1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (sb_rdonly(sb)) 409 return; 410 411 if (!test_opt(sb, ERRORS_CONT)) { 412 journal_t *journal = EXT4_SB(sb)->s_journal; 413 414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 415 if (journal) 416 jbd2_journal_abort(journal, -EIO); 417 } 418 if (test_opt(sb, ERRORS_RO)) { 419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 420 /* 421 * Make sure updated value of ->s_mount_flags will be visible 422 * before ->s_flags update 423 */ 424 smp_wmb(); 425 sb->s_flags |= SB_RDONLY; 426 } 427 if (test_opt(sb, ERRORS_PANIC)) { 428 if (EXT4_SB(sb)->s_journal && 429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 430 return; 431 panic("EXT4-fs (device %s): panic forced after error\n", 432 sb->s_id); 433 } 434 } 435 436 #define ext4_error_ratelimit(sb) \ 437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 438 "EXT4-fs error") 439 440 void __ext4_error(struct super_block *sb, const char *function, 441 unsigned int line, const char *fmt, ...) 442 { 443 struct va_format vaf; 444 va_list args; 445 446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 447 return; 448 449 trace_ext4_error(sb, function, line); 450 if (ext4_error_ratelimit(sb)) { 451 va_start(args, fmt); 452 vaf.fmt = fmt; 453 vaf.va = &args; 454 printk(KERN_CRIT 455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 456 sb->s_id, function, line, current->comm, &vaf); 457 va_end(args); 458 } 459 save_error_info(sb, function, line); 460 ext4_handle_error(sb); 461 } 462 463 void __ext4_error_inode(struct inode *inode, const char *function, 464 unsigned int line, ext4_fsblk_t block, 465 const char *fmt, ...) 466 { 467 va_list args; 468 struct va_format vaf; 469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 470 471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 472 return; 473 474 trace_ext4_error(inode->i_sb, function, line); 475 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 476 es->s_last_error_block = cpu_to_le64(block); 477 if (ext4_error_ratelimit(inode->i_sb)) { 478 va_start(args, fmt); 479 vaf.fmt = fmt; 480 vaf.va = &args; 481 if (block) 482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 483 "inode #%lu: block %llu: comm %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 block, current->comm, &vaf); 486 else 487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 488 "inode #%lu: comm %s: %pV\n", 489 inode->i_sb->s_id, function, line, inode->i_ino, 490 current->comm, &vaf); 491 va_end(args); 492 } 493 save_error_info(inode->i_sb, function, line); 494 ext4_handle_error(inode->i_sb); 495 } 496 497 void __ext4_error_file(struct file *file, const char *function, 498 unsigned int line, ext4_fsblk_t block, 499 const char *fmt, ...) 500 { 501 va_list args; 502 struct va_format vaf; 503 struct ext4_super_block *es; 504 struct inode *inode = file_inode(file); 505 char pathname[80], *path; 506 507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 508 return; 509 510 trace_ext4_error(inode->i_sb, function, line); 511 es = EXT4_SB(inode->i_sb)->s_es; 512 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 513 if (ext4_error_ratelimit(inode->i_sb)) { 514 path = file_path(file, pathname, sizeof(pathname)); 515 if (IS_ERR(path)) 516 path = "(unknown)"; 517 va_start(args, fmt); 518 vaf.fmt = fmt; 519 vaf.va = &args; 520 if (block) 521 printk(KERN_CRIT 522 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 523 "block %llu: comm %s: path %s: %pV\n", 524 inode->i_sb->s_id, function, line, inode->i_ino, 525 block, current->comm, path, &vaf); 526 else 527 printk(KERN_CRIT 528 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 529 "comm %s: path %s: %pV\n", 530 inode->i_sb->s_id, function, line, inode->i_ino, 531 current->comm, path, &vaf); 532 va_end(args); 533 } 534 save_error_info(inode->i_sb, function, line); 535 ext4_handle_error(inode->i_sb); 536 } 537 538 const char *ext4_decode_error(struct super_block *sb, int errno, 539 char nbuf[16]) 540 { 541 char *errstr = NULL; 542 543 switch (errno) { 544 case -EFSCORRUPTED: 545 errstr = "Corrupt filesystem"; 546 break; 547 case -EFSBADCRC: 548 errstr = "Filesystem failed CRC"; 549 break; 550 case -EIO: 551 errstr = "IO failure"; 552 break; 553 case -ENOMEM: 554 errstr = "Out of memory"; 555 break; 556 case -EROFS: 557 if (!sb || (EXT4_SB(sb)->s_journal && 558 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 559 errstr = "Journal has aborted"; 560 else 561 errstr = "Readonly filesystem"; 562 break; 563 default: 564 /* If the caller passed in an extra buffer for unknown 565 * errors, textualise them now. Else we just return 566 * NULL. */ 567 if (nbuf) { 568 /* Check for truncated error codes... */ 569 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 570 errstr = nbuf; 571 } 572 break; 573 } 574 575 return errstr; 576 } 577 578 /* __ext4_std_error decodes expected errors from journaling functions 579 * automatically and invokes the appropriate error response. */ 580 581 void __ext4_std_error(struct super_block *sb, const char *function, 582 unsigned int line, int errno) 583 { 584 char nbuf[16]; 585 const char *errstr; 586 587 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 588 return; 589 590 /* Special case: if the error is EROFS, and we're not already 591 * inside a transaction, then there's really no point in logging 592 * an error. */ 593 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 594 return; 595 596 if (ext4_error_ratelimit(sb)) { 597 errstr = ext4_decode_error(sb, errno, nbuf); 598 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 599 sb->s_id, function, line, errstr); 600 } 601 602 save_error_info(sb, function, line); 603 ext4_handle_error(sb); 604 } 605 606 /* 607 * ext4_abort is a much stronger failure handler than ext4_error. The 608 * abort function may be used to deal with unrecoverable failures such 609 * as journal IO errors or ENOMEM at a critical moment in log management. 610 * 611 * We unconditionally force the filesystem into an ABORT|READONLY state, 612 * unless the error response on the fs has been set to panic in which 613 * case we take the easy way out and panic immediately. 614 */ 615 616 void __ext4_abort(struct super_block *sb, const char *function, 617 unsigned int line, const char *fmt, ...) 618 { 619 struct va_format vaf; 620 va_list args; 621 622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 623 return; 624 625 save_error_info(sb, function, line); 626 va_start(args, fmt); 627 vaf.fmt = fmt; 628 vaf.va = &args; 629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 630 sb->s_id, function, line, &vaf); 631 va_end(args); 632 633 if (sb_rdonly(sb) == 0) { 634 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 635 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 636 /* 637 * Make sure updated value of ->s_mount_flags will be visible 638 * before ->s_flags update 639 */ 640 smp_wmb(); 641 sb->s_flags |= SB_RDONLY; 642 if (EXT4_SB(sb)->s_journal) 643 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 644 save_error_info(sb, function, line); 645 } 646 if (test_opt(sb, ERRORS_PANIC)) { 647 if (EXT4_SB(sb)->s_journal && 648 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 649 return; 650 panic("EXT4-fs panic from previous error\n"); 651 } 652 } 653 654 void __ext4_msg(struct super_block *sb, 655 const char *prefix, const char *fmt, ...) 656 { 657 struct va_format vaf; 658 va_list args; 659 660 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 661 return; 662 663 va_start(args, fmt); 664 vaf.fmt = fmt; 665 vaf.va = &args; 666 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 667 va_end(args); 668 } 669 670 #define ext4_warning_ratelimit(sb) \ 671 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 672 "EXT4-fs warning") 673 674 void __ext4_warning(struct super_block *sb, const char *function, 675 unsigned int line, const char *fmt, ...) 676 { 677 struct va_format vaf; 678 va_list args; 679 680 if (!ext4_warning_ratelimit(sb)) 681 return; 682 683 va_start(args, fmt); 684 vaf.fmt = fmt; 685 vaf.va = &args; 686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 687 sb->s_id, function, line, &vaf); 688 va_end(args); 689 } 690 691 void __ext4_warning_inode(const struct inode *inode, const char *function, 692 unsigned int line, const char *fmt, ...) 693 { 694 struct va_format vaf; 695 va_list args; 696 697 if (!ext4_warning_ratelimit(inode->i_sb)) 698 return; 699 700 va_start(args, fmt); 701 vaf.fmt = fmt; 702 vaf.va = &args; 703 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 704 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 705 function, line, inode->i_ino, current->comm, &vaf); 706 va_end(args); 707 } 708 709 void __ext4_grp_locked_error(const char *function, unsigned int line, 710 struct super_block *sb, ext4_group_t grp, 711 unsigned long ino, ext4_fsblk_t block, 712 const char *fmt, ...) 713 __releases(bitlock) 714 __acquires(bitlock) 715 { 716 struct va_format vaf; 717 va_list args; 718 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 719 720 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 721 return; 722 723 trace_ext4_error(sb, function, line); 724 es->s_last_error_ino = cpu_to_le32(ino); 725 es->s_last_error_block = cpu_to_le64(block); 726 __save_error_info(sb, function, line); 727 728 if (ext4_error_ratelimit(sb)) { 729 va_start(args, fmt); 730 vaf.fmt = fmt; 731 vaf.va = &args; 732 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 733 sb->s_id, function, line, grp); 734 if (ino) 735 printk(KERN_CONT "inode %lu: ", ino); 736 if (block) 737 printk(KERN_CONT "block %llu:", 738 (unsigned long long) block); 739 printk(KERN_CONT "%pV\n", &vaf); 740 va_end(args); 741 } 742 743 if (test_opt(sb, ERRORS_CONT)) { 744 ext4_commit_super(sb, 0); 745 return; 746 } 747 748 ext4_unlock_group(sb, grp); 749 ext4_commit_super(sb, 1); 750 ext4_handle_error(sb); 751 /* 752 * We only get here in the ERRORS_RO case; relocking the group 753 * may be dangerous, but nothing bad will happen since the 754 * filesystem will have already been marked read/only and the 755 * journal has been aborted. We return 1 as a hint to callers 756 * who might what to use the return value from 757 * ext4_grp_locked_error() to distinguish between the 758 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 759 * aggressively from the ext4 function in question, with a 760 * more appropriate error code. 761 */ 762 ext4_lock_group(sb, grp); 763 return; 764 } 765 766 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 767 ext4_group_t group, 768 unsigned int flags) 769 { 770 struct ext4_sb_info *sbi = EXT4_SB(sb); 771 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 772 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 773 774 if ((flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) && 775 !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) { 776 percpu_counter_sub(&sbi->s_freeclusters_counter, 777 grp->bb_free); 778 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 779 &grp->bb_state); 780 } 781 782 if ((flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) && 783 !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 784 if (gdp) { 785 int count; 786 787 count = ext4_free_inodes_count(sb, gdp); 788 percpu_counter_sub(&sbi->s_freeinodes_counter, 789 count); 790 } 791 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 792 &grp->bb_state); 793 } 794 } 795 796 void ext4_update_dynamic_rev(struct super_block *sb) 797 { 798 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 799 800 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 801 return; 802 803 ext4_warning(sb, 804 "updating to rev %d because of new feature flag, " 805 "running e2fsck is recommended", 806 EXT4_DYNAMIC_REV); 807 808 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 809 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 810 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 811 /* leave es->s_feature_*compat flags alone */ 812 /* es->s_uuid will be set by e2fsck if empty */ 813 814 /* 815 * The rest of the superblock fields should be zero, and if not it 816 * means they are likely already in use, so leave them alone. We 817 * can leave it up to e2fsck to clean up any inconsistencies there. 818 */ 819 } 820 821 /* 822 * Open the external journal device 823 */ 824 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 825 { 826 struct block_device *bdev; 827 char b[BDEVNAME_SIZE]; 828 829 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 830 if (IS_ERR(bdev)) 831 goto fail; 832 return bdev; 833 834 fail: 835 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 836 __bdevname(dev, b), PTR_ERR(bdev)); 837 return NULL; 838 } 839 840 /* 841 * Release the journal device 842 */ 843 static void ext4_blkdev_put(struct block_device *bdev) 844 { 845 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 846 } 847 848 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 849 { 850 struct block_device *bdev; 851 bdev = sbi->journal_bdev; 852 if (bdev) { 853 ext4_blkdev_put(bdev); 854 sbi->journal_bdev = NULL; 855 } 856 } 857 858 static inline struct inode *orphan_list_entry(struct list_head *l) 859 { 860 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 861 } 862 863 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 864 { 865 struct list_head *l; 866 867 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 868 le32_to_cpu(sbi->s_es->s_last_orphan)); 869 870 printk(KERN_ERR "sb_info orphan list:\n"); 871 list_for_each(l, &sbi->s_orphan) { 872 struct inode *inode = orphan_list_entry(l); 873 printk(KERN_ERR " " 874 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 875 inode->i_sb->s_id, inode->i_ino, inode, 876 inode->i_mode, inode->i_nlink, 877 NEXT_ORPHAN(inode)); 878 } 879 } 880 881 #ifdef CONFIG_QUOTA 882 static int ext4_quota_off(struct super_block *sb, int type); 883 884 static inline void ext4_quota_off_umount(struct super_block *sb) 885 { 886 int type; 887 888 /* Use our quota_off function to clear inode flags etc. */ 889 for (type = 0; type < EXT4_MAXQUOTAS; type++) 890 ext4_quota_off(sb, type); 891 } 892 #else 893 static inline void ext4_quota_off_umount(struct super_block *sb) 894 { 895 } 896 #endif 897 898 static void ext4_put_super(struct super_block *sb) 899 { 900 struct ext4_sb_info *sbi = EXT4_SB(sb); 901 struct ext4_super_block *es = sbi->s_es; 902 int aborted = 0; 903 int i, err; 904 905 ext4_unregister_li_request(sb); 906 ext4_quota_off_umount(sb); 907 908 destroy_workqueue(sbi->rsv_conversion_wq); 909 910 if (sbi->s_journal) { 911 aborted = is_journal_aborted(sbi->s_journal); 912 err = jbd2_journal_destroy(sbi->s_journal); 913 sbi->s_journal = NULL; 914 if ((err < 0) && !aborted) 915 ext4_abort(sb, "Couldn't clean up the journal"); 916 } 917 918 ext4_unregister_sysfs(sb); 919 ext4_es_unregister_shrinker(sbi); 920 del_timer_sync(&sbi->s_err_report); 921 ext4_release_system_zone(sb); 922 ext4_mb_release(sb); 923 ext4_ext_release(sb); 924 925 if (!sb_rdonly(sb) && !aborted) { 926 ext4_clear_feature_journal_needs_recovery(sb); 927 es->s_state = cpu_to_le16(sbi->s_mount_state); 928 } 929 if (!sb_rdonly(sb)) 930 ext4_commit_super(sb, 1); 931 932 for (i = 0; i < sbi->s_gdb_count; i++) 933 brelse(sbi->s_group_desc[i]); 934 kvfree(sbi->s_group_desc); 935 kvfree(sbi->s_flex_groups); 936 percpu_counter_destroy(&sbi->s_freeclusters_counter); 937 percpu_counter_destroy(&sbi->s_freeinodes_counter); 938 percpu_counter_destroy(&sbi->s_dirs_counter); 939 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 940 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 941 #ifdef CONFIG_QUOTA 942 for (i = 0; i < EXT4_MAXQUOTAS; i++) 943 kfree(sbi->s_qf_names[i]); 944 #endif 945 946 /* Debugging code just in case the in-memory inode orphan list 947 * isn't empty. The on-disk one can be non-empty if we've 948 * detected an error and taken the fs readonly, but the 949 * in-memory list had better be clean by this point. */ 950 if (!list_empty(&sbi->s_orphan)) 951 dump_orphan_list(sb, sbi); 952 J_ASSERT(list_empty(&sbi->s_orphan)); 953 954 sync_blockdev(sb->s_bdev); 955 invalidate_bdev(sb->s_bdev); 956 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 957 /* 958 * Invalidate the journal device's buffers. We don't want them 959 * floating about in memory - the physical journal device may 960 * hotswapped, and it breaks the `ro-after' testing code. 961 */ 962 sync_blockdev(sbi->journal_bdev); 963 invalidate_bdev(sbi->journal_bdev); 964 ext4_blkdev_remove(sbi); 965 } 966 if (sbi->s_ea_inode_cache) { 967 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 968 sbi->s_ea_inode_cache = NULL; 969 } 970 if (sbi->s_ea_block_cache) { 971 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 972 sbi->s_ea_block_cache = NULL; 973 } 974 if (sbi->s_mmp_tsk) 975 kthread_stop(sbi->s_mmp_tsk); 976 brelse(sbi->s_sbh); 977 sb->s_fs_info = NULL; 978 /* 979 * Now that we are completely done shutting down the 980 * superblock, we need to actually destroy the kobject. 981 */ 982 kobject_put(&sbi->s_kobj); 983 wait_for_completion(&sbi->s_kobj_unregister); 984 if (sbi->s_chksum_driver) 985 crypto_free_shash(sbi->s_chksum_driver); 986 kfree(sbi->s_blockgroup_lock); 987 fs_put_dax(sbi->s_daxdev); 988 kfree(sbi); 989 } 990 991 static struct kmem_cache *ext4_inode_cachep; 992 993 /* 994 * Called inside transaction, so use GFP_NOFS 995 */ 996 static struct inode *ext4_alloc_inode(struct super_block *sb) 997 { 998 struct ext4_inode_info *ei; 999 1000 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1001 if (!ei) 1002 return NULL; 1003 1004 inode_set_iversion(&ei->vfs_inode, 1); 1005 spin_lock_init(&ei->i_raw_lock); 1006 INIT_LIST_HEAD(&ei->i_prealloc_list); 1007 spin_lock_init(&ei->i_prealloc_lock); 1008 ext4_es_init_tree(&ei->i_es_tree); 1009 rwlock_init(&ei->i_es_lock); 1010 INIT_LIST_HEAD(&ei->i_es_list); 1011 ei->i_es_all_nr = 0; 1012 ei->i_es_shk_nr = 0; 1013 ei->i_es_shrink_lblk = 0; 1014 ei->i_reserved_data_blocks = 0; 1015 ei->i_da_metadata_calc_len = 0; 1016 ei->i_da_metadata_calc_last_lblock = 0; 1017 spin_lock_init(&(ei->i_block_reservation_lock)); 1018 #ifdef CONFIG_QUOTA 1019 ei->i_reserved_quota = 0; 1020 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1021 #endif 1022 ei->jinode = NULL; 1023 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1024 spin_lock_init(&ei->i_completed_io_lock); 1025 ei->i_sync_tid = 0; 1026 ei->i_datasync_tid = 0; 1027 atomic_set(&ei->i_unwritten, 0); 1028 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1029 return &ei->vfs_inode; 1030 } 1031 1032 static int ext4_drop_inode(struct inode *inode) 1033 { 1034 int drop = generic_drop_inode(inode); 1035 1036 trace_ext4_drop_inode(inode, drop); 1037 return drop; 1038 } 1039 1040 static void ext4_i_callback(struct rcu_head *head) 1041 { 1042 struct inode *inode = container_of(head, struct inode, i_rcu); 1043 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1044 } 1045 1046 static void ext4_destroy_inode(struct inode *inode) 1047 { 1048 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1049 ext4_msg(inode->i_sb, KERN_ERR, 1050 "Inode %lu (%p): orphan list check failed!", 1051 inode->i_ino, EXT4_I(inode)); 1052 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1053 EXT4_I(inode), sizeof(struct ext4_inode_info), 1054 true); 1055 dump_stack(); 1056 } 1057 call_rcu(&inode->i_rcu, ext4_i_callback); 1058 } 1059 1060 static void init_once(void *foo) 1061 { 1062 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1063 1064 INIT_LIST_HEAD(&ei->i_orphan); 1065 init_rwsem(&ei->xattr_sem); 1066 init_rwsem(&ei->i_data_sem); 1067 init_rwsem(&ei->i_mmap_sem); 1068 inode_init_once(&ei->vfs_inode); 1069 } 1070 1071 static int __init init_inodecache(void) 1072 { 1073 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1074 sizeof(struct ext4_inode_info), 0, 1075 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1076 SLAB_ACCOUNT), 1077 offsetof(struct ext4_inode_info, i_data), 1078 sizeof_field(struct ext4_inode_info, i_data), 1079 init_once); 1080 if (ext4_inode_cachep == NULL) 1081 return -ENOMEM; 1082 return 0; 1083 } 1084 1085 static void destroy_inodecache(void) 1086 { 1087 /* 1088 * Make sure all delayed rcu free inodes are flushed before we 1089 * destroy cache. 1090 */ 1091 rcu_barrier(); 1092 kmem_cache_destroy(ext4_inode_cachep); 1093 } 1094 1095 void ext4_clear_inode(struct inode *inode) 1096 { 1097 invalidate_inode_buffers(inode); 1098 clear_inode(inode); 1099 dquot_drop(inode); 1100 ext4_discard_preallocations(inode); 1101 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1102 if (EXT4_I(inode)->jinode) { 1103 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1104 EXT4_I(inode)->jinode); 1105 jbd2_free_inode(EXT4_I(inode)->jinode); 1106 EXT4_I(inode)->jinode = NULL; 1107 } 1108 fscrypt_put_encryption_info(inode); 1109 } 1110 1111 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1112 u64 ino, u32 generation) 1113 { 1114 struct inode *inode; 1115 1116 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1117 return ERR_PTR(-ESTALE); 1118 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1119 return ERR_PTR(-ESTALE); 1120 1121 /* iget isn't really right if the inode is currently unallocated!! 