1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/parser.h> 28 #include <linux/smp_lock.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/marker.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "namei.h" 49 #include "group.h" 50 51 struct proc_dir_entry *ext4_proc_root; 52 static struct kset *ext4_kset; 53 54 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 55 unsigned long journal_devnum); 56 static int ext4_commit_super(struct super_block *sb, 57 struct ext4_super_block *es, int sync); 58 static void ext4_mark_recovery_complete(struct super_block *sb, 59 struct ext4_super_block *es); 60 static void ext4_clear_journal_err(struct super_block *sb, 61 struct ext4_super_block *es); 62 static int ext4_sync_fs(struct super_block *sb, int wait); 63 static const char *ext4_decode_error(struct super_block *sb, int errno, 64 char nbuf[16]); 65 static int ext4_remount(struct super_block *sb, int *flags, char *data); 66 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 67 static int ext4_unfreeze(struct super_block *sb); 68 static void ext4_write_super(struct super_block *sb); 69 static int ext4_freeze(struct super_block *sb); 70 71 72 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 73 struct ext4_group_desc *bg) 74 { 75 return le32_to_cpu(bg->bg_block_bitmap_lo) | 76 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 77 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 78 } 79 80 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 81 struct ext4_group_desc *bg) 82 { 83 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 84 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 85 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 86 } 87 88 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 89 struct ext4_group_desc *bg) 90 { 91 return le32_to_cpu(bg->bg_inode_table_lo) | 92 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 93 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 94 } 95 96 __u32 ext4_free_blks_count(struct super_block *sb, 97 struct ext4_group_desc *bg) 98 { 99 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 100 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 101 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 102 } 103 104 __u32 ext4_free_inodes_count(struct super_block *sb, 105 struct ext4_group_desc *bg) 106 { 107 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 108 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 109 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 110 } 111 112 __u32 ext4_used_dirs_count(struct super_block *sb, 113 struct ext4_group_desc *bg) 114 { 115 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 116 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 117 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 118 } 119 120 __u32 ext4_itable_unused_count(struct super_block *sb, 121 struct ext4_group_desc *bg) 122 { 123 return le16_to_cpu(bg->bg_itable_unused_lo) | 124 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 125 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 126 } 127 128 void ext4_block_bitmap_set(struct super_block *sb, 129 struct ext4_group_desc *bg, ext4_fsblk_t blk) 130 { 131 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 132 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 133 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 134 } 135 136 void ext4_inode_bitmap_set(struct super_block *sb, 137 struct ext4_group_desc *bg, ext4_fsblk_t blk) 138 { 139 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 140 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 141 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 142 } 143 144 void ext4_inode_table_set(struct super_block *sb, 145 struct ext4_group_desc *bg, ext4_fsblk_t blk) 146 { 147 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 148 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 149 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 150 } 151 152 void ext4_free_blks_set(struct super_block *sb, 153 struct ext4_group_desc *bg, __u32 count) 154 { 155 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 156 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 157 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 158 } 159 160 void ext4_free_inodes_set(struct super_block *sb, 161 struct ext4_group_desc *bg, __u32 count) 162 { 163 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 164 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 165 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 166 } 167 168 void ext4_used_dirs_set(struct super_block *sb, 169 struct ext4_group_desc *bg, __u32 count) 170 { 171 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 172 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 173 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 174 } 175 176 void ext4_itable_unused_set(struct super_block *sb, 177 struct ext4_group_desc *bg, __u32 count) 178 { 179 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 180 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 181 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 182 } 183 184 /* 185 * Wrappers for jbd2_journal_start/end. 186 * 187 * The only special thing we need to do here is to make sure that all 188 * journal_end calls result in the superblock being marked dirty, so 189 * that sync() will call the filesystem's write_super callback if 190 * appropriate. 191 */ 192 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 193 { 194 journal_t *journal; 195 196 if (sb->s_flags & MS_RDONLY) 197 return ERR_PTR(-EROFS); 198 199 /* Special case here: if the journal has aborted behind our 200 * backs (eg. EIO in the commit thread), then we still need to 201 * take the FS itself readonly cleanly. */ 202 journal = EXT4_SB(sb)->s_journal; 203 if (journal) { 204 if (is_journal_aborted(journal)) { 205 ext4_abort(sb, __func__, 206 "Detected aborted journal"); 207 return ERR_PTR(-EROFS); 208 } 209 return jbd2_journal_start(journal, nblocks); 210 } 211 /* 212 * We're not journaling, return the appropriate indication. 213 */ 214 current->journal_info = EXT4_NOJOURNAL_HANDLE; 215 return current->journal_info; 216 } 217 218 /* 219 * The only special thing we need to do here is to make sure that all 220 * jbd2_journal_stop calls result in the superblock being marked dirty, so 221 * that sync() will call the filesystem's write_super callback if 222 * appropriate. 223 */ 224 int __ext4_journal_stop(const char *where, handle_t *handle) 225 { 226 struct super_block *sb; 227 int err; 228 int rc; 229 230 if (!ext4_handle_valid(handle)) { 231 /* 232 * Do this here since we don't call jbd2_journal_stop() in 233 * no-journal mode. 234 */ 235 current->journal_info = NULL; 236 return 0; 237 } 238 sb = handle->h_transaction->t_journal->j_private; 239 err = handle->h_err; 240 rc = jbd2_journal_stop(handle); 241 242 if (!err) 243 err = rc; 244 if (err) 245 __ext4_std_error(sb, where, err); 246 return err; 247 } 248 249 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 250 struct buffer_head *bh, handle_t *handle, int err) 251 { 252 char nbuf[16]; 253 const char *errstr = ext4_decode_error(NULL, err, nbuf); 254 255 BUG_ON(!ext4_handle_valid(handle)); 256 257 if (bh) 258 BUFFER_TRACE(bh, "abort"); 259 260 if (!handle->h_err) 261 handle->h_err = err; 262 263 if (is_handle_aborted(handle)) 264 return; 265 266 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 267 caller, errstr, err_fn); 268 269 jbd2_journal_abort_handle(handle); 270 } 271 272 /* Deal with the reporting of failure conditions on a filesystem such as 273 * inconsistencies detected or read IO failures. 274 * 275 * On ext2, we can store the error state of the filesystem in the 276 * superblock. That is not possible on ext4, because we may have other 277 * write ordering constraints on the superblock which prevent us from 278 * writing it out straight away; and given that the journal is about to 279 * be aborted, we can't rely on the current, or future, transactions to 280 * write out the superblock safely. 281 * 282 * We'll just use the jbd2_journal_abort() error code to record an error in 283 * the journal instead. On recovery, the journal will compain about 284 * that error until we've noted it down and cleared it. 285 */ 286 287 static void ext4_handle_error(struct super_block *sb) 288 { 289 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 290 291 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 292 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 293 294 if (sb->s_flags & MS_RDONLY) 295 return; 296 297 if (!test_opt(sb, ERRORS_CONT)) { 298 journal_t *journal = EXT4_SB(sb)->s_journal; 299 300 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 301 if (journal) 302 jbd2_journal_abort(journal, -EIO); 303 } 304 if (test_opt(sb, ERRORS_RO)) { 305 printk(KERN_CRIT "Remounting filesystem read-only\n"); 306 sb->s_flags |= MS_RDONLY; 307 } 308 ext4_commit_super(sb, es, 1); 309 if (test_opt(sb, ERRORS_PANIC)) 310 panic("EXT4-fs (device %s): panic forced after error\n", 311 sb->s_id); 312 } 313 314 void ext4_error(struct super_block *sb, const char *function, 315 const char *fmt, ...) 316 { 317 va_list args; 318 319 va_start(args, fmt); 320 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 321 vprintk(fmt, args); 322 printk("\n"); 323 va_end(args); 324 325 ext4_handle_error(sb); 326 } 327 328 static const char *ext4_decode_error(struct super_block *sb, int errno, 329 char nbuf[16]) 330 { 331 char *errstr = NULL; 332 333 switch (errno) { 334 case -EIO: 335 errstr = "IO failure"; 336 break; 337 case -ENOMEM: 338 errstr = "Out of memory"; 339 break; 340 case -EROFS: 341 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) 342 errstr = "Journal has aborted"; 343 else 344 errstr = "Readonly filesystem"; 345 break; 346 default: 347 /* If the caller passed in an extra buffer for unknown 348 * errors, textualise them now. Else we just return 349 * NULL. */ 350 if (nbuf) { 351 /* Check for truncated error codes... */ 352 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 353 errstr = nbuf; 354 } 355 break; 356 } 357 358 return errstr; 359 } 360 361 /* __ext4_std_error decodes expected errors from journaling functions 362 * automatically and invokes the appropriate error response. */ 363 364 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 365 { 366 char nbuf[16]; 367 const char *errstr; 368 369 /* Special case: if the error is EROFS, and we're not already 370 * inside a transaction, then there's really no point in logging 371 * an error. */ 372 if (errno == -EROFS && journal_current_handle() == NULL && 373 (sb->s_flags & MS_RDONLY)) 374 return; 375 376 errstr = ext4_decode_error(sb, errno, nbuf); 377 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 378 sb->s_id, function, errstr); 379 380 ext4_handle_error(sb); 381 } 382 383 /* 384 * ext4_abort is a much stronger failure handler than ext4_error. The 385 * abort function may be used to deal with unrecoverable failures such 386 * as journal IO errors or ENOMEM at a critical moment in log management. 387 * 388 * We unconditionally force the filesystem into an ABORT|READONLY state, 389 * unless the error response on the fs has been set to panic in which 390 * case we take the easy way out and panic immediately. 391 */ 392 393 void ext4_abort(struct super_block *sb, const char *function, 394 const char *fmt, ...) 395 { 396 va_list args; 397 398 printk(KERN_CRIT "ext4_abort called.\n"); 399 400 va_start(args, fmt); 401 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 402 vprintk(fmt, args); 403 printk("\n"); 404 va_end(args); 405 406 if (test_opt(sb, ERRORS_PANIC)) 407 panic("EXT4-fs panic from previous error\n"); 408 409 if (sb->s_flags & MS_RDONLY) 410 return; 411 412 printk(KERN_CRIT "Remounting filesystem read-only\n"); 413 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 414 sb->s_flags |= MS_RDONLY; 415 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 416 if (EXT4_SB(sb)->s_journal) 417 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 418 } 419 420 void ext4_warning(struct super_block *sb, const char *function, 421 const char *fmt, ...) 422 { 423 va_list args; 424 425 va_start(args, fmt); 426 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 427 sb->s_id, function); 428 vprintk(fmt, args); 429 printk("\n"); 430 va_end(args); 431 } 432 433 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 434 const char *function, const char *fmt, ...) 435 __releases(bitlock) 436 __acquires(bitlock) 437 { 438 va_list args; 439 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 440 441 va_start(args, fmt); 442 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 443 vprintk(fmt, args); 444 printk("\n"); 445 va_end(args); 446 447 if (test_opt(sb, ERRORS_CONT)) { 448 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 449 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 450 ext4_commit_super(sb, es, 0); 451 return; 452 } 453 ext4_unlock_group(sb, grp); 454 ext4_handle_error(sb); 455 /* 456 * We only get here in the ERRORS_RO case; relocking the group 457 * may be dangerous, but nothing bad will happen since the 458 * filesystem will have already been marked read/only and the 459 * journal has been aborted. We return 1 as a hint to callers 460 * who might what to use the return value from 461 * ext4_grp_locked_error() to distinguish beween the 462 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 463 * aggressively from the ext4 function in question, with a 464 * more appropriate error code. 465 */ 466 ext4_lock_group(sb, grp); 467 return; 468 } 469 470 471 void ext4_update_dynamic_rev(struct super_block *sb) 472 { 473 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 474 475 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 476 return; 477 478 ext4_warning(sb, __func__, 479 "updating to rev %d because of new feature flag, " 480 "running e2fsck is recommended", 481 EXT4_DYNAMIC_REV); 482 483 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 484 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 485 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 486 /* leave es->s_feature_*compat flags alone */ 487 /* es->s_uuid will be set by e2fsck if empty */ 488 489 /* 490 * The rest of the superblock fields should be zero, and if not it 491 * means they are likely already in use, so leave them alone. We 492 * can leave it up to e2fsck to clean up any inconsistencies there. 493 */ 494 } 495 496 /* 497 * Open the external journal device 498 */ 499 static struct block_device *ext4_blkdev_get(dev_t dev) 500 { 501 struct block_device *bdev; 502 char b[BDEVNAME_SIZE]; 503 504 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 505 if (IS_ERR(bdev)) 506 goto fail; 507 return bdev; 508 509 fail: 510 printk(KERN_ERR "EXT4-fs: failed to open journal device %s: %ld\n", 511 __bdevname(dev, b), PTR_ERR(bdev)); 512 return NULL; 513 } 514 515 /* 516 * Release the journal device 517 */ 518 static int ext4_blkdev_put(struct block_device *bdev) 519 { 520 bd_release(bdev); 521 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 522 } 523 524 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 525 { 526 struct block_device *bdev; 527 int ret = -ENODEV; 528 529 bdev = sbi->journal_bdev; 530 if (bdev) { 531 ret = ext4_blkdev_put(bdev); 532 sbi->journal_bdev = NULL; 533 } 534 return ret; 535 } 536 537 static inline struct inode *orphan_list_entry(struct list_head *l) 538 { 539 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 540 } 541 542 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 543 { 544 struct list_head *l; 545 546 printk(KERN_ERR "sb orphan head is %d\n", 547 le32_to_cpu(sbi->s_es->s_last_orphan)); 548 549 printk(KERN_ERR "sb_info orphan list:\n"); 550 list_for_each(l, &sbi->s_orphan) { 551 struct inode *inode = orphan_list_entry(l); 552 printk(KERN_ERR " " 553 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 554 inode->i_sb->s_id, inode->i_ino, inode, 555 inode->i_mode, inode->i_nlink, 556 NEXT_ORPHAN(inode)); 557 } 558 } 559 560 static void ext4_put_super(struct super_block *sb) 561 { 562 struct ext4_sb_info *sbi = EXT4_SB(sb); 563 struct ext4_super_block *es = sbi->s_es; 564 int i, err; 565 566 ext4_mb_release(sb); 567 ext4_ext_release(sb); 568 ext4_xattr_put_super(sb); 569 if (sbi->s_journal) { 570 err = jbd2_journal_destroy(sbi->s_journal); 571 sbi->s_journal = NULL; 572 if (err < 0) 573 ext4_abort(sb, __func__, 574 "Couldn't clean up the journal"); 575 } 576 if (!