1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 87 88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 89 static struct file_system_type ext2_fs_type = { 90 .owner = THIS_MODULE, 91 .name = "ext2", 92 .mount = ext4_mount, 93 .kill_sb = kill_block_super, 94 .fs_flags = FS_REQUIRES_DEV, 95 }; 96 MODULE_ALIAS_FS("ext2"); 97 MODULE_ALIAS("ext2"); 98 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 99 #else 100 #define IS_EXT2_SB(sb) (0) 101 #endif 102 103 104 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 105 static struct file_system_type ext3_fs_type = { 106 .owner = THIS_MODULE, 107 .name = "ext3", 108 .mount = ext4_mount, 109 .kill_sb = kill_block_super, 110 .fs_flags = FS_REQUIRES_DEV, 111 }; 112 MODULE_ALIAS_FS("ext3"); 113 MODULE_ALIAS("ext3"); 114 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 115 #else 116 #define IS_EXT3_SB(sb) (0) 117 #endif 118 119 static int ext4_verify_csum_type(struct super_block *sb, 120 struct ext4_super_block *es) 121 { 122 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 123 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 124 return 1; 125 126 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 127 } 128 129 static __le32 ext4_superblock_csum(struct super_block *sb, 130 struct ext4_super_block *es) 131 { 132 struct ext4_sb_info *sbi = EXT4_SB(sb); 133 int offset = offsetof(struct ext4_super_block, s_checksum); 134 __u32 csum; 135 136 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 137 138 return cpu_to_le32(csum); 139 } 140 141 static int ext4_superblock_csum_verify(struct super_block *sb, 142 struct ext4_super_block *es) 143 { 144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 145 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 146 return 1; 147 148 return es->s_checksum == ext4_superblock_csum(sb, es); 149 } 150 151 void ext4_superblock_csum_set(struct super_block *sb) 152 { 153 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 154 155 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 156 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 157 return; 158 159 es->s_checksum = ext4_superblock_csum(sb, es); 160 } 161 162 void *ext4_kvmalloc(size_t size, gfp_t flags) 163 { 164 void *ret; 165 166 ret = kmalloc(size, flags | __GFP_NOWARN); 167 if (!ret) 168 ret = __vmalloc(size, flags, PAGE_KERNEL); 169 return ret; 170 } 171 172 void *ext4_kvzalloc(size_t size, gfp_t flags) 173 { 174 void *ret; 175 176 ret = kzalloc(size, flags | __GFP_NOWARN); 177 if (!ret) 178 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 179 return ret; 180 } 181 182 void ext4_kvfree(void *ptr) 183 { 184 if (is_vmalloc_addr(ptr)) 185 vfree(ptr); 186 else 187 kfree(ptr); 188 189 } 190 191 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 192 struct ext4_group_desc *bg) 193 { 194 return le32_to_cpu(bg->bg_block_bitmap_lo) | 195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 196 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 197 } 198 199 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 200 struct ext4_group_desc *bg) 201 { 202 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 204 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 205 } 206 207 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_inode_table_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 213 } 214 215 __u32 ext4_free_group_clusters(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 221 } 222 223 __u32 ext4_free_inodes_count(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 229 } 230 231 __u32 ext4_used_dirs_count(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_itable_unused_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_itable_unused_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 245 } 246 247 void ext4_block_bitmap_set(struct super_block *sb, 248 struct ext4_group_desc *bg, ext4_fsblk_t blk) 249 { 250 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 252 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 253 } 254 255 void ext4_inode_bitmap_set(struct super_block *sb, 256 struct ext4_group_desc *bg, ext4_fsblk_t blk) 257 { 258 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 260 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 261 } 262 263 void ext4_inode_table_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_free_group_clusters_set(struct super_block *sb, 272 struct ext4_group_desc *bg, __u32 count) 273 { 274 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 277 } 278 279 void ext4_free_inodes_set(struct super_block *sb, 280 struct ext4_group_desc *bg, __u32 count) 281 { 282 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 285 } 286 287 void ext4_used_dirs_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_itable_unused_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 301 } 302 303 304 static void __save_error_info(struct super_block *sb, const char *func, 305 unsigned int line) 306 { 307 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 308 309 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 310 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 311 es->s_last_error_time = cpu_to_le32(get_seconds()); 312 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 313 es->s_last_error_line = cpu_to_le32(line); 314 if (!es->s_first_error_time) { 315 es->s_first_error_time = es->s_last_error_time; 316 strncpy(es->s_first_error_func, func, 317 sizeof(es->s_first_error_func)); 318 es->s_first_error_line = cpu_to_le32(line); 319 es->s_first_error_ino = es->s_last_error_ino; 320 es->s_first_error_block = es->s_last_error_block; 321 } 322 /* 323 * Start the daily error reporting function if it hasn't been 324 * started already 325 */ 326 if (!es->s_error_count) 327 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 328 le32_add_cpu(&es->s_error_count, 1); 329 } 330 331 static void save_error_info(struct super_block *sb, const char *func, 332 unsigned int line) 333 { 334 __save_error_info(sb, func, line); 335 ext4_commit_super(sb, 1); 336 } 337 338 /* 339 * The del_gendisk() function uninitializes the disk-specific data 340 * structures, including the bdi structure, without telling anyone 341 * else. Once this happens, any attempt to call mark_buffer_dirty() 342 * (for example, by ext4_commit_super), will cause a kernel OOPS. 343 * This is a kludge to prevent these oops until we can put in a proper 344 * hook in del_gendisk() to inform the VFS and file system layers. 345 */ 346 static int block_device_ejected(struct super_block *sb) 347 { 348 struct inode *bd_inode = sb->s_bdev->bd_inode; 349 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 350 351 return bdi->dev == NULL; 352 } 353 354 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 355 { 356 struct super_block *sb = journal->j_private; 357 struct ext4_sb_info *sbi = EXT4_SB(sb); 358 int error = is_journal_aborted(journal); 359 struct ext4_journal_cb_entry *jce; 360 361 BUG_ON(txn->t_state == T_FINISHED); 362 spin_lock(&sbi->s_md_lock); 363 while (!list_empty(&txn->t_private_list)) { 364 jce = list_entry(txn->t_private_list.next, 365 struct ext4_journal_cb_entry, jce_list); 366 list_del_init(&jce->jce_list); 367 spin_unlock(&sbi->s_md_lock); 368 jce->jce_func(sb, jce, error); 369 spin_lock(&sbi->s_md_lock); 370 } 371 spin_unlock(&sbi->s_md_lock); 372 } 373 374 /* Deal with the reporting of failure conditions on a filesystem such as 375 * inconsistencies detected or read IO failures. 376 * 377 * On ext2, we can store the error state of the filesystem in the 378 * superblock. That is not possible on ext4, because we may have other 379 * write ordering constraints on the superblock which prevent us from 380 * writing it out straight away; and given that the journal is about to 381 * be aborted, we can't rely on the current, or future, transactions to 382 * write out the superblock safely. 383 * 384 * We'll just use the jbd2_journal_abort() error code to record an error in 385 * the journal instead. On recovery, the journal will complain about 386 * that error until we've noted it down and cleared it. 387 */ 388 389 static void ext4_handle_error(struct super_block *sb) 390 { 391 if (sb->s_flags & MS_RDONLY) 392 return; 393 394 if (!test_opt(sb, ERRORS_CONT)) { 395 journal_t *journal = EXT4_SB(sb)->s_journal; 396 397 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 398 if (journal) 399 jbd2_journal_abort(journal, -EIO); 400 } 401 if (test_opt(sb, ERRORS_RO)) { 402 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 403 /* 404 * Make sure updated value of ->s_mount_flags will be visible 405 * before ->s_flags update 406 */ 407 smp_wmb(); 408 sb->s_flags |= MS_RDONLY; 409 } 410 if (test_opt(sb, ERRORS_PANIC)) 411 panic("EXT4-fs (device %s): panic forced after error\n", 412 sb->s_id); 413 } 414 415 #define ext4_error_ratelimit(sb) \ 416 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 417 "EXT4-fs error") 418 419 void __ext4_error(struct super_block *sb, const char *function, 420 unsigned int line, const char *fmt, ...) 421 { 422 struct va_format vaf; 423 va_list args; 424 425 if (ext4_error_ratelimit(sb)) { 426 va_start(args, fmt); 427 vaf.fmt = fmt; 428 vaf.va = &args; 429 printk(KERN_CRIT 430 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 431 sb->s_id, function, line, current->comm, &vaf); 432 va_end(args); 433 } 434 save_error_info(sb, function, line); 435 ext4_handle_error(sb); 436 } 437 438 void __ext4_error_inode(struct inode *inode, const char *function, 439 unsigned int line, ext4_fsblk_t block, 440 const char *fmt, ...) 441 { 442 va_list args; 443 struct va_format vaf; 444 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 445 446 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 447 es->s_last_error_block = cpu_to_le64(block); 448 if (ext4_error_ratelimit(inode->i_sb)) { 449 va_start(args, fmt); 450 vaf.fmt = fmt; 451 vaf.va = &args; 452 if (block) 453 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 454 "inode #%lu: block %llu: comm %s: %pV\n", 455 inode->i_sb->s_id, function, line, inode->i_ino, 456 block, current->comm, &vaf); 457 else 458 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 459 "inode #%lu: comm %s: %pV\n", 460 inode->i_sb->s_id, function, line, inode->i_ino, 461 current->comm, &vaf); 462 va_end(args); 463 } 464 save_error_info(inode->i_sb, function, line); 465 ext4_handle_error(inode->i_sb); 466 } 467 468 void __ext4_error_file(struct file *file, const char *function, 469 unsigned int line, ext4_fsblk_t block, 470 const char *fmt, ...) 471 { 472 va_list args; 473 struct va_format vaf; 474 struct ext4_super_block *es; 475 struct inode *inode = file_inode(file); 476 char pathname[80], *path; 477 478 es = EXT4_SB(inode->i_sb)->s_es; 479 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 480 if (ext4_error_ratelimit(inode->i_sb)) { 481 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 482 if (IS_ERR(path)) 483 path = "(unknown)"; 484 va_start(args, fmt); 485 vaf.fmt = fmt; 486 vaf.va = &args; 487 if (block) 488 printk(KERN_CRIT 489 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 490 "block %llu: comm %s: path %s: %pV\n", 491 inode->i_sb->s_id, function, line, inode->i_ino, 492 block, current->comm, path, &vaf); 493 else 494 printk(KERN_CRIT 495 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 496 "comm %s: path %s: %pV\n", 497 inode->i_sb->s_id, function, line, inode->i_ino, 498 current->comm, path, &vaf); 499 va_end(args); 500 } 501 save_error_info(inode->i_sb, function, line); 502 ext4_handle_error(inode->i_sb); 503 } 504 505 const char *ext4_decode_error(struct super_block *sb, int errno, 506 char nbuf[16]) 507 { 508 char *errstr = NULL; 509 510 switch (errno) { 511 case -EIO: 512 errstr = "IO failure"; 513 break; 514 case -ENOMEM: 515 errstr = "Out of memory"; 516 break; 517 case -EROFS: 518 if (!sb || (EXT4_SB(sb)->s_journal && 519 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 520 errstr = "Journal has aborted"; 521 else 522 errstr = "Readonly filesystem"; 523 break; 524 default: 525 /* If the caller passed in an extra buffer for unknown 526 * errors, textualise them now. Else we just return 527 * NULL. */ 528 if (nbuf) { 529 /* Check for truncated error codes... */ 530 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 531 errstr = nbuf; 532 } 533 break; 534 } 535 536 return errstr; 537 } 538 539 /* __ext4_std_error decodes expected errors from journaling functions 540 * automatically and invokes the appropriate error response. */ 541 542 void __ext4_std_error(struct super_block *sb, const char *function, 543 unsigned int line, int errno) 544 { 545 char nbuf[16]; 546 const char *errstr; 547 548 /* Special case: if the error is EROFS, and we're not already 549 * inside a transaction, then there's really no point in logging 550 * an error. */ 551 if (errno == -EROFS && journal_current_handle() == NULL && 552 (sb->s_flags & MS_RDONLY)) 553 return; 554 555 if (ext4_error_ratelimit(sb)) { 556 errstr = ext4_decode_error(sb, errno, nbuf); 557 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 558 sb->s_id, function, line, errstr); 559 } 560 561 save_error_info(sb, function, line); 562 ext4_handle_error(sb); 563 } 564 565 /* 566 * ext4_abort is a much stronger failure handler than ext4_error. The 567 * abort function may be used to deal with unrecoverable failures such 568 * as journal IO errors or ENOMEM at a critical moment in log management. 569 * 570 * We unconditionally force the filesystem into an ABORT|READONLY state, 571 * unless the error response on the fs has been set to panic in which 572 * case we take the easy way out and panic immediately. 573 */ 574 575 void __ext4_abort(struct super_block *sb, const char *function, 576 unsigned int line, const char *fmt, ...) 577 { 578 va_list args; 579 580 save_error_info(sb, function, line); 581 va_start(args, fmt); 582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 583 function, line); 584 vprintk(fmt, args); 585 printk("\n"); 586 va_end(args); 587 588 if ((sb->s_flags & MS_RDONLY) == 0) { 589 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 590 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 591 /* 592 * Make sure updated value of ->s_mount_flags will be visible 593 * before ->s_flags update 594 */ 595 smp_wmb(); 596 sb->s_flags |= MS_RDONLY; 597 if (EXT4_SB(sb)->s_journal) 598 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 599 save_error_info(sb, function, line); 600 } 601 if (test_opt(sb, ERRORS_PANIC)) 602 panic("EXT4-fs panic from previous error\n"); 603 } 604 605 void __ext4_msg(struct super_block *sb, 606 const char *prefix, const char *fmt, ...) 607 { 608 struct va_format vaf; 609 va_list args; 610 611 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 612 return; 613 614 va_start(args, fmt); 615 vaf.fmt = fmt; 616 vaf.va = &args; 617 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 618 va_end(args); 619 } 620 621 void __ext4_warning(struct super_block *sb, const char *function, 622 unsigned int line, const char *fmt, ...) 623 { 624 struct va_format vaf; 625 va_list args; 626 627 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 628 "EXT4-fs warning")) 629 return; 630 631 va_start(args, fmt); 632 vaf.fmt = fmt; 633 vaf.va = &args; 634 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 635 sb->s_id, function, line, &vaf); 636 va_end(args); 637 } 638 639 void __ext4_grp_locked_error(const char *function, unsigned int line, 640 struct super_block *sb, ext4_group_t grp, 641 unsigned long ino, ext4_fsblk_t block, 642 const char *fmt, ...) 643 __releases(bitlock) 644 __acquires(bitlock) 645 { 646 struct va_format vaf; 647 va_list args; 648 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 649 650 es->s_last_error_ino = cpu_to_le32(ino); 651 es->s_last_error_block = cpu_to_le64(block); 652 __save_error_info(sb, function, line); 653 654 if (ext4_error_ratelimit(sb)) { 655 va_start(args, fmt); 656 vaf.fmt = fmt; 657 vaf.va = &args; 658 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 659 sb->s_id, function, line, grp); 660 if (ino) 661 printk(KERN_CONT "inode %lu: ", ino); 662 if (block) 663 printk(KERN_CONT "block %llu:", 664 (unsigned long long) block); 665 printk(KERN_CONT "%pV\n", &vaf); 666 va_end(args); 667 } 668 669 if (test_opt(sb, ERRORS_CONT)) { 670 ext4_commit_super(sb, 0); 671 return; 672 } 673 674 ext4_unlock_group(sb, grp); 675 ext4_handle_error(sb); 676 /* 677 * We only get here in the ERRORS_RO case; relocking the group 678 * may be dangerous, but nothing bad will happen since the 679 * filesystem will have already been marked read/only and the 680 * journal has been aborted. We return 1 as a hint to callers 681 * who might what to use the return value from 682 * ext4_grp_locked_error() to distinguish between the 683 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 684 * aggressively from the ext4 function in question, with a 685 * more appropriate error code. 686 */ 687 ext4_lock_group(sb, grp); 688 return; 689 } 690 691 void ext4_update_dynamic_rev(struct super_block *sb) 692 { 693 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 694 695 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 696 return; 697 698 ext4_warning(sb, 699 "updating to rev %d because of new feature flag, " 700 "running e2fsck is recommended", 701 EXT4_DYNAMIC_REV); 702 703 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 704 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 705 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 706 /* leave es->s_feature_*compat flags alone */ 707 /* es->s_uuid will be set by e2fsck if empty */ 708 709 /* 710 * The rest of the superblock fields should be zero, and if not it 711 * means they are likely already in use, so leave them alone. We 712 * can leave it up to e2fsck to clean up any inconsistencies there. 713 */ 714 } 715 716 /* 717 * Open the external journal device 718 */ 719 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 720 { 721 struct block_device *bdev; 722 char b[BDEVNAME_SIZE]; 723 724 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 725 if (IS_ERR(bdev)) 726 goto fail; 727 return bdev; 728 729 fail: 730 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 731 __bdevname(dev, b), PTR_ERR(bdev)); 732 return NULL; 733 } 734 735 /* 736 * Release the journal device 737 */ 738 static void ext4_blkdev_put(struct block_device *bdev) 739 { 740 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 741 } 742 743 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 744 { 745 struct block_device *bdev; 746 bdev = sbi->journal_bdev; 747 if (bdev) { 748 ext4_blkdev_put(bdev); 749 sbi->journal_bdev = NULL; 750 } 751 } 752 753 static inline struct inode *orphan_list_entry(struct list_head *l) 754 { 755 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 756 } 757 758 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 759 { 760 struct list_head *l; 761 762 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 763 le32_to_cpu(sbi->s_es->s_last_orphan)); 764 765 printk(KERN_ERR "sb_info orphan list:\n"); 766 list_for_each(l, &sbi->s_orphan) { 767 struct inode *inode = orphan_list_entry(l); 768 printk(KERN_ERR " " 769 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 770 inode->i_sb->s_id, inode->i_ino, inode, 771 inode->i_mode, inode->i_nlink, 772 NEXT_ORPHAN(inode)); 773 } 774 } 775 776 static void ext4_put_super(struct super_block *sb) 777 { 778 struct ext4_sb_info *sbi = EXT4_SB(sb); 779 struct ext4_super_block *es = sbi->s_es; 780 int i, err; 781 782 ext4_unregister_li_request(sb); 783 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 784 785 flush_workqueue(sbi->rsv_conversion_wq); 786 destroy_workqueue(sbi->rsv_conversion_wq); 787 788 if (sbi->s_journal) { 789 err = jbd2_journal_destroy(sbi->s_journal); 790 sbi->s_journal = NULL; 791 if (err < 0) 792 ext4_abort(sb, "Couldn't clean up the journal"); 793 } 794 795 ext4_es_unregister_shrinker(sbi); 796 del_timer_sync(&sbi->s_err_report); 797 ext4_release_system_zone(sb); 798 ext4_mb_release(sb); 799 ext4_ext_release(sb); 800 ext4_xattr_put_super(sb); 801 802 if (!(sb->s_flags & MS_RDONLY)) { 803 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 804 es->s_state = cpu_to_le16(sbi->s_mount_state); 805 } 806 if (!(sb->s_flags & MS_RDONLY)) 807 ext4_commit_super(sb, 1); 808 809 if (sbi->s_proc) { 810 remove_proc_entry("options", sbi->s_proc); 811 remove_proc_entry(sb->s_id, ext4_proc_root); 812 } 813 kobject_del(&sbi->s_kobj); 814 815 for (i = 0; i < sbi->s_gdb_count; i++) 816 brelse(sbi->s_group_desc[i]); 817 ext4_kvfree(sbi->s_group_desc); 818 ext4_kvfree(sbi->s_flex_groups); 819 percpu_counter_destroy(&sbi->s_freeclusters_counter); 820 percpu_counter_destroy(&sbi->s_freeinodes_counter); 821 percpu_counter_destroy(&sbi->s_dirs_counter); 822 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 823 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 824 brelse(sbi->s_sbh); 825 #ifdef CONFIG_QUOTA 826 for (i = 0; i < MAXQUOTAS; i++) 827 kfree(sbi->s_qf_names[i]); 828 #endif 829 830 /* Debugging code just in case the in-memory inode orphan list 831 * isn't empty. The on-disk one can be non-empty if we've 832 * detected an error and taken the fs readonly, but the 833 * in-memory list had better be clean by this point. */ 834 if (!list_empty(&sbi->s_orphan)) 835 dump_orphan_list(sb, sbi); 836 J_ASSERT(list_empty(&sbi->s_orphan)); 837 838 invalidate_bdev(sb->s_bdev); 839 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 840 /* 841 * Invalidate the journal device's buffers. We don't want them 842 * floating about in memory - the physical journal device may 843 * hotswapped, and it breaks the `ro-after' testing code. 844 */ 845 sync_blockdev(sbi->journal_bdev); 846 invalidate_bdev(sbi->journal_bdev); 847 ext4_blkdev_remove(sbi); 848 } 849 if (sbi->s_mb_cache) { 850 ext4_xattr_destroy_cache(sbi->s_mb_cache); 851 sbi->s_mb_cache = NULL; 852 } 853 if (sbi->s_mmp_tsk) 854 kthread_stop(sbi->s_mmp_tsk); 855 sb->s_fs_info = NULL; 856 /* 857 * Now that we are completely done shutting down the 858 * superblock, we need to actually destroy the kobject. 