1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 #include "fsmap.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ext4.h> 57 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ratelimit_state ext4_mount_msg_ratelimit; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 76 const char *dev_name, void *data); 77 static inline int ext2_feature_set_ok(struct super_block *sb); 78 static inline int ext3_feature_set_ok(struct super_block *sb); 79 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 80 static void ext4_destroy_lazyinit_thread(void); 81 static void ext4_unregister_li_request(struct super_block *sb); 82 static void ext4_clear_request_list(void); 83 static struct inode *ext4_get_journal_inode(struct super_block *sb, 84 unsigned int journal_inum); 85 86 /* 87 * Lock ordering 88 * 89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 90 * i_mmap_rwsem (inode->i_mmap_rwsem)! 91 * 92 * page fault path: 93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 94 * page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_sem 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * i_mmap_rwsem (w) -> page lock 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * transaction start -> i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 110 * transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (sb_rdonly(sb)) 409 return; 410 411 if (!test_opt(sb, ERRORS_CONT)) { 412 journal_t *journal = EXT4_SB(sb)->s_journal; 413 414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 415 if (journal) 416 jbd2_journal_abort(journal, -EIO); 417 } 418 if (test_opt(sb, ERRORS_RO)) { 419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 420 /* 421 * Make sure updated value of ->s_mount_flags will be visible 422 * before ->s_flags update 423 */ 424 smp_wmb(); 425 sb->s_flags |= MS_RDONLY; 426 } 427 if (test_opt(sb, ERRORS_PANIC)) { 428 if (EXT4_SB(sb)->s_journal && 429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 430 return; 431 panic("EXT4-fs (device %s): panic forced after error\n", 432 sb->s_id); 433 } 434 } 435 436 #define ext4_error_ratelimit(sb) \ 437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 438 "EXT4-fs error") 439 440 void __ext4_error(struct super_block *sb, const char *function, 441 unsigned int line, const char *fmt, ...) 442 { 443 struct va_format vaf; 444 va_list args; 445 446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 447 return; 448 449 if (ext4_error_ratelimit(sb)) { 450 va_start(args, fmt); 451 vaf.fmt = fmt; 452 vaf.va = &args; 453 printk(KERN_CRIT 454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 455 sb->s_id, function, line, current->comm, &vaf); 456 va_end(args); 457 } 458 save_error_info(sb, function, line); 459 ext4_handle_error(sb); 460 } 461 462 void __ext4_error_inode(struct inode *inode, const char *function, 463 unsigned int line, ext4_fsblk_t block, 464 const char *fmt, ...) 465 { 466 va_list args; 467 struct va_format vaf; 468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 469 470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 471 return; 472 473 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 474 es->s_last_error_block = cpu_to_le64(block); 475 if (ext4_error_ratelimit(inode->i_sb)) { 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 481 "inode #%lu: block %llu: comm %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 block, current->comm, &vaf); 484 else 485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 486 "inode #%lu: comm %s: %pV\n", 487 inode->i_sb->s_id, function, line, inode->i_ino, 488 current->comm, &vaf); 489 va_end(args); 490 } 491 save_error_info(inode->i_sb, function, line); 492 ext4_handle_error(inode->i_sb); 493 } 494 495 void __ext4_error_file(struct file *file, const char *function, 496 unsigned int line, ext4_fsblk_t block, 497 const char *fmt, ...) 498 { 499 va_list args; 500 struct va_format vaf; 501 struct ext4_super_block *es; 502 struct inode *inode = file_inode(file); 503 char pathname[80], *path; 504 505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 506 return; 507 508 es = EXT4_SB(inode->i_sb)->s_es; 509 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 510 if (ext4_error_ratelimit(inode->i_sb)) { 511 path = file_path(file, pathname, sizeof(pathname)); 512 if (IS_ERR(path)) 513 path = "(unknown)"; 514 va_start(args, fmt); 515 vaf.fmt = fmt; 516 vaf.va = &args; 517 if (block) 518 printk(KERN_CRIT 519 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 520 "block %llu: comm %s: path %s: %pV\n", 521 inode->i_sb->s_id, function, line, inode->i_ino, 522 block, current->comm, path, &vaf); 523 else 524 printk(KERN_CRIT 525 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 526 "comm %s: path %s: %pV\n", 527 inode->i_sb->s_id, function, line, inode->i_ino, 528 current->comm, path, &vaf); 529 va_end(args); 530 } 531 save_error_info(inode->i_sb, function, line); 532 ext4_handle_error(inode->i_sb); 533 } 534 535 const char *ext4_decode_error(struct super_block *sb, int errno, 536 char nbuf[16]) 537 { 538 char *errstr = NULL; 539 540 switch (errno) { 541 case -EFSCORRUPTED: 542 errstr = "Corrupt filesystem"; 543 break; 544 case -EFSBADCRC: 545 errstr = "Filesystem failed CRC"; 546 break; 547 case -EIO: 548 errstr = "IO failure"; 549 break; 550 case -ENOMEM: 551 errstr = "Out of memory"; 552 break; 553 case -EROFS: 554 if (!sb || (EXT4_SB(sb)->s_journal && 555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 556 errstr = "Journal has aborted"; 557 else 558 errstr = "Readonly filesystem"; 559 break; 560 default: 561 /* If the caller passed in an extra buffer for unknown 562 * errors, textualise them now. Else we just return 563 * NULL. */ 564 if (nbuf) { 565 /* Check for truncated error codes... */ 566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 567 errstr = nbuf; 568 } 569 break; 570 } 571 572 return errstr; 573 } 574 575 /* __ext4_std_error decodes expected errors from journaling functions 576 * automatically and invokes the appropriate error response. */ 577 578 void __ext4_std_error(struct super_block *sb, const char *function, 579 unsigned int line, int errno) 580 { 581 char nbuf[16]; 582 const char *errstr; 583 584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 585 return; 586 587 /* Special case: if the error is EROFS, and we're not already 588 * inside a transaction, then there's really no point in logging 589 * an error. */ 590 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 591 return; 592 593 if (ext4_error_ratelimit(sb)) { 594 errstr = ext4_decode_error(sb, errno, nbuf); 595 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 596 sb->s_id, function, line, errstr); 597 } 598 599 save_error_info(sb, function, line); 600 ext4_handle_error(sb); 601 } 602 603 /* 604 * ext4_abort is a much stronger failure handler than ext4_error. The 605 * abort function may be used to deal with unrecoverable failures such 606 * as journal IO errors or ENOMEM at a critical moment in log management. 607 * 608 * We unconditionally force the filesystem into an ABORT|READONLY state, 609 * unless the error response on the fs has been set to panic in which 610 * case we take the easy way out and panic immediately. 611 */ 612 613 void __ext4_abort(struct super_block *sb, const char *function, 614 unsigned int line, const char *fmt, ...) 615 { 616 struct va_format vaf; 617 va_list args; 618 619 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 620 return; 621 622 save_error_info(sb, function, line); 623 va_start(args, fmt); 624 vaf.fmt = fmt; 625 vaf.va = &args; 626 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 627 sb->s_id, function, line, &vaf); 628 va_end(args); 629 630 if (sb_rdonly(sb) == 0) { 631 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 632 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 633 /* 634 * Make sure updated value of ->s_mount_flags will be visible 635 * before ->s_flags update 636 */ 637 smp_wmb(); 638 sb->s_flags |= MS_RDONLY; 639 if (EXT4_SB(sb)->s_journal) 640 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 641 save_error_info(sb, function, line); 642 } 643 if (test_opt(sb, ERRORS_PANIC)) { 644 if (EXT4_SB(sb)->s_journal && 645 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 646 return; 647 panic("EXT4-fs panic from previous error\n"); 648 } 649 } 650 651 void __ext4_msg(struct super_block *sb, 652 const char *prefix, const char *fmt, ...) 653 { 654 struct va_format vaf; 655 va_list args; 656 657 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 658 return; 659 660 va_start(args, fmt); 661 vaf.fmt = fmt; 662 vaf.va = &args; 663 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 664 va_end(args); 665 } 666 667 #define ext4_warning_ratelimit(sb) \ 668 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 669 "EXT4-fs warning") 670 671 void __ext4_warning(struct super_block *sb, const char *function, 672 unsigned int line, const char *fmt, ...) 673 { 674 struct va_format vaf; 675 va_list args; 676 677 if (!ext4_warning_ratelimit(sb)) 678 return; 679 680 va_start(args, fmt); 681 vaf.fmt = fmt; 682 vaf.va = &args; 683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 684 sb->s_id, function, line, &vaf); 685 va_end(args); 686 } 687 688 void __ext4_warning_inode(const struct inode *inode, const char *function, 689 unsigned int line, const char *fmt, ...) 690 { 691 struct va_format vaf; 692 va_list args; 693 694 if (!ext4_warning_ratelimit(inode->i_sb)) 695 return; 696 697 va_start(args, fmt); 698 vaf.fmt = fmt; 699 vaf.va = &args; 700 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 701 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 702 function, line, inode->i_ino, current->comm, &vaf); 703 va_end(args); 704 } 705 706 void __ext4_grp_locked_error(const char *function, unsigned int line, 707 struct super_block *sb, ext4_group_t grp, 708 unsigned long ino, ext4_fsblk_t block, 709 const char *fmt, ...) 710 __releases(bitlock) 711 __acquires(bitlock) 712 { 713 struct va_format vaf; 714 va_list args; 715 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 716 717 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 718 return; 719 720 es->s_last_error_ino = cpu_to_le32(ino); 721 es->s_last_error_block = cpu_to_le64(block); 722 __save_error_info(sb, function, line); 723 724 if (ext4_error_ratelimit(sb)) { 725 va_start(args, fmt); 726 vaf.fmt = fmt; 727 vaf.va = &args; 728 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 729 sb->s_id, function, line, grp); 730 if (ino) 731 printk(KERN_CONT "inode %lu: ", ino); 732 if (block) 733 printk(KERN_CONT "block %llu:", 734 (unsigned long long) block); 735 printk(KERN_CONT "%pV\n", &vaf); 736 va_end(args); 737 } 738 739 if (test_opt(sb, ERRORS_CONT)) { 740 ext4_commit_super(sb, 0); 741 return; 742 } 743 744 ext4_unlock_group(sb, grp); 745 ext4_handle_error(sb); 746 /* 747 * We only get here in the ERRORS_RO case; relocking the group 748 * may be dangerous, but nothing bad will happen since the 749 * filesystem will have already been marked read/only and the 750 * journal has been aborted. We return 1 as a hint to callers 751 * who might what to use the return value from 752 * ext4_grp_locked_error() to distinguish between the 753 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 754 * aggressively from the ext4 function in question, with a 755 * more appropriate error code. 756 */ 757 ext4_lock_group(sb, grp); 758 return; 759 } 760 761 void ext4_update_dynamic_rev(struct super_block *sb) 762 { 763 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 764 765 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 766 return; 767 768 ext4_warning(sb, 769 "updating to rev %d because of new feature flag, " 770 "running e2fsck is recommended", 771 EXT4_DYNAMIC_REV); 772 773 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 774 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 775 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 776 /* leave es->s_feature_*compat flags alone */ 777 /* es->s_uuid will be set by e2fsck if empty */ 778 779 /* 780 * The rest of the superblock fields should be zero, and if not it 781 * means they are likely already in use, so leave them alone. We 782 * can leave it up to e2fsck to clean up any inconsistencies there. 783 */ 784 } 785 786 /* 787 * Open the external journal device 788 */ 789 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 790 { 791 struct block_device *bdev; 792 char b[BDEVNAME_SIZE]; 793 794 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 795 if (IS_ERR(bdev)) 796 goto fail; 797 return bdev; 798 799 fail: 800 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 801 __bdevname(dev, b), PTR_ERR(bdev)); 802 return NULL; 803 } 804 805 /* 806 * Release the journal device 807 */ 808 static void ext4_blkdev_put(struct block_device *bdev) 809 { 810 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 811 } 812 813 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 814 { 815 struct block_device *bdev; 816 bdev = sbi->journal_bdev; 817 if (bdev) { 818 ext4_blkdev_put(bdev); 819 sbi->journal_bdev = NULL; 820 } 821 } 822 823 static inline struct inode *orphan_list_entry(struct list_head *l) 824 { 825 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 826 } 827 828 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 829 { 830 struct list_head *l; 831 832 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 833 le32_to_cpu(sbi->s_es->s_last_orphan)); 834 835 printk(KERN_ERR "sb_info orphan list:\n"); 836 list_for_each(l, &sbi->s_orphan) { 837 struct inode *inode = orphan_list_entry(l); 838 printk(KERN_ERR " " 839 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 840 inode->i_sb->s_id, inode->i_ino, inode, 841 inode->i_mode, inode->i_nlink, 842 NEXT_ORPHAN(inode)); 843 } 844 } 845 846 #ifdef CONFIG_QUOTA 847 static int ext4_quota_off(struct super_block *sb, int type); 848 849 static inline void ext4_quota_off_umount(struct super_block *sb) 850 { 851 int type; 852 853 /* Use our quota_off function to clear inode flags etc. */ 854 for (type = 0; type < EXT4_MAXQUOTAS; type++) 855 ext4_quota_off(sb, type); 856 } 857 #else 858 static inline void ext4_quota_off_umount(struct super_block *sb) 859 { 860 } 861 #endif 862 863 static void ext4_put_super(struct super_block *sb) 864 { 865 struct ext4_sb_info *sbi = EXT4_SB(sb); 866 struct ext4_super_block *es = sbi->s_es; 867 int aborted = 0; 868 int i, err; 869 870 ext4_unregister_li_request(sb); 871 ext4_quota_off_umount(sb); 872 873 flush_workqueue(sbi->rsv_conversion_wq); 874 destroy_workqueue(sbi->rsv_conversion_wq); 875 876 if (sbi->s_journal) { 877 aborted = is_journal_aborted(sbi->s_journal); 878 err = jbd2_journal_destroy(sbi->s_journal); 879 sbi->s_journal = NULL; 880 if ((err < 0) && !aborted) 881 ext4_abort(sb, "Couldn't clean up the journal"); 882 } 883 884 ext4_unregister_sysfs(sb); 885 ext4_es_unregister_shrinker(sbi); 886 del_timer_sync(&sbi->s_err_report); 887 ext4_release_system_zone(sb); 888 ext4_mb_release(sb); 889 ext4_ext_release(sb); 890 891 if (!sb_rdonly(sb) && !aborted) { 892 ext4_clear_feature_journal_needs_recovery(sb); 893 es->s_state = cpu_to_le16(sbi->s_mount_state); 894 } 895 if (!sb_rdonly(sb)) 896 ext4_commit_super(sb, 1); 897 898 for (i = 0; i < sbi->s_gdb_count; i++) 899 brelse(sbi->s_group_desc[i]); 900 kvfree(sbi->s_group_desc); 901 kvfree(sbi->s_flex_groups); 902 percpu_counter_destroy(&sbi->s_freeclusters_counter); 903 percpu_counter_destroy(&sbi->s_freeinodes_counter); 904 percpu_counter_destroy(&sbi->s_dirs_counter); 905 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 906 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 907 #ifdef CONFIG_QUOTA 908 for (i = 0; i < EXT4_MAXQUOTAS; i++) 909 kfree(sbi->s_qf_names[i]); 910 #endif 911 912 /* Debugging code just in case the in-memory inode orphan list 913 * isn't empty. The on-disk one can be non-empty if we've 914 * detected an error and taken the fs readonly, but the 915 * in-memory list had better be clean by this point. */ 916 if (!list_empty(&sbi->s_orphan)) 917 dump_orphan_list(sb, sbi); 918 J_ASSERT(list_empty(&sbi->s_orphan)); 919 920 sync_blockdev(sb->s_bdev); 921 invalidate_bdev(sb->s_bdev); 922 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 923 /* 924 * Invalidate the journal device's buffers. We don't want them 925 * floating about in memory - the physical journal device may 926 * hotswapped, and it breaks the `ro-after' testing code. 927 */ 928 sync_blockdev(sbi->journal_bdev); 929 invalidate_bdev(sbi->journal_bdev); 930 ext4_blkdev_remove(sbi); 931 } 932 if (sbi->s_ea_inode_cache) { 933 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 934 sbi->s_ea_inode_cache = NULL; 935 } 936 if (sbi->s_ea_block_cache) { 937 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 938 sbi->s_ea_block_cache = NULL; 939 } 940 if (sbi->s_mmp_tsk) 941 kthread_stop(sbi->s_mmp_tsk); 942 brelse(sbi->s_sbh); 943 sb->s_fs_info = NULL; 944 /* 945 * Now that we are completely done shutting down the 946 * superblock, we need to actually destroy the kobject. 947 */ 948 kobject_put(&sbi->s_kobj); 949 wait_for_completion(&sbi->s_kobj_unregister); 950 if (sbi->s_chksum_driver) 951 crypto_free_shash(sbi->s_chksum_driver); 952 kfree(sbi->s_blockgroup_lock); 953 fs_put_dax(sbi->s_daxdev); 954 kfree(sbi); 955 } 956 957 static struct kmem_cache *ext4_inode_cachep; 958 959 /* 960 * Called inside transaction, so use GFP_NOFS 961 */ 962 static struct inode *ext4_alloc_inode(struct super_block *sb) 963 { 964 struct ext4_inode_info *ei; 965 966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 967 if (!ei) 968 return NULL; 969 970 ei->vfs_inode.i_version = 1; 971 spin_lock_init(&ei->i_raw_lock); 972 INIT_LIST_HEAD(&ei->i_prealloc_list); 973 spin_lock_init(&ei->i_prealloc_lock); 974 ext4_es_init_tree(&ei->i_es_tree); 975 rwlock_init(&ei->i_es_lock); 976 INIT_LIST_HEAD(&ei->i_es_list); 977 ei->i_es_all_nr = 0; 978 ei->i_es_shk_nr = 0; 979 ei->i_es_shrink_lblk = 0; 980 ei->i_reserved_data_blocks = 0; 981 ei->i_da_metadata_calc_len = 0; 982 ei->i_da_metadata_calc_last_lblock = 0; 983 spin_lock_init(&(ei->i_block_reservation_lock)); 984 #ifdef CONFIG_QUOTA 985 ei->i_reserved_quota = 0; 986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 987 #endif 988 ei->jinode = NULL; 989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 990 spin_lock_init(&ei->i_completed_io_lock); 991 ei->i_sync_tid = 0; 992 ei->i_datasync_tid = 0; 993 atomic_set(&ei->i_unwritten, 0); 994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 995 return &ei->vfs_inode; 996 } 997 998 static int ext4_drop_inode(struct inode *inode) 999 { 1000 int drop = generic_drop_inode(inode); 1001 1002 trace_ext4_drop_inode(inode, drop); 1003 return drop; 1004 } 1005 1006 static void ext4_i_callback(struct rcu_head *head) 1007 { 1008 struct inode *inode = container_of(head, struct inode, i_rcu); 1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1010 } 1011 1012 static void ext4_destroy_inode(struct inode *inode) 1013 { 1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1015 ext4_msg(inode->i_sb, KERN_ERR, 1016 "Inode %lu (%p): orphan list check failed!", 1017 inode->i_ino, EXT4_I(inode)); 1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1019 EXT4_I(inode), sizeof(struct ext4_inode_info), 1020 true); 1021 dump_stack(); 1022 } 1023 call_rcu(&inode->i_rcu, ext4_i_callback); 1024 } 1025 1026 static void init_once(void *foo) 1027 { 1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1029 1030 INIT_LIST_HEAD(&ei->i_orphan); 1031 init_rwsem(&ei->xattr_sem); 1032 init_rwsem(&ei->i_data_sem); 1033 init_rwsem(&ei->i_mmap_sem); 1034 inode_init_once(&ei->vfs_inode); 1035 } 1036 1037 static int __init init_inodecache(void) 1038 { 1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1040 sizeof(struct ext4_inode_info), 1041 0, (SLAB_RECLAIM_ACCOUNT| 1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1043 init_once); 1044 if (ext4_inode_cachep == NULL) 1045 return -ENOMEM; 1046 return 0; 1047 } 1048 1049 static void destroy_inodecache(void) 1050 { 1051 /* 1052 * Make sure all delayed rcu free inodes are flushed before we 1053 * destroy cache. 1054 */ 1055 rcu_barrier(); 1056 kmem_cache_destroy(ext4_inode_cachep); 1057 } 1058 1059 void ext4_clear_inode(struct inode *inode) 1060 { 1061 invalidate_inode_buffers(inode); 1062 clear_inode(inode); 1063 dquot_drop(inode); 1064 ext4_discard_preallocations(inode); 1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1066 if (EXT4_I(inode)->jinode) { 1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1068 EXT4_I(inode)->jinode); 1069 jbd2_free_inode(EXT4_I(inode)->jinode); 1070 EXT4_I(inode)->jinode = NULL; 1071 } 1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1073 fscrypt_put_encryption_info(inode, NULL); 1074 #endif 1075 } 1076 1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1078 u64 ino, u32 generation) 1079 { 1080 struct inode *inode; 1081 1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1083 return ERR_PTR(-ESTALE); 1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1085 return ERR_PTR(-ESTALE); 1086 1087 /* iget isn't really right if the inode is currently unallocated!! 