(sb->s_flags & MS_RDONLY)) { 577 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 578 es->s_state = cpu_to_le16(sbi->s_mount_state); 579 ext4_commit_super(sb, es, 1); 580 } 581 if (sbi->s_proc) { 582 remove_proc_entry(sb->s_id, ext4_proc_root); 583 } 584 kobject_del(&sbi->s_kobj); 585 586 for (i = 0; i < sbi->s_gdb_count; i++) 587 brelse(sbi->s_group_desc[i]); 588 kfree(sbi->s_group_desc); 589 kfree(sbi->s_flex_groups); 590 percpu_counter_destroy(&sbi->s_freeblocks_counter); 591 percpu_counter_destroy(&sbi->s_freeinodes_counter); 592 percpu_counter_destroy(&sbi->s_dirs_counter); 593 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 594 brelse(sbi->s_sbh); 595 #ifdef CONFIG_QUOTA 596 for (i = 0; i < MAXQUOTAS; i++) 597 kfree(sbi->s_qf_names[i]); 598 #endif 599 600 /* Debugging code just in case the in-memory inode orphan list 601 * isn't empty. The on-disk one can be non-empty if we've 602 * detected an error and taken the fs readonly, but the 603 * in-memory list had better be clean by this point. */ 604 if (!list_empty(&sbi->s_orphan)) 605 dump_orphan_list(sb, sbi); 606 J_ASSERT(list_empty(&sbi->s_orphan)); 607 608 invalidate_bdev(sb->s_bdev); 609 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 610 /* 611 * Invalidate the journal device's buffers. We don't want them 612 * floating about in memory - the physical journal device may 613 * hotswapped, and it breaks the `ro-after' testing code. 614 */ 615 sync_blockdev(sbi->journal_bdev); 616 invalidate_bdev(sbi->journal_bdev); 617 ext4_blkdev_remove(sbi); 618 } 619 sb->s_fs_info = NULL; 620 /* 621 * Now that we are completely done shutting down the 622 * superblock, we need to actually destroy the kobject. 623 */ 624 unlock_kernel(); 625 unlock_super(sb); 626 kobject_put(&sbi->s_kobj); 627 wait_for_completion(&sbi->s_kobj_unregister); 628 lock_super(sb); 629 lock_kernel(); 630 kfree(sbi->s_blockgroup_lock); 631 kfree(sbi); 632 return; 633 } 634 635 static struct kmem_cache *ext4_inode_cachep; 636 637 /* 638 * Called inside transaction, so use GFP_NOFS 639 */ 640 static struct inode *ext4_alloc_inode(struct super_block *sb) 641 { 642 struct ext4_inode_info *ei; 643 644 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 645 if (!ei) 646 return NULL; 647 #ifdef CONFIG_EXT4_FS_POSIX_ACL 648 ei->i_acl = EXT4_ACL_NOT_CACHED; 649 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 650 #endif 651 ei->vfs_inode.i_version = 1; 652 ei->vfs_inode.i_data.writeback_index = 0; 653 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 654 INIT_LIST_HEAD(&ei->i_prealloc_list); 655 spin_lock_init(&ei->i_prealloc_lock); 656 /* 657 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 658 * therefore it can be null here. Don't check it, just initialize 659 * jinode. 660 */ 661 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 662 ei->i_reserved_data_blocks = 0; 663 ei->i_reserved_meta_blocks = 0; 664 ei->i_allocated_meta_blocks = 0; 665 ei->i_delalloc_reserved_flag = 0; 666 spin_lock_init(&(ei->i_block_reservation_lock)); 667 return &ei->vfs_inode; 668 } 669 670 static void ext4_destroy_inode(struct inode *inode) 671 { 672 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 673 printk("EXT4 Inode %p: orphan list check failed!\n", 674 EXT4_I(inode)); 675 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 676 EXT4_I(inode), sizeof(struct ext4_inode_info), 677 true); 678 dump_stack(); 679 } 680 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 681 } 682 683 static void init_once(void *foo) 684 { 685 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 686 687 INIT_LIST_HEAD(&ei->i_orphan); 688 #ifdef CONFIG_EXT4_FS_XATTR 689 init_rwsem(&ei->xattr_sem); 690 #endif 691 init_rwsem(&ei->i_data_sem); 692 inode_init_once(&ei->vfs_inode); 693 } 694 695 static int init_inodecache(void) 696 { 697 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 698 sizeof(struct ext4_inode_info), 699 0, (SLAB_RECLAIM_ACCOUNT| 700 SLAB_MEM_SPREAD), 701 init_once); 702 if (ext4_inode_cachep == NULL) 703 return -ENOMEM; 704 return 0; 705 } 706 707 static void destroy_inodecache(void) 708 { 709 kmem_cache_destroy(ext4_inode_cachep); 710 } 711 712 static void ext4_clear_inode(struct inode *inode) 713 { 714 #ifdef CONFIG_EXT4_FS_POSIX_ACL 715 if (EXT4_I(inode)->i_acl && 716 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) { 717 posix_acl_release(EXT4_I(inode)->i_acl); 718 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED; 719 } 720 if (EXT4_I(inode)->i_default_acl && 721 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) { 722 posix_acl_release(EXT4_I(inode)->i_default_acl); 723 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED; 724 } 725 #endif 726 ext4_discard_preallocations(inode); 727 if (EXT4_JOURNAL(inode)) 728 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 729 &EXT4_I(inode)->jinode); 730 } 731 732 static inline void ext4_show_quota_options(struct seq_file *seq, 733 struct super_block *sb) 734 { 735 #if defined(CONFIG_QUOTA) 736 struct ext4_sb_info *sbi = EXT4_SB(sb); 737 738 if (sbi->s_jquota_fmt) 739 seq_printf(seq, ",jqfmt=%s", 740 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 741 742 if (sbi->s_qf_names[USRQUOTA]) 743 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 744 745 if (sbi->s_qf_names[GRPQUOTA]) 746 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 747 748 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 749 seq_puts(seq, ",usrquota"); 750 751 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 752 seq_puts(seq, ",grpquota"); 753 #endif 754 } 755 756 /* 757 * Show an option if 758 * - it's set to a non-default value OR 759 * - if the per-sb default is different from the global default 760 */ 761 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 762 { 763 int def_errors; 764 unsigned long def_mount_opts; 765 struct super_block *sb = vfs->mnt_sb; 766 struct ext4_sb_info *sbi = EXT4_SB(sb); 767 struct ext4_super_block *es = sbi->s_es; 768 769 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 770 def_errors = le16_to_cpu(es->s_errors); 771 772 if (sbi->s_sb_block != 1) 773 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 774 if (test_opt(sb, MINIX_DF)) 775 seq_puts(seq, ",minixdf"); 776 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 777 seq_puts(seq, ",grpid"); 778 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 779 seq_puts(seq, ",nogrpid"); 780 if (sbi->s_resuid != EXT4_DEF_RESUID || 781 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 782 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 783 } 784 if (sbi->s_resgid != EXT4_DEF_RESGID || 785 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 786 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 787 } 788 if (test_opt(sb, ERRORS_RO)) { 789 if (def_errors == EXT4_ERRORS_PANIC || 790 def_errors == EXT4_ERRORS_CONTINUE) { 791 seq_puts(seq, ",errors=remount-ro"); 792 } 793 } 794 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 795 seq_puts(seq, ",errors=continue"); 796 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 797 seq_puts(seq, ",errors=panic"); 798 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 799 seq_puts(seq, ",nouid32"); 800 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 801 seq_puts(seq, ",debug"); 802 if (test_opt(sb, OLDALLOC)) 803 seq_puts(seq, ",oldalloc"); 804 #ifdef CONFIG_EXT4_FS_XATTR 805 if (test_opt(sb, XATTR_USER) && 806 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 807 seq_puts(seq, ",user_xattr"); 808 if (!test_opt(sb, XATTR_USER) && 809 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 810 seq_puts(seq, ",nouser_xattr"); 811 } 812 #endif 813 #ifdef CONFIG_EXT4_FS_POSIX_ACL 814 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 815 seq_puts(seq, ",acl"); 816 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 817 seq_puts(seq, ",noacl"); 818 #endif 819 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 820 seq_printf(seq, ",commit=%u", 821 (unsigned) (sbi->s_commit_interval / HZ)); 822 } 823 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 824 seq_printf(seq, ",min_batch_time=%u", 825 (unsigned) sbi->s_min_batch_time); 826 } 827 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 828 seq_printf(seq, ",max_batch_time=%u", 829 (unsigned) sbi->s_min_batch_time); 830 } 831 832 /* 833 * We're changing the default of barrier mount option, so 834 * let's always display its mount state so it's clear what its 835 * status is. 836 */ 837 seq_puts(seq, ",barrier="); 838 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 839 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 840 seq_puts(seq, ",journal_async_commit"); 841 if (test_opt(sb, NOBH)) 842 seq_puts(seq, ",nobh"); 843 if (test_opt(sb, I_VERSION)) 844 seq_puts(seq, ",i_version"); 845 if (!test_opt(sb, DELALLOC)) 846 seq_puts(seq, ",nodelalloc"); 847 848 849 if (sbi->s_stripe) 850 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 851 /* 852 * journal mode get enabled in different ways 853 * So just print the value even if we didn't specify it 854 */ 855 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 856 seq_puts(seq, ",data=journal"); 857 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 858 seq_puts(seq, ",data=ordered"); 859 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 860 seq_puts(seq, ",data=writeback"); 861 862 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 863 seq_printf(seq, ",inode_readahead_blks=%u", 864 sbi->s_inode_readahead_blks); 865 866 if (test_opt(sb, DATA_ERR_ABORT)) 867 seq_puts(seq, ",data_err=abort"); 868 869 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 870 seq_puts(seq, ",noauto_da_alloc"); 871 872 ext4_show_quota_options(seq, sb); 873 return 0; 874 } 875 876 877 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 878 u64 ino, u32 generation) 879 { 880 struct inode *inode; 881 882 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 883 return ERR_PTR(-ESTALE); 884 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 885 return ERR_PTR(-ESTALE); 886 887 /* iget isn't really right if the inode is currently unallocated!! 888 * 889 * ext4_read_inode will return a bad_inode if the inode had been 890 * deleted, so we should be safe. 891 * 892 * Currently we don't know the generation for parent directory, so 893 * a generation of 0 means "accept any" 894 */ 895 inode = ext4_iget(sb, ino); 896 if (IS_ERR(inode)) 897 return ERR_CAST(inode); 898 if (generation && inode->i_generation != generation) { 899 iput(inode); 900 return ERR_PTR(-ESTALE); 901 } 902 903 return inode; 904 } 905 906 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 907 int fh_len, int fh_type) 908 { 909 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 910 ext4_nfs_get_inode); 911 } 912 913 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 914 int fh_len, int fh_type) 915 { 916 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 917 ext4_nfs_get_inode); 918 } 919 920 /* 921 * Try to release metadata pages (indirect blocks, directories) which are 922 * mapped via the block device. Since these pages could have journal heads 923 * which would prevent try_to_free_buffers() from freeing them, we must use 924 * jbd2 layer's try_to_free_buffers() function to release them. 925 */ 926 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait) 927 { 928 journal_t *journal = EXT4_SB(sb)->s_journal; 929 930 WARN_ON(PageChecked(page)); 931 if (!page_has_buffers(page)) 932 return 0; 933 if (journal) 934 return jbd2_journal_try_to_free_buffers(journal, page, 935 wait & ~__GFP_WAIT); 936 return try_to_free_buffers(page); 937 } 938 939 #ifdef CONFIG_QUOTA 940 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 941 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 942 943 static int ext4_write_dquot(struct dquot *dquot); 944 static int ext4_acquire_dquot(struct dquot *dquot); 945 static int ext4_release_dquot(struct dquot *dquot); 946 static int ext4_mark_dquot_dirty(struct dquot *dquot); 947 static int ext4_write_info(struct super_block *sb, int type); 948 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 949 char *path, int remount); 950 static int ext4_quota_on_mount(struct super_block *sb, int type); 951 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 952 size_t len, loff_t off); 953 static ssize_t ext4_quota_write(struct super_block *sb, int type, 954 const char *data, size_t len, loff_t off); 955 956 static struct dquot_operations ext4_quota_operations = { 957 .initialize = dquot_initialize, 958 .drop = dquot_drop, 959 .alloc_space = dquot_alloc_space, 960 .reserve_space = dquot_reserve_space, 961 .claim_space = dquot_claim_space, 962 .release_rsv = dquot_release_reserved_space, 963 .get_reserved_space = ext4_get_reserved_space, 964 .alloc_inode = dquot_alloc_inode, 965 .free_space = dquot_free_space, 966 .free_inode = dquot_free_inode, 967 .transfer = dquot_transfer, 968 .write_dquot = ext4_write_dquot, 969 .acquire_dquot = ext4_acquire_dquot, 970 .release_dquot = ext4_release_dquot, 971 .mark_dirty = ext4_mark_dquot_dirty, 972 .write_info = ext4_write_info, 973 .alloc_dquot = dquot_alloc, 974 .destroy_dquot = dquot_destroy, 975 }; 976 977 static struct quotactl_ops ext4_qctl_operations = { 978 .quota_on = ext4_quota_on, 979 .quota_off = vfs_quota_off, 980 .quota_sync = vfs_quota_sync, 981 .get_info = vfs_get_dqinfo, 982 .set_info = vfs_set_dqinfo, 983 .get_dqblk = vfs_get_dqblk, 984 .set_dqblk = vfs_set_dqblk 985 }; 986 #endif 987 988 static const struct super_operations ext4_sops = { 989 .alloc_inode = ext4_alloc_inode, 990 .destroy_inode = ext4_destroy_inode, 991 .write_inode = ext4_write_inode, 992 .dirty_inode = ext4_dirty_inode, 993 .delete_inode = ext4_delete_inode, 994 .put_super = ext4_put_super, 995 .write_super = ext4_write_super, 996 .sync_fs = ext4_sync_fs, 997 .freeze_fs = ext4_freeze, 998 .unfreeze_fs = ext4_unfreeze, 999 .statfs = ext4_statfs, 1000 .remount_fs = ext4_remount, 1001 .clear_inode = ext4_clear_inode, 1002 .show_options = ext4_show_options, 1003 #ifdef CONFIG_QUOTA 1004 .quota_read = ext4_quota_read, 1005 .quota_write = ext4_quota_write, 1006 #endif 1007 .bdev_try_to_free_page = bdev_try_to_free_page, 1008 }; 1009 1010 static const struct export_operations ext4_export_ops = { 1011 .fh_to_dentry = ext4_fh_to_dentry, 1012 .fh_to_parent = ext4_fh_to_parent, 1013 .get_parent = ext4_get_parent, 1014 }; 1015 1016 enum { 1017 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1018 