xref: /openbmc/linux/fs/ext4/super.c (revision a591525f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 
49 #include "ext4.h"
50 #include "ext4_extents.h"	/* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
59 
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 				   struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 		       const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 
88 /*
89  * Lock ordering
90  *
91  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92  * i_mmap_rwsem (inode->i_mmap_rwsem)!
93  *
94  * page fault path:
95  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96  *   page lock -> i_data_sem (rw)
97  *
98  * buffered write path:
99  * sb_start_write -> i_mutex -> mmap_sem
100  * sb_start_write -> i_mutex -> transaction start -> page lock ->
101  *   i_data_sem (rw)
102  *
103  * truncate:
104  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106  *   i_data_sem (rw)
107  *
108  * direct IO:
109  * sb_start_write -> i_mutex -> mmap_sem
110  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 static int ext4_verify_csum_type(struct super_block *sb,
144 				 struct ext4_super_block *es)
145 {
146 	if (!ext4_has_feature_metadata_csum(sb))
147 		return 1;
148 
149 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151 
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 				   struct ext4_super_block *es)
154 {
155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
156 	int offset = offsetof(struct ext4_super_block, s_checksum);
157 	__u32 csum;
158 
159 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160 
161 	return cpu_to_le32(csum);
162 }
163 
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 				       struct ext4_super_block *es)
166 {
167 	if (!ext4_has_metadata_csum(sb))
168 		return 1;
169 
170 	return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172 
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176 
177 	if (!ext4_has_metadata_csum(sb))
178 		return;
179 
180 	es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182 
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 	void *ret;
186 
187 	ret = kmalloc(size, flags | __GFP_NOWARN);
188 	if (!ret)
189 		ret = __vmalloc(size, flags, PAGE_KERNEL);
190 	return ret;
191 }
192 
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 	void *ret;
196 
197 	ret = kzalloc(size, flags | __GFP_NOWARN);
198 	if (!ret)
199 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 	return ret;
201 }
202 
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 			       struct ext4_group_desc *bg)
205 {
206 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210 
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 			       struct ext4_group_desc *bg)
213 {
214 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218 
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 			      struct ext4_group_desc *bg)
221 {
222 	return le32_to_cpu(bg->bg_inode_table_lo) |
223 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226 
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 			       struct ext4_group_desc *bg)
229 {
230 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234 
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 			      struct ext4_group_desc *bg)
237 {
238 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242 
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 			      struct ext4_group_desc *bg)
245 {
246 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250 
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 			      struct ext4_group_desc *bg)
253 {
254 	return le16_to_cpu(bg->bg_itable_unused_lo) |
255 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258 
259 void ext4_block_bitmap_set(struct super_block *sb,
260 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266 
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
271 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274 
275 void ext4_inode_table_set(struct super_block *sb,
276 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282 
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 				  struct ext4_group_desc *bg, __u32 count)
285 {
286 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290 
291 void ext4_free_inodes_set(struct super_block *sb,
292 			  struct ext4_group_desc *bg, __u32 count)
293 {
294 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298 
299 void ext4_used_dirs_set(struct super_block *sb,
300 			  struct ext4_group_desc *bg, __u32 count)
301 {
302 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306 
307 void ext4_itable_unused_set(struct super_block *sb,
308 			  struct ext4_group_desc *bg, __u32 count)
309 {
310 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314 
315 
316 static void __save_error_info(struct super_block *sb, const char *func,
317 			    unsigned int line)
318 {
319 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320 
321 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 	if (bdev_read_only(sb->s_bdev))
323 		return;
324 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 	es->s_last_error_time = cpu_to_le32(get_seconds());
326 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 	es->s_last_error_line = cpu_to_le32(line);
328 	if (!es->s_first_error_time) {
329 		es->s_first_error_time = es->s_last_error_time;
330 		strncpy(es->s_first_error_func, func,
331 			sizeof(es->s_first_error_func));
332 		es->s_first_error_line = cpu_to_le32(line);
333 		es->s_first_error_ino = es->s_last_error_ino;
334 		es->s_first_error_block = es->s_last_error_block;
335 	}
336 	/*
337 	 * Start the daily error reporting function if it hasn't been
338 	 * started already
339 	 */
340 	if (!es->s_error_count)
341 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 	le32_add_cpu(&es->s_error_count, 1);
343 }
344 
345 static void save_error_info(struct super_block *sb, const char *func,
346 			    unsigned int line)
347 {
348 	__save_error_info(sb, func, line);
349 	ext4_commit_super(sb, 1);
350 }
351 
352 /*
353  * The del_gendisk() function uninitializes the disk-specific data
354  * structures, including the bdi structure, without telling anyone
355  * else.  Once this happens, any attempt to call mark_buffer_dirty()
356  * (for example, by ext4_commit_super), will cause a kernel OOPS.
357  * This is a kludge to prevent these oops until we can put in a proper
358  * hook in del_gendisk() to inform the VFS and file system layers.
359  */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 	struct inode *bd_inode = sb->s_bdev->bd_inode;
363 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364 
365 	return bdi->dev == NULL;
366 }
367 
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 	struct super_block		*sb = journal->j_private;
371 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
372 	int				error = is_journal_aborted(journal);
373 	struct ext4_journal_cb_entry	*jce;
374 
375 	BUG_ON(txn->t_state == T_FINISHED);
376 
377 	ext4_process_freed_data(sb, txn->t_tid);
378 
379 	spin_lock(&sbi->s_md_lock);
380 	while (!list_empty(&txn->t_private_list)) {
381 		jce = list_entry(txn->t_private_list.next,
382 				 struct ext4_journal_cb_entry, jce_list);
383 		list_del_init(&jce->jce_list);
384 		spin_unlock(&sbi->s_md_lock);
385 		jce->jce_func(sb, jce, error);
386 		spin_lock(&sbi->s_md_lock);
387 	}
388 	spin_unlock(&sbi->s_md_lock);
389 }
390 
391 /* Deal with the reporting of failure conditions on a filesystem such as
392  * inconsistencies detected or read IO failures.
393  *
394  * On ext2, we can store the error state of the filesystem in the
395  * superblock.  That is not possible on ext4, because we may have other
396  * write ordering constraints on the superblock which prevent us from
397  * writing it out straight away; and given that the journal is about to
398  * be aborted, we can't rely on the current, or future, transactions to
399  * write out the superblock safely.
400  *
401  * We'll just use the jbd2_journal_abort() error code to record an error in
402  * the journal instead.  On recovery, the journal will complain about
403  * that error until we've noted it down and cleared it.
404  */
405 
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 	if (sb_rdonly(sb))
409 		return;
410 
411 	if (!test_opt(sb, ERRORS_CONT)) {
412 		journal_t *journal = EXT4_SB(sb)->s_journal;
413 
414 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 		if (journal)
416 			jbd2_journal_abort(journal, -EIO);
417 	}
418 	if (test_opt(sb, ERRORS_RO)) {
419 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 		/*
421 		 * Make sure updated value of ->s_mount_flags will be visible
422 		 * before ->s_flags update
423 		 */
424 		smp_wmb();
425 		sb->s_flags |= SB_RDONLY;
426 	}
427 	if (test_opt(sb, ERRORS_PANIC)) {
428 		if (EXT4_SB(sb)->s_journal &&
429 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 			return;
431 		panic("EXT4-fs (device %s): panic forced after error\n",
432 			sb->s_id);
433 	}
434 }
435 
436 #define ext4_error_ratelimit(sb)					\
437 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
438 			     "EXT4-fs error")
439 
440 void __ext4_error(struct super_block *sb, const char *function,
441 		  unsigned int line, const char *fmt, ...)
442 {
443 	struct va_format vaf;
444 	va_list args;
445 
446 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 		return;
448 
449 	trace_ext4_error(sb, function, line);
450 	if (ext4_error_ratelimit(sb)) {
451 		va_start(args, fmt);
452 		vaf.fmt = fmt;
453 		vaf.va = &args;
454 		printk(KERN_CRIT
455 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
456 		       sb->s_id, function, line, current->comm, &vaf);
457 		va_end(args);
458 	}
459 	save_error_info(sb, function, line);
460 	ext4_handle_error(sb);
461 }
462 
463 void __ext4_error_inode(struct inode *inode, const char *function,
464 			unsigned int line, ext4_fsblk_t block,
465 			const char *fmt, ...)
466 {
467 	va_list args;
468 	struct va_format vaf;
469 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
470 
471 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
472 		return;
473 
474 	trace_ext4_error(inode->i_sb, function, line);
475 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 	es->s_last_error_block = cpu_to_le64(block);
477 	if (ext4_error_ratelimit(inode->i_sb)) {
478 		va_start(args, fmt);
479 		vaf.fmt = fmt;
480 		vaf.va = &args;
481 		if (block)
482 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 			       "inode #%lu: block %llu: comm %s: %pV\n",
484 			       inode->i_sb->s_id, function, line, inode->i_ino,
485 			       block, current->comm, &vaf);
486 		else
487 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
488 			       "inode #%lu: comm %s: %pV\n",
489 			       inode->i_sb->s_id, function, line, inode->i_ino,
490 			       current->comm, &vaf);
491 		va_end(args);
492 	}
493 	save_error_info(inode->i_sb, function, line);
494 	ext4_handle_error(inode->i_sb);
495 }
496 
497 void __ext4_error_file(struct file *file, const char *function,
498 		       unsigned int line, ext4_fsblk_t block,
499 		       const char *fmt, ...)
500 {
501 	va_list args;
502 	struct va_format vaf;
503 	struct ext4_super_block *es;
504 	struct inode *inode = file_inode(file);
505 	char pathname[80], *path;
506 
507 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
508 		return;
509 
510 	trace_ext4_error(inode->i_sb, function, line);
511 	es = EXT4_SB(inode->i_sb)->s_es;
512 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 	if (ext4_error_ratelimit(inode->i_sb)) {
514 		path = file_path(file, pathname, sizeof(pathname));
515 		if (IS_ERR(path))
516 			path = "(unknown)";
517 		va_start(args, fmt);
518 		vaf.fmt = fmt;
519 		vaf.va = &args;
520 		if (block)
521 			printk(KERN_CRIT
522 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 			       "block %llu: comm %s: path %s: %pV\n",
524 			       inode->i_sb->s_id, function, line, inode->i_ino,
525 			       block, current->comm, path, &vaf);
526 		else
527 			printk(KERN_CRIT
528 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
529 			       "comm %s: path %s: %pV\n",
530 			       inode->i_sb->s_id, function, line, inode->i_ino,
531 			       current->comm, path, &vaf);
532 		va_end(args);
533 	}
534 	save_error_info(inode->i_sb, function, line);
535 	ext4_handle_error(inode->i_sb);
536 }
537 
538 const char *ext4_decode_error(struct super_block *sb, int errno,
539 			      char nbuf[16])
540 {
541 	char *errstr = NULL;
542 
543 	switch (errno) {
544 	case -EFSCORRUPTED:
545 		errstr = "Corrupt filesystem";
546 		break;
547 	case -EFSBADCRC:
548 		errstr = "Filesystem failed CRC";
549 		break;
550 	case -EIO:
551 		errstr = "IO failure";
552 		break;
553 	case -ENOMEM:
554 		errstr = "Out of memory";
555 		break;
556 	case -EROFS:
557 		if (!sb || (EXT4_SB(sb)->s_journal &&
558 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
559 			errstr = "Journal has aborted";
560 		else
561 			errstr = "Readonly filesystem";
562 		break;
563 	default:
564 		/* If the caller passed in an extra buffer for unknown
565 		 * errors, textualise them now.  Else we just return
566 		 * NULL. */
567 		if (nbuf) {
568 			/* Check for truncated error codes... */
569 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
570 				errstr = nbuf;
571 		}
572 		break;
573 	}
574 
575 	return errstr;
576 }
577 
578 /* __ext4_std_error decodes expected errors from journaling functions
579  * automatically and invokes the appropriate error response.  */
580 
581 void __ext4_std_error(struct super_block *sb, const char *function,
582 		      unsigned int line, int errno)
583 {
584 	char nbuf[16];
585 	const char *errstr;
586 
587 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
588 		return;
589 
590 	/* Special case: if the error is EROFS, and we're not already
591 	 * inside a transaction, then there's really no point in logging
592 	 * an error. */
593 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
594 		return;
595 
596 	if (ext4_error_ratelimit(sb)) {
597 		errstr = ext4_decode_error(sb, errno, nbuf);
598 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
599 		       sb->s_id, function, line, errstr);
600 	}
601 
602 	save_error_info(sb, function, line);
603 	ext4_handle_error(sb);
604 }
605 
606 /*
607  * ext4_abort is a much stronger failure handler than ext4_error.  The
608  * abort function may be used to deal with unrecoverable failures such
609  * as journal IO errors or ENOMEM at a critical moment in log management.
