1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 107 * transaction start -> i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 111 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 112 * transaction start -> i_data_sem (rw) 113 * 114 * writepages: 115 * transaction start -> page lock(s) -> i_data_sem (rw) 116 */ 117 118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 119 static struct file_system_type ext2_fs_type = { 120 .owner = THIS_MODULE, 121 .name = "ext2", 122 .mount = ext4_mount, 123 .kill_sb = kill_block_super, 124 .fs_flags = FS_REQUIRES_DEV, 125 }; 126 MODULE_ALIAS_FS("ext2"); 127 MODULE_ALIAS("ext2"); 128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 129 #else 130 #define IS_EXT2_SB(sb) (0) 131 #endif 132 133 134 static struct file_system_type ext3_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext3", 137 .mount = ext4_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext3"); 142 MODULE_ALIAS("ext3"); 143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 144 145 static int ext4_verify_csum_type(struct super_block *sb, 146 struct ext4_super_block *es) 147 { 148 if (!ext4_has_feature_metadata_csum(sb)) 149 return 1; 150 151 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 152 } 153 154 static __le32 ext4_superblock_csum(struct super_block *sb, 155 struct ext4_super_block *es) 156 { 157 struct ext4_sb_info *sbi = EXT4_SB(sb); 158 int offset = offsetof(struct ext4_super_block, s_checksum); 159 __u32 csum; 160 161 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 162 163 return cpu_to_le32(csum); 164 } 165 166 static int ext4_superblock_csum_verify(struct super_block *sb, 167 struct ext4_super_block *es) 168 { 169 if (!ext4_has_metadata_csum(sb)) 170 return 1; 171 172 return es->s_checksum == ext4_superblock_csum(sb, es); 173 } 174 175 void ext4_superblock_csum_set(struct super_block *sb) 176 { 177 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 178 179 if (!ext4_has_metadata_csum(sb)) 180 return; 181 182 es->s_checksum = ext4_superblock_csum(sb, es); 183 } 184 185 void *ext4_kvmalloc(size_t size, gfp_t flags) 186 { 187 void *ret; 188 189 ret = kmalloc(size, flags | __GFP_NOWARN); 190 if (!ret) 191 ret = __vmalloc(size, flags, PAGE_KERNEL); 192 return ret; 193 } 194 195 void *ext4_kvzalloc(size_t size, gfp_t flags) 196 { 197 void *ret; 198 199 ret = kzalloc(size, flags | __GFP_NOWARN); 200 if (!ret) 201 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 202 return ret; 203 } 204 205 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 206 struct ext4_group_desc *bg) 207 { 208 return le32_to_cpu(bg->bg_block_bitmap_lo) | 209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 210 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 211 } 212 213 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 214 struct ext4_group_desc *bg) 215 { 216 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 218 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 219 } 220 221 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 222 struct ext4_group_desc *bg) 223 { 224 return le32_to_cpu(bg->bg_inode_table_lo) | 225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 226 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 227 } 228 229 __u32 ext4_free_group_clusters(struct super_block *sb, 230 struct ext4_group_desc *bg) 231 { 232 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 234 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 235 } 236 237 __u32 ext4_free_inodes_count(struct super_block *sb, 238 struct ext4_group_desc *bg) 239 { 240 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 242 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 243 } 244 245 __u32 ext4_used_dirs_count(struct super_block *sb, 246 struct ext4_group_desc *bg) 247 { 248 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 249 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 250 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 251 } 252 253 __u32 ext4_itable_unused_count(struct super_block *sb, 254 struct ext4_group_desc *bg) 255 { 256 return le16_to_cpu(bg->bg_itable_unused_lo) | 257 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 258 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 259 } 260 261 void ext4_block_bitmap_set(struct super_block *sb, 262 struct ext4_group_desc *bg, ext4_fsblk_t blk) 263 { 264 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 266 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 267 } 268 269 void ext4_inode_bitmap_set(struct super_block *sb, 270 struct ext4_group_desc *bg, ext4_fsblk_t blk) 271 { 272 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 274 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 275 } 276 277 void ext4_inode_table_set(struct super_block *sb, 278 struct ext4_group_desc *bg, ext4_fsblk_t blk) 279 { 280 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 282 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 283 } 284 285 void ext4_free_group_clusters_set(struct super_block *sb, 286 struct ext4_group_desc *bg, __u32 count) 287 { 288 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 290 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 291 } 292 293 void ext4_free_inodes_set(struct super_block *sb, 294 struct ext4_group_desc *bg, __u32 count) 295 { 296 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 298 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 299 } 300 301 void ext4_used_dirs_set(struct super_block *sb, 302 struct ext4_group_desc *bg, __u32 count) 303 { 304 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 305 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 306 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 307 } 308 309 void ext4_itable_unused_set(struct super_block *sb, 310 struct ext4_group_desc *bg, __u32 count) 311 { 312 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 313 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 314 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 315 } 316 317 318 static void __save_error_info(struct super_block *sb, const char *func, 319 unsigned int line) 320 { 321 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 322 323 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 324 if (bdev_read_only(sb->s_bdev)) 325 return; 326 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 327 es->s_last_error_time = cpu_to_le32(get_seconds()); 328 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 329 es->s_last_error_line = cpu_to_le32(line); 330 if (!es->s_first_error_time) { 331 es->s_first_error_time = es->s_last_error_time; 332 strncpy(es->s_first_error_func, func, 333 sizeof(es->s_first_error_func)); 334 es->s_first_error_line = cpu_to_le32(line); 335 es->s_first_error_ino = es->s_last_error_ino; 336 es->s_first_error_block = es->s_last_error_block; 337 } 338 /* 339 * Start the daily error reporting function if it hasn't been 340 * started already 341 */ 342 if (!es->s_error_count) 343 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 344 le32_add_cpu(&es->s_error_count, 1); 345 } 346 347 static void save_error_info(struct super_block *sb, const char *func, 348 unsigned int line) 349 { 350 __save_error_info(sb, func, line); 351 ext4_commit_super(sb, 1); 352 } 353 354 /* 355 * The del_gendisk() function uninitializes the disk-specific data 356 * structures, including the bdi structure, without telling anyone 357 * else. Once this happens, any attempt to call mark_buffer_dirty() 358 * (for example, by ext4_commit_super), will cause a kernel OOPS. 359 * This is a kludge to prevent these oops until we can put in a proper 360 * hook in del_gendisk() to inform the VFS and file system layers. 361 */ 362 static int block_device_ejected(struct super_block *sb) 363 { 364 struct inode *bd_inode = sb->s_bdev->bd_inode; 365 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 366 367 return bdi->dev == NULL; 368 } 369 370 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 371 { 372 struct super_block *sb = journal->j_private; 373 struct ext4_sb_info *sbi = EXT4_SB(sb); 374 int error = is_journal_aborted(journal); 375 struct ext4_journal_cb_entry *jce; 376 377 BUG_ON(txn->t_state == T_FINISHED); 378 379 ext4_process_freed_data(sb, txn->t_tid); 380 381 spin_lock(&sbi->s_md_lock); 382 while (!list_empty(&txn->t_private_list)) { 383 jce = list_entry(txn->t_private_list.next, 384 struct ext4_journal_cb_entry, jce_list); 385 list_del_init(&jce->jce_list); 386 spin_unlock(&sbi->s_md_lock); 387 jce->jce_func(sb, jce, error); 388 spin_lock(&sbi->s_md_lock); 389 } 390 spin_unlock(&sbi->s_md_lock); 391 } 392 393 /* Deal with the reporting of failure conditions on a filesystem such as 394 * inconsistencies detected or read IO failures. 395 * 396 * On ext2, we can store the error state of the filesystem in the 397 * superblock. That is not possible on ext4, because we may have other 398 * write ordering constraints on the superblock which prevent us from 399 * writing it out straight away; and given that the journal is about to 400 * be aborted, we can't rely on the current, or future, transactions to 401 * write out the superblock safely. 402 * 403 * We'll just use the jbd2_journal_abort() error code to record an error in 404 * the journal instead. On recovery, the journal will complain about 405 * that error until we've noted it down and cleared it. 406 */ 407 408 static void ext4_handle_error(struct super_block *sb) 409 { 410 if (sb_rdonly(sb)) 411 return; 412 413 if (!test_opt(sb, ERRORS_CONT)) { 414 journal_t *journal = EXT4_SB(sb)->s_journal; 415 416 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 417 if (journal) 418 jbd2_journal_abort(journal, -EIO); 419 } 420 if (test_opt(sb, ERRORS_RO)) { 421 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 422 /* 423 * Make sure updated value of ->s_mount_flags will be visible 424 * before ->s_flags update 425 */ 426 smp_wmb(); 427 sb->s_flags |= SB_RDONLY; 428 } 429 if (test_opt(sb, ERRORS_PANIC)) { 430 if (EXT4_SB(sb)->s_journal && 431 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 432 return; 433 panic("EXT4-fs (device %s): panic forced after error\n", 434 sb->s_id); 435 } 436 } 437 438 #define ext4_error_ratelimit(sb) \ 439 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 440 "EXT4-fs error") 441 442 void __ext4_error(struct super_block *sb, const char *function, 443 unsigned int line, const char *fmt, ...) 444 { 445 struct va_format vaf; 446 va_list args; 447 448 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 449 return; 450 451 if (ext4_error_ratelimit(sb)) { 452 va_start(args, fmt); 453 vaf.fmt = fmt; 454 vaf.va = &args; 455 printk(KERN_CRIT 456 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 457 sb->s_id, function, line, current->comm, &vaf); 458 va_end(args); 459 } 460 save_error_info(sb, function, line); 461 ext4_handle_error(sb); 462 } 463 464 void __ext4_error_inode(struct inode *inode, const char *function, 465 unsigned int line, ext4_fsblk_t block, 466 const char *fmt, ...) 467 { 468 va_list args; 469 struct va_format vaf; 470 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 471 472 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 473 return; 474 475 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 476 es->s_last_error_block = cpu_to_le64(block); 477 if (ext4_error_ratelimit(inode->i_sb)) { 478 va_start(args, fmt); 479 vaf.fmt = fmt; 480 vaf.va = &args; 481 if (block) 482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 483 "inode #%lu: block %llu: comm %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 block, current->comm, &vaf); 486 else 487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 488 "inode #%lu: comm %s: %pV\n", 489 inode->i_sb->s_id, function, line, inode->i_ino, 490 current->comm, &vaf); 491 va_end(args); 492 } 493 save_error_info(inode->i_sb, function, line); 494 ext4_handle_error(inode->i_sb); 495 } 496 497 void __ext4_error_file(struct file *file, const char *function, 498 unsigned int line, ext4_fsblk_t block, 499 const char *fmt, ...) 500 { 501 va_list args; 502 struct va_format vaf; 503 struct ext4_super_block *es; 504 struct inode *inode = file_inode(file); 505 char pathname[80], *path; 506 507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 508 return; 509 510 es = EXT4_SB(inode->i_sb)->s_es; 511 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 512 if (ext4_error_ratelimit(inode->i_sb)) { 513 path = file_path(file, pathname, sizeof(pathname)); 514 if (IS_ERR(path)) 515 path = "(unknown)"; 516 va_start(args, fmt); 517 vaf.fmt = fmt; 518 vaf.va = &args; 519 if (block) 520 printk(KERN_CRIT 521 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 522 "block %llu: comm %s: path %s: %pV\n", 523 inode->i_sb->s_id, function, line, inode->i_ino, 524 block, current->comm, path, &vaf); 525 else 526 printk(KERN_CRIT 527 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 528 "comm %s: path %s: %pV\n", 529 inode->i_sb->s_id, function, line, inode->i_ino, 530 current->comm, path, &vaf); 531 va_end(args); 532 } 533 save_error_info(inode->i_sb, function, line); 534 ext4_handle_error(inode->i_sb); 535 } 536 537 const char *ext4_decode_error(struct super_block *sb, int errno, 538 char nbuf[16]) 539 { 540 char *errstr = NULL; 541 542 switch (errno) { 543 case -EFSCORRUPTED: 544 errstr = "Corrupt filesystem"; 545 break; 546 case -EFSBADCRC: 547 errstr = "Filesystem failed CRC"; 548 break; 549 case -EIO: 550 errstr = "IO failure"; 551 break; 552 case -ENOMEM: 553 errstr = "Out of memory"; 554 break; 555 case -EROFS: 556 if (!sb || (EXT4_SB(sb)->s_journal && 557 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 558 errstr = "Journal has aborted"; 559 else 560 errstr = "Readonly filesystem"; 561 break; 562 default: 563 /* If the caller passed in an extra buffer for unknown 564 * errors, textualise them now. Else we just return 565 * NULL. */ 566 if (nbuf) { 567 /* Check for truncated error codes... */ 568 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 569 errstr = nbuf; 570 } 571 break; 572 } 573 574 return errstr; 575 } 576 577 /* __ext4_std_error decodes expected errors from journaling functions 578 * automatically and invokes the appropriate error response. */ 579 580 void __ext4_std_error(struct super_block *sb, const char *function, 581 unsigned int line, int errno) 582 { 583 char nbuf[16]; 584 const char *errstr; 585 586 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 587 return; 588 589 /* Special case: if the error is EROFS, and we're not already 590 * inside a transaction, then there's really no point in logging 591 * an error. */ 592 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 593 return; 594 595 if (ext4_error_ratelimit(sb)) { 596 errstr = ext4_decode_error(sb, errno, nbuf); 597 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 598 sb->s_id, function, line, errstr); 599 } 600 601 save_error_info(sb, function, line); 602 ext4_handle_error(sb); 603 } 604 605 /* 606 * ext4_abort is a much stronger failure handler than ext4_error. The 607 * abort function may be used to deal with unrecoverable failures such 608 * as journal IO errors or ENOMEM at a critical moment in log management. 609 * 610 * We unconditionally force the filesystem into an ABORT|READONLY state, 611 * unless the error response on the fs has been set to panic in which 612 * case we take the easy way out and panic immediately. 613 */ 614 615 void __ext4_abort(struct super_block *sb, const char *function, 616 unsigned int line, const char *fmt, ...) 617 { 618 struct va_format vaf; 619 va_list args; 620 621 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 622 return; 623 624 save_error_info(sb, function, line); 625 va_start(args, fmt); 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 629 sb->s_id, function, line, &vaf); 630 va_end(args); 631 632 if (sb_rdonly(sb) == 0) { 633 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 634 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 635 /* 636 * Make sure updated value of ->s_mount_flags will be visible 637 * before ->s_flags update 638 */ 639 smp_wmb(); 640 sb->s_flags |= SB_RDONLY; 641 if (EXT4_SB(sb)->s_journal) 642 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 643 save_error_info(sb, function, line); 644 } 645 if (test_opt(sb, ERRORS_PANIC)) { 646 if (EXT4_SB(sb)->s_journal && 647 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 648 return; 649 panic("EXT4-fs panic from previous error\n"); 650 } 651 } 652 653 void __ext4_msg(struct super_block *sb, 654 const char *prefix, const char *fmt, ...) 655 { 656 struct va_format vaf; 657 va_list args; 658 659 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 660 return; 661 662 va_start(args, fmt); 663 vaf.fmt = fmt; 664 vaf.va = &args; 665 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 666 va_end(args); 667 } 668 669 #define ext4_warning_ratelimit(sb) \ 670 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 671 "EXT4-fs warning") 672 673 void __ext4_warning(struct super_block *sb, const char *function, 674 unsigned int line, const char *fmt, ...) 675 { 676 struct va_format vaf; 677 va_list args; 678 679 if (!ext4_warning_ratelimit(sb)) 680 return; 681 682 va_start(args, fmt); 683 vaf.fmt = fmt; 684 vaf.va = &args; 685 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 686 sb->s_id, function, line, &vaf); 687 va_end(args); 688 } 689 690 void __ext4_warning_inode(const struct inode *inode, const char *function, 691 unsigned int line, const char *fmt, ...) 692 { 693 struct va_format vaf; 694 va_list args; 695 696 if (!ext4_warning_ratelimit(inode->i_sb)) 697 return; 698 699 va_start(args, fmt); 700 vaf.fmt = fmt; 701 vaf.va = &args; 702 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 703 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 704 function, line, inode->i_ino, current->comm, &vaf); 705 va_end(args); 706 } 707 708 void __ext4_grp_locked_error(const char *function, unsigned int line, 709 struct super_block *sb, ext4_group_t grp, 710 unsigned long ino, ext4_fsblk_t block, 711 const char *fmt, ...) 712 __releases(bitlock) 713 __acquires(bitlock) 714 { 715 struct va_format vaf; 716 va_list args; 717 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 718 719 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 720 return; 721 722 es->s_last_error_ino = cpu_to_le32(ino); 723 es->s_last_error_block = cpu_to_le64(block); 724 __save_error_info(sb, function, line); 725 726 if (ext4_error_ratelimit(sb)) { 727 va_start(args, fmt); 728 vaf.fmt = fmt; 729 vaf.va = &args; 730 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 731 sb->s_id, function, line, grp); 732 if (ino) 733 printk(KERN_CONT "inode %lu: ", ino); 734 if (block) 735 printk(KERN_CONT "block %llu:", 736 (unsigned long long) block); 737 printk(KERN_CONT "%pV\n", &vaf); 738 va_end(args); 739 } 740 741 if (test_opt(sb, ERRORS_CONT)) { 742 ext4_commit_super(sb, 0); 743 return; 744 } 745 746 ext4_unlock_group(sb, grp); 747 ext4_commit_super(sb, 1); 748 ext4_handle_error(sb); 749 /* 750 * We only get here in the ERRORS_RO case; relocking the group 751 * may be dangerous, but nothing bad will happen since the 752 * filesystem will have already been marked read/only and the 753 * journal has been aborted. We return 1 as a hint to callers 754 * who might what to use the return value from 755 * ext4_grp_locked_error() to distinguish between the 756 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 757 * aggressively from the ext4 function in question, with a 758 * more appropriate error code. 759 */ 760 ext4_lock_group(sb, grp); 761 return; 762 } 763 764 void ext4_update_dynamic_rev(struct super_block *sb) 765 { 766 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 767 768 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 769 return; 770 771 ext4_warning(sb, 772 "updating to rev %d because of new feature flag, " 773 "running e2fsck is recommended", 774 EXT4_DYNAMIC_REV); 775 776 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 777 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 778 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 779 /* leave es->s_feature_*compat flags alone */ 780 /* es->s_uuid will be set by e2fsck if empty */ 781 782 /* 783 * The rest of the superblock fields should be zero, and if not it 784 * means they are likely already in use, so leave them alone. We 785 * can leave it up to e2fsck to clean up any inconsistencies there. 