xref: /openbmc/linux/fs/ext4/super.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94  * i_mmap_rwsem (inode->i_mmap_rwsem)!
95  *
96  * page fault path:
97  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98  *   page lock -> i_data_sem (rw)
99  *
100  * buffered write path:
101  * sb_start_write -> i_mutex -> mmap_lock
102  * sb_start_write -> i_mutex -> transaction start -> page lock ->
103  *   i_data_sem (rw)
104  *
105  * truncate:
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108  *   i_data_sem (rw)
109  *
110  * direct IO:
111  * sb_start_write -> i_mutex -> mmap_lock
112  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113  *
114  * writepages:
115  * transaction start -> page lock(s) -> i_data_sem (rw)
116  */
117 
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 	.owner		= THIS_MODULE,
121 	.name		= "ext2",
122 	.mount		= ext4_mount,
123 	.kill_sb	= kill_block_super,
124 	.fs_flags	= FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132 
133 
134 static struct file_system_type ext3_fs_type = {
135 	.owner		= THIS_MODULE,
136 	.name		= "ext3",
137 	.mount		= ext4_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 
145 
146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 				  bh_end_io_t *end_io)
148 {
149 	/*
150 	 * buffer's verified bit is no longer valid after reading from
151 	 * disk again due to write out error, clear it to make sure we
152 	 * recheck the buffer contents.
153 	 */
154 	clear_buffer_verified(bh);
155 
156 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 	get_bh(bh);
158 	submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160 
161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 			 bh_end_io_t *end_io)
163 {
164 	BUG_ON(!buffer_locked(bh));
165 
166 	if (ext4_buffer_uptodate(bh)) {
167 		unlock_buffer(bh);
168 		return;
169 	}
170 	__ext4_read_bh(bh, op_flags, end_io);
171 }
172 
173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 	BUG_ON(!buffer_locked(bh));
176 
177 	if (ext4_buffer_uptodate(bh)) {
178 		unlock_buffer(bh);
179 		return 0;
180 	}
181 
182 	__ext4_read_bh(bh, op_flags, end_io);
183 
184 	wait_on_buffer(bh);
185 	if (buffer_uptodate(bh))
186 		return 0;
187 	return -EIO;
188 }
189 
190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 	if (trylock_buffer(bh)) {
193 		if (wait)
194 			return ext4_read_bh(bh, op_flags, NULL);
195 		ext4_read_bh_nowait(bh, op_flags, NULL);
196 		return 0;
197 	}
198 	if (wait) {
199 		wait_on_buffer(bh);
200 		if (buffer_uptodate(bh))
201 			return 0;
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 /*
208  * This works like __bread_gfp() except it uses ERR_PTR for error
209  * returns.  Currently with sb_bread it's impossible to distinguish
210  * between ENOMEM and EIO situations (since both result in a NULL
211  * return.
212  */
213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 					       sector_t block, int op_flags,
215 					       gfp_t gfp)
216 {
217 	struct buffer_head *bh;
218 	int ret;
219 
220 	bh = sb_getblk_gfp(sb, block, gfp);
221 	if (bh == NULL)
222 		return ERR_PTR(-ENOMEM);
223 	if (ext4_buffer_uptodate(bh))
224 		return bh;
225 
226 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
227 	if (ret) {
228 		put_bh(bh);
229 		return ERR_PTR(ret);
230 	}
231 	return bh;
232 }
233 
234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
235 				   int op_flags)
236 {
237 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
238 }
239 
240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
241 					    sector_t block)
242 {
243 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
244 }
245 
246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
247 {
248 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
249 
250 	if (likely(bh)) {
251 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
252 		brelse(bh);
253 	}
254 }
255 
256 static int ext4_verify_csum_type(struct super_block *sb,
257 				 struct ext4_super_block *es)
258 {
259 	if (!ext4_has_feature_metadata_csum(sb))
260 		return 1;
261 
262 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
263 }
264 
265 static __le32 ext4_superblock_csum(struct super_block *sb,
266 				   struct ext4_super_block *es)
267 {
268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
269 	int offset = offsetof(struct ext4_super_block, s_checksum);
270 	__u32 csum;
271 
272 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
273 
274 	return cpu_to_le32(csum);
275 }
276 
277 static int ext4_superblock_csum_verify(struct super_block *sb,
278 				       struct ext4_super_block *es)
279 {
280 	if (!ext4_has_metadata_csum(sb))
281 		return 1;
282 
283 	return es->s_checksum == ext4_superblock_csum(sb, es);
284 }
285 
286 void ext4_superblock_csum_set(struct super_block *sb)
287 {
288 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
289 
290 	if (!ext4_has_metadata_csum(sb))
291 		return;
292 
293 	es->s_checksum = ext4_superblock_csum(sb, es);
294 }
295 
296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 			       struct ext4_group_desc *bg)
298 {
299 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
302 }
303 
304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 			       struct ext4_group_desc *bg)
306 {
307 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
310 }
311 
312 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 			      struct ext4_group_desc *bg)
314 {
315 	return le32_to_cpu(bg->bg_inode_table_lo) |
316 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
318 }
319 
320 __u32 ext4_free_group_clusters(struct super_block *sb,
321 			       struct ext4_group_desc *bg)
322 {
323 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
326 }
327 
328 __u32 ext4_free_inodes_count(struct super_block *sb,
329 			      struct ext4_group_desc *bg)
330 {
331 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
334 }
335 
336 __u32 ext4_used_dirs_count(struct super_block *sb,
337 			      struct ext4_group_desc *bg)
338 {
339 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
342 }
343 
344 __u32 ext4_itable_unused_count(struct super_block *sb,
345 			      struct ext4_group_desc *bg)
346 {
347 	return le16_to_cpu(bg->bg_itable_unused_lo) |
348 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
350 }
351 
352 void ext4_block_bitmap_set(struct super_block *sb,
353 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
354 {
355 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
358 }
359 
360 void ext4_inode_bitmap_set(struct super_block *sb,
361 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
362 {
363 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
364 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
366 }
367 
368 void ext4_inode_table_set(struct super_block *sb,
369 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
370 {
371 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
374 }
375 
376 void ext4_free_group_clusters_set(struct super_block *sb,
377 				  struct ext4_group_desc *bg, __u32 count)
378 {
379 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
382 }
383 
384 void ext4_free_inodes_set(struct super_block *sb,
385 			  struct ext4_group_desc *bg, __u32 count)
386 {
387 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
390 }
391 
392 void ext4_used_dirs_set(struct super_block *sb,
393 			  struct ext4_group_desc *bg, __u32 count)
394 {
395 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
398 }
399 
400 void ext4_itable_unused_set(struct super_block *sb,
401 			  struct ext4_group_desc *bg, __u32 count)
402 {
403 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
406 }
407 
408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
409 {
410 	now = clamp_val(now, 0, (1ull << 40) - 1);
411 
412 	*lo = cpu_to_le32(lower_32_bits(now));
413 	*hi = upper_32_bits(now);
414 }
415 
416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
417 {
418 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
419 }
420 #define ext4_update_tstamp(es, tstamp) \
421 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 			     ktime_get_real_seconds())
423 #define ext4_get_tstamp(es, tstamp) \
424 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425 
426 /*
427  * The del_gendisk() function uninitializes the disk-specific data
428  * structures, including the bdi structure, without telling anyone
429  * else.  Once this happens, any attempt to call mark_buffer_dirty()
430  * (for example, by ext4_commit_super), will cause a kernel OOPS.
431  * This is a kludge to prevent these oops until we can put in a proper
432  * hook in del_gendisk() to inform the VFS and file system layers.
433  */
434 static int block_device_ejected(struct super_block *sb)
435 {
436 	struct inode *bd_inode = sb->s_bdev->bd_inode;
437 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
438 
439 	return bdi->dev == NULL;
440 }
441 
442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
443 {
444 	struct super_block		*sb = journal->j_private;
445 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
446 	int				error = is_journal_aborted(journal);
447 	struct ext4_journal_cb_entry	*jce;
448 
449 	BUG_ON(txn->t_state == T_FINISHED);
450 
451 	ext4_process_freed_data(sb, txn->t_tid);
452 
453 	spin_lock(&sbi->s_md_lock);
454 	while (!list_empty(&txn->t_private_list)) {
455 		jce = list_entry(txn->t_private_list.next,
456 				 struct ext4_journal_cb_entry, jce_list);
457 		list_del_init(&jce->jce_list);
458 		spin_unlock(&sbi->s_md_lock);
459 		jce->jce_func(sb, jce, error);
460 		spin_lock(&sbi->s_md_lock);
461 	}
462 	spin_unlock(&sbi->s_md_lock);
463 }
464 
465 /*
466  * This writepage callback for write_cache_pages()
467  * takes care of a few cases after page cleaning.
468  *
469  * write_cache_pages() already checks for dirty pages
470  * and calls clear_page_dirty_for_io(), which we want,
471  * to write protect the pages.
472  *
473  * However, we may have to redirty a page (see below.)
474  */
475 static int ext4_journalled_writepage_callback(struct page *page,
476 					      struct writeback_control *wbc,
477 					      void *data)
478 {
479 	transaction_t *transaction = (transaction_t *) data;
480 	struct buffer_head *bh, *head;
481 	struct journal_head *jh;
482 
483 	bh = head = page_buffers(page);
484 	do {
485 		/*
486 		 * We have to redirty a page in these cases:
487 		 * 1) If buffer is dirty, it means the page was dirty because it
488 		 * contains a buffer that needs checkpointing. So the dirty bit
489 		 * needs to be preserved so that checkpointing writes the buffer
490 		 * properly.
491 		 * 2) If buffer is not part of the committing transaction
492 		 * (we may have just accidentally come across this buffer because
493 		 * inode range tracking is not exact) or if the currently running
494 		 * transaction already contains this buffer as well, dirty bit
495 		 * needs to be preserved so that the buffer gets writeprotected
496 		 * properly on running transaction's commit.
497 		 */
498 		jh = bh2jh(bh);
499 		if (buffer_dirty(bh) ||
500 		    (jh && (jh->b_transaction != transaction ||
501 			    jh->b_next_transaction))) {
502 			redirty_page_for_writepage(wbc, page);
503 			goto out;
504 		}
505 	} while ((bh = bh->b_this_page) != head);
506 
507 out:
508 	return AOP_WRITEPAGE_ACTIVATE;
509 }
510 
511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
512 {
513 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 	struct writeback_control wbc = {
515 		.sync_mode =  WB_SYNC_ALL,
516 		.nr_to_write = LONG_MAX,
517 		.range_start = jinode->i_dirty_start,
518 		.range_end = jinode->i_dirty_end,
519         };
520 
521 	return write_cache_pages(mapping, &wbc,
522 				 ext4_journalled_writepage_callback,
523 				 jinode->i_transaction);
524 }
525 
526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
527 {
528 	int ret;
529 
530 	if (ext4_should_journal_data(jinode->i_vfs_inode))
531 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
532 	else
533 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
534 
535 	return ret;
536 }
537 
538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
539 {
540 	int ret = 0;
541 
542 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
544 
545 	return ret;
546 }
547 
548 static bool system_going_down(void)
549 {
550 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 		|| system_state == SYSTEM_RESTART;
552 }
553 
554 struct ext4_err_translation {
555 	int code;
556 	int errno;
557 };
558 
559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
560 
561 static struct ext4_err_translation err_translation[] = {
562 	EXT4_ERR_TRANSLATE(EIO),
563 	EXT4_ERR_TRANSLATE(ENOMEM),
564 	EXT4_ERR_TRANSLATE(EFSBADCRC),
565 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 	EXT4_ERR_TRANSLATE(ENOSPC),
567 	EXT4_ERR_TRANSLATE(ENOKEY),
568 	EXT4_ERR_TRANSLATE(EROFS),
569 	EXT4_ERR_TRANSLATE(EFBIG),
570 	EXT4_ERR_TRANSLATE(EEXIST),
571 	EXT4_ERR_TRANSLATE(ERANGE),
572 	EXT4_ERR_TRANSLATE(EOVERFLOW),
573 	EXT4_ERR_TRANSLATE(EBUSY),
574 	EXT4_ERR_TRANSLATE(ENOTDIR),
575 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 	EXT4_ERR_TRANSLATE(EFAULT),
578 };
579 
580 static int ext4_errno_to_code(int errno)
581 {
582 	int i;
583 
584 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 		if (err_translation[i].errno == errno)
586 			return err_translation[i].code;
587 	return EXT4_ERR_UNKNOWN;
588 }
589 
590 static void save_error_info(struct super_block *sb, int error,
591 			    __u32 ino, __u64 block,
592 			    const char *func, unsigned int line)
593 {
594 	struct ext4_sb_info *sbi = EXT4_SB(sb);
595 
596 	/* We default to EFSCORRUPTED error... */
597 	if (error == 0)
598 		error = EFSCORRUPTED;
599 
600 	spin_lock(&sbi->s_error_lock);
601 	sbi->s_add_error_count++;
602 	sbi->s_last_error_code = error;
603 	sbi->s_last_error_line = line;
604 	sbi->s_last_error_ino = ino;
605 	sbi->s_last_error_block = block;
606 	sbi->s_last_error_func = func;
607 	sbi->s_last_error_time = ktime_get_real_seconds();
608 	if (!sbi->s_first_error_time) {
609 		sbi->s_first_error_code = error;
610 		sbi->s_first_error_line = line;
611 		sbi->s_first_error_ino = ino;
612 		sbi->s_first_error_block = block;
613 		sbi->s_first_error_func = func;
614 		sbi->s_first_error_time = sbi->s_last_error_time;
615 	}
616 	spin_unlock(&sbi->s_error_lock);
617 }
618 
619 /* Deal with the reporting of failure conditions on a filesystem such as
620  * inconsistencies detected or read IO failures.
621  *
622  * On ext2, we can store the error state of the filesystem in the
623  * superblock.  That is not possible on ext4, because we may have other
624  * write ordering constraints on the superblock which prevent us from
625  * writing it out straight away; and given that the journal is about to
626  * be aborted, we can't rely on the current, or future, transactions to
627  * write out the superblock safely.
628  *
629  * We'll just use the jbd2_journal_abort() error code to record an error in
630  * the journal instead.  On recovery, the journal will complain about
631  * that error until we've noted it down and cleared it.
632  *
633  * If force_ro is set, we unconditionally force the filesystem into an
634  * ABORT|READONLY state, unless the error response on the fs has been set to
635  * panic in which case we take the easy way out and panic immediately. This is
636  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637  * at a critical moment in log management.
638  */
639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 			      __u32 ino, __u64 block,
641 			      const char *func, unsigned int line)
642 {
643 	journal_t *journal = EXT4_SB(sb)->s_journal;
644 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
645 
646 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 	if (test_opt(sb, WARN_ON_ERROR))
648 		WARN_ON_ONCE(1);
649 
650 	if (!continue_fs && !sb_rdonly(sb)) {
651 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
652 		if (journal)
653 			jbd2_journal_abort(journal, -EIO);
654 	}
655 
656 	if (!bdev_read_only(sb->s_bdev)) {
657 		save_error_info(sb, error, ino, block, func, line);
658 		/*
659 		 * In case the fs should keep running, we need to writeout
660 		 * superblock through the journal. Due to lock ordering
661 		 * constraints, it may not be safe to do it right here so we
662 		 * defer superblock flushing to a workqueue.
663 		 */
664 		if (continue_fs)
665 			schedule_work(&EXT4_SB(sb)->s_error_work);
666 		else
667 			ext4_commit_super(sb);
668 	}
669 
670 	/*
671 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
672 	 * could panic during 'reboot -f' as the underlying device got already
673 	 * disabled.
674 	 */
675 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
676 		panic("EXT4-fs (device %s): panic forced after error\n",
677 			sb->s_id);
678 	}
679 
680 	if (sb_rdonly(sb) || continue_fs)
681 		return;
682 
683 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
684 	/*
685 	 * Make sure updated value of ->s_mount_flags will be visible before
686 	 * ->s_flags update
687 	 */
688 	smp_wmb();
689 	sb->s_flags |= SB_RDONLY;
690 }
691 
692 static void flush_stashed_error_work(struct work_struct *work)
693 {
694 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
695 						s_error_work);
696 	journal_t *journal = sbi->s_journal;
697 	handle_t *handle;
698 
699 	/*
700 	 * If the journal is still running, we have to write out superblock
701 	 * through the journal to avoid collisions of other journalled sb
702 	 * updates.
703 	 *
704 	 * We use directly jbd2 functions here to avoid recursing back into
705 	 * ext4 error handling code during handling of previous errors.
706 	 */
707 	if (!sb_rdonly(sbi->s_sb) && journal) {
708 		struct buffer_head *sbh = sbi->s_sbh;
709 		handle = jbd2_journal_start(journal, 1);
710 		if (IS_ERR(handle))
711 			goto write_directly;
712 		if (jbd2_journal_get_write_access(handle, sbh)) {
713 			jbd2_journal_stop(handle);
714 			goto write_directly;
715 		}
716 		ext4_update_super(sbi->s_sb);
717 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
718 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
719 				 "superblock detected");
720 			clear_buffer_write_io_error(sbh);
721 			set_buffer_uptodate(sbh);
722 		}
723 
724 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
725 			jbd2_journal_stop(handle);
726 			goto write_directly;
727 		}
728 		jbd2_journal_stop(handle);
729 		ext4_notify_error_sysfs(sbi);
730 		return;
731 	}
732 write_directly:
733 	/*
734 	 * Write through journal failed. Write sb directly to get error info
735 	 * out and hope for the best.
736 	 */
737 	ext4_commit_super(sbi->s_sb);
738 	ext4_notify_error_sysfs(sbi);
739 }
740 
741 #define ext4_error_ratelimit(sb)					\
742 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
743 			     "EXT4-fs error")
744 
745 void __ext4_error(struct super_block *sb, const char *function,
746 		  unsigned int line, bool force_ro, int error, __u64 block,
747 		  const char *fmt, ...)
748 {
749 	struct va_format vaf;
750 	va_list args;
751 
752 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
753 		return;
754 
755 	trace_ext4_error(sb, function, line);
756 	if (ext4_error_ratelimit(sb)) {
757 		va_start(args, fmt);
758 		vaf.fmt = fmt;
759 		vaf.va = &args;
760 		printk(KERN_CRIT
761 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
762 		       sb->s_id, function, line, current->comm, &vaf);
763 		va_end(args);
764 	}
765 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
766 }
767 
768 void __ext4_error_inode(struct inode *inode, const char *function,
769 			unsigned int line, ext4_fsblk_t block, int error,
770 			const char *fmt, ...)
771 {
772 	va_list args;
773 	struct va_format vaf;
774 
775 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
776 		return;
777 
778 	trace_ext4_error(inode->i_sb, function, line);
779 	if (ext4_error_ratelimit(inode->i_sb)) {
780 		va_start(args, fmt);
781 		vaf.fmt = fmt;
782 		vaf.va = &args;
783 		if (block)
784 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
785 			       "inode #%lu: block %llu: comm %s: %pV\n",
786 			       inode->i_sb->s_id, function, line, inode->i_ino,
787 			       block, current->comm, &vaf);
788 		else
789 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
790 			       "inode #%lu: comm %s: %pV\n",
791 			       inode->i_sb->s_id, function, line, inode->i_ino,
792 			       current->comm, &vaf);
793 		va_end(args);
794 	}
795 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
796 			  function, line);
797 }
798 
799 void __ext4_error_file(struct file *file, const char *function,
800 		       unsigned int line, ext4_fsblk_t block,
801 		       const char *fmt, ...)
802 {
803 	va_list args;
804 	struct va_format vaf;
805 	struct inode *inode = file_inode(file);
806 	char pathname[80], *path;
807 
808 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
809 		return;
810 
811 	trace_ext4_error(inode->i_sb, function, line);
812 	if (ext4_error_ratelimit(inode->i_sb)) {
813 		path = file_path(file, pathname, sizeof(pathname));
814 		if (IS_ERR(path))
815 			path = "(unknown)";
816 		va_start(args, fmt);
817 		vaf.fmt = fmt;
818 		vaf.va = &args;
819 		if (block)
820 			printk(KERN_CRIT
821 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
822 			       "block %llu: comm %s: path %s: %pV\n",
823 			       inode->i_sb->s_id, function, line, inode->i_ino,
824 			       block, current->comm, path, &vaf);
825 		else
826 			printk(KERN_CRIT
827 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
828 			       "comm %s: path %s: %pV\n",
829 			       inode->i_sb->s_id, function, line, inode->i_ino,
830 			       current->comm, path, &vaf);
831 		va_end(args);
832 	}
833 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
834 			  function, line);
835 }
836 
837 const char *ext4_decode_error(struct super_block *sb, int errno,
838 			      char nbuf[16])
839 {
840 	char *errstr = NULL;
841 
842 	switch (errno) {
843 	case -EFSCORRUPTED:
844 		errstr = "Corrupt filesystem";
845 		break;
846 	case -EFSBADCRC:
847 		errstr = "Filesystem failed CRC";
848 		break;
849 	case -EIO:
850 		errstr = "IO failure";
851 		break;
852 	case -ENOMEM:
853 		errstr = "Out of memory";
854 		break;
855 	case -EROFS:
856 		if (!sb || (EXT4_SB(sb)->s_journal &&
857 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
858 			errstr = "Journal has aborted";
859 		else
860 			errstr = "Readonly filesystem";
861 		break;
862 	default:
863 		/* If the caller passed in an extra buffer for unknown
864 		 * errors, textualise them now.  Else we just return
865 		 * NULL. */
866 		if (nbuf) {
867 			/* Check for truncated error codes... */
868 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
869 				errstr = nbuf;
870 		}
871 		break;
872 	}
873 
874 	return errstr;
875 }
876 
877 /* __ext4_std_error decodes expected errors from journaling functions
878  * automatically and invokes the appropriate error response.  */
879 
880 void __ext4_std_error(struct super_block *sb, const char *function,
881 		      unsigned int line, int errno)
882 {
883 	char nbuf[16];
884 	const char *errstr;
885 
886 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
887 		return;
888 
889 	/* Special case: if the error is EROFS, and we're not already
890 	 * inside a transaction, then there's really no point in logging
891 	 * an error. */
892 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
893 		return;
894 
895 	if (ext4_error_ratelimit(sb)) {
896 		errstr = ext4_decode_error(sb, errno, nbuf);
897 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
898 		       sb->s_id, function, line, errstr);
899 	}
900 
901 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
902 }
903 
904 void __ext4_msg(struct super_block *sb,
905 		const char *prefix, const char *fmt, ...)
906 {
907 	struct va_format vaf;
908 	va_list args;
909 
910 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
911 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
912 		return;
913 
914 	va_start(args, fmt);
915 	vaf.fmt = fmt;
916 	vaf.va = &args;
917 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
918 	va_end(args);
919 }
920 
921 static int ext4_warning_ratelimit(struct super_block *sb)
922 {
923 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
924 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
925 			    "EXT4-fs warning");
926 }
927 
928 void __ext4_warning(struct super_block *sb, const char *function,
929 		    unsigned int line, const char *fmt, ...)
930 {
931 	struct va_format vaf;
932 	va_list args;
933 
934 	if (!ext4_warning_ratelimit(sb))
935 		return;
936 
937 	va_start(args, fmt);
938 	vaf.fmt = fmt;
939 	vaf.va = &args;
940 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
941 	       sb->s_id, function, line, &vaf);
942 	va_end(args);
943 }
944 
945 void __ext4_warning_inode(const struct inode *inode, const char *function,
946 			  unsigned int line, const char *fmt, ...)
947 {
948 	struct va_format vaf;
949 	va_list args;
950 
951 	if (!ext4_warning_ratelimit(inode->i_sb))
952 		return;
953 
954 	va_start(args, fmt);
955 	vaf.fmt = fmt;
956 	vaf.va = &args;
957 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
958 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
959 	       function, line, inode->i_ino, current->comm, &vaf);
960 	va_end(args);
961 }
962 
963 void __ext4_grp_locked_error(const char *function, unsigned int line,
964 			     struct super_block *sb, ext4_group_t grp,
965 			     unsigned long ino, ext4_fsblk_t block,
966 			     const char *fmt, ...)
967 __releases(bitlock)
968 __acquires(bitlock)
969 {
970 	struct va_format vaf;
971 	va_list args;
972 
973 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
974 		return;
975 
976 	trace_ext4_error(sb, function, line);
977 	if (ext4_error_ratelimit(sb)) {
978 		va_start(args, fmt);
979 		vaf.fmt = fmt;
980 		vaf.va = &args;
981 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
982 		       sb->s_id, function, line, grp);
983 		if (ino)
984 			printk(KERN_CONT "inode %lu: ", ino);
985 		if (block)
986 			printk(KERN_CONT "block %llu:",
987 			       (unsigned long long) block);
988 		printk(KERN_CONT "%pV\n", &vaf);
989 		va_end(args);
990 	}
991 
992 	if (test_opt(sb, ERRORS_CONT)) {
993 		if (test_opt(sb, WARN_ON_ERROR))
994 			WARN_ON_ONCE(1);
995 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
996 		if (!bdev_read_only(sb->s_bdev)) {
997 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
998 					line);
999 			schedule_work(&EXT4_SB(sb)->s_error_work);
1000 		}
1001 		return;
1002 	}
1003 	ext4_unlock_group(sb, grp);
1004 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1005 	/*
1006 	 * We only get here in the ERRORS_RO case; relocking the group
1007 	 * may be dangerous, but nothing bad will happen since the
1008 	 * filesystem will have already been marked read/only and the
1009 	 * journal has been aborted.  We return 1 as a hint to callers
1010 	 * who might what to use the return value from
1011 	 * ext4_grp_locked_error() to distinguish between the
1012 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1013 	 * aggressively from the ext4 function in question, with a
1014 	 * more appropriate error code.
