xref: /openbmc/linux/fs/ext4/super.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54 
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 struct ext4_lazy_init *ext4_li_info;
58 struct mutex ext4_li_mtx;
59 struct ext4_features *ext4_feat;
60 
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 			     unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 					struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 				   struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 				     char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 		       const char *dev_name, void *data);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 
81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
82 static struct file_system_type ext3_fs_type = {
83 	.owner		= THIS_MODULE,
84 	.name		= "ext3",
85 	.mount		= ext4_mount,
86 	.kill_sb	= kill_block_super,
87 	.fs_flags	= FS_REQUIRES_DEV,
88 };
89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
90 #else
91 #define IS_EXT3_SB(sb) (0)
92 #endif
93 
94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
95 			       struct ext4_group_desc *bg)
96 {
97 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
98 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
100 }
101 
102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
103 			       struct ext4_group_desc *bg)
104 {
105 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
106 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
108 }
109 
110 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
111 			      struct ext4_group_desc *bg)
112 {
113 	return le32_to_cpu(bg->bg_inode_table_lo) |
114 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
116 }
117 
118 __u32 ext4_free_blks_count(struct super_block *sb,
119 			      struct ext4_group_desc *bg)
120 {
121 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
122 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
124 }
125 
126 __u32 ext4_free_inodes_count(struct super_block *sb,
127 			      struct ext4_group_desc *bg)
128 {
129 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
130 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
131 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
132 }
133 
134 __u32 ext4_used_dirs_count(struct super_block *sb,
135 			      struct ext4_group_desc *bg)
136 {
137 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
138 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
139 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
140 }
141 
142 __u32 ext4_itable_unused_count(struct super_block *sb,
143 			      struct ext4_group_desc *bg)
144 {
145 	return le16_to_cpu(bg->bg_itable_unused_lo) |
146 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
148 }
149 
150 void ext4_block_bitmap_set(struct super_block *sb,
151 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
152 {
153 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
154 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
156 }
157 
158 void ext4_inode_bitmap_set(struct super_block *sb,
159 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
160 {
161 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
162 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
164 }
165 
166 void ext4_inode_table_set(struct super_block *sb,
167 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
168 {
169 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
170 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
172 }
173 
174 void ext4_free_blks_set(struct super_block *sb,
175 			  struct ext4_group_desc *bg, __u32 count)
176 {
177 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
178 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
180 }
181 
182 void ext4_free_inodes_set(struct super_block *sb,
183 			  struct ext4_group_desc *bg, __u32 count)
184 {
185 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
186 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
187 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
188 }
189 
190 void ext4_used_dirs_set(struct super_block *sb,
191 			  struct ext4_group_desc *bg, __u32 count)
192 {
193 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
194 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
195 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
196 }
197 
198 void ext4_itable_unused_set(struct super_block *sb,
199 			  struct ext4_group_desc *bg, __u32 count)
200 {
201 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
202 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
204 }
205 
206 
207 /* Just increment the non-pointer handle value */
208 static handle_t *ext4_get_nojournal(void)
209 {
210 	handle_t *handle = current->journal_info;
211 	unsigned long ref_cnt = (unsigned long)handle;
212 
213 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
214 
215 	ref_cnt++;
216 	handle = (handle_t *)ref_cnt;
217 
218 	current->journal_info = handle;
219 	return handle;
220 }
221 
222 
223 /* Decrement the non-pointer handle value */
224 static void ext4_put_nojournal(handle_t *handle)
225 {
226 	unsigned long ref_cnt = (unsigned long)handle;
227 
228 	BUG_ON(ref_cnt == 0);
229 
230 	ref_cnt--;
231 	handle = (handle_t *)ref_cnt;
232 
233 	current->journal_info = handle;
234 }
235 
236 /*
237  * Wrappers for jbd2_journal_start/end.
238  *
239  * The only special thing we need to do here is to make sure that all
240  * journal_end calls result in the superblock being marked dirty, so
241  * that sync() will call the filesystem's write_super callback if
242  * appropriate.
243  */
244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
245 {
246 	journal_t *journal;
247 
248 	if (sb->s_flags & MS_RDONLY)
249 		return ERR_PTR(-EROFS);
250 
251 	vfs_check_frozen(sb, SB_FREEZE_TRANS);
252 	/* Special case here: if the journal has aborted behind our
253 	 * backs (eg. EIO in the commit thread), then we still need to
254 	 * take the FS itself readonly cleanly. */
255 	journal = EXT4_SB(sb)->s_journal;
256 	if (journal) {
257 		if (is_journal_aborted(journal)) {
258 			ext4_abort(sb, "Detected aborted journal");
259 			return ERR_PTR(-EROFS);
260 		}
261 		return jbd2_journal_start(journal, nblocks);
262 	}
263 	return ext4_get_nojournal();
264 }
265 
266 /*
267  * The only special thing we need to do here is to make sure that all
268  * jbd2_journal_stop calls result in the superblock being marked dirty, so
269  * that sync() will call the filesystem's write_super callback if
270  * appropriate.
271  */
272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
273 {
274 	struct super_block *sb;
275 	int err;
276 	int rc;
277 
278 	if (!ext4_handle_valid(handle)) {
279 		ext4_put_nojournal(handle);
280 		return 0;
281 	}
282 	sb = handle->h_transaction->t_journal->j_private;
283 	err = handle->h_err;
284 	rc = jbd2_journal_stop(handle);
285 
286 	if (!err)
287 		err = rc;
288 	if (err)
289 		__ext4_std_error(sb, where, line, err);
290 	return err;
291 }
292 
293 void ext4_journal_abort_handle(const char *caller, unsigned int line,
294 			       const char *err_fn, struct buffer_head *bh,
295 			       handle_t *handle, int err)
296 {
297 	char nbuf[16];
298 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
299 
300 	BUG_ON(!ext4_handle_valid(handle));
301 
302 	if (bh)
303 		BUFFER_TRACE(bh, "abort");
304 
305 	if (!handle->h_err)
306 		handle->h_err = err;
307 
308 	if (is_handle_aborted(handle))
309 		return;
310 
311 	printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
312 	       caller, line, errstr, err_fn);
313 
314 	jbd2_journal_abort_handle(handle);
315 }
316 
317 static void __save_error_info(struct super_block *sb, const char *func,
318 			    unsigned int line)
319 {
320 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 
322 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
323 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
324 	es->s_last_error_time = cpu_to_le32(get_seconds());
325 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
326 	es->s_last_error_line = cpu_to_le32(line);
327 	if (!es->s_first_error_time) {
328 		es->s_first_error_time = es->s_last_error_time;
329 		strncpy(es->s_first_error_func, func,
330 			sizeof(es->s_first_error_func));
331 		es->s_first_error_line = cpu_to_le32(line);
332 		es->s_first_error_ino = es->s_last_error_ino;
333 		es->s_first_error_block = es->s_last_error_block;
334 	}
335 	/*
336 	 * Start the daily error reporting function if it hasn't been
337 	 * started already
338 	 */
339 	if (!es->s_error_count)
340 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
341 	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
342 }
343 
344 static void save_error_info(struct super_block *sb, const char *func,
345 			    unsigned int line)
346 {
347 	__save_error_info(sb, func, line);
348 	ext4_commit_super(sb, 1);
349 }
350 
351 
352 /* Deal with the reporting of failure conditions on a filesystem such as
353  * inconsistencies detected or read IO failures.
354  *
355  * On ext2, we can store the error state of the filesystem in the
356  * superblock.  That is not possible on ext4, because we may have other
357  * write ordering constraints on the superblock which prevent us from
358  * writing it out straight away; and given that the journal is about to
359  * be aborted, we can't rely on the current, or future, transactions to
360  * write out the superblock safely.
361  *
362  * We'll just use the jbd2_journal_abort() error code to record an error in
363  * the journal instead.  On recovery, the journal will complain about
364  * that error until we've noted it down and cleared it.
365  */
366 
367 static void ext4_handle_error(struct super_block *sb)
368 {
369 	if (sb->s_flags & MS_RDONLY)
370 		return;
371 
372 	if (!test_opt(sb, ERRORS_CONT)) {
373 		journal_t *journal = EXT4_SB(sb)->s_journal;
374 
375 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
376 		if (journal)
377 			jbd2_journal_abort(journal, -EIO);
378 	}
379 	if (test_opt(sb, ERRORS_RO)) {
380 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
381 		sb->s_flags |= MS_RDONLY;
382 	}
383 	if (test_opt(sb, ERRORS_PANIC))
384 		panic("EXT4-fs (device %s): panic forced after error\n",
385 			sb->s_id);
386 }
387 
388 void __ext4_error(struct super_block *sb, const char *function,
389 		  unsigned int line, const char *fmt, ...)
390 {
391 	va_list args;
392 
393 	va_start(args, fmt);
394 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ",
395 	       sb->s_id, function, line, current->comm);
396 	vprintk(fmt, args);
397 	printk("\n");
398 	va_end(args);
399 
400 	ext4_handle_error(sb);
401 }
402 
403 void ext4_error_inode(struct inode *inode, const char *function,
404 		      unsigned int line, ext4_fsblk_t block,
405 		      const char *fmt, ...)
406 {
407 	va_list args;
408 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
409 
410 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
411 	es->s_last_error_block = cpu_to_le64(block);
412 	save_error_info(inode->i_sb, function, line);
413 	va_start(args, fmt);
414 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
415 	       inode->i_sb->s_id, function, line, inode->i_ino);
416 	if (block)
417 		printk("block %llu: ", block);
418 	printk("comm %s: ", current->comm);
419 	vprintk(fmt, args);
420 	printk("\n");
421 	va_end(args);
422 
423 	ext4_handle_error(inode->i_sb);
424 }
425 
426 void ext4_error_file(struct file *file, const char *function,
427 		     unsigned int line, const char *fmt, ...)
428 {
429 	va_list args;
430 	struct ext4_super_block *es;
431 	struct inode *inode = file->f_dentry->d_inode;
432 	char pathname[80], *path;
433 
434 	es = EXT4_SB(inode->i_sb)->s_es;
435 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
436 	save_error_info(inode->i_sb, function, line);
437 	va_start(args, fmt);
438 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
439 	if (!path)
440 		path = "(unknown)";
441 	printk(KERN_CRIT
442 	       "EXT4-fs error (device %s): %s:%d: inode #%lu "
443 	       "(comm %s path %s): ",
444 	       inode->i_sb->s_id, function, line, inode->i_ino,
445 	       current->comm, path);
446 	vprintk(fmt, args);
447 	printk("\n");
448 	va_end(args);
449 
450 	ext4_handle_error(inode->i_sb);
451 }
452 
453 static const char *ext4_decode_error(struct super_block *sb, int errno,
454 				     char nbuf[16])
455 {
456 	char *errstr = NULL;
457 
458 	switch (errno) {
459 	case -EIO:
460 		errstr = "IO failure";
461 		break;
462 	case -ENOMEM:
463 		errstr = "Out of memory";
464 		break;
465 	case -EROFS:
466 		if (!sb || (EXT4_SB(sb)->s_journal &&
467 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
468 			errstr = "Journal has aborted";
469 		else
470 			errstr = "Readonly filesystem";
471 		break;
472 	default:
473 		/* If the caller passed in an extra buffer for unknown
474 		 * errors, textualise them now.  Else we just return
475 		 * NULL. */
476 		if (nbuf) {
477 			/* Check for truncated error codes... */
478 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
479 				errstr = nbuf;
480 		}
481 		break;
482 	}
483 
484 	return errstr;
485 }
486 
487 /* __ext4_std_error decodes expected errors from journaling functions
488  * automatically and invokes the appropriate error response.  */
489 
490 void __ext4_std_error(struct super_block *sb, const char *function,
491 		      unsigned int line, int errno)
492 {
493 	char nbuf[16];
494 	const char *errstr;
495 
496 	/* Special case: if the error is EROFS, and we're not already
497 	 * inside a transaction, then there's really no point in logging
498 	 * an error. */
499 	if (errno == -EROFS && journal_current_handle() == NULL &&
500 	    (sb->s_flags & MS_RDONLY))
501 		return;
502 
503 	errstr = ext4_decode_error(sb, errno, nbuf);
504 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
505 	       sb->s_id, function, line, errstr);
506 	save_error_info(sb, function, line);
507 
508 	ext4_handle_error(sb);
509 }
510 
511 /*
512  * ext4_abort is a much stronger failure handler than ext4_error.  The
513  * abort function may be used to deal with unrecoverable failures such
514  * as journal IO errors or ENOMEM at a critical moment in log management.
515  *
516  * We unconditionally force the filesystem into an ABORT|READONLY state,
517  * unless the error response on the fs has been set to panic in which
518  * case we take the easy way out and panic immediately.
519  */
520 
521 void __ext4_abort(struct super_block *sb, const char *function,
522 		unsigned int line, const char *fmt, ...)
523 {
524 	va_list args;
525 
526 	save_error_info(sb, function, line);
527 	va_start(args, fmt);
528 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
529 	       function, line);
530 	vprintk(fmt, args);
531 	printk("\n");
532 	va_end(args);
533 
534 	if ((sb->s_flags & MS_RDONLY) == 0) {
535 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
536 		sb->s_flags |= MS_RDONLY;
537 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
538 		if (EXT4_SB(sb)->s_journal)
539 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
540 		save_error_info(sb, function, line);
541 	}
542 	if (test_opt(sb, ERRORS_PANIC))
543 		panic("EXT4-fs panic from previous error\n");
544 }
545 
546 void ext4_msg (struct super_block * sb, const char *prefix,
547 		   const char *fmt, ...)
548 {
549 	va_list args;
550 
551 	va_start(args, fmt);
552 	printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
553 	vprintk(fmt, args);
554 	printk("\n");
555 	va_end(args);
556 }
557 
558 void __ext4_warning(struct super_block *sb, const char *function,
559 		    unsigned int line, const char *fmt, ...)
560 {
561 	va_list args;
562 
563 	va_start(args, fmt);
564 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ",
565 	       sb->s_id, function, line);
566 	vprintk(fmt, args);
567 	printk("\n");
568 	va_end(args);
569 }
570 
571 void __ext4_grp_locked_error(const char *function, unsigned int line,
572 			     struct super_block *sb, ext4_group_t grp,
573 			     unsigned long ino, ext4_fsblk_t block,
574 			     const char *fmt, ...)
575 __releases(bitlock)
576 __acquires(bitlock)
577 {
578 	va_list args;
579 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
580 
581 	es->s_last_error_ino = cpu_to_le32(ino);
582 	es->s_last_error_block = cpu_to_le64(block);
583 	__save_error_info(sb, function, line);
584 	va_start(args, fmt);
585 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
586 	       sb->s_id, function, line, grp);
587 	if (ino)
588 		printk("inode %lu: ", ino);
589 	if (block)
590 		printk("block %llu:", (unsigned long long) block);
591 	vprintk(fmt, args);
592 	printk("\n");
593 	va_end(args);
594 
595 	if (test_opt(sb, ERRORS_CONT)) {
596 		ext4_commit_super(sb, 0);
597 		return;
598 	}
599 
600 	ext4_unlock_group(sb, grp);
601 	ext4_handle_error(sb);
602 	/*
603 	 * We only get here in the ERRORS_RO case; relocking the group
604 	 * may be dangerous, but nothing bad will happen since the
605 	 * filesystem will have already been marked read/only and the
606 	 * journal has been aborted.  We return 1 as a hint to callers
607 	 * who might what to use the return value from
608 	 * ext4_grp_locked_error() to distinguish beween the
609 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
610 	 * aggressively from the ext4 function in question, with a
611 	 * more appropriate error code.
612 	 */
613 	ext4_lock_group(sb, grp);
614 	return;
615 }
616 
617 void ext4_update_dynamic_rev(struct super_block *sb)
618 {
619 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
620 
621 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
622 		return;
623 
624 	ext4_warning(sb,
625 		     "updating to rev %d because of new feature flag, "
626 		     "running e2fsck is recommended",
627 		     EXT4_DYNAMIC_REV);
628 
629 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
630 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
631 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
632 	/* leave es->s_feature_*compat flags alone */
633 	/* es->s_uuid will be set by e2fsck if empty */
634 
635 	/*
636 	 * The rest of the superblock fields should be zero, and if not it
637 	 * means they are likely already in use, so leave them alone.  We
638 	 * can leave it up to e2fsck to clean up any inconsistencies there.
639 	 */
640 }
641 
642 /*
643  * Open the external journal device
644  */
645 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
646 {
647 	struct block_device *bdev;
648 	char b[BDEVNAME_SIZE];
649 
650 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
651 	if (IS_ERR(bdev))
652 		goto fail;
653 	return bdev;
654 
655 fail:
656 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
657 			__bdevname(dev, b), PTR_ERR(bdev));
658 	return NULL;
659 }
660 
661 /*
662  * Release the journal device
663  */
664 static int ext4_blkdev_put(struct block_device *bdev)
665 {
666 	bd_release(bdev);
667 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
668 }
669 
670 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
671 {
672 	struct block_device *bdev;
673 	int ret = -ENODEV;
674 
675 	bdev = sbi->journal_bdev;
676 	if (bdev) {
677 		ret = ext4_blkdev_put(bdev);
678 		sbi->journal_bdev = NULL;
679 	}
680 	return ret;
681 }
682 
683 static inline struct inode *orphan_list_entry(struct list_head *l)
684 {
685 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
686 }
687 
688 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
689 {
690 	struct list_head *l;
691 
692 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
693 		 le32_to_cpu(sbi->s_es->s_last_orphan));
694 
695 	printk(KERN_ERR "sb_info orphan list:\n");
696 	list_for_each(l, &sbi->s_orphan) {
697 		struct inode *inode = orphan_list_entry(l);
698 		printk(KERN_ERR "  "
699 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
700 		       inode->i_sb->s_id, inode->i_ino, inode,
701 		       inode->i_mode, inode->i_nlink,
702 		       NEXT_ORPHAN(inode));
703 	}
704 }
705 
706 static void ext4_put_super(struct super_block *sb)
707 {
708 	struct ext4_sb_info *sbi = EXT4_SB(sb);
709 	struct ext4_super_block *es = sbi->s_es;
710 	int i, err;
711 
712 	ext4_unregister_li_request(sb);
713 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
714 
715 	flush_workqueue(sbi->dio_unwritten_wq);
716 	destroy_workqueue(sbi->dio_unwritten_wq);
717 
718 	lock_super(sb);
719 	if (sb->s_dirt)
720 		ext4_commit_super(sb, 1);
721 
722 	if (sbi->s_journal) {
723 		err = jbd2_journal_destroy(sbi->s_journal);
724 		sbi->s_journal = NULL;
725 		if (err < 0)
726 			ext4_abort(sb, "Couldn't clean up the journal");
727 	}
728 
729 	del_timer(&sbi->s_err_report);
730 	ext4_release_system_zone(sb);
731 	ext4_mb_release(sb);
732 	ext4_ext_release(sb);
733 	ext4_xattr_put_super(sb);
734 
735 	if (!(sb->s_flags & MS_RDONLY)) {
736 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
737 		es->s_state = cpu_to_le16(sbi->s_mount_state);
738 		ext4_commit_super(sb, 1);
739 	}
740 	if (sbi->s_proc) {
741 		remove_proc_entry(sb->s_id, ext4_proc_root);
742 	}
743 	kobject_del(&sbi->s_kobj);
744 
745 	for (i = 0; i < sbi->s_gdb_count; i++)
746 		brelse(sbi->s_group_desc[i]);
747 	kfree(sbi->s_group_desc);
748 	if (is_vmalloc_addr(sbi->s_flex_groups))
749 		vfree(sbi->s_flex_groups);
750 	else
751 		kfree(sbi->s_flex_groups);
752 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
753 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
754 	percpu_counter_destroy(&sbi->s_dirs_counter);
755 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
756 	brelse(sbi->s_sbh);
757 #ifdef CONFIG_QUOTA
758 	for (i = 0; i < MAXQUOTAS; i++)
759 		kfree(sbi->s_qf_names[i]);
760 #endif
761 
762 	/* Debugging code just in case the in-memory inode orphan list
763 	 * isn't empty.  The on-disk one can be non-empty if we've
764 	 * detected an error and taken the fs readonly, but the
765 	 * in-memory list had better be clean by this point. */
766 	if (!list_empty(&sbi->s_orphan))
767 		dump_orphan_list(sb, sbi);
768 	J_ASSERT(list_empty(&sbi->s_orphan));
769 
770 	invalidate_bdev(sb->s_bdev);
771 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
772 		/*
773 		 * Invalidate the journal device's buffers.  We don't want them
774 		 * floating about in memory - the physical journal device may
775 		 * hotswapped, and it breaks the `ro-after' testing code.