610  *
611  * We unconditionally force the filesystem into an ABORT|READONLY state,
612  * unless the error response on the fs has been set to panic in which
613  * case we take the easy way out and panic immediately.
614  */
615 
616 void __ext4_abort(struct super_block *sb, const char *function,
617 		unsigned int line, const char *fmt, ...)
618 {
619 	struct va_format vaf;
620 	va_list args;
621 
622 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
623 		return;
624 
625 	save_error_info(sb, function, line);
626 	va_start(args, fmt);
627 	vaf.fmt = fmt;
628 	vaf.va = &args;
629 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
630 	       sb->s_id, function, line, &vaf);
631 	va_end(args);
632 
633 	if (sb_rdonly(sb) == 0) {
634 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
635 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
636 		/*
637 		 * Make sure updated value of ->s_mount_flags will be visible
638 		 * before ->s_flags update
639 		 */
640 		smp_wmb();
641 		sb->s_flags |= SB_RDONLY;
642 		if (EXT4_SB(sb)->s_journal)
643 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
644 		save_error_info(sb, function, line);
645 	}
646 	if (test_opt(sb, ERRORS_PANIC)) {
647 		if (EXT4_SB(sb)->s_journal &&
648 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
649 			return;
650 		panic("EXT4-fs panic from previous error\n");
651 	}
652 }
653 
654 void __ext4_msg(struct super_block *sb,
655 		const char *prefix, const char *fmt, ...)
656 {
657 	struct va_format vaf;
658 	va_list args;
659 
660 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
661 		return;
662 
663 	va_start(args, fmt);
664 	vaf.fmt = fmt;
665 	vaf.va = &args;
666 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
667 	va_end(args);
668 }
669 
670 #define ext4_warning_ratelimit(sb)					\
671 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
672 			     "EXT4-fs warning")
673 
674 void __ext4_warning(struct super_block *sb, const char *function,
675 		    unsigned int line, const char *fmt, ...)
676 {
677 	struct va_format vaf;
678 	va_list args;
679 
680 	if (!ext4_warning_ratelimit(sb))
681 		return;
682 
683 	va_start(args, fmt);
684 	vaf.fmt = fmt;
685 	vaf.va = &args;
686 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
687 	       sb->s_id, function, line, &vaf);
688 	va_end(args);
689 }
690 
691 void __ext4_warning_inode(const struct inode *inode, const char *function,
692 			  unsigned int line, const char *fmt, ...)
693 {
694 	struct va_format vaf;
695 	va_list args;
696 
697 	if (!ext4_warning_ratelimit(inode->i_sb))
698 		return;
699 
700 	va_start(args, fmt);
701 	vaf.fmt = fmt;
702 	vaf.va = &args;
703 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
704 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
705 	       function, line, inode->i_ino, current->comm, &vaf);
706 	va_end(args);
707 }
708 
709 void __ext4_grp_locked_error(const char *function, unsigned int line,
710 			     struct super_block *sb, ext4_group_t grp,
711 			     unsigned long ino, ext4_fsblk_t block,
712 			     const char *fmt, ...)
713 __releases(bitlock)
714 __acquires(bitlock)
715 {
716 	struct va_format vaf;
717 	va_list args;
718 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
719 
720 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
721 		return;
722 
723 	trace_ext4_error(sb, function, line);
724 	es->s_last_error_ino = cpu_to_le32(ino);
725 	es->s_last_error_block = cpu_to_le64(block);
726 	__save_error_info(sb, function, line);
727 
728 	if (ext4_error_ratelimit(sb)) {
729 		va_start(args, fmt);
730 		vaf.fmt = fmt;
731 		vaf.va = &args;
732 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
733 		       sb->s_id, function, line, grp);
734 		if (ino)
735 			printk(KERN_CONT "inode %lu: ", ino);
736 		if (block)
737 			printk(KERN_CONT "block %llu:",
738 			       (unsigned long long) block);
739 		printk(KERN_CONT "%pV\n", &vaf);
740 		va_end(args);
741 	}
742 
743 	if (test_opt(sb, ERRORS_CONT)) {
744 		ext4_commit_super(sb, 0);
745 		return;
746 	}
747 
748 	ext4_unlock_group(sb, grp);
749 	ext4_commit_super(sb, 1);
750 	ext4_handle_error(sb);
751 	/*
752 	 * We only get here in the ERRORS_RO case; relocking the group
753 	 * may be dangerous, but nothing bad will happen since the
754 	 * filesystem will have already been marked read/only and the
755 	 * journal has been aborted.  We return 1 as a hint to callers
756 	 * who might what to use the return value from
757 	 * ext4_grp_locked_error() to distinguish between the
758 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
759 	 * aggressively from the ext4 function in question, with a
760 	 * more appropriate error code.
761 	 */
762 	ext4_lock_group(sb, grp);
763 	return;
764 }
765 
766 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
767 				     ext4_group_t group,
768 				     unsigned int flags)
769 {
770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
771 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
772 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
773 
774 	if ((flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) &&
775 	    !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) {
776 		percpu_counter_sub(&sbi->s_freeclusters_counter,
777 					grp->bb_free);
778 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
779 			&grp->bb_state);
780 	}
781 
782 	if ((flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) &&
783 	    !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
784 		if (gdp) {
785 			int count;
786 
787 			count = ext4_free_inodes_count(sb, gdp);
788 			percpu_counter_sub(&sbi->s_freeinodes_counter,
789 					   count);
790 		}
791 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
792 			&grp->bb_state);
793 	}
794 }
795 
796 void ext4_update_dynamic_rev(struct super_block *sb)
797 {
798 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
799 
800 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
801 		return;
802 
803 	ext4_warning(sb,
804 		     "updating to rev %d because of new feature flag, "
805 		     "running e2fsck is recommended",
806 		     EXT4_DYNAMIC_REV);
807 
808 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
809 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
810 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
811 	/* leave es->s_feature_*compat flags alone */
812 	/* es->s_uuid will be set by e2fsck if empty */
813 
814 	/*
815 	 * The rest of the superblock fields should be zero, and if not it
816 	 * means they are likely already in use, so leave them alone.  We
817 	 * can leave it up to e2fsck to clean up any inconsistencies there.
818 	 */
819 }
820 
821 /*
822  * Open the external journal device
823  */
824 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
825 {
826 	struct block_device *bdev;
827 	char b[BDEVNAME_SIZE];
828 
829 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
830 	if (IS_ERR(bdev))
831 		goto fail;
832 	return bdev;
833 
834 fail:
835 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
836 			__bdevname(dev, b), PTR_ERR(bdev));
837 	return NULL;
838 }
839 
840 /*
841  * Release the journal device
842  */
843 static void ext4_blkdev_put(struct block_device *bdev)
844 {
845 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
846 }
847 
848 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
849 {
850 	struct block_device *bdev;
851 	bdev = sbi->journal_bdev;
852 	if (bdev) {
853 		ext4_blkdev_put(bdev);
854 		sbi->journal_bdev = NULL;
855 	}
856 }
857 
858 static inline struct inode *orphan_list_entry(struct list_head *l)
859 {
860 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
861 }
862 
863 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
864 {
865 	struct list_head *l;
866 
867 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
868 		 le32_to_cpu(sbi->s_es->s_last_orphan));
869 
870 	printk(KERN_ERR "sb_info orphan list:\n");
871 	list_for_each(l, &sbi->s_orphan) {
872 		struct inode *inode = orphan_list_entry(l);
873 		printk(KERN_ERR "  "
874 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
875 		       inode->i_sb->s_id, inode->i_ino, inode,
876 		       inode->i_mode, inode->i_nlink,
877 		       NEXT_ORPHAN(inode));
878 	}
879 }
880 
881 #ifdef CONFIG_QUOTA
882 static int ext4_quota_off(struct super_block *sb, int type);
883 
884 static inline void ext4_quota_off_umount(struct super_block *sb)
885 {
886 	int type;
887 
888 	/* Use our quota_off function to clear inode flags etc. */
889 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
890 		ext4_quota_off(sb, type);
891 }
892 #else
893 static inline void ext4_quota_off_umount(struct super_block *sb)
894 {
895 }
896 #endif
897 
898 static void ext4_put_super(struct super_block *sb)
899 {
900 	struct ext4_sb_info *sbi = EXT4_SB(sb);
901 	struct ext4_super_block *es = sbi->s_es;
902 	int aborted = 0;
903 	int i, err;
904 
905 	ext4_unregister_li_request(sb);
906 	ext4_quota_off_umount(sb);
907 
908 	destroy_workqueue(sbi->rsv_conversion_wq);
909 
910 	if (sbi->s_journal) {
911 		aborted = is_journal_aborted(sbi->s_journal);
912 		err = jbd2_journal_destroy(sbi->s_journal);
913 		sbi->s_journal = NULL;
914 		if ((err < 0) && !aborted)
915 			ext4_abort(sb, "Couldn't clean up the journal");
916 	}
917 
918 	ext4_unregister_sysfs(sb);
919 	ext4_es_unregister_shrinker(sbi);
920 	del_timer_sync(&sbi->s_err_report);
921 	ext4_release_system_zone(sb);
922 	ext4_mb_release(sb);
923 	ext4_ext_release(sb);
924 
925 	if (!sb_rdonly(sb) && !aborted) {
926 		ext4_clear_feature_journal_needs_recovery(sb);
927 		es->s_state = cpu_to_le16(sbi->s_mount_state);
928 	}
929 	if (!sb_rdonly(sb))
930 		ext4_commit_super(sb, 1);
931 
932 	for (i = 0; i < sbi->s_gdb_count; i++)
933 		brelse(sbi->s_group_desc[i]);
934 	kvfree(sbi->s_group_desc);
935 	kvfree(sbi->s_flex_groups);
936 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
937 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
938 	percpu_counter_destroy(&sbi->s_dirs_counter);
939 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
940 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
941 #ifdef CONFIG_QUOTA
942 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
943 		kfree(sbi->s_qf_names[i]);
944 #endif
945 
946 	/* Debugging code just in case the in-memory inode orphan list
947 	 * isn't empty.  The on-disk one can be non-empty if we've
948 	 * detected an error and taken the fs readonly, but the
949 	 * in-memory list had better be clean by this point. */
950 	if (!list_empty(&sbi->s_orphan))
951 		dump_orphan_list(sb, sbi);
952 	J_ASSERT(list_empty(&sbi->s_orphan));
953 
954 	sync_blockdev(sb->s_bdev);
955 	invalidate_bdev(sb->s_bdev);
956 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
957 		/*
958 		 * Invalidate the journal device's buffers.  We don't want them
959 		 * floating about in memory - the physical journal device may
960 		 * hotswapped, and it breaks the `ro-after' testing code.
961 		 */
962 		sync_blockdev(sbi->journal_bdev);
963 		invalidate_bdev(sbi->journal_bdev);
964 		ext4_blkdev_remove(sbi);
965 	}
966 	if (sbi->s_ea_inode_cache) {
967 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
968 		sbi->s_ea_inode_cache = NULL;
969 	}
970 	if (sbi->s_ea_block_cache) {
971 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
972 		sbi->s_ea_block_cache = NULL;
973 	}
974 	if (sbi->s_mmp_tsk)
975 		kthread_stop(sbi->s_mmp_tsk);
976 	brelse(sbi->s_sbh);
977 	sb->s_fs_info = NULL;
978 	/*
979 	 * Now that we are completely done shutting down the
980 	 * superblock, we need to actually destroy the kobject.