1015 	 */
1016 	ext4_lock_group(sb, grp);
1017 	return;
1018 }
1019 
1020 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1021 				     ext4_group_t group,
1022 				     unsigned int flags)
1023 {
1024 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1025 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1026 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1027 	int ret;
1028 
1029 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1030 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1031 					    &grp->bb_state);
1032 		if (!ret)
1033 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1034 					   grp->bb_free);
1035 	}
1036 
1037 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1038 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1039 					    &grp->bb_state);
1040 		if (!ret && gdp) {
1041 			int count;
1042 
1043 			count = ext4_free_inodes_count(sb, gdp);
1044 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1045 					   count);
1046 		}
1047 	}
1048 }
1049 
1050 void ext4_update_dynamic_rev(struct super_block *sb)
1051 {
1052 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1053 
1054 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1055 		return;
1056 
1057 	ext4_warning(sb,
1058 		     "updating to rev %d because of new feature flag, "
1059 		     "running e2fsck is recommended",
1060 		     EXT4_DYNAMIC_REV);
1061 
1062 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1063 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1064 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1065 	/* leave es->s_feature_*compat flags alone */
1066 	/* es->s_uuid will be set by e2fsck if empty */
1067 
1068 	/*
1069 	 * The rest of the superblock fields should be zero, and if not it
1070 	 * means they are likely already in use, so leave them alone.  We
1071 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1072 	 */
1073 }
1074 
1075 /*
1076  * Open the external journal device
1077  */
1078 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1079 {
1080 	struct block_device *bdev;
1081 
1082 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1083 	if (IS_ERR(bdev))
1084 		goto fail;
1085 	return bdev;
1086 
1087 fail:
1088 	ext4_msg(sb, KERN_ERR,
1089 		 "failed to open journal device unknown-block(%u,%u) %ld",
1090 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1091 	return NULL;
1092 }
1093 
1094 /*
1095  * Release the journal device
1096  */
1097 static void ext4_blkdev_put(struct block_device *bdev)
1098 {
1099 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1100 }
1101 
1102 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1103 {
1104 	struct block_device *bdev;
1105 	bdev = sbi->s_journal_bdev;
1106 	if (bdev) {
1107 		ext4_blkdev_put(bdev);
1108 		sbi->s_journal_bdev = NULL;
1109 	}
1110 }
1111 
1112 static inline struct inode *orphan_list_entry(struct list_head *l)
1113 {
1114 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1115 }
1116 
1117 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1118 {
1119 	struct list_head *l;
1120 
1121 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1122 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1123 
1124 	printk(KERN_ERR "sb_info orphan list:\n");
1125 	list_for_each(l, &sbi->s_orphan) {
1126 		struct inode *inode = orphan_list_entry(l);
1127 		printk(KERN_ERR "  "
1128 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1129 		       inode->i_sb->s_id, inode->i_ino, inode,
1130 		       inode->i_mode, inode->i_nlink,
1131 		       NEXT_ORPHAN(inode));
1132 	}
1133 }
1134 
1135 #ifdef CONFIG_QUOTA
1136 static int ext4_quota_off(struct super_block *sb, int type);
1137 
1138 static inline void ext4_quota_off_umount(struct super_block *sb)
1139 {
1140 	int type;
1141 
1142 	/* Use our quota_off function to clear inode flags etc. */
1143 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1144 		ext4_quota_off(sb, type);
1145 }
1146 
1147 /*
1148  * This is a helper function which is used in the mount/remount
1149  * codepaths (which holds s_umount) to fetch the quota file name.
1150  */
1151 static inline char *get_qf_name(struct super_block *sb,
1152 				struct ext4_sb_info *sbi,
1153 				int type)
1154 {
1155 	return rcu_dereference_protected(sbi->s_qf_names[type],
1156 					 lockdep_is_held(&sb->s_umount));
1157 }
1158 #else
1159 static inline void ext4_quota_off_umount(struct super_block *sb)
1160 {
1161 }
1162 #endif
1163 
1164 static void ext4_put_super(struct super_block *sb)
1165 {
1166 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1167 	struct ext4_super_block *es = sbi->s_es;
1168 	struct buffer_head **group_desc;
1169 	struct flex_groups **flex_groups;
1170 	int aborted = 0;
1171 	int i, err;
1172 
1173 	ext4_unregister_li_request(sb);
1174 	ext4_quota_off_umount(sb);
1175 
1176 	flush_work(&sbi->s_error_work);
1177 	destroy_workqueue(sbi->rsv_conversion_wq);
1178 
1179 	/*
1180 	 * Unregister sysfs before destroying jbd2 journal.
1181 	 * Since we could still access attr_journal_task attribute via sysfs
1182 	 * path which could have sbi->s_journal->j_task as NULL
1183 	 */
1184 	ext4_unregister_sysfs(sb);
1185 
1186 	if (sbi->s_journal) {
1187 		aborted = is_journal_aborted(sbi->s_journal);
1188 		err = jbd2_journal_destroy(sbi->s_journal);
1189 		sbi->s_journal = NULL;
1190 		if ((err < 0) && !aborted) {
1191 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1192 		}
1193 	}
1194 
1195 	ext4_es_unregister_shrinker(sbi);
1196 	del_timer_sync(&sbi->s_err_report);
1197 	ext4_release_system_zone(sb);
1198 	ext4_mb_release(sb);
1199 	ext4_ext_release(sb);
1200 
1201 	if (!sb_rdonly(sb) && !aborted) {
1202 		ext4_clear_feature_journal_needs_recovery(sb);
1203 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1204 	}
1205 	if (!sb_rdonly(sb))
1206 		ext4_commit_super(sb);
1207 
1208 	rcu_read_lock();
1209 	group_desc = rcu_dereference(sbi->s_group_desc);
1210 	for (i = 0; i < sbi->s_gdb_count; i++)
1211 		brelse(group_desc[i]);
1212 	kvfree(group_desc);
1213 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1214 	if (flex_groups) {
1215 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1216 			kvfree(flex_groups[i]);
1217 		kvfree(flex_groups);
1218 	}
1219 	rcu_read_unlock();
1220 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1221 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1222 	percpu_counter_destroy(&sbi->s_dirs_counter);
1223 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1224 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1225 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1226 #ifdef CONFIG_QUOTA
1227 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1228 		kfree(get_qf_name(sb, sbi, i));
1229 #endif
1230 
1231 	/* Debugging code just in case the in-memory inode orphan list
1232 	 * isn't empty.  The on-disk one can be non-empty if we've
1233 	 * detected an error and taken the fs readonly, but the
1234 	 * in-memory list had better be clean by this point. */
1235 	if (!list_empty(&sbi->s_orphan))
1236 		dump_orphan_list(sb, sbi);
1237 	ASSERT(list_empty(&sbi->s_orphan));
1238 
1239 	sync_blockdev(sb->s_bdev);
1240 	invalidate_bdev(sb->s_bdev);
1241 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1242 		/*
1243 		 * Invalidate the journal device's buffers.  We don't want them
1244 		 * floating about in memory - the physical journal device may
1245 		 * hotswapped, and it breaks the `ro-after' testing code.
1246 		 */
1247 		sync_blockdev(sbi->s_journal_bdev);
1248 		invalidate_bdev(sbi->s_journal_bdev);
1249 		ext4_blkdev_remove(sbi);
1250 	}
1251 
1252 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1253 	sbi->s_ea_inode_cache = NULL;
1254 
1255 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1256 	sbi->s_ea_block_cache = NULL;
1257 
1258 	ext4_stop_mmpd(sbi);
1259 
1260 	brelse(sbi->s_sbh);
1261 	sb->s_fs_info = NULL;
1262 	/*
1263 	 * Now that we are completely done shutting down the
1264 	 * superblock, we need to actually destroy the kobject.
1265 	 */
1266 	kobject_put(&sbi->s_kobj);
1267 	wait_for_completion(&sbi->s_kobj_unregister);
1268 	if (sbi->s_chksum_driver)
1269 		crypto_free_shash(sbi->s_chksum_driver);
1270 	kfree(sbi->s_blockgroup_lock);
1271 	fs_put_dax(sbi->s_daxdev);
1272 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1273 #ifdef CONFIG_UNICODE
1274 	utf8_unload(sb->s_encoding);
1275 #endif
1276 	kfree(sbi);
1277 }
1278 
1279 static struct kmem_cache *ext4_inode_cachep;
1280 
1281 /*
1282  * Called inside transaction, so use GFP_NOFS
1283  */
1284 static struct inode *ext4_alloc_inode(struct super_block *sb)
1285 {
1286 	struct ext4_inode_info *ei;
1287 
1288 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1289 	if (!ei)
1290 		return NULL;
1291 
1292 	inode_set_iversion(&ei->vfs_inode, 1);
1293 	spin_lock_init(&ei->i_raw_lock);
1294 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1295 	atomic_set(&ei->i_prealloc_active, 0);
1296 	spin_lock_init(&ei->i_prealloc_lock);
1297 	ext4_es_init_tree(&ei->i_es_tree);
1298 	rwlock_init(&ei->i_es_lock);
1299 	INIT_LIST_HEAD(&ei->i_es_list);
1300 	ei->i_es_all_nr = 0;
1301 	ei->i_es_shk_nr = 0;
1302 	ei->i_es_shrink_lblk = 0;
1303 	ei->i_reserved_data_blocks = 0;
1304 	spin_lock_init(&(ei->i_block_reservation_lock));
1305 	ext4_init_pending_tree(&ei->i_pending_tree);
1306 #ifdef CONFIG_QUOTA
1307 	ei->i_reserved_quota = 0;
1308 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1309 #endif
1310 	ei->jinode = NULL;
1311 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1312 	spin_lock_init(&ei->i_completed_io_lock);
1313 	ei->i_sync_tid = 0;
1314 	ei->i_datasync_tid = 0;
1315 	atomic_set(&ei->i_unwritten, 0);
1316 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1317 	ext4_fc_init_inode(&ei->vfs_inode);
1318 	mutex_init(&ei->i_fc_lock);
1319 	return &ei->vfs_inode;
1320 }
1321 
1322 static int ext4_drop_inode(struct inode *inode)
1323 {
1324 	int drop = generic_drop_inode(inode);
1325 
1326 	if (!drop)
1327 		drop = fscrypt_drop_inode(inode);
1328 
1329 	trace_ext4_drop_inode(inode, drop);
1330 	return drop;
1331 }
1332 
1333 static void ext4_free_in_core_inode(struct inode *inode)
1334 {
1335 	fscrypt_free_inode(inode);
1336 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1337 		pr_warn("%s: inode %ld still in fc list",
1338 			__func__, inode->i_ino);
1339 	}
1340 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1341 }
1342 
1343 static void ext4_destroy_inode(struct inode *inode)
1344 {
1345 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1346 		ext4_msg(inode->i_sb, KERN_ERR,
1347 			 "Inode %lu (%p): orphan list check failed!",
1348 			 inode->i_ino, EXT4_I(inode));
1349 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1350 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1351 				true);
1352 		dump_stack();
1353 	}
1354 }
1355 
1356 static void init_once(void *foo)
1357 {
1358 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1359 
1360 	INIT_LIST_HEAD(&ei->i_orphan);
1361 	init_rwsem(&ei->xattr_sem);
1362 	init_rwsem(&ei->i_data_sem);
1363 	init_rwsem(&ei->i_mmap_sem);
1364 	inode_init_once(&ei->vfs_inode);
1365 	ext4_fc_init_inode(&ei->vfs_inode);
1366 }
1367 
1368 static int __init init_inodecache(void)
1369 {
1370 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1371 				sizeof(struct ext4_inode_info), 0,
1372 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1373 					SLAB_ACCOUNT),
1374 				offsetof(struct ext4_inode_info, i_data),
1375 				sizeof_field(struct ext4_inode_info, i_data),
1376 				init_once);
1377 	if (ext4_inode_cachep == NULL)
1378 		return -ENOMEM;
1379 	return 0;
1380 }
1381 
1382 static void destroy_inodecache(void)
1383 {
1384 	/*
1385 	 * Make sure all delayed rcu free inodes are flushed before we
1386 	 * destroy cache.
1387 	 */
1388 	rcu_barrier();
1389 	kmem_cache_destroy(ext4_inode_cachep);
1390 }
1391 
1392 void ext4_clear_inode(struct inode *inode)
1393 {
1394 	ext4_fc_del(inode);
1395 	invalidate_inode_buffers(inode);
1396 	clear_inode(inode);
1397 	ext4_discard_preallocations(inode, 0);
1398 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1399 	dquot_drop(inode);
1400 	if (EXT4_I(inode)->jinode) {
1401 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1402 					       EXT4_I(inode)->jinode);
1403 		jbd2_free_inode(EXT4_I(inode)->jinode);
1404 		EXT4_I(inode)->jinode = NULL;
1405 	}
1406 	fscrypt_put_encryption_info(inode);
1407 	fsverity_cleanup_inode(inode);
1408 }
1409 
1410 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1411 					u64 ino, u32 generation)
1412 {
1413 	struct inode *inode;
1414 
1415 	/*
1416 	 * Currently we don't know the generation for parent directory, so
1417 	 * a generation of 0 means "accept any"
1418 	 */
1419 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1420 	if (IS_ERR(inode))
1421 		return ERR_CAST(inode);
1422 	if (generation && inode->i_generation != generation) {
1423 		iput(inode);
1424 		return ERR_PTR(-ESTALE);
1425 	}
1426 
1427 	return inode;
1428 }
1429 
1430 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1431 					int fh_len, int fh_type)
1432 {
1433 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1434 				    ext4_nfs_get_inode);
1435 }
1436 
1437 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1438 					int fh_len, int fh_type)
1439 {
1440 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1441 				    ext4_nfs_get_inode);
1442 }
1443 
1444 static int ext4_nfs_commit_metadata(struct inode *inode)
1445 {
1446 	struct writeback_control wbc = {
1447 		.sync_mode = WB_SYNC_ALL
1448 	};
1449 
1450 	trace_ext4_nfs_commit_metadata(inode);
1451 	return ext4_write_inode(inode, &wbc);
1452 }
1453 
1454 #ifdef CONFIG_FS_ENCRYPTION
1455 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1456 {
1457 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1458 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1459 }
1460 
1461 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1462 							void *fs_data)
1463 {
1464 	handle_t *handle = fs_data;
1465 	int res, res2, credits, retries = 0;
1466 
1467 	/*
1468 	 * Encrypting the root directory is not allowed because e2fsck expects
1469 	 * lost+found to exist and be unencrypted, and encrypting the root
1470 	 * directory would imply encrypting the lost+found directory as well as
1471 	 * the filename "lost+found" itself.
1472 	 */
1473 	if (inode->i_ino == EXT4_ROOT_INO)
1474 		return -EPERM;
1475 
1476 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1477 		return -EINVAL;
1478 
1479 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1480 		return -EOPNOTSUPP;
1481 
1482 	res = ext4_convert_inline_data(inode);
1483 	if (res)
1484 		return res;
1485 
1486 	/*
1487 	 * If a journal handle was specified, then the encryption context is
1488 	 * being set on a new inode via inheritance and is part of a larger
1489 	 * transaction to create the inode.  Otherwise the encryption context is
1490 	 * being set on an existing inode in its own transaction.  Only in the
1491 	 * latter case should the "retry on ENOSPC" logic be used.
1492 	 */
1493 
1494 	if (handle) {
1495 		res = ext4_xattr_set_handle(handle, inode,
1496 					    EXT4_XATTR_INDEX_ENCRYPTION,
1497 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1498 					    ctx, len, 0);
1499 		if (!res) {
1500 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1501 			ext4_clear_inode_state(inode,
1502 					EXT4_STATE_MAY_INLINE_DATA);
1503 			/*
1504 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1505 			 * S_DAX may be disabled
1506 			 */
1507 			ext4_set_inode_flags(inode, false);
1508 		}
1509 		return res;
1510 	}
1511 
1512 	res = dquot_initialize(inode);
1513 	if (res)
1514 		return res;
1515 retry:
1516 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1517 				     &credits);
1518 	if (res)
1519 		return res;
1520 
1521 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1522 	if (IS_ERR(handle))
1523 		return PTR_ERR(handle);
1524 
1525 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1526 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1527 				    ctx, len, 0);
1528 	if (!res) {
1529 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1530 		/*
1531 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1532 		 * S_DAX may be disabled
1533 		 */
1534 		ext4_set_inode_flags(inode, false);
1535 		res = ext4_mark_inode_dirty(handle, inode);
1536 		if (res)
1537 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1538 	}
1539 	res2 = ext4_journal_stop(handle);
1540 
1541 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1542 		goto retry;
1543 	if (!res)
1544 		res = res2;
1545 	return res;
1546 }
1547 
1548 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1549 {
1550 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1551 }
1552 
1553 static bool ext4_has_stable_inodes(struct super_block *sb)
1554 {
1555 	return ext4_has_feature_stable_inodes(sb);
1556 }
1557 
1558 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1559 				       int *ino_bits_ret, int *lblk_bits_ret)
1560 {
1561 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1562 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1563 }
1564 
1565 static const struct fscrypt_operations ext4_cryptops = {
1566 	.key_prefix		= "ext4:",
1567 	.get_context		= ext4_get_context,
1568 	.set_context		= ext4_set_context,
1569 	.get_dummy_policy	= ext4_get_dummy_policy,
1570 	.empty_dir		= ext4_empty_dir,
1571 	.max_namelen		= EXT4_NAME_LEN,
1572 	.has_stable_inodes	= ext4_has_stable_inodes,
1573 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1574 };
1575 #endif
1576 
1577 #ifdef CONFIG_QUOTA
1578 static const char * const quotatypes[] = INITQFNAMES;
1579 #define QTYPE2NAME(t) (quotatypes[t])
1580 
1581 static int ext4_write_dquot(struct dquot *dquot);
1582 static int ext4_acquire_dquot(struct dquot *dquot);
1583 static int ext4_release_dquot(struct dquot *dquot);
1584 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1585 static int ext4_write_info(struct super_block *sb, int type);
1586 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1587 			 const struct path *path);
1588 static int ext4_quota_on_mount(struct super_block *sb, int type);
1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1590 			       size_t len, loff_t off);
1591 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1592 				const char *data, size_t len, loff_t off);
1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1594 			     unsigned int flags);
1595 static int ext4_enable_quotas(struct super_block *sb);
1596 
1597 static struct dquot **ext4_get_dquots(struct inode *inode)
1598 {
1599 	return EXT4_I(inode)->i_dquot;
1600 }
1601 
1602 static const struct dquot_operations ext4_quota_operations = {
1603 	.get_reserved_space	= ext4_get_reserved_space,
1604 	.write_dquot		= ext4_write_dquot,
1605 	.acquire_dquot		= ext4_acquire_dquot,
1606 	.release_dquot		= ext4_release_dquot,
1607 	.mark_dirty		= ext4_mark_dquot_dirty,
1608 	.write_info		= ext4_write_info,
1609 	.alloc_dquot		= dquot_alloc,
1610 	.destroy_dquot		= dquot_destroy,
1611 	.get_projid		= ext4_get_projid,
1612 	.get_inode_usage	= ext4_get_inode_usage,
1613 	.get_next_id		= dquot_get_next_id,
1614 };
1615 
1616 static const struct quotactl_ops ext4_qctl_operations = {
1617 	.quota_on	= ext4_quota_on,
1618 	.quota_off	= ext4_quota_off,
1619 	.quota_sync	= dquot_quota_sync,
1620 	.get_state	= dquot_get_state,
1621 	.set_info	= dquot_set_dqinfo,
1622 	.get_dqblk	= dquot_get_dqblk,
1623 	.set_dqblk	= dquot_set_dqblk,
1624 	.get_nextdqblk	= dquot_get_next_dqblk,
1625 };
1626 #endif
1627 
1628 static const struct super_operations ext4_sops = {
1629 	.alloc_inode	= ext4_alloc_inode,
1630 	.free_inode	= ext4_free_in_core_inode,
1631 	.destroy_inode	= ext4_destroy_inode,
1632 	.write_inode	= ext4_write_inode,
1633 	.dirty_inode	= ext4_dirty_inode,
1634 	.drop_inode	= ext4_drop_inode,
1635 	.evict_inode	= ext4_evict_inode,
1636 	.put_super	= ext4_put_super,
1637 	.sync_fs	= ext4_sync_fs,
1638 	.freeze_fs	= ext4_freeze,
1639 	.unfreeze_fs	= ext4_unfreeze,
1640 	.statfs		= ext4_statfs,
1641 	.remount_fs	= ext4_remount,
1642 	.show_options	= ext4_show_options,
1643 #ifdef CONFIG_QUOTA
1644 	.quota_read	= ext4_quota_read,
1645 	.quota_write	= ext4_quota_write,
1646 	.get_dquots	= ext4_get_dquots,
1647 #endif
1648 };
1649 
1650 static const struct export_operations ext4_export_ops = {
1651 	.fh_to_dentry = ext4_fh_to_dentry,
1652 	.fh_to_parent = ext4_fh_to_parent,
1653 	.get_parent = ext4_get_parent,
1654 	.commit_metadata = ext4_nfs_commit_metadata,
1655 };
1656 
1657 enum {
1658 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1659 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1660 	Opt_nouid32, Opt_debug, Opt_removed,
1661 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1662 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1663 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1664 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1665 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1666 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1667 	Opt_inlinecrypt,
1668 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1669 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1670 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1671 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1672 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1673 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1674 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1675 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1676 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1677 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1678 	Opt_dioread_nolock, Opt_dioread_lock,
1679 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1680 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1681 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1682 #ifdef CONFIG_EXT4_DEBUG
1683 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1684 #endif
1685 };
1686 
1687 static const match_table_t tokens = {
1688 	{Opt_bsd_df, "bsddf"},
1689 	{Opt_minix_df, "minixdf"},
1690 	{Opt_grpid, "grpid"},
1691 	{Opt_grpid, "bsdgroups"},
1692 	{Opt_nogrpid, "nogrpid"},
1693 	{Opt_nogrpid, "sysvgroups"},
1694 	{Opt_resgid, "resgid=%u"},
1695 	{Opt_resuid, "resuid=%u"},
1696 	{Opt_sb, "sb=%u"},
1697 	{Opt_err_cont, "errors=continue"},
1698 	{Opt_err_panic, "errors=panic"},
1699 	{Opt_err_ro, "errors=remount-ro"},
1700 	{Opt_nouid32, "nouid32"},
1701 	{Opt_debug, "debug"},
1702 	{Opt_removed, "oldalloc"},
1703 	{Opt_removed, "orlov"},
1704 	{Opt_user_xattr, "user_xattr"},
1705 	{Opt_nouser_xattr, "nouser_xattr"},
1706 	{Opt_acl, "acl"},
1707 	{Opt_noacl, "noacl"},
1708 	{Opt_noload, "norecovery"},
1709 	{Opt_noload, "noload"},
1710 	{Opt_removed, "nobh"},
1711 	{Opt_removed, "bh"},
1712 	{Opt_commit, "commit=%u"},
1713 	{Opt_min_batch_time, "min_batch_time=%u"},
1714 	{Opt_max_batch_time, "max_batch_time=%u"},
1715 	{Opt_journal_dev, "journal_dev=%u"},
1716 	{Opt_journal_path, "journal_path=%s"},
1717 	{Opt_journal_checksum, "journal_checksum"},
1718 	{Opt_nojournal_checksum, "nojournal_checksum"},
1719 	{Opt_journal_async_commit, "journal_async_commit"},
1720 	{Opt_abort, "abort"},
1721 	{Opt_data_journal, "data=journal"},
1722 	{Opt_data_ordered, "data=ordered"},
1723 	{Opt_data_writeback, "data=writeback"},
1724 	{Opt_data_err_abort, "data_err=abort"},
1725 	{Opt_data_err_ignore, "data_err=ignore"},
1726 	{Opt_offusrjquota, "usrjquota="},
1727 	{Opt_usrjquota, "usrjquota=%s"},
1728 	{Opt_offgrpjquota, "grpjquota="},
1729 	{Opt_grpjquota, "grpjquota=%s"},
1730 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1731 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1732 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1733 	{Opt_grpquota, "grpquota"},
1734 	{Opt_noquota, "noquota"},
1735 	{Opt_quota, "quota"},
1736 	{Opt_usrquota, "usrquota"},
1737 	{Opt_prjquota, "prjquota"},
1738 	{Opt_barrier, "barrier=%u"},
1739 	{Opt_barrier, "barrier"},
1740 	{Opt_nobarrier, "nobarrier"},
1741 	{Opt_i_version, "i_version"},
1742 	{Opt_dax, "dax"},
1743 	{Opt_dax_always, "dax=always"},
1744 	{Opt_dax_inode, "dax=inode"},
1745 	{Opt_dax_never, "dax=never"},
1746 	{Opt_stripe, "stripe=%u"},
1747 	{Opt_delalloc, "delalloc"},
1748 	{Opt_warn_on_error, "warn_on_error"},
1749 	{Opt_nowarn_on_error, "nowarn_on_error"},
1750 	{Opt_lazytime, "lazytime"},
1751 	{Opt_nolazytime, "nolazytime"},
1752 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1753 	{Opt_nodelalloc, "nodelalloc"},
1754 	{Opt_removed, "mblk_io_submit"},
1755 	{Opt_removed, "nomblk_io_submit"},
1756 	{Opt_block_validity, "block_validity"},
1757 	{Opt_noblock_validity, "noblock_validity"},
1758 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1759 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1760 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1761 	{Opt_auto_da_alloc, "auto_da_alloc"},
1762 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1763 	{Opt_dioread_nolock, "dioread_nolock"},
1764 	{Opt_dioread_lock, "nodioread_nolock"},
1765 	{Opt_dioread_lock, "dioread_lock"},
1766 	{Opt_discard, "discard"},
1767 	{Opt_nodiscard, "nodiscard"},
1768 	{Opt_init_itable, "init_itable=%u"},
1769 	{Opt_init_itable, "init_itable"},
1770 	{Opt_noinit_itable, "noinit_itable"},
1771 #ifdef CONFIG_EXT4_DEBUG
1772 	{Opt_fc_debug_force, "fc_debug_force"},
1773 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1774 #endif
1775 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1776 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1777 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1778 	{Opt_inlinecrypt, "inlinecrypt"},
1779 	{Opt_nombcache, "nombcache"},
1780 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1781 	{Opt_removed, "prefetch_block_bitmaps"},
1782 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1783 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1784 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1785 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1786 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1787 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1788 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1789 	{Opt_err, NULL},
1790 };
1791 
1792 static ext4_fsblk_t get_sb_block(void **data)
1793 {
1794 	ext4_fsblk_t	sb_block;
1795 	char		*options = (char *) *data;
1796 
1797 	if (!options || strncmp(options, "sb=", 3) != 0)
1798 		return 1;	/* Default location */
1799 
1800 	options += 3;
1801 	/* TODO: use simple_strtoll with >32bit ext4 */
1802 	sb_block = simple_strtoul(options, &options, 0);
1803 	if (*options && *options != ',') {
1804 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1805 		       (char *) *data);
1806 		return 1;
1807 	}
1808 	if (*options == ',')
1809 		options++;
1810 	*data = (void *) options;
1811 
1812 	return sb_block;
1813 }
1814 
1815 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1816 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1817 
1818 static const char deprecated_msg[] =
1819 	"Mount option \"%s\" will be removed by %s\n"
1820 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1821 
1822 #ifdef CONFIG_QUOTA
1823 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1824 {
1825 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1827 	int ret = -1;
1828 
1829 	if (sb_any_quota_loaded(sb) && !old_qname) {
1830 		ext4_msg(sb, KERN_ERR,
1831 			"Cannot change journaled "
1832 			"quota options when quota turned on");
1833 		return -1;
1834 	}
1835 	if (ext4_has_feature_quota(sb)) {
1836 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1837 			 "ignored when QUOTA feature is enabled");
1838 		return 1;
1839 	}
1840 	qname = match_strdup(args);
1841 	if (!qname) {
1842 		ext4_msg(sb, KERN_ERR,
1843 			"Not enough memory for storing quotafile name");
1844 		return -1;
1845 	}
1846 	if (old_qname) {
1847 		if (strcmp(old_qname, qname) == 0)
1848 			ret = 1;
1849 		else
1850 			ext4_msg(sb, KERN_ERR,
1851 				 "%s quota file already specified",
1852 				 QTYPE2NAME(qtype));
1853 		goto errout;
1854 	}
1855 	if (strchr(qname, '/')) {
1856 		ext4_msg(sb, KERN_ERR,
1857 			"quotafile must be on filesystem root");
1858 		goto errout;
1859 	}
1860 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1861 	set_opt(sb, QUOTA);
1862 	return 1;
1863 errout:
1864 	kfree(qname);
1865 	return ret;
1866 }
1867 
1868 static int clear_qf_name(struct super_block *sb, int qtype)
1869 {
1870 
1871 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1872 	char *old_qname = get_qf_name(sb, sbi, qtype);
1873 
1874 	if (sb_any_quota_loaded(sb) && old_qname) {
1875 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1876 			" when quota turned on");
1877 		return -1;
1878 	}
1879 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1880 	synchronize_rcu();
1881 	kfree(old_qname);
1882 	return 1;
1883 }
1884 #endif
1885 
1886 #define MOPT_SET	0x0001
1887 #define MOPT_CLEAR	0x0002
1888 #define MOPT_NOSUPPORT	0x0004
1889 #define MOPT_EXPLICIT	0x0008
1890 #define MOPT_CLEAR_ERR	0x0010
1891 #define MOPT_GTE0	0x0020
1892 #ifdef CONFIG_QUOTA
1893 #define MOPT_Q		0
1894 #define MOPT_QFMT	0x0040
1895 #else
1896 #define MOPT_Q		MOPT_NOSUPPORT
1897 #define MOPT_QFMT	MOPT_NOSUPPORT
1898 #endif
1899 #define MOPT_DATAJ	0x0080
1900 #define MOPT_NO_EXT2	0x0100
1901 #define MOPT_NO_EXT3	0x0200
1902 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1903 #define MOPT_STRING	0x0400
1904 #define MOPT_SKIP	0x0800
1905 #define	MOPT_2		0x1000
1906 
1907 static const struct mount_opts {
1908 	int	token;
1909 	int	mount_opt;
1910 	int	flags;
1911 } ext4_mount_opts[] = {
1912 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1913 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1914 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1915 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1916 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1917 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1918 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1919 	 MOPT_EXT4_ONLY | MOPT_SET},
1920 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1921 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1922 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1923 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1924 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1925 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1926 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1927 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1928 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1929 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1930 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1931 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1932 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1933 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1934 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1935 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1936 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1937 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1938 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1939 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1940 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1941 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1942 	 MOPT_NO_EXT2},
1943 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1944 	 MOPT_NO_EXT2},
1945 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1946 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1947 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1948 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1949 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1950 	{Opt_commit, 0, MOPT_GTE0},
1951 	{Opt_max_batch_time, 0, MOPT_GTE0},
1952 	{Opt_min_batch_time, 0, MOPT_GTE0},
1953 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1954 	{Opt_init_itable, 0, MOPT_GTE0},
1955 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1956 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1957 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1958 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1959 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1960 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1961 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1962 	{Opt_stripe, 0, MOPT_GTE0},
1963 	{Opt_resuid, 0, MOPT_GTE0},
1964 	{Opt_resgid, 0, MOPT_GTE0},
1965 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1966 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1967 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1968 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1969 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1970 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1971 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1972 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1973 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1974 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1975 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1976 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1977 #else
1978 	{Opt_acl, 0, MOPT_NOSUPPORT},
1979 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1980 #endif
1981 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1982 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1983 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1984 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1985 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1986 							MOPT_SET | MOPT_Q},
1987 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1988 							MOPT_SET | MOPT_Q},
1989 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1990 							MOPT_SET | MOPT_Q},
1991 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1992 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1993 							MOPT_CLEAR | MOPT_Q},
1994 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1995 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1996 	{Opt_offusrjquota, 0, MOPT_Q},
1997 	{Opt_offgrpjquota, 0, MOPT_Q},
1998 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1999 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2000 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2001 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2002 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2003 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2004 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2005 	 MOPT_SET},
2006 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2007 #ifdef CONFIG_EXT4_DEBUG
2008 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2009 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2010 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2011 #endif
2012 	{Opt_err, 0, 0}
2013 };
2014 
2015 #ifdef CONFIG_UNICODE
2016 static const struct ext4_sb_encodings {
2017 	__u16 magic;
2018 	char *name;
2019 	char *version;
2020 } ext4_sb_encoding_map[] = {
2021 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2022 };
2023 
2024 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2025 				 const struct ext4_sb_encodings **encoding,
2026 				 __u16 *flags)
2027 {
2028 	__u16 magic = le16_to_cpu(es->s_encoding);
2029 	int i;
2030 
2031 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2032 		if (magic == ext4_sb_encoding_map[i].magic)
2033 			break;
2034 
2035 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2036 		return -EINVAL;
2037 
2038 	*encoding = &ext4_sb_encoding_map[i];
2039 	*flags = le16_to_cpu(es->s_encoding_flags);
2040 
2041 	return 0;
2042 }
2043 #endif
2044 
2045 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2046 					  const char *opt,
2047 					  const substring_t *arg,
2048 					  bool is_remount)
2049 {
2050 #ifdef CONFIG_FS_ENCRYPTION
2051 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2052 	int err;
2053 
2054 	/*
2055 	 * This mount option is just for testing, and it's not worthwhile to
2056 	 * implement the extra complexity (e.g. RCU protection) that would be
2057 	 * needed to allow it to be set or changed during remount.  We do allow
2058 	 * it to be specified during remount, but only if there is no change.