859 */ 860 kobject_put(&sbi->s_kobj); 861 wait_for_completion(&sbi->s_kobj_unregister); 862 if (sbi->s_chksum_driver) 863 crypto_free_shash(sbi->s_chksum_driver); 864 kfree(sbi->s_blockgroup_lock); 865 kfree(sbi); 866 } 867 868 static struct kmem_cache *ext4_inode_cachep; 869 870 /* 871 * Called inside transaction, so use GFP_NOFS 872 */ 873 static struct inode *ext4_alloc_inode(struct super_block *sb) 874 { 875 struct ext4_inode_info *ei; 876 877 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 878 if (!ei) 879 return NULL; 880 881 ei->vfs_inode.i_version = 1; 882 spin_lock_init(&ei->i_raw_lock); 883 INIT_LIST_HEAD(&ei->i_prealloc_list); 884 spin_lock_init(&ei->i_prealloc_lock); 885 ext4_es_init_tree(&ei->i_es_tree); 886 rwlock_init(&ei->i_es_lock); 887 INIT_LIST_HEAD(&ei->i_es_lru); 888 ei->i_es_lru_nr = 0; 889 ei->i_touch_when = 0; 890 ei->i_reserved_data_blocks = 0; 891 ei->i_reserved_meta_blocks = 0; 892 ei->i_allocated_meta_blocks = 0; 893 ei->i_da_metadata_calc_len = 0; 894 ei->i_da_metadata_calc_last_lblock = 0; 895 spin_lock_init(&(ei->i_block_reservation_lock)); 896 #ifdef CONFIG_QUOTA 897 ei->i_reserved_quota = 0; 898 #endif 899 ei->jinode = NULL; 900 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 901 spin_lock_init(&ei->i_completed_io_lock); 902 ei->i_sync_tid = 0; 903 ei->i_datasync_tid = 0; 904 atomic_set(&ei->i_ioend_count, 0); 905 atomic_set(&ei->i_unwritten, 0); 906 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 907 908 return &ei->vfs_inode; 909 } 910 911 static int ext4_drop_inode(struct inode *inode) 912 { 913 int drop = generic_drop_inode(inode); 914 915 trace_ext4_drop_inode(inode, drop); 916 return drop; 917 } 918 919 static void ext4_i_callback(struct rcu_head *head) 920 { 921 struct inode *inode = container_of(head, struct inode, i_rcu); 922 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 923 } 924 925 static void ext4_destroy_inode(struct inode *inode) 926 { 927 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 928 ext4_msg(inode->i_sb, KERN_ERR, 929 "Inode %lu (%p): orphan list check failed!", 930 inode->i_ino, EXT4_I(inode)); 931 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 932 EXT4_I(inode), sizeof(struct ext4_inode_info), 933 true); 934 dump_stack(); 935 } 936 call_rcu(&inode->i_rcu, ext4_i_callback); 937 } 938 939 static void init_once(void *foo) 940 { 941 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 942 943 INIT_LIST_HEAD(&ei->i_orphan); 944 init_rwsem(&ei->xattr_sem); 945 init_rwsem(&ei->i_data_sem); 946 inode_init_once(&ei->vfs_inode); 947 } 948 949 static int __init init_inodecache(void) 950 { 951 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 952 sizeof(struct ext4_inode_info), 953 0, (SLAB_RECLAIM_ACCOUNT| 954 SLAB_MEM_SPREAD), 955 init_once); 956 if (ext4_inode_cachep == NULL) 957 return -ENOMEM; 958 return 0; 959 } 960 961 static void destroy_inodecache(void) 962 { 963 /* 964 * Make sure all delayed rcu free inodes are flushed before we 965 * destroy cache. 966 */ 967 rcu_barrier(); 968 kmem_cache_destroy(ext4_inode_cachep); 969 } 970 971 void ext4_clear_inode(struct inode *inode) 972 { 973 invalidate_inode_buffers(inode); 974 clear_inode(inode); 975 dquot_drop(inode); 976 ext4_discard_preallocations(inode); 977 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 978 ext4_es_lru_del(inode); 979 if (EXT4_I(inode)->jinode) { 980 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 981 EXT4_I(inode)->jinode); 982 jbd2_free_inode(EXT4_I(inode)->jinode); 983 EXT4_I(inode)->jinode = NULL; 984 } 985 } 986 987 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 988 u64 ino, u32 generation) 989 { 990 struct inode *inode; 991 992 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 993 return ERR_PTR(-ESTALE); 994 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 995 return ERR_PTR(-ESTALE); 996 997 /* iget isn't really right if the inode is currently unallocated!! 998 * 999 * ext4_read_inode will return a bad_inode if the inode had been 1000 * deleted, so we should be safe. 1001 * 1002 * Currently we don't know the generation for parent directory, so 1003 * a generation of 0 means "accept any" 1004 */ 1005 inode = ext4_iget(sb, ino); 1006 if (IS_ERR(inode)) 1007 return ERR_CAST(inode); 1008 if (generation && inode->i_generation != generation) { 1009 iput(inode); 1010 return ERR_PTR(-ESTALE); 1011 } 1012 1013 return inode; 1014 } 1015 1016 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1017 int fh_len, int fh_type) 1018 { 1019 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1020 ext4_nfs_get_inode); 1021 } 1022 1023 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1024 int fh_len, int fh_type) 1025 { 1026 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1027 ext4_nfs_get_inode); 1028 } 1029 1030 /* 1031 * Try to release metadata pages (indirect blocks, directories) which are 1032 * mapped via the block device. Since these pages could have journal heads 1033 * which would prevent try_to_free_buffers() from freeing them, we must use 1034 * jbd2 layer's try_to_free_buffers() function to release them. 1035 */ 1036 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1037 gfp_t wait) 1038 { 1039 journal_t *journal = EXT4_SB(sb)->s_journal; 1040 1041 WARN_ON(PageChecked(page)); 1042 if (!page_has_buffers(page)) 1043 return 0; 1044 if (journal) 1045 return jbd2_journal_try_to_free_buffers(journal, page, 1046 wait & ~__GFP_WAIT); 1047 return try_to_free_buffers(page); 1048 } 1049 1050 #ifdef CONFIG_QUOTA 1051 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1052 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1053 1054 static int ext4_write_dquot(struct dquot *dquot); 1055 static int ext4_acquire_dquot(struct dquot *dquot); 1056 static int ext4_release_dquot(struct dquot *dquot); 1057 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1058 static int ext4_write_info(struct super_block *sb, int type); 1059 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1060 struct path *path); 1061 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1062 int format_id); 1063 static int ext4_quota_off(struct super_block *sb, int type); 1064 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1065 static int ext4_quota_on_mount(struct super_block *sb, int type); 1066 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1067 size_t len, loff_t off); 1068 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1069 const char *data, size_t len, loff_t off); 1070 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1071 unsigned int flags); 1072 static int ext4_enable_quotas(struct super_block *sb); 1073 1074 static const struct dquot_operations ext4_quota_operations = { 1075 .get_reserved_space = ext4_get_reserved_space, 1076 .write_dquot = ext4_write_dquot, 1077 .acquire_dquot = ext4_acquire_dquot, 1078 .release_dquot = ext4_release_dquot, 1079 .mark_dirty = ext4_mark_dquot_dirty, 1080 .write_info = ext4_write_info, 1081 .alloc_dquot = dquot_alloc, 1082 .destroy_dquot = dquot_destroy, 1083 }; 1084 1085 static const struct quotactl_ops ext4_qctl_operations = { 1086 .quota_on = ext4_quota_on, 1087 .quota_off = ext4_quota_off, 1088 .quota_sync = dquot_quota_sync, 1089 .get_info = dquot_get_dqinfo, 1090 .set_info = dquot_set_dqinfo, 1091 .get_dqblk = dquot_get_dqblk, 1092 .set_dqblk = dquot_set_dqblk 1093 }; 1094 1095 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1096 .quota_on_meta = ext4_quota_on_sysfile, 1097 .quota_off = ext4_quota_off_sysfile, 1098 .quota_sync = dquot_quota_sync, 1099 .get_info = dquot_get_dqinfo, 1100 .set_info = dquot_set_dqinfo, 1101 .get_dqblk = dquot_get_dqblk, 1102 .set_dqblk = dquot_set_dqblk 1103 }; 1104 #endif 1105 1106 static const struct super_operations ext4_sops = { 1107 .alloc_inode = ext4_alloc_inode, 1108 .destroy_inode = ext4_destroy_inode, 1109 .write_inode = ext4_write_inode, 1110 .dirty_inode = ext4_dirty_inode, 1111 .drop_inode = ext4_drop_inode, 1112 .evict_inode = ext4_evict_inode, 1113 .put_super = ext4_put_super, 1114 .sync_fs = ext4_sync_fs, 1115 .freeze_fs = ext4_freeze, 1116 .unfreeze_fs = ext4_unfreeze, 1117 .statfs = ext4_statfs, 1118 .remount_fs = ext4_remount, 1119 .show_options = ext4_show_options, 1120 #ifdef CONFIG_QUOTA 1121 .quota_read = ext4_quota_read, 1122 .quota_write = ext4_quota_write, 1123 #endif 1124 .bdev_try_to_free_page = bdev_try_to_free_page, 1125 }; 1126 1127 static const struct super_operations ext4_nojournal_sops = { 1128 .alloc_inode = ext4_alloc_inode, 1129 .destroy_inode = ext4_destroy_inode, 1130 .write_inode = ext4_write_inode, 1131 .dirty_inode = ext4_dirty_inode, 1132 .drop_inode = ext4_drop_inode, 1133 .evict_inode = ext4_evict_inode, 1134 .sync_fs = ext4_sync_fs_nojournal, 1135 .put_super = ext4_put_super, 1136 .statfs = ext4_statfs, 1137 .remount_fs = ext4_remount, 1138 .show_options = ext4_show_options, 1139 #ifdef CONFIG_QUOTA 1140 .quota_read = ext4_quota_read, 1141 .quota_write = ext4_quota_write, 1142 #endif 1143 .bdev_try_to_free_page = bdev_try_to_free_page, 1144 }; 1145 1146 static const struct export_operations ext4_export_ops = { 1147 .fh_to_dentry = ext4_fh_to_dentry, 1148 .fh_to_parent = ext4_fh_to_parent, 1149 .get_parent = ext4_get_parent, 1150 }; 1151 1152 enum { 1153 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1154 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1155 Opt_nouid32, Opt_debug, Opt_removed, 1156 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1157 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1158 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1159 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1160 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1161 Opt_data_err_abort, Opt_data_err_ignore, 1162 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1163 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1164 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1165 Opt_usrquota, Opt_grpquota, Opt_i_version, 1166 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1167 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1168 Opt_inode_readahead_blks, Opt_journal_ioprio, 1169 Opt_dioread_nolock, Opt_dioread_lock, 1170 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1171 Opt_max_dir_size_kb, 1172 }; 1173 1174 static const match_table_t tokens = { 1175 {Opt_bsd_df, "bsddf"}, 1176 {Opt_minix_df, "minixdf"}, 1177 {Opt_grpid, "grpid"}, 1178 {Opt_grpid, "bsdgroups"}, 1179 {Opt_nogrpid, "nogrpid"}, 1180 {Opt_nogrpid, "sysvgroups"}, 1181 {Opt_resgid, "resgid=%u"}, 1182 {Opt_resuid, "resuid=%u"}, 1183 {Opt_sb, "sb=%u"}, 1184 {Opt_err_cont, "errors=continue"}, 1185 {Opt_err_panic, "errors=panic"}, 1186 {Opt_err_ro, "errors=remount-ro"}, 1187 {Opt_nouid32, "nouid32"}, 1188 {Opt_debug, "debug"}, 1189 {Opt_removed, "oldalloc"}, 1190 {Opt_removed, "orlov"}, 1191 {Opt_user_xattr, "user_xattr"}, 1192 {Opt_nouser_xattr, "nouser_xattr"}, 1193 {Opt_acl, "acl"}, 1194 {Opt_noacl, "noacl"}, 1195 {Opt_noload, "norecovery"}, 1196 {Opt_noload, "noload"}, 1197 {Opt_removed, "nobh"}, 1198 {Opt_removed, "bh"}, 1199 {Opt_commit, "commit=%u"}, 1200 {Opt_min_batch_time, "min_batch_time=%u"}, 1201 {Opt_max_batch_time, "max_batch_time=%u"}, 1202 {Opt_journal_dev, "journal_dev=%u"}, 1203 {Opt_journal_path, "journal_path=%s"}, 1204 {Opt_journal_checksum, "journal_checksum"}, 1205 {Opt_journal_async_commit, "journal_async_commit"}, 1206 {Opt_abort, "abort"}, 1207 {Opt_data_journal, "data=journal"}, 1208 {Opt_data_ordered, "data=ordered"}, 1209 {Opt_data_writeback, "data=writeback"}, 1210 {Opt_data_err_abort, "data_err=abort"}, 1211 {Opt_data_err_ignore, "data_err=ignore"}, 1212 {Opt_offusrjquota, "usrjquota="}, 1213 {Opt_usrjquota, "usrjquota=%s"}, 1214 {Opt_offgrpjquota, "grpjquota="}, 1215 {Opt_grpjquota, "grpjquota=%s"}, 1216 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1217 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1218 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1219 {Opt_grpquota, "grpquota"}, 1220 {Opt_noquota, "noquota"}, 1221 {Opt_quota, "quota"}, 1222 {Opt_usrquota, "usrquota"}, 1223 {Opt_barrier, "barrier=%u"}, 1224 {Opt_barrier, "barrier"}, 1225 {Opt_nobarrier, "nobarrier"}, 1226 {Opt_i_version, "i_version"}, 1227 {Opt_stripe, "stripe=%u"}, 1228 {Opt_delalloc, "delalloc"}, 1229 {Opt_nodelalloc, "nodelalloc"}, 1230 {Opt_removed, "mblk_io_submit"}, 1231 {Opt_removed, "nomblk_io_submit"}, 1232 {Opt_block_validity, "block_validity"}, 1233 {Opt_noblock_validity, "noblock_validity"}, 1234 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1235 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1236 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1237 {Opt_auto_da_alloc, "auto_da_alloc"}, 1238 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1239 {Opt_dioread_nolock, "dioread_nolock"}, 1240 {Opt_dioread_lock, "dioread_lock"}, 1241 {Opt_discard, "discard"}, 1242 {Opt_nodiscard, "nodiscard"}, 1243 {Opt_init_itable, "init_itable=%u"}, 1244 {Opt_init_itable, "init_itable"}, 1245 {Opt_noinit_itable, "noinit_itable"}, 1246 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1247 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1248 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1249 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1250 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1251 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1252 {Opt_err, NULL}, 1253 }; 1254 1255 static ext4_fsblk_t get_sb_block(void **data) 1256 { 1257 ext4_fsblk_t sb_block; 1258 char *options = (char *) *data; 1259 1260 if (!options || strncmp(options, "sb=", 3) != 0) 1261 return 1; /* Default location */ 1262 1263 options += 3; 1264 /* TODO: use simple_strtoll with >32bit ext4 */ 1265 sb_block = simple_strtoul(options, &options, 0); 1266 if (*options && *options != ',') { 1267 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1268 (char *) *data); 1269 return 1; 1270 } 1271 if (*options == ',') 1272 options++; 1273 *data = (void *) options; 1274 1275 return sb_block; 1276 } 1277 1278 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1279 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1280 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1281 1282 #ifdef CONFIG_QUOTA 1283 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1284 { 1285 struct ext4_sb_info *sbi = EXT4_SB(sb); 1286 char *qname; 1287 int ret = -1; 1288 1289 if (sb_any_quota_loaded(sb) && 1290 !sbi->s_qf_names[qtype]) { 1291 ext4_msg(sb, KERN_ERR, 1292 "Cannot change journaled " 1293 "quota options when quota turned on"); 1294 return -1; 1295 } 1296 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1297 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1298 "when QUOTA feature is enabled"); 1299 return -1; 1300 } 1301 qname = match_strdup(args); 1302 if (!qname) { 1303 ext4_msg(sb, KERN_ERR, 1304 "Not enough memory for storing quotafile name"); 1305 return -1; 1306 } 1307 if (sbi->s_qf_names[qtype]) { 1308 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1309 ret = 1; 1310 else 1311 ext4_msg(sb, KERN_ERR, 1312 "%s quota file already specified", 1313 QTYPE2NAME(qtype)); 1314 goto errout; 1315 } 1316 if (strchr(qname, '/')) { 1317 ext4_msg(sb, KERN_ERR, 1318 "quotafile must be on filesystem root"); 1319 goto errout; 1320 } 1321 sbi->s_qf_names[qtype] = qname; 1322 set_opt(sb, QUOTA); 1323 return 1; 1324 errout: 1325 kfree(qname); 1326 return ret; 1327 } 1328 1329 static int clear_qf_name(struct super_block *sb, int qtype) 1330 { 1331 1332 struct ext4_sb_info *sbi = EXT4_SB(sb); 1333 1334 if (sb_any_quota_loaded(sb) && 1335 sbi->s_qf_names[qtype]) { 1336 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1337 " when quota turned on"); 1338 return -1; 1339 } 1340 kfree(sbi->s_qf_names[qtype]); 1341 sbi->s_qf_names[qtype] = NULL; 1342 return 1; 1343 } 1344 #endif 1345 1346 #define MOPT_SET 0x0001 1347 #define MOPT_CLEAR 0x0002 1348 #define MOPT_NOSUPPORT 0x0004 1349 #define MOPT_EXPLICIT 0x0008 1350 #define MOPT_CLEAR_ERR 0x0010 1351 #define MOPT_GTE0 0x0020 1352 #ifdef CONFIG_QUOTA 1353 #define MOPT_Q 0 1354 #define MOPT_QFMT 0x0040 1355 #else 1356 #define MOPT_Q MOPT_NOSUPPORT 1357 #define MOPT_QFMT MOPT_NOSUPPORT 1358 #endif 1359 #define MOPT_DATAJ 0x0080 1360 #define MOPT_NO_EXT2 0x0100 1361 #define MOPT_NO_EXT3 0x0200 1362 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1363 #define MOPT_STRING 0x0400 1364 1365 static const struct mount_opts { 1366 int token; 1367 int mount_opt; 1368 int flags; 1369 } ext4_mount_opts[] = { 1370 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1371 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1372 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1373 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1374 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1375 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1376 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1377 MOPT_EXT4_ONLY | MOPT_SET}, 1378 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1379 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1380 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1381 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1382 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1383 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1384 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1385 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1386 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1387 MOPT_EXT4_ONLY | MOPT_SET}, 1388 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1389 EXT4_MOUNT_JOURNAL_CHECKSUM), 1390 MOPT_EXT4_ONLY | MOPT_SET}, 1391 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1392 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1393 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1394 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1395 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1396 MOPT_NO_EXT2 | MOPT_SET}, 1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1398 MOPT_NO_EXT2 | MOPT_CLEAR}, 1399 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1400 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1401 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1402 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1403 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1404 {Opt_commit, 0, MOPT_GTE0}, 1405 {Opt_max_batch_time, 0, MOPT_GTE0}, 1406 {Opt_min_batch_time, 0, MOPT_GTE0}, 1407 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1408 {Opt_init_itable, 0, MOPT_GTE0}, 1409 {Opt_stripe, 0, MOPT_GTE0}, 1410 {Opt_resuid, 0, MOPT_GTE0}, 1411 {Opt_resgid, 0, MOPT_GTE0}, 1412 {Opt_journal_dev, 0, MOPT_GTE0}, 1413 {Opt_journal_path, 0, MOPT_STRING}, 1414 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1415 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1416 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1417 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1418 MOPT_NO_EXT2 | MOPT_DATAJ}, 1419 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1420 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1421 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1422 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1423 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1424 #else 1425 {Opt_acl, 0, MOPT_NOSUPPORT}, 1426 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1427 #endif 1428 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1429 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1430 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1431 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1432 MOPT_SET | MOPT_Q}, 1433 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1434 MOPT_SET | MOPT_Q}, 1435 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1436 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1437 {Opt_usrjquota, 0, MOPT_Q}, 1438 {Opt_grpjquota, 0, MOPT_Q}, 1439 {Opt_offusrjquota, 0, MOPT_Q}, 1440 {Opt_offgrpjquota, 0, MOPT_Q}, 1441 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1442 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1443 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1444 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1445 {Opt_err, 0, 0} 1446 }; 1447 1448 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1449 substring_t *args, unsigned long *journal_devnum, 1450 unsigned int *journal_ioprio, int is_remount) 1451 { 1452 struct ext4_sb_info *sbi = EXT4_SB(sb); 1453 const struct mount_opts *m; 1454 kuid_t uid; 1455 kgid_t gid; 1456 int arg = 0; 1457 1458 #ifdef CONFIG_QUOTA 1459 if (token == Opt_usrjquota) 1460 return set_qf_name(sb, USRQUOTA, &args[0]); 1461 else if (token == Opt_grpjquota) 1462 return set_qf_name(sb, GRPQUOTA, &args[0]); 1463 else if (token == Opt_offusrjquota) 1464 return clear_qf_name(sb, USRQUOTA); 