776 		 */
777 		sync_blockdev(sbi->journal_bdev);
778 		invalidate_bdev(sbi->journal_bdev);
779 		ext4_blkdev_remove(sbi);
780 	}
781 	sb->s_fs_info = NULL;
782 	/*
783 	 * Now that we are completely done shutting down the
784 	 * superblock, we need to actually destroy the kobject.
785 	 */
786 	unlock_super(sb);
787 	kobject_put(&sbi->s_kobj);
788 	wait_for_completion(&sbi->s_kobj_unregister);
789 	kfree(sbi->s_blockgroup_lock);
790 	kfree(sbi);
791 }
792 
793 static struct kmem_cache *ext4_inode_cachep;
794 
795 /*
796  * Called inside transaction, so use GFP_NOFS
797  */
798 static struct inode *ext4_alloc_inode(struct super_block *sb)
799 {
800 	struct ext4_inode_info *ei;
801 
802 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
803 	if (!ei)
804 		return NULL;
805 
806 	ei->vfs_inode.i_version = 1;
807 	ei->vfs_inode.i_data.writeback_index = 0;
808 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
809 	INIT_LIST_HEAD(&ei->i_prealloc_list);
810 	spin_lock_init(&ei->i_prealloc_lock);
811 	/*
812 	 * Note:  We can be called before EXT4_SB(sb)->s_journal is set,
813 	 * therefore it can be null here.  Don't check it, just initialize
814 	 * jinode.
815 	 */
816 	jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
817 	ei->i_reserved_data_blocks = 0;
818 	ei->i_reserved_meta_blocks = 0;
819 	ei->i_allocated_meta_blocks = 0;
820 	ei->i_da_metadata_calc_len = 0;
821 	ei->i_delalloc_reserved_flag = 0;
822 	spin_lock_init(&(ei->i_block_reservation_lock));
823 #ifdef CONFIG_QUOTA
824 	ei->i_reserved_quota = 0;
825 #endif
826 	INIT_LIST_HEAD(&ei->i_completed_io_list);
827 	spin_lock_init(&ei->i_completed_io_lock);
828 	ei->cur_aio_dio = NULL;
829 	ei->i_sync_tid = 0;
830 	ei->i_datasync_tid = 0;
831 	atomic_set(&ei->i_ioend_count, 0);
832 
833 	return &ei->vfs_inode;
834 }
835 
836 static int ext4_drop_inode(struct inode *inode)
837 {
838 	int drop = generic_drop_inode(inode);
839 
840 	trace_ext4_drop_inode(inode, drop);
841 	return drop;
842 }
843 
844 static void ext4_destroy_inode(struct inode *inode)
845 {
846 	ext4_ioend_wait(inode);
847 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
848 		ext4_msg(inode->i_sb, KERN_ERR,
849 			 "Inode %lu (%p): orphan list check failed!",
850 			 inode->i_ino, EXT4_I(inode));
851 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
852 				EXT4_I(inode), sizeof(struct ext4_inode_info),
853 				true);
854 		dump_stack();
855 	}
856 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
857 }
858 
859 static void init_once(void *foo)
860 {
861 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
862 
863 	INIT_LIST_HEAD(&ei->i_orphan);
864 #ifdef CONFIG_EXT4_FS_XATTR
865 	init_rwsem(&ei->xattr_sem);
866 #endif
867 	init_rwsem(&ei->i_data_sem);
868 	inode_init_once(&ei->vfs_inode);
869 }
870 
871 static int init_inodecache(void)
872 {
873 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
874 					     sizeof(struct ext4_inode_info),
875 					     0, (SLAB_RECLAIM_ACCOUNT|
876 						SLAB_MEM_SPREAD),
877 					     init_once);
878 	if (ext4_inode_cachep == NULL)
879 		return -ENOMEM;
880 	return 0;
881 }
882 
883 static void destroy_inodecache(void)
884 {
885 	kmem_cache_destroy(ext4_inode_cachep);
886 }
887 
888 void ext4_clear_inode(struct inode *inode)
889 {
890 	invalidate_inode_buffers(inode);
891 	end_writeback(inode);
892 	dquot_drop(inode);
893 	ext4_discard_preallocations(inode);
894 	if (EXT4_JOURNAL(inode))
895 		jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
896 				       &EXT4_I(inode)->jinode);
897 }
898 
899 static inline void ext4_show_quota_options(struct seq_file *seq,
900 					   struct super_block *sb)
901 {
902 #if defined(CONFIG_QUOTA)
903 	struct ext4_sb_info *sbi = EXT4_SB(sb);
904 
905 	if (sbi->s_jquota_fmt) {
906 		char *fmtname = "";
907 
908 		switch (sbi->s_jquota_fmt) {
909 		case QFMT_VFS_OLD:
910 			fmtname = "vfsold";
911 			break;
912 		case QFMT_VFS_V0:
913 			fmtname = "vfsv0";
914 			break;
915 		case QFMT_VFS_V1:
916 			fmtname = "vfsv1";
917 			break;
918 		}
919 		seq_printf(seq, ",jqfmt=%s", fmtname);
920 	}
921 
922 	if (sbi->s_qf_names[USRQUOTA])
923 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
924 
925 	if (sbi->s_qf_names[GRPQUOTA])
926 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
927 
928 	if (test_opt(sb, USRQUOTA))
929 		seq_puts(seq, ",usrquota");
930 
931 	if (test_opt(sb, GRPQUOTA))
932 		seq_puts(seq, ",grpquota");
933 #endif
934 }
935 
936 /*
937  * Show an option if
938  *  - it's set to a non-default value OR
939  *  - if the per-sb default is different from the global default
940  */
941 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
942 {
943 	int def_errors;
944 	unsigned long def_mount_opts;
945 	struct super_block *sb = vfs->mnt_sb;
946 	struct ext4_sb_info *sbi = EXT4_SB(sb);
947 	struct ext4_super_block *es = sbi->s_es;
948 
949 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
950 	def_errors     = le16_to_cpu(es->s_errors);
951 
952 	if (sbi->s_sb_block != 1)
953 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
954 	if (test_opt(sb, MINIX_DF))
955 		seq_puts(seq, ",minixdf");
956 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
957 		seq_puts(seq, ",grpid");
958 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
959 		seq_puts(seq, ",nogrpid");
960 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
961 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
962 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
963 	}
964 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
965 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
966 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
967 	}
968 	if (test_opt(sb, ERRORS_RO)) {
969 		if (def_errors == EXT4_ERRORS_PANIC ||
970 		    def_errors == EXT4_ERRORS_CONTINUE) {
971 			seq_puts(seq, ",errors=remount-ro");
972 		}
973 	}
974 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
975 		seq_puts(seq, ",errors=continue");
976 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
977 		seq_puts(seq, ",errors=panic");
978 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
979 		seq_puts(seq, ",nouid32");
980 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
981 		seq_puts(seq, ",debug");
982 	if (test_opt(sb, OLDALLOC))
983 		seq_puts(seq, ",oldalloc");
984 #ifdef CONFIG_EXT4_FS_XATTR
985 	if (test_opt(sb, XATTR_USER) &&
986 		!(def_mount_opts & EXT4_DEFM_XATTR_USER))
987 		seq_puts(seq, ",user_xattr");
988 	if (!test_opt(sb, XATTR_USER) &&
989 	    (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
990 		seq_puts(seq, ",nouser_xattr");
991 	}
992 #endif
993 #ifdef CONFIG_EXT4_FS_POSIX_ACL
994 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
995 		seq_puts(seq, ",acl");
996 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
997 		seq_puts(seq, ",noacl");
998 #endif
999 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1000 		seq_printf(seq, ",commit=%u",
1001 			   (unsigned) (sbi->s_commit_interval / HZ));
1002 	}
1003 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1004 		seq_printf(seq, ",min_batch_time=%u",
1005 			   (unsigned) sbi->s_min_batch_time);
1006 	}
1007 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1008 		seq_printf(seq, ",max_batch_time=%u",
1009 			   (unsigned) sbi->s_min_batch_time);
1010 	}
1011 
1012 	/*
1013 	 * We're changing the default of barrier mount option, so
1014 	 * let's always display its mount state so it's clear what its
1015 	 * status is.
1016 	 */
1017 	seq_puts(seq, ",barrier=");
1018 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1019 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1020 		seq_puts(seq, ",journal_async_commit");
1021 	else if (test_opt(sb, JOURNAL_CHECKSUM))
1022 		seq_puts(seq, ",journal_checksum");
1023 	if (test_opt(sb, I_VERSION))
1024 		seq_puts(seq, ",i_version");
1025 	if (!test_opt(sb, DELALLOC) &&
1026 	    !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1027 		seq_puts(seq, ",nodelalloc");
1028 
1029 	if (test_opt(sb, MBLK_IO_SUBMIT))
1030 		seq_puts(seq, ",mblk_io_submit");
1031 	if (sbi->s_stripe)
1032 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1033 	/*
1034 	 * journal mode get enabled in different ways
1035 	 * So just print the value even if we didn't specify it
1036 	 */
1037 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1038 		seq_puts(seq, ",data=journal");
1039 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1040 		seq_puts(seq, ",data=ordered");
1041 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1042 		seq_puts(seq, ",data=writeback");
1043 
1044 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1045 		seq_printf(seq, ",inode_readahead_blks=%u",
1046 			   sbi->s_inode_readahead_blks);
1047 
1048 	if (test_opt(sb, DATA_ERR_ABORT))
1049 		seq_puts(seq, ",data_err=abort");
1050 
1051 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
1052 		seq_puts(seq, ",noauto_da_alloc");
1053 
1054 	if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1055 		seq_puts(seq, ",discard");
1056 
1057 	if (test_opt(sb, NOLOAD))
1058 		seq_puts(seq, ",norecovery");
1059 
1060 	if (test_opt(sb, DIOREAD_NOLOCK))
1061 		seq_puts(seq, ",dioread_nolock");
1062 
1063 	if (test_opt(sb, BLOCK_VALIDITY) &&
1064 	    !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1065 		seq_puts(seq, ",block_validity");
1066 
1067 	if (!test_opt(sb, INIT_INODE_TABLE))
1068 		seq_puts(seq, ",noinit_inode_table");
1069 	else if (sbi->s_li_wait_mult)
1070 		seq_printf(seq, ",init_inode_table=%u",
1071 			   (unsigned) sbi->s_li_wait_mult);
1072 
1073 	ext4_show_quota_options(seq, sb);
1074 
1075 	return 0;
1076 }
1077 
1078 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1079 					u64 ino, u32 generation)
1080 {
1081 	struct inode *inode;
1082 
1083 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1084 		return ERR_PTR(-ESTALE);
1085 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1086 		return ERR_PTR(-ESTALE);
1087 
1088 	/* iget isn't really right if the inode is currently unallocated!!
1089 	 *
1090 	 * ext4_read_inode will return a bad_inode if the inode had been
1091 	 * deleted, so we should be safe.
1092 	 *
1093 	 * Currently we don't know the generation for parent directory, so
1094 	 * a generation of 0 means "accept any"
1095 	 */
1096 	inode = ext4_iget(sb, ino);
1097 	if (IS_ERR(inode))
1098 		return ERR_CAST(inode);
1099 	if (generation && inode->i_generation != generation) {
1100 		iput(inode);
1101 		return ERR_PTR(-ESTALE);
1102 	}
1103 
1104 	return inode;
1105 }
1106 
1107 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1108 					int fh_len, int fh_type)
1109 {
1110 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1111 				    ext4_nfs_get_inode);
1112 }
1113 
1114 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1115 					int fh_len, int fh_type)
1116 {
1117 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1118 				    ext4_nfs_get_inode);
1119 }
1120 
1121 /*
1122  * Try to release metadata pages (indirect blocks, directories) which are
1123  * mapped via the block device.  Since these pages could have journal heads
1124  * which would prevent try_to_free_buffers() from freeing them, we must use
1125  * jbd2 layer's try_to_free_buffers() function to release them.