2059 	 */
2060 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2061 		ext4_msg(sb, KERN_WARNING,
2062 			 "Can't set test_dummy_encryption on remount");
2063 		return -1;
2064 	}
2065 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2066 						&sbi->s_dummy_enc_policy);
2067 	if (err) {
2068 		if (err == -EEXIST)
2069 			ext4_msg(sb, KERN_WARNING,
2070 				 "Can't change test_dummy_encryption on remount");
2071 		else if (err == -EINVAL)
2072 			ext4_msg(sb, KERN_WARNING,
2073 				 "Value of option \"%s\" is unrecognized", opt);
2074 		else
2075 			ext4_msg(sb, KERN_WARNING,
2076 				 "Error processing option \"%s\" [%d]",
2077 				 opt, err);
2078 		return -1;
2079 	}
2080 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2081 #else
2082 	ext4_msg(sb, KERN_WARNING,
2083 		 "Test dummy encryption mount option ignored");
2084 #endif
2085 	return 1;
2086 }
2087 
2088 struct ext4_parsed_options {
2089 	unsigned long journal_devnum;
2090 	unsigned int journal_ioprio;
2091 	int mb_optimize_scan;
2092 };
2093 
2094 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2095 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2096 			    int is_remount)
2097 {
2098 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2099 	const struct mount_opts *m;
2100 	kuid_t uid;
2101 	kgid_t gid;
2102 	int arg = 0;
2103 
2104 #ifdef CONFIG_QUOTA
2105 	if (token == Opt_usrjquota)
2106 		return set_qf_name(sb, USRQUOTA, &args[0]);
2107 	else if (token == Opt_grpjquota)
2108 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2109 	else if (token == Opt_offusrjquota)
2110 		return clear_qf_name(sb, USRQUOTA);
2111 	else if (token == Opt_offgrpjquota)
2112 		return clear_qf_name(sb, GRPQUOTA);
2113 #endif
2114 	switch (token) {
2115 	case Opt_noacl:
2116 	case Opt_nouser_xattr:
2117 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2118 		break;
2119 	case Opt_sb:
2120 		return 1;	/* handled by get_sb_block() */
2121 	case Opt_removed:
2122 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2123 		return 1;
2124 	case Opt_abort:
2125 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2126 		return 1;
2127 	case Opt_i_version:
2128 		sb->s_flags |= SB_I_VERSION;
2129 		return 1;
2130 	case Opt_lazytime:
2131 		sb->s_flags |= SB_LAZYTIME;
2132 		return 1;
2133 	case Opt_nolazytime:
2134 		sb->s_flags &= ~SB_LAZYTIME;
2135 		return 1;
2136 	case Opt_inlinecrypt:
2137 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2138 		sb->s_flags |= SB_INLINECRYPT;
2139 #else
2140 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2141 #endif
2142 		return 1;
2143 	}
2144 
2145 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2146 		if (token == m->token)
2147 			break;
2148 
2149 	if (m->token == Opt_err) {
2150 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2151 			 "or missing value", opt);
2152 		return -1;
2153 	}
2154 
2155 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2156 		ext4_msg(sb, KERN_ERR,
2157 			 "Mount option \"%s\" incompatible with ext2", opt);
2158 		return -1;
2159 	}
2160 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2161 		ext4_msg(sb, KERN_ERR,
2162 			 "Mount option \"%s\" incompatible with ext3", opt);
2163 		return -1;
2164 	}
2165 
2166 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2167 		return -1;
2168 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2169 		return -1;
2170 	if (m->flags & MOPT_EXPLICIT) {
2171 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2172 			set_opt2(sb, EXPLICIT_DELALLOC);
2173 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2174 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2175 		} else
2176 			return -1;
2177 	}
2178 	if (m->flags & MOPT_CLEAR_ERR)
2179 		clear_opt(sb, ERRORS_MASK);
2180 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2181 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2182 			 "options when quota turned on");
2183 		return -1;
2184 	}
2185 
2186 	if (m->flags & MOPT_NOSUPPORT) {
2187 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2188 	} else if (token == Opt_commit) {
2189 		if (arg == 0)
2190 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2191 		else if (arg > INT_MAX / HZ) {
2192 			ext4_msg(sb, KERN_ERR,
2193 				 "Invalid commit interval %d, "
2194 				 "must be smaller than %d",
2195 				 arg, INT_MAX / HZ);
2196 			return -1;
2197 		}
2198 		sbi->s_commit_interval = HZ * arg;
2199 	} else if (token == Opt_debug_want_extra_isize) {
2200 		if ((arg & 1) ||
2201 		    (arg < 4) ||
2202 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2203 			ext4_msg(sb, KERN_ERR,
2204 				 "Invalid want_extra_isize %d", arg);
2205 			return -1;
2206 		}
2207 		sbi->s_want_extra_isize = arg;
2208 	} else if (token == Opt_max_batch_time) {
2209 		sbi->s_max_batch_time = arg;
2210 	} else if (token == Opt_min_batch_time) {
2211 		sbi->s_min_batch_time = arg;
2212 	} else if (token == Opt_inode_readahead_blks) {
2213 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2214 			ext4_msg(sb, KERN_ERR,
2215 				 "EXT4-fs: inode_readahead_blks must be "
2216 				 "0 or a power of 2 smaller than 2^31");
2217 			return -1;
2218 		}
2219 		sbi->s_inode_readahead_blks = arg;
2220 	} else if (token == Opt_init_itable) {
2221 		set_opt(sb, INIT_INODE_TABLE);
2222 		if (!args->from)
2223 			arg = EXT4_DEF_LI_WAIT_MULT;
2224 		sbi->s_li_wait_mult = arg;
2225 	} else if (token == Opt_max_dir_size_kb) {
2226 		sbi->s_max_dir_size_kb = arg;
2227 #ifdef CONFIG_EXT4_DEBUG
2228 	} else if (token == Opt_fc_debug_max_replay) {
2229 		sbi->s_fc_debug_max_replay = arg;
2230 #endif
2231 	} else if (token == Opt_stripe) {
2232 		sbi->s_stripe = arg;
2233 	} else if (token == Opt_resuid) {
2234 		uid = make_kuid(current_user_ns(), arg);
2235 		if (!uid_valid(uid)) {
2236 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2237 			return -1;
2238 		}
2239 		sbi->s_resuid = uid;
2240 	} else if (token == Opt_resgid) {
2241 		gid = make_kgid(current_user_ns(), arg);
2242 		if (!gid_valid(gid)) {
2243 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2244 			return -1;
2245 		}
2246 		sbi->s_resgid = gid;
2247 	} else if (token == Opt_journal_dev) {
2248 		if (is_remount) {
2249 			ext4_msg(sb, KERN_ERR,
2250 				 "Cannot specify journal on remount");
2251 			return -1;
2252 		}
2253 		parsed_opts->journal_devnum = arg;
2254 	} else if (token == Opt_journal_path) {
2255 		char *journal_path;
2256 		struct inode *journal_inode;
2257 		struct path path;
2258 		int error;
2259 
2260 		if (is_remount) {
2261 			ext4_msg(sb, KERN_ERR,
2262 				 "Cannot specify journal on remount");
2263 			return -1;
2264 		}
2265 		journal_path = match_strdup(&args[0]);
2266 		if (!journal_path) {
2267 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2268 				"journal device string");
2269 			return -1;
2270 		}
2271 
2272 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2273 		if (error) {
2274 			ext4_msg(sb, KERN_ERR, "error: could not find "
2275 				"journal device path: error %d", error);
2276 			kfree(journal_path);
2277 			return -1;
2278 		}
2279 
2280 		journal_inode = d_inode(path.dentry);
2281 		if (!S_ISBLK(journal_inode->i_mode)) {
2282 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2283 				"is not a block device", journal_path);
2284 			path_put(&path);
2285 			kfree(journal_path);
2286 			return -1;
2287 		}
2288 
2289 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2290 		path_put(&path);
2291 		kfree(journal_path);
2292 	} else if (token == Opt_journal_ioprio) {
2293 		if (arg > 7) {
2294 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2295 				 " (must be 0-7)");
2296 			return -1;
2297 		}
2298 		parsed_opts->journal_ioprio =
2299 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2300 	} else if (token == Opt_test_dummy_encryption) {
2301 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2302 						      is_remount);
2303 	} else if (m->flags & MOPT_DATAJ) {
2304 		if (is_remount) {
2305 			if (!sbi->s_journal)
2306 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2307 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2308 				ext4_msg(sb, KERN_ERR,
2309 					 "Cannot change data mode on remount");
2310 				return -1;
2311 			}
2312 		} else {
2313 			clear_opt(sb, DATA_FLAGS);
2314 			sbi->s_mount_opt |= m->mount_opt;
2315 		}
2316 #ifdef CONFIG_QUOTA
2317 	} else if (m->flags & MOPT_QFMT) {
2318 		if (sb_any_quota_loaded(sb) &&
2319 		    sbi->s_jquota_fmt != m->mount_opt) {
2320 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2321 				 "quota options when quota turned on");
2322 			return -1;
2323 		}
2324 		if (ext4_has_feature_quota(sb)) {
2325 			ext4_msg(sb, KERN_INFO,
2326 				 "Quota format mount options ignored "
2327 				 "when QUOTA feature is enabled");
2328 			return 1;
2329 		}
2330 		sbi->s_jquota_fmt = m->mount_opt;
2331 #endif
2332 	} else if (token == Opt_dax || token == Opt_dax_always ||
2333 		   token == Opt_dax_inode || token == Opt_dax_never) {
2334 #ifdef CONFIG_FS_DAX
2335 		switch (token) {
2336 		case Opt_dax:
2337 		case Opt_dax_always:
2338 			if (is_remount &&
2339 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2340 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2341 			fail_dax_change_remount:
2342 				ext4_msg(sb, KERN_ERR, "can't change "
2343 					 "dax mount option while remounting");
2344 				return -1;
2345 			}
2346 			if (is_remount &&
2347 			    (test_opt(sb, DATA_FLAGS) ==
2348 			     EXT4_MOUNT_JOURNAL_DATA)) {
2349 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2350 					     "both data=journal and dax");
2351 				    return -1;
2352 			}
2353 			ext4_msg(sb, KERN_WARNING,
2354 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2355 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2356 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2357 			break;
2358 		case Opt_dax_never:
2359 			if (is_remount &&
2360 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2361 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2362 				goto fail_dax_change_remount;
2363 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2364 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2365 			break;
2366 		case Opt_dax_inode:
2367 			if (is_remount &&
2368 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2369 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2370 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2371 				goto fail_dax_change_remount;
2372 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2373 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2374 			/* Strictly for printing options */
2375 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2376 			break;
2377 		}
2378 #else
2379 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2380 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2381 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2382 		return -1;
2383 #endif
2384 	} else if (token == Opt_data_err_abort) {
2385 		sbi->s_mount_opt |= m->mount_opt;
2386 	} else if (token == Opt_data_err_ignore) {
2387 		sbi->s_mount_opt &= ~m->mount_opt;
2388 	} else if (token == Opt_mb_optimize_scan) {
2389 		if (arg != 0 && arg != 1) {
2390 			ext4_msg(sb, KERN_WARNING,
2391 				 "mb_optimize_scan should be set to 0 or 1.");
2392 			return -1;
2393 		}
2394 		parsed_opts->mb_optimize_scan = arg;
2395 	} else {
2396 		if (!args->from)
2397 			arg = 1;
2398 		if (m->flags & MOPT_CLEAR)
2399 			arg = !arg;
2400 		else if (unlikely(!(m->flags & MOPT_SET))) {
2401 			ext4_msg(sb, KERN_WARNING,
2402 				 "buggy handling of option %s", opt);
2403 			WARN_ON(1);
2404 			return -1;
2405 		}
2406 		if (m->flags & MOPT_2) {
2407 			if (arg != 0)
2408 				sbi->s_mount_opt2 |= m->mount_opt;
2409 			else
2410 				sbi->s_mount_opt2 &= ~m->mount_opt;
2411 		} else {
2412 			if (arg != 0)
2413 				sbi->s_mount_opt |= m->mount_opt;
2414 			else
2415 				sbi->s_mount_opt &= ~m->mount_opt;
2416 		}
2417 	}
2418 	return 1;
2419 }
2420 
2421 static int parse_options(char *options, struct super_block *sb,
2422 			 struct ext4_parsed_options *ret_opts,
2423 			 int is_remount)
2424 {
2425 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2426 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2427 	substring_t args[MAX_OPT_ARGS];
2428 	int token;
2429 
2430 	if (!options)
2431 		return 1;
2432 
2433 	while ((p = strsep(&options, ",")) != NULL) {
2434 		if (!*p)
2435 			continue;
2436 		/*
2437 		 * Initialize args struct so we know whether arg was
2438 		 * found; some options take optional arguments.
2439 		 */
2440 		args[0].to = args[0].from = NULL;
2441 		token = match_token(p, tokens, args);
2442 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2443 				     is_remount) < 0)
2444 			return 0;
2445 	}
2446 #ifdef CONFIG_QUOTA
2447 	/*
2448 	 * We do the test below only for project quotas. 'usrquota' and
2449 	 * 'grpquota' mount options are allowed even without quota feature
2450 	 * to support legacy quotas in quota files.