1088 * 1089 * ext4_read_inode will return a bad_inode if the inode had been 1090 * deleted, so we should be safe. 1091 * 1092 * Currently we don't know the generation for parent directory, so 1093 * a generation of 0 means "accept any" 1094 */ 1095 inode = ext4_iget_normal(sb, ino); 1096 if (IS_ERR(inode)) 1097 return ERR_CAST(inode); 1098 if (generation && inode->i_generation != generation) { 1099 iput(inode); 1100 return ERR_PTR(-ESTALE); 1101 } 1102 1103 return inode; 1104 } 1105 1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1107 int fh_len, int fh_type) 1108 { 1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1110 ext4_nfs_get_inode); 1111 } 1112 1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1114 int fh_len, int fh_type) 1115 { 1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1117 ext4_nfs_get_inode); 1118 } 1119 1120 /* 1121 * Try to release metadata pages (indirect blocks, directories) which are 1122 * mapped via the block device. Since these pages could have journal heads 1123 * which would prevent try_to_free_buffers() from freeing them, we must use 1124 * jbd2 layer's try_to_free_buffers() function to release them. 1125 */ 1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1127 gfp_t wait) 1128 { 1129 journal_t *journal = EXT4_SB(sb)->s_journal; 1130 1131 WARN_ON(PageChecked(page)); 1132 if (!page_has_buffers(page)) 1133 return 0; 1134 if (journal) 1135 return jbd2_journal_try_to_free_buffers(journal, page, 1136 wait & ~__GFP_DIRECT_RECLAIM); 1137 return try_to_free_buffers(page); 1138 } 1139 1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1142 { 1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1145 } 1146 1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1148 void *fs_data) 1149 { 1150 handle_t *handle = fs_data; 1151 int res, res2, credits, retries = 0; 1152 1153 /* 1154 * Encrypting the root directory is not allowed because e2fsck expects 1155 * lost+found to exist and be unencrypted, and encrypting the root 1156 * directory would imply encrypting the lost+found directory as well as 1157 * the filename "lost+found" itself. 1158 */ 1159 if (inode->i_ino == EXT4_ROOT_INO) 1160 return -EPERM; 1161 1162 res = ext4_convert_inline_data(inode); 1163 if (res) 1164 return res; 1165 1166 /* 1167 * If a journal handle was specified, then the encryption context is 1168 * being set on a new inode via inheritance and is part of a larger 1169 * transaction to create the inode. Otherwise the encryption context is 1170 * being set on an existing inode in its own transaction. Only in the 1171 * latter case should the "retry on ENOSPC" logic be used. 1172 */ 1173 1174 if (handle) { 1175 res = ext4_xattr_set_handle(handle, inode, 1176 EXT4_XATTR_INDEX_ENCRYPTION, 1177 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1178 ctx, len, 0); 1179 if (!res) { 1180 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1181 ext4_clear_inode_state(inode, 1182 EXT4_STATE_MAY_INLINE_DATA); 1183 /* 1184 * Update inode->i_flags - e.g. S_DAX may get disabled 1185 */ 1186 ext4_set_inode_flags(inode); 1187 } 1188 return res; 1189 } 1190 1191 res = dquot_initialize(inode); 1192 if (res) 1193 return res; 1194 retry: 1195 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1196 &credits); 1197 if (res) 1198 return res; 1199 1200 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1201 if (IS_ERR(handle)) 1202 return PTR_ERR(handle); 1203 1204 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1205 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1206 ctx, len, 0); 1207 if (!res) { 1208 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1209 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1210 ext4_set_inode_flags(inode); 1211 res = ext4_mark_inode_dirty(handle, inode); 1212 if (res) 1213 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1214 } 1215 res2 = ext4_journal_stop(handle); 1216 1217 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1218 goto retry; 1219 if (!res) 1220 res = res2; 1221 return res; 1222 } 1223 1224 static bool ext4_dummy_context(struct inode *inode) 1225 { 1226 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1227 } 1228 1229 static unsigned ext4_max_namelen(struct inode *inode) 1230 { 1231 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1232 EXT4_NAME_LEN; 1233 } 1234 1235 static const struct fscrypt_operations ext4_cryptops = { 1236 .key_prefix = "ext4:", 1237 .get_context = ext4_get_context, 1238 .set_context = ext4_set_context, 1239 .dummy_context = ext4_dummy_context, 1240 .is_encrypted = ext4_encrypted_inode, 1241 .empty_dir = ext4_empty_dir, 1242 .max_namelen = ext4_max_namelen, 1243 }; 1244 #else 1245 static const struct fscrypt_operations ext4_cryptops = { 1246 .is_encrypted = ext4_encrypted_inode, 1247 }; 1248 #endif 1249 1250 #ifdef CONFIG_QUOTA 1251 static const char * const quotatypes[] = INITQFNAMES; 1252 #define QTYPE2NAME(t) (quotatypes[t]) 1253 1254 static int ext4_write_dquot(struct dquot *dquot); 1255 static int ext4_acquire_dquot(struct dquot *dquot); 1256 static int ext4_release_dquot(struct dquot *dquot); 1257 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1258 static int ext4_write_info(struct super_block *sb, int type); 1259 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1260 const struct path *path); 1261 static int ext4_quota_on_mount(struct super_block *sb, int type); 1262 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1263 size_t len, loff_t off); 1264 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1265 const char *data, size_t len, loff_t off); 1266 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1267 unsigned int flags); 1268 static int ext4_enable_quotas(struct super_block *sb); 1269 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1270 1271 static struct dquot **ext4_get_dquots(struct inode *inode) 1272 { 1273 return EXT4_I(inode)->i_dquot; 1274 } 1275 1276 static const struct dquot_operations ext4_quota_operations = { 1277 .get_reserved_space = ext4_get_reserved_space, 1278 .write_dquot = ext4_write_dquot, 1279 .acquire_dquot = ext4_acquire_dquot, 1280 .release_dquot = ext4_release_dquot, 1281 .mark_dirty = ext4_mark_dquot_dirty, 1282 .write_info = ext4_write_info, 1283 .alloc_dquot = dquot_alloc, 1284 .destroy_dquot = dquot_destroy, 1285 .get_projid = ext4_get_projid, 1286 .get_inode_usage = ext4_get_inode_usage, 1287 .get_next_id = ext4_get_next_id, 1288 }; 1289 1290 static const struct quotactl_ops ext4_qctl_operations = { 1291 .quota_on = ext4_quota_on, 1292 .quota_off = ext4_quota_off, 1293 .quota_sync = dquot_quota_sync, 1294 .get_state = dquot_get_state, 1295 .set_info = dquot_set_dqinfo, 1296 .get_dqblk = dquot_get_dqblk, 1297 .set_dqblk = dquot_set_dqblk, 1298 .get_nextdqblk = dquot_get_next_dqblk, 1299 }; 1300 #endif 1301 1302 static const struct super_operations ext4_sops = { 1303 .alloc_inode = ext4_alloc_inode, 1304 .destroy_inode = ext4_destroy_inode, 1305 .write_inode = ext4_write_inode, 1306 .dirty_inode = ext4_dirty_inode, 1307 .drop_inode = ext4_drop_inode, 1308 .evict_inode = ext4_evict_inode, 1309 .put_super = ext4_put_super, 1310 .sync_fs = ext4_sync_fs, 1311 .freeze_fs = ext4_freeze, 1312 .unfreeze_fs = ext4_unfreeze, 1313 .statfs = ext4_statfs, 1314 .remount_fs = ext4_remount, 1315 .show_options = ext4_show_options, 1316 #ifdef CONFIG_QUOTA 1317 .quota_read = ext4_quota_read, 1318 .quota_write = ext4_quota_write, 1319 .get_dquots = ext4_get_dquots, 1320 #endif 1321 .bdev_try_to_free_page = bdev_try_to_free_page, 1322 }; 1323 1324 static const struct export_operations ext4_export_ops = { 1325 .fh_to_dentry = ext4_fh_to_dentry, 1326 .fh_to_parent = ext4_fh_to_parent, 1327 .get_parent = ext4_get_parent, 1328 }; 1329 1330 enum { 1331 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1332 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1333 Opt_nouid32, Opt_debug, Opt_removed, 1334 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1335 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1336 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1337 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1338 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1339 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1340 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1341 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1342 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1343 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1344 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1345 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1346 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1347 Opt_inode_readahead_blks, Opt_journal_ioprio, 1348 Opt_dioread_nolock, Opt_dioread_lock, 1349 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1350 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1351 }; 1352 1353 static const match_table_t tokens = { 1354 {Opt_bsd_df, "bsddf"}, 1355 {Opt_minix_df, "minixdf"}, 1356 {Opt_grpid, "grpid"}, 1357 {Opt_grpid, "bsdgroups"}, 1358 {Opt_nogrpid, "nogrpid"}, 1359 {Opt_nogrpid, "sysvgroups"}, 1360 {Opt_resgid, "resgid=%u"}, 1361 {Opt_resuid, "resuid=%u"}, 1362 {Opt_sb, "sb=%u"}, 1363 {Opt_err_cont, "errors=continue"}, 1364 {Opt_err_panic, "errors=panic"}, 1365 {Opt_err_ro, "errors=remount-ro"}, 1366 {Opt_nouid32, "nouid32"}, 1367 {Opt_debug, "debug"}, 1368 {Opt_removed, "oldalloc"}, 1369 {Opt_removed, "orlov"}, 1370 {Opt_user_xattr, "user_xattr"}, 1371 {Opt_nouser_xattr, "nouser_xattr"}, 1372 {Opt_acl, "acl"}, 1373 {Opt_noacl, "noacl"}, 1374 {Opt_noload, "norecovery"}, 1375 {Opt_noload, "noload"}, 1376 {Opt_removed, "nobh"}, 1377 {Opt_removed, "bh"}, 1378 {Opt_commit, "commit=%u"}, 1379 {Opt_min_batch_time, "min_batch_time=%u"}, 1380 {Opt_max_batch_time, "max_batch_time=%u"}, 1381 {Opt_journal_dev, "journal_dev=%u"}, 1382 {Opt_journal_path, "journal_path=%s"}, 1383 {Opt_journal_checksum, "journal_checksum"}, 1384 {Opt_nojournal_checksum, "nojournal_checksum"}, 1385 {Opt_journal_async_commit, "journal_async_commit"}, 1386 {Opt_abort, "abort"}, 1387 {Opt_data_journal, "data=journal"}, 1388 {Opt_data_ordered, "data=ordered"}, 1389 {Opt_data_writeback, "data=writeback"}, 1390 {Opt_data_err_abort, "data_err=abort"}, 1391 {Opt_data_err_ignore, "data_err=ignore"}, 1392 {Opt_offusrjquota, "usrjquota="}, 1393 {Opt_usrjquota, "usrjquota=%s"}, 1394 {Opt_offgrpjquota, "grpjquota="}, 1395 {Opt_grpjquota, "grpjquota=%s"}, 1396 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1397 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1398 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1399 {Opt_grpquota, "grpquota"}, 1400 {Opt_noquota, "noquota"}, 1401 {Opt_quota, "quota"}, 1402 {Opt_usrquota, "usrquota"}, 1403 {Opt_prjquota, "prjquota"}, 1404 {Opt_barrier, "barrier=%u"}, 1405 {Opt_barrier, "barrier"}, 1406 {Opt_nobarrier, "nobarrier"}, 1407 {Opt_i_version, "i_version"}, 1408 {Opt_dax, "dax"}, 1409 {Opt_stripe, "stripe=%u"}, 1410 {Opt_delalloc, "delalloc"}, 1411 {Opt_lazytime, "lazytime"}, 1412 {Opt_nolazytime, "nolazytime"}, 1413 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1414 {Opt_nodelalloc, "nodelalloc"}, 1415 {Opt_removed, "mblk_io_submit"}, 1416 {Opt_removed, "nomblk_io_submit"}, 1417 {Opt_block_validity, "block_validity"}, 1418 {Opt_noblock_validity, "noblock_validity"}, 1419 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1420 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1421 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1422 {Opt_auto_da_alloc, "auto_da_alloc"}, 1423 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1424 {Opt_dioread_nolock, "dioread_nolock"}, 1425 {Opt_dioread_lock, "dioread_lock"}, 1426 {Opt_discard, "discard"}, 1427 {Opt_nodiscard, "nodiscard"}, 1428 {Opt_init_itable, "init_itable=%u"}, 1429 {Opt_init_itable, "init_itable"}, 1430 {Opt_noinit_itable, "noinit_itable"}, 1431 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1432 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1433 {Opt_nombcache, "nombcache"}, 1434 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1435 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1436 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1437 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1438 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1439 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1440 {Opt_err, NULL}, 1441 }; 1442 1443 static ext4_fsblk_t get_sb_block(void **data) 1444 { 1445 ext4_fsblk_t sb_block; 1446 char *options = (char *) *data; 1447 1448 if (!options || strncmp(options, "sb=", 3) != 0) 1449 return 1; /* Default location */ 1450 1451 options += 3; 1452 /* TODO: use simple_strtoll with >32bit ext4 */ 1453 sb_block = simple_strtoul(options, &options, 0); 1454 if (*options && *options != ',') { 1455 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1456 (char *) *data); 1457 return 1; 1458 } 1459 if (*options == ',') 1460 options++; 1461 *data = (void *) options; 1462 1463 return sb_block; 1464 } 1465 1466 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1467 static const char deprecated_msg[] = 1468 "Mount option \"%s\" will be removed by %s\n" 1469 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1470 1471 #ifdef CONFIG_QUOTA 1472 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1473 { 1474 struct ext4_sb_info *sbi = EXT4_SB(sb); 1475 char *qname; 1476 int ret = -1; 1477 1478 if (sb_any_quota_loaded(sb) && 1479 !sbi->s_qf_names[qtype]) { 1480 ext4_msg(sb, KERN_ERR, 1481 "Cannot change journaled " 1482 "quota options when quota turned on"); 1483 return -1; 1484 } 1485 if (ext4_has_feature_quota(sb)) { 1486 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1487 "ignored when QUOTA feature is enabled"); 1488 return 1; 1489 } 1490 qname = match_strdup(args); 1491 if (!qname) { 1492 ext4_msg(sb, KERN_ERR, 1493 "Not enough memory for storing quotafile name"); 1494 return -1; 1495 } 1496 if (sbi->s_qf_names[qtype]) { 1497 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1498 ret = 1; 1499 else 1500 ext4_msg(sb, KERN_ERR, 1501 "%s quota file already specified", 1502 QTYPE2NAME(qtype)); 1503 goto errout; 1504 } 1505 if (strchr(qname, '/')) { 1506 ext4_msg(sb, KERN_ERR, 1507 "quotafile must be on filesystem root"); 1508 goto errout; 1509 } 1510 sbi->s_qf_names[qtype] = qname; 1511 set_opt(sb, QUOTA); 1512 return 1; 1513 errout: 1514 kfree(qname); 1515 return ret; 1516 } 1517 1518 static int clear_qf_name(struct super_block *sb, int qtype) 1519 { 1520 1521 struct ext4_sb_info *sbi = EXT4_SB(sb); 1522 1523 if (sb_any_quota_loaded(sb) && 1524 sbi->s_qf_names[qtype]) { 1525 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1526 " when quota turned on"); 1527 return -1; 1528 } 1529 kfree(sbi->s_qf_names[qtype]); 1530 sbi->s_qf_names[qtype] = NULL; 1531 return 1; 1532 } 1533 #endif 1534 1535 #define MOPT_SET 0x0001 1536 #define MOPT_CLEAR 0x0002 1537 #define MOPT_NOSUPPORT 0x0004 1538 #define MOPT_EXPLICIT 0x0008 1539 #define MOPT_CLEAR_ERR 0x0010 1540 #define MOPT_GTE0 0x0020 1541 #ifdef CONFIG_QUOTA 1542 #define MOPT_Q 0 1543 #define MOPT_QFMT 0x0040 1544 #else 1545 #define MOPT_Q MOPT_NOSUPPORT 1546 #define MOPT_QFMT MOPT_NOSUPPORT 1547 #endif 1548 #define MOPT_DATAJ 0x0080 1549 #define MOPT_NO_EXT2 0x0100 1550 #define MOPT_NO_EXT3 0x0200 1551 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1552 #define MOPT_STRING 0x0400 1553 1554 static const struct mount_opts { 1555 int token; 1556 int mount_opt; 1557 int flags; 1558 } ext4_mount_opts[] = { 1559 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1560 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1561 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1562 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1563 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1564 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1565 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1566 MOPT_EXT4_ONLY | MOPT_SET}, 1567 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1568 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1569 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1570 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1571 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1572 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1573 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1574 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1575 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1576 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1577 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1579 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1580 EXT4_MOUNT_JOURNAL_CHECKSUM), 1581 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1582 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1583 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1584 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1585 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1586 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1587 MOPT_NO_EXT2}, 1588 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1589 MOPT_NO_EXT2}, 1590 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1591 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1592 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1593 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1594 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1595 {Opt_commit, 0, MOPT_GTE0}, 1596 {Opt_max_batch_time, 0, MOPT_GTE0}, 1597 {Opt_min_batch_time, 0, MOPT_GTE0}, 1598 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1599 {Opt_init_itable, 0, MOPT_GTE0}, 1600 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1601 {Opt_stripe, 0, MOPT_GTE0}, 1602 {Opt_resuid, 0, MOPT_GTE0}, 1603 {Opt_resgid, 0, MOPT_GTE0}, 1604 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1605 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1606 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1607 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1608 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1609 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1610 MOPT_NO_EXT2 | MOPT_DATAJ}, 1611 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1612 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1613 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1614 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1615 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1616 #else 1617 {Opt_acl, 0, MOPT_NOSUPPORT}, 1618 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1619 #endif 1620 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1621 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1622 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1623 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1624 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1625 MOPT_SET | MOPT_Q}, 1626 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1627 MOPT_SET | MOPT_Q}, 1628 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1629 MOPT_SET | MOPT_Q}, 1630 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1631 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1632 MOPT_CLEAR | MOPT_Q}, 1633 {Opt_usrjquota, 0, MOPT_Q}, 1634 {Opt_grpjquota, 0, MOPT_Q}, 1635 {Opt_offusrjquota, 0, MOPT_Q}, 1636 {Opt_offgrpjquota, 0, MOPT_Q}, 1637 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1638 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1639 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1640 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1641 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1642 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1643 {Opt_err, 0, 0} 1644 }; 1645 1646 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1647 substring_t *args, unsigned long *journal_devnum, 1648 unsigned int *journal_ioprio, int is_remount) 1649 { 1650 struct ext4_sb_info *sbi = EXT4_SB(sb); 1651 const struct mount_opts *m; 1652 kuid_t uid; 1653 kgid_t gid; 1654 int arg = 0; 1655 1656 #ifdef CONFIG_QUOTA 1657 if (token == Opt_usrjquota) 1658 return set_qf_name(sb, USRQUOTA, &args[0]); 1659 else if (token == Opt_grpjquota) 1660 return set_qf_name(sb, GRPQUOTA, &args[0]); 1661 else if (token == Opt_offusrjquota) 1662 return clear_qf_name(sb, USRQUOTA); 1663 else if (token == Opt_offgrpjquota) 1664 return clear_qf_name(sb, GRPQUOTA); 1665 #endif 1666 switch (token) { 1667 case Opt_noacl: 1668 case Opt_nouser_xattr: 1669 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1670 break; 1671 case Opt_sb: 1672 return 1; /* handled by get_sb_block() */ 1673 case Opt_removed: 1674 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1675 return 1; 1676 case Opt_abort: 1677 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1678 return 1; 1679 case Opt_i_version: 1680 sb->s_flags |= SB_I_VERSION; 1681 return 1; 1682 case Opt_lazytime: 1683 sb->s_flags |= MS_LAZYTIME; 1684 return 1; 1685 case Opt_nolazytime: 1686 sb->s_flags &= ~MS_LAZYTIME; 1687 return 1; 1688 } 1689 1690 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1691 if (token == m->token) 1692 break; 1693 1694 if (m->token == Opt_err) { 1695 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1696 "or missing value", opt); 1697 return -1; 1698 } 1699 1700 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1701 ext4_msg(sb, KERN_ERR, 1702 "Mount option \"%s\" incompatible with ext2", opt); 1703 return -1; 1704 } 1705 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1706 ext4_msg(sb, KERN_ERR, 1707 "Mount option \"%s\" incompatible with ext3", opt); 1708 return -1; 1709 } 1710 1711 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1712 return -1; 1713 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1714 return -1; 1715 if (m->flags & MOPT_EXPLICIT) { 1716 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1717 set_opt2(sb, EXPLICIT_DELALLOC); 1718 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1719 