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1019 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1020 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1021 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1022 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1023 Opt_journal_update, Opt_journal_dev, 1024 Opt_journal_checksum, Opt_journal_async_commit, 1025 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1026 Opt_data_err_abort, Opt_data_err_ignore, 1027 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1028 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1029 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, 1030 Opt_usrquota, Opt_grpquota, Opt_i_version, 1031 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1032 Opt_inode_readahead_blks, Opt_journal_ioprio 1033 }; 1034 1035 static const match_table_t tokens = { 1036 {Opt_bsd_df, "bsddf"}, 1037 {Opt_minix_df, "minixdf"}, 1038 {Opt_grpid, "grpid"}, 1039 {Opt_grpid, "bsdgroups"}, 1040 {Opt_nogrpid, "nogrpid"}, 1041 {Opt_nogrpid, "sysvgroups"}, 1042 {Opt_resgid, "resgid=%u"}, 1043 {Opt_resuid, "resuid=%u"}, 1044 {Opt_sb, "sb=%u"}, 1045 {Opt_err_cont, "errors=continue"}, 1046 {Opt_err_panic, "errors=panic"}, 1047 {Opt_err_ro, "errors=remount-ro"}, 1048 {Opt_nouid32, "nouid32"}, 1049 {Opt_debug, "debug"}, 1050 {Opt_oldalloc, "oldalloc"}, 1051 {Opt_orlov, "orlov"}, 1052 {Opt_user_xattr, "user_xattr"}, 1053 {Opt_nouser_xattr, "nouser_xattr"}, 1054 {Opt_acl, "acl"}, 1055 {Opt_noacl, "noacl"}, 1056 {Opt_noload, "noload"}, 1057 {Opt_nobh, "nobh"}, 1058 {Opt_bh, "bh"}, 1059 {Opt_commit, "commit=%u"}, 1060 {Opt_min_batch_time, "min_batch_time=%u"}, 1061 {Opt_max_batch_time, "max_batch_time=%u"}, 1062 {Opt_journal_update, "journal=update"}, 1063 {Opt_journal_dev, "journal_dev=%u"}, 1064 {Opt_journal_checksum, "journal_checksum"}, 1065 {Opt_journal_async_commit, "journal_async_commit"}, 1066 {Opt_abort, "abort"}, 1067 {Opt_data_journal, "data=journal"}, 1068 {Opt_data_ordered, "data=ordered"}, 1069 {Opt_data_writeback, "data=writeback"}, 1070 {Opt_data_err_abort, "data_err=abort"}, 1071 {Opt_data_err_ignore, "data_err=ignore"}, 1072 {Opt_offusrjquota, "usrjquota="}, 1073 {Opt_usrjquota, "usrjquota=%s"}, 1074 {Opt_offgrpjquota, "grpjquota="}, 1075 {Opt_grpjquota, "grpjquota=%s"}, 1076 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1077 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1078 {Opt_grpquota, "grpquota"}, 1079 {Opt_noquota, "noquota"}, 1080 {Opt_quota, "quota"}, 1081 {Opt_usrquota, "usrquota"}, 1082 {Opt_barrier, "barrier=%u"}, 1083 {Opt_barrier, "barrier"}, 1084 {Opt_nobarrier, "nobarrier"}, 1085 {Opt_i_version, "i_version"}, 1086 {Opt_stripe, "stripe=%u"}, 1087 {Opt_resize, "resize"}, 1088 {Opt_delalloc, "delalloc"}, 1089 {Opt_nodelalloc, "nodelalloc"}, 1090 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1091 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1092 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1093 {Opt_auto_da_alloc, "auto_da_alloc"}, 1094 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1095 {Opt_err, NULL}, 1096 }; 1097 1098 static ext4_fsblk_t get_sb_block(void **data) 1099 { 1100 ext4_fsblk_t sb_block; 1101 char *options = (char *) *data; 1102 1103 if (!options || strncmp(options, "sb=", 3) != 0) 1104 return 1; /* Default location */ 1105 options += 3; 1106 /*todo: use simple_strtoll with >32bit ext4 */ 1107 sb_block = simple_strtoul(options, &options, 0); 1108 if (*options && *options != ',') { 1109 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1110 (char *) *data); 1111 return 1; 1112 } 1113 if (*options == ',') 1114 options++; 1115 *data = (void *) options; 1116 return sb_block; 1117 } 1118 1119 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1120 1121 static int parse_options(char *options, struct super_block *sb, 1122 unsigned long *journal_devnum, 1123 unsigned int *journal_ioprio, 1124 ext4_fsblk_t *n_blocks_count, int is_remount) 1125 { 1126 struct ext4_sb_info *sbi = EXT4_SB(sb); 1127 char *p; 1128 substring_t args[MAX_OPT_ARGS]; 1129 int data_opt = 0; 1130 int option; 1131 #ifdef CONFIG_QUOTA 1132 int qtype, qfmt; 1133 char *qname; 1134 #endif 1135 1136 if (!options) 1137 return 1; 1138 1139 while ((p = strsep(&options, ",")) != NULL) { 1140 int token; 1141 if (!*p) 1142 continue; 1143 1144 token = match_token(p, tokens, args); 1145 switch (token) { 1146 case Opt_bsd_df: 1147 clear_opt(sbi->s_mount_opt, MINIX_DF); 1148 break; 1149 case Opt_minix_df: 1150 set_opt(sbi->s_mount_opt, MINIX_DF); 1151 break; 1152 case Opt_grpid: 1153 set_opt(sbi->s_mount_opt, GRPID); 1154 break; 1155 case Opt_nogrpid: 1156 clear_opt(sbi->s_mount_opt, GRPID); 1157 break; 1158 case Opt_resuid: 1159 if (match_int(&args[0], &option)) 1160 return 0; 1161 sbi->s_resuid = option; 1162 break; 1163 case Opt_resgid: 1164 if (match_int(&args[0], &option)) 1165 return 0; 1166 sbi->s_resgid = option; 1167 break; 1168 case Opt_sb: 1169 /* handled by get_sb_block() instead of here */ 1170 /* *sb_block = match_int(&args[0]); */ 1171 break; 1172 case Opt_err_panic: 1173 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1174 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1175 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1176 break; 1177 case Opt_err_ro: 1178 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1179 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1180 set_opt(sbi->s_mount_opt, ERRORS_RO); 1181 break; 1182 case Opt_err_cont: 1183 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1184 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1185 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1186 break; 1187 case Opt_nouid32: 1188 set_opt(sbi->s_mount_opt, NO_UID32); 1189 break; 1190 case Opt_debug: 1191 set_opt(sbi->s_mount_opt, DEBUG); 1192 break; 1193 case Opt_oldalloc: 1194 set_opt(sbi->s_mount_opt, OLDALLOC); 1195 break; 1196 case Opt_orlov: 1197 clear_opt(sbi->s_mount_opt, OLDALLOC); 1198 break; 1199 #ifdef CONFIG_EXT4_FS_XATTR 1200 case Opt_user_xattr: 1201 set_opt(sbi->s_mount_opt, XATTR_USER); 1202 break; 1203 case Opt_nouser_xattr: 1204 clear_opt(sbi->s_mount_opt, XATTR_USER); 1205 break; 1206 #else 1207 case Opt_user_xattr: 1208 case Opt_nouser_xattr: 1209 printk(KERN_ERR "EXT4 (no)user_xattr options " 1210 "not supported\n"); 1211 break; 1212 #endif 1213 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1214 case Opt_acl: 1215 set_opt(sbi->s_mount_opt, POSIX_ACL); 1216 break; 1217 case Opt_noacl: 1218 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1219 break; 1220 #else 1221 case Opt_acl: 1222 case Opt_noacl: 1223 printk(KERN_ERR "EXT4 (no)acl options " 1224 "not supported\n"); 1225 break; 1226 #endif 1227 case Opt_journal_update: 1228 /* @@@ FIXME */ 1229 /* Eventually we will want to be able to create 1230 a journal file here. For now, only allow the 1231 user to specify an existing inode to be the 1232 journal file. */ 1233 if (is_remount) { 1234 printk(KERN_ERR "EXT4-fs: cannot specify " 1235 "journal on remount\n"); 1236 return 0; 1237 } 1238 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1239 break; 1240 case Opt_journal_dev: 1241 if (is_remount) { 1242 printk(KERN_ERR "EXT4-fs: cannot specify " 1243 "journal on remount\n"); 1244 return 0; 1245 } 1246 if (match_int(&args[0], &option)) 1247 return 0; 1248 *journal_devnum = option; 1249 break; 1250 case Opt_journal_checksum: 1251 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1252 break; 1253 case Opt_journal_async_commit: 1254 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1255 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1256 break; 1257 case Opt_noload: 1258 set_opt(sbi->s_mount_opt, NOLOAD); 1259 break; 1260 case Opt_commit: 1261 if (match_int(&args[0], &option)) 1262 return 0; 1263 if (option < 0) 1264 return 0; 1265 if (option == 0) 1266 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1267 sbi->s_commit_interval = HZ * option; 1268 break; 1269 case Opt_max_batch_time: 1270 if (match_int(&args[0], &option)) 1271 return 0; 1272 if (option < 0) 1273 return 0; 1274 if (option == 0) 1275 option = EXT4_DEF_MAX_BATCH_TIME; 1276 sbi->s_max_batch_time = option; 1277 break; 1278 case Opt_min_batch_time: 1279 if (match_int(&args[0], &option)) 1280 return 0; 1281 if (option < 0) 1282 return 0; 1283 sbi->s_min_batch_time = option; 1284 break; 1285 case Opt_data_journal: 1286 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1287 goto datacheck; 1288 case Opt_data_ordered: 1289 data_opt = EXT4_MOUNT_ORDERED_DATA; 1290 goto datacheck; 1291 case Opt_data_writeback: 1292 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1293 datacheck: 1294 if (is_remount) { 1295 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1296 != data_opt) { 1297 printk(KERN_ERR 1298 "EXT4-fs: cannot change data " 1299 "mode on remount\n"); 1300 return 0; 1301 } 1302 } else { 1303 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1304 sbi->s_mount_opt |= data_opt; 1305 } 1306 break; 1307 case Opt_data_err_abort: 1308 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1309 break; 1310 case Opt_data_err_ignore: 1311 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1312 break; 1313 #ifdef CONFIG_QUOTA 1314 case Opt_usrjquota: 1315 qtype = USRQUOTA; 1316 goto set_qf_name; 1317 case Opt_grpjquota: 1318 qtype = GRPQUOTA; 1319 set_qf_name: 1320 if (sb_any_quota_loaded(sb) && 1321 !sbi->s_qf_names[qtype]) { 1322 printk(KERN_ERR 1323 "EXT4-fs: Cannot change journaled " 1324 "quota options when quota turned on.\n"); 1325 return 0; 1326 } 1327 qname = match_strdup(&args[0]); 1328 if (!qname) { 1329 printk(KERN_ERR 1330 "EXT4-fs: not enough memory for " 1331 "storing quotafile name.\n"); 1332 return 0; 1333 } 1334 if (sbi->s_qf_names[qtype] && 1335 strcmp(sbi->s_qf_names[qtype], qname)) { 1336 printk(KERN_ERR 1337 "EXT4-fs: %s quota file already " 1338 "specified.\n", QTYPE2NAME(qtype)); 1339 kfree(qname); 1340 return 0; 1341 } 1342 sbi->s_qf_names[qtype] = qname; 1343 if (strchr(sbi->s_qf_names[qtype], '/')) { 1344 printk(KERN_ERR 1345 "EXT4-fs: quotafile must be on " 1346 "filesystem root.\n"); 1347 kfree(sbi->s_qf_names[qtype]); 1348 sbi->s_qf_names[qtype] = NULL; 1349 return 0; 1350 } 1351 set_opt(sbi->s_mount_opt, QUOTA); 1352 break; 1353 case Opt_offusrjquota: 1354 qtype = USRQUOTA; 1355 goto clear_qf_name; 1356 case Opt_offgrpjquota: 1357 qtype = GRPQUOTA; 1358 clear_qf_name: 1359 if (sb_any_quota_loaded(sb) && 1360 sbi->s_qf_names[qtype]) { 1361 printk(KERN_ERR "EXT4-fs: Cannot change " 1362 "journaled quota options when " 1363 "quota turned on.\n"); 1364 return 0; 1365 } 1366 /* 1367 * The space will be released later when all options 1368 * are confirmed to be correct 1369 */ 1370 sbi->s_qf_names[qtype] = NULL; 1371 break; 1372 case Opt_jqfmt_vfsold: 1373 qfmt = QFMT_VFS_OLD; 1374 goto set_qf_format; 1375 case Opt_jqfmt_vfsv0: 1376 qfmt = QFMT_VFS_V0; 1377 set_qf_format: 1378 if (sb_any_quota_loaded(sb) && 1379 sbi->s_jquota_fmt != qfmt) { 1380 printk(KERN_ERR "EXT4-fs: Cannot change " 1381 "journaled quota options when " 1382 "quota turned on.\n"); 1383 return 0; 1384 } 1385 sbi->s_jquota_fmt = qfmt; 1386 break; 1387 case Opt_quota: 1388 case Opt_usrquota: 1389 set_opt(sbi->s_mount_opt, QUOTA); 1390 set_opt(sbi->s_mount_opt, USRQUOTA); 1391 break; 1392 case Opt_grpquota: 1393 set_opt(sbi->s_mount_opt, QUOTA); 1394 set_opt(sbi->s_mount_opt, GRPQUOTA); 1395 break; 1396 case Opt_noquota: 1397 if (sb_any_quota_loaded(sb)) { 1398 printk(KERN_ERR "EXT4-fs: Cannot change quota " 1399 "options when quota turned on.\n"); 1400 return 0; 1401 } 1402 clear_opt(sbi->s_mount_opt, QUOTA); 1403 clear_opt(sbi->s_mount_opt, USRQUOTA); 1404 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1405 break; 1406 #else 1407 case Opt_quota: 1408 case Opt_usrquota: 1409 case Opt_grpquota: 1410 printk(KERN_ERR 1411 "EXT4-fs: quota options not supported.\n"); 1412 break; 1413 case Opt_usrjquota: 1414 case Opt_grpjquota: 1415 case Opt_offusrjquota: 1416 case Opt_offgrpjquota: 1417 case Opt_jqfmt_vfsold: 1418 case Opt_jqfmt_vfsv0: 1419 printk(KERN_ERR 1420 "EXT4-fs: journaled quota options not " 1421 "supported.\n"); 1422 break; 1423 case Opt_noquota: 1424 break; 1425 #endif 1426 case Opt_abort: 1427 set_opt(sbi->s_mount_opt, ABORT); 1428 break; 1429 case Opt_nobarrier: 1430 clear_opt(sbi->s_mount_opt, BARRIER); 1431 break; 1432 case Opt_barrier: 1433 if (match_int(&args[0], &option)) { 1434 set_opt(sbi->s_mount_opt, BARRIER); 1435 break; 1436 } 1437 if (option) 1438 set_opt(sbi->s_mount_opt, BARRIER); 1439 else 1440 clear_opt(sbi->s_mount_opt, BARRIER); 1441 break; 1442 case Opt_ignore: 1443 break; 1444 case Opt_resize: 1445 if (!is_remount) { 1446 printk("EXT4-fs: resize option only available " 1447 "for remount\n"); 1448 return 0; 1449 } 1450 if (match_int(&args[0], &option) != 0) 1451 return 0; 1452 *n_blocks_count = option; 1453 break; 1454 case Opt_nobh: 1455 set_opt(sbi->s_mount_opt, NOBH); 1456 break; 1457 case Opt_bh: 1458 clear_opt(sbi->s_mount_opt, NOBH); 1459 break; 1460 case Opt_i_version: 1461 set_opt(sbi->s_mount_opt, I_VERSION); 1462 sb->s_flags |= MS_I_VERSION; 1463 break; 1464 case Opt_nodelalloc: 1465 clear_opt(sbi->s_mount_opt, DELALLOC); 1466 break; 1467 case Opt_stripe: 1468 if (match_int(&args[0], &option)) 1469 return 0; 1470 if (option < 0) 1471 return 0; 1472 sbi->s_stripe = option; 1473 break; 1474 case Opt_delalloc: 1475 set_opt(sbi->s_mount_opt, DELALLOC); 1476 break; 1477 case Opt_inode_readahead_blks: 1478 if (match_int(&args[0], &option)) 1479 return 0; 1480 if (option < 0 || option > (1 << 30)) 1481 return 0; 1482 if (option & (option - 1)) { 1483 printk(KERN_ERR "EXT4-fs: inode_readahead_blks" 1484 " must be a power of 2\n"); 1485 return 0; 1486 } 1487 sbi->s_inode_readahead_blks = option; 1488 break; 1489 case Opt_journal_ioprio: 1490 if (match_int(&args[0], &option)) 1491 return 0; 1492 if (option < 0 || option > 7) 1493 break; 1494 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1495 option); 1496 break; 1497 case Opt_noauto_da_alloc: 1498 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1499 break; 1500 case Opt_auto_da_alloc: 1501 if (match_int(&args[0], &option)) { 1502 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1503 break; 1504 } 1505 if (option) 1506 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1507 else 1508 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1509 break; 1510 default: 1511 printk(KERN_ERR 1512 "EXT4-fs: Unrecognized mount option \"%s\" " 1513 "or missing value\n", p); 1514 return 0; 1515 } 1516 } 1517 #ifdef CONFIG_QUOTA 1518 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1519 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1520 sbi->s_qf_names[USRQUOTA]) 1521 clear_opt(sbi->s_mount_opt, USRQUOTA); 1522 1523 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1524 sbi->s_qf_names[GRPQUOTA]) 1525 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1526 1527 if ((sbi->s_qf_names[USRQUOTA] && 1528 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1529 (sbi->s_qf_names[GRPQUOTA] && 1530 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1531 printk(KERN_ERR "EXT4-fs: old and new quota " 1532 "format mixing.\n"); 1533 return 0; 1534 } 1535 1536 if (!sbi->s_jquota_fmt) { 1537 printk(KERN_ERR "EXT4-fs: journaled quota format " 1538 "not specified.\n"); 1539 return 0; 1540 } 1541 } else { 1542 if (sbi->s_jquota_fmt) { 1543 printk(KERN_ERR "EXT4-fs: journaled quota format " 1544 "specified with no journaling " 1545 "enabled.