1122 * 1123 * ext4_read_inode will return a bad_inode if the inode had been 1124 * deleted, so we should be safe. 1125 * 1126 * Currently we don't know the generation for parent directory, so 1127 * a generation of 0 means "accept any" 1128 */ 1129 inode = ext4_iget_normal(sb, ino); 1130 if (IS_ERR(inode)) 1131 return ERR_CAST(inode); 1132 if (generation && inode->i_generation != generation) { 1133 iput(inode); 1134 return ERR_PTR(-ESTALE); 1135 } 1136 1137 return inode; 1138 } 1139 1140 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1141 int fh_len, int fh_type) 1142 { 1143 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1144 ext4_nfs_get_inode); 1145 } 1146 1147 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1148 int fh_len, int fh_type) 1149 { 1150 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1151 ext4_nfs_get_inode); 1152 } 1153 1154 /* 1155 * Try to release metadata pages (indirect blocks, directories) which are 1156 * mapped via the block device. Since these pages could have journal heads 1157 * which would prevent try_to_free_buffers() from freeing them, we must use 1158 * jbd2 layer's try_to_free_buffers() function to release them. 1159 */ 1160 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1161 gfp_t wait) 1162 { 1163 journal_t *journal = EXT4_SB(sb)->s_journal; 1164 1165 WARN_ON(PageChecked(page)); 1166 if (!page_has_buffers(page)) 1167 return 0; 1168 if (journal) 1169 return jbd2_journal_try_to_free_buffers(journal, page, 1170 wait & ~__GFP_DIRECT_RECLAIM); 1171 return try_to_free_buffers(page); 1172 } 1173 1174 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1175 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1176 { 1177 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1178 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1179 } 1180 1181 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1182 void *fs_data) 1183 { 1184 handle_t *handle = fs_data; 1185 int res, res2, credits, retries = 0; 1186 1187 /* 1188 * Encrypting the root directory is not allowed because e2fsck expects 1189 * lost+found to exist and be unencrypted, and encrypting the root 1190 * directory would imply encrypting the lost+found directory as well as 1191 * the filename "lost+found" itself. 1192 */ 1193 if (inode->i_ino == EXT4_ROOT_INO) 1194 return -EPERM; 1195 1196 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1197 return -EINVAL; 1198 1199 res = ext4_convert_inline_data(inode); 1200 if (res) 1201 return res; 1202 1203 /* 1204 * If a journal handle was specified, then the encryption context is 1205 * being set on a new inode via inheritance and is part of a larger 1206 * transaction to create the inode. Otherwise the encryption context is 1207 * being set on an existing inode in its own transaction. Only in the 1208 * latter case should the "retry on ENOSPC" logic be used. 1209 */ 1210 1211 if (handle) { 1212 res = ext4_xattr_set_handle(handle, inode, 1213 EXT4_XATTR_INDEX_ENCRYPTION, 1214 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1215 ctx, len, 0); 1216 if (!res) { 1217 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1218 ext4_clear_inode_state(inode, 1219 EXT4_STATE_MAY_INLINE_DATA); 1220 /* 1221 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1222 * S_DAX may be disabled 1223 */ 1224 ext4_set_inode_flags(inode); 1225 } 1226 return res; 1227 } 1228 1229 res = dquot_initialize(inode); 1230 if (res) 1231 return res; 1232 retry: 1233 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1234 &credits); 1235 if (res) 1236 return res; 1237 1238 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1239 if (IS_ERR(handle)) 1240 return PTR_ERR(handle); 1241 1242 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1243 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1244 ctx, len, 0); 1245 if (!res) { 1246 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1247 /* 1248 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1249 * S_DAX may be disabled 1250 */ 1251 ext4_set_inode_flags(inode); 1252 res = ext4_mark_inode_dirty(handle, inode); 1253 if (res) 1254 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1255 } 1256 res2 = ext4_journal_stop(handle); 1257 1258 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1259 goto retry; 1260 if (!res) 1261 res = res2; 1262 return res; 1263 } 1264 1265 static bool ext4_dummy_context(struct inode *inode) 1266 { 1267 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1268 } 1269 1270 static const struct fscrypt_operations ext4_cryptops = { 1271 .key_prefix = "ext4:", 1272 .get_context = ext4_get_context, 1273 .set_context = ext4_set_context, 1274 .dummy_context = ext4_dummy_context, 1275 .empty_dir = ext4_empty_dir, 1276 .max_namelen = EXT4_NAME_LEN, 1277 }; 1278 #endif 1279 1280 #ifdef CONFIG_QUOTA 1281 static const char * const quotatypes[] = INITQFNAMES; 1282 #define QTYPE2NAME(t) (quotatypes[t]) 1283 1284 static int ext4_write_dquot(struct dquot *dquot); 1285 static int ext4_acquire_dquot(struct dquot *dquot); 1286 static int ext4_release_dquot(struct dquot *dquot); 1287 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1288 static int ext4_write_info(struct super_block *sb, int type); 1289 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1290 const struct path *path); 1291 static int ext4_quota_on_mount(struct super_block *sb, int type); 1292 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1293 size_t len, loff_t off); 1294 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1295 const char *data, size_t len, loff_t off); 1296 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1297 unsigned int flags); 1298 static int ext4_enable_quotas(struct super_block *sb); 1299 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1300 1301 static struct dquot **ext4_get_dquots(struct inode *inode) 1302 { 1303 return EXT4_I(inode)->i_dquot; 1304 } 1305 1306 static const struct dquot_operations ext4_quota_operations = { 1307 .get_reserved_space = ext4_get_reserved_space, 1308 .write_dquot = ext4_write_dquot, 1309 .acquire_dquot = ext4_acquire_dquot, 1310 .release_dquot = ext4_release_dquot, 1311 .mark_dirty = ext4_mark_dquot_dirty, 1312 .write_info = ext4_write_info, 1313 .alloc_dquot = dquot_alloc, 1314 .destroy_dquot = dquot_destroy, 1315 .get_projid = ext4_get_projid, 1316 .get_inode_usage = ext4_get_inode_usage, 1317 .get_next_id = ext4_get_next_id, 1318 }; 1319 1320 static const struct quotactl_ops ext4_qctl_operations = { 1321 .quota_on = ext4_quota_on, 1322 .quota_off = ext4_quota_off, 1323 .quota_sync = dquot_quota_sync, 1324 .get_state = dquot_get_state, 1325 .set_info = dquot_set_dqinfo, 1326 .get_dqblk = dquot_get_dqblk, 1327 .set_dqblk = dquot_set_dqblk, 1328 .get_nextdqblk = dquot_get_next_dqblk, 1329 }; 1330 #endif 1331 1332 static const struct super_operations ext4_sops = { 1333 .alloc_inode = ext4_alloc_inode, 1334 .destroy_inode = ext4_destroy_inode, 1335 .write_inode = ext4_write_inode, 1336 .dirty_inode = ext4_dirty_inode, 1337 .drop_inode = ext4_drop_inode, 1338 .evict_inode = ext4_evict_inode, 1339 .put_super = ext4_put_super, 1340 .sync_fs = ext4_sync_fs, 1341 .freeze_fs = ext4_freeze, 1342 .unfreeze_fs = ext4_unfreeze, 1343 .statfs = ext4_statfs, 1344 .remount_fs = ext4_remount, 1345 .show_options = ext4_show_options, 1346 #ifdef CONFIG_QUOTA 1347 .quota_read = ext4_quota_read, 1348 .quota_write = ext4_quota_write, 1349 .get_dquots = ext4_get_dquots, 1350 #endif 1351 .bdev_try_to_free_page = bdev_try_to_free_page, 1352 }; 1353 1354 static const struct export_operations ext4_export_ops = { 1355 .fh_to_dentry = ext4_fh_to_dentry, 1356 .fh_to_parent = ext4_fh_to_parent, 1357 .get_parent = ext4_get_parent, 1358 }; 1359 1360 enum { 1361 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1362 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1363 Opt_nouid32, Opt_debug, Opt_removed, 1364 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1365 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1366 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1367 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1368 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1369 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1370 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1371 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1372 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1373 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1374 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1375 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1376 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1377 Opt_inode_readahead_blks, Opt_journal_ioprio, 1378 Opt_dioread_nolock, Opt_dioread_lock, 1379 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1380 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1381 }; 1382 1383 static const match_table_t tokens = { 1384 {Opt_bsd_df, "bsddf"}, 1385 {Opt_minix_df, "minixdf"}, 1386 {Opt_grpid, "grpid"}, 1387 {Opt_grpid, "bsdgroups"}, 1388 {Opt_nogrpid, "nogrpid"}, 1389 {Opt_nogrpid, "sysvgroups"}, 1390 {Opt_resgid, "resgid=%u"}, 1391 {Opt_resuid, "resuid=%u"}, 1392 {Opt_sb, "sb=%u"}, 1393 {Opt_err_cont, "errors=continue"}, 1394 {Opt_err_panic, "errors=panic"}, 1395 {Opt_err_ro, "errors=remount-ro"}, 1396 {Opt_nouid32, "nouid32"}, 1397 {Opt_debug, "debug"}, 1398 {Opt_removed, "oldalloc"}, 1399 {Opt_removed, "orlov"}, 1400 {Opt_user_xattr, "user_xattr"}, 1401 {Opt_nouser_xattr, "nouser_xattr"}, 1402 {Opt_acl, "acl"}, 1403 {Opt_noacl, "noacl"}, 1404 {Opt_noload, "norecovery"}, 1405 {Opt_noload, "noload"}, 1406 {Opt_removed, "nobh"}, 1407 {Opt_removed, "bh"}, 1408 {Opt_commit, "commit=%u"}, 1409 {Opt_min_batch_time, "min_batch_time=%u"}, 1410 {Opt_max_batch_time, "max_batch_time=%u"}, 1411 {Opt_journal_dev, "journal_dev=%u"}, 1412 {Opt_journal_path, "journal_path=%s"}, 1413 {Opt_journal_checksum, "journal_checksum"}, 1414 {Opt_nojournal_checksum, "nojournal_checksum"}, 1415 {Opt_journal_async_commit, "journal_async_commit"}, 1416 {Opt_abort, "abort"}, 1417 {Opt_data_journal, "data=journal"}, 1418 {Opt_data_ordered, "data=ordered"}, 1419 {Opt_data_writeback, "data=writeback"}, 1420 {Opt_data_err_abort, "data_err=abort"}, 1421 {Opt_data_err_ignore, "data_err=ignore"}, 1422 {Opt_offusrjquota, "usrjquota="}, 1423 {Opt_usrjquota, "usrjquota=%s"}, 1424 {Opt_offgrpjquota, "grpjquota="}, 1425 {Opt_grpjquota, "grpjquota=%s"}, 1426 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1427 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1428 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1429 {Opt_grpquota, "grpquota"}, 1430 {Opt_noquota, "noquota"}, 1431 {Opt_quota, "quota"}, 1432 {Opt_usrquota, "usrquota"}, 1433 {Opt_prjquota, "prjquota"}, 1434 {Opt_barrier, "barrier=%u"}, 1435 {Opt_barrier, "barrier"}, 1436 {Opt_nobarrier, "nobarrier"}, 1437 {Opt_i_version, "i_version"}, 1438 {Opt_dax, "dax"}, 1439 {Opt_stripe, "stripe=%u"}, 1440 {Opt_delalloc, "delalloc"}, 1441 {Opt_lazytime, "lazytime"}, 1442 {Opt_nolazytime, "nolazytime"}, 1443 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1444 {Opt_nodelalloc, "nodelalloc"}, 1445 {Opt_removed, "mblk_io_submit"}, 1446 {Opt_removed, "nomblk_io_submit"}, 1447 {Opt_block_validity, "block_validity"}, 1448 {Opt_noblock_validity, "noblock_validity"}, 1449 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1450 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1451 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1452 {Opt_auto_da_alloc, "auto_da_alloc"}, 1453 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1454 {Opt_dioread_nolock, "dioread_nolock"}, 1455 {Opt_dioread_lock, "dioread_lock"}, 1456 {Opt_discard, "discard"}, 1457 {Opt_nodiscard, "nodiscard"}, 1458 {Opt_init_itable, "init_itable=%u"}, 1459 {Opt_init_itable, "init_itable"}, 1460 {Opt_noinit_itable, "noinit_itable"}, 1461 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1462 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1463 {Opt_nombcache, "nombcache"}, 1464 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1465 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1466 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1467 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1468 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1469 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1470 {Opt_err, NULL}, 1471 }; 1472 1473 static ext4_fsblk_t get_sb_block(void **data) 1474 { 1475 ext4_fsblk_t sb_block; 1476 char *options = (char *) *data; 1477 1478 if (!options || strncmp(options, "sb=", 3) != 0) 1479 return 1; /* Default location */ 1480 1481 options += 3; 1482 /* TODO: use simple_strtoll with >32bit ext4 */ 1483 sb_block = simple_strtoul(options, &options, 0); 1484 if (*options && *options != ',') { 1485 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1486 (char *) *data); 1487 return 1; 1488 } 1489 if (*options == ',') 1490 options++; 1491 *data = (void *) options; 1492 1493 return sb_block; 1494 } 1495 1496 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1497 static const char deprecated_msg[] = 1498 "Mount option \"%s\" will be removed by %s\n" 1499 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1500 1501 #ifdef CONFIG_QUOTA 1502 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1503 { 1504 struct ext4_sb_info *sbi = EXT4_SB(sb); 1505 char *qname; 1506 int ret = -1; 1507 1508 if (sb_any_quota_loaded(sb) && 1509 !sbi->s_qf_names[qtype]) { 1510 ext4_msg(sb, KERN_ERR, 1511 "Cannot change journaled " 1512 "quota options when quota turned on"); 1513 return -1; 1514 } 1515 if (ext4_has_feature_quota(sb)) { 1516 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1517 "ignored when QUOTA feature is enabled"); 1518 return 1; 1519 } 1520 qname = match_strdup(args); 1521 if (!qname) { 1522 ext4_msg(sb, KERN_ERR, 1523 "Not enough memory for storing quotafile name"); 1524 return -1; 1525 } 1526 if (sbi->s_qf_names[qtype]) { 1527 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1528 ret = 1; 1529 else 1530 ext4_msg(sb, KERN_ERR, 1531 "%s quota file already specified", 1532 QTYPE2NAME(qtype)); 1533 goto errout; 1534 } 1535 if (strchr(qname, '/')) { 1536 ext4_msg(sb, KERN_ERR, 1537 "quotafile must be on filesystem root"); 1538 goto errout; 1539 } 1540 sbi->s_qf_names[qtype] = qname; 1541 set_opt(sb, QUOTA); 1542 return 1; 1543 errout: 1544 kfree(qname); 1545 return ret; 1546 } 1547 1548 static int clear_qf_name(struct super_block *sb, int qtype) 1549 { 1550 1551 struct ext4_sb_info *sbi = EXT4_SB(sb); 1552 1553 if (sb_any_quota_loaded(sb) && 1554 sbi->s_qf_names[qtype]) { 1555 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1556 " when quota turned on"); 1557 return -1; 1558 } 1559 kfree(sbi->s_qf_names[qtype]); 1560 sbi->s_qf_names[qtype] = NULL; 1561 return 1; 1562 } 1563 #endif 1564 1565 #define MOPT_SET 0x0001 1566 #define MOPT_CLEAR 0x0002 1567 #define MOPT_NOSUPPORT 0x0004 1568 #define MOPT_EXPLICIT 0x0008 1569 #define MOPT_CLEAR_ERR 0x0010 1570 #define MOPT_GTE0 0x0020 1571 #ifdef CONFIG_QUOTA 1572 #define MOPT_Q 0 1573 #define MOPT_QFMT 0x0040 1574 #else 1575 #define MOPT_Q MOPT_NOSUPPORT 1576 #define MOPT_QFMT MOPT_NOSUPPORT 1577 #endif 1578 #define MOPT_DATAJ 0x0080 1579 #define MOPT_NO_EXT2 0x0100 1580 #define MOPT_NO_EXT3 0x0200 1581 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1582 #define MOPT_STRING 0x0400 1583 1584 static const struct mount_opts { 1585 int token; 1586 int mount_opt; 1587 int flags; 1588 } ext4_mount_opts[] = { 1589 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1590 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1591 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1592 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1593 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1594 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1595 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1596 MOPT_EXT4_ONLY | MOPT_SET}, 1597 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1598 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1599 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1600 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1601 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1602 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1603 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1604 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1605 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1606 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1607 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1608 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1609 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1610 EXT4_MOUNT_JOURNAL_CHECKSUM), 1611 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1612 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1613 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1614 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1615 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1616 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1617 MOPT_NO_EXT2}, 1618 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1619 MOPT_NO_EXT2}, 1620 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1621 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1622 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1623 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1624 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1625 {Opt_commit, 0, MOPT_GTE0}, 1626 {Opt_max_batch_time, 0, MOPT_GTE0}, 1627 {Opt_min_batch_time, 0, MOPT_GTE0}, 1628 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1629 {Opt_init_itable, 0, MOPT_GTE0}, 1630 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1631 {Opt_stripe, 0, MOPT_GTE0}, 1632 {Opt_resuid, 0, MOPT_GTE0}, 1633 {Opt_resgid, 0, MOPT_GTE0}, 1634 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1635 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1636 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1637 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1638 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1639 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1640 MOPT_NO_EXT2 | MOPT_DATAJ}, 1641 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1642 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1643 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1644 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1645 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1646 #else 1647 {Opt_acl, 0, MOPT_NOSUPPORT}, 1648 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1649 #endif 1650 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1651 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1652 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1653 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1654 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1655 MOPT_SET | MOPT_Q}, 1656 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1657 MOPT_SET | MOPT_Q}, 1658 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1659 MOPT_SET | MOPT_Q}, 1660 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1661 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1662 MOPT_CLEAR | MOPT_Q}, 1663 {Opt_usrjquota, 0, MOPT_Q}, 1664 {Opt_grpjquota, 0, MOPT_Q}, 1665 {Opt_offusrjquota, 0, MOPT_Q}, 1666 {Opt_offgrpjquota, 0, MOPT_Q}, 1667 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1668 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1669 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1670 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1671 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1672 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1673 {Opt_err, 0, 0} 1674 }; 1675 1676 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1677 substring_t *args, unsigned long *journal_devnum, 1678 unsigned int *journal_ioprio, int is_remount) 1679 { 1680 struct ext4_sb_info *sbi = EXT4_SB(sb); 1681 const struct mount_opts *m; 1682 kuid_t uid; 1683 kgid_t gid; 1684 int arg = 0; 1685 1686 #ifdef CONFIG_QUOTA 1687 if (token == Opt_usrjquota) 1688 return set_qf_name(sb, USRQUOTA, &args[0]); 1689 else if (token == Opt_grpjquota) 1690 return set_qf_name(sb, GRPQUOTA, &args[0]); 1691 else if (token == Opt_offusrjquota) 1692 return clear_qf_name(sb, USRQUOTA); 1693 else if (token == Opt_offgrpjquota) 1694 return clear_qf_name(sb, GRPQUOTA); 1695 #endif 1696 switch (token) { 1697 case Opt_noacl: 1698 case Opt_nouser_xattr: 1699 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1700 break; 1701 case Opt_sb: 1702 return 1; /* handled by get_sb_block() */ 1703 case Opt_removed: 1704 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1705 return 1; 1706 case Opt_abort: 1707 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1708 return 1; 1709 case Opt_i_version: 1710 sb->s_flags |= SB_I_VERSION; 1711 return 1; 1712 case Opt_lazytime: 1713 sb->s_flags |= SB_LAZYTIME; 1714 return 1; 1715 case Opt_nolazytime: 1716 sb->s_flags &= ~SB_LAZYTIME; 1717 return 1; 1718 } 1719 1720 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1721 if (token == m->token) 1722 break; 1723 1724 if (m->token == Opt_err) { 1725 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1726 "or missing value", opt); 1727 return -1; 1728 } 1729 1730 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1731 ext4_msg(sb, KERN_ERR, 1732 "Mount option \"%s\" incompatible with ext2", opt); 1733 return -1; 1734 } 1735 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1736 ext4_msg(sb, KERN_ERR, 1737 "Mount option \"%s\" incompatible with ext3", opt); 1738 return -1; 1739 } 1740 1741 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1742 return -1; 1743 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1744 return -1; 1745 if (m->flags & MOPT_EXPLICIT) { 1746 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1747 set_opt2(sb, EXPLICIT_DELALLOC); 1748 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1749 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1750 } else 1751 return -1; 1752 } 1753 if (m->flags & MOPT_CLEAR_ERR) 1754 clear_opt(sb, ERRORS_MASK); 1755 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1756 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1757 "options when quota turned