786 */ 787 } 788 789 /* 790 * Open the external journal device 791 */ 792 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 793 { 794 struct block_device *bdev; 795 char b[BDEVNAME_SIZE]; 796 797 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 798 if (IS_ERR(bdev)) 799 goto fail; 800 return bdev; 801 802 fail: 803 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 804 __bdevname(dev, b), PTR_ERR(bdev)); 805 return NULL; 806 } 807 808 /* 809 * Release the journal device 810 */ 811 static void ext4_blkdev_put(struct block_device *bdev) 812 { 813 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 814 } 815 816 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 817 { 818 struct block_device *bdev; 819 bdev = sbi->journal_bdev; 820 if (bdev) { 821 ext4_blkdev_put(bdev); 822 sbi->journal_bdev = NULL; 823 } 824 } 825 826 static inline struct inode *orphan_list_entry(struct list_head *l) 827 { 828 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 829 } 830 831 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 832 { 833 struct list_head *l; 834 835 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 836 le32_to_cpu(sbi->s_es->s_last_orphan)); 837 838 printk(KERN_ERR "sb_info orphan list:\n"); 839 list_for_each(l, &sbi->s_orphan) { 840 struct inode *inode = orphan_list_entry(l); 841 printk(KERN_ERR " " 842 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 843 inode->i_sb->s_id, inode->i_ino, inode, 844 inode->i_mode, inode->i_nlink, 845 NEXT_ORPHAN(inode)); 846 } 847 } 848 849 #ifdef CONFIG_QUOTA 850 static int ext4_quota_off(struct super_block *sb, int type); 851 852 static inline void ext4_quota_off_umount(struct super_block *sb) 853 { 854 int type; 855 856 /* Use our quota_off function to clear inode flags etc. */ 857 for (type = 0; type < EXT4_MAXQUOTAS; type++) 858 ext4_quota_off(sb, type); 859 } 860 #else 861 static inline void ext4_quota_off_umount(struct super_block *sb) 862 { 863 } 864 #endif 865 866 static void ext4_put_super(struct super_block *sb) 867 { 868 struct ext4_sb_info *sbi = EXT4_SB(sb); 869 struct ext4_super_block *es = sbi->s_es; 870 int aborted = 0; 871 int i, err; 872 873 ext4_unregister_li_request(sb); 874 ext4_quota_off_umount(sb); 875 876 destroy_workqueue(sbi->rsv_conversion_wq); 877 878 if (sbi->s_journal) { 879 aborted = is_journal_aborted(sbi->s_journal); 880 err = jbd2_journal_destroy(sbi->s_journal); 881 sbi->s_journal = NULL; 882 if ((err < 0) && !aborted) 883 ext4_abort(sb, "Couldn't clean up the journal"); 884 } 885 886 ext4_unregister_sysfs(sb); 887 ext4_es_unregister_shrinker(sbi); 888 del_timer_sync(&sbi->s_err_report); 889 ext4_release_system_zone(sb); 890 ext4_mb_release(sb); 891 ext4_ext_release(sb); 892 893 if (!sb_rdonly(sb) && !aborted) { 894 ext4_clear_feature_journal_needs_recovery(sb); 895 es->s_state = cpu_to_le16(sbi->s_mount_state); 896 } 897 if (!sb_rdonly(sb)) 898 ext4_commit_super(sb, 1); 899 900 for (i = 0; i < sbi->s_gdb_count; i++) 901 brelse(sbi->s_group_desc[i]); 902 kvfree(sbi->s_group_desc); 903 kvfree(sbi->s_flex_groups); 904 percpu_counter_destroy(&sbi->s_freeclusters_counter); 905 percpu_counter_destroy(&sbi->s_freeinodes_counter); 906 percpu_counter_destroy(&sbi->s_dirs_counter); 907 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 908 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 909 #ifdef CONFIG_QUOTA 910 for (i = 0; i < EXT4_MAXQUOTAS; i++) 911 kfree(sbi->s_qf_names[i]); 912 #endif 913 914 /* Debugging code just in case the in-memory inode orphan list 915 * isn't empty. The on-disk one can be non-empty if we've 916 * detected an error and taken the fs readonly, but the 917 * in-memory list had better be clean by this point. */ 918 if (!list_empty(&sbi->s_orphan)) 919 dump_orphan_list(sb, sbi); 920 J_ASSERT(list_empty(&sbi->s_orphan)); 921 922 sync_blockdev(sb->s_bdev); 923 invalidate_bdev(sb->s_bdev); 924 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 925 /* 926 * Invalidate the journal device's buffers. We don't want them 927 * floating about in memory - the physical journal device may 928 * hotswapped, and it breaks the `ro-after' testing code. 929 */ 930 sync_blockdev(sbi->journal_bdev); 931 invalidate_bdev(sbi->journal_bdev); 932 ext4_blkdev_remove(sbi); 933 } 934 if (sbi->s_ea_inode_cache) { 935 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 936 sbi->s_ea_inode_cache = NULL; 937 } 938 if (sbi->s_ea_block_cache) { 939 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 940 sbi->s_ea_block_cache = NULL; 941 } 942 if (sbi->s_mmp_tsk) 943 kthread_stop(sbi->s_mmp_tsk); 944 brelse(sbi->s_sbh); 945 sb->s_fs_info = NULL; 946 /* 947 * Now that we are completely done shutting down the 948 * superblock, we need to actually destroy the kobject. 949 */ 950 kobject_put(&sbi->s_kobj); 951 wait_for_completion(&sbi->s_kobj_unregister); 952 if (sbi->s_chksum_driver) 953 crypto_free_shash(sbi->s_chksum_driver); 954 kfree(sbi->s_blockgroup_lock); 955 fs_put_dax(sbi->s_daxdev); 956 kfree(sbi); 957 } 958 959 static struct kmem_cache *ext4_inode_cachep; 960 961 /* 962 * Called inside transaction, so use GFP_NOFS 963 */ 964 static struct inode *ext4_alloc_inode(struct super_block *sb) 965 { 966 struct ext4_inode_info *ei; 967 968 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 969 if (!ei) 970 return NULL; 971 972 inode_set_iversion(&ei->vfs_inode, 1); 973 spin_lock_init(&ei->i_raw_lock); 974 INIT_LIST_HEAD(&ei->i_prealloc_list); 975 spin_lock_init(&ei->i_prealloc_lock); 976 ext4_es_init_tree(&ei->i_es_tree); 977 rwlock_init(&ei->i_es_lock); 978 INIT_LIST_HEAD(&ei->i_es_list); 979 ei->i_es_all_nr = 0; 980 ei->i_es_shk_nr = 0; 981 ei->i_es_shrink_lblk = 0; 982 ei->i_reserved_data_blocks = 0; 983 ei->i_da_metadata_calc_len = 0; 984 ei->i_da_metadata_calc_last_lblock = 0; 985 spin_lock_init(&(ei->i_block_reservation_lock)); 986 #ifdef CONFIG_QUOTA 987 ei->i_reserved_quota = 0; 988 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 989 #endif 990 ei->jinode = NULL; 991 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 992 spin_lock_init(&ei->i_completed_io_lock); 993 ei->i_sync_tid = 0; 994 ei->i_datasync_tid = 0; 995 atomic_set(&ei->i_unwritten, 0); 996 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 997 return &ei->vfs_inode; 998 } 999 1000 static int ext4_drop_inode(struct inode *inode) 1001 { 1002 int drop = generic_drop_inode(inode); 1003 1004 trace_ext4_drop_inode(inode, drop); 1005 return drop; 1006 } 1007 1008 static void ext4_i_callback(struct rcu_head *head) 1009 { 1010 struct inode *inode = container_of(head, struct inode, i_rcu); 1011 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1012 } 1013 1014 static void ext4_destroy_inode(struct inode *inode) 1015 { 1016 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1017 ext4_msg(inode->i_sb, KERN_ERR, 1018 "Inode %lu (%p): orphan list check failed!", 1019 inode->i_ino, EXT4_I(inode)); 1020 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1021 EXT4_I(inode), sizeof(struct ext4_inode_info), 1022 true); 1023 dump_stack(); 1024 } 1025 call_rcu(&inode->i_rcu, ext4_i_callback); 1026 } 1027 1028 static void init_once(void *foo) 1029 { 1030 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1031 1032 INIT_LIST_HEAD(&ei->i_orphan); 1033 init_rwsem(&ei->xattr_sem); 1034 init_rwsem(&ei->i_data_sem); 1035 init_rwsem(&ei->i_mmap_sem); 1036 inode_init_once(&ei->vfs_inode); 1037 } 1038 1039 static int __init init_inodecache(void) 1040 { 1041 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1042 sizeof(struct ext4_inode_info), 0, 1043 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1044 SLAB_ACCOUNT), 1045 offsetof(struct ext4_inode_info, i_data), 1046 sizeof_field(struct ext4_inode_info, i_data), 1047 init_once); 1048 if (ext4_inode_cachep == NULL) 1049 return -ENOMEM; 1050 return 0; 1051 } 1052 1053 static void destroy_inodecache(void) 1054 { 1055 /* 1056 * Make sure all delayed rcu free inodes are flushed before we 1057 * destroy cache. 1058 */ 1059 rcu_barrier(); 1060 kmem_cache_destroy(ext4_inode_cachep); 1061 } 1062 1063 void ext4_clear_inode(struct inode *inode) 1064 { 1065 invalidate_inode_buffers(inode); 1066 clear_inode(inode); 1067 dquot_drop(inode); 1068 ext4_discard_preallocations(inode); 1069 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1070 if (EXT4_I(inode)->jinode) { 1071 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1072 EXT4_I(inode)->jinode); 1073 jbd2_free_inode(EXT4_I(inode)->jinode); 1074 EXT4_I(inode)->jinode = NULL; 1075 } 1076 fscrypt_put_encryption_info(inode); 1077 } 1078 1079 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1080 u64 ino, u32 generation) 1081 { 1082 struct inode *inode; 1083 1084 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1085 return ERR_PTR(-ESTALE); 1086 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1087 return ERR_PTR(-ESTALE); 1088 1089 /* iget isn't really right if the inode is currently unallocated!! 1090 * 1091 * ext4_read_inode will return a bad_inode if the inode had been 1092 * deleted, so we should be safe. 1093 * 1094 * Currently we don't know the generation for parent directory, so 1095 * a generation of 0 means "accept any" 1096 */ 1097 inode = ext4_iget_normal(sb, ino); 1098 if (IS_ERR(inode)) 1099 return ERR_CAST(inode); 1100 if (generation && inode->i_generation != generation) { 1101 iput(inode); 1102 return ERR_PTR(-ESTALE); 1103 } 1104 1105 return inode; 1106 } 1107 1108 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1109 int fh_len, int fh_type) 1110 { 1111 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1112 ext4_nfs_get_inode); 1113 } 1114 1115 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1116 int fh_len, int fh_type) 1117 { 1118 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1119 ext4_nfs_get_inode); 1120 } 1121 1122 /* 1123 * Try to release metadata pages (indirect blocks, directories) which are 1124 * mapped via the block device. Since these pages could have journal heads 1125 * which would prevent try_to_free_buffers() from freeing them, we must use 1126 * jbd2 layer's try_to_free_buffers() function to release them. 1127 */ 1128 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1129 gfp_t wait) 1130 { 1131 journal_t *journal = EXT4_SB(sb)->s_journal; 1132 1133 WARN_ON(PageChecked(page)); 1134 if (!page_has_buffers(page)) 1135 return 0; 1136 if (journal) 1137 return jbd2_journal_try_to_free_buffers(journal, page, 1138 wait & ~__GFP_DIRECT_RECLAIM); 1139 return try_to_free_buffers(page); 1140 } 1141 1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1143 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1144 { 1145 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1146 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1147 } 1148 1149 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1150 void *fs_data) 1151 { 1152 handle_t *handle = fs_data; 1153 int res, res2, credits, retries = 0; 1154 1155 /* 1156 * Encrypting the root directory is not allowed because e2fsck expects 1157 * lost+found to exist and be unencrypted, and encrypting the root 1158 * directory would imply encrypting the lost+found directory as well as 1159 * the filename "lost+found" itself. 1160 */ 1161 if (inode->i_ino == EXT4_ROOT_INO) 1162 return -EPERM; 1163 1164 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1165 return -EINVAL; 1166 1167 res = ext4_convert_inline_data(inode); 1168 if (res) 1169 return res; 1170 1171 /* 1172 * If a journal handle was specified, then the encryption context is 1173 * being set on a new inode via inheritance and is part of a larger 1174 * transaction to create the inode. Otherwise the encryption context is 1175 * being set on an existing inode in its own transaction. Only in the 1176 * latter case should the "retry on ENOSPC" logic be used. 1177 */ 1178 1179 if (handle) { 1180 res = ext4_xattr_set_handle(handle, inode, 1181 EXT4_XATTR_INDEX_ENCRYPTION, 1182 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1183 ctx, len, 0); 1184 if (!res) { 1185 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1186 ext4_clear_inode_state(inode, 1187 EXT4_STATE_MAY_INLINE_DATA); 1188 /* 1189 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1190 * S_DAX may be disabled 1191 */ 1192 ext4_set_inode_flags(inode); 1193 } 1194 return res; 1195 } 1196 1197 res = dquot_initialize(inode); 1198 if (res) 1199 return res; 1200 retry: 1201 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1202 &credits); 1203 if (res) 1204 return res; 1205 1206 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1207 if (IS_ERR(handle)) 1208 return PTR_ERR(handle); 1209 1210 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1211 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1212 ctx, len, 0); 1213 if (!res) { 1214 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1215 /* 1216 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1217 * S_DAX may be disabled 1218 */ 1219 ext4_set_inode_flags(inode); 1220 res = ext4_mark_inode_dirty(handle, inode); 1221 if (res) 1222 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1223 } 1224 res2 = ext4_journal_stop(handle); 1225 1226 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1227 goto retry; 1228 if (!res) 1229 res = res2; 1230 return res; 1231 } 1232 1233 static bool ext4_dummy_context(struct inode *inode) 1234 { 1235 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1236 } 1237 1238 static unsigned ext4_max_namelen(struct inode *inode) 1239 { 1240 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1241 EXT4_NAME_LEN; 1242 } 1243 1244 static const struct fscrypt_operations ext4_cryptops = { 1245 .key_prefix = "ext4:", 1246 .get_context = ext4_get_context, 1247 .set_context = ext4_set_context, 1248 .dummy_context = ext4_dummy_context, 1249 .empty_dir = ext4_empty_dir, 1250 .max_namelen = ext4_max_namelen, 1251 }; 1252 #endif 1253 1254 #ifdef CONFIG_QUOTA 1255 static const char * const quotatypes[] = INITQFNAMES; 1256 #define QTYPE2NAME(t) (quotatypes[t]) 1257 1258 static int ext4_write_dquot(struct dquot *dquot); 1259 static int ext4_acquire_dquot(struct dquot *dquot); 1260 static int ext4_release_dquot(struct dquot *dquot); 1261 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1262 static int ext4_write_info(struct super_block *sb, int type); 1263 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1264 const struct path *path); 1265 static int ext4_quota_on_mount(struct super_block *sb, int type); 1266 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1267 size_t len, loff_t off); 1268 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1269 const char *data, size_t len, loff_t off); 1270 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1271 unsigned int flags); 1272 static int ext4_enable_quotas(struct super_block *sb); 1273 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1274 1275 static struct dquot **ext4_get_dquots(struct inode *inode) 1276 { 1277 return EXT4_I(inode)->i_dquot; 1278 } 1279 1280 static const struct dquot_operations ext4_quota_operations = { 1281 .get_reserved_space = ext4_get_reserved_space, 1282 .write_dquot = ext4_write_dquot, 1283 .acquire_dquot = ext4_acquire_dquot, 1284 .release_dquot = ext4_release_dquot, 1285 .mark_dirty = ext4_mark_dquot_dirty, 1286 .write_info = ext4_write_info, 1287 .alloc_dquot = dquot_alloc, 1288 .destroy_dquot = dquot_destroy, 1289 .get_projid = ext4_get_projid, 1290 .get_inode_usage = ext4_get_inode_usage, 1291 .get_next_id = ext4_get_next_id, 1292 }; 1293 1294 static const struct quotactl_ops ext4_qctl_operations = { 1295 .quota_on = ext4_quota_on, 1296 .quota_off = ext4_quota_off, 1297 .quota_sync = dquot_quota_sync, 1298 .get_state = dquot_get_state, 1299 .set_info = dquot_set_dqinfo, 1300 .get_dqblk = dquot_get_dqblk, 1301 .set_dqblk = dquot_set_dqblk, 1302 .get_nextdqblk = dquot_get_next_dqblk, 1303 }; 1304 #endif 1305 1306 static const struct super_operations ext4_sops = { 1307 .alloc_inode = ext4_alloc_inode, 1308 .destroy_inode = ext4_destroy_inode, 1309 .write_inode = ext4_write_inode, 1310 .dirty_inode = ext4_dirty_inode, 1311 .drop_inode = ext4_drop_inode, 1312 .evict_inode = ext4_evict_inode, 1313 .put_super = ext4_put_super, 1314 .sync_fs = ext4_sync_fs, 1315 .freeze_fs = ext4_freeze, 1316 .unfreeze_fs = ext4_unfreeze, 1317 .statfs = ext4_statfs, 1318 .remount_fs = ext4_remount, 1319 .show_options = ext4_show_options, 1320 #ifdef CONFIG_QUOTA 1321 .quota_read = ext4_quota_read, 1322 .quota_write = ext4_quota_write, 1323 .get_dquots = ext4_get_dquots, 1324 #endif 1325 .bdev_try_to_free_page = bdev_try_to_free_page, 1326 }; 1327 1328 static const struct export_operations ext4_export_ops = { 1329 .fh_to_dentry = ext4_fh_to_dentry, 1330 .fh_to_parent = ext4_fh_to_parent, 1331 .get_parent = ext4_get_parent, 1332 }; 1333 1334 enum { 1335 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1336 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1337 Opt_nouid32, Opt_debug, Opt_removed, 1338 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1339 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1340 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1341 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1342 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1343 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1344 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1345 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1346 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1347 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1348 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1349 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1350 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1351 Opt_inode_readahead_blks, Opt_journal_ioprio, 1352 Opt_dioread_nolock, Opt_dioread_lock, 1353 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1354 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1355 }; 1356 1357 static const match_table_t tokens = { 1358 {Opt_bsd_df, "bsddf"}, 1359 {Opt_minix_df, "minixdf"}, 1360 {Opt_grpid, "grpid"}, 1361 {Opt_grpid, "bsdgroups"}, 1362 {Opt_nogrpid, "nogrpid"}, 1363 {Opt_nogrpid, "sysvgroups"}, 1364 {Opt_resgid, "resgid=%u"}, 1365 {Opt_resuid, "resuid=%u"}, 1366 {Opt_sb, "sb=%u"}, 1367 {Opt_err_cont, "errors=continue"}, 1368 {Opt_err_panic, "errors=panic"}, 1369 {Opt_err_ro, "errors=remount-ro"}, 1370 {Opt_nouid32, "nouid32"}, 1371 {Opt_debug, "debug"}, 1372 {Opt_removed, "oldalloc"}, 1373 {Opt_removed, "orlov"}, 1374 {Opt_user_xattr, "user_xattr"}, 1375 {Opt_nouser_xattr, "nouser_xattr"}, 1376 {Opt_acl, "acl"}, 1377 {Opt_noacl, "noacl"}, 1378 {Opt_noload, "norecovery"}, 1379 {Opt_noload, "noload"}, 1380 {Opt_removed, "nobh"}, 1381 {Opt_removed, "bh"}, 1382 {Opt_commit, "commit=%u"}, 1383 {Opt_min_batch_time, "min_batch_time=%u"}, 1384 {Opt_max_batch_time, "max_batch_time=%u"}, 1385 {Opt_journal_dev, "journal_dev=%u"}, 1386 {Opt_journal_path, "journal_path=%s"}, 1387 {Opt_journal_checksum, "journal_checksum"}, 1388 {Opt_nojournal_checksum, "nojournal_checksum"}, 1389 {Opt_journal_async_commit, "journal_async_commit"}, 1390 {Opt_abort, "abort"}, 1391 {Opt_data_journal, "data=journal"}, 1392 {Opt_data_ordered, "data=ordered"}, 1393 {Opt_data_writeback, "data=writeback"}, 1394 {Opt_data_err_abort, "data_err=abort"}, 1395 {Opt_data_err_ignore, "data_err=ignore"}, 1396 {Opt_offusrjquota, "usrjquota="}, 1397 {Opt_usrjquota, "usrjquota=%s"}, 1398 {Opt_offgrpjquota, "grpjquota="}, 1399 {Opt_grpjquota, "grpjquota=%s"}, 1400 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1401 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1402 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1403 {Opt_grpquota, "grpquota"}, 1404 {Opt_noquota, "noquota"}, 1405 {Opt_quota, "quota"}, 1406 {Opt_usrquota, "usrquota"}, 1407 {Opt_prjquota, "prjquota"}, 1408 {Opt_barrier, "barrier=%u"}, 1409 {Opt_barrier, "barrier"}, 1410 {Opt_nobarrier, "nobarrier"}, 1411 {Opt_i_version, "i_version"}, 1412 {Opt_dax, "dax"}, 1413 {Opt_stripe, "stripe=%u"}, 1414 {Opt_delalloc, "delalloc"}, 1415 {Opt_lazytime, "lazytime"}, 1416 {Opt_nolazytime, "nolazytime"}, 1417 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1418 {Opt_nodelalloc, "nodelalloc"}, 1419 {Opt_removed, "mblk_io_submit"}, 1420 {Opt_removed, "nomblk_io_submit"}, 1421 {Opt_block_validity, "block_validity"}, 1422 {Opt_noblock_validity, "noblock_validity"}, 1423 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1424 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1425 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1426 {Opt_auto_da_alloc, "auto_da_alloc"}, 1427 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1428 {Opt_dioread_nolock, "dioread_nolock"}, 1429 {Opt_dioread_lock, "dioread_lock"}, 1430 {Opt_discard, "discard"}, 1431 {Opt_nodiscard, "nodiscard"}, 1432 {Opt_init_itable, "init_itable=%u"}, 1433 {Opt_init_itable, "init_itable"}, 1434 {Opt_noinit_itable, "noinit_itable"}, 1435 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1436 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1437 {Opt_nombcache, "nombcache"}, 1438 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1439 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1440 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1441 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1442 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1443 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1444 {Opt_err, NULL}, 1445 }; 1446 1447 static ext4_fsblk_t get_sb_block(void **data) 1448 { 1449 ext4_fsblk_t sb_block; 1450 char *options = (char *) *data; 1451 1452 if (!options || strncmp(options, "sb=", 3) != 0) 1453 return 1; /* Default location */ 1454 1455 options += 3; 1456 /* TODO: use simple_strtoll with >32bit ext4 */ 1457 sb_block = simple_strtoul(options, &options, 0); 1458 if (*options && *options != ',') { 1459 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1460 (char *) *data); 1461 return 1; 1462 } 1463 if (*options == ',') 1464 options++; 1465 *data = (void *) options; 1466 1467 return sb_block; 1468 } 1469 1470 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1471 static const char deprecated_msg[] = 1472 "Mount option \"%s\" will be removed by %s\n" 1473 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1474 1475 #ifdef CONFIG_QUOTA 1476 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1477 { 1478 struct ext4_sb_info *sbi = EXT4_SB(sb); 1479 char *qname; 1480 int ret = -1; 1481 1482 if (sb_any_quota_loaded(sb) && 1483 !sbi->s_qf_names[qtype]) { 1484 ext4_msg(sb, KERN_ERR, 1485 "Cannot change journaled " 1486 "quota options when quota turned on"); 1487 return -1; 1488 } 1489 if (ext4_has_feature_quota(sb)) { 1490 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1491 "ignored when QUOTA feature is enabled"); 1492 return 1; 1493 } 1494 qname = match_strdup(args); 1495 if (!qname) { 1496 ext4_msg(sb, KERN_ERR, 1497 "Not enough memory for storing quotafile name"); 1498 return -1; 1499 } 1500 if (sbi->s_qf_names[qtype]) { 1501 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1502 ret = 1; 1503 else 1504 ext4_msg(sb, KERN_ERR, 1505 "%s quota file already specified", 1506 QTYPE2NAME(qtype)); 1507 goto errout; 1508 } 1509 if (strchr(qname, '/')) { 1510 ext4_msg(sb, KERN_ERR, 1511 "quotafile must be on filesystem root"); 1512 goto errout; 1513 } 1514 sbi->s_qf_names[qtype] = qname; 1515 set_opt(sb, QUOTA); 1516 return 1; 1517 errout: 1518 kfree(qname); 1519 return ret; 1520 } 1521 1522 static int clear_qf_name(struct super_block *sb, int qtype) 1523 { 1524 1525 struct ext4_sb_info *sbi = EXT4_SB(sb); 1526 1527 if (sb_any_quota_loaded(sb) && 1528 sbi->s_qf_names[qtype]) { 1529 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1530 " when quota turned on"); 1531 return -1; 1532 } 1533 kfree(sbi->s_qf_names[qtype]); 1534 sbi->s_qf_names[qtype] = NULL; 1535 return 1; 1536 } 1537 #endif 1538 1539 #define MOPT_SET 0x0001 1540 #define MOPT_CLEAR 0x0002 1541 #define MOPT_NOSUPPORT 0x0004 1542 #define MOPT_EXPLICIT 0x0008 1543 #define MOPT_CLEAR_ERR 0x0010 1544 #define MOPT_GTE0 0x0020 1545 #ifdef CONFIG_QUOTA 1546 #define MOPT_Q 0 1547 #define MOPT_QFMT 0x0040 1548 #else 1549 #define MOPT_Q MOPT_NOSUPPORT 1550 #define MOPT_QFMT MOPT_NOSUPPORT 1551 #endif 1552 #define MOPT_DATAJ 0x0080 1553 #define MOPT_NO_EXT2 0x0100 1554 #define MOPT_NO_EXT3 0x0200 1555 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1556 #define MOPT_STRING 0x0400 1557 1558 static const struct mount_opts { 1559 int token; 1560 int mount_opt; 1561 int flags; 1562 } ext4_mount_opts[] = { 1563 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1564 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1565 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1566 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1567 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1568 