2451 	 */
2452 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2453 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2454 			 "Cannot enable project quota enforcement.");
2455 		return 0;
2456 	}
2457 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2458 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2459 	if (usr_qf_name || grp_qf_name) {
2460 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2461 			clear_opt(sb, USRQUOTA);
2462 
2463 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2464 			clear_opt(sb, GRPQUOTA);
2465 
2466 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2467 			ext4_msg(sb, KERN_ERR, "old and new quota "
2468 					"format mixing");
2469 			return 0;
2470 		}
2471 
2472 		if (!sbi->s_jquota_fmt) {
2473 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2474 					"not specified");
2475 			return 0;
2476 		}
2477 	}
2478 #endif
2479 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2480 		int blocksize =
2481 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2482 		if (blocksize < PAGE_SIZE)
2483 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2484 				 "experimental mount option 'dioread_nolock' "
2485 				 "for blocksize < PAGE_SIZE");
2486 	}
2487 	return 1;
2488 }
2489 
2490 static inline void ext4_show_quota_options(struct seq_file *seq,
2491 					   struct super_block *sb)
2492 {
2493 #if defined(CONFIG_QUOTA)
2494 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2495 	char *usr_qf_name, *grp_qf_name;
2496 
2497 	if (sbi->s_jquota_fmt) {
2498 		char *fmtname = "";
2499 
2500 		switch (sbi->s_jquota_fmt) {
2501 		case QFMT_VFS_OLD:
2502 			fmtname = "vfsold";
2503 			break;
2504 		case QFMT_VFS_V0:
2505 			fmtname = "vfsv0";
2506 			break;
2507 		case QFMT_VFS_V1:
2508 			fmtname = "vfsv1";
2509 			break;
2510 		}
2511 		seq_printf(seq, ",jqfmt=%s", fmtname);
2512 	}
2513 
2514 	rcu_read_lock();
2515 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2516 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2517 	if (usr_qf_name)
2518 		seq_show_option(seq, "usrjquota", usr_qf_name);
2519 	if (grp_qf_name)
2520 		seq_show_option(seq, "grpjquota", grp_qf_name);
2521 	rcu_read_unlock();
2522 #endif
2523 }
2524 
2525 static const char *token2str(int token)
2526 {
2527 	const struct match_token *t;
2528 
2529 	for (t = tokens; t->token != Opt_err; t++)
2530 		if (t->token == token && !strchr(t->pattern, '='))
2531 			break;
2532 	return t->pattern;
2533 }
2534 
2535 /*
2536  * Show an option if
2537  *  - it's set to a non-default value OR
2538  *  - if the per-sb default is different from the global default
2539  */
2540 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2541 			      int nodefs)
2542 {
2543 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 	struct ext4_super_block *es = sbi->s_es;
2545 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2546 	const struct mount_opts *m;
2547 	char sep = nodefs ? '\n' : ',';
2548 
2549 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2550 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2551 
2552 	if (sbi->s_sb_block != 1)
2553 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2554 
2555 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2556 		int want_set = m->flags & MOPT_SET;
2557 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2558 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2559 			continue;
2560 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2561 			continue; /* skip if same as the default */
2562 		if ((want_set &&
2563 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2564 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2565 			continue; /* select Opt_noFoo vs Opt_Foo */
2566 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2567 	}
2568 
2569 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2570 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2571 		SEQ_OPTS_PRINT("resuid=%u",
2572 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2573 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2574 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2575 		SEQ_OPTS_PRINT("resgid=%u",
2576 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2577 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2578 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2579 		SEQ_OPTS_PUTS("errors=remount-ro");
2580 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2581 		SEQ_OPTS_PUTS("errors=continue");
2582 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2583 		SEQ_OPTS_PUTS("errors=panic");
2584 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2585 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2586 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2587 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2588 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2589 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2590 	if (sb->s_flags & SB_I_VERSION)
2591 		SEQ_OPTS_PUTS("i_version");
2592 	if (nodefs || sbi->s_stripe)
2593 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2594 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2595 			(sbi->s_mount_opt ^ def_mount_opt)) {
2596 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2597 			SEQ_OPTS_PUTS("data=journal");
2598 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2599 			SEQ_OPTS_PUTS("data=ordered");
2600 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2601 			SEQ_OPTS_PUTS("data=writeback");
2602 	}
2603 	if (nodefs ||
2604 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2605 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2606 			       sbi->s_inode_readahead_blks);
2607 
2608 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2609 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2610 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2611 	if (nodefs || sbi->s_max_dir_size_kb)
2612 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2613 	if (test_opt(sb, DATA_ERR_ABORT))
2614 		SEQ_OPTS_PUTS("data_err=abort");
2615 
2616 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2617 
2618 	if (sb->s_flags & SB_INLINECRYPT)
2619 		SEQ_OPTS_PUTS("inlinecrypt");
2620 
2621 	if (test_opt(sb, DAX_ALWAYS)) {
2622 		if (IS_EXT2_SB(sb))
2623 			SEQ_OPTS_PUTS("dax");
2624 		else
2625 			SEQ_OPTS_PUTS("dax=always");
2626 	} else if (test_opt2(sb, DAX_NEVER)) {
2627 		SEQ_OPTS_PUTS("dax=never");
2628 	} else if (test_opt2(sb, DAX_INODE)) {
2629 		SEQ_OPTS_PUTS("dax=inode");
2630 	}
2631 	ext4_show_quota_options(seq, sb);
2632 	return 0;
2633 }
2634 
2635 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2636 {
2637 	return _ext4_show_options(seq, root->d_sb, 0);
2638 }
2639 
2640 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2641 {
2642 	struct super_block *sb = seq->private;
2643 	int rc;
2644 
2645 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2646 	rc = _ext4_show_options(seq, sb, 1);
2647 	seq_puts(seq, "\n");
2648 	return rc;
2649 }
2650 
2651 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2652 			    int read_only)
2653 {
2654 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2655 	int err = 0;
2656 
2657 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2658 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2659 			 "forcing read-only mode");
2660 		err = -EROFS;
2661 		goto done;
2662 	}
2663 	if (read_only)
2664 		goto done;
2665 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2666 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2667 			 "running e2fsck is recommended");
2668 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2669 		ext4_msg(sb, KERN_WARNING,
2670 			 "warning: mounting fs with errors, "
2671 			 "running e2fsck is recommended");
2672 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2673 		 le16_to_cpu(es->s_mnt_count) >=
2674 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2675 		ext4_msg(sb, KERN_WARNING,
2676 			 "warning: maximal mount count reached, "
2677 			 "running e2fsck is recommended");
2678 	else if (le32_to_cpu(es->s_checkinterval) &&
2679 		 (ext4_get_tstamp(es, s_lastcheck) +
2680 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2681 		ext4_msg(sb, KERN_WARNING,
2682 			 "warning: checktime reached, "
2683 			 "running e2fsck is recommended");
2684 	if (!sbi->s_journal)
2685 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2686 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2687 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2688 	le16_add_cpu(&es->s_mnt_count, 1);
2689 	ext4_update_tstamp(es, s_mtime);
2690 	if (sbi->s_journal)
2691 		ext4_set_feature_journal_needs_recovery(sb);
2692 
2693 	err = ext4_commit_super(sb);
2694 done:
2695 	if (test_opt(sb, DEBUG))
2696 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2697 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2698 			sb->s_blocksize,
2699 			sbi->s_groups_count,
2700 			EXT4_BLOCKS_PER_GROUP(sb),
2701 			EXT4_INODES_PER_GROUP(sb),
2702 			sbi->s_mount_opt, sbi->s_mount_opt2);
2703 
2704 	cleancache_init_fs(sb);
2705 	return err;
2706 }
2707 
2708 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2709 {
2710 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2711 	struct flex_groups **old_groups, **new_groups;
2712 	int size, i, j;
2713 
2714 	if (!sbi->s_log_groups_per_flex)
2715 		return 0;
2716 
2717 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2718 	if (size <= sbi->s_flex_groups_allocated)
2719 		return 0;
2720 
2721 	new_groups = kvzalloc(roundup_pow_of_two(size *
2722 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2723 	if (!new_groups) {
2724 		ext4_msg(sb, KERN_ERR,
2725 			 "not enough memory for %d flex group pointers", size);
2726 		return -ENOMEM;
2727 	}
2728 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2729 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2730 					 sizeof(struct flex_groups)),
2731 					 GFP_KERNEL);
2732 		if (!new_groups[i]) {
2733 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2734 				kvfree(new_groups[j]);
2735 			kvfree(new_groups);
2736 			ext4_msg(sb, KERN_ERR,
2737 				 "not enough memory for %d flex groups", size);
2738 			return -ENOMEM;
2739 		}
2740 	}
2741 	rcu_read_lock();
2742 	old_groups = rcu_dereference(sbi->s_flex_groups);
2743 	if (old_groups)
2744 		memcpy(new_groups, old_groups,
2745 		       (sbi->s_flex_groups_allocated *
2746 			sizeof(struct flex_groups *)));
2747 	rcu_read_unlock();
2748 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2749 	sbi->s_flex_groups_allocated = size;
2750 	if (old_groups)
2751 		ext4_kvfree_array_rcu(old_groups);
2752 	return 0;
2753 }
2754 
2755 static int ext4_fill_flex_info(struct super_block *sb)
2756 {
2757 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2758 	struct ext4_group_desc *gdp = NULL;
2759 	struct flex_groups *fg;
2760 	ext4_group_t flex_group;
2761 	int i, err;
2762 
2763 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2764 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2765 		sbi->s_log_groups_per_flex = 0;
2766 		return 1;
2767 	}
2768 
2769 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2770 	if (err)
2771 		goto failed;
2772 
2773 	for (i = 0; i < sbi->s_groups_count; i++) {
2774 		gdp = ext4_get_group_desc(sb, i, NULL);
2775 
2776 		flex_group = ext4_flex_group(sbi, i);
2777 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2778 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2779 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2780 			     &fg->free_clusters);
2781 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2782 	}
2783 
2784 	return 1;
2785 failed:
2786 	return 0;
2787 }
2788 
2789 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2790 				   struct ext4_group_desc *gdp)
2791 {
2792 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2793 	__u16 crc = 0;
2794 	__le32 le_group = cpu_to_le32(block_group);
2795 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2796 
2797 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2798 		/* Use new metadata_csum algorithm */
2799 		__u32 csum32;
2800 		__u16 dummy_csum = 0;
2801 
2802 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2803 				     sizeof(le_group));
2804 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2805 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2806 				     sizeof(dummy_csum));
2807 		offset += sizeof(dummy_csum);
2808 		if (offset < sbi->s_desc_size)
2809 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2810 					     sbi->s_desc_size - offset);
2811 
2812 		crc = csum32 & 0xFFFF;
2813 		goto out;
2814 	}
2815 
2816 	/* old crc16 code */
2817 	if (!ext4_has_feature_gdt_csum(sb))
2818 		return 0;
2819 
2820 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2821 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2822 	crc = crc16(crc, (__u8 *)gdp, offset);
2823 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2824 	/* for checksum of struct ext4_group_desc do the rest...*/
2825 	if (ext4_has_feature_64bit(sb) &&
2826 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2827 		crc = crc16(crc, (__u8 *)gdp + offset,
2828 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2829 				offset);
2830 
2831 out:
2832 	return cpu_to_le16(crc);
2833 }
2834 
2835 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2836 				struct ext4_group_desc *gdp)
2837 {
2838 	if (ext4_has_group_desc_csum(sb) &&
2839 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2840 		return 0;
2841 
2842 	return 1;
2843 }
2844 
2845 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2846 			      struct ext4_group_desc *gdp)
2847 {
2848 	if (!ext4_has_group_desc_csum(sb))
2849 		return;
2850 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2851 }
2852 
2853 /* Called at mount-time, super-block is locked */
2854 static int ext4_check_descriptors(struct super_block *sb,
2855 				  ext4_fsblk_t sb_block,
2856 				  ext4_group_t *first_not_zeroed)
2857 {
2858 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2859 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2860 	ext4_fsblk_t last_block;
2861 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2862 	ext4_fsblk_t block_bitmap;
2863 	ext4_fsblk_t inode_bitmap;
2864 	ext4_fsblk_t inode_table;
2865 	int flexbg_flag = 0;
2866 	ext4_group_t i, grp = sbi->s_groups_count;
2867 
2868 	if (ext4_has_feature_flex_bg(sb))
2869 		flexbg_flag = 1;
2870 
2871 	ext4_debug("Checking group descriptors");
2872 
2873 	for (i = 0; i < sbi->s_groups_count; i++) {
2874 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2875 
2876 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2877 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2878 		else
2879 			last_block = first_block +
2880 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2881 
2882 		if ((grp == sbi->s_groups_count) &&
2883 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2884 			grp = i;
2885 
2886 		block_bitmap = ext4_block_bitmap(sb, gdp);
2887 		if (block_bitmap == sb_block) {
2888 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2889 				 "Block bitmap for group %u overlaps "
2890 				 "superblock", i);
2891 			if (!sb_rdonly(sb))
2892 				return 0;
2893 		}
2894 		if (block_bitmap >= sb_block + 1 &&
2895 		    block_bitmap <= last_bg_block) {
2896 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2897 				 "Block bitmap for group %u overlaps "
2898 				 "block group descriptors", i);
2899 			if (!sb_rdonly(sb))
2900 				return 0;
2901 		}
2902 		if (block_bitmap < first_block || block_bitmap > last_block) {
2903 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2904 			       "Block bitmap for group %u not in group "
2905 			       "(block %llu)!", i, block_bitmap);
2906 			return 0;
2907 		}
2908 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2909 		if (inode_bitmap == sb_block) {
2910 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 				 "Inode bitmap for group %u overlaps "
2912 				 "superblock", i);
2913 			if (!sb_rdonly(sb))
2914 				return 0;
2915 		}
2916 		if (inode_bitmap >= sb_block + 1 &&
2917 		    inode_bitmap <= last_bg_block) {
2918 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2919 				 "Inode bitmap for group %u overlaps "
2920 				 "block group descriptors", i);
2921 			if (!sb_rdonly(sb))
2922 				return 0;
2923 		}
2924 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2925 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2926 			       "Inode bitmap for group %u not in group "
2927 			       "(block %llu)!", i, inode_bitmap);
2928 			return 0;
2929 		}
2930 		inode_table = ext4_inode_table(sb, gdp);
2931 		if (inode_table == sb_block) {
2932 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 				 "Inode table for group %u overlaps "
2934 				 "superblock", i);
2935 			if (!sb_rdonly(sb))
2936 				return 0;
2937 		}
2938 		if (inode_table >= sb_block + 1 &&
2939 		    inode_table <= last_bg_block) {
2940 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 				 "Inode table for group %u overlaps "
2942 				 "block group descriptors", i);
2943 			if (!sb_rdonly(sb))
2944 				return 0;
2945 		}
2946 		if (inode_table < first_block ||
2947 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2948 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2949 			       "Inode table for group %u not in group "
2950 			       "(block %llu)!", i, inode_table);
2951 			return 0;
2952 		}
2953 		ext4_lock_group(sb, i);
2954 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2955 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2956 				 "Checksum for group %u failed (%u!=%u)",
2957 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2958 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2959 			if (!sb_rdonly(sb)) {
2960 				ext4_unlock_group(sb, i);
2961 				return 0;
2962 			}
2963 		}
2964 		ext4_unlock_group(sb, i);
2965 		if (!flexbg_flag)
2966 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2967 	}
2968 	if (NULL != first_not_zeroed)
2969 		*first_not_zeroed = grp;
2970 	return 1;
2971 }
2972 
2973 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2974  * the superblock) which were deleted from all directories, but held open by
2975  * a process at the time of a crash.  We walk the list and try to delete these
2976  * inodes at recovery time (only with a read-write filesystem).
2977  *
2978  * In order to keep the orphan inode chain consistent during traversal (in
2979  * case of crash during recovery), we link each inode into the superblock
2980  * orphan list_head and handle it the same way as an inode deletion during
2981  * normal operation (which journals the operations for us).
2982  *
2983  * We only do an iget() and an iput() on each inode, which is very safe if we
2984  * accidentally point at an in-use or already deleted inode.  The worst that
2985  * can happen in this case is that we get a "bit already cleared" message from
2986  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2987  * e2fsck was run on this filesystem, and it must have already done the orphan
2988  * inode cleanup for us, so we can safely abort without any further action.
2989  */
2990 static void ext4_orphan_cleanup(struct super_block *sb,
2991 				struct ext4_super_block *es)
2992 {
2993 	unsigned int s_flags = sb->s_flags;
2994 	int ret, nr_orphans = 0, nr_truncates = 0;
2995 #ifdef CONFIG_QUOTA
2996 	int quota_update = 0;
2997 	int i;
2998 #endif
2999 	if (!es->s_last_orphan) {
3000 		jbd_debug(4, "no orphan inodes to clean up\n");
3001 		return;
3002 	}
3003 
3004 	if (bdev_read_only(sb->s_bdev)) {
3005 		ext4_msg(sb, KERN_ERR, "write access "
3006 			"unavailable, skipping orphan cleanup");
3007 		return;
3008 	}
3009 
3010 	/* Check if feature set would not allow a r/w mount */
3011 	if (!ext4_feature_set_ok(sb, 0)) {
3012 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3013 			 "unknown ROCOMPAT features");
3014 		return;
3015 	}
3016 
3017 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3018 		/* don't clear list on RO mount w/ errors */
3019 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3020 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3021 				  "clearing orphan list.\n");
3022 			es->s_last_orphan = 0;
3023 		}
3024 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3025 		return;
3026 	}
3027 
3028 	if (s_flags & SB_RDONLY) {
3029 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3030 		sb->s_flags &= ~SB_RDONLY;
3031 	}
3032 #ifdef CONFIG_QUOTA
3033 	/*
3034 	 * Turn on quotas which were not enabled for read-only mounts if
3035 	 * filesystem has quota feature, so that they are updated correctly.
3036 	 */
3037 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3038 		int ret = ext4_enable_quotas(sb);
3039 
3040 		if (!ret)
3041 			quota_update = 1;
3042 		else
3043 			ext4_msg(sb, KERN_ERR,
3044 				"Cannot turn on quotas: error %d", ret);
3045 	}
3046 
3047 	/* Turn on journaled quotas used for old sytle */
3048 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3049 		if (EXT4_SB(sb)->s_qf_names[i]) {
3050 			int ret = ext4_quota_on_mount(sb, i);
3051 
3052 			if (!ret)
3053 				quota_update = 1;
3054 			else
3055 				ext4_msg(sb, KERN_ERR,
3056 					"Cannot turn on journaled "
3057 					"quota: type %d: error %d", i, ret);
3058 		}
3059 	}
3060 #endif
3061 
3062 	while (es->s_last_orphan) {
3063 		struct inode *inode;
3064 
3065 		/*
3066 		 * We may have encountered an error during cleanup; if
3067 		 * so, skip the rest.
3068 		 */
3069 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3070 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3071 			es->s_last_orphan = 0;
3072 			break;
3073 		}
3074 
3075 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3076 		if (IS_ERR(inode)) {
3077 			es->s_last_orphan = 0;
3078 			break;
3079 		}
3080 
3081 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3082 		dquot_initialize(inode);
3083 		if (inode->i_nlink) {
3084 			if (test_opt(sb, DEBUG))
3085 				ext4_msg(sb, KERN_DEBUG,
3086 					"%s: truncating inode %lu to %lld bytes",
3087 					__func__, inode->i_ino, inode->i_size);
3088 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3089 				  inode->i_ino, inode->i_size);
3090 			inode_lock(inode);
3091 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3092 			ret = ext4_truncate(inode);
3093 			if (ret) {
3094 				/*
3095 				 * We need to clean up the in-core orphan list
3096 				 * manually if ext4_truncate() failed to get a
3097 				 * transaction handle.
3098 				 */
3099 				ext4_orphan_del(NULL, inode);
3100 				ext4_std_error(inode->i_sb, ret);
3101 			}
3102 			inode_unlock(inode);
3103 			nr_truncates++;
3104 		} else {
3105 			if (test_opt(sb, DEBUG))
3106 				ext4_msg(sb, KERN_DEBUG,
3107 					"%s: deleting unreferenced inode %lu",
3108 					__func__, inode->i_ino);
3109 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3110 				  inode->i_ino);
3111 			nr_orphans++;
3112 		}
3113 		iput(inode);  /* The delete magic happens here! */
3114 	}
3115 
3116 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3117 
3118 	if (nr_orphans)
3119 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3120 		       PLURAL(nr_orphans));
3121 	if (nr_truncates)
3122 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3123 		       PLURAL(nr_truncates));
3124 #ifdef CONFIG_QUOTA
3125 	/* Turn off quotas if they were enabled for orphan cleanup */
3126 	if (quota_update) {
3127 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3128 			if (sb_dqopt(sb)->files[i])
3129 				dquot_quota_off(sb, i);
3130 		}
3131 	}
3132 #endif
3133 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3134 }
3135 
3136 /*
3137  * Maximal extent format file size.
3138  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3139  * extent format containers, within a sector_t, and within i_blocks
3140  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3141  * so that won't be a limiting factor.
3142  *
3143  * However there is other limiting factor. We do store extents in the form
3144  * of starting block and length, hence the resulting length of the extent
3145  * covering maximum file size must fit into on-disk format containers as
3146  * well. Given that length is always by 1 unit bigger than max unit (because
3147  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3148  *
3149  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3150  */
3151 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3152 {
3153 	loff_t res;
3154 	loff_t upper_limit = MAX_LFS_FILESIZE;
3155 
3156 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3157 
3158 	if (!has_huge_files) {
3159 		upper_limit = (1LL << 32) - 1;
3160 
3161 		/* total blocks in file system block size */
3162 		upper_limit >>= (blkbits - 9);
3163 		upper_limit <<= blkbits;
3164 	}
3165 
3166 	/*
3167 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3168 	 * by one fs block, so ee_len can cover the extent of maximum file
3169 	 * size
3170 	 */
3171 	res = (1LL << 32) - 1;
3172 	res <<= blkbits;
3173 
3174 	/* Sanity check against vm- & vfs- imposed limits */
3175 	if (res > upper_limit)
3176 		res = upper_limit;
3177 
3178 	return res;
3179 }
3180 
3181 /*
3182  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3183  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3184  * We need to be 1 filesystem block less than the 2^48 sector limit.
3185  */
3186 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3187 {
3188 	loff_t res = EXT4_NDIR_BLOCKS;
3189 	int meta_blocks;
3190 	loff_t upper_limit;
3191 	/* This is calculated to be the largest file size for a dense, block
3192 	 * mapped file such that the file's total number of 512-byte sectors,
3193 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3194 	 *
3195 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3196 	 * number of 512-byte sectors of the file.
3197 	 */
3198 
3199 	if (!has_huge_files) {
3200 		/*
3201 		 * !has_huge_files or implies that the inode i_block field
3202 		 * represents total file blocks in 2^32 512-byte sectors ==
3203 		 * size of vfs inode i_blocks * 8
3204 		 */
3205 		upper_limit = (1LL << 32) - 1;
3206 
3207 		/* total blocks in file system block size */
3208 		upper_limit >>= (bits - 9);
3209 
3210 	} else {
3211 		/*
3212 		 * We use 48 bit ext4_inode i_blocks
3213 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3214 		 * represent total number of blocks in
3215 		 * file system block size
3216 		 */
3217 		upper_limit = (1LL << 48) - 1;
3218 
3219 	}
3220 
3221 	/* indirect blocks */
3222 	meta_blocks = 1;
3223 	/* double indirect blocks */
3224 	meta_blocks += 1 + (1LL << (bits-2));
3225 	/* tripple indirect blocks */
3226 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3227 
3228 	upper_limit -= meta_blocks;
3229 	upper_limit <<= bits;
3230 
3231 	res += 1LL << (bits-2);
3232 	res += 1LL << (2*(bits-2));
3233 	res += 1LL << (3*(bits-2));
3234 	res <<= bits;
3235 	if (res > upper_limit)
3236 		res = upper_limit;
3237 
3238 	if (res > MAX_LFS_FILESIZE)
3239 		res = MAX_LFS_FILESIZE;
3240 
3241 	return res;
3242 }
3243 
3244 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3245 				   ext4_fsblk_t logical_sb_block, int nr)
3246 {
3247 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3248 	ext4_group_t bg, first_meta_bg;
3249 	int has_super = 0;
3250 
3251 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3252 
3253 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3254 		return logical_sb_block + nr + 1;
3255 	bg = sbi->s_desc_per_block * nr;
3256 	if (ext4_bg_has_super(sb, bg))
3257 		has_super = 1;
3258 
3259 	/*
3260 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3261 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3262 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3263 	 * compensate.
3264 	 */
3265 	if (sb->s_blocksize == 1024 && nr == 0 &&
3266 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3267 		has_super++;
3268 
3269 	return (has_super + ext4_group_first_block_no(sb, bg));
3270 }
3271 
3272 /**
3273  * ext4_get_stripe_size: Get the stripe size.
3274  * @sbi: In memory super block info
3275  *
3276  * If we have specified it via mount option, then
3277  * use the mount option value. If the value specified at mount time is
3278  * greater than the blocks per group use the super block value.
3279  * If the super block value is greater than blocks per group return 0.
3280  * Allocator needs it be less than blocks per group.
3281  *
3282  */
3283 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3284 {
3285 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3286 	unsigned long stripe_width =
3287 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3288 	int ret;
3289 
3290 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3291 		ret = sbi->s_stripe;
3292 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3293 		ret = stripe_width;
3294 	else if (stride && stride <= sbi->s_blocks_per_group)
3295 		ret = stride;
3296 	else
3297 		ret = 0;
3298 
3299 	/*
3300 	 * If the stripe width is 1, this makes no sense and
3301 	 * we set it to 0 to turn off stripe handling code.
3302 	 */
3303 	if (ret <= 1)
3304 		ret = 0;
3305 
3306 	return ret;
3307 }
3308 
3309 /*
3310  * Check whether this filesystem can be mounted based on
3311  * the features present and the RDONLY/RDWR mount requested.
3312  * Returns 1 if this filesystem can be mounted as requested,
3313  * 0 if it cannot be.
3314  */
3315 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3316 {
3317 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3318 		ext4_msg(sb, KERN_ERR,
3319 			"Couldn't mount because of "
3320 			"unsupported optional features (%x)",
3321 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3322 			~EXT4_FEATURE_INCOMPAT_SUPP));
3323 		return 0;
3324 	}
3325 
3326 #ifndef CONFIG_UNICODE
3327 	if (ext4_has_feature_casefold(sb)) {
3328 		ext4_msg(sb, KERN_ERR,
3329 			 "Filesystem with casefold feature cannot be "
3330 			 "mounted without CONFIG_UNICODE");
3331 		return 0;
3332 	}
3333 #endif
3334 
3335 	if (readonly)
3336 		return 1;
3337 
3338 	if (ext4_has_feature_readonly(sb)) {
3339 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3340 		sb->s_flags |= SB_RDONLY;
3341 		return 1;
3342 	}
3343 
3344 	/* Check that feature set is OK for a read-write mount */
3345 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3346 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3347 			 "unsupported optional features (%x)",
3348 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3349 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3350 		return 0;
3351 	}
3352 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3353 		ext4_msg(sb, KERN_ERR,
3354 			 "Can't support bigalloc feature without "
3355 			 "extents feature\n");
3356 		return 0;
3357 	}
3358 
3359 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3360 	if (!readonly && (ext4_has_feature_quota(sb) ||
3361 			  ext4_has_feature_project(sb))) {
3362 		ext4_msg(sb, KERN_ERR,
3363 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3364 		return 0;
3365 	}
3366 #endif  /* CONFIG_QUOTA */
3367 	return 1;
3368 }
3369 
3370 /*
3371  * This function is called once a day if we have errors logged
3372  * on the file system
3373  */
3374 static void print_daily_error_info(struct timer_list *t)
3375 {
3376 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3377 	struct super_block *sb = sbi->s_sb;
3378 	struct ext4_super_block *es = sbi->s_es;
3379 
3380 	if (es->s_error_count)
3381 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3382 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3383 			 le32_to_cpu(es->s_error_count));
3384 	if (es->s_first_error_time) {
3385 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3386 		       sb->s_id,
3387 		       ext4_get_tstamp(es, s_first_error_time),
3388 		       (int) sizeof(es->s_first_error_func),
3389 		       es->s_first_error_func,
3390 		       le32_to_cpu(es->s_first_error_line));
3391 		if (es->s_first_error_ino)
3392 			printk(KERN_CONT ": inode %u",
3393 			       le32_to_cpu(es->s_first_error_ino));
3394 		if (es->s_first_error_block)
3395 			printk(KERN_CONT ": block %llu", (unsigned long long)
3396 			       le64_to_cpu(es->s_first_error_block));
3397 		printk(KERN_CONT "\n");
3398 	}
3399 	if (es->s_last_error_time) {
3400 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3401 		       sb->s_id,
3402 		       ext4_get_tstamp(es, s_last_error_time),
3403 		       (int) sizeof(es->s_last_error_func),
3404 		       es->s_last_error_func,
3405 		       le32_to_cpu(es->s_last_error_line));
3406 		if (es->s_last_error_ino)
3407 			printk(KERN_CONT ": inode %u",
3408 			       le32_to_cpu(es->s_last_error_ino));
3409 		if (es->s_last_error_block)
3410 			printk(KERN_CONT ": block %llu", (unsigned long long)
3411 			       le64_to_cpu(es->s_last_error_block));
3412 		printk(KERN_CONT "\n");
3413 	}
3414 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3415 }
3416 
3417 /* Find next suitable group and run ext4_init_inode_table */
3418 static int ext4_run_li_request(struct ext4_li_request *elr)
3419 {
3420 	struct ext4_group_desc *gdp = NULL;
3421 	struct super_block *sb = elr->lr_super;
3422 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3423 	ext4_group_t group = elr->lr_next_group;
3424 	unsigned long timeout = 0;
3425 	unsigned int prefetch_ios = 0;
3426 	int ret = 0;
3427 
3428 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3429 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3430 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3431 		if (prefetch_ios)
3432 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3433 					      prefetch_ios);
3434 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3435 					    prefetch_ios);
3436 		if (group >= elr->lr_next_group) {
3437 			ret = 1;
3438 			if (elr->lr_first_not_zeroed != ngroups &&
3439 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3440 				elr->lr_next_group = elr->lr_first_not_zeroed;
3441 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3442 				ret = 0;
3443 			}
3444 		}
3445 		return ret;
3446 	}
3447 
3448 	for (; group < ngroups; group++) {
3449 		gdp = ext4_get_group_desc(sb, group, NULL);
3450 		if (!gdp) {
3451 			ret = 1;
3452 			break;
3453 		}
3454 
3455 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3456 			break;
3457 	}
3458 
3459 	if (group >= ngroups)
3460 		ret = 1;
3461 
3462 	if (!ret) {
3463 		timeout = jiffies;
3464 		ret = ext4_init_inode_table(sb, group,
3465 					    elr->lr_timeout ? 0 : 1);
3466 		trace_ext4_lazy_itable_init(sb, group);
3467 		if (elr->lr_timeout == 0) {
3468 			timeout = (jiffies - timeout) *
3469 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3470 			elr->lr_timeout = timeout;
3471 		}
3472 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3473 		elr->lr_next_group = group + 1;
3474 	}
3475 	return ret;
3476 }
3477 
3478 /*
3479  * Remove lr_request from the list_request and free the
3480  * request structure. Should be called with li_list_mtx held
3481  */
3482 static void ext4_remove_li_request(struct ext4_li_request *elr)
3483 {
3484 	if (!elr)
3485 		return;
3486 
3487 	list_del(&elr->lr_request);
3488 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3489 	kfree(elr);
3490 }
3491 
3492 static void ext4_unregister_li_request(struct super_block *sb)
3493 {
3494 	mutex_lock(&ext4_li_mtx);
3495 	if (!ext4_li_info) {
3496 		mutex_unlock(&ext4_li_mtx);
3497 		return;
3498 	}
3499 
3500 	mutex_lock(&ext4_li_info->li_list_mtx);
3501 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3502 	mutex_unlock(&ext4_li_info->li_list_mtx);
3503 	mutex_unlock(&ext4_li_mtx);
3504 }
3505 
3506 static struct task_struct *ext4_lazyinit_task;
3507 
3508 /*
3509  * This is the function where ext4lazyinit thread lives. It walks
3510  * through the request list searching for next scheduled filesystem.