1465 else if (token == Opt_offgrpjquota) 1466 return clear_qf_name(sb, GRPQUOTA); 1467 #endif 1468 switch (token) { 1469 case Opt_noacl: 1470 case Opt_nouser_xattr: 1471 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1472 break; 1473 case Opt_sb: 1474 return 1; /* handled by get_sb_block() */ 1475 case Opt_removed: 1476 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1477 return 1; 1478 case Opt_abort: 1479 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1480 return 1; 1481 case Opt_i_version: 1482 sb->s_flags |= MS_I_VERSION; 1483 return 1; 1484 } 1485 1486 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1487 if (token == m->token) 1488 break; 1489 1490 if (m->token == Opt_err) { 1491 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1492 "or missing value", opt); 1493 return -1; 1494 } 1495 1496 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1497 ext4_msg(sb, KERN_ERR, 1498 "Mount option \"%s\" incompatible with ext2", opt); 1499 return -1; 1500 } 1501 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1502 ext4_msg(sb, KERN_ERR, 1503 "Mount option \"%s\" incompatible with ext3", opt); 1504 return -1; 1505 } 1506 1507 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1508 return -1; 1509 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1510 return -1; 1511 if (m->flags & MOPT_EXPLICIT) 1512 set_opt2(sb, EXPLICIT_DELALLOC); 1513 if (m->flags & MOPT_CLEAR_ERR) 1514 clear_opt(sb, ERRORS_MASK); 1515 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1516 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1517 "options when quota turned on"); 1518 return -1; 1519 } 1520 1521 if (m->flags & MOPT_NOSUPPORT) { 1522 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1523 } else if (token == Opt_commit) { 1524 if (arg == 0) 1525 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1526 sbi->s_commit_interval = HZ * arg; 1527 } else if (token == Opt_max_batch_time) { 1528 sbi->s_max_batch_time = arg; 1529 } else if (token == Opt_min_batch_time) { 1530 sbi->s_min_batch_time = arg; 1531 } else if (token == Opt_inode_readahead_blks) { 1532 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1533 ext4_msg(sb, KERN_ERR, 1534 "EXT4-fs: inode_readahead_blks must be " 1535 "0 or a power of 2 smaller than 2^31"); 1536 return -1; 1537 } 1538 sbi->s_inode_readahead_blks = arg; 1539 } else if (token == Opt_init_itable) { 1540 set_opt(sb, INIT_INODE_TABLE); 1541 if (!args->from) 1542 arg = EXT4_DEF_LI_WAIT_MULT; 1543 sbi->s_li_wait_mult = arg; 1544 } else if (token == Opt_max_dir_size_kb) { 1545 sbi->s_max_dir_size_kb = arg; 1546 } else if (token == Opt_stripe) { 1547 sbi->s_stripe = arg; 1548 } else if (token == Opt_resuid) { 1549 uid = make_kuid(current_user_ns(), arg); 1550 if (!uid_valid(uid)) { 1551 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1552 return -1; 1553 } 1554 sbi->s_resuid = uid; 1555 } else if (token == Opt_resgid) { 1556 gid = make_kgid(current_user_ns(), arg); 1557 if (!gid_valid(gid)) { 1558 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1559 return -1; 1560 } 1561 sbi->s_resgid = gid; 1562 } else if (token == Opt_journal_dev) { 1563 if (is_remount) { 1564 ext4_msg(sb, KERN_ERR, 1565 "Cannot specify journal on remount"); 1566 return -1; 1567 } 1568 *journal_devnum = arg; 1569 } else if (token == Opt_journal_path) { 1570 char *journal_path; 1571 struct inode *journal_inode; 1572 struct path path; 1573 int error; 1574 1575 if (is_remount) { 1576 ext4_msg(sb, KERN_ERR, 1577 "Cannot specify journal on remount"); 1578 return -1; 1579 } 1580 journal_path = match_strdup(&args[0]); 1581 if (!journal_path) { 1582 ext4_msg(sb, KERN_ERR, "error: could not dup " 1583 "journal device string"); 1584 return -1; 1585 } 1586 1587 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1588 if (error) { 1589 ext4_msg(sb, KERN_ERR, "error: could not find " 1590 "journal device path: error %d", error); 1591 kfree(journal_path); 1592 return -1; 1593 } 1594 1595 journal_inode = path.dentry->d_inode; 1596 if (!S_ISBLK(journal_inode->i_mode)) { 1597 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1598 "is not a block device", journal_path); 1599 path_put(&path); 1600 kfree(journal_path); 1601 return -1; 1602 } 1603 1604 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1605 path_put(&path); 1606 kfree(journal_path); 1607 } else if (token == Opt_journal_ioprio) { 1608 if (arg > 7) { 1609 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1610 " (must be 0-7)"); 1611 return -1; 1612 } 1613 *journal_ioprio = 1614 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1615 } else if (m->flags & MOPT_DATAJ) { 1616 if (is_remount) { 1617 if (!sbi->s_journal) 1618 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1619 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1620 ext4_msg(sb, KERN_ERR, 1621 "Cannot change data mode on remount"); 1622 return -1; 1623 } 1624 } else { 1625 clear_opt(sb, DATA_FLAGS); 1626 sbi->s_mount_opt |= m->mount_opt; 1627 } 1628 #ifdef CONFIG_QUOTA 1629 } else if (m->flags & MOPT_QFMT) { 1630 if (sb_any_quota_loaded(sb) && 1631 sbi->s_jquota_fmt != m->mount_opt) { 1632 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1633 "quota options when quota turned on"); 1634 return -1; 1635 } 1636 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1637 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1638 ext4_msg(sb, KERN_ERR, 1639 "Cannot set journaled quota options " 1640 "when QUOTA feature is enabled"); 1641 return -1; 1642 } 1643 sbi->s_jquota_fmt = m->mount_opt; 1644 #endif 1645 } else { 1646 if (!args->from) 1647 arg = 1; 1648 if (m->flags & MOPT_CLEAR) 1649 arg = !arg; 1650 else if (unlikely(!(m->flags & MOPT_SET))) { 1651 ext4_msg(sb, KERN_WARNING, 1652 "buggy handling of option %s", opt); 1653 WARN_ON(1); 1654 return -1; 1655 } 1656 if (arg != 0) 1657 sbi->s_mount_opt |= m->mount_opt; 1658 else 1659 sbi->s_mount_opt &= ~m->mount_opt; 1660 } 1661 return 1; 1662 } 1663 1664 static int parse_options(char *options, struct super_block *sb, 1665 unsigned long *journal_devnum, 1666 unsigned int *journal_ioprio, 1667 int is_remount) 1668 { 1669 struct ext4_sb_info *sbi = EXT4_SB(sb); 1670 char *p; 1671 substring_t args[MAX_OPT_ARGS]; 1672 int token; 1673 1674 if (!options) 1675 return 1; 1676 1677 while ((p = strsep(&options, ",")) != NULL) { 1678 if (!*p) 1679 continue; 1680 /* 1681 * Initialize args struct so we know whether arg was 1682 * found; some options take optional arguments. 1683 */ 1684 args[0].to = args[0].from = NULL; 1685 token = match_token(p, tokens, args); 1686 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1687 journal_ioprio, is_remount) < 0) 1688 return 0; 1689 } 1690 #ifdef CONFIG_QUOTA 1691 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1692 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1693 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1694 "feature is enabled"); 1695 return 0; 1696 } 1697 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1698 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1699 clear_opt(sb, USRQUOTA); 1700 1701 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1702 clear_opt(sb, GRPQUOTA); 1703 1704 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1705 ext4_msg(sb, KERN_ERR, "old and new quota " 1706 "format mixing"); 1707 return 0; 1708 } 1709 1710 if (!sbi->s_jquota_fmt) { 1711 ext4_msg(sb, KERN_ERR, "journaled quota format " 1712 "not specified"); 1713 return 0; 1714 } 1715 } else { 1716 if (sbi->s_jquota_fmt) { 1717 ext4_msg(sb, KERN_ERR, "journaled quota format " 1718 "specified with no journaling " 1719 "enabled"); 1720 return 0; 1721 } 1722 } 1723 #endif 1724 if (test_opt(sb, DIOREAD_NOLOCK)) { 1725 int blocksize = 1726 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1727 1728 if (blocksize < PAGE_CACHE_SIZE) { 1729 ext4_msg(sb, KERN_ERR, "can't mount with " 1730 "dioread_nolock if block size != PAGE_SIZE"); 1731 return 0; 1732 } 1733 } 1734 return 1; 1735 } 1736 1737 static inline void ext4_show_quota_options(struct seq_file *seq, 1738 struct super_block *sb) 1739 { 1740 #if defined(CONFIG_QUOTA) 1741 struct ext4_sb_info *sbi = EXT4_SB(sb); 1742 1743 if (sbi->s_jquota_fmt) { 1744 char *fmtname = ""; 1745 1746 switch (sbi->s_jquota_fmt) { 1747 case QFMT_VFS_OLD: 1748 fmtname = "vfsold"; 1749 break; 1750 case QFMT_VFS_V0: 1751 fmtname = "vfsv0"; 1752 break; 1753 case QFMT_VFS_V1: 1754 fmtname = "vfsv1"; 1755 break; 1756 } 1757 seq_printf(seq, ",jqfmt=%s", fmtname); 1758 } 1759 1760 if (sbi->s_qf_names[USRQUOTA]) 1761 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1762 1763 if (sbi->s_qf_names[GRPQUOTA]) 1764 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1765 #endif 1766 } 1767 1768 static const char *token2str(int token) 1769 { 1770 const struct match_token *t; 1771 1772 for (t = tokens; t->token != Opt_err; t++) 1773 if (t->token == token && !strchr(t->pattern, '=')) 1774 break; 1775 return t->pattern; 1776 } 1777 1778 /* 1779 * Show an option if 1780 * - it's set to a non-default value OR 1781 * - if the per-sb default is different from the global default 1782 */ 1783 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1784 int nodefs) 1785 { 1786 struct ext4_sb_info *sbi = EXT4_SB(sb); 1787 struct ext4_super_block *es = sbi->s_es; 1788 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1789 const struct mount_opts *m; 1790 char sep = nodefs ? '\n' : ','; 1791 1792 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1793 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1794 1795 if (sbi->s_sb_block != 1) 1796 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1797 1798 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1799 int want_set = m->flags & MOPT_SET; 1800 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1801 (m->flags & MOPT_CLEAR_ERR)) 1802 continue; 1803 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1804 continue; /* skip if same as the default */ 1805 if ((want_set && 1806 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1807 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1808 continue; /* select Opt_noFoo vs Opt_Foo */ 1809 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1810 } 1811 1812 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1813 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1814 SEQ_OPTS_PRINT("resuid=%u", 1815 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1816 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1817 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1818 SEQ_OPTS_PRINT("resgid=%u", 1819 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1820 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1821 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1822 SEQ_OPTS_PUTS("errors=remount-ro"); 1823 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1824 SEQ_OPTS_PUTS("errors=continue"); 1825 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1826 SEQ_OPTS_PUTS("errors=panic"); 1827 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1828 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1829 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1830 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1831 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1832 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1833 if (sb->s_flags & MS_I_VERSION) 1834 SEQ_OPTS_PUTS("i_version"); 1835 if (nodefs || sbi->s_stripe) 1836 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1837 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1838 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1839 SEQ_OPTS_PUTS("data=journal"); 1840 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1841 SEQ_OPTS_PUTS("data=ordered"); 1842 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1843 SEQ_OPTS_PUTS("data=writeback"); 1844 } 1845 if (nodefs || 1846 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1847 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1848 sbi->s_inode_readahead_blks); 1849 1850 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1851 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1852 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1853 if (nodefs || sbi->s_max_dir_size_kb) 1854 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1855 1856 ext4_show_quota_options(seq, sb); 1857 return 0; 1858 } 1859 1860 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1861 { 1862 return _ext4_show_options(seq, root->d_sb, 0); 1863 } 1864 1865 static int options_seq_show(struct seq_file *seq, void *offset) 1866 { 1867 struct super_block *sb = seq->private; 1868 int rc; 1869 1870 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1871 rc = _ext4_show_options(seq, sb, 1); 1872 seq_puts(seq, "\n"); 1873 return rc; 1874 } 1875 1876 static int options_open_fs(struct inode *inode, struct file *file) 1877 { 1878 return single_open(file, options_seq_show, PDE_DATA(inode)); 1879 } 1880 1881 static const struct file_operations ext4_seq_options_fops = { 1882 .owner = THIS_MODULE, 1883 .open = options_open_fs, 1884 .read = seq_read, 1885 .llseek = seq_lseek, 1886 .release = single_release, 1887 }; 1888 1889 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1890 int read_only) 1891 { 1892 struct ext4_sb_info *sbi = EXT4_SB(sb); 1893 int res = 0; 1894 1895 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1896 ext4_msg(sb, KERN_ERR, "revision level too high, " 1897 "forcing read-only mode"); 1898 res = MS_RDONLY; 1899 } 1900 if (read_only) 1901 goto done; 1902 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1903 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1904 "running e2fsck is recommended"); 1905 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1906 ext4_msg(sb, KERN_WARNING, 1907 "warning: mounting fs with errors, " 1908 "running e2fsck is recommended"); 1909 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1910 le16_to_cpu(es->s_mnt_count) >= 1911 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1912 ext4_msg(sb, KERN_WARNING, 1913 "warning: maximal mount count reached, " 1914 "running e2fsck is recommended"); 1915 else if (le32_to_cpu(es->s_checkinterval) && 1916 (le32_to_cpu(es->s_lastcheck) + 1917 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1918 ext4_msg(sb, KERN_WARNING, 1919 "warning: checktime reached, " 1920 "running e2fsck is recommended"); 1921 if (!sbi->s_journal) 1922 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1923 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1924 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1925 le16_add_cpu(&es->s_mnt_count, 1); 1926 es->s_mtime = cpu_to_le32(get_seconds()); 1927 ext4_update_dynamic_rev(sb); 1928 if (sbi->s_journal) 1929 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1930 1931 ext4_commit_super(sb, 1); 1932 done: 1933 if (test_opt(sb, DEBUG)) 1934 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1935 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1936 sb->s_blocksize, 1937 sbi->s_groups_count, 1938 EXT4_BLOCKS_PER_GROUP(sb), 1939 EXT4_INODES_PER_GROUP(sb), 1940 sbi->s_mount_opt, sbi->s_mount_opt2); 1941 1942 cleancache_init_fs(sb); 1943 return res; 1944 } 1945 1946 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1947 { 1948 struct ext4_sb_info *sbi = EXT4_SB(sb); 1949 struct flex_groups *new_groups; 1950 int size; 1951 1952 if (!sbi->s_log_groups_per_flex) 1953 return 0; 1954 1955 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1956 if (size <= sbi->s_flex_groups_allocated) 1957 return 0; 1958 1959 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1960 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1961 if (!new_groups) { 1962 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1963 size / (int) sizeof(struct flex_groups)); 1964 return -ENOMEM; 1965 } 1966 1967 if (sbi->s_flex_groups) { 1968 memcpy(new_groups, sbi->s_flex_groups, 1969 (sbi->s_flex_groups_allocated * 1970 sizeof(struct flex_groups))); 1971 ext4_kvfree(sbi->s_flex_groups); 1972 } 1973 sbi->s_flex_groups = new_groups; 1974 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1975 return 0; 1976 } 1977 1978 static int ext4_fill_flex_info(struct super_block *sb) 1979 { 1980 struct ext4_sb_info *sbi = EXT4_SB(sb); 1981 struct ext4_group_desc *gdp = NULL; 1982 ext4_group_t flex_group; 1983 int i, err; 1984 1985 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1986 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1987 sbi->s_log_groups_per_flex = 0; 1988 return 1; 1989 } 1990 1991 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1992 if (err) 1993 goto failed; 1994 1995 for (i = 0; i < sbi->s_groups_count; i++) { 1996 gdp = ext4_get_group_desc(sb, i, NULL); 1997 1998 flex_group = ext4_flex_group(sbi, i); 1999 atomic_add(ext4_free_inodes_count(sb, gdp), 2000 &sbi->s_flex_groups[flex_group].free_inodes); 2001 atomic64_add(ext4_free_group_clusters(sb, gdp), 2002 &sbi->s_flex_groups[flex_group].free_clusters); 2003 atomic_add(ext4_used_dirs_count(sb, gdp), 2004 &sbi->s_flex_groups[flex_group].used_dirs); 2005 } 2006 2007 return 1; 2008 failed: 2009 return 0; 2010 } 2011 2012 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2013 struct ext4_group_desc *gdp) 2014 { 2015 int offset; 2016 __u16 crc = 0; 2017 __le32 le_group = cpu_to_le32(block_group); 2018 2019 if ((sbi->s_es->s_feature_ro_compat & 2020 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 2021 /* Use new metadata_csum algorithm */ 2022 __le16 save_csum; 2023 __u32 csum32; 2024 2025 save_csum = gdp->bg_checksum; 2026 gdp->bg_checksum = 0; 2027 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2028 sizeof(le_group)); 2029 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2030 sbi->s_desc_size); 2031 gdp->bg_checksum = save_csum; 2032 2033 crc = csum32 & 0xFFFF; 2034 goto out; 2035 } 2036 2037 /* old crc16 code */ 2038 offset = offsetof(struct ext4_group_desc, bg_checksum); 2039 2040 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2041 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2042 crc = crc16(crc, (__u8 *)gdp, offset); 2043 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2044 /* for checksum of struct ext4_group_desc do the rest...*/ 2045 if ((sbi->s_es->s_feature_incompat & 2046 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2047 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2048 crc = crc16(crc, (__u8 *)gdp + offset, 2049 le16_to_cpu(sbi->s_es->s_desc_size) - 2050 offset); 2051 2052 out: 2053 return cpu_to_le16(crc); 2054 } 2055 2056 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2057 struct ext4_group_desc *gdp) 2058 { 2059 if (ext4_has_group_desc_csum(sb) && 2060 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2061 block_group, gdp))) 2062 return 0; 2063 2064 return 1; 2065 } 2066 2067 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2068 struct ext4_group_desc *gdp) 2069 { 2070 if (!ext4_has_group_desc_csum(sb)) 2071 return; 2072 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2073 } 2074 2075 /* Called at mount-time, super-block is locked */ 2076 static int ext4_check_descriptors(struct super_block *sb, 2077 ext4_group_t *first_not_zeroed) 2078 { 2079 struct ext4_sb_info *sbi = EXT4_SB(sb); 2080 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2081 ext4_fsblk_t last_block; 2082 ext4_fsblk_t block_bitmap; 2083 ext4_fsblk_t inode_bitmap; 2084 ext4_fsblk_t inode_table; 2085 int flexbg_flag = 0; 2086 ext4_group_t i, grp = sbi->s_groups_count; 2087 2088 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2089 flexbg_flag = 1; 2090 2091 ext4_debug("Checking group descriptors"); 2092 2093 for (i = 0; i < sbi->s_groups_count; i++) { 2094 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2095 2096 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2097 last_block = ext4_blocks_count(sbi->s_es) - 1; 2098 else 2099 last_block = first_block + 2100 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2101 2102 if ((grp == sbi->s_groups_count) && 2103 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2104 grp = i; 2105 2106 block_bitmap = ext4_block_bitmap(sb, gdp); 2107 if (block_bitmap < first_block || block_bitmap > last_block) { 2108 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2109 "Block bitmap for group %u not in group " 2110 "(block %llu)!", i, block_bitmap); 2111 return 0; 2112 } 2113 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2114 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2115 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2116 "Inode bitmap for group %u not in group " 2117 "(block %llu)!", i, inode_bitmap); 2118 return 0; 2119 } 2120 inode_table = ext4_inode_table(sb, gdp); 2121 if (inode_table < first_block || 2122 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2124 "Inode table for group %u not in group " 2125 "(block %llu)!", i, inode_table); 2126 return 0; 2127 } 2128 ext4_lock_group(sb, i); 2129 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2130 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2131 "Checksum for group %u failed (%u!=%u)", 2132 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2133 gdp)), le16_to_cpu(gdp->bg_checksum)); 2134 if (!