1126  */
1127 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1128 				 gfp_t wait)
1129 {
1130 	journal_t *journal = EXT4_SB(sb)->s_journal;
1131 
1132 	WARN_ON(PageChecked(page));
1133 	if (!page_has_buffers(page))
1134 		return 0;
1135 	if (journal)
1136 		return jbd2_journal_try_to_free_buffers(journal, page,
1137 							wait & ~__GFP_WAIT);
1138 	return try_to_free_buffers(page);
1139 }
1140 
1141 #ifdef CONFIG_QUOTA
1142 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1143 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1144 
1145 static int ext4_write_dquot(struct dquot *dquot);
1146 static int ext4_acquire_dquot(struct dquot *dquot);
1147 static int ext4_release_dquot(struct dquot *dquot);
1148 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1149 static int ext4_write_info(struct super_block *sb, int type);
1150 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1151 				char *path);
1152 static int ext4_quota_off(struct super_block *sb, int type);
1153 static int ext4_quota_on_mount(struct super_block *sb, int type);
1154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1155 			       size_t len, loff_t off);
1156 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1157 				const char *data, size_t len, loff_t off);
1158 
1159 static const struct dquot_operations ext4_quota_operations = {
1160 #ifdef CONFIG_QUOTA
1161 	.get_reserved_space = ext4_get_reserved_space,
1162 #endif
1163 	.write_dquot	= ext4_write_dquot,
1164 	.acquire_dquot	= ext4_acquire_dquot,
1165 	.release_dquot	= ext4_release_dquot,
1166 	.mark_dirty	= ext4_mark_dquot_dirty,
1167 	.write_info	= ext4_write_info,
1168 	.alloc_dquot	= dquot_alloc,
1169 	.destroy_dquot	= dquot_destroy,
1170 };
1171 
1172 static const struct quotactl_ops ext4_qctl_operations = {
1173 	.quota_on	= ext4_quota_on,
1174 	.quota_off	= ext4_quota_off,
1175 	.quota_sync	= dquot_quota_sync,
1176 	.get_info	= dquot_get_dqinfo,
1177 	.set_info	= dquot_set_dqinfo,
1178 	.get_dqblk	= dquot_get_dqblk,
1179 	.set_dqblk	= dquot_set_dqblk
1180 };
1181 #endif
1182 
1183 static const struct super_operations ext4_sops = {
1184 	.alloc_inode	= ext4_alloc_inode,
1185 	.destroy_inode	= ext4_destroy_inode,
1186 	.write_inode	= ext4_write_inode,
1187 	.dirty_inode	= ext4_dirty_inode,
1188 	.drop_inode	= ext4_drop_inode,
1189 	.evict_inode	= ext4_evict_inode,
1190 	.put_super	= ext4_put_super,
1191 	.sync_fs	= ext4_sync_fs,
1192 	.freeze_fs	= ext4_freeze,
1193 	.unfreeze_fs	= ext4_unfreeze,
1194 	.statfs		= ext4_statfs,
1195 	.remount_fs	= ext4_remount,
1196 	.show_options	= ext4_show_options,
1197 #ifdef CONFIG_QUOTA
1198 	.quota_read	= ext4_quota_read,
1199 	.quota_write	= ext4_quota_write,
1200 #endif
1201 	.bdev_try_to_free_page = bdev_try_to_free_page,
1202 };
1203 
1204 static const struct super_operations ext4_nojournal_sops = {
1205 	.alloc_inode	= ext4_alloc_inode,
1206 	.destroy_inode	= ext4_destroy_inode,
1207 	.write_inode	= ext4_write_inode,
1208 	.dirty_inode	= ext4_dirty_inode,
1209 	.drop_inode	= ext4_drop_inode,
1210 	.evict_inode	= ext4_evict_inode,
1211 	.write_super	= ext4_write_super,
1212 	.put_super	= ext4_put_super,
1213 	.statfs		= ext4_statfs,
1214 	.remount_fs	= ext4_remount,
1215 	.show_options	= ext4_show_options,
1216 #ifdef CONFIG_QUOTA
1217 	.quota_read	= ext4_quota_read,
1218 	.quota_write	= ext4_quota_write,
1219 #endif
1220 	.bdev_try_to_free_page = bdev_try_to_free_page,
1221 };
1222 
1223 static const struct export_operations ext4_export_ops = {
1224 	.fh_to_dentry = ext4_fh_to_dentry,
1225 	.fh_to_parent = ext4_fh_to_parent,
1226 	.get_parent = ext4_get_parent,
1227 };
1228 
1229 enum {
1230 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1231 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1232 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1233 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1234 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1235 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1236 	Opt_journal_update, Opt_journal_dev,
1237 	Opt_journal_checksum, Opt_journal_async_commit,
1238 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1239 	Opt_data_err_abort, Opt_data_err_ignore,
1240 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1241 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1242 	Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1243 	Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1244 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1245 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1246 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1247 	Opt_dioread_nolock, Opt_dioread_lock,
1248 	Opt_discard, Opt_nodiscard,
1249 	Opt_init_inode_table, Opt_noinit_inode_table,
1250 };
1251 
1252 static const match_table_t tokens = {
1253 	{Opt_bsd_df, "bsddf"},
1254 	{Opt_minix_df, "minixdf"},
1255 	{Opt_grpid, "grpid"},
1256 	{Opt_grpid, "bsdgroups"},
1257 	{Opt_nogrpid, "nogrpid"},
1258 	{Opt_nogrpid, "sysvgroups"},
1259 	{Opt_resgid, "resgid=%u"},
1260 	{Opt_resuid, "resuid=%u"},
1261 	{Opt_sb, "sb=%u"},
1262 	{Opt_err_cont, "errors=continue"},
1263 	{Opt_err_panic, "errors=panic"},
1264 	{Opt_err_ro, "errors=remount-ro"},
1265 	{Opt_nouid32, "nouid32"},
1266 	{Opt_debug, "debug"},
1267 	{Opt_oldalloc, "oldalloc"},
1268 	{Opt_orlov, "orlov"},
1269 	{Opt_user_xattr, "user_xattr"},
1270 	{Opt_nouser_xattr, "nouser_xattr"},
1271 	{Opt_acl, "acl"},
1272 	{Opt_noacl, "noacl"},
1273 	{Opt_noload, "noload"},
1274 	{Opt_noload, "norecovery"},
1275 	{Opt_nobh, "nobh"},
1276 	{Opt_bh, "bh"},
1277 	{Opt_commit, "commit=%u"},
1278 	{Opt_min_batch_time, "min_batch_time=%u"},
1279 	{Opt_max_batch_time, "max_batch_time=%u"},
1280 	{Opt_journal_update, "journal=update"},
1281 	{Opt_journal_dev, "journal_dev=%u"},
1282 	{Opt_journal_checksum, "journal_checksum"},
1283 	{Opt_journal_async_commit, "journal_async_commit"},
1284 	{Opt_abort, "abort"},
1285 	{Opt_data_journal, "data=journal"},
1286 	{Opt_data_ordered, "data=ordered"},
1287 	{Opt_data_writeback, "data=writeback"},
1288 	{Opt_data_err_abort, "data_err=abort"},
1289 	{Opt_data_err_ignore, "data_err=ignore"},
1290 	{Opt_offusrjquota, "usrjquota="},
1291 	{Opt_usrjquota, "usrjquota=%s"},
1292 	{Opt_offgrpjquota, "grpjquota="},
1293 	{Opt_grpjquota, "grpjquota=%s"},
1294 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1295 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1296 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1297 	{Opt_grpquota, "grpquota"},
1298 	{Opt_noquota, "noquota"},
1299 	{Opt_quota, "quota"},
1300 	{Opt_usrquota, "usrquota"},
1301 	{Opt_barrier, "barrier=%u"},
1302 	{Opt_barrier, "barrier"},
1303 	{Opt_nobarrier, "nobarrier"},
1304 	{Opt_i_version, "i_version"},
1305 	{Opt_stripe, "stripe=%u"},
1306 	{Opt_resize, "resize"},
1307 	{Opt_delalloc, "delalloc"},
1308 	{Opt_nodelalloc, "nodelalloc"},
1309 	{Opt_mblk_io_submit, "mblk_io_submit"},
1310 	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1311 	{Opt_block_validity, "block_validity"},
1312 	{Opt_noblock_validity, "noblock_validity"},
1313 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1314 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1315 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1316 	{Opt_auto_da_alloc, "auto_da_alloc"},
1317 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1318 	{Opt_dioread_nolock, "dioread_nolock"},
1319 	{Opt_dioread_lock, "dioread_lock"},
1320 	{Opt_discard, "discard"},
1321 	{Opt_nodiscard, "nodiscard"},
1322 	{Opt_init_inode_table, "init_itable=%u"},
1323 	{Opt_init_inode_table, "init_itable"},
1324 	{Opt_noinit_inode_table, "noinit_itable"},
1325 	{Opt_err, NULL},
1326 };
1327 
1328 static ext4_fsblk_t get_sb_block(void **data)
1329 {
1330 	ext4_fsblk_t	sb_block;
1331 	char		*options = (char *) *data;
1332 
1333 	if (!options || strncmp(options, "sb=", 3) != 0)
1334 		return 1;	/* Default location */
1335 
1336 	options += 3;
1337 	/* TODO: use simple_strtoll with >32bit ext4 */
1338 	sb_block = simple_strtoul(options, &options, 0);
1339 	if (*options && *options != ',') {
1340 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1341 		       (char *) *data);
1342 		return 1;
1343 	}
1344 	if (*options == ',')
1345 		options++;
1346 	*data = (void *) options;
1347 
1348 	return sb_block;
1349 }
1350 
1351 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1352 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1353 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1354 
1355 #ifdef CONFIG_QUOTA
1356 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1357 {
1358 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1359 	char *qname;
1360 
1361 	if (sb_any_quota_loaded(sb) &&
1362 		!sbi->s_qf_names[qtype]) {
1363 		ext4_msg(sb, KERN_ERR,
1364 			"Cannot change journaled "
1365 			"quota options when quota turned on");
1366 		return 0;
1367 	}
1368 	qname = match_strdup(args);
1369 	if (!qname) {
1370 		ext4_msg(sb, KERN_ERR,
1371 			"Not enough memory for storing quotafile name");
1372 		return 0;
1373 	}
1374 	if (sbi->s_qf_names[qtype] &&
1375 		strcmp(sbi->s_qf_names[qtype], qname)) {
1376 		ext4_msg(sb, KERN_ERR,
1377 			"%s quota file already specified", QTYPE2NAME(qtype));
1378 		kfree(qname);
1379 		return 0;
1380 	}
1381 	sbi->s_qf_names[qtype] = qname;
1382 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1383 		ext4_msg(sb, KERN_ERR,
1384 			"quotafile must be on filesystem root");
1385 		kfree(sbi->s_qf_names[qtype]);
1386 		sbi->s_qf_names[qtype] = NULL;
1387 		return 0;
1388 	}
1389 	set_opt(sbi->s_mount_opt, QUOTA);
1390 	return 1;
1391 }
1392 
1393 static int clear_qf_name(struct super_block *sb, int qtype)
1394 {
1395 
1396 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1397 
1398 	if (sb_any_quota_loaded(sb) &&
1399 		sbi->s_qf_names[qtype]) {
1400 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1401 			" when quota turned on");
1402 		return 0;
1403 	}
1404 	/*
1405 	 * The space will be released later when all options are confirmed
1406 	 * to be correct
1407 	 */
1408 	sbi->s_qf_names[qtype] = NULL;
1409 	return 1;
1410 }
1411 #endif
1412 
1413 static int parse_options(char *options, struct super_block *sb,
1414 			 unsigned long *journal_devnum,
1415 			 unsigned int *journal_ioprio,
1416 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1417 {
1418 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1419 	char *p;
1420 	substring_t args[MAX_OPT_ARGS];
1421 	int data_opt = 0;
1422 	int option;
1423 #ifdef CONFIG_QUOTA
1424 	int qfmt;
1425 #endif
1426 
1427 	if (!options)
1428 		return 1;
1429 
1430 	while ((p = strsep(&options, ",")) != NULL) {
1431 		int token;
1432 		if (!*p)
1433 			continue;
1434 
1435 		/*
1436 		 * Initialize args struct so we know whether arg was
1437 		 * found; some options take optional arguments.
1438 		 */
1439 		args[0].to = args[0].from = 0;
1440 		token = match_token(p, tokens, args);
1441 		switch (token) {
1442 		case Opt_bsd_df:
1443 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1444 			clear_opt(sbi->s_mount_opt, MINIX_DF);
1445 			break;
1446 		case Opt_minix_df:
1447 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1448 			set_opt(sbi->s_mount_opt, MINIX_DF);
1449 
1450 			break;
1451 		case Opt_grpid:
1452 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1453 			set_opt(sbi->s_mount_opt, GRPID);
1454 
1455 			break;
1456 		case Opt_nogrpid:
1457 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1458 			clear_opt(sbi->s_mount_opt, GRPID);
1459 
1460 			break;
1461 		case Opt_resuid:
1462 			if (match_int(&args[0], &option))
1463 				return 0;
1464 			sbi->s_resuid = option;
1465 			break;
1466 		case Opt_resgid:
1467 			if (match_int(&args[0], &option))
1468 				return 0;
1469 			sbi->s_resgid = option;
1470 			break;
1471 		case Opt_sb:
1472 			/* handled by get_sb_block() instead of here */
1473 			/* *sb_block = match_int(&args[0]); */
1474 			break;
1475 		case Opt_err_panic:
1476 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1477 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1478 			set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1479 			break;
1480 		case Opt_err_ro:
1481 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1482 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1483 			set_opt(sbi->s_mount_opt, ERRORS_RO);
1484 			break;
1485 		case Opt_err_cont:
1486 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1487 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1488 			set_opt(sbi->s_mount_opt, ERRORS_CONT);
1489 			break;
1490 		case Opt_nouid32:
1491 			set_opt(sbi->s_mount_opt, NO_UID32);
1492 			break;
1493 		case Opt_debug:
1494 			set_opt(sbi->s_mount_opt, DEBUG);
1495 			break;
1496 		case Opt_oldalloc:
1497 			set_opt(sbi->s_mount_opt, OLDALLOC);
1498 			break;
1499 		case Opt_orlov:
1500 			clear_opt(sbi->s_mount_opt, OLDALLOC);
1501 			break;
1502 #ifdef CONFIG_EXT4_FS_XATTR
1503 		case Opt_user_xattr:
1504 			set_opt(sbi->s_mount_opt, XATTR_USER);
1505 			break;
1506 		case Opt_nouser_xattr:
1507 			clear_opt(sbi->s_mount_opt, XATTR_USER);
1508 			break;
1509 #else
1510 		case Opt_user_xattr:
1511 		case Opt_nouser_xattr:
1512 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1513 			break;
1514 #endif
1515 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1516 		case Opt_acl:
1517 			set_opt(sbi->s_mount_opt, POSIX_ACL);
1518 			break;
1519 		case Opt_noacl:
1520 			clear_opt(sbi->s_mount_opt, POSIX_ACL);
1521 			break;
1522 #else
1523 		case Opt_acl:
1524 		case Opt_noacl:
1525 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1526 			break;
1527 #endif
1528 		case Opt_journal_update:
1529 			/* @@@ FIXME */
1530 			/* Eventually we will want to be able to create
1531 			   a journal file here.  For now, only allow the
1532 			   user to specify an existing inode to be the
1533 			   journal file. */
1534 			if (is_remount) {
1535 				ext4_msg(sb, KERN_ERR,
1536 					 "Cannot specify journal on remount");
1537 				return 0;
1538 			}
1539 			set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1540 			break;
1541 		case Opt_journal_dev:
1542 			if (is_remount) {
1543 				ext4_msg(sb, KERN_ERR,
1544 					"Cannot specify journal on remount");
1545 				return 0;
1546 			}
1547 			if (match_int(&args[0], &option))
1548 				return 0;
1549 			*journal_devnum = option;
1550 			break;
1551 		case Opt_journal_checksum:
1552 			set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1553 			break;
1554 		case Opt_journal_async_commit:
1555 			set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1556 			set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1557 			break;
1558 		case Opt_noload:
1559 			set_opt(sbi->s_mount_opt, NOLOAD);
1560 			break;
1561 		case Opt_commit:
1562 			if (match_int(&args[0], &option))
1563 				return 0;
1564 			if (option < 0)
1565 				return 0;
1566 			if (option == 0)
1567 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1568 			sbi->s_commit_interval = HZ * option;
1569 			break;
1570 		case Opt_max_batch_time:
1571 			if (match_int(&args[0], &option))
1572 				return 0;
1573 			if (option < 0)
1574 				return 0;
1575 			if (option == 0)
1576 				option = EXT4_DEF_MAX_BATCH_TIME;
1577 			sbi->s_max_batch_time = option;
1578 			break;
1579 		case Opt_min_batch_time:
1580 			if (match_int(&args[0], &option))
1581 				return 0;
1582 			if (option < 0)
1583 				return 0;
1584 			sbi->s_min_batch_time = option;
1585 			break;
1586 		case Opt_data_journal:
1587 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1588 			goto datacheck;
1589 		case Opt_data_ordered:
1590 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1591 			goto datacheck;
1592 		case Opt_data_writeback:
1593 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1594 		datacheck:
1595 			if (is_remount) {
1596 				if (test_opt(sb, DATA_FLAGS) != data_opt) {
1597 					ext4_msg(sb, KERN_ERR,
1598 						"Cannot change data mode on remount");
1599 					return 0;
1600 				}
1601 			} else {
1602 				clear_opt(sbi->s_mount_opt, DATA_FLAGS);
1603 				sbi->s_mount_opt |= data_opt;
1604 			}
1605 			break;
1606 		case Opt_data_err_abort:
1607 			set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1608 			break;
1609 		case Opt_data_err_ignore:
1610 			clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1611 			break;
1612 #ifdef CONFIG_QUOTA
1613 		case Opt_usrjquota:
1614 			if (!set_qf_name(sb, USRQUOTA, &args[0]))
1615 				return 0;
1616 			break;
1617 		case Opt_grpjquota:
1618 			if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1619 				return 0;
1620 			break;
1621 		case Opt_offusrjquota:
1622 			if (!clear_qf_name(sb, USRQUOTA))
1623 				return 0;
1624 			break;
1625 		case Opt_offgrpjquota:
1626 			if (!clear_qf_name(sb, GRPQUOTA))
1627 				return 0;
1628 			break;
1629 
1630 		case Opt_jqfmt_vfsold:
1631 			qfmt = QFMT_VFS_OLD;
1632 			goto set_qf_format;
1633 		case Opt_jqfmt_vfsv0:
1634 			qfmt = QFMT_VFS_V0;
1635 			goto set_qf_format;
1636 		case Opt_jqfmt_vfsv1:
1637 			qfmt = QFMT_VFS_V1;
1638 set_qf_format:
1639 			if (sb_any_quota_loaded(sb) &&
1640 			    sbi->s_jquota_fmt != qfmt) {
1641 				ext4_msg(sb, KERN_ERR, "Cannot change "
1642 					"journaled quota options when "
1643 					"quota turned on");
1644 				return 0;
1645 			}
1646 			sbi->s_jquota_fmt = qfmt;
1647 			break;
1648 		case Opt_quota:
1649 		case Opt_usrquota:
1650 			set_opt(sbi->s_mount_opt, QUOTA);
1651 			set_opt(sbi->s_mount_opt, USRQUOTA);
1652 			break;
1653 		case Opt_grpquota:
1654 			set_opt(sbi->s_mount_opt, QUOTA);
1655 			set_opt(sbi->s_mount_opt, GRPQUOTA);
1656 			break;
1657 		case Opt_noquota:
1658 			if (sb_any_quota_loaded(sb)) {
1659 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1660 					"options when quota turned on");
1661 				return 0;
1662 			}
1663 			clear_opt(sbi->s_mount_opt, QUOTA);
1664 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1665 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1666 			break;
1667 #else
1668 		case Opt_quota:
1669 		case Opt_usrquota:
1670 		case Opt_grpquota:
1671 			ext4_msg(sb, KERN_ERR,
1672 				"quota options not supported");
1673 			break;
1674 		case Opt_usrjquota:
1675 		case Opt_grpjquota:
1676 		case Opt_offusrjquota:
1677 		case Opt_offgrpjquota:
1678 		case Opt_jqfmt_vfsold:
1679 		case Opt_jqfmt_vfsv0:
1680 		case Opt_jqfmt_vfsv1:
1681 			ext4_msg(sb, KERN_ERR,
1682 				"journaled quota options not supported");
1683 			break;
1684 		case Opt_noquota:
1685 			break;
1686 #endif
1687 		case Opt_abort:
1688 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1689 			break;
1690 		case Opt_nobarrier:
1691 			clear_opt(sbi->s_mount_opt, BARRIER);
1692 			break;
1693 		case Opt_barrier:
1694 			if (args[0].from) {
1695 				if (match_int(&args[0], &option))
1696 					return 0;
1697 			} else
1698 				option = 1;	/* No argument, default to 1 */
1699 			if (option)
1700 				set_opt(sbi->s_mount_opt, BARRIER);
1701 			else
1702 				clear_opt(sbi->s_mount_opt, BARRIER);
1703 			break;
1704 		case Opt_ignore:
1705 			break;
1706 		case Opt_resize:
1707 			if (!is_remount) {
1708 				ext4_msg(sb, KERN_ERR,
1709 					"resize option only available "
1710 					"for remount");
1711 				return 0;
1712 			}
1713 			if (match_int(&args[0], &option) != 0)
1714 				return 0;
1715 			*n_blocks_count = option;
1716 			break;
1717 		case Opt_nobh:
1718 			ext4_msg(sb, KERN_WARNING,
1719 				 "Ignoring deprecated nobh option");
1720 			break;
1721 		case Opt_bh:
1722 			ext4_msg(sb, KERN_WARNING,
1723 				 "Ignoring deprecated bh option");
1724 			break;
1725 		case Opt_i_version:
1726 			set_opt(sbi->s_mount_opt, I_VERSION);
1727 			sb->s_flags |= MS_I_VERSION;
1728 			break;
1729 		case Opt_nodelalloc:
1730 			clear_opt(sbi->s_mount_opt, DELALLOC);
1731 			break;
1732 		case Opt_mblk_io_submit:
1733 			set_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT);
1734 			break;
1735 		case Opt_nomblk_io_submit:
1736 			clear_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT);
1737 			break;
1738 		case Opt_stripe:
1739 			if (match_int(&args[0], &option))
1740 				return 0;
1741 			if (option < 0)
1742 				return 0;
1743 			sbi->s_stripe = option;
1744 			break;
1745 		case Opt_delalloc:
1746 			set_opt(sbi->s_mount_opt, DELALLOC);
1747 			break;
1748 		case Opt_block_validity:
1749 			set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1750 			break;
1751 		case Opt_noblock_validity:
1752 			clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1753 			break;
1754 		case Opt_inode_readahead_blks:
1755 			if (match_int(&args[0], &option))
1756 				return 0;
1757 			if (option < 0 || option > (1 << 30))
1758 				return 0;
1759 			if (!is_power_of_2(option)) {
1760 				ext4_msg(sb, KERN_ERR,
1761 					 "EXT4-fs: inode_readahead_blks"
1762 					 " must be a power of 2");
1763 				return 0;
1764 			}
1765 			sbi->s_inode_readahead_blks = option;
1766 			break;
1767 		case Opt_journal_ioprio:
1768 			if (match_int(&args[0], &option))
1769 				return 0;
1770 			if (option < 0 || option > 7)
1771 				break;
1772 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1773 							    option);
1774 			break;
1775 		case Opt_noauto_da_alloc:
1776 			set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1777 			break;
1778 		case Opt_auto_da_alloc:
1779 			if (args[0].from) {
1780 				if (match_int(&args[0], &option))
1781 					return 0;
1782 			} else
1783 				option = 1;	/* No argument, default to 1 */
1784 			if (option)
1785 				clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1786 			else
1787 				set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1788 			break;
1789 		case Opt_discard:
1790 			set_opt(sbi->s_mount_opt, DISCARD);
1791 			break;
1792 		case Opt_nodiscard:
1793 			clear_opt(sbi->s_mount_opt, DISCARD);
1794 			break;
1795 		case Opt_dioread_nolock:
1796 			set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1797 			break;
1798 		case Opt_dioread_lock:
1799 			clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1800 			break;
1801 		case Opt_init_inode_table:
1802 			set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1803 			if (args[0].from) {
1804 				if (match_int(&args[0], &option))
1805 					return 0;
1806 			} else
1807 				option = EXT4_DEF_LI_WAIT_MULT;
1808 			if (option < 0)
1809 				return 0;
1810 			sbi->s_li_wait_mult = option;
1811 			break;
1812 		case Opt_noinit_inode_table:
1813 			clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1814 			break;
1815 		default:
1816 			ext4_msg(sb, KERN_ERR,
1817 			       "Unrecognized mount option \"%s\" "
1818 			       "or missing value", p);
1819 			return 0;
1820 		}
1821 	}
1822 #ifdef CONFIG_QUOTA
1823 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1824 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1825 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1826 
1827 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1828 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1829 
1830 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1831 			ext4_msg(sb, KERN_ERR, "old and new quota "
1832 					"format mixing");
1833 			return 0;
1834 		}
1835 
1836 		if (!sbi->s_jquota_fmt) {
1837 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1838 					"not specified");
1839 			return 0;
1840 		}
1841 	} else {
1842 		if (sbi->s_jquota_fmt) {
1843 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1844 					"specified with no journaling "
1845 					"enabled");
1846 			return 0;
1847 		}
1848 	}
1849 #endif
1850 	return 1;
1851 }
1852 
1853 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1854 			    int read_only)
1855 {
1856 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1857 	int res = 0;
1858 
1859 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1860 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1861 			 "forcing read-only mode");
1862 		res = MS_RDONLY;
1863 	}
1864 	if (read_only)
1865 		return res;
1866 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1867 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1868 			 "running e2fsck is recommended");
1869 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1870 		ext4_msg(sb, KERN_WARNING,
1871 			 "warning: mounting fs with errors, "
1872 			 "running e2fsck is recommended");
1873 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1874 		 le16_to_cpu(es->s_mnt_count) >=
1875 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1876 		ext4_msg(sb, KERN_WARNING,
1877 			 "warning: maximal mount count reached, "
1878 			 "running e2fsck is recommended");
1879 	else if (le32_to_cpu(es->s_checkinterval) &&
1880 		(le32_to_cpu(es->s_lastcheck) +
1881 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1882 		ext4_msg(sb, KERN_WARNING,
1883 			 "warning: checktime reached, "
1884 			 "running e2fsck is recommended");
1885 	if (!sbi->s_journal)
1886 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1887 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1888 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1889 	le16_add_cpu(&es->s_mnt_count, 1);
1890 	es->s_mtime = cpu_to_le32(get_seconds());
1891 	ext4_update_dynamic_rev(sb);
1892 	if (sbi->s_journal)
1893 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1894 
1895 	ext4_commit_super(sb, 1);
1896 	if (test_opt(sb, DEBUG))
1897 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1898 				"bpg=%lu, ipg=%lu, mo=%04x]\n",
1899 			sb->s_blocksize,
1900 			sbi->s_groups_count,
1901 			EXT4_BLOCKS_PER_GROUP(sb),
1902 			EXT4_INODES_PER_GROUP(sb),
1903 			sbi->s_mount_opt);
1904 
1905 	return res;
1906 }
1907 
1908 static int ext4_fill_flex_info(struct super_block *sb)
1909 {
1910 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1911 	struct ext4_group_desc *gdp = NULL;
1912 	ext4_group_t flex_group_count;
1913 	ext4_group_t flex_group;
1914 	int groups_per_flex = 0;
1915 	size_t size;
1916 	int i;
1917 
1918 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1919 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1920 
1921 	if (groups_per_flex < 2) {
1922 		sbi->s_log_groups_per_flex = 0;
1923 		return 1;
1924 	}
1925 
1926 	/* We allocate both existing and potentially added groups */
1927 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1928 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1929 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1930 	size = flex_group_count * sizeof(struct flex_groups);
1931 	sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1932 	if (sbi->s_flex_groups == NULL) {
1933 		sbi->s_flex_groups = vmalloc(size);
1934 		if (sbi->s_flex_groups)
1935 			memset(sbi->s_flex_groups, 0, size);
1936 	}
1937 	if (sbi->s_flex_groups == NULL) {
1938 		ext4_msg(sb, KERN_ERR, "not enough memory for "
1939 				"%u flex groups", flex_group_count);
1940 		goto failed;
1941 	}
1942 
1943 	for (i = 0; i < sbi->s_groups_count; i++) {
1944 		gdp = ext4_get_group_desc(sb, i, NULL);
1945 
1946 		flex_group = ext4_flex_group(sbi, i);
1947 		atomic_add(ext4_free_inodes_count(sb, gdp),
1948 			   &sbi->s_flex_groups[flex_group].free_inodes);
1949 		atomic_add(ext4_free_blks_count(sb, gdp),
1950 			   &sbi->s_flex_groups[flex_group].free_blocks);
1951 		atomic_add(ext4_used_dirs_count(sb, gdp),
1952 			   &sbi->s_flex_groups[flex_group].used_dirs);
1953 	}
1954 
1955 	return 1;
1956 failed:
1957 	return 0;
1958 }
1959 
1960 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1961 			    struct ext4_group_desc *gdp)
1962 {
1963 	__u16 crc = 0;
1964 
1965 	if (sbi->s_es->s_feature_ro_compat &
1966 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1967 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1968 		__le32 le_group = cpu_to_le32(block_group);
1969 
1970 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1971 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1972 		crc = crc16(crc, (__u8 *)gdp, offset);
1973 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
1974 		/* for checksum of struct ext4_group_desc do the rest...*/
1975 		if ((sbi->s_es->s_feature_incompat &
1976 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1977 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
1978 			crc = crc16(crc, (__u8 *)gdp + offset,
1979 				    le16_to_cpu(sbi->s_es->s_desc_size) -
1980 					offset);
1981 	}
1982 
1983 	return cpu_to_le16(crc);
1984 }
1985 
1986 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1987 				struct ext4_group_desc *gdp)
1988 {
1989 	if ((sbi->s_es->s_feature_ro_compat &
1990 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1991 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1992 		return 0;
1993 
1994 	return 1;
1995 }
1996 
1997 /* Called at mount-time, super-block is locked */
1998 static int ext4_check_descriptors(struct super_block *sb,
1999 				  ext4_group_t *first_not_zeroed)
2000 {
2001 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2002 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2003 	ext4_fsblk_t last_block;
2004 	ext4_fsblk_t block_bitmap;
2005 	ext4_fsblk_t inode_bitmap;
2006 	ext4_fsblk_t inode_table;
2007 	int flexbg_flag = 0;
2008 	ext4_group_t i, grp = sbi->s_groups_count;
2009 
2010 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2011 		flexbg_flag = 1;
2012 
2013 	ext4_debug("Checking group descriptors");
2014 
2015 	for (i = 0; i < sbi->s_groups_count; i++) {
2016 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2017 
2018 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2019 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2020 		else
2021 			last_block = first_block +
2022 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2023 
2024 		if ((grp == sbi->s_groups_count) &&
2025 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2026 			grp = i;
2027 
2028 		block_bitmap = ext4_block_bitmap(sb, gdp);
2029 		if (block_bitmap < first_block || block_bitmap > last_block) {
2030 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2031 			       "Block bitmap for group %u not in group "
2032 			       "(block %llu)!", i, block_bitmap);
2033 			return 0;
2034 		}
2035 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2036 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2037 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2038 			       "Inode bitmap for group %u not in group "
2039 			       "(block %llu)!", i, inode_bitmap);
2040 			return 0;
2041 		}
2042 		inode_table = ext4_inode_table(sb, gdp);
2043 		if (inode_table < first_block ||
2044 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2045 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2046 			       "Inode table for group %u not in group "
2047 			       "(block %llu)!", i, inode_table);
2048 			return 0;
2049 		}
2050 		ext4_lock_group(sb, i);
2051 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2052 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2053 				 "Checksum for group %u failed (%u!=%u)",
2054 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2055 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2056 			if (!(sb->s_flags & MS_RDONLY)) {
2057 				ext4_unlock_group(sb, i);
2058 				return 0;
2059 			}
2060 		}
2061 		ext4_unlock_group(sb, i);
2062 		if (!flexbg_flag)
2063 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2064 	}
2065 	if (NULL != first_not_zeroed)
2066 		*first_not_zeroed = grp;
2067 
2068 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2069 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2070 	return 1;
2071 }
2072 
2073 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2074  * the superblock) which were deleted from all directories, but held open by
2075  * a process at the time of a crash.  We walk the list and try to delete these
2076  * inodes at recovery time (only with a read-write filesystem).
2077  *
2078  * In order to keep the orphan inode chain consistent during traversal (in
2079  * case of crash during recovery), we link each inode into the superblock
2080  * orphan list_head and handle it the same way as an inode deletion during
2081  * normal operation (which journals the operations for us).
2082  *
2083  * We only do an iget() and an iput() on each inode, which is very safe if we
2084  * accidentally point at an in-use or already deleted inode.  The worst that
2085  * can happen in this case is that we get a "bit already cleared" message from
2086  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2087  * e2fsck was run on this filesystem, and it must have already done the orphan
2088  * inode cleanup for us, so we can safely abort without any further action.
2089  */
2090 static void ext4_orphan_cleanup(struct super_block *sb,
2091 				struct ext4_super_block *es)
2092 {
2093 	unsigned int s_flags = sb->s_flags;
2094 	int nr_orphans = 0, nr_truncates = 0;
2095 #ifdef CONFIG_QUOTA
2096 	int i;
2097 #endif
2098 	if (!es->s_last_orphan) {
2099 		jbd_debug(4, "no orphan inodes to clean up\n");
2100 		return;
2101 	}
2102 
2103 	if (bdev_read_only(sb->s_bdev)) {
2104 		ext4_msg(sb, KERN_ERR, "write access "
2105 			"unavailable, skipping orphan cleanup");
2106 		return;
2107 	}
2108 
2109 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2110 		if (es->s_last_orphan)
2111 			jbd_debug(1, "Errors on filesystem, "
2112 				  "clearing orphan list.\n");
2113 		es->s_last_orphan = 0;
2114 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2115 		return;
2116 	}
2117 
2118 	if (s_flags & MS_RDONLY) {
2119 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2120 		sb->s_flags &= ~MS_RDONLY;
2121 	}
2122 #ifdef CONFIG_QUOTA
2123 	/* Needed for iput() to work correctly and not trash data */
2124 	sb->s_flags |= MS_ACTIVE;
2125 	/* Turn on quotas so that they are updated correctly */
2126 	for (i = 0; i < MAXQUOTAS; i++) {
2127 		if (EXT4_SB(sb)->s_qf_names[i]) {
2128 			int ret = ext4_quota_on_mount(sb, i);
2129 			if (ret < 0)
2130 				ext4_msg(sb, KERN_ERR,
2131 					"Cannot turn on journaled "
2132 					"quota: error %d", ret);
2133 		}
2134 	}
2135 #endif
2136 
2137 	while (es->s_last_orphan) {
2138 		struct inode *inode;
2139 
2140 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2141 		if (IS_ERR(inode)) {
2142 			es->s_last_orphan = 0;
2143 			break;
2144 		}
2145 
2146 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2147 		dquot_initialize(inode);
2148 		if (inode->i_nlink) {
2149 			ext4_msg(sb, KERN_DEBUG,
2150 				"%s: truncating inode %lu to %lld bytes",
2151 				__func__, inode->i_ino, inode->i_size);
2152 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2153 				  inode->i_ino, inode->i_size);
2154 			ext4_truncate(inode);
2155 			nr_truncates++;
2156 		} else {
2157 			ext4_msg(sb, KERN_DEBUG,
2158 				"%s: deleting unreferenced inode %lu",
2159 				__func__, inode->i_ino);
2160 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2161 				  inode->i_ino);
2162 			nr_orphans++;
2163 		}
2164 		iput(inode);  /* The delete magic happens here! */
2165 	}
2166 
2167 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2168 
2169 	if (nr_orphans)
2170 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2171 		       PLURAL(nr_orphans));
2172 	if (nr_truncates)
2173 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2174 		       PLURAL(nr_truncates));
2175 #ifdef CONFIG_QUOTA
2176 	/* Turn quotas off */
2177 	for (i = 0; i < MAXQUOTAS; i++) {
2178 		if (sb_dqopt(sb)->files[i])
2179 			dquot_quota_off(sb, i);
2180 	}
2181 #endif
2182 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2183 }
2184 
2185 /*
2186  * Maximal extent format file size.
2187  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2188  * extent format containers, within a sector_t, and within i_blocks
2189  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2190  * so that won't be a limiting factor.
2191  *
2192  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2193  */
2194 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2195 {
2196 	loff_t res;
2197 	loff_t upper_limit = MAX_LFS_FILESIZE;
2198 
2199 	/* small i_blocks in vfs inode? */
2200 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2201 		/*
2202 		 * CONFIG_LBDAF is not enabled implies the inode
2203 		 * i_block represent total blocks in 512 bytes
2204 		 * 32 == size of vfs inode i_blocks * 8
2205 		 */
2206 		upper_limit = (1LL << 32) - 1;
2207 
2208 		/* total blocks in file system block size */
2209 		upper_limit >>= (blkbits - 9);
2210 		upper_limit <<= blkbits;
2211 	}
2212 
2213 	/* 32-bit extent-start container, ee_block */
2214 	res = 1LL << 32;
2215 	res <<= blkbits;
2216 	res -= 1;
2217 
2218 	/* Sanity check against vm- & vfs- imposed limits */
2219 	if (res > upper_limit)
2220 		res = upper_limit;
2221 
2222 	return res;
2223 }
2224 
2225 /*
2226  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2227  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2228  * We need to be 1 filesystem block less than the 2^48 sector limit.
2229  */
2230 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2231 {
2232 	loff_t res = EXT4_NDIR_BLOCKS;
2233 	int meta_blocks;
2234 	loff_t upper_limit;
2235 	/* This is calculated to be the largest file size for a dense, block
2236 	 * mapped file such that the file's total number of 512-byte sectors,
2237 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2238 	 *
2239 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2240 	 * number of 512-byte sectors of the file.
2241 	 */
2242 
2243 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2244 		/*
2245 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2246 		 * the inode i_block field represents total file blocks in
2247 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2248 		 */
2249 		upper_limit = (1LL << 32) - 1;
2250 
2251 		/* total blocks in file system block size */
2252 		upper_limit >>= (bits - 9);
2253 
2254 	} else {
2255 		/*
2256 		 * We use 48 bit ext4_inode i_blocks
2257 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2258 		 * represent total number of blocks in
2259 		 * file system block size
2260 		 */
2261 		upper_limit = (1LL << 48) - 1;
2262 
2263 	}
2264 
2265 	/* indirect blocks */
2266 	meta_blocks = 1;
2267 	/* double indirect blocks */
2268 	meta_blocks += 1 + (1LL << (bits-2));
2269 	/* tripple indirect blocks */
2270 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2271 
2272 	upper_limit -= meta_blocks;
2273 	upper_limit <<= bits;
2274 
2275 	res += 1LL << (bits-2);
2276 	res += 1LL << (2*(bits-2));
2277 	res += 1LL << (3*(bits-2));
2278 	res <<= bits;
2279 	if (res > upper_limit)
2280 		res = upper_limit;
2281 
2282 	if (res > MAX_LFS_FILESIZE)
2283 		res = MAX_LFS_FILESIZE;
2284 
2285 	return res;
2286 }
2287 
2288 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2289 				   ext4_fsblk_t logical_sb_block, int nr)
2290 {
2291 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2292 	ext4_group_t bg, first_meta_bg;
2293 	int has_super = 0;
2294 
2295 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2296 
2297 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2298 	    nr < first_meta_bg)
2299 		return logical_sb_block + nr + 1;
2300 	bg = sbi->s_desc_per_block * nr;
2301 	if (ext4_bg_has_super(sb, bg))
2302 		has_super = 1;
2303 
2304 	return (has_super + ext4_group_first_block_no(sb, bg));
2305 }
2306 
2307 /**
2308  * ext4_get_stripe_size: Get the stripe size.
2309  * @sbi: In memory super block info
2310  *
2311  * If we have specified it via mount option, then
2312  * use the mount option value. If the value specified at mount time is
2313  * greater than the blocks per group use the super block value.
2314  * If the super block value is greater than blocks per group return 0.
2315  * Allocator needs it be less than blocks per group.