3511  * When such a fs is found, run the lazy initialization request
3512  * (ext4_rn_li_request) and keep track of the time spend in this
3513  * function. Based on that time we compute next schedule time of
3514  * the request. When walking through the list is complete, compute
3515  * next waking time and put itself into sleep.
3516  */
3517 static int ext4_lazyinit_thread(void *arg)
3518 {
3519 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3520 	struct list_head *pos, *n;
3521 	struct ext4_li_request *elr;
3522 	unsigned long next_wakeup, cur;
3523 
3524 	BUG_ON(NULL == eli);
3525 
3526 cont_thread:
3527 	while (true) {
3528 		next_wakeup = MAX_JIFFY_OFFSET;
3529 
3530 		mutex_lock(&eli->li_list_mtx);
3531 		if (list_empty(&eli->li_request_list)) {
3532 			mutex_unlock(&eli->li_list_mtx);
3533 			goto exit_thread;
3534 		}
3535 		list_for_each_safe(pos, n, &eli->li_request_list) {
3536 			int err = 0;
3537 			int progress = 0;
3538 			elr = list_entry(pos, struct ext4_li_request,
3539 					 lr_request);
3540 
3541 			if (time_before(jiffies, elr->lr_next_sched)) {
3542 				if (time_before(elr->lr_next_sched, next_wakeup))
3543 					next_wakeup = elr->lr_next_sched;
3544 				continue;
3545 			}
3546 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3547 				if (sb_start_write_trylock(elr->lr_super)) {
3548 					progress = 1;
3549 					/*
3550 					 * We hold sb->s_umount, sb can not
3551 					 * be removed from the list, it is
3552 					 * now safe to drop li_list_mtx
3553 					 */
3554 					mutex_unlock(&eli->li_list_mtx);
3555 					err = ext4_run_li_request(elr);
3556 					sb_end_write(elr->lr_super);
3557 					mutex_lock(&eli->li_list_mtx);
3558 					n = pos->next;
3559 				}
3560 				up_read((&elr->lr_super->s_umount));
3561 			}
3562 			/* error, remove the lazy_init job */
3563 			if (err) {
3564 				ext4_remove_li_request(elr);
3565 				continue;
3566 			}
3567 			if (!progress) {
3568 				elr->lr_next_sched = jiffies +
3569 					(prandom_u32()
3570 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3571 			}
3572 			if (time_before(elr->lr_next_sched, next_wakeup))
3573 				next_wakeup = elr->lr_next_sched;
3574 		}
3575 		mutex_unlock(&eli->li_list_mtx);
3576 
3577 		try_to_freeze();
3578 
3579 		cur = jiffies;
3580 		if ((time_after_eq(cur, next_wakeup)) ||
3581 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3582 			cond_resched();
3583 			continue;
3584 		}
3585 
3586 		schedule_timeout_interruptible(next_wakeup - cur);
3587 
3588 		if (kthread_should_stop()) {
3589 			ext4_clear_request_list();
3590 			goto exit_thread;
3591 		}
3592 	}
3593 
3594 exit_thread:
3595 	/*
3596 	 * It looks like the request list is empty, but we need
3597 	 * to check it under the li_list_mtx lock, to prevent any
3598 	 * additions into it, and of course we should lock ext4_li_mtx
3599 	 * to atomically free the list and ext4_li_info, because at
3600 	 * this point another ext4 filesystem could be registering
3601 	 * new one.
3602 	 */
3603 	mutex_lock(&ext4_li_mtx);
3604 	mutex_lock(&eli->li_list_mtx);
3605 	if (!list_empty(&eli->li_request_list)) {
3606 		mutex_unlock(&eli->li_list_mtx);
3607 		mutex_unlock(&ext4_li_mtx);
3608 		goto cont_thread;
3609 	}
3610 	mutex_unlock(&eli->li_list_mtx);
3611 	kfree(ext4_li_info);
3612 	ext4_li_info = NULL;
3613 	mutex_unlock(&ext4_li_mtx);
3614 
3615 	return 0;
3616 }
3617 
3618 static void ext4_clear_request_list(void)
3619 {
3620 	struct list_head *pos, *n;
3621 	struct ext4_li_request *elr;
3622 
3623 	mutex_lock(&ext4_li_info->li_list_mtx);
3624 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3625 		elr = list_entry(pos, struct ext4_li_request,
3626 				 lr_request);
3627 		ext4_remove_li_request(elr);
3628 	}
3629 	mutex_unlock(&ext4_li_info->li_list_mtx);
3630 }
3631 
3632 static int ext4_run_lazyinit_thread(void)
3633 {
3634 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3635 					 ext4_li_info, "ext4lazyinit");
3636 	if (IS_ERR(ext4_lazyinit_task)) {
3637 		int err = PTR_ERR(ext4_lazyinit_task);
3638 		ext4_clear_request_list();
3639 		kfree(ext4_li_info);
3640 		ext4_li_info = NULL;
3641 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3642 				 "initialization thread\n",
3643 				 err);
3644 		return err;
3645 	}
3646 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3647 	return 0;
3648 }
3649 
3650 /*
3651  * Check whether it make sense to run itable init. thread or not.
3652  * If there is at least one uninitialized inode table, return
3653  * corresponding group number, else the loop goes through all
3654  * groups and return total number of groups.
3655  */
3656 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3657 {
3658 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3659 	struct ext4_group_desc *gdp = NULL;
3660 
3661 	if (!ext4_has_group_desc_csum(sb))
3662 		return ngroups;
3663 
3664 	for (group = 0; group < ngroups; group++) {
3665 		gdp = ext4_get_group_desc(sb, group, NULL);
3666 		if (!gdp)
3667 			continue;
3668 
3669 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3670 			break;
3671 	}
3672 
3673 	return group;
3674 }
3675 
3676 static int ext4_li_info_new(void)
3677 {
3678 	struct ext4_lazy_init *eli = NULL;
3679 
3680 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3681 	if (!eli)
3682 		return -ENOMEM;
3683 
3684 	INIT_LIST_HEAD(&eli->li_request_list);
3685 	mutex_init(&eli->li_list_mtx);
3686 
3687 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3688 
3689 	ext4_li_info = eli;
3690 
3691 	return 0;
3692 }
3693 
3694 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3695 					    ext4_group_t start)
3696 {
3697 	struct ext4_li_request *elr;
3698 
3699 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3700 	if (!elr)
3701 		return NULL;
3702 
3703 	elr->lr_super = sb;
3704 	elr->lr_first_not_zeroed = start;
3705 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3706 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3707 		elr->lr_next_group = start;
3708 	} else {
3709 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3710 	}
3711 
3712 	/*
3713 	 * Randomize first schedule time of the request to
3714 	 * spread the inode table initialization requests
3715 	 * better.
3716 	 */
3717 	elr->lr_next_sched = jiffies + (prandom_u32() %
3718 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3719 	return elr;
3720 }
3721 
3722 int ext4_register_li_request(struct super_block *sb,
3723 			     ext4_group_t first_not_zeroed)
3724 {
3725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3726 	struct ext4_li_request *elr = NULL;
3727 	ext4_group_t ngroups = sbi->s_groups_count;
3728 	int ret = 0;
3729 
3730 	mutex_lock(&ext4_li_mtx);
3731 	if (sbi->s_li_request != NULL) {
3732 		/*
3733 		 * Reset timeout so it can be computed again, because
3734 		 * s_li_wait_mult might have changed.
3735 		 */
3736 		sbi->s_li_request->lr_timeout = 0;
3737 		goto out;
3738 	}
3739 
3740 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3741 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3742 	     !test_opt(sb, INIT_INODE_TABLE)))
3743 		goto out;
3744 
3745 	elr = ext4_li_request_new(sb, first_not_zeroed);
3746 	if (!elr) {
3747 		ret = -ENOMEM;
3748 		goto out;
3749 	}
3750 
3751 	if (NULL == ext4_li_info) {
3752 		ret = ext4_li_info_new();
3753 		if (ret)
3754 			goto out;
3755 	}
3756 
3757 	mutex_lock(&ext4_li_info->li_list_mtx);
3758 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3759 	mutex_unlock(&ext4_li_info->li_list_mtx);
3760 
3761 	sbi->s_li_request = elr;
3762 	/*
3763 	 * set elr to NULL here since it has been inserted to
3764 	 * the request_list and the removal and free of it is
3765 	 * handled by ext4_clear_request_list from now on.
3766 	 */
3767 	elr = NULL;
3768 
3769 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3770 		ret = ext4_run_lazyinit_thread();
3771 		if (ret)
3772 			goto out;
3773 	}
3774 out:
3775 	mutex_unlock(&ext4_li_mtx);
3776 	if (ret)
3777 		kfree(elr);
3778 	return ret;
3779 }
3780 
3781 /*
3782  * We do not need to lock anything since this is called on
3783  * module unload.
3784  */
3785 static void ext4_destroy_lazyinit_thread(void)
3786 {
3787 	/*
3788 	 * If thread exited earlier
3789 	 * there's nothing to be done.
3790 	 */
3791 	if (!ext4_li_info || !ext4_lazyinit_task)
3792 		return;
3793 
3794 	kthread_stop(ext4_lazyinit_task);
3795 }
3796 
3797 static int set_journal_csum_feature_set(struct super_block *sb)
3798 {
3799 	int ret = 1;
3800 	int compat, incompat;
3801 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3802 
3803 	if (ext4_has_metadata_csum(sb)) {
3804 		/* journal checksum v3 */
3805 		compat = 0;
3806 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3807 	} else {
3808 		/* journal checksum v1 */
3809 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3810 		incompat = 0;
3811 	}
3812 
3813 	jbd2_journal_clear_features(sbi->s_journal,
3814 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3815 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3816 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3817 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3818 		ret = jbd2_journal_set_features(sbi->s_journal,
3819 				compat, 0,
3820 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3821 				incompat);
3822 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3823 		ret = jbd2_journal_set_features(sbi->s_journal,
3824 				compat, 0,
3825 				incompat);
3826 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3827 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3828 	} else {
3829 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3830 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3831 	}
3832 
3833 	return ret;
3834 }
3835 
3836 /*
3837  * Note: calculating the overhead so we can be compatible with
3838  * historical BSD practice is quite difficult in the face of
3839  * clusters/bigalloc.  This is because multiple metadata blocks from
3840  * different block group can end up in the same allocation cluster.
3841  * Calculating the exact overhead in the face of clustered allocation
3842  * requires either O(all block bitmaps) in memory or O(number of block
3843  * groups**2) in time.  We will still calculate the superblock for
3844  * older file systems --- and if we come across with a bigalloc file
3845  * system with zero in s_overhead_clusters the estimate will be close to
3846  * correct especially for very large cluster sizes --- but for newer
3847  * file systems, it's better to calculate this figure once at mkfs
3848  * time, and store it in the superblock.  If the superblock value is
3849  * present (even for non-bigalloc file systems), we will use it.
3850  */
3851 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3852 			  char *buf)
3853 {
3854 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3855 	struct ext4_group_desc	*gdp;
3856 	ext4_fsblk_t		first_block, last_block, b;
3857 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3858 	int			s, j, count = 0;
3859 
3860 	if (!ext4_has_feature_bigalloc(sb))
3861 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3862 			sbi->s_itb_per_group + 2);
3863 
3864 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3865 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3866 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3867 	for (i = 0; i < ngroups; i++) {
3868 		gdp = ext4_get_group_desc(sb, i, NULL);
3869 		b = ext4_block_bitmap(sb, gdp);
3870 		if (b >= first_block && b <= last_block) {
3871 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3872 			count++;
3873 		}
3874 		b = ext4_inode_bitmap(sb, gdp);
3875 		if (b >= first_block && b <= last_block) {
3876 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3877 			count++;
3878 		}
3879 		b = ext4_inode_table(sb, gdp);
3880 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3881 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3882 				int c = EXT4_B2C(sbi, b - first_block);
3883 				ext4_set_bit(c, buf);
3884 				count++;
3885 			}
3886 		if (i != grp)
3887 			continue;
3888 		s = 0;
3889 		if (ext4_bg_has_super(sb, grp)) {
3890 			ext4_set_bit(s++, buf);
3891 			count++;
3892 		}
3893 		j = ext4_bg_num_gdb(sb, grp);
3894 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3895 			ext4_error(sb, "Invalid number of block group "
3896 				   "descriptor blocks: %d", j);
3897 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3898 		}
3899 		count += j;
3900 		for (; j > 0; j--)
3901 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3902 	}
3903 	if (!count)
3904 		return 0;
3905 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3906 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3907 }
3908 
3909 /*
3910  * Compute the overhead and stash it in sbi->s_overhead
3911  */
3912 int ext4_calculate_overhead(struct super_block *sb)
3913 {
3914 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3915 	struct ext4_super_block *es = sbi->s_es;
3916 	struct inode *j_inode;
3917 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3918 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3919 	ext4_fsblk_t overhead = 0;
3920 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3921 
3922 	if (!buf)
3923 		return -ENOMEM;
3924 
3925 	/*
3926 	 * Compute the overhead (FS structures).  This is constant
3927 	 * for a given filesystem unless the number of block groups
3928 	 * changes so we cache the previous value until it does.
3929 	 */
3930 
3931 	/*
3932 	 * All of the blocks before first_data_block are overhead
3933 	 */
3934 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3935 
3936 	/*
3937 	 * Add the overhead found in each block group
3938 	 */
3939 	for (i = 0; i < ngroups; i++) {
3940 		int blks;
3941 
3942 		blks = count_overhead(sb, i, buf);
3943 		overhead += blks;
3944 		if (blks)
3945 			memset(buf, 0, PAGE_SIZE);
3946 		cond_resched();
3947 	}
3948 
3949 	/*
3950 	 * Add the internal journal blocks whether the journal has been
3951 	 * loaded or not
3952 	 */
3953 	if (sbi->s_journal && !sbi->s_journal_bdev)
3954 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3955 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3956 		/* j_inum for internal journal is non-zero */
3957 		j_inode = ext4_get_journal_inode(sb, j_inum);
3958 		if (j_inode) {
3959 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3960 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3961 			iput(j_inode);
3962 		} else {
3963 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3964 		}
3965 	}
3966 	sbi->s_overhead = overhead;
3967 	smp_wmb();
3968 	free_page((unsigned long) buf);
3969 	return 0;
3970 }
3971 
3972 static void ext4_set_resv_clusters(struct super_block *sb)
3973 {
3974 	ext4_fsblk_t resv_clusters;
3975 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3976 
3977 	/*
3978 	 * There's no need to reserve anything when we aren't using extents.
3979 	 * The space estimates are exact, there are no unwritten extents,
3980 	 * hole punching doesn't need new metadata... This is needed especially
3981 	 * to keep ext2/3 backward compatibility.
3982 	 */
3983 	if (!ext4_has_feature_extents(sb))
3984 		return;
3985 	/*
3986 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3987 	 * This should cover the situations where we can not afford to run
3988 	 * out of space like for example punch hole, or converting
3989 	 * unwritten extents in delalloc path. In most cases such
3990 	 * allocation would require 1, or 2 blocks, higher numbers are
3991 	 * very rare.
3992 	 */
3993 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3994 			 sbi->s_cluster_bits);
3995 
3996 	do_div(resv_clusters, 50);
3997 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3998 
3999 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4000 }
4001 
4002 static const char *ext4_quota_mode(struct super_block *sb)
4003 {
4004 #ifdef CONFIG_QUOTA
4005 	if (!ext4_quota_capable(sb))
4006 		return "none";
4007 
4008 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4009 		return "journalled";
4010 	else
4011 		return "writeback";
4012 #else
4013 	return "disabled";
4014 #endif
4015 }
4016 
4017 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4018 {
4019 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4020 	char *orig_data = kstrdup(data, GFP_KERNEL);
4021 	struct buffer_head *bh, **group_desc;
4022 	struct ext4_super_block *es = NULL;
4023 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4024 	struct flex_groups **flex_groups;
4025 	ext4_fsblk_t block;
4026 	ext4_fsblk_t sb_block = get_sb_block(&data);
4027 	ext4_fsblk_t logical_sb_block;
4028 	unsigned long offset = 0;
4029 	unsigned long def_mount_opts;
4030 	struct inode *root;
4031 	const char *descr;
4032 	int ret = -ENOMEM;
4033 	int blocksize, clustersize;
4034 	unsigned int db_count;
4035 	unsigned int i;
4036 	int needs_recovery, has_huge_files;
4037 	__u64 blocks_count;
4038 	int err = 0;
4039 	ext4_group_t first_not_zeroed;
4040 	struct ext4_parsed_options parsed_opts;
4041 
4042 	/* Set defaults for the variables that will be set during parsing */
4043 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4044 	parsed_opts.journal_devnum = 0;
4045 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
4046 
4047 	if ((data && !orig_data) || !sbi)
4048 		goto out_free_base;
4049 
4050 	sbi->s_daxdev = dax_dev;
4051 	sbi->s_blockgroup_lock =
4052 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4053 	if (!sbi->s_blockgroup_lock)
4054 		goto out_free_base;
4055 
4056 	sb->s_fs_info = sbi;
4057 	sbi->s_sb = sb;
4058 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4059 	sbi->s_sb_block = sb_block;
4060 	sbi->s_sectors_written_start =
4061 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4062 
4063 	/* Cleanup superblock name */
4064 	strreplace(sb->s_id, '/', '!');
4065 
4066 	/* -EINVAL is default */
4067 	ret = -EINVAL;
4068 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4069 	if (!blocksize) {
4070 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4071 		goto out_fail;
4072 	}
4073 
4074 	/*
4075 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4076 	 * block sizes.  We need to calculate the offset from buffer start.
4077 	 */
4078 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4079 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4080 		offset = do_div(logical_sb_block, blocksize);
4081 	} else {
4082 		logical_sb_block = sb_block;
4083 	}
4084 
4085 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4086 	if (IS_ERR(bh)) {
4087 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4088 		ret = PTR_ERR(bh);
4089 		goto out_fail;
4090 	}
4091 	/*
4092 	 * Note: s_es must be initialized as soon as possible because
4093 	 *       some ext4 macro-instructions depend on its value
4094 	 */
4095 	es = (struct ext4_super_block *) (bh->b_data + offset);
4096 	sbi->s_es = es;
4097 	sb->s_magic = le16_to_cpu(es->s_magic);
4098 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4099 		goto cantfind_ext4;
4100 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4101 
4102 	/* Warn if metadata_csum and gdt_csum are both set. */
4103 	if (ext4_has_feature_metadata_csum(sb) &&
4104 	    ext4_has_feature_gdt_csum(sb))
4105 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4106 			     "redundant flags; please run fsck.");
4107 
4108 	/* Check for a known checksum algorithm */
4109 	if (!ext4_verify_csum_type(sb, es)) {
4110 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4111 			 "unknown checksum algorithm.");
4112 		silent = 1;
4113 		goto cantfind_ext4;
4114 	}
4115 
4116 	/* Load the checksum driver */
4117 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4118 	if (IS_ERR(sbi->s_chksum_driver)) {
4119 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4120 		ret = PTR_ERR(sbi->s_chksum_driver);
4121 		sbi->s_chksum_driver = NULL;
4122 		goto failed_mount;
4123 	}
4124 
4125 	/* Check superblock checksum */
4126 	if (!ext4_superblock_csum_verify(sb, es)) {
4127 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4128 			 "invalid superblock checksum.  Run e2fsck?");
4129 		silent = 1;
4130 		ret = -EFSBADCRC;
4131 		goto cantfind_ext4;
4132 	}
4133 
4134 	/* Precompute checksum seed for all metadata */
4135 	if (ext4_has_feature_csum_seed(sb))
4136 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4137 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4138 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4139 					       sizeof(es->s_uuid));
4140 
4141 	/* Set defaults before we parse the mount options */
4142 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4143 	set_opt(sb, INIT_INODE_TABLE);
4144 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4145 		set_opt(sb, DEBUG);
4146 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4147 		set_opt(sb, GRPID);
4148 	if (def_mount_opts & EXT4_DEFM_UID16)
4149 		set_opt(sb, NO_UID32);
4150 	/* xattr user namespace & acls are now defaulted on */
4151 	set_opt(sb, XATTR_USER);
4152 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4153 	set_opt(sb, POSIX_ACL);
4154 #endif
4155 	if (ext4_has_feature_fast_commit(sb))
4156 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4157 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4158 	if (ext4_has_metadata_csum(sb))
4159 		set_opt(sb, JOURNAL_CHECKSUM);
4160 
4161 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4162 		set_opt(sb, JOURNAL_DATA);
4163 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4164 		set_opt(sb, ORDERED_DATA);
4165 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4166 		set_opt(sb, WRITEBACK_DATA);
4167 
4168 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4169 		set_opt(sb, ERRORS_PANIC);
4170 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4171 		set_opt(sb, ERRORS_CONT);
4172 	else
4173 		set_opt(sb, ERRORS_RO);
4174 	/* block_validity enabled by default; disable with noblock_validity */
4175 	set_opt(sb, BLOCK_VALIDITY);
4176 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4177 		set_opt(sb, DISCARD);
4178 
4179 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4180 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4181 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4182 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4183 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4184 
4185 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4186 		set_opt(sb, BARRIER);
4187 
4188 	/*
4189 	 * enable delayed allocation by default
4190 	 * Use -o nodelalloc to turn it off
4191 	 */
4192 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4193 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4194 		set_opt(sb, DELALLOC);
4195 
4196 	/*
4197 	 * set default s_li_wait_mult for lazyinit, for the case there is
4198 	 * no mount option specified.
4199 	 */
4200 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4201 
4202 	if (le32_to_cpu(es->s_log_block_size) >
4203 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4204 		ext4_msg(sb, KERN_ERR,
4205 			 "Invalid log block size: %u",
4206 			 le32_to_cpu(es->s_log_block_size));
4207 		goto failed_mount;
4208 	}
4209 	if (le32_to_cpu(es->s_log_cluster_size) >
4210 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4211 		ext4_msg(sb, KERN_ERR,
4212 			 "Invalid log cluster size: %u",
4213 			 le32_to_cpu(es->s_log_cluster_size));
4214 		goto failed_mount;
4215 	}
4216 
4217 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4218 
4219 	if (blocksize == PAGE_SIZE)
4220 		set_opt(sb, DIOREAD_NOLOCK);
4221 
4222 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4223 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4224 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4225 	} else {
4226 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4227 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4228 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4229 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4230 				 sbi->s_first_ino);
4231 			goto failed_mount;
4232 		}
4233 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4234 		    (!is_power_of_2(sbi->s_inode_size)) ||
4235 		    (sbi->s_inode_size > blocksize)) {
4236 			ext4_msg(sb, KERN_ERR,
4237 			       "unsupported inode size: %d",
4238 			       sbi->s_inode_size);
4239 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4240 			goto failed_mount;
4241 		}
4242 		/*
4243 		 * i_atime_extra is the last extra field available for
4244 		 * [acm]times in struct ext4_inode. Checking for that
4245 		 * field should suffice to ensure we have extra space
4246 		 * for all three.
4247 		 */
4248 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4249 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4250 			sb->s_time_gran = 1;
4251 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4252 		} else {
4253 			sb->s_time_gran = NSEC_PER_SEC;
4254 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4255 		}
4256 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4257 	}
4258 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4259 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4260 			EXT4_GOOD_OLD_INODE_SIZE;
4261 		if (ext4_has_feature_extra_isize(sb)) {
4262 			unsigned v, max = (sbi->s_inode_size -
4263 					   EXT4_GOOD_OLD_INODE_SIZE);
4264 
4265 			v = le16_to_cpu(es->s_want_extra_isize);
4266 			if (v > max) {
4267 				ext4_msg(sb, KERN_ERR,
4268 					 "bad s_want_extra_isize: %d", v);
4269 				goto failed_mount;
4270 			}
4271 			if (sbi->s_want_extra_isize < v)
4272 				sbi->s_want_extra_isize = v;
4273 
4274 			v = le16_to_cpu(es->s_min_extra_isize);
4275 			if (v > max) {
4276 				ext4_msg(sb, KERN_ERR,
4277 					 "bad s_min_extra_isize: %d", v);
4278 				goto failed_mount;
4279 			}
4280 			if (sbi->s_want_extra_isize < v)
4281 				sbi->s_want_extra_isize = v;
4282 		}
4283 	}
4284 
4285 	if (sbi->s_es->s_mount_opts[0]) {
4286 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4287 					      sizeof(sbi->s_es->s_mount_opts),
4288 					      GFP_KERNEL);
4289 		if (!s_mount_opts)
4290 			goto failed_mount;
4291 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4292 			ext4_msg(sb, KERN_WARNING,
4293 				 "failed to parse options in superblock: %s",
4294 				 s_mount_opts);
4295 		}
4296 		kfree(s_mount_opts);
4297 	}
4298 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4299 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4300 		goto failed_mount;
4301 
4302 #ifdef CONFIG_UNICODE
4303 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4304 		const struct ext4_sb_encodings *encoding_info;
4305 		struct unicode_map *encoding;
4306 		__u16 encoding_flags;
4307 
4308 		if (ext4_sb_read_encoding(es, &encoding_info,
4309 					  &encoding_flags)) {
4310 			ext4_msg(sb, KERN_ERR,
4311 				 "Encoding requested by superblock is unknown");
4312 			goto failed_mount;
4313 		}
4314 
4315 		encoding = utf8_load(encoding_info->version);
4316 		if (IS_ERR(encoding)) {
4317 			ext4_msg(sb, KERN_ERR,
4318 				 "can't mount with superblock charset: %s-%s "
4319 				 "not supported by the kernel. flags: 0x%x.",
4320 				 encoding_info->name, encoding_info->version,
4321 				 encoding_flags);
4322 			goto failed_mount;
4323 		}
4324 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4325 			 "%s-%s with flags 0x%hx", encoding_info->name,
4326 			 encoding_info->version?:"\b", encoding_flags);
4327 
4328 		sb->s_encoding = encoding;
4329 		sb->s_encoding_flags = encoding_flags;
4330 	}
4331 #endif
4332 
4333 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4334 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4335 		/* can't mount with both data=journal and dioread_nolock. */
4336 		clear_opt(sb, DIOREAD_NOLOCK);
4337 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4338 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4339 			ext4_msg(sb, KERN_ERR, "can't mount with "
4340 				 "both data=journal and delalloc");
4341 			goto failed_mount;
4342 		}
4343 		if (test_opt(sb, DAX_ALWAYS)) {
4344 			ext4_msg(sb, KERN_ERR, "can't mount with "
4345 				 "both data=journal and dax");
4346 			goto failed_mount;
4347 		}
4348 		if (ext4_has_feature_encrypt(sb)) {
4349 			ext4_msg(sb, KERN_WARNING,
4350 				 "encrypted files will use data=ordered "
4351 				 "instead of data journaling mode");
4352 		}
4353 		if (test_opt(sb, DELALLOC))
4354 			clear_opt(sb, DELALLOC);
4355 	} else {
4356 		sb->s_iflags |= SB_I_CGROUPWB;
4357 	}
4358 
4359 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4360 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4361 
4362 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4363 	    (ext4_has_compat_features(sb) ||
4364 	     ext4_has_ro_compat_features(sb) ||
4365 	     ext4_has_incompat_features(sb)))
4366 		ext4_msg(sb, KERN_WARNING,
4367 		       "feature flags set on rev 0 fs, "
4368 		       "running e2fsck is recommended");
4369 
4370 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4371 		set_opt2(sb, HURD_COMPAT);
4372 		if (ext4_has_feature_64bit(sb)) {
4373 			ext4_msg(sb, KERN_ERR,
4374 				 "The Hurd can't support 64-bit file systems");
4375 			goto failed_mount;
4376 		}
4377 
4378 		/*
4379 		 * ea_inode feature uses l_i_version field which is not
4380 		 * available in HURD_COMPAT mode.