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1569 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1570 MOPT_EXT4_ONLY | MOPT_SET}, 1571 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1572 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1573 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1574 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1575 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1576 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1577 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1578 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1579 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1580 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1581 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1582 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1583 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1584 EXT4_MOUNT_JOURNAL_CHECKSUM), 1585 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1586 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1587 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1588 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1589 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1590 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1591 MOPT_NO_EXT2}, 1592 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1593 MOPT_NO_EXT2}, 1594 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1595 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1596 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1597 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1598 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1599 {Opt_commit, 0, MOPT_GTE0}, 1600 {Opt_max_batch_time, 0, MOPT_GTE0}, 1601 {Opt_min_batch_time, 0, MOPT_GTE0}, 1602 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1603 {Opt_init_itable, 0, MOPT_GTE0}, 1604 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1605 {Opt_stripe, 0, MOPT_GTE0}, 1606 {Opt_resuid, 0, MOPT_GTE0}, 1607 {Opt_resgid, 0, MOPT_GTE0}, 1608 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1609 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1610 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1611 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1612 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1613 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1614 MOPT_NO_EXT2 | MOPT_DATAJ}, 1615 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1616 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1617 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1618 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1619 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1620 #else 1621 {Opt_acl, 0, MOPT_NOSUPPORT}, 1622 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1623 #endif 1624 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1625 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1626 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1627 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1628 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1629 MOPT_SET | MOPT_Q}, 1630 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1631 MOPT_SET | MOPT_Q}, 1632 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1633 MOPT_SET | MOPT_Q}, 1634 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1635 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1636 MOPT_CLEAR | MOPT_Q}, 1637 {Opt_usrjquota, 0, MOPT_Q}, 1638 {Opt_grpjquota, 0, MOPT_Q}, 1639 {Opt_offusrjquota, 0, MOPT_Q}, 1640 {Opt_offgrpjquota, 0, MOPT_Q}, 1641 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1642 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1643 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1644 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1645 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1646 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1647 {Opt_err, 0, 0} 1648 }; 1649 1650 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1651 substring_t *args, unsigned long *journal_devnum, 1652 unsigned int *journal_ioprio, int is_remount) 1653 { 1654 struct ext4_sb_info *sbi = EXT4_SB(sb); 1655 const struct mount_opts *m; 1656 kuid_t uid; 1657 kgid_t gid; 1658 int arg = 0; 1659 1660 #ifdef CONFIG_QUOTA 1661 if (token == Opt_usrjquota) 1662 return set_qf_name(sb, USRQUOTA, &args[0]); 1663 else if (token == Opt_grpjquota) 1664 return set_qf_name(sb, GRPQUOTA, &args[0]); 1665 else if (token == Opt_offusrjquota) 1666 return clear_qf_name(sb, USRQUOTA); 1667 else if (token == Opt_offgrpjquota) 1668 return clear_qf_name(sb, GRPQUOTA); 1669 #endif 1670 switch (token) { 1671 case Opt_noacl: 1672 case Opt_nouser_xattr: 1673 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1674 break; 1675 case Opt_sb: 1676 return 1; /* handled by get_sb_block() */ 1677 case Opt_removed: 1678 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1679 return 1; 1680 case Opt_abort: 1681 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1682 return 1; 1683 case Opt_i_version: 1684 sb->s_flags |= SB_I_VERSION; 1685 return 1; 1686 case Opt_lazytime: 1687 sb->s_flags |= SB_LAZYTIME; 1688 return 1; 1689 case Opt_nolazytime: 1690 sb->s_flags &= ~SB_LAZYTIME; 1691 return 1; 1692 } 1693 1694 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1695 if (token == m->token) 1696 break; 1697 1698 if (m->token == Opt_err) { 1699 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1700 "or missing value", opt); 1701 return -1; 1702 } 1703 1704 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1705 ext4_msg(sb, KERN_ERR, 1706 "Mount option \"%s\" incompatible with ext2", opt); 1707 return -1; 1708 } 1709 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1710 ext4_msg(sb, KERN_ERR, 1711 "Mount option \"%s\" incompatible with ext3", opt); 1712 return -1; 1713 } 1714 1715 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1716 return -1; 1717 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1718 return -1; 1719 if (m->flags & MOPT_EXPLICIT) { 1720 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1721 set_opt2(sb, EXPLICIT_DELALLOC); 1722 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1723 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1724 } else 1725 return -1; 1726 } 1727 if (m->flags & MOPT_CLEAR_ERR) 1728 clear_opt(sb, ERRORS_MASK); 1729 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1730 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1731 "options when quota turned on"); 1732 return -1; 1733 } 1734 1735 if (m->flags & MOPT_NOSUPPORT) { 1736 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1737 } else if (token == Opt_commit) { 1738 if (arg == 0) 1739 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1740 sbi->s_commit_interval = HZ * arg; 1741 } else if (token == Opt_debug_want_extra_isize) { 1742 sbi->s_want_extra_isize = arg; 1743 } else if (token == Opt_max_batch_time) { 1744 sbi->s_max_batch_time = arg; 1745 } else if (token == Opt_min_batch_time) { 1746 sbi->s_min_batch_time = arg; 1747 } else if (token == Opt_inode_readahead_blks) { 1748 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1749 ext4_msg(sb, KERN_ERR, 1750 "EXT4-fs: inode_readahead_blks must be " 1751 "0 or a power of 2 smaller than 2^31"); 1752 return -1; 1753 } 1754 sbi->s_inode_readahead_blks = arg; 1755 } else if (token == Opt_init_itable) { 1756 set_opt(sb, INIT_INODE_TABLE); 1757 if (!args->from) 1758 arg = EXT4_DEF_LI_WAIT_MULT; 1759 sbi->s_li_wait_mult = arg; 1760 } else if (token == Opt_max_dir_size_kb) { 1761 sbi->s_max_dir_size_kb = arg; 1762 } else if (token == Opt_stripe) { 1763 sbi->s_stripe = arg; 1764 } else if (token == Opt_resuid) { 1765 uid = make_kuid(current_user_ns(), arg); 1766 if (!uid_valid(uid)) { 1767 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1768 return -1; 1769 } 1770 sbi->s_resuid = uid; 1771 } else if (token == Opt_resgid) { 1772 gid = make_kgid(current_user_ns(), arg); 1773 if (!gid_valid(gid)) { 1774 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1775 return -1; 1776 } 1777 sbi->s_resgid = gid; 1778 } else if (token == Opt_journal_dev) { 1779 if (is_remount) { 1780 ext4_msg(sb, KERN_ERR, 1781 "Cannot specify journal on remount"); 1782 return -1; 1783 } 1784 *journal_devnum = arg; 1785 } else if (token == Opt_journal_path) { 1786 char *journal_path; 1787 struct inode *journal_inode; 1788 struct path path; 1789 int error; 1790 1791 if (is_remount) { 1792 ext4_msg(sb, KERN_ERR, 1793 "Cannot specify journal on remount"); 1794 return -1; 1795 } 1796 journal_path = match_strdup(&args[0]); 1797 if (!journal_path) { 1798 ext4_msg(sb, KERN_ERR, "error: could not dup " 1799 "journal device string"); 1800 return -1; 1801 } 1802 1803 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1804 if (error) { 1805 ext4_msg(sb, KERN_ERR, "error: could not find " 1806 "journal device path: error %d", error); 1807 kfree(journal_path); 1808 return -1; 1809 } 1810 1811 journal_inode = d_inode(path.dentry); 1812 if (!S_ISBLK(journal_inode->i_mode)) { 1813 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1814 "is not a block device", journal_path); 1815 path_put(&path); 1816 kfree(journal_path); 1817 return -1; 1818 } 1819 1820 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1821 path_put(&path); 1822 kfree(journal_path); 1823 } else if (token == Opt_journal_ioprio) { 1824 if (arg > 7) { 1825 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1826 " (must be 0-7)"); 1827 return -1; 1828 } 1829 *journal_ioprio = 1830 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1831 } else if (token == Opt_test_dummy_encryption) { 1832 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1833 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1834 ext4_msg(sb, KERN_WARNING, 1835 "Test dummy encryption mode enabled"); 1836 #else 1837 ext4_msg(sb, KERN_WARNING, 1838 "Test dummy encryption mount option ignored"); 1839 #endif 1840 } else if (m->flags & MOPT_DATAJ) { 1841 if (is_remount) { 1842 if (!sbi->s_journal) 1843 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1844 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1845 ext4_msg(sb, KERN_ERR, 1846 "Cannot change data mode on remount"); 1847 return -1; 1848 } 1849 } else { 1850 clear_opt(sb, DATA_FLAGS); 1851 sbi->s_mount_opt |= m->mount_opt; 1852 } 1853 #ifdef CONFIG_QUOTA 1854 } else if (m->flags & MOPT_QFMT) { 1855 if (sb_any_quota_loaded(sb) && 1856 sbi->s_jquota_fmt != m->mount_opt) { 1857 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1858 "quota options when quota turned on"); 1859 return -1; 1860 } 1861 if (ext4_has_feature_quota(sb)) { 1862 ext4_msg(sb, KERN_INFO, 1863 "Quota format mount options ignored " 1864 "when QUOTA feature is enabled"); 1865 return 1; 1866 } 1867 sbi->s_jquota_fmt = m->mount_opt; 1868 #endif 1869 } else if (token == Opt_dax) { 1870 #ifdef CONFIG_FS_DAX 1871 ext4_msg(sb, KERN_WARNING, 1872 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1873 sbi->s_mount_opt |= m->mount_opt; 1874 #else 1875 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1876 return -1; 1877 #endif 1878 } else if (token == Opt_data_err_abort) { 1879 sbi->s_mount_opt |= m->mount_opt; 1880 } else if (token == Opt_data_err_ignore) { 1881 sbi->s_mount_opt &= ~m->mount_opt; 1882 } else { 1883 if (!args->from) 1884 arg = 1; 1885 if (m->flags & MOPT_CLEAR) 1886 arg = !arg; 1887 else if (unlikely(!(m->flags & MOPT_SET))) { 1888 ext4_msg(sb, KERN_WARNING, 1889 "buggy handling of option %s", opt); 1890 WARN_ON(1); 1891 return -1; 1892 } 1893 if (arg != 0) 1894 sbi->s_mount_opt |= m->mount_opt; 1895 else 1896 sbi->s_mount_opt &= ~m->mount_opt; 1897 } 1898 return 1; 1899 } 1900 1901 static int parse_options(char *options, struct super_block *sb, 1902 unsigned long *journal_devnum, 1903 unsigned int *journal_ioprio, 1904 int is_remount) 1905 { 1906 struct ext4_sb_info *sbi = EXT4_SB(sb); 1907 char *p; 1908 substring_t args[MAX_OPT_ARGS]; 1909 int token; 1910 1911 if (!options) 1912 return 1; 1913 1914 while ((p = strsep(&options, ",")) != NULL) { 1915 if (!*p) 1916 continue; 1917 /* 1918 * Initialize args struct so we know whether arg was 1919 * found; some options take optional arguments. 1920 */ 1921 args[0].to = args[0].from = NULL; 1922 token = match_token(p, tokens, args); 1923 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1924 journal_ioprio, is_remount) < 0) 1925 return 0; 1926 } 1927 #ifdef CONFIG_QUOTA 1928 /* 1929 * We do the test below only for project quotas. 'usrquota' and 1930 * 'grpquota' mount options are allowed even without quota feature 1931 * to support legacy quotas in quota files. 1932 */ 1933 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1934 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1935 "Cannot enable project quota enforcement."); 1936 return 0; 1937 } 1938 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1939 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1940 clear_opt(sb, USRQUOTA); 1941 1942 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1943 clear_opt(sb, GRPQUOTA); 1944 1945 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1946 ext4_msg(sb, KERN_ERR, "old and new quota " 1947 "format mixing"); 1948 return 0; 1949 } 1950 1951 if (!sbi->s_jquota_fmt) { 1952 ext4_msg(sb, KERN_ERR, "journaled quota format " 1953 "not specified"); 1954 return 0; 1955 } 1956 } 1957 #endif 1958 if (test_opt(sb, DIOREAD_NOLOCK)) { 1959 int blocksize = 1960 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1961 1962 if (blocksize < PAGE_SIZE) { 1963 ext4_msg(sb, KERN_ERR, "can't mount with " 1964 "dioread_nolock if block size != PAGE_SIZE"); 1965 return 0; 1966 } 1967 } 1968 return 1; 1969 } 1970 1971 static inline void ext4_show_quota_options(struct seq_file *seq, 1972 struct super_block *sb) 1973 { 1974 #if defined(CONFIG_QUOTA) 1975 struct ext4_sb_info *sbi = EXT4_SB(sb); 1976 1977 if (sbi->s_jquota_fmt) { 1978 char *fmtname = ""; 1979 1980 switch (sbi->s_jquota_fmt) { 1981 case QFMT_VFS_OLD: 1982 fmtname = "vfsold"; 1983 break; 1984 case QFMT_VFS_V0: 1985 fmtname = "vfsv0"; 1986 break; 1987 case QFMT_VFS_V1: 1988 fmtname = "vfsv1"; 1989 break; 1990 } 1991 seq_printf(seq, ",jqfmt=%s", fmtname); 1992 } 1993 1994 if (sbi->s_qf_names[USRQUOTA]) 1995 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1996 1997 if (sbi->s_qf_names[GRPQUOTA]) 1998 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1999 #endif 2000 } 2001 2002 static const char *token2str(int token) 2003 { 2004 const struct match_token *t; 2005 2006 for (t = tokens; t->token != Opt_err; t++) 2007 if (t->token == token && !strchr(t->pattern, '=')) 2008 break; 2009 return t->pattern; 2010 } 2011 2012 /* 2013 * Show an option if 2014 * - it's set to a non-default value OR 2015 * - if the per-sb default is different from the global default 2016 */ 2017 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2018 int nodefs) 2019 { 2020 struct ext4_sb_info *sbi = EXT4_SB(sb); 2021 struct ext4_super_block *es = sbi->s_es; 2022 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 2023 const struct mount_opts *m; 2024 char sep = nodefs ? '\n' : ','; 2025 2026 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2027 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2028 2029 if (sbi->s_sb_block != 1) 2030 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2031 2032 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2033 int want_set = m->flags & MOPT_SET; 2034 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2035 (m->flags & MOPT_CLEAR_ERR)) 2036 continue; 2037 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2038 continue; /* skip if same as the default */ 2039 if ((want_set && 2040 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2041 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2042 continue; /* select Opt_noFoo vs Opt_Foo */ 2043 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2044 } 2045 2046 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2047 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2048 SEQ_OPTS_PRINT("resuid=%u", 2049 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2050 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2051 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2052 SEQ_OPTS_PRINT("resgid=%u", 2053 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2054 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2055 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2056 SEQ_OPTS_PUTS("errors=remount-ro"); 2057 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2058 SEQ_OPTS_PUTS("errors=continue"); 2059 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2060 SEQ_OPTS_PUTS("errors=panic"); 2061 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2062 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2063 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2064 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2065 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2066 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2067 if (sb->s_flags & SB_I_VERSION) 2068 SEQ_OPTS_PUTS("i_version"); 2069 if (nodefs || sbi->s_stripe) 2070 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2071 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2072 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2073 SEQ_OPTS_PUTS("data=journal"); 2074 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2075 SEQ_OPTS_PUTS("data=ordered"); 2076 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2077 SEQ_OPTS_PUTS("data=writeback"); 2078 } 2079 if (nodefs || 2080 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2081 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2082 sbi->s_inode_readahead_blks); 2083 2084 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2085 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2086 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2087 if (nodefs || sbi->s_max_dir_size_kb) 2088 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2089 if (test_opt(sb, DATA_ERR_ABORT)) 2090 SEQ_OPTS_PUTS("data_err=abort"); 2091 2092 ext4_show_quota_options(seq, sb); 2093 return 0; 2094 } 2095 2096 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2097 { 2098 return _ext4_show_options(seq, root->d_sb, 0); 2099 } 2100 2101 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2102 { 2103 struct super_block *sb = seq->private; 2104 int rc; 2105 2106 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2107 rc = _ext4_show_options(seq, sb, 1); 2108 seq_puts(seq, "\n"); 2109 return rc; 2110 } 2111 2112 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2113 int read_only) 2114 { 2115 struct ext4_sb_info *sbi = EXT4_SB(sb); 2116 int res = 0; 2117 2118 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2119 ext4_msg(sb, KERN_ERR, "revision level too high, " 2120 "forcing read-only mode"); 2121 res = SB_RDONLY; 2122 } 2123 if (read_only) 2124 goto done; 2125 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2126 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2127 "running e2fsck is recommended"); 2128 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2129 ext4_msg(sb, KERN_WARNING, 2130 "warning: mounting fs with errors, " 2131 "running e2fsck is recommended"); 2132 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2133 le16_to_cpu(es->s_mnt_count) >= 2134 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2135 ext4_msg(sb, KERN_WARNING, 2136 "warning: maximal mount count reached, " 2137 "running e2fsck is recommended"); 2138 else if (le32_to_cpu(es->s_checkinterval) && 2139 (le32_to_cpu(es->s_lastcheck) + 2140 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2141 ext4_msg(sb, KERN_WARNING, 2142 "warning: checktime reached, " 2143 "running e2fsck is recommended"); 2144 if (!sbi->s_journal) 2145 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2146 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2147 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2148 le16_add_cpu(&es->s_mnt_count, 1); 2149 es->s_mtime = cpu_to_le32(get_seconds()); 2150 ext4_update_dynamic_rev(sb); 2151 if (sbi->s_journal) 2152 ext4_set_feature_journal_needs_recovery(sb); 2153 2154 ext4_commit_super(sb, 1); 2155 done: 2156 if (test_opt(sb, DEBUG)) 2157 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2158 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2159 sb->s_blocksize, 2160 sbi->s_groups_count, 2161 EXT4_BLOCKS_PER_GROUP(sb), 2162 EXT4_INODES_PER_GROUP(sb), 2163 sbi->s_mount_opt, sbi->s_mount_opt2); 2164 2165 cleancache_init_fs(sb); 2166 return res; 2167 } 2168 2169 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2170 { 2171 struct ext4_sb_info *sbi = EXT4_SB(sb); 2172 struct flex_groups *new_groups; 2173 int size; 2174 2175 if (!sbi->s_log_groups_per_flex) 2176 return 0; 2177 2178 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2179 if (size <= sbi->s_flex_groups_allocated) 2180 return 0; 2181 2182 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2183 new_groups = kvzalloc(size, GFP_KERNEL); 2184 if (!new_groups) { 2185 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2186 size / (int) sizeof(struct flex_groups)); 2187 return -ENOMEM; 2188 } 2189 2190 if (sbi->s_flex_groups) { 2191 memcpy(new_groups, sbi->s_flex_groups, 2192 (sbi->s_flex_groups_allocated * 2193 sizeof(struct flex_groups))); 2194 kvfree(sbi->s_flex_groups); 2195 } 2196 sbi->s_flex_groups = new_groups; 2197 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2198 return 0; 2199 } 2200 2201 static int ext4_fill_flex_info(struct super_block *sb) 2202 { 2203 struct ext4_sb_info *sbi = EXT4_SB(sb); 2204 struct ext4_group_desc *gdp = NULL; 2205 ext4_group_t flex_group; 2206 int i, err; 2207 2208 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2209 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2210 sbi->s_log_groups_per_flex = 0; 2211 return 1; 2212 } 2213 2214 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2215 if (err) 2216 goto failed; 2217 2218 for (i = 0; i < sbi->s_groups_count; i++) { 2219 gdp = ext4_get_group_desc(sb, i, NULL); 2220 2221 flex_group = ext4_flex_group(sbi, i); 2222 atomic_add(ext4_free_inodes_count(sb, gdp), 2223 &sbi->s_flex_groups[flex_group].free_inodes); 2224 atomic64_add(ext4_free_group_clusters(sb, gdp), 2225 &sbi->s_flex_groups[flex_group].free_clusters); 2226 atomic_add(ext4_used_dirs_count(sb, gdp), 2227 &sbi->s_flex_groups[flex_group].used_dirs); 2228 } 2229 2230 return 1; 2231 failed: 2232 return 0; 2233 } 2234 2235 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2236 struct ext4_group_desc *gdp) 2237 { 2238 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2239 __u16 crc = 0; 2240 __le32 le_group = cpu_to_le32(block_group); 2241 struct ext4_sb_info *sbi = EXT4_SB(sb); 2242 2243 if (ext4_has_metadata_csum(sbi->s_sb)) { 2244 /* Use new metadata_csum algorithm */ 2245 __u32 csum32; 2246 __u16 dummy_csum = 0; 2247 2248 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2249 sizeof(le_group)); 2250 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2252 sizeof(dummy_csum)); 2253 offset += sizeof(dummy_csum); 2254 if (offset < sbi->s_desc_size) 2255 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2256 sbi->s_desc_size - offset); 2257 2258 crc = csum32 & 0xFFFF; 2259 goto out; 2260 } 2261 2262 /* old crc16 code */ 2263 if (!ext4_has_feature_gdt_csum(sb)) 2264 return 0; 2265 2266 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2267 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2268 crc = crc16(crc, (__u8 *)gdp, offset); 2269 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2270 /* for checksum of struct ext4_group_desc do the rest...