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1720 } else 1721 return -1; 1722 } 1723 if (m->flags & MOPT_CLEAR_ERR) 1724 clear_opt(sb, ERRORS_MASK); 1725 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1726 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1727 "options when quota turned on"); 1728 return -1; 1729 } 1730 1731 if (m->flags & MOPT_NOSUPPORT) { 1732 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1733 } else if (token == Opt_commit) { 1734 if (arg == 0) 1735 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1736 sbi->s_commit_interval = HZ * arg; 1737 } else if (token == Opt_debug_want_extra_isize) { 1738 sbi->s_want_extra_isize = arg; 1739 } else if (token == Opt_max_batch_time) { 1740 sbi->s_max_batch_time = arg; 1741 } else if (token == Opt_min_batch_time) { 1742 sbi->s_min_batch_time = arg; 1743 } else if (token == Opt_inode_readahead_blks) { 1744 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1745 ext4_msg(sb, KERN_ERR, 1746 "EXT4-fs: inode_readahead_blks must be " 1747 "0 or a power of 2 smaller than 2^31"); 1748 return -1; 1749 } 1750 sbi->s_inode_readahead_blks = arg; 1751 } else if (token == Opt_init_itable) { 1752 set_opt(sb, INIT_INODE_TABLE); 1753 if (!args->from) 1754 arg = EXT4_DEF_LI_WAIT_MULT; 1755 sbi->s_li_wait_mult = arg; 1756 } else if (token == Opt_max_dir_size_kb) { 1757 sbi->s_max_dir_size_kb = arg; 1758 } else if (token == Opt_stripe) { 1759 sbi->s_stripe = arg; 1760 } else if (token == Opt_resuid) { 1761 uid = make_kuid(current_user_ns(), arg); 1762 if (!uid_valid(uid)) { 1763 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1764 return -1; 1765 } 1766 sbi->s_resuid = uid; 1767 } else if (token == Opt_resgid) { 1768 gid = make_kgid(current_user_ns(), arg); 1769 if (!gid_valid(gid)) { 1770 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1771 return -1; 1772 } 1773 sbi->s_resgid = gid; 1774 } else if (token == Opt_journal_dev) { 1775 if (is_remount) { 1776 ext4_msg(sb, KERN_ERR, 1777 "Cannot specify journal on remount"); 1778 return -1; 1779 } 1780 *journal_devnum = arg; 1781 } else if (token == Opt_journal_path) { 1782 char *journal_path; 1783 struct inode *journal_inode; 1784 struct path path; 1785 int error; 1786 1787 if (is_remount) { 1788 ext4_msg(sb, KERN_ERR, 1789 "Cannot specify journal on remount"); 1790 return -1; 1791 } 1792 journal_path = match_strdup(&args[0]); 1793 if (!journal_path) { 1794 ext4_msg(sb, KERN_ERR, "error: could not dup " 1795 "journal device string"); 1796 return -1; 1797 } 1798 1799 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1800 if (error) { 1801 ext4_msg(sb, KERN_ERR, "error: could not find " 1802 "journal device path: error %d", error); 1803 kfree(journal_path); 1804 return -1; 1805 } 1806 1807 journal_inode = d_inode(path.dentry); 1808 if (!S_ISBLK(journal_inode->i_mode)) { 1809 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1810 "is not a block device", journal_path); 1811 path_put(&path); 1812 kfree(journal_path); 1813 return -1; 1814 } 1815 1816 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1817 path_put(&path); 1818 kfree(journal_path); 1819 } else if (token == Opt_journal_ioprio) { 1820 if (arg > 7) { 1821 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1822 " (must be 0-7)"); 1823 return -1; 1824 } 1825 *journal_ioprio = 1826 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1827 } else if (token == Opt_test_dummy_encryption) { 1828 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1829 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1830 ext4_msg(sb, KERN_WARNING, 1831 "Test dummy encryption mode enabled"); 1832 #else 1833 ext4_msg(sb, KERN_WARNING, 1834 "Test dummy encryption mount option ignored"); 1835 #endif 1836 } else if (m->flags & MOPT_DATAJ) { 1837 if (is_remount) { 1838 if (!sbi->s_journal) 1839 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1840 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1841 ext4_msg(sb, KERN_ERR, 1842 "Cannot change data mode on remount"); 1843 return -1; 1844 } 1845 } else { 1846 clear_opt(sb, DATA_FLAGS); 1847 sbi->s_mount_opt |= m->mount_opt; 1848 } 1849 #ifdef CONFIG_QUOTA 1850 } else if (m->flags & MOPT_QFMT) { 1851 if (sb_any_quota_loaded(sb) && 1852 sbi->s_jquota_fmt != m->mount_opt) { 1853 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1854 "quota options when quota turned on"); 1855 return -1; 1856 } 1857 if (ext4_has_feature_quota(sb)) { 1858 ext4_msg(sb, KERN_INFO, 1859 "Quota format mount options ignored " 1860 "when QUOTA feature is enabled"); 1861 return 1; 1862 } 1863 sbi->s_jquota_fmt = m->mount_opt; 1864 #endif 1865 } else if (token == Opt_dax) { 1866 #ifdef CONFIG_FS_DAX 1867 ext4_msg(sb, KERN_WARNING, 1868 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1869 sbi->s_mount_opt |= m->mount_opt; 1870 #else 1871 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1872 return -1; 1873 #endif 1874 } else if (token == Opt_data_err_abort) { 1875 sbi->s_mount_opt |= m->mount_opt; 1876 } else if (token == Opt_data_err_ignore) { 1877 sbi->s_mount_opt &= ~m->mount_opt; 1878 } else { 1879 if (!args->from) 1880 arg = 1; 1881 if (m->flags & MOPT_CLEAR) 1882 arg = !arg; 1883 else if (unlikely(!(m->flags & MOPT_SET))) { 1884 ext4_msg(sb, KERN_WARNING, 1885 "buggy handling of option %s", opt); 1886 WARN_ON(1); 1887 return -1; 1888 } 1889 if (arg != 0) 1890 sbi->s_mount_opt |= m->mount_opt; 1891 else 1892 sbi->s_mount_opt &= ~m->mount_opt; 1893 } 1894 return 1; 1895 } 1896 1897 static int parse_options(char *options, struct super_block *sb, 1898 unsigned long *journal_devnum, 1899 unsigned int *journal_ioprio, 1900 int is_remount) 1901 { 1902 struct ext4_sb_info *sbi = EXT4_SB(sb); 1903 char *p; 1904 substring_t args[MAX_OPT_ARGS]; 1905 int token; 1906 1907 if (!options) 1908 return 1; 1909 1910 while ((p = strsep(&options, ",")) != NULL) { 1911 if (!*p) 1912 continue; 1913 /* 1914 * Initialize args struct so we know whether arg was 1915 * found; some options take optional arguments. 1916 */ 1917 args[0].to = args[0].from = NULL; 1918 token = match_token(p, tokens, args); 1919 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1920 journal_ioprio, is_remount) < 0) 1921 return 0; 1922 } 1923 #ifdef CONFIG_QUOTA 1924 /* 1925 * We do the test below only for project quotas. 'usrquota' and 1926 * 'grpquota' mount options are allowed even without quota feature 1927 * to support legacy quotas in quota files. 1928 */ 1929 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1930 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1931 "Cannot enable project quota enforcement."); 1932 return 0; 1933 } 1934 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1935 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1936 clear_opt(sb, USRQUOTA); 1937 1938 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1939 clear_opt(sb, GRPQUOTA); 1940 1941 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1942 ext4_msg(sb, KERN_ERR, "old and new quota " 1943 "format mixing"); 1944 return 0; 1945 } 1946 1947 if (!sbi->s_jquota_fmt) { 1948 ext4_msg(sb, KERN_ERR, "journaled quota format " 1949 "not specified"); 1950 return 0; 1951 } 1952 } 1953 #endif 1954 if (test_opt(sb, DIOREAD_NOLOCK)) { 1955 int blocksize = 1956 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1957 1958 if (blocksize < PAGE_SIZE) { 1959 ext4_msg(sb, KERN_ERR, "can't mount with " 1960 "dioread_nolock if block size != PAGE_SIZE"); 1961 return 0; 1962 } 1963 } 1964 return 1; 1965 } 1966 1967 static inline void ext4_show_quota_options(struct seq_file *seq, 1968 struct super_block *sb) 1969 { 1970 #if defined(CONFIG_QUOTA) 1971 struct ext4_sb_info *sbi = EXT4_SB(sb); 1972 1973 if (sbi->s_jquota_fmt) { 1974 char *fmtname = ""; 1975 1976 switch (sbi->s_jquota_fmt) { 1977 case QFMT_VFS_OLD: 1978 fmtname = "vfsold"; 1979 break; 1980 case QFMT_VFS_V0: 1981 fmtname = "vfsv0"; 1982 break; 1983 case QFMT_VFS_V1: 1984 fmtname = "vfsv1"; 1985 break; 1986 } 1987 seq_printf(seq, ",jqfmt=%s", fmtname); 1988 } 1989 1990 if (sbi->s_qf_names[USRQUOTA]) 1991 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1992 1993 if (sbi->s_qf_names[GRPQUOTA]) 1994 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1995 #endif 1996 } 1997 1998 static const char *token2str(int token) 1999 { 2000 const struct match_token *t; 2001 2002 for (t = tokens; t->token != Opt_err; t++) 2003 if (t->token == token && !strchr(t->pattern, '=')) 2004 break; 2005 return t->pattern; 2006 } 2007 2008 /* 2009 * Show an option if 2010 * - it's set to a non-default value OR 2011 * - if the per-sb default is different from the global default 2012 */ 2013 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2014 int nodefs) 2015 { 2016 struct ext4_sb_info *sbi = EXT4_SB(sb); 2017 struct ext4_super_block *es = sbi->s_es; 2018 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 2019 const struct mount_opts *m; 2020 char sep = nodefs ? '\n' : ','; 2021 2022 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2023 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2024 2025 if (sbi->s_sb_block != 1) 2026 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2027 2028 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2029 int want_set = m->flags & MOPT_SET; 2030 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2031 (m->flags & MOPT_CLEAR_ERR)) 2032 continue; 2033 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2034 continue; /* skip if same as the default */ 2035 if ((want_set && 2036 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2037 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2038 continue; /* select Opt_noFoo vs Opt_Foo */ 2039 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2040 } 2041 2042 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2043 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2044 SEQ_OPTS_PRINT("resuid=%u", 2045 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2046 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2047 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2048 SEQ_OPTS_PRINT("resgid=%u", 2049 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2050 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2051 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2052 SEQ_OPTS_PUTS("errors=remount-ro"); 2053 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2054 SEQ_OPTS_PUTS("errors=continue"); 2055 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2056 SEQ_OPTS_PUTS("errors=panic"); 2057 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2058 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2059 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2060 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2061 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2062 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2063 if (sb->s_flags & SB_I_VERSION) 2064 SEQ_OPTS_PUTS("i_version"); 2065 if (nodefs || sbi->s_stripe) 2066 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2067 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2068 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2069 SEQ_OPTS_PUTS("data=journal"); 2070 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2071 SEQ_OPTS_PUTS("data=ordered"); 2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2073 SEQ_OPTS_PUTS("data=writeback"); 2074 } 2075 if (nodefs || 2076 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2077 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2078 sbi->s_inode_readahead_blks); 2079 2080 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2081 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2082 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2083 if (nodefs || sbi->s_max_dir_size_kb) 2084 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2085 if (test_opt(sb, DATA_ERR_ABORT)) 2086 SEQ_OPTS_PUTS("data_err=abort"); 2087 2088 ext4_show_quota_options(seq, sb); 2089 return 0; 2090 } 2091 2092 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2093 { 2094 return _ext4_show_options(seq, root->d_sb, 0); 2095 } 2096 2097 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2098 { 2099 struct super_block *sb = seq->private; 2100 int rc; 2101 2102 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2103 rc = _ext4_show_options(seq, sb, 1); 2104 seq_puts(seq, "\n"); 2105 return rc; 2106 } 2107 2108 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2109 int read_only) 2110 { 2111 struct ext4_sb_info *sbi = EXT4_SB(sb); 2112 int res = 0; 2113 2114 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2115 ext4_msg(sb, KERN_ERR, "revision level too high, " 2116 "forcing read-only mode"); 2117 res = MS_RDONLY; 2118 } 2119 if (read_only) 2120 goto done; 2121 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2122 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2123 "running e2fsck is recommended"); 2124 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2125 ext4_msg(sb, KERN_WARNING, 2126 "warning: mounting fs with errors, " 2127 "running e2fsck is recommended"); 2128 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2129 le16_to_cpu(es->s_mnt_count) >= 2130 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2131 ext4_msg(sb, KERN_WARNING, 2132 "warning: maximal mount count reached, " 2133 "running e2fsck is recommended"); 2134 else if (le32_to_cpu(es->s_checkinterval) && 2135 (le32_to_cpu(es->s_lastcheck) + 2136 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2137 ext4_msg(sb, KERN_WARNING, 2138 "warning: checktime reached, " 2139 "running e2fsck is recommended"); 2140 if (!sbi->s_journal) 2141 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2142 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2143 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2144 le16_add_cpu(&es->s_mnt_count, 1); 2145 es->s_mtime = cpu_to_le32(get_seconds()); 2146 ext4_update_dynamic_rev(sb); 2147 if (sbi->s_journal) 2148 ext4_set_feature_journal_needs_recovery(sb); 2149 2150 ext4_commit_super(sb, 1); 2151 done: 2152 if (test_opt(sb, DEBUG)) 2153 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2154 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2155 sb->s_blocksize, 2156 sbi->s_groups_count, 2157 EXT4_BLOCKS_PER_GROUP(sb), 2158 EXT4_INODES_PER_GROUP(sb), 2159 sbi->s_mount_opt, sbi->s_mount_opt2); 2160 2161 cleancache_init_fs(sb); 2162 return res; 2163 } 2164 2165 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2166 { 2167 struct ext4_sb_info *sbi = EXT4_SB(sb); 2168 struct flex_groups *new_groups; 2169 int size; 2170 2171 if (!sbi->s_log_groups_per_flex) 2172 return 0; 2173 2174 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2175 if (size <= sbi->s_flex_groups_allocated) 2176 return 0; 2177 2178 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2179 new_groups = kvzalloc(size, GFP_KERNEL); 2180 if (!new_groups) { 2181 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2182 size / (int) sizeof(struct flex_groups)); 2183 return -ENOMEM; 2184 } 2185 2186 if (sbi->s_flex_groups) { 2187 memcpy(new_groups, sbi->s_flex_groups, 2188 (sbi->s_flex_groups_allocated * 2189 sizeof(struct flex_groups))); 2190 kvfree(sbi->s_flex_groups); 2191 } 2192 sbi->s_flex_groups = new_groups; 2193 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2194 return 0; 2195 } 2196 2197 static int ext4_fill_flex_info(struct super_block *sb) 2198 { 2199 struct ext4_sb_info *sbi = EXT4_SB(sb); 2200 struct ext4_group_desc *gdp = NULL; 2201 ext4_group_t flex_group; 2202 int i, err; 2203 2204 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2205 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2206 sbi->s_log_groups_per_flex = 0; 2207 return 1; 2208 } 2209 2210 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2211 if (err) 2212 goto failed; 2213 2214 for (i = 0; i < sbi->s_groups_count; i++) { 2215 gdp = ext4_get_group_desc(sb, i, NULL); 2216 2217 flex_group = ext4_flex_group(sbi, i); 2218 atomic_add(ext4_free_inodes_count(sb, gdp), 2219 &sbi->s_flex_groups[flex_group].free_inodes); 2220 atomic64_add(ext4_free_group_clusters(sb, gdp), 2221 &sbi->s_flex_groups[flex_group].free_clusters); 2222 atomic_add(ext4_used_dirs_count(sb, gdp), 2223 &sbi->s_flex_groups[flex_group].used_dirs); 2224 } 2225 2226 return 1; 2227 failed: 2228 return 0; 2229 } 2230 2231 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2232 struct ext4_group_desc *gdp) 2233 { 2234 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2235 __u16 crc = 0; 2236 __le32 le_group = cpu_to_le32(block_group); 2237 struct ext4_sb_info *sbi = EXT4_SB(sb); 2238 2239 if (ext4_has_metadata_csum(sbi->s_sb)) { 2240 /* Use new metadata_csum algorithm */ 2241 __u32 csum32; 2242 __u16 dummy_csum = 0; 2243 2244 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2245 sizeof(le_group)); 2246 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2247 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2248 sizeof(dummy_csum)); 2249 offset += sizeof(dummy_csum); 2250 if (offset < sbi->s_desc_size) 2251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2252 sbi->s_desc_size - offset); 2253 2254 crc = csum32 & 0xFFFF; 2255 goto out; 2256 } 2257 2258 /* old crc16 code */ 2259 if (!ext4_has_feature_gdt_csum(sb)) 2260 return 0; 2261 2262 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2263 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2264 crc = crc16(crc, (__u8 *)gdp, offset); 2265 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2266 /* for checksum of struct ext4_group_desc do the rest...*/ 2267 if (ext4_has_feature_64bit(sb) && 2268 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2269 crc = crc16(crc, (__u8 *)gdp + offset, 2270 le16_to_cpu(sbi->s_es->s_desc_size) - 2271 offset); 2272 2273 out: 2274 return cpu_to_le16(crc); 2275 } 2276 2277 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2278 struct ext4_group_desc *gdp) 2279 { 2280 if (ext4_has_group_desc_csum(sb) && 2281 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2282 return 0; 2283 2284 return 1; 2285 } 2286 2287 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2288 struct ext4_group_desc *gdp) 2289 { 2290 if (!ext4_has_group_desc_csum(sb)) 2291 return; 2292 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2293 } 2294 2295 /* Called at mount-time, super-block is locked */ 2296 static int ext4_check_descriptors(struct super_block *sb, 2297 ext4_fsblk_t sb_block, 2298 ext4_group_t *first_not_zeroed) 2299 { 2300 struct ext4_sb_info *sbi = EXT4_SB(sb); 2301 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2302 ext4_fsblk_t last_block; 2303 ext4_fsblk_t block_bitmap; 2304 ext4_fsblk_t inode_bitmap; 2305 ext4_fsblk_t inode_table; 2306 int flexbg_flag = 0; 2307 ext4_group_t i, grp = sbi->s_groups_count; 2308 2309 if (ext4_has_feature_flex_bg(sb)) 2310 flexbg_flag = 1; 2311 2312 ext4_debug("Checking group descriptors"); 2313 2314 for (i = 0; i < sbi->s_groups_count; i++) { 2315 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2316 2317 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2318 last_block = ext4_blocks_count(sbi->s_es) - 1; 2319 else 2320 last_block = first_block + 2321 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2322 2323 if ((grp == sbi->s_groups_count) && 2324 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2325 grp = i; 2326 2327 block_bitmap = ext4_block_bitmap(sb, gdp); 2328 if (block_bitmap == sb_block) { 2329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2330 "Block bitmap for group %u overlaps " 2331 "superblock", i); 2332 } 2333 if (block_bitmap < first_block || block_bitmap > last_block) { 2334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2335 "Block bitmap for group %u not in group " 2336 "(block %llu)!", i, block_bitmap); 2337 return 0; 2338 } 2339 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2340 if (inode_bitmap == sb_block) { 2341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2342 "Inode bitmap for group %u overlaps " 2343 "superblock", i); 2344 } 2345 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2347 "Inode bitmap for group %u not in group " 2348 "(block %llu)!", i, inode_bitmap); 2349 return 0; 2350 } 2351 inode_table = ext4_inode_table(sb, gdp); 2352 if (inode_table == sb_block) { 2353 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2354 "Inode table for group %u overlaps " 2355 "superblock", i); 2356 } 2357 if (inode_table < first_block || 2358 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2360 "Inode table for group %u not in group " 2361 "(block %llu)!", i, inode_table); 2362 return 0; 2363 } 2364 ext4_lock_group(sb, i); 2365 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2367 "Checksum for group %u failed (%u!=%u)", 2368 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2369 gdp)), le16_to_cpu(gdp->bg_checksum)); 2370 if (!sb_rdonly(sb)) { 2371 ext4_unlock_group(sb, i); 2372 return 0; 2373 } 2374 } 2375 ext4_unlock_group(sb, i); 2376 if (!flexbg_flag) 2377 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2378 } 2379 if (NULL != first_not_zeroed) 2380 *first_not_zeroed = grp; 2381 return 1; 2382 } 2383 2384 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2385 * the superblock) which were deleted from all directories, but held open by 2386 * a process at the time of a crash. We walk the list and try to delete these 2387 * inodes at recovery time (only with a read-write filesystem). 2388 * 2389 * In order to keep the orphan inode chain consistent during traversal (in 2390 * case of crash during recovery), we link each inode into the superblock 2391 * orphan list_head and handle it the same way as an inode deletion during 2392 * normal operation (which journals the operations for us). 