\n"); 1546 return 0; 1547 } 1548 } 1549 #endif 1550 return 1; 1551 } 1552 1553 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1554 int read_only) 1555 { 1556 struct ext4_sb_info *sbi = EXT4_SB(sb); 1557 int res = 0; 1558 1559 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1560 printk(KERN_ERR "EXT4-fs warning: revision level too high, " 1561 "forcing read-only mode\n"); 1562 res = MS_RDONLY; 1563 } 1564 if (read_only) 1565 return res; 1566 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1567 printk(KERN_WARNING "EXT4-fs warning: mounting unchecked fs, " 1568 "running e2fsck is recommended\n"); 1569 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1570 printk(KERN_WARNING 1571 "EXT4-fs warning: mounting fs with errors, " 1572 "running e2fsck is recommended\n"); 1573 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1574 le16_to_cpu(es->s_mnt_count) >= 1575 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1576 printk(KERN_WARNING 1577 "EXT4-fs warning: maximal mount count reached, " 1578 "running e2fsck is recommended\n"); 1579 else if (le32_to_cpu(es->s_checkinterval) && 1580 (le32_to_cpu(es->s_lastcheck) + 1581 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1582 printk(KERN_WARNING 1583 "EXT4-fs warning: checktime reached, " 1584 "running e2fsck is recommended\n"); 1585 if (!sbi->s_journal) 1586 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1587 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1588 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1589 le16_add_cpu(&es->s_mnt_count, 1); 1590 es->s_mtime = cpu_to_le32(get_seconds()); 1591 ext4_update_dynamic_rev(sb); 1592 if (sbi->s_journal) 1593 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1594 1595 ext4_commit_super(sb, es, 1); 1596 if (test_opt(sb, DEBUG)) 1597 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1598 "bpg=%lu, ipg=%lu, mo=%04lx]\n", 1599 sb->s_blocksize, 1600 sbi->s_groups_count, 1601 EXT4_BLOCKS_PER_GROUP(sb), 1602 EXT4_INODES_PER_GROUP(sb), 1603 sbi->s_mount_opt); 1604 1605 if (EXT4_SB(sb)->s_journal) { 1606 printk(KERN_INFO "EXT4 FS on %s, %s journal on %s\n", 1607 sb->s_id, EXT4_SB(sb)->s_journal->j_inode ? "internal" : 1608 "external", EXT4_SB(sb)->s_journal->j_devname); 1609 } else { 1610 printk(KERN_INFO "EXT4 FS on %s, no journal\n", sb->s_id); 1611 } 1612 return res; 1613 } 1614 1615 static int ext4_fill_flex_info(struct super_block *sb) 1616 { 1617 struct ext4_sb_info *sbi = EXT4_SB(sb); 1618 struct ext4_group_desc *gdp = NULL; 1619 struct buffer_head *bh; 1620 ext4_group_t flex_group_count; 1621 ext4_group_t flex_group; 1622 int groups_per_flex = 0; 1623 int i; 1624 1625 if (!sbi->s_es->s_log_groups_per_flex) { 1626 sbi->s_log_groups_per_flex = 0; 1627 return 1; 1628 } 1629 1630 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1631 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1632 1633 /* We allocate both existing and potentially added groups */ 1634 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1635 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1636 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1637 sbi->s_flex_groups = kzalloc(flex_group_count * 1638 sizeof(struct flex_groups), GFP_KERNEL); 1639 if (sbi->s_flex_groups == NULL) { 1640 printk(KERN_ERR "EXT4-fs: not enough memory for " 1641 "%u flex groups\n", flex_group_count); 1642 goto failed; 1643 } 1644 1645 for (i = 0; i < sbi->s_groups_count; i++) { 1646 gdp = ext4_get_group_desc(sb, i, &bh); 1647 1648 flex_group = ext4_flex_group(sbi, i); 1649 atomic_set(&sbi->s_flex_groups[flex_group].free_inodes, 1650 ext4_free_inodes_count(sb, gdp)); 1651 atomic_set(&sbi->s_flex_groups[flex_group].free_blocks, 1652 ext4_free_blks_count(sb, gdp)); 1653 atomic_set(&sbi->s_flex_groups[flex_group].used_dirs, 1654 ext4_used_dirs_count(sb, gdp)); 1655 } 1656 1657 return 1; 1658 failed: 1659 return 0; 1660 } 1661 1662 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1663 struct ext4_group_desc *gdp) 1664 { 1665 __u16 crc = 0; 1666 1667 if (sbi->s_es->s_feature_ro_compat & 1668 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1669 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1670 __le32 le_group = cpu_to_le32(block_group); 1671 1672 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1673 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1674 crc = crc16(crc, (__u8 *)gdp, offset); 1675 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1676 /* for checksum of struct ext4_group_desc do the rest...*/ 1677 if ((sbi->s_es->s_feature_incompat & 1678 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1679 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1680 crc = crc16(crc, (__u8 *)gdp + offset, 1681 le16_to_cpu(sbi->s_es->s_desc_size) - 1682 offset); 1683 } 1684 1685 return cpu_to_le16(crc); 1686 } 1687 1688 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1689 struct ext4_group_desc *gdp) 1690 { 1691 if ((sbi->s_es->s_feature_ro_compat & 1692 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1693 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1694 return 0; 1695 1696 return 1; 1697 } 1698 1699 /* Called at mount-time, super-block is locked */ 1700 static int ext4_check_descriptors(struct super_block *sb) 1701 { 1702 struct ext4_sb_info *sbi = EXT4_SB(sb); 1703 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1704 ext4_fsblk_t last_block; 1705 ext4_fsblk_t block_bitmap; 1706 ext4_fsblk_t inode_bitmap; 1707 ext4_fsblk_t inode_table; 1708 int flexbg_flag = 0; 1709 ext4_group_t i; 1710 1711 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1712 flexbg_flag = 1; 1713 1714 ext4_debug("Checking group descriptors"); 1715 1716 for (i = 0; i < sbi->s_groups_count; i++) { 1717 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1718 1719 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1720 last_block = ext4_blocks_count(sbi->s_es) - 1; 1721 else 1722 last_block = first_block + 1723 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1724 1725 block_bitmap = ext4_block_bitmap(sb, gdp); 1726 if (block_bitmap < first_block || block_bitmap > last_block) { 1727 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1728 "Block bitmap for group %u not in group " 1729 "(block %llu)!\n", i, block_bitmap); 1730 return 0; 1731 } 1732 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1733 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1734 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1735 "Inode bitmap for group %u not in group " 1736 "(block %llu)!\n", i, inode_bitmap); 1737 return 0; 1738 } 1739 inode_table = ext4_inode_table(sb, gdp); 1740 if (inode_table < first_block || 1741 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1742 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1743 "Inode table for group %u not in group " 1744 "(block %llu)!\n", i, inode_table); 1745 return 0; 1746 } 1747 spin_lock(sb_bgl_lock(sbi, i)); 1748 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1749 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: " 1750 "Checksum for group %u failed (%u!=%u)\n", 1751 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1752 gdp)), le16_to_cpu(gdp->bg_checksum)); 1753 if (!(sb->s_flags & MS_RDONLY)) { 1754 spin_unlock(sb_bgl_lock(sbi, i)); 1755 return 0; 1756 } 1757 } 1758 spin_unlock(sb_bgl_lock(sbi, i)); 1759 if (!flexbg_flag) 1760 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1761 } 1762 1763 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1764 sbi->s_es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb)); 1765 return 1; 1766 } 1767 1768 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1769 * the superblock) which were deleted from all directories, but held open by 1770 * a process at the time of a crash. We walk the list and try to delete these 1771 * inodes at recovery time (only with a read-write filesystem). 1772 * 1773 * In order to keep the orphan inode chain consistent during traversal (in 1774 * case of crash during recovery), we link each inode into the superblock 1775 * orphan list_head and handle it the same way as an inode deletion during 1776 * normal operation (which journals the operations for us). 1777 * 1778 * We only do an iget() and an iput() on each inode, which is very safe if we 1779 * accidentally point at an in-use or already deleted inode. The worst that 1780 * can happen in this case is that we get a "bit already cleared" message from 1781 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1782 * e2fsck was run on this filesystem, and it must have already done the orphan 1783 * inode cleanup for us, so we can safely abort without any further action. 1784 */ 1785 static void ext4_orphan_cleanup(struct super_block *sb, 1786 struct ext4_super_block *es) 1787 { 1788 unsigned int s_flags = sb->s_flags; 1789 int nr_orphans = 0, nr_truncates = 0; 1790 #ifdef CONFIG_QUOTA 1791 int i; 1792 #endif 1793 if (!es->s_last_orphan) { 1794 jbd_debug(4, "no orphan inodes to clean up\n"); 1795 return; 1796 } 1797 1798 if (bdev_read_only(sb->s_bdev)) { 1799 printk(KERN_ERR "EXT4-fs: write access " 1800 "unavailable, skipping orphan cleanup.\n"); 1801 return; 1802 } 1803 1804 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1805 if (es->s_last_orphan) 1806 jbd_debug(1, "Errors on filesystem, " 1807 "clearing orphan list.\n"); 1808 es->s_last_orphan = 0; 1809 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1810 return; 1811 } 1812 1813 if (s_flags & MS_RDONLY) { 1814 printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n", 1815 sb->s_id); 1816 sb->s_flags &= ~MS_RDONLY; 1817 } 1818 #ifdef CONFIG_QUOTA 1819 /* Needed for iput() to work correctly and not trash data */ 1820 sb->s_flags |= MS_ACTIVE; 1821 /* Turn on quotas so that they are updated correctly */ 1822 for (i = 0; i < MAXQUOTAS; i++) { 1823 if (EXT4_SB(sb)->s_qf_names[i]) { 1824 int ret = ext4_quota_on_mount(sb, i); 1825 if (ret < 0) 1826 printk(KERN_ERR 1827 "EXT4-fs: Cannot turn on journaled " 1828 "quota: error %d\n", ret); 1829 } 1830 } 1831 #endif 1832 1833 while (es->s_last_orphan) { 1834 struct inode *inode; 1835 1836 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1837 if (IS_ERR(inode)) { 1838 es->s_last_orphan = 0; 1839 break; 1840 } 1841 1842 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1843 vfs_dq_init(inode); 1844 if (inode->i_nlink) { 1845 printk(KERN_DEBUG 1846 "%s: truncating inode %lu to %lld bytes\n", 1847 __func__, inode->i_ino, inode->i_size); 1848 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1849 inode->i_ino, inode->i_size); 1850 ext4_truncate(inode); 1851 nr_truncates++; 1852 } else { 1853 printk(KERN_DEBUG 1854 "%s: deleting unreferenced inode %lu\n", 1855 __func__, inode->i_ino); 1856 jbd_debug(2, "deleting unreferenced inode %lu\n", 1857 inode->i_ino); 1858 nr_orphans++; 1859 } 1860 iput(inode); /* The delete magic happens here! */ 1861 } 1862 1863 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1864 1865 if (nr_orphans) 1866 printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n", 1867 sb->s_id, PLURAL(nr_orphans)); 1868 if (nr_truncates) 1869 printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n", 1870 sb->s_id, PLURAL(nr_truncates)); 1871 #ifdef CONFIG_QUOTA 1872 /* Turn quotas off */ 1873 for (i = 0; i < MAXQUOTAS; i++) { 1874 if (sb_dqopt(sb)->files[i]) 1875 vfs_quota_off(sb, i, 0); 1876 } 1877 #endif 1878 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1879 } 1880 /* 1881 * Maximal extent format file size. 1882 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1883 * extent format containers, within a sector_t, and within i_blocks 1884 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1885 * so that won't be a limiting factor. 1886 * 1887 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1888 */ 1889 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1890 { 1891 loff_t res; 1892 loff_t upper_limit = MAX_LFS_FILESIZE; 1893 1894 /* small i_blocks in vfs inode? */ 1895 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1896 /* 1897 * CONFIG_LBD is not enabled implies the inode 1898 * i_block represent total blocks in 512 bytes 1899 * 32 == size of vfs inode i_blocks * 8 1900 */ 1901 upper_limit = (1LL << 32) - 1; 1902 1903 /* total blocks in file system block size */ 1904 upper_limit >>= (blkbits - 9); 1905 upper_limit <<= blkbits; 1906 } 1907 1908 /* 32-bit extent-start container, ee_block */ 1909 res = 1LL << 32; 1910 res <<= blkbits; 1911 res -= 1; 1912 1913 /* Sanity check against vm- & vfs- imposed limits */ 1914 if (res > upper_limit) 1915 res = upper_limit; 1916 1917 return res; 1918 } 1919 1920 /* 1921 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1922 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1923 * We need to be 1 filesystem block less than the 2^48 sector limit. 1924 */ 1925 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1926 { 1927 loff_t res = EXT4_NDIR_BLOCKS; 1928 int meta_blocks; 1929 loff_t upper_limit; 1930 /* This is calculated to be the largest file size for a 1931 * dense, bitmapped file such that the total number of 1932 * sectors in the file, including data and all indirect blocks, 1933 * does not exceed 2^48 -1 1934 * __u32 i_blocks_lo and _u16 i_blocks_high representing the 1935 * total number of 512 bytes blocks of the file 1936 */ 1937 1938 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1939 /* 1940 * !has_huge_files or CONFIG_LBD is not enabled 1941 * implies the inode i_block represent total blocks in 1942 * 512 bytes 32 == size of vfs inode i_blocks * 8 1943 */ 1944 upper_limit = (1LL << 32) - 1; 1945 1946 /* total blocks in file system block size */ 1947 upper_limit >>= (bits - 9); 1948 1949 } else { 1950 /* 1951 * We use 48 bit ext4_inode i_blocks 1952 * With EXT4_HUGE_FILE_FL set the i_blocks 1953 * represent total number of blocks in 1954 * file system block size 1955 */ 1956 upper_limit = (1LL << 48) - 1; 1957 1958 } 1959 1960 /* indirect blocks */ 1961 meta_blocks = 1; 1962 /* double indirect blocks */ 1963 meta_blocks += 1 + (1LL << (bits-2)); 1964 /* tripple indirect blocks */ 1965 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 1966 1967 upper_limit -= meta_blocks; 1968 upper_limit <<= bits; 1969 1970 res += 1LL << (bits-2); 1971 res += 1LL << (2*(bits-2)); 1972 res += 1LL << (3*(bits-2)); 1973 res <<= bits; 1974 if (res > upper_limit) 1975 res = upper_limit; 1976 1977 if (res > MAX_LFS_FILESIZE) 1978 res = MAX_LFS_FILESIZE; 1979 1980 return res; 1981 } 1982 1983 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 1984 ext4_fsblk_t logical_sb_block, int nr) 1985 { 1986 struct ext4_sb_info *sbi = EXT4_SB(sb); 1987 ext4_group_t bg, first_meta_bg; 1988 int has_super = 0; 1989 1990 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 1991 1992 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 1993 nr < first_meta_bg) 1994 return logical_sb_block + nr + 1; 1995 bg = sbi->s_desc_per_block * nr; 1996 if (ext4_bg_has_super(sb, bg)) 1997 has_super = 1; 1998 return (has_super + ext4_group_first_block_no(sb, bg)); 1999 } 2000 2001 /** 2002 * ext4_get_stripe_size: Get the stripe size. 2003 * @sbi: In memory super block info 2004 * 2005 * If we have specified it via mount option, then 2006 * use the mount option value. If the value specified at mount time is 2007 * greater than the blocks per group use the super block value. 