*/ 2271 if (ext4_has_feature_64bit(sb) && 2272 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2273 crc = crc16(crc, (__u8 *)gdp + offset, 2274 le16_to_cpu(sbi->s_es->s_desc_size) - 2275 offset); 2276 2277 out: 2278 return cpu_to_le16(crc); 2279 } 2280 2281 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2282 struct ext4_group_desc *gdp) 2283 { 2284 if (ext4_has_group_desc_csum(sb) && 2285 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2286 return 0; 2287 2288 return 1; 2289 } 2290 2291 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2292 struct ext4_group_desc *gdp) 2293 { 2294 if (!ext4_has_group_desc_csum(sb)) 2295 return; 2296 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2297 } 2298 2299 /* Called at mount-time, super-block is locked */ 2300 static int ext4_check_descriptors(struct super_block *sb, 2301 ext4_fsblk_t sb_block, 2302 ext4_group_t *first_not_zeroed) 2303 { 2304 struct ext4_sb_info *sbi = EXT4_SB(sb); 2305 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2306 ext4_fsblk_t last_block; 2307 ext4_fsblk_t block_bitmap; 2308 ext4_fsblk_t inode_bitmap; 2309 ext4_fsblk_t inode_table; 2310 int flexbg_flag = 0; 2311 ext4_group_t i, grp = sbi->s_groups_count; 2312 2313 if (ext4_has_feature_flex_bg(sb)) 2314 flexbg_flag = 1; 2315 2316 ext4_debug("Checking group descriptors"); 2317 2318 for (i = 0; i < sbi->s_groups_count; i++) { 2319 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2320 2321 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2322 last_block = ext4_blocks_count(sbi->s_es) - 1; 2323 else 2324 last_block = first_block + 2325 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2326 2327 if ((grp == sbi->s_groups_count) && 2328 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2329 grp = i; 2330 2331 block_bitmap = ext4_block_bitmap(sb, gdp); 2332 if (block_bitmap == sb_block) { 2333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2334 "Block bitmap for group %u overlaps " 2335 "superblock", i); 2336 } 2337 if (block_bitmap < first_block || block_bitmap > last_block) { 2338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2339 "Block bitmap for group %u not in group " 2340 "(block %llu)!", i, block_bitmap); 2341 return 0; 2342 } 2343 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2344 if (inode_bitmap == sb_block) { 2345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2346 "Inode bitmap for group %u overlaps " 2347 "superblock", i); 2348 } 2349 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2351 "Inode bitmap for group %u not in group " 2352 "(block %llu)!", i, inode_bitmap); 2353 return 0; 2354 } 2355 inode_table = ext4_inode_table(sb, gdp); 2356 if (inode_table == sb_block) { 2357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2358 "Inode table for group %u overlaps " 2359 "superblock", i); 2360 } 2361 if (inode_table < first_block || 2362 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2363 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2364 "Inode table for group %u not in group " 2365 "(block %llu)!", i, inode_table); 2366 return 0; 2367 } 2368 ext4_lock_group(sb, i); 2369 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2370 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2371 "Checksum for group %u failed (%u!=%u)", 2372 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2373 gdp)), le16_to_cpu(gdp->bg_checksum)); 2374 if (!sb_rdonly(sb)) { 2375 ext4_unlock_group(sb, i); 2376 return 0; 2377 } 2378 } 2379 ext4_unlock_group(sb, i); 2380 if (!flexbg_flag) 2381 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2382 } 2383 if (NULL != first_not_zeroed) 2384 *first_not_zeroed = grp; 2385 return 1; 2386 } 2387 2388 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2389 * the superblock) which were deleted from all directories, but held open by 2390 * a process at the time of a crash. We walk the list and try to delete these 2391 * inodes at recovery time (only with a read-write filesystem). 2392 * 2393 * In order to keep the orphan inode chain consistent during traversal (in 2394 * case of crash during recovery), we link each inode into the superblock 2395 * orphan list_head and handle it the same way as an inode deletion during 2396 * normal operation (which journals the operations for us). 2397 * 2398 * We only do an iget() and an iput() on each inode, which is very safe if we 2399 * accidentally point at an in-use or already deleted inode. The worst that 2400 * can happen in this case is that we get a "bit already cleared" message from 2401 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2402 * e2fsck was run on this filesystem, and it must have already done the orphan 2403 * inode cleanup for us, so we can safely abort without any further action. 2404 */ 2405 static void ext4_orphan_cleanup(struct super_block *sb, 2406 struct ext4_super_block *es) 2407 { 2408 unsigned int s_flags = sb->s_flags; 2409 int ret, nr_orphans = 0, nr_truncates = 0; 2410 #ifdef CONFIG_QUOTA 2411 int quota_update = 0; 2412 int i; 2413 #endif 2414 if (!es->s_last_orphan) { 2415 jbd_debug(4, "no orphan inodes to clean up\n"); 2416 return; 2417 } 2418 2419 if (bdev_read_only(sb->s_bdev)) { 2420 ext4_msg(sb, KERN_ERR, "write access " 2421 "unavailable, skipping orphan cleanup"); 2422 return; 2423 } 2424 2425 /* Check if feature set would not allow a r/w mount */ 2426 if (!ext4_feature_set_ok(sb, 0)) { 2427 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2428 "unknown ROCOMPAT features"); 2429 return; 2430 } 2431 2432 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2433 /* don't clear list on RO mount w/ errors */ 2434 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2435 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2436 "clearing orphan list.\n"); 2437 es->s_last_orphan = 0; 2438 } 2439 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2440 return; 2441 } 2442 2443 if (s_flags & SB_RDONLY) { 2444 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2445 sb->s_flags &= ~SB_RDONLY; 2446 } 2447 #ifdef CONFIG_QUOTA 2448 /* Needed for iput() to work correctly and not trash data */ 2449 sb->s_flags |= SB_ACTIVE; 2450 2451 /* 2452 * Turn on quotas which were not enabled for read-only mounts if 2453 * filesystem has quota feature, so that they are updated correctly. 2454 */ 2455 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2456 int ret = ext4_enable_quotas(sb); 2457 2458 if (!ret) 2459 quota_update = 1; 2460 else 2461 ext4_msg(sb, KERN_ERR, 2462 "Cannot turn on quotas: error %d", ret); 2463 } 2464 2465 /* Turn on journaled quotas used for old sytle */ 2466 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2467 if (EXT4_SB(sb)->s_qf_names[i]) { 2468 int ret = ext4_quota_on_mount(sb, i); 2469 2470 if (!ret) 2471 quota_update = 1; 2472 else 2473 ext4_msg(sb, KERN_ERR, 2474 "Cannot turn on journaled " 2475 "quota: type %d: error %d", i, ret); 2476 } 2477 } 2478 #endif 2479 2480 while (es->s_last_orphan) { 2481 struct inode *inode; 2482 2483 /* 2484 * We may have encountered an error during cleanup; if 2485 * so, skip the rest. 2486 */ 2487 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2488 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2489 es->s_last_orphan = 0; 2490 break; 2491 } 2492 2493 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2494 if (IS_ERR(inode)) { 2495 es->s_last_orphan = 0; 2496 break; 2497 } 2498 2499 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2500 dquot_initialize(inode); 2501 if (inode->i_nlink) { 2502 if (test_opt(sb, DEBUG)) 2503 ext4_msg(sb, KERN_DEBUG, 2504 "%s: truncating inode %lu to %lld bytes", 2505 __func__, inode->i_ino, inode->i_size); 2506 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2507 inode->i_ino, inode->i_size); 2508 inode_lock(inode); 2509 truncate_inode_pages(inode->i_mapping, inode->i_size); 2510 ret = ext4_truncate(inode); 2511 if (ret) 2512 ext4_std_error(inode->i_sb, ret); 2513 inode_unlock(inode); 2514 nr_truncates++; 2515 } else { 2516 if (test_opt(sb, DEBUG)) 2517 ext4_msg(sb, KERN_DEBUG, 2518 "%s: deleting unreferenced inode %lu", 2519 __func__, inode->i_ino); 2520 jbd_debug(2, "deleting unreferenced inode %lu\n", 2521 inode->i_ino); 2522 nr_orphans++; 2523 } 2524 iput(inode); /* The delete magic happens here! */ 2525 } 2526 2527 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2528 2529 if (nr_orphans) 2530 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2531 PLURAL(nr_orphans)); 2532 if (nr_truncates) 2533 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2534 PLURAL(nr_truncates)); 2535 #ifdef CONFIG_QUOTA 2536 /* Turn off quotas if they were enabled for orphan cleanup */ 2537 if (quota_update) { 2538 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2539 if (sb_dqopt(sb)->files[i]) 2540 dquot_quota_off(sb, i); 2541 } 2542 } 2543 #endif 2544 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2545 } 2546 2547 /* 2548 * Maximal extent format file size. 2549 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2550 * extent format containers, within a sector_t, and within i_blocks 2551 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2552 * so that won't be a limiting factor. 2553 * 2554 * However there is other limiting factor. We do store extents in the form 2555 * of starting block and length, hence the resulting length of the extent 2556 * covering maximum file size must fit into on-disk format containers as 2557 * well. Given that length is always by 1 unit bigger than max unit (because 2558 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2559 * 2560 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2561 */ 2562 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2563 { 2564 loff_t res; 2565 loff_t upper_limit = MAX_LFS_FILESIZE; 2566 2567 /* small i_blocks in vfs inode? */ 2568 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2569 /* 2570 * CONFIG_LBDAF is not enabled implies the inode 2571 * i_block represent total blocks in 512 bytes 2572 * 32 == size of vfs inode i_blocks * 8 2573 */ 2574 upper_limit = (1LL << 32) - 1; 2575 2576 /* total blocks in file system block size */ 2577 upper_limit >>= (blkbits - 9); 2578 upper_limit <<= blkbits; 2579 } 2580 2581 /* 2582 * 32-bit extent-start container, ee_block. We lower the maxbytes 2583 * by one fs block, so ee_len can cover the extent of maximum file 2584 * size 2585 */ 2586 res = (1LL << 32) - 1; 2587 res <<= blkbits; 2588 2589 /* Sanity check against vm- & vfs- imposed limits */ 2590 if (res > upper_limit) 2591 res = upper_limit; 2592 2593 return res; 2594 } 2595 2596 /* 2597 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2598 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2599 * We need to be 1 filesystem block less than the 2^48 sector limit. 2600 */ 2601 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2602 { 2603 loff_t res = EXT4_NDIR_BLOCKS; 2604 int meta_blocks; 2605 loff_t upper_limit; 2606 /* This is calculated to be the largest file size for a dense, block 2607 * mapped file such that the file's total number of 512-byte sectors, 2608 * including data and all indirect blocks, does not exceed (2^48 - 1). 2609 * 2610 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2611 * number of 512-byte sectors of the file. 2612 */ 2613 2614 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2615 /* 2616 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2617 * the inode i_block field represents total file blocks in 2618 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2619 */ 2620 upper_limit = (1LL << 32) - 1; 2621 2622 /* total blocks in file system block size */ 2623 upper_limit >>= (bits - 9); 2624 2625 } else { 2626 /* 2627 * We use 48 bit ext4_inode i_blocks 2628 * With EXT4_HUGE_FILE_FL set the i_blocks 2629 * represent total number of blocks in 2630 * file system block size 2631 */ 2632 upper_limit = (1LL << 48) - 1; 2633 2634 } 2635 2636 /* indirect blocks */ 2637 meta_blocks = 1; 2638 /* double indirect blocks */ 2639 meta_blocks += 1 + (1LL << (bits-2)); 2640 /* tripple indirect blocks */ 2641 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2642 2643 upper_limit -= meta_blocks; 2644 upper_limit <<= bits; 2645 2646 res += 1LL << (bits-2); 2647 res += 1LL << (2*(bits-2)); 2648 res += 1LL << (3*(bits-2)); 2649 res <<= bits; 2650 if (res > upper_limit) 2651 res = upper_limit; 2652 2653 if (res > MAX_LFS_FILESIZE) 2654 res = MAX_LFS_FILESIZE; 2655 2656 return res; 2657 } 2658 2659 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2660 ext4_fsblk_t logical_sb_block, int nr) 2661 { 2662 struct ext4_sb_info *sbi = EXT4_SB(sb); 2663 ext4_group_t bg, first_meta_bg; 2664 int has_super = 0; 2665 2666 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2667 2668 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2669 return logical_sb_block + nr + 1; 2670 bg = sbi->s_desc_per_block * nr; 2671 if (ext4_bg_has_super(sb, bg)) 2672 has_super = 1; 2673 2674 /* 2675 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2676 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2677 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2678 * compensate. 2679 */ 2680 if (sb->s_blocksize == 1024 && nr == 0 && 2681 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2682 has_super++; 2683 2684 return (has_super + ext4_group_first_block_no(sb, bg)); 2685 } 2686 2687 /** 2688 * ext4_get_stripe_size: Get the stripe size. 2689 * @sbi: In memory super block info 2690 * 2691 * If we have specified it via mount option, then 2692 * use the mount option value. If the value specified at mount time is 2693 * greater than the blocks per group use the super block value. 2694 * If the super block value is greater than blocks per group return 0. 2695 * Allocator needs it be less than blocks per group. 2696 * 2697 */ 2698 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2699 { 2700 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2701 unsigned long stripe_width = 2702 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2703 int ret; 2704 2705 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2706 ret = sbi->s_stripe; 2707 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2708 ret = stripe_width; 2709 else if (stride && stride <= sbi->s_blocks_per_group) 2710 ret = stride; 2711 else 2712 ret = 0; 2713 2714 /* 2715 * If the stripe width is 1, this makes no sense and 2716 * we set it to 0 to turn off stripe handling code. 2717 */ 2718 if (ret <= 1) 2719 ret = 0; 2720 2721 return ret; 2722 } 2723 2724 /* 2725 * Check whether this filesystem can be mounted based on 2726 * the features present and the RDONLY/RDWR mount requested. 2727 * Returns 1 if this filesystem can be mounted as requested, 2728 * 0 if it cannot be. 2729 */ 2730 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2731 { 2732 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2733 ext4_msg(sb, KERN_ERR, 2734 "Couldn't mount because of " 2735 "unsupported optional features (%x)", 2736 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2737 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2738 return 0; 2739 } 2740 2741 if (readonly) 2742 return 1; 2743 2744 if (ext4_has_feature_readonly(sb)) { 2745 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2746 sb->s_flags |= SB_RDONLY; 2747 return 1; 2748 } 2749 2750 /* Check that feature set is OK for a read-write mount */ 2751 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2752 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2753 "unsupported optional features (%x)", 2754 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2755 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2756 return 0; 2757 } 2758 /* 2759 * Large file size enabled file system can only be mounted 2760 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2761 */ 2762 if (ext4_has_feature_huge_file(sb)) { 2763 if (sizeof(blkcnt_t) < sizeof(u64)) { 2764 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2765 "cannot be mounted RDWR without " 2766 "CONFIG_LBDAF"); 2767 return 0; 2768 } 2769 } 2770 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2771 ext4_msg(sb, KERN_ERR, 2772 "Can't support bigalloc feature without " 2773 "extents feature\n"); 2774 return 0; 2775 } 2776 2777 #ifndef CONFIG_QUOTA 2778 if (ext4_has_feature_quota(sb) && !readonly) { 2779 ext4_msg(sb, KERN_ERR, 2780 "Filesystem with quota feature cannot be mounted RDWR " 2781 "without CONFIG_QUOTA"); 2782 return 0; 2783 } 2784 if (ext4_has_feature_project(sb) && !readonly) { 2785 ext4_msg(sb, KERN_ERR, 2786 "Filesystem with project quota feature cannot be mounted RDWR " 2787 "without CONFIG_QUOTA"); 2788 return 0; 2789 } 2790 #endif /* CONFIG_QUOTA */ 2791 return 1; 2792 } 2793 2794 /* 2795 * This function is called once a day if we have errors logged 2796 * on the file system 2797 */ 2798 static void print_daily_error_info(struct timer_list *t) 2799 { 2800 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2801 struct super_block *sb = sbi->s_sb; 2802 struct ext4_super_block *es = sbi->s_es; 2803 2804 if (es->s_error_count) 2805 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2806 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2807 le32_to_cpu(es->s_error_count)); 2808 if (es->s_first_error_time) { 2809 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2810 sb->s_id, le32_to_cpu(es->s_first_error_time), 2811 (int) sizeof(es->s_first_error_func), 2812 es->s_first_error_func, 2813 le32_to_cpu(es->s_first_error_line)); 2814 if (es->s_first_error_ino) 2815 printk(KERN_CONT ": inode %u", 2816 le32_to_cpu(es->s_first_error_ino)); 2817 if (es->s_first_error_block) 2818 printk(KERN_CONT ": block %llu", (unsigned long long) 2819 le64_to_cpu(es->s_first_error_block)); 2820 printk(KERN_CONT "\n"); 2821 } 2822 if (es->s_last_error_time) { 2823 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2824 sb->s_id, le32_to_cpu(es->s_last_error_time), 2825 (int) sizeof(es->s_last_error_func), 2826 es->s_last_error_func, 2827 le32_to_cpu(es->s_last_error_line)); 2828 if (es->s_last_error_ino) 2829 printk(KERN_CONT ": inode %u", 2830 le32_to_cpu(es->s_last_error_ino)); 2831 if (es->s_last_error_block) 2832 printk(KERN_CONT ": block %llu", (unsigned long long) 2833 le64_to_cpu(es->s_last_error_block)); 2834 printk(KERN_CONT "\n"); 2835 } 2836 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2837 } 2838 2839 /* Find next suitable group and run ext4_init_inode_table */ 2840 static int ext4_run_li_request(struct ext4_li_request *elr) 2841 { 2842 struct ext4_group_desc *gdp = NULL; 2843 ext4_group_t group, ngroups; 2844 struct super_block *sb; 2845 unsigned long timeout = 0; 2846 int ret = 0; 2847 2848 sb = elr->lr_super; 2849 ngroups = EXT4_SB(sb)->s_groups_count; 2850 2851 for (group = elr->lr_next_group; group < ngroups; group++) { 2852 gdp = ext4_get_group_desc(sb, group, NULL); 2853 if (!gdp) { 2854 ret = 1; 2855 break; 2856 } 2857 2858 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2859 break; 2860 } 2861 2862 if (group >= ngroups) 2863 ret = 1; 2864 2865 if (!ret) { 2866 timeout = jiffies; 2867 ret = ext4_init_inode_table(sb, group, 2868 elr->lr_timeout ? 0 : 1); 2869 if (elr->lr_timeout == 0) { 2870 timeout = (jiffies - timeout) * 2871 elr->lr_sbi->s_li_wait_mult; 2872 elr->lr_timeout = timeout; 2873 } 2874 elr->lr_next_sched = jiffies + elr->lr_timeout; 2875 elr->lr_next_group = group + 1; 2876 } 2877 return ret; 2878 } 2879 2880 /* 2881 * Remove lr_request from the list_request and free the 2882 * request structure. Should be called with li_list_mtx held 2883 */ 2884 static void ext4_remove_li_request(struct ext4_li_request *elr) 2885 { 2886 struct ext4_sb_info *sbi; 2887 2888 if (!elr) 2889 return; 2890 2891 sbi = elr->lr_sbi; 2892 2893 list_del(&elr->lr_request); 2894 sbi->s_li_request = NULL; 2895 kfree(elr); 2896 } 2897 2898 static void ext4_unregister_li_request(struct super_block *sb) 2899 { 2900 mutex_lock(&ext4_li_mtx); 2901 if (!ext4_li_info) { 2902 mutex_unlock(&ext4_li_mtx); 2903 return; 2904 } 2905 2906 mutex_lock(&ext4_li_info->li_list_mtx); 2907 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2908 mutex_unlock(&ext4_li_info->li_list_mtx); 2909 mutex_unlock(&ext4_li_mtx); 2910 } 2911 2912 static struct task_struct *ext4_lazyinit_task; 2913 2914 /* 2915 * This is the function where ext4lazyinit thread lives. It walks 2916 * through the request list searching for next scheduled filesystem. 2917 * When such a fs is found, run the lazy initialization request 2918 * (ext4_rn_li_request) and keep track of the time spend in this 2919 * function. Based on that time we compute next schedule time of 2920 * the request. When walking through the list is complete, compute 2921 * next waking time and put itself into sleep. 