2393 * 2394 * We only do an iget() and an iput() on each inode, which is very safe if we 2395 * accidentally point at an in-use or already deleted inode. The worst that 2396 * can happen in this case is that we get a "bit already cleared" message from 2397 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2398 * e2fsck was run on this filesystem, and it must have already done the orphan 2399 * inode cleanup for us, so we can safely abort without any further action. 2400 */ 2401 static void ext4_orphan_cleanup(struct super_block *sb, 2402 struct ext4_super_block *es) 2403 { 2404 unsigned int s_flags = sb->s_flags; 2405 int ret, nr_orphans = 0, nr_truncates = 0; 2406 #ifdef CONFIG_QUOTA 2407 int quota_update = 0; 2408 int i; 2409 #endif 2410 if (!es->s_last_orphan) { 2411 jbd_debug(4, "no orphan inodes to clean up\n"); 2412 return; 2413 } 2414 2415 if (bdev_read_only(sb->s_bdev)) { 2416 ext4_msg(sb, KERN_ERR, "write access " 2417 "unavailable, skipping orphan cleanup"); 2418 return; 2419 } 2420 2421 /* Check if feature set would not allow a r/w mount */ 2422 if (!ext4_feature_set_ok(sb, 0)) { 2423 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2424 "unknown ROCOMPAT features"); 2425 return; 2426 } 2427 2428 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2429 /* don't clear list on RO mount w/ errors */ 2430 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2431 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2432 "clearing orphan list.\n"); 2433 es->s_last_orphan = 0; 2434 } 2435 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2436 return; 2437 } 2438 2439 if (s_flags & MS_RDONLY) { 2440 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2441 sb->s_flags &= ~MS_RDONLY; 2442 } 2443 #ifdef CONFIG_QUOTA 2444 /* Needed for iput() to work correctly and not trash data */ 2445 sb->s_flags |= MS_ACTIVE; 2446 2447 /* 2448 * Turn on quotas which were not enabled for read-only mounts if 2449 * filesystem has quota feature, so that they are updated correctly. 2450 */ 2451 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) { 2452 int ret = ext4_enable_quotas(sb); 2453 2454 if (!ret) 2455 quota_update = 1; 2456 else 2457 ext4_msg(sb, KERN_ERR, 2458 "Cannot turn on quotas: error %d", ret); 2459 } 2460 2461 /* Turn on journaled quotas used for old sytle */ 2462 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2463 if (EXT4_SB(sb)->s_qf_names[i]) { 2464 int ret = ext4_quota_on_mount(sb, i); 2465 2466 if (!ret) 2467 quota_update = 1; 2468 else 2469 ext4_msg(sb, KERN_ERR, 2470 "Cannot turn on journaled " 2471 "quota: type %d: error %d", i, ret); 2472 } 2473 } 2474 #endif 2475 2476 while (es->s_last_orphan) { 2477 struct inode *inode; 2478 2479 /* 2480 * We may have encountered an error during cleanup; if 2481 * so, skip the rest. 2482 */ 2483 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2484 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2485 es->s_last_orphan = 0; 2486 break; 2487 } 2488 2489 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2490 if (IS_ERR(inode)) { 2491 es->s_last_orphan = 0; 2492 break; 2493 } 2494 2495 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2496 dquot_initialize(inode); 2497 if (inode->i_nlink) { 2498 if (test_opt(sb, DEBUG)) 2499 ext4_msg(sb, KERN_DEBUG, 2500 "%s: truncating inode %lu to %lld bytes", 2501 __func__, inode->i_ino, inode->i_size); 2502 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2503 inode->i_ino, inode->i_size); 2504 inode_lock(inode); 2505 truncate_inode_pages(inode->i_mapping, inode->i_size); 2506 ret = ext4_truncate(inode); 2507 if (ret) 2508 ext4_std_error(inode->i_sb, ret); 2509 inode_unlock(inode); 2510 nr_truncates++; 2511 } else { 2512 if (test_opt(sb, DEBUG)) 2513 ext4_msg(sb, KERN_DEBUG, 2514 "%s: deleting unreferenced inode %lu", 2515 __func__, inode->i_ino); 2516 jbd_debug(2, "deleting unreferenced inode %lu\n", 2517 inode->i_ino); 2518 nr_orphans++; 2519 } 2520 iput(inode); /* The delete magic happens here! */ 2521 } 2522 2523 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2524 2525 if (nr_orphans) 2526 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2527 PLURAL(nr_orphans)); 2528 if (nr_truncates) 2529 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2530 PLURAL(nr_truncates)); 2531 #ifdef CONFIG_QUOTA 2532 /* Turn off quotas if they were enabled for orphan cleanup */ 2533 if (quota_update) { 2534 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2535 if (sb_dqopt(sb)->files[i]) 2536 dquot_quota_off(sb, i); 2537 } 2538 } 2539 #endif 2540 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2541 } 2542 2543 /* 2544 * Maximal extent format file size. 2545 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2546 * extent format containers, within a sector_t, and within i_blocks 2547 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2548 * so that won't be a limiting factor. 2549 * 2550 * However there is other limiting factor. We do store extents in the form 2551 * of starting block and length, hence the resulting length of the extent 2552 * covering maximum file size must fit into on-disk format containers as 2553 * well. Given that length is always by 1 unit bigger than max unit (because 2554 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2555 * 2556 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2557 */ 2558 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2559 { 2560 loff_t res; 2561 loff_t upper_limit = MAX_LFS_FILESIZE; 2562 2563 /* small i_blocks in vfs inode? */ 2564 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2565 /* 2566 * CONFIG_LBDAF is not enabled implies the inode 2567 * i_block represent total blocks in 512 bytes 2568 * 32 == size of vfs inode i_blocks * 8 2569 */ 2570 upper_limit = (1LL << 32) - 1; 2571 2572 /* total blocks in file system block size */ 2573 upper_limit >>= (blkbits - 9); 2574 upper_limit <<= blkbits; 2575 } 2576 2577 /* 2578 * 32-bit extent-start container, ee_block. We lower the maxbytes 2579 * by one fs block, so ee_len can cover the extent of maximum file 2580 * size 2581 */ 2582 res = (1LL << 32) - 1; 2583 res <<= blkbits; 2584 2585 /* Sanity check against vm- & vfs- imposed limits */ 2586 if (res > upper_limit) 2587 res = upper_limit; 2588 2589 return res; 2590 } 2591 2592 /* 2593 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2594 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2595 * We need to be 1 filesystem block less than the 2^48 sector limit. 2596 */ 2597 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2598 { 2599 loff_t res = EXT4_NDIR_BLOCKS; 2600 int meta_blocks; 2601 loff_t upper_limit; 2602 /* This is calculated to be the largest file size for a dense, block 2603 * mapped file such that the file's total number of 512-byte sectors, 2604 * including data and all indirect blocks, does not exceed (2^48 - 1). 2605 * 2606 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2607 * number of 512-byte sectors of the file. 2608 */ 2609 2610 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2611 /* 2612 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2613 * the inode i_block field represents total file blocks in 2614 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2615 */ 2616 upper_limit = (1LL << 32) - 1; 2617 2618 /* total blocks in file system block size */ 2619 upper_limit >>= (bits - 9); 2620 2621 } else { 2622 /* 2623 * We use 48 bit ext4_inode i_blocks 2624 * With EXT4_HUGE_FILE_FL set the i_blocks 2625 * represent total number of blocks in 2626 * file system block size 2627 */ 2628 upper_limit = (1LL << 48) - 1; 2629 2630 } 2631 2632 /* indirect blocks */ 2633 meta_blocks = 1; 2634 /* double indirect blocks */ 2635 meta_blocks += 1 + (1LL << (bits-2)); 2636 /* tripple indirect blocks */ 2637 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2638 2639 upper_limit -= meta_blocks; 2640 upper_limit <<= bits; 2641 2642 res += 1LL << (bits-2); 2643 res += 1LL << (2*(bits-2)); 2644 res += 1LL << (3*(bits-2)); 2645 res <<= bits; 2646 if (res > upper_limit) 2647 res = upper_limit; 2648 2649 if (res > MAX_LFS_FILESIZE) 2650 res = MAX_LFS_FILESIZE; 2651 2652 return res; 2653 } 2654 2655 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2656 ext4_fsblk_t logical_sb_block, int nr) 2657 { 2658 struct ext4_sb_info *sbi = EXT4_SB(sb); 2659 ext4_group_t bg, first_meta_bg; 2660 int has_super = 0; 2661 2662 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2663 2664 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2665 return logical_sb_block + nr + 1; 2666 bg = sbi->s_desc_per_block * nr; 2667 if (ext4_bg_has_super(sb, bg)) 2668 has_super = 1; 2669 2670 /* 2671 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2672 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2673 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2674 * compensate. 2675 */ 2676 if (sb->s_blocksize == 1024 && nr == 0 && 2677 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2678 has_super++; 2679 2680 return (has_super + ext4_group_first_block_no(sb, bg)); 2681 } 2682 2683 /** 2684 * ext4_get_stripe_size: Get the stripe size. 2685 * @sbi: In memory super block info 2686 * 2687 * If we have specified it via mount option, then 2688 * use the mount option value. If the value specified at mount time is 2689 * greater than the blocks per group use the super block value. 2690 * If the super block value is greater than blocks per group return 0. 2691 * Allocator needs it be less than blocks per group. 2692 * 2693 */ 2694 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2695 { 2696 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2697 unsigned long stripe_width = 2698 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2699 int ret; 2700 2701 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2702 ret = sbi->s_stripe; 2703 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2704 ret = stripe_width; 2705 else if (stride && stride <= sbi->s_blocks_per_group) 2706 ret = stride; 2707 else 2708 ret = 0; 2709 2710 /* 2711 * If the stripe width is 1, this makes no sense and 2712 * we set it to 0 to turn off stripe handling code. 2713 */ 2714 if (ret <= 1) 2715 ret = 0; 2716 2717 return ret; 2718 } 2719 2720 /* 2721 * Check whether this filesystem can be mounted based on 2722 * the features present and the RDONLY/RDWR mount requested. 2723 * Returns 1 if this filesystem can be mounted as requested, 2724 * 0 if it cannot be. 2725 */ 2726 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2727 { 2728 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2729 ext4_msg(sb, KERN_ERR, 2730 "Couldn't mount because of " 2731 "unsupported optional features (%x)", 2732 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2733 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2734 return 0; 2735 } 2736 2737 if (readonly) 2738 return 1; 2739 2740 if (ext4_has_feature_readonly(sb)) { 2741 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2742 sb->s_flags |= MS_RDONLY; 2743 return 1; 2744 } 2745 2746 /* Check that feature set is OK for a read-write mount */ 2747 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2748 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2749 "unsupported optional features (%x)", 2750 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2751 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2752 return 0; 2753 } 2754 /* 2755 * Large file size enabled file system can only be mounted 2756 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2757 */ 2758 if (ext4_has_feature_huge_file(sb)) { 2759 if (sizeof(blkcnt_t) < sizeof(u64)) { 2760 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2761 "cannot be mounted RDWR without " 2762 "CONFIG_LBDAF"); 2763 return 0; 2764 } 2765 } 2766 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2767 ext4_msg(sb, KERN_ERR, 2768 "Can't support bigalloc feature without " 2769 "extents feature\n"); 2770 return 0; 2771 } 2772 2773 #ifndef CONFIG_QUOTA 2774 if (ext4_has_feature_quota(sb) && !readonly) { 2775 ext4_msg(sb, KERN_ERR, 2776 "Filesystem with quota feature cannot be mounted RDWR " 2777 "without CONFIG_QUOTA"); 2778 return 0; 2779 } 2780 if (ext4_has_feature_project(sb) && !readonly) { 2781 ext4_msg(sb, KERN_ERR, 2782 "Filesystem with project quota feature cannot be mounted RDWR " 2783 "without CONFIG_QUOTA"); 2784 return 0; 2785 } 2786 #endif /* CONFIG_QUOTA */ 2787 return 1; 2788 } 2789 2790 /* 2791 * This function is called once a day if we have errors logged 2792 * on the file system 2793 */ 2794 static void print_daily_error_info(unsigned long arg) 2795 { 2796 struct super_block *sb = (struct super_block *) arg; 2797 struct ext4_sb_info *sbi; 2798 struct ext4_super_block *es; 2799 2800 sbi = EXT4_SB(sb); 2801 es = sbi->s_es; 2802 2803 if (es->s_error_count) 2804 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2805 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2806 le32_to_cpu(es->s_error_count)); 2807 if (es->s_first_error_time) { 2808 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2809 sb->s_id, le32_to_cpu(es->s_first_error_time), 2810 (int) sizeof(es->s_first_error_func), 2811 es->s_first_error_func, 2812 le32_to_cpu(es->s_first_error_line)); 2813 if (es->s_first_error_ino) 2814 printk(KERN_CONT ": inode %u", 2815 le32_to_cpu(es->s_first_error_ino)); 2816 if (es->s_first_error_block) 2817 printk(KERN_CONT ": block %llu", (unsigned long long) 2818 le64_to_cpu(es->s_first_error_block)); 2819 printk(KERN_CONT "\n"); 2820 } 2821 if (es->s_last_error_time) { 2822 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2823 sb->s_id, le32_to_cpu(es->s_last_error_time), 2824 (int) sizeof(es->s_last_error_func), 2825 es->s_last_error_func, 2826 le32_to_cpu(es->s_last_error_line)); 2827 if (es->s_last_error_ino) 2828 printk(KERN_CONT ": inode %u", 2829 le32_to_cpu(es->s_last_error_ino)); 2830 if (es->s_last_error_block) 2831 printk(KERN_CONT ": block %llu", (unsigned long long) 2832 le64_to_cpu(es->s_last_error_block)); 2833 printk(KERN_CONT "\n"); 2834 } 2835 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2836 } 2837 2838 /* Find next suitable group and run ext4_init_inode_table */ 2839 static int ext4_run_li_request(struct ext4_li_request *elr) 2840 { 2841 struct ext4_group_desc *gdp = NULL; 2842 ext4_group_t group, ngroups; 2843 struct super_block *sb; 2844 unsigned long timeout = 0; 2845 int ret = 0; 2846 2847 sb = elr->lr_super; 2848 ngroups = EXT4_SB(sb)->s_groups_count; 2849 2850 for (group = elr->lr_next_group; group < ngroups; group++) { 2851 gdp = ext4_get_group_desc(sb, group, NULL); 2852 if (!gdp) { 2853 ret = 1; 2854 break; 2855 } 2856 2857 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2858 break; 2859 } 2860 2861 if (group >= ngroups) 2862 ret = 1; 2863 2864 if (!ret) { 2865 timeout = jiffies; 2866 ret = ext4_init_inode_table(sb, group, 2867 elr->lr_timeout ? 0 : 1); 2868 if (elr->lr_timeout == 0) { 2869 timeout = (jiffies - timeout) * 2870 elr->lr_sbi->s_li_wait_mult; 2871 elr->lr_timeout = timeout; 2872 } 2873 elr->lr_next_sched = jiffies + elr->lr_timeout; 2874 elr->lr_next_group = group + 1; 2875 } 2876 return ret; 2877 } 2878 2879 /* 2880 * Remove lr_request from the list_request and free the 2881 * request structure. Should be called with li_list_mtx held 2882 */ 2883 static void ext4_remove_li_request(struct ext4_li_request *elr) 2884 { 2885 struct ext4_sb_info *sbi; 2886 2887 if (!elr) 2888 return; 2889 2890 sbi = elr->lr_sbi; 2891 2892 list_del(&elr->lr_request); 2893 sbi->s_li_request = NULL; 2894 kfree(elr); 2895 } 2896 2897 static void ext4_unregister_li_request(struct super_block *sb) 2898 { 2899 mutex_lock(&ext4_li_mtx); 2900 if (!ext4_li_info) { 2901 mutex_unlock(&ext4_li_mtx); 2902 return; 2903 } 2904 2905 mutex_lock(&ext4_li_info->li_list_mtx); 2906 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2907 mutex_unlock(&ext4_li_info->li_list_mtx); 2908 mutex_unlock(&ext4_li_mtx); 2909 } 2910 2911 static struct task_struct *ext4_lazyinit_task; 2912 2913 /* 2914 * This is the function where ext4lazyinit thread lives. It walks 2915 * through the request list searching for next scheduled filesystem. 2916 * When such a fs is found, run the lazy initialization request 2917 * (ext4_rn_li_request) and keep track of the time spend in this 2918 * function. Based on that time we compute next schedule time of 2919 * the request. When walking through the list is complete, compute 2920 * next waking time and put itself into sleep. 2921 */ 2922 static int ext4_lazyinit_thread(void *arg) 2923 { 2924 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2925 struct list_head *pos, *n; 2926 struct ext4_li_request *elr; 2927 unsigned long next_wakeup, cur; 2928 2929 BUG_ON(NULL == eli); 2930 2931 cont_thread: 2932 while (true) { 2933 next_wakeup = MAX_JIFFY_OFFSET; 2934 2935 mutex_lock(&eli->li_list_mtx); 2936 if (list_empty(&eli->li_request_list)) { 2937 mutex_unlock(&eli->li_list_mtx); 2938 goto exit_thread; 2939 } 2940 list_for_each_safe(pos, n, &eli->li_request_list) { 2941 int err = 0; 2942 int progress = 0; 2943 elr = list_entry(pos, struct ext4_li_request, 2944 lr_request); 2945 2946 if (time_before(jiffies, elr->lr_next_sched)) { 2947 if (time_before(elr->lr_next_sched, next_wakeup)) 2948 next_wakeup = elr->lr_next_sched; 2949 continue; 2950 } 2951 if (down_read_trylock(&elr->lr_super->s_umount)) { 2952 if (sb_start_write_trylock(elr->lr_super)) { 2953 progress = 1; 2954 /* 2955 * We hold sb->s_umount, sb can not 2956 * be removed from the list, it is 2957 * now safe to drop li_list_mtx 2958 */ 2959 mutex_unlock(&eli->li_list_mtx); 2960 err = ext4_run_li_request(elr); 2961 sb_end_write(elr->lr_super); 2962 mutex_lock(&eli->li_list_mtx); 2963 n = pos->next; 2964 } 2965 up_read((&elr->lr_super->s_umount)); 2966 } 2967 /* error, remove the lazy_init job */ 2968 if (err) { 2969 ext4_remove_li_request(elr); 2970 continue; 2971 } 2972 if (!progress) { 2973 elr->lr_next_sched = jiffies + 2974 (prandom_u32() 2975 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2976 } 2977 if (time_before(elr->lr_next_sched, next_wakeup)) 2978 next_wakeup = elr->lr_next_sched; 2979 } 2980 mutex_unlock(&eli->li_list_mtx); 2981 2982 try_to_freeze(); 2983 2984 cur = jiffies; 2985 if ((time_after_eq(cur, next_wakeup)) || 2986 (MAX_JIFFY_OFFSET == next_wakeup)) { 2987 cond_resched(); 2988 continue; 2989 } 2990 2991 schedule_timeout_interruptible(next_wakeup - cur); 2992 2993 if (kthread_should_stop()) { 2994 ext4_clear_request_list(); 2995 goto exit_thread; 2996 } 2997 } 2998 2999 exit_thread: 3000 /* 3001 * It looks like the request list is empty, but we need 3002 * to check it under the li_list_mtx lock, to prevent any 3003 * additions into it, and of course we should lock ext4_li_mtx 3004 * to atomically free the list and ext4_li_info, because at 3005 * this point another ext4 filesystem could be registering 3006 * new one. 3007 */ 3008 mutex_lock(&ext4_li_mtx); 3009 mutex_lock(&eli->li_list_mtx); 3010 if (!list_empty(&eli->li_request_list)) { 3011 mutex_unlock(&eli->li_list_mtx); 3012 mutex_unlock(&ext4_li_mtx); 3013 goto cont_thread; 3014 } 3015 mutex_unlock(&eli->li_list_mtx); 3016 kfree(ext4_li_info); 3017 ext4_li_info = NULL; 3018 mutex_unlock(&ext4_li_mtx); 3019 3020 return 0; 3021 } 3022 3023 static void ext4_clear_request_list(void) 3024 { 3025 struct list_head *pos, *n; 3026 struct ext4_li_request *elr; 3027 3028 mutex_lock(&ext4_li_info->li_list_mtx); 3029 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3030 elr = list_entry(pos, struct ext4_li_request, 3031 lr_request); 3032 ext4_remove_li_request(elr); 3033 } 3034 mutex_unlock(&ext4_li_info->li_list_mtx); 3035 } 3036 3037 static int ext4_run_lazyinit_thread(void) 3038 { 3039 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3040 ext4_li_info, "ext4lazyinit"); 3041 if (IS_ERR(ext4_lazyinit_task)) { 3042 int err = PTR_ERR(ext4_lazyinit_task); 3043 ext4_clear_request_list(); 3044 kfree(ext4_li_info); 3045 ext4_li_info = NULL; 3046 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3047 "initialization thread\n", 3048 err); 3049 return err; 3050 } 3051 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3052 return 0; 3053 } 3054 3055 /* 3056 * Check whether it make sense to run itable init. thread or not. 3057 * If there is at least one uninitialized inode table, return 3058 * corresponding group number, else the loop goes through all 3059 * groups and return total number of groups. 3060 */ 3061 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3062 { 3063 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3064 struct ext4_group_desc *gdp = NULL; 3065 3066 for (group = 0; group < ngroups; group++) { 3067 gdp = ext4_get_group_desc(sb, group, NULL); 3068 if (!gdp) 3069 continue; 3070 3071 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3072 break; 3073 } 3074 3075 return group; 3076 } 3077 3078 static int ext4_li_info_new(void) 3079 { 3080 struct ext4_lazy_init *eli = NULL; 3081 3082 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3083 if (!eli) 3084 return -ENOMEM; 3085 3086 INIT_LIST_HEAD(&eli->li_request_list); 3087 mutex_init(&eli->li_list_mtx); 3088 3089 eli->li_state |= EXT4_LAZYINIT_QUIT; 3090 3091 ext4_li_info = eli; 3092 3093 return 0; 3094 } 3095 3096 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3097 ext4_group_t start) 3098 { 3099 struct ext4_sb_info *sbi = EXT4_SB(sb); 3100 struct ext4_li_request *elr; 3101 3102 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3103 if (!elr) 3104 return NULL; 3105 3106 elr->lr_super = sb; 3107 elr->lr_sbi = sbi; 3108 elr->lr_next_group = start; 3109 3110 /* 3111 * Randomize first schedule time of the request to 3112 * spread the inode table initialization requests 3113 * better. 