2316  *
2317  */
2318 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2319 {
2320 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2321 	unsigned long stripe_width =
2322 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2323 
2324 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2325 		return sbi->s_stripe;
2326 
2327 	if (stripe_width <= sbi->s_blocks_per_group)
2328 		return stripe_width;
2329 
2330 	if (stride <= sbi->s_blocks_per_group)
2331 		return stride;
2332 
2333 	return 0;
2334 }
2335 
2336 /* sysfs supprt */
2337 
2338 struct ext4_attr {
2339 	struct attribute attr;
2340 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2341 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2342 			 const char *, size_t);
2343 	int offset;
2344 };
2345 
2346 static int parse_strtoul(const char *buf,
2347 		unsigned long max, unsigned long *value)
2348 {
2349 	char *endp;
2350 
2351 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2352 	endp = skip_spaces(endp);
2353 	if (*endp || *value > max)
2354 		return -EINVAL;
2355 
2356 	return 0;
2357 }
2358 
2359 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2360 					      struct ext4_sb_info *sbi,
2361 					      char *buf)
2362 {
2363 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2364 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2365 }
2366 
2367 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2368 					 struct ext4_sb_info *sbi, char *buf)
2369 {
2370 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2371 
2372 	if (!sb->s_bdev->bd_part)
2373 		return snprintf(buf, PAGE_SIZE, "0\n");
2374 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2375 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2376 			 sbi->s_sectors_written_start) >> 1);
2377 }
2378 
2379 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2380 					  struct ext4_sb_info *sbi, char *buf)
2381 {
2382 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2383 
2384 	if (!sb->s_bdev->bd_part)
2385 		return snprintf(buf, PAGE_SIZE, "0\n");
2386 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2387 			(unsigned long long)(sbi->s_kbytes_written +
2388 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2389 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2390 }
2391 
2392 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2393 					  struct ext4_sb_info *sbi,
2394 					  const char *buf, size_t count)
2395 {
2396 	unsigned long t;
2397 
2398 	if (parse_strtoul(buf, 0x40000000, &t))
2399 		return -EINVAL;
2400 
2401 	if (!is_power_of_2(t))
2402 		return -EINVAL;
2403 
2404 	sbi->s_inode_readahead_blks = t;
2405 	return count;
2406 }
2407 
2408 static ssize_t sbi_ui_show(struct ext4_attr *a,
2409 			   struct ext4_sb_info *sbi, char *buf)
2410 {
2411 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2412 
2413 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2414 }
2415 
2416 static ssize_t sbi_ui_store(struct ext4_attr *a,
2417 			    struct ext4_sb_info *sbi,
2418 			    const char *buf, size_t count)
2419 {
2420 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2421 	unsigned long t;
2422 
2423 	if (parse_strtoul(buf, 0xffffffff, &t))
2424 		return -EINVAL;
2425 	*ui = t;
2426 	return count;
2427 }
2428 
2429 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2430 static struct ext4_attr ext4_attr_##_name = {			\
2431 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2432 	.show	= _show,					\
2433 	.store	= _store,					\
2434 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2435 }
2436 #define EXT4_ATTR(name, mode, show, store) \
2437 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2438 
2439 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2440 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2441 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2442 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2443 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2444 #define ATTR_LIST(name) &ext4_attr_##name.attr
2445 
2446 EXT4_RO_ATTR(delayed_allocation_blocks);
2447 EXT4_RO_ATTR(session_write_kbytes);
2448 EXT4_RO_ATTR(lifetime_write_kbytes);
2449 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2450 		 inode_readahead_blks_store, s_inode_readahead_blks);
2451 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2452 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2453 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2454 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2455 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2456 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2457 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2458 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2459 
2460 static struct attribute *ext4_attrs[] = {
2461 	ATTR_LIST(delayed_allocation_blocks),
2462 	ATTR_LIST(session_write_kbytes),
2463 	ATTR_LIST(lifetime_write_kbytes),
2464 	ATTR_LIST(inode_readahead_blks),
2465 	ATTR_LIST(inode_goal),
2466 	ATTR_LIST(mb_stats),
2467 	ATTR_LIST(mb_max_to_scan),
2468 	ATTR_LIST(mb_min_to_scan),
2469 	ATTR_LIST(mb_order2_req),
2470 	ATTR_LIST(mb_stream_req),
2471 	ATTR_LIST(mb_group_prealloc),
2472 	ATTR_LIST(max_writeback_mb_bump),
2473 	NULL,
2474 };
2475 
2476 /* Features this copy of ext4 supports */
2477 EXT4_INFO_ATTR(lazy_itable_init);
2478 EXT4_INFO_ATTR(batched_discard);
2479 
2480 static struct attribute *ext4_feat_attrs[] = {
2481 	ATTR_LIST(lazy_itable_init),
2482 	ATTR_LIST(batched_discard),
2483 	NULL,
2484 };
2485 
2486 static ssize_t ext4_attr_show(struct kobject *kobj,
2487 			      struct attribute *attr, char *buf)
2488 {
2489 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2490 						s_kobj);
2491 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2492 
2493 	return a->show ? a->show(a, sbi, buf) : 0;
2494 }
2495 
2496 static ssize_t ext4_attr_store(struct kobject *kobj,
2497 			       struct attribute *attr,
2498 			       const char *buf, size_t len)
2499 {
2500 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2501 						s_kobj);
2502 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2503 
2504 	return a->store ? a->store(a, sbi, buf, len) : 0;
2505 }
2506 
2507 static void ext4_sb_release(struct kobject *kobj)
2508 {
2509 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2510 						s_kobj);
2511 	complete(&sbi->s_kobj_unregister);
2512 }
2513 
2514 static const struct sysfs_ops ext4_attr_ops = {
2515 	.show	= ext4_attr_show,
2516 	.store	= ext4_attr_store,
2517 };
2518 
2519 static struct kobj_type ext4_ktype = {
2520 	.default_attrs	= ext4_attrs,
2521 	.sysfs_ops	= &ext4_attr_ops,
2522 	.release	= ext4_sb_release,
2523 };
2524 
2525 static void ext4_feat_release(struct kobject *kobj)
2526 {
2527 	complete(&ext4_feat->f_kobj_unregister);
2528 }
2529 
2530 static struct kobj_type ext4_feat_ktype = {
2531 	.default_attrs	= ext4_feat_attrs,
2532 	.sysfs_ops	= &ext4_attr_ops,
2533 	.release	= ext4_feat_release,
2534 };
2535 
2536 /*
2537  * Check whether this filesystem can be mounted based on
2538  * the features present and the RDONLY/RDWR mount requested.
2539  * Returns 1 if this filesystem can be mounted as requested,
2540  * 0 if it cannot be.
2541  */
2542 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2543 {
2544 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2545 		ext4_msg(sb, KERN_ERR,
2546 			"Couldn't mount because of "
2547 			"unsupported optional features (%x)",
2548 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2549 			~EXT4_FEATURE_INCOMPAT_SUPP));
2550 		return 0;
2551 	}
2552 
2553 	if (readonly)
2554 		return 1;
2555 
2556 	/* Check that feature set is OK for a read-write mount */
2557 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2558 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2559 			 "unsupported optional features (%x)",
2560 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2561 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2562 		return 0;
2563 	}
2564 	/*
2565 	 * Large file size enabled file system can only be mounted
2566 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2567 	 */
2568 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2569 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2570 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2571 				 "cannot be mounted RDWR without "
2572 				 "CONFIG_LBDAF");
2573 			return 0;
2574 		}
2575 	}
2576 	return 1;
2577 }
2578 
2579 /*
2580  * This function is called once a day if we have errors logged
2581  * on the file system
2582  */
2583 static void print_daily_error_info(unsigned long arg)
2584 {
2585 	struct super_block *sb = (struct super_block *) arg;
2586 	struct ext4_sb_info *sbi;
2587 	struct ext4_super_block *es;
2588 
2589 	sbi = EXT4_SB(sb);
2590 	es = sbi->s_es;
2591 
2592 	if (es->s_error_count)
2593 		ext4_msg(sb, KERN_NOTICE, "error count: %u",
2594 			 le32_to_cpu(es->s_error_count));
2595 	if (es->s_first_error_time) {
2596 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2597 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2598 		       (int) sizeof(es->s_first_error_func),
2599 		       es->s_first_error_func,
2600 		       le32_to_cpu(es->s_first_error_line));
2601 		if (es->s_first_error_ino)
2602 			printk(": inode %u",
2603 			       le32_to_cpu(es->s_first_error_ino));
2604 		if (es->s_first_error_block)
2605 			printk(": block %llu", (unsigned long long)
2606 			       le64_to_cpu(es->s_first_error_block));
2607 		printk("\n");
2608 	}
2609 	if (es->s_last_error_time) {
2610 		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2611 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2612 		       (int) sizeof(es->s_last_error_func),
2613 		       es->s_last_error_func,
2614 		       le32_to_cpu(es->s_last_error_line));
2615 		if (es->s_last_error_ino)
2616 			printk(": inode %u",
2617 			       le32_to_cpu(es->s_last_error_ino));
2618 		if (es->s_last_error_block)
2619 			printk(": block %llu", (unsigned long long)
2620 			       le64_to_cpu(es->s_last_error_block));
2621 		printk("\n");
2622 	}
2623 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2624 }
2625 
2626 static void ext4_lazyinode_timeout(unsigned long data)
2627 {
2628 	struct task_struct *p = (struct task_struct *)data;
2629 	wake_up_process(p);
2630 }
2631 
2632 /* Find next suitable group and run ext4_init_inode_table */
2633 static int ext4_run_li_request(struct ext4_li_request *elr)
2634 {
2635 	struct ext4_group_desc *gdp = NULL;
2636 	ext4_group_t group, ngroups;
2637 	struct super_block *sb;
2638 	unsigned long timeout = 0;
2639 	int ret = 0;
2640 
2641 	sb = elr->lr_super;
2642 	ngroups = EXT4_SB(sb)->s_groups_count;
2643 
2644 	for (group = elr->lr_next_group; group < ngroups; group++) {
2645 		gdp = ext4_get_group_desc(sb, group, NULL);
2646 		if (!gdp) {
2647 			ret = 1;
2648 			break;
2649 		}
2650 
2651 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2652 			break;
2653 	}
2654 
2655 	if (group == ngroups)
2656 		ret = 1;
2657 
2658 	if (!ret) {
2659 		timeout = jiffies;
2660 		ret = ext4_init_inode_table(sb, group,
2661 					    elr->lr_timeout ? 0 : 1);
2662 		if (elr->lr_timeout == 0) {
2663 			timeout = jiffies - timeout;
2664 			if (elr->lr_sbi->s_li_wait_mult)
2665 				timeout *= elr->lr_sbi->s_li_wait_mult;
2666 			else
2667 				timeout *= 20;
2668 			elr->lr_timeout = timeout;
2669 		}
2670 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2671 		elr->lr_next_group = group + 1;
2672 	}
2673 
2674 	return ret;
2675 }
2676 
2677 /*
2678  * Remove lr_request from the list_request and free the
2679  * request tructure. Should be called with li_list_mtx held
2680  */
2681 static void ext4_remove_li_request(struct ext4_li_request *elr)
2682 {
2683 	struct ext4_sb_info *sbi;
2684 
2685 	if (!elr)
2686 		return;
2687 
2688 	sbi = elr->lr_sbi;
2689 
2690 	list_del(&elr->lr_request);
2691 	sbi->s_li_request = NULL;
2692 	kfree(elr);
2693 }
2694 
2695 static void ext4_unregister_li_request(struct super_block *sb)
2696 {
2697 	struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2698 
2699 	if (!ext4_li_info)
2700 		return;
2701 
2702 	mutex_lock(&ext4_li_info->li_list_mtx);
2703 	ext4_remove_li_request(elr);
2704 	mutex_unlock(&ext4_li_info->li_list_mtx);
2705 }
2706 
2707 /*
2708  * This is the function where ext4lazyinit thread lives. It walks
2709  * through the request list searching for next scheduled filesystem.
2710  * When such a fs is found, run the lazy initialization request
2711  * (ext4_rn_li_request) and keep track of the time spend in this
2712  * function. Based on that time we compute next schedule time of
2713  * the request. When walking through the list is complete, compute
2714  * next waking time and put itself into sleep.
2715  */
2716 static int ext4_lazyinit_thread(void *arg)
2717 {
2718 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2719 	struct list_head *pos, *n;
2720 	struct ext4_li_request *elr;
2721 	unsigned long next_wakeup;
2722 	DEFINE_WAIT(wait);
2723 
2724 	BUG_ON(NULL == eli);
2725 
2726 	eli->li_timer.data = (unsigned long)current;
2727 	eli->li_timer.function = ext4_lazyinode_timeout;
2728 
2729 	eli->li_task = current;
2730 	wake_up(&eli->li_wait_task);
2731 
2732 cont_thread:
2733 	while (true) {
2734 		next_wakeup = MAX_JIFFY_OFFSET;
2735 
2736 		mutex_lock(&eli->li_list_mtx);
2737 		if (list_empty(&eli->li_request_list)) {
2738 			mutex_unlock(&eli->li_list_mtx);
2739 			goto exit_thread;
2740 		}
2741 
2742 		list_for_each_safe(pos, n, &eli->li_request_list) {
2743 			elr = list_entry(pos, struct ext4_li_request,
2744 					 lr_request);
2745 
2746 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2747 				if (ext4_run_li_request(elr) != 0) {
2748 					/* error, remove the lazy_init job */
2749 					ext4_remove_li_request(elr);
2750 					continue;
2751 				}
2752 			}
2753 
2754 			if (time_before(elr->lr_next_sched, next_wakeup))
2755 				next_wakeup = elr->lr_next_sched;
2756 		}
2757 		mutex_unlock(&eli->li_list_mtx);
2758 
2759 		if (freezing(current))
2760 			refrigerator();
2761 
2762 		if ((time_after_eq(jiffies, next_wakeup)) ||
2763 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2764 			cond_resched();
2765 			continue;
2766 		}
2767 
2768 		eli->li_timer.expires = next_wakeup;
2769 		add_timer(&eli->li_timer);
2770 		prepare_to_wait(&eli->li_wait_daemon, &wait,
2771 				TASK_INTERRUPTIBLE);
2772 		if (time_before(jiffies, next_wakeup))
2773 			schedule();
2774 		finish_wait(&eli->li_wait_daemon, &wait);
2775 	}
2776 
2777 exit_thread:
2778 	/*
2779 	 * It looks like the request list is empty, but we need
2780 	 * to check it under the li_list_mtx lock, to prevent any
2781 	 * additions into it, and of course we should lock ext4_li_mtx
2782 	 * to atomically free the list and ext4_li_info, because at
2783 	 * this point another ext4 filesystem could be registering
2784 	 * new one.
2785 	 */
2786 	mutex_lock(&ext4_li_mtx);
2787 	mutex_lock(&eli->li_list_mtx);
2788 	if (!list_empty(&eli->li_request_list)) {
2789 		mutex_unlock(&eli->li_list_mtx);
2790 		mutex_unlock(&ext4_li_mtx);
2791 		goto cont_thread;
2792 	}
2793 	mutex_unlock(&eli->li_list_mtx);
2794 	del_timer_sync(&ext4_li_info->li_timer);
2795 	eli->li_task = NULL;
2796 	wake_up(&eli->li_wait_task);
2797 
2798 	kfree(ext4_li_info);
2799 	ext4_li_info = NULL;
2800 	mutex_unlock(&ext4_li_mtx);
2801 
2802 	return 0;
2803 }
2804 
2805 static void ext4_clear_request_list(void)
2806 {
2807 	struct list_head *pos, *n;
2808 	struct ext4_li_request *elr;
2809 
2810 	mutex_lock(&ext4_li_info->li_list_mtx);
2811 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2812 		elr = list_entry(pos, struct ext4_li_request,
2813 				 lr_request);
2814 		ext4_remove_li_request(elr);
2815 	}
2816 	mutex_unlock(&ext4_li_info->li_list_mtx);
2817 }
2818 
2819 static int ext4_run_lazyinit_thread(void)
2820 {
2821 	struct task_struct *t;
2822 
2823 	t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2824 	if (IS_ERR(t)) {
2825 		int err = PTR_ERR(t);
2826 		ext4_clear_request_list();
2827 		del_timer_sync(&ext4_li_info->li_timer);
2828 		kfree(ext4_li_info);
2829 		ext4_li_info = NULL;
2830 		printk(KERN_CRIT "EXT4: error %d creating inode table "
2831 				 "initialization thread\n",
2832 				 err);
2833 		return err;
2834 	}
2835 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2836 
2837 	wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2838 	return 0;
2839 }
2840 
2841 /*
2842  * Check whether it make sense to run itable init. thread or not.
2843  * If there is at least one uninitialized inode table, return
2844  * corresponding group number, else the loop goes through all
2845  * groups and return total number of groups.
2846  */
2847 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2848 {
2849 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2850 	struct ext4_group_desc *gdp = NULL;
2851 
2852 	for (group = 0; group < ngroups; group++) {
2853 		gdp = ext4_get_group_desc(sb, group, NULL);
2854 		if (!gdp)
2855 			continue;
2856 
2857 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2858 			break;
2859 	}
2860 
2861 	return group;
2862 }
2863 
2864 static int ext4_li_info_new(void)
2865 {
2866 	struct ext4_lazy_init *eli = NULL;
2867 
2868 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2869 	if (!eli)
2870 		return -ENOMEM;
2871 
2872 	eli->li_task = NULL;
2873 	INIT_LIST_HEAD(&eli->li_request_list);
2874 	mutex_init(&eli->li_list_mtx);
2875 
2876 	init_waitqueue_head(&eli->li_wait_daemon);
2877 	init_waitqueue_head(&eli->li_wait_task);
2878 	init_timer(&eli->li_timer);
2879 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2880 
2881 	ext4_li_info = eli;
2882 
2883 	return 0;
2884 }
2885 
2886 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2887 					    ext4_group_t start)
2888 {
2889 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 	struct ext4_li_request *elr;
2891 	unsigned long rnd;
2892 
2893 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2894 	if (!elr)
2895 		return NULL;
2896 
2897 	elr->lr_super = sb;
2898 	elr->lr_sbi = sbi;
2899 	elr->lr_next_group = start;
2900 
2901 	/*
2902 	 * Randomize first schedule time of the request to
2903 	 * spread the inode table initialization requests
2904 	 * better.
2905 	 */
2906 	get_random_bytes(&rnd, sizeof(rnd));
2907 	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2908 			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2909 
2910 	return elr;
2911 }
2912 
2913 static int ext4_register_li_request(struct super_block *sb,
2914 				    ext4_group_t first_not_zeroed)
2915 {
2916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2917 	struct ext4_li_request *elr;
2918 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2919 	int ret;
2920 
2921 	if (sbi->s_li_request != NULL)
2922 		return 0;
2923 
2924 	if (first_not_zeroed == ngroups ||
2925 	    (sb->s_flags & MS_RDONLY) ||
2926 	    !test_opt(sb, INIT_INODE_TABLE)) {
2927 		sbi->s_li_request = NULL;
2928 		return 0;
2929 	}
2930 
2931 	if (first_not_zeroed == ngroups) {
2932 		sbi->s_li_request = NULL;
2933 		return 0;
2934 	}
2935 
2936 	elr = ext4_li_request_new(sb, first_not_zeroed);
2937 	if (!elr)
2938 		return -ENOMEM;
2939 
2940 	mutex_lock(&ext4_li_mtx);
2941 
2942 	if (NULL == ext4_li_info) {
2943 		ret = ext4_li_info_new();
2944 		if (ret)
2945 			goto out;
2946 	}
2947 
2948 	mutex_lock(&ext4_li_info->li_list_mtx);
2949 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2950 	mutex_unlock(&ext4_li_info->li_list_mtx);
2951 
2952 	sbi->s_li_request = elr;
2953 
2954 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2955 		ret = ext4_run_lazyinit_thread();
2956 		if (ret)
2957 			goto out;
2958 	}
2959 out:
2960 	mutex_unlock(&ext4_li_mtx);
2961 	if (ret)
2962 		kfree(elr);
2963 	return ret;
2964 }
2965 
2966 /*
2967  * We do not need to lock anything since this is called on
2968  * module unload.
2969  */
2970 static void ext4_destroy_lazyinit_thread(void)
2971 {
2972 	/*
2973 	 * If thread exited earlier
2974 	 * there's nothing to be done.
2975 	 */
2976 	if (!ext4_li_info)
2977 		return;
2978 
2979 	ext4_clear_request_list();
2980 
2981 	while (ext4_li_info->li_task) {
2982 		wake_up(&ext4_li_info->li_wait_daemon);
2983 		wait_event(ext4_li_info->li_wait_task,
2984 			   ext4_li_info->li_task == NULL);
2985 	}
2986 }
2987 
2988 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2989 				__releases(kernel_lock)
2990 				__acquires(kernel_lock)
2991 {
2992 	char *orig_data = kstrdup(data, GFP_KERNEL);
2993 	struct buffer_head *bh;
2994 	struct ext4_super_block *es = NULL;
2995 	struct ext4_sb_info *sbi;
2996 	ext4_fsblk_t block;
2997 	ext4_fsblk_t sb_block = get_sb_block(&data);
2998 	ext4_fsblk_t logical_sb_block;
2999 	unsigned long offset = 0;
3000 	unsigned long journal_devnum = 0;
3001 	unsigned long def_mount_opts;
3002 	struct inode *root;
3003 	char *cp;
3004 	const char *descr;
3005 	int ret = -ENOMEM;
3006 	int blocksize;
3007 	unsigned int db_count;
3008 	unsigned int i;
3009 	int needs_recovery, has_huge_files;
3010 	__u64 blocks_count;
3011 	int err;
3012 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3013 	ext4_group_t first_not_zeroed;
3014 
3015 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3016 	if (!sbi)
3017 		goto out_free_orig;
3018 
3019 	sbi->s_blockgroup_lock =
3020 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3021 	if (!sbi->s_blockgroup_lock) {
3022 		kfree(sbi);
3023 		goto out_free_orig;
3024 	}
3025 	sb->s_fs_info = sbi;
3026 	sbi->s_mount_opt = 0;
3027 	sbi->s_resuid = EXT4_DEF_RESUID;
3028 	sbi->s_resgid = EXT4_DEF_RESGID;
3029 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3030 	sbi->s_sb_block = sb_block;
3031 	if (sb->s_bdev->bd_part)
3032 		sbi->s_sectors_written_start =
3033 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3034 
3035 	/* Cleanup superblock name */
3036 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3037 		*cp = '!';
3038 
3039 	ret = -EINVAL;
3040 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3041 	if (!blocksize) {
3042 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3043 		goto out_fail;
3044 	}
3045 
3046 	/*
3047 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3048 	 * block sizes.  We need to calculate the offset from buffer start.