2008 * If the super block value is greater than blocks per group return 0. 2009 * Allocator needs it be less than blocks per group. 2010 * 2011 */ 2012 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2013 { 2014 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2015 unsigned long stripe_width = 2016 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2017 2018 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2019 return sbi->s_stripe; 2020 2021 if (stripe_width <= sbi->s_blocks_per_group) 2022 return stripe_width; 2023 2024 if (stride <= sbi->s_blocks_per_group) 2025 return stride; 2026 2027 return 0; 2028 } 2029 2030 /* sysfs supprt */ 2031 2032 struct ext4_attr { 2033 struct attribute attr; 2034 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2035 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2036 const char *, size_t); 2037 int offset; 2038 }; 2039 2040 static int parse_strtoul(const char *buf, 2041 unsigned long max, unsigned long *value) 2042 { 2043 char *endp; 2044 2045 while (*buf && isspace(*buf)) 2046 buf++; 2047 *value = simple_strtoul(buf, &endp, 0); 2048 while (*endp && isspace(*endp)) 2049 endp++; 2050 if (*endp || *value > max) 2051 return -EINVAL; 2052 2053 return 0; 2054 } 2055 2056 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2057 struct ext4_sb_info *sbi, 2058 char *buf) 2059 { 2060 return snprintf(buf, PAGE_SIZE, "%llu\n", 2061 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2062 } 2063 2064 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2065 struct ext4_sb_info *sbi, char *buf) 2066 { 2067 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2068 2069 return snprintf(buf, PAGE_SIZE, "%lu\n", 2070 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2071 sbi->s_sectors_written_start) >> 1); 2072 } 2073 2074 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2075 struct ext4_sb_info *sbi, char *buf) 2076 { 2077 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2078 2079 return snprintf(buf, PAGE_SIZE, "%llu\n", 2080 sbi->s_kbytes_written + 2081 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2082 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2083 } 2084 2085 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2086 struct ext4_sb_info *sbi, 2087 const char *buf, size_t count) 2088 { 2089 unsigned long t; 2090 2091 if (parse_strtoul(buf, 0x40000000, &t)) 2092 return -EINVAL; 2093 2094 /* inode_readahead_blks must be a power of 2 */ 2095 if (t & (t-1)) 2096 return -EINVAL; 2097 2098 sbi->s_inode_readahead_blks = t; 2099 return count; 2100 } 2101 2102 static ssize_t sbi_ui_show(struct ext4_attr *a, 2103 struct ext4_sb_info *sbi, char *buf) 2104 { 2105 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2106 2107 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2108 } 2109 2110 static ssize_t sbi_ui_store(struct ext4_attr *a, 2111 struct ext4_sb_info *sbi, 2112 const char *buf, size_t count) 2113 { 2114 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2115 unsigned long t; 2116 2117 if (parse_strtoul(buf, 0xffffffff, &t)) 2118 return -EINVAL; 2119 *ui = t; 2120 return count; 2121 } 2122 2123 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2124 static struct ext4_attr ext4_attr_##_name = { \ 2125 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2126 .show = _show, \ 2127 .store = _store, \ 2128 .offset = offsetof(struct ext4_sb_info, _elname), \ 2129 } 2130 #define EXT4_ATTR(name, mode, show, store) \ 2131 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2132 2133 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2134 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2135 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2136 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2137 #define ATTR_LIST(name) &ext4_attr_##name.attr 2138 2139 EXT4_RO_ATTR(delayed_allocation_blocks); 2140 EXT4_RO_ATTR(session_write_kbytes); 2141 EXT4_RO_ATTR(lifetime_write_kbytes); 2142 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2143 inode_readahead_blks_store, s_inode_readahead_blks); 2144 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2145 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2146 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2147 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2148 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2149 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2150 2151 static struct attribute *ext4_attrs[] = { 2152 ATTR_LIST(delayed_allocation_blocks), 2153 ATTR_LIST(session_write_kbytes), 2154 ATTR_LIST(lifetime_write_kbytes), 2155 ATTR_LIST(inode_readahead_blks), 2156 ATTR_LIST(mb_stats), 2157 ATTR_LIST(mb_max_to_scan), 2158 ATTR_LIST(mb_min_to_scan), 2159 ATTR_LIST(mb_order2_req), 2160 ATTR_LIST(mb_stream_req), 2161 ATTR_LIST(mb_group_prealloc), 2162 NULL, 2163 }; 2164 2165 static ssize_t ext4_attr_show(struct kobject *kobj, 2166 struct attribute *attr, char *buf) 2167 { 2168 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2169 s_kobj); 2170 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2171 2172 return a->show ? a->show(a, sbi, buf) : 0; 2173 } 2174 2175 static ssize_t ext4_attr_store(struct kobject *kobj, 2176 struct attribute *attr, 2177 const char *buf, size_t len) 2178 { 2179 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2180 s_kobj); 2181 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2182 2183 return a->store ? a->store(a, sbi, buf, len) : 0; 2184 } 2185 2186 static void ext4_sb_release(struct kobject *kobj) 2187 { 2188 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2189 s_kobj); 2190 complete(&sbi->s_kobj_unregister); 2191 } 2192 2193 2194 static struct sysfs_ops ext4_attr_ops = { 2195 .show = ext4_attr_show, 2196 .store = ext4_attr_store, 2197 }; 2198 2199 static struct kobj_type ext4_ktype = { 2200 .default_attrs = ext4_attrs, 2201 .sysfs_ops = &ext4_attr_ops, 2202 .release = ext4_sb_release, 2203 }; 2204 2205 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2206 __releases(kernel_lock) 2207 __acquires(kernel_lock) 2208 2209 { 2210 struct buffer_head *bh; 2211 struct ext4_super_block *es = NULL; 2212 struct ext4_sb_info *sbi; 2213 ext4_fsblk_t block; 2214 ext4_fsblk_t sb_block = get_sb_block(&data); 2215 ext4_fsblk_t logical_sb_block; 2216 unsigned long offset = 0; 2217 unsigned long journal_devnum = 0; 2218 unsigned long def_mount_opts; 2219 struct inode *root; 2220 char *cp; 2221 const char *descr; 2222 int ret = -EINVAL; 2223 int blocksize; 2224 unsigned int db_count; 2225 unsigned int i; 2226 int needs_recovery, has_huge_files; 2227 int features; 2228 __u64 blocks_count; 2229 int err; 2230 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2231 2232 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2233 if (!sbi) 2234 return -ENOMEM; 2235 2236 sbi->s_blockgroup_lock = 2237 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2238 if (!sbi->s_blockgroup_lock) { 2239 kfree(sbi); 2240 return -ENOMEM; 2241 } 2242 sb->s_fs_info = sbi; 2243 sbi->s_mount_opt = 0; 2244 sbi->s_resuid = EXT4_DEF_RESUID; 2245 sbi->s_resgid = EXT4_DEF_RESGID; 2246 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2247 sbi->s_sb_block = sb_block; 2248 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2249 sectors[1]); 2250 2251 unlock_kernel(); 2252 2253 /* Cleanup superblock name */ 2254 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2255 *cp = '!'; 2256 2257 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2258 if (!blocksize) { 2259 printk(KERN_ERR "EXT4-fs: unable to set blocksize\n"); 2260 goto out_fail; 2261 } 2262 2263 /* 2264 * The ext4 superblock will not be buffer aligned for other than 1kB 2265 * block sizes. We need to calculate the offset from buffer start. 2266 */ 2267 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2268 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2269 offset = do_div(logical_sb_block, blocksize); 2270 } else { 2271 logical_sb_block = sb_block; 2272 } 2273 2274 if (!(bh = sb_bread(sb, logical_sb_block))) { 2275 printk(KERN_ERR "EXT4-fs: unable to read superblock\n"); 2276 goto out_fail; 2277 } 2278 /* 2279 * Note: s_es must be initialized as soon as possible because 2280 * some ext4 macro-instructions depend on its value 2281 */ 2282 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2283 sbi->s_es = es; 2284 sb->s_magic = le16_to_cpu(es->s_magic); 2285 if (sb->s_magic != EXT4_SUPER_MAGIC) 2286 goto cantfind_ext4; 2287 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2288 2289 /* Set defaults before we parse the mount options */ 2290 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2291 if (def_mount_opts & EXT4_DEFM_DEBUG) 2292 set_opt(sbi->s_mount_opt, DEBUG); 2293 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2294 set_opt(sbi->s_mount_opt, GRPID); 2295 if (def_mount_opts & EXT4_DEFM_UID16) 2296 set_opt(sbi->s_mount_opt, NO_UID32); 2297 #ifdef CONFIG_EXT4_FS_XATTR 2298 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2299 set_opt(sbi->s_mount_opt, XATTR_USER); 2300 #endif 2301 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2302 if (def_mount_opts & EXT4_DEFM_ACL) 2303 set_opt(sbi->s_mount_opt, POSIX_ACL); 2304 #endif 2305 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2306 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2307 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2308 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2309 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2310 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2311 2312 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2313 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2314 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2315 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2316 else 2317 set_opt(sbi->s_mount_opt, ERRORS_RO); 2318 2319 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2320 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2321 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2322 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2323 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2324 2325 set_opt(sbi->s_mount_opt, BARRIER); 2326 2327 /* 2328 * enable delayed allocation by default 2329 * Use -o nodelalloc to turn it off 2330 */ 2331 set_opt(sbi->s_mount_opt, DELALLOC); 2332 2333 2334 if (!parse_options((char *) data, sb, &journal_devnum, 2335 &journal_ioprio, NULL, 0)) 2336 goto failed_mount; 2337 2338 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2339 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2340 2341 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2342 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2343 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2344 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2345 printk(KERN_WARNING 2346 "EXT4-fs warning: feature flags set on rev 0 fs, " 2347 "running e2fsck is recommended\n"); 2348 2349 /* 2350 * Check feature flags regardless of the revision level, since we 2351 * previously didn't change the revision level when setting the flags, 2352 * so there is a chance incompat flags are set on a rev 0 filesystem. 2353 */ 2354 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); 2355 if (features) { 2356 printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of " 2357 "unsupported optional features (%x).\n", sb->s_id, 2358 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2359 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2360 goto failed_mount; 2361 } 2362 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); 2363 if (!(sb->s_flags & MS_RDONLY) && features) { 2364 printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of " 2365 "unsupported optional features (%x).\n", sb->s_id, 2366 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2367 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2368 goto failed_mount; 2369 } 2370 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2371 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2372 if (has_huge_files) { 2373 /* 2374 * Large file size enabled file system can only be 2375 * mount if kernel is build with CONFIG_LBD 2376 */ 2377 if (sizeof(root->i_blocks) < sizeof(u64) && 2378 !(sb->s_flags & MS_RDONLY)) { 2379 printk(KERN_ERR "EXT4-fs: %s: Filesystem with huge " 2380 "files cannot be mounted read-write " 2381 "without CONFIG_LBD.\n", sb->s_id); 2382 goto failed_mount; 2383 } 2384 } 2385 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2386 2387 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2388 blocksize > EXT4_MAX_BLOCK_SIZE) { 2389 printk(KERN_ERR 2390 "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n", 2391 blocksize, sb->s_id); 2392 goto failed_mount; 2393 } 2394 2395 if (sb->s_blocksize != blocksize) { 2396 2397 /* Validate the filesystem blocksize */ 2398 if (!sb_set_blocksize(sb, blocksize)) { 2399 printk(KERN_ERR "EXT4-fs: bad block size %d.\n", 2400 blocksize); 2401 goto failed_mount; 2402 } 2403 2404 brelse(bh); 2405 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2406 offset = do_div(logical_sb_block, blocksize); 2407 bh = sb_bread(sb, logical_sb_block); 2408 if (!bh) { 2409 printk(KERN_ERR 2410 "EXT4-fs: Can't read superblock on 2nd try.\n"); 2411 goto failed_mount; 2412 } 2413 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2414 sbi->s_es = es; 2415 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2416 printk(KERN_ERR 2417 "EXT4-fs: Magic mismatch, very weird !\n"); 2418 goto failed_mount; 2419 } 2420 } 2421 2422 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2423 has_huge_files); 2424 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2425 2426 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2427 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2428 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2429 } else { 2430 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2431 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2432 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2433 (!is_power_of_2(sbi->s_inode_size)) || 2434 (sbi->s_inode_size > blocksize)) { 2435 printk(KERN_ERR 2436 "EXT4-fs: unsupported inode size: %d\n", 2437 sbi->s_inode_size); 2438 goto failed_mount; 2439 } 2440 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2441 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2442 } 2443 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2444 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2445 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2446 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2447 !is_power_of_2(sbi->s_desc_size)) { 2448 printk(KERN_ERR 2449 "EXT4-fs: unsupported descriptor size %lu\n", 2450 sbi->s_desc_size); 2451 goto failed_mount; 2452 } 2453 } else 2454 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2455 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2456 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2457 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2458 goto cantfind_ext4; 2459 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2460 if (sbi->s_inodes_per_block == 0) 2461 goto cantfind_ext4; 2462 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2463 sbi->s_inodes_per_block; 2464 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2465 sbi->s_sbh = bh; 2466 sbi->s_mount_state = le16_to_cpu(es->s_state); 2467 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2468 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2469 for (i = 0; i < 4; i++) 2470 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2471 sbi->s_def_hash_version = es->s_def_hash_version; 2472 i = le32_to_cpu(es->s_flags); 2473 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2474 sbi->s_hash_unsigned = 3; 2475 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2476 #ifdef __CHAR_UNSIGNED__ 2477 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2478 sbi->s_hash_unsigned = 3; 2479 #else 2480 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2481 #endif 2482 sb->s_dirt = 1; 2483 } 2484 2485 if (sbi->s_blocks_per_group > blocksize * 8) { 2486 printk(KERN_ERR 2487 "EXT4-fs: #blocks per group too big: %lu\n", 2488 sbi->s_blocks_per_group); 2489 goto failed_mount; 2490 } 2491 if (sbi->s_inodes_per_group > blocksize * 8) { 2492 printk(KERN_ERR 2493 "EXT4-fs: #inodes per group too big: %lu\n", 2494 sbi->s_inodes_per_group); 2495 goto failed_mount; 2496 } 2497 2498 if (ext4_blocks_count(es) > 2499 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { 2500 printk(KERN_ERR "EXT4-fs: filesystem on %s:" 2501 " too large to mount safely\n", sb->s_id); 2502 if (sizeof(sector_t) < 8) 2503 printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not " 2504 "enabled\n"); 2505 goto failed_mount; 2506 } 2507 2508 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2509 goto cantfind_ext4; 2510 2511 /* 2512 * It makes no sense for the first data block to be beyond the end 2513 * of the filesystem. 