2922 */ 2923 static int ext4_lazyinit_thread(void *arg) 2924 { 2925 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2926 struct list_head *pos, *n; 2927 struct ext4_li_request *elr; 2928 unsigned long next_wakeup, cur; 2929 2930 BUG_ON(NULL == eli); 2931 2932 cont_thread: 2933 while (true) { 2934 next_wakeup = MAX_JIFFY_OFFSET; 2935 2936 mutex_lock(&eli->li_list_mtx); 2937 if (list_empty(&eli->li_request_list)) { 2938 mutex_unlock(&eli->li_list_mtx); 2939 goto exit_thread; 2940 } 2941 list_for_each_safe(pos, n, &eli->li_request_list) { 2942 int err = 0; 2943 int progress = 0; 2944 elr = list_entry(pos, struct ext4_li_request, 2945 lr_request); 2946 2947 if (time_before(jiffies, elr->lr_next_sched)) { 2948 if (time_before(elr->lr_next_sched, next_wakeup)) 2949 next_wakeup = elr->lr_next_sched; 2950 continue; 2951 } 2952 if (down_read_trylock(&elr->lr_super->s_umount)) { 2953 if (sb_start_write_trylock(elr->lr_super)) { 2954 progress = 1; 2955 /* 2956 * We hold sb->s_umount, sb can not 2957 * be removed from the list, it is 2958 * now safe to drop li_list_mtx 2959 */ 2960 mutex_unlock(&eli->li_list_mtx); 2961 err = ext4_run_li_request(elr); 2962 sb_end_write(elr->lr_super); 2963 mutex_lock(&eli->li_list_mtx); 2964 n = pos->next; 2965 } 2966 up_read((&elr->lr_super->s_umount)); 2967 } 2968 /* error, remove the lazy_init job */ 2969 if (err) { 2970 ext4_remove_li_request(elr); 2971 continue; 2972 } 2973 if (!progress) { 2974 elr->lr_next_sched = jiffies + 2975 (prandom_u32() 2976 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2977 } 2978 if (time_before(elr->lr_next_sched, next_wakeup)) 2979 next_wakeup = elr->lr_next_sched; 2980 } 2981 mutex_unlock(&eli->li_list_mtx); 2982 2983 try_to_freeze(); 2984 2985 cur = jiffies; 2986 if ((time_after_eq(cur, next_wakeup)) || 2987 (MAX_JIFFY_OFFSET == next_wakeup)) { 2988 cond_resched(); 2989 continue; 2990 } 2991 2992 schedule_timeout_interruptible(next_wakeup - cur); 2993 2994 if (kthread_should_stop()) { 2995 ext4_clear_request_list(); 2996 goto exit_thread; 2997 } 2998 } 2999 3000 exit_thread: 3001 /* 3002 * It looks like the request list is empty, but we need 3003 * to check it under the li_list_mtx lock, to prevent any 3004 * additions into it, and of course we should lock ext4_li_mtx 3005 * to atomically free the list and ext4_li_info, because at 3006 * this point another ext4 filesystem could be registering 3007 * new one. 3008 */ 3009 mutex_lock(&ext4_li_mtx); 3010 mutex_lock(&eli->li_list_mtx); 3011 if (!list_empty(&eli->li_request_list)) { 3012 mutex_unlock(&eli->li_list_mtx); 3013 mutex_unlock(&ext4_li_mtx); 3014 goto cont_thread; 3015 } 3016 mutex_unlock(&eli->li_list_mtx); 3017 kfree(ext4_li_info); 3018 ext4_li_info = NULL; 3019 mutex_unlock(&ext4_li_mtx); 3020 3021 return 0; 3022 } 3023 3024 static void ext4_clear_request_list(void) 3025 { 3026 struct list_head *pos, *n; 3027 struct ext4_li_request *elr; 3028 3029 mutex_lock(&ext4_li_info->li_list_mtx); 3030 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3031 elr = list_entry(pos, struct ext4_li_request, 3032 lr_request); 3033 ext4_remove_li_request(elr); 3034 } 3035 mutex_unlock(&ext4_li_info->li_list_mtx); 3036 } 3037 3038 static int ext4_run_lazyinit_thread(void) 3039 { 3040 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3041 ext4_li_info, "ext4lazyinit"); 3042 if (IS_ERR(ext4_lazyinit_task)) { 3043 int err = PTR_ERR(ext4_lazyinit_task); 3044 ext4_clear_request_list(); 3045 kfree(ext4_li_info); 3046 ext4_li_info = NULL; 3047 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3048 "initialization thread\n", 3049 err); 3050 return err; 3051 } 3052 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3053 return 0; 3054 } 3055 3056 /* 3057 * Check whether it make sense to run itable init. thread or not. 3058 * If there is at least one uninitialized inode table, return 3059 * corresponding group number, else the loop goes through all 3060 * groups and return total number of groups. 3061 */ 3062 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3063 { 3064 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3065 struct ext4_group_desc *gdp = NULL; 3066 3067 for (group = 0; group < ngroups; group++) { 3068 gdp = ext4_get_group_desc(sb, group, NULL); 3069 if (!gdp) 3070 continue; 3071 3072 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3073 break; 3074 } 3075 3076 return group; 3077 } 3078 3079 static int ext4_li_info_new(void) 3080 { 3081 struct ext4_lazy_init *eli = NULL; 3082 3083 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3084 if (!eli) 3085 return -ENOMEM; 3086 3087 INIT_LIST_HEAD(&eli->li_request_list); 3088 mutex_init(&eli->li_list_mtx); 3089 3090 eli->li_state |= EXT4_LAZYINIT_QUIT; 3091 3092 ext4_li_info = eli; 3093 3094 return 0; 3095 } 3096 3097 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3098 ext4_group_t start) 3099 { 3100 struct ext4_sb_info *sbi = EXT4_SB(sb); 3101 struct ext4_li_request *elr; 3102 3103 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3104 if (!elr) 3105 return NULL; 3106 3107 elr->lr_super = sb; 3108 elr->lr_sbi = sbi; 3109 elr->lr_next_group = start; 3110 3111 /* 3112 * Randomize first schedule time of the request to 3113 * spread the inode table initialization requests 3114 * better. 3115 */ 3116 elr->lr_next_sched = jiffies + (prandom_u32() % 3117 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3118 return elr; 3119 } 3120 3121 int ext4_register_li_request(struct super_block *sb, 3122 ext4_group_t first_not_zeroed) 3123 { 3124 struct ext4_sb_info *sbi = EXT4_SB(sb); 3125 struct ext4_li_request *elr = NULL; 3126 ext4_group_t ngroups = sbi->s_groups_count; 3127 int ret = 0; 3128 3129 mutex_lock(&ext4_li_mtx); 3130 if (sbi->s_li_request != NULL) { 3131 /* 3132 * Reset timeout so it can be computed again, because 3133 * s_li_wait_mult might have changed. 3134 */ 3135 sbi->s_li_request->lr_timeout = 0; 3136 goto out; 3137 } 3138 3139 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3140 !test_opt(sb, INIT_INODE_TABLE)) 3141 goto out; 3142 3143 elr = ext4_li_request_new(sb, first_not_zeroed); 3144 if (!elr) { 3145 ret = -ENOMEM; 3146 goto out; 3147 } 3148 3149 if (NULL == ext4_li_info) { 3150 ret = ext4_li_info_new(); 3151 if (ret) 3152 goto out; 3153 } 3154 3155 mutex_lock(&ext4_li_info->li_list_mtx); 3156 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3157 mutex_unlock(&ext4_li_info->li_list_mtx); 3158 3159 sbi->s_li_request = elr; 3160 /* 3161 * set elr to NULL here since it has been inserted to 3162 * the request_list and the removal and free of it is 3163 * handled by ext4_clear_request_list from now on. 3164 */ 3165 elr = NULL; 3166 3167 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3168 ret = ext4_run_lazyinit_thread(); 3169 if (ret) 3170 goto out; 3171 } 3172 out: 3173 mutex_unlock(&ext4_li_mtx); 3174 if (ret) 3175 kfree(elr); 3176 return ret; 3177 } 3178 3179 /* 3180 * We do not need to lock anything since this is called on 3181 * module unload. 3182 */ 3183 static void ext4_destroy_lazyinit_thread(void) 3184 { 3185 /* 3186 * If thread exited earlier 3187 * there's nothing to be done. 3188 */ 3189 if (!ext4_li_info || !ext4_lazyinit_task) 3190 return; 3191 3192 kthread_stop(ext4_lazyinit_task); 3193 } 3194 3195 static int set_journal_csum_feature_set(struct super_block *sb) 3196 { 3197 int ret = 1; 3198 int compat, incompat; 3199 struct ext4_sb_info *sbi = EXT4_SB(sb); 3200 3201 if (ext4_has_metadata_csum(sb)) { 3202 /* journal checksum v3 */ 3203 compat = 0; 3204 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3205 } else { 3206 /* journal checksum v1 */ 3207 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3208 incompat = 0; 3209 } 3210 3211 jbd2_journal_clear_features(sbi->s_journal, 3212 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3213 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3214 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3215 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3216 ret = jbd2_journal_set_features(sbi->s_journal, 3217 compat, 0, 3218 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3219 incompat); 3220 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3221 ret = jbd2_journal_set_features(sbi->s_journal, 3222 compat, 0, 3223 incompat); 3224 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3225 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3226 } else { 3227 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3228 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3229 } 3230 3231 return ret; 3232 } 3233 3234 /* 3235 * Note: calculating the overhead so we can be compatible with 3236 * historical BSD practice is quite difficult in the face of 3237 * clusters/bigalloc. This is because multiple metadata blocks from 3238 * different block group can end up in the same allocation cluster. 3239 * Calculating the exact overhead in the face of clustered allocation 3240 * requires either O(all block bitmaps) in memory or O(number of block 3241 * groups**2) in time. We will still calculate the superblock for 3242 * older file systems --- and if we come across with a bigalloc file 3243 * system with zero in s_overhead_clusters the estimate will be close to 3244 * correct especially for very large cluster sizes --- but for newer 3245 * file systems, it's better to calculate this figure once at mkfs 3246 * time, and store it in the superblock. If the superblock value is 3247 * present (even for non-bigalloc file systems), we will use it. 3248 */ 3249 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3250 char *buf) 3251 { 3252 struct ext4_sb_info *sbi = EXT4_SB(sb); 3253 struct ext4_group_desc *gdp; 3254 ext4_fsblk_t first_block, last_block, b; 3255 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3256 int s, j, count = 0; 3257 3258 if (!ext4_has_feature_bigalloc(sb)) 3259 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3260 sbi->s_itb_per_group + 2); 3261 3262 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3263 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3264 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3265 for (i = 0; i < ngroups; i++) { 3266 gdp = ext4_get_group_desc(sb, i, NULL); 3267 b = ext4_block_bitmap(sb, gdp); 3268 if (b >= first_block && b <= last_block) { 3269 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3270 count++; 3271 } 3272 b = ext4_inode_bitmap(sb, gdp); 3273 if (b >= first_block && b <= last_block) { 3274 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3275 count++; 3276 } 3277 b = ext4_inode_table(sb, gdp); 3278 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3279 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3280 int c = EXT4_B2C(sbi, b - first_block); 3281 ext4_set_bit(c, buf); 3282 count++; 3283 } 3284 if (i != grp) 3285 continue; 3286 s = 0; 3287 if (ext4_bg_has_super(sb, grp)) { 3288 ext4_set_bit(s++, buf); 3289 count++; 3290 } 3291 j = ext4_bg_num_gdb(sb, grp); 3292 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3293 ext4_error(sb, "Invalid number of block group " 3294 "descriptor blocks: %d", j); 3295 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3296 } 3297 count += j; 3298 for (; j > 0; j--) 3299 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3300 } 3301 if (!count) 3302 return 0; 3303 return EXT4_CLUSTERS_PER_GROUP(sb) - 3304 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3305 } 3306 3307 /* 3308 * Compute the overhead and stash it in sbi->s_overhead 3309 */ 3310 int ext4_calculate_overhead(struct super_block *sb) 3311 { 3312 struct ext4_sb_info *sbi = EXT4_SB(sb); 3313 struct ext4_super_block *es = sbi->s_es; 3314 struct inode *j_inode; 3315 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3316 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3317 ext4_fsblk_t overhead = 0; 3318 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3319 3320 if (!buf) 3321 return -ENOMEM; 3322 3323 /* 3324 * Compute the overhead (FS structures). This is constant 3325 * for a given filesystem unless the number of block groups 3326 * changes so we cache the previous value until it does. 3327 */ 3328 3329 /* 3330 * All of the blocks before first_data_block are overhead 3331 */ 3332 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3333 3334 /* 3335 * Add the overhead found in each block group 3336 */ 3337 for (i = 0; i < ngroups; i++) { 3338 int blks; 3339 3340 blks = count_overhead(sb, i, buf); 3341 overhead += blks; 3342 if (blks) 3343 memset(buf, 0, PAGE_SIZE); 3344 cond_resched(); 3345 } 3346 3347 /* 3348 * Add the internal journal blocks whether the journal has been 3349 * loaded or not 3350 */ 3351 if (sbi->s_journal && !sbi->journal_bdev) 3352 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3353 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3354 j_inode = ext4_get_journal_inode(sb, j_inum); 3355 if (j_inode) { 3356 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3357 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3358 iput(j_inode); 3359 } else { 3360 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3361 } 3362 } 3363 sbi->s_overhead = overhead; 3364 smp_wmb(); 3365 free_page((unsigned long) buf); 3366 return 0; 3367 } 3368 3369 static void ext4_set_resv_clusters(struct super_block *sb) 3370 { 3371 ext4_fsblk_t resv_clusters; 3372 struct ext4_sb_info *sbi = EXT4_SB(sb); 3373 3374 /* 3375 * There's no need to reserve anything when we aren't using extents. 3376 * The space estimates are exact, there are no unwritten extents, 3377 * hole punching doesn't need new metadata... This is needed especially 3378 * to keep ext2/3 backward compatibility. 3379 */ 3380 if (!ext4_has_feature_extents(sb)) 3381 return; 3382 /* 3383 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3384 * This should cover the situations where we can not afford to run 3385 * out of space like for example punch hole, or converting 3386 * unwritten extents in delalloc path. In most cases such 3387 * allocation would require 1, or 2 blocks, higher numbers are 3388 * very rare. 3389 */ 3390 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3391 sbi->s_cluster_bits); 3392 3393 do_div(resv_clusters, 50); 3394 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3395 3396 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3397 } 3398 3399 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3400 { 3401 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3402 char *orig_data = kstrdup(data, GFP_KERNEL); 3403 struct buffer_head *bh; 3404 struct ext4_super_block *es = NULL; 3405 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3406 ext4_fsblk_t block; 3407 ext4_fsblk_t sb_block = get_sb_block(&data); 3408 ext4_fsblk_t logical_sb_block; 3409 unsigned long offset = 0; 3410 unsigned long journal_devnum = 0; 3411 unsigned long def_mount_opts; 3412 struct inode *root; 3413 const char *descr; 3414 int ret = -ENOMEM; 3415 int blocksize, clustersize; 3416 unsigned int db_count; 3417 unsigned int i; 3418 int needs_recovery, has_huge_files, has_bigalloc; 3419 __u64 blocks_count; 3420 int err = 0; 3421 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3422 ext4_group_t first_not_zeroed; 3423 3424 if ((data && !orig_data) || !sbi) 3425 goto out_free_base; 3426 3427 sbi->s_daxdev = dax_dev; 3428 sbi->s_blockgroup_lock = 3429 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3430 if (!sbi->s_blockgroup_lock) 3431 goto out_free_base; 3432 3433 sb->s_fs_info = sbi; 3434 sbi->s_sb = sb; 3435 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3436 sbi->s_sb_block = sb_block; 3437 if (sb->s_bdev->bd_part) 3438 sbi->s_sectors_written_start = 3439 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3440 3441 /* Cleanup superblock name */ 3442 strreplace(sb->s_id, '/', '!'); 3443 3444 /* -EINVAL is default */ 3445 ret = -EINVAL; 3446 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3447 if (!blocksize) { 3448 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3449 goto out_fail; 3450 } 3451 3452 /* 3453 * The ext4 superblock will not be buffer aligned for other than 1kB 3454 * block sizes. We need to calculate the offset from buffer start. 3455 */ 3456 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3457 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3458 offset = do_div(logical_sb_block, blocksize); 3459 } else { 3460 logical_sb_block = sb_block; 3461 } 3462 3463 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3464 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3465 goto out_fail; 3466 } 3467 /* 3468 * Note: s_es must be initialized as soon as possible because 3469 * some ext4 macro-instructions depend on its value 3470 */ 3471 es = (struct ext4_super_block *) (bh->b_data + offset); 3472 sbi->s_es = es; 3473 sb->s_magic = le16_to_cpu(es->s_magic); 3474 if (sb->s_magic != EXT4_SUPER_MAGIC) 3475 goto cantfind_ext4; 3476 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3477 3478 /* Warn if metadata_csum and gdt_csum are both set. */ 3479 if (ext4_has_feature_metadata_csum(sb) && 3480 ext4_has_feature_gdt_csum(sb)) 3481 ext4_warning(sb, "metadata_csum and uninit_bg are " 3482 "redundant flags; please run fsck."); 3483 3484 /* Check for a known checksum algorithm */ 3485 if (!ext4_verify_csum_type(sb, es)) { 3486 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3487 "unknown checksum algorithm."); 3488 silent = 1; 3489 goto cantfind_ext4; 3490 } 3491 3492 /* Load the checksum driver */ 3493 if (ext4_has_feature_metadata_csum(sb) || 3494 ext4_has_feature_ea_inode(sb)) { 3495 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3496 if (IS_ERR(sbi->s_chksum_driver)) { 3497 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3498 ret = PTR_ERR(sbi->s_chksum_driver); 3499 sbi->s_chksum_driver = NULL; 3500 goto failed_mount; 3501 } 3502 } 3503 3504 /* Check superblock checksum */ 3505 if (!ext4_superblock_csum_verify(sb, es)) { 3506 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3507 "invalid superblock checksum. Run e2fsck?"); 3508 silent = 1; 3509 ret = -EFSBADCRC; 3510 goto cantfind_ext4; 3511 } 3512 3513 /* Precompute checksum seed for all metadata */ 3514 if (ext4_has_feature_csum_seed(sb)) 3515 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3516 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3517 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3518 sizeof(es->s_uuid)); 3519 3520 /* Set defaults before we parse the mount options */ 3521 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3522 set_opt(sb, INIT_INODE_TABLE); 3523 if (def_mount_opts & EXT4_DEFM_DEBUG) 3524 set_opt(sb, DEBUG); 3525 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3526 set_opt(sb, GRPID); 3527 if (def_mount_opts & EXT4_DEFM_UID16) 3528 set_opt(sb, NO_UID32); 3529 /* xattr user namespace & acls are now defaulted on */ 3530 set_opt(sb, XATTR_USER); 3531 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3532 set_opt(sb, POSIX_ACL); 3533 #endif 3534 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3535 if (ext4_has_metadata_csum(sb)) 3536 set_opt(sb, JOURNAL_CHECKSUM); 3537 3538 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3539 set_opt(sb, JOURNAL_DATA); 3540 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3541 set_opt(sb, ORDERED_DATA); 3542 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3543 set_opt(sb, WRITEBACK_DATA); 3544 3545 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3546 set_opt(sb, ERRORS_PANIC); 3547 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3548 set_opt(sb, ERRORS_CONT); 3549 else 3550 set_opt(sb, ERRORS_RO); 3551 /* block_validity enabled by default; disable with noblock_validity */ 3552 set_opt(sb, BLOCK_VALIDITY); 3553 if (def_mount_opts & EXT4_DEFM_DISCARD) 3554 set_opt(sb, DISCARD); 3555 3556 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3557 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3558 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3559 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3560 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3561 3562 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3563 set_opt(sb, BARRIER); 3564 3565 /* 3566 * enable delayed allocation by default 3567 * Use -o nodelalloc to turn it off 3568 */ 3569 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3570 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3571 set_opt(sb, DELALLOC); 3572 3573 /* 3574 * set default s_li_wait_mult for lazyinit, for the case there is 3575 * no mount option specified. 3576 */ 3577 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3578 3579 if (sbi->s_es->s_mount_opts[0]) { 3580 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3581 sizeof(sbi->s_es->s_mount_opts), 3582 GFP_KERNEL); 3583 if (!s_mount_opts) 3584 goto failed_mount; 3585 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3586 &journal_ioprio, 0)) { 3587 ext4_msg(sb, KERN_WARNING, 3588 "failed to parse options in superblock: %s", 3589 s_mount_opts); 3590 } 3591 kfree(s_mount_opts); 3592 } 3593 sbi->s_def_mount_opt = sbi->s_mount_opt; 3594 if (!parse_options((char *) data, sb, &journal_devnum, 3595 &journal_ioprio, 0)) 3596 goto failed_mount; 3597 3598 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3599 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3600 "with data=journal disables delayed " 3601 "allocation and O_DIRECT support!\n"); 3602 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3603 ext4_msg(sb, KERN_ERR, "can't mount with " 3604 "both data=journal and delalloc"); 3605 goto failed_mount; 3606 } 3607 if (test_opt(sb, DIOREAD_NOLOCK)) { 3608 ext4_msg(sb, KERN_ERR, "can't mount with " 3609 "both data=journal and dioread_nolock"); 3610 goto failed_mount; 3611 } 3612 if (test_opt(sb, DAX)) { 3613 ext4_msg(sb, KERN_ERR, "can't mount with " 3614 "both data=journal and dax"); 3615 goto failed_mount; 3616 } 3617 if (ext4_has_feature_encrypt(sb)) { 3618 ext4_msg(sb, KERN_WARNING, 3619 "encrypted files will use data=ordered " 3620 "instead of data journaling mode"); 3621 } 3622 if (test_opt(sb, DELALLOC)) 3623 clear_opt(sb, DELALLOC); 3624 } else { 3625 sb->s_iflags |= SB_I_CGROUPWB; 3626 } 3627 3628 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3629 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3630 3631 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3632 (ext4_has_compat_features(sb) || 3633 ext4_has_ro_compat_features(sb) || 3634 ext4_has_incompat_features(sb))) 3635 ext4_msg(sb, KERN_WARNING, 3636 "feature flags set on rev 0 fs, " 3637 "running e2fsck is recommended"); 3638 3639 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3640 set_opt2(sb, HURD_COMPAT); 3641 if (ext4_has_feature_64bit(sb)) { 3642 ext4_msg(sb, KERN_ERR, 3643 "The Hurd can't support 64-bit file systems"); 3644 goto failed_mount; 3645 } 3646 3647 /* 3648 * ea_inode feature uses l_i_version field which is not 3649 * available in HURD_COMPAT mode. 3650 */ 3651 if (ext4_has_feature_ea_inode(sb)) { 3652 ext4_msg(sb, KERN_ERR, 3653 "ea_inode feature is not supported for Hurd"); 3654 goto failed_mount; 3655 } 3656 } 3657 3658 if (IS_EXT2_SB(sb)) { 3659 if (ext2_feature_set_ok(sb)) 3660 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3661 "using the ext4 subsystem"); 3662 else { 3663 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3664 "to feature incompatibilities"); 3665 goto failed_mount; 3666 } 3667 } 3668 3669 if (IS_EXT3_SB(sb)) { 3670 if (ext3_feature_set_ok(sb)) 3671 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3672 "using the ext4 subsystem"); 3673 else { 3674 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3675 "to feature incompatibilities"); 3676 goto failed_mount; 3677 } 3678 } 3679 3680 /* 3681 * Check feature flags regardless of the revision level, since we 3682 * previously didn't change the revision level when setting the flags, 3683 * so there is a chance incompat flags are set on a rev 0 filesystem. 