3049 	 */
3050 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3051 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3052 		offset = do_div(logical_sb_block, blocksize);
3053 	} else {
3054 		logical_sb_block = sb_block;
3055 	}
3056 
3057 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3058 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3059 		goto out_fail;
3060 	}
3061 	/*
3062 	 * Note: s_es must be initialized as soon as possible because
3063 	 *       some ext4 macro-instructions depend on its value
3064 	 */
3065 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3066 	sbi->s_es = es;
3067 	sb->s_magic = le16_to_cpu(es->s_magic);
3068 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3069 		goto cantfind_ext4;
3070 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3071 
3072 	/* Set defaults before we parse the mount options */
3073 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3074 	set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
3075 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3076 		set_opt(sbi->s_mount_opt, DEBUG);
3077 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3078 		ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3079 			"2.6.38");
3080 		set_opt(sbi->s_mount_opt, GRPID);
3081 	}
3082 	if (def_mount_opts & EXT4_DEFM_UID16)
3083 		set_opt(sbi->s_mount_opt, NO_UID32);
3084 #ifdef CONFIG_EXT4_FS_XATTR
3085 	if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3086 		set_opt(sbi->s_mount_opt, XATTR_USER);
3087 #endif
3088 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3089 	if (def_mount_opts & EXT4_DEFM_ACL)
3090 		set_opt(sbi->s_mount_opt, POSIX_ACL);
3091 #endif
3092 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3093 		set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3094 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3095 		set_opt(sbi->s_mount_opt, ORDERED_DATA);
3096 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3097 		set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3098 
3099 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3100 		set_opt(sbi->s_mount_opt, ERRORS_PANIC);
3101 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3102 		set_opt(sbi->s_mount_opt, ERRORS_CONT);
3103 	else
3104 		set_opt(sbi->s_mount_opt, ERRORS_RO);
3105 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3106 		set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
3107 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3108 		set_opt(sbi->s_mount_opt, DISCARD);
3109 
3110 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3111 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3112 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3113 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3114 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3115 
3116 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3117 		set_opt(sbi->s_mount_opt, BARRIER);
3118 
3119 	/*
3120 	 * enable delayed allocation by default
3121 	 * Use -o nodelalloc to turn it off
3122 	 */
3123 	if (!IS_EXT3_SB(sb) &&
3124 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3125 		set_opt(sbi->s_mount_opt, DELALLOC);
3126 
3127 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3128 			   &journal_devnum, &journal_ioprio, NULL, 0)) {
3129 		ext4_msg(sb, KERN_WARNING,
3130 			 "failed to parse options in superblock: %s",
3131 			 sbi->s_es->s_mount_opts);
3132 	}
3133 	if (!parse_options((char *) data, sb, &journal_devnum,
3134 			   &journal_ioprio, NULL, 0))
3135 		goto failed_mount;
3136 
3137 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3138 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3139 
3140 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3141 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3142 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3143 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3144 		ext4_msg(sb, KERN_WARNING,
3145 		       "feature flags set on rev 0 fs, "
3146 		       "running e2fsck is recommended");
3147 
3148 	/*
3149 	 * Check feature flags regardless of the revision level, since we
3150 	 * previously didn't change the revision level when setting the flags,
3151 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3152 	 */
3153 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3154 		goto failed_mount;
3155 
3156 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3157 
3158 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3159 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3160 		ext4_msg(sb, KERN_ERR,
3161 		       "Unsupported filesystem blocksize %d", blocksize);
3162 		goto failed_mount;
3163 	}
3164 
3165 	if (sb->s_blocksize != blocksize) {
3166 		/* Validate the filesystem blocksize */
3167 		if (!sb_set_blocksize(sb, blocksize)) {
3168 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3169 					blocksize);
3170 			goto failed_mount;
3171 		}
3172 
3173 		brelse(bh);
3174 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3175 		offset = do_div(logical_sb_block, blocksize);
3176 		bh = sb_bread(sb, logical_sb_block);
3177 		if (!bh) {
3178 			ext4_msg(sb, KERN_ERR,
3179 			       "Can't read superblock on 2nd try");
3180 			goto failed_mount;
3181 		}
3182 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3183 		sbi->s_es = es;
3184 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3185 			ext4_msg(sb, KERN_ERR,
3186 			       "Magic mismatch, very weird!");
3187 			goto failed_mount;
3188 		}
3189 	}
3190 
3191 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3192 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3193 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3194 						      has_huge_files);
3195 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3196 
3197 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3198 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3199 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3200 	} else {
3201 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3202 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3203 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3204 		    (!is_power_of_2(sbi->s_inode_size)) ||
3205 		    (sbi->s_inode_size > blocksize)) {
3206 			ext4_msg(sb, KERN_ERR,
3207 			       "unsupported inode size: %d",
3208 			       sbi->s_inode_size);
3209 			goto failed_mount;
3210 		}
3211 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3212 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3213 	}
3214 
3215 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3216 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3217 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3218 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3219 		    !is_power_of_2(sbi->s_desc_size)) {
3220 			ext4_msg(sb, KERN_ERR,
3221 			       "unsupported descriptor size %lu",
3222 			       sbi->s_desc_size);
3223 			goto failed_mount;
3224 		}
3225 	} else
3226 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3227 
3228 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3229 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3230 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3231 		goto cantfind_ext4;
3232 
3233 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3234 	if (sbi->s_inodes_per_block == 0)
3235 		goto cantfind_ext4;
3236 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3237 					sbi->s_inodes_per_block;
3238 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3239 	sbi->s_sbh = bh;
3240 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3241 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3242 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3243 
3244 	for (i = 0; i < 4; i++)
3245 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3246 	sbi->s_def_hash_version = es->s_def_hash_version;
3247 	i = le32_to_cpu(es->s_flags);
3248 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3249 		sbi->s_hash_unsigned = 3;
3250 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3251 #ifdef __CHAR_UNSIGNED__
3252 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3253 		sbi->s_hash_unsigned = 3;
3254 #else
3255 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3256 #endif
3257 		sb->s_dirt = 1;
3258 	}
3259 
3260 	if (sbi->s_blocks_per_group > blocksize * 8) {
3261 		ext4_msg(sb, KERN_ERR,
3262 		       "#blocks per group too big: %lu",
3263 		       sbi->s_blocks_per_group);
3264 		goto failed_mount;
3265 	}
3266 	if (sbi->s_inodes_per_group > blocksize * 8) {
3267 		ext4_msg(sb, KERN_ERR,
3268 		       "#inodes per group too big: %lu",
3269 		       sbi->s_inodes_per_group);
3270 		goto failed_mount;
3271 	}
3272 
3273 	/*
3274 	 * Test whether we have more sectors than will fit in sector_t,
3275 	 * and whether the max offset is addressable by the page cache.
3276 	 */
3277 	err = generic_check_addressable(sb->s_blocksize_bits,
3278 					ext4_blocks_count(es));
3279 	if (err) {
3280 		ext4_msg(sb, KERN_ERR, "filesystem"
3281 			 " too large to mount safely on this system");
3282 		if (sizeof(sector_t) < 8)
3283 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3284 		ret = err;
3285 		goto failed_mount;
3286 	}
3287 
3288 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3289 		goto cantfind_ext4;
3290 
3291 	/* check blocks count against device size */
3292 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3293 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3294 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3295 		       "exceeds size of device (%llu blocks)",
3296 		       ext4_blocks_count(es), blocks_count);
3297 		goto failed_mount;
3298 	}
3299 
3300 	/*
3301 	 * It makes no sense for the first data block to be beyond the end
3302 	 * of the filesystem.
3303 	 */
3304 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3305                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3306 			 "block %u is beyond end of filesystem (%llu)",
3307 			 le32_to_cpu(es->s_first_data_block),
3308 			 ext4_blocks_count(es));
3309 		goto failed_mount;
3310 	}
3311 	blocks_count = (ext4_blocks_count(es) -
3312 			le32_to_cpu(es->s_first_data_block) +
3313 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3314 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3315 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3316 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3317 		       "(block count %llu, first data block %u, "
3318 		       "blocks per group %lu)", sbi->s_groups_count,
3319 		       ext4_blocks_count(es),
3320 		       le32_to_cpu(es->s_first_data_block),
3321 		       EXT4_BLOCKS_PER_GROUP(sb));
3322 		goto failed_mount;
3323 	}
3324 	sbi->s_groups_count = blocks_count;
3325 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3326 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3327 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3328 		   EXT4_DESC_PER_BLOCK(sb);
3329 	sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3330 				    GFP_KERNEL);
3331 	if (sbi->s_group_desc == NULL) {
3332 		ext4_msg(sb, KERN_ERR, "not enough memory");
3333 		goto failed_mount;
3334 	}
3335 
3336 #ifdef CONFIG_PROC_FS
3337 	if (ext4_proc_root)
3338 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3339 #endif
3340 
3341 	bgl_lock_init(sbi->s_blockgroup_lock);
3342 
3343 	for (i = 0; i < db_count; i++) {
3344 		block = descriptor_loc(sb, logical_sb_block, i);
3345 		sbi->s_group_desc[i] = sb_bread(sb, block);
3346 		if (!sbi->s_group_desc[i]) {
3347 			ext4_msg(sb, KERN_ERR,
3348 			       "can't read group descriptor %d", i);
3349 			db_count = i;
3350 			goto failed_mount2;
3351 		}
3352 	}
3353 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3354 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3355 		goto failed_mount2;
3356 	}
3357 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3358 		if (!ext4_fill_flex_info(sb)) {
3359 			ext4_msg(sb, KERN_ERR,
3360 			       "unable to initialize "
3361 			       "flex_bg meta info!");
3362 			goto failed_mount2;
3363 		}
3364 
3365 	sbi->s_gdb_count = db_count;
3366 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3367 	spin_lock_init(&sbi->s_next_gen_lock);
3368 
3369 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
3370 			ext4_count_free_blocks(sb));
3371 	if (!err) {
3372 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3373 				ext4_count_free_inodes(sb));
3374 	}
3375 	if (!err) {
3376 		err = percpu_counter_init(&sbi->s_dirs_counter,
3377 				ext4_count_dirs(sb));
3378 	}
3379 	if (!err) {
3380 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3381 	}
3382 	if (err) {
3383 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3384 		goto failed_mount3;
3385 	}
3386 
3387 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3388 	sbi->s_max_writeback_mb_bump = 128;
3389 
3390 	/*
3391 	 * set up enough so that it can read an inode
3392 	 */
3393 	if (!test_opt(sb, NOLOAD) &&
3394 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3395 		sb->s_op = &ext4_sops;
3396 	else
3397 		sb->s_op = &ext4_nojournal_sops;
3398 	sb->s_export_op = &ext4_export_ops;
3399 	sb->s_xattr = ext4_xattr_handlers;
3400 #ifdef CONFIG_QUOTA
3401 	sb->s_qcop = &ext4_qctl_operations;
3402 	sb->dq_op = &ext4_quota_operations;
3403 #endif
3404 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3405 	mutex_init(&sbi->s_orphan_lock);
3406 	mutex_init(&sbi->s_resize_lock);
3407 
3408 	sb->s_root = NULL;
3409 
3410 	needs_recovery = (es->s_last_orphan != 0 ||
3411 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3412 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3413 
3414 	/*
3415 	 * The first inode we look at is the journal inode.  Don't try
3416 	 * root first: it may be modified in the journal!
3417 	 */
3418 	if (!test_opt(sb, NOLOAD) &&
3419 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3420 		if (ext4_load_journal(sb, es, journal_devnum))
3421 			goto failed_mount3;
3422 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3423 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3424 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3425 		       "suppressed and not mounted read-only");
3426 		goto failed_mount_wq;
3427 	} else {
3428 		clear_opt(sbi->s_mount_opt, DATA_FLAGS);
3429 		set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3430 		sbi->s_journal = NULL;
3431 		needs_recovery = 0;
3432 		goto no_journal;
3433 	}
3434 
3435 	if (ext4_blocks_count(es) > 0xffffffffULL &&
3436 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3437 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3438 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3439 		goto failed_mount_wq;
3440 	}
3441 
3442 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3443 		jbd2_journal_set_features(sbi->s_journal,
3444 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3445 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3446 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3447 		jbd2_journal_set_features(sbi->s_journal,
3448 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3449 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3450 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3451 	} else {
3452 		jbd2_journal_clear_features(sbi->s_journal,
3453 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3454 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3455 	}
3456 
3457 	/* We have now updated the journal if required, so we can
3458 	 * validate the data journaling mode. */
3459 	switch (test_opt(sb, DATA_FLAGS)) {
3460 	case 0:
3461 		/* No mode set, assume a default based on the journal
3462 		 * capabilities: ORDERED_DATA if the journal can
3463 		 * cope, else JOURNAL_DATA
3464 		 */
3465 		if (jbd2_journal_check_available_features
3466 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3467 			set_opt(sbi->s_mount_opt, ORDERED_DATA);
3468 		else
3469 			set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3470 		break;
3471 
3472 	case EXT4_MOUNT_ORDERED_DATA:
3473 	case EXT4_MOUNT_WRITEBACK_DATA:
3474 		if (!jbd2_journal_check_available_features
3475 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3476 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3477 			       "requested data journaling mode");
3478 			goto failed_mount_wq;
3479 		}
3480 	default:
3481 		break;
3482 	}
3483 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3484 
3485 	/*
3486 	 * The journal may have updated the bg summary counts, so we
3487 	 * need to update the global counters.
3488 	 */
3489 	percpu_counter_set(&sbi->s_freeblocks_counter,
3490 			   ext4_count_free_blocks(sb));
3491 	percpu_counter_set(&sbi->s_freeinodes_counter,
3492 			   ext4_count_free_inodes(sb));
3493 	percpu_counter_set(&sbi->s_dirs_counter,
3494 			   ext4_count_dirs(sb));
3495 	percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3496 
3497 no_journal:
3498 	EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3499 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3500 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3501 		goto failed_mount_wq;
3502 	}
3503 
3504 	/*
3505 	 * The jbd2_journal_load will have done any necessary log recovery,
3506 	 * so we can safely mount the rest of the filesystem now.
3507 	 */
3508 
3509 	root = ext4_iget(sb, EXT4_ROOT_INO);
3510 	if (IS_ERR(root)) {
3511 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3512 		ret = PTR_ERR(root);
3513 		goto failed_mount4;
3514 	}
3515 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3516 		iput(root);
3517 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3518 		goto failed_mount4;
3519 	}
3520 	sb->s_root = d_alloc_root(root);
3521 	if (!sb->s_root) {
3522 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3523 		iput(root);
3524 		ret = -ENOMEM;
3525 		goto failed_mount4;
3526 	}
3527 
3528 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3529 
3530 	/* determine the minimum size of new large inodes, if present */
3531 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3532 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3533 						     EXT4_GOOD_OLD_INODE_SIZE;
3534 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3535 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3536 			if (sbi->s_want_extra_isize <
3537 			    le16_to_cpu(es->s_want_extra_isize))
3538 				sbi->s_want_extra_isize =
3539 					le16_to_cpu(es->s_want_extra_isize);
3540 			if (sbi->s_want_extra_isize <
3541 			    le16_to_cpu(es->s_min_extra_isize))
3542 				sbi->s_want_extra_isize =
3543 					le16_to_cpu(es->s_min_extra_isize);
3544 		}
3545 	}
3546 	/* Check if enough inode space is available */
3547 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3548 							sbi->s_inode_size) {
3549 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3550 						       EXT4_GOOD_OLD_INODE_SIZE;
3551 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3552 			 "available");
3553 	}
3554 
3555 	if (test_opt(sb, DELALLOC) &&
3556 	    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3557 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3558 			 "requested data journaling mode");
3559 		clear_opt(sbi->s_mount_opt, DELALLOC);
3560 	}
3561 	if (test_opt(sb, DIOREAD_NOLOCK)) {
3562 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3563 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3564 				"option - requested data journaling mode");
3565 			clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3566 		}
3567 		if (sb->s_blocksize < PAGE_SIZE) {
3568 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3569 				"option - block size is too small");
3570 			clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3571 		}
3572 	}
3573 
3574 	err = ext4_setup_system_zone(sb);
3575 	if (err) {
3576 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3577 			 "zone (%d)", err);
3578 		goto failed_mount4;
3579 	}
3580 
3581 	ext4_ext_init(sb);
3582 	err = ext4_mb_init(sb, needs_recovery);
3583 	if (err) {
3584 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3585 			 err);
3586 		goto failed_mount4;
3587 	}
3588 
3589 	err = ext4_register_li_request(sb, first_not_zeroed);
3590 	if (err)
3591 		goto failed_mount4;
3592 
3593 	sbi->s_kobj.kset = ext4_kset;
3594 	init_completion(&sbi->s_kobj_unregister);
3595 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3596 				   "%s", sb->s_id);
3597 	if (err) {
3598 		ext4_mb_release(sb);
3599 		ext4_ext_release(sb);
3600 		goto failed_mount4;
3601 	};
3602 
3603 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3604 	ext4_orphan_cleanup(sb, es);
3605 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3606 	if (needs_recovery) {
3607 		ext4_msg(sb, KERN_INFO, "recovery complete");
3608 		ext4_mark_recovery_complete(sb, es);
3609 	}
3610 	if (EXT4_SB(sb)->s_journal) {
3611 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3612 			descr = " journalled data mode";
3613 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3614 			descr = " ordered data mode";
3615 		else
3616 			descr = " writeback data mode";
3617 	} else
3618 		descr = "out journal";
3619 
3620 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3621 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3622 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3623 
3624 	init_timer(&sbi->s_err_report);
3625 	sbi->s_err_report.function = print_daily_error_info;
3626 	sbi->s_err_report.data = (unsigned long) sb;
3627 	if (es->s_error_count)
3628 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3629 
3630 	kfree(orig_data);
3631 	return 0;
3632 
3633 cantfind_ext4:
3634 	if (!silent)
3635 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3636 	goto failed_mount;
3637 
3638 failed_mount4:
3639 	ext4_msg(sb, KERN_ERR, "mount failed");
3640 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3641 failed_mount_wq:
3642 	ext4_release_system_zone(sb);
3643 	if (sbi->s_journal) {
3644 		jbd2_journal_destroy(sbi->s_journal);
3645 		sbi->s_journal = NULL;
3646 	}
3647 failed_mount3:
3648 	if (sbi->s_flex_groups) {
3649 		if (is_vmalloc_addr(sbi->s_flex_groups))
3650 			vfree(sbi->s_flex_groups);
3651 		else
3652 			kfree(sbi->s_flex_groups);
3653 	}
3654 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
3655 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3656 	percpu_counter_destroy(&sbi->s_dirs_counter);
3657 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3658 failed_mount2:
3659 	for (i = 0; i < db_count; i++)
3660 		brelse(sbi->s_group_desc[i]);
3661 	kfree(sbi->s_group_desc);
3662 failed_mount:
3663 	if (sbi->s_proc) {
3664 		remove_proc_entry(sb->s_id, ext4_proc_root);
3665 	}
3666 #ifdef CONFIG_QUOTA
3667 	for (i = 0; i < MAXQUOTAS; i++)
3668 		kfree(sbi->s_qf_names[i]);
3669 #endif
3670 	ext4_blkdev_remove(sbi);
3671 	brelse(bh);
3672 out_fail:
3673 	sb->s_fs_info = NULL;
3674 	kfree(sbi->s_blockgroup_lock);
3675 	kfree(sbi);
3676 out_free_orig:
3677 	kfree(orig_data);
3678 	return ret;
3679 }
3680 
3681 /*
3682  * Setup any per-fs journal parameters now.  We'll do this both on
3683  * initial mount, once the journal has been initialised but before we've
3684  * done any recovery; and again on any subsequent remount.