2514 */ 2515 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2516 printk(KERN_WARNING "EXT4-fs: bad geometry: first data" 2517 "block %u is beyond end of filesystem (%llu)\n", 2518 le32_to_cpu(es->s_first_data_block), 2519 ext4_blocks_count(es)); 2520 goto failed_mount; 2521 } 2522 blocks_count = (ext4_blocks_count(es) - 2523 le32_to_cpu(es->s_first_data_block) + 2524 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2525 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2526 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2527 printk(KERN_WARNING "EXT4-fs: groups count too large: %u " 2528 "(block count %llu, first data block %u, " 2529 "blocks per group %lu)\n", sbi->s_groups_count, 2530 ext4_blocks_count(es), 2531 le32_to_cpu(es->s_first_data_block), 2532 EXT4_BLOCKS_PER_GROUP(sb)); 2533 goto failed_mount; 2534 } 2535 sbi->s_groups_count = blocks_count; 2536 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2537 EXT4_DESC_PER_BLOCK(sb); 2538 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2539 GFP_KERNEL); 2540 if (sbi->s_group_desc == NULL) { 2541 printk(KERN_ERR "EXT4-fs: not enough memory\n"); 2542 goto failed_mount; 2543 } 2544 2545 #ifdef CONFIG_PROC_FS 2546 if (ext4_proc_root) 2547 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2548 #endif 2549 2550 bgl_lock_init(sbi->s_blockgroup_lock); 2551 2552 for (i = 0; i < db_count; i++) { 2553 block = descriptor_loc(sb, logical_sb_block, i); 2554 sbi->s_group_desc[i] = sb_bread(sb, block); 2555 if (!sbi->s_group_desc[i]) { 2556 printk(KERN_ERR "EXT4-fs: " 2557 "can't read group descriptor %d\n", i); 2558 db_count = i; 2559 goto failed_mount2; 2560 } 2561 } 2562 if (!ext4_check_descriptors(sb)) { 2563 printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n"); 2564 goto failed_mount2; 2565 } 2566 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2567 if (!ext4_fill_flex_info(sb)) { 2568 printk(KERN_ERR 2569 "EXT4-fs: unable to initialize " 2570 "flex_bg meta info!\n"); 2571 goto failed_mount2; 2572 } 2573 2574 sbi->s_gdb_count = db_count; 2575 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2576 spin_lock_init(&sbi->s_next_gen_lock); 2577 2578 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2579 ext4_count_free_blocks(sb)); 2580 if (!err) { 2581 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2582 ext4_count_free_inodes(sb)); 2583 } 2584 if (!err) { 2585 err = percpu_counter_init(&sbi->s_dirs_counter, 2586 ext4_count_dirs(sb)); 2587 } 2588 if (!err) { 2589 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2590 } 2591 if (err) { 2592 printk(KERN_ERR "EXT4-fs: insufficient memory\n"); 2593 goto failed_mount3; 2594 } 2595 2596 sbi->s_stripe = ext4_get_stripe_size(sbi); 2597 2598 /* 2599 * set up enough so that it can read an inode 2600 */ 2601 sb->s_op = &ext4_sops; 2602 sb->s_export_op = &ext4_export_ops; 2603 sb->s_xattr = ext4_xattr_handlers; 2604 #ifdef CONFIG_QUOTA 2605 sb->s_qcop = &ext4_qctl_operations; 2606 sb->dq_op = &ext4_quota_operations; 2607 #endif 2608 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2609 2610 sb->s_root = NULL; 2611 2612 needs_recovery = (es->s_last_orphan != 0 || 2613 EXT4_HAS_INCOMPAT_FEATURE(sb, 2614 EXT4_FEATURE_INCOMPAT_RECOVER)); 2615 2616 /* 2617 * The first inode we look at is the journal inode. Don't try 2618 * root first: it may be modified in the journal! 2619 */ 2620 if (!test_opt(sb, NOLOAD) && 2621 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2622 if (ext4_load_journal(sb, es, journal_devnum)) 2623 goto failed_mount3; 2624 if (!(sb->s_flags & MS_RDONLY) && 2625 EXT4_SB(sb)->s_journal->j_failed_commit) { 2626 printk(KERN_CRIT "EXT4-fs error (device %s): " 2627 "ext4_fill_super: Journal transaction " 2628 "%u is corrupt\n", sb->s_id, 2629 EXT4_SB(sb)->s_journal->j_failed_commit); 2630 if (test_opt(sb, ERRORS_RO)) { 2631 printk(KERN_CRIT 2632 "Mounting filesystem read-only\n"); 2633 sb->s_flags |= MS_RDONLY; 2634 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2635 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2636 } 2637 if (test_opt(sb, ERRORS_PANIC)) { 2638 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2639 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2640 ext4_commit_super(sb, es, 1); 2641 goto failed_mount4; 2642 } 2643 } 2644 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2645 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2646 printk(KERN_ERR "EXT4-fs: required journal recovery " 2647 "suppressed and not mounted read-only\n"); 2648 goto failed_mount4; 2649 } else { 2650 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2651 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2652 sbi->s_journal = NULL; 2653 needs_recovery = 0; 2654 goto no_journal; 2655 } 2656 2657 if (ext4_blocks_count(es) > 0xffffffffULL && 2658 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2659 JBD2_FEATURE_INCOMPAT_64BIT)) { 2660 printk(KERN_ERR "EXT4-fs: Failed to set 64-bit journal feature\n"); 2661 goto failed_mount4; 2662 } 2663 2664 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2665 jbd2_journal_set_features(sbi->s_journal, 2666 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2667 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2668 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2669 jbd2_journal_set_features(sbi->s_journal, 2670 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2671 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2672 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2673 } else { 2674 jbd2_journal_clear_features(sbi->s_journal, 2675 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2676 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2677 } 2678 2679 /* We have now updated the journal if required, so we can 2680 * validate the data journaling mode. */ 2681 switch (test_opt(sb, DATA_FLAGS)) { 2682 case 0: 2683 /* No mode set, assume a default based on the journal 2684 * capabilities: ORDERED_DATA if the journal can 2685 * cope, else JOURNAL_DATA 2686 */ 2687 if (jbd2_journal_check_available_features 2688 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2689 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2690 else 2691 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2692 break; 2693 2694 case EXT4_MOUNT_ORDERED_DATA: 2695 case EXT4_MOUNT_WRITEBACK_DATA: 2696 if (!jbd2_journal_check_available_features 2697 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2698 printk(KERN_ERR "EXT4-fs: Journal does not support " 2699 "requested data journaling mode\n"); 2700 goto failed_mount4; 2701 } 2702 default: 2703 break; 2704 } 2705 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2706 2707 no_journal: 2708 2709 if (test_opt(sb, NOBH)) { 2710 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2711 printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - " 2712 "its supported only with writeback mode\n"); 2713 clear_opt(sbi->s_mount_opt, NOBH); 2714 } 2715 } 2716 /* 2717 * The jbd2_journal_load will have done any necessary log recovery, 2718 * so we can safely mount the rest of the filesystem now. 2719 */ 2720 2721 root = ext4_iget(sb, EXT4_ROOT_INO); 2722 if (IS_ERR(root)) { 2723 printk(KERN_ERR "EXT4-fs: get root inode failed\n"); 2724 ret = PTR_ERR(root); 2725 goto failed_mount4; 2726 } 2727 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2728 iput(root); 2729 printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n"); 2730 goto failed_mount4; 2731 } 2732 sb->s_root = d_alloc_root(root); 2733 if (!sb->s_root) { 2734 printk(KERN_ERR "EXT4-fs: get root dentry failed\n"); 2735 iput(root); 2736 ret = -ENOMEM; 2737 goto failed_mount4; 2738 } 2739 2740 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2741 2742 /* determine the minimum size of new large inodes, if present */ 2743 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2744 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2745 EXT4_GOOD_OLD_INODE_SIZE; 2746 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2747 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2748 if (sbi->s_want_extra_isize < 2749 le16_to_cpu(es->s_want_extra_isize)) 2750 sbi->s_want_extra_isize = 2751 le16_to_cpu(es->s_want_extra_isize); 2752 if (sbi->s_want_extra_isize < 2753 le16_to_cpu(es->s_min_extra_isize)) 2754 sbi->s_want_extra_isize = 2755 le16_to_cpu(es->s_min_extra_isize); 2756 } 2757 } 2758 /* Check if enough inode space is available */ 2759 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2760 sbi->s_inode_size) { 2761 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2762 EXT4_GOOD_OLD_INODE_SIZE; 2763 printk(KERN_INFO "EXT4-fs: required extra inode space not" 2764 "available.\n"); 2765 } 2766 2767 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 2768 printk(KERN_WARNING "EXT4-fs: Ignoring delalloc option - " 2769 "requested data journaling mode\n"); 2770 clear_opt(sbi->s_mount_opt, DELALLOC); 2771 } else if (test_opt(sb, DELALLOC)) 2772 printk(KERN_INFO "EXT4-fs: delayed allocation enabled\n"); 2773 2774 ext4_ext_init(sb); 2775 err = ext4_mb_init(sb, needs_recovery); 2776 if (err) { 2777 printk(KERN_ERR "EXT4-fs: failed to initalize mballoc (%d)\n", 2778 err); 2779 goto failed_mount4; 2780 } 2781 2782 sbi->s_kobj.kset = ext4_kset; 2783 init_completion(&sbi->s_kobj_unregister); 2784 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2785 "%s", sb->s_id); 2786 if (err) { 2787 ext4_mb_release(sb); 2788 ext4_ext_release(sb); 2789 goto failed_mount4; 2790 }; 2791 2792 /* 2793 * akpm: core read_super() calls in here with the superblock locked. 2794 * That deadlocks, because orphan cleanup needs to lock the superblock 2795 * in numerous places. Here we just pop the lock - it's relatively 2796 * harmless, because we are now ready to accept write_super() requests, 2797 * and aviro says that's the only reason for hanging onto the 2798 * superblock lock. 2799 */ 2800 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2801 ext4_orphan_cleanup(sb, es); 2802 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2803 if (needs_recovery) { 2804 printk(KERN_INFO "EXT4-fs: recovery complete.\n"); 2805 ext4_mark_recovery_complete(sb, es); 2806 } 2807 if (EXT4_SB(sb)->s_journal) { 2808 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2809 descr = " journalled data mode"; 2810 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2811 descr = " ordered data mode"; 2812 else 2813 descr = " writeback data mode"; 2814 } else 2815 descr = "out journal"; 2816 2817 printk(KERN_INFO "EXT4-fs: mounted filesystem %s with%s\n", 2818 sb->s_id, descr); 2819 2820 lock_kernel(); 2821 return 0; 2822 2823 cantfind_ext4: 2824 if (!silent) 2825 printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n", 2826 sb->s_id); 2827 goto failed_mount; 2828 2829 failed_mount4: 2830 printk(KERN_ERR "EXT4-fs (device %s): mount failed\n", sb->s_id); 2831 if (sbi->s_journal) { 2832 jbd2_journal_destroy(sbi->s_journal); 2833 sbi->s_journal = NULL; 2834 } 2835 failed_mount3: 2836 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2837 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2838 percpu_counter_destroy(&sbi->s_dirs_counter); 2839 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2840 failed_mount2: 2841 for (i = 0; i < db_count; i++) 2842 brelse(sbi->s_group_desc[i]); 2843 kfree(sbi->s_group_desc); 2844 failed_mount: 2845 if (sbi->s_proc) { 2846 remove_proc_entry(sb->s_id, ext4_proc_root); 2847 } 2848 #ifdef CONFIG_QUOTA 2849 for (i = 0; i < MAXQUOTAS; i++) 2850 kfree(sbi->s_qf_names[i]); 2851 #endif 2852 ext4_blkdev_remove(sbi); 2853 brelse(bh); 2854 out_fail: 2855 sb->s_fs_info = NULL; 2856 kfree(sbi); 2857 lock_kernel(); 2858 return ret; 2859 } 2860 2861 /* 2862 * Setup any per-fs journal parameters now. We'll do this both on 2863 * initial mount, once the journal has been initialised but before we've 2864 * done any recovery; and again on any subsequent remount. 2865 */ 2866 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2867 { 2868 struct ext4_sb_info *sbi = EXT4_SB(sb); 2869 2870 journal->j_commit_interval = sbi->s_commit_interval; 2871 journal->j_min_batch_time = sbi->s_min_batch_time; 2872 journal->j_max_batch_time = sbi->s_max_batch_time; 2873 2874 spin_lock(&journal->j_state_lock); 2875 if (test_opt(sb, BARRIER)) 2876 journal->j_flags |= JBD2_BARRIER; 2877 else 2878 journal->j_flags &= ~JBD2_BARRIER; 2879 if (test_opt(sb, DATA_ERR_ABORT)) 2880 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2881 else 2882 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2883 spin_unlock(&journal->j_state_lock); 2884 } 2885 2886 static journal_t *ext4_get_journal(struct super_block *sb, 2887 unsigned int journal_inum) 2888 { 2889 struct inode *journal_inode; 2890 journal_t *journal; 2891 2892 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2893 2894 /* First, test for the existence of a valid inode on disk. Bad 2895 * things happen if we iget() an unused inode, as the subsequent 2896 * iput() will try to delete it. */ 2897 2898 journal_inode = ext4_iget(sb, journal_inum); 2899 if (IS_ERR(journal_inode)) { 2900 printk(KERN_ERR "EXT4-fs: no journal found.\n"); 2901 return NULL; 2902 } 2903 if (!journal_inode->i_nlink) { 2904 make_bad_inode(journal_inode); 2905 iput(journal_inode); 2906 printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n"); 2907 return NULL; 2908 } 2909 2910 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 2911 journal_inode, journal_inode->i_size); 2912 if (!S_ISREG(journal_inode->i_mode)) { 2913 printk(KERN_ERR "EXT4-fs: invalid journal inode.