on"); 1758 return -1; 1759 } 1760 1761 if (m->flags & MOPT_NOSUPPORT) { 1762 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1763 } else if (token == Opt_commit) { 1764 if (arg == 0) 1765 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1766 sbi->s_commit_interval = HZ * arg; 1767 } else if (token == Opt_debug_want_extra_isize) { 1768 sbi->s_want_extra_isize = arg; 1769 } else if (token == Opt_max_batch_time) { 1770 sbi->s_max_batch_time = arg; 1771 } else if (token == Opt_min_batch_time) { 1772 sbi->s_min_batch_time = arg; 1773 } else if (token == Opt_inode_readahead_blks) { 1774 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1775 ext4_msg(sb, KERN_ERR, 1776 "EXT4-fs: inode_readahead_blks must be " 1777 "0 or a power of 2 smaller than 2^31"); 1778 return -1; 1779 } 1780 sbi->s_inode_readahead_blks = arg; 1781 } else if (token == Opt_init_itable) { 1782 set_opt(sb, INIT_INODE_TABLE); 1783 if (!args->from) 1784 arg = EXT4_DEF_LI_WAIT_MULT; 1785 sbi->s_li_wait_mult = arg; 1786 } else if (token == Opt_max_dir_size_kb) { 1787 sbi->s_max_dir_size_kb = arg; 1788 } else if (token == Opt_stripe) { 1789 sbi->s_stripe = arg; 1790 } else if (token == Opt_resuid) { 1791 uid = make_kuid(current_user_ns(), arg); 1792 if (!uid_valid(uid)) { 1793 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1794 return -1; 1795 } 1796 sbi->s_resuid = uid; 1797 } else if (token == Opt_resgid) { 1798 gid = make_kgid(current_user_ns(), arg); 1799 if (!gid_valid(gid)) { 1800 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1801 return -1; 1802 } 1803 sbi->s_resgid = gid; 1804 } else if (token == Opt_journal_dev) { 1805 if (is_remount) { 1806 ext4_msg(sb, KERN_ERR, 1807 "Cannot specify journal on remount"); 1808 return -1; 1809 } 1810 *journal_devnum = arg; 1811 } else if (token == Opt_journal_path) { 1812 char *journal_path; 1813 struct inode *journal_inode; 1814 struct path path; 1815 int error; 1816 1817 if (is_remount) { 1818 ext4_msg(sb, KERN_ERR, 1819 "Cannot specify journal on remount"); 1820 return -1; 1821 } 1822 journal_path = match_strdup(&args[0]); 1823 if (!journal_path) { 1824 ext4_msg(sb, KERN_ERR, "error: could not dup " 1825 "journal device string"); 1826 return -1; 1827 } 1828 1829 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1830 if (error) { 1831 ext4_msg(sb, KERN_ERR, "error: could not find " 1832 "journal device path: error %d", error); 1833 kfree(journal_path); 1834 return -1; 1835 } 1836 1837 journal_inode = d_inode(path.dentry); 1838 if (!S_ISBLK(journal_inode->i_mode)) { 1839 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1840 "is not a block device", journal_path); 1841 path_put(&path); 1842 kfree(journal_path); 1843 return -1; 1844 } 1845 1846 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1847 path_put(&path); 1848 kfree(journal_path); 1849 } else if (token == Opt_journal_ioprio) { 1850 if (arg > 7) { 1851 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1852 " (must be 0-7)"); 1853 return -1; 1854 } 1855 *journal_ioprio = 1856 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1857 } else if (token == Opt_test_dummy_encryption) { 1858 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1859 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1860 ext4_msg(sb, KERN_WARNING, 1861 "Test dummy encryption mode enabled"); 1862 #else 1863 ext4_msg(sb, KERN_WARNING, 1864 "Test dummy encryption mount option ignored"); 1865 #endif 1866 } else if (m->flags & MOPT_DATAJ) { 1867 if (is_remount) { 1868 if (!sbi->s_journal) 1869 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1870 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1871 ext4_msg(sb, KERN_ERR, 1872 "Cannot change data mode on remount"); 1873 return -1; 1874 } 1875 } else { 1876 clear_opt(sb, DATA_FLAGS); 1877 sbi->s_mount_opt |= m->mount_opt; 1878 } 1879 #ifdef CONFIG_QUOTA 1880 } else if (m->flags & MOPT_QFMT) { 1881 if (sb_any_quota_loaded(sb) && 1882 sbi->s_jquota_fmt != m->mount_opt) { 1883 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1884 "quota options when quota turned on"); 1885 return -1; 1886 } 1887 if (ext4_has_feature_quota(sb)) { 1888 ext4_msg(sb, KERN_INFO, 1889 "Quota format mount options ignored " 1890 "when QUOTA feature is enabled"); 1891 return 1; 1892 } 1893 sbi->s_jquota_fmt = m->mount_opt; 1894 #endif 1895 } else if (token == Opt_dax) { 1896 #ifdef CONFIG_FS_DAX 1897 ext4_msg(sb, KERN_WARNING, 1898 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1899 sbi->s_mount_opt |= m->mount_opt; 1900 #else 1901 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1902 return -1; 1903 #endif 1904 } else if (token == Opt_data_err_abort) { 1905 sbi->s_mount_opt |= m->mount_opt; 1906 } else if (token == Opt_data_err_ignore) { 1907 sbi->s_mount_opt &= ~m->mount_opt; 1908 } else { 1909 if (!args->from) 1910 arg = 1; 1911 if (m->flags & MOPT_CLEAR) 1912 arg = !arg; 1913 else if (unlikely(!(m->flags & MOPT_SET))) { 1914 ext4_msg(sb, KERN_WARNING, 1915 "buggy handling of option %s", opt); 1916 WARN_ON(1); 1917 return -1; 1918 } 1919 if (arg != 0) 1920 sbi->s_mount_opt |= m->mount_opt; 1921 else 1922 sbi->s_mount_opt &= ~m->mount_opt; 1923 } 1924 return 1; 1925 } 1926 1927 static int parse_options(char *options, struct super_block *sb, 1928 unsigned long *journal_devnum, 1929 unsigned int *journal_ioprio, 1930 int is_remount) 1931 { 1932 struct ext4_sb_info *sbi = EXT4_SB(sb); 1933 char *p; 1934 substring_t args[MAX_OPT_ARGS]; 1935 int token; 1936 1937 if (!options) 1938 return 1; 1939 1940 while ((p = strsep(&options, ",")) != NULL) { 1941 if (!*p) 1942 continue; 1943 /* 1944 * Initialize args struct so we know whether arg was 1945 * found; some options take optional arguments. 1946 */ 1947 args[0].to = args[0].from = NULL; 1948 token = match_token(p, tokens, args); 1949 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1950 journal_ioprio, is_remount) < 0) 1951 return 0; 1952 } 1953 #ifdef CONFIG_QUOTA 1954 /* 1955 * We do the test below only for project quotas. 'usrquota' and 1956 * 'grpquota' mount options are allowed even without quota feature 1957 * to support legacy quotas in quota files. 1958 */ 1959 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1960 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1961 "Cannot enable project quota enforcement."); 1962 return 0; 1963 } 1964 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1965 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1966 clear_opt(sb, USRQUOTA); 1967 1968 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1969 clear_opt(sb, GRPQUOTA); 1970 1971 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1972 ext4_msg(sb, KERN_ERR, "old and new quota " 1973 "format mixing"); 1974 return 0; 1975 } 1976 1977 if (!sbi->s_jquota_fmt) { 1978 ext4_msg(sb, KERN_ERR, "journaled quota format " 1979 "not specified"); 1980 return 0; 1981 } 1982 } 1983 #endif 1984 if (test_opt(sb, DIOREAD_NOLOCK)) { 1985 int blocksize = 1986 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1987 1988 if (blocksize < PAGE_SIZE) { 1989 ext4_msg(sb, KERN_ERR, "can't mount with " 1990 "dioread_nolock if block size != PAGE_SIZE"); 1991 return 0; 1992 } 1993 } 1994 return 1; 1995 } 1996 1997 static inline void ext4_show_quota_options(struct seq_file *seq, 1998 struct super_block *sb) 1999 { 2000 #if defined(CONFIG_QUOTA) 2001 struct ext4_sb_info *sbi = EXT4_SB(sb); 2002 2003 if (sbi->s_jquota_fmt) { 2004 char *fmtname = ""; 2005 2006 switch (sbi->s_jquota_fmt) { 2007 case QFMT_VFS_OLD: 2008 fmtname = "vfsold"; 2009 break; 2010 case QFMT_VFS_V0: 2011 fmtname = "vfsv0"; 2012 break; 2013 case QFMT_VFS_V1: 2014 fmtname = "vfsv1"; 2015 break; 2016 } 2017 seq_printf(seq, ",jqfmt=%s", fmtname); 2018 } 2019 2020 if (sbi->s_qf_names[USRQUOTA]) 2021 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 2022 2023 if (sbi->s_qf_names[GRPQUOTA]) 2024 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 2025 #endif 2026 } 2027 2028 static const char *token2str(int token) 2029 { 2030 const struct match_token *t; 2031 2032 for (t = tokens; t->token != Opt_err; t++) 2033 if (t->token == token && !strchr(t->pattern, '=')) 2034 break; 2035 return t->pattern; 2036 } 2037 2038 /* 2039 * Show an option if 2040 * - it's set to a non-default value OR 2041 * - if the per-sb default is different from the global default 2042 */ 2043 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2044 int nodefs) 2045 { 2046 struct ext4_sb_info *sbi = EXT4_SB(sb); 2047 struct ext4_super_block *es = sbi->s_es; 2048 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2049 const struct mount_opts *m; 2050 char sep = nodefs ? '\n' : ','; 2051 2052 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2053 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2054 2055 if (sbi->s_sb_block != 1) 2056 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2057 2058 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2059 int want_set = m->flags & MOPT_SET; 2060 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2061 (m->flags & MOPT_CLEAR_ERR)) 2062 continue; 2063 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2064 continue; /* skip if same as the default */ 2065 if ((want_set && 2066 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2067 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2068 continue; /* select Opt_noFoo vs Opt_Foo */ 2069 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2070 } 2071 2072 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2073 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2074 SEQ_OPTS_PRINT("resuid=%u", 2075 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2076 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2077 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2078 SEQ_OPTS_PRINT("resgid=%u", 2079 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2080 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2081 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2082 SEQ_OPTS_PUTS("errors=remount-ro"); 2083 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2084 SEQ_OPTS_PUTS("errors=continue"); 2085 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2086 SEQ_OPTS_PUTS("errors=panic"); 2087 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2088 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2089 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2090 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2091 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2092 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2093 if (sb->s_flags & SB_I_VERSION) 2094 SEQ_OPTS_PUTS("i_version"); 2095 if (nodefs || sbi->s_stripe) 2096 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2097 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2098 (sbi->s_mount_opt ^ def_mount_opt)) { 2099 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2100 SEQ_OPTS_PUTS("data=journal"); 2101 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2102 SEQ_OPTS_PUTS("data=ordered"); 2103 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2104 SEQ_OPTS_PUTS("data=writeback"); 2105 } 2106 if (nodefs || 2107 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2108 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2109 sbi->s_inode_readahead_blks); 2110 2111 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2112 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2113 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2114 if (nodefs || sbi->s_max_dir_size_kb) 2115 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2116 if (test_opt(sb, DATA_ERR_ABORT)) 2117 SEQ_OPTS_PUTS("data_err=abort"); 2118 2119 ext4_show_quota_options(seq, sb); 2120 return 0; 2121 } 2122 2123 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2124 { 2125 return _ext4_show_options(seq, root->d_sb, 0); 2126 } 2127 2128 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2129 { 2130 struct super_block *sb = seq->private; 2131 int rc; 2132 2133 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2134 rc = _ext4_show_options(seq, sb, 1); 2135 seq_puts(seq, "\n"); 2136 return rc; 2137 } 2138 2139 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2140 int read_only) 2141 { 2142 struct ext4_sb_info *sbi = EXT4_SB(sb); 2143 int err = 0; 2144 2145 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2146 ext4_msg(sb, KERN_ERR, "revision level too high, " 2147 "forcing read-only mode"); 2148 err = -EROFS; 2149 } 2150 if (read_only) 2151 goto done; 2152 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2153 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2154 "running e2fsck is recommended"); 2155 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2156 ext4_msg(sb, KERN_WARNING, 2157 "warning: mounting fs with errors, " 2158 "running e2fsck is recommended"); 2159 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2160 le16_to_cpu(es->s_mnt_count) >= 2161 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2162 ext4_msg(sb, KERN_WARNING, 2163 "warning: maximal mount count reached, " 2164 "running e2fsck is recommended"); 2165 else if (le32_to_cpu(es->s_checkinterval) && 2166 (le32_to_cpu(es->s_lastcheck) + 2167 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2168 ext4_msg(sb, KERN_WARNING, 2169 "warning: checktime reached, " 2170 "running e2fsck is recommended"); 2171 if (!sbi->s_journal) 2172 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2173 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2174 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2175 le16_add_cpu(&es->s_mnt_count, 1); 2176 es->s_mtime = cpu_to_le32(get_seconds()); 2177 ext4_update_dynamic_rev(sb); 2178 if (sbi->s_journal) 2179 ext4_set_feature_journal_needs_recovery(sb); 2180 2181 err = ext4_commit_super(sb, 1); 2182 done: 2183 if (test_opt(sb, DEBUG)) 2184 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2185 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2186 sb->s_blocksize, 2187 sbi->s_groups_count, 2188 EXT4_BLOCKS_PER_GROUP(sb), 2189 EXT4_INODES_PER_GROUP(sb), 2190 sbi->s_mount_opt, sbi->s_mount_opt2); 2191 2192 cleancache_init_fs(sb); 2193 return err; 2194 } 2195 2196 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2197 { 2198 struct ext4_sb_info *sbi = EXT4_SB(sb); 2199 struct flex_groups *new_groups; 2200 int size; 2201 2202 if (!sbi->s_log_groups_per_flex) 2203 return 0; 2204 2205 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2206 if (size <= sbi->s_flex_groups_allocated) 2207 return 0; 2208 2209 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2210 new_groups = kvzalloc(size, GFP_KERNEL); 2211 if (!new_groups) { 2212 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2213 size / (int) sizeof(struct flex_groups)); 2214 return -ENOMEM; 2215 } 2216 2217 if (sbi->s_flex_groups) { 2218 memcpy(new_groups, sbi->s_flex_groups, 2219 (sbi->s_flex_groups_allocated * 2220 sizeof(struct flex_groups))); 2221 kvfree(sbi->s_flex_groups); 2222 } 2223 sbi->s_flex_groups = new_groups; 2224 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2225 return 0; 2226 } 2227 2228 static int ext4_fill_flex_info(struct super_block *sb) 2229 { 2230 struct ext4_sb_info *sbi = EXT4_SB(sb); 2231 struct ext4_group_desc *gdp = NULL; 2232 ext4_group_t flex_group; 2233 int i, err; 2234 2235 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2236 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2237 sbi->s_log_groups_per_flex = 0; 2238 return 1; 2239 } 2240 2241 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2242 if (err) 2243 goto failed; 2244 2245 for (i = 0; i < sbi->s_groups_count; i++) { 2246 gdp = ext4_get_group_desc(sb, i, NULL); 2247 2248 flex_group = ext4_flex_group(sbi, i); 2249 atomic_add(ext4_free_inodes_count(sb, gdp), 2250 &sbi->s_flex_groups[flex_group].free_inodes); 2251 atomic64_add(ext4_free_group_clusters(sb, gdp), 2252 &sbi->s_flex_groups[flex_group].free_clusters); 2253 atomic_add(ext4_used_dirs_count(sb, gdp), 2254 &sbi->s_flex_groups[flex_group].used_dirs); 2255 } 2256 2257 return 1; 2258 failed: 2259 return 0; 2260 } 2261 2262 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2263 struct ext4_group_desc *gdp) 2264 { 2265 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2266 __u16 crc = 0; 2267 __le32 le_group = cpu_to_le32(block_group); 2268 struct ext4_sb_info *sbi = EXT4_SB(sb); 2269 2270 if (ext4_has_metadata_csum(sbi->s_sb)) { 2271 /* Use new metadata_csum algorithm */ 2272 __u32 csum32; 2273 __u16 dummy_csum = 0; 2274 2275 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2276 sizeof(le_group)); 2277 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2278 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2279 sizeof(dummy_csum)); 2280 offset += sizeof(dummy_csum); 2281 if (offset < sbi->s_desc_size) 2282 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2283 sbi->s_desc_size - offset); 2284 2285 crc = csum32 & 0xFFFF; 2286 goto out; 2287 } 2288 2289 /* old crc16 code */ 2290 if (!ext4_has_feature_gdt_csum(sb)) 2291 return 0; 2292 2293 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2294 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2295 crc = crc16(crc, (__u8 *)gdp, offset); 2296 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2297 /* for checksum of struct ext4_group_desc do the rest...*/ 2298 if (ext4_has_feature_64bit(sb) && 2299 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2300 crc = crc16(crc, (__u8 *)gdp + offset, 2301 le16_to_cpu(sbi->s_es->s_desc_size) - 2302 offset); 2303 2304 out: 2305 return cpu_to_le16(crc); 2306 } 2307 2308 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2309 struct ext4_group_desc *gdp) 2310 { 2311 if (ext4_has_group_desc_csum(sb) && 2312 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2313 return 0; 2314 2315 return 1; 2316 } 2317 2318 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2319 struct ext4_group_desc *gdp) 2320 { 2321 if (!ext4_has_group_desc_csum(sb)) 2322 return; 2323 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2324 } 2325 2326 /* Called at mount-time, super-block is locked */ 2327 static int ext4_check_descriptors(struct super_block *sb, 2328 ext4_fsblk_t sb_block, 2329 ext4_group_t *first_not_zeroed) 2330 { 2331 struct ext4_sb_info *sbi = EXT4_SB(sb); 2332 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2333 ext4_fsblk_t last_block; 2334 ext4_fsblk_t block_bitmap; 2335 ext4_fsblk_t inode_bitmap; 2336 ext4_fsblk_t inode_table; 2337 int flexbg_flag = 0; 2338 ext4_group_t i, grp = sbi->s_groups_count; 2339 2340 if (ext4_has_feature_flex_bg(sb)) 2341 flexbg_flag = 1; 2342 2343 ext4_debug("Checking group descriptors"); 2344 2345 for (i = 0; i < sbi->s_groups_count; i++) { 2346 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2347 2348 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2349 last_block = ext4_blocks_count(sbi->s_es) - 1; 2350 else 2351 last_block = first_block + 2352 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2353 2354 if ((grp == sbi->s_groups_count) && 2355 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2356 grp = i; 2357 2358 block_bitmap = ext4_block_bitmap(sb, gdp); 2359 if (block_bitmap == sb_block) { 2360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2361 "Block bitmap for group %u overlaps " 2362 "superblock", i); 2363 if (!sb_rdonly(sb)) 2364 return 0; 2365 } 2366 if (block_bitmap < first_block || block_bitmap > last_block) { 2367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2368 "Block bitmap for group %u not in group " 2369 "(block %llu)!", i, block_bitmap); 2370 return 0; 2371 } 2372 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2373 if (inode_bitmap == sb_block) { 2374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2375 "Inode bitmap for group %u overlaps " 2376 "superblock", i); 2377 if (!sb_rdonly(sb)) 2378 return 0; 2379 } 2380 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2381 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2382 "Inode bitmap for group %u not in group " 2383 "(block %llu)!", i, inode_bitmap); 2384 return 0; 2385 } 2386 inode_table = ext4_inode_table(sb, gdp); 2387 if (inode_table == sb_block) { 2388 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2389 "Inode table for group %u overlaps " 2390 "superblock", i); 2391 if (!sb_rdonly(sb)) 2392 return 0; 2393 } 2394 if (inode_table < first_block || 2395 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2396 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2397 "Inode table for group %u not in group " 2398 "(block %llu)!", i, inode_table); 2399 return 0; 2400 } 2401 ext4_lock_group(sb, i); 2402 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2403 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2404 "Checksum for group %u failed (%u!=%u)", 2405 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2406 gdp)), le16_to_cpu(gdp->bg_checksum)); 2407 if (!sb_rdonly(sb)) { 2408 ext4_unlock_group(sb, i); 2409 return 0; 2410 } 2411 } 2412 ext4_unlock_group(sb, i); 2413 if (!flexbg_flag) 2414 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2415 } 2416 if (NULL != first_not_zeroed) 2417 *first_not_zeroed = grp; 2418 return 1; 2419 } 2420 2421 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2422 * the superblock) which were deleted from all directories, but held open by 2423 * a process at the time of a crash. We walk the list and try to delete these 2424 * inodes at recovery time (only with a read-write filesystem). 2425 * 2426 * In order to keep the orphan inode chain consistent during traversal (in 2427 * case of crash during recovery), we link each inode into the superblock 2428 * orphan list_head and handle it the same way as an inode deletion during 2429 * normal operation (which journals the operations for us). 