3685  */
3686 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3687 {
3688 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3689 
3690 	journal->j_commit_interval = sbi->s_commit_interval;
3691 	journal->j_min_batch_time = sbi->s_min_batch_time;
3692 	journal->j_max_batch_time = sbi->s_max_batch_time;
3693 
3694 	write_lock(&journal->j_state_lock);
3695 	if (test_opt(sb, BARRIER))
3696 		journal->j_flags |= JBD2_BARRIER;
3697 	else
3698 		journal->j_flags &= ~JBD2_BARRIER;
3699 	if (test_opt(sb, DATA_ERR_ABORT))
3700 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3701 	else
3702 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3703 	write_unlock(&journal->j_state_lock);
3704 }
3705 
3706 static journal_t *ext4_get_journal(struct super_block *sb,
3707 				   unsigned int journal_inum)
3708 {
3709 	struct inode *journal_inode;
3710 	journal_t *journal;
3711 
3712 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3713 
3714 	/* First, test for the existence of a valid inode on disk.  Bad
3715 	 * things happen if we iget() an unused inode, as the subsequent
3716 	 * iput() will try to delete it. */
3717 
3718 	journal_inode = ext4_iget(sb, journal_inum);
3719 	if (IS_ERR(journal_inode)) {
3720 		ext4_msg(sb, KERN_ERR, "no journal found");
3721 		return NULL;
3722 	}
3723 	if (!journal_inode->i_nlink) {
3724 		make_bad_inode(journal_inode);
3725 		iput(journal_inode);
3726 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3727 		return NULL;
3728 	}
3729 
3730 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3731 		  journal_inode, journal_inode->i_size);
3732 	if (!S_ISREG(journal_inode->i_mode)) {
3733 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3734 		iput(journal_inode);
3735 		return NULL;
3736 	}
3737 
3738 	journal = jbd2_journal_init_inode(journal_inode);
3739 	if (!journal) {
3740 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3741 		iput(journal_inode);
3742 		return NULL;
3743 	}
3744 	journal->j_private = sb;
3745 	ext4_init_journal_params(sb, journal);
3746 	return journal;
3747 }
3748 
3749 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3750 				       dev_t j_dev)
3751 {
3752 	struct buffer_head *bh;
3753 	journal_t *journal;
3754 	ext4_fsblk_t start;
3755 	ext4_fsblk_t len;
3756 	int hblock, blocksize;
3757 	ext4_fsblk_t sb_block;
3758 	unsigned long offset;
3759 	struct ext4_super_block *es;
3760 	struct block_device *bdev;
3761 
3762 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3763 
3764 	bdev = ext4_blkdev_get(j_dev, sb);
3765 	if (bdev == NULL)
3766 		return NULL;
3767 
3768 	if (bd_claim(bdev, sb)) {
3769 		ext4_msg(sb, KERN_ERR,
3770 			"failed to claim external journal device");
3771 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3772 		return NULL;
3773 	}
3774 
3775 	blocksize = sb->s_blocksize;
3776 	hblock = bdev_logical_block_size(bdev);
3777 	if (blocksize < hblock) {
3778 		ext4_msg(sb, KERN_ERR,
3779 			"blocksize too small for journal device");
3780 		goto out_bdev;
3781 	}
3782 
3783 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3784 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3785 	set_blocksize(bdev, blocksize);
3786 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3787 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3788 		       "external journal");
3789 		goto out_bdev;
3790 	}
3791 
3792 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3793 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3794 	    !(le32_to_cpu(es->s_feature_incompat) &
3795 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3796 		ext4_msg(sb, KERN_ERR, "external journal has "
3797 					"bad superblock");
3798 		brelse(bh);
3799 		goto out_bdev;
3800 	}
3801 
3802 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3803 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3804 		brelse(bh);
3805 		goto out_bdev;
3806 	}
3807 
3808 	len = ext4_blocks_count(es);
3809 	start = sb_block + 1;
3810 	brelse(bh);	/* we're done with the superblock */
3811 
3812 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3813 					start, len, blocksize);
3814 	if (!journal) {
3815 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3816 		goto out_bdev;
3817 	}
3818 	journal->j_private = sb;
3819 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3820 	wait_on_buffer(journal->j_sb_buffer);
3821 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3822 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3823 		goto out_journal;
3824 	}
3825 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3826 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3827 					"user (unsupported) - %d",
3828 			be32_to_cpu(journal->j_superblock->s_nr_users));
3829 		goto out_journal;
3830 	}
3831 	EXT4_SB(sb)->journal_bdev = bdev;
3832 	ext4_init_journal_params(sb, journal);
3833 	return journal;
3834 
3835 out_journal:
3836 	jbd2_journal_destroy(journal);
3837 out_bdev:
3838 	ext4_blkdev_put(bdev);
3839 	return NULL;
3840 }
3841 
3842 static int ext4_load_journal(struct super_block *sb,
3843 			     struct ext4_super_block *es,
3844 			     unsigned long journal_devnum)
3845 {
3846 	journal_t *journal;
3847 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3848 	dev_t journal_dev;
3849 	int err = 0;
3850 	int really_read_only;
3851 
3852 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3853 
3854 	if (journal_devnum &&
3855 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3856 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3857 			"numbers have changed");
3858 		journal_dev = new_decode_dev(journal_devnum);
3859 	} else
3860 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3861 
3862 	really_read_only = bdev_read_only(sb->s_bdev);
3863 
3864 	/*
3865 	 * Are we loading a blank journal or performing recovery after a
3866 	 * crash?  For recovery, we need to check in advance whether we
3867 	 * can get read-write access to the device.
3868 	 */
3869 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3870 		if (sb->s_flags & MS_RDONLY) {
3871 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3872 					"required on readonly filesystem");
3873 			if (really_read_only) {
3874 				ext4_msg(sb, KERN_ERR, "write access "
3875 					"unavailable, cannot proceed");
3876 				return -EROFS;
3877 			}
3878 			ext4_msg(sb, KERN_INFO, "write access will "
3879 			       "be enabled during recovery");
3880 		}
3881 	}
3882 
3883 	if (journal_inum && journal_dev) {
3884 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3885 		       "and inode journals!");
3886 		return -EINVAL;
3887 	}
3888 
3889 	if (journal_inum) {
3890 		if (!(journal = ext4_get_journal(sb, journal_inum)))
3891 			return -EINVAL;
3892 	} else {
3893 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3894 			return -EINVAL;
3895 	}
3896 
3897 	if (!(journal->j_flags & JBD2_BARRIER))
3898 		ext4_msg(sb, KERN_INFO, "barriers disabled");
3899 
3900 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3901 		err = jbd2_journal_update_format(journal);
3902 		if (err)  {
3903 			ext4_msg(sb, KERN_ERR, "error updating journal");
3904 			jbd2_journal_destroy(journal);
3905 			return err;
3906 		}
3907 	}
3908 
3909 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3910 		err = jbd2_journal_wipe(journal, !really_read_only);
3911 	if (!err) {
3912 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3913 		if (save)
3914 			memcpy(save, ((char *) es) +
3915 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3916 		err = jbd2_journal_load(journal);
3917 		if (save)
3918 			memcpy(((char *) es) + EXT4_S_ERR_START,
3919 			       save, EXT4_S_ERR_LEN);
3920 		kfree(save);
3921 	}
3922 
3923 	if (err) {
3924 		ext4_msg(sb, KERN_ERR, "error loading journal");
3925 		jbd2_journal_destroy(journal);
3926 		return err;
3927 	}
3928 
3929 	EXT4_SB(sb)->s_journal = journal;
3930 	ext4_clear_journal_err(sb, es);
3931 
3932 	if (!really_read_only && journal_devnum &&
3933 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3934 		es->s_journal_dev = cpu_to_le32(journal_devnum);
3935 
3936 		/* Make sure we flush the recovery flag to disk. */
3937 		ext4_commit_super(sb, 1);
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 static int ext4_commit_super(struct super_block *sb, int sync)
3944 {
3945 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3946 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3947 	int error = 0;
3948 
3949 	if (!sbh)
3950 		return error;
3951 	if (buffer_write_io_error(sbh)) {
3952 		/*
3953 		 * Oh, dear.  A previous attempt to write the
3954 		 * superblock failed.  This could happen because the
3955 		 * USB device was yanked out.  Or it could happen to
3956 		 * be a transient write error and maybe the block will
3957 		 * be remapped.  Nothing we can do but to retry the
3958 		 * write and hope for the best.
3959 		 */
3960 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
3961 		       "superblock detected");
3962 		clear_buffer_write_io_error(sbh);
3963 		set_buffer_uptodate(sbh);
3964 	}
3965 	/*
3966 	 * If the file system is mounted read-only, don't update the
3967 	 * superblock write time.  This avoids updating the superblock
3968 	 * write time when we are mounting the root file system
3969 	 * read/only but we need to replay the journal; at that point,
3970 	 * for people who are east of GMT and who make their clock
3971 	 * tick in localtime for Windows bug-for-bug compatibility,
3972 	 * the clock is set in the future, and this will cause e2fsck
3973 	 * to complain and force a full file system check.
3974 	 */
3975 	if (!(sb->s_flags & MS_RDONLY))
3976 		es->s_wtime = cpu_to_le32(get_seconds());
3977 	if (sb->s_bdev->bd_part)
3978 		es->s_kbytes_written =
3979 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3980 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3981 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
3982 	else
3983 		es->s_kbytes_written =
3984 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3985 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3986 					   &EXT4_SB(sb)->s_freeblocks_counter));
3987 	es->s_free_inodes_count =
3988 		cpu_to_le32(percpu_counter_sum_positive(
3989 				&EXT4_SB(sb)->s_freeinodes_counter));
3990 	sb->s_dirt = 0;
3991 	BUFFER_TRACE(sbh, "marking dirty");
3992 	mark_buffer_dirty(sbh);
3993 	if (sync) {
3994 		error = sync_dirty_buffer(sbh);
3995 		if (error)
3996 			return error;
3997 
3998 		error = buffer_write_io_error(sbh);
3999 		if (error) {
4000 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4001 			       "superblock");
4002 			clear_buffer_write_io_error(sbh);
4003 			set_buffer_uptodate(sbh);
4004 		}
4005 	}
4006 	return error;
4007 }
4008 
4009 /*
4010  * Have we just finished recovery?  If so, and if we are mounting (or
4011  * remounting) the filesystem readonly, then we will end up with a
4012  * consistent fs on disk.  Record that fact.
4013  */
4014 static void ext4_mark_recovery_complete(struct super_block *sb,
4015 					struct ext4_super_block *es)
4016 {
4017 	journal_t *journal = EXT4_SB(sb)->s_journal;
4018 
4019 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4020 		BUG_ON(journal != NULL);
4021 		return;
4022 	}
4023 	jbd2_journal_lock_updates(journal);
4024 	if (jbd2_journal_flush(journal) < 0)
4025 		goto out;
4026 
4027 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4028 	    sb->s_flags & MS_RDONLY) {
4029 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4030 		ext4_commit_super(sb, 1);
4031 	}
4032 
4033 out:
4034 	jbd2_journal_unlock_updates(journal);
4035 }
4036 
4037 /*
4038  * If we are mounting (or read-write remounting) a filesystem whose journal
4039  * has recorded an error from a previous lifetime, move that error to the
4040  * main filesystem now.
4041  */
4042 static void ext4_clear_journal_err(struct super_block *sb,
4043 				   struct ext4_super_block *es)
4044 {
4045 	journal_t *journal;
4046 	int j_errno;
4047 	const char *errstr;
4048 
4049 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4050 
4051 	journal = EXT4_SB(sb)->s_journal;
4052 
4053 	/*
4054 	 * Now check for any error status which may have been recorded in the
4055 	 * journal by a prior ext4_error() or ext4_abort()
4056 	 */
4057 
4058 	j_errno = jbd2_journal_errno(journal);
4059 	if (j_errno) {
4060 		char nbuf[16];
4061 
4062 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4063 		ext4_warning(sb, "Filesystem error recorded "
4064 			     "from previous mount: %s", errstr);
4065 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4066 
4067 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4068 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4069 		ext4_commit_super(sb, 1);
4070 
4071 		jbd2_journal_clear_err(journal);
4072 	}
4073 }
4074 
4075 /*
4076  * Force the running and committing transactions to commit,
4077  * and wait on the commit.
4078  */
4079 int ext4_force_commit(struct super_block *sb)
4080 {
4081 	journal_t *journal;
4082 	int ret = 0;
4083 
4084 	if (sb->s_flags & MS_RDONLY)
4085 		return 0;
4086 
4087 	journal = EXT4_SB(sb)->s_journal;
4088 	if (journal) {
4089 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4090 		ret = ext4_journal_force_commit(journal);
4091 	}
4092 
4093 	return ret;
4094 }
4095 
4096 static void ext4_write_super(struct super_block *sb)
4097 {
4098 	lock_super(sb);
4099 	ext4_commit_super(sb, 1);
4100 	unlock_super(sb);
4101 }
4102 
4103 static int ext4_sync_fs(struct super_block *sb, int wait)
4104 {
4105 	int ret = 0;
4106 	tid_t target;
4107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4108 
4109 	trace_ext4_sync_fs(sb, wait);
4110 	flush_workqueue(sbi->dio_unwritten_wq);
4111 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4112 		if (wait)
4113 			jbd2_log_wait_commit(sbi->s_journal, target);
4114 	}
4115 	return ret;
4116 }
4117 
4118 /*
4119  * LVM calls this function before a (read-only) snapshot is created.  This
4120  * gives us a chance to flush the journal completely and mark the fs clean.
4121  */
4122 static int ext4_freeze(struct super_block *sb)
4123 {
4124 	int error = 0;
4125 	journal_t *journal;
4126 
4127 	if (sb->s_flags & MS_RDONLY)
4128 		return 0;
4129 
4130 	journal = EXT4_SB(sb)->s_journal;
4131 
4132 	/* Now we set up the journal barrier. */
4133 	jbd2_journal_lock_updates(journal);
4134 
4135 	/*
4136 	 * Don't clear the needs_recovery flag if we failed to flush
4137 	 * the journal.
4138 	 */
4139 	error = jbd2_journal_flush(journal);
4140 	if (error < 0)
4141 		goto out;
4142 
4143 	/* Journal blocked and flushed, clear needs_recovery flag. */
4144 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4145 	error = ext4_commit_super(sb, 1);
4146 out:
4147 	/* we rely on s_frozen to stop further updates */
4148 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4149 	return error;
4150 }
4151 
4152 /*
4153  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4154  * flag here, even though the filesystem is not technically dirty yet.
4155  */
4156 static int ext4_unfreeze(struct super_block *sb)
4157 {
4158 	if (sb->s_flags & MS_RDONLY)
4159 		return 0;
4160 
4161 	lock_super(sb);
4162 	/* Reset the needs_recovery flag before the fs is unlocked. */
4163 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4164 	ext4_commit_super(sb, 1);
4165 	unlock_super(sb);
4166 	return 0;
4167 }
4168 
4169 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4170 {
4171 	struct ext4_super_block *es;
4172 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4173 	ext4_fsblk_t n_blocks_count = 0;
4174 	unsigned long old_sb_flags;
4175 	struct ext4_mount_options old_opts;
4176 	int enable_quota = 0;
4177 	ext4_group_t g;
4178 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4179 	int err;
4180 #ifdef CONFIG_QUOTA
4181 	int i;
4182 #endif
4183 	char *orig_data = kstrdup(data, GFP_KERNEL);
4184 
4185 	/* Store the original options */
4186 	lock_super(sb);
4187 	old_sb_flags = sb->s_flags;
4188 	old_opts.s_mount_opt = sbi->s_mount_opt;
4189 	old_opts.s_resuid = sbi->s_resuid;
4190 	old_opts.s_resgid = sbi->s_resgid;
4191 	old_opts.s_commit_interval = sbi->s_commit_interval;
4192 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4193 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4194 #ifdef CONFIG_QUOTA
4195 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4196 	for (i = 0; i < MAXQUOTAS; i++)
4197 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4198 #endif
4199 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4200 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4201 
4202 	/*
4203 	 * Allow the "check" option to be passed as a remount option.
4204 	 */
4205 	if (!parse_options(data, sb, NULL, &journal_ioprio,
4206 			   &n_blocks_count, 1)) {
4207 		err = -EINVAL;
4208 		goto restore_opts;
4209 	}
4210 
4211 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4212 		ext4_abort(sb, "Abort forced by user");
4213 
4214 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4215 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4216 
4217 	es = sbi->s_es;
4218 
4219 	if (sbi->s_journal) {
4220 		ext4_init_journal_params(sb, sbi->s_journal);
4221 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4222 	}
4223 
4224 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4225 		n_blocks_count > ext4_blocks_count(es)) {
4226 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4227 			err = -EROFS;
4228 			goto restore_opts;
4229 		}
4230 
4231 		if (*flags & MS_RDONLY) {
4232 			err = dquot_suspend(sb, -1);
4233 			if (err < 0)
4234 				goto restore_opts;
4235 
4236 			/*
4237 			 * First of all, the unconditional stuff we have to do
4238 			 * to disable replay of the journal when we next remount
4239 			 */
4240 			sb->s_flags |= MS_RDONLY;
4241 
4242 			/*
4243 			 * OK, test if we are remounting a valid rw partition
4244 			 * readonly, and if so set the rdonly flag and then
4245 			 * mark the partition as valid again.
4246 			 */
4247 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4248 			    (sbi->s_mount_state & EXT4_VALID_FS))
4249 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4250 
4251 			if (sbi->s_journal)
4252 				ext4_mark_recovery_complete(sb, es);
4253 		} else {
4254 			/* Make sure we can mount this feature set readwrite */
4255 			if (!ext4_feature_set_ok(sb, 0)) {
4256 				err = -EROFS;
4257 				goto restore_opts;
4258 			}
4259 			/*
4260 			 * Make sure the group descriptor checksums
4261 			 * are sane.  If they aren't, refuse to remount r/w.