3114 */ 3115 elr->lr_next_sched = jiffies + (prandom_u32() % 3116 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3117 return elr; 3118 } 3119 3120 int ext4_register_li_request(struct super_block *sb, 3121 ext4_group_t first_not_zeroed) 3122 { 3123 struct ext4_sb_info *sbi = EXT4_SB(sb); 3124 struct ext4_li_request *elr = NULL; 3125 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3126 int ret = 0; 3127 3128 mutex_lock(&ext4_li_mtx); 3129 if (sbi->s_li_request != NULL) { 3130 /* 3131 * Reset timeout so it can be computed again, because 3132 * s_li_wait_mult might have changed. 3133 */ 3134 sbi->s_li_request->lr_timeout = 0; 3135 goto out; 3136 } 3137 3138 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3139 !test_opt(sb, INIT_INODE_TABLE)) 3140 goto out; 3141 3142 elr = ext4_li_request_new(sb, first_not_zeroed); 3143 if (!elr) { 3144 ret = -ENOMEM; 3145 goto out; 3146 } 3147 3148 if (NULL == ext4_li_info) { 3149 ret = ext4_li_info_new(); 3150 if (ret) 3151 goto out; 3152 } 3153 3154 mutex_lock(&ext4_li_info->li_list_mtx); 3155 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3156 mutex_unlock(&ext4_li_info->li_list_mtx); 3157 3158 sbi->s_li_request = elr; 3159 /* 3160 * set elr to NULL here since it has been inserted to 3161 * the request_list and the removal and free of it is 3162 * handled by ext4_clear_request_list from now on. 3163 */ 3164 elr = NULL; 3165 3166 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3167 ret = ext4_run_lazyinit_thread(); 3168 if (ret) 3169 goto out; 3170 } 3171 out: 3172 mutex_unlock(&ext4_li_mtx); 3173 if (ret) 3174 kfree(elr); 3175 return ret; 3176 } 3177 3178 /* 3179 * We do not need to lock anything since this is called on 3180 * module unload. 3181 */ 3182 static void ext4_destroy_lazyinit_thread(void) 3183 { 3184 /* 3185 * If thread exited earlier 3186 * there's nothing to be done. 3187 */ 3188 if (!ext4_li_info || !ext4_lazyinit_task) 3189 return; 3190 3191 kthread_stop(ext4_lazyinit_task); 3192 } 3193 3194 static int set_journal_csum_feature_set(struct super_block *sb) 3195 { 3196 int ret = 1; 3197 int compat, incompat; 3198 struct ext4_sb_info *sbi = EXT4_SB(sb); 3199 3200 if (ext4_has_metadata_csum(sb)) { 3201 /* journal checksum v3 */ 3202 compat = 0; 3203 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3204 } else { 3205 /* journal checksum v1 */ 3206 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3207 incompat = 0; 3208 } 3209 3210 jbd2_journal_clear_features(sbi->s_journal, 3211 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3212 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3213 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3214 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3215 ret = jbd2_journal_set_features(sbi->s_journal, 3216 compat, 0, 3217 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3218 incompat); 3219 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3220 ret = jbd2_journal_set_features(sbi->s_journal, 3221 compat, 0, 3222 incompat); 3223 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3224 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3225 } else { 3226 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3228 } 3229 3230 return ret; 3231 } 3232 3233 /* 3234 * Note: calculating the overhead so we can be compatible with 3235 * historical BSD practice is quite difficult in the face of 3236 * clusters/bigalloc. This is because multiple metadata blocks from 3237 * different block group can end up in the same allocation cluster. 3238 * Calculating the exact overhead in the face of clustered allocation 3239 * requires either O(all block bitmaps) in memory or O(number of block 3240 * groups**2) in time. We will still calculate the superblock for 3241 * older file systems --- and if we come across with a bigalloc file 3242 * system with zero in s_overhead_clusters the estimate will be close to 3243 * correct especially for very large cluster sizes --- but for newer 3244 * file systems, it's better to calculate this figure once at mkfs 3245 * time, and store it in the superblock. If the superblock value is 3246 * present (even for non-bigalloc file systems), we will use it. 3247 */ 3248 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3249 char *buf) 3250 { 3251 struct ext4_sb_info *sbi = EXT4_SB(sb); 3252 struct ext4_group_desc *gdp; 3253 ext4_fsblk_t first_block, last_block, b; 3254 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3255 int s, j, count = 0; 3256 3257 if (!ext4_has_feature_bigalloc(sb)) 3258 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3259 sbi->s_itb_per_group + 2); 3260 3261 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3262 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3263 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3264 for (i = 0; i < ngroups; i++) { 3265 gdp = ext4_get_group_desc(sb, i, NULL); 3266 b = ext4_block_bitmap(sb, gdp); 3267 if (b >= first_block && b <= last_block) { 3268 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3269 count++; 3270 } 3271 b = ext4_inode_bitmap(sb, gdp); 3272 if (b >= first_block && b <= last_block) { 3273 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3274 count++; 3275 } 3276 b = ext4_inode_table(sb, gdp); 3277 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3278 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3279 int c = EXT4_B2C(sbi, b - first_block); 3280 ext4_set_bit(c, buf); 3281 count++; 3282 } 3283 if (i != grp) 3284 continue; 3285 s = 0; 3286 if (ext4_bg_has_super(sb, grp)) { 3287 ext4_set_bit(s++, buf); 3288 count++; 3289 } 3290 j = ext4_bg_num_gdb(sb, grp); 3291 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3292 ext4_error(sb, "Invalid number of block group " 3293 "descriptor blocks: %d", j); 3294 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3295 } 3296 count += j; 3297 for (; j > 0; j--) 3298 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3299 } 3300 if (!count) 3301 return 0; 3302 return EXT4_CLUSTERS_PER_GROUP(sb) - 3303 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3304 } 3305 3306 /* 3307 * Compute the overhead and stash it in sbi->s_overhead 3308 */ 3309 int ext4_calculate_overhead(struct super_block *sb) 3310 { 3311 struct ext4_sb_info *sbi = EXT4_SB(sb); 3312 struct ext4_super_block *es = sbi->s_es; 3313 struct inode *j_inode; 3314 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3315 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3316 ext4_fsblk_t overhead = 0; 3317 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3318 3319 if (!buf) 3320 return -ENOMEM; 3321 3322 /* 3323 * Compute the overhead (FS structures). This is constant 3324 * for a given filesystem unless the number of block groups 3325 * changes so we cache the previous value until it does. 3326 */ 3327 3328 /* 3329 * All of the blocks before first_data_block are overhead 3330 */ 3331 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3332 3333 /* 3334 * Add the overhead found in each block group 3335 */ 3336 for (i = 0; i < ngroups; i++) { 3337 int blks; 3338 3339 blks = count_overhead(sb, i, buf); 3340 overhead += blks; 3341 if (blks) 3342 memset(buf, 0, PAGE_SIZE); 3343 cond_resched(); 3344 } 3345 3346 /* 3347 * Add the internal journal blocks whether the journal has been 3348 * loaded or not 3349 */ 3350 if (sbi->s_journal && !sbi->journal_bdev) 3351 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3352 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3353 j_inode = ext4_get_journal_inode(sb, j_inum); 3354 if (j_inode) { 3355 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3356 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3357 iput(j_inode); 3358 } else { 3359 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3360 } 3361 } 3362 sbi->s_overhead = overhead; 3363 smp_wmb(); 3364 free_page((unsigned long) buf); 3365 return 0; 3366 } 3367 3368 static void ext4_set_resv_clusters(struct super_block *sb) 3369 { 3370 ext4_fsblk_t resv_clusters; 3371 struct ext4_sb_info *sbi = EXT4_SB(sb); 3372 3373 /* 3374 * There's no need to reserve anything when we aren't using extents. 3375 * The space estimates are exact, there are no unwritten extents, 3376 * hole punching doesn't need new metadata... This is needed especially 3377 * to keep ext2/3 backward compatibility. 3378 */ 3379 if (!ext4_has_feature_extents(sb)) 3380 return; 3381 /* 3382 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3383 * This should cover the situations where we can not afford to run 3384 * out of space like for example punch hole, or converting 3385 * unwritten extents in delalloc path. In most cases such 3386 * allocation would require 1, or 2 blocks, higher numbers are 3387 * very rare. 3388 */ 3389 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3390 sbi->s_cluster_bits); 3391 3392 do_div(resv_clusters, 50); 3393 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3394 3395 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3396 } 3397 3398 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3399 { 3400 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3401 char *orig_data = kstrdup(data, GFP_KERNEL); 3402 struct buffer_head *bh; 3403 struct ext4_super_block *es = NULL; 3404 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3405 ext4_fsblk_t block; 3406 ext4_fsblk_t sb_block = get_sb_block(&data); 3407 ext4_fsblk_t logical_sb_block; 3408 unsigned long offset = 0; 3409 unsigned long journal_devnum = 0; 3410 unsigned long def_mount_opts; 3411 struct inode *root; 3412 const char *descr; 3413 int ret = -ENOMEM; 3414 int blocksize, clustersize; 3415 unsigned int db_count; 3416 unsigned int i; 3417 int needs_recovery, has_huge_files, has_bigalloc; 3418 __u64 blocks_count; 3419 int err = 0; 3420 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3421 ext4_group_t first_not_zeroed; 3422 3423 if ((data && !orig_data) || !sbi) 3424 goto out_free_base; 3425 3426 sbi->s_daxdev = dax_dev; 3427 sbi->s_blockgroup_lock = 3428 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3429 if (!sbi->s_blockgroup_lock) 3430 goto out_free_base; 3431 3432 sb->s_fs_info = sbi; 3433 sbi->s_sb = sb; 3434 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3435 sbi->s_sb_block = sb_block; 3436 if (sb->s_bdev->bd_part) 3437 sbi->s_sectors_written_start = 3438 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3439 3440 /* Cleanup superblock name */ 3441 strreplace(sb->s_id, '/', '!'); 3442 3443 /* -EINVAL is default */ 3444 ret = -EINVAL; 3445 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3446 if (!blocksize) { 3447 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3448 goto out_fail; 3449 } 3450 3451 /* 3452 * The ext4 superblock will not be buffer aligned for other than 1kB 3453 * block sizes. We need to calculate the offset from buffer start. 3454 */ 3455 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3456 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3457 offset = do_div(logical_sb_block, blocksize); 3458 } else { 3459 logical_sb_block = sb_block; 3460 } 3461 3462 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3463 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3464 goto out_fail; 3465 } 3466 /* 3467 * Note: s_es must be initialized as soon as possible because 3468 * some ext4 macro-instructions depend on its value 3469 */ 3470 es = (struct ext4_super_block *) (bh->b_data + offset); 3471 sbi->s_es = es; 3472 sb->s_magic = le16_to_cpu(es->s_magic); 3473 if (sb->s_magic != EXT4_SUPER_MAGIC) 3474 goto cantfind_ext4; 3475 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3476 3477 /* Warn if metadata_csum and gdt_csum are both set. */ 3478 if (ext4_has_feature_metadata_csum(sb) && 3479 ext4_has_feature_gdt_csum(sb)) 3480 ext4_warning(sb, "metadata_csum and uninit_bg are " 3481 "redundant flags; please run fsck."); 3482 3483 /* Check for a known checksum algorithm */ 3484 if (!ext4_verify_csum_type(sb, es)) { 3485 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3486 "unknown checksum algorithm."); 3487 silent = 1; 3488 goto cantfind_ext4; 3489 } 3490 3491 /* Load the checksum driver */ 3492 if (ext4_has_feature_metadata_csum(sb) || 3493 ext4_has_feature_ea_inode(sb)) { 3494 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3495 if (IS_ERR(sbi->s_chksum_driver)) { 3496 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3497 ret = PTR_ERR(sbi->s_chksum_driver); 3498 sbi->s_chksum_driver = NULL; 3499 goto failed_mount; 3500 } 3501 } 3502 3503 /* Check superblock checksum */ 3504 if (!ext4_superblock_csum_verify(sb, es)) { 3505 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3506 "invalid superblock checksum. Run e2fsck?"); 3507 silent = 1; 3508 ret = -EFSBADCRC; 3509 goto cantfind_ext4; 3510 } 3511 3512 /* Precompute checksum seed for all metadata */ 3513 if (ext4_has_feature_csum_seed(sb)) 3514 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3515 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3516 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3517 sizeof(es->s_uuid)); 3518 3519 /* Set defaults before we parse the mount options */ 3520 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3521 set_opt(sb, INIT_INODE_TABLE); 3522 if (def_mount_opts & EXT4_DEFM_DEBUG) 3523 set_opt(sb, DEBUG); 3524 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3525 set_opt(sb, GRPID); 3526 if (def_mount_opts & EXT4_DEFM_UID16) 3527 set_opt(sb, NO_UID32); 3528 /* xattr user namespace & acls are now defaulted on */ 3529 set_opt(sb, XATTR_USER); 3530 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3531 set_opt(sb, POSIX_ACL); 3532 #endif 3533 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3534 if (ext4_has_metadata_csum(sb)) 3535 set_opt(sb, JOURNAL_CHECKSUM); 3536 3537 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3538 set_opt(sb, JOURNAL_DATA); 3539 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3540 set_opt(sb, ORDERED_DATA); 3541 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3542 set_opt(sb, WRITEBACK_DATA); 3543 3544 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3545 set_opt(sb, ERRORS_PANIC); 3546 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3547 set_opt(sb, ERRORS_CONT); 3548 else 3549 set_opt(sb, ERRORS_RO); 3550 /* block_validity enabled by default; disable with noblock_validity */ 3551 set_opt(sb, BLOCK_VALIDITY); 3552 if (def_mount_opts & EXT4_DEFM_DISCARD) 3553 set_opt(sb, DISCARD); 3554 3555 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3556 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3557 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3558 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3559 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3560 3561 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3562 set_opt(sb, BARRIER); 3563 3564 /* 3565 * enable delayed allocation by default 3566 * Use -o nodelalloc to turn it off 3567 */ 3568 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3569 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3570 set_opt(sb, DELALLOC); 3571 3572 /* 3573 * set default s_li_wait_mult for lazyinit, for the case there is 3574 * no mount option specified. 3575 */ 3576 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3577 3578 if (sbi->s_es->s_mount_opts[0]) { 3579 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3580 sizeof(sbi->s_es->s_mount_opts), 3581 GFP_KERNEL); 3582 if (!s_mount_opts) 3583 goto failed_mount; 3584 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3585 &journal_ioprio, 0)) { 3586 ext4_msg(sb, KERN_WARNING, 3587 "failed to parse options in superblock: %s", 3588 s_mount_opts); 3589 } 3590 kfree(s_mount_opts); 3591 } 3592 sbi->s_def_mount_opt = sbi->s_mount_opt; 3593 if (!parse_options((char *) data, sb, &journal_devnum, 3594 &journal_ioprio, 0)) 3595 goto failed_mount; 3596 3597 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3598 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3599 "with data=journal disables delayed " 3600 "allocation and O_DIRECT support!\n"); 3601 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3602 ext4_msg(sb, KERN_ERR, "can't mount with " 3603 "both data=journal and delalloc"); 3604 goto failed_mount; 3605 } 3606 if (test_opt(sb, DIOREAD_NOLOCK)) { 3607 ext4_msg(sb, KERN_ERR, "can't mount with " 3608 "both data=journal and dioread_nolock"); 3609 goto failed_mount; 3610 } 3611 if (test_opt(sb, DAX)) { 3612 ext4_msg(sb, KERN_ERR, "can't mount with " 3613 "both data=journal and dax"); 3614 goto failed_mount; 3615 } 3616 if (ext4_has_feature_encrypt(sb)) { 3617 ext4_msg(sb, KERN_WARNING, 3618 "encrypted files will use data=ordered " 3619 "instead of data journaling mode"); 3620 } 3621 if (test_opt(sb, DELALLOC)) 3622 clear_opt(sb, DELALLOC); 3623 } else { 3624 sb->s_iflags |= SB_I_CGROUPWB; 3625 } 3626 3627 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3628 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3629 3630 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3631 (ext4_has_compat_features(sb) || 3632 ext4_has_ro_compat_features(sb) || 3633 ext4_has_incompat_features(sb))) 3634 ext4_msg(sb, KERN_WARNING, 3635 "feature flags set on rev 0 fs, " 3636 "running e2fsck is recommended"); 3637 3638 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3639 set_opt2(sb, HURD_COMPAT); 3640 if (ext4_has_feature_64bit(sb)) { 3641 ext4_msg(sb, KERN_ERR, 3642 "The Hurd can't support 64-bit file systems"); 3643 goto failed_mount; 3644 } 3645 3646 /* 3647 * ea_inode feature uses l_i_version field which is not 3648 * available in HURD_COMPAT mode. 3649 */ 3650 if (ext4_has_feature_ea_inode(sb)) { 3651 ext4_msg(sb, KERN_ERR, 3652 "ea_inode feature is not supported for Hurd"); 3653 goto failed_mount; 3654 } 3655 } 3656 3657 if (IS_EXT2_SB(sb)) { 3658 if (ext2_feature_set_ok(sb)) 3659 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3660 "using the ext4 subsystem"); 3661 else { 3662 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3663 "to feature incompatibilities"); 3664 goto failed_mount; 3665 } 3666 } 3667 3668 if (IS_EXT3_SB(sb)) { 3669 if (ext3_feature_set_ok(sb)) 3670 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3671 "using the ext4 subsystem"); 3672 else { 3673 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3674 "to feature incompatibilities"); 3675 goto failed_mount; 3676 } 3677 } 3678 3679 /* 3680 * Check feature flags regardless of the revision level, since we 3681 * previously didn't change the revision level when setting the flags, 3682 * so there is a chance incompat flags are set on a rev 0 filesystem. 