2430 * 2431 * We only do an iget() and an iput() on each inode, which is very safe if we 2432 * accidentally point at an in-use or already deleted inode. The worst that 2433 * can happen in this case is that we get a "bit already cleared" message from 2434 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2435 * e2fsck was run on this filesystem, and it must have already done the orphan 2436 * inode cleanup for us, so we can safely abort without any further action. 2437 */ 2438 static void ext4_orphan_cleanup(struct super_block *sb, 2439 struct ext4_super_block *es) 2440 { 2441 unsigned int s_flags = sb->s_flags; 2442 int ret, nr_orphans = 0, nr_truncates = 0; 2443 #ifdef CONFIG_QUOTA 2444 int quota_update = 0; 2445 int i; 2446 #endif 2447 if (!es->s_last_orphan) { 2448 jbd_debug(4, "no orphan inodes to clean up\n"); 2449 return; 2450 } 2451 2452 if (bdev_read_only(sb->s_bdev)) { 2453 ext4_msg(sb, KERN_ERR, "write access " 2454 "unavailable, skipping orphan cleanup"); 2455 return; 2456 } 2457 2458 /* Check if feature set would not allow a r/w mount */ 2459 if (!ext4_feature_set_ok(sb, 0)) { 2460 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2461 "unknown ROCOMPAT features"); 2462 return; 2463 } 2464 2465 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2466 /* don't clear list on RO mount w/ errors */ 2467 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2468 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2469 "clearing orphan list.\n"); 2470 es->s_last_orphan = 0; 2471 } 2472 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2473 return; 2474 } 2475 2476 if (s_flags & SB_RDONLY) { 2477 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2478 sb->s_flags &= ~SB_RDONLY; 2479 } 2480 #ifdef CONFIG_QUOTA 2481 /* Needed for iput() to work correctly and not trash data */ 2482 sb->s_flags |= SB_ACTIVE; 2483 2484 /* 2485 * Turn on quotas which were not enabled for read-only mounts if 2486 * filesystem has quota feature, so that they are updated correctly. 2487 */ 2488 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2489 int ret = ext4_enable_quotas(sb); 2490 2491 if (!ret) 2492 quota_update = 1; 2493 else 2494 ext4_msg(sb, KERN_ERR, 2495 "Cannot turn on quotas: error %d", ret); 2496 } 2497 2498 /* Turn on journaled quotas used for old sytle */ 2499 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2500 if (EXT4_SB(sb)->s_qf_names[i]) { 2501 int ret = ext4_quota_on_mount(sb, i); 2502 2503 if (!ret) 2504 quota_update = 1; 2505 else 2506 ext4_msg(sb, KERN_ERR, 2507 "Cannot turn on journaled " 2508 "quota: type %d: error %d", i, ret); 2509 } 2510 } 2511 #endif 2512 2513 while (es->s_last_orphan) { 2514 struct inode *inode; 2515 2516 /* 2517 * We may have encountered an error during cleanup; if 2518 * so, skip the rest. 2519 */ 2520 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2521 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2522 es->s_last_orphan = 0; 2523 break; 2524 } 2525 2526 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2527 if (IS_ERR(inode)) { 2528 es->s_last_orphan = 0; 2529 break; 2530 } 2531 2532 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2533 dquot_initialize(inode); 2534 if (inode->i_nlink) { 2535 if (test_opt(sb, DEBUG)) 2536 ext4_msg(sb, KERN_DEBUG, 2537 "%s: truncating inode %lu to %lld bytes", 2538 __func__, inode->i_ino, inode->i_size); 2539 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2540 inode->i_ino, inode->i_size); 2541 inode_lock(inode); 2542 truncate_inode_pages(inode->i_mapping, inode->i_size); 2543 ret = ext4_truncate(inode); 2544 if (ret) 2545 ext4_std_error(inode->i_sb, ret); 2546 inode_unlock(inode); 2547 nr_truncates++; 2548 } else { 2549 if (test_opt(sb, DEBUG)) 2550 ext4_msg(sb, KERN_DEBUG, 2551 "%s: deleting unreferenced inode %lu", 2552 __func__, inode->i_ino); 2553 jbd_debug(2, "deleting unreferenced inode %lu\n", 2554 inode->i_ino); 2555 nr_orphans++; 2556 } 2557 iput(inode); /* The delete magic happens here! */ 2558 } 2559 2560 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2561 2562 if (nr_orphans) 2563 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2564 PLURAL(nr_orphans)); 2565 if (nr_truncates) 2566 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2567 PLURAL(nr_truncates)); 2568 #ifdef CONFIG_QUOTA 2569 /* Turn off quotas if they were enabled for orphan cleanup */ 2570 if (quota_update) { 2571 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2572 if (sb_dqopt(sb)->files[i]) 2573 dquot_quota_off(sb, i); 2574 } 2575 } 2576 #endif 2577 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2578 } 2579 2580 /* 2581 * Maximal extent format file size. 2582 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2583 * extent format containers, within a sector_t, and within i_blocks 2584 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2585 * so that won't be a limiting factor. 2586 * 2587 * However there is other limiting factor. We do store extents in the form 2588 * of starting block and length, hence the resulting length of the extent 2589 * covering maximum file size must fit into on-disk format containers as 2590 * well. Given that length is always by 1 unit bigger than max unit (because 2591 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2592 * 2593 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2594 */ 2595 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2596 { 2597 loff_t res; 2598 loff_t upper_limit = MAX_LFS_FILESIZE; 2599 2600 /* small i_blocks in vfs inode? */ 2601 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2602 /* 2603 * CONFIG_LBDAF is not enabled implies the inode 2604 * i_block represent total blocks in 512 bytes 2605 * 32 == size of vfs inode i_blocks * 8 2606 */ 2607 upper_limit = (1LL << 32) - 1; 2608 2609 /* total blocks in file system block size */ 2610 upper_limit >>= (blkbits - 9); 2611 upper_limit <<= blkbits; 2612 } 2613 2614 /* 2615 * 32-bit extent-start container, ee_block. We lower the maxbytes 2616 * by one fs block, so ee_len can cover the extent of maximum file 2617 * size 2618 */ 2619 res = (1LL << 32) - 1; 2620 res <<= blkbits; 2621 2622 /* Sanity check against vm- & vfs- imposed limits */ 2623 if (res > upper_limit) 2624 res = upper_limit; 2625 2626 return res; 2627 } 2628 2629 /* 2630 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2631 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2632 * We need to be 1 filesystem block less than the 2^48 sector limit. 2633 */ 2634 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2635 { 2636 loff_t res = EXT4_NDIR_BLOCKS; 2637 int meta_blocks; 2638 loff_t upper_limit; 2639 /* This is calculated to be the largest file size for a dense, block 2640 * mapped file such that the file's total number of 512-byte sectors, 2641 * including data and all indirect blocks, does not exceed (2^48 - 1). 2642 * 2643 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2644 * number of 512-byte sectors of the file. 2645 */ 2646 2647 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2648 /* 2649 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2650 * the inode i_block field represents total file blocks in 2651 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2652 */ 2653 upper_limit = (1LL << 32) - 1; 2654 2655 /* total blocks in file system block size */ 2656 upper_limit >>= (bits - 9); 2657 2658 } else { 2659 /* 2660 * We use 48 bit ext4_inode i_blocks 2661 * With EXT4_HUGE_FILE_FL set the i_blocks 2662 * represent total number of blocks in 2663 * file system block size 2664 */ 2665 upper_limit = (1LL << 48) - 1; 2666 2667 } 2668 2669 /* indirect blocks */ 2670 meta_blocks = 1; 2671 /* double indirect blocks */ 2672 meta_blocks += 1 + (1LL << (bits-2)); 2673 /* tripple indirect blocks */ 2674 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2675 2676 upper_limit -= meta_blocks; 2677 upper_limit <<= bits; 2678 2679 res += 1LL << (bits-2); 2680 res += 1LL << (2*(bits-2)); 2681 res += 1LL << (3*(bits-2)); 2682 res <<= bits; 2683 if (res > upper_limit) 2684 res = upper_limit; 2685 2686 if (res > MAX_LFS_FILESIZE) 2687 res = MAX_LFS_FILESIZE; 2688 2689 return res; 2690 } 2691 2692 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2693 ext4_fsblk_t logical_sb_block, int nr) 2694 { 2695 struct ext4_sb_info *sbi = EXT4_SB(sb); 2696 ext4_group_t bg, first_meta_bg; 2697 int has_super = 0; 2698 2699 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2700 2701 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2702 return logical_sb_block + nr + 1; 2703 bg = sbi->s_desc_per_block * nr; 2704 if (ext4_bg_has_super(sb, bg)) 2705 has_super = 1; 2706 2707 /* 2708 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2709 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2710 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2711 * compensate. 2712 */ 2713 if (sb->s_blocksize == 1024 && nr == 0 && 2714 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2715 has_super++; 2716 2717 return (has_super + ext4_group_first_block_no(sb, bg)); 2718 } 2719 2720 /** 2721 * ext4_get_stripe_size: Get the stripe size. 2722 * @sbi: In memory super block info 2723 * 2724 * If we have specified it via mount option, then 2725 * use the mount option value. If the value specified at mount time is 2726 * greater than the blocks per group use the super block value. 2727 * If the super block value is greater than blocks per group return 0. 2728 * Allocator needs it be less than blocks per group. 2729 * 2730 */ 2731 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2732 { 2733 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2734 unsigned long stripe_width = 2735 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2736 int ret; 2737 2738 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2739 ret = sbi->s_stripe; 2740 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2741 ret = stripe_width; 2742 else if (stride && stride <= sbi->s_blocks_per_group) 2743 ret = stride; 2744 else 2745 ret = 0; 2746 2747 /* 2748 * If the stripe width is 1, this makes no sense and 2749 * we set it to 0 to turn off stripe handling code. 2750 */ 2751 if (ret <= 1) 2752 ret = 0; 2753 2754 return ret; 2755 } 2756 2757 /* 2758 * Check whether this filesystem can be mounted based on 2759 * the features present and the RDONLY/RDWR mount requested. 2760 * Returns 1 if this filesystem can be mounted as requested, 2761 * 0 if it cannot be. 2762 */ 2763 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2764 { 2765 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2766 ext4_msg(sb, KERN_ERR, 2767 "Couldn't mount because of " 2768 "unsupported optional features (%x)", 2769 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2770 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2771 return 0; 2772 } 2773 2774 if (readonly) 2775 return 1; 2776 2777 if (ext4_has_feature_readonly(sb)) { 2778 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2779 sb->s_flags |= SB_RDONLY; 2780 return 1; 2781 } 2782 2783 /* Check that feature set is OK for a read-write mount */ 2784 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2785 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2786 "unsupported optional features (%x)", 2787 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2788 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2789 return 0; 2790 } 2791 /* 2792 * Large file size enabled file system can only be mounted 2793 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2794 */ 2795 if (ext4_has_feature_huge_file(sb)) { 2796 if (sizeof(blkcnt_t) < sizeof(u64)) { 2797 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2798 "cannot be mounted RDWR without " 2799 "CONFIG_LBDAF"); 2800 return 0; 2801 } 2802 } 2803 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2804 ext4_msg(sb, KERN_ERR, 2805 "Can't support bigalloc feature without " 2806 "extents feature\n"); 2807 return 0; 2808 } 2809 2810 #ifndef CONFIG_QUOTA 2811 if (ext4_has_feature_quota(sb) && !readonly) { 2812 ext4_msg(sb, KERN_ERR, 2813 "Filesystem with quota feature cannot be mounted RDWR " 2814 "without CONFIG_QUOTA"); 2815 return 0; 2816 } 2817 if (ext4_has_feature_project(sb) && !readonly) { 2818 ext4_msg(sb, KERN_ERR, 2819 "Filesystem with project quota feature cannot be mounted RDWR " 2820 "without CONFIG_QUOTA"); 2821 return 0; 2822 } 2823 #endif /* CONFIG_QUOTA */ 2824 return 1; 2825 } 2826 2827 /* 2828 * This function is called once a day if we have errors logged 2829 * on the file system 2830 */ 2831 static void print_daily_error_info(struct timer_list *t) 2832 { 2833 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2834 struct super_block *sb = sbi->s_sb; 2835 struct ext4_super_block *es = sbi->s_es; 2836 2837 if (es->s_error_count) 2838 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2839 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2840 le32_to_cpu(es->s_error_count)); 2841 if (es->s_first_error_time) { 2842 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2843 sb->s_id, le32_to_cpu(es->s_first_error_time), 2844 (int) sizeof(es->s_first_error_func), 2845 es->s_first_error_func, 2846 le32_to_cpu(es->s_first_error_line)); 2847 if (es->s_first_error_ino) 2848 printk(KERN_CONT ": inode %u", 2849 le32_to_cpu(es->s_first_error_ino)); 2850 if (es->s_first_error_block) 2851 printk(KERN_CONT ": block %llu", (unsigned long long) 2852 le64_to_cpu(es->s_first_error_block)); 2853 printk(KERN_CONT "\n"); 2854 } 2855 if (es->s_last_error_time) { 2856 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2857 sb->s_id, le32_to_cpu(es->s_last_error_time), 2858 (int) sizeof(es->s_last_error_func), 2859 es->s_last_error_func, 2860 le32_to_cpu(es->s_last_error_line)); 2861 if (es->s_last_error_ino) 2862 printk(KERN_CONT ": inode %u", 2863 le32_to_cpu(es->s_last_error_ino)); 2864 if (es->s_last_error_block) 2865 printk(KERN_CONT ": block %llu", (unsigned long long) 2866 le64_to_cpu(es->s_last_error_block)); 2867 printk(KERN_CONT "\n"); 2868 } 2869 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2870 } 2871 2872 /* Find next suitable group and run ext4_init_inode_table */ 2873 static int ext4_run_li_request(struct ext4_li_request *elr) 2874 { 2875 struct ext4_group_desc *gdp = NULL; 2876 ext4_group_t group, ngroups; 2877 struct super_block *sb; 2878 unsigned long timeout = 0; 2879 int ret = 0; 2880 2881 sb = elr->lr_super; 2882 ngroups = EXT4_SB(sb)->s_groups_count; 2883 2884 for (group = elr->lr_next_group; group < ngroups; group++) { 2885 gdp = ext4_get_group_desc(sb, group, NULL); 2886 if (!gdp) { 2887 ret = 1; 2888 break; 2889 } 2890 2891 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2892 break; 2893 } 2894 2895 if (group >= ngroups) 2896 ret = 1; 2897 2898 if (!ret) { 2899 timeout = jiffies; 2900 ret = ext4_init_inode_table(sb, group, 2901 elr->lr_timeout ? 0 : 1); 2902 if (elr->lr_timeout == 0) { 2903 timeout = (jiffies - timeout) * 2904 elr->lr_sbi->s_li_wait_mult; 2905 elr->lr_timeout = timeout; 2906 } 2907 elr->lr_next_sched = jiffies + elr->lr_timeout; 2908 elr->lr_next_group = group + 1; 2909 } 2910 return ret; 2911 } 2912 2913 /* 2914 * Remove lr_request from the list_request and free the 2915 * request structure. Should be called with li_list_mtx held 2916 */ 2917 static void ext4_remove_li_request(struct ext4_li_request *elr) 2918 { 2919 struct ext4_sb_info *sbi; 2920 2921 if (!elr) 2922 return; 2923 2924 sbi = elr->lr_sbi; 2925 2926 list_del(&elr->lr_request); 2927 sbi->s_li_request = NULL; 2928 kfree(elr); 2929 } 2930 2931 static void ext4_unregister_li_request(struct super_block *sb) 2932 { 2933 mutex_lock(&ext4_li_mtx); 2934 if (!ext4_li_info) { 2935 mutex_unlock(&ext4_li_mtx); 2936 return; 2937 } 2938 2939 mutex_lock(&ext4_li_info->li_list_mtx); 2940 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2941 mutex_unlock(&ext4_li_info->li_list_mtx); 2942 mutex_unlock(&ext4_li_mtx); 2943 } 2944 2945 static struct task_struct *ext4_lazyinit_task; 2946 2947 /* 2948 * This is the function where ext4lazyinit thread lives. It walks 2949 * through the request list searching for next scheduled filesystem. 2950 * When such a fs is found, run the lazy initialization request 2951 * (ext4_rn_li_request) and keep track of the time spend in this 2952 * function. Based on that time we compute next schedule time of 2953 * the request. When walking through the list is complete, compute 2954 * next waking time and put itself into sleep. 2955 */ 2956 static int ext4_lazyinit_thread(void *arg) 2957 { 2958 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2959 struct list_head *pos, *n; 2960 struct ext4_li_request *elr; 2961 unsigned long next_wakeup, cur; 2962 2963 BUG_ON(NULL == eli); 2964 2965 cont_thread: 2966 while (true) { 2967 next_wakeup = MAX_JIFFY_OFFSET; 2968 2969 mutex_lock(&eli->li_list_mtx); 2970 if (list_empty(&eli->li_request_list)) { 2971 mutex_unlock(&eli->li_list_mtx); 2972 goto exit_thread; 2973 } 2974 list_for_each_safe(pos, n, &eli->li_request_list) { 2975 int err = 0; 2976 int progress = 0; 2977 elr = list_entry(pos, struct ext4_li_request, 2978 lr_request); 2979 2980 if (time_before(jiffies, elr->lr_next_sched)) { 2981 if (time_before(elr->lr_next_sched, next_wakeup)) 2982 next_wakeup = elr->lr_next_sched; 2983 continue; 2984 } 2985 if (down_read_trylock(&elr->lr_super->s_umount)) { 2986 if (sb_start_write_trylock(elr->lr_super)) { 2987 progress = 1; 2988 /* 2989 * We hold sb->s_umount, sb can not 2990 * be removed from the list, it is 2991 * now safe to drop li_list_mtx 2992 */ 2993 mutex_unlock(&eli->li_list_mtx); 2994 err = ext4_run_li_request(elr); 2995 sb_end_write(elr->lr_super); 2996 mutex_lock(&eli->li_list_mtx); 2997 n = pos->next; 2998 } 2999 up_read((&elr->lr_super->s_umount)); 3000 } 3001 /* error, remove the lazy_init job */ 3002 if (err) { 3003 ext4_remove_li_request(elr); 3004 continue; 3005 } 3006 if (!progress) { 3007 elr->lr_next_sched = jiffies + 3008 (prandom_u32() 3009 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3010 } 3011 if (time_before(elr->lr_next_sched, next_wakeup)) 3012 next_wakeup = elr->lr_next_sched; 3013 } 3014 mutex_unlock(&eli->li_list_mtx); 3015 3016 try_to_freeze(); 3017 3018 cur = jiffies; 3019 if ((time_after_eq(cur, next_wakeup)) || 3020 (MAX_JIFFY_OFFSET == next_wakeup)) { 3021 cond_resched(); 3022 continue; 3023 } 3024 3025 schedule_timeout_interruptible(next_wakeup - cur); 3026 3027 if (kthread_should_stop()) { 3028 ext4_clear_request_list(); 3029 goto exit_thread; 3030 } 3031 } 3032 3033 exit_thread: 3034 /* 3035 * It looks like the request list is empty, but we need 3036 * to check it under the li_list_mtx lock, to prevent any 3037 * additions into it, and of course we should lock ext4_li_mtx 3038 * to atomically free the list and ext4_li_info, because at 3039 * this point another ext4 filesystem could be registering 3040 * new one. 3041 */ 3042 mutex_lock(&ext4_li_mtx); 3043 mutex_lock(&eli->li_list_mtx); 3044 if (!list_empty(&eli->li_request_list)) { 3045 mutex_unlock(&eli->li_list_mtx); 3046 mutex_unlock(&ext4_li_mtx); 3047 goto cont_thread; 3048 } 3049 mutex_unlock(&eli->li_list_mtx); 3050 kfree(ext4_li_info); 3051 ext4_li_info = NULL; 3052 mutex_unlock(&ext4_li_mtx); 3053 3054 return 0; 3055 } 3056 3057 static void ext4_clear_request_list(void) 3058 { 3059 struct list_head *pos, *n; 3060 struct ext4_li_request *elr; 3061 3062 mutex_lock(&ext4_li_info->li_list_mtx); 3063 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3064 elr = list_entry(pos, struct ext4_li_request, 3065 lr_request); 3066 ext4_remove_li_request(elr); 3067 } 3068 mutex_unlock(&ext4_li_info->li_list_mtx); 3069 } 3070 3071 static int ext4_run_lazyinit_thread(void) 3072 { 3073 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3074 ext4_li_info, "ext4lazyinit"); 3075 if (IS_ERR(ext4_lazyinit_task)) { 3076 int err = PTR_ERR(ext4_lazyinit_task); 3077 ext4_clear_request_list(); 3078 kfree(ext4_li_info); 3079 ext4_li_info = NULL; 3080 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3081 "initialization thread\n", 3082 err); 3083 return err; 3084 } 3085 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3086 return 0; 3087 } 3088 3089 /* 3090 * Check whether it make sense to run itable init. thread or not. 3091 * If there is at least one uninitialized inode table, return 3092 * corresponding group number, else the loop goes through all 3093 * groups and return total number of groups. 3094 */ 3095 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3096 { 3097 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3098 struct ext4_group_desc *gdp = NULL; 3099 3100 for (group = 0; group < ngroups; group++) { 3101 gdp = ext4_get_group_desc(sb, group, NULL); 3102 if (!gdp) 3103 continue; 3104 3105 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3106 break; 3107 } 3108 3109 return group; 3110 } 3111 3112 static int ext4_li_info_new(void) 3113 { 3114 struct ext4_lazy_init *eli = NULL; 3115 3116 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3117 if (!eli) 3118 return -ENOMEM; 3119 3120 INIT_LIST_HEAD(&eli->li_request_list); 3121 mutex_init(&eli->li_list_mtx); 3122 3123 eli->li_state |= EXT4_LAZYINIT_QUIT; 3124 3125 ext4_li_info = eli; 3126 3127 return 0; 3128 } 3129 3130 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3131 ext4_group_t start) 3132 { 3133 struct ext4_sb_info *sbi = EXT4_SB(sb); 3134 struct ext4_li_request *elr; 3135 3136 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3137 if (!elr) 3138 return NULL; 3139 3140 elr->lr_super = sb; 3141 elr->lr_sbi = sbi; 3142 elr->lr_next_group = start; 3143 3144 /* 3145 * Randomize first schedule time of the request to 3146 * spread the inode table initialization requests 3147 * better. 