4262 			 */
4263 			for (g = 0; g < sbi->s_groups_count; g++) {
4264 				struct ext4_group_desc *gdp =
4265 					ext4_get_group_desc(sb, g, NULL);
4266 
4267 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4268 					ext4_msg(sb, KERN_ERR,
4269 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4270 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4271 					       le16_to_cpu(gdp->bg_checksum));
4272 					err = -EINVAL;
4273 					goto restore_opts;
4274 				}
4275 			}
4276 
4277 			/*
4278 			 * If we have an unprocessed orphan list hanging
4279 			 * around from a previously readonly bdev mount,
4280 			 * require a full umount/remount for now.
4281 			 */
4282 			if (es->s_last_orphan) {
4283 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4284 				       "remount RDWR because of unprocessed "
4285 				       "orphan inode list.  Please "
4286 				       "umount/remount instead");
4287 				err = -EINVAL;
4288 				goto restore_opts;
4289 			}
4290 
4291 			/*
4292 			 * Mounting a RDONLY partition read-write, so reread
4293 			 * and store the current valid flag.  (It may have
4294 			 * been changed by e2fsck since we originally mounted
4295 			 * the partition.)
4296 			 */
4297 			if (sbi->s_journal)
4298 				ext4_clear_journal_err(sb, es);
4299 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4300 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4301 				goto restore_opts;
4302 			if (!ext4_setup_super(sb, es, 0))
4303 				sb->s_flags &= ~MS_RDONLY;
4304 			enable_quota = 1;
4305 		}
4306 	}
4307 
4308 	/*
4309 	 * Reinitialize lazy itable initialization thread based on
4310 	 * current settings
4311 	 */
4312 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4313 		ext4_unregister_li_request(sb);
4314 	else {
4315 		ext4_group_t first_not_zeroed;
4316 		first_not_zeroed = ext4_has_uninit_itable(sb);
4317 		ext4_register_li_request(sb, first_not_zeroed);
4318 	}
4319 
4320 	ext4_setup_system_zone(sb);
4321 	if (sbi->s_journal == NULL)
4322 		ext4_commit_super(sb, 1);
4323 
4324 #ifdef CONFIG_QUOTA
4325 	/* Release old quota file names */
4326 	for (i = 0; i < MAXQUOTAS; i++)
4327 		if (old_opts.s_qf_names[i] &&
4328 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4329 			kfree(old_opts.s_qf_names[i]);
4330 #endif
4331 	unlock_super(sb);
4332 	if (enable_quota)
4333 		dquot_resume(sb, -1);
4334 
4335 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4336 	kfree(orig_data);
4337 	return 0;
4338 
4339 restore_opts:
4340 	sb->s_flags = old_sb_flags;
4341 	sbi->s_mount_opt = old_opts.s_mount_opt;
4342 	sbi->s_resuid = old_opts.s_resuid;
4343 	sbi->s_resgid = old_opts.s_resgid;
4344 	sbi->s_commit_interval = old_opts.s_commit_interval;
4345 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4346 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4347 #ifdef CONFIG_QUOTA
4348 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4349 	for (i = 0; i < MAXQUOTAS; i++) {
4350 		if (sbi->s_qf_names[i] &&
4351 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4352 			kfree(sbi->s_qf_names[i]);
4353 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4354 	}
4355 #endif
4356 	unlock_super(sb);
4357 	kfree(orig_data);
4358 	return err;
4359 }
4360 
4361 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4362 {
4363 	struct super_block *sb = dentry->d_sb;
4364 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4365 	struct ext4_super_block *es = sbi->s_es;
4366 	u64 fsid;
4367 
4368 	if (test_opt(sb, MINIX_DF)) {
4369 		sbi->s_overhead_last = 0;
4370 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4371 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4372 		ext4_fsblk_t overhead = 0;
4373 
4374 		/*
4375 		 * Compute the overhead (FS structures).  This is constant
4376 		 * for a given filesystem unless the number of block groups
4377 		 * changes so we cache the previous value until it does.
4378 		 */
4379 
4380 		/*
4381 		 * All of the blocks before first_data_block are
4382 		 * overhead
4383 		 */
4384 		overhead = le32_to_cpu(es->s_first_data_block);
4385 
4386 		/*
4387 		 * Add the overhead attributed to the superblock and
4388 		 * block group descriptors.  If the sparse superblocks
4389 		 * feature is turned on, then not all groups have this.
4390 		 */
4391 		for (i = 0; i < ngroups; i++) {
4392 			overhead += ext4_bg_has_super(sb, i) +
4393 				ext4_bg_num_gdb(sb, i);
4394 			cond_resched();
4395 		}
4396 
4397 		/*
4398 		 * Every block group has an inode bitmap, a block
4399 		 * bitmap, and an inode table.
4400 		 */
4401 		overhead += ngroups * (2 + sbi->s_itb_per_group);
4402 		sbi->s_overhead_last = overhead;
4403 		smp_wmb();
4404 		sbi->s_blocks_last = ext4_blocks_count(es);
4405 	}
4406 
4407 	buf->f_type = EXT4_SUPER_MAGIC;
4408 	buf->f_bsize = sb->s_blocksize;
4409 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4410 	buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4411 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4412 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4413 	if (buf->f_bfree < ext4_r_blocks_count(es))
4414 		buf->f_bavail = 0;
4415 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4416 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4417 	buf->f_namelen = EXT4_NAME_LEN;
4418 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4419 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4420 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4421 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4422 
4423 	return 0;
4424 }
4425 
4426 /* Helper function for writing quotas on sync - we need to start transaction
4427  * before quota file is locked for write. Otherwise the are possible deadlocks:
4428  * Process 1                         Process 2
4429  * ext4_create()                     quota_sync()
4430  *   jbd2_journal_start()                  write_dquot()
4431  *   dquot_initialize()                         down(dqio_mutex)
4432  *     down(dqio_mutex)                    jbd2_journal_start()
4433  *
4434  */
4435 
4436 #ifdef CONFIG_QUOTA
4437 
4438 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4439 {
4440 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4441 }
4442 
4443 static int ext4_write_dquot(struct dquot *dquot)
4444 {
4445 	int ret, err;
4446 	handle_t *handle;
4447 	struct inode *inode;
4448 
4449 	inode = dquot_to_inode(dquot);
4450 	handle = ext4_journal_start(inode,
4451 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4452 	if (IS_ERR(handle))
4453 		return PTR_ERR(handle);
4454 	ret = dquot_commit(dquot);
4455 	err = ext4_journal_stop(handle);
4456 	if (!ret)
4457 		ret = err;
4458 	return ret;
4459 }
4460 
4461 static int ext4_acquire_dquot(struct dquot *dquot)
4462 {
4463 	int ret, err;
4464 	handle_t *handle;
4465 
4466 	handle = ext4_journal_start(dquot_to_inode(dquot),
4467 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4468 	if (IS_ERR(handle))
4469 		return PTR_ERR(handle);
4470 	ret = dquot_acquire(dquot);
4471 	err = ext4_journal_stop(handle);
4472 	if (!ret)
4473 		ret = err;
4474 	return ret;
4475 }
4476 
4477 static int ext4_release_dquot(struct dquot *dquot)
4478 {
4479 	int ret, err;
4480 	handle_t *handle;
4481 
4482 	handle = ext4_journal_start(dquot_to_inode(dquot),
4483 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4484 	if (IS_ERR(handle)) {
4485 		/* Release dquot anyway to avoid endless cycle in dqput() */
4486 		dquot_release(dquot);
4487 		return PTR_ERR(handle);
4488 	}
4489 	ret = dquot_release(dquot);
4490 	err = ext4_journal_stop(handle);
4491 	if (!ret)
4492 		ret = err;
4493 	return ret;
4494 }
4495 
4496 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4497 {
4498 	/* Are we journaling quotas? */
4499 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4500 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4501 		dquot_mark_dquot_dirty(dquot);
4502 		return ext4_write_dquot(dquot);
4503 	} else {
4504 		return dquot_mark_dquot_dirty(dquot);
4505 	}
4506 }
4507 
4508 static int ext4_write_info(struct super_block *sb, int type)
4509 {
4510 	int ret, err;
4511 	handle_t *handle;
4512 
4513 	/* Data block + inode block */
4514 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4515 	if (IS_ERR(handle))
4516 		return PTR_ERR(handle);
4517 	ret = dquot_commit_info(sb, type);
4518 	err = ext4_journal_stop(handle);
4519 	if (!ret)
4520 		ret = err;
4521 	return ret;
4522 }
4523 
4524 /*
4525  * Turn on quotas during mount time - we need to find
4526  * the quota file and such...
4527  */
4528 static int ext4_quota_on_mount(struct super_block *sb, int type)
4529 {
4530 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4531 					EXT4_SB(sb)->s_jquota_fmt, type);
4532 }
4533 
4534 /*
4535  * Standard function to be called on quota_on
4536  */
4537 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4538 			 char *name)
4539 {
4540 	int err;
4541 	struct path path;
4542 
4543 	if (!test_opt(sb, QUOTA))
4544 		return -EINVAL;
4545 
4546 	err = kern_path(name, LOOKUP_FOLLOW, &path);
4547 	if (err)
4548 		return err;
4549 
4550 	/* Quotafile not on the same filesystem? */
4551 	if (path.mnt->mnt_sb != sb) {
4552 		path_put(&path);
4553 		return -EXDEV;
4554 	}
4555 	/* Journaling quota? */
4556 	if (EXT4_SB(sb)->s_qf_names[type]) {
4557 		/* Quotafile not in fs root? */
4558 		if (path.dentry->d_parent != sb->s_root)
4559 			ext4_msg(sb, KERN_WARNING,
4560 				"Quota file not on filesystem root. "
4561 				"Journaled quota will not work");
4562 	}
4563 
4564 	/*
4565 	 * When we journal data on quota file, we have to flush journal to see
4566 	 * all updates to the file when we bypass pagecache...
4567 	 */
4568 	if (EXT4_SB(sb)->s_journal &&
4569 	    ext4_should_journal_data(path.dentry->d_inode)) {
4570 		/*
4571 		 * We don't need to lock updates but journal_flush() could
4572 		 * otherwise be livelocked...
4573 		 */
4574 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4575 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4576 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4577 		if (err) {
4578 			path_put(&path);
4579 			return err;
4580 		}
4581 	}
4582 
4583 	err = dquot_quota_on_path(sb, type, format_id, &path);
4584 	path_put(&path);
4585 	return err;
4586 }
4587 
4588 static int ext4_quota_off(struct super_block *sb, int type)
4589 {
4590 	/* Force all delayed allocation blocks to be allocated.
4591 	 * Caller already holds s_umount sem */
4592 	if (test_opt(sb, DELALLOC))
4593 		sync_filesystem(sb);
4594 
4595 	return dquot_quota_off(sb, type);
4596 }
4597 
4598 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4599  * acquiring the locks... As quota files are never truncated and quota code
4600  * itself serializes the operations (and noone else should touch the files)
4601  * we don't have to be afraid of races */
4602 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4603 			       size_t len, loff_t off)
4604 {
4605 	struct inode *inode = sb_dqopt(sb)->files[type];
4606 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4607 	int err = 0;
4608 	int offset = off & (sb->s_blocksize - 1);
4609 	int tocopy;
4610 	size_t toread;
4611 	struct buffer_head *bh;
4612 	loff_t i_size = i_size_read(inode);
4613 
4614 	if (off > i_size)
4615 		return 0;
4616 	if (off+len > i_size)
4617 		len = i_size-off;
4618 	toread = len;
4619 	while (toread > 0) {
4620 		tocopy = sb->s_blocksize - offset < toread ?
4621 				sb->s_blocksize - offset : toread;
4622 		bh = ext4_bread(NULL, inode, blk, 0, &err);
4623 		if (err)
4624 			return err;
4625 		if (!bh)	/* A hole? */
4626 			memset(data, 0, tocopy);
4627 		else
4628 			memcpy(data, bh->b_data+offset, tocopy);
4629 		brelse(bh);
4630 		offset = 0;
4631 		toread -= tocopy;
4632 		data += tocopy;
4633 		blk++;
4634 	}
4635 	return len;
4636 }
4637 
4638 /* Write to quotafile (we know the transaction is already started and has
4639  * enough credits) */
4640 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4641 				const char *data, size_t len, loff_t off)
4642 {
4643 	struct inode *inode = sb_dqopt(sb)->files[type];
4644 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4645 	int err = 0;
4646 	int offset = off & (sb->s_blocksize - 1);
4647 	struct buffer_head *bh;
4648 	handle_t *handle = journal_current_handle();
4649 
4650 	if (EXT4_SB(sb)->s_journal && !handle) {
4651 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4652 			" cancelled because transaction is not started",
4653 			(unsigned long long)off, (unsigned long long)len);
4654 		return -EIO;
4655 	}
4656 	/*
4657 	 * Since we account only one data block in transaction credits,
4658 	 * then it is impossible to cross a block boundary.
4659 	 */
4660 	if (sb->s_blocksize - offset < len) {
4661 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4662 			" cancelled because not block aligned",
4663 			(unsigned long long)off, (unsigned long long)len);
4664 		return -EIO;
4665 	}
4666 
4667 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4668 	bh = ext4_bread(handle, inode, blk, 1, &err);
4669 	if (!bh)
4670 		goto out;
4671 	err = ext4_journal_get_write_access(handle, bh);
4672 	if (err) {
4673 		brelse(bh);
4674 		goto out;
4675 	}
4676 	lock_buffer(bh);
4677 	memcpy(bh->b_data+offset, data, len);
4678 	flush_dcache_page(bh->b_page);
4679 	unlock_buffer(bh);
4680 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
4681 	brelse(bh);
4682 out:
4683 	if (err) {
4684 		mutex_unlock(&inode->i_mutex);
4685 		return err;
4686 	}
4687 	if (inode->i_size < off + len) {
4688 		i_size_write(inode, off + len);
4689 		EXT4_I(inode)->i_disksize = inode->i_size;
4690 	}
4691 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4692 	ext4_mark_inode_dirty(handle, inode);
4693 	mutex_unlock(&inode->i_mutex);
4694 	return len;
4695 }
4696 
4697 #endif
4698 
4699 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4700 		       const char *dev_name, void *data)
4701 {
4702 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4703 }
4704 
4705 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4706 static struct file_system_type ext2_fs_type = {
4707 	.owner		= THIS_MODULE,
4708 	.name		= "ext2",
4709 	.mount		= ext4_mount,
4710 	.kill_sb	= kill_block_super,
4711 	.fs_flags	= FS_REQUIRES_DEV,
4712 };
4713 
4714 static inline void register_as_ext2(void)
4715 {
4716 	int err = register_filesystem(&ext2_fs_type);
4717 	if (err)
4718 		printk(KERN_WARNING
4719 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4720 }
4721 
4722 static inline void unregister_as_ext2(void)
4723 {
4724 	unregister_filesystem(&ext2_fs_type);
4725 }
4726 MODULE_ALIAS("ext2");
4727 #else
4728 static inline void register_as_ext2(void) { }
4729 static inline void unregister_as_ext2(void) { }
4730 #endif
4731 
4732 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4733 static inline void register_as_ext3(void)
4734 {
4735 	int err = register_filesystem(&ext3_fs_type);
4736 	if (err)
4737 		printk(KERN_WARNING
4738 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4739 }
4740 
4741 static inline void unregister_as_ext3(void)
4742 {
4743 	unregister_filesystem(&ext3_fs_type);
4744 }
4745 MODULE_ALIAS("ext3");
4746 #else
4747 static inline void register_as_ext3(void) { }
4748 static inline void unregister_as_ext3(void) { }
4749 #endif
4750 
4751 static struct file_system_type ext4_fs_type = {
4752 	.owner		= THIS_MODULE,
4753 	.name		= "ext4",
4754 	.mount		= ext4_mount,
4755 	.kill_sb	= kill_block_super,
4756 	.fs_flags	= FS_REQUIRES_DEV,
4757 };
4758 
4759 int __init ext4_init_feat_adverts(void)
4760 {
4761 	struct ext4_features *ef;
4762 	int ret = -ENOMEM;
4763 
4764 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4765 	if (!ef)
4766 		goto out;
4767 
4768 	ef->f_kobj.kset = ext4_kset;
4769 	init_completion(&ef->f_kobj_unregister);
4770 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4771 				   "features");
4772 	if (ret) {
4773 		kfree(ef);
4774 		goto out;
4775 	}
4776 
4777 	ext4_feat = ef;
4778 	ret = 0;
4779 out:
4780 	return ret;
4781 }
4782 
4783 static int __init ext4_init_fs(void)
4784 {
4785 	int err;
4786 
4787 	ext4_check_flag_values();
4788 	err = ext4_init_pageio();
4789 	if (err)
4790 		return err;
4791 	err = ext4_init_system_zone();
4792 	if (err)
4793 		goto out5;
4794 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4795 	if (!ext4_kset)
4796 		goto out4;
4797 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4798 
4799 	err = ext4_init_feat_adverts();
4800 
4801 	err = ext4_init_mballoc();
4802 	if (err)
4803 		goto out3;
4804 
4805 	err = ext4_init_xattr();
4806 	if (err)
4807 		goto out2;
4808 	err = init_inodecache();
4809 	if (err)
4810 		goto out1;
4811 	register_as_ext2();
4812 	register_as_ext3();
4813 	err = register_filesystem(&ext4_fs_type);
4814 	if (err)
4815 		goto out;
4816 
4817 	ext4_li_info = NULL;
4818 	mutex_init(&ext4_li_mtx);
4819 	return 0;
4820 out:
4821 	unregister_as_ext2();
4822 	unregister_as_ext3();
4823 	destroy_inodecache();
4824 out1:
4825 	ext4_exit_xattr();
4826 out2:
4827 	ext4_exit_mballoc();
4828 out3:
4829 	kfree(ext4_feat);
4830 	remove_proc_entry("fs/ext4", NULL);
4831 	kset_unregister(ext4_kset);
4832 out4:
4833 	ext4_exit_system_zone();
4834 out5:
4835 	ext4_exit_pageio();
4836 	return err;
4837 }
4838 
4839 static void __exit ext4_exit_fs(void)
4840 {
4841 	ext4_destroy_lazyinit_thread();
4842 	unregister_as_ext2();
4843 	unregister_as_ext3();
4844 	unregister_filesystem(&ext4_fs_type);
4845 	destroy_inodecache();
4846 	ext4_exit_xattr();
4847 	ext4_exit_mballoc();
4848 	remove_proc_entry("fs/ext4", NULL);
4849 	kset_unregister(ext4_kset);
4850 	ext4_exit_system_zone();
4851 	ext4_exit_pageio();
4852 }
4853 
4854 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4855 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4856 MODULE_LICENSE("GPL");
4857 module_init(ext4_init_fs)
4858 module_exit(ext4_exit_fs)
4859