4381 		 */
4382 		if (ext4_has_feature_ea_inode(sb)) {
4383 			ext4_msg(sb, KERN_ERR,
4384 				 "ea_inode feature is not supported for Hurd");
4385 			goto failed_mount;
4386 		}
4387 	}
4388 
4389 	if (IS_EXT2_SB(sb)) {
4390 		if (ext2_feature_set_ok(sb))
4391 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4392 				 "using the ext4 subsystem");
4393 		else {
4394 			/*
4395 			 * If we're probing be silent, if this looks like
4396 			 * it's actually an ext[34] filesystem.
4397 			 */
4398 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4399 				goto failed_mount;
4400 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4401 				 "to feature incompatibilities");
4402 			goto failed_mount;
4403 		}
4404 	}
4405 
4406 	if (IS_EXT3_SB(sb)) {
4407 		if (ext3_feature_set_ok(sb))
4408 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4409 				 "using the ext4 subsystem");
4410 		else {
4411 			/*
4412 			 * If we're probing be silent, if this looks like
4413 			 * it's actually an ext4 filesystem.
4414 			 */
4415 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4416 				goto failed_mount;
4417 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4418 				 "to feature incompatibilities");
4419 			goto failed_mount;
4420 		}
4421 	}
4422 
4423 	/*
4424 	 * Check feature flags regardless of the revision level, since we
4425 	 * previously didn't change the revision level when setting the flags,
4426 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4427 	 */
4428 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4429 		goto failed_mount;
4430 
4431 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4432 		ext4_msg(sb, KERN_ERR,
4433 			 "Number of reserved GDT blocks insanely large: %d",
4434 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4435 		goto failed_mount;
4436 	}
4437 
4438 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4439 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4440 
4441 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4442 		if (ext4_has_feature_inline_data(sb)) {
4443 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4444 					" that may contain inline data");
4445 			goto failed_mount;
4446 		}
4447 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4448 			ext4_msg(sb, KERN_ERR,
4449 				"DAX unsupported by block device.");
4450 			goto failed_mount;
4451 		}
4452 	}
4453 
4454 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4455 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4456 			 es->s_encryption_level);
4457 		goto failed_mount;
4458 	}
4459 
4460 	if (sb->s_blocksize != blocksize) {
4461 		/*
4462 		 * bh must be released before kill_bdev(), otherwise
4463 		 * it won't be freed and its page also. kill_bdev()
4464 		 * is called by sb_set_blocksize().
4465 		 */
4466 		brelse(bh);
4467 		/* Validate the filesystem blocksize */
4468 		if (!sb_set_blocksize(sb, blocksize)) {
4469 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4470 					blocksize);
4471 			bh = NULL;
4472 			goto failed_mount;
4473 		}
4474 
4475 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4476 		offset = do_div(logical_sb_block, blocksize);
4477 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4478 		if (IS_ERR(bh)) {
4479 			ext4_msg(sb, KERN_ERR,
4480 			       "Can't read superblock on 2nd try");
4481 			ret = PTR_ERR(bh);
4482 			bh = NULL;
4483 			goto failed_mount;
4484 		}
4485 		es = (struct ext4_super_block *)(bh->b_data + offset);
4486 		sbi->s_es = es;
4487 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4488 			ext4_msg(sb, KERN_ERR,
4489 			       "Magic mismatch, very weird!");
4490 			goto failed_mount;
4491 		}
4492 	}
4493 
4494 	has_huge_files = ext4_has_feature_huge_file(sb);
4495 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4496 						      has_huge_files);
4497 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4498 
4499 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4500 	if (ext4_has_feature_64bit(sb)) {
4501 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4502 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4503 		    !is_power_of_2(sbi->s_desc_size)) {
4504 			ext4_msg(sb, KERN_ERR,
4505 			       "unsupported descriptor size %lu",
4506 			       sbi->s_desc_size);
4507 			goto failed_mount;
4508 		}
4509 	} else
4510 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4511 
4512 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4513 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4514 
4515 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4516 	if (sbi->s_inodes_per_block == 0)
4517 		goto cantfind_ext4;
4518 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4519 	    sbi->s_inodes_per_group > blocksize * 8) {
4520 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4521 			 sbi->s_inodes_per_group);
4522 		goto failed_mount;
4523 	}
4524 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4525 					sbi->s_inodes_per_block;
4526 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4527 	sbi->s_sbh = bh;
4528 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4529 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4530 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4531 
4532 	for (i = 0; i < 4; i++)
4533 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4534 	sbi->s_def_hash_version = es->s_def_hash_version;
4535 	if (ext4_has_feature_dir_index(sb)) {
4536 		i = le32_to_cpu(es->s_flags);
4537 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4538 			sbi->s_hash_unsigned = 3;
4539 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4540 #ifdef __CHAR_UNSIGNED__
4541 			if (!sb_rdonly(sb))
4542 				es->s_flags |=
4543 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4544 			sbi->s_hash_unsigned = 3;
4545 #else
4546 			if (!sb_rdonly(sb))
4547 				es->s_flags |=
4548 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4549 #endif
4550 		}
4551 	}
4552 
4553 	/* Handle clustersize */
4554 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4555 	if (ext4_has_feature_bigalloc(sb)) {
4556 		if (clustersize < blocksize) {
4557 			ext4_msg(sb, KERN_ERR,
4558 				 "cluster size (%d) smaller than "
4559 				 "block size (%d)", clustersize, blocksize);
4560 			goto failed_mount;
4561 		}
4562 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4563 			le32_to_cpu(es->s_log_block_size);
4564 		sbi->s_clusters_per_group =
4565 			le32_to_cpu(es->s_clusters_per_group);
4566 		if (sbi->s_clusters_per_group > blocksize * 8) {
4567 			ext4_msg(sb, KERN_ERR,
4568 				 "#clusters per group too big: %lu",
4569 				 sbi->s_clusters_per_group);
4570 			goto failed_mount;
4571 		}
4572 		if (sbi->s_blocks_per_group !=
4573 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4574 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4575 				 "clusters per group (%lu) inconsistent",
4576 				 sbi->s_blocks_per_group,
4577 				 sbi->s_clusters_per_group);
4578 			goto failed_mount;
4579 		}
4580 	} else {
4581 		if (clustersize != blocksize) {
4582 			ext4_msg(sb, KERN_ERR,
4583 				 "fragment/cluster size (%d) != "
4584 				 "block size (%d)", clustersize, blocksize);
4585 			goto failed_mount;
4586 		}
4587 		if (sbi->s_blocks_per_group > blocksize * 8) {
4588 			ext4_msg(sb, KERN_ERR,
4589 				 "#blocks per group too big: %lu",
4590 				 sbi->s_blocks_per_group);
4591 			goto failed_mount;
4592 		}
4593 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4594 		sbi->s_cluster_bits = 0;
4595 	}
4596 	sbi->s_cluster_ratio = clustersize / blocksize;
4597 
4598 	/* Do we have standard group size of clustersize * 8 blocks ? */
4599 	if (sbi->s_blocks_per_group == clustersize << 3)
4600 		set_opt2(sb, STD_GROUP_SIZE);
4601 
4602 	/*
4603 	 * Test whether we have more sectors than will fit in sector_t,
4604 	 * and whether the max offset is addressable by the page cache.
4605 	 */
4606 	err = generic_check_addressable(sb->s_blocksize_bits,
4607 					ext4_blocks_count(es));
4608 	if (err) {
4609 		ext4_msg(sb, KERN_ERR, "filesystem"
4610 			 " too large to mount safely on this system");
4611 		goto failed_mount;
4612 	}
4613 
4614 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4615 		goto cantfind_ext4;
4616 
4617 	/* check blocks count against device size */
4618 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4619 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4620 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4621 		       "exceeds size of device (%llu blocks)",
4622 		       ext4_blocks_count(es), blocks_count);
4623 		goto failed_mount;
4624 	}
4625 
4626 	/*
4627 	 * It makes no sense for the first data block to be beyond the end
4628 	 * of the filesystem.
4629 	 */
4630 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4631 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4632 			 "block %u is beyond end of filesystem (%llu)",
4633 			 le32_to_cpu(es->s_first_data_block),
4634 			 ext4_blocks_count(es));
4635 		goto failed_mount;
4636 	}
4637 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4638 	    (sbi->s_cluster_ratio == 1)) {
4639 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4640 			 "block is 0 with a 1k block and cluster size");
4641 		goto failed_mount;
4642 	}
4643 
4644 	blocks_count = (ext4_blocks_count(es) -
4645 			le32_to_cpu(es->s_first_data_block) +
4646 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4647 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4648 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4649 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4650 		       "(block count %llu, first data block %u, "
4651 		       "blocks per group %lu)", blocks_count,
4652 		       ext4_blocks_count(es),
4653 		       le32_to_cpu(es->s_first_data_block),
4654 		       EXT4_BLOCKS_PER_GROUP(sb));
4655 		goto failed_mount;
4656 	}
4657 	sbi->s_groups_count = blocks_count;
4658 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4659 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4660 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4661 	    le32_to_cpu(es->s_inodes_count)) {
4662 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4663 			 le32_to_cpu(es->s_inodes_count),
4664 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4665 		ret = -EINVAL;
4666 		goto failed_mount;
4667 	}
4668 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4669 		   EXT4_DESC_PER_BLOCK(sb);
4670 	if (ext4_has_feature_meta_bg(sb)) {
4671 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4672 			ext4_msg(sb, KERN_WARNING,
4673 				 "first meta block group too large: %u "
4674 				 "(group descriptor block count %u)",
4675 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4676 			goto failed_mount;
4677 		}
4678 	}
4679 	rcu_assign_pointer(sbi->s_group_desc,
4680 			   kvmalloc_array(db_count,
4681 					  sizeof(struct buffer_head *),
4682 					  GFP_KERNEL));
4683 	if (sbi->s_group_desc == NULL) {
4684 		ext4_msg(sb, KERN_ERR, "not enough memory");
4685 		ret = -ENOMEM;
4686 		goto failed_mount;
4687 	}
4688 
4689 	bgl_lock_init(sbi->s_blockgroup_lock);
4690 
4691 	/* Pre-read the descriptors into the buffer cache */
4692 	for (i = 0; i < db_count; i++) {
4693 		block = descriptor_loc(sb, logical_sb_block, i);
4694 		ext4_sb_breadahead_unmovable(sb, block);
4695 	}
4696 
4697 	for (i = 0; i < db_count; i++) {
4698 		struct buffer_head *bh;
4699 
4700 		block = descriptor_loc(sb, logical_sb_block, i);
4701 		bh = ext4_sb_bread_unmovable(sb, block);
4702 		if (IS_ERR(bh)) {
4703 			ext4_msg(sb, KERN_ERR,
4704 			       "can't read group descriptor %d", i);
4705 			db_count = i;
4706 			ret = PTR_ERR(bh);
4707 			goto failed_mount2;
4708 		}
4709 		rcu_read_lock();
4710 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4711 		rcu_read_unlock();
4712 	}
4713 	sbi->s_gdb_count = db_count;
4714 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4715 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4716 		ret = -EFSCORRUPTED;
4717 		goto failed_mount2;
4718 	}
4719 
4720 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4721 	spin_lock_init(&sbi->s_error_lock);
4722 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4723 
4724 	/* Register extent status tree shrinker */
4725 	if (ext4_es_register_shrinker(sbi))
4726 		goto failed_mount3;
4727 
4728 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4729 	sbi->s_extent_max_zeroout_kb = 32;
4730 
4731 	/*
4732 	 * set up enough so that it can read an inode
4733 	 */
4734 	sb->s_op = &ext4_sops;
4735 	sb->s_export_op = &ext4_export_ops;
4736 	sb->s_xattr = ext4_xattr_handlers;
4737 #ifdef CONFIG_FS_ENCRYPTION
4738 	sb->s_cop = &ext4_cryptops;
4739 #endif
4740 #ifdef CONFIG_FS_VERITY
4741 	sb->s_vop = &ext4_verityops;
4742 #endif
4743 #ifdef CONFIG_QUOTA
4744 	sb->dq_op = &ext4_quota_operations;
4745 	if (ext4_has_feature_quota(sb))
4746 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4747 	else
4748 		sb->s_qcop = &ext4_qctl_operations;
4749 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4750 #endif
4751 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4752 
4753 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4754 	mutex_init(&sbi->s_orphan_lock);
4755 
4756 	/* Initialize fast commit stuff */
4757 	atomic_set(&sbi->s_fc_subtid, 0);
4758 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4759 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4760 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4761 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4762 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4763 	sbi->s_fc_bytes = 0;
4764 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4765 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4766 	spin_lock_init(&sbi->s_fc_lock);
4767 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4768 	sbi->s_fc_replay_state.fc_regions = NULL;
4769 	sbi->s_fc_replay_state.fc_regions_size = 0;
4770 	sbi->s_fc_replay_state.fc_regions_used = 0;
4771 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4772 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4773 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4774 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4775 
4776 	sb->s_root = NULL;
4777 
4778 	needs_recovery = (es->s_last_orphan != 0 ||
4779 			  ext4_has_feature_journal_needs_recovery(sb));
4780 
4781 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4782 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4783 			goto failed_mount3a;
4784 
4785 	/*
4786 	 * The first inode we look at is the journal inode.  Don't try
4787 	 * root first: it may be modified in the journal!
4788 	 */
4789 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4790 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4791 		if (err)
4792 			goto failed_mount3a;
4793 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4794 		   ext4_has_feature_journal_needs_recovery(sb)) {
4795 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4796 		       "suppressed and not mounted read-only");
4797 		goto failed_mount_wq;
4798 	} else {
4799 		/* Nojournal mode, all journal mount options are illegal */
4800 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4801 			ext4_msg(sb, KERN_ERR, "can't mount with "
4802 				 "journal_checksum, fs mounted w/o journal");
4803 			goto failed_mount_wq;
4804 		}
4805 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4806 			ext4_msg(sb, KERN_ERR, "can't mount with "
4807 				 "journal_async_commit, fs mounted w/o journal");
4808 			goto failed_mount_wq;
4809 		}
4810 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4811 			ext4_msg(sb, KERN_ERR, "can't mount with "
4812 				 "commit=%lu, fs mounted w/o journal",
4813 				 sbi->s_commit_interval / HZ);
4814 			goto failed_mount_wq;
4815 		}
4816 		if (EXT4_MOUNT_DATA_FLAGS &
4817 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4818 			ext4_msg(sb, KERN_ERR, "can't mount with "
4819 				 "data=, fs mounted w/o journal");
4820 			goto failed_mount_wq;
4821 		}
4822 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4823 		clear_opt(sb, JOURNAL_CHECKSUM);
4824 		clear_opt(sb, DATA_FLAGS);
4825 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4826 		sbi->s_journal = NULL;
4827 		needs_recovery = 0;
4828 		goto no_journal;
4829 	}
4830 
4831 	if (ext4_has_feature_64bit(sb) &&
4832 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4833 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4834 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4835 		goto failed_mount_wq;
4836 	}
4837 
4838 	if (!set_journal_csum_feature_set(sb)) {
4839 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4840 			 "feature set");
4841 		goto failed_mount_wq;
4842 	}
4843 
4844 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4845 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4846 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4847 		ext4_msg(sb, KERN_ERR,
4848 			"Failed to set fast commit journal feature");
4849 		goto failed_mount_wq;
4850 	}
4851 
4852 	/* We have now updated the journal if required, so we can
4853 	 * validate the data journaling mode. */
4854 	switch (test_opt(sb, DATA_FLAGS)) {
4855 	case 0:
4856 		/* No mode set, assume a default based on the journal
4857 		 * capabilities: ORDERED_DATA if the journal can
4858 		 * cope, else JOURNAL_DATA
4859 		 */
4860 		if (jbd2_journal_check_available_features
4861 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4862 			set_opt(sb, ORDERED_DATA);
4863 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4864 		} else {
4865 			set_opt(sb, JOURNAL_DATA);
4866 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4867 		}
4868 		break;
4869 
4870 	case EXT4_MOUNT_ORDERED_DATA:
4871 	case EXT4_MOUNT_WRITEBACK_DATA:
4872 		if (!jbd2_journal_check_available_features
4873 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4874 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4875 			       "requested data journaling mode");
4876 			goto failed_mount_wq;
4877 		}
4878 		break;
4879 	default:
4880 		break;
4881 	}
4882 
4883 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4884 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4885 		ext4_msg(sb, KERN_ERR, "can't mount with "
4886 			"journal_async_commit in data=ordered mode");
4887 		goto failed_mount_wq;
4888 	}
4889 
4890 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4891 
4892 	sbi->s_journal->j_submit_inode_data_buffers =
4893 		ext4_journal_submit_inode_data_buffers;
4894 	sbi->s_journal->j_finish_inode_data_buffers =
4895 		ext4_journal_finish_inode_data_buffers;
4896 
4897 no_journal:
4898 	if (!test_opt(sb, NO_MBCACHE)) {
4899 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4900 		if (!sbi->s_ea_block_cache) {
4901 			ext4_msg(sb, KERN_ERR,
4902 				 "Failed to create ea_block_cache");
4903 			goto failed_mount_wq;
4904 		}
4905 
4906 		if (ext4_has_feature_ea_inode(sb)) {
4907 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4908 			if (!sbi->s_ea_inode_cache) {
4909 				ext4_msg(sb, KERN_ERR,
4910 					 "Failed to create ea_inode_cache");
4911 				goto failed_mount_wq;
4912 			}
4913 		}
4914 	}
4915 
4916 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4917 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4918 		goto failed_mount_wq;
4919 	}
4920 
4921 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4922 	    !ext4_has_feature_encrypt(sb)) {
4923 		ext4_set_feature_encrypt(sb);
4924 		ext4_commit_super(sb);
4925 	}
4926 
4927 	/*
4928 	 * Get the # of file system overhead blocks from the
4929 	 * superblock if present.
4930 	 */
4931 	if (es->s_overhead_clusters)
4932 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4933 	else {
4934 		err = ext4_calculate_overhead(sb);
4935 		if (err)
4936 			goto failed_mount_wq;
4937 	}
4938 
4939 	/*
4940 	 * The maximum number of concurrent works can be high and
4941 	 * concurrency isn't really necessary.  Limit it to 1.
4942 	 */
4943 	EXT4_SB(sb)->rsv_conversion_wq =
4944 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4945 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4946 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4947 		ret = -ENOMEM;
4948 		goto failed_mount4;
4949 	}
4950 
4951 	/*
4952 	 * The jbd2_journal_load will have done any necessary log recovery,
4953 	 * so we can safely mount the rest of the filesystem now.
4954 	 */
4955 
4956 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4957 	if (IS_ERR(root)) {
4958 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4959 		ret = PTR_ERR(root);
4960 		root = NULL;
4961 		goto failed_mount4;
4962 	}
4963 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4964 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4965 		iput(root);
4966 		goto failed_mount4;
4967 	}
4968 
4969 	sb->s_root = d_make_root(root);
4970 	if (!sb->s_root) {
4971 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4972 		ret = -ENOMEM;
4973 		goto failed_mount4;
4974 	}
4975 
4976 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4977 	if (ret == -EROFS) {
4978 		sb->s_flags |= SB_RDONLY;
4979 		ret = 0;
4980 	} else if (ret)
4981 		goto failed_mount4a;
4982 
4983 	ext4_set_resv_clusters(sb);
4984 
4985 	if (test_opt(sb, BLOCK_VALIDITY)) {
4986 		err = ext4_setup_system_zone(sb);
4987 		if (err) {
4988 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4989 				 "zone (%d)", err);
4990 			goto failed_mount4a;
4991 		}
4992 	}
4993 	ext4_fc_replay_cleanup(sb);
4994 
4995 	ext4_ext_init(sb);
4996 
4997 	/*
4998 	 * Enable optimize_scan if number of groups is > threshold. This can be
4999 	 * turned off by passing "mb_optimize_scan=0". This can also be
5000 	 * turned on forcefully by passing "mb_optimize_scan=1".
5001 	 */
5002 	if (parsed_opts.mb_optimize_scan == 1)
5003 		set_opt2(sb, MB_OPTIMIZE_SCAN);
5004 	else if (parsed_opts.mb_optimize_scan == 0)
5005 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
5006 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5007 		set_opt2(sb, MB_OPTIMIZE_SCAN);
5008 
5009 	err = ext4_mb_init(sb);
5010 	if (err) {
5011 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5012 			 err);
5013 		goto failed_mount5;
5014 	}
5015 
5016 	/*
5017 	 * We can only set up the journal commit callback once
5018 	 * mballoc is initialized
5019 	 */
5020 	if (sbi->s_journal)
5021 		sbi->s_journal->j_commit_callback =
5022 			ext4_journal_commit_callback;
5023 
5024 	block = ext4_count_free_clusters(sb);
5025 	ext4_free_blocks_count_set(sbi->s_es,
5026 				   EXT4_C2B(sbi, block));
5027 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5028 				  GFP_KERNEL);
5029 	if (!err) {
5030 		unsigned long freei = ext4_count_free_inodes(sb);
5031 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5032 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5033 					  GFP_KERNEL);
5034 	}
5035 	if (!err)
5036 		err = percpu_counter_init(&sbi->s_dirs_counter,
5037 					  ext4_count_dirs(sb), GFP_KERNEL);
5038 	if (!err)
5039 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5040 					  GFP_KERNEL);
5041 	if (!err)
5042 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5043 					  GFP_KERNEL);
5044 	if (!err)
5045 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5046 
5047 	if (err) {
5048 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5049 		goto failed_mount6;
5050 	}
5051 
5052 	if (ext4_has_feature_flex_bg(sb))
5053 		if (!ext4_fill_flex_info(sb)) {
5054 			ext4_msg(sb, KERN_ERR,
5055 			       "unable to initialize "
5056 			       "flex_bg meta info!");
5057 			ret = -ENOMEM;
5058 			goto failed_mount6;
5059 		}
5060 
5061 	err = ext4_register_li_request(sb, first_not_zeroed);
5062 	if (err)
5063 		goto failed_mount6;
5064 
5065 	err = ext4_register_sysfs(sb);
5066 	if (err)
5067 		goto failed_mount7;
5068 
5069 #ifdef CONFIG_QUOTA
5070 	/* Enable quota usage during mount. */
5071 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5072 		err = ext4_enable_quotas(sb);
5073 		if (err)
5074 			goto failed_mount8;
5075 	}
5076 #endif  /* CONFIG_QUOTA */
5077 
5078 	/*
5079 	 * Save the original bdev mapping's wb_err value which could be
5080 	 * used to detect the metadata async write error.