3148 */ 3149 elr->lr_next_sched = jiffies + (prandom_u32() % 3150 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3151 return elr; 3152 } 3153 3154 int ext4_register_li_request(struct super_block *sb, 3155 ext4_group_t first_not_zeroed) 3156 { 3157 struct ext4_sb_info *sbi = EXT4_SB(sb); 3158 struct ext4_li_request *elr = NULL; 3159 ext4_group_t ngroups = sbi->s_groups_count; 3160 int ret = 0; 3161 3162 mutex_lock(&ext4_li_mtx); 3163 if (sbi->s_li_request != NULL) { 3164 /* 3165 * Reset timeout so it can be computed again, because 3166 * s_li_wait_mult might have changed. 3167 */ 3168 sbi->s_li_request->lr_timeout = 0; 3169 goto out; 3170 } 3171 3172 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3173 !test_opt(sb, INIT_INODE_TABLE)) 3174 goto out; 3175 3176 elr = ext4_li_request_new(sb, first_not_zeroed); 3177 if (!elr) { 3178 ret = -ENOMEM; 3179 goto out; 3180 } 3181 3182 if (NULL == ext4_li_info) { 3183 ret = ext4_li_info_new(); 3184 if (ret) 3185 goto out; 3186 } 3187 3188 mutex_lock(&ext4_li_info->li_list_mtx); 3189 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3190 mutex_unlock(&ext4_li_info->li_list_mtx); 3191 3192 sbi->s_li_request = elr; 3193 /* 3194 * set elr to NULL here since it has been inserted to 3195 * the request_list and the removal and free of it is 3196 * handled by ext4_clear_request_list from now on. 3197 */ 3198 elr = NULL; 3199 3200 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3201 ret = ext4_run_lazyinit_thread(); 3202 if (ret) 3203 goto out; 3204 } 3205 out: 3206 mutex_unlock(&ext4_li_mtx); 3207 if (ret) 3208 kfree(elr); 3209 return ret; 3210 } 3211 3212 /* 3213 * We do not need to lock anything since this is called on 3214 * module unload. 3215 */ 3216 static void ext4_destroy_lazyinit_thread(void) 3217 { 3218 /* 3219 * If thread exited earlier 3220 * there's nothing to be done. 3221 */ 3222 if (!ext4_li_info || !ext4_lazyinit_task) 3223 return; 3224 3225 kthread_stop(ext4_lazyinit_task); 3226 } 3227 3228 static int set_journal_csum_feature_set(struct super_block *sb) 3229 { 3230 int ret = 1; 3231 int compat, incompat; 3232 struct ext4_sb_info *sbi = EXT4_SB(sb); 3233 3234 if (ext4_has_metadata_csum(sb)) { 3235 /* journal checksum v3 */ 3236 compat = 0; 3237 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3238 } else { 3239 /* journal checksum v1 */ 3240 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3241 incompat = 0; 3242 } 3243 3244 jbd2_journal_clear_features(sbi->s_journal, 3245 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3246 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3247 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3248 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3249 ret = jbd2_journal_set_features(sbi->s_journal, 3250 compat, 0, 3251 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3252 incompat); 3253 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3254 ret = jbd2_journal_set_features(sbi->s_journal, 3255 compat, 0, 3256 incompat); 3257 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3258 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3259 } else { 3260 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3261 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3262 } 3263 3264 return ret; 3265 } 3266 3267 /* 3268 * Note: calculating the overhead so we can be compatible with 3269 * historical BSD practice is quite difficult in the face of 3270 * clusters/bigalloc. This is because multiple metadata blocks from 3271 * different block group can end up in the same allocation cluster. 3272 * Calculating the exact overhead in the face of clustered allocation 3273 * requires either O(all block bitmaps) in memory or O(number of block 3274 * groups**2) in time. We will still calculate the superblock for 3275 * older file systems --- and if we come across with a bigalloc file 3276 * system with zero in s_overhead_clusters the estimate will be close to 3277 * correct especially for very large cluster sizes --- but for newer 3278 * file systems, it's better to calculate this figure once at mkfs 3279 * time, and store it in the superblock. If the superblock value is 3280 * present (even for non-bigalloc file systems), we will use it. 3281 */ 3282 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3283 char *buf) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(sb); 3286 struct ext4_group_desc *gdp; 3287 ext4_fsblk_t first_block, last_block, b; 3288 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3289 int s, j, count = 0; 3290 3291 if (!ext4_has_feature_bigalloc(sb)) 3292 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3293 sbi->s_itb_per_group + 2); 3294 3295 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3296 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3297 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3298 for (i = 0; i < ngroups; i++) { 3299 gdp = ext4_get_group_desc(sb, i, NULL); 3300 b = ext4_block_bitmap(sb, gdp); 3301 if (b >= first_block && b <= last_block) { 3302 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3303 count++; 3304 } 3305 b = ext4_inode_bitmap(sb, gdp); 3306 if (b >= first_block && b <= last_block) { 3307 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3308 count++; 3309 } 3310 b = ext4_inode_table(sb, gdp); 3311 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3312 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3313 int c = EXT4_B2C(sbi, b - first_block); 3314 ext4_set_bit(c, buf); 3315 count++; 3316 } 3317 if (i != grp) 3318 continue; 3319 s = 0; 3320 if (ext4_bg_has_super(sb, grp)) { 3321 ext4_set_bit(s++, buf); 3322 count++; 3323 } 3324 j = ext4_bg_num_gdb(sb, grp); 3325 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3326 ext4_error(sb, "Invalid number of block group " 3327 "descriptor blocks: %d", j); 3328 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3329 } 3330 count += j; 3331 for (; j > 0; j--) 3332 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3333 } 3334 if (!count) 3335 return 0; 3336 return EXT4_CLUSTERS_PER_GROUP(sb) - 3337 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3338 } 3339 3340 /* 3341 * Compute the overhead and stash it in sbi->s_overhead 3342 */ 3343 int ext4_calculate_overhead(struct super_block *sb) 3344 { 3345 struct ext4_sb_info *sbi = EXT4_SB(sb); 3346 struct ext4_super_block *es = sbi->s_es; 3347 struct inode *j_inode; 3348 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3349 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3350 ext4_fsblk_t overhead = 0; 3351 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3352 3353 if (!buf) 3354 return -ENOMEM; 3355 3356 /* 3357 * Compute the overhead (FS structures). This is constant 3358 * for a given filesystem unless the number of block groups 3359 * changes so we cache the previous value until it does. 3360 */ 3361 3362 /* 3363 * All of the blocks before first_data_block are overhead 3364 */ 3365 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3366 3367 /* 3368 * Add the overhead found in each block group 3369 */ 3370 for (i = 0; i < ngroups; i++) { 3371 int blks; 3372 3373 blks = count_overhead(sb, i, buf); 3374 overhead += blks; 3375 if (blks) 3376 memset(buf, 0, PAGE_SIZE); 3377 cond_resched(); 3378 } 3379 3380 /* 3381 * Add the internal journal blocks whether the journal has been 3382 * loaded or not 3383 */ 3384 if (sbi->s_journal && !sbi->journal_bdev) 3385 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3386 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3387 j_inode = ext4_get_journal_inode(sb, j_inum); 3388 if (j_inode) { 3389 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3390 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3391 iput(j_inode); 3392 } else { 3393 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3394 } 3395 } 3396 sbi->s_overhead = overhead; 3397 smp_wmb(); 3398 free_page((unsigned long) buf); 3399 return 0; 3400 } 3401 3402 static void ext4_set_resv_clusters(struct super_block *sb) 3403 { 3404 ext4_fsblk_t resv_clusters; 3405 struct ext4_sb_info *sbi = EXT4_SB(sb); 3406 3407 /* 3408 * There's no need to reserve anything when we aren't using extents. 3409 * The space estimates are exact, there are no unwritten extents, 3410 * hole punching doesn't need new metadata... This is needed especially 3411 * to keep ext2/3 backward compatibility. 3412 */ 3413 if (!ext4_has_feature_extents(sb)) 3414 return; 3415 /* 3416 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3417 * This should cover the situations where we can not afford to run 3418 * out of space like for example punch hole, or converting 3419 * unwritten extents in delalloc path. In most cases such 3420 * allocation would require 1, or 2 blocks, higher numbers are 3421 * very rare. 3422 */ 3423 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3424 sbi->s_cluster_bits); 3425 3426 do_div(resv_clusters, 50); 3427 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3428 3429 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3430 } 3431 3432 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3433 { 3434 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3435 char *orig_data = kstrdup(data, GFP_KERNEL); 3436 struct buffer_head *bh; 3437 struct ext4_super_block *es = NULL; 3438 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3439 ext4_fsblk_t block; 3440 ext4_fsblk_t sb_block = get_sb_block(&data); 3441 ext4_fsblk_t logical_sb_block; 3442 unsigned long offset = 0; 3443 unsigned long journal_devnum = 0; 3444 unsigned long def_mount_opts; 3445 struct inode *root; 3446 const char *descr; 3447 int ret = -ENOMEM; 3448 int blocksize, clustersize; 3449 unsigned int db_count; 3450 unsigned int i; 3451 int needs_recovery, has_huge_files, has_bigalloc; 3452 __u64 blocks_count; 3453 int err = 0; 3454 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3455 ext4_group_t first_not_zeroed; 3456 3457 if ((data && !orig_data) || !sbi) 3458 goto out_free_base; 3459 3460 sbi->s_daxdev = dax_dev; 3461 sbi->s_blockgroup_lock = 3462 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3463 if (!sbi->s_blockgroup_lock) 3464 goto out_free_base; 3465 3466 sb->s_fs_info = sbi; 3467 sbi->s_sb = sb; 3468 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3469 sbi->s_sb_block = sb_block; 3470 if (sb->s_bdev->bd_part) 3471 sbi->s_sectors_written_start = 3472 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3473 3474 /* Cleanup superblock name */ 3475 strreplace(sb->s_id, '/', '!'); 3476 3477 /* -EINVAL is default */ 3478 ret = -EINVAL; 3479 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3480 if (!blocksize) { 3481 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3482 goto out_fail; 3483 } 3484 3485 /* 3486 * The ext4 superblock will not be buffer aligned for other than 1kB 3487 * block sizes. We need to calculate the offset from buffer start. 3488 */ 3489 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3490 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3491 offset = do_div(logical_sb_block, blocksize); 3492 } else { 3493 logical_sb_block = sb_block; 3494 } 3495 3496 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3497 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3498 goto out_fail; 3499 } 3500 /* 3501 * Note: s_es must be initialized as soon as possible because 3502 * some ext4 macro-instructions depend on its value 3503 */ 3504 es = (struct ext4_super_block *) (bh->b_data + offset); 3505 sbi->s_es = es; 3506 sb->s_magic = le16_to_cpu(es->s_magic); 3507 if (sb->s_magic != EXT4_SUPER_MAGIC) 3508 goto cantfind_ext4; 3509 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3510 3511 /* Warn if metadata_csum and gdt_csum are both set. */ 3512 if (ext4_has_feature_metadata_csum(sb) && 3513 ext4_has_feature_gdt_csum(sb)) 3514 ext4_warning(sb, "metadata_csum and uninit_bg are " 3515 "redundant flags; please run fsck."); 3516 3517 /* Check for a known checksum algorithm */ 3518 if (!ext4_verify_csum_type(sb, es)) { 3519 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3520 "unknown checksum algorithm."); 3521 silent = 1; 3522 goto cantfind_ext4; 3523 } 3524 3525 /* Load the checksum driver */ 3526 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3527 if (IS_ERR(sbi->s_chksum_driver)) { 3528 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3529 ret = PTR_ERR(sbi->s_chksum_driver); 3530 sbi->s_chksum_driver = NULL; 3531 goto failed_mount; 3532 } 3533 3534 /* Check superblock checksum */ 3535 if (!ext4_superblock_csum_verify(sb, es)) { 3536 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3537 "invalid superblock checksum. Run e2fsck?"); 3538 silent = 1; 3539 ret = -EFSBADCRC; 3540 goto cantfind_ext4; 3541 } 3542 3543 /* Precompute checksum seed for all metadata */ 3544 if (ext4_has_feature_csum_seed(sb)) 3545 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3546 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3547 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3548 sizeof(es->s_uuid)); 3549 3550 /* Set defaults before we parse the mount options */ 3551 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3552 set_opt(sb, INIT_INODE_TABLE); 3553 if (def_mount_opts & EXT4_DEFM_DEBUG) 3554 set_opt(sb, DEBUG); 3555 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3556 set_opt(sb, GRPID); 3557 if (def_mount_opts & EXT4_DEFM_UID16) 3558 set_opt(sb, NO_UID32); 3559 /* xattr user namespace & acls are now defaulted on */ 3560 set_opt(sb, XATTR_USER); 3561 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3562 set_opt(sb, POSIX_ACL); 3563 #endif 3564 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3565 if (ext4_has_metadata_csum(sb)) 3566 set_opt(sb, JOURNAL_CHECKSUM); 3567 3568 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3569 set_opt(sb, JOURNAL_DATA); 3570 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3571 set_opt(sb, ORDERED_DATA); 3572 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3573 set_opt(sb, WRITEBACK_DATA); 3574 3575 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3576 set_opt(sb, ERRORS_PANIC); 3577 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3578 set_opt(sb, ERRORS_CONT); 3579 else 3580 set_opt(sb, ERRORS_RO); 3581 /* block_validity enabled by default; disable with noblock_validity */ 3582 set_opt(sb, BLOCK_VALIDITY); 3583 if (def_mount_opts & EXT4_DEFM_DISCARD) 3584 set_opt(sb, DISCARD); 3585 3586 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3587 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3588 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3589 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3590 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3591 3592 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3593 set_opt(sb, BARRIER); 3594 3595 /* 3596 * enable delayed allocation by default 3597 * Use -o nodelalloc to turn it off 3598 */ 3599 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3600 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3601 set_opt(sb, DELALLOC); 3602 3603 /* 3604 * set default s_li_wait_mult for lazyinit, for the case there is 3605 * no mount option specified. 3606 */ 3607 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3608 3609 if (sbi->s_es->s_mount_opts[0]) { 3610 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3611 sizeof(sbi->s_es->s_mount_opts), 3612 GFP_KERNEL); 3613 if (!s_mount_opts) 3614 goto failed_mount; 3615 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3616 &journal_ioprio, 0)) { 3617 ext4_msg(sb, KERN_WARNING, 3618 "failed to parse options in superblock: %s", 3619 s_mount_opts); 3620 } 3621 kfree(s_mount_opts); 3622 } 3623 sbi->s_def_mount_opt = sbi->s_mount_opt; 3624 if (!parse_options((char *) data, sb, &journal_devnum, 3625 &journal_ioprio, 0)) 3626 goto failed_mount; 3627 3628 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3629 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3630 "with data=journal disables delayed " 3631 "allocation and O_DIRECT support!\n"); 3632 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3633 ext4_msg(sb, KERN_ERR, "can't mount with " 3634 "both data=journal and delalloc"); 3635 goto failed_mount; 3636 } 3637 if (test_opt(sb, DIOREAD_NOLOCK)) { 3638 ext4_msg(sb, KERN_ERR, "can't mount with " 3639 "both data=journal and dioread_nolock"); 3640 goto failed_mount; 3641 } 3642 if (test_opt(sb, DAX)) { 3643 ext4_msg(sb, KERN_ERR, "can't mount with " 3644 "both data=journal and dax"); 3645 goto failed_mount; 3646 } 3647 if (ext4_has_feature_encrypt(sb)) { 3648 ext4_msg(sb, KERN_WARNING, 3649 "encrypted files will use data=ordered " 3650 "instead of data journaling mode"); 3651 } 3652 if (test_opt(sb, DELALLOC)) 3653 clear_opt(sb, DELALLOC); 3654 } else { 3655 sb->s_iflags |= SB_I_CGROUPWB; 3656 } 3657 3658 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3659 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3660 3661 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3662 (ext4_has_compat_features(sb) || 3663 ext4_has_ro_compat_features(sb) || 3664 ext4_has_incompat_features(sb))) 3665 ext4_msg(sb, KERN_WARNING, 3666 "feature flags set on rev 0 fs, " 3667 "running e2fsck is recommended"); 3668 3669 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3670 set_opt2(sb, HURD_COMPAT); 3671 if (ext4_has_feature_64bit(sb)) { 3672 ext4_msg(sb, KERN_ERR, 3673 "The Hurd can't support 64-bit file systems"); 3674 goto failed_mount; 3675 } 3676 3677 /* 3678 * ea_inode feature uses l_i_version field which is not 3679 * available in HURD_COMPAT mode. 3680 */ 3681 if (ext4_has_feature_ea_inode(sb)) { 3682 ext4_msg(sb, KERN_ERR, 3683 "ea_inode feature is not supported for Hurd"); 3684 goto failed_mount; 3685 } 3686 } 3687 3688 if (IS_EXT2_SB(sb)) { 3689 if (ext2_feature_set_ok(sb)) 3690 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3691 "using the ext4 subsystem"); 3692 else { 3693 /* 3694 * If we're probing be silent, if this looks like 3695 * it's actually an ext[34] filesystem. 3696 */ 3697 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3698 goto failed_mount; 3699 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3700 "to feature incompatibilities"); 3701 goto failed_mount; 3702 } 3703 } 3704 3705 if (IS_EXT3_SB(sb)) { 3706 if (ext3_feature_set_ok(sb)) 3707 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3708 "using the ext4 subsystem"); 3709 else { 3710 /* 3711 * If we're probing be silent, if this looks like 3712 * it's actually an ext4 filesystem. 3713 */ 3714 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3715 goto failed_mount; 3716 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3717 "to feature incompatibilities"); 3718 goto failed_mount; 3719 } 3720 } 3721 3722 /* 3723 * Check feature flags regardless of the revision level, since we 3724 * previously didn't change the revision level when setting the flags, 3725 * so there is a chance incompat flags are set on a rev 0 filesystem. 