(sb->s_flags & MS_RDONLY)) { 2135 ext4_unlock_group(sb, i); 2136 return 0; 2137 } 2138 } 2139 ext4_unlock_group(sb, i); 2140 if (!flexbg_flag) 2141 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2142 } 2143 if (NULL != first_not_zeroed) 2144 *first_not_zeroed = grp; 2145 return 1; 2146 } 2147 2148 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2149 * the superblock) which were deleted from all directories, but held open by 2150 * a process at the time of a crash. We walk the list and try to delete these 2151 * inodes at recovery time (only with a read-write filesystem). 2152 * 2153 * In order to keep the orphan inode chain consistent during traversal (in 2154 * case of crash during recovery), we link each inode into the superblock 2155 * orphan list_head and handle it the same way as an inode deletion during 2156 * normal operation (which journals the operations for us). 2157 * 2158 * We only do an iget() and an iput() on each inode, which is very safe if we 2159 * accidentally point at an in-use or already deleted inode. The worst that 2160 * can happen in this case is that we get a "bit already cleared" message from 2161 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2162 * e2fsck was run on this filesystem, and it must have already done the orphan 2163 * inode cleanup for us, so we can safely abort without any further action. 2164 */ 2165 static void ext4_orphan_cleanup(struct super_block *sb, 2166 struct ext4_super_block *es) 2167 { 2168 unsigned int s_flags = sb->s_flags; 2169 int nr_orphans = 0, nr_truncates = 0; 2170 #ifdef CONFIG_QUOTA 2171 int i; 2172 #endif 2173 if (!es->s_last_orphan) { 2174 jbd_debug(4, "no orphan inodes to clean up\n"); 2175 return; 2176 } 2177 2178 if (bdev_read_only(sb->s_bdev)) { 2179 ext4_msg(sb, KERN_ERR, "write access " 2180 "unavailable, skipping orphan cleanup"); 2181 return; 2182 } 2183 2184 /* Check if feature set would not allow a r/w mount */ 2185 if (!ext4_feature_set_ok(sb, 0)) { 2186 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2187 "unknown ROCOMPAT features"); 2188 return; 2189 } 2190 2191 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2192 /* don't clear list on RO mount w/ errors */ 2193 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2194 jbd_debug(1, "Errors on filesystem, " 2195 "clearing orphan list.\n"); 2196 es->s_last_orphan = 0; 2197 } 2198 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2199 return; 2200 } 2201 2202 if (s_flags & MS_RDONLY) { 2203 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2204 sb->s_flags &= ~MS_RDONLY; 2205 } 2206 #ifdef CONFIG_QUOTA 2207 /* Needed for iput() to work correctly and not trash data */ 2208 sb->s_flags |= MS_ACTIVE; 2209 /* Turn on quotas so that they are updated correctly */ 2210 for (i = 0; i < MAXQUOTAS; i++) { 2211 if (EXT4_SB(sb)->s_qf_names[i]) { 2212 int ret = ext4_quota_on_mount(sb, i); 2213 if (ret < 0) 2214 ext4_msg(sb, KERN_ERR, 2215 "Cannot turn on journaled " 2216 "quota: error %d", ret); 2217 } 2218 } 2219 #endif 2220 2221 while (es->s_last_orphan) { 2222 struct inode *inode; 2223 2224 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2225 if (IS_ERR(inode)) { 2226 es->s_last_orphan = 0; 2227 break; 2228 } 2229 2230 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2231 dquot_initialize(inode); 2232 if (inode->i_nlink) { 2233 if (test_opt(sb, DEBUG)) 2234 ext4_msg(sb, KERN_DEBUG, 2235 "%s: truncating inode %lu to %lld bytes", 2236 __func__, inode->i_ino, inode->i_size); 2237 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2238 inode->i_ino, inode->i_size); 2239 mutex_lock(&inode->i_mutex); 2240 truncate_inode_pages(inode->i_mapping, inode->i_size); 2241 ext4_truncate(inode); 2242 mutex_unlock(&inode->i_mutex); 2243 nr_truncates++; 2244 } else { 2245 if (test_opt(sb, DEBUG)) 2246 ext4_msg(sb, KERN_DEBUG, 2247 "%s: deleting unreferenced inode %lu", 2248 __func__, inode->i_ino); 2249 jbd_debug(2, "deleting unreferenced inode %lu\n", 2250 inode->i_ino); 2251 nr_orphans++; 2252 } 2253 iput(inode); /* The delete magic happens here! */ 2254 } 2255 2256 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2257 2258 if (nr_orphans) 2259 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2260 PLURAL(nr_orphans)); 2261 if (nr_truncates) 2262 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2263 PLURAL(nr_truncates)); 2264 #ifdef CONFIG_QUOTA 2265 /* Turn quotas off */ 2266 for (i = 0; i < MAXQUOTAS; i++) { 2267 if (sb_dqopt(sb)->files[i]) 2268 dquot_quota_off(sb, i); 2269 } 2270 #endif 2271 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2272 } 2273 2274 /* 2275 * Maximal extent format file size. 2276 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2277 * extent format containers, within a sector_t, and within i_blocks 2278 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2279 * so that won't be a limiting factor. 2280 * 2281 * However there is other limiting factor. We do store extents in the form 2282 * of starting block and length, hence the resulting length of the extent 2283 * covering maximum file size must fit into on-disk format containers as 2284 * well. Given that length is always by 1 unit bigger than max unit (because 2285 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2286 * 2287 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2288 */ 2289 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2290 { 2291 loff_t res; 2292 loff_t upper_limit = MAX_LFS_FILESIZE; 2293 2294 /* small i_blocks in vfs inode? */ 2295 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2296 /* 2297 * CONFIG_LBDAF is not enabled implies the inode 2298 * i_block represent total blocks in 512 bytes 2299 * 32 == size of vfs inode i_blocks * 8 2300 */ 2301 upper_limit = (1LL << 32) - 1; 2302 2303 /* total blocks in file system block size */ 2304 upper_limit >>= (blkbits - 9); 2305 upper_limit <<= blkbits; 2306 } 2307 2308 /* 2309 * 32-bit extent-start container, ee_block. We lower the maxbytes 2310 * by one fs block, so ee_len can cover the extent of maximum file 2311 * size 2312 */ 2313 res = (1LL << 32) - 1; 2314 res <<= blkbits; 2315 2316 /* Sanity check against vm- & vfs- imposed limits */ 2317 if (res > upper_limit) 2318 res = upper_limit; 2319 2320 return res; 2321 } 2322 2323 /* 2324 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2325 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2326 * We need to be 1 filesystem block less than the 2^48 sector limit. 2327 */ 2328 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2329 { 2330 loff_t res = EXT4_NDIR_BLOCKS; 2331 int meta_blocks; 2332 loff_t upper_limit; 2333 /* This is calculated to be the largest file size for a dense, block 2334 * mapped file such that the file's total number of 512-byte sectors, 2335 * including data and all indirect blocks, does not exceed (2^48 - 1). 2336 * 2337 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2338 * number of 512-byte sectors of the file. 2339 */ 2340 2341 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2342 /* 2343 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2344 * the inode i_block field represents total file blocks in 2345 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2346 */ 2347 upper_limit = (1LL << 32) - 1; 2348 2349 /* total blocks in file system block size */ 2350 upper_limit >>= (bits - 9); 2351 2352 } else { 2353 /* 2354 * We use 48 bit ext4_inode i_blocks 2355 * With EXT4_HUGE_FILE_FL set the i_blocks 2356 * represent total number of blocks in 2357 * file system block size 2358 */ 2359 upper_limit = (1LL << 48) - 1; 2360 2361 } 2362 2363 /* indirect blocks */ 2364 meta_blocks = 1; 2365 /* double indirect blocks */ 2366 meta_blocks += 1 + (1LL << (bits-2)); 2367 /* tripple indirect blocks */ 2368 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2369 2370 upper_limit -= meta_blocks; 2371 upper_limit <<= bits; 2372 2373 res += 1LL << (bits-2); 2374 res += 1LL << (2*(bits-2)); 2375 res += 1LL << (3*(bits-2)); 2376 res <<= bits; 2377 if (res > upper_limit) 2378 res = upper_limit; 2379 2380 if (res > MAX_LFS_FILESIZE) 2381 res = MAX_LFS_FILESIZE; 2382 2383 return res; 2384 } 2385 2386 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2387 ext4_fsblk_t logical_sb_block, int nr) 2388 { 2389 struct ext4_sb_info *sbi = EXT4_SB(sb); 2390 ext4_group_t bg, first_meta_bg; 2391 int has_super = 0; 2392 2393 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2394 2395 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2396 nr < first_meta_bg) 2397 return logical_sb_block + nr + 1; 2398 bg = sbi->s_desc_per_block * nr; 2399 if (ext4_bg_has_super(sb, bg)) 2400 has_super = 1; 2401 2402 /* 2403 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2404 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2405 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2406 * compensate. 2407 */ 2408 if (sb->s_blocksize == 1024 && nr == 0 && 2409 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2410 has_super++; 2411 2412 return (has_super + ext4_group_first_block_no(sb, bg)); 2413 } 2414 2415 /** 2416 * ext4_get_stripe_size: Get the stripe size. 2417 * @sbi: In memory super block info 2418 * 2419 * If we have specified it via mount option, then 2420 * use the mount option value. If the value specified at mount time is 2421 * greater than the blocks per group use the super block value. 2422 * If the super block value is greater than blocks per group return 0. 2423 * Allocator needs it be less than blocks per group. 2424 * 2425 */ 2426 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2427 { 2428 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2429 unsigned long stripe_width = 2430 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2431 int ret; 2432 2433 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2434 ret = sbi->s_stripe; 2435 else if (stripe_width <= sbi->s_blocks_per_group) 2436 ret = stripe_width; 2437 else if (stride <= sbi->s_blocks_per_group) 2438 ret = stride; 2439 else 2440 ret = 0; 2441 2442 /* 2443 * If the stripe width is 1, this makes no sense and 2444 * we set it to 0 to turn off stripe handling code. 2445 */ 2446 if (ret <= 1) 2447 ret = 0; 2448 2449 return ret; 2450 } 2451 2452 /* sysfs supprt */ 2453 2454 struct ext4_attr { 2455 struct attribute attr; 2456 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2457 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2458 const char *, size_t); 2459 union { 2460 int offset; 2461 int deprecated_val; 2462 } u; 2463 }; 2464 2465 static int parse_strtoull(const char *buf, 2466 unsigned long long max, unsigned long long *value) 2467 { 2468 int ret; 2469 2470 ret = kstrtoull(skip_spaces(buf), 0, value); 2471 if (!ret && *value > max) 2472 ret = -EINVAL; 2473 return ret; 2474 } 2475 2476 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2477 struct ext4_sb_info *sbi, 2478 char *buf) 2479 { 2480 return snprintf(buf, PAGE_SIZE, "%llu\n", 2481 (s64) EXT4_C2B(sbi, 2482 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2483 } 2484 2485 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2486 struct ext4_sb_info *sbi, char *buf) 2487 { 2488 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2489 2490 if (!sb->s_bdev->bd_part) 2491 return snprintf(buf, PAGE_SIZE, "0\n"); 2492 return snprintf(buf, PAGE_SIZE, "%lu\n", 2493 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2494 sbi->s_sectors_written_start) >> 1); 2495 } 2496 2497 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2498 struct ext4_sb_info *sbi, char *buf) 2499 { 2500 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2501 2502 if (!sb->s_bdev->bd_part) 2503 return snprintf(buf, PAGE_SIZE, "0\n"); 2504 return snprintf(buf, PAGE_SIZE, "%llu\n", 2505 (unsigned long long)(sbi->s_kbytes_written + 2506 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2507 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2508 } 2509 2510 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2511 struct ext4_sb_info *sbi, 2512 const char *buf, size_t count) 2513 { 2514 unsigned long t; 2515 int ret; 2516 2517 ret = kstrtoul(skip_spaces(buf), 0, &t); 2518 if (ret) 2519 return ret; 2520 2521 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2522 return -EINVAL; 2523 2524 sbi->s_inode_readahead_blks = t; 2525 return count; 2526 } 2527 2528 static ssize_t sbi_ui_show(struct ext4_attr *a, 2529 struct ext4_sb_info *sbi, char *buf) 2530 { 2531 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2532 2533 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2534 } 2535 2536 static ssize_t sbi_ui_store(struct ext4_attr *a, 2537 struct ext4_sb_info *sbi, 2538 const char *buf, size_t count) 2539 { 2540 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2541 unsigned long t; 2542 int ret; 2543 2544 ret = kstrtoul(skip_spaces(buf), 0, &t); 2545 if (ret) 2546 return ret; 2547 *ui = t; 2548 return count; 2549 } 2550 2551 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2552 struct ext4_sb_info *sbi, char *buf) 2553 { 2554 return snprintf(buf, PAGE_SIZE, "%llu\n", 2555 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2556 } 2557 2558 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2559 struct ext4_sb_info *sbi, 2560 const char *buf, size_t count) 2561 { 2562 unsigned long long val; 2563 int ret; 2564 2565 if (parse_strtoull(buf, -1ULL, &val)) 2566 return -EINVAL; 2567 ret = ext4_reserve_clusters(sbi, val); 2568 2569 return ret ? ret : count; 2570 } 2571 2572 static ssize_t trigger_test_error(struct ext4_attr *a, 2573 struct ext4_sb_info *sbi, 2574 const char *buf, size_t count) 2575 { 2576 int len = count; 2577 2578 if (!capable(CAP_SYS_ADMIN)) 2579 return -EPERM; 2580 2581 if (len && buf[len-1] == '\n') 2582 len--; 2583 2584 if (len) 2585 ext4_error(sbi->s_sb, "%.*s", len, buf); 2586 return count; 2587 } 2588 2589 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2590 struct ext4_sb_info *sbi, char *buf) 2591 { 2592 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2593 } 2594 2595 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2596 static struct ext4_attr ext4_attr_##_name = { \ 2597 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2598 .show = _show, \ 2599 .store = _store, \ 2600 .u = { \ 2601 .offset = offsetof(struct ext4_sb_info, _elname),\ 2602 }, \ 2603 } 2604 #define EXT4_ATTR(name, mode, show, store) \ 2605 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2606 2607 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2608 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2609 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2610 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2611 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2612 #define ATTR_LIST(name) &ext4_attr_##name.attr 2613 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2614 static struct ext4_attr ext4_attr_##_name = { \ 2615 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2616 .show = sbi_deprecated_show, \ 2617 .u = { \ 2618 .deprecated_val = _val, \ 2619 }, \ 2620 } 2621 2622 EXT4_RO_ATTR(delayed_allocation_blocks); 2623 EXT4_RO_ATTR(session_write_kbytes); 2624 EXT4_RO_ATTR(lifetime_write_kbytes); 2625 EXT4_RW_ATTR(reserved_clusters); 2626 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2627 inode_readahead_blks_store, s_inode_readahead_blks); 2628 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2629 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2630 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2631 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2632 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2633 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2634 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2635 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2636 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2637 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2638 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2639 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2640 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2641 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2642 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2643 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2644 2645 static struct attribute *ext4_attrs[] = { 2646 ATTR_LIST(delayed_allocation_blocks), 2647 ATTR_LIST(session_write_kbytes), 2648 ATTR_LIST(lifetime_write_kbytes), 2649 ATTR_LIST(reserved_clusters), 2650 ATTR_LIST(inode_readahead_blks), 2651 ATTR_LIST(inode_goal), 2652 ATTR_LIST(mb_stats), 2653 ATTR_LIST(mb_max_to_scan), 2654 ATTR_LIST(mb_min_to_scan), 2655 ATTR_LIST(mb_order2_req), 2656 ATTR_LIST(mb_stream_req), 2657 ATTR_LIST(mb_group_prealloc), 2658 ATTR_LIST(max_writeback_mb_bump), 2659 ATTR_LIST(extent_max_zeroout_kb), 2660 ATTR_LIST(trigger_fs_error), 2661 ATTR_LIST(err_ratelimit_interval_ms), 2662 ATTR_LIST(err_ratelimit_burst), 2663 ATTR_LIST(warning_ratelimit_interval_ms), 2664 ATTR_LIST(warning_ratelimit_burst), 2665 ATTR_LIST(msg_ratelimit_interval_ms), 2666 ATTR_LIST(msg_ratelimit_burst), 2667 NULL, 2668 }; 2669 2670 /* Features this copy of ext4 supports */ 2671 EXT4_INFO_ATTR(lazy_itable_init); 2672 EXT4_INFO_ATTR(batched_discard); 2673 EXT4_INFO_ATTR(meta_bg_resize); 2674 2675 static struct attribute *ext4_feat_attrs[] = { 2676 ATTR_LIST(lazy_itable_init), 2677 ATTR_LIST(batched_discard), 2678 ATTR_LIST(meta_bg_resize), 2679 NULL, 2680 }; 2681 2682 static ssize_t ext4_attr_show(struct kobject *kobj, 2683 struct attribute *attr, char *buf) 2684 { 2685 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2686 s_kobj); 2687 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2688 2689 return a->show ? a->show(a, sbi, buf) : 0; 2690 } 2691 2692 static ssize_t ext4_attr_store(struct kobject *kobj, 2693 struct attribute *attr, 2694 const char *buf, size_t len) 2695 { 2696 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2697 s_kobj); 2698 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2699 2700 return a->store ? a->store(a, sbi, buf, len) : 0; 2701 } 2702 2703 static void ext4_sb_release(struct kobject *kobj) 2704 { 2705 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2706 s_kobj); 2707 complete(&sbi->s_kobj_unregister); 2708 } 2709 2710 static const struct sysfs_ops ext4_attr_ops = { 2711 .show = ext4_attr_show, 2712 .store = ext4_attr_store, 2713 }; 2714 2715 static struct kobj_type ext4_ktype = { 2716 .default_attrs = ext4_attrs, 2717 .sysfs_ops = &ext4_attr_ops, 2718 .release = ext4_sb_release, 2719 }; 2720 2721 static void ext4_feat_release(struct kobject *kobj) 2722 { 2723 complete(&ext4_feat->f_kobj_unregister); 2724 } 2725 2726 static struct kobj_type ext4_feat_ktype = { 2727 .default_attrs = ext4_feat_attrs, 2728 .sysfs_ops = &ext4_attr_ops, 2729 .release = ext4_feat_release, 2730 }; 2731 2732 /* 2733 * Check whether this filesystem can be mounted based on 2734 * the features present and the RDONLY/RDWR mount requested. 2735 * Returns 1 if this filesystem can be mounted as requested, 2736 * 0 if it cannot be. 2737 */ 2738 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2739 { 2740 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2741 ext4_msg(sb, KERN_ERR, 2742 "Couldn't mount because of " 2743 "unsupported optional features (%x)", 2744 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2745 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2746 return 0; 2747 } 2748 2749 if (readonly) 2750 return 1; 2751 2752 /* Check that feature set is OK for a read-write mount */ 2753 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2754 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2755 "unsupported optional features (%x)", 2756 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2757 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2758 return 0; 2759 } 2760 /* 2761 * Large file size enabled file system can only be mounted 2762 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2763 */ 2764 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2765 if (sizeof(blkcnt_t) < sizeof(u64)) { 2766 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2767 "cannot be mounted RDWR without " 2768 "CONFIG_LBDAF"); 2769 return 0; 2770 } 2771 } 2772 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2773 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2774 ext4_msg(sb, KERN_ERR, 2775 "Can't support bigalloc feature without " 2776 "extents feature\n"); 2777 return 0; 2778 } 2779 2780 #ifndef CONFIG_QUOTA 2781 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2782 !readonly) { 2783 ext4_msg(sb, KERN_ERR, 2784 "Filesystem with quota feature cannot be mounted RDWR " 2785 "without CONFIG_QUOTA"); 2786 return 0; 2787 } 2788 #endif /* CONFIG_QUOTA */ 2789 return 1; 2790 } 2791 2792 /* 2793 * This function is called once a day if we have errors logged 2794 * on the file system 2795 */ 2796 static void print_daily_error_info(unsigned long arg) 2797 { 2798 struct super_block *sb = (struct super_block *) arg; 2799 struct ext4_sb_info *sbi; 2800 struct ext4_super_block *es; 2801 2802 sbi = EXT4_SB(sb); 2803 es = sbi->s_es; 2804 2805 if (es->s_error_count) 2806 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2807 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2808 le32_to_cpu(es->s_error_count)); 2809 if (es->s_first_error_time) { 2810 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2811 sb->s_id, le32_to_cpu(es->s_first_error_time), 2812 (int) sizeof(es->s_first_error_func), 2813 es->s_first_error_func, 2814 le32_to_cpu(es->s_first_error_line)); 2815 if (es->s_first_error_ino) 2816 printk(": inode %u", 2817 le32_to_cpu(es->s_first_error_ino)); 2818 if (es->s_first_error_block) 2819 printk(": block %llu", (unsigned long long) 2820 le64_to_cpu(es->s_first_error_block)); 2821 printk("\n"); 2822 } 2823 if (es->s_last_error_time) { 2824 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2825 sb->s_id, le32_to_cpu(es->s_last_error_time), 2826 (int) sizeof(es->s_last_error_func), 2827 es->s_last_error_func, 2828 le32_to_cpu(es->s_last_error_line)); 2829 if (es->s_last_error_ino) 2830 printk(": inode %u", 2831 le32_to_cpu(es->s_last_error_ino)); 2832 if (es->s_last_error_block) 2833 printk(": block %llu", (unsigned long long) 2834 le64_to_cpu(es->s_last_error_block)); 2835 printk("\n"); 2836 } 2837 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2838 } 2839 2840 /* Find next suitable group and run ext4_init_inode_table */ 2841 static int ext4_run_li_request(struct ext4_li_request *elr) 2842 { 2843 struct ext4_group_desc *gdp = NULL; 2844 ext4_group_t group, ngroups; 2845 struct super_block *sb; 2846 unsigned long timeout = 0; 2847 int ret = 0; 2848 2849 sb = elr->lr_super; 2850 ngroups = EXT4_SB(sb)->s_groups_count; 2851 2852 sb_start_write(sb); 2853 for (group = elr->lr_next_group; group < ngroups; group++) { 2854 gdp = ext4_get_group_desc(sb, group, NULL); 2855 if (!gdp) { 2856 ret = 1; 2857 break; 2858 } 2859 2860 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2861 break; 2862 } 2863 2864 if (group >= ngroups) 2865 ret = 1; 2866 2867 if (!ret) { 2868 timeout = jiffies; 2869 ret = ext4_init_inode_table(sb, group, 2870 elr->lr_timeout ? 