981 	 */
982 	kobject_put(&sbi->s_kobj);
983 	wait_for_completion(&sbi->s_kobj_unregister);
984 	if (sbi->s_chksum_driver)
985 		crypto_free_shash(sbi->s_chksum_driver);
986 	kfree(sbi->s_blockgroup_lock);
987 	fs_put_dax(sbi->s_daxdev);
988 	kfree(sbi);
989 }
990 
991 static struct kmem_cache *ext4_inode_cachep;
992 
993 /*
994  * Called inside transaction, so use GFP_NOFS
995  */
996 static struct inode *ext4_alloc_inode(struct super_block *sb)
997 {
998 	struct ext4_inode_info *ei;
999 
1000 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1001 	if (!ei)
1002 		return NULL;
1003 
1004 	inode_set_iversion(&ei->vfs_inode, 1);
1005 	spin_lock_init(&ei->i_raw_lock);
1006 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1007 	spin_lock_init(&ei->i_prealloc_lock);
1008 	ext4_es_init_tree(&ei->i_es_tree);
1009 	rwlock_init(&ei->i_es_lock);
1010 	INIT_LIST_HEAD(&ei->i_es_list);
1011 	ei->i_es_all_nr = 0;
1012 	ei->i_es_shk_nr = 0;
1013 	ei->i_es_shrink_lblk = 0;
1014 	ei->i_reserved_data_blocks = 0;
1015 	ei->i_da_metadata_calc_len = 0;
1016 	ei->i_da_metadata_calc_last_lblock = 0;
1017 	spin_lock_init(&(ei->i_block_reservation_lock));
1018 #ifdef CONFIG_QUOTA
1019 	ei->i_reserved_quota = 0;
1020 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1021 #endif
1022 	ei->jinode = NULL;
1023 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1024 	spin_lock_init(&ei->i_completed_io_lock);
1025 	ei->i_sync_tid = 0;
1026 	ei->i_datasync_tid = 0;
1027 	atomic_set(&ei->i_unwritten, 0);
1028 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1029 	return &ei->vfs_inode;
1030 }
1031 
1032 static int ext4_drop_inode(struct inode *inode)
1033 {
1034 	int drop = generic_drop_inode(inode);
1035 
1036 	trace_ext4_drop_inode(inode, drop);
1037 	return drop;
1038 }
1039 
1040 static void ext4_i_callback(struct rcu_head *head)
1041 {
1042 	struct inode *inode = container_of(head, struct inode, i_rcu);
1043 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1044 }
1045 
1046 static void ext4_destroy_inode(struct inode *inode)
1047 {
1048 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1049 		ext4_msg(inode->i_sb, KERN_ERR,
1050 			 "Inode %lu (%p): orphan list check failed!",
1051 			 inode->i_ino, EXT4_I(inode));
1052 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1053 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1054 				true);
1055 		dump_stack();
1056 	}
1057 	call_rcu(&inode->i_rcu, ext4_i_callback);
1058 }
1059 
1060 static void init_once(void *foo)
1061 {
1062 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1063 
1064 	INIT_LIST_HEAD(&ei->i_orphan);
1065 	init_rwsem(&ei->xattr_sem);
1066 	init_rwsem(&ei->i_data_sem);
1067 	init_rwsem(&ei->i_mmap_sem);
1068 	inode_init_once(&ei->vfs_inode);
1069 }
1070 
1071 static int __init init_inodecache(void)
1072 {
1073 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1074 				sizeof(struct ext4_inode_info), 0,
1075 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1076 					SLAB_ACCOUNT),
1077 				offsetof(struct ext4_inode_info, i_data),
1078 				sizeof_field(struct ext4_inode_info, i_data),
1079 				init_once);
1080 	if (ext4_inode_cachep == NULL)
1081 		return -ENOMEM;
1082 	return 0;
1083 }
1084 
1085 static void destroy_inodecache(void)
1086 {
1087 	/*
1088 	 * Make sure all delayed rcu free inodes are flushed before we
1089 	 * destroy cache.
1090 	 */
1091 	rcu_barrier();
1092 	kmem_cache_destroy(ext4_inode_cachep);
1093 }
1094 
1095 void ext4_clear_inode(struct inode *inode)
1096 {
1097 	invalidate_inode_buffers(inode);
1098 	clear_inode(inode);
1099 	dquot_drop(inode);
1100 	ext4_discard_preallocations(inode);
1101 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1102 	if (EXT4_I(inode)->jinode) {
1103 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1104 					       EXT4_I(inode)->jinode);
1105 		jbd2_free_inode(EXT4_I(inode)->jinode);
1106 		EXT4_I(inode)->jinode = NULL;
1107 	}
1108 	fscrypt_put_encryption_info(inode);
1109 }
1110 
1111 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1112 					u64 ino, u32 generation)
1113 {
1114 	struct inode *inode;
1115 
1116 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1117 		return ERR_PTR(-ESTALE);
1118 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1119 		return ERR_PTR(-ESTALE);
1120 
1121 	/* iget isn't really right if the inode is currently unallocated!!
1122 	 *
1123 	 * ext4_read_inode will return a bad_inode if the inode had been
1124 	 * deleted, so we should be safe.
1125 	 *
1126 	 * Currently we don't know the generation for parent directory, so
1127 	 * a generation of 0 means "accept any"
1128 	 */
1129 	inode = ext4_iget_normal(sb, ino);
1130 	if (IS_ERR(inode))
1131 		return ERR_CAST(inode);
1132 	if (generation && inode->i_generation != generation) {
1133 		iput(inode);
1134 		return ERR_PTR(-ESTALE);
1135 	}
1136 
1137 	return inode;
1138 }
1139 
1140 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1141 					int fh_len, int fh_type)
1142 {
1143 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1144 				    ext4_nfs_get_inode);
1145 }
1146 
1147 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1148 					int fh_len, int fh_type)
1149 {
1150 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1151 				    ext4_nfs_get_inode);
1152 }
1153 
1154 /*
1155  * Try to release metadata pages (indirect blocks, directories) which are
1156  * mapped via the block device.  Since these pages could have journal heads
1157  * which would prevent try_to_free_buffers() from freeing them, we must use
1158  * jbd2 layer's try_to_free_buffers() function to release them.
1159  */
1160 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1161 				 gfp_t wait)
1162 {
1163 	journal_t *journal = EXT4_SB(sb)->s_journal;
1164 
1165 	WARN_ON(PageChecked(page));
1166 	if (!page_has_buffers(page))
1167 		return 0;
1168 	if (journal)
1169 		return jbd2_journal_try_to_free_buffers(journal, page,
1170 						wait & ~__GFP_DIRECT_RECLAIM);
1171 	return try_to_free_buffers(page);
1172 }
1173 
1174 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1175 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1176 {
1177 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1178 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1179 }
1180 
1181 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1182 							void *fs_data)
1183 {
1184 	handle_t *handle = fs_data;
1185 	int res, res2, credits, retries = 0;
1186 
1187 	/*
1188 	 * Encrypting the root directory is not allowed because e2fsck expects
1189 	 * lost+found to exist and be unencrypted, and encrypting the root
1190 	 * directory would imply encrypting the lost+found directory as well as
1191 	 * the filename "lost+found" itself.
1192 	 */
1193 	if (inode->i_ino == EXT4_ROOT_INO)
1194 		return -EPERM;
1195 
1196 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1197 		return -EINVAL;
1198 
1199 	res = ext4_convert_inline_data(inode);
1200 	if (res)
1201 		return res;
1202 
1203 	/*
1204 	 * If a journal handle was specified, then the encryption context is
1205 	 * being set on a new inode via inheritance and is part of a larger
1206 	 * transaction to create the inode.  Otherwise the encryption context is
1207 	 * being set on an existing inode in its own transaction.  Only in the
1208 	 * latter case should the "retry on ENOSPC" logic be used.
1209 	 */
1210 
1211 	if (handle) {
1212 		res = ext4_xattr_set_handle(handle, inode,
1213 					    EXT4_XATTR_INDEX_ENCRYPTION,
1214 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1215 					    ctx, len, 0);
1216 		if (!res) {
1217 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1218 			ext4_clear_inode_state(inode,
1219 					EXT4_STATE_MAY_INLINE_DATA);
1220 			/*
1221 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1222 			 * S_DAX may be disabled
1223 			 */
1224 			ext4_set_inode_flags(inode);
1225 		}
1226 		return res;
1227 	}
1228 
1229 	res = dquot_initialize(inode);
1230 	if (res)
1231 		return res;
1232 retry:
1233 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1234 				     &credits);
1235 	if (res)
1236 		return res;
1237 
1238 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1239 	if (IS_ERR(handle))
1240 		return PTR_ERR(handle);
1241 
1242 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1243 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1244 				    ctx, len, 0);
1245 	if (!res) {
1246 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1247 		/*
1248 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1249 		 * S_DAX may be disabled
1250 		 */
1251 		ext4_set_inode_flags(inode);
1252 		res = ext4_mark_inode_dirty(handle, inode);
1253 		if (res)
1254 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1255 	}
1256 	res2 = ext4_journal_stop(handle);
1257 
1258 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1259 		goto retry;
1260 	if (!res)
1261 		res = res2;
1262 	return res;
1263 }
1264 
1265 static bool ext4_dummy_context(struct inode *inode)
1266 {
1267 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1268 }
1269 
1270 static const struct fscrypt_operations ext4_cryptops = {
1271 	.key_prefix		= "ext4:",
1272 	.get_context		= ext4_get_context,
1273 	.set_context		= ext4_set_context,
1274 	.dummy_context		= ext4_dummy_context,
1275 	.empty_dir		= ext4_empty_dir,
1276 	.max_namelen		= EXT4_NAME_LEN,
1277 };
1278 #endif
1279 
1280 #ifdef CONFIG_QUOTA
1281 static const char * const quotatypes[] = INITQFNAMES;
1282 #define QTYPE2NAME(t) (quotatypes[t])
1283 
1284 static int ext4_write_dquot(struct dquot *dquot);
1285 static int ext4_acquire_dquot(struct dquot *dquot);
1286 static int ext4_release_dquot(struct dquot *dquot);
1287 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1288 static int ext4_write_info(struct super_block *sb, int type);
1289 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1290 			 const struct path *path);
1291 static int ext4_quota_on_mount(struct super_block *sb, int type);
1292 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1293 			       size_t len, loff_t off);
1294 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1295 				const char *data, size_t len, loff_t off);
1296 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1297 			     unsigned int flags);
1298 static int ext4_enable_quotas(struct super_block *sb);
1299 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1300 
1301 static struct dquot **ext4_get_dquots(struct inode *inode)
1302 {
1303 	return EXT4_I(inode)->i_dquot;
1304 }
1305 
1306 static const struct dquot_operations ext4_quota_operations = {
1307 	.get_reserved_space	= ext4_get_reserved_space,
1308 	.write_dquot		= ext4_write_dquot,
1309 	.acquire_dquot		= ext4_acquire_dquot,
1310 	.release_dquot		= ext4_release_dquot,
1311 	.mark_dirty		= ext4_mark_dquot_dirty,
1312 	.write_info		= ext4_write_info,
1313 	.alloc_dquot		= dquot_alloc,
1314 	.destroy_dquot		= dquot_destroy,
1315 	.get_projid		= ext4_get_projid,
1316 	.get_inode_usage	= ext4_get_inode_usage,
1317 	.get_next_id		= ext4_get_next_id,
1318 };
1319 
1320 static const struct quotactl_ops ext4_qctl_operations = {
1321 	.quota_on	= ext4_quota_on,
1322 	.quota_off	= ext4_quota_off,
1323 	.quota_sync	= dquot_quota_sync,
1324 	.get_state	= dquot_get_state,
1325 	.set_info	= dquot_set_dqinfo,
1326 	.get_dqblk	= dquot_get_dqblk,
1327 	.set_dqblk	= dquot_set_dqblk,
1328 	.get_nextdqblk	= dquot_get_next_dqblk,
1329 };
1330 #endif
1331 
1332 static const struct super_operations ext4_sops = {
1333 	.alloc_inode	= ext4_alloc_inode,
1334 	.destroy_inode	= ext4_destroy_inode,
1335 	.write_inode	= ext4_write_inode,
1336 	.dirty_inode	= ext4_dirty_inode,
1337 	.drop_inode	= ext4_drop_inode,
1338 	.evict_inode	= ext4_evict_inode,
1339 	.put_super	= ext4_put_super,
1340 	.sync_fs	= ext4_sync_fs,
1341 	.freeze_fs	= ext4_freeze,
1342 	.unfreeze_fs	= ext4_unfreeze,
1343 	.statfs		= ext4_statfs,
1344 	.remount_fs	= ext4_remount,
1345 	.show_options	= ext4_show_options,
1346 #ifdef CONFIG_QUOTA
1347 	.quota_read	= ext4_quota_read,
1348 	.quota_write	= ext4_quota_write,
1349 	.get_dquots	= ext4_get_dquots,
1350 #endif
1351 	.bdev_try_to_free_page = bdev_try_to_free_page,
1352 };
1353 
1354 static const struct export_operations ext4_export_ops = {
1355 	.fh_to_dentry = ext4_fh_to_dentry,
1356 	.fh_to_parent = ext4_fh_to_parent,
1357 	.get_parent = ext4_get_parent,
1358 };
1359 
1360 enum {
1361 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1362 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1363 	Opt_nouid32, Opt_debug, Opt_removed,
1364 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1365 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1366 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1367 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1368 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1369 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1370 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1371 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1372 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1373 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1374 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1375 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1376 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1377 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1378 	Opt_dioread_nolock, Opt_dioread_lock,
1379 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1380 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1381 };
1382 
1383 static const match_table_t tokens = {
1384 	{Opt_bsd_df, "bsddf"},
1385 	{Opt_minix_df, "minixdf"},
1386 	{Opt_grpid, "grpid"},
1387 	{Opt_grpid, "bsdgroups"},
1388 	{Opt_nogrpid, "nogrpid"},
1389 	{Opt_nogrpid, "sysvgroups"},
1390 	{Opt_resgid, "resgid=%u"},