3684 */ 3685 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3686 goto failed_mount; 3687 3688 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3689 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3690 blocksize > EXT4_MAX_BLOCK_SIZE) { 3691 ext4_msg(sb, KERN_ERR, 3692 "Unsupported filesystem blocksize %d (%d log_block_size)", 3693 blocksize, le32_to_cpu(es->s_log_block_size)); 3694 goto failed_mount; 3695 } 3696 if (le32_to_cpu(es->s_log_block_size) > 3697 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3698 ext4_msg(sb, KERN_ERR, 3699 "Invalid log block size: %u", 3700 le32_to_cpu(es->s_log_block_size)); 3701 goto failed_mount; 3702 } 3703 3704 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3705 ext4_msg(sb, KERN_ERR, 3706 "Number of reserved GDT blocks insanely large: %d", 3707 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3708 goto failed_mount; 3709 } 3710 3711 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3712 if (ext4_has_feature_inline_data(sb)) { 3713 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3714 " that may contain inline data"); 3715 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3716 } 3717 err = bdev_dax_supported(sb, blocksize); 3718 if (err) { 3719 ext4_msg(sb, KERN_ERR, 3720 "DAX unsupported by block device. Turning off DAX."); 3721 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3722 } 3723 } 3724 3725 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3726 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3727 es->s_encryption_level); 3728 goto failed_mount; 3729 } 3730 3731 if (sb->s_blocksize != blocksize) { 3732 /* Validate the filesystem blocksize */ 3733 if (!sb_set_blocksize(sb, blocksize)) { 3734 ext4_msg(sb, KERN_ERR, "bad block size %d", 3735 blocksize); 3736 goto failed_mount; 3737 } 3738 3739 brelse(bh); 3740 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3741 offset = do_div(logical_sb_block, blocksize); 3742 bh = sb_bread_unmovable(sb, logical_sb_block); 3743 if (!bh) { 3744 ext4_msg(sb, KERN_ERR, 3745 "Can't read superblock on 2nd try"); 3746 goto failed_mount; 3747 } 3748 es = (struct ext4_super_block *)(bh->b_data + offset); 3749 sbi->s_es = es; 3750 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3751 ext4_msg(sb, KERN_ERR, 3752 "Magic mismatch, very weird!"); 3753 goto failed_mount; 3754 } 3755 } 3756 3757 has_huge_files = ext4_has_feature_huge_file(sb); 3758 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3759 has_huge_files); 3760 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3761 3762 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3763 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3764 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3765 } else { 3766 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3767 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3768 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3769 (!is_power_of_2(sbi->s_inode_size)) || 3770 (sbi->s_inode_size > blocksize)) { 3771 ext4_msg(sb, KERN_ERR, 3772 "unsupported inode size: %d", 3773 sbi->s_inode_size); 3774 goto failed_mount; 3775 } 3776 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3777 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3778 } 3779 3780 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3781 if (ext4_has_feature_64bit(sb)) { 3782 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3783 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3784 !is_power_of_2(sbi->s_desc_size)) { 3785 ext4_msg(sb, KERN_ERR, 3786 "unsupported descriptor size %lu", 3787 sbi->s_desc_size); 3788 goto failed_mount; 3789 } 3790 } else 3791 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3792 3793 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3794 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3795 3796 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3797 if (sbi->s_inodes_per_block == 0) 3798 goto cantfind_ext4; 3799 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3800 sbi->s_inodes_per_group > blocksize * 8) { 3801 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3802 sbi->s_blocks_per_group); 3803 goto failed_mount; 3804 } 3805 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3806 sbi->s_inodes_per_block; 3807 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3808 sbi->s_sbh = bh; 3809 sbi->s_mount_state = le16_to_cpu(es->s_state); 3810 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3811 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3812 3813 for (i = 0; i < 4; i++) 3814 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3815 sbi->s_def_hash_version = es->s_def_hash_version; 3816 if (ext4_has_feature_dir_index(sb)) { 3817 i = le32_to_cpu(es->s_flags); 3818 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3819 sbi->s_hash_unsigned = 3; 3820 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3821 #ifdef __CHAR_UNSIGNED__ 3822 if (!sb_rdonly(sb)) 3823 es->s_flags |= 3824 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3825 sbi->s_hash_unsigned = 3; 3826 #else 3827 if (!sb_rdonly(sb)) 3828 es->s_flags |= 3829 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3830 #endif 3831 } 3832 } 3833 3834 /* Handle clustersize */ 3835 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3836 has_bigalloc = ext4_has_feature_bigalloc(sb); 3837 if (has_bigalloc) { 3838 if (clustersize < blocksize) { 3839 ext4_msg(sb, KERN_ERR, 3840 "cluster size (%d) smaller than " 3841 "block size (%d)", clustersize, blocksize); 3842 goto failed_mount; 3843 } 3844 if (le32_to_cpu(es->s_log_cluster_size) > 3845 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3846 ext4_msg(sb, KERN_ERR, 3847 "Invalid log cluster size: %u", 3848 le32_to_cpu(es->s_log_cluster_size)); 3849 goto failed_mount; 3850 } 3851 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3852 le32_to_cpu(es->s_log_block_size); 3853 sbi->s_clusters_per_group = 3854 le32_to_cpu(es->s_clusters_per_group); 3855 if (sbi->s_clusters_per_group > blocksize * 8) { 3856 ext4_msg(sb, KERN_ERR, 3857 "#clusters per group too big: %lu", 3858 sbi->s_clusters_per_group); 3859 goto failed_mount; 3860 } 3861 if (sbi->s_blocks_per_group != 3862 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3863 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3864 "clusters per group (%lu) inconsistent", 3865 sbi->s_blocks_per_group, 3866 sbi->s_clusters_per_group); 3867 goto failed_mount; 3868 } 3869 } else { 3870 if (clustersize != blocksize) { 3871 ext4_warning(sb, "fragment/cluster size (%d) != " 3872 "block size (%d)", clustersize, 3873 blocksize); 3874 clustersize = blocksize; 3875 } 3876 if (sbi->s_blocks_per_group > blocksize * 8) { 3877 ext4_msg(sb, KERN_ERR, 3878 "#blocks per group too big: %lu", 3879 sbi->s_blocks_per_group); 3880 goto failed_mount; 3881 } 3882 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3883 sbi->s_cluster_bits = 0; 3884 } 3885 sbi->s_cluster_ratio = clustersize / blocksize; 3886 3887 /* Do we have standard group size of clustersize * 8 blocks ? */ 3888 if (sbi->s_blocks_per_group == clustersize << 3) 3889 set_opt2(sb, STD_GROUP_SIZE); 3890 3891 /* 3892 * Test whether we have more sectors than will fit in sector_t, 3893 * and whether the max offset is addressable by the page cache. 3894 */ 3895 err = generic_check_addressable(sb->s_blocksize_bits, 3896 ext4_blocks_count(es)); 3897 if (err) { 3898 ext4_msg(sb, KERN_ERR, "filesystem" 3899 " too large to mount safely on this system"); 3900 if (sizeof(sector_t) < 8) 3901 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3902 goto failed_mount; 3903 } 3904 3905 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3906 goto cantfind_ext4; 3907 3908 /* check blocks count against device size */ 3909 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3910 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3911 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3912 "exceeds size of device (%llu blocks)", 3913 ext4_blocks_count(es), blocks_count); 3914 goto failed_mount; 3915 } 3916 3917 /* 3918 * It makes no sense for the first data block to be beyond the end 3919 * of the filesystem. 3920 */ 3921 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3922 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3923 "block %u is beyond end of filesystem (%llu)", 3924 le32_to_cpu(es->s_first_data_block), 3925 ext4_blocks_count(es)); 3926 goto failed_mount; 3927 } 3928 blocks_count = (ext4_blocks_count(es) - 3929 le32_to_cpu(es->s_first_data_block) + 3930 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3931 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3932 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3933 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3934 "(block count %llu, first data block %u, " 3935 "blocks per group %lu)", sbi->s_groups_count, 3936 ext4_blocks_count(es), 3937 le32_to_cpu(es->s_first_data_block), 3938 EXT4_BLOCKS_PER_GROUP(sb)); 3939 goto failed_mount; 3940 } 3941 sbi->s_groups_count = blocks_count; 3942 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3943 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3944 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3945 EXT4_DESC_PER_BLOCK(sb); 3946 if (ext4_has_feature_meta_bg(sb)) { 3947 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3948 ext4_msg(sb, KERN_WARNING, 3949 "first meta block group too large: %u " 3950 "(group descriptor block count %u)", 3951 le32_to_cpu(es->s_first_meta_bg), db_count); 3952 goto failed_mount; 3953 } 3954 } 3955 sbi->s_group_desc = kvmalloc(db_count * 3956 sizeof(struct buffer_head *), 3957 GFP_KERNEL); 3958 if (sbi->s_group_desc == NULL) { 3959 ext4_msg(sb, KERN_ERR, "not enough memory"); 3960 ret = -ENOMEM; 3961 goto failed_mount; 3962 } 3963 3964 bgl_lock_init(sbi->s_blockgroup_lock); 3965 3966 /* Pre-read the descriptors into the buffer cache */ 3967 for (i = 0; i < db_count; i++) { 3968 block = descriptor_loc(sb, logical_sb_block, i); 3969 sb_breadahead(sb, block); 3970 } 3971 3972 for (i = 0; i < db_count; i++) { 3973 block = descriptor_loc(sb, logical_sb_block, i); 3974 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3975 if (!sbi->s_group_desc[i]) { 3976 ext4_msg(sb, KERN_ERR, 3977 "can't read group descriptor %d", i); 3978 db_count = i; 3979 goto failed_mount2; 3980 } 3981 } 3982 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3983 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3984 ret = -EFSCORRUPTED; 3985 goto failed_mount2; 3986 } 3987 3988 sbi->s_gdb_count = db_count; 3989 3990 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 3991 3992 /* Register extent status tree shrinker */ 3993 if (ext4_es_register_shrinker(sbi)) 3994 goto failed_mount3; 3995 3996 sbi->s_stripe = ext4_get_stripe_size(sbi); 3997 sbi->s_extent_max_zeroout_kb = 32; 3998 3999 /* 4000 * set up enough so that it can read an inode 4001 */ 4002 sb->s_op = &ext4_sops; 4003 sb->s_export_op = &ext4_export_ops; 4004 sb->s_xattr = ext4_xattr_handlers; 4005 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4006 sb->s_cop = &ext4_cryptops; 4007 #endif 4008 #ifdef CONFIG_QUOTA 4009 sb->dq_op = &ext4_quota_operations; 4010 if (ext4_has_feature_quota(sb)) 4011 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4012 else 4013 sb->s_qcop = &ext4_qctl_operations; 4014 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4015 #endif 4016 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4017 4018 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4019 mutex_init(&sbi->s_orphan_lock); 4020 4021 sb->s_root = NULL; 4022 4023 needs_recovery = (es->s_last_orphan != 0 || 4024 ext4_has_feature_journal_needs_recovery(sb)); 4025 4026 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4027 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4028 goto failed_mount3a; 4029 4030 /* 4031 * The first inode we look at is the journal inode. Don't try 4032 * root first: it may be modified in the journal! 4033 */ 4034 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4035 err = ext4_load_journal(sb, es, journal_devnum); 4036 if (err) 4037 goto failed_mount3a; 4038 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4039 ext4_has_feature_journal_needs_recovery(sb)) { 4040 ext4_msg(sb, KERN_ERR, "required journal recovery " 4041 "suppressed and not mounted read-only"); 4042 goto failed_mount_wq; 4043 } else { 4044 /* Nojournal mode, all journal mount options are illegal */ 4045 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4046 ext4_msg(sb, KERN_ERR, "can't mount with " 4047 "journal_checksum, fs mounted w/o journal"); 4048 goto failed_mount_wq; 4049 } 4050 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4051 ext4_msg(sb, KERN_ERR, "can't mount with " 4052 "journal_async_commit, fs mounted w/o journal"); 4053 goto failed_mount_wq; 4054 } 4055 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4056 ext4_msg(sb, KERN_ERR, "can't mount with " 4057 "commit=%lu, fs mounted w/o journal", 4058 sbi->s_commit_interval / HZ); 4059 goto failed_mount_wq; 4060 } 4061 if (EXT4_MOUNT_DATA_FLAGS & 4062 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4063 ext4_msg(sb, KERN_ERR, "can't mount with " 4064 "data=, fs mounted w/o journal"); 4065 goto failed_mount_wq; 4066 } 4067 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4068 clear_opt(sb, JOURNAL_CHECKSUM); 4069 clear_opt(sb, DATA_FLAGS); 4070 sbi->s_journal = NULL; 4071 needs_recovery = 0; 4072 goto no_journal; 4073 } 4074 4075 if (ext4_has_feature_64bit(sb) && 4076 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4077 JBD2_FEATURE_INCOMPAT_64BIT)) { 4078 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4079 goto failed_mount_wq; 4080 } 4081 4082 if (!set_journal_csum_feature_set(sb)) { 4083 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4084 "feature set"); 4085 goto failed_mount_wq; 4086 } 4087 4088 /* We have now updated the journal if required, so we can 4089 * validate the data journaling mode. */ 4090 switch (test_opt(sb, DATA_FLAGS)) { 4091 case 0: 4092 /* No mode set, assume a default based on the journal 4093 * capabilities: ORDERED_DATA if the journal can 4094 * cope, else JOURNAL_DATA 4095 */ 4096 if (jbd2_journal_check_available_features 4097 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4098 set_opt(sb, ORDERED_DATA); 4099 else 4100 set_opt(sb, JOURNAL_DATA); 4101 break; 4102 4103 case EXT4_MOUNT_ORDERED_DATA: 4104 case EXT4_MOUNT_WRITEBACK_DATA: 4105 if (!jbd2_journal_check_available_features 4106 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4107 ext4_msg(sb, KERN_ERR, "Journal does not support " 4108 "requested data journaling mode"); 4109 goto failed_mount_wq; 4110 } 4111 default: 4112 break; 4113 } 4114 4115 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4116 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4117 ext4_msg(sb, KERN_ERR, "can't mount with " 4118 "journal_async_commit in data=ordered mode"); 4119 goto failed_mount_wq; 4120 } 4121 4122 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4123 4124 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4125 4126 no_journal: 4127 if (!test_opt(sb, NO_MBCACHE)) { 4128 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4129 if (!sbi->s_ea_block_cache) { 4130 ext4_msg(sb, KERN_ERR, 4131 "Failed to create ea_block_cache"); 4132 goto failed_mount_wq; 4133 } 4134 4135 if (ext4_has_feature_ea_inode(sb)) { 4136 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4137 if (!sbi->s_ea_inode_cache) { 4138 ext4_msg(sb, KERN_ERR, 4139 "Failed to create ea_inode_cache"); 4140 goto failed_mount_wq; 4141 } 4142 } 4143 } 4144 4145 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4146 (blocksize != PAGE_SIZE)) { 4147 ext4_msg(sb, KERN_ERR, 4148 "Unsupported blocksize for fs encryption"); 4149 goto failed_mount_wq; 4150 } 4151 4152 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4153 !ext4_has_feature_encrypt(sb)) { 4154 ext4_set_feature_encrypt(sb); 4155 ext4_commit_super(sb, 1); 4156 } 4157 4158 /* 4159 * Get the # of file system overhead blocks from the 4160 * superblock if present. 4161 */ 4162 if (es->s_overhead_clusters) 4163 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4164 else { 4165 err = ext4_calculate_overhead(sb); 4166 if (err) 4167 goto failed_mount_wq; 4168 } 4169 4170 /* 4171 * The maximum number of concurrent works can be high and 4172 * concurrency isn't really necessary. Limit it to 1. 4173 */ 4174 EXT4_SB(sb)->rsv_conversion_wq = 4175 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4176 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4177 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4178 ret = -ENOMEM; 4179 goto failed_mount4; 4180 } 4181 4182 /* 4183 * The jbd2_journal_load will have done any necessary log recovery, 4184 * so we can safely mount the rest of the filesystem now. 4185 */ 4186 4187 root = ext4_iget(sb, EXT4_ROOT_INO); 4188 if (IS_ERR(root)) { 4189 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4190 ret = PTR_ERR(root); 4191 root = NULL; 4192 goto failed_mount4; 4193 } 4194 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4195 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4196 iput(root); 4197 goto failed_mount4; 4198 } 4199 sb->s_root = d_make_root(root); 4200 if (!sb->s_root) { 4201 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4202 ret = -ENOMEM; 4203 goto failed_mount4; 4204 } 4205 4206 if (ext4_setup_super(sb, es, sb_rdonly(sb))) 4207 sb->s_flags |= SB_RDONLY; 4208 4209 /* determine the minimum size of new large inodes, if present */ 4210 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4211 sbi->s_want_extra_isize == 0) { 4212 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4213 EXT4_GOOD_OLD_INODE_SIZE; 4214 if (ext4_has_feature_extra_isize(sb)) { 4215 if (sbi->s_want_extra_isize < 4216 le16_to_cpu(es->s_want_extra_isize)) 4217 sbi->s_want_extra_isize = 4218 le16_to_cpu(es->s_want_extra_isize); 4219 if (sbi->s_want_extra_isize < 4220 le16_to_cpu(es->s_min_extra_isize)) 4221 sbi->s_want_extra_isize = 4222 le16_to_cpu(es->s_min_extra_isize); 4223 } 4224 } 4225 /* Check if enough inode space is available */ 4226 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4227 sbi->s_inode_size) { 4228 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4229 EXT4_GOOD_OLD_INODE_SIZE; 4230 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4231 "available"); 4232 } 4233 4234 ext4_set_resv_clusters(sb); 4235 4236 err = ext4_setup_system_zone(sb); 4237 if (err) { 4238 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4239 "zone (%d)", err); 4240 goto failed_mount4a; 4241 } 4242 4243 ext4_ext_init(sb); 4244 err = ext4_mb_init(sb); 4245 if (err) { 4246 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4247 err); 4248 goto failed_mount5; 4249 } 4250 4251 block = ext4_count_free_clusters(sb); 4252 ext4_free_blocks_count_set(sbi->s_es, 4253 EXT4_C2B(sbi, block)); 4254 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4255 GFP_KERNEL); 4256 if (!err) { 4257 unsigned long freei = ext4_count_free_inodes(sb); 4258 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4259 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4260 GFP_KERNEL); 4261 } 4262 if (!err) 4263 err = percpu_counter_init(&sbi->s_dirs_counter, 4264 ext4_count_dirs(sb), GFP_KERNEL); 4265 if (!err) 4266 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4267 GFP_KERNEL); 4268 if (!err) 4269 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4270 4271 if (err) { 4272 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4273 goto failed_mount6; 4274 } 4275 4276 if (ext4_has_feature_flex_bg(sb)) 4277 if (!ext4_fill_flex_info(sb)) { 4278 ext4_msg(sb, KERN_ERR, 4279 "unable to initialize " 4280 "flex_bg meta info!"); 4281 goto failed_mount6; 4282 } 4283 4284 err = ext4_register_li_request(sb, first_not_zeroed); 4285 if (err) 4286 goto failed_mount6; 4287 4288 err = ext4_register_sysfs(sb); 4289 if (err) 4290 goto failed_mount7; 4291 4292 #ifdef CONFIG_QUOTA 4293 /* Enable quota usage during mount. */ 4294 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4295 err = ext4_enable_quotas(sb); 4296 if (err) 4297 goto failed_mount8; 4298 } 4299 #endif /* CONFIG_QUOTA */ 4300 4301 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4302 ext4_orphan_cleanup(sb, es); 4303 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4304 if (needs_recovery) { 4305 ext4_msg(sb, KERN_INFO, "recovery complete"); 4306 ext4_mark_recovery_complete(sb, es); 4307 } 4308 if (EXT4_SB(sb)->s_journal) { 4309 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4310 descr = " journalled data mode"; 4311 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4312 descr = " ordered data mode"; 4313 else 4314 descr = " writeback data mode"; 4315 } else 4316 descr = "out journal"; 4317 4318 if (test_opt(sb, DISCARD)) { 4319 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4320 if (!blk_queue_discard(q)) 4321 ext4_msg(sb, KERN_WARNING, 4322 "mounting with \"discard\" option, but " 4323 "the device does not support discard"); 4324 } 4325 4326 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4327 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4328 "Opts: %.