5081 	 */
5082 	spin_lock_init(&sbi->s_bdev_wb_lock);
5083 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5084 				 &sbi->s_bdev_wb_err);
5085 	sb->s_bdev->bd_super = sb;
5086 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5087 	ext4_orphan_cleanup(sb, es);
5088 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5089 	if (needs_recovery) {
5090 		ext4_msg(sb, KERN_INFO, "recovery complete");
5091 		err = ext4_mark_recovery_complete(sb, es);
5092 		if (err)
5093 			goto failed_mount8;
5094 	}
5095 	if (EXT4_SB(sb)->s_journal) {
5096 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5097 			descr = " journalled data mode";
5098 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5099 			descr = " ordered data mode";
5100 		else
5101 			descr = " writeback data mode";
5102 	} else
5103 		descr = "out journal";
5104 
5105 	if (test_opt(sb, DISCARD)) {
5106 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5107 		if (!blk_queue_discard(q))
5108 			ext4_msg(sb, KERN_WARNING,
5109 				 "mounting with \"discard\" option, but "
5110 				 "the device does not support discard");
5111 	}
5112 
5113 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5114 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5115 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5116 			 (int) sizeof(sbi->s_es->s_mount_opts),
5117 			 sbi->s_es->s_mount_opts,
5118 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5119 			 ext4_quota_mode(sb));
5120 
5121 	if (es->s_error_count)
5122 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5123 
5124 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5125 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5126 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5127 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5128 	atomic_set(&sbi->s_warning_count, 0);
5129 	atomic_set(&sbi->s_msg_count, 0);
5130 
5131 	kfree(orig_data);
5132 	return 0;
5133 
5134 cantfind_ext4:
5135 	if (!silent)
5136 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5137 	goto failed_mount;
5138 
5139 failed_mount8:
5140 	ext4_unregister_sysfs(sb);
5141 	kobject_put(&sbi->s_kobj);
5142 failed_mount7:
5143 	ext4_unregister_li_request(sb);
5144 failed_mount6:
5145 	ext4_mb_release(sb);
5146 	rcu_read_lock();
5147 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5148 	if (flex_groups) {
5149 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5150 			kvfree(flex_groups[i]);
5151 		kvfree(flex_groups);
5152 	}
5153 	rcu_read_unlock();
5154 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5155 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5156 	percpu_counter_destroy(&sbi->s_dirs_counter);
5157 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5158 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5159 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5160 failed_mount5:
5161 	ext4_ext_release(sb);
5162 	ext4_release_system_zone(sb);
5163 failed_mount4a:
5164 	dput(sb->s_root);
5165 	sb->s_root = NULL;
5166 failed_mount4:
5167 	ext4_msg(sb, KERN_ERR, "mount failed");
5168 	if (EXT4_SB(sb)->rsv_conversion_wq)
5169 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5170 failed_mount_wq:
5171 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5172 	sbi->s_ea_inode_cache = NULL;
5173 
5174 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5175 	sbi->s_ea_block_cache = NULL;
5176 
5177 	if (sbi->s_journal) {
5178 		jbd2_journal_destroy(sbi->s_journal);
5179 		sbi->s_journal = NULL;
5180 	}
5181 failed_mount3a:
5182 	ext4_es_unregister_shrinker(sbi);
5183 failed_mount3:
5184 	flush_work(&sbi->s_error_work);
5185 	del_timer_sync(&sbi->s_err_report);
5186 	ext4_stop_mmpd(sbi);
5187 failed_mount2:
5188 	rcu_read_lock();
5189 	group_desc = rcu_dereference(sbi->s_group_desc);
5190 	for (i = 0; i < db_count; i++)
5191 		brelse(group_desc[i]);
5192 	kvfree(group_desc);
5193 	rcu_read_unlock();
5194 failed_mount:
5195 	if (sbi->s_chksum_driver)
5196 		crypto_free_shash(sbi->s_chksum_driver);
5197 
5198 #ifdef CONFIG_UNICODE
5199 	utf8_unload(sb->s_encoding);
5200 #endif
5201 
5202 #ifdef CONFIG_QUOTA
5203 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5204 		kfree(get_qf_name(sb, sbi, i));
5205 #endif
5206 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5207 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5208 	brelse(bh);
5209 	ext4_blkdev_remove(sbi);
5210 out_fail:
5211 	sb->s_fs_info = NULL;
5212 	kfree(sbi->s_blockgroup_lock);
5213 out_free_base:
5214 	kfree(sbi);
5215 	kfree(orig_data);
5216 	fs_put_dax(dax_dev);
5217 	return err ? err : ret;
5218 }
5219 
5220 /*
5221  * Setup any per-fs journal parameters now.  We'll do this both on
5222  * initial mount, once the journal has been initialised but before we've
5223  * done any recovery; and again on any subsequent remount.
5224  */
5225 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5226 {
5227 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5228 
5229 	journal->j_commit_interval = sbi->s_commit_interval;
5230 	journal->j_min_batch_time = sbi->s_min_batch_time;
5231 	journal->j_max_batch_time = sbi->s_max_batch_time;
5232 	ext4_fc_init(sb, journal);
5233 
5234 	write_lock(&journal->j_state_lock);
5235 	if (test_opt(sb, BARRIER))
5236 		journal->j_flags |= JBD2_BARRIER;
5237 	else
5238 		journal->j_flags &= ~JBD2_BARRIER;
5239 	if (test_opt(sb, DATA_ERR_ABORT))
5240 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5241 	else
5242 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5243 	write_unlock(&journal->j_state_lock);
5244 }
5245 
5246 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5247 					     unsigned int journal_inum)
5248 {
5249 	struct inode *journal_inode;
5250 
5251 	/*
5252 	 * Test for the existence of a valid inode on disk.  Bad things
5253 	 * happen if we iget() an unused inode, as the subsequent iput()
5254 	 * will try to delete it.
5255 	 */
5256 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5257 	if (IS_ERR(journal_inode)) {
5258 		ext4_msg(sb, KERN_ERR, "no journal found");
5259 		return NULL;
5260 	}
5261 	if (!journal_inode->i_nlink) {
5262 		make_bad_inode(journal_inode);
5263 		iput(journal_inode);
5264 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5265 		return NULL;
5266 	}
5267 
5268 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5269 		  journal_inode, journal_inode->i_size);
5270 	if (!S_ISREG(journal_inode->i_mode)) {
5271 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5272 		iput(journal_inode);
5273 		return NULL;
5274 	}
5275 	return journal_inode;
5276 }
5277 
5278 static journal_t *ext4_get_journal(struct super_block *sb,
5279 				   unsigned int journal_inum)
5280 {
5281 	struct inode *journal_inode;
5282 	journal_t *journal;
5283 
5284 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5285 		return NULL;
5286 
5287 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5288 	if (!journal_inode)
5289 		return NULL;
5290 
5291 	journal = jbd2_journal_init_inode(journal_inode);
5292 	if (!journal) {
5293 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5294 		iput(journal_inode);
5295 		return NULL;
5296 	}
5297 	journal->j_private = sb;
5298 	ext4_init_journal_params(sb, journal);
5299 	return journal;
5300 }
5301 
5302 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5303 				       dev_t j_dev)
5304 {
5305 	struct buffer_head *bh;
5306 	journal_t *journal;
5307 	ext4_fsblk_t start;
5308 	ext4_fsblk_t len;
5309 	int hblock, blocksize;
5310 	ext4_fsblk_t sb_block;
5311 	unsigned long offset;
5312 	struct ext4_super_block *es;
5313 	struct block_device *bdev;
5314 
5315 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5316 		return NULL;
5317 
5318 	bdev = ext4_blkdev_get(j_dev, sb);
5319 	if (bdev == NULL)
5320 		return NULL;
5321 
5322 	blocksize = sb->s_blocksize;
5323 	hblock = bdev_logical_block_size(bdev);
5324 	if (blocksize < hblock) {
5325 		ext4_msg(sb, KERN_ERR,
5326 			"blocksize too small for journal device");
5327 		goto out_bdev;
5328 	}
5329 
5330 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5331 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5332 	set_blocksize(bdev, blocksize);
5333 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5334 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5335 		       "external journal");
5336 		goto out_bdev;
5337 	}
5338 
5339 	es = (struct ext4_super_block *) (bh->b_data + offset);
5340 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5341 	    !(le32_to_cpu(es->s_feature_incompat) &
5342 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5343 		ext4_msg(sb, KERN_ERR, "external journal has "
5344 					"bad superblock");
5345 		brelse(bh);
5346 		goto out_bdev;
5347 	}
5348 
5349 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5350 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5351 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5352 		ext4_msg(sb, KERN_ERR, "external journal has "
5353 				       "corrupt superblock");
5354 		brelse(bh);
5355 		goto out_bdev;
5356 	}
5357 
5358 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5359 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5360 		brelse(bh);
5361 		goto out_bdev;
5362 	}
5363 
5364 	len = ext4_blocks_count(es);
5365 	start = sb_block + 1;
5366 	brelse(bh);	/* we're done with the superblock */
5367 
5368 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5369 					start, len, blocksize);
5370 	if (!journal) {
5371 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5372 		goto out_bdev;
5373 	}
5374 	journal->j_private = sb;
5375 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5376 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5377 		goto out_journal;
5378 	}
5379 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5380 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5381 					"user (unsupported) - %d",
5382 			be32_to_cpu(journal->j_superblock->s_nr_users));
5383 		goto out_journal;
5384 	}
5385 	EXT4_SB(sb)->s_journal_bdev = bdev;
5386 	ext4_init_journal_params(sb, journal);
5387 	return journal;
5388 
5389 out_journal:
5390 	jbd2_journal_destroy(journal);
5391 out_bdev:
5392 	ext4_blkdev_put(bdev);
5393 	return NULL;
5394 }
5395 
5396 static int ext4_load_journal(struct super_block *sb,
5397 			     struct ext4_super_block *es,
5398 			     unsigned long journal_devnum)
5399 {
5400 	journal_t *journal;
5401 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5402 	dev_t journal_dev;
5403 	int err = 0;
5404 	int really_read_only;
5405 	int journal_dev_ro;
5406 
5407 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5408 		return -EFSCORRUPTED;
5409 
5410 	if (journal_devnum &&
5411 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5412 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5413 			"numbers have changed");
5414 		journal_dev = new_decode_dev(journal_devnum);
5415 	} else
5416 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5417 
5418 	if (journal_inum && journal_dev) {
5419 		ext4_msg(sb, KERN_ERR,
5420 			 "filesystem has both journal inode and journal device!");
5421 		return -EINVAL;
5422 	}
5423 
5424 	if (journal_inum) {
5425 		journal = ext4_get_journal(sb, journal_inum);
5426 		if (!journal)
5427 			return -EINVAL;
5428 	} else {
5429 		journal = ext4_get_dev_journal(sb, journal_dev);
5430 		if (!journal)
5431 			return -EINVAL;
5432 	}
5433 
5434 	journal_dev_ro = bdev_read_only(journal->j_dev);
5435 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5436 
5437 	if (journal_dev_ro && !sb_rdonly(sb)) {
5438 		ext4_msg(sb, KERN_ERR,
5439 			 "journal device read-only, try mounting with '-o ro'");
5440 		err = -EROFS;
5441 		goto err_out;
5442 	}
5443 
5444 	/*
5445 	 * Are we loading a blank journal or performing recovery after a
5446 	 * crash?  For recovery, we need to check in advance whether we
5447 	 * can get read-write access to the device.
5448 	 */
5449 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5450 		if (sb_rdonly(sb)) {
5451 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5452 					"required on readonly filesystem");
5453 			if (really_read_only) {
5454 				ext4_msg(sb, KERN_ERR, "write access "
5455 					"unavailable, cannot proceed "
5456 					"(try mounting with noload)");
5457 				err = -EROFS;
5458 				goto err_out;
5459 			}
5460 			ext4_msg(sb, KERN_INFO, "write access will "
5461 			       "be enabled during recovery");
5462 		}
5463 	}
5464 
5465 	if (!(journal->j_flags & JBD2_BARRIER))
5466 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5467 
5468 	if (!ext4_has_feature_journal_needs_recovery(sb))
5469 		err = jbd2_journal_wipe(journal, !really_read_only);
5470 	if (!err) {
5471 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5472 		if (save)
5473 			memcpy(save, ((char *) es) +
5474 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5475 		err = jbd2_journal_load(journal);
5476 		if (save)
5477 			memcpy(((char *) es) + EXT4_S_ERR_START,
5478 			       save, EXT4_S_ERR_LEN);
5479 		kfree(save);
5480 	}
5481 
5482 	if (err) {
5483 		ext4_msg(sb, KERN_ERR, "error loading journal");
5484 		goto err_out;
5485 	}
5486 
5487 	EXT4_SB(sb)->s_journal = journal;
5488 	err = ext4_clear_journal_err(sb, es);
5489 	if (err) {
5490 		EXT4_SB(sb)->s_journal = NULL;
5491 		jbd2_journal_destroy(journal);
5492 		return err;
5493 	}
5494 
5495 	if (!really_read_only && journal_devnum &&
5496 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5497 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5498 
5499 		/* Make sure we flush the recovery flag to disk. */
5500 		ext4_commit_super(sb);
5501 	}
5502 
5503 	return 0;
5504 
5505 err_out:
5506 	jbd2_journal_destroy(journal);
5507 	return err;
5508 }
5509 
5510 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5511 static void ext4_update_super(struct super_block *sb)
5512 {
5513 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5514 	struct ext4_super_block *es = sbi->s_es;
5515 	struct buffer_head *sbh = sbi->s_sbh;
5516 
5517 	lock_buffer(sbh);
5518 	/*
5519 	 * If the file system is mounted read-only, don't update the
5520 	 * superblock write time.  This avoids updating the superblock
5521 	 * write time when we are mounting the root file system
5522 	 * read/only but we need to replay the journal; at that point,
5523 	 * for people who are east of GMT and who make their clock
5524 	 * tick in localtime for Windows bug-for-bug compatibility,
5525 	 * the clock is set in the future, and this will cause e2fsck
5526 	 * to complain and force a full file system check.
5527 	 */
5528 	if (!(sb->s_flags & SB_RDONLY))
5529 		ext4_update_tstamp(es, s_wtime);
5530 	es->s_kbytes_written =
5531 		cpu_to_le64(sbi->s_kbytes_written +
5532 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5533 		      sbi->s_sectors_written_start) >> 1));
5534 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5535 		ext4_free_blocks_count_set(es,
5536 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5537 				&sbi->s_freeclusters_counter)));
5538 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5539 		es->s_free_inodes_count =
5540 			cpu_to_le32(percpu_counter_sum_positive(
5541 				&sbi->s_freeinodes_counter));
5542 	/* Copy error information to the on-disk superblock */
5543 	spin_lock(&sbi->s_error_lock);
5544 	if (sbi->s_add_error_count > 0) {
5545 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5546 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5547 			__ext4_update_tstamp(&es->s_first_error_time,
5548 					     &es->s_first_error_time_hi,
5549 					     sbi->s_first_error_time);
5550 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5551 				sizeof(es->s_first_error_func));
5552 			es->s_first_error_line =
5553 				cpu_to_le32(sbi->s_first_error_line);
5554 			es->s_first_error_ino =
5555 				cpu_to_le32(sbi->s_first_error_ino);
5556 			es->s_first_error_block =
5557 				cpu_to_le64(sbi->s_first_error_block);
5558 			es->s_first_error_errcode =
5559 				ext4_errno_to_code(sbi->s_first_error_code);
5560 		}
5561 		__ext4_update_tstamp(&es->s_last_error_time,
5562 				     &es->s_last_error_time_hi,
5563 				     sbi->s_last_error_time);
5564 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5565 			sizeof(es->s_last_error_func));
5566 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5567 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5568 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5569 		es->s_last_error_errcode =
5570 				ext4_errno_to_code(sbi->s_last_error_code);
5571 		/*
5572 		 * Start the daily error reporting function if it hasn't been
5573 		 * started already
5574 		 */
5575 		if (!es->s_error_count)
5576 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5577 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5578 		sbi->s_add_error_count = 0;
5579 	}
5580 	spin_unlock(&sbi->s_error_lock);
5581 
5582 	ext4_superblock_csum_set(sb);
5583 	unlock_buffer(sbh);
5584 }
5585 
5586 static int ext4_commit_super(struct super_block *sb)
5587 {
5588 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5589 	int error = 0;
5590 
5591 	if (!sbh)
5592 		return -EINVAL;
5593 	if (block_device_ejected(sb))
5594 		return -ENODEV;
5595 
5596 	ext4_update_super(sb);
5597 
5598 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5599 		/*
5600 		 * Oh, dear.  A previous attempt to write the
5601 		 * superblock failed.  This could happen because the
5602 		 * USB device was yanked out.  Or it could happen to
5603 		 * be a transient write error and maybe the block will
5604 		 * be remapped.  Nothing we can do but to retry the
5605 		 * write and hope for the best.
5606 		 */
5607 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5608 		       "superblock detected");
5609 		clear_buffer_write_io_error(sbh);
5610 		set_buffer_uptodate(sbh);
5611 	}
5612 	BUFFER_TRACE(sbh, "marking dirty");
5613 	mark_buffer_dirty(sbh);
5614 	error = __sync_dirty_buffer(sbh,
5615 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5616 	if (buffer_write_io_error(sbh)) {
5617 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5618 		       "superblock");
5619 		clear_buffer_write_io_error(sbh);
5620 		set_buffer_uptodate(sbh);
5621 	}
5622 	return error;
5623 }
5624 
5625 /*
5626  * Have we just finished recovery?  If so, and if we are mounting (or
5627  * remounting) the filesystem readonly, then we will end up with a
5628  * consistent fs on disk.  Record that fact.
5629  */
5630 static int ext4_mark_recovery_complete(struct super_block *sb,
5631 				       struct ext4_super_block *es)
5632 {
5633 	int err;
5634 	journal_t *journal = EXT4_SB(sb)->s_journal;
5635 
5636 	if (!ext4_has_feature_journal(sb)) {
5637 		if (journal != NULL) {
5638 			ext4_error(sb, "Journal got removed while the fs was "
5639 				   "mounted!");
5640 			return -EFSCORRUPTED;
5641 		}
5642 		return 0;
5643 	}
5644 	jbd2_journal_lock_updates(journal);
5645 	err = jbd2_journal_flush(journal, 0);
5646 	if (err < 0)
5647 		goto out;
5648 
5649 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5650 		ext4_clear_feature_journal_needs_recovery(sb);
5651 		ext4_commit_super(sb);
5652 	}
5653 out:
5654 	jbd2_journal_unlock_updates(journal);
5655 	return err;
5656 }
5657 
5658 /*
5659  * If we are mounting (or read-write remounting) a filesystem whose journal
5660  * has recorded an error from a previous lifetime, move that error to the
5661  * main filesystem now.
5662  */
5663 static int ext4_clear_journal_err(struct super_block *sb,
5664 				   struct ext4_super_block *es)
5665 {
5666 	journal_t *journal;
5667 	int j_errno;
5668 	const char *errstr;
5669 
5670 	if (!ext4_has_feature_journal(sb)) {
5671 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5672 		return -EFSCORRUPTED;
5673 	}
5674 
5675 	journal = EXT4_SB(sb)->s_journal;
5676 
5677 	/*
5678 	 * Now check for any error status which may have been recorded in the
5679 	 * journal by a prior ext4_error() or ext4_abort()
5680 	 */
5681 
5682 	j_errno = jbd2_journal_errno(journal);
5683 	if (j_errno) {
5684 		char nbuf[16];
5685 
5686 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5687 		ext4_warning(sb, "Filesystem error recorded "
5688 			     "from previous mount: %s", errstr);
5689 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5690 
5691 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5692 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5693 		ext4_commit_super(sb);
5694 
5695 		jbd2_journal_clear_err(journal);
5696 		jbd2_journal_update_sb_errno(journal);
5697 	}
5698 	return 0;
5699 }
5700 
5701 /*
5702  * Force the running and committing transactions to commit,
5703  * and wait on the commit.
5704  */
5705 int ext4_force_commit(struct super_block *sb)
5706 {
5707 	journal_t *journal;
5708 
5709 	if (sb_rdonly(sb))
5710 		return 0;
5711 
5712 	journal = EXT4_SB(sb)->s_journal;
5713 	return ext4_journal_force_commit(journal);
5714 }
5715 
5716 static int ext4_sync_fs(struct super_block *sb, int wait)
5717 {
5718 	int ret = 0;
5719 	tid_t target;
5720 	bool needs_barrier = false;
5721 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5722 
5723 	if (unlikely(ext4_forced_shutdown(sbi)))
5724 		return 0;
5725 
5726 	trace_ext4_sync_fs(sb, wait);
5727 	flush_workqueue(sbi->rsv_conversion_wq);
5728 	/*
5729 	 * Writeback quota in non-journalled quota case - journalled quota has
5730 	 * no dirty dquots
5731 	 */
5732 	dquot_writeback_dquots(sb, -1);
5733 	/*
5734 	 * Data writeback is possible w/o journal transaction, so barrier must
5735 	 * being sent at the end of the function. But we can skip it if
5736 	 * transaction_commit will do it for us.
5737 	 */
5738 	if (sbi->s_journal) {
5739 		target = jbd2_get_latest_transaction(sbi->s_journal);
5740 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5741 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5742 			needs_barrier = true;
5743 
5744 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5745 			if (wait)
5746 				ret = jbd2_log_wait_commit(sbi->s_journal,
5747 							   target);
5748 		}
5749 	} else if (wait && test_opt(sb, BARRIER))
5750 		needs_barrier = true;
5751 	if (needs_barrier) {
5752 		int err;
5753 		err = blkdev_issue_flush(sb->s_bdev);
5754 		if (!ret)
5755 			ret = err;
5756 	}
5757 
5758 	return ret;
5759 }
5760 
5761 /*
5762  * LVM calls this function before a (read-only) snapshot is created.  This
5763  * gives us a chance to flush the journal completely and mark the fs clean.
5764  *
5765  * Note that only this function cannot bring a filesystem to be in a clean
5766  * state independently. It relies on upper layer to stop all data & metadata
5767  * modifications.
5768  */
5769 static int ext4_freeze(struct super_block *sb)
5770 {
5771 	int error = 0;
5772 	journal_t *journal;
5773 
5774 	if (sb_rdonly(sb))
5775 		return 0;
5776 
5777 	journal = EXT4_SB(sb)->s_journal;
5778 
5779 	if (journal) {
5780 		/* Now we set up the journal barrier. */
5781 		jbd2_journal_lock_updates(journal);
5782 
5783 		/*
5784 		 * Don't clear the needs_recovery flag if we failed to
5785 		 * flush the journal.
5786 		 */
5787 		error = jbd2_journal_flush(journal, 0);
5788 		if (error < 0)
5789 			goto out;
5790 
5791 		/* Journal blocked and flushed, clear needs_recovery flag. */
5792 		ext4_clear_feature_journal_needs_recovery(sb);
5793 	}
5794 
5795 	error = ext4_commit_super(sb);
5796 out:
5797 	if (journal)
5798 		/* we rely on upper layer to stop further updates */
5799 		jbd2_journal_unlock_updates(journal);
5800 	return error;
5801 }
5802 
5803 /*
5804  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5805  * flag here, even though the filesystem is not technically dirty yet.
5806  */
5807 static int ext4_unfreeze(struct super_block *sb)
5808 {
5809 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5810 		return 0;
5811 
5812 	if (EXT4_SB(sb)->s_journal) {
5813 		/* Reset the needs_recovery flag before the fs is unlocked. */
5814 		ext4_set_feature_journal_needs_recovery(sb);
5815 	}
5816 
5817 	ext4_commit_super(sb);
5818 	return 0;
5819 }
5820 
5821 /*
5822  * Structure to save mount options for ext4_remount's benefit
5823  */
5824 struct ext4_mount_options {
5825 	unsigned long s_mount_opt;
5826 	unsigned long s_mount_opt2;
5827 	kuid_t s_resuid;
5828 	kgid_t s_resgid;
5829 	unsigned long s_commit_interval;
5830 	u32 s_min_batch_time, s_max_batch_time;
5831 #ifdef CONFIG_QUOTA
5832 	int s_jquota_fmt;
5833 	char *s_qf_names[EXT4_MAXQUOTAS];
5834 #endif
5835 };
5836 
5837 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5838 {
5839 	struct ext4_super_block *es;
5840 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5841 	unsigned long old_sb_flags, vfs_flags;
5842 	struct ext4_mount_options old_opts;
5843 	int enable_quota = 0;
5844 	ext4_group_t g;
5845 	int err = 0;
5846 #ifdef CONFIG_QUOTA
5847 	int i, j;
5848 	char *to_free[EXT4_MAXQUOTAS];
5849 #endif
5850 	char *orig_data = kstrdup(data, GFP_KERNEL);
5851 	struct ext4_parsed_options parsed_opts;
5852 
5853 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5854 	parsed_opts.journal_devnum = 0;
5855 
5856 	if (data && !orig_data)
5857 		return -ENOMEM;
5858 
5859 	/* Store the original options */
5860 	old_sb_flags = sb->s_flags;
5861 	old_opts.s_mount_opt = sbi->s_mount_opt;
5862 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5863 	old_opts.s_resuid = sbi->s_resuid;
5864 	old_opts.s_resgid = sbi->s_resgid;
5865 	old_opts.s_commit_interval = sbi->s_commit_interval;
5866 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5867 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5868 #ifdef CONFIG_QUOTA
5869 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5870 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5871 		if (sbi->s_qf_names[i]) {
5872 			char *qf_name = get_qf_name(sb, sbi, i);
5873 
5874 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5875 			if (!old_opts.s_qf_names[i]) {
5876 				for (j = 0; j < i; j++)
5877 					kfree(old_opts.s_qf_names[j]);
5878 				kfree(orig_data);
5879 				return -ENOMEM;
5880 			}
5881 		} else
5882 			old_opts.s_qf_names[i] = NULL;
5883 #endif
5884 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5885 		parsed_opts.journal_ioprio =
5886 			sbi->s_journal->j_task->io_context->ioprio;
5887 
5888 	/*
5889 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5890 	 * either way we need to make sure it matches in both *flags and
5891 	 * s_flags. Copy those selected flags from *flags to s_flags
5892 	 */
5893 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5894 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5895 
5896 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5897 		err = -EINVAL;
5898 		goto restore_opts;
5899 	}
5900 
5901 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5902 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5903 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5904 			 "during remount not supported; ignoring");
5905 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5906 	}
5907 
5908 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5909 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5910 			ext4_msg(sb, KERN_ERR, "can't mount with "
5911 				 "both data=journal and delalloc");
5912 			err = -EINVAL;
5913 			goto restore_opts;
5914 		}
5915 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5916 			ext4_msg(sb, KERN_ERR, "can't mount with "
5917 				 "both data=journal and dioread_nolock");
5918 			err = -EINVAL;
5919 			goto restore_opts;
5920 		}
5921 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5922 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5923 			ext4_msg(sb, KERN_ERR, "can't mount with "
5924 				"journal_async_commit in data=ordered mode");
5925 			err = -EINVAL;
5926 			goto restore_opts;
5927 		}
5928 	}
5929 
5930 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5931 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5932 		err = -EINVAL;
5933 		goto restore_opts;
5934 	}
5935 
5936 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5937 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5938 
5939 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5940 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5941 
5942 	es = sbi->s_es;
5943 
5944 	if (sbi->s_journal) {
5945 		ext4_init_journal_params(sb, sbi->s_journal);
5946 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5947 	}
5948 
5949 	/* Flush outstanding errors before changing fs state */
5950 	flush_work(&sbi->s_error_work);
5951 
5952 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5953 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5954 			err = -EROFS;
5955 			goto restore_opts;
5956 		}
5957 
5958 		if (*flags & SB_RDONLY) {
5959 			err = sync_filesystem(sb);
5960 			if (err < 0)
5961 				goto restore_opts;
5962 			err = dquot_suspend(sb, -1);
5963 			if (err < 0)
5964 				goto restore_opts;
5965 
5966 			/*
5967 			 * First of all, the unconditional stuff we have to do
5968 			 * to disable replay of the journal when we next remount
5969 			 */
5970 			sb->s_flags |= SB_RDONLY;
5971 
5972 			/*
5973 			 * OK, test if we are remounting a valid rw partition
5974 			 * readonly, and if so set the rdonly flag and then
5975 			 * mark the partition as valid again.