1391 	{Opt_resuid, "resuid=%u"},
1392 	{Opt_sb, "sb=%u"},
1393 	{Opt_err_cont, "errors=continue"},
1394 	{Opt_err_panic, "errors=panic"},
1395 	{Opt_err_ro, "errors=remount-ro"},
1396 	{Opt_nouid32, "nouid32"},
1397 	{Opt_debug, "debug"},
1398 	{Opt_removed, "oldalloc"},
1399 	{Opt_removed, "orlov"},
1400 	{Opt_user_xattr, "user_xattr"},
1401 	{Opt_nouser_xattr, "nouser_xattr"},
1402 	{Opt_acl, "acl"},
1403 	{Opt_noacl, "noacl"},
1404 	{Opt_noload, "norecovery"},
1405 	{Opt_noload, "noload"},
1406 	{Opt_removed, "nobh"},
1407 	{Opt_removed, "bh"},
1408 	{Opt_commit, "commit=%u"},
1409 	{Opt_min_batch_time, "min_batch_time=%u"},
1410 	{Opt_max_batch_time, "max_batch_time=%u"},
1411 	{Opt_journal_dev, "journal_dev=%u"},
1412 	{Opt_journal_path, "journal_path=%s"},
1413 	{Opt_journal_checksum, "journal_checksum"},
1414 	{Opt_nojournal_checksum, "nojournal_checksum"},
1415 	{Opt_journal_async_commit, "journal_async_commit"},
1416 	{Opt_abort, "abort"},
1417 	{Opt_data_journal, "data=journal"},
1418 	{Opt_data_ordered, "data=ordered"},
1419 	{Opt_data_writeback, "data=writeback"},
1420 	{Opt_data_err_abort, "data_err=abort"},
1421 	{Opt_data_err_ignore, "data_err=ignore"},
1422 	{Opt_offusrjquota, "usrjquota="},
1423 	{Opt_usrjquota, "usrjquota=%s"},
1424 	{Opt_offgrpjquota, "grpjquota="},
1425 	{Opt_grpjquota, "grpjquota=%s"},
1426 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1427 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1428 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1429 	{Opt_grpquota, "grpquota"},
1430 	{Opt_noquota, "noquota"},
1431 	{Opt_quota, "quota"},
1432 	{Opt_usrquota, "usrquota"},
1433 	{Opt_prjquota, "prjquota"},
1434 	{Opt_barrier, "barrier=%u"},
1435 	{Opt_barrier, "barrier"},
1436 	{Opt_nobarrier, "nobarrier"},
1437 	{Opt_i_version, "i_version"},
1438 	{Opt_dax, "dax"},
1439 	{Opt_stripe, "stripe=%u"},
1440 	{Opt_delalloc, "delalloc"},
1441 	{Opt_lazytime, "lazytime"},
1442 	{Opt_nolazytime, "nolazytime"},
1443 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1444 	{Opt_nodelalloc, "nodelalloc"},
1445 	{Opt_removed, "mblk_io_submit"},
1446 	{Opt_removed, "nomblk_io_submit"},
1447 	{Opt_block_validity, "block_validity"},
1448 	{Opt_noblock_validity, "noblock_validity"},
1449 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1450 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1451 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1452 	{Opt_auto_da_alloc, "auto_da_alloc"},
1453 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1454 	{Opt_dioread_nolock, "dioread_nolock"},
1455 	{Opt_dioread_lock, "dioread_lock"},
1456 	{Opt_discard, "discard"},
1457 	{Opt_nodiscard, "nodiscard"},
1458 	{Opt_init_itable, "init_itable=%u"},
1459 	{Opt_init_itable, "init_itable"},
1460 	{Opt_noinit_itable, "noinit_itable"},
1461 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1462 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1463 	{Opt_nombcache, "nombcache"},
1464 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1465 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1466 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1467 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1468 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1469 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1470 	{Opt_err, NULL},
1471 };
1472 
1473 static ext4_fsblk_t get_sb_block(void **data)
1474 {
1475 	ext4_fsblk_t	sb_block;
1476 	char		*options = (char *) *data;
1477 
1478 	if (!options || strncmp(options, "sb=", 3) != 0)
1479 		return 1;	/* Default location */
1480 
1481 	options += 3;
1482 	/* TODO: use simple_strtoll with >32bit ext4 */
1483 	sb_block = simple_strtoul(options, &options, 0);
1484 	if (*options && *options != ',') {
1485 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1486 		       (char *) *data);
1487 		return 1;
1488 	}
1489 	if (*options == ',')
1490 		options++;
1491 	*data = (void *) options;
1492 
1493 	return sb_block;
1494 }
1495 
1496 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1497 static const char deprecated_msg[] =
1498 	"Mount option \"%s\" will be removed by %s\n"
1499 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1500 
1501 #ifdef CONFIG_QUOTA
1502 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1503 {
1504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1505 	char *qname;
1506 	int ret = -1;
1507 
1508 	if (sb_any_quota_loaded(sb) &&
1509 		!sbi->s_qf_names[qtype]) {
1510 		ext4_msg(sb, KERN_ERR,
1511 			"Cannot change journaled "
1512 			"quota options when quota turned on");
1513 		return -1;
1514 	}
1515 	if (ext4_has_feature_quota(sb)) {
1516 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1517 			 "ignored when QUOTA feature is enabled");
1518 		return 1;
1519 	}
1520 	qname = match_strdup(args);
1521 	if (!qname) {
1522 		ext4_msg(sb, KERN_ERR,
1523 			"Not enough memory for storing quotafile name");
1524 		return -1;
1525 	}
1526 	if (sbi->s_qf_names[qtype]) {
1527 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1528 			ret = 1;
1529 		else
1530 			ext4_msg(sb, KERN_ERR,
1531 				 "%s quota file already specified",
1532 				 QTYPE2NAME(qtype));
1533 		goto errout;
1534 	}
1535 	if (strchr(qname, '/')) {
1536 		ext4_msg(sb, KERN_ERR,
1537 			"quotafile must be on filesystem root");
1538 		goto errout;
1539 	}
1540 	sbi->s_qf_names[qtype] = qname;
1541 	set_opt(sb, QUOTA);
1542 	return 1;
1543 errout:
1544 	kfree(qname);
1545 	return ret;
1546 }
1547 
1548 static int clear_qf_name(struct super_block *sb, int qtype)
1549 {
1550 
1551 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1552 
1553 	if (sb_any_quota_loaded(sb) &&
1554 		sbi->s_qf_names[qtype]) {
1555 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1556 			" when quota turned on");
1557 		return -1;
1558 	}
1559 	kfree(sbi->s_qf_names[qtype]);
1560 	sbi->s_qf_names[qtype] = NULL;
1561 	return 1;
1562 }
1563 #endif
1564 
1565 #define MOPT_SET	0x0001
1566 #define MOPT_CLEAR	0x0002
1567 #define MOPT_NOSUPPORT	0x0004
1568 #define MOPT_EXPLICIT	0x0008
1569 #define MOPT_CLEAR_ERR	0x0010
1570 #define MOPT_GTE0	0x0020
1571 #ifdef CONFIG_QUOTA
1572 #define MOPT_Q		0
1573 #define MOPT_QFMT	0x0040
1574 #else
1575 #define MOPT_Q		MOPT_NOSUPPORT
1576 #define MOPT_QFMT	MOPT_NOSUPPORT
1577 #endif
1578 #define MOPT_DATAJ	0x0080
1579 #define MOPT_NO_EXT2	0x0100
1580 #define MOPT_NO_EXT3	0x0200
1581 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1582 #define MOPT_STRING	0x0400
1583 
1584 static const struct mount_opts {
1585 	int	token;
1586 	int	mount_opt;
1587 	int	flags;
1588 } ext4_mount_opts[] = {
1589 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1590 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1591 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1592 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1593 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1594 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1595 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1596 	 MOPT_EXT4_ONLY | MOPT_SET},
1597 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1598 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1599 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1600 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1601 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1602 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1603 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1604 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1605 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1606 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1607 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1608 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1609 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1610 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1611 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1612 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1613 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1614 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1615 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1616 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1617 	 MOPT_NO_EXT2},
1618 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1619 	 MOPT_NO_EXT2},
1620 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1621 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1622 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1623 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1624 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1625 	{Opt_commit, 0, MOPT_GTE0},
1626 	{Opt_max_batch_time, 0, MOPT_GTE0},
1627 	{Opt_min_batch_time, 0, MOPT_GTE0},
1628 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1629 	{Opt_init_itable, 0, MOPT_GTE0},
1630 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1631 	{Opt_stripe, 0, MOPT_GTE0},
1632 	{Opt_resuid, 0, MOPT_GTE0},
1633 	{Opt_resgid, 0, MOPT_GTE0},
1634 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1635 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1636 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1637 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1638 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1639 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1640 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1641 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1642 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1643 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1644 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1645 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1646 #else
1647 	{Opt_acl, 0, MOPT_NOSUPPORT},
1648 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1649 #endif
1650 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1651 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1652 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1653 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1654 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1655 							MOPT_SET | MOPT_Q},
1656 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1657 							MOPT_SET | MOPT_Q},
1658 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1659 							MOPT_SET | MOPT_Q},
1660 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1661 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1662 							MOPT_CLEAR | MOPT_Q},
1663 	{Opt_usrjquota, 0, MOPT_Q},
1664 	{Opt_grpjquota, 0, MOPT_Q},
1665 	{Opt_offusrjquota, 0, MOPT_Q},
1666 	{Opt_offgrpjquota, 0, MOPT_Q},
1667 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1668 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1669 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1670 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1671 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1672 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1673 	{Opt_err, 0, 0}
1674 };
1675 
1676 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1677 			    substring_t *args, unsigned long *journal_devnum,
1678 			    unsigned int *journal_ioprio, int is_remount)
1679 {
1680 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1681 	const struct mount_opts *m;
1682 	kuid_t uid;
1683 	kgid_t gid;
1684 	int arg = 0;
1685 
1686 #ifdef CONFIG_QUOTA
1687 	if (token == Opt_usrjquota)
1688 		return set_qf_name(sb, USRQUOTA, &args[0]);
1689 	else if (token == Opt_grpjquota)
1690 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1691 	else if (token == Opt_offusrjquota)
1692 		return clear_qf_name(sb, USRQUOTA);
1693 	else if (token == Opt_offgrpjquota)
1694 		return clear_qf_name(sb, GRPQUOTA);
1695 #endif
1696 	switch (token) {
1697 	case Opt_noacl:
1698 	case Opt_nouser_xattr:
1699 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1700 		break;
1701 	case Opt_sb:
1702 		return 1;	/* handled by get_sb_block() */
1703 	case Opt_removed:
1704 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1705 		return 1;
1706 	case Opt_abort:
1707 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1708 		return 1;
1709 	case Opt_i_version:
1710 		sb->s_flags |= SB_I_VERSION;
1711 		return 1;
1712 	case Opt_lazytime:
1713 		sb->s_flags |= SB_LAZYTIME;
1714 		return 1;
1715 	case Opt_nolazytime:
1716 		sb->s_flags &= ~SB_LAZYTIME;
1717 		return 1;
1718 	}
1719 
1720 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1721 		if (token == m->token)
1722 			break;
1723 
1724 	if (m->token == Opt_err) {
1725 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1726 			 "or missing value", opt);
1727 		return -1;
1728 	}
1729 
1730 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1731 		ext4_msg(sb, KERN_ERR,
1732 			 "Mount option \"%s\" incompatible with ext2", opt);
1733 		return -1;
1734 	}
1735 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1736 		ext4_msg(sb, KERN_ERR,
1737 			 "Mount option \"%s\" incompatible with ext3", opt);
1738 		return -1;
1739 	}
1740 
1741 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1742 		return -1;
1743 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1744 		return -1;
1745 	if (m->flags & MOPT_EXPLICIT) {
1746 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1747 			set_opt2(sb, EXPLICIT_DELALLOC);
1748 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1749 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1750 		} else
1751 			return -1;
1752 	}
1753 	if (m->flags & MOPT_CLEAR_ERR)
1754 		clear_opt(sb, ERRORS_MASK);
1755 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1756 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1757 			 "options when quota turned on");
1758 		return -1;
1759 	}
1760 
1761 	if (m->flags & MOPT_NOSUPPORT) {
1762 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1763 	} else if (token == Opt_commit) {
1764 		if (arg == 0)