3726 */ 3727 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3728 goto failed_mount; 3729 3730 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3731 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3732 blocksize > EXT4_MAX_BLOCK_SIZE) { 3733 ext4_msg(sb, KERN_ERR, 3734 "Unsupported filesystem blocksize %d (%d log_block_size)", 3735 blocksize, le32_to_cpu(es->s_log_block_size)); 3736 goto failed_mount; 3737 } 3738 if (le32_to_cpu(es->s_log_block_size) > 3739 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3740 ext4_msg(sb, KERN_ERR, 3741 "Invalid log block size: %u", 3742 le32_to_cpu(es->s_log_block_size)); 3743 goto failed_mount; 3744 } 3745 3746 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3747 ext4_msg(sb, KERN_ERR, 3748 "Number of reserved GDT blocks insanely large: %d", 3749 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3750 goto failed_mount; 3751 } 3752 3753 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3754 if (ext4_has_feature_inline_data(sb)) { 3755 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3756 " that may contain inline data"); 3757 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3758 } 3759 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3760 ext4_msg(sb, KERN_ERR, 3761 "DAX unsupported by block device. Turning off DAX."); 3762 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3763 } 3764 } 3765 3766 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3767 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3768 es->s_encryption_level); 3769 goto failed_mount; 3770 } 3771 3772 if (sb->s_blocksize != blocksize) { 3773 /* Validate the filesystem blocksize */ 3774 if (!sb_set_blocksize(sb, blocksize)) { 3775 ext4_msg(sb, KERN_ERR, "bad block size %d", 3776 blocksize); 3777 goto failed_mount; 3778 } 3779 3780 brelse(bh); 3781 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3782 offset = do_div(logical_sb_block, blocksize); 3783 bh = sb_bread_unmovable(sb, logical_sb_block); 3784 if (!bh) { 3785 ext4_msg(sb, KERN_ERR, 3786 "Can't read superblock on 2nd try"); 3787 goto failed_mount; 3788 } 3789 es = (struct ext4_super_block *)(bh->b_data + offset); 3790 sbi->s_es = es; 3791 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3792 ext4_msg(sb, KERN_ERR, 3793 "Magic mismatch, very weird!"); 3794 goto failed_mount; 3795 } 3796 } 3797 3798 has_huge_files = ext4_has_feature_huge_file(sb); 3799 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3800 has_huge_files); 3801 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3802 3803 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3804 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3805 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3806 } else { 3807 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3808 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3809 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3810 (!is_power_of_2(sbi->s_inode_size)) || 3811 (sbi->s_inode_size > blocksize)) { 3812 ext4_msg(sb, KERN_ERR, 3813 "unsupported inode size: %d", 3814 sbi->s_inode_size); 3815 goto failed_mount; 3816 } 3817 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3818 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3819 } 3820 3821 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3822 if (ext4_has_feature_64bit(sb)) { 3823 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3824 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3825 !is_power_of_2(sbi->s_desc_size)) { 3826 ext4_msg(sb, KERN_ERR, 3827 "unsupported descriptor size %lu", 3828 sbi->s_desc_size); 3829 goto failed_mount; 3830 } 3831 } else 3832 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3833 3834 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3835 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3836 3837 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3838 if (sbi->s_inodes_per_block == 0) 3839 goto cantfind_ext4; 3840 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3841 sbi->s_inodes_per_group > blocksize * 8) { 3842 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3843 sbi->s_blocks_per_group); 3844 goto failed_mount; 3845 } 3846 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3847 sbi->s_inodes_per_block; 3848 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3849 sbi->s_sbh = bh; 3850 sbi->s_mount_state = le16_to_cpu(es->s_state); 3851 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3852 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3853 3854 for (i = 0; i < 4; i++) 3855 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3856 sbi->s_def_hash_version = es->s_def_hash_version; 3857 if (ext4_has_feature_dir_index(sb)) { 3858 i = le32_to_cpu(es->s_flags); 3859 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3860 sbi->s_hash_unsigned = 3; 3861 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3862 #ifdef __CHAR_UNSIGNED__ 3863 if (!sb_rdonly(sb)) 3864 es->s_flags |= 3865 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3866 sbi->s_hash_unsigned = 3; 3867 #else 3868 if (!sb_rdonly(sb)) 3869 es->s_flags |= 3870 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3871 #endif 3872 } 3873 } 3874 3875 /* Handle clustersize */ 3876 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3877 has_bigalloc = ext4_has_feature_bigalloc(sb); 3878 if (has_bigalloc) { 3879 if (clustersize < blocksize) { 3880 ext4_msg(sb, KERN_ERR, 3881 "cluster size (%d) smaller than " 3882 "block size (%d)", clustersize, blocksize); 3883 goto failed_mount; 3884 } 3885 if (le32_to_cpu(es->s_log_cluster_size) > 3886 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3887 ext4_msg(sb, KERN_ERR, 3888 "Invalid log cluster size: %u", 3889 le32_to_cpu(es->s_log_cluster_size)); 3890 goto failed_mount; 3891 } 3892 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3893 le32_to_cpu(es->s_log_block_size); 3894 sbi->s_clusters_per_group = 3895 le32_to_cpu(es->s_clusters_per_group); 3896 if (sbi->s_clusters_per_group > blocksize * 8) { 3897 ext4_msg(sb, KERN_ERR, 3898 "#clusters per group too big: %lu", 3899 sbi->s_clusters_per_group); 3900 goto failed_mount; 3901 } 3902 if (sbi->s_blocks_per_group != 3903 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3904 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3905 "clusters per group (%lu) inconsistent", 3906 sbi->s_blocks_per_group, 3907 sbi->s_clusters_per_group); 3908 goto failed_mount; 3909 } 3910 } else { 3911 if (clustersize != blocksize) { 3912 ext4_warning(sb, "fragment/cluster size (%d) != " 3913 "block size (%d)", clustersize, 3914 blocksize); 3915 clustersize = blocksize; 3916 } 3917 if (sbi->s_blocks_per_group > blocksize * 8) { 3918 ext4_msg(sb, KERN_ERR, 3919 "#blocks per group too big: %lu", 3920 sbi->s_blocks_per_group); 3921 goto failed_mount; 3922 } 3923 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3924 sbi->s_cluster_bits = 0; 3925 } 3926 sbi->s_cluster_ratio = clustersize / blocksize; 3927 3928 /* Do we have standard group size of clustersize * 8 blocks ? */ 3929 if (sbi->s_blocks_per_group == clustersize << 3) 3930 set_opt2(sb, STD_GROUP_SIZE); 3931 3932 /* 3933 * Test whether we have more sectors than will fit in sector_t, 3934 * and whether the max offset is addressable by the page cache. 3935 */ 3936 err = generic_check_addressable(sb->s_blocksize_bits, 3937 ext4_blocks_count(es)); 3938 if (err) { 3939 ext4_msg(sb, KERN_ERR, "filesystem" 3940 " too large to mount safely on this system"); 3941 if (sizeof(sector_t) < 8) 3942 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3943 goto failed_mount; 3944 } 3945 3946 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3947 goto cantfind_ext4; 3948 3949 /* check blocks count against device size */ 3950 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3951 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3952 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3953 "exceeds size of device (%llu blocks)", 3954 ext4_blocks_count(es), blocks_count); 3955 goto failed_mount; 3956 } 3957 3958 /* 3959 * It makes no sense for the first data block to be beyond the end 3960 * of the filesystem. 3961 */ 3962 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3963 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3964 "block %u is beyond end of filesystem (%llu)", 3965 le32_to_cpu(es->s_first_data_block), 3966 ext4_blocks_count(es)); 3967 goto failed_mount; 3968 } 3969 blocks_count = (ext4_blocks_count(es) - 3970 le32_to_cpu(es->s_first_data_block) + 3971 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3972 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3973 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3974 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3975 "(block count %llu, first data block %u, " 3976 "blocks per group %lu)", sbi->s_groups_count, 3977 ext4_blocks_count(es), 3978 le32_to_cpu(es->s_first_data_block), 3979 EXT4_BLOCKS_PER_GROUP(sb)); 3980 goto failed_mount; 3981 } 3982 sbi->s_groups_count = blocks_count; 3983 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3984 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3985 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3986 EXT4_DESC_PER_BLOCK(sb); 3987 if (ext4_has_feature_meta_bg(sb)) { 3988 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3989 ext4_msg(sb, KERN_WARNING, 3990 "first meta block group too large: %u " 3991 "(group descriptor block count %u)", 3992 le32_to_cpu(es->s_first_meta_bg), db_count); 3993 goto failed_mount; 3994 } 3995 } 3996 sbi->s_group_desc = kvmalloc_array(db_count, 3997 sizeof(struct buffer_head *), 3998 GFP_KERNEL); 3999 if (sbi->s_group_desc == NULL) { 4000 ext4_msg(sb, KERN_ERR, "not enough memory"); 4001 ret = -ENOMEM; 4002 goto failed_mount; 4003 } 4004 4005 bgl_lock_init(sbi->s_blockgroup_lock); 4006 4007 /* Pre-read the descriptors into the buffer cache */ 4008 for (i = 0; i < db_count; i++) { 4009 block = descriptor_loc(sb, logical_sb_block, i); 4010 sb_breadahead(sb, block); 4011 } 4012 4013 for (i = 0; i < db_count; i++) { 4014 block = descriptor_loc(sb, logical_sb_block, i); 4015 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4016 if (!sbi->s_group_desc[i]) { 4017 ext4_msg(sb, KERN_ERR, 4018 "can't read group descriptor %d", i); 4019 db_count = i; 4020 goto failed_mount2; 4021 } 4022 } 4023 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4024 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4025 ret = -EFSCORRUPTED; 4026 goto failed_mount2; 4027 } 4028 4029 sbi->s_gdb_count = db_count; 4030 4031 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4032 4033 /* Register extent status tree shrinker */ 4034 if (ext4_es_register_shrinker(sbi)) 4035 goto failed_mount3; 4036 4037 sbi->s_stripe = ext4_get_stripe_size(sbi); 4038 sbi->s_extent_max_zeroout_kb = 32; 4039 4040 /* 4041 * set up enough so that it can read an inode 4042 */ 4043 sb->s_op = &ext4_sops; 4044 sb->s_export_op = &ext4_export_ops; 4045 sb->s_xattr = ext4_xattr_handlers; 4046 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4047 sb->s_cop = &ext4_cryptops; 4048 #endif 4049 #ifdef CONFIG_QUOTA 4050 sb->dq_op = &ext4_quota_operations; 4051 if (ext4_has_feature_quota(sb)) 4052 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4053 else 4054 sb->s_qcop = &ext4_qctl_operations; 4055 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4056 #endif 4057 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4058 4059 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4060 mutex_init(&sbi->s_orphan_lock); 4061 4062 sb->s_root = NULL; 4063 4064 needs_recovery = (es->s_last_orphan != 0 || 4065 ext4_has_feature_journal_needs_recovery(sb)); 4066 4067 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4068 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4069 goto failed_mount3a; 4070 4071 /* 4072 * The first inode we look at is the journal inode. Don't try 4073 * root first: it may be modified in the journal! 4074 */ 4075 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4076 err = ext4_load_journal(sb, es, journal_devnum); 4077 if (err) 4078 goto failed_mount3a; 4079 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4080 ext4_has_feature_journal_needs_recovery(sb)) { 4081 ext4_msg(sb, KERN_ERR, "required journal recovery " 4082 "suppressed and not mounted read-only"); 4083 goto failed_mount_wq; 4084 } else { 4085 /* Nojournal mode, all journal mount options are illegal */ 4086 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4087 ext4_msg(sb, KERN_ERR, "can't mount with " 4088 "journal_checksum, fs mounted w/o journal"); 4089 goto failed_mount_wq; 4090 } 4091 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4092 ext4_msg(sb, KERN_ERR, "can't mount with " 4093 "journal_async_commit, fs mounted w/o journal"); 4094 goto failed_mount_wq; 4095 } 4096 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4097 ext4_msg(sb, KERN_ERR, "can't mount with " 4098 "commit=%lu, fs mounted w/o journal", 4099 sbi->s_commit_interval / HZ); 4100 goto failed_mount_wq; 4101 } 4102 if (EXT4_MOUNT_DATA_FLAGS & 4103 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4104 ext4_msg(sb, KERN_ERR, "can't mount with " 4105 "data=, fs mounted w/o journal"); 4106 goto failed_mount_wq; 4107 } 4108 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4109 clear_opt(sb, JOURNAL_CHECKSUM); 4110 clear_opt(sb, DATA_FLAGS); 4111 sbi->s_journal = NULL; 4112 needs_recovery = 0; 4113 goto no_journal; 4114 } 4115 4116 if (ext4_has_feature_64bit(sb) && 4117 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4118 JBD2_FEATURE_INCOMPAT_64BIT)) { 4119 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4120 goto failed_mount_wq; 4121 } 4122 4123 if (!set_journal_csum_feature_set(sb)) { 4124 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4125 "feature set"); 4126 goto failed_mount_wq; 4127 } 4128 4129 /* We have now updated the journal if required, so we can 4130 * validate the data journaling mode. */ 4131 switch (test_opt(sb, DATA_FLAGS)) { 4132 case 0: 4133 /* No mode set, assume a default based on the journal 4134 * capabilities: ORDERED_DATA if the journal can 4135 * cope, else JOURNAL_DATA 4136 */ 4137 if (jbd2_journal_check_available_features 4138 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4139 set_opt(sb, ORDERED_DATA); 4140 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4141 } else { 4142 set_opt(sb, JOURNAL_DATA); 4143 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4144 } 4145 break; 4146 4147 case EXT4_MOUNT_ORDERED_DATA: 4148 case EXT4_MOUNT_WRITEBACK_DATA: 4149 if (!jbd2_journal_check_available_features 4150 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4151 ext4_msg(sb, KERN_ERR, "Journal does not support " 4152 "requested data journaling mode"); 4153 goto failed_mount_wq; 4154 } 4155 default: 4156 break; 4157 } 4158 4159 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4160 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4161 ext4_msg(sb, KERN_ERR, "can't mount with " 4162 "journal_async_commit in data=ordered mode"); 4163 goto failed_mount_wq; 4164 } 4165 4166 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4167 4168 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4169 4170 no_journal: 4171 if (!test_opt(sb, NO_MBCACHE)) { 4172 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4173 if (!sbi->s_ea_block_cache) { 4174 ext4_msg(sb, KERN_ERR, 4175 "Failed to create ea_block_cache"); 4176 goto failed_mount_wq; 4177 } 4178 4179 if (ext4_has_feature_ea_inode(sb)) { 4180 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4181 if (!sbi->s_ea_inode_cache) { 4182 ext4_msg(sb, KERN_ERR, 4183 "Failed to create ea_inode_cache"); 4184 goto failed_mount_wq; 4185 } 4186 } 4187 } 4188 4189 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4190 (blocksize != PAGE_SIZE)) { 4191 ext4_msg(sb, KERN_ERR, 4192 "Unsupported blocksize for fs encryption"); 4193 goto failed_mount_wq; 4194 } 4195 4196 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4197 !ext4_has_feature_encrypt(sb)) { 4198 ext4_set_feature_encrypt(sb); 4199 ext4_commit_super(sb, 1); 4200 } 4201 4202 /* 4203 * Get the # of file system overhead blocks from the 4204 * superblock if present. 4205 */ 4206 if (es->s_overhead_clusters) 4207 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4208 else { 4209 err = ext4_calculate_overhead(sb); 4210 if (err) 4211 goto failed_mount_wq; 4212 } 4213 4214 /* 4215 * The maximum number of concurrent works can be high and 4216 * concurrency isn't really necessary. Limit it to 1. 4217 */ 4218 EXT4_SB(sb)->rsv_conversion_wq = 4219 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4220 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4221 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4222 ret = -ENOMEM; 4223 goto failed_mount4; 4224 } 4225 4226 /* 4227 * The jbd2_journal_load will have done any necessary log recovery, 4228 * so we can safely mount the rest of the filesystem now. 4229 */ 4230 4231 root = ext4_iget(sb, EXT4_ROOT_INO); 4232 if (IS_ERR(root)) { 4233 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4234 ret = PTR_ERR(root); 4235 root = NULL; 4236 goto failed_mount4; 4237 } 4238 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4239 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4240 iput(root); 4241 goto failed_mount4; 4242 } 4243 sb->s_root = d_make_root(root); 4244 if (!sb->s_root) { 4245 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4246 ret = -ENOMEM; 4247 goto failed_mount4; 4248 } 4249 4250 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4251 if (ret == -EROFS) { 4252 sb->s_flags |= SB_RDONLY; 4253 ret = 0; 4254 } else if (ret) 4255 goto failed_mount4a; 4256 4257 /* determine the minimum size of new large inodes, if present */ 4258 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4259 sbi->s_want_extra_isize == 0) { 4260 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4261 EXT4_GOOD_OLD_INODE_SIZE; 4262 if (ext4_has_feature_extra_isize(sb)) { 4263 if (sbi->s_want_extra_isize < 4264 le16_to_cpu(es->s_want_extra_isize)) 4265 sbi->s_want_extra_isize = 4266 le16_to_cpu(es->s_want_extra_isize); 4267 if (sbi->s_want_extra_isize < 4268 le16_to_cpu(es->s_min_extra_isize)) 4269 sbi->s_want_extra_isize = 4270 le16_to_cpu(es->s_min_extra_isize); 4271 } 4272 } 4273 /* Check if enough inode space is available */ 4274 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4275 sbi->s_inode_size) { 4276 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4277 EXT4_GOOD_OLD_INODE_SIZE; 4278 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4279 "available"); 4280 } 4281 4282 ext4_set_resv_clusters(sb); 4283 4284 err = ext4_setup_system_zone(sb); 4285 if (err) { 4286 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4287 "zone (%d)", err); 4288 goto failed_mount4a; 4289 } 4290 4291 ext4_ext_init(sb); 4292 err = ext4_mb_init(sb); 4293 if (err) { 4294 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4295 err); 4296 goto failed_mount5; 4297 } 4298 4299 block = ext4_count_free_clusters(sb); 4300 ext4_free_blocks_count_set(sbi->s_es, 4301 EXT4_C2B(sbi, block)); 4302 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4303 GFP_KERNEL); 4304 if (!err) { 4305 unsigned long freei = ext4_count_free_inodes(sb); 4306 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4307 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4308 GFP_KERNEL); 4309 } 4310 if (!err) 4311 err = percpu_counter_init(&sbi->s_dirs_counter, 4312 ext4_count_dirs(sb), GFP_KERNEL); 4313 if (!err) 4314 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4315 GFP_KERNEL); 4316 if (!err) 4317 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4318 4319 if (err) { 4320 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4321 goto failed_mount6; 4322 } 4323 4324 if (ext4_has_feature_flex_bg(sb)) 4325 if (!ext4_fill_flex_info(sb)) { 4326 ext4_msg(sb, KERN_ERR, 4327 "unable to initialize " 4328 "flex_bg meta info!"); 4329 goto failed_mount6; 4330 } 4331 4332 err = ext4_register_li_request(sb, first_not_zeroed); 4333 if (err) 4334 goto failed_mount6; 4335 4336 err = ext4_register_sysfs(sb); 4337 if (err) 4338 goto failed_mount7; 4339 4340 #ifdef CONFIG_QUOTA 4341 /* Enable quota usage during mount. */ 4342 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4343 err = ext4_enable_quotas(sb); 4344 if (err) 4345 goto failed_mount8; 4346 } 4347 #endif /* CONFIG_QUOTA */ 4348 4349 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4350 ext4_orphan_cleanup(sb, es); 4351 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4352 if (needs_recovery) { 4353 ext4_msg(sb, KERN_INFO, "recovery complete"); 4354 ext4_mark_recovery_complete(sb, es); 4355 } 4356 if (EXT4_SB(sb)->s_journal) { 4357 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4358 descr = " journalled data mode"; 4359 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4360 descr = " ordered data mode"; 4361 else 4362 descr = " writeback data mode"; 4363 } else 4364 descr = "out journal"; 4365 4366 if (test_opt(sb, DISCARD)) { 4367 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4368 if (!blk_queue_discard(q)) 4369 ext4_msg(sb, KERN_WARNING, 4370 "mounting with \"discard\" option, but " 4371 "the device does not support discard"); 4372 } 4373 4374 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4375 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4376 "Opts: %.*s%s%s", descr, 4377 (int) sizeof(sbi->s_es->s_mount_opts), 4378 sbi->s_es->s_mount_opts, 4379 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4380 4381 if (es->s_error_count) 4382 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4383 4384 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4385 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4386 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4387 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4388 4389 kfree(orig_data); 4390 return 0; 4391 4392 cantfind_ext4: 4393 if (!silent) 4394 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4395 goto failed_mount; 4396 4397 #ifdef CONFIG_QUOTA 4398 failed_mount8: 4399 ext4_unregister_sysfs(sb); 4400 #endif 4401 failed_mount7: 4402 ext4_unregister_li_request(sb); 4403 failed_mount6: 4404 ext4_mb_release(sb); 4405 if (sbi->s_flex_groups) 4406 kvfree(sbi->s_flex_groups); 4407 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4408 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4409 percpu_counter_destroy(&sbi->s_dirs_counter); 4410 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4411 failed_mount5: 4412 ext4_ext_release(sb); 4413 ext4_release_system_zone(sb); 4414 failed_mount4a: 4415 dput(sb->s_root); 4416 sb->s_root = NULL; 4417 failed_mount4: 4418 ext4_msg(sb, KERN_ERR, "mount failed"); 4419 if (EXT4_SB(sb)->rsv_conversion_wq) 4420 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4421 failed_mount_wq: 4422 if (sbi->s_ea_inode_cache) { 4423 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4424 sbi->s_ea_inode_cache = NULL; 4425 } 4426 if (sbi->s_ea_block_cache) { 4427 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4428 sbi->s_ea_block_cache = NULL; 4429 } 4430 if (sbi->s_journal) { 4431 jbd2_journal_destroy(sbi->s_journal); 4432 sbi->s_journal = NULL; 4433 } 4434 failed_mount3a: 4435 ext4_es_unregister_shrinker(sbi); 4436 failed_mount3: 4437 del_timer_sync(&sbi->s_err_report); 4438 if (sbi->s_mmp_tsk) 4439 kthread_stop(sbi->s_mmp_tsk); 4440 failed_mount2: 4441 for (i = 0; i < db_count; i++) 4442 brelse(sbi->s_group_desc[i]); 4443 kvfree(sbi->s_group_desc); 4444 failed_mount: 4445 if (sbi->s_chksum_driver) 4446 crypto_free_shash(sbi->s_chksum_driver); 4447 #ifdef CONFIG_QUOTA 4448 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4449 kfree(sbi->s_qf_names[i]); 4450 #endif 4451 ext4_blkdev_remove(sbi); 4452 brelse(bh); 4453 out_fail: 4454 sb->s_fs_info = NULL; 4455 kfree(sbi->s_blockgroup_lock); 4456 out_free_base: 4457 kfree(sbi); 4458 kfree(orig_data); 4459 fs_put_dax(dax_dev); 4460 return err ? err : ret; 4461 } 4462 4463 /* 4464 * Setup any per-fs journal parameters now. We'll do this both on 4465 * initial mount, once the journal has been initialised but before we've 4466 * done any recovery; and again on any subsequent remount. 