0 : 1); 2871 if (elr->lr_timeout == 0) { 2872 timeout = (jiffies - timeout) * 2873 elr->lr_sbi->s_li_wait_mult; 2874 elr->lr_timeout = timeout; 2875 } 2876 elr->lr_next_sched = jiffies + elr->lr_timeout; 2877 elr->lr_next_group = group + 1; 2878 } 2879 sb_end_write(sb); 2880 2881 return ret; 2882 } 2883 2884 /* 2885 * Remove lr_request from the list_request and free the 2886 * request structure. Should be called with li_list_mtx held 2887 */ 2888 static void ext4_remove_li_request(struct ext4_li_request *elr) 2889 { 2890 struct ext4_sb_info *sbi; 2891 2892 if (!elr) 2893 return; 2894 2895 sbi = elr->lr_sbi; 2896 2897 list_del(&elr->lr_request); 2898 sbi->s_li_request = NULL; 2899 kfree(elr); 2900 } 2901 2902 static void ext4_unregister_li_request(struct super_block *sb) 2903 { 2904 mutex_lock(&ext4_li_mtx); 2905 if (!ext4_li_info) { 2906 mutex_unlock(&ext4_li_mtx); 2907 return; 2908 } 2909 2910 mutex_lock(&ext4_li_info->li_list_mtx); 2911 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2912 mutex_unlock(&ext4_li_info->li_list_mtx); 2913 mutex_unlock(&ext4_li_mtx); 2914 } 2915 2916 static struct task_struct *ext4_lazyinit_task; 2917 2918 /* 2919 * This is the function where ext4lazyinit thread lives. It walks 2920 * through the request list searching for next scheduled filesystem. 2921 * When such a fs is found, run the lazy initialization request 2922 * (ext4_rn_li_request) and keep track of the time spend in this 2923 * function. Based on that time we compute next schedule time of 2924 * the request. When walking through the list is complete, compute 2925 * next waking time and put itself into sleep. 2926 */ 2927 static int ext4_lazyinit_thread(void *arg) 2928 { 2929 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2930 struct list_head *pos, *n; 2931 struct ext4_li_request *elr; 2932 unsigned long next_wakeup, cur; 2933 2934 BUG_ON(NULL == eli); 2935 2936 cont_thread: 2937 while (true) { 2938 next_wakeup = MAX_JIFFY_OFFSET; 2939 2940 mutex_lock(&eli->li_list_mtx); 2941 if (list_empty(&eli->li_request_list)) { 2942 mutex_unlock(&eli->li_list_mtx); 2943 goto exit_thread; 2944 } 2945 2946 list_for_each_safe(pos, n, &eli->li_request_list) { 2947 elr = list_entry(pos, struct ext4_li_request, 2948 lr_request); 2949 2950 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2951 if (ext4_run_li_request(elr) != 0) { 2952 /* error, remove the lazy_init job */ 2953 ext4_remove_li_request(elr); 2954 continue; 2955 } 2956 } 2957 2958 if (time_before(elr->lr_next_sched, next_wakeup)) 2959 next_wakeup = elr->lr_next_sched; 2960 } 2961 mutex_unlock(&eli->li_list_mtx); 2962 2963 try_to_freeze(); 2964 2965 cur = jiffies; 2966 if ((time_after_eq(cur, next_wakeup)) || 2967 (MAX_JIFFY_OFFSET == next_wakeup)) { 2968 cond_resched(); 2969 continue; 2970 } 2971 2972 schedule_timeout_interruptible(next_wakeup - cur); 2973 2974 if (kthread_should_stop()) { 2975 ext4_clear_request_list(); 2976 goto exit_thread; 2977 } 2978 } 2979 2980 exit_thread: 2981 /* 2982 * It looks like the request list is empty, but we need 2983 * to check it under the li_list_mtx lock, to prevent any 2984 * additions into it, and of course we should lock ext4_li_mtx 2985 * to atomically free the list and ext4_li_info, because at 2986 * this point another ext4 filesystem could be registering 2987 * new one. 2988 */ 2989 mutex_lock(&ext4_li_mtx); 2990 mutex_lock(&eli->li_list_mtx); 2991 if (!list_empty(&eli->li_request_list)) { 2992 mutex_unlock(&eli->li_list_mtx); 2993 mutex_unlock(&ext4_li_mtx); 2994 goto cont_thread; 2995 } 2996 mutex_unlock(&eli->li_list_mtx); 2997 kfree(ext4_li_info); 2998 ext4_li_info = NULL; 2999 mutex_unlock(&ext4_li_mtx); 3000 3001 return 0; 3002 } 3003 3004 static void ext4_clear_request_list(void) 3005 { 3006 struct list_head *pos, *n; 3007 struct ext4_li_request *elr; 3008 3009 mutex_lock(&ext4_li_info->li_list_mtx); 3010 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3011 elr = list_entry(pos, struct ext4_li_request, 3012 lr_request); 3013 ext4_remove_li_request(elr); 3014 } 3015 mutex_unlock(&ext4_li_info->li_list_mtx); 3016 } 3017 3018 static int ext4_run_lazyinit_thread(void) 3019 { 3020 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3021 ext4_li_info, "ext4lazyinit"); 3022 if (IS_ERR(ext4_lazyinit_task)) { 3023 int err = PTR_ERR(ext4_lazyinit_task); 3024 ext4_clear_request_list(); 3025 kfree(ext4_li_info); 3026 ext4_li_info = NULL; 3027 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3028 "initialization thread\n", 3029 err); 3030 return err; 3031 } 3032 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3033 return 0; 3034 } 3035 3036 /* 3037 * Check whether it make sense to run itable init. thread or not. 3038 * If there is at least one uninitialized inode table, return 3039 * corresponding group number, else the loop goes through all 3040 * groups and return total number of groups. 3041 */ 3042 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3043 { 3044 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3045 struct ext4_group_desc *gdp = NULL; 3046 3047 for (group = 0; group < ngroups; group++) { 3048 gdp = ext4_get_group_desc(sb, group, NULL); 3049 if (!gdp) 3050 continue; 3051 3052 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3053 break; 3054 } 3055 3056 return group; 3057 } 3058 3059 static int ext4_li_info_new(void) 3060 { 3061 struct ext4_lazy_init *eli = NULL; 3062 3063 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3064 if (!eli) 3065 return -ENOMEM; 3066 3067 INIT_LIST_HEAD(&eli->li_request_list); 3068 mutex_init(&eli->li_list_mtx); 3069 3070 eli->li_state |= EXT4_LAZYINIT_QUIT; 3071 3072 ext4_li_info = eli; 3073 3074 return 0; 3075 } 3076 3077 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3078 ext4_group_t start) 3079 { 3080 struct ext4_sb_info *sbi = EXT4_SB(sb); 3081 struct ext4_li_request *elr; 3082 3083 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3084 if (!elr) 3085 return NULL; 3086 3087 elr->lr_super = sb; 3088 elr->lr_sbi = sbi; 3089 elr->lr_next_group = start; 3090 3091 /* 3092 * Randomize first schedule time of the request to 3093 * spread the inode table initialization requests 3094 * better. 3095 */ 3096 elr->lr_next_sched = jiffies + (prandom_u32() % 3097 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3098 return elr; 3099 } 3100 3101 int ext4_register_li_request(struct super_block *sb, 3102 ext4_group_t first_not_zeroed) 3103 { 3104 struct ext4_sb_info *sbi = EXT4_SB(sb); 3105 struct ext4_li_request *elr = NULL; 3106 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3107 int ret = 0; 3108 3109 mutex_lock(&ext4_li_mtx); 3110 if (sbi->s_li_request != NULL) { 3111 /* 3112 * Reset timeout so it can be computed again, because 3113 * s_li_wait_mult might have changed. 3114 */ 3115 sbi->s_li_request->lr_timeout = 0; 3116 goto out; 3117 } 3118 3119 if (first_not_zeroed == ngroups || 3120 (sb->s_flags & MS_RDONLY) || 3121 !test_opt(sb, INIT_INODE_TABLE)) 3122 goto out; 3123 3124 elr = ext4_li_request_new(sb, first_not_zeroed); 3125 if (!elr) { 3126 ret = -ENOMEM; 3127 goto out; 3128 } 3129 3130 if (NULL == ext4_li_info) { 3131 ret = ext4_li_info_new(); 3132 if (ret) 3133 goto out; 3134 } 3135 3136 mutex_lock(&ext4_li_info->li_list_mtx); 3137 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3138 mutex_unlock(&ext4_li_info->li_list_mtx); 3139 3140 sbi->s_li_request = elr; 3141 /* 3142 * set elr to NULL here since it has been inserted to 3143 * the request_list and the removal and free of it is 3144 * handled by ext4_clear_request_list from now on. 3145 */ 3146 elr = NULL; 3147 3148 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3149 ret = ext4_run_lazyinit_thread(); 3150 if (ret) 3151 goto out; 3152 } 3153 out: 3154 mutex_unlock(&ext4_li_mtx); 3155 if (ret) 3156 kfree(elr); 3157 return ret; 3158 } 3159 3160 /* 3161 * We do not need to lock anything since this is called on 3162 * module unload. 3163 */ 3164 static void ext4_destroy_lazyinit_thread(void) 3165 { 3166 /* 3167 * If thread exited earlier 3168 * there's nothing to be done. 3169 */ 3170 if (!ext4_li_info || !ext4_lazyinit_task) 3171 return; 3172 3173 kthread_stop(ext4_lazyinit_task); 3174 } 3175 3176 static int set_journal_csum_feature_set(struct super_block *sb) 3177 { 3178 int ret = 1; 3179 int compat, incompat; 3180 struct ext4_sb_info *sbi = EXT4_SB(sb); 3181 3182 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3183 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3184 /* journal checksum v3 */ 3185 compat = 0; 3186 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3187 } else { 3188 /* journal checksum v1 */ 3189 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3190 incompat = 0; 3191 } 3192 3193 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3194 ret = jbd2_journal_set_features(sbi->s_journal, 3195 compat, 0, 3196 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3197 incompat); 3198 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3199 ret = jbd2_journal_set_features(sbi->s_journal, 3200 compat, 0, 3201 incompat); 3202 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3203 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3204 } else { 3205 jbd2_journal_clear_features(sbi->s_journal, 3206 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3207 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3208 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3209 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3210 } 3211 3212 return ret; 3213 } 3214 3215 /* 3216 * Note: calculating the overhead so we can be compatible with 3217 * historical BSD practice is quite difficult in the face of 3218 * clusters/bigalloc. This is because multiple metadata blocks from 3219 * different block group can end up in the same allocation cluster. 3220 * Calculating the exact overhead in the face of clustered allocation 3221 * requires either O(all block bitmaps) in memory or O(number of block 3222 * groups**2) in time. We will still calculate the superblock for 3223 * older file systems --- and if we come across with a bigalloc file 3224 * system with zero in s_overhead_clusters the estimate will be close to 3225 * correct especially for very large cluster sizes --- but for newer 3226 * file systems, it's better to calculate this figure once at mkfs 3227 * time, and store it in the superblock. If the superblock value is 3228 * present (even for non-bigalloc file systems), we will use it. 3229 */ 3230 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3231 char *buf) 3232 { 3233 struct ext4_sb_info *sbi = EXT4_SB(sb); 3234 struct ext4_group_desc *gdp; 3235 ext4_fsblk_t first_block, last_block, b; 3236 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3237 int s, j, count = 0; 3238 3239 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3240 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3241 sbi->s_itb_per_group + 2); 3242 3243 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3244 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3245 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3246 for (i = 0; i < ngroups; i++) { 3247 gdp = ext4_get_group_desc(sb, i, NULL); 3248 b = ext4_block_bitmap(sb, gdp); 3249 if (b >= first_block && b <= last_block) { 3250 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3251 count++; 3252 } 3253 b = ext4_inode_bitmap(sb, gdp); 3254 if (b >= first_block && b <= last_block) { 3255 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3256 count++; 3257 } 3258 b = ext4_inode_table(sb, gdp); 3259 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3260 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3261 int c = EXT4_B2C(sbi, b - first_block); 3262 ext4_set_bit(c, buf); 3263 count++; 3264 } 3265 if (i != grp) 3266 continue; 3267 s = 0; 3268 if (ext4_bg_has_super(sb, grp)) { 3269 ext4_set_bit(s++, buf); 3270 count++; 3271 } 3272 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3273 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3274 count++; 3275 } 3276 } 3277 if (!count) 3278 return 0; 3279 return EXT4_CLUSTERS_PER_GROUP(sb) - 3280 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3281 } 3282 3283 /* 3284 * Compute the overhead and stash it in sbi->s_overhead 3285 */ 3286 int ext4_calculate_overhead(struct super_block *sb) 3287 { 3288 struct ext4_sb_info *sbi = EXT4_SB(sb); 3289 struct ext4_super_block *es = sbi->s_es; 3290 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3291 ext4_fsblk_t overhead = 0; 3292 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3293 3294 if (!buf) 3295 return -ENOMEM; 3296 3297 /* 3298 * Compute the overhead (FS structures). This is constant 3299 * for a given filesystem unless the number of block groups 3300 * changes so we cache the previous value until it does. 3301 */ 3302 3303 /* 3304 * All of the blocks before first_data_block are overhead 3305 */ 3306 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3307 3308 /* 3309 * Add the overhead found in each block group 3310 */ 3311 for (i = 0; i < ngroups; i++) { 3312 int blks; 3313 3314 blks = count_overhead(sb, i, buf); 3315 overhead += blks; 3316 if (blks) 3317 memset(buf, 0, PAGE_SIZE); 3318 cond_resched(); 3319 } 3320 /* Add the journal blocks as well */ 3321 if (sbi->s_journal) 3322 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3323 3324 sbi->s_overhead = overhead; 3325 smp_wmb(); 3326 free_page((unsigned long) buf); 3327 return 0; 3328 } 3329 3330 3331 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3332 { 3333 ext4_fsblk_t resv_clusters; 3334 3335 /* 3336 * There's no need to reserve anything when we aren't using extents. 3337 * The space estimates are exact, there are no unwritten extents, 3338 * hole punching doesn't need new metadata... This is needed especially 3339 * to keep ext2/3 backward compatibility. 3340 */ 3341 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3342 return 0; 3343 /* 3344 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3345 * This should cover the situations where we can not afford to run 3346 * out of space like for example punch hole, or converting 3347 * unwritten extents in delalloc path. In most cases such 3348 * allocation would require 1, or 2 blocks, higher numbers are 3349 * very rare. 3350 */ 3351 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3352 EXT4_SB(sb)->s_cluster_bits; 3353 3354 do_div(resv_clusters, 50); 3355 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3356 3357 return resv_clusters; 3358 } 3359 3360 3361 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3362 { 3363 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3364 sbi->s_cluster_bits; 3365 3366 if (count >= clusters) 3367 return -EINVAL; 3368 3369 atomic64_set(&sbi->s_resv_clusters, count); 3370 return 0; 3371 } 3372 3373 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3374 { 3375 char *orig_data = kstrdup(data, GFP_KERNEL); 3376 struct buffer_head *bh; 3377 struct ext4_super_block *es = NULL; 3378 struct ext4_sb_info *sbi; 3379 ext4_fsblk_t block; 3380 ext4_fsblk_t sb_block = get_sb_block(&data); 3381 ext4_fsblk_t logical_sb_block; 3382 unsigned long offset = 0; 3383 unsigned long journal_devnum = 0; 3384 unsigned long def_mount_opts; 3385 struct inode *root; 3386 char *cp; 3387 const char *descr; 3388 int ret = -ENOMEM; 3389 int blocksize, clustersize; 3390 unsigned int db_count; 3391 unsigned int i; 3392 int needs_recovery, has_huge_files, has_bigalloc; 3393 __u64 blocks_count; 3394 int err = 0; 3395 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3396 ext4_group_t first_not_zeroed; 3397 3398 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3399 if (!sbi) 3400 goto out_free_orig; 3401 3402 sbi->s_blockgroup_lock = 3403 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3404 if (!sbi->s_blockgroup_lock) { 3405 kfree(sbi); 3406 goto out_free_orig; 3407 } 3408 sb->s_fs_info = sbi; 3409 sbi->s_sb = sb; 3410 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3411 sbi->s_sb_block = sb_block; 3412 if (sb->s_bdev->bd_part) 3413 sbi->s_sectors_written_start = 3414 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3415 3416 /* Cleanup superblock name */ 3417 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3418 *cp = '!'; 3419 3420 /* -EINVAL is default */ 3421 ret = -EINVAL; 3422 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3423 if (!blocksize) { 3424 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3425 goto out_fail; 3426 } 3427 3428 /* 3429 * The ext4 superblock will not be buffer aligned for other than 1kB 3430 * block sizes. We need to calculate the offset from buffer start. 3431 */ 3432 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3433 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3434 offset = do_div(logical_sb_block, blocksize); 3435 } else { 3436 logical_sb_block = sb_block; 3437 } 3438 3439 if (!(bh = sb_bread(sb, logical_sb_block))) { 3440 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3441 goto out_fail; 3442 } 3443 /* 3444 * Note: s_es must be initialized as soon as possible because 3445 * some ext4 macro-instructions depend on its value 3446 */ 3447 es = (struct ext4_super_block *) (bh->b_data + offset); 3448 sbi->s_es = es; 3449 sb->s_magic = le16_to_cpu(es->s_magic); 3450 if (sb->s_magic != EXT4_SUPER_MAGIC) 3451 goto cantfind_ext4; 3452 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3453 3454 /* Warn if metadata_csum and gdt_csum are both set. */ 3455 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3456 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3457 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3458 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3459 "redundant flags; please run fsck."); 3460 3461 /* Check for a known checksum algorithm */ 3462 if (!ext4_verify_csum_type(sb, es)) { 3463 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3464 "unknown checksum algorithm."); 3465 silent = 1; 3466 goto cantfind_ext4; 3467 } 3468 3469 /* Load the checksum driver */ 3470 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3471 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3472 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3473 if (IS_ERR(sbi->s_chksum_driver)) { 3474 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3475 ret = PTR_ERR(sbi->s_chksum_driver); 3476 sbi->s_chksum_driver = NULL; 3477 goto failed_mount; 3478 } 3479 } 3480 3481 /* Check superblock checksum */ 3482 if (!ext4_superblock_csum_verify(sb, es)) { 3483 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3484 "invalid superblock checksum. Run e2fsck?"); 3485 silent = 1; 3486 goto cantfind_ext4; 3487 } 3488 3489 /* Precompute checksum seed for all metadata */ 3490 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3491 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3492 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3493 sizeof(es->s_uuid)); 3494 3495 /* Set defaults before we parse the mount options */ 3496 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3497 set_opt(sb, INIT_INODE_TABLE); 3498 if (def_mount_opts & EXT4_DEFM_DEBUG) 3499 set_opt(sb, DEBUG); 3500 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3501 set_opt(sb, GRPID); 3502 if (def_mount_opts & EXT4_DEFM_UID16) 3503 set_opt(sb, NO_UID32); 3504 /* xattr user namespace & acls are now defaulted on */ 3505 set_opt(sb, XATTR_USER); 3506 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3507 set_opt(sb, POSIX_ACL); 3508 #endif 3509 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3510 set_opt(sb, JOURNAL_DATA); 3511 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3512 set_opt(sb, ORDERED_DATA); 3513 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3514 set_opt(sb, WRITEBACK_DATA); 3515 3516 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3517 set_opt(sb, ERRORS_PANIC); 3518 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3519 set_opt(sb, ERRORS_CONT); 3520 else 3521 set_opt(sb, ERRORS_RO); 3522 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3523 set_opt(sb, BLOCK_VALIDITY); 3524 if (def_mount_opts & EXT4_DEFM_DISCARD) 3525 set_opt(sb, DISCARD); 3526 3527 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3528 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3529 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3530 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3531 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3532 3533 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3534 set_opt(sb, BARRIER); 3535 3536 /* 3537 * enable delayed allocation by default 3538 * Use -o nodelalloc to turn it off 3539 */ 3540 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3541 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3542 set_opt(sb, DELALLOC); 3543 3544 /* 3545 * set default s_li_wait_mult for lazyinit, for the case there is 3546 * no mount option specified. 