3683 */ 3684 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3685 goto failed_mount; 3686 3687 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3688 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3689 blocksize > EXT4_MAX_BLOCK_SIZE) { 3690 ext4_msg(sb, KERN_ERR, 3691 "Unsupported filesystem blocksize %d (%d log_block_size)", 3692 blocksize, le32_to_cpu(es->s_log_block_size)); 3693 goto failed_mount; 3694 } 3695 if (le32_to_cpu(es->s_log_block_size) > 3696 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3697 ext4_msg(sb, KERN_ERR, 3698 "Invalid log block size: %u", 3699 le32_to_cpu(es->s_log_block_size)); 3700 goto failed_mount; 3701 } 3702 3703 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3704 ext4_msg(sb, KERN_ERR, 3705 "Number of reserved GDT blocks insanely large: %d", 3706 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3707 goto failed_mount; 3708 } 3709 3710 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3711 err = bdev_dax_supported(sb, blocksize); 3712 if (err) 3713 goto failed_mount; 3714 } 3715 3716 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3717 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3718 es->s_encryption_level); 3719 goto failed_mount; 3720 } 3721 3722 if (sb->s_blocksize != blocksize) { 3723 /* Validate the filesystem blocksize */ 3724 if (!sb_set_blocksize(sb, blocksize)) { 3725 ext4_msg(sb, KERN_ERR, "bad block size %d", 3726 blocksize); 3727 goto failed_mount; 3728 } 3729 3730 brelse(bh); 3731 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3732 offset = do_div(logical_sb_block, blocksize); 3733 bh = sb_bread_unmovable(sb, logical_sb_block); 3734 if (!bh) { 3735 ext4_msg(sb, KERN_ERR, 3736 "Can't read superblock on 2nd try"); 3737 goto failed_mount; 3738 } 3739 es = (struct ext4_super_block *)(bh->b_data + offset); 3740 sbi->s_es = es; 3741 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3742 ext4_msg(sb, KERN_ERR, 3743 "Magic mismatch, very weird!"); 3744 goto failed_mount; 3745 } 3746 } 3747 3748 has_huge_files = ext4_has_feature_huge_file(sb); 3749 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3750 has_huge_files); 3751 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3752 3753 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3754 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3755 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3756 } else { 3757 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3758 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3759 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3760 (!is_power_of_2(sbi->s_inode_size)) || 3761 (sbi->s_inode_size > blocksize)) { 3762 ext4_msg(sb, KERN_ERR, 3763 "unsupported inode size: %d", 3764 sbi->s_inode_size); 3765 goto failed_mount; 3766 } 3767 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3768 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3769 } 3770 3771 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3772 if (ext4_has_feature_64bit(sb)) { 3773 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3774 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3775 !is_power_of_2(sbi->s_desc_size)) { 3776 ext4_msg(sb, KERN_ERR, 3777 "unsupported descriptor size %lu", 3778 sbi->s_desc_size); 3779 goto failed_mount; 3780 } 3781 } else 3782 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3783 3784 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3785 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3786 3787 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3788 if (sbi->s_inodes_per_block == 0) 3789 goto cantfind_ext4; 3790 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3791 sbi->s_inodes_per_group > blocksize * 8) { 3792 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3793 sbi->s_blocks_per_group); 3794 goto failed_mount; 3795 } 3796 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3797 sbi->s_inodes_per_block; 3798 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3799 sbi->s_sbh = bh; 3800 sbi->s_mount_state = le16_to_cpu(es->s_state); 3801 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3802 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3803 3804 for (i = 0; i < 4; i++) 3805 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3806 sbi->s_def_hash_version = es->s_def_hash_version; 3807 if (ext4_has_feature_dir_index(sb)) { 3808 i = le32_to_cpu(es->s_flags); 3809 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3810 sbi->s_hash_unsigned = 3; 3811 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3812 #ifdef __CHAR_UNSIGNED__ 3813 if (!sb_rdonly(sb)) 3814 es->s_flags |= 3815 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3816 sbi->s_hash_unsigned = 3; 3817 #else 3818 if (!sb_rdonly(sb)) 3819 es->s_flags |= 3820 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3821 #endif 3822 } 3823 } 3824 3825 /* Handle clustersize */ 3826 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3827 has_bigalloc = ext4_has_feature_bigalloc(sb); 3828 if (has_bigalloc) { 3829 if (clustersize < blocksize) { 3830 ext4_msg(sb, KERN_ERR, 3831 "cluster size (%d) smaller than " 3832 "block size (%d)", clustersize, blocksize); 3833 goto failed_mount; 3834 } 3835 if (le32_to_cpu(es->s_log_cluster_size) > 3836 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3837 ext4_msg(sb, KERN_ERR, 3838 "Invalid log cluster size: %u", 3839 le32_to_cpu(es->s_log_cluster_size)); 3840 goto failed_mount; 3841 } 3842 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3843 le32_to_cpu(es->s_log_block_size); 3844 sbi->s_clusters_per_group = 3845 le32_to_cpu(es->s_clusters_per_group); 3846 if (sbi->s_clusters_per_group > blocksize * 8) { 3847 ext4_msg(sb, KERN_ERR, 3848 "#clusters per group too big: %lu", 3849 sbi->s_clusters_per_group); 3850 goto failed_mount; 3851 } 3852 if (sbi->s_blocks_per_group != 3853 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3854 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3855 "clusters per group (%lu) inconsistent", 3856 sbi->s_blocks_per_group, 3857 sbi->s_clusters_per_group); 3858 goto failed_mount; 3859 } 3860 } else { 3861 if (clustersize != blocksize) { 3862 ext4_warning(sb, "fragment/cluster size (%d) != " 3863 "block size (%d)", clustersize, 3864 blocksize); 3865 clustersize = blocksize; 3866 } 3867 if (sbi->s_blocks_per_group > blocksize * 8) { 3868 ext4_msg(sb, KERN_ERR, 3869 "#blocks per group too big: %lu", 3870 sbi->s_blocks_per_group); 3871 goto failed_mount; 3872 } 3873 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3874 sbi->s_cluster_bits = 0; 3875 } 3876 sbi->s_cluster_ratio = clustersize / blocksize; 3877 3878 /* Do we have standard group size of clustersize * 8 blocks ? */ 3879 if (sbi->s_blocks_per_group == clustersize << 3) 3880 set_opt2(sb, STD_GROUP_SIZE); 3881 3882 /* 3883 * Test whether we have more sectors than will fit in sector_t, 3884 * and whether the max offset is addressable by the page cache. 3885 */ 3886 err = generic_check_addressable(sb->s_blocksize_bits, 3887 ext4_blocks_count(es)); 3888 if (err) { 3889 ext4_msg(sb, KERN_ERR, "filesystem" 3890 " too large to mount safely on this system"); 3891 if (sizeof(sector_t) < 8) 3892 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3893 goto failed_mount; 3894 } 3895 3896 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3897 goto cantfind_ext4; 3898 3899 /* check blocks count against device size */ 3900 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3901 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3902 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3903 "exceeds size of device (%llu blocks)", 3904 ext4_blocks_count(es), blocks_count); 3905 goto failed_mount; 3906 } 3907 3908 /* 3909 * It makes no sense for the first data block to be beyond the end 3910 * of the filesystem. 3911 */ 3912 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3913 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3914 "block %u is beyond end of filesystem (%llu)", 3915 le32_to_cpu(es->s_first_data_block), 3916 ext4_blocks_count(es)); 3917 goto failed_mount; 3918 } 3919 blocks_count = (ext4_blocks_count(es) - 3920 le32_to_cpu(es->s_first_data_block) + 3921 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3922 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3923 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3924 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3925 "(block count %llu, first data block %u, " 3926 "blocks per group %lu)", sbi->s_groups_count, 3927 ext4_blocks_count(es), 3928 le32_to_cpu(es->s_first_data_block), 3929 EXT4_BLOCKS_PER_GROUP(sb)); 3930 goto failed_mount; 3931 } 3932 sbi->s_groups_count = blocks_count; 3933 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3934 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3935 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3936 EXT4_DESC_PER_BLOCK(sb); 3937 if (ext4_has_feature_meta_bg(sb)) { 3938 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3939 ext4_msg(sb, KERN_WARNING, 3940 "first meta block group too large: %u " 3941 "(group descriptor block count %u)", 3942 le32_to_cpu(es->s_first_meta_bg), db_count); 3943 goto failed_mount; 3944 } 3945 } 3946 sbi->s_group_desc = kvmalloc(db_count * 3947 sizeof(struct buffer_head *), 3948 GFP_KERNEL); 3949 if (sbi->s_group_desc == NULL) { 3950 ext4_msg(sb, KERN_ERR, "not enough memory"); 3951 ret = -ENOMEM; 3952 goto failed_mount; 3953 } 3954 3955 bgl_lock_init(sbi->s_blockgroup_lock); 3956 3957 /* Pre-read the descriptors into the buffer cache */ 3958 for (i = 0; i < db_count; i++) { 3959 block = descriptor_loc(sb, logical_sb_block, i); 3960 sb_breadahead(sb, block); 3961 } 3962 3963 for (i = 0; i < db_count; i++) { 3964 block = descriptor_loc(sb, logical_sb_block, i); 3965 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3966 if (!sbi->s_group_desc[i]) { 3967 ext4_msg(sb, KERN_ERR, 3968 "can't read group descriptor %d", i); 3969 db_count = i; 3970 goto failed_mount2; 3971 } 3972 } 3973 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3974 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3975 ret = -EFSCORRUPTED; 3976 goto failed_mount2; 3977 } 3978 3979 sbi->s_gdb_count = db_count; 3980 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3981 spin_lock_init(&sbi->s_next_gen_lock); 3982 3983 setup_timer(&sbi->s_err_report, print_daily_error_info, 3984 (unsigned long) sb); 3985 3986 /* Register extent status tree shrinker */ 3987 if (ext4_es_register_shrinker(sbi)) 3988 goto failed_mount3; 3989 3990 sbi->s_stripe = ext4_get_stripe_size(sbi); 3991 sbi->s_extent_max_zeroout_kb = 32; 3992 3993 /* 3994 * set up enough so that it can read an inode 3995 */ 3996 sb->s_op = &ext4_sops; 3997 sb->s_export_op = &ext4_export_ops; 3998 sb->s_xattr = ext4_xattr_handlers; 3999 sb->s_cop = &ext4_cryptops; 4000 #ifdef CONFIG_QUOTA 4001 sb->dq_op = &ext4_quota_operations; 4002 if (ext4_has_feature_quota(sb)) 4003 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4004 else 4005 sb->s_qcop = &ext4_qctl_operations; 4006 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4007 #endif 4008 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4009 4010 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4011 mutex_init(&sbi->s_orphan_lock); 4012 4013 sb->s_root = NULL; 4014 4015 needs_recovery = (es->s_last_orphan != 0 || 4016 ext4_has_feature_journal_needs_recovery(sb)); 4017 4018 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4019 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4020 goto failed_mount3a; 4021 4022 /* 4023 * The first inode we look at is the journal inode. Don't try 4024 * root first: it may be modified in the journal! 4025 */ 4026 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4027 err = ext4_load_journal(sb, es, journal_devnum); 4028 if (err) 4029 goto failed_mount3a; 4030 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4031 ext4_has_feature_journal_needs_recovery(sb)) { 4032 ext4_msg(sb, KERN_ERR, "required journal recovery " 4033 "suppressed and not mounted read-only"); 4034 goto failed_mount_wq; 4035 } else { 4036 /* Nojournal mode, all journal mount options are illegal */ 4037 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4038 ext4_msg(sb, KERN_ERR, "can't mount with " 4039 "journal_checksum, fs mounted w/o journal"); 4040 goto failed_mount_wq; 4041 } 4042 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4043 ext4_msg(sb, KERN_ERR, "can't mount with " 4044 "journal_async_commit, fs mounted w/o journal"); 4045 goto failed_mount_wq; 4046 } 4047 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4048 ext4_msg(sb, KERN_ERR, "can't mount with " 4049 "commit=%lu, fs mounted w/o journal", 4050 sbi->s_commit_interval / HZ); 4051 goto failed_mount_wq; 4052 } 4053 if (EXT4_MOUNT_DATA_FLAGS & 4054 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4055 ext4_msg(sb, KERN_ERR, "can't mount with " 4056 "data=, fs mounted w/o journal"); 4057 goto failed_mount_wq; 4058 } 4059 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4060 clear_opt(sb, JOURNAL_CHECKSUM); 4061 clear_opt(sb, DATA_FLAGS); 4062 sbi->s_journal = NULL; 4063 needs_recovery = 0; 4064 goto no_journal; 4065 } 4066 4067 if (ext4_has_feature_64bit(sb) && 4068 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4069 JBD2_FEATURE_INCOMPAT_64BIT)) { 4070 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4071 goto failed_mount_wq; 4072 } 4073 4074 if (!set_journal_csum_feature_set(sb)) { 4075 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4076 "feature set"); 4077 goto failed_mount_wq; 4078 } 4079 4080 /* We have now updated the journal if required, so we can 4081 * validate the data journaling mode. */ 4082 switch (test_opt(sb, DATA_FLAGS)) { 4083 case 0: 4084 /* No mode set, assume a default based on the journal 4085 * capabilities: ORDERED_DATA if the journal can 4086 * cope, else JOURNAL_DATA 4087 */ 4088 if (jbd2_journal_check_available_features 4089 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4090 set_opt(sb, ORDERED_DATA); 4091 else 4092 set_opt(sb, JOURNAL_DATA); 4093 break; 4094 4095 case EXT4_MOUNT_ORDERED_DATA: 4096 case EXT4_MOUNT_WRITEBACK_DATA: 4097 if (!jbd2_journal_check_available_features 4098 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4099 ext4_msg(sb, KERN_ERR, "Journal does not support " 4100 "requested data journaling mode"); 4101 goto failed_mount_wq; 4102 } 4103 default: 4104 break; 4105 } 4106 4107 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4108 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4109 ext4_msg(sb, KERN_ERR, "can't mount with " 4110 "journal_async_commit in data=ordered mode"); 4111 goto failed_mount_wq; 4112 } 4113 4114 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4115 4116 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4117 4118 no_journal: 4119 if (!test_opt(sb, NO_MBCACHE)) { 4120 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4121 if (!sbi->s_ea_block_cache) { 4122 ext4_msg(sb, KERN_ERR, 4123 "Failed to create ea_block_cache"); 4124 goto failed_mount_wq; 4125 } 4126 4127 if (ext4_has_feature_ea_inode(sb)) { 4128 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4129 if (!sbi->s_ea_inode_cache) { 4130 ext4_msg(sb, KERN_ERR, 4131 "Failed to create ea_inode_cache"); 4132 goto failed_mount_wq; 4133 } 4134 } 4135 } 4136 4137 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4138 (blocksize != PAGE_SIZE)) { 4139 ext4_msg(sb, KERN_ERR, 4140 "Unsupported blocksize for fs encryption"); 4141 goto failed_mount_wq; 4142 } 4143 4144 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4145 !ext4_has_feature_encrypt(sb)) { 4146 ext4_set_feature_encrypt(sb); 4147 ext4_commit_super(sb, 1); 4148 } 4149 4150 /* 4151 * Get the # of file system overhead blocks from the 4152 * superblock if present. 4153 */ 4154 if (es->s_overhead_clusters) 4155 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4156 else { 4157 err = ext4_calculate_overhead(sb); 4158 if (err) 4159 goto failed_mount_wq; 4160 } 4161 4162 /* 4163 * The maximum number of concurrent works can be high and 4164 * concurrency isn't really necessary. Limit it to 1. 4165 */ 4166 EXT4_SB(sb)->rsv_conversion_wq = 4167 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4168 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4169 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4170 ret = -ENOMEM; 4171 goto failed_mount4; 4172 } 4173 4174 /* 4175 * The jbd2_journal_load will have done any necessary log recovery, 4176 * so we can safely mount the rest of the filesystem now. 4177 */ 4178 4179 root = ext4_iget(sb, EXT4_ROOT_INO); 4180 if (IS_ERR(root)) { 4181 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4182 ret = PTR_ERR(root); 4183 root = NULL; 4184 goto failed_mount4; 4185 } 4186 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4187 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4188 iput(root); 4189 goto failed_mount4; 4190 } 4191 sb->s_root = d_make_root(root); 4192 if (!sb->s_root) { 4193 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4194 ret = -ENOMEM; 4195 goto failed_mount4; 4196 } 4197 4198 if (ext4_setup_super(sb, es, sb_rdonly(sb))) 4199 sb->s_flags |= MS_RDONLY; 4200 4201 /* determine the minimum size of new large inodes, if present */ 4202 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4203 sbi->s_want_extra_isize == 0) { 4204 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4205 EXT4_GOOD_OLD_INODE_SIZE; 4206 if (ext4_has_feature_extra_isize(sb)) { 4207 if (sbi->s_want_extra_isize < 4208 le16_to_cpu(es->s_want_extra_isize)) 4209 sbi->s_want_extra_isize = 4210 le16_to_cpu(es->s_want_extra_isize); 4211 if (sbi->s_want_extra_isize < 4212 le16_to_cpu(es->s_min_extra_isize)) 4213 sbi->s_want_extra_isize = 4214 le16_to_cpu(es->s_min_extra_isize); 4215 } 4216 } 4217 /* Check if enough inode space is available */ 4218 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4219 sbi->s_inode_size) { 4220 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4221 EXT4_GOOD_OLD_INODE_SIZE; 4222 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4223 "available"); 4224 } 4225 4226 ext4_set_resv_clusters(sb); 4227 4228 err = ext4_setup_system_zone(sb); 4229 if (err) { 4230 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4231 "zone (%d)", err); 4232 goto failed_mount4a; 4233 } 4234 4235 ext4_ext_init(sb); 4236 err = ext4_mb_init(sb); 4237 if (err) { 4238 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4239 err); 4240 goto failed_mount5; 4241 } 4242 4243 block = ext4_count_free_clusters(sb); 4244 ext4_free_blocks_count_set(sbi->s_es, 4245 EXT4_C2B(sbi, block)); 4246 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4247 GFP_KERNEL); 4248 if (!err) { 4249 unsigned long freei = ext4_count_free_inodes(sb); 4250 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4251 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4252 GFP_KERNEL); 4253 } 4254 if (!err) 4255 err = percpu_counter_init(&sbi->s_dirs_counter, 4256 ext4_count_dirs(sb), GFP_KERNEL); 4257 if (!err) 4258 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4259 GFP_KERNEL); 4260 if (!err) 4261 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4262 4263 if (err) { 4264 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4265 goto failed_mount6; 4266 } 4267 4268 if (ext4_has_feature_flex_bg(sb)) 4269 if (!ext4_fill_flex_info(sb)) { 4270 ext4_msg(sb, KERN_ERR, 4271 "unable to initialize " 4272 "flex_bg meta info!"); 4273 goto failed_mount6; 4274 } 4275 4276 err = ext4_register_li_request(sb, first_not_zeroed); 4277 if (err) 4278 goto failed_mount6; 4279 4280 err = ext4_register_sysfs(sb); 4281 if (err) 4282 goto failed_mount7; 4283 4284 #ifdef CONFIG_QUOTA 4285 /* Enable quota usage during mount. */ 4286 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4287 err = ext4_enable_quotas(sb); 4288 if (err) 4289 goto failed_mount8; 4290 } 4291 #endif /* CONFIG_QUOTA */ 4292 4293 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4294 ext4_orphan_cleanup(sb, es); 4295 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4296 if (needs_recovery) { 4297 ext4_msg(sb, KERN_INFO, "recovery complete"); 4298 ext4_mark_recovery_complete(sb, es); 4299 } 4300 if (EXT4_SB(sb)->s_journal) { 4301 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4302 descr = " journalled data mode"; 4303 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4304 descr = " ordered data mode"; 4305 else 4306 descr = " writeback data mode"; 4307 } else 4308 descr = "out journal"; 4309 4310 if (test_opt(sb, DISCARD)) { 4311 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4312 if (!blk_queue_discard(q)) 4313 ext4_msg(sb, KERN_WARNING, 4314 "mounting with \"discard\" option, but " 4315 "the device does not support discard"); 4316 } 4317 4318 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4319 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4320 "Opts: %.*s%s%s", descr, 4321 (int) sizeof(sbi->s_es->s_mount_opts), 4322 sbi->s_es->s_mount_opts, 4323 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4324 4325 if (es->s_error_count) 4326 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4327 4328 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4329 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4330 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4331 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4332 4333 kfree(orig_data); 4334 return 0; 4335 4336 cantfind_ext4: 4337 if (!silent) 4338 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4339 goto failed_mount; 4340 4341 #ifdef CONFIG_QUOTA 4342 failed_mount8: 4343 ext4_unregister_sysfs(sb); 4344 #endif 4345 failed_mount7: 4346 ext4_unregister_li_request(sb); 4347 failed_mount6: 4348 ext4_mb_release(sb); 4349 if (sbi->s_flex_groups) 4350 kvfree(sbi->s_flex_groups); 4351 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4352 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4353 percpu_counter_destroy(&sbi->s_dirs_counter); 4354 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4355 failed_mount5: 4356 ext4_ext_release(sb); 4357 ext4_release_system_zone(sb); 4358 failed_mount4a: 4359 dput(sb->s_root); 4360 sb->s_root = NULL; 4361 failed_mount4: 4362 ext4_msg(sb, KERN_ERR, "mount failed"); 4363 if (EXT4_SB(sb)->rsv_conversion_wq) 4364 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4365 failed_mount_wq: 4366 if (sbi->s_ea_inode_cache) { 4367 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4368 sbi->s_ea_inode_cache = NULL; 4369 } 4370 if (sbi->s_ea_block_cache) { 4371 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4372 sbi->s_ea_block_cache = NULL; 4373 } 4374 if (sbi->s_journal) { 4375 jbd2_journal_destroy(sbi->s_journal); 4376 sbi->s_journal = NULL; 4377 } 4378 failed_mount3a: 4379 ext4_es_unregister_shrinker(sbi); 4380 failed_mount3: 4381 del_timer_sync(&sbi->s_err_report); 4382 if (sbi->s_mmp_tsk) 4383 kthread_stop(sbi->s_mmp_tsk); 4384 failed_mount2: 4385 for (i = 0; i < db_count; i++) 4386 brelse(sbi->s_group_desc[i]); 4387 kvfree(sbi->s_group_desc); 4388 failed_mount: 4389 if (sbi->s_chksum_driver) 4390 crypto_free_shash(sbi->s_chksum_driver); 4391 #ifdef CONFIG_QUOTA 4392 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4393 kfree(sbi->s_qf_names[i]); 4394 #endif 4395 ext4_blkdev_remove(sbi); 4396 brelse(bh); 4397 out_fail: 4398 sb->s_fs_info = NULL; 4399 kfree(sbi->s_blockgroup_lock); 4400 out_free_base: 4401 kfree(sbi); 4402 kfree(orig_data); 4403 fs_put_dax(dax_dev); 4404 return err ? err : ret; 4405 } 4406 4407 /* 4408 * Setup any per-fs journal parameters now. We'll do this both on 4409 * initial mount, once the journal has been initialised but before we've 4410 * done any recovery; and again on any subsequent remount. 