5976 			 */
5977 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5978 			    (sbi->s_mount_state & EXT4_VALID_FS))
5979 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5980 
5981 			if (sbi->s_journal) {
5982 				/*
5983 				 * We let remount-ro finish even if marking fs
5984 				 * as clean failed...
5985 				 */
5986 				ext4_mark_recovery_complete(sb, es);
5987 			}
5988 		} else {
5989 			/* Make sure we can mount this feature set readwrite */
5990 			if (ext4_has_feature_readonly(sb) ||
5991 			    !ext4_feature_set_ok(sb, 0)) {
5992 				err = -EROFS;
5993 				goto restore_opts;
5994 			}
5995 			/*
5996 			 * Make sure the group descriptor checksums
5997 			 * are sane.  If they aren't, refuse to remount r/w.
5998 			 */
5999 			for (g = 0; g < sbi->s_groups_count; g++) {
6000 				struct ext4_group_desc *gdp =
6001 					ext4_get_group_desc(sb, g, NULL);
6002 
6003 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6004 					ext4_msg(sb, KERN_ERR,
6005 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6006 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6007 					       le16_to_cpu(gdp->bg_checksum));
6008 					err = -EFSBADCRC;
6009 					goto restore_opts;
6010 				}
6011 			}
6012 
6013 			/*
6014 			 * If we have an unprocessed orphan list hanging
6015 			 * around from a previously readonly bdev mount,
6016 			 * require a full umount/remount for now.
6017 			 */
6018 			if (es->s_last_orphan) {
6019 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6020 				       "remount RDWR because of unprocessed "
6021 				       "orphan inode list.  Please "
6022 				       "umount/remount instead");
6023 				err = -EINVAL;
6024 				goto restore_opts;
6025 			}
6026 
6027 			/*
6028 			 * Mounting a RDONLY partition read-write, so reread
6029 			 * and store the current valid flag.  (It may have
6030 			 * been changed by e2fsck since we originally mounted
6031 			 * the partition.)
6032 			 */
6033 			if (sbi->s_journal) {
6034 				err = ext4_clear_journal_err(sb, es);
6035 				if (err)
6036 					goto restore_opts;
6037 			}
6038 			sbi->s_mount_state = le16_to_cpu(es->s_state);
6039 
6040 			err = ext4_setup_super(sb, es, 0);
6041 			if (err)
6042 				goto restore_opts;
6043 
6044 			sb->s_flags &= ~SB_RDONLY;
6045 			if (ext4_has_feature_mmp(sb))
6046 				if (ext4_multi_mount_protect(sb,
6047 						le64_to_cpu(es->s_mmp_block))) {
6048 					err = -EROFS;
6049 					goto restore_opts;
6050 				}
6051 			enable_quota = 1;
6052 		}
6053 	}
6054 
6055 	/*
6056 	 * Reinitialize lazy itable initialization thread based on
6057 	 * current settings
6058 	 */
6059 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6060 		ext4_unregister_li_request(sb);
6061 	else {
6062 		ext4_group_t first_not_zeroed;
6063 		first_not_zeroed = ext4_has_uninit_itable(sb);
6064 		ext4_register_li_request(sb, first_not_zeroed);
6065 	}
6066 
6067 	/*
6068 	 * Handle creation of system zone data early because it can fail.
6069 	 * Releasing of existing data is done when we are sure remount will
6070 	 * succeed.
6071 	 */
6072 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6073 		err = ext4_setup_system_zone(sb);
6074 		if (err)
6075 			goto restore_opts;
6076 	}
6077 
6078 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6079 		err = ext4_commit_super(sb);
6080 		if (err)
6081 			goto restore_opts;
6082 	}
6083 
6084 #ifdef CONFIG_QUOTA
6085 	/* Release old quota file names */
6086 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6087 		kfree(old_opts.s_qf_names[i]);
6088 	if (enable_quota) {
6089 		if (sb_any_quota_suspended(sb))
6090 			dquot_resume(sb, -1);
6091 		else if (ext4_has_feature_quota(sb)) {
6092 			err = ext4_enable_quotas(sb);
6093 			if (err)
6094 				goto restore_opts;
6095 		}
6096 	}
6097 #endif
6098 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6099 		ext4_release_system_zone(sb);
6100 
6101 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6102 		ext4_stop_mmpd(sbi);
6103 
6104 	/*
6105 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6106 	 * either way we need to make sure it matches in both *flags and
6107 	 * s_flags. Copy those selected flags from s_flags to *flags
6108 	 */
6109 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6110 
6111 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6112 		 orig_data, ext4_quota_mode(sb));
6113 	kfree(orig_data);
6114 	return 0;
6115 
6116 restore_opts:
6117 	sb->s_flags = old_sb_flags;
6118 	sbi->s_mount_opt = old_opts.s_mount_opt;
6119 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6120 	sbi->s_resuid = old_opts.s_resuid;
6121 	sbi->s_resgid = old_opts.s_resgid;
6122 	sbi->s_commit_interval = old_opts.s_commit_interval;
6123 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6124 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6125 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6126 		ext4_release_system_zone(sb);
6127 #ifdef CONFIG_QUOTA
6128 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6129 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6130 		to_free[i] = get_qf_name(sb, sbi, i);
6131 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6132 	}
6133 	synchronize_rcu();
6134 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6135 		kfree(to_free[i]);
6136 #endif
6137 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6138 		ext4_stop_mmpd(sbi);
6139 	kfree(orig_data);
6140 	return err;
6141 }
6142 
6143 #ifdef CONFIG_QUOTA
6144 static int ext4_statfs_project(struct super_block *sb,
6145 			       kprojid_t projid, struct kstatfs *buf)
6146 {
6147 	struct kqid qid;
6148 	struct dquot *dquot;
6149 	u64 limit;
6150 	u64 curblock;
6151 
6152 	qid = make_kqid_projid(projid);
6153 	dquot = dqget(sb, qid);
6154 	if (IS_ERR(dquot))
6155 		return PTR_ERR(dquot);
6156 	spin_lock(&dquot->dq_dqb_lock);
6157 
6158 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6159 			     dquot->dq_dqb.dqb_bhardlimit);
6160 	limit >>= sb->s_blocksize_bits;
6161 
6162 	if (limit && buf->f_blocks > limit) {
6163 		curblock = (dquot->dq_dqb.dqb_curspace +
6164 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6165 		buf->f_blocks = limit;
6166 		buf->f_bfree = buf->f_bavail =
6167 			(buf->f_blocks > curblock) ?
6168 			 (buf->f_blocks - curblock) : 0;
6169 	}
6170 
6171 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6172 			     dquot->dq_dqb.dqb_ihardlimit);
6173 	if (limit && buf->f_files > limit) {
6174 		buf->f_files = limit;
6175 		buf->f_ffree =
6176 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6177 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6178 	}
6179 
6180 	spin_unlock(&dquot->dq_dqb_lock);
6181 	dqput(dquot);
6182 	return 0;
6183 }
6184 #endif
6185 
6186 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6187 {
6188 	struct super_block *sb = dentry->d_sb;
6189 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6190 	struct ext4_super_block *es = sbi->s_es;
6191 	ext4_fsblk_t overhead = 0, resv_blocks;
6192 	s64 bfree;
6193 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6194 
6195 	if (!test_opt(sb, MINIX_DF))
6196 		overhead = sbi->s_overhead;
6197 
6198 	buf->f_type = EXT4_SUPER_MAGIC;
6199 	buf->f_bsize = sb->s_blocksize;
6200 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6201 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6202 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6203 	/* prevent underflow in case that few free space is available */
6204 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6205 	buf->f_bavail = buf->f_bfree -
6206 			(ext4_r_blocks_count(es) + resv_blocks);
6207 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6208 		buf->f_bavail = 0;
6209 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6210 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6211 	buf->f_namelen = EXT4_NAME_LEN;
6212 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6213 
6214 #ifdef CONFIG_QUOTA
6215 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6216 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6217 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6218 #endif
6219 	return 0;
6220 }
6221 
6222 
6223 #ifdef CONFIG_QUOTA
6224 
6225 /*
6226  * Helper functions so that transaction is started before we acquire dqio_sem
6227  * to keep correct lock ordering of transaction > dqio_sem
6228  */
6229 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6230 {
6231 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6232 }
6233 
6234 static int ext4_write_dquot(struct dquot *dquot)
6235 {
6236 	int ret, err;
6237 	handle_t *handle;
6238 	struct inode *inode;
6239 
6240 	inode = dquot_to_inode(dquot);
6241 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6242 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6243 	if (IS_ERR(handle))
6244 		return PTR_ERR(handle);
6245 	ret = dquot_commit(dquot);
6246 	err = ext4_journal_stop(handle);
6247 	if (!ret)
6248 		ret = err;
6249 	return ret;
6250 }
6251 
6252 static int ext4_acquire_dquot(struct dquot *dquot)
6253 {
6254 	int ret, err;
6255 	handle_t *handle;
6256 
6257 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6258 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6259 	if (IS_ERR(handle))
6260 		return PTR_ERR(handle);
6261 	ret = dquot_acquire(dquot);
6262 	err = ext4_journal_stop(handle);
6263 	if (!ret)
6264 		ret = err;
6265 	return ret;
6266 }
6267 
6268 static int ext4_release_dquot(struct dquot *dquot)
6269 {
6270 	int ret, err;
6271 	handle_t *handle;
6272 
6273 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6274 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6275 	if (IS_ERR(handle)) {
6276 		/* Release dquot anyway to avoid endless cycle in dqput() */
6277 		dquot_release(dquot);
6278 		return PTR_ERR(handle);
6279 	}
6280 	ret = dquot_release(dquot);
6281 	err = ext4_journal_stop(handle);
6282 	if (!ret)
6283 		ret = err;
6284 	return ret;
6285 }
6286 
6287 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6288 {
6289 	struct super_block *sb = dquot->dq_sb;
6290 
6291 	if (ext4_is_quota_journalled(sb)) {
6292 		dquot_mark_dquot_dirty(dquot);
6293 		return ext4_write_dquot(dquot);
6294 	} else {
6295 		return dquot_mark_dquot_dirty(dquot);
6296 	}
6297 }
6298 
6299 static int ext4_write_info(struct super_block *sb, int type)
6300 {
6301 	int ret, err;
6302 	handle_t *handle;
6303 
6304 	/* Data block + inode block */
6305 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6306 	if (IS_ERR(handle))
6307 		return PTR_ERR(handle);
6308 	ret = dquot_commit_info(sb, type);
6309 	err = ext4_journal_stop(handle);
6310 	if (!ret)
6311 		ret = err;
6312 	return ret;
6313 }
6314 
6315 /*
6316  * Turn on quotas during mount time - we need to find
6317  * the quota file and such...
6318  */
6319 static int ext4_quota_on_mount(struct super_block *sb, int type)
6320 {
6321 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6322 					EXT4_SB(sb)->s_jquota_fmt, type);
6323 }
6324 
6325 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6326 {
6327 	struct ext4_inode_info *ei = EXT4_I(inode);
6328 
6329 	/* The first argument of lockdep_set_subclass has to be
6330 	 * *exactly* the same as the argument to init_rwsem() --- in
6331 	 * this case, in init_once() --- or lockdep gets unhappy
6332 	 * because the name of the lock is set using the
6333 	 * stringification of the argument to init_rwsem().
6334 	 */
6335 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6336 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6337 }
6338 
6339 /*
6340  * Standard function to be called on quota_on
6341  */
6342 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6343 			 const struct path *path)
6344 {
6345 	int err;
6346 
6347 	if (!test_opt(sb, QUOTA))
6348 		return -EINVAL;
6349 
6350 	/* Quotafile not on the same filesystem? */
6351 	if (path->dentry->d_sb != sb)
6352 		return -EXDEV;
6353 
6354 	/* Quota already enabled for this file? */
6355 	if (IS_NOQUOTA(d_inode(path->dentry)))
6356 		return -EBUSY;
6357 
6358 	/* Journaling quota? */
6359 	if (EXT4_SB(sb)->s_qf_names[type]) {
6360 		/* Quotafile not in fs root? */
6361 		if (path->dentry->d_parent != sb->s_root)
6362 			ext4_msg(sb, KERN_WARNING,
6363 				"Quota file not on filesystem root. "
6364 				"Journaled quota will not work");
6365 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6366 	} else {
6367 		/*
6368 		 * Clear the flag just in case mount options changed since
6369 		 * last time.
6370 		 */
6371 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6372 	}
6373 
6374 	/*
6375 	 * When we journal data on quota file, we have to flush journal to see
6376 	 * all updates to the file when we bypass pagecache...
6377 	 */
6378 	if (EXT4_SB(sb)->s_journal &&
6379 	    ext4_should_journal_data(d_inode(path->dentry))) {
6380 		/*
6381 		 * We don't need to lock updates but journal_flush() could
6382 		 * otherwise be livelocked...
6383 		 */
6384 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6385 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6386 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6387 		if (err)
6388 			return err;
6389 	}
6390 
6391 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6392 	err = dquot_quota_on(sb, type, format_id, path);
6393 	if (err) {
6394 		lockdep_set_quota_inode(path->dentry->d_inode,
6395 					     I_DATA_SEM_NORMAL);
6396 	} else {
6397 		struct inode *inode = d_inode(path->dentry);
6398 		handle_t *handle;
6399 
6400 		/*
6401 		 * Set inode flags to prevent userspace from messing with quota
6402 		 * files. If this fails, we return success anyway since quotas
6403 		 * are already enabled and this is not a hard failure.
6404 		 */
6405 		inode_lock(inode);
6406 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6407 		if (IS_ERR(handle))
6408 			goto unlock_inode;
6409 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6410 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6411 				S_NOATIME | S_IMMUTABLE);
6412 		err = ext4_mark_inode_dirty(handle, inode);
6413 		ext4_journal_stop(handle);
6414 	unlock_inode:
6415 		inode_unlock(inode);
6416 	}
6417 	return err;
6418 }
6419 
6420 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6421 			     unsigned int flags)
6422 {
6423 	int err;
6424 	struct inode *qf_inode;
6425 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6426 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6427 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6428 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6429 	};
6430 
6431 	BUG_ON(!ext4_has_feature_quota(sb));
6432 
6433 	if (!qf_inums[type])
6434 		return -EPERM;
6435 
6436 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6437 	if (IS_ERR(qf_inode)) {
6438 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6439 		return PTR_ERR(qf_inode);
6440 	}
6441 
6442 	/* Don't account quota for quota files to avoid recursion */
6443 	qf_inode->i_flags |= S_NOQUOTA;
6444 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6445 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6446 	if (err)
6447 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6448 	iput(qf_inode);
6449 
6450 	return err;
6451 }
6452 
6453 /* Enable usage tracking for all quota types. */
6454 static int ext4_enable_quotas(struct super_block *sb)
6455 {
6456 	int type, err = 0;
6457 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6458 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6459 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6460 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6461 	};
6462 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6463 		test_opt(sb, USRQUOTA),
6464 		test_opt(sb, GRPQUOTA),
6465 		test_opt(sb, PRJQUOTA),
6466 	};
6467 
6468 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6469 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6470 		if (qf_inums[type]) {
6471 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6472 				DQUOT_USAGE_ENABLED |
6473 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6474 			if (err) {
6475 				ext4_warning(sb,
6476 					"Failed to enable quota tracking "
6477 					"(type=%d, err=%d). Please run "
6478 					"e2fsck to fix.", type, err);
6479 				for (type--; type >= 0; type--)
6480 					dquot_quota_off(sb, type);
6481 
6482 				return err;
6483 			}
6484 		}
6485 	}
6486 	return 0;
6487 }
6488 
6489 static int ext4_quota_off(struct super_block *sb, int type)
6490 {
6491 	struct inode *inode = sb_dqopt(sb)->files[type];
6492 	handle_t *handle;
6493 	int err;
6494 
6495 	/* Force all delayed allocation blocks to be allocated.
6496 	 * Caller already holds s_umount sem */
6497 	if (test_opt(sb, DELALLOC))
6498 		sync_filesystem(sb);
6499 
6500 	if (!inode || !igrab(inode))
6501 		goto out;
6502 
6503 	err = dquot_quota_off(sb, type);
6504 	if (err || ext4_has_feature_quota(sb))
6505 		goto out_put;
6506 
6507 	inode_lock(inode);
6508 	/*
6509 	 * Update modification times of quota files when userspace can
6510 	 * start looking at them. If we fail, we return success anyway since
6511 	 * this is not a hard failure and quotas are already disabled.
6512 	 */
6513 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6514 	if (IS_ERR(handle)) {
6515 		err = PTR_ERR(handle);
6516 		goto out_unlock;
6517 	}
6518 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6519 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6520 	inode->i_mtime = inode->i_ctime = current_time(inode);
6521 	err = ext4_mark_inode_dirty(handle, inode);
6522 	ext4_journal_stop(handle);
6523 out_unlock:
6524 	inode_unlock(inode);
6525 out_put:
6526 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6527 	iput(inode);
6528 	return err;
6529 out:
6530 	return dquot_quota_off(sb, type);
6531 }
6532 
6533 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6534  * acquiring the locks... As quota files are never truncated and quota code
6535  * itself serializes the operations (and no one else should touch the files)
6536  * we don't have to be afraid of races */
6537 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6538 			       size_t len, loff_t off)
6539 {
6540 	struct inode *inode = sb_dqopt(sb)->files[type];
6541 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6542 	int offset = off & (sb->s_blocksize - 1);
6543 	int tocopy;
6544 	size_t toread;
6545 	struct buffer_head *bh;
6546 	loff_t i_size = i_size_read(inode);
6547 
6548 	if (off > i_size)
6549 		return 0;
6550 	if (off+len > i_size)
6551 		len = i_size-off;
6552 	toread = len;
6553 	while (toread > 0) {
6554 		tocopy = sb->s_blocksize - offset < toread ?
6555 				sb->s_blocksize - offset : toread;
6556 		bh = ext4_bread(NULL, inode, blk, 0);
6557 		if (IS_ERR(bh))
6558 			return PTR_ERR(bh);
6559 		if (!bh)	/* A hole? */
6560 			memset(data, 0, tocopy);
6561 		else
6562 			memcpy(data, bh->b_data+offset, tocopy);
6563 		brelse(bh);
6564 		offset = 0;
6565 		toread -= tocopy;
6566 		data += tocopy;
6567 		blk++;
6568 	}
6569 	return len;
6570 }
6571 
6572 /* Write to quotafile (we know the transaction is already started and has
6573  * enough credits) */
6574 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6575 				const char *data, size_t len, loff_t off)
6576 {
6577 	struct inode *inode = sb_dqopt(sb)->files[type];
6578 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6579 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6580 	int retries = 0;
6581 	struct buffer_head *bh;
6582 	handle_t *handle = journal_current_handle();
6583 
6584 	if (EXT4_SB(sb)->s_journal && !handle) {
6585 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6586 			" cancelled because transaction is not started",
6587 			(unsigned long long)off, (unsigned long long)len);
6588 		return -EIO;
6589 	}
6590 	/*
6591 	 * Since we account only one data block in transaction credits,
6592 	 * then it is impossible to cross a block boundary.
6593 	 */
6594 	if (sb->s_blocksize - offset < len) {
6595 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6596 			" cancelled because not block aligned",
6597 			(unsigned long long)off, (unsigned long long)len);
6598 		return -EIO;
6599 	}
6600 
6601 	do {
6602 		bh = ext4_bread(handle, inode, blk,
6603 				EXT4_GET_BLOCKS_CREATE |
6604 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6605 	} while (PTR_ERR(bh) == -ENOSPC &&
6606 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6607 	if (IS_ERR(bh))
6608 		return PTR_ERR(bh);
6609 	if (!bh)
6610 		goto out;
6611 	BUFFER_TRACE(bh, "get write access");
6612 	err = ext4_journal_get_write_access(handle, bh);
6613 	if (err) {
6614 		brelse(bh);
6615 		return err;
6616 	}
6617 	lock_buffer(bh);
6618 	memcpy(bh->b_data+offset, data, len);
6619 	flush_dcache_page(bh->b_page);
6620 	unlock_buffer(bh);
6621 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6622 	brelse(bh);
6623 out:
6624 	if (inode->i_size < off + len) {
6625 		i_size_write(inode, off + len);
6626 		EXT4_I(inode)->i_disksize = inode->i_size;
6627 		err2 = ext4_mark_inode_dirty(handle, inode);
6628 		if (unlikely(err2 && !err))
6629 			err = err2;
6630 	}
6631 	return err ? err : len;
6632 }
6633 #endif
6634 
6635 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6636 		       const char *dev_name, void *data)
6637 {
6638 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6639 }
6640 
6641 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6642 static inline void register_as_ext2(void)
6643 {
6644 	int err = register_filesystem(&ext2_fs_type);
6645 	if (err)
6646 		printk(KERN_WARNING
6647 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6648 }
6649 
6650 static inline void unregister_as_ext2(void)
6651 {
6652 	unregister_filesystem(&ext2_fs_type);
6653 }
6654 
6655 static inline int ext2_feature_set_ok(struct super_block *sb)
6656 {
6657 	if (ext4_has_unknown_ext2_incompat_features(sb))
6658 		return 0;
6659 	if (sb_rdonly(sb))
6660 		return 1;
6661 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6662 		return 0;
6663 	return 1;
6664 }
6665 #else
6666 static inline void register_as_ext2(void) { }
6667 static inline void unregister_as_ext2(void) { }
6668 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6669 #endif
6670 
6671 static inline void register_as_ext3(void)
6672 {
6673 	int err = register_filesystem(&ext3_fs_type);
6674 	if (err)
6675 		printk(KERN_WARNING
6676 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6677 }
6678 
6679 static inline void unregister_as_ext3(void)
6680 {
6681 	unregister_filesystem(&ext3_fs_type);
6682 }
6683 
6684 static inline int ext3_feature_set_ok(struct super_block *sb)
6685 {
6686 	if (ext4_has_unknown_ext3_incompat_features(sb))
6687 		return 0;
6688 	if (!ext4_has_feature_journal(sb))
6689 		return 0;
6690 	if (sb_rdonly(sb))
6691 		return 1;
6692 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6693 		return 0;
6694 	return 1;
6695 }
6696 
6697 static struct file_system_type ext4_fs_type = {
6698 	.owner		= THIS_MODULE,
6699 	.name		= "ext4",
6700 	.mount		= ext4_mount,
6701 	.kill_sb	= kill_block_super,
6702 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6703 };
6704 MODULE_ALIAS_FS("ext4");
6705 
6706 /* Shared across all ext4 file systems */
6707 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6708 
6709 static int __init ext4_init_fs(void)
6710 {
6711 	int i, err;
6712 
6713 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6714 	ext4_li_info = NULL;
6715 
6716 	/* Build-time check for flags consistency */
6717 	ext4_check_flag_values();
6718 
6719 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6720 		init_waitqueue_head(&ext4__ioend_wq[i]);
6721 
6722 	err = ext4_init_es();
6723 	if (err)
6724 		return err;
6725 
6726 	err = ext4_init_pending();
6727 	if (err)
6728 		goto out7;
6729 
6730 	err = ext4_init_post_read_processing();
6731 	if (err)
6732 		goto out6;
6733 
6734 	err = ext4_init_pageio();
6735 	if (err)
6736 		goto out5;
6737 
6738 	err = ext4_init_system_zone();
6739 	if (err)
6740 		goto out4;
6741 
6742 	err = ext4_init_sysfs();
6743 	if (err)
6744 		goto out3;
6745 
6746 	err = ext4_init_mballoc();
6747 	if (err)
6748 		goto out2;
6749 	err = init_inodecache();
6750 	if (err)
6751 		goto out1;
6752 
6753 	err = ext4_fc_init_dentry_cache();
6754 	if (err)
6755 		goto out05;
6756 
6757 	register_as_ext3();
6758 	register_as_ext2();
6759 	err = register_filesystem(&ext4_fs_type);
6760 	if (err)
6761 		goto out;
6762 
6763 	return 0;
6764 out:
6765 	unregister_as_ext2();
6766 	unregister_as_ext3();
6767 out05:
6768 	destroy_inodecache();
6769 out1:
6770 	ext4_exit_mballoc();
6771 out2:
6772 	ext4_exit_sysfs();
6773 out3:
6774 	ext4_exit_system_zone();
6775 out4:
6776 	ext4_exit_pageio();
6777 out5:
6778 	ext4_exit_post_read_processing();
6779 out6:
6780 	ext4_exit_pending();
6781 out7:
6782 	ext4_exit_es();
6783 
6784 	return err;
6785 }
6786 
6787 static void __exit ext4_exit_fs(void)
6788 {
6789 	ext4_destroy_lazyinit_thread();
6790 	unregister_as_ext2();
6791 	unregister_as_ext3();
6792 	unregister_filesystem(&ext4_fs_type);
6793 	destroy_inodecache();
6794 	ext4_exit_mballoc();
6795 	ext4_exit_sysfs();
6796 	ext4_exit_system_zone();
6797 	ext4_exit_pageio();
6798 	ext4_exit_post_read_processing();
6799 	ext4_exit_es();
6800 	ext4_exit_pending();
6801 }
6802 
6803 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6804 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6805 MODULE_LICENSE("GPL");
6806 MODULE_SOFTDEP("pre: crc32c");
6807 module_init(ext4_init_fs)
6808 module_exit(ext4_exit_fs)
6809