3547 */ 3548 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3549 3550 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3551 &journal_devnum, &journal_ioprio, 0)) { 3552 ext4_msg(sb, KERN_WARNING, 3553 "failed to parse options in superblock: %s", 3554 sbi->s_es->s_mount_opts); 3555 } 3556 sbi->s_def_mount_opt = sbi->s_mount_opt; 3557 if (!parse_options((char *) data, sb, &journal_devnum, 3558 &journal_ioprio, 0)) 3559 goto failed_mount; 3560 3561 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3562 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3563 "with data=journal disables delayed " 3564 "allocation and O_DIRECT support!\n"); 3565 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3566 ext4_msg(sb, KERN_ERR, "can't mount with " 3567 "both data=journal and delalloc"); 3568 goto failed_mount; 3569 } 3570 if (test_opt(sb, DIOREAD_NOLOCK)) { 3571 ext4_msg(sb, KERN_ERR, "can't mount with " 3572 "both data=journal and dioread_nolock"); 3573 goto failed_mount; 3574 } 3575 if (test_opt(sb, DELALLOC)) 3576 clear_opt(sb, DELALLOC); 3577 } 3578 3579 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3580 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3581 3582 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3583 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3584 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3585 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3586 ext4_msg(sb, KERN_WARNING, 3587 "feature flags set on rev 0 fs, " 3588 "running e2fsck is recommended"); 3589 3590 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3591 set_opt2(sb, HURD_COMPAT); 3592 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3593 EXT4_FEATURE_INCOMPAT_64BIT)) { 3594 ext4_msg(sb, KERN_ERR, 3595 "The Hurd can't support 64-bit file systems"); 3596 goto failed_mount; 3597 } 3598 } 3599 3600 if (IS_EXT2_SB(sb)) { 3601 if (ext2_feature_set_ok(sb)) 3602 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3603 "using the ext4 subsystem"); 3604 else { 3605 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3606 "to feature incompatibilities"); 3607 goto failed_mount; 3608 } 3609 } 3610 3611 if (IS_EXT3_SB(sb)) { 3612 if (ext3_feature_set_ok(sb)) 3613 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3614 "using the ext4 subsystem"); 3615 else { 3616 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3617 "to feature incompatibilities"); 3618 goto failed_mount; 3619 } 3620 } 3621 3622 /* 3623 * Check feature flags regardless of the revision level, since we 3624 * previously didn't change the revision level when setting the flags, 3625 * so there is a chance incompat flags are set on a rev 0 filesystem. 3626 */ 3627 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3628 goto failed_mount; 3629 3630 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3631 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3632 blocksize > EXT4_MAX_BLOCK_SIZE) { 3633 ext4_msg(sb, KERN_ERR, 3634 "Unsupported filesystem blocksize %d", blocksize); 3635 goto failed_mount; 3636 } 3637 3638 if (sb->s_blocksize != blocksize) { 3639 /* Validate the filesystem blocksize */ 3640 if (!sb_set_blocksize(sb, blocksize)) { 3641 ext4_msg(sb, KERN_ERR, "bad block size %d", 3642 blocksize); 3643 goto failed_mount; 3644 } 3645 3646 brelse(bh); 3647 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3648 offset = do_div(logical_sb_block, blocksize); 3649 bh = sb_bread(sb, logical_sb_block); 3650 if (!bh) { 3651 ext4_msg(sb, KERN_ERR, 3652 "Can't read superblock on 2nd try"); 3653 goto failed_mount; 3654 } 3655 es = (struct ext4_super_block *)(bh->b_data + offset); 3656 sbi->s_es = es; 3657 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3658 ext4_msg(sb, KERN_ERR, 3659 "Magic mismatch, very weird!"); 3660 goto failed_mount; 3661 } 3662 } 3663 3664 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3665 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3666 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3667 has_huge_files); 3668 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3669 3670 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3671 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3672 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3673 } else { 3674 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3675 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3676 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3677 (!is_power_of_2(sbi->s_inode_size)) || 3678 (sbi->s_inode_size > blocksize)) { 3679 ext4_msg(sb, KERN_ERR, 3680 "unsupported inode size: %d", 3681 sbi->s_inode_size); 3682 goto failed_mount; 3683 } 3684 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3685 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3686 } 3687 3688 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3689 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3690 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3691 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3692 !is_power_of_2(sbi->s_desc_size)) { 3693 ext4_msg(sb, KERN_ERR, 3694 "unsupported descriptor size %lu", 3695 sbi->s_desc_size); 3696 goto failed_mount; 3697 } 3698 } else 3699 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3700 3701 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3702 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3703 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3704 goto cantfind_ext4; 3705 3706 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3707 if (sbi->s_inodes_per_block == 0) 3708 goto cantfind_ext4; 3709 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3710 sbi->s_inodes_per_block; 3711 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3712 sbi->s_sbh = bh; 3713 sbi->s_mount_state = le16_to_cpu(es->s_state); 3714 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3715 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3716 3717 for (i = 0; i < 4; i++) 3718 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3719 sbi->s_def_hash_version = es->s_def_hash_version; 3720 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3721 i = le32_to_cpu(es->s_flags); 3722 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3723 sbi->s_hash_unsigned = 3; 3724 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3725 #ifdef __CHAR_UNSIGNED__ 3726 if (!(sb->s_flags & MS_RDONLY)) 3727 es->s_flags |= 3728 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3729 sbi->s_hash_unsigned = 3; 3730 #else 3731 if (!(sb->s_flags & MS_RDONLY)) 3732 es->s_flags |= 3733 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3734 #endif 3735 } 3736 } 3737 3738 /* Handle clustersize */ 3739 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3740 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3741 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3742 if (has_bigalloc) { 3743 if (clustersize < blocksize) { 3744 ext4_msg(sb, KERN_ERR, 3745 "cluster size (%d) smaller than " 3746 "block size (%d)", clustersize, blocksize); 3747 goto failed_mount; 3748 } 3749 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3750 le32_to_cpu(es->s_log_block_size); 3751 sbi->s_clusters_per_group = 3752 le32_to_cpu(es->s_clusters_per_group); 3753 if (sbi->s_clusters_per_group > blocksize * 8) { 3754 ext4_msg(sb, KERN_ERR, 3755 "#clusters per group too big: %lu", 3756 sbi->s_clusters_per_group); 3757 goto failed_mount; 3758 } 3759 if (sbi->s_blocks_per_group != 3760 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3761 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3762 "clusters per group (%lu) inconsistent", 3763 sbi->s_blocks_per_group, 3764 sbi->s_clusters_per_group); 3765 goto failed_mount; 3766 } 3767 } else { 3768 if (clustersize != blocksize) { 3769 ext4_warning(sb, "fragment/cluster size (%d) != " 3770 "block size (%d)", clustersize, 3771 blocksize); 3772 clustersize = blocksize; 3773 } 3774 if (sbi->s_blocks_per_group > blocksize * 8) { 3775 ext4_msg(sb, KERN_ERR, 3776 "#blocks per group too big: %lu", 3777 sbi->s_blocks_per_group); 3778 goto failed_mount; 3779 } 3780 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3781 sbi->s_cluster_bits = 0; 3782 } 3783 sbi->s_cluster_ratio = clustersize / blocksize; 3784 3785 if (sbi->s_inodes_per_group > blocksize * 8) { 3786 ext4_msg(sb, KERN_ERR, 3787 "#inodes per group too big: %lu", 3788 sbi->s_inodes_per_group); 3789 goto failed_mount; 3790 } 3791 3792 /* Do we have standard group size of clustersize * 8 blocks ? */ 3793 if (sbi->s_blocks_per_group == clustersize << 3) 3794 set_opt2(sb, STD_GROUP_SIZE); 3795 3796 /* 3797 * Test whether we have more sectors than will fit in sector_t, 3798 * and whether the max offset is addressable by the page cache. 3799 */ 3800 err = generic_check_addressable(sb->s_blocksize_bits, 3801 ext4_blocks_count(es)); 3802 if (err) { 3803 ext4_msg(sb, KERN_ERR, "filesystem" 3804 " too large to mount safely on this system"); 3805 if (sizeof(sector_t) < 8) 3806 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3807 goto failed_mount; 3808 } 3809 3810 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3811 goto cantfind_ext4; 3812 3813 /* check blocks count against device size */ 3814 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3815 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3816 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3817 "exceeds size of device (%llu blocks)", 3818 ext4_blocks_count(es), blocks_count); 3819 goto failed_mount; 3820 } 3821 3822 /* 3823 * It makes no sense for the first data block to be beyond the end 3824 * of the filesystem. 3825 */ 3826 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3827 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3828 "block %u is beyond end of filesystem (%llu)", 3829 le32_to_cpu(es->s_first_data_block), 3830 ext4_blocks_count(es)); 3831 goto failed_mount; 3832 } 3833 blocks_count = (ext4_blocks_count(es) - 3834 le32_to_cpu(es->s_first_data_block) + 3835 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3836 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3837 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3838 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3839 "(block count %llu, first data block %u, " 3840 "blocks per group %lu)", sbi->s_groups_count, 3841 ext4_blocks_count(es), 3842 le32_to_cpu(es->s_first_data_block), 3843 EXT4_BLOCKS_PER_GROUP(sb)); 3844 goto failed_mount; 3845 } 3846 sbi->s_groups_count = blocks_count; 3847 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3848 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3849 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3850 EXT4_DESC_PER_BLOCK(sb); 3851 sbi->s_group_desc = ext4_kvmalloc(db_count * 3852 sizeof(struct buffer_head *), 3853 GFP_KERNEL); 3854 if (sbi->s_group_desc == NULL) { 3855 ext4_msg(sb, KERN_ERR, "not enough memory"); 3856 ret = -ENOMEM; 3857 goto failed_mount; 3858 } 3859 3860 if (ext4_proc_root) 3861 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3862 3863 if (sbi->s_proc) 3864 proc_create_data("options", S_IRUGO, sbi->s_proc, 3865 &ext4_seq_options_fops, sb); 3866 3867 bgl_lock_init(sbi->s_blockgroup_lock); 3868 3869 for (i = 0; i < db_count; i++) { 3870 block = descriptor_loc(sb, logical_sb_block, i); 3871 sbi->s_group_desc[i] = sb_bread(sb, block); 3872 if (!sbi->s_group_desc[i]) { 3873 ext4_msg(sb, KERN_ERR, 3874 "can't read group descriptor %d", i); 3875 db_count = i; 3876 goto failed_mount2; 3877 } 3878 } 3879 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3880 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3881 goto failed_mount2; 3882 } 3883 3884 sbi->s_gdb_count = db_count; 3885 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3886 spin_lock_init(&sbi->s_next_gen_lock); 3887 3888 init_timer(&sbi->s_err_report); 3889 sbi->s_err_report.function = print_daily_error_info; 3890 sbi->s_err_report.data = (unsigned long) sb; 3891 3892 /* Register extent status tree shrinker */ 3893 ext4_es_register_shrinker(sbi); 3894 3895 if ((err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0)) != 0) { 3896 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3897 goto failed_mount3; 3898 } 3899 3900 sbi->s_stripe = ext4_get_stripe_size(sbi); 3901 sbi->s_extent_max_zeroout_kb = 32; 3902 3903 /* 3904 * set up enough so that it can read an inode 3905 */ 3906 if (!test_opt(sb, NOLOAD) && 3907 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3908 sb->s_op = &ext4_sops; 3909 else 3910 sb->s_op = &ext4_nojournal_sops; 3911 sb->s_export_op = &ext4_export_ops; 3912 sb->s_xattr = ext4_xattr_handlers; 3913 #ifdef CONFIG_QUOTA 3914 sb->dq_op = &ext4_quota_operations; 3915 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3916 sb->s_qcop = &ext4_qctl_sysfile_operations; 3917 else 3918 sb->s_qcop = &ext4_qctl_operations; 3919 #endif 3920 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3921 3922 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3923 mutex_init(&sbi->s_orphan_lock); 3924 3925 sb->s_root = NULL; 3926 3927 needs_recovery = (es->s_last_orphan != 0 || 3928 EXT4_HAS_INCOMPAT_FEATURE(sb, 3929 EXT4_FEATURE_INCOMPAT_RECOVER)); 3930 3931 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3932 !(sb->s_flags & MS_RDONLY)) 3933 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3934 goto failed_mount3; 3935 3936 /* 3937 * The first inode we look at is the journal inode. Don't try 3938 * root first: it may be modified in the journal! 3939 */ 3940 if (!test_opt(sb, NOLOAD) && 3941 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3942 if (ext4_load_journal(sb, es, journal_devnum)) 3943 goto failed_mount3; 3944 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3945 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3946 ext4_msg(sb, KERN_ERR, "required journal recovery " 3947 "suppressed and not mounted read-only"); 3948 goto failed_mount_wq; 3949 } else { 3950 clear_opt(sb, DATA_FLAGS); 3951 sbi->s_journal = NULL; 3952 needs_recovery = 0; 3953 goto no_journal; 3954 } 3955 3956 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3957 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3958 JBD2_FEATURE_INCOMPAT_64BIT)) { 3959 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3960 goto failed_mount_wq; 3961 } 3962 3963 if (!set_journal_csum_feature_set(sb)) { 3964 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3965 "feature set"); 3966 goto failed_mount_wq; 3967 } 3968 3969 /* We have now updated the journal if required, so we can 3970 * validate the data journaling mode. */ 3971 switch (test_opt(sb, DATA_FLAGS)) { 3972 case 0: 3973 /* No mode set, assume a default based on the journal 3974 * capabilities: ORDERED_DATA if the journal can 3975 * cope, else JOURNAL_DATA 3976 */ 3977 if (jbd2_journal_check_available_features 3978 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3979 set_opt(sb, ORDERED_DATA); 3980 else 3981 set_opt(sb, JOURNAL_DATA); 3982 break; 3983 3984 case EXT4_MOUNT_ORDERED_DATA: 3985 case EXT4_MOUNT_WRITEBACK_DATA: 3986 if (!jbd2_journal_check_available_features 3987 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3988 ext4_msg(sb, KERN_ERR, "Journal does not support " 3989 "requested data journaling mode"); 3990 goto failed_mount_wq; 3991 } 3992 default: 3993 break; 3994 } 3995 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3996 3997 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3998 3999 no_journal: 4000 if (ext4_mballoc_ready) { 4001 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4002 if (!sbi->s_mb_cache) { 4003 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4004 goto failed_mount_wq; 4005 } 4006 } 4007 4008 /* 4009 * Get the # of file system overhead blocks from the 4010 * superblock if present. 4011 */ 4012 if (es->s_overhead_clusters) 4013 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4014 else { 4015 err = ext4_calculate_overhead(sb); 4016 if (err) 4017 goto failed_mount_wq; 4018 } 4019 4020 /* 4021 * The maximum number of concurrent works can be high and 4022 * concurrency isn't really necessary. Limit it to 1. 4023 */ 4024 EXT4_SB(sb)->rsv_conversion_wq = 4025 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4026 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4027 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4028 ret = -ENOMEM; 4029 goto failed_mount4; 4030 } 4031 4032 /* 4033 * The jbd2_journal_load will have done any necessary log recovery, 4034 * so we can safely mount the rest of the filesystem now. 4035 */ 4036 4037 root = ext4_iget(sb, EXT4_ROOT_INO); 4038 if (IS_ERR(root)) { 4039 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4040 ret = PTR_ERR(root); 4041 root = NULL; 4042 goto failed_mount4; 4043 } 4044 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4045 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4046 iput(root); 4047 goto failed_mount4; 4048 } 4049 sb->s_root = d_make_root(root); 4050 if (!sb->s_root) { 4051 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4052 ret = -ENOMEM; 4053 goto failed_mount4; 4054 } 4055 4056 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4057 sb->s_flags |= MS_RDONLY; 4058 4059 /* determine the minimum size of new large inodes, if present */ 4060 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4061 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4062 EXT4_GOOD_OLD_INODE_SIZE; 4063 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4064 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4065 if (sbi->s_want_extra_isize < 4066 le16_to_cpu(es->s_want_extra_isize)) 4067 sbi->s_want_extra_isize = 4068 le16_to_cpu(es->s_want_extra_isize); 4069 if (sbi->s_want_extra_isize < 4070 le16_to_cpu(es->s_min_extra_isize)) 4071 sbi->s_want_extra_isize = 4072 le16_to_cpu(es->s_min_extra_isize); 4073 } 4074 } 4075 /* Check if enough inode space is available */ 4076 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4077 sbi->s_inode_size) { 4078 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4079 EXT4_GOOD_OLD_INODE_SIZE; 4080 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4081 "available"); 4082 } 4083 4084 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4085 if (err) { 4086 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4087 "reserved pool", ext4_calculate_resv_clusters(sb)); 4088 goto failed_mount4a; 4089 } 4090 4091 err = ext4_setup_system_zone(sb); 4092 if (err) { 4093 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4094 "zone (%d)", err); 4095 goto failed_mount4a; 4096 } 4097 4098 ext4_ext_init(sb); 4099 err = ext4_mb_init(sb); 4100 if (err) { 4101 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4102 err); 4103 goto failed_mount5; 4104 } 4105 4106 block = ext4_count_free_clusters(sb); 4107 ext4_free_blocks_count_set(sbi->s_es, 4108 EXT4_C2B(sbi, block)); 4109 err = percpu_counter_init(&sbi->s_freeclusters_counter, block); 4110 if (!err) { 4111 unsigned long freei = ext4_count_free_inodes(sb); 4112 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4113 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei); 4114 } 4115 if (!err) 4116 err = percpu_counter_init(&sbi->s_dirs_counter, 4117 ext4_count_dirs(sb)); 4118 if (!err) 4119 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 4120 if (err) { 4121 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4122 goto failed_mount6; 4123 } 4124 4125 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4126 if (!ext4_fill_flex_info(sb)) { 4127 ext4_msg(sb, KERN_ERR, 4128 "unable to initialize " 4129 "flex_bg meta info!"); 4130 goto failed_mount6; 4131 } 4132 4133 err = ext4_register_li_request(sb, first_not_zeroed); 4134 if (err) 4135 goto failed_mount6; 4136 4137 sbi->s_kobj.kset = ext4_kset; 4138 init_completion(&sbi->s_kobj_unregister); 4139 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4140 "%s", sb->s_id); 4141 if (err) 4142 goto failed_mount7; 4143 4144 #ifdef CONFIG_QUOTA 4145 /* Enable quota usage during mount. */ 4146 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4147 !