4467 */ 4468 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4469 { 4470 struct ext4_sb_info *sbi = EXT4_SB(sb); 4471 4472 journal->j_commit_interval = sbi->s_commit_interval; 4473 journal->j_min_batch_time = sbi->s_min_batch_time; 4474 journal->j_max_batch_time = sbi->s_max_batch_time; 4475 4476 write_lock(&journal->j_state_lock); 4477 if (test_opt(sb, BARRIER)) 4478 journal->j_flags |= JBD2_BARRIER; 4479 else 4480 journal->j_flags &= ~JBD2_BARRIER; 4481 if (test_opt(sb, DATA_ERR_ABORT)) 4482 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4483 else 4484 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4485 write_unlock(&journal->j_state_lock); 4486 } 4487 4488 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4489 unsigned int journal_inum) 4490 { 4491 struct inode *journal_inode; 4492 4493 /* 4494 * Test for the existence of a valid inode on disk. Bad things 4495 * happen if we iget() an unused inode, as the subsequent iput() 4496 * will try to delete it. 4497 */ 4498 journal_inode = ext4_iget(sb, journal_inum); 4499 if (IS_ERR(journal_inode)) { 4500 ext4_msg(sb, KERN_ERR, "no journal found"); 4501 return NULL; 4502 } 4503 if (!journal_inode->i_nlink) { 4504 make_bad_inode(journal_inode); 4505 iput(journal_inode); 4506 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4507 return NULL; 4508 } 4509 4510 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4511 journal_inode, journal_inode->i_size); 4512 if (!S_ISREG(journal_inode->i_mode)) { 4513 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4514 iput(journal_inode); 4515 return NULL; 4516 } 4517 return journal_inode; 4518 } 4519 4520 static journal_t *ext4_get_journal(struct super_block *sb, 4521 unsigned int journal_inum) 4522 { 4523 struct inode *journal_inode; 4524 journal_t *journal; 4525 4526 BUG_ON(!ext4_has_feature_journal(sb)); 4527 4528 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4529 if (!journal_inode) 4530 return NULL; 4531 4532 journal = jbd2_journal_init_inode(journal_inode); 4533 if (!journal) { 4534 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4535 iput(journal_inode); 4536 return NULL; 4537 } 4538 journal->j_private = sb; 4539 ext4_init_journal_params(sb, journal); 4540 return journal; 4541 } 4542 4543 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4544 dev_t j_dev) 4545 { 4546 struct buffer_head *bh; 4547 journal_t *journal; 4548 ext4_fsblk_t start; 4549 ext4_fsblk_t len; 4550 int hblock, blocksize; 4551 ext4_fsblk_t sb_block; 4552 unsigned long offset; 4553 struct ext4_super_block *es; 4554 struct block_device *bdev; 4555 4556 BUG_ON(!ext4_has_feature_journal(sb)); 4557 4558 bdev = ext4_blkdev_get(j_dev, sb); 4559 if (bdev == NULL) 4560 return NULL; 4561 4562 blocksize = sb->s_blocksize; 4563 hblock = bdev_logical_block_size(bdev); 4564 if (blocksize < hblock) { 4565 ext4_msg(sb, KERN_ERR, 4566 "blocksize too small for journal device"); 4567 goto out_bdev; 4568 } 4569 4570 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4571 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4572 set_blocksize(bdev, blocksize); 4573 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4574 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4575 "external journal"); 4576 goto out_bdev; 4577 } 4578 4579 es = (struct ext4_super_block *) (bh->b_data + offset); 4580 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4581 !(le32_to_cpu(es->s_feature_incompat) & 4582 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4583 ext4_msg(sb, KERN_ERR, "external journal has " 4584 "bad superblock"); 4585 brelse(bh); 4586 goto out_bdev; 4587 } 4588 4589 if ((le32_to_cpu(es->s_feature_ro_compat) & 4590 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4591 es->s_checksum != ext4_superblock_csum(sb, es)) { 4592 ext4_msg(sb, KERN_ERR, "external journal has " 4593 "corrupt superblock"); 4594 brelse(bh); 4595 goto out_bdev; 4596 } 4597 4598 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4599 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4600 brelse(bh); 4601 goto out_bdev; 4602 } 4603 4604 len = ext4_blocks_count(es); 4605 start = sb_block + 1; 4606 brelse(bh); /* we're done with the superblock */ 4607 4608 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4609 start, len, blocksize); 4610 if (!journal) { 4611 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4612 goto out_bdev; 4613 } 4614 journal->j_private = sb; 4615 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4616 wait_on_buffer(journal->j_sb_buffer); 4617 if (!buffer_uptodate(journal->j_sb_buffer)) { 4618 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4619 goto out_journal; 4620 } 4621 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4622 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4623 "user (unsupported) - %d", 4624 be32_to_cpu(journal->j_superblock->s_nr_users)); 4625 goto out_journal; 4626 } 4627 EXT4_SB(sb)->journal_bdev = bdev; 4628 ext4_init_journal_params(sb, journal); 4629 return journal; 4630 4631 out_journal: 4632 jbd2_journal_destroy(journal); 4633 out_bdev: 4634 ext4_blkdev_put(bdev); 4635 return NULL; 4636 } 4637 4638 static int ext4_load_journal(struct super_block *sb, 4639 struct ext4_super_block *es, 4640 unsigned long journal_devnum) 4641 { 4642 journal_t *journal; 4643 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4644 dev_t journal_dev; 4645 int err = 0; 4646 int really_read_only; 4647 4648 BUG_ON(!ext4_has_feature_journal(sb)); 4649 4650 if (journal_devnum && 4651 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4652 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4653 "numbers have changed"); 4654 journal_dev = new_decode_dev(journal_devnum); 4655 } else 4656 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4657 4658 really_read_only = bdev_read_only(sb->s_bdev); 4659 4660 /* 4661 * Are we loading a blank journal or performing recovery after a 4662 * crash? For recovery, we need to check in advance whether we 4663 * can get read-write access to the device. 4664 */ 4665 if (ext4_has_feature_journal_needs_recovery(sb)) { 4666 if (sb_rdonly(sb)) { 4667 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4668 "required on readonly filesystem"); 4669 if (really_read_only) { 4670 ext4_msg(sb, KERN_ERR, "write access " 4671 "unavailable, cannot proceed " 4672 "(try mounting with noload)"); 4673 return -EROFS; 4674 } 4675 ext4_msg(sb, KERN_INFO, "write access will " 4676 "be enabled during recovery"); 4677 } 4678 } 4679 4680 if (journal_inum && journal_dev) { 4681 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4682 "and inode journals!"); 4683 return -EINVAL; 4684 } 4685 4686 if (journal_inum) { 4687 if (!(journal = ext4_get_journal(sb, journal_inum))) 4688 return -EINVAL; 4689 } else { 4690 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4691 return -EINVAL; 4692 } 4693 4694 if (!(journal->j_flags & JBD2_BARRIER)) 4695 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4696 4697 if (!ext4_has_feature_journal_needs_recovery(sb)) 4698 err = jbd2_journal_wipe(journal, !really_read_only); 4699 if (!err) { 4700 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4701 if (save) 4702 memcpy(save, ((char *) es) + 4703 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4704 err = jbd2_journal_load(journal); 4705 if (save) 4706 memcpy(((char *) es) + EXT4_S_ERR_START, 4707 save, EXT4_S_ERR_LEN); 4708 kfree(save); 4709 } 4710 4711 if (err) { 4712 ext4_msg(sb, KERN_ERR, "error loading journal"); 4713 jbd2_journal_destroy(journal); 4714 return err; 4715 } 4716 4717 EXT4_SB(sb)->s_journal = journal; 4718 ext4_clear_journal_err(sb, es); 4719 4720 if (!really_read_only && journal_devnum && 4721 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4722 es->s_journal_dev = cpu_to_le32(journal_devnum); 4723 4724 /* Make sure we flush the recovery flag to disk. */ 4725 ext4_commit_super(sb, 1); 4726 } 4727 4728 return 0; 4729 } 4730 4731 static int ext4_commit_super(struct super_block *sb, int sync) 4732 { 4733 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4734 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4735 int error = 0; 4736 4737 if (!sbh || block_device_ejected(sb)) 4738 return error; 4739 /* 4740 * If the file system is mounted read-only, don't update the 4741 * superblock write time. This avoids updating the superblock 4742 * write time when we are mounting the root file system 4743 * read/only but we need to replay the journal; at that point, 4744 * for people who are east of GMT and who make their clock 4745 * tick in localtime for Windows bug-for-bug compatibility, 4746 * the clock is set in the future, and this will cause e2fsck 4747 * to complain and force a full file system check. 4748 */ 4749 if (!(sb->s_flags & SB_RDONLY)) 4750 es->s_wtime = cpu_to_le32(get_seconds()); 4751 if (sb->s_bdev->bd_part) 4752 es->s_kbytes_written = 4753 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4754 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4755 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4756 else 4757 es->s_kbytes_written = 4758 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4759 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4760 ext4_free_blocks_count_set(es, 4761 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4762 &EXT4_SB(sb)->s_freeclusters_counter))); 4763 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4764 es->s_free_inodes_count = 4765 cpu_to_le32(percpu_counter_sum_positive( 4766 &EXT4_SB(sb)->s_freeinodes_counter)); 4767 BUFFER_TRACE(sbh, "marking dirty"); 4768 ext4_superblock_csum_set(sb); 4769 if (sync) 4770 lock_buffer(sbh); 4771 if (buffer_write_io_error(sbh)) { 4772 /* 4773 * Oh, dear. A previous attempt to write the 4774 * superblock failed. This could happen because the 4775 * USB device was yanked out. Or it could happen to 4776 * be a transient write error and maybe the block will 4777 * be remapped. Nothing we can do but to retry the 4778 * write and hope for the best. 4779 */ 4780 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4781 "superblock detected"); 4782 clear_buffer_write_io_error(sbh); 4783 set_buffer_uptodate(sbh); 4784 } 4785 mark_buffer_dirty(sbh); 4786 if (sync) { 4787 unlock_buffer(sbh); 4788 error = __sync_dirty_buffer(sbh, 4789 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4790 if (buffer_write_io_error(sbh)) { 4791 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4792 "superblock"); 4793 clear_buffer_write_io_error(sbh); 4794 set_buffer_uptodate(sbh); 4795 } 4796 } 4797 return error; 4798 } 4799 4800 /* 4801 * Have we just finished recovery? If so, and if we are mounting (or 4802 * remounting) the filesystem readonly, then we will end up with a 4803 * consistent fs on disk. Record that fact. 4804 */ 4805 static void ext4_mark_recovery_complete(struct super_block *sb, 4806 struct ext4_super_block *es) 4807 { 4808 journal_t *journal = EXT4_SB(sb)->s_journal; 4809 4810 if (!ext4_has_feature_journal(sb)) { 4811 BUG_ON(journal != NULL); 4812 return; 4813 } 4814 jbd2_journal_lock_updates(journal); 4815 if (jbd2_journal_flush(journal) < 0) 4816 goto out; 4817 4818 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4819 ext4_clear_feature_journal_needs_recovery(sb); 4820 ext4_commit_super(sb, 1); 4821 } 4822 4823 out: 4824 jbd2_journal_unlock_updates(journal); 4825 } 4826 4827 /* 4828 * If we are mounting (or read-write remounting) a filesystem whose journal 4829 * has recorded an error from a previous lifetime, move that error to the 4830 * main filesystem now. 4831 */ 4832 static void ext4_clear_journal_err(struct super_block *sb, 4833 struct ext4_super_block *es) 4834 { 4835 journal_t *journal; 4836 int j_errno; 4837 const char *errstr; 4838 4839 BUG_ON(!ext4_has_feature_journal(sb)); 4840 4841 journal = EXT4_SB(sb)->s_journal; 4842 4843 /* 4844 * Now check for any error status which may have been recorded in the 4845 * journal by a prior ext4_error() or ext4_abort() 4846 */ 4847 4848 j_errno = jbd2_journal_errno(journal); 4849 if (j_errno) { 4850 char nbuf[16]; 4851 4852 errstr = ext4_decode_error(sb, j_errno, nbuf); 4853 ext4_warning(sb, "Filesystem error recorded " 4854 "from previous mount: %s", errstr); 4855 ext4_warning(sb, "Marking fs in need of filesystem check."); 4856 4857 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4858 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4859 ext4_commit_super(sb, 1); 4860 4861 jbd2_journal_clear_err(journal); 4862 jbd2_journal_update_sb_errno(journal); 4863 } 4864 } 4865 4866 /* 4867 * Force the running and committing transactions to commit, 4868 * and wait on the commit. 4869 */ 4870 int ext4_force_commit(struct super_block *sb) 4871 { 4872 journal_t *journal; 4873 4874 if (sb_rdonly(sb)) 4875 return 0; 4876 4877 journal = EXT4_SB(sb)->s_journal; 4878 return ext4_journal_force_commit(journal); 4879 } 4880 4881 static int ext4_sync_fs(struct super_block *sb, int wait) 4882 { 4883 int ret = 0; 4884 tid_t target; 4885 bool needs_barrier = false; 4886 struct ext4_sb_info *sbi = EXT4_SB(sb); 4887 4888 if (unlikely(ext4_forced_shutdown(sbi))) 4889 return 0; 4890 4891 trace_ext4_sync_fs(sb, wait); 4892 flush_workqueue(sbi->rsv_conversion_wq); 4893 /* 4894 * Writeback quota in non-journalled quota case - journalled quota has 4895 * no dirty dquots 4896 */ 4897 dquot_writeback_dquots(sb, -1); 4898 /* 4899 * Data writeback is possible w/o journal transaction, so barrier must 4900 * being sent at the end of the function. But we can skip it if 4901 * transaction_commit will do it for us. 4902 */ 4903 if (sbi->s_journal) { 4904 target = jbd2_get_latest_transaction(sbi->s_journal); 4905 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4906 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4907 needs_barrier = true; 4908 4909 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4910 if (wait) 4911 ret = jbd2_log_wait_commit(sbi->s_journal, 4912 target); 4913 } 4914 } else if (wait && test_opt(sb, BARRIER)) 4915 needs_barrier = true; 4916 if (needs_barrier) { 4917 int err; 4918 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4919 if (!ret) 4920 ret = err; 4921 } 4922 4923 return ret; 4924 } 4925 4926 /* 4927 * LVM calls this function before a (read-only) snapshot is created. This 4928 * gives us a chance to flush the journal completely and mark the fs clean. 4929 * 4930 * Note that only this function cannot bring a filesystem to be in a clean 4931 * state independently. It relies on upper layer to stop all data & metadata 4932 * modifications. 4933 */ 4934 static int ext4_freeze(struct super_block *sb) 4935 { 4936 int error = 0; 4937 journal_t *journal; 4938 4939 if (sb_rdonly(sb)) 4940 return 0; 4941 4942 journal = EXT4_SB(sb)->s_journal; 4943 4944 if (journal) { 4945 /* Now we set up the journal barrier. */ 4946 jbd2_journal_lock_updates(journal); 4947 4948 /* 4949 * Don't clear the needs_recovery flag if we failed to 4950 * flush the journal. 4951 */ 4952 error = jbd2_journal_flush(journal); 4953 if (error < 0) 4954 goto out; 4955 4956 /* Journal blocked and flushed, clear needs_recovery flag. */ 4957 ext4_clear_feature_journal_needs_recovery(sb); 4958 } 4959 4960 error = ext4_commit_super(sb, 1); 4961 out: 4962 if (journal) 4963 /* we rely on upper layer to stop further updates */ 4964 jbd2_journal_unlock_updates(journal); 4965 return error; 4966 } 4967 4968 /* 4969 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4970 * flag here, even though the filesystem is not technically dirty yet. 4971 */ 4972 static int ext4_unfreeze(struct super_block *sb) 4973 { 4974 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 4975 return 0; 4976 4977 if (EXT4_SB(sb)->s_journal) { 4978 /* Reset the needs_recovery flag before the fs is unlocked. */ 4979 ext4_set_feature_journal_needs_recovery(sb); 4980 } 4981 4982 ext4_commit_super(sb, 1); 4983 return 0; 4984 } 4985 4986 /* 4987 * Structure to save mount options for ext4_remount's benefit 4988 */ 4989 struct ext4_mount_options { 4990 unsigned long s_mount_opt; 4991 unsigned long s_mount_opt2; 4992 kuid_t s_resuid; 4993 kgid_t s_resgid; 4994 unsigned long s_commit_interval; 4995 u32 s_min_batch_time, s_max_batch_time; 4996 #ifdef CONFIG_QUOTA 4997 int s_jquota_fmt; 4998 char *s_qf_names[EXT4_MAXQUOTAS]; 4999 #endif 5000 }; 5001 5002 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5003 { 5004 struct ext4_super_block *es; 5005 struct ext4_sb_info *sbi = EXT4_SB(sb); 5006 unsigned long old_sb_flags; 5007 struct ext4_mount_options old_opts; 5008 int enable_quota = 0; 5009 ext4_group_t g; 5010 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5011 int err = 0; 5012 #ifdef CONFIG_QUOTA 5013 int i, j; 5014 #endif 5015 char *orig_data = kstrdup(data, GFP_KERNEL); 5016 5017 /* Store the original options */ 5018 old_sb_flags = sb->s_flags; 5019 old_opts.s_mount_opt = sbi->s_mount_opt; 5020 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5021 old_opts.s_resuid = sbi->s_resuid; 5022 old_opts.s_resgid = sbi->s_resgid; 5023 old_opts.s_commit_interval = sbi->s_commit_interval; 5024 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5025 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5026 #ifdef CONFIG_QUOTA 5027 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5028 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5029 if (sbi->s_qf_names[i]) { 5030 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 5031 GFP_KERNEL); 5032 if (!old_opts.s_qf_names[i]) { 5033 for (j = 0; j < i; j++) 5034 kfree(old_opts.s_qf_names[j]); 5035 kfree(orig_data); 5036 return -ENOMEM; 5037 } 5038 } else 5039 old_opts.s_qf_names[i] = NULL; 5040 #endif 5041 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5042 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5043 5044 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5045 err = -EINVAL; 5046 goto restore_opts; 5047 } 5048 5049 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5050 test_opt(sb, JOURNAL_CHECKSUM)) { 5051 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5052 "during remount not supported; ignoring"); 5053 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5054 } 5055 5056 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5057 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5058 ext4_msg(sb, KERN_ERR, "can't mount with " 5059 "both data=journal and delalloc"); 5060 err = -EINVAL; 5061 goto restore_opts; 5062 } 5063 if (test_opt(sb, DIOREAD_NOLOCK)) { 5064 ext4_msg(sb, KERN_ERR, "can't mount with " 5065 "both data=journal and dioread_nolock"); 5066 err = -EINVAL; 5067 goto restore_opts; 5068 } 5069 if (test_opt(sb, DAX)) { 5070 ext4_msg(sb, KERN_ERR, "can't mount with " 5071 "both data=journal and dax"); 5072 err = -EINVAL; 5073 goto restore_opts; 5074 } 5075 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5076 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5077 ext4_msg(sb, KERN_ERR, "can't mount with " 5078 "journal_async_commit in data=ordered mode"); 5079 err = -EINVAL; 5080 goto restore_opts; 5081 } 5082 } 5083 5084 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5085 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5086 err = -EINVAL; 5087 goto restore_opts; 5088 } 5089 5090 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5091 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5092 "dax flag with busy inodes while remounting"); 5093 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5094 } 5095 5096 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5097 ext4_abort(sb, "Abort forced by user"); 5098 5099 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5100 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5101 5102 es = sbi->s_es; 5103 5104 if (sbi->s_journal) { 5105 ext4_init_journal_params(sb, sbi->s_journal); 5106 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5107 } 5108 5109 if (*flags & SB_LAZYTIME) 5110 sb->s_flags |= SB_LAZYTIME; 5111 5112 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5113 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5114 err = -EROFS; 5115 goto restore_opts; 5116 } 5117 5118 if (*flags & SB_RDONLY) { 5119 err = sync_filesystem(sb); 5120 if (err < 0) 5121 goto restore_opts; 5122 err = dquot_suspend(sb, -1); 5123 if (err < 0) 5124 goto restore_opts; 5125 5126 /* 5127 * First of all, the unconditional stuff we have to do 5128 * to disable replay of the journal when we next remount 5129 */ 5130 sb->s_flags |= SB_RDONLY; 5131 5132 /* 5133 * OK, test if we are remounting a valid rw partition 5134 * readonly, and if so set the rdonly flag and then 5135 * mark the partition as valid again. 5136 */ 5137 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5138 (sbi->s_mount_state & EXT4_VALID_FS)) 5139 es->s_state = cpu_to_le16(sbi->s_mount_state); 5140 5141 if (sbi->s_journal) 5142 ext4_mark_recovery_complete(sb, es); 5143 } else { 5144 /* Make sure we can mount this feature set readwrite */ 5145 if (ext4_has_feature_readonly(sb) || 5146 !ext4_feature_set_ok(sb, 0)) { 5147 err = -EROFS; 5148 goto restore_opts; 5149 } 5150 /* 5151 * Make sure the group descriptor checksums 5152 * are sane. If they aren't, refuse to remount r/w. 5153 */ 5154 for (g = 0; g < sbi->s_groups_count; g++) { 5155 struct ext4_group_desc *gdp = 5156 ext4_get_group_desc(sb, g, NULL); 5157 5158 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5159 ext4_msg(sb, KERN_ERR, 5160 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5161 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5162 le16_to_cpu(gdp->bg_checksum)); 5163 err = -EFSBADCRC; 5164 goto restore_opts; 5165 } 5166 } 5167 5168 /* 5169 * If we have an unprocessed orphan list hanging 5170 * around from a previously readonly bdev mount, 5171 * require a full umount/remount for now. 5172 */ 5173 if (es->s_last_orphan) { 5174 ext4_msg(sb, KERN_WARNING, "Couldn't " 5175 "remount RDWR because of unprocessed " 5176 "orphan inode list. Please " 5177 "umount/remount instead"); 5178 err = -EINVAL; 5179 goto restore_opts; 5180 } 5181 5182 /* 5183 * Mounting a RDONLY partition read-write, so reread 5184 * and store the current valid flag. (It may have 5185 * been changed by e2fsck since we originally mounted 5186 * the partition.) 