*s%s%s", descr, 4329 (int) sizeof(sbi->s_es->s_mount_opts), 4330 sbi->s_es->s_mount_opts, 4331 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4332 4333 if (es->s_error_count) 4334 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4335 4336 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4337 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4338 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4339 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4340 4341 kfree(orig_data); 4342 return 0; 4343 4344 cantfind_ext4: 4345 if (!silent) 4346 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4347 goto failed_mount; 4348 4349 #ifdef CONFIG_QUOTA 4350 failed_mount8: 4351 ext4_unregister_sysfs(sb); 4352 #endif 4353 failed_mount7: 4354 ext4_unregister_li_request(sb); 4355 failed_mount6: 4356 ext4_mb_release(sb); 4357 if (sbi->s_flex_groups) 4358 kvfree(sbi->s_flex_groups); 4359 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4360 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4361 percpu_counter_destroy(&sbi->s_dirs_counter); 4362 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4363 failed_mount5: 4364 ext4_ext_release(sb); 4365 ext4_release_system_zone(sb); 4366 failed_mount4a: 4367 dput(sb->s_root); 4368 sb->s_root = NULL; 4369 failed_mount4: 4370 ext4_msg(sb, KERN_ERR, "mount failed"); 4371 if (EXT4_SB(sb)->rsv_conversion_wq) 4372 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4373 failed_mount_wq: 4374 if (sbi->s_ea_inode_cache) { 4375 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4376 sbi->s_ea_inode_cache = NULL; 4377 } 4378 if (sbi->s_ea_block_cache) { 4379 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4380 sbi->s_ea_block_cache = NULL; 4381 } 4382 if (sbi->s_journal) { 4383 jbd2_journal_destroy(sbi->s_journal); 4384 sbi->s_journal = NULL; 4385 } 4386 failed_mount3a: 4387 ext4_es_unregister_shrinker(sbi); 4388 failed_mount3: 4389 del_timer_sync(&sbi->s_err_report); 4390 if (sbi->s_mmp_tsk) 4391 kthread_stop(sbi->s_mmp_tsk); 4392 failed_mount2: 4393 for (i = 0; i < db_count; i++) 4394 brelse(sbi->s_group_desc[i]); 4395 kvfree(sbi->s_group_desc); 4396 failed_mount: 4397 if (sbi->s_chksum_driver) 4398 crypto_free_shash(sbi->s_chksum_driver); 4399 #ifdef CONFIG_QUOTA 4400 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4401 kfree(sbi->s_qf_names[i]); 4402 #endif 4403 ext4_blkdev_remove(sbi); 4404 brelse(bh); 4405 out_fail: 4406 sb->s_fs_info = NULL; 4407 kfree(sbi->s_blockgroup_lock); 4408 out_free_base: 4409 kfree(sbi); 4410 kfree(orig_data); 4411 fs_put_dax(dax_dev); 4412 return err ? err : ret; 4413 } 4414 4415 /* 4416 * Setup any per-fs journal parameters now. We'll do this both on 4417 * initial mount, once the journal has been initialised but before we've 4418 * done any recovery; and again on any subsequent remount. 4419 */ 4420 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4421 { 4422 struct ext4_sb_info *sbi = EXT4_SB(sb); 4423 4424 journal->j_commit_interval = sbi->s_commit_interval; 4425 journal->j_min_batch_time = sbi->s_min_batch_time; 4426 journal->j_max_batch_time = sbi->s_max_batch_time; 4427 4428 write_lock(&journal->j_state_lock); 4429 if (test_opt(sb, BARRIER)) 4430 journal->j_flags |= JBD2_BARRIER; 4431 else 4432 journal->j_flags &= ~JBD2_BARRIER; 4433 if (test_opt(sb, DATA_ERR_ABORT)) 4434 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4435 else 4436 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4437 write_unlock(&journal->j_state_lock); 4438 } 4439 4440 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4441 unsigned int journal_inum) 4442 { 4443 struct inode *journal_inode; 4444 4445 /* 4446 * Test for the existence of a valid inode on disk. Bad things 4447 * happen if we iget() an unused inode, as the subsequent iput() 4448 * will try to delete it. 4449 */ 4450 journal_inode = ext4_iget(sb, journal_inum); 4451 if (IS_ERR(journal_inode)) { 4452 ext4_msg(sb, KERN_ERR, "no journal found"); 4453 return NULL; 4454 } 4455 if (!journal_inode->i_nlink) { 4456 make_bad_inode(journal_inode); 4457 iput(journal_inode); 4458 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4459 return NULL; 4460 } 4461 4462 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4463 journal_inode, journal_inode->i_size); 4464 if (!S_ISREG(journal_inode->i_mode)) { 4465 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4466 iput(journal_inode); 4467 return NULL; 4468 } 4469 return journal_inode; 4470 } 4471 4472 static journal_t *ext4_get_journal(struct super_block *sb, 4473 unsigned int journal_inum) 4474 { 4475 struct inode *journal_inode; 4476 journal_t *journal; 4477 4478 BUG_ON(!ext4_has_feature_journal(sb)); 4479 4480 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4481 if (!journal_inode) 4482 return NULL; 4483 4484 journal = jbd2_journal_init_inode(journal_inode); 4485 if (!journal) { 4486 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4487 iput(journal_inode); 4488 return NULL; 4489 } 4490 journal->j_private = sb; 4491 ext4_init_journal_params(sb, journal); 4492 return journal; 4493 } 4494 4495 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4496 dev_t j_dev) 4497 { 4498 struct buffer_head *bh; 4499 journal_t *journal; 4500 ext4_fsblk_t start; 4501 ext4_fsblk_t len; 4502 int hblock, blocksize; 4503 ext4_fsblk_t sb_block; 4504 unsigned long offset; 4505 struct ext4_super_block *es; 4506 struct block_device *bdev; 4507 4508 BUG_ON(!ext4_has_feature_journal(sb)); 4509 4510 bdev = ext4_blkdev_get(j_dev, sb); 4511 if (bdev == NULL) 4512 return NULL; 4513 4514 blocksize = sb->s_blocksize; 4515 hblock = bdev_logical_block_size(bdev); 4516 if (blocksize < hblock) { 4517 ext4_msg(sb, KERN_ERR, 4518 "blocksize too small for journal device"); 4519 goto out_bdev; 4520 } 4521 4522 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4523 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4524 set_blocksize(bdev, blocksize); 4525 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4526 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4527 "external journal"); 4528 goto out_bdev; 4529 } 4530 4531 es = (struct ext4_super_block *) (bh->b_data + offset); 4532 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4533 !(le32_to_cpu(es->s_feature_incompat) & 4534 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4535 ext4_msg(sb, KERN_ERR, "external journal has " 4536 "bad superblock"); 4537 brelse(bh); 4538 goto out_bdev; 4539 } 4540 4541 if ((le32_to_cpu(es->s_feature_ro_compat) & 4542 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4543 es->s_checksum != ext4_superblock_csum(sb, es)) { 4544 ext4_msg(sb, KERN_ERR, "external journal has " 4545 "corrupt superblock"); 4546 brelse(bh); 4547 goto out_bdev; 4548 } 4549 4550 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4551 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4552 brelse(bh); 4553 goto out_bdev; 4554 } 4555 4556 len = ext4_blocks_count(es); 4557 start = sb_block + 1; 4558 brelse(bh); /* we're done with the superblock */ 4559 4560 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4561 start, len, blocksize); 4562 if (!journal) { 4563 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4564 goto out_bdev; 4565 } 4566 journal->j_private = sb; 4567 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4568 wait_on_buffer(journal->j_sb_buffer); 4569 if (!buffer_uptodate(journal->j_sb_buffer)) { 4570 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4571 goto out_journal; 4572 } 4573 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4574 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4575 "user (unsupported) - %d", 4576 be32_to_cpu(journal->j_superblock->s_nr_users)); 4577 goto out_journal; 4578 } 4579 EXT4_SB(sb)->journal_bdev = bdev; 4580 ext4_init_journal_params(sb, journal); 4581 return journal; 4582 4583 out_journal: 4584 jbd2_journal_destroy(journal); 4585 out_bdev: 4586 ext4_blkdev_put(bdev); 4587 return NULL; 4588 } 4589 4590 static int ext4_load_journal(struct super_block *sb, 4591 struct ext4_super_block *es, 4592 unsigned long journal_devnum) 4593 { 4594 journal_t *journal; 4595 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4596 dev_t journal_dev; 4597 int err = 0; 4598 int really_read_only; 4599 4600 BUG_ON(!ext4_has_feature_journal(sb)); 4601 4602 if (journal_devnum && 4603 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4604 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4605 "numbers have changed"); 4606 journal_dev = new_decode_dev(journal_devnum); 4607 } else 4608 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4609 4610 really_read_only = bdev_read_only(sb->s_bdev); 4611 4612 /* 4613 * Are we loading a blank journal or performing recovery after a 4614 * crash? For recovery, we need to check in advance whether we 4615 * can get read-write access to the device. 4616 */ 4617 if (ext4_has_feature_journal_needs_recovery(sb)) { 4618 if (sb_rdonly(sb)) { 4619 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4620 "required on readonly filesystem"); 4621 if (really_read_only) { 4622 ext4_msg(sb, KERN_ERR, "write access " 4623 "unavailable, cannot proceed " 4624 "(try mounting with noload)"); 4625 return -EROFS; 4626 } 4627 ext4_msg(sb, KERN_INFO, "write access will " 4628 "be enabled during recovery"); 4629 } 4630 } 4631 4632 if (journal_inum && journal_dev) { 4633 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4634 "and inode journals!"); 4635 return -EINVAL; 4636 } 4637 4638 if (journal_inum) { 4639 if (!(journal = ext4_get_journal(sb, journal_inum))) 4640 return -EINVAL; 4641 } else { 4642 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4643 return -EINVAL; 4644 } 4645 4646 if (!(journal->j_flags & JBD2_BARRIER)) 4647 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4648 4649 if (!ext4_has_feature_journal_needs_recovery(sb)) 4650 err = jbd2_journal_wipe(journal, !really_read_only); 4651 if (!err) { 4652 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4653 if (save) 4654 memcpy(save, ((char *) es) + 4655 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4656 err = jbd2_journal_load(journal); 4657 if (save) 4658 memcpy(((char *) es) + EXT4_S_ERR_START, 4659 save, EXT4_S_ERR_LEN); 4660 kfree(save); 4661 } 4662 4663 if (err) { 4664 ext4_msg(sb, KERN_ERR, "error loading journal"); 4665 jbd2_journal_destroy(journal); 4666 return err; 4667 } 4668 4669 EXT4_SB(sb)->s_journal = journal; 4670 ext4_clear_journal_err(sb, es); 4671 4672 if (!really_read_only && journal_devnum && 4673 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4674 es->s_journal_dev = cpu_to_le32(journal_devnum); 4675 4676 /* Make sure we flush the recovery flag to disk. */ 4677 ext4_commit_super(sb, 1); 4678 } 4679 4680 return 0; 4681 } 4682 4683 static int ext4_commit_super(struct super_block *sb, int sync) 4684 { 4685 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4686 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4687 int error = 0; 4688 4689 if (!sbh || block_device_ejected(sb)) 4690 return error; 4691 /* 4692 * If the file system is mounted read-only, don't update the 4693 * superblock write time. This avoids updating the superblock 4694 * write time when we are mounting the root file system 4695 * read/only but we need to replay the journal; at that point, 4696 * for people who are east of GMT and who make their clock 4697 * tick in localtime for Windows bug-for-bug compatibility, 4698 * the clock is set in the future, and this will cause e2fsck 4699 * to complain and force a full file system check. 4700 */ 4701 if (!(sb->s_flags & SB_RDONLY)) 4702 es->s_wtime = cpu_to_le32(get_seconds()); 4703 if (sb->s_bdev->bd_part) 4704 es->s_kbytes_written = 4705 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4706 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4707 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4708 else 4709 es->s_kbytes_written = 4710 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4711 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4712 ext4_free_blocks_count_set(es, 4713 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4714 &EXT4_SB(sb)->s_freeclusters_counter))); 4715 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4716 es->s_free_inodes_count = 4717 cpu_to_le32(percpu_counter_sum_positive( 4718 &EXT4_SB(sb)->s_freeinodes_counter)); 4719 BUFFER_TRACE(sbh, "marking dirty"); 4720 ext4_superblock_csum_set(sb); 4721 if (sync) 4722 lock_buffer(sbh); 4723 if (buffer_write_io_error(sbh)) { 4724 /* 4725 * Oh, dear. A previous attempt to write the 4726 * superblock failed. This could happen because the 4727 * USB device was yanked out. Or it could happen to 4728 * be a transient write error and maybe the block will 4729 * be remapped. Nothing we can do but to retry the 4730 * write and hope for the best. 4731 */ 4732 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4733 "superblock detected"); 4734 clear_buffer_write_io_error(sbh); 4735 set_buffer_uptodate(sbh); 4736 } 4737 mark_buffer_dirty(sbh); 4738 if (sync) { 4739 unlock_buffer(sbh); 4740 error = __sync_dirty_buffer(sbh, 4741 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4742 if (error) 4743 return error; 4744 4745 error = buffer_write_io_error(sbh); 4746 if (error) { 4747 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4748 "superblock"); 4749 clear_buffer_write_io_error(sbh); 4750 set_buffer_uptodate(sbh); 4751 } 4752 } 4753 return error; 4754 } 4755 4756 /* 4757 * Have we just finished recovery? If so, and if we are mounting (or 4758 * remounting) the filesystem readonly, then we will end up with a 4759 * consistent fs on disk. Record that fact. 4760 */ 4761 static void ext4_mark_recovery_complete(struct super_block *sb, 4762 struct ext4_super_block *es) 4763 { 4764 journal_t *journal = EXT4_SB(sb)->s_journal; 4765 4766 if (!ext4_has_feature_journal(sb)) { 4767 BUG_ON(journal != NULL); 4768 return; 4769 } 4770 jbd2_journal_lock_updates(journal); 4771 if (jbd2_journal_flush(journal) < 0) 4772 goto out; 4773 4774 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4775 ext4_clear_feature_journal_needs_recovery(sb); 4776 ext4_commit_super(sb, 1); 4777 } 4778 4779 out: 4780 jbd2_journal_unlock_updates(journal); 4781 } 4782 4783 /* 4784 * If we are mounting (or read-write remounting) a filesystem whose journal 4785 * has recorded an error from a previous lifetime, move that error to the 4786 * main filesystem now. 4787 */ 4788 static void ext4_clear_journal_err(struct super_block *sb, 4789 struct ext4_super_block *es) 4790 { 4791 journal_t *journal; 4792 int j_errno; 4793 const char *errstr; 4794 4795 BUG_ON(!ext4_has_feature_journal(sb)); 4796 4797 journal = EXT4_SB(sb)->s_journal; 4798 4799 /* 4800 * Now check for any error status which may have been recorded in the 4801 * journal by a prior ext4_error() or ext4_abort() 4802 */ 4803 4804 j_errno = jbd2_journal_errno(journal); 4805 if (j_errno) { 4806 char nbuf[16]; 4807 4808 errstr = ext4_decode_error(sb, j_errno, nbuf); 4809 ext4_warning(sb, "Filesystem error recorded " 4810 "from previous mount: %s", errstr); 4811 ext4_warning(sb, "Marking fs in need of filesystem check."); 4812 4813 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4814 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4815 ext4_commit_super(sb, 1); 4816 4817 jbd2_journal_clear_err(journal); 4818 jbd2_journal_update_sb_errno(journal); 4819 } 4820 } 4821 4822 /* 4823 * Force the running and committing transactions to commit, 4824 * and wait on the commit. 4825 */ 4826 int ext4_force_commit(struct super_block *sb) 4827 { 4828 journal_t *journal; 4829 4830 if (sb_rdonly(sb)) 4831 return 0; 4832 4833 journal = EXT4_SB(sb)->s_journal; 4834 return ext4_journal_force_commit(journal); 4835 } 4836 4837 static int ext4_sync_fs(struct super_block *sb, int wait) 4838 { 4839 int ret = 0; 4840 tid_t target; 4841 bool needs_barrier = false; 4842 struct ext4_sb_info *sbi = EXT4_SB(sb); 4843 4844 if (unlikely(ext4_forced_shutdown(sbi))) 4845 return 0; 4846 4847 trace_ext4_sync_fs(sb, wait); 4848 flush_workqueue(sbi->rsv_conversion_wq); 4849 /* 4850 * Writeback quota in non-journalled quota case - journalled quota has 4851 * no dirty dquots 4852 */ 4853 dquot_writeback_dquots(sb, -1); 4854 /* 4855 * Data writeback is possible w/o journal transaction, so barrier must 4856 * being sent at the end of the function. But we can skip it if 4857 * transaction_commit will do it for us. 4858 */ 4859 if (sbi->s_journal) { 4860 target = jbd2_get_latest_transaction(sbi->s_journal); 4861 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4862 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4863 needs_barrier = true; 4864 4865 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4866 if (wait) 4867 ret = jbd2_log_wait_commit(sbi->s_journal, 4868 target); 4869 } 4870 } else if (wait && test_opt(sb, BARRIER)) 4871 needs_barrier = true; 4872 if (needs_barrier) { 4873 int err; 4874 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4875 if (!ret) 4876 ret = err; 4877 } 4878 4879 return ret; 4880 } 4881 4882 /* 4883 * LVM calls this function before a (read-only) snapshot is created. This 4884 * gives us a chance to flush the journal completely and mark the fs clean. 4885 * 4886 * Note that only this function cannot bring a filesystem to be in a clean 4887 * state independently. It relies on upper layer to stop all data & metadata 4888 * modifications. 4889 */ 4890 static int ext4_freeze(struct super_block *sb) 4891 { 4892 int error = 0; 4893 journal_t *journal; 4894 4895 if (sb_rdonly(sb)) 4896 return 0; 4897 4898 journal = EXT4_SB(sb)->s_journal; 4899 4900 if (journal) { 4901 /* Now we set up the journal barrier. */ 4902 jbd2_journal_lock_updates(journal); 4903 4904 /* 4905 * Don't clear the needs_recovery flag if we failed to 4906 * flush the journal. 4907 */ 4908 error = jbd2_journal_flush(journal); 4909 if (error < 0) 4910 goto out; 4911 4912 /* Journal blocked and flushed, clear needs_recovery flag. */ 4913 ext4_clear_feature_journal_needs_recovery(sb); 4914 } 4915 4916 error = ext4_commit_super(sb, 1); 4917 out: 4918 if (journal) 4919 /* we rely on upper layer to stop further updates */ 4920 jbd2_journal_unlock_updates(journal); 4921 return error; 4922 } 4923 4924 /* 4925 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4926 * flag here, even though the filesystem is not technically dirty yet. 4927 */ 4928 static int ext4_unfreeze(struct super_block *sb) 4929 { 4930 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 4931 return 0; 4932 4933 if (EXT4_SB(sb)->s_journal) { 4934 /* Reset the needs_recovery flag before the fs is unlocked. */ 4935 ext4_set_feature_journal_needs_recovery(sb); 4936 } 4937 4938 ext4_commit_super(sb, 1); 4939 return 0; 4940 } 4941 4942 /* 4943 * Structure to save mount options for ext4_remount's benefit 4944 */ 4945 struct ext4_mount_options { 4946 unsigned long s_mount_opt; 4947 unsigned long s_mount_opt2; 4948 kuid_t s_resuid; 4949 kgid_t s_resgid; 4950 unsigned long s_commit_interval; 4951 u32 s_min_batch_time, s_max_batch_time; 4952 #ifdef CONFIG_QUOTA 4953 int s_jquota_fmt; 4954 char *s_qf_names[EXT4_MAXQUOTAS]; 4955 #endif 4956 }; 4957 4958 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4959 { 4960 struct ext4_super_block *es; 4961 struct ext4_sb_info *sbi = EXT4_SB(sb); 4962 unsigned long old_sb_flags; 4963 struct ext4_mount_options old_opts; 4964 int enable_quota = 0; 4965 ext4_group_t g; 4966 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4967 int err = 0; 4968 #ifdef CONFIG_QUOTA 4969 int i, j; 4970 #endif 4971 char *orig_data = kstrdup(data, GFP_KERNEL); 4972 4973 /* Store the original options */ 4974 old_sb_flags = sb->s_flags; 4975 old_opts.s_mount_opt = sbi->s_mount_opt; 4976 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4977 old_opts.s_resuid = sbi->s_resuid; 4978 old_opts.s_resgid = sbi->s_resgid; 4979 old_opts.s_commit_interval = sbi->s_commit_interval; 4980 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4981 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4982 #ifdef CONFIG_QUOTA 4983 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4984 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4985 if (sbi->s_qf_names[i]) { 4986 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4987 GFP_KERNEL); 4988 if (!old_opts.s_qf_names[i]) { 4989 for (j = 0; j < i; j++) 4990 kfree(old_opts.s_qf_names[j]); 4991 kfree(orig_data); 4992 return -ENOMEM; 4993 } 4994 } else 4995 old_opts.s_qf_names[i] = NULL; 4996 #endif 4997 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4998 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4999 5000 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5001 err = -EINVAL; 5002 goto restore_opts; 5003 } 5004 5005 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5006 test_opt(sb, JOURNAL_CHECKSUM)) { 5007 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5008 "during remount not supported; ignoring"); 5009 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5010 } 5011 5012 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5013 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5014 ext4_msg(sb, KERN_ERR, "can't mount with " 5015 "both data=journal and delalloc"); 5016 err = -EINVAL; 5017 goto restore_opts; 5018 } 5019 if (test_opt(sb, DIOREAD_NOLOCK)) { 5020 ext4_msg(sb, KERN_ERR, "can't mount with " 5021 "both data=journal and dioread_nolock"); 5022 err = -EINVAL; 5023 goto restore_opts; 5024 } 5025 if (test_opt(sb, DAX)) { 5026 ext4_msg(sb, KERN_ERR, "can't mount with " 5027 "both data=journal and dax"); 5028 err = -EINVAL; 5029 goto restore_opts; 5030 } 5031 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5032 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5033 ext4_msg(sb, KERN_ERR, "can't mount with " 5034 "journal_async_commit in data=ordered mode"); 5035 err = -EINVAL; 5036 goto restore_opts; 5037 } 5038 } 5039 5040 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5041 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5042 err = -EINVAL; 5043 goto restore_opts; 5044 } 5045 5046 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5047 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5048 "dax flag with busy inodes while remounting"); 5049 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5050 } 5051 5052 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5053 ext4_abort(sb, "Abort forced by user"); 5054 5055 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5056 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5057 5058 es = sbi->s_es; 5059 5060 if (sbi->s_journal) { 5061 ext4_init_journal_params(sb, sbi->s_journal); 5062 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5063 } 5064 5065 if (*flags & SB_LAZYTIME) 5066 sb->s_flags |= SB_LAZYTIME; 5067 5068 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5069 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5070 err = -EROFS; 5071 goto restore_opts; 5072 } 5073 5074 if (*flags & SB_RDONLY) { 5075 err = sync_filesystem(sb); 5076 if (err < 0) 5077 goto restore_opts; 5078 err = dquot_suspend(sb, -1); 5079 if (err < 0) 5080 goto restore_opts; 5081 5082 /* 5083 * First of all, the unconditional stuff we have to do 5084 * to disable replay of the journal when we next remount 5085 */ 5086 sb->s_flags |= SB_RDONLY; 5087 5088 /* 5089 * OK, test if we are remounting a valid rw partition 5090 * readonly, and if so set the rdonly flag and then 5091 * mark the partition as valid again. 