(sb->s_flags & MS_RDONLY)) { 4148 err = ext4_enable_quotas(sb); 4149 if (err) 4150 goto failed_mount8; 4151 } 4152 #endif /* CONFIG_QUOTA */ 4153 4154 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4155 ext4_orphan_cleanup(sb, es); 4156 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4157 if (needs_recovery) { 4158 ext4_msg(sb, KERN_INFO, "recovery complete"); 4159 ext4_mark_recovery_complete(sb, es); 4160 } 4161 if (EXT4_SB(sb)->s_journal) { 4162 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4163 descr = " journalled data mode"; 4164 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4165 descr = " ordered data mode"; 4166 else 4167 descr = " writeback data mode"; 4168 } else 4169 descr = "out journal"; 4170 4171 if (test_opt(sb, DISCARD)) { 4172 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4173 if (!blk_queue_discard(q)) 4174 ext4_msg(sb, KERN_WARNING, 4175 "mounting with \"discard\" option, but " 4176 "the device does not support discard"); 4177 } 4178 4179 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4180 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4181 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4182 4183 if (es->s_error_count) 4184 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4185 4186 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4187 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4188 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4189 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4190 4191 kfree(orig_data); 4192 return 0; 4193 4194 cantfind_ext4: 4195 if (!silent) 4196 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4197 goto failed_mount; 4198 4199 #ifdef CONFIG_QUOTA 4200 failed_mount8: 4201 kobject_del(&sbi->s_kobj); 4202 #endif 4203 failed_mount7: 4204 ext4_unregister_li_request(sb); 4205 failed_mount6: 4206 ext4_mb_release(sb); 4207 if (sbi->s_flex_groups) 4208 ext4_kvfree(sbi->s_flex_groups); 4209 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4210 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4211 percpu_counter_destroy(&sbi->s_dirs_counter); 4212 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4213 failed_mount5: 4214 ext4_ext_release(sb); 4215 ext4_release_system_zone(sb); 4216 failed_mount4a: 4217 dput(sb->s_root); 4218 sb->s_root = NULL; 4219 failed_mount4: 4220 ext4_msg(sb, KERN_ERR, "mount failed"); 4221 if (EXT4_SB(sb)->rsv_conversion_wq) 4222 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4223 failed_mount_wq: 4224 if (sbi->s_journal) { 4225 jbd2_journal_destroy(sbi->s_journal); 4226 sbi->s_journal = NULL; 4227 } 4228 failed_mount3: 4229 ext4_es_unregister_shrinker(sbi); 4230 del_timer_sync(&sbi->s_err_report); 4231 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4232 if (sbi->s_mmp_tsk) 4233 kthread_stop(sbi->s_mmp_tsk); 4234 failed_mount2: 4235 for (i = 0; i < db_count; i++) 4236 brelse(sbi->s_group_desc[i]); 4237 ext4_kvfree(sbi->s_group_desc); 4238 failed_mount: 4239 if (sbi->s_chksum_driver) 4240 crypto_free_shash(sbi->s_chksum_driver); 4241 if (sbi->s_proc) { 4242 remove_proc_entry("options", sbi->s_proc); 4243 remove_proc_entry(sb->s_id, ext4_proc_root); 4244 } 4245 #ifdef CONFIG_QUOTA 4246 for (i = 0; i < MAXQUOTAS; i++) 4247 kfree(sbi->s_qf_names[i]); 4248 #endif 4249 ext4_blkdev_remove(sbi); 4250 brelse(bh); 4251 out_fail: 4252 sb->s_fs_info = NULL; 4253 kfree(sbi->s_blockgroup_lock); 4254 kfree(sbi); 4255 out_free_orig: 4256 kfree(orig_data); 4257 return err ? err : ret; 4258 } 4259 4260 /* 4261 * Setup any per-fs journal parameters now. We'll do this both on 4262 * initial mount, once the journal has been initialised but before we've 4263 * done any recovery; and again on any subsequent remount. 4264 */ 4265 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4266 { 4267 struct ext4_sb_info *sbi = EXT4_SB(sb); 4268 4269 journal->j_commit_interval = sbi->s_commit_interval; 4270 journal->j_min_batch_time = sbi->s_min_batch_time; 4271 journal->j_max_batch_time = sbi->s_max_batch_time; 4272 4273 write_lock(&journal->j_state_lock); 4274 if (test_opt(sb, BARRIER)) 4275 journal->j_flags |= JBD2_BARRIER; 4276 else 4277 journal->j_flags &= ~JBD2_BARRIER; 4278 if (test_opt(sb, DATA_ERR_ABORT)) 4279 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4280 else 4281 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4282 write_unlock(&journal->j_state_lock); 4283 } 4284 4285 static journal_t *ext4_get_journal(struct super_block *sb, 4286 unsigned int journal_inum) 4287 { 4288 struct inode *journal_inode; 4289 journal_t *journal; 4290 4291 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4292 4293 /* First, test for the existence of a valid inode on disk. Bad 4294 * things happen if we iget() an unused inode, as the subsequent 4295 * iput() will try to delete it. */ 4296 4297 journal_inode = ext4_iget(sb, journal_inum); 4298 if (IS_ERR(journal_inode)) { 4299 ext4_msg(sb, KERN_ERR, "no journal found"); 4300 return NULL; 4301 } 4302 if (!journal_inode->i_nlink) { 4303 make_bad_inode(journal_inode); 4304 iput(journal_inode); 4305 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4306 return NULL; 4307 } 4308 4309 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4310 journal_inode, journal_inode->i_size); 4311 if (!S_ISREG(journal_inode->i_mode)) { 4312 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4313 iput(journal_inode); 4314 return NULL; 4315 } 4316 4317 journal = jbd2_journal_init_inode(journal_inode); 4318 if (!journal) { 4319 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4320 iput(journal_inode); 4321 return NULL; 4322 } 4323 journal->j_private = sb; 4324 ext4_init_journal_params(sb, journal); 4325 return journal; 4326 } 4327 4328 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4329 dev_t j_dev) 4330 { 4331 struct buffer_head *bh; 4332 journal_t *journal; 4333 ext4_fsblk_t start; 4334 ext4_fsblk_t len; 4335 int hblock, blocksize; 4336 ext4_fsblk_t sb_block; 4337 unsigned long offset; 4338 struct ext4_super_block *es; 4339 struct block_device *bdev; 4340 4341 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4342 4343 bdev = ext4_blkdev_get(j_dev, sb); 4344 if (bdev == NULL) 4345 return NULL; 4346 4347 blocksize = sb->s_blocksize; 4348 hblock = bdev_logical_block_size(bdev); 4349 if (blocksize < hblock) { 4350 ext4_msg(sb, KERN_ERR, 4351 "blocksize too small for journal device"); 4352 goto out_bdev; 4353 } 4354 4355 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4356 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4357 set_blocksize(bdev, blocksize); 4358 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4359 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4360 "external journal"); 4361 goto out_bdev; 4362 } 4363 4364 es = (struct ext4_super_block *) (bh->b_data + offset); 4365 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4366 !(le32_to_cpu(es->s_feature_incompat) & 4367 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4368 ext4_msg(sb, KERN_ERR, "external journal has " 4369 "bad superblock"); 4370 brelse(bh); 4371 goto out_bdev; 4372 } 4373 4374 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4375 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4376 brelse(bh); 4377 goto out_bdev; 4378 } 4379 4380 len = ext4_blocks_count(es); 4381 start = sb_block + 1; 4382 brelse(bh); /* we're done with the superblock */ 4383 4384 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4385 start, len, blocksize); 4386 if (!journal) { 4387 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4388 goto out_bdev; 4389 } 4390 journal->j_private = sb; 4391 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4392 wait_on_buffer(journal->j_sb_buffer); 4393 if (!buffer_uptodate(journal->j_sb_buffer)) { 4394 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4395 goto out_journal; 4396 } 4397 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4398 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4399 "user (unsupported) - %d", 4400 be32_to_cpu(journal->j_superblock->s_nr_users)); 4401 goto out_journal; 4402 } 4403 EXT4_SB(sb)->journal_bdev = bdev; 4404 ext4_init_journal_params(sb, journal); 4405 return journal; 4406 4407 out_journal: 4408 jbd2_journal_destroy(journal); 4409 out_bdev: 4410 ext4_blkdev_put(bdev); 4411 return NULL; 4412 } 4413 4414 static int ext4_load_journal(struct super_block *sb, 4415 struct ext4_super_block *es, 4416 unsigned long journal_devnum) 4417 { 4418 journal_t *journal; 4419 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4420 dev_t journal_dev; 4421 int err = 0; 4422 int really_read_only; 4423 4424 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4425 4426 if (journal_devnum && 4427 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4428 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4429 "numbers have changed"); 4430 journal_dev = new_decode_dev(journal_devnum); 4431 } else 4432 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4433 4434 really_read_only = bdev_read_only(sb->s_bdev); 4435 4436 /* 4437 * Are we loading a blank journal or performing recovery after a 4438 * crash? For recovery, we need to check in advance whether we 4439 * can get read-write access to the device. 4440 */ 4441 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4442 if (sb->s_flags & MS_RDONLY) { 4443 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4444 "required on readonly filesystem"); 4445 if (really_read_only) { 4446 ext4_msg(sb, KERN_ERR, "write access " 4447 "unavailable, cannot proceed"); 4448 return -EROFS; 4449 } 4450 ext4_msg(sb, KERN_INFO, "write access will " 4451 "be enabled during recovery"); 4452 } 4453 } 4454 4455 if (journal_inum && journal_dev) { 4456 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4457 "and inode journals!"); 4458 return -EINVAL; 4459 } 4460 4461 if (journal_inum) { 4462 if (!(journal = ext4_get_journal(sb, journal_inum))) 4463 return -EINVAL; 4464 } else { 4465 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4466 return -EINVAL; 4467 } 4468 4469 if (!(journal->j_flags & JBD2_BARRIER)) 4470 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4471 4472 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4473 err = jbd2_journal_wipe(journal, !really_read_only); 4474 if (!err) { 4475 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4476 if (save) 4477 memcpy(save, ((char *) es) + 4478 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4479 err = jbd2_journal_load(journal); 4480 if (save) 4481 memcpy(((char *) es) + EXT4_S_ERR_START, 4482 save, EXT4_S_ERR_LEN); 4483 kfree(save); 4484 } 4485 4486 if (err) { 4487 ext4_msg(sb, KERN_ERR, "error loading journal"); 4488 jbd2_journal_destroy(journal); 4489 return err; 4490 } 4491 4492 EXT4_SB(sb)->s_journal = journal; 4493 ext4_clear_journal_err(sb, es); 4494 4495 if (!really_read_only && journal_devnum && 4496 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4497 es->s_journal_dev = cpu_to_le32(journal_devnum); 4498 4499 /* Make sure we flush the recovery flag to disk. */ 4500 ext4_commit_super(sb, 1); 4501 } 4502 4503 return 0; 4504 } 4505 4506 static int ext4_commit_super(struct super_block *sb, int sync) 4507 { 4508 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4509 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4510 int error = 0; 4511 4512 if (!sbh || block_device_ejected(sb)) 4513 return error; 4514 if (buffer_write_io_error(sbh)) { 4515 /* 4516 * Oh, dear. A previous attempt to write the 4517 * superblock failed. This could happen because the 4518 * USB device was yanked out. Or it could happen to 4519 * be a transient write error and maybe the block will 4520 * be remapped. Nothing we can do but to retry the 4521 * write and hope for the best. 4522 */ 4523 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4524 "superblock detected"); 4525 clear_buffer_write_io_error(sbh); 4526 set_buffer_uptodate(sbh); 4527 } 4528 /* 4529 * If the file system is mounted read-only, don't update the 4530 * superblock write time. This avoids updating the superblock 4531 * write time when we are mounting the root file system 4532 * read/only but we need to replay the journal; at that point, 4533 * for people who are east of GMT and who make their clock 4534 * tick in localtime for Windows bug-for-bug compatibility, 4535 * the clock is set in the future, and this will cause e2fsck 4536 * to complain and force a full file system check. 4537 */ 4538 if (!(sb->s_flags & MS_RDONLY)) 4539 es->s_wtime = cpu_to_le32(get_seconds()); 4540 if (sb->s_bdev->bd_part) 4541 es->s_kbytes_written = 4542 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4543 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4544 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4545 else 4546 es->s_kbytes_written = 4547 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4548 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4549 ext4_free_blocks_count_set(es, 4550 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4551 &EXT4_SB(sb)->s_freeclusters_counter))); 4552 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4553 es->s_free_inodes_count = 4554 cpu_to_le32(percpu_counter_sum_positive( 4555 &EXT4_SB(sb)->s_freeinodes_counter)); 4556 BUFFER_TRACE(sbh, "marking dirty"); 4557 ext4_superblock_csum_set(sb); 4558 mark_buffer_dirty(sbh); 4559 if (sync) { 4560 error = sync_dirty_buffer(sbh); 4561 if (error) 4562 return error; 4563 4564 error = buffer_write_io_error(sbh); 4565 if (error) { 4566 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4567 "superblock"); 4568 clear_buffer_write_io_error(sbh); 4569 set_buffer_uptodate(sbh); 4570 } 4571 } 4572 return error; 4573 } 4574 4575 /* 4576 * Have we just finished recovery? If so, and if we are mounting (or 4577 * remounting) the filesystem readonly, then we will end up with a 4578 * consistent fs on disk. Record that fact. 4579 */ 4580 static void ext4_mark_recovery_complete(struct super_block *sb, 4581 struct ext4_super_block *es) 4582 { 4583 journal_t *journal = EXT4_SB(sb)->s_journal; 4584 4585 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4586 BUG_ON(journal != NULL); 4587 return; 4588 } 4589 jbd2_journal_lock_updates(journal); 4590 if (jbd2_journal_flush(journal) < 0) 4591 goto out; 4592 4593 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4594 sb->s_flags & MS_RDONLY) { 4595 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4596 ext4_commit_super(sb, 1); 4597 } 4598 4599 out: 4600 jbd2_journal_unlock_updates(journal); 4601 } 4602 4603 /* 4604 * If we are mounting (or read-write remounting) a filesystem whose journal 4605 * has recorded an error from a previous lifetime, move that error to the 4606 * main filesystem now. 4607 */ 4608 static void ext4_clear_journal_err(struct super_block *sb, 4609 struct ext4_super_block *es) 4610 { 4611 journal_t *journal; 4612 int j_errno; 4613 const char *errstr; 4614 4615 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4616 4617 journal = EXT4_SB(sb)->s_journal; 4618 4619 /* 4620 * Now check for any error status which may have been recorded in the 4621 * journal by a prior ext4_error() or ext4_abort() 4622 */ 4623 4624 j_errno = jbd2_journal_errno(journal); 4625 if (j_errno) { 4626 char nbuf[16]; 4627 4628 errstr = ext4_decode_error(sb, j_errno, nbuf); 4629 ext4_warning(sb, "Filesystem error recorded " 4630 "from previous mount: %s", errstr); 4631 ext4_warning(sb, "Marking fs in need of filesystem check."); 4632 4633 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4634 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4635 ext4_commit_super(sb, 1); 4636 4637 jbd2_journal_clear_err(journal); 4638 jbd2_journal_update_sb_errno(journal); 4639 } 4640 } 4641 4642 /* 4643 * Force the running and committing transactions to commit, 4644 * and wait on the commit. 4645 */ 4646 int ext4_force_commit(struct super_block *sb) 4647 { 4648 journal_t *journal; 4649 4650 if (sb->s_flags & MS_RDONLY) 4651 return 0; 4652 4653 journal = EXT4_SB(sb)->s_journal; 4654 return ext4_journal_force_commit(journal); 4655 } 4656 4657 static int ext4_sync_fs(struct super_block *sb, int wait) 4658 { 4659 int ret = 0; 4660 tid_t target; 4661 bool needs_barrier = false; 4662 struct ext4_sb_info *sbi = EXT4_SB(sb); 4663 4664 trace_ext4_sync_fs(sb, wait); 4665 flush_workqueue(sbi->rsv_conversion_wq); 4666 /* 4667 * Writeback quota in non-journalled quota case - journalled quota has 4668 * no dirty dquots 4669 */ 4670 dquot_writeback_dquots(sb, -1); 4671 /* 4672 * Data writeback is possible w/o journal transaction, so barrier must 4673 * being sent at the end of the function. But we can skip it if 4674 * transaction_commit will do it for us. 4675 */ 4676 target = jbd2_get_latest_transaction(sbi->s_journal); 4677 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4678 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4679 needs_barrier = true; 4680 4681 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4682 if (wait) 4683 ret = jbd2_log_wait_commit(sbi->s_journal, target); 4684 } 4685 if (needs_barrier) { 4686 int err; 4687 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4688 if (!ret) 4689 ret = err; 4690 } 4691 4692 return ret; 4693 } 4694 4695 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait) 4696 { 4697 int ret = 0; 4698 4699 trace_ext4_sync_fs(sb, wait); 4700 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4701 dquot_writeback_dquots(sb, -1); 4702 if (wait && test_opt(sb, BARRIER)) 4703 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4704 4705 return ret; 4706 } 4707 4708 /* 4709 * LVM calls this function before a (read-only) snapshot is created. This 4710 * gives us a chance to flush the journal completely and mark the fs clean. 4711 * 4712 * Note that only this function cannot bring a filesystem to be in a clean 4713 * state independently. It relies on upper layer to stop all data & metadata 4714 * modifications. 4715 */ 4716 static int ext4_freeze(struct super_block *sb) 4717 { 4718 int error = 0; 4719 journal_t *journal; 4720 4721 if (sb->s_flags & MS_RDONLY) 4722 return 0; 4723 4724 journal = EXT4_SB(sb)->s_journal; 4725 4726 /* Now we set up the journal barrier. */ 4727 jbd2_journal_lock_updates(journal); 4728 4729 /* 4730 * Don't clear the needs_recovery flag if we failed to flush 4731 * the journal. 4732 */ 4733 error = jbd2_journal_flush(journal); 4734 if (error < 0) 4735 goto out; 4736 4737 /* Journal blocked and flushed, clear needs_recovery flag. */ 4738 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4739 error = ext4_commit_super(sb, 1); 4740 out: 4741 /* we rely on upper layer to stop further updates */ 4742 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4743 return error; 4744 } 4745 4746 /* 4747 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4748 * flag here, even though the filesystem is not technically dirty yet. 4749 */ 4750 static int ext4_unfreeze(struct super_block *sb) 4751 { 4752 if (sb->s_flags & MS_RDONLY) 4753 return 0; 4754 4755 /* Reset the needs_recovery flag before the fs is unlocked. */ 4756 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4757 ext4_commit_super(sb, 1); 4758 return 0; 4759 } 4760 4761 /* 4762 * Structure to save mount options for ext4_remount's benefit 4763 */ 4764 struct ext4_mount_options { 4765 unsigned long s_mount_opt; 4766 unsigned long s_mount_opt2; 4767 kuid_t s_resuid; 4768 kgid_t s_resgid; 4769 unsigned long s_commit_interval; 4770 u32 s_min_batch_time, s_max_batch_time; 4771 #ifdef CONFIG_QUOTA 4772 int s_jquota_fmt; 4773 char *s_qf_names[MAXQUOTAS]; 4774 #endif 4775 }; 4776 4777 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4778 { 4779 struct ext4_super_block *es; 4780 struct ext4_sb_info *sbi = EXT4_SB(sb); 4781 unsigned long old_sb_flags; 4782 struct ext4_mount_options old_opts; 4783 int enable_quota = 0; 4784 ext4_group_t g; 4785 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4786 int err = 0; 4787 #ifdef CONFIG_QUOTA 4788 int i, j; 4789 #endif 4790 char *orig_data = kstrdup(data, GFP_KERNEL); 4791 4792 /* Store the original options */ 4793 old_sb_flags = sb->s_flags; 4794 old_opts.s_mount_opt = sbi->s_mount_opt; 4795 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4796 old_opts.s_resuid = sbi->s_resuid; 4797 old_opts.s_resgid = sbi->s_resgid; 4798 old_opts.s_commit_interval = sbi->s_commit_interval; 4799 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4800 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4801 #ifdef CONFIG_QUOTA 4802 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4803 for (i = 0; i < MAXQUOTAS; i++) 4804 if (sbi->s_qf_names[i]) { 4805 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4806 GFP_KERNEL); 4807 if (!old_opts.s_qf_names[i]) { 4808 for (j = 0; j < i; j++) 4809 kfree(old_opts.s_qf_names[j]); 4810 kfree(orig_data); 4811 return -ENOMEM; 4812 } 4813 } else 4814 old_opts.s_qf_names[i] = NULL; 4815 #endif 4816 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4817 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4818 4819 /* 4820 * Allow the "check" option to be passed as a remount option. 4821 */ 4822 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4823 err = -EINVAL; 4824 goto restore_opts; 4825 } 4826 4827 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4828 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4829 ext4_msg(sb, KERN_ERR, "can't mount with " 4830 "both data=journal and delalloc"); 4831 err = -EINVAL; 4832 goto restore_opts; 4833 } 4834 if (test_opt(sb, DIOREAD_NOLOCK)) { 4835 ext4_msg(sb, KERN_ERR, "can't mount with " 4836 "both data=journal and dioread_nolock"); 4837 err = -EINVAL; 4838 goto restore_opts; 4839 } 4840 } 4841 4842 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4843 ext4_abort(sb, "Abort forced by user"); 4844 4845 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4846 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4847 4848 es = sbi->s_es; 4849 4850 if (sbi->s_journal) { 4851 ext4_init_journal_params(sb, sbi->s_journal); 4852 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4853 } 4854 4855 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4856 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4857 err = -EROFS; 4858 goto restore_opts; 4859 } 4860 4861 if (*flags & MS_RDONLY) { 4862 err = sync_filesystem(sb); 4863 if (err < 0) 4864 goto restore_opts; 4865 err = dquot_suspend(sb, -1); 4866 if (err < 0) 4867 goto restore_opts; 4868 4869 /* 4870 * First of all, the unconditional stuff we have to do 4871 * to disable replay of the journal when we next remount 4872 */ 4873 sb->s_flags |= MS_RDONLY; 4874 4875 /* 4876 * OK, test if we are remounting a valid rw partition 4877 * readonly, and if so set the rdonly flag and then 4878 * mark the partition as valid again. 4879 */ 4880 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4881 (sbi->s_mount_state & EXT4_VALID_FS)) 4882 es->s_state = cpu_to_le16(sbi->s_mount_state); 4883 4884 if (sbi->s_journal) 4885 ext4_mark_recovery_complete(sb, es); 4886 } else { 4887 /* Make sure we can mount this feature set readwrite */ 4888 if (!ext4_feature_set_ok(sb, 0)) { 4889 err = -EROFS; 4890 goto restore_opts; 4891 } 4892 /* 4893 * Make sure the group descriptor checksums 4894 * are sane. If they aren't, refuse to remount r/w. 4895 */ 4896 for (g = 0; g < sbi->s_groups_count; g++) { 4897 struct ext4_group_desc *gdp = 4898 ext4_get_group_desc(sb, g, NULL); 4899 4900 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4901 ext4_msg(sb, KERN_ERR, 4902 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4903 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4904 le16_to_cpu(gdp->bg_checksum)); 4905 err = -EINVAL; 4906 goto restore_opts; 4907 } 4908 } 4909 4910 /* 4911 * If we have an unprocessed orphan list hanging 4912 * around from a previously readonly bdev mount, 4913 * require a full umount/remount for now. 4914 */ 4915 if (es->s_last_orphan) { 4916 ext4_msg(sb, KERN_WARNING, "Couldn't " 4917 "remount RDWR because of unprocessed " 4918 "orphan inode list. Please " 4919 "umount/remount instead"); 4920 err = -EINVAL; 4921 goto restore_opts; 4922 } 4923 4924 /* 4925 * Mounting a RDONLY partition read-write, so reread 4926 * and store the current valid flag. (It may have 4927 * been changed by e2fsck since we originally mounted 4928 * the partition.) 4929 */ 4930 if (sbi->s_journal) 4931 ext4_clear_journal_err(sb, es); 4932 sbi->s_mount_state = le16_to_cpu(es->s_state); 4933 if (!ext4_setup_super(sb, es, 0)) 4934 sb->s_flags &= ~MS_RDONLY; 4935 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4936 EXT4_FEATURE_INCOMPAT_MMP)) 4937 if (ext4_multi_mount_protect(sb, 4938 le64_to_cpu(es->s_mmp_block))) { 4939 err = -EROFS; 4940 goto restore_opts; 4941 } 4942 enable_quota = 1; 4943 } 4944 } 4945 4946 /* 4947 * Reinitialize lazy itable initialization thread based on 4948 * current settings 4949 */ 4950 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4951 ext4_unregister_li_request(sb); 4952 else { 4953 ext4_group_t first_not_zeroed; 4954 first_not_zeroed = ext4_has_uninit_itable(sb); 4955 ext4_register_li_request(sb, first_not_zeroed); 4956 } 4957 4958 ext4_setup_system_zone(sb); 4959 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4960 ext4_commit_super(sb, 1); 4961 4962 #ifdef CONFIG_QUOTA 4963 /* Release old quota file names */ 4964 for (i = 0; i < MAXQUOTAS; i++) 4965 kfree(old_opts.s_qf_names[i]); 4966 if (enable_quota) { 4967 if (sb_any_quota_suspended(sb)) 4968 dquot_resume(sb, -1); 4969 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4970 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4971 err = ext4_enable_quotas(sb); 4972 if (err) 4973 goto restore_opts; 4974 } 4975 } 4976 #endif 4977 4978 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4979 kfree(orig_data); 4980 return 0; 4981 4982 restore_opts: 4983 sb->s_flags = old_sb_flags; 4984 sbi->s_mount_opt = old_opts.s_mount_opt; 4985 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4986 sbi->s_resuid = old_opts.s_resuid; 4987 sbi->s_resgid = old_opts.s_resgid; 4988 sbi->s_commit_interval = old_opts.s_commit_interval; 4989 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4990 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4991 #ifdef CONFIG_QUOTA 4992 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4993 for (i = 0; i < MAXQUOTAS; i++) { 4994 kfree(sbi->s_qf_names[i]); 4995 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4996 } 4997 #endif 4998 kfree(orig_data); 4999 return err; 5000 } 5001 5002 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5003 { 5004 struct super_block *sb = dentry->d_sb; 5005 struct ext4_sb_info *sbi = EXT4_SB(sb); 5006 struct ext4_super_block *es = sbi->s_es; 5007 ext4_fsblk_t overhead = 0, resv_blocks; 5008 u64 fsid; 5009 s64 bfree; 5010 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5011 5012 if (!test_opt(sb, MINIX_DF)) 5013 overhead = sbi->s_overhead; 5014 5015 buf->f_type = EXT4_SUPER_MAGIC; 5016 buf->f_bsize = sb->s_blocksize; 5017 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5018 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5019 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5020 /* prevent underflow in case that few free space is available */ 5021 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5022 buf->f_bavail = buf->f_bfree - 5023 (ext4_r_blocks_count(es) + resv_blocks); 5024 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5025 buf->f_bavail = 0; 5026 buf->f_files = le32_to_cpu(es->s_inodes_count); 5027 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5028 buf->f_namelen = EXT4_NAME_LEN; 5029 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5030 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5031 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5032 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5033 5034 return 0; 5035 } 5036 5037 /* Helper function for writing quotas on sync - we need to start transaction 5038 * before quota file is locked for write. Otherwise the are possible deadlocks: 5039 * Process 1 Process 2 5040 * ext4_create() quota_sync() 5041 * jbd2_journal_start() write_dquot() 5042 * dquot_initialize() down(dqio_mutex) 5043 * down(dqio_mutex) jbd2_journal_start() 5044 * 5045 */ 5046 5047 #ifdef CONFIG_QUOTA 5048 5049 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5050 { 5051 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5052 } 5053 5054 static int ext4_write_dquot(struct dquot *dquot) 5055 { 5056 int ret, err; 5057 handle_t *handle; 5058 struct inode *inode; 5059 5060 inode = dquot_to_inode(dquot); 5061 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5062 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5063 if (IS_ERR(handle)) 5064 return PTR_ERR(handle); 5065 ret = dquot_commit(dquot); 5066 err = ext4_journal_stop(handle); 5067 if (!ret) 5068 ret = err; 5069 return ret; 5070 } 5071 5072 static int ext4_acquire_dquot(struct dquot *dquot) 5073 { 5074 int ret, err; 5075 handle_t *handle; 5076 5077 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5078 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5079 if (IS_ERR(handle)) 5080 return PTR_ERR(handle); 5081 ret = dquot_acquire(dquot); 5082 err = ext4_journal_stop(handle); 5083 if (!ret) 5084 ret = err; 5085 return ret; 5086 } 5087 5088 static int ext4_release_dquot(struct dquot *dquot) 5089 { 5090 int ret, err; 5091 handle_t *handle; 5092 5093 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5094 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5095 if (IS_ERR(handle)) { 5096 /* Release dquot anyway to avoid endless cycle in dqput() */ 5097 dquot_release(dquot); 5098 return PTR_ERR(handle); 5099 } 5100 ret = dquot_release(dquot); 5101 err = ext4_journal_stop(handle); 5102 if (!ret) 5103 ret = err; 5104 return ret; 5105 } 5106 5107 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5108 { 5109 struct super_block *sb = dquot->dq_sb; 5110 struct ext4_sb_info *sbi = EXT4_SB(sb); 5111 5112 /* Are we journaling quotas? */ 5113 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5114 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5115 dquot_mark_dquot_dirty(dquot); 5116 return ext4_write_dquot(dquot); 5117 } else { 5118 return dquot_mark_dquot_dirty(dquot); 5119 } 5120 } 5121 5122 static int ext4_write_info(struct super_block *sb, int type) 5123 { 5124 int ret, err; 5125 handle_t *handle; 5126 5127 /* Data block + inode block */ 5128 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5129 if (IS_ERR(handle)) 5130 return PTR_ERR(handle); 5131 ret = dquot_commit_info(sb, type); 5132 err = ext4_journal_stop(handle); 5133 if (!ret) 5134 ret = err; 5135 return ret; 5136 } 5137 5138 /* 5139 * Turn on quotas during mount time - we need to find 5140 * the quota file and such... 5141 */ 5142 static int ext4_quota_on_mount(struct super_block *sb, int type) 5143 { 5144 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5145 EXT4_SB(sb)->s_jquota_fmt, type); 5146 } 5147 5148 /* 5149 * Standard function to be called on quota_on 5150 */ 5151 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5152 struct path *path) 5153 { 5154 int err; 5155 5156 if (!test_opt(sb, QUOTA)) 5157 return -EINVAL; 5158 5159 /* Quotafile not on the same filesystem? */ 5160 if (path->dentry->d_sb != sb) 5161 return -EXDEV; 5162 /* Journaling quota? */ 5163 if (EXT4_SB(sb)->s_qf_names[type]) { 5164 /* Quotafile not in fs root? */ 5165 if (path->dentry->d_parent != sb->s_root) 5166 ext4_msg(sb, KERN_WARNING, 5167 "Quota file not on filesystem root. " 5168 "Journaled quota will not work"); 5169 } 5170 5171 /* 5172 * When we journal data on quota file, we have to flush journal to see 5173 * all updates to the file when we bypass pagecache... 5174 */ 5175 if (EXT4_SB(sb)->s_journal && 5176 ext4_should_journal_data(path->dentry->d_inode)) { 5177 /* 5178 * We don't need to lock updates but journal_flush() could 5179 * otherwise be livelocked... 5180 */ 5181 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5182 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5183 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5184 if (err) 5185 return err; 5186 } 5187 5188 return dquot_quota_on(sb, type, format_id, path); 5189 } 5190 5191 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5192 unsigned int flags) 5193 { 5194 int err; 5195 struct inode *qf_inode; 5196 unsigned long qf_inums[MAXQUOTAS] = { 5197 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5198 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5199 }; 5200 5201 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5202 5203 if (!qf_inums[type]) 5204 return -EPERM; 5205 5206 qf_inode = ext4_iget(sb, qf_inums[type]); 5207 if (IS_ERR(qf_inode)) { 5208 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5209 return PTR_ERR(qf_inode); 5210 } 5211 5212 /* Don't account quota for quota files to avoid recursion */ 5213 qf_inode->i_flags |= S_NOQUOTA; 5214 err = dquot_enable(qf_inode, type, format_id, flags); 5215 iput(qf_inode); 5216 5217 return err; 5218 } 5219 5220 /* Enable usage tracking for all quota types. */ 5221 static int ext4_enable_quotas(struct super_block *sb) 5222 { 5223 int type, err = 0; 5224 unsigned long qf_inums[MAXQUOTAS] = { 5225 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5226 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5227 }; 5228 5229 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5230 for (type = 0; type < MAXQUOTAS; type++) { 5231 if (qf_inums[type]) { 5232 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5233 DQUOT_USAGE_ENABLED); 5234 if (err) { 5235 ext4_warning(sb, 5236 "Failed to enable quota tracking " 5237 "(type=%d, err=%d). Please run " 5238 "e2fsck to fix.", type, err); 5239 return err; 5240 } 5241 } 5242 } 5243 return 0; 5244 } 5245 5246 /* 5247 * quota_on function that is used when QUOTA feature is set. 5248 */ 5249 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5250 int format_id) 5251 { 5252 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5253 return -EINVAL; 5254 5255 /* 5256 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5257 */ 5258 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5259 } 5260 5261 static int ext4_quota_off(struct super_block *sb, int type) 5262 { 5263 struct inode *inode = sb_dqopt(sb)->files[type]; 5264 handle_t *handle; 5265 5266 /* Force all delayed allocation blocks to be allocated. 5267 * Caller already holds s_umount sem */ 5268 if (test_opt(sb, DELALLOC)) 5269 sync_filesystem(sb); 5270 5271 if (!inode) 5272 goto out; 5273 5274 /* Update modification times of quota files when userspace can 5275 * start looking at them */ 5276 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5277 if (IS_ERR(handle)) 5278 goto out; 5279 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5280 ext4_mark_inode_dirty(handle, inode); 5281 ext4_journal_stop(handle); 5282 5283 out: 5284 return dquot_quota_off(sb, type); 5285 } 5286 5287 /* 5288 * quota_off function that is used when QUOTA feature is set. 5289 */ 5290 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5291 { 5292 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5293 return -EINVAL; 5294 5295 /* Disable only the limits. */ 5296 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5297 } 5298 5299 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5300 * acquiring the locks... As quota files are never truncated and quota code 5301 * itself serializes the operations (and no one else should touch the files) 5302 * we don't have to be afraid of races */ 5303 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5304 size_t len, loff_t off) 5305 { 5306 struct inode *inode = sb_dqopt(sb)->files[type]; 5307 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5308 int err = 0; 5309 int offset = off & (sb->s_blocksize - 1); 5310 int tocopy; 5311 size_t toread; 5312 struct buffer_head *bh; 5313 loff_t i_size = i_size_read(inode); 5314 5315 if (off > i_size) 5316 return 0; 5317 if (off+len > i_size) 5318 len = i_size-off; 5319 toread = len; 5320 while (toread > 0) { 5321 tocopy = sb->s_blocksize - offset < toread ? 5322 sb->s_blocksize - offset : toread; 5323 bh = ext4_bread(NULL, inode, blk, 0, &err); 5324 if (err) 5325 return err; 5326 if (!bh) /* A hole? */ 5327 memset(data, 0, tocopy); 5328 else 5329 memcpy(data, bh->b_data+offset, tocopy); 5330 brelse(bh); 5331 offset = 0; 5332 toread -= tocopy; 5333 data += tocopy; 5334 blk++; 5335 } 5336 return len; 5337 } 5338 5339 /* Write to quotafile (we know the transaction is already started and has 5340 * enough credits) */ 5341 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5342 const char *data, size_t len, loff_t off) 5343 { 5344 struct inode *inode = sb_dqopt(sb)->files[type]; 5345 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5346 int err = 0; 5347 int offset = off & (sb->s_blocksize - 1); 5348 struct buffer_head *bh; 5349 handle_t *handle = journal_current_handle(); 5350 5351 if (EXT4_SB(sb)->s_journal && !handle) { 5352 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5353 " cancelled because transaction is not started", 5354 (unsigned long long)off, (unsigned long long)len); 5355 return -EIO; 5356 } 5357 /* 5358 * Since we account only one data block in transaction credits, 5359 * then it is impossible to cross a block boundary. 5360 */ 5361 if (sb->s_blocksize - offset < len) { 5362 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5363 " cancelled because not block aligned", 5364 (unsigned long long)off, (unsigned long long)len); 5365 return -EIO; 5366 } 5367 5368 bh = ext4_bread(handle, inode, blk, 1, &err); 5369 if (!bh) 5370 goto out; 5371 BUFFER_TRACE(bh, "get write access"); 5372 err = ext4_journal_get_write_access(handle, bh); 5373 if (err) { 5374 brelse(bh); 5375 goto out; 5376 } 5377 lock_buffer(bh); 5378 memcpy(bh->b_data+offset, data, len); 5379 flush_dcache_page(bh->b_page); 5380 unlock_buffer(bh); 5381 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5382 brelse(bh); 5383 out: 5384 if (err) 5385 return err; 5386 if (inode->i_size < off + len) { 5387 i_size_write(inode, off + len); 5388 EXT4_I(inode)->i_disksize = inode->i_size; 5389 ext4_mark_inode_dirty(handle, inode); 5390 } 5391 return len; 5392 } 5393 5394 #endif 5395 5396 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5397 const char *dev_name, void *data) 5398 { 5399 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5400 } 5401 5402 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5403 static inline void register_as_ext2(void) 5404 { 5405 int err = register_filesystem(&ext2_fs_type); 5406 if (err) 5407 printk(KERN_WARNING 5408 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5409 } 5410 5411 static inline void unregister_as_ext2(void) 5412 { 5413 unregister_filesystem(&ext2_fs_type); 5414 } 5415 5416 static inline int ext2_feature_set_ok(struct super_block *sb) 5417 { 5418 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5419 return 0; 5420 if (sb->s_flags & MS_RDONLY) 5421 return 1; 5422 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5423 return 0; 5424 return 1; 5425 } 5426 #else 5427 static inline void register_as_ext2(void) { } 5428 static inline void unregister_as_ext2(void) { } 5429 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5430 #endif 5431 5432 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5433 static inline void register_as_ext3(void) 5434 { 5435 int err = register_filesystem(&ext3_fs_type); 5436 if (err) 5437 printk(KERN_WARNING 5438 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5439 } 5440 5441 static inline void unregister_as_ext3(void) 5442 { 5443 unregister_filesystem(&ext3_fs_type); 5444 } 5445 5446 static inline int ext3_feature_set_ok(struct super_block *sb) 5447 { 5448 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5449 return 0; 5450 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5451 return 0; 5452 if (sb->s_flags & MS_RDONLY) 5453 return 1; 5454 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5455 return 0; 5456 return 1; 5457 } 5458 #else 5459 static inline void register_as_ext3(void) { } 5460 static inline void unregister_as_ext3(void) { } 5461 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5462 #endif 5463 5464 static struct file_system_type ext4_fs_type = { 5465 .owner = THIS_MODULE, 5466 .name = "ext4", 5467 .mount = ext4_mount, 5468 .kill_sb = kill_block_super, 5469 .fs_flags = FS_REQUIRES_DEV, 5470 }; 5471 MODULE_ALIAS_FS("ext4"); 5472 5473 static int __init ext4_init_feat_adverts(void) 5474 { 5475 struct ext4_features *ef; 5476 int ret = -ENOMEM; 5477 5478 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5479 if (!ef) 5480 goto out; 5481 5482 ef->f_kobj.kset = ext4_kset; 5483 init_completion(&ef->f_kobj_unregister); 5484 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5485 "features"); 5486 if (ret) { 5487 kfree(ef); 5488 goto out; 5489 } 5490 5491 ext4_feat = ef; 5492 ret = 0; 5493 out: 5494 return ret; 5495 } 5496 5497 static void ext4_exit_feat_adverts(void) 5498 { 5499 kobject_put(&ext4_feat->f_kobj); 5500 wait_for_completion(&ext4_feat->f_kobj_unregister); 5501 kfree(ext4_feat); 5502 } 5503 5504 /* Shared across all ext4 file systems */ 5505 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5506 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5507 5508 static int __init ext4_init_fs(void) 5509 { 5510 int i, err; 5511 5512 ext4_li_info = NULL; 5513 mutex_init(&ext4_li_mtx); 5514 5515 /* Build-time check for flags consistency */ 5516 ext4_check_flag_values(); 5517 5518 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5519 mutex_init(&ext4__aio_mutex[i]); 5520 init_waitqueue_head(&ext4__ioend_wq[i]); 5521 } 5522 5523 err = ext4_init_es(); 5524 if (err) 5525 return err; 5526 5527 err = ext4_init_pageio(); 5528 if (err) 5529 goto out7; 5530 5531 err = ext4_init_system_zone(); 5532 if (err) 5533 goto out6; 5534 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5535 if (!ext4_kset) { 5536 err = -ENOMEM; 5537 goto out5; 5538 } 5539 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5540 5541 err = ext4_init_feat_adverts(); 5542 if (err) 5543 goto out4; 5544 5545 err = ext4_init_mballoc(); 5546 if (err) 5547 goto out2; 5548 else 5549 ext4_mballoc_ready = 1; 5550 err = init_inodecache(); 5551 if (err) 5552 goto out1; 5553 register_as_ext3(); 5554 register_as_ext2(); 5555 err = register_filesystem(&ext4_fs_type); 5556 if (err) 5557 goto out; 5558 5559 return 0; 5560 out: 5561 unregister_as_ext2(); 5562 unregister_as_ext3(); 5563 destroy_inodecache(); 5564 out1: 5565 ext4_mballoc_ready = 0; 5566 ext4_exit_mballoc(); 5567 out2: 5568 ext4_exit_feat_adverts(); 5569 out4: 5570 if (ext4_proc_root) 5571 remove_proc_entry("fs/ext4", NULL); 5572 kset_unregister(ext4_kset); 5573 out5: 5574 ext4_exit_system_zone(); 5575 out6: 5576 ext4_exit_pageio(); 5577 out7: 5578 ext4_exit_es(); 5579 5580 return err; 5581 } 5582 5583 static void __exit ext4_exit_fs(void) 5584 { 5585 ext4_destroy_lazyinit_thread(); 5586 unregister_as_ext2(); 5587 unregister_as_ext3(); 5588 unregister_filesystem(&ext4_fs_type); 5589 destroy_inodecache(); 5590 ext4_exit_mballoc(); 5591 ext4_exit_feat_adverts(); 5592 remove_proc_entry("fs/ext4", NULL); 5593 kset_unregister(ext4_kset); 5594 ext4_exit_system_zone(); 5595 ext4_exit_pageio(); 5596 ext4_exit_es(); 5597 } 5598 5599 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5600 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5601 MODULE_LICENSE("GPL"); 5602 module_init(ext4_init_fs) 5603 module_exit(ext4_exit_fs) 5604