4411 */ 4412 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4413 { 4414 struct ext4_sb_info *sbi = EXT4_SB(sb); 4415 4416 journal->j_commit_interval = sbi->s_commit_interval; 4417 journal->j_min_batch_time = sbi->s_min_batch_time; 4418 journal->j_max_batch_time = sbi->s_max_batch_time; 4419 4420 write_lock(&journal->j_state_lock); 4421 if (test_opt(sb, BARRIER)) 4422 journal->j_flags |= JBD2_BARRIER; 4423 else 4424 journal->j_flags &= ~JBD2_BARRIER; 4425 if (test_opt(sb, DATA_ERR_ABORT)) 4426 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4427 else 4428 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4429 write_unlock(&journal->j_state_lock); 4430 } 4431 4432 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4433 unsigned int journal_inum) 4434 { 4435 struct inode *journal_inode; 4436 4437 /* 4438 * Test for the existence of a valid inode on disk. Bad things 4439 * happen if we iget() an unused inode, as the subsequent iput() 4440 * will try to delete it. 4441 */ 4442 journal_inode = ext4_iget(sb, journal_inum); 4443 if (IS_ERR(journal_inode)) { 4444 ext4_msg(sb, KERN_ERR, "no journal found"); 4445 return NULL; 4446 } 4447 if (!journal_inode->i_nlink) { 4448 make_bad_inode(journal_inode); 4449 iput(journal_inode); 4450 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4451 return NULL; 4452 } 4453 4454 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4455 journal_inode, journal_inode->i_size); 4456 if (!S_ISREG(journal_inode->i_mode)) { 4457 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4458 iput(journal_inode); 4459 return NULL; 4460 } 4461 return journal_inode; 4462 } 4463 4464 static journal_t *ext4_get_journal(struct super_block *sb, 4465 unsigned int journal_inum) 4466 { 4467 struct inode *journal_inode; 4468 journal_t *journal; 4469 4470 BUG_ON(!ext4_has_feature_journal(sb)); 4471 4472 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4473 if (!journal_inode) 4474 return NULL; 4475 4476 journal = jbd2_journal_init_inode(journal_inode); 4477 if (!journal) { 4478 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4479 iput(journal_inode); 4480 return NULL; 4481 } 4482 journal->j_private = sb; 4483 ext4_init_journal_params(sb, journal); 4484 return journal; 4485 } 4486 4487 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4488 dev_t j_dev) 4489 { 4490 struct buffer_head *bh; 4491 journal_t *journal; 4492 ext4_fsblk_t start; 4493 ext4_fsblk_t len; 4494 int hblock, blocksize; 4495 ext4_fsblk_t sb_block; 4496 unsigned long offset; 4497 struct ext4_super_block *es; 4498 struct block_device *bdev; 4499 4500 BUG_ON(!ext4_has_feature_journal(sb)); 4501 4502 bdev = ext4_blkdev_get(j_dev, sb); 4503 if (bdev == NULL) 4504 return NULL; 4505 4506 blocksize = sb->s_blocksize; 4507 hblock = bdev_logical_block_size(bdev); 4508 if (blocksize < hblock) { 4509 ext4_msg(sb, KERN_ERR, 4510 "blocksize too small for journal device"); 4511 goto out_bdev; 4512 } 4513 4514 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4515 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4516 set_blocksize(bdev, blocksize); 4517 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4518 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4519 "external journal"); 4520 goto out_bdev; 4521 } 4522 4523 es = (struct ext4_super_block *) (bh->b_data + offset); 4524 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4525 !(le32_to_cpu(es->s_feature_incompat) & 4526 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4527 ext4_msg(sb, KERN_ERR, "external journal has " 4528 "bad superblock"); 4529 brelse(bh); 4530 goto out_bdev; 4531 } 4532 4533 if ((le32_to_cpu(es->s_feature_ro_compat) & 4534 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4535 es->s_checksum != ext4_superblock_csum(sb, es)) { 4536 ext4_msg(sb, KERN_ERR, "external journal has " 4537 "corrupt superblock"); 4538 brelse(bh); 4539 goto out_bdev; 4540 } 4541 4542 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4543 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4544 brelse(bh); 4545 goto out_bdev; 4546 } 4547 4548 len = ext4_blocks_count(es); 4549 start = sb_block + 1; 4550 brelse(bh); /* we're done with the superblock */ 4551 4552 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4553 start, len, blocksize); 4554 if (!journal) { 4555 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4556 goto out_bdev; 4557 } 4558 journal->j_private = sb; 4559 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4560 wait_on_buffer(journal->j_sb_buffer); 4561 if (!buffer_uptodate(journal->j_sb_buffer)) { 4562 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4563 goto out_journal; 4564 } 4565 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4566 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4567 "user (unsupported) - %d", 4568 be32_to_cpu(journal->j_superblock->s_nr_users)); 4569 goto out_journal; 4570 } 4571 EXT4_SB(sb)->journal_bdev = bdev; 4572 ext4_init_journal_params(sb, journal); 4573 return journal; 4574 4575 out_journal: 4576 jbd2_journal_destroy(journal); 4577 out_bdev: 4578 ext4_blkdev_put(bdev); 4579 return NULL; 4580 } 4581 4582 static int ext4_load_journal(struct super_block *sb, 4583 struct ext4_super_block *es, 4584 unsigned long journal_devnum) 4585 { 4586 journal_t *journal; 4587 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4588 dev_t journal_dev; 4589 int err = 0; 4590 int really_read_only; 4591 4592 BUG_ON(!ext4_has_feature_journal(sb)); 4593 4594 if (journal_devnum && 4595 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4596 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4597 "numbers have changed"); 4598 journal_dev = new_decode_dev(journal_devnum); 4599 } else 4600 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4601 4602 really_read_only = bdev_read_only(sb->s_bdev); 4603 4604 /* 4605 * Are we loading a blank journal or performing recovery after a 4606 * crash? For recovery, we need to check in advance whether we 4607 * can get read-write access to the device. 4608 */ 4609 if (ext4_has_feature_journal_needs_recovery(sb)) { 4610 if (sb_rdonly(sb)) { 4611 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4612 "required on readonly filesystem"); 4613 if (really_read_only) { 4614 ext4_msg(sb, KERN_ERR, "write access " 4615 "unavailable, cannot proceed"); 4616 return -EROFS; 4617 } 4618 ext4_msg(sb, KERN_INFO, "write access will " 4619 "be enabled during recovery"); 4620 } 4621 } 4622 4623 if (journal_inum && journal_dev) { 4624 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4625 "and inode journals!"); 4626 return -EINVAL; 4627 } 4628 4629 if (journal_inum) { 4630 if (!(journal = ext4_get_journal(sb, journal_inum))) 4631 return -EINVAL; 4632 } else { 4633 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4634 return -EINVAL; 4635 } 4636 4637 if (!(journal->j_flags & JBD2_BARRIER)) 4638 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4639 4640 if (!ext4_has_feature_journal_needs_recovery(sb)) 4641 err = jbd2_journal_wipe(journal, !really_read_only); 4642 if (!err) { 4643 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4644 if (save) 4645 memcpy(save, ((char *) es) + 4646 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4647 err = jbd2_journal_load(journal); 4648 if (save) 4649 memcpy(((char *) es) + EXT4_S_ERR_START, 4650 save, EXT4_S_ERR_LEN); 4651 kfree(save); 4652 } 4653 4654 if (err) { 4655 ext4_msg(sb, KERN_ERR, "error loading journal"); 4656 jbd2_journal_destroy(journal); 4657 return err; 4658 } 4659 4660 EXT4_SB(sb)->s_journal = journal; 4661 ext4_clear_journal_err(sb, es); 4662 4663 if (!really_read_only && journal_devnum && 4664 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4665 es->s_journal_dev = cpu_to_le32(journal_devnum); 4666 4667 /* Make sure we flush the recovery flag to disk. */ 4668 ext4_commit_super(sb, 1); 4669 } 4670 4671 return 0; 4672 } 4673 4674 static int ext4_commit_super(struct super_block *sb, int sync) 4675 { 4676 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4677 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4678 int error = 0; 4679 4680 if (!sbh || block_device_ejected(sb)) 4681 return error; 4682 /* 4683 * If the file system is mounted read-only, don't update the 4684 * superblock write time. This avoids updating the superblock 4685 * write time when we are mounting the root file system 4686 * read/only but we need to replay the journal; at that point, 4687 * for people who are east of GMT and who make their clock 4688 * tick in localtime for Windows bug-for-bug compatibility, 4689 * the clock is set in the future, and this will cause e2fsck 4690 * to complain and force a full file system check. 4691 */ 4692 if (!(sb->s_flags & MS_RDONLY)) 4693 es->s_wtime = cpu_to_le32(get_seconds()); 4694 if (sb->s_bdev->bd_part) 4695 es->s_kbytes_written = 4696 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4697 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4698 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4699 else 4700 es->s_kbytes_written = 4701 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4702 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4703 ext4_free_blocks_count_set(es, 4704 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4705 &EXT4_SB(sb)->s_freeclusters_counter))); 4706 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4707 es->s_free_inodes_count = 4708 cpu_to_le32(percpu_counter_sum_positive( 4709 &EXT4_SB(sb)->s_freeinodes_counter)); 4710 BUFFER_TRACE(sbh, "marking dirty"); 4711 ext4_superblock_csum_set(sb); 4712 if (sync) 4713 lock_buffer(sbh); 4714 if (buffer_write_io_error(sbh)) { 4715 /* 4716 * Oh, dear. A previous attempt to write the 4717 * superblock failed. This could happen because the 4718 * USB device was yanked out. Or it could happen to 4719 * be a transient write error and maybe the block will 4720 * be remapped. Nothing we can do but to retry the 4721 * write and hope for the best. 4722 */ 4723 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4724 "superblock detected"); 4725 clear_buffer_write_io_error(sbh); 4726 set_buffer_uptodate(sbh); 4727 } 4728 mark_buffer_dirty(sbh); 4729 if (sync) { 4730 unlock_buffer(sbh); 4731 error = __sync_dirty_buffer(sbh, 4732 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4733 if (error) 4734 return error; 4735 4736 error = buffer_write_io_error(sbh); 4737 if (error) { 4738 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4739 "superblock"); 4740 clear_buffer_write_io_error(sbh); 4741 set_buffer_uptodate(sbh); 4742 } 4743 } 4744 return error; 4745 } 4746 4747 /* 4748 * Have we just finished recovery? If so, and if we are mounting (or 4749 * remounting) the filesystem readonly, then we will end up with a 4750 * consistent fs on disk. Record that fact. 4751 */ 4752 static void ext4_mark_recovery_complete(struct super_block *sb, 4753 struct ext4_super_block *es) 4754 { 4755 journal_t *journal = EXT4_SB(sb)->s_journal; 4756 4757 if (!ext4_has_feature_journal(sb)) { 4758 BUG_ON(journal != NULL); 4759 return; 4760 } 4761 jbd2_journal_lock_updates(journal); 4762 if (jbd2_journal_flush(journal) < 0) 4763 goto out; 4764 4765 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4766 ext4_clear_feature_journal_needs_recovery(sb); 4767 ext4_commit_super(sb, 1); 4768 } 4769 4770 out: 4771 jbd2_journal_unlock_updates(journal); 4772 } 4773 4774 /* 4775 * If we are mounting (or read-write remounting) a filesystem whose journal 4776 * has recorded an error from a previous lifetime, move that error to the 4777 * main filesystem now. 4778 */ 4779 static void ext4_clear_journal_err(struct super_block *sb, 4780 struct ext4_super_block *es) 4781 { 4782 journal_t *journal; 4783 int j_errno; 4784 const char *errstr; 4785 4786 BUG_ON(!ext4_has_feature_journal(sb)); 4787 4788 journal = EXT4_SB(sb)->s_journal; 4789 4790 /* 4791 * Now check for any error status which may have been recorded in the 4792 * journal by a prior ext4_error() or ext4_abort() 4793 */ 4794 4795 j_errno = jbd2_journal_errno(journal); 4796 if (j_errno) { 4797 char nbuf[16]; 4798 4799 errstr = ext4_decode_error(sb, j_errno, nbuf); 4800 ext4_warning(sb, "Filesystem error recorded " 4801 "from previous mount: %s", errstr); 4802 ext4_warning(sb, "Marking fs in need of filesystem check."); 4803 4804 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4805 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4806 ext4_commit_super(sb, 1); 4807 4808 jbd2_journal_clear_err(journal); 4809 jbd2_journal_update_sb_errno(journal); 4810 } 4811 } 4812 4813 /* 4814 * Force the running and committing transactions to commit, 4815 * and wait on the commit. 4816 */ 4817 int ext4_force_commit(struct super_block *sb) 4818 { 4819 journal_t *journal; 4820 4821 if (sb_rdonly(sb)) 4822 return 0; 4823 4824 journal = EXT4_SB(sb)->s_journal; 4825 return ext4_journal_force_commit(journal); 4826 } 4827 4828 static int ext4_sync_fs(struct super_block *sb, int wait) 4829 { 4830 int ret = 0; 4831 tid_t target; 4832 bool needs_barrier = false; 4833 struct ext4_sb_info *sbi = EXT4_SB(sb); 4834 4835 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4836 return 0; 4837 4838 trace_ext4_sync_fs(sb, wait); 4839 flush_workqueue(sbi->rsv_conversion_wq); 4840 /* 4841 * Writeback quota in non-journalled quota case - journalled quota has 4842 * no dirty dquots 4843 */ 4844 dquot_writeback_dquots(sb, -1); 4845 /* 4846 * Data writeback is possible w/o journal transaction, so barrier must 4847 * being sent at the end of the function. But we can skip it if 4848 * transaction_commit will do it for us. 4849 */ 4850 if (sbi->s_journal) { 4851 target = jbd2_get_latest_transaction(sbi->s_journal); 4852 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4853 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4854 needs_barrier = true; 4855 4856 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4857 if (wait) 4858 ret = jbd2_log_wait_commit(sbi->s_journal, 4859 target); 4860 } 4861 } else if (wait && test_opt(sb, BARRIER)) 4862 needs_barrier = true; 4863 if (needs_barrier) { 4864 int err; 4865 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4866 if (!ret) 4867 ret = err; 4868 } 4869 4870 return ret; 4871 } 4872 4873 /* 4874 * LVM calls this function before a (read-only) snapshot is created. This 4875 * gives us a chance to flush the journal completely and mark the fs clean. 4876 * 4877 * Note that only this function cannot bring a filesystem to be in a clean 4878 * state independently. It relies on upper layer to stop all data & metadata 4879 * modifications. 4880 */ 4881 static int ext4_freeze(struct super_block *sb) 4882 { 4883 int error = 0; 4884 journal_t *journal; 4885 4886 if (sb_rdonly(sb)) 4887 return 0; 4888 4889 journal = EXT4_SB(sb)->s_journal; 4890 4891 if (journal) { 4892 /* Now we set up the journal barrier. */ 4893 jbd2_journal_lock_updates(journal); 4894 4895 /* 4896 * Don't clear the needs_recovery flag if we failed to 4897 * flush the journal. 4898 */ 4899 error = jbd2_journal_flush(journal); 4900 if (error < 0) 4901 goto out; 4902 4903 /* Journal blocked and flushed, clear needs_recovery flag. */ 4904 ext4_clear_feature_journal_needs_recovery(sb); 4905 } 4906 4907 error = ext4_commit_super(sb, 1); 4908 out: 4909 if (journal) 4910 /* we rely on upper layer to stop further updates */ 4911 jbd2_journal_unlock_updates(journal); 4912 return error; 4913 } 4914 4915 /* 4916 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4917 * flag here, even though the filesystem is not technically dirty yet. 4918 */ 4919 static int ext4_unfreeze(struct super_block *sb) 4920 { 4921 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 4922 return 0; 4923 4924 if (EXT4_SB(sb)->s_journal) { 4925 /* Reset the needs_recovery flag before the fs is unlocked. */ 4926 ext4_set_feature_journal_needs_recovery(sb); 4927 } 4928 4929 ext4_commit_super(sb, 1); 4930 return 0; 4931 } 4932 4933 /* 4934 * Structure to save mount options for ext4_remount's benefit 4935 */ 4936 struct ext4_mount_options { 4937 unsigned long s_mount_opt; 4938 unsigned long s_mount_opt2; 4939 kuid_t s_resuid; 4940 kgid_t s_resgid; 4941 unsigned long s_commit_interval; 4942 u32 s_min_batch_time, s_max_batch_time; 4943 #ifdef CONFIG_QUOTA 4944 int s_jquota_fmt; 4945 char *s_qf_names[EXT4_MAXQUOTAS]; 4946 #endif 4947 }; 4948 4949 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4950 { 4951 struct ext4_super_block *es; 4952 struct ext4_sb_info *sbi = EXT4_SB(sb); 4953 unsigned long old_sb_flags; 4954 struct ext4_mount_options old_opts; 4955 int enable_quota = 0; 4956 ext4_group_t g; 4957 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4958 int err = 0; 4959 #ifdef CONFIG_QUOTA 4960 int i, j; 4961 #endif 4962 char *orig_data = kstrdup(data, GFP_KERNEL); 4963 4964 /* Store the original options */ 4965 old_sb_flags = sb->s_flags; 4966 old_opts.s_mount_opt = sbi->s_mount_opt; 4967 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4968 old_opts.s_resuid = sbi->s_resuid; 4969 old_opts.s_resgid = sbi->s_resgid; 4970 old_opts.s_commit_interval = sbi->s_commit_interval; 4971 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4972 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4973 #ifdef CONFIG_QUOTA 4974 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4975 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4976 if (sbi->s_qf_names[i]) { 4977 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4978 GFP_KERNEL); 4979 if (!old_opts.s_qf_names[i]) { 4980 for (j = 0; j < i; j++) 4981 kfree(old_opts.s_qf_names[j]); 4982 kfree(orig_data); 4983 return -ENOMEM; 4984 } 4985 } else 4986 old_opts.s_qf_names[i] = NULL; 4987 #endif 4988 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4989 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4990 4991 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4992 err = -EINVAL; 4993 goto restore_opts; 4994 } 4995 4996 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4997 test_opt(sb, JOURNAL_CHECKSUM)) { 4998 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4999 "during remount not supported; ignoring"); 5000 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5001 } 5002 5003 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5004 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5005 ext4_msg(sb, KERN_ERR, "can't mount with " 5006 "both data=journal and delalloc"); 5007 err = -EINVAL; 5008 goto restore_opts; 5009 } 5010 if (test_opt(sb, DIOREAD_NOLOCK)) { 5011 ext4_msg(sb, KERN_ERR, "can't mount with " 5012 "both data=journal and dioread_nolock"); 5013 err = -EINVAL; 5014 goto restore_opts; 5015 } 5016 if (test_opt(sb, DAX)) { 5017 ext4_msg(sb, KERN_ERR, "can't mount with " 5018 "both data=journal and dax"); 5019 err = -EINVAL; 5020 goto restore_opts; 5021 } 5022 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5023 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5024 ext4_msg(sb, KERN_ERR, "can't mount with " 5025 "journal_async_commit in data=ordered mode"); 5026 err = -EINVAL; 5027 goto restore_opts; 5028 } 5029 } 5030 5031 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5032 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5033 err = -EINVAL; 5034 goto restore_opts; 5035 } 5036 5037 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5038 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5039 "dax flag with busy inodes while remounting"); 5040 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5041 } 5042 5043 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5044 ext4_abort(sb, "Abort forced by user"); 5045 5046 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 5047 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 5048 5049 es = sbi->s_es; 5050 5051 if (sbi->s_journal) { 5052 ext4_init_journal_params(sb, sbi->s_journal); 5053 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5054 } 5055 5056 if (*flags & MS_LAZYTIME) 5057 sb->s_flags |= MS_LAZYTIME; 5058 5059 if ((bool)(*flags & MS_RDONLY) != sb_rdonly(sb)) { 5060 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5061 err = -EROFS; 5062 goto restore_opts; 5063 } 5064 5065 if (*flags & MS_RDONLY) { 5066 err = sync_filesystem(sb); 5067 if (err < 0) 5068 goto restore_opts; 5069 err = dquot_suspend(sb, -1); 5070 if (err < 0) 5071 goto restore_opts; 5072 5073 /* 5074 * First of all, the unconditional stuff we have to do 5075 * to disable replay of the journal when we next remount 5076 */ 5077 sb->s_flags |= MS_RDONLY; 5078 5079 /* 5080 * OK, test if we are remounting a valid rw partition 5081 * readonly, and if so set the rdonly flag and then 5082 * mark the partition as valid again. 5083 */ 5084 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5085 (sbi->s_mount_state & EXT4_VALID_FS)) 5086 es->s_state = cpu_to_le16(sbi->s_mount_state); 5087 5088 if (sbi->s_journal) 5089 ext4_mark_recovery_complete(sb, es); 5090 } else { 5091 /* Make sure we can mount this feature set readwrite */ 5092 if (ext4_has_feature_readonly(sb) || 5093 !ext4_feature_set_ok(sb, 0)) { 5094 err = -EROFS; 5095 goto restore_opts; 5096 } 5097 /* 5098 * Make sure the group descriptor checksums 5099 * are sane. If they aren't, refuse to remount r/w. 5100 */ 5101 for (g = 0; g < sbi->s_groups_count; g++) { 5102 struct ext4_group_desc *gdp = 5103 ext4_get_group_desc(sb, g, NULL); 5104 5105 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5106 ext4_msg(sb, KERN_ERR, 5107 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5108 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5109 le16_to_cpu(gdp->bg_checksum)); 5110 err = -EFSBADCRC; 5111 goto restore_opts; 5112 } 5113 } 5114 5115 /* 5116 * If we have an unprocessed orphan list hanging 5117 * around from a previously readonly bdev mount, 5118 * require a full umount/remount for now. 5119 */ 5120 if (es->s_last_orphan) { 5121 ext4_msg(sb, KERN_WARNING, "Couldn't " 5122 "remount RDWR because of unprocessed " 5123 "orphan inode list. Please " 5124 "umount/remount instead"); 5125 err = -EINVAL; 5126 goto restore_opts; 5127 } 5128 5129 /* 5130 * Mounting a RDONLY partition read-write, so reread 5131 * and store the current valid flag. (It may have 5132 * been changed by e2fsck since we originally mounted 5133 * the partition.) 