1765 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1766 		sbi->s_commit_interval = HZ * arg;
1767 	} else if (token == Opt_debug_want_extra_isize) {
1768 		sbi->s_want_extra_isize = arg;
1769 	} else if (token == Opt_max_batch_time) {
1770 		sbi->s_max_batch_time = arg;
1771 	} else if (token == Opt_min_batch_time) {
1772 		sbi->s_min_batch_time = arg;
1773 	} else if (token == Opt_inode_readahead_blks) {
1774 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1775 			ext4_msg(sb, KERN_ERR,
1776 				 "EXT4-fs: inode_readahead_blks must be "
1777 				 "0 or a power of 2 smaller than 2^31");
1778 			return -1;
1779 		}
1780 		sbi->s_inode_readahead_blks = arg;
1781 	} else if (token == Opt_init_itable) {
1782 		set_opt(sb, INIT_INODE_TABLE);
1783 		if (!args->from)
1784 			arg = EXT4_DEF_LI_WAIT_MULT;
1785 		sbi->s_li_wait_mult = arg;
1786 	} else if (token == Opt_max_dir_size_kb) {
1787 		sbi->s_max_dir_size_kb = arg;
1788 	} else if (token == Opt_stripe) {
1789 		sbi->s_stripe = arg;
1790 	} else if (token == Opt_resuid) {
1791 		uid = make_kuid(current_user_ns(), arg);
1792 		if (!uid_valid(uid)) {
1793 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1794 			return -1;
1795 		}
1796 		sbi->s_resuid = uid;
1797 	} else if (token == Opt_resgid) {
1798 		gid = make_kgid(current_user_ns(), arg);
1799 		if (!gid_valid(gid)) {
1800 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1801 			return -1;
1802 		}
1803 		sbi->s_resgid = gid;
1804 	} else if (token == Opt_journal_dev) {
1805 		if (is_remount) {
1806 			ext4_msg(sb, KERN_ERR,
1807 				 "Cannot specify journal on remount");
1808 			return -1;
1809 		}
1810 		*journal_devnum = arg;
1811 	} else if (token == Opt_journal_path) {
1812 		char *journal_path;
1813 		struct inode *journal_inode;
1814 		struct path path;
1815 		int error;
1816 
1817 		if (is_remount) {
1818 			ext4_msg(sb, KERN_ERR,
1819 				 "Cannot specify journal on remount");
1820 			return -1;
1821 		}
1822 		journal_path = match_strdup(&args[0]);
1823 		if (!journal_path) {
1824 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1825 				"journal device string");
1826 			return -1;
1827 		}
1828 
1829 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1830 		if (error) {
1831 			ext4_msg(sb, KERN_ERR, "error: could not find "
1832 				"journal device path: error %d", error);
1833 			kfree(journal_path);
1834 			return -1;
1835 		}
1836 
1837 		journal_inode = d_inode(path.dentry);
1838 		if (!S_ISBLK(journal_inode->i_mode)) {
1839 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1840 				"is not a block device", journal_path);
1841 			path_put(&path);
1842 			kfree(journal_path);
1843 			return -1;
1844 		}
1845 
1846 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1847 		path_put(&path);
1848 		kfree(journal_path);
1849 	} else if (token == Opt_journal_ioprio) {
1850 		if (arg > 7) {
1851 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1852 				 " (must be 0-7)");
1853 			return -1;
1854 		}
1855 		*journal_ioprio =
1856 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1857 	} else if (token == Opt_test_dummy_encryption) {
1858 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1859 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1860 		ext4_msg(sb, KERN_WARNING,
1861 			 "Test dummy encryption mode enabled");
1862 #else
1863 		ext4_msg(sb, KERN_WARNING,
1864 			 "Test dummy encryption mount option ignored");
1865 #endif
1866 	} else if (m->flags & MOPT_DATAJ) {
1867 		if (is_remount) {
1868 			if (!sbi->s_journal)
1869 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1870 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1871 				ext4_msg(sb, KERN_ERR,
1872 					 "Cannot change data mode on remount");
1873 				return -1;
1874 			}
1875 		} else {
1876 			clear_opt(sb, DATA_FLAGS);
1877 			sbi->s_mount_opt |= m->mount_opt;
1878 		}
1879 #ifdef CONFIG_QUOTA
1880 	} else if (m->flags & MOPT_QFMT) {
1881 		if (sb_any_quota_loaded(sb) &&
1882 		    sbi->s_jquota_fmt != m->mount_opt) {
1883 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1884 				 "quota options when quota turned on");
1885 			return -1;
1886 		}
1887 		if (ext4_has_feature_quota(sb)) {
1888 			ext4_msg(sb, KERN_INFO,
1889 				 "Quota format mount options ignored "
1890 				 "when QUOTA feature is enabled");
1891 			return 1;
1892 		}
1893 		sbi->s_jquota_fmt = m->mount_opt;
1894 #endif
1895 	} else if (token == Opt_dax) {
1896 #ifdef CONFIG_FS_DAX
1897 		ext4_msg(sb, KERN_WARNING,
1898 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1899 			sbi->s_mount_opt |= m->mount_opt;
1900 #else
1901 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1902 		return -1;
1903 #endif
1904 	} else if (token == Opt_data_err_abort) {
1905 		sbi->s_mount_opt |= m->mount_opt;
1906 	} else if (token == Opt_data_err_ignore) {
1907 		sbi->s_mount_opt &= ~m->mount_opt;
1908 	} else {
1909 		if (!args->from)
1910 			arg = 1;
1911 		if (m->flags & MOPT_CLEAR)
1912 			arg = !arg;
1913 		else if (unlikely(!(m->flags & MOPT_SET))) {
1914 			ext4_msg(sb, KERN_WARNING,
1915 				 "buggy handling of option %s", opt);
1916 			WARN_ON(1);
1917 			return -1;
1918 		}
1919 		if (arg != 0)
1920 			sbi->s_mount_opt |= m->mount_opt;
1921 		else
1922 			sbi->s_mount_opt &= ~m->mount_opt;
1923 	}
1924 	return 1;
1925 }
1926 
1927 static int parse_options(char *options, struct super_block *sb,
1928 			 unsigned long *journal_devnum,
1929 			 unsigned int *journal_ioprio,
1930 			 int is_remount)
1931 {
1932 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1933 	char *p;
1934 	substring_t args[MAX_OPT_ARGS];
1935 	int token;
1936 
1937 	if (!options)
1938 		return 1;
1939 
1940 	while ((p = strsep(&options, ",")) != NULL) {
1941 		if (!*p)
1942 			continue;
1943 		/*
1944 		 * Initialize args struct so we know whether arg was
1945 		 * found; some options take optional arguments.
1946 		 */
1947 		args[0].to = args[0].from = NULL;
1948 		token = match_token(p, tokens, args);
1949 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1950 				     journal_ioprio, is_remount) < 0)
1951 			return 0;
1952 	}
1953 #ifdef CONFIG_QUOTA
1954 	/*
1955 	 * We do the test below only for project quotas. 'usrquota' and
1956 	 * 'grpquota' mount options are allowed even without quota feature
1957 	 * to support legacy quotas in quota files.
1958 	 */
1959 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1960 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1961 			 "Cannot enable project quota enforcement.");
1962 		return 0;
1963 	}
1964 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1965 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1966 			clear_opt(sb, USRQUOTA);
1967 
1968 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1969 			clear_opt(sb, GRPQUOTA);
1970 
1971 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1972 			ext4_msg(sb, KERN_ERR, "old and new quota "
1973 					"format mixing");
1974 			return 0;
1975 		}
1976 
1977 		if (!sbi->s_jquota_fmt) {
1978 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1979 					"not specified");
1980 			return 0;
1981 		}
1982 	}
1983 #endif
1984 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1985 		int blocksize =
1986 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1987 
1988 		if (blocksize < PAGE_SIZE) {
1989 			ext4_msg(sb, KERN_ERR, "can't mount with "
1990 				 "dioread_nolock if block size != PAGE_SIZE");
1991 			return 0;
1992 		}
1993 	}
1994 	return 1;
1995 }
1996 
1997 static inline void ext4_show_quota_options(struct seq_file *seq,
1998 					   struct super_block *sb)
1999 {
2000 #if defined(CONFIG_QUOTA)
2001 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2002 
2003 	if (sbi->s_jquota_fmt) {
2004 		char *fmtname = "";
2005 
2006 		switch (sbi->s_jquota_fmt) {
2007 		case QFMT_VFS_OLD:
2008 			fmtname = "vfsold";
2009 			break;
2010 		case QFMT_VFS_V0:
2011 			fmtname = "vfsv0";
2012 			break;
2013 		case QFMT_VFS_V1:
2014 			fmtname = "vfsv1";
2015 			break;
2016 		}
2017 		seq_printf(seq, ",jqfmt=%s", fmtname);
2018 	}
2019 
2020 	if (sbi->s_qf_names[USRQUOTA])
2021 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
2022 
2023 	if (sbi->s_qf_names[GRPQUOTA])
2024 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2025 #endif
2026 }
2027 
2028 static const char *token2str(int token)
2029 {
2030 	const struct match_token *t;
2031 
2032 	for (t = tokens; t->token != Opt_err; t++)
2033 		if (t->token == token && !strchr(t->pattern, '='))
2034 			break;
2035 	return t->pattern;
2036 }
2037 
2038 /*
2039  * Show an option if
2040  *  - it's set to a non-default value OR
2041  *  - if the per-sb default is different from the global default
2042  */
2043 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2044 			      int nodefs)
2045 {
2046 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2047 	struct ext4_super_block *es = sbi->s_es;
2048 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2049 	const struct mount_opts *m;
2050 	char sep = nodefs ? '\n' : ',';
2051 
2052 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2053 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2054 
2055 	if (sbi->s_sb_block != 1)
2056 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2057 
2058 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2059 		int want_set = m->flags & MOPT_SET;
2060 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2061 		    (m->flags & MOPT_CLEAR_ERR))
2062 			continue;
2063 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2064 			continue; /* skip if same as the default */
2065 		if ((want_set &&
2066 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2067 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2068 			continue; /* select Opt_noFoo vs Opt_Foo */
2069 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2070 	}
2071 
2072 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2073 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2074 		SEQ_OPTS_PRINT("resuid=%u",
2075 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2076 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2077 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2078 		SEQ_OPTS_PRINT("resgid=%u",
2079 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2080 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2081 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2082 		SEQ_OPTS_PUTS("errors=remount-ro");
2083 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2084 		SEQ_OPTS_PUTS("errors=continue");
2085 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2086 		SEQ_OPTS_PUTS("errors=panic");
2087 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2088 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2089 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2090 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2091 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2092 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2093 	if (sb->s_flags & SB_I_VERSION)
2094 		SEQ_OPTS_PUTS("i_version");
2095 	if (nodefs || sbi->s_stripe)
2096 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2097 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2098 			(sbi->s_mount_opt ^ def_mount_opt)) {
2099 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2100 			SEQ_OPTS_PUTS("data=journal");
2101 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2102 			SEQ_OPTS_PUTS("data=ordered");
2103 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2104 			SEQ_OPTS_PUTS("data=writeback");
2105 	}
2106 	if (nodefs ||
2107 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2108 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2109 			       sbi->s_inode_readahead_blks);
2110 
2111 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2112 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2113 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2114 	if (nodefs || sbi->s_max_dir_size_kb)
2115 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2116 	if (test_opt(sb, DATA_ERR_ABORT))
2117 		SEQ_OPTS_PUTS("data_err=abort");
2118 
2119 	ext4_show_quota_options(seq, sb);
2120 	return 0;
2121 }
2122 
2123 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2124 {
2125 	return _ext4_show_options(seq, root->d_sb, 0);
2126 }
2127 
2128 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2129 {
2130 	struct super_block *sb = seq->private;
2131 	int rc;
2132 
2133 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2134 	rc = _ext4_show_options(seq, sb, 1);
2135 	seq_puts(seq, "\n");
2136 	return rc;
2137 }
2138 
2139 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2140 			    int read_only)
2141 {
2142 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2143 	int err = 0;
2144 
2145 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2146 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2147 			 "forcing read-only mode");
2148 		err = -EROFS;
2149 	}
2150 	if (read_only)
2151 		goto done;
2152 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2153 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2154 			 "running e2fsck is recommended");
2155 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2156 		ext4_msg(sb, KERN_WARNING,
2157 			 "warning: mounting fs with errors, "
2158 			 "running e2fsck is recommended");
2159 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2160 		 le16_to_cpu(es->s_mnt_count) >=
2161 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2162 		ext4_msg(sb, KERN_WARNING,
2163 			 "warning: maximal mount count reached, "
2164 			 "running e2fsck is recommended");
2165 	else if (le32_to_cpu(es->s_checkinterval) &&
2166 		(le32_to_cpu(es->s_lastcheck) +
2167 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2168 		ext4_msg(sb, KERN_WARNING,
2169 			 "warning: checktime reached, "
2170 			 "running e2fsck is recommended");