5092 */ 5093 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5094 (sbi->s_mount_state & EXT4_VALID_FS)) 5095 es->s_state = cpu_to_le16(sbi->s_mount_state); 5096 5097 if (sbi->s_journal) 5098 ext4_mark_recovery_complete(sb, es); 5099 } else { 5100 /* Make sure we can mount this feature set readwrite */ 5101 if (ext4_has_feature_readonly(sb) || 5102 !ext4_feature_set_ok(sb, 0)) { 5103 err = -EROFS; 5104 goto restore_opts; 5105 } 5106 /* 5107 * Make sure the group descriptor checksums 5108 * are sane. If they aren't, refuse to remount r/w. 5109 */ 5110 for (g = 0; g < sbi->s_groups_count; g++) { 5111 struct ext4_group_desc *gdp = 5112 ext4_get_group_desc(sb, g, NULL); 5113 5114 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5115 ext4_msg(sb, KERN_ERR, 5116 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5117 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5118 le16_to_cpu(gdp->bg_checksum)); 5119 err = -EFSBADCRC; 5120 goto restore_opts; 5121 } 5122 } 5123 5124 /* 5125 * If we have an unprocessed orphan list hanging 5126 * around from a previously readonly bdev mount, 5127 * require a full umount/remount for now. 5128 */ 5129 if (es->s_last_orphan) { 5130 ext4_msg(sb, KERN_WARNING, "Couldn't " 5131 "remount RDWR because of unprocessed " 5132 "orphan inode list. Please " 5133 "umount/remount instead"); 5134 err = -EINVAL; 5135 goto restore_opts; 5136 } 5137 5138 /* 5139 * Mounting a RDONLY partition read-write, so reread 5140 * and store the current valid flag. (It may have 5141 * been changed by e2fsck since we originally mounted 5142 * the partition.) 5143 */ 5144 if (sbi->s_journal) 5145 ext4_clear_journal_err(sb, es); 5146 sbi->s_mount_state = le16_to_cpu(es->s_state); 5147 if (!ext4_setup_super(sb, es, 0)) 5148 sb->s_flags &= ~SB_RDONLY; 5149 if (ext4_has_feature_mmp(sb)) 5150 if (ext4_multi_mount_protect(sb, 5151 le64_to_cpu(es->s_mmp_block))) { 5152 err = -EROFS; 5153 goto restore_opts; 5154 } 5155 enable_quota = 1; 5156 } 5157 } 5158 5159 /* 5160 * Reinitialize lazy itable initialization thread based on 5161 * current settings 5162 */ 5163 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5164 ext4_unregister_li_request(sb); 5165 else { 5166 ext4_group_t first_not_zeroed; 5167 first_not_zeroed = ext4_has_uninit_itable(sb); 5168 ext4_register_li_request(sb, first_not_zeroed); 5169 } 5170 5171 ext4_setup_system_zone(sb); 5172 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) 5173 ext4_commit_super(sb, 1); 5174 5175 #ifdef CONFIG_QUOTA 5176 /* Release old quota file names */ 5177 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5178 kfree(old_opts.s_qf_names[i]); 5179 if (enable_quota) { 5180 if (sb_any_quota_suspended(sb)) 5181 dquot_resume(sb, -1); 5182 else if (ext4_has_feature_quota(sb)) { 5183 err = ext4_enable_quotas(sb); 5184 if (err) 5185 goto restore_opts; 5186 } 5187 } 5188 #endif 5189 5190 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5191 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5192 kfree(orig_data); 5193 return 0; 5194 5195 restore_opts: 5196 sb->s_flags = old_sb_flags; 5197 sbi->s_mount_opt = old_opts.s_mount_opt; 5198 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5199 sbi->s_resuid = old_opts.s_resuid; 5200 sbi->s_resgid = old_opts.s_resgid; 5201 sbi->s_commit_interval = old_opts.s_commit_interval; 5202 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5203 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5204 #ifdef CONFIG_QUOTA 5205 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5206 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5207 kfree(sbi->s_qf_names[i]); 5208 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5209 } 5210 #endif 5211 kfree(orig_data); 5212 return err; 5213 } 5214 5215 #ifdef CONFIG_QUOTA 5216 static int ext4_statfs_project(struct super_block *sb, 5217 kprojid_t projid, struct kstatfs *buf) 5218 { 5219 struct kqid qid; 5220 struct dquot *dquot; 5221 u64 limit; 5222 u64 curblock; 5223 5224 qid = make_kqid_projid(projid); 5225 dquot = dqget(sb, qid); 5226 if (IS_ERR(dquot)) 5227 return PTR_ERR(dquot); 5228 spin_lock(&dquot->dq_dqb_lock); 5229 5230 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5231 dquot->dq_dqb.dqb_bsoftlimit : 5232 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5233 if (limit && buf->f_blocks > limit) { 5234 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5235 buf->f_blocks = limit; 5236 buf->f_bfree = buf->f_bavail = 5237 (buf->f_blocks > curblock) ? 5238 (buf->f_blocks - curblock) : 0; 5239 } 5240 5241 limit = dquot->dq_dqb.dqb_isoftlimit ? 5242 dquot->dq_dqb.dqb_isoftlimit : 5243 dquot->dq_dqb.dqb_ihardlimit; 5244 if (limit && buf->f_files > limit) { 5245 buf->f_files = limit; 5246 buf->f_ffree = 5247 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5248 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5249 } 5250 5251 spin_unlock(&dquot->dq_dqb_lock); 5252 dqput(dquot); 5253 return 0; 5254 } 5255 #endif 5256 5257 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5258 { 5259 struct super_block *sb = dentry->d_sb; 5260 struct ext4_sb_info *sbi = EXT4_SB(sb); 5261 struct ext4_super_block *es = sbi->s_es; 5262 ext4_fsblk_t overhead = 0, resv_blocks; 5263 u64 fsid; 5264 s64 bfree; 5265 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5266 5267 if (!test_opt(sb, MINIX_DF)) 5268 overhead = sbi->s_overhead; 5269 5270 buf->f_type = EXT4_SUPER_MAGIC; 5271 buf->f_bsize = sb->s_blocksize; 5272 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5273 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5274 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5275 /* prevent underflow in case that few free space is available */ 5276 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5277 buf->f_bavail = buf->f_bfree - 5278 (ext4_r_blocks_count(es) + resv_blocks); 5279 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5280 buf->f_bavail = 0; 5281 buf->f_files = le32_to_cpu(es->s_inodes_count); 5282 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5283 buf->f_namelen = EXT4_NAME_LEN; 5284 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5285 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5286 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5287 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5288 5289 #ifdef CONFIG_QUOTA 5290 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5291 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5292 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5293 #endif 5294 return 0; 5295 } 5296 5297 5298 #ifdef CONFIG_QUOTA 5299 5300 /* 5301 * Helper functions so that transaction is started before we acquire dqio_sem 5302 * to keep correct lock ordering of transaction > dqio_sem 5303 */ 5304 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5305 { 5306 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5307 } 5308 5309 static int ext4_write_dquot(struct dquot *dquot) 5310 { 5311 int ret, err; 5312 handle_t *handle; 5313 struct inode *inode; 5314 5315 inode = dquot_to_inode(dquot); 5316 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5317 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5318 if (IS_ERR(handle)) 5319 return PTR_ERR(handle); 5320 ret = dquot_commit(dquot); 5321 err = ext4_journal_stop(handle); 5322 if (!ret) 5323 ret = err; 5324 return ret; 5325 } 5326 5327 static int ext4_acquire_dquot(struct dquot *dquot) 5328 { 5329 int ret, err; 5330 handle_t *handle; 5331 5332 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5333 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5334 if (IS_ERR(handle)) 5335 return PTR_ERR(handle); 5336 ret = dquot_acquire(dquot); 5337 err = ext4_journal_stop(handle); 5338 if (!ret) 5339 ret = err; 5340 return ret; 5341 } 5342 5343 static int ext4_release_dquot(struct dquot *dquot) 5344 { 5345 int ret, err; 5346 handle_t *handle; 5347 5348 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5349 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5350 if (IS_ERR(handle)) { 5351 /* Release dquot anyway to avoid endless cycle in dqput() */ 5352 dquot_release(dquot); 5353 return PTR_ERR(handle); 5354 } 5355 ret = dquot_release(dquot); 5356 err = ext4_journal_stop(handle); 5357 if (!ret) 5358 ret = err; 5359 return ret; 5360 } 5361 5362 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5363 { 5364 struct super_block *sb = dquot->dq_sb; 5365 struct ext4_sb_info *sbi = EXT4_SB(sb); 5366 5367 /* Are we journaling quotas? */ 5368 if (ext4_has_feature_quota(sb) || 5369 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5370 dquot_mark_dquot_dirty(dquot); 5371 return ext4_write_dquot(dquot); 5372 } else { 5373 return dquot_mark_dquot_dirty(dquot); 5374 } 5375 } 5376 5377 static int ext4_write_info(struct super_block *sb, int type) 5378 { 5379 int ret, err; 5380 handle_t *handle; 5381 5382 /* Data block + inode block */ 5383 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5384 if (IS_ERR(handle)) 5385 return PTR_ERR(handle); 5386 ret = dquot_commit_info(sb, type); 5387 err = ext4_journal_stop(handle); 5388 if (!ret) 5389 ret = err; 5390 return ret; 5391 } 5392 5393 /* 5394 * Turn on quotas during mount time - we need to find 5395 * the quota file and such... 5396 */ 5397 static int ext4_quota_on_mount(struct super_block *sb, int type) 5398 { 5399 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5400 EXT4_SB(sb)->s_jquota_fmt, type); 5401 } 5402 5403 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5404 { 5405 struct ext4_inode_info *ei = EXT4_I(inode); 5406 5407 /* The first argument of lockdep_set_subclass has to be 5408 * *exactly* the same as the argument to init_rwsem() --- in 5409 * this case, in init_once() --- or lockdep gets unhappy 5410 * because the name of the lock is set using the 5411 * stringification of the argument to init_rwsem(). 5412 */ 5413 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5414 lockdep_set_subclass(&ei->i_data_sem, subclass); 5415 } 5416 5417 /* 5418 * Standard function to be called on quota_on 5419 */ 5420 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5421 const struct path *path) 5422 { 5423 int err; 5424 5425 if (!test_opt(sb, QUOTA)) 5426 return -EINVAL; 5427 5428 /* Quotafile not on the same filesystem? */ 5429 if (path->dentry->d_sb != sb) 5430 return -EXDEV; 5431 /* Journaling quota? */ 5432 if (EXT4_SB(sb)->s_qf_names[type]) { 5433 /* Quotafile not in fs root? */ 5434 if (path->dentry->d_parent != sb->s_root) 5435 ext4_msg(sb, KERN_WARNING, 5436 "Quota file not on filesystem root. " 5437 "Journaled quota will not work"); 5438 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5439 } else { 5440 /* 5441 * Clear the flag just in case mount options changed since 5442 * last time. 5443 */ 5444 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5445 } 5446 5447 /* 5448 * When we journal data on quota file, we have to flush journal to see 5449 * all updates to the file when we bypass pagecache... 5450 */ 5451 if (EXT4_SB(sb)->s_journal && 5452 ext4_should_journal_data(d_inode(path->dentry))) { 5453 /* 5454 * We don't need to lock updates but journal_flush() could 5455 * otherwise be livelocked... 5456 */ 5457 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5458 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5459 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5460 if (err) 5461 return err; 5462 } 5463 5464 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5465 err = dquot_quota_on(sb, type, format_id, path); 5466 if (err) { 5467 lockdep_set_quota_inode(path->dentry->d_inode, 5468 I_DATA_SEM_NORMAL); 5469 } else { 5470 struct inode *inode = d_inode(path->dentry); 5471 handle_t *handle; 5472 5473 /* 5474 * Set inode flags to prevent userspace from messing with quota 5475 * files. If this fails, we return success anyway since quotas 5476 * are already enabled and this is not a hard failure. 5477 */ 5478 inode_lock(inode); 5479 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5480 if (IS_ERR(handle)) 5481 goto unlock_inode; 5482 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5483 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5484 S_NOATIME | S_IMMUTABLE); 5485 ext4_mark_inode_dirty(handle, inode); 5486 ext4_journal_stop(handle); 5487 unlock_inode: 5488 inode_unlock(inode); 5489 } 5490 return err; 5491 } 5492 5493 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5494 unsigned int flags) 5495 { 5496 int err; 5497 struct inode *qf_inode; 5498 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5499 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5500 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5501 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5502 }; 5503 5504 BUG_ON(!ext4_has_feature_quota(sb)); 5505 5506 if (!qf_inums[type]) 5507 return -EPERM; 5508 5509 qf_inode = ext4_iget(sb, qf_inums[type]); 5510 if (IS_ERR(qf_inode)) { 5511 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5512 return PTR_ERR(qf_inode); 5513 } 5514 5515 /* Don't account quota for quota files to avoid recursion */ 5516 qf_inode->i_flags |= S_NOQUOTA; 5517 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5518 err = dquot_enable(qf_inode, type, format_id, flags); 5519 iput(qf_inode); 5520 if (err) 5521 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5522 5523 return err; 5524 } 5525 5526 /* Enable usage tracking for all quota types. */ 5527 static int ext4_enable_quotas(struct super_block *sb) 5528 { 5529 int type, err = 0; 5530 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5531 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5532 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5533 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5534 }; 5535 bool quota_mopt[EXT4_MAXQUOTAS] = { 5536 test_opt(sb, USRQUOTA), 5537 test_opt(sb, GRPQUOTA), 5538 test_opt(sb, PRJQUOTA), 5539 }; 5540 5541 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5542 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5543 if (qf_inums[type]) { 5544 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5545 DQUOT_USAGE_ENABLED | 5546 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5547 if (err) { 5548 for (type--; type >= 0; type--) 5549 dquot_quota_off(sb, type); 5550 5551 ext4_warning(sb, 5552 "Failed to enable quota tracking " 5553 "(type=%d, err=%d). Please run " 5554 "e2fsck to fix.", type, err); 5555 return err; 5556 } 5557 } 5558 } 5559 return 0; 5560 } 5561 5562 static int ext4_quota_off(struct super_block *sb, int type) 5563 { 5564 struct inode *inode = sb_dqopt(sb)->files[type]; 5565 handle_t *handle; 5566 int err; 5567 5568 /* Force all delayed allocation blocks to be allocated. 5569 * Caller already holds s_umount sem */ 5570 if (test_opt(sb, DELALLOC)) 5571 sync_filesystem(sb); 5572 5573 if (!inode || !igrab(inode)) 5574 goto out; 5575 5576 err = dquot_quota_off(sb, type); 5577 if (err || ext4_has_feature_quota(sb)) 5578 goto out_put; 5579 5580 inode_lock(inode); 5581 /* 5582 * Update modification times of quota files when userspace can 5583 * start looking at them. If we fail, we return success anyway since 5584 * this is not a hard failure and quotas are already disabled. 5585 */ 5586 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5587 if (IS_ERR(handle)) 5588 goto out_unlock; 5589 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5590 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5591 inode->i_mtime = inode->i_ctime = current_time(inode); 5592 ext4_mark_inode_dirty(handle, inode); 5593 ext4_journal_stop(handle); 5594 out_unlock: 5595 inode_unlock(inode); 5596 out_put: 5597 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5598 iput(inode); 5599 return err; 5600 out: 5601 return dquot_quota_off(sb, type); 5602 } 5603 5604 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5605 * acquiring the locks... As quota files are never truncated and quota code 5606 * itself serializes the operations (and no one else should touch the files) 5607 * we don't have to be afraid of races */ 5608 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5609 size_t len, loff_t off) 5610 { 5611 struct inode *inode = sb_dqopt(sb)->files[type]; 5612 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5613 int offset = off & (sb->s_blocksize - 1); 5614 int tocopy; 5615 size_t toread; 5616 struct buffer_head *bh; 5617 loff_t i_size = i_size_read(inode); 5618 5619 if (off > i_size) 5620 return 0; 5621 if (off+len > i_size) 5622 len = i_size-off; 5623 toread = len; 5624 while (toread > 0) { 5625 tocopy = sb->s_blocksize - offset < toread ? 5626 sb->s_blocksize - offset : toread; 5627 bh = ext4_bread(NULL, inode, blk, 0); 5628 if (IS_ERR(bh)) 5629 return PTR_ERR(bh); 5630 if (!bh) /* A hole? */ 5631 memset(data, 0, tocopy); 5632 else 5633 memcpy(data, bh->b_data+offset, tocopy); 5634 brelse(bh); 5635 offset = 0; 5636 toread -= tocopy; 5637 data += tocopy; 5638 blk++; 5639 } 5640 return len; 5641 } 5642 5643 /* Write to quotafile (we know the transaction is already started and has 5644 * enough credits) */ 5645 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5646 const char *data, size_t len, loff_t off) 5647 { 5648 struct inode *inode = sb_dqopt(sb)->files[type]; 5649 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5650 int err, offset = off & (sb->s_blocksize - 1); 5651 int retries = 0; 5652 struct buffer_head *bh; 5653 handle_t *handle = journal_current_handle(); 5654 5655 if (EXT4_SB(sb)->s_journal && !handle) { 5656 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5657 " cancelled because transaction is not started", 5658 (unsigned long long)off, (unsigned long long)len); 5659 return -EIO; 5660 } 5661 /* 5662 * Since we account only one data block in transaction credits, 5663 * then it is impossible to cross a block boundary. 5664 */ 5665 if (sb->s_blocksize - offset < len) { 5666 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5667 " cancelled because not block aligned", 5668 (unsigned long long)off, (unsigned long long)len); 5669 return -EIO; 5670 } 5671 5672 do { 5673 bh = ext4_bread(handle, inode, blk, 5674 EXT4_GET_BLOCKS_CREATE | 5675 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5676 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5677 ext4_should_retry_alloc(inode->i_sb, &retries)); 5678 if (IS_ERR(bh)) 5679 return PTR_ERR(bh); 5680 if (!bh) 5681 goto out; 5682 BUFFER_TRACE(bh, "get write access"); 5683 err = ext4_journal_get_write_access(handle, bh); 5684 if (err) { 5685 brelse(bh); 5686 return err; 5687 } 5688 lock_buffer(bh); 5689 memcpy(bh->b_data+offset, data, len); 5690 flush_dcache_page(bh->b_page); 5691 unlock_buffer(bh); 5692 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5693 brelse(bh); 5694 out: 5695 if (inode->i_size < off + len) { 5696 i_size_write(inode, off + len); 5697 EXT4_I(inode)->i_disksize = inode->i_size; 5698 ext4_mark_inode_dirty(handle, inode); 5699 } 5700 return len; 5701 } 5702 5703 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5704 { 5705 const struct quota_format_ops *ops; 5706 5707 if (!sb_has_quota_loaded(sb, qid->type)) 5708 return -ESRCH; 5709 ops = sb_dqopt(sb)->ops[qid->type]; 5710 if (!ops || !ops->get_next_id) 5711 return -ENOSYS; 5712 return dquot_get_next_id(sb, qid); 5713 } 5714 #endif 5715 5716 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5717 const char *dev_name, void *data) 5718 { 5719 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5720 } 5721 5722 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5723 static inline void register_as_ext2(void) 5724 { 5725 int err = register_filesystem(&ext2_fs_type); 5726 if (err) 5727 printk(KERN_WARNING 5728 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5729 } 5730 5731 static inline void unregister_as_ext2(void) 5732 { 5733 unregister_filesystem(&ext2_fs_type); 5734 } 5735 5736 static inline int ext2_feature_set_ok(struct super_block *sb) 5737 { 5738 if (ext4_has_unknown_ext2_incompat_features(sb)) 5739 return 0; 5740 if (sb_rdonly(sb)) 5741 return 1; 5742 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5743 return 0; 5744 return 1; 5745 } 5746 #else 5747 static inline void register_as_ext2(void) { } 5748 static inline void unregister_as_ext2(void) { } 5749 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5750 #endif 5751 5752 static inline void register_as_ext3(void) 5753 { 5754 int err = register_filesystem(&ext3_fs_type); 5755 if (err) 5756 printk(KERN_WARNING 5757 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5758 } 5759 5760 static inline void unregister_as_ext3(void) 5761 { 5762 unregister_filesystem(&ext3_fs_type); 5763 } 5764 5765 static inline int ext3_feature_set_ok(struct super_block *sb) 5766 { 5767 if (ext4_has_unknown_ext3_incompat_features(sb)) 5768 return 0; 5769 if (!ext4_has_feature_journal(sb)) 5770 return 0; 5771 if (sb_rdonly(sb)) 5772 return 1; 5773 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5774 return 0; 5775 return 1; 5776 } 5777 5778 static struct file_system_type ext4_fs_type = { 5779 .owner = THIS_MODULE, 5780 .name = "ext4", 5781 .mount = ext4_mount, 5782 .kill_sb = kill_block_super, 5783 .fs_flags = FS_REQUIRES_DEV, 5784 }; 5785 MODULE_ALIAS_FS("ext4"); 5786 5787 /* Shared across all ext4 file systems */ 5788 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5789 5790 static int __init ext4_init_fs(void) 5791 { 5792 int i, err; 5793 5794 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5795 ext4_li_info = NULL; 5796 mutex_init(&ext4_li_mtx); 5797 5798 /* Build-time check for flags consistency */ 5799 ext4_check_flag_values(); 5800 5801 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5802 init_waitqueue_head(&ext4__ioend_wq[i]); 5803 5804 err = ext4_init_es(); 5805 if (err) 5806 return err; 5807 5808 err = ext4_init_pageio(); 5809 if (err) 5810 goto out5; 5811 5812 err = ext4_init_system_zone(); 5813 if (err) 5814 goto out4; 5815 5816 err = ext4_init_sysfs(); 5817 if (err) 5818 goto out3; 5819 5820 err = ext4_init_mballoc(); 5821 if (err) 5822 goto out2; 5823 err = init_inodecache(); 5824 if (err) 5825 goto out1; 5826 register_as_ext3(); 5827 register_as_ext2(); 5828 err = register_filesystem(&ext4_fs_type); 5829 if (err) 5830 goto out; 5831 5832 return 0; 5833 out: 5834 unregister_as_ext2(); 5835 unregister_as_ext3(); 5836 destroy_inodecache(); 5837 out1: 5838 ext4_exit_mballoc(); 5839 out2: 5840 ext4_exit_sysfs(); 5841 out3: 5842 ext4_exit_system_zone(); 5843 out4: 5844 ext4_exit_pageio(); 5845 out5: 5846 ext4_exit_es(); 5847 5848 return err; 5849 } 5850 5851 static void __exit ext4_exit_fs(void) 5852 { 5853 ext4_destroy_lazyinit_thread(); 5854 unregister_as_ext2(); 5855 unregister_as_ext3(); 5856 unregister_filesystem(&ext4_fs_type); 5857 destroy_inodecache(); 5858 ext4_exit_mballoc(); 5859 ext4_exit_sysfs(); 5860 ext4_exit_system_zone(); 5861 ext4_exit_pageio(); 5862 ext4_exit_es(); 5863 } 5864 5865 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5866 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5867 MODULE_LICENSE("GPL"); 5868 module_init(ext4_init_fs) 5869 module_exit(ext4_exit_fs) 5870