_write_access(handle, bh); 4672 if (err) { 4673 brelse(bh); 4674 goto out; 4675 } 4676 lock_buffer(bh); 4677 memcpy(bh->b_data+offset, data, len); 4678 flush_dcache_page(bh->b_page); 4679 unlock_buffer(bh); 4680 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4681 brelse(bh); 4682 out: 4683 if (err) { 4684 mutex_unlock(&inode->i_mutex); 4685 return err; 4686 } 4687 if (inode->i_size < off + len) { 4688 i_size_write(inode, off + len); 4689 EXT4_I(inode)->i_disksize = inode->i_size; 4690 } 4691 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4692 ext4_mark_inode_dirty(handle, inode); 4693 mutex_unlock(&inode->i_mutex); 4694 return len; 4695 } 4696 4697 #endif 4698 4699 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4700 const char *dev_name, void *data) 4701 { 4702 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4703 } 4704 4705 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4706 static struct file_system_type ext2_fs_type = { 4707 .owner = THIS_MODULE, 4708 .name = "ext2", 4709 .mount = ext4_mount, 4710 .kill_sb = kill_block_super, 4711 .fs_flags = FS_REQUIRES_DEV, 4712 }; 4713 4714 static inline void register_as_ext2(void) 4715 { 4716 int err = register_filesystem(&ext2_fs_type); 4717 if (err) 4718 printk(KERN_WARNING 4719 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4720 } 4721 4722 static inline void unregister_as_ext2(void) 4723 { 4724 unregister_filesystem(&ext2_fs_type); 4725 } 4726 MODULE_ALIAS("ext2"); 4727 #else 4728 static inline void register_as_ext2(void) { } 4729 static inline void unregister_as_ext2(void) { } 4730 #endif 4731 4732 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4733 static inline void register_as_ext3(void) 4734 { 4735 int err = register_filesystem(&ext3_fs_type); 4736 if (err) 4737 printk(KERN_WARNING 4738 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4739 } 4740 4741 static inline void unregister_as_ext3(void) 4742 { 4743 unregister_filesystem(&ext3_fs_type); 4744 } 4745 MODULE_ALIAS("ext3"); 4746 #else 4747 static inline void register_as_ext3(void) { } 4748 static inline void unregister_as_ext3(void) { } 4749 #endif 4750 4751 static struct file_system_type ext4_fs_type = { 4752 .owner = THIS_MODULE, 4753 .name = "ext4", 4754 .mount = ext4_mount, 4755 .kill_sb = kill_block_super, 4756 .fs_flags = FS_REQUIRES_DEV, 4757 }; 4758 4759 int __init ext4_init_feat_adverts(void) 4760 { 4761 struct ext4_features *ef; 4762 int ret = -ENOMEM; 4763 4764 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4765 if (!ef) 4766 goto out; 4767 4768 ef->f_kobj.kset = ext4_kset; 4769 init_completion(&ef->f_kobj_unregister); 4770 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4771 "features"); 4772 if (ret) { 4773 kfree(ef); 4774 goto out; 4775 } 4776 4777 ext4_feat = ef; 4778 ret = 0; 4779 out: 4780 return ret; 4781 } 4782 4783 static int __init ext4_init_fs(void) 4784 { 4785 int err; 4786 4787 ext4_check_flag_values(); 4788 err = ext4_init_pageio(); 4789 if (err) 4790 return err; 4791 err = ext4_init_system_zone(); 4792 if (err) 4793 goto out5; 4794 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4795 if (!ext4_kset) 4796 goto out4; 4797 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4798 4799 err = ext4_init_feat_adverts(); 4800 4801 err = ext4_init_mballoc(); 4802 if (err) 4803 goto out3; 4804 4805 err = ext4_init_xattr(); 4806 if (err) 4807 goto out2; 4808 err = init_inodecache(); 4809 if (err) 4810 goto out1; 4811 register_as_ext2(); 4812 register_as_ext3(); 4813 err = register_filesystem(&ext4_fs_type); 4814 if (err) 4815 goto out; 4816 4817 ext4_li_info = NULL; 4818 mutex_init(&ext4_li_mtx); 4819 return 0; 4820 out: 4821 unregister_as_ext2(); 4822 unregister_as_ext3(); 4823 destroy_inodecache(); 4824 out1: 4825 ext4_exit_xattr(); 4826 out2: 4827 ext4_exit_mballoc(); 4828 out3: 4829 kfree(ext4_feat); 4830 remove_proc_entry("fs/ext4", NULL); 4831 kset_unregister(ext4_kset); 4832 out4: 4833 ext4_exit_system_zone(); 4834 out5: 4835 ext4_exit_pageio(); 4836 return err; 4837 } 4838 4839 static void __exit ext4_exit_fs(void) 4840 { 4841 ext4_destroy_lazyinit_thread(); 4842 unregister_as_ext2(); 4843 unregister_as_ext3(); 4844 unregister_filesystem(&ext4_fs_type); 4845 destroy_inodecache(); 4846 ext4_exit_xattr(); 4847 ext4_exit_mballoc(); 4848 remove_proc_entry("fs/ext4", NULL); 4849 kset_unregister(ext4_kset); 4850 ext4_exit_system_zone(); 4851 ext4_exit_pageio(); 4852 } 4853 4854 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4855 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4856 MODULE_LICENSE("GPL"); 4857 module_init(ext4_init_fs) 4858 module_exit(ext4_exit_fs) 4859