2171 	if (!sbi->s_journal)
2172 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2173 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2174 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2175 	le16_add_cpu(&es->s_mnt_count, 1);
2176 	es->s_mtime = cpu_to_le32(get_seconds());
2177 	ext4_update_dynamic_rev(sb);
2178 	if (sbi->s_journal)
2179 		ext4_set_feature_journal_needs_recovery(sb);
2180 
2181 	err = ext4_commit_super(sb, 1);
2182 done:
2183 	if (test_opt(sb, DEBUG))
2184 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2185 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2186 			sb->s_blocksize,
2187 			sbi->s_groups_count,
2188 			EXT4_BLOCKS_PER_GROUP(sb),
2189 			EXT4_INODES_PER_GROUP(sb),
2190 			sbi->s_mount_opt, sbi->s_mount_opt2);
2191 
2192 	cleancache_init_fs(sb);
2193 	return err;
2194 }
2195 
2196 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2197 {
2198 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2199 	struct flex_groups *new_groups;
2200 	int size;
2201 
2202 	if (!sbi->s_log_groups_per_flex)
2203 		return 0;
2204 
2205 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2206 	if (size <= sbi->s_flex_groups_allocated)
2207 		return 0;
2208 
2209 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2210 	new_groups = kvzalloc(size, GFP_KERNEL);
2211 	if (!new_groups) {
2212 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2213 			 size / (int) sizeof(struct flex_groups));
2214 		return -ENOMEM;
2215 	}
2216 
2217 	if (sbi->s_flex_groups) {
2218 		memcpy(new_groups, sbi->s_flex_groups,
2219 		       (sbi->s_flex_groups_allocated *
2220 			sizeof(struct flex_groups)));
2221 		kvfree(sbi->s_flex_groups);
2222 	}
2223 	sbi->s_flex_groups = new_groups;
2224 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2225 	return 0;
2226 }
2227 
2228 static int ext4_fill_flex_info(struct super_block *sb)
2229 {
2230 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2231 	struct ext4_group_desc *gdp = NULL;
2232 	ext4_group_t flex_group;
2233 	int i, err;
2234 
2235 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2236 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2237 		sbi->s_log_groups_per_flex = 0;
2238 		return 1;
2239 	}
2240 
2241 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2242 	if (err)
2243 		goto failed;
2244 
2245 	for (i = 0; i < sbi->s_groups_count; i++) {
2246 		gdp = ext4_get_group_desc(sb, i, NULL);
2247 
2248 		flex_group = ext4_flex_group(sbi, i);
2249 		atomic_add(ext4_free_inodes_count(sb, gdp),
2250 			   &sbi->s_flex_groups[flex_group].free_inodes);
2251 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2252 			     &sbi->s_flex_groups[flex_group].free_clusters);
2253 		atomic_add(ext4_used_dirs_count(sb, gdp),
2254 			   &sbi->s_flex_groups[flex_group].used_dirs);
2255 	}
2256 
2257 	return 1;
2258 failed:
2259 	return 0;
2260 }
2261 
2262 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2263 				   struct ext4_group_desc *gdp)
2264 {
2265 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2266 	__u16 crc = 0;
2267 	__le32 le_group = cpu_to_le32(block_group);
2268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2269 
2270 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2271 		/* Use new metadata_csum algorithm */
2272 		__u32 csum32;
2273 		__u16 dummy_csum = 0;
2274 
2275 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2276 				     sizeof(le_group));
2277 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2278 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2279 				     sizeof(dummy_csum));
2280 		offset += sizeof(dummy_csum);
2281 		if (offset < sbi->s_desc_size)
2282 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2283 					     sbi->s_desc_size - offset);
2284 
2285 		crc = csum32 & 0xFFFF;
2286 		goto out;
2287 	}
2288 
2289 	/* old crc16 code */
2290 	if (!ext4_has_feature_gdt_csum(sb))
2291 		return 0;
2292 
2293 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2294 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2295 	crc = crc16(crc, (__u8 *)gdp, offset);
2296 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2297 	/* for checksum of struct ext4_group_desc do the rest...*/
2298 	if (ext4_has_feature_64bit(sb) &&
2299 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2300 		crc = crc16(crc, (__u8 *)gdp + offset,
2301 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2302 				offset);
2303 
2304 out:
2305 	return cpu_to_le16(crc);
2306 }
2307 
2308 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2309 				struct ext4_group_desc *gdp)
2310 {
2311 	if (ext4_has_group_desc_csum(sb) &&
2312 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2313 		return 0;
2314 
2315 	return 1;
2316 }
2317 
2318 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2319 			      struct ext4_group_desc *gdp)
2320 {
2321 	if (!ext4_has_group_desc_csum(sb))
2322 		return;
2323 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2324 }
2325 
2326 /* Called at mount-time, super-block is locked */
2327 static int ext4_check_descriptors(struct super_block *sb,
2328 				  ext4_fsblk_t sb_block,
2329 				  ext4_group_t *first_not_zeroed)
2330 {
2331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2333 	ext4_fsblk_t last_block;
2334 	ext4_fsblk_t block_bitmap;
2335 	ext4_fsblk_t inode_bitmap;
2336 	ext4_fsblk_t inode_table;
2337 	int flexbg_flag = 0;
2338 	ext4_group_t i, grp = sbi->s_groups_count;
2339 
2340 	if (ext4_has_feature_flex_bg(sb))
2341 		flexbg_flag = 1;
2342 
2343 	ext4_debug("Checking group descriptors");
2344 
2345 	for (i = 0; i < sbi->s_groups_count; i++) {
2346 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2347 
2348 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2349 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2350 		else
2351 			last_block = first_block +
2352 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2353 
2354 		if ((grp == sbi->s_groups_count) &&
2355 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2356 			grp = i;
2357 
2358 		block_bitmap = ext4_block_bitmap(sb, gdp);
2359 		if (block_bitmap == sb_block) {
2360 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2361 				 "Block bitmap for group %u overlaps "
2362 				 "superblock", i);
2363 			if (!sb_rdonly(sb))
2364 				return 0;
2365 		}
2366 		if (block_bitmap < first_block || block_bitmap > last_block) {
2367 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2368 			       "Block bitmap for group %u not in group "
2369 			       "(block %llu)!", i, block_bitmap);
2370 			return 0;
2371 		}
2372 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2373 		if (inode_bitmap == sb_block) {
2374 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2375 				 "Inode bitmap for group %u overlaps "
2376 				 "superblock", i);
2377 			if (!sb_rdonly(sb))
2378 				return 0;
2379 		}
2380 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2381 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2382 			       "Inode bitmap for group %u not in group "
2383 			       "(block %llu)!", i, inode_bitmap);
2384 			return 0;
2385 		}
2386 		inode_table = ext4_inode_table(sb, gdp);
2387 		if (inode_table == sb_block) {
2388 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2389 				 "Inode table for group %u overlaps "
2390 				 "superblock", i);
2391 			if (!sb_rdonly(sb))
2392 				return 0;
2393 		}
2394 		if (inode_table < first_block ||
2395 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2396 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2397 			       "Inode table for group %u not in group "
2398 			       "(block %llu)!", i, inode_table);
2399 			return 0;
2400 		}
2401 		ext4_lock_group(sb, i);
2402 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2403 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2404 				 "Checksum for group %u failed (%u!=%u)",
2405 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2406 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2407 			if (!sb_rdonly(sb)) {
2408 				ext4_unlock_group(sb, i);
2409 				return 0;
2410 			}
2411 		}
2412 		ext4_unlock_group(sb, i);
2413 		if (!flexbg_flag)
2414 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2415 	}
2416 	if (NULL != first_not_zeroed)
2417 		*first_not_zeroed = grp;
2418 	return 1;
2419 }
2420 
2421 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2422  * the superblock) which were deleted from all directories, but held open by
2423  * a process at the time of a crash.  We walk the list and try to delete these
2424  * inodes at recovery time (only with a read-write filesystem).
2425  *
2426  * In order to keep the orphan inode chain consistent during traversal (in
2427  * case of crash during recovery), we link each inode into the superblock
2428  * orphan list_head and handle it the same way as an inode deletion during
2429  * normal operation (which journals the operations for us).
2430  *
2431  * We only do an iget() and an iput() on each inode, which is very safe if we
2432  * accidentally point at an in-use or already deleted inode.  The worst that
2433  * can happen in this case is that we get a "bit already cleared" message from
2434  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2435  * e2fsck was run on this filesystem, and it must have already done the orphan
2436  * inode cleanup for us, so we can safely abort without any further action.
2437  */
2438 static void ext4_orphan_cleanup(struct super_block *sb,
2439 				struct ext4_super_block *es)
2440 {
2441 	unsigned int s_flags = sb->s_flags;
2442 	int ret, nr_orphans = 0, nr_truncates = 0;
2443 #ifdef CONFIG_QUOTA
2444 	int quota_update = 0;
2445 	int i;
2446 #endif
2447 	if (!es->s_last_orphan) {
2448 		jbd_debug(4, "no orphan inodes to clean up\n");
2449 		return;
2450 	}
2451 
2452 	if (bdev_read_only(sb->s_bdev)) {
2453 		ext4_msg(sb, KERN_ERR, "write access "
2454 			"unavailable, skipping orphan cleanup");
2455 		return;
2456 	}
2457 
2458 	/* Check if feature set would not allow a r/w mount */
2459 	if (!ext4_feature_set_ok(sb, 0)) {
2460 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2461 			 "unknown ROCOMPAT features");
2462 		return;
2463 	}
2464 
2465 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2466 		/* don't clear list on RO mount w/ errors */
2467 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2468 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2469 				  "clearing orphan list.\n");
2470 			es->s_last_orphan = 0;
2471 		}
2472 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2473 		return;
2474 	}
2475 
2476 	if (s_flags & SB_RDONLY) {
2477 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2478 		sb->s_flags &= ~SB_RDONLY;
2479 	}
2480 #ifdef CONFIG_QUOTA
2481 	/* Needed for iput() to work correctly and not trash data */
2482 	sb->s_flags |= SB_ACTIVE;
2483 
2484 	/*
2485 	 * Turn on quotas which were not enabled for read-only mounts if
2486 	 * filesystem has quota feature, so that they are updated correctly.
2487 	 */
2488 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2489 		int ret = ext4_enable_quotas(sb);
2490 
2491 		if (!ret)
2492 			quota_update = 1;
2493 		else
2494 			ext4_msg(sb, KERN_ERR,
2495 				"Cannot turn on quotas: error %d", ret);
2496 	}
2497 
2498 	/* Turn on journaled quotas used for old sytle */
2499 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2500 		if (EXT4_SB(sb)->s_qf_names[i]) {
2501 			int ret = ext4_quota_on_mount(sb, i);
2502 
2503 			if (!ret)
2504 				quota_update = 1;
2505 			else
2506 				ext4_msg(sb, KERN_ERR,
2507 					"Cannot turn on journaled "
2508 					"quota: type %d: error %d", i, ret);
2509 		}
2510 	}
2511 #endif
2512 
2513 	while (es->s_last_orphan) {
2514 		struct inode *inode;
2515 
2516 		/*
2517 		 * We may have encountered an error during cleanup; if
2518 		 * so, skip the rest.
2519 		 */
2520 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2521 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2522 			es->s_last_orphan = 0;
2523 			break;
2524 		}
2525 
2526 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2527 		if (IS_ERR(inode)) {
2528 			es->s_last_orphan = 0;
2529 			break;
2530 		}
2531 
2532 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2533 		dquot_initialize(inode);
2534 		if (inode->i_nlink) {
2535 			if (test_opt(sb, DEBUG))
2536 				ext4_msg(sb, KERN_DEBUG,
2537 					"%s: truncating inode %lu to %lld bytes",
2538 					__func__, inode->i_ino, inode->i_size);
2539 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2540 				  inode->i_ino, inode->i_size);
2541 			inode_lock(inode);
2542 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2543 			ret = ext4_truncate(inode);
2544 			if (ret)
2545 				ext4_std_error(inode->i_sb, ret);
2546 			inode_unlock(inode);
2547 			nr_truncates++;
2548 		} else {
2549 			if (test_opt(sb, DEBUG))
2550 				ext4_msg(sb, KERN_DEBUG,
2551 					"%s: deleting unreferenced inode %lu",
2552 					__func__, inode->i_ino);
2553 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2554 				  inode->i_ino);
2555 			nr_orphans++;
2556 		}
2557 		iput(inode);  /* The delete magic happens here! */
2558 	}
2559 
2560 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2561 
2562 	if (nr_orphans)
2563 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2564 		       PLURAL(nr_orphans));
2565 	if (nr_truncates)
2566 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2567 		       PLURAL(nr_truncates));
2568 #ifdef CONFIG_QUOTA
2569 	/* Turn off quotas if they were enabled for orphan cleanup */
2570 	if (quota_update) {
2571 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2572 			if (sb_dqopt(sb)->files[i])
2573 				dquot_quota_off(sb, i);
2574 		}
2575 	}
2576 #endif
2577 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2578 }
2579 
2580 /*
2581  * Maximal extent format file size.