5187 */ 5188 if (sbi->s_journal) 5189 ext4_clear_journal_err(sb, es); 5190 sbi->s_mount_state = le16_to_cpu(es->s_state); 5191 5192 err = ext4_setup_super(sb, es, 0); 5193 if (err) 5194 goto restore_opts; 5195 5196 sb->s_flags &= ~SB_RDONLY; 5197 if (ext4_has_feature_mmp(sb)) 5198 if (ext4_multi_mount_protect(sb, 5199 le64_to_cpu(es->s_mmp_block))) { 5200 err = -EROFS; 5201 goto restore_opts; 5202 } 5203 enable_quota = 1; 5204 } 5205 } 5206 5207 /* 5208 * Reinitialize lazy itable initialization thread based on 5209 * current settings 5210 */ 5211 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5212 ext4_unregister_li_request(sb); 5213 else { 5214 ext4_group_t first_not_zeroed; 5215 first_not_zeroed = ext4_has_uninit_itable(sb); 5216 ext4_register_li_request(sb, first_not_zeroed); 5217 } 5218 5219 ext4_setup_system_zone(sb); 5220 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5221 err = ext4_commit_super(sb, 1); 5222 if (err) 5223 goto restore_opts; 5224 } 5225 5226 #ifdef CONFIG_QUOTA 5227 /* Release old quota file names */ 5228 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5229 kfree(old_opts.s_qf_names[i]); 5230 if (enable_quota) { 5231 if (sb_any_quota_suspended(sb)) 5232 dquot_resume(sb, -1); 5233 else if (ext4_has_feature_quota(sb)) { 5234 err = ext4_enable_quotas(sb); 5235 if (err) 5236 goto restore_opts; 5237 } 5238 } 5239 #endif 5240 5241 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5242 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5243 kfree(orig_data); 5244 return 0; 5245 5246 restore_opts: 5247 sb->s_flags = old_sb_flags; 5248 sbi->s_mount_opt = old_opts.s_mount_opt; 5249 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5250 sbi->s_resuid = old_opts.s_resuid; 5251 sbi->s_resgid = old_opts.s_resgid; 5252 sbi->s_commit_interval = old_opts.s_commit_interval; 5253 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5254 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5255 #ifdef CONFIG_QUOTA 5256 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5257 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5258 kfree(sbi->s_qf_names[i]); 5259 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5260 } 5261 #endif 5262 kfree(orig_data); 5263 return err; 5264 } 5265 5266 #ifdef CONFIG_QUOTA 5267 static int ext4_statfs_project(struct super_block *sb, 5268 kprojid_t projid, struct kstatfs *buf) 5269 { 5270 struct kqid qid; 5271 struct dquot *dquot; 5272 u64 limit; 5273 u64 curblock; 5274 5275 qid = make_kqid_projid(projid); 5276 dquot = dqget(sb, qid); 5277 if (IS_ERR(dquot)) 5278 return PTR_ERR(dquot); 5279 spin_lock(&dquot->dq_dqb_lock); 5280 5281 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5282 dquot->dq_dqb.dqb_bsoftlimit : 5283 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5284 if (limit && buf->f_blocks > limit) { 5285 curblock = (dquot->dq_dqb.dqb_curspace + 5286 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5287 buf->f_blocks = limit; 5288 buf->f_bfree = buf->f_bavail = 5289 (buf->f_blocks > curblock) ? 5290 (buf->f_blocks - curblock) : 0; 5291 } 5292 5293 limit = dquot->dq_dqb.dqb_isoftlimit ? 5294 dquot->dq_dqb.dqb_isoftlimit : 5295 dquot->dq_dqb.dqb_ihardlimit; 5296 if (limit && buf->f_files > limit) { 5297 buf->f_files = limit; 5298 buf->f_ffree = 5299 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5300 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5301 } 5302 5303 spin_unlock(&dquot->dq_dqb_lock); 5304 dqput(dquot); 5305 return 0; 5306 } 5307 #endif 5308 5309 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5310 { 5311 struct super_block *sb = dentry->d_sb; 5312 struct ext4_sb_info *sbi = EXT4_SB(sb); 5313 struct ext4_super_block *es = sbi->s_es; 5314 ext4_fsblk_t overhead = 0, resv_blocks; 5315 u64 fsid; 5316 s64 bfree; 5317 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5318 5319 if (!test_opt(sb, MINIX_DF)) 5320 overhead = sbi->s_overhead; 5321 5322 buf->f_type = EXT4_SUPER_MAGIC; 5323 buf->f_bsize = sb->s_blocksize; 5324 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5325 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5326 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5327 /* prevent underflow in case that few free space is available */ 5328 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5329 buf->f_bavail = buf->f_bfree - 5330 (ext4_r_blocks_count(es) + resv_blocks); 5331 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5332 buf->f_bavail = 0; 5333 buf->f_files = le32_to_cpu(es->s_inodes_count); 5334 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5335 buf->f_namelen = EXT4_NAME_LEN; 5336 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5337 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5338 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5339 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5340 5341 #ifdef CONFIG_QUOTA 5342 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5343 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5344 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5345 #endif 5346 return 0; 5347 } 5348 5349 5350 #ifdef CONFIG_QUOTA 5351 5352 /* 5353 * Helper functions so that transaction is started before we acquire dqio_sem 5354 * to keep correct lock ordering of transaction > dqio_sem 5355 */ 5356 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5357 { 5358 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5359 } 5360 5361 static int ext4_write_dquot(struct dquot *dquot) 5362 { 5363 int ret, err; 5364 handle_t *handle; 5365 struct inode *inode; 5366 5367 inode = dquot_to_inode(dquot); 5368 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5369 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5370 if (IS_ERR(handle)) 5371 return PTR_ERR(handle); 5372 ret = dquot_commit(dquot); 5373 err = ext4_journal_stop(handle); 5374 if (!ret) 5375 ret = err; 5376 return ret; 5377 } 5378 5379 static int ext4_acquire_dquot(struct dquot *dquot) 5380 { 5381 int ret, err; 5382 handle_t *handle; 5383 5384 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5385 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5386 if (IS_ERR(handle)) 5387 return PTR_ERR(handle); 5388 ret = dquot_acquire(dquot); 5389 err = ext4_journal_stop(handle); 5390 if (!ret) 5391 ret = err; 5392 return ret; 5393 } 5394 5395 static int ext4_release_dquot(struct dquot *dquot) 5396 { 5397 int ret, err; 5398 handle_t *handle; 5399 5400 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5401 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5402 if (IS_ERR(handle)) { 5403 /* Release dquot anyway to avoid endless cycle in dqput() */ 5404 dquot_release(dquot); 5405 return PTR_ERR(handle); 5406 } 5407 ret = dquot_release(dquot); 5408 err = ext4_journal_stop(handle); 5409 if (!ret) 5410 ret = err; 5411 return ret; 5412 } 5413 5414 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5415 { 5416 struct super_block *sb = dquot->dq_sb; 5417 struct ext4_sb_info *sbi = EXT4_SB(sb); 5418 5419 /* Are we journaling quotas? */ 5420 if (ext4_has_feature_quota(sb) || 5421 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5422 dquot_mark_dquot_dirty(dquot); 5423 return ext4_write_dquot(dquot); 5424 } else { 5425 return dquot_mark_dquot_dirty(dquot); 5426 } 5427 } 5428 5429 static int ext4_write_info(struct super_block *sb, int type) 5430 { 5431 int ret, err; 5432 handle_t *handle; 5433 5434 /* Data block + inode block */ 5435 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5436 if (IS_ERR(handle)) 5437 return PTR_ERR(handle); 5438 ret = dquot_commit_info(sb, type); 5439 err = ext4_journal_stop(handle); 5440 if (!ret) 5441 ret = err; 5442 return ret; 5443 } 5444 5445 /* 5446 * Turn on quotas during mount time - we need to find 5447 * the quota file and such... 5448 */ 5449 static int ext4_quota_on_mount(struct super_block *sb, int type) 5450 { 5451 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5452 EXT4_SB(sb)->s_jquota_fmt, type); 5453 } 5454 5455 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5456 { 5457 struct ext4_inode_info *ei = EXT4_I(inode); 5458 5459 /* The first argument of lockdep_set_subclass has to be 5460 * *exactly* the same as the argument to init_rwsem() --- in 5461 * this case, in init_once() --- or lockdep gets unhappy 5462 * because the name of the lock is set using the 5463 * stringification of the argument to init_rwsem(). 5464 */ 5465 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5466 lockdep_set_subclass(&ei->i_data_sem, subclass); 5467 } 5468 5469 /* 5470 * Standard function to be called on quota_on 5471 */ 5472 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5473 const struct path *path) 5474 { 5475 int err; 5476 5477 if (!test_opt(sb, QUOTA)) 5478 return -EINVAL; 5479 5480 /* Quotafile not on the same filesystem? */ 5481 if (path->dentry->d_sb != sb) 5482 return -EXDEV; 5483 /* Journaling quota? */ 5484 if (EXT4_SB(sb)->s_qf_names[type]) { 5485 /* Quotafile not in fs root? */ 5486 if (path->dentry->d_parent != sb->s_root) 5487 ext4_msg(sb, KERN_WARNING, 5488 "Quota file not on filesystem root. " 5489 "Journaled quota will not work"); 5490 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5491 } else { 5492 /* 5493 * Clear the flag just in case mount options changed since 5494 * last time. 5495 */ 5496 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5497 } 5498 5499 /* 5500 * When we journal data on quota file, we have to flush journal to see 5501 * all updates to the file when we bypass pagecache... 5502 */ 5503 if (EXT4_SB(sb)->s_journal && 5504 ext4_should_journal_data(d_inode(path->dentry))) { 5505 /* 5506 * We don't need to lock updates but journal_flush() could 5507 * otherwise be livelocked... 5508 */ 5509 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5510 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5511 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5512 if (err) 5513 return err; 5514 } 5515 5516 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5517 err = dquot_quota_on(sb, type, format_id, path); 5518 if (err) { 5519 lockdep_set_quota_inode(path->dentry->d_inode, 5520 I_DATA_SEM_NORMAL); 5521 } else { 5522 struct inode *inode = d_inode(path->dentry); 5523 handle_t *handle; 5524 5525 /* 5526 * Set inode flags to prevent userspace from messing with quota 5527 * files. If this fails, we return success anyway since quotas 5528 * are already enabled and this is not a hard failure. 5529 */ 5530 inode_lock(inode); 5531 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5532 if (IS_ERR(handle)) 5533 goto unlock_inode; 5534 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5535 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5536 S_NOATIME | S_IMMUTABLE); 5537 ext4_mark_inode_dirty(handle, inode); 5538 ext4_journal_stop(handle); 5539 unlock_inode: 5540 inode_unlock(inode); 5541 } 5542 return err; 5543 } 5544 5545 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5546 unsigned int flags) 5547 { 5548 int err; 5549 struct inode *qf_inode; 5550 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5551 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5552 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5553 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5554 }; 5555 5556 BUG_ON(!ext4_has_feature_quota(sb)); 5557 5558 if (!qf_inums[type]) 5559 return -EPERM; 5560 5561 qf_inode = ext4_iget(sb, qf_inums[type]); 5562 if (IS_ERR(qf_inode)) { 5563 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5564 return PTR_ERR(qf_inode); 5565 } 5566 5567 /* Don't account quota for quota files to avoid recursion */ 5568 qf_inode->i_flags |= S_NOQUOTA; 5569 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5570 err = dquot_enable(qf_inode, type, format_id, flags); 5571 iput(qf_inode); 5572 if (err) 5573 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5574 5575 return err; 5576 } 5577 5578 /* Enable usage tracking for all quota types. */ 5579 static int ext4_enable_quotas(struct super_block *sb) 5580 { 5581 int type, err = 0; 5582 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5583 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5584 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5585 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5586 }; 5587 bool quota_mopt[EXT4_MAXQUOTAS] = { 5588 test_opt(sb, USRQUOTA), 5589 test_opt(sb, GRPQUOTA), 5590 test_opt(sb, PRJQUOTA), 5591 }; 5592 5593 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5594 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5595 if (qf_inums[type]) { 5596 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5597 DQUOT_USAGE_ENABLED | 5598 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5599 if (err) { 5600 for (type--; type >= 0; type--) 5601 dquot_quota_off(sb, type); 5602 5603 ext4_warning(sb, 5604 "Failed to enable quota tracking " 5605 "(type=%d, err=%d). Please run " 5606 "e2fsck to fix.", type, err); 5607 return err; 5608 } 5609 } 5610 } 5611 return 0; 5612 } 5613 5614 static int ext4_quota_off(struct super_block *sb, int type) 5615 { 5616 struct inode *inode = sb_dqopt(sb)->files[type]; 5617 handle_t *handle; 5618 int err; 5619 5620 /* Force all delayed allocation blocks to be allocated. 5621 * Caller already holds s_umount sem */ 5622 if (test_opt(sb, DELALLOC)) 5623 sync_filesystem(sb); 5624 5625 if (!inode || !igrab(inode)) 5626 goto out; 5627 5628 err = dquot_quota_off(sb, type); 5629 if (err || ext4_has_feature_quota(sb)) 5630 goto out_put; 5631 5632 inode_lock(inode); 5633 /* 5634 * Update modification times of quota files when userspace can 5635 * start looking at them. If we fail, we return success anyway since 5636 * this is not a hard failure and quotas are already disabled. 5637 */ 5638 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5639 if (IS_ERR(handle)) 5640 goto out_unlock; 5641 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5642 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5643 inode->i_mtime = inode->i_ctime = current_time(inode); 5644 ext4_mark_inode_dirty(handle, inode); 5645 ext4_journal_stop(handle); 5646 out_unlock: 5647 inode_unlock(inode); 5648 out_put: 5649 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5650 iput(inode); 5651 return err; 5652 out: 5653 return dquot_quota_off(sb, type); 5654 } 5655 5656 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5657 * acquiring the locks... As quota files are never truncated and quota code 5658 * itself serializes the operations (and no one else should touch the files) 5659 * we don't have to be afraid of races */ 5660 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5661 size_t len, loff_t off) 5662 { 5663 struct inode *inode = sb_dqopt(sb)->files[type]; 5664 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5665 int offset = off & (sb->s_blocksize - 1); 5666 int tocopy; 5667 size_t toread; 5668 struct buffer_head *bh; 5669 loff_t i_size = i_size_read(inode); 5670 5671 if (off > i_size) 5672 return 0; 5673 if (off+len > i_size) 5674 len = i_size-off; 5675 toread = len; 5676 while (toread > 0) { 5677 tocopy = sb->s_blocksize - offset < toread ? 5678 sb->s_blocksize - offset : toread; 5679 bh = ext4_bread(NULL, inode, blk, 0); 5680 if (IS_ERR(bh)) 5681 return PTR_ERR(bh); 5682 if (!bh) /* A hole? */ 5683 memset(data, 0, tocopy); 5684 else 5685 memcpy(data, bh->b_data+offset, tocopy); 5686 brelse(bh); 5687 offset = 0; 5688 toread -= tocopy; 5689 data += tocopy; 5690 blk++; 5691 } 5692 return len; 5693 } 5694 5695 /* Write to quotafile (we know the transaction is already started and has 5696 * enough credits) */ 5697 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5698 const char *data, size_t len, loff_t off) 5699 { 5700 struct inode *inode = sb_dqopt(sb)->files[type]; 5701 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5702 int err, offset = off & (sb->s_blocksize - 1); 5703 int retries = 0; 5704 struct buffer_head *bh; 5705 handle_t *handle = journal_current_handle(); 5706 5707 if (EXT4_SB(sb)->s_journal && !handle) { 5708 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5709 " cancelled because transaction is not started", 5710 (unsigned long long)off, (unsigned long long)len); 5711 return -EIO; 5712 } 5713 /* 5714 * Since we account only one data block in transaction credits, 5715 * then it is impossible to cross a block boundary. 5716 */ 5717 if (sb->s_blocksize - offset < len) { 5718 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5719 " cancelled because not block aligned", 5720 (unsigned long long)off, (unsigned long long)len); 5721 return -EIO; 5722 } 5723 5724 do { 5725 bh = ext4_bread(handle, inode, blk, 5726 EXT4_GET_BLOCKS_CREATE | 5727 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5728 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5729 ext4_should_retry_alloc(inode->i_sb, &retries)); 5730 if (IS_ERR(bh)) 5731 return PTR_ERR(bh); 5732 if (!bh) 5733 goto out; 5734 BUFFER_TRACE(bh, "get write access"); 5735 err = ext4_journal_get_write_access(handle, bh); 5736 if (err) { 5737 brelse(bh); 5738 return err; 5739 } 5740 lock_buffer(bh); 5741 memcpy(bh->b_data+offset, data, len); 5742 flush_dcache_page(bh->b_page); 5743 unlock_buffer(bh); 5744 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5745 brelse(bh); 5746 out: 5747 if (inode->i_size < off + len) { 5748 i_size_write(inode, off + len); 5749 EXT4_I(inode)->i_disksize = inode->i_size; 5750 ext4_mark_inode_dirty(handle, inode); 5751 } 5752 return len; 5753 } 5754 5755 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5756 { 5757 const struct quota_format_ops *ops; 5758 5759 if (!sb_has_quota_loaded(sb, qid->type)) 5760 return -ESRCH; 5761 ops = sb_dqopt(sb)->ops[qid->type]; 5762 if (!ops || !ops->get_next_id) 5763 return -ENOSYS; 5764 return dquot_get_next_id(sb, qid); 5765 } 5766 #endif 5767 5768 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5769 const char *dev_name, void *data) 5770 { 5771 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5772 } 5773 5774 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5775 static inline void register_as_ext2(void) 5776 { 5777 int err = register_filesystem(&ext2_fs_type); 5778 if (err) 5779 printk(KERN_WARNING 5780 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5781 } 5782 5783 static inline void unregister_as_ext2(void) 5784 { 5785 unregister_filesystem(&ext2_fs_type); 5786 } 5787 5788 static inline int ext2_feature_set_ok(struct super_block *sb) 5789 { 5790 if (ext4_has_unknown_ext2_incompat_features(sb)) 5791 return 0; 5792 if (sb_rdonly(sb)) 5793 return 1; 5794 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5795 return 0; 5796 return 1; 5797 } 5798 #else 5799 static inline void register_as_ext2(void) { } 5800 static inline void unregister_as_ext2(void) { } 5801 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5802 #endif 5803 5804 static inline void register_as_ext3(void) 5805 { 5806 int err = register_filesystem(&ext3_fs_type); 5807 if (err) 5808 printk(KERN_WARNING 5809 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5810 } 5811 5812 static inline void unregister_as_ext3(void) 5813 { 5814 unregister_filesystem(&ext3_fs_type); 5815 } 5816 5817 static inline int ext3_feature_set_ok(struct super_block *sb) 5818 { 5819 if (ext4_has_unknown_ext3_incompat_features(sb)) 5820 return 0; 5821 if (!ext4_has_feature_journal(sb)) 5822 return 0; 5823 if (sb_rdonly(sb)) 5824 return 1; 5825 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5826 return 0; 5827 return 1; 5828 } 5829 5830 static struct file_system_type ext4_fs_type = { 5831 .owner = THIS_MODULE, 5832 .name = "ext4", 5833 .mount = ext4_mount, 5834 .kill_sb = kill_block_super, 5835 .fs_flags = FS_REQUIRES_DEV, 5836 }; 5837 MODULE_ALIAS_FS("ext4"); 5838 5839 /* Shared across all ext4 file systems */ 5840 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5841 5842 static int __init ext4_init_fs(void) 5843 { 5844 int i, err; 5845 5846 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5847 ext4_li_info = NULL; 5848 mutex_init(&ext4_li_mtx); 5849 5850 /* Build-time check for flags consistency */ 5851 ext4_check_flag_values(); 5852 5853 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5854 init_waitqueue_head(&ext4__ioend_wq[i]); 5855 5856 err = ext4_init_es(); 5857 if (err) 5858 return err; 5859 5860 err = ext4_init_pageio(); 5861 if (err) 5862 goto out5; 5863 5864 err = ext4_init_system_zone(); 5865 if (err) 5866 goto out4; 5867 5868 err = ext4_init_sysfs(); 5869 if (err) 5870 goto out3; 5871 5872 err = ext4_init_mballoc(); 5873 if (err) 5874 goto out2; 5875 err = init_inodecache(); 5876 if (err) 5877 goto out1; 5878 register_as_ext3(); 5879 register_as_ext2(); 5880 err = register_filesystem(&ext4_fs_type); 5881 if (err) 5882 goto out; 5883 5884 return 0; 5885 out: 5886 unregister_as_ext2(); 5887 unregister_as_ext3(); 5888 destroy_inodecache(); 5889 out1: 5890 ext4_exit_mballoc(); 5891 out2: 5892 ext4_exit_sysfs(); 5893 out3: 5894 ext4_exit_system_zone(); 5895 out4: 5896 ext4_exit_pageio(); 5897 out5: 5898 ext4_exit_es(); 5899 5900 return err; 5901 } 5902 5903 static void __exit ext4_exit_fs(void) 5904 { 5905 ext4_destroy_lazyinit_thread(); 5906 unregister_as_ext2(); 5907 unregister_as_ext3(); 5908 unregister_filesystem(&ext4_fs_type); 5909 destroy_inodecache(); 5910 ext4_exit_mballoc(); 5911 ext4_exit_sysfs(); 5912 ext4_exit_system_zone(); 5913 ext4_exit_pageio(); 5914 ext4_exit_es(); 5915 } 5916 5917 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5918 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5919 MODULE_LICENSE("GPL"); 5920 MODULE_SOFTDEP("pre: crc32c"); 5921 module_init(ext4_init_fs) 5922 module_exit(ext4_exit_fs) 5923