5134 */ 5135 if (sbi->s_journal) 5136 ext4_clear_journal_err(sb, es); 5137 sbi->s_mount_state = le16_to_cpu(es->s_state); 5138 if (!ext4_setup_super(sb, es, 0)) 5139 sb->s_flags &= ~MS_RDONLY; 5140 if (ext4_has_feature_mmp(sb)) 5141 if (ext4_multi_mount_protect(sb, 5142 le64_to_cpu(es->s_mmp_block))) { 5143 err = -EROFS; 5144 goto restore_opts; 5145 } 5146 enable_quota = 1; 5147 } 5148 } 5149 5150 /* 5151 * Reinitialize lazy itable initialization thread based on 5152 * current settings 5153 */ 5154 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5155 ext4_unregister_li_request(sb); 5156 else { 5157 ext4_group_t first_not_zeroed; 5158 first_not_zeroed = ext4_has_uninit_itable(sb); 5159 ext4_register_li_request(sb, first_not_zeroed); 5160 } 5161 5162 ext4_setup_system_zone(sb); 5163 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5164 ext4_commit_super(sb, 1); 5165 5166 #ifdef CONFIG_QUOTA 5167 /* Release old quota file names */ 5168 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5169 kfree(old_opts.s_qf_names[i]); 5170 if (enable_quota) { 5171 if (sb_any_quota_suspended(sb)) 5172 dquot_resume(sb, -1); 5173 else if (ext4_has_feature_quota(sb)) { 5174 err = ext4_enable_quotas(sb); 5175 if (err) 5176 goto restore_opts; 5177 } 5178 } 5179 #endif 5180 5181 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5182 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5183 kfree(orig_data); 5184 return 0; 5185 5186 restore_opts: 5187 sb->s_flags = old_sb_flags; 5188 sbi->s_mount_opt = old_opts.s_mount_opt; 5189 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5190 sbi->s_resuid = old_opts.s_resuid; 5191 sbi->s_resgid = old_opts.s_resgid; 5192 sbi->s_commit_interval = old_opts.s_commit_interval; 5193 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5194 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5195 #ifdef CONFIG_QUOTA 5196 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5197 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5198 kfree(sbi->s_qf_names[i]); 5199 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5200 } 5201 #endif 5202 kfree(orig_data); 5203 return err; 5204 } 5205 5206 #ifdef CONFIG_QUOTA 5207 static int ext4_statfs_project(struct super_block *sb, 5208 kprojid_t projid, struct kstatfs *buf) 5209 { 5210 struct kqid qid; 5211 struct dquot *dquot; 5212 u64 limit; 5213 u64 curblock; 5214 5215 qid = make_kqid_projid(projid); 5216 dquot = dqget(sb, qid); 5217 if (IS_ERR(dquot)) 5218 return PTR_ERR(dquot); 5219 spin_lock(&dquot->dq_dqb_lock); 5220 5221 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5222 dquot->dq_dqb.dqb_bsoftlimit : 5223 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5224 if (limit && buf->f_blocks > limit) { 5225 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5226 buf->f_blocks = limit; 5227 buf->f_bfree = buf->f_bavail = 5228 (buf->f_blocks > curblock) ? 5229 (buf->f_blocks - curblock) : 0; 5230 } 5231 5232 limit = dquot->dq_dqb.dqb_isoftlimit ? 5233 dquot->dq_dqb.dqb_isoftlimit : 5234 dquot->dq_dqb.dqb_ihardlimit; 5235 if (limit && buf->f_files > limit) { 5236 buf->f_files = limit; 5237 buf->f_ffree = 5238 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5239 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5240 } 5241 5242 spin_unlock(&dquot->dq_dqb_lock); 5243 dqput(dquot); 5244 return 0; 5245 } 5246 #endif 5247 5248 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5249 { 5250 struct super_block *sb = dentry->d_sb; 5251 struct ext4_sb_info *sbi = EXT4_SB(sb); 5252 struct ext4_super_block *es = sbi->s_es; 5253 ext4_fsblk_t overhead = 0, resv_blocks; 5254 u64 fsid; 5255 s64 bfree; 5256 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5257 5258 if (!test_opt(sb, MINIX_DF)) 5259 overhead = sbi->s_overhead; 5260 5261 buf->f_type = EXT4_SUPER_MAGIC; 5262 buf->f_bsize = sb->s_blocksize; 5263 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5264 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5265 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5266 /* prevent underflow in case that few free space is available */ 5267 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5268 buf->f_bavail = buf->f_bfree - 5269 (ext4_r_blocks_count(es) + resv_blocks); 5270 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5271 buf->f_bavail = 0; 5272 buf->f_files = le32_to_cpu(es->s_inodes_count); 5273 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5274 buf->f_namelen = EXT4_NAME_LEN; 5275 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5276 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5277 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5278 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5279 5280 #ifdef CONFIG_QUOTA 5281 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5282 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5283 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5284 #endif 5285 return 0; 5286 } 5287 5288 5289 #ifdef CONFIG_QUOTA 5290 5291 /* 5292 * Helper functions so that transaction is started before we acquire dqio_sem 5293 * to keep correct lock ordering of transaction > dqio_sem 5294 */ 5295 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5296 { 5297 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5298 } 5299 5300 static int ext4_write_dquot(struct dquot *dquot) 5301 { 5302 int ret, err; 5303 handle_t *handle; 5304 struct inode *inode; 5305 5306 inode = dquot_to_inode(dquot); 5307 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5308 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5309 if (IS_ERR(handle)) 5310 return PTR_ERR(handle); 5311 ret = dquot_commit(dquot); 5312 err = ext4_journal_stop(handle); 5313 if (!ret) 5314 ret = err; 5315 return ret; 5316 } 5317 5318 static int ext4_acquire_dquot(struct dquot *dquot) 5319 { 5320 int ret, err; 5321 handle_t *handle; 5322 5323 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5324 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5325 if (IS_ERR(handle)) 5326 return PTR_ERR(handle); 5327 ret = dquot_acquire(dquot); 5328 err = ext4_journal_stop(handle); 5329 if (!ret) 5330 ret = err; 5331 return ret; 5332 } 5333 5334 static int ext4_release_dquot(struct dquot *dquot) 5335 { 5336 int ret, err; 5337 handle_t *handle; 5338 5339 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5340 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5341 if (IS_ERR(handle)) { 5342 /* Release dquot anyway to avoid endless cycle in dqput() */ 5343 dquot_release(dquot); 5344 return PTR_ERR(handle); 5345 } 5346 ret = dquot_release(dquot); 5347 err = ext4_journal_stop(handle); 5348 if (!ret) 5349 ret = err; 5350 return ret; 5351 } 5352 5353 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5354 { 5355 struct super_block *sb = dquot->dq_sb; 5356 struct ext4_sb_info *sbi = EXT4_SB(sb); 5357 5358 /* Are we journaling quotas? */ 5359 if (ext4_has_feature_quota(sb) || 5360 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5361 dquot_mark_dquot_dirty(dquot); 5362 return ext4_write_dquot(dquot); 5363 } else { 5364 return dquot_mark_dquot_dirty(dquot); 5365 } 5366 } 5367 5368 static int ext4_write_info(struct super_block *sb, int type) 5369 { 5370 int ret, err; 5371 handle_t *handle; 5372 5373 /* Data block + inode block */ 5374 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5375 if (IS_ERR(handle)) 5376 return PTR_ERR(handle); 5377 ret = dquot_commit_info(sb, type); 5378 err = ext4_journal_stop(handle); 5379 if (!ret) 5380 ret = err; 5381 return ret; 5382 } 5383 5384 /* 5385 * Turn on quotas during mount time - we need to find 5386 * the quota file and such... 5387 */ 5388 static int ext4_quota_on_mount(struct super_block *sb, int type) 5389 { 5390 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5391 EXT4_SB(sb)->s_jquota_fmt, type); 5392 } 5393 5394 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5395 { 5396 struct ext4_inode_info *ei = EXT4_I(inode); 5397 5398 /* The first argument of lockdep_set_subclass has to be 5399 * *exactly* the same as the argument to init_rwsem() --- in 5400 * this case, in init_once() --- or lockdep gets unhappy 5401 * because the name of the lock is set using the 5402 * stringification of the argument to init_rwsem(). 5403 */ 5404 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5405 lockdep_set_subclass(&ei->i_data_sem, subclass); 5406 } 5407 5408 /* 5409 * Standard function to be called on quota_on 5410 */ 5411 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5412 const struct path *path) 5413 { 5414 int err; 5415 5416 if (!test_opt(sb, QUOTA)) 5417 return -EINVAL; 5418 5419 /* Quotafile not on the same filesystem? */ 5420 if (path->dentry->d_sb != sb) 5421 return -EXDEV; 5422 /* Journaling quota? */ 5423 if (EXT4_SB(sb)->s_qf_names[type]) { 5424 /* Quotafile not in fs root? */ 5425 if (path->dentry->d_parent != sb->s_root) 5426 ext4_msg(sb, KERN_WARNING, 5427 "Quota file not on filesystem root. " 5428 "Journaled quota will not work"); 5429 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5430 } else { 5431 /* 5432 * Clear the flag just in case mount options changed since 5433 * last time. 5434 */ 5435 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5436 } 5437 5438 /* 5439 * When we journal data on quota file, we have to flush journal to see 5440 * all updates to the file when we bypass pagecache... 5441 */ 5442 if (EXT4_SB(sb)->s_journal && 5443 ext4_should_journal_data(d_inode(path->dentry))) { 5444 /* 5445 * We don't need to lock updates but journal_flush() could 5446 * otherwise be livelocked... 5447 */ 5448 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5449 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5450 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5451 if (err) 5452 return err; 5453 } 5454 5455 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5456 err = dquot_quota_on(sb, type, format_id, path); 5457 if (err) { 5458 lockdep_set_quota_inode(path->dentry->d_inode, 5459 I_DATA_SEM_NORMAL); 5460 } else { 5461 struct inode *inode = d_inode(path->dentry); 5462 handle_t *handle; 5463 5464 /* 5465 * Set inode flags to prevent userspace from messing with quota 5466 * files. If this fails, we return success anyway since quotas 5467 * are already enabled and this is not a hard failure. 5468 */ 5469 inode_lock(inode); 5470 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5471 if (IS_ERR(handle)) 5472 goto unlock_inode; 5473 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5474 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5475 S_NOATIME | S_IMMUTABLE); 5476 ext4_mark_inode_dirty(handle, inode); 5477 ext4_journal_stop(handle); 5478 unlock_inode: 5479 inode_unlock(inode); 5480 } 5481 return err; 5482 } 5483 5484 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5485 unsigned int flags) 5486 { 5487 int err; 5488 struct inode *qf_inode; 5489 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5490 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5491 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5492 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5493 }; 5494 5495 BUG_ON(!ext4_has_feature_quota(sb)); 5496 5497 if (!qf_inums[type]) 5498 return -EPERM; 5499 5500 qf_inode = ext4_iget(sb, qf_inums[type]); 5501 if (IS_ERR(qf_inode)) { 5502 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5503 return PTR_ERR(qf_inode); 5504 } 5505 5506 /* Don't account quota for quota files to avoid recursion */ 5507 qf_inode->i_flags |= S_NOQUOTA; 5508 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5509 err = dquot_enable(qf_inode, type, format_id, flags); 5510 iput(qf_inode); 5511 if (err) 5512 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5513 5514 return err; 5515 } 5516 5517 /* Enable usage tracking for all quota types. */ 5518 static int ext4_enable_quotas(struct super_block *sb) 5519 { 5520 int type, err = 0; 5521 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5522 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5523 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5524 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5525 }; 5526 bool quota_mopt[EXT4_MAXQUOTAS] = { 5527 test_opt(sb, USRQUOTA), 5528 test_opt(sb, GRPQUOTA), 5529 test_opt(sb, PRJQUOTA), 5530 }; 5531 5532 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5533 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5534 if (qf_inums[type]) { 5535 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5536 DQUOT_USAGE_ENABLED | 5537 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5538 if (err) { 5539 for (type--; type >= 0; type--) 5540 dquot_quota_off(sb, type); 5541 5542 ext4_warning(sb, 5543 "Failed to enable quota tracking " 5544 "(type=%d, err=%d). Please run " 5545 "e2fsck to fix.", type, err); 5546 return err; 5547 } 5548 } 5549 } 5550 return 0; 5551 } 5552 5553 static int ext4_quota_off(struct super_block *sb, int type) 5554 { 5555 struct inode *inode = sb_dqopt(sb)->files[type]; 5556 handle_t *handle; 5557 int err; 5558 5559 /* Force all delayed allocation blocks to be allocated. 5560 * Caller already holds s_umount sem */ 5561 if (test_opt(sb, DELALLOC)) 5562 sync_filesystem(sb); 5563 5564 if (!inode || !igrab(inode)) 5565 goto out; 5566 5567 err = dquot_quota_off(sb, type); 5568 if (err || ext4_has_feature_quota(sb)) 5569 goto out_put; 5570 5571 inode_lock(inode); 5572 /* 5573 * Update modification times of quota files when userspace can 5574 * start looking at them. If we fail, we return success anyway since 5575 * this is not a hard failure and quotas are already disabled. 5576 */ 5577 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5578 if (IS_ERR(handle)) 5579 goto out_unlock; 5580 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5581 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5582 inode->i_mtime = inode->i_ctime = current_time(inode); 5583 ext4_mark_inode_dirty(handle, inode); 5584 ext4_journal_stop(handle); 5585 out_unlock: 5586 inode_unlock(inode); 5587 out_put: 5588 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5589 iput(inode); 5590 return err; 5591 out: 5592 return dquot_quota_off(sb, type); 5593 } 5594 5595 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5596 * acquiring the locks... As quota files are never truncated and quota code 5597 * itself serializes the operations (and no one else should touch the files) 5598 * we don't have to be afraid of races */ 5599 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5600 size_t len, loff_t off) 5601 { 5602 struct inode *inode = sb_dqopt(sb)->files[type]; 5603 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5604 int offset = off & (sb->s_blocksize - 1); 5605 int tocopy; 5606 size_t toread; 5607 struct buffer_head *bh; 5608 loff_t i_size = i_size_read(inode); 5609 5610 if (off > i_size) 5611 return 0; 5612 if (off+len > i_size) 5613 len = i_size-off; 5614 toread = len; 5615 while (toread > 0) { 5616 tocopy = sb->s_blocksize - offset < toread ? 5617 sb->s_blocksize - offset : toread; 5618 bh = ext4_bread(NULL, inode, blk, 0); 5619 if (IS_ERR(bh)) 5620 return PTR_ERR(bh); 5621 if (!bh) /* A hole? */ 5622 memset(data, 0, tocopy); 5623 else 5624 memcpy(data, bh->b_data+offset, tocopy); 5625 brelse(bh); 5626 offset = 0; 5627 toread -= tocopy; 5628 data += tocopy; 5629 blk++; 5630 } 5631 return len; 5632 } 5633 5634 /* Write to quotafile (we know the transaction is already started and has 5635 * enough credits) */ 5636 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5637 const char *data, size_t len, loff_t off) 5638 { 5639 struct inode *inode = sb_dqopt(sb)->files[type]; 5640 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5641 int err, offset = off & (sb->s_blocksize - 1); 5642 int retries = 0; 5643 struct buffer_head *bh; 5644 handle_t *handle = journal_current_handle(); 5645 5646 if (EXT4_SB(sb)->s_journal && !handle) { 5647 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5648 " cancelled because transaction is not started", 5649 (unsigned long long)off, (unsigned long long)len); 5650 return -EIO; 5651 } 5652 /* 5653 * Since we account only one data block in transaction credits, 5654 * then it is impossible to cross a block boundary. 5655 */ 5656 if (sb->s_blocksize - offset < len) { 5657 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5658 " cancelled because not block aligned", 5659 (unsigned long long)off, (unsigned long long)len); 5660 return -EIO; 5661 } 5662 5663 do { 5664 bh = ext4_bread(handle, inode, blk, 5665 EXT4_GET_BLOCKS_CREATE | 5666 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5667 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5668 ext4_should_retry_alloc(inode->i_sb, &retries)); 5669 if (IS_ERR(bh)) 5670 return PTR_ERR(bh); 5671 if (!bh) 5672 goto out; 5673 BUFFER_TRACE(bh, "get write access"); 5674 err = ext4_journal_get_write_access(handle, bh); 5675 if (err) { 5676 brelse(bh); 5677 return err; 5678 } 5679 lock_buffer(bh); 5680 memcpy(bh->b_data+offset, data, len); 5681 flush_dcache_page(bh->b_page); 5682 unlock_buffer(bh); 5683 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5684 brelse(bh); 5685 out: 5686 if (inode->i_size < off + len) { 5687 i_size_write(inode, off + len); 5688 EXT4_I(inode)->i_disksize = inode->i_size; 5689 ext4_mark_inode_dirty(handle, inode); 5690 } 5691 return len; 5692 } 5693 5694 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5695 { 5696 const struct quota_format_ops *ops; 5697 5698 if (!sb_has_quota_loaded(sb, qid->type)) 5699 return -ESRCH; 5700 ops = sb_dqopt(sb)->ops[qid->type]; 5701 if (!ops || !ops->get_next_id) 5702 return -ENOSYS; 5703 return dquot_get_next_id(sb, qid); 5704 } 5705 #endif 5706 5707 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5708 const char *dev_name, void *data) 5709 { 5710 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5711 } 5712 5713 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5714 static inline void register_as_ext2(void) 5715 { 5716 int err = register_filesystem(&ext2_fs_type); 5717 if (err) 5718 printk(KERN_WARNING 5719 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5720 } 5721 5722 static inline void unregister_as_ext2(void) 5723 { 5724 unregister_filesystem(&ext2_fs_type); 5725 } 5726 5727 static inline int ext2_feature_set_ok(struct super_block *sb) 5728 { 5729 if (ext4_has_unknown_ext2_incompat_features(sb)) 5730 return 0; 5731 if (sb_rdonly(sb)) 5732 return 1; 5733 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5734 return 0; 5735 return 1; 5736 } 5737 #else 5738 static inline void register_as_ext2(void) { } 5739 static inline void unregister_as_ext2(void) { } 5740 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5741 #endif 5742 5743 static inline void register_as_ext3(void) 5744 { 5745 int err = register_filesystem(&ext3_fs_type); 5746 if (err) 5747 printk(KERN_WARNING 5748 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5749 } 5750 5751 static inline void unregister_as_ext3(void) 5752 { 5753 unregister_filesystem(&ext3_fs_type); 5754 } 5755 5756 static inline int ext3_feature_set_ok(struct super_block *sb) 5757 { 5758 if (ext4_has_unknown_ext3_incompat_features(sb)) 5759 return 0; 5760 if (!ext4_has_feature_journal(sb)) 5761 return 0; 5762 if (sb_rdonly(sb)) 5763 return 1; 5764 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5765 return 0; 5766 return 1; 5767 } 5768 5769 static struct file_system_type ext4_fs_type = { 5770 .owner = THIS_MODULE, 5771 .name = "ext4", 5772 .mount = ext4_mount, 5773 .kill_sb = kill_block_super, 5774 .fs_flags = FS_REQUIRES_DEV, 5775 }; 5776 MODULE_ALIAS_FS("ext4"); 5777 5778 /* Shared across all ext4 file systems */ 5779 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5780 5781 static int __init ext4_init_fs(void) 5782 { 5783 int i, err; 5784 5785 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5786 ext4_li_info = NULL; 5787 mutex_init(&ext4_li_mtx); 5788 5789 /* Build-time check for flags consistency */ 5790 ext4_check_flag_values(); 5791 5792 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5793 init_waitqueue_head(&ext4__ioend_wq[i]); 5794 5795 err = ext4_init_es(); 5796 if (err) 5797 return err; 5798 5799 err = ext4_init_pageio(); 5800 if (err) 5801 goto out5; 5802 5803 err = ext4_init_system_zone(); 5804 if (err) 5805 goto out4; 5806 5807 err = ext4_init_sysfs(); 5808 if (err) 5809 goto out3; 5810 5811 err = ext4_init_mballoc(); 5812 if (err) 5813 goto out2; 5814 err = init_inodecache(); 5815 if (err) 5816 goto out1; 5817 register_as_ext3(); 5818 register_as_ext2(); 5819 err = register_filesystem(&ext4_fs_type); 5820 if (err) 5821 goto out; 5822 5823 return 0; 5824 out: 5825 unregister_as_ext2(); 5826 unregister_as_ext3(); 5827 destroy_inodecache(); 5828 out1: 5829 ext4_exit_mballoc(); 5830 out2: 5831 ext4_exit_sysfs(); 5832 out3: 5833 ext4_exit_system_zone(); 5834 out4: 5835 ext4_exit_pageio(); 5836 out5: 5837 ext4_exit_es(); 5838 5839 return err; 5840 } 5841 5842 static void __exit ext4_exit_fs(void) 5843 { 5844 ext4_destroy_lazyinit_thread(); 5845 unregister_as_ext2(); 5846 unregister_as_ext3(); 5847 unregister_filesystem(&ext4_fs_type); 5848 destroy_inodecache(); 5849 ext4_exit_mballoc(); 5850 ext4_exit_sysfs(); 5851 ext4_exit_system_zone(); 5852 ext4_exit_pageio(); 5853 ext4_exit_es(); 5854 } 5855 5856 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5857 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5858 MODULE_LICENSE("GPL"); 5859 module_init(ext4_init_fs) 5860 module_exit(ext4_exit_fs) 5861