2582  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2583  * extent format containers, within a sector_t, and within i_blocks
2584  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2585  * so that won't be a limiting factor.
2586  *
2587  * However there is other limiting factor. We do store extents in the form
2588  * of starting block and length, hence the resulting length of the extent
2589  * covering maximum file size must fit into on-disk format containers as
2590  * well. Given that length is always by 1 unit bigger than max unit (because
2591  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2592  *
2593  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2594  */
2595 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2596 {
2597 	loff_t res;
2598 	loff_t upper_limit = MAX_LFS_FILESIZE;
2599 
2600 	/* small i_blocks in vfs inode? */
2601 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2602 		/*
2603 		 * CONFIG_LBDAF is not enabled implies the inode
2604 		 * i_block represent total blocks in 512 bytes
2605 		 * 32 == size of vfs inode i_blocks * 8
2606 		 */
2607 		upper_limit = (1LL << 32) - 1;
2608 
2609 		/* total blocks in file system block size */
2610 		upper_limit >>= (blkbits - 9);
2611 		upper_limit <<= blkbits;
2612 	}
2613 
2614 	/*
2615 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2616 	 * by one fs block, so ee_len can cover the extent of maximum file
2617 	 * size
2618 	 */
2619 	res = (1LL << 32) - 1;
2620 	res <<= blkbits;
2621 
2622 	/* Sanity check against vm- & vfs- imposed limits */
2623 	if (res > upper_limit)
2624 		res = upper_limit;
2625 
2626 	return res;
2627 }
2628 
2629 /*
2630  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2631  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2632  * We need to be 1 filesystem block less than the 2^48 sector limit.
2633  */
2634 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2635 {
2636 	loff_t res = EXT4_NDIR_BLOCKS;
2637 	int meta_blocks;
2638 	loff_t upper_limit;
2639 	/* This is calculated to be the largest file size for a dense, block
2640 	 * mapped file such that the file's total number of 512-byte sectors,
2641 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2642 	 *
2643 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2644 	 * number of 512-byte sectors of the file.
2645 	 */
2646 
2647 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2648 		/*
2649 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2650 		 * the inode i_block field represents total file blocks in
2651 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2652 		 */
2653 		upper_limit = (1LL << 32) - 1;
2654 
2655 		/* total blocks in file system block size */
2656 		upper_limit >>= (bits - 9);
2657 
2658 	} else {
2659 		/*
2660 		 * We use 48 bit ext4_inode i_blocks
2661 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2662 		 * represent total number of blocks in
2663 		 * file system block size
2664 		 */
2665 		upper_limit = (1LL << 48) - 1;
2666 
2667 	}
2668 
2669 	/* indirect blocks */
2670 	meta_blocks = 1;
2671 	/* double indirect blocks */
2672 	meta_blocks += 1 + (1LL << (bits-2));
2673 	/* tripple indirect blocks */
2674 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2675 
2676 	upper_limit -= meta_blocks;
2677 	upper_limit <<= bits;
2678 
2679 	res += 1LL << (bits-2);
2680 	res += 1LL << (2*(bits-2));
2681 	res += 1LL << (3*(bits-2));
2682 	res <<= bits;
2683 	if (res > upper_limit)
2684 		res = upper_limit;
2685 
2686 	if (res > MAX_LFS_FILESIZE)
2687 		res = MAX_LFS_FILESIZE;
2688 
2689 	return res;
2690 }
2691 
2692 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2693 				   ext4_fsblk_t logical_sb_block, int nr)
2694 {
2695 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2696 	ext4_group_t bg, first_meta_bg;
2697 	int has_super = 0;
2698 
2699 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2700 
2701 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2702 		return logical_sb_block + nr + 1;
2703 	bg = sbi->s_desc_per_block * nr;
2704 	if (ext4_bg_has_super(sb, bg))
2705 		has_super = 1;
2706 
2707 	/*
2708 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2709 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2710 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2711 	 * compensate.
2712 	 */
2713 	if (sb->s_blocksize == 1024 && nr == 0 &&
2714 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2715 		has_super++;
2716 
2717 	return (has_super + ext4_group_first_block_no(sb, bg));
2718 }
2719 
2720 /**
2721  * ext4_get_stripe_size: Get the stripe size.
2722  * @sbi: In memory super block info
2723  *
2724  * If we have specified it via mount option, then
2725  * use the mount option value. If the value specified at mount time is
2726  * greater than the blocks per group use the super block value.
2727  * If the super block value is greater than blocks per group return 0.
2728  * Allocator needs it be less than blocks per group.
2729  *
2730  */
2731 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2732 {
2733 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2734 	unsigned long stripe_width =
2735 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2736 	int ret;
2737 
2738 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2739 		ret = sbi->s_stripe;
2740 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2741 		ret = stripe_width;
2742 	else if (stride && stride <= sbi->s_blocks_per_group)
2743 		ret = stride;
2744 	else
2745 		ret = 0;
2746 
2747 	/*
2748 	 * If the stripe width is 1, this makes no sense and
2749 	 * we set it to 0 to turn off stripe handling code.
2750 	 */
2751 	if (ret <= 1)
2752 		ret = 0;
2753 
2754 	return ret;
2755 }
2756 
2757 /*
2758  * Check whether this filesystem can be mounted based on
2759  * the features present and the RDONLY/RDWR mount requested.
2760  * Returns 1 if this filesystem can be mounted as requested,
2761  * 0 if it cannot be.
2762  */
2763 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2764 {
2765 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2766 		ext4_msg(sb, KERN_ERR,
2767 			"Couldn't mount because of "
2768 			"unsupported optional features (%x)",
2769 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2770 			~EXT4_FEATURE_INCOMPAT_SUPP));
2771 		return 0;
2772 	}
2773 
2774 	if (readonly)
2775 		return 1;
2776 
2777 	if (ext4_has_feature_readonly(sb)) {
2778 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2779 		sb->s_flags |= SB_RDONLY;
2780 		return 1;
2781 	}
2782 
2783 	/* Check that feature set is OK for a read-write mount */
2784 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2785 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2786 			 "unsupported optional features (%x)",
2787 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2788 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2789 		return 0;
2790 	}
2791 	/*
2792 	 * Large file size enabled file system can only be mounted
2793 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2794 	 */
2795 	if (ext4_has_feature_huge_file(sb)) {
2796 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2797 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2798 				 "cannot be mounted RDWR without "
2799 				 "CONFIG_LBDAF");
2800 			return 0;
2801 		}
2802 	}
2803 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2804 		ext4_msg(sb, KERN_ERR,
2805 			 "Can't support bigalloc feature without "
2806 			 "extents feature\n");
2807 		return 0;
2808 	}
2809 
2810 #ifndef CONFIG_QUOTA
2811 	if (ext4_has_feature_quota(sb) && !readonly) {
2812 		ext4_msg(sb, KERN_ERR,
2813 			 "Filesystem with quota feature cannot be mounted RDWR "
2814 			 "without CONFIG_QUOTA");
2815 		return 0;
2816 	}
2817 	if (ext4_has_feature_project(sb) && !readonly) {
2818 		ext4_msg(sb, KERN_ERR,
2819 			 "Filesystem with project quota feature cannot be mounted RDWR "
2820 			 "without CONFIG_QUOTA");
2821 		return 0;
2822 	}
2823 #endif  /* CONFIG_QUOTA */
2824 	return 1;
2825 }
2826 
2827 /*
2828  * This function is called once a day if we have errors logged
2829  * on the file system
2830  */
2831 static void print_daily_error_info(struct timer_list *t)
2832 {
2833 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2834 	struct super_block *sb = sbi->s_sb;
2835 	struct ext4_super_block *es = sbi->s_es;
2836 
2837 	if (es->s_error_count)
2838 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2839 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2840 			 le32_to_cpu(es->s_error_count));
2841 	if (es->s_first_error_time) {
2842 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2843 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2844 		       (int) sizeof(es->s_first_error_func),
2845 		       es->s_first_error_func,
2846 		       le32_to_cpu(es->s_first_error_line));
2847 		if (es->s_first_error_ino)
2848 			printk(KERN_CONT ": inode %u",
2849 			       le32_to_cpu(es->s_first_error_ino));
2850 		if (es->s_first_error_block)
2851 			printk(KERN_CONT ": block %llu", (unsigned long long)
2852 			       le64_to_cpu(es->s_first_error_block));
2853 		printk(KERN_CONT "\n");
2854 	}
2855 	if (es->s_last_error_time) {
2856 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2857 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2858 		       (int) sizeof(es->s_last_error_func),
2859 		       es->s_last_error_func,
2860 		       le32_to_cpu(es->s_last_error_line));
2861 		if (es->s_last_error_ino)
2862 			printk(KERN_CONT ": inode %u",
2863 			       le32_to_cpu(es->s_last_error_ino));
2864 		if (es->s_last_error_block)
2865 			printk(KERN_CONT ": block %llu", (unsigned long long)
2866 			       le64_to_cpu(es->s_last_error_block));
2867 		printk(KERN_CONT "\n");
2868 	}
2869 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2870 }
2871 
2872 /* Find next suitable group and run ext4_init_inode_table */
2873 static int ext4_run_li_request(struct ext4_li_request *elr)
2874 {
2875 	struct ext4_group_desc *gdp = NULL;
2876 	ext4_group_t group, ngroups;
2877 	struct super_block *sb;
2878 	unsigned long timeout = 0;
2879 	int ret = 0;
2880 
2881 	sb = elr->lr_super;
2882 	ngroups = EXT4_SB(sb)->s_groups_count;
2883 
2884 	for (group = elr->lr_next_group; group < ngroups; group++) {
2885 		gdp = ext4_get_group_desc(sb, group, NULL);
2886 		if (!gdp) {
2887 			ret = 1;
2888 			break;
2889 		}
2890 
2891 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2892 			break;
2893 	}
2894 
2895 	if (group >= ngroups)
2896 		ret = 1;
2897 
2898 	if (!ret) {
2899 		timeout = jiffies;
2900 		ret = ext4_init_inode_table(sb, group,
2901 					    elr->lr_timeout ? 0 : 1);
2902 		if (elr->lr_timeout == 0) {
2903 			timeout = (jiffies - timeout) *
2904 				  elr->lr_sbi->s_li_wait_mult;
2905 			elr->lr_timeout = timeout;
2906 		}
2907 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2908 		elr->lr_next_group = group + 1;
2909 	}
2910 	return ret;
2911 }
2912 
2913 /*
2914  * Remove lr_request from the list_request and free the
2915  * request structure. Should be called with li_list_mtx held
2916  */
2917 static void ext4_remove_li_request(struct ext4_li_request *elr)
2918 {
2919 	struct ext4_sb_info *sbi;
2920 
2921 	if (!elr)
2922 		return;
2923 
2924 	sbi = elr->lr_sbi;
2925 
2926 	list_del(&elr->lr_request);
2927 	sbi->s_li_request = NULL;
2928 	kfree(elr);
2929 }
2930 
2931 static void ext4_unregister_li_request(struct super_block *sb)
2932 {
2933 	mutex_lock(&ext4_li_mtx);
2934 	if (!ext4_li_info) {
2935 		mutex_unlock(&ext4_li_mtx);
2936 		return;
2937 	}
2938 
2939 	mutex_lock(&ext4_li_info->li_list_mtx);
2940 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2941 	mutex_unlock(&ext4_li_info->li_list_mtx);
2942 	mutex_unlock(&ext4_li_mtx);
2943 }
2944 
2945 static struct task_struct *ext4_lazyinit_task;
2946 
2947 /*
2948  * This is the function where ext4lazyinit thread lives. It walks
2949  * through the request list searching for next scheduled filesystem.
2950  * When such a fs is found, run the lazy initialization request
2951  * (ext4_rn_li_request) and keep track of the time spend in this
2952  * function. Based on that time we compute next schedule time of
2953  * the request. When walking through the list is complete, compute
2954  * next waking time and put itself into sleep.