\n"); 2914 iput(journal_inode); 2915 return NULL; 2916 } 2917 2918 journal = jbd2_journal_init_inode(journal_inode); 2919 if (!journal) { 2920 printk(KERN_ERR "EXT4-fs: Could not load journal inode\n"); 2921 iput(journal_inode); 2922 return NULL; 2923 } 2924 journal->j_private = sb; 2925 ext4_init_journal_params(sb, journal); 2926 return journal; 2927 } 2928 2929 static journal_t *ext4_get_dev_journal(struct super_block *sb, 2930 dev_t j_dev) 2931 { 2932 struct buffer_head *bh; 2933 journal_t *journal; 2934 ext4_fsblk_t start; 2935 ext4_fsblk_t len; 2936 int hblock, blocksize; 2937 ext4_fsblk_t sb_block; 2938 unsigned long offset; 2939 struct ext4_super_block *es; 2940 struct block_device *bdev; 2941 2942 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2943 2944 bdev = ext4_blkdev_get(j_dev); 2945 if (bdev == NULL) 2946 return NULL; 2947 2948 if (bd_claim(bdev, sb)) { 2949 printk(KERN_ERR 2950 "EXT4-fs: failed to claim external journal device.\n"); 2951 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 2952 return NULL; 2953 } 2954 2955 blocksize = sb->s_blocksize; 2956 hblock = bdev_hardsect_size(bdev); 2957 if (blocksize < hblock) { 2958 printk(KERN_ERR 2959 "EXT4-fs: blocksize too small for journal device.\n"); 2960 goto out_bdev; 2961 } 2962 2963 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 2964 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 2965 set_blocksize(bdev, blocksize); 2966 if (!(bh = __bread(bdev, sb_block, blocksize))) { 2967 printk(KERN_ERR "EXT4-fs: couldn't read superblock of " 2968 "external journal\n"); 2969 goto out_bdev; 2970 } 2971 2972 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2973 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 2974 !(le32_to_cpu(es->s_feature_incompat) & 2975 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 2976 printk(KERN_ERR "EXT4-fs: external journal has " 2977 "bad superblock\n"); 2978 brelse(bh); 2979 goto out_bdev; 2980 } 2981 2982 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 2983 printk(KERN_ERR "EXT4-fs: journal UUID does not match\n"); 2984 brelse(bh); 2985 goto out_bdev; 2986 } 2987 2988 len = ext4_blocks_count(es); 2989 start = sb_block + 1; 2990 brelse(bh); /* we're done with the superblock */ 2991 2992 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 2993 start, len, blocksize); 2994 if (!journal) { 2995 printk(KERN_ERR "EXT4-fs: failed to create device journal\n"); 2996 goto out_bdev; 2997 } 2998 journal->j_private = sb; 2999 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3000 wait_on_buffer(journal->j_sb_buffer); 3001 if (!buffer_uptodate(journal->j_sb_buffer)) { 3002 printk(KERN_ERR "EXT4-fs: I/O error on journal device\n"); 3003 goto out_journal; 3004 } 3005 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3006 printk(KERN_ERR "EXT4-fs: External journal has more than one " 3007 "user (unsupported) - %d\n", 3008 be32_to_cpu(journal->j_superblock->s_nr_users)); 3009 goto out_journal; 3010 } 3011 EXT4_SB(sb)->journal_bdev = bdev; 3012 ext4_init_journal_params(sb, journal); 3013 return journal; 3014 out_journal: 3015 jbd2_journal_destroy(journal); 3016 out_bdev: 3017 ext4_blkdev_put(bdev); 3018 return NULL; 3019 } 3020 3021 static int ext4_load_journal(struct super_block *sb, 3022 struct ext4_super_block *es, 3023 unsigned long journal_devnum) 3024 { 3025 journal_t *journal; 3026 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3027 dev_t journal_dev; 3028 int err = 0; 3029 int really_read_only; 3030 3031 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3032 3033 if (journal_devnum && 3034 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3035 printk(KERN_INFO "EXT4-fs: external journal device major/minor " 3036 "numbers have changed\n"); 3037 journal_dev = new_decode_dev(journal_devnum); 3038 } else 3039 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3040 3041 really_read_only = bdev_read_only(sb->s_bdev); 3042 3043 /* 3044 * Are we loading a blank journal or performing recovery after a 3045 * crash? For recovery, we need to check in advance whether we 3046 * can get read-write access to the device. 3047 */ 3048 3049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3050 if (sb->s_flags & MS_RDONLY) { 3051 printk(KERN_INFO "EXT4-fs: INFO: recovery " 3052 "required on readonly filesystem.\n"); 3053 if (really_read_only) { 3054 printk(KERN_ERR "EXT4-fs: write access " 3055 "unavailable, cannot proceed.\n"); 3056 return -EROFS; 3057 } 3058 printk(KERN_INFO "EXT4-fs: write access will " 3059 "be enabled during recovery.\n"); 3060 } 3061 } 3062 3063 if (journal_inum && journal_dev) { 3064 printk(KERN_ERR "EXT4-fs: filesystem has both journal " 3065 "and inode journals!\n"); 3066 return -EINVAL; 3067 } 3068 3069 if (journal_inum) { 3070 if (!(journal = ext4_get_journal(sb, journal_inum))) 3071 return -EINVAL; 3072 } else { 3073 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3074 return -EINVAL; 3075 } 3076 3077 if (journal->j_flags & JBD2_BARRIER) 3078 printk(KERN_INFO "EXT4-fs: barriers enabled\n"); 3079 else 3080 printk(KERN_INFO "EXT4-fs: barriers disabled\n"); 3081 3082 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3083 err = jbd2_journal_update_format(journal); 3084 if (err) { 3085 printk(KERN_ERR "EXT4-fs: error updating journal.\n"); 3086 jbd2_journal_destroy(journal); 3087 return err; 3088 } 3089 } 3090 3091 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3092 err = jbd2_journal_wipe(journal, !really_read_only); 3093 if (!err) 3094 err = jbd2_journal_load(journal); 3095 3096 if (err) { 3097 printk(KERN_ERR "EXT4-fs: error loading journal.\n"); 3098 jbd2_journal_destroy(journal); 3099 return err; 3100 } 3101 3102 EXT4_SB(sb)->s_journal = journal; 3103 ext4_clear_journal_err(sb, es); 3104 3105 if (journal_devnum && 3106 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3107 es->s_journal_dev = cpu_to_le32(journal_devnum); 3108 sb->s_dirt = 1; 3109 3110 /* Make sure we flush the recovery flag to disk. */ 3111 ext4_commit_super(sb, es, 1); 3112 } 3113 3114 return 0; 3115 } 3116 3117 static int ext4_commit_super(struct super_block *sb, 3118 struct ext4_super_block *es, int sync) 3119 { 3120 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3121 int error = 0; 3122 3123 if (!sbh) 3124 return error; 3125 if (buffer_write_io_error(sbh)) { 3126 /* 3127 * Oh, dear. A previous attempt to write the 3128 * superblock failed. This could happen because the 3129 * USB device was yanked out. Or it could happen to 3130 * be a transient write error and maybe the block will 3131 * be remapped. Nothing we can do but to retry the 3132 * write and hope for the best. 3133 */ 3134 printk(KERN_ERR "EXT4-fs: previous I/O error to " 3135 "superblock detected for %s.\n", sb->s_id); 3136 clear_buffer_write_io_error(sbh); 3137 set_buffer_uptodate(sbh); 3138 } 3139 es->s_wtime = cpu_to_le32(get_seconds()); 3140 es->s_kbytes_written = 3141 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3142 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3143 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3144 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3145 &EXT4_SB(sb)->s_freeblocks_counter)); 3146 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3147 &EXT4_SB(sb)->s_freeinodes_counter)); 3148 3149 BUFFER_TRACE(sbh, "marking dirty"); 3150 mark_buffer_dirty(sbh); 3151 if (sync) { 3152 error = sync_dirty_buffer(sbh); 3153 if (error) 3154 return error; 3155 3156 error = buffer_write_io_error(sbh); 3157 if (error) { 3158 printk(KERN_ERR "EXT4-fs: I/O error while writing " 3159 "superblock for %s.\n", sb->s_id); 3160 clear_buffer_write_io_error(sbh); 3161 set_buffer_uptodate(sbh); 3162 } 3163 } 3164 return error; 3165 } 3166 3167 3168 /* 3169 * Have we just finished recovery? If so, and if we are mounting (or 3170 * remounting) the filesystem readonly, then we will end up with a 3171 * consistent fs on disk. Record that fact. 3172 */ 3173 static void ext4_mark_recovery_complete(struct super_block *sb, 3174 struct ext4_super_block *es) 3175 { 3176 journal_t *journal = EXT4_SB(sb)->s_journal; 3177 3178 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3179 BUG_ON(journal != NULL); 3180 return; 3181 } 3182 jbd2_journal_lock_updates(journal); 3183 if (jbd2_journal_flush(journal) < 0) 3184 goto out; 3185 3186 lock_super(sb); 3187 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3188 sb->s_flags & MS_RDONLY) { 3189 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3190 sb->s_dirt = 0; 3191 ext4_commit_super(sb, es, 1); 3192 } 3193 unlock_super(sb); 3194 3195 out: 3196 jbd2_journal_unlock_updates(journal); 3197 } 3198 3199 /* 3200 * If we are mounting (or read-write remounting) a filesystem whose journal 3201 * has recorded an error from a previous lifetime, move that error to the 3202 * main filesystem now. 3203 */ 3204 static void ext4_clear_journal_err(struct super_block *sb, 3205 struct ext4_super_block *es) 3206 { 3207 journal_t *journal; 3208 int j_errno; 3209 const char *errstr; 3210 3211 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3212 3213 journal = EXT4_SB(sb)->s_journal; 3214 3215 /* 3216 * Now check for any error status which may have been recorded in the 3217 * journal by a prior ext4_error() or ext4_abort() 3218 */ 3219 3220 j_errno = jbd2_journal_errno(journal); 3221 if (j_errno) { 3222 char nbuf[16]; 3223 3224 errstr = ext4_decode_error(sb, j_errno, nbuf); 3225 ext4_warning(sb, __func__, "Filesystem error recorded " 3226 "from previous mount: %s", errstr); 3227 ext4_warning(sb, __func__, "Marking fs in need of " 3228 "filesystem check."); 3229 3230 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3231 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3232 ext4_commit_super(sb, es, 1); 3233 3234 jbd2_journal_clear_err(journal); 3235 } 3236 } 3237 3238 /* 3239 * Force the running and committing transactions to commit, 3240 * and wait on the commit. 3241 */ 3242 int ext4_force_commit(struct super_block *sb) 3243 { 3244 journal_t *journal; 3245 int ret = 0; 3246 3247 if (sb->s_flags & MS_RDONLY) 3248 return 0; 3249 3250 journal = EXT4_SB(sb)->s_journal; 3251 if (journal) { 3252 sb->s_dirt = 0; 3253 ret = ext4_journal_force_commit(journal); 3254 } 3255 3256 return ret; 3257 } 3258 3259 /* 3260 * Ext4 always journals updates to the superblock itself, so we don't 3261 * have to propagate any other updates to the superblock on disk at this 3262 * point. (We can probably nuke this function altogether, and remove 3263 * any mention to sb->s_dirt in all of fs/ext4; eventual cleanup...) 3264 */ 3265 static void ext4_write_super(struct super_block *sb) 3266 { 3267 if (EXT4_SB(sb)->s_journal) { 3268 if (mutex_trylock(&sb->s_lock) != 0) 3269 BUG(); 3270 sb->s_dirt = 0; 3271 } else { 3272 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 3273 } 3274 } 3275 3276 static int ext4_sync_fs(struct super_block *sb, int wait) 3277 { 3278 int ret = 0; 3279 tid_t target; 3280 3281 trace_mark(ext4_sync_fs, "dev %s wait %d", sb->s_id, wait); 3282 sb->s_dirt = 0; 3283 if (EXT4_SB(sb)->s_journal) { 3284 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, 3285 &target)) { 3286 if (wait) 3287 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, 3288 target); 3289 } 3290 } else { 3291 ext4_commit_super(sb, EXT4_SB(sb)->s_es, wait); 3292 } 3293 return ret; 3294 } 3295 3296 /* 3297 * LVM calls this function before a (read-only) snapshot is created. This 3298 * gives us a chance to flush the journal completely and mark the fs clean. 3299 */ 3300 static int ext4_freeze(struct super_block *sb) 3301 { 3302 int error = 0; 3303 journal_t *journal; 3304 sb->s_dirt = 0; 3305 3306 if (!(sb->s_flags & MS_RDONLY)) { 3307 journal = EXT4_SB(sb)->s_journal; 3308 3309 if (journal) { 3310 /* Now we set up the journal barrier. */ 3311 jbd2_journal_lock_updates(journal); 3312 3313 /* 3314 * We don't want to clear needs_recovery flag when we 3315 * failed to flush the journal. 3316 */ 3317 error = jbd2_journal_flush(journal); 3318 if (error < 0) 3319 goto out; 3320 } 3321 3322 /* Journal blocked and flushed, clear needs_recovery flag. */ 3323 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3324 error = ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 3325 if (error) 3326 goto out; 3327 } 3328 return 0; 3329 out: 3330 jbd2_journal_unlock_updates(journal); 3331 return error; 3332 } 3333 3334 /* 3335 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3336 * flag here, even though the filesystem is not technically dirty yet. 3337 */ 3338 static int ext4_unfreeze(struct super_block *sb) 3339 { 3340 if (EXT4_SB(sb)->s_journal && !(sb->s_flags & MS_RDONLY)) { 3341 lock_super(sb); 3342 /* Reser the needs_recovery flag before the fs is unlocked. */ 3343 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3344 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1); 3345 unlock_super(sb); 3346 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3347 } 3348 return 0; 3349 } 3350 3351 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3352 { 3353 struct ext4_super_block *es; 3354 struct ext4_sb_info *sbi = EXT4_SB(sb); 3355 ext4_fsblk_t n_blocks_count = 0; 3356 unsigned long old_sb_flags; 3357 struct ext4_mount_options old_opts; 3358 ext4_group_t g; 3359 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3360 int err; 3361 #ifdef CONFIG_QUOTA 3362 int i; 3363 #endif 3364 3365 /* Store the original options */ 3366 old_sb_flags = sb->s_flags; 3367 old_opts.s_mount_opt = sbi->s_mount_opt; 3368 old_opts.s_resuid = sbi->s_resuid; 3369 old_opts.s_resgid = sbi->s_resgid; 3370 old_opts.s_commit_interval = sbi->s_commit_interval; 3371 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3372 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3373 #ifdef CONFIG_QUOTA 3374 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3375 for (i = 0; i < MAXQUOTAS; i++) 3376 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3377 #endif 3378 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3379 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3380 3381 /* 3382 * Allow the "check" option to be passed as a remount option. 3383 */ 3384 if (!parse_options(data, sb, NULL, &journal_ioprio, 3385 &n_blocks_count, 1)) { 3386 err = -EINVAL; 3387 goto restore_opts; 3388 } 3389 3390 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) 3391 ext4_abort(sb, __func__, "Abort forced by user"); 3392 3393 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3394 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3395 3396 es = sbi->s_es; 3397 3398 if (sbi->s_journal) { 3399 ext4_init_journal_params(sb, sbi->s_journal); 3400 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3401 } 3402 3403 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3404 n_blocks_count > ext4_blocks_count(es)) { 3405 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) { 3406 err = -EROFS; 3407 goto restore_opts; 3408 } 3409 3410 if (*flags & MS_RDONLY) { 3411 /* 3412 * First of all, the unconditional stuff we have to do 3413 * to disable replay of the journal when we next remount 3414 */ 3415 sb->s_flags |= MS_RDONLY; 3416 3417 /* 3418 * OK, test if we are remounting a valid rw partition 3419 * readonly, and if so set the rdonly flag and then 3420 * mark the partition as valid again. 3421 */ 3422 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3423 (sbi->s_mount_state & EXT4_VALID_FS)) 3424 es->s_state = cpu_to_le16(sbi->s_mount_state); 3425 3426 /* 3427 * We have to unlock super so that we can wait for 3428 * transactions. 3429 */ 3430 if (sbi->s_journal) { 3431 unlock_super(sb); 3432 ext4_mark_recovery_complete(sb, es); 3433 lock_super(sb); 3434 } 3435 } else { 3436 int ret; 3437 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3438 ~EXT4_FEATURE_RO_COMPAT_SUPP))) { 3439 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 3440 "remount RDWR because of unsupported " 3441 "optional features (%x).