2955  */
2956 static int ext4_lazyinit_thread(void *arg)
2957 {
2958 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2959 	struct list_head *pos, *n;
2960 	struct ext4_li_request *elr;
2961 	unsigned long next_wakeup, cur;
2962 
2963 	BUG_ON(NULL == eli);
2964 
2965 cont_thread:
2966 	while (true) {
2967 		next_wakeup = MAX_JIFFY_OFFSET;
2968 
2969 		mutex_lock(&eli->li_list_mtx);
2970 		if (list_empty(&eli->li_request_list)) {
2971 			mutex_unlock(&eli->li_list_mtx);
2972 			goto exit_thread;
2973 		}
2974 		list_for_each_safe(pos, n, &eli->li_request_list) {
2975 			int err = 0;
2976 			int progress = 0;
2977 			elr = list_entry(pos, struct ext4_li_request,
2978 					 lr_request);
2979 
2980 			if (time_before(jiffies, elr->lr_next_sched)) {
2981 				if (time_before(elr->lr_next_sched, next_wakeup))
2982 					next_wakeup = elr->lr_next_sched;
2983 				continue;
2984 			}
2985 			if (down_read_trylock(&elr->lr_super->s_umount)) {
2986 				if (sb_start_write_trylock(elr->lr_super)) {
2987 					progress = 1;
2988 					/*
2989 					 * We hold sb->s_umount, sb can not
2990 					 * be removed from the list, it is
2991 					 * now safe to drop li_list_mtx
2992 					 */
2993 					mutex_unlock(&eli->li_list_mtx);
2994 					err = ext4_run_li_request(elr);
2995 					sb_end_write(elr->lr_super);
2996 					mutex_lock(&eli->li_list_mtx);
2997 					n = pos->next;
2998 				}
2999 				up_read((&elr->lr_super->s_umount));
3000 			}
3001 			/* error, remove the lazy_init job */
3002 			if (err) {
3003 				ext4_remove_li_request(elr);
3004 				continue;
3005 			}
3006 			if (!progress) {
3007 				elr->lr_next_sched = jiffies +
3008 					(prandom_u32()
3009 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3010 			}
3011 			if (time_before(elr->lr_next_sched, next_wakeup))
3012 				next_wakeup = elr->lr_next_sched;
3013 		}
3014 		mutex_unlock(&eli->li_list_mtx);
3015 
3016 		try_to_freeze();
3017 
3018 		cur = jiffies;
3019 		if ((time_after_eq(cur, next_wakeup)) ||
3020 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3021 			cond_resched();
3022 			continue;
3023 		}
3024 
3025 		schedule_timeout_interruptible(next_wakeup - cur);
3026 
3027 		if (kthread_should_stop()) {
3028 			ext4_clear_request_list();
3029 			goto exit_thread;
3030 		}
3031 	}
3032 
3033 exit_thread:
3034 	/*
3035 	 * It looks like the request list is empty, but we need
3036 	 * to check it under the li_list_mtx lock, to prevent any
3037 	 * additions into it, and of course we should lock ext4_li_mtx
3038 	 * to atomically free the list and ext4_li_info, because at
3039 	 * this point another ext4 filesystem could be registering
3040 	 * new one.
3041 	 */
3042 	mutex_lock(&ext4_li_mtx);
3043 	mutex_lock(&eli->li_list_mtx);
3044 	if (!list_empty(&eli->li_request_list)) {
3045 		mutex_unlock(&eli->li_list_mtx);
3046 		mutex_unlock(&ext4_li_mtx);
3047 		goto cont_thread;
3048 	}
3049 	mutex_unlock(&eli->li_list_mtx);
3050 	kfree(ext4_li_info);
3051 	ext4_li_info = NULL;
3052 	mutex_unlock(&ext4_li_mtx);
3053 
3054 	return 0;
3055 }
3056 
3057 static void ext4_clear_request_list(void)
3058 {
3059 	struct list_head *pos, *n;
3060 	struct ext4_li_request *elr;
3061 
3062 	mutex_lock(&ext4_li_info->li_list_mtx);
3063 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3064 		elr = list_entry(pos, struct ext4_li_request,
3065 				 lr_request);
3066 		ext4_remove_li_request(elr);
3067 	}
3068 	mutex_unlock(&ext4_li_info->li_list_mtx);
3069 }
3070 
3071 static int ext4_run_lazyinit_thread(void)
3072 {
3073 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3074 					 ext4_li_info, "ext4lazyinit");
3075 	if (IS_ERR(ext4_lazyinit_task)) {
3076 		int err = PTR_ERR(ext4_lazyinit_task);
3077 		ext4_clear_request_list();
3078 		kfree(ext4_li_info);
3079 		ext4_li_info = NULL;
3080 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3081 				 "initialization thread\n",
3082 				 err);
3083 		return err;
3084 	}
3085 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Check whether it make sense to run itable init. thread or not.
3091  * If there is at least one uninitialized inode table, return
3092  * corresponding group number, else the loop goes through all
3093  * groups and return total number of groups.
3094  */
3095 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3096 {
3097 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3098 	struct ext4_group_desc *gdp = NULL;
3099 
3100 	for (group = 0; group < ngroups; group++) {
3101 		gdp = ext4_get_group_desc(sb, group, NULL);
3102 		if (!gdp)
3103 			continue;
3104 
3105 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3106 			break;
3107 	}
3108 
3109 	return group;
3110 }
3111 
3112 static int ext4_li_info_new(void)
3113 {
3114 	struct ext4_lazy_init *eli = NULL;
3115 
3116 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3117 	if (!eli)
3118 		return -ENOMEM;
3119 
3120 	INIT_LIST_HEAD(&eli->li_request_list);
3121 	mutex_init(&eli->li_list_mtx);
3122 
3123 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3124 
3125 	ext4_li_info = eli;
3126 
3127 	return 0;
3128 }
3129 
3130 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3131 					    ext4_group_t start)
3132 {
3133 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3134 	struct ext4_li_request *elr;
3135 
3136 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3137 	if (!elr)
3138 		return NULL;
3139 
3140 	elr->lr_super = sb;
3141 	elr->lr_sbi = sbi;
3142 	elr->lr_next_group = start;
3143 
3144 	/*
3145 	 * Randomize first schedule time of the request to
3146 	 * spread the inode table initialization requests
3147 	 * better.
3148 	 */
3149 	elr->lr_next_sched = jiffies + (prandom_u32() %
3150 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3151 	return elr;
3152 }
3153 
3154 int ext4_register_li_request(struct super_block *sb,
3155 			     ext4_group_t first_not_zeroed)
3156 {
3157 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3158 	struct ext4_li_request *elr = NULL;
3159 	ext4_group_t ngroups = sbi->s_groups_count;
3160 	int ret = 0;
3161 
3162 	mutex_lock(&ext4_li_mtx);
3163 	if (sbi->s_li_request != NULL) {
3164 		/*
3165 		 * Reset timeout so it can be computed again, because
3166 		 * s_li_wait_mult might have changed.
3167 		 */
3168 		sbi->s_li_request->lr_timeout = 0;
3169 		goto out;
3170 	}
3171 
3172 	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3173 	    !test_opt(sb, INIT_INODE_TABLE))
3174 		goto out;
3175 
3176 	elr = ext4_li_request_new(sb, first_not_zeroed);
3177 	if (!elr) {
3178 		ret = -ENOMEM;
3179 		goto out;
3180 	}
3181 
3182 	if (NULL == ext4_li_info) {
3183 		ret = ext4_li_info_new();
3184 		if (ret)
3185 			goto out;
3186 	}
3187 
3188 	mutex_lock(&ext4_li_info->li_list_mtx);
3189 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3190 	mutex_unlock(&ext4_li_info->li_list_mtx);
3191 
3192 	sbi->s_li_request = elr;
3193 	/*
3194 	 * set elr to NULL here since it has been inserted to
3195 	 * the request_list and the removal and free of it is
3196 	 * handled by ext4_clear_request_list from now on.
3197 	 */
3198 	elr = NULL;
3199 
3200 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3201 		ret = ext4_run_lazyinit_thread();
3202 		if (ret)
3203 			goto out;
3204 	}
3205 out:
3206 	mutex_unlock(&ext4_li_mtx);
3207 	if (ret)
3208 		kfree(elr);
3209 	return ret;
3210 }
3211 
3212 /*
3213  * We do not need to lock anything since this is called on
3214  * module unload.
3215  */
3216 static void ext4_destroy_lazyinit_thread(void)
3217 {
3218 	/*
3219 	 * If thread exited earlier
3220 	 * there's nothing to be done.
3221 	 */
3222 	if (!ext4_li_info || !ext4_lazyinit_task)
3223 		return;
3224 
3225 	kthread_stop(ext4_lazyinit_task);
3226 }
3227 
3228 static int set_journal_csum_feature_set(struct super_block *sb)
3229 {
3230 	int ret = 1;
3231 	int compat, incompat;
3232 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3233 
3234 	if (ext4_has_metadata_csum(sb)) {
3235 		/* journal checksum v3 */
3236 		compat = 0;
3237 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3238 	} else {
3239 		/* journal checksum v1 */
3240 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3241 		incompat = 0;
3242 	}
3243 
3244 	jbd2_journal_clear_features(sbi->s_journal,
3245 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3246 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3247 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3248 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3249 		ret = jbd2_journal_set_features(sbi->s_journal,
3250 				compat, 0,
3251 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3252 				incompat);
3253 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3254 		ret = jbd2_journal_set_features(sbi->s_journal,
3255 				compat, 0,
3256 				incompat);
3257 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3258 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3259 	} else {
3260 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3261 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3262 	}
3263 
3264 	return ret;
3265 }
3266 
3267 /*
3268  * Note: calculating the overhead so we can be compatible with
3269  * historical BSD practice is quite difficult in the face of
3270  * clusters/bigalloc.  This is because multiple metadata blocks from
3271  * different block group can end up in the same allocation cluster.
3272  * Calculating the exact overhead in the face of clustered allocation
3273  * requires either O(all block bitmaps) in memory or O(number of block
3274  * groups**2) in time.  We will still calculate the superblock for
3275  * older file systems --- and if we come across with a bigalloc file
3276  * system with zero in s_overhead_clusters the estimate will be close to
3277  * correct especially for very large cluster sizes --- but for newer
3278  * file systems, it's better to calculate this figure once at mkfs
3279  * time, and store it in the superblock.  If the superblock value is
3280  * present (even for non-bigalloc file systems), we will use it.
3281  */
3282 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3283 			  char *buf)
3284 {
3285 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3286 	struct ext4_group_desc	*gdp;
3287 	ext4_fsblk_t		first_block, last_block, b;
3288 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3289 	int			s, j, count = 0;
3290 
3291 	if (!ext4_has_feature_bigalloc(sb))
3292 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3293 			sbi->s_itb_per_group + 2);
3294 
3295 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3296 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3297 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3298 	for (i = 0; i < ngroups; i++) {
3299 		gdp = ext4_get_group_desc(sb, i, NULL);
3300 		b = ext4_block_bitmap(sb, gdp);
3301 		if (b >= first_block && b <= last_block) {
3302 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3303 			count++;
3304 		}
3305 		b = ext4_inode_bitmap(sb, gdp);
3306 		if (b >= first_block && b <= last_block) {
3307 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3308 			count++;
3309 		}
3310 		b = ext4_inode_table(sb, gdp);
3311 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3312 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3313 				int c = EXT4_B2C(sbi, b - first_block);
3314 				ext4_set_bit(c, buf);
3315 				count++;
3316 			}
3317 		if (i != grp)
3318 			continue;
3319 		s = 0;
3320 		if (ext4_bg_has_super(sb, grp)) {
3321 			ext4_set_bit(s++, buf);
3322 			count++;
3323 		}
3324 		j = ext4_bg_num_gdb(sb, grp);
3325 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3326 			ext4_error(sb, "Invalid number of block group "
3327 				   "descriptor blocks: %d", j);
3328 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3329 		}
3330 		count += j;
3331 		for (; j > 0; j--)
3332 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3333 	}
3334 	if (!count)
3335 		return 0;
3336 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3337 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3338 }
3339 
3340 /*
3341  * Compute the overhead and stash it in sbi->s_overhead
3342  */
3343 int ext4_calculate_overhead(struct super_block *sb)
3344 {
3345 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3346 	struct ext4_super_block *es = sbi->s_es;
3347 	struct inode *j_inode;
3348 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3349 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3350 	ext4_fsblk_t overhead = 0;
3351 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3352 
3353 	if (!buf)
3354 		return -ENOMEM;
3355 
3356 	/*
3357 	 * Compute the overhead (FS structures).  This is constant
3358 	 * for a given filesystem unless the number of block groups
3359 	 * changes so we cache the previous value until it does.
3360 	 */
3361 
3362 	/*
3363 	 * All of the blocks before first_data_block are overhead
3364 	 */
3365 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3366 
3367 	/*
3368 	 * Add the overhead found in each block group
3369 	 */
3370 	for (i = 0; i < ngroups; i++) {
3371 		int blks;
3372 
3373 		blks = count_overhead(sb, i, buf);
3374 		overhead += blks;
3375 		if (blks)