\n", sb->s_id, 3442 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) & 3443 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3444 err = -EROFS; 3445 goto restore_opts; 3446 } 3447 3448 /* 3449 * Make sure the group descriptor checksums 3450 * are sane. If they aren't, refuse to 3451 * remount r/w. 3452 */ 3453 for (g = 0; g < sbi->s_groups_count; g++) { 3454 struct ext4_group_desc *gdp = 3455 ext4_get_group_desc(sb, g, NULL); 3456 3457 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3458 printk(KERN_ERR 3459 "EXT4-fs: ext4_remount: " 3460 "Checksum for group %u failed (%u!=%u)\n", 3461 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3462 le16_to_cpu(gdp->bg_checksum)); 3463 err = -EINVAL; 3464 goto restore_opts; 3465 } 3466 } 3467 3468 /* 3469 * If we have an unprocessed orphan list hanging 3470 * around from a previously readonly bdev mount, 3471 * require a full umount/remount for now. 3472 */ 3473 if (es->s_last_orphan) { 3474 printk(KERN_WARNING "EXT4-fs: %s: couldn't " 3475 "remount RDWR because of unprocessed " 3476 "orphan inode list. Please " 3477 "umount/remount instead.\n", 3478 sb->s_id); 3479 err = -EINVAL; 3480 goto restore_opts; 3481 } 3482 3483 /* 3484 * Mounting a RDONLY partition read-write, so reread 3485 * and store the current valid flag. (It may have 3486 * been changed by e2fsck since we originally mounted 3487 * the partition.) 3488 */ 3489 if (sbi->s_journal) 3490 ext4_clear_journal_err(sb, es); 3491 sbi->s_mount_state = le16_to_cpu(es->s_state); 3492 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3493 goto restore_opts; 3494 if (!ext4_setup_super(sb, es, 0)) 3495 sb->s_flags &= ~MS_RDONLY; 3496 } 3497 } 3498 if (sbi->s_journal == NULL) 3499 ext4_commit_super(sb, es, 1); 3500 3501 #ifdef CONFIG_QUOTA 3502 /* Release old quota file names */ 3503 for (i = 0; i < MAXQUOTAS; i++) 3504 if (old_opts.s_qf_names[i] && 3505 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3506 kfree(old_opts.s_qf_names[i]); 3507 #endif 3508 return 0; 3509 restore_opts: 3510 sb->s_flags = old_sb_flags; 3511 sbi->s_mount_opt = old_opts.s_mount_opt; 3512 sbi->s_resuid = old_opts.s_resuid; 3513 sbi->s_resgid = old_opts.s_resgid; 3514 sbi->s_commit_interval = old_opts.s_commit_interval; 3515 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3516 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3517 #ifdef CONFIG_QUOTA 3518 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3519 for (i = 0; i < MAXQUOTAS; i++) { 3520 if (sbi->s_qf_names[i] && 3521 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3522 kfree(sbi->s_qf_names[i]); 3523 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3524 } 3525 #endif 3526 return err; 3527 } 3528 3529 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3530 { 3531 struct super_block *sb = dentry->d_sb; 3532 struct ext4_sb_info *sbi = EXT4_SB(sb); 3533 struct ext4_super_block *es = sbi->s_es; 3534 u64 fsid; 3535 3536 if (test_opt(sb, MINIX_DF)) { 3537 sbi->s_overhead_last = 0; 3538 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3539 ext4_group_t ngroups = sbi->s_groups_count, i; 3540 ext4_fsblk_t overhead = 0; 3541 smp_rmb(); 3542 3543 /* 3544 * Compute the overhead (FS structures). This is constant 3545 * for a given filesystem unless the number of block groups 3546 * changes so we cache the previous value until it does. 3547 */ 3548 3549 /* 3550 * All of the blocks before first_data_block are 3551 * overhead 3552 */ 3553 overhead = le32_to_cpu(es->s_first_data_block); 3554 3555 /* 3556 * Add the overhead attributed to the superblock and 3557 * block group descriptors. If the sparse superblocks 3558 * feature is turned on, then not all groups have this. 3559 */ 3560 for (i = 0; i < ngroups; i++) { 3561 overhead += ext4_bg_has_super(sb, i) + 3562 ext4_bg_num_gdb(sb, i); 3563 cond_resched(); 3564 } 3565 3566 /* 3567 * Every block group has an inode bitmap, a block 3568 * bitmap, and an inode table. 3569 */ 3570 overhead += ngroups * (2 + sbi->s_itb_per_group); 3571 sbi->s_overhead_last = overhead; 3572 smp_wmb(); 3573 sbi->s_blocks_last = ext4_blocks_count(es); 3574 } 3575 3576 buf->f_type = EXT4_SUPER_MAGIC; 3577 buf->f_bsize = sb->s_blocksize; 3578 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3579 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3580 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3581 ext4_free_blocks_count_set(es, buf->f_bfree); 3582 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3583 if (buf->f_bfree < ext4_r_blocks_count(es)) 3584 buf->f_bavail = 0; 3585 buf->f_files = le32_to_cpu(es->s_inodes_count); 3586 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3587 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3588 buf->f_namelen = EXT4_NAME_LEN; 3589 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3590 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3591 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3592 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3593 return 0; 3594 } 3595 3596 /* Helper function for writing quotas on sync - we need to start transaction before quota file 3597 * is locked for write. Otherwise the are possible deadlocks: 3598 * Process 1 Process 2 3599 * ext4_create() quota_sync() 3600 * jbd2_journal_start() write_dquot() 3601 * vfs_dq_init() down(dqio_mutex) 3602 * down(dqio_mutex) jbd2_journal_start() 3603 * 3604 */ 3605 3606 #ifdef CONFIG_QUOTA 3607 3608 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3609 { 3610 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3611 } 3612 3613 static int ext4_write_dquot(struct dquot *dquot) 3614 { 3615 int ret, err; 3616 handle_t *handle; 3617 struct inode *inode; 3618 3619 inode = dquot_to_inode(dquot); 3620 handle = ext4_journal_start(inode, 3621 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3622 if (IS_ERR(handle)) 3623 return PTR_ERR(handle); 3624 ret = dquot_commit(dquot); 3625 err = ext4_journal_stop(handle); 3626 if (!ret) 3627 ret = err; 3628 return ret; 3629 } 3630 3631 static int ext4_acquire_dquot(struct dquot *dquot) 3632 { 3633 int ret, err; 3634 handle_t *handle; 3635 3636 handle = ext4_journal_start(dquot_to_inode(dquot), 3637 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3638 if (IS_ERR(handle)) 3639 return PTR_ERR(handle); 3640 ret = dquot_acquire(dquot); 3641 err = ext4_journal_stop(handle); 3642 if (!ret) 3643 ret = err; 3644 return ret; 3645 } 3646 3647 static int ext4_release_dquot(struct dquot *dquot) 3648 { 3649 int ret, err; 3650 handle_t *handle; 3651 3652 handle = ext4_journal_start(dquot_to_inode(dquot), 3653 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3654 if (IS_ERR(handle)) { 3655 /* Release dquot anyway to avoid endless cycle in dqput() */ 3656 dquot_release(dquot); 3657 return PTR_ERR(handle); 3658 } 3659 ret = dquot_release(dquot); 3660 err = ext4_journal_stop(handle); 3661 if (!ret) 3662 ret = err; 3663 return ret; 3664 } 3665 3666 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3667 { 3668 /* Are we journaling quotas? */ 3669 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3670 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3671 dquot_mark_dquot_dirty(dquot); 3672 return ext4_write_dquot(dquot); 3673 } else { 3674 return dquot_mark_dquot_dirty(dquot); 3675 } 3676 } 3677 3678 static int ext4_write_info(struct super_block *sb, int type) 3679 { 3680 int ret, err; 3681 handle_t *handle; 3682 3683 /* Data block + inode block */ 3684 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3685 if (IS_ERR(handle)) 3686 return PTR_ERR(handle); 3687 ret = dquot_commit_info(sb, type); 3688 err = ext4_journal_stop(handle); 3689 if (!ret) 3690 ret = err; 3691 return ret; 3692 } 3693 3694 /* 3695 * Turn on quotas during mount time - we need to find 3696 * the quota file and such... 3697 */ 3698 static int ext4_quota_on_mount(struct super_block *sb, int type) 3699 { 3700 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3701 EXT4_SB(sb)->s_jquota_fmt, type); 3702 } 3703 3704 /* 3705 * Standard function to be called on quota_on 3706 */ 3707 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3708 char *name, int remount) 3709 { 3710 int err; 3711 struct path path; 3712 3713 if (!test_opt(sb, QUOTA)) 3714 return -EINVAL; 3715 /* When remounting, no checks are needed and in fact, name is NULL */ 3716 if (remount) 3717 return vfs_quota_on(sb, type, format_id, name, remount); 3718 3719 err = kern_path(name, LOOKUP_FOLLOW, &path); 3720 if (err) 3721 return err; 3722 3723 /* Quotafile not on the same filesystem? */ 3724 if (path.mnt->mnt_sb != sb) { 3725 path_put(&path); 3726 return -EXDEV; 3727 } 3728 /* Journaling quota? */ 3729 if (EXT4_SB(sb)->s_qf_names[type]) { 3730 /* Quotafile not in fs root? */ 3731 if (path.dentry->d_parent != sb->s_root) 3732 printk(KERN_WARNING 3733 "EXT4-fs: Quota file not on filesystem root. " 3734 "Journaled quota will not work.\n"); 3735 } 3736 3737 /* 3738 * When we journal data on quota file, we have to flush journal to see 3739 * all updates to the file when we bypass pagecache... 3740 */ 3741 if (EXT4_SB(sb)->s_journal && 3742 ext4_should_journal_data(path.dentry->d_inode)) { 3743 /* 3744 * We don't need to lock updates but journal_flush() could 3745 * otherwise be livelocked... 3746 */ 3747 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3748 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3749 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3750 if (err) { 3751 path_put(&path); 3752 return err; 3753 } 3754 } 3755 3756 err = vfs_quota_on_path(sb, type, format_id, &path); 3757 path_put(&path); 3758 return err; 3759 } 3760 3761 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3762 * acquiring the locks... As quota files are never truncated and quota code 3763 * itself serializes the operations (and noone else should touch the files) 3764 * we don't have to be afraid of races */ 3765 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3766 size_t len, loff_t off) 3767 { 3768 struct inode *inode = sb_dqopt(sb)->files[type]; 3769 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3770 int err = 0; 3771 int offset = off & (sb->s_blocksize - 1); 3772 int tocopy; 3773 size_t toread; 3774 struct buffer_head *bh; 3775 loff_t i_size = i_size_read(inode); 3776 3777 if (off > i_size) 3778 return 0; 3779 if (off+len > i_size) 3780 len = i_size-off; 3781 toread = len; 3782 while (toread > 0) { 3783 tocopy = sb->s_blocksize - offset < toread ? 3784 sb->s_blocksize - offset : toread; 3785 bh = ext4_bread(NULL, inode, blk, 0, &err); 3786 if (err) 3787 return err; 3788 if (!bh) /* A hole? */ 3789 memset(data, 0, tocopy); 3790 else 3791 memcpy(data, bh->b_data+offset, tocopy); 3792 brelse(bh); 3793 offset = 0; 3794 toread -= tocopy; 3795 data += tocopy; 3796 blk++; 3797 } 3798 return len; 3799 } 3800 3801 /* Write to quotafile (we know the transaction is already started and has 3802 * enough credits) */ 3803 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3804 const char *data, size_t len, loff_t off) 3805 { 3806 struct inode *inode = sb_dqopt(sb)->files[type]; 3807 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3808 int err = 0; 3809 int offset = off & (sb->s_blocksize - 1); 3810 int tocopy; 3811 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3812 size_t towrite = len; 3813 struct buffer_head *bh; 3814 handle_t *handle = journal_current_handle(); 3815 3816 if (EXT4_SB(sb)->s_journal && !handle) { 3817 printk(KERN_WARNING "EXT4-fs: Quota write (off=%llu, len=%llu)" 3818 " cancelled because transaction is not started.\n", 3819 (unsigned long long)off, (unsigned long long)len); 3820 return -EIO; 3821 } 3822 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3823 while (towrite > 0) { 3824 tocopy = sb->s_blocksize - offset < towrite ? 3825 sb->s_blocksize - offset : towrite; 3826 bh = ext4_bread(handle, inode, blk, 1, &err); 3827 if (!bh) 3828 goto out; 3829 if (journal_quota) { 3830 err = ext4_journal_get_write_access(handle, bh); 3831 if (err) { 3832 brelse(bh); 3833 goto out; 3834 } 3835 } 3836 lock_buffer(bh); 3837 memcpy(bh->b_data+offset, data, tocopy); 3838 flush_dcache_page(bh->b_page); 3839 unlock_buffer(bh); 3840 if (journal_quota) 3841 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3842 else { 3843 /* Always do at least ordered writes for quotas */ 3844 err = ext4_jbd2_file_inode(handle, inode); 3845 mark_buffer_dirty(bh); 3846 } 3847 brelse(bh); 3848 if (err) 3849 goto out; 3850 offset = 0; 3851 towrite -= tocopy; 3852 data += tocopy; 3853 blk++; 3854 } 3855 out: 3856 if (len == towrite) { 3857 mutex_unlock(&inode->i_mutex); 3858 return err; 3859 } 3860 if (inode->i_size < off+len-towrite) { 3861 i_size_write(inode, off+len-towrite); 3862 EXT4_I(inode)->i_disksize = inode->i_size; 3863 } 3864 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3865 ext4_mark_inode_dirty(handle, inode); 3866 mutex_unlock(&inode->i_mutex); 3867 return len - towrite; 3868 } 3869 3870 #endif 3871 3872 static int ext4_get_sb(struct file_system_type *fs_type, 3873 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 3874 { 3875 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); 3876 } 3877 3878 static struct file_system_type ext4_fs_type = { 3879 .owner = THIS_MODULE, 3880 .name = "ext4", 3881 .get_sb = ext4_get_sb, 3882 .kill_sb = kill_block_super, 3883 .fs_flags = FS_REQUIRES_DEV, 3884 }; 3885 3886 #ifdef CONFIG_EXT4DEV_COMPAT 3887 static int ext4dev_get_sb(struct file_system_type *fs_type, 3888 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 3889 { 3890 printk(KERN_WARNING "EXT4-fs: Update your userspace programs " 3891 "to mount using ext4\n"); 3892 printk(KERN_WARNING "EXT4-fs: ext4dev backwards compatibility " 3893 "will go away by 2.6.31\n"); 3894 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt); 3895 } 3896 3897 static struct file_system_type ext4dev_fs_type = { 3898 .owner = THIS_MODULE, 3899 .name = "ext4dev", 3900 .get_sb = ext4dev_get_sb, 3901 .kill_sb = kill_block_super, 3902 .fs_flags = FS_REQUIRES_DEV, 3903 }; 3904 MODULE_ALIAS("ext4dev"); 3905 #endif 3906 3907 static int __init init_ext4_fs(void) 3908 { 3909 int err; 3910 3911 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 3912 if (!ext4_kset) 3913 return -ENOMEM; 3914 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3915 err = init_ext4_mballoc(); 3916 if (err) 3917 return err; 3918 3919 err = init_ext4_xattr(); 3920 if (err) 3921 goto out2; 3922 err = init_inodecache(); 3923 if (err) 3924 goto out1; 3925 err = register_filesystem(&ext4_fs_type); 3926 if (err) 3927 goto out; 3928 #ifdef CONFIG_EXT4DEV_COMPAT 3929 err = register_filesystem(&ext4dev_fs_type); 3930 if (err) { 3931 unregister_filesystem(&ext4_fs_type); 3932 goto out; 3933 } 3934 #endif 3935 return 0; 3936 out: 3937 destroy_inodecache(); 3938 out1: 3939 exit_ext4_xattr(); 3940 out2: 3941 exit_ext4_mballoc(); 3942 return err; 3943 } 3944 3945 static void __exit exit_ext4_fs(void) 3946 { 3947 unregister_filesystem(&ext4_fs_type); 3948 #ifdef CONFIG_EXT4DEV_COMPAT 3949 unregister_filesystem(&ext4dev_fs_type); 3950 #endif 3951 destroy_inodecache(); 3952 exit_ext4_xattr(); 3953 exit_ext4_mballoc(); 3954 remove_proc_entry("fs/ext4", NULL); 3955 kset_unregister(ext4_kset); 3956 } 3957 3958 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 3959 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 3960 MODULE_LICENSE("GPL"); 3961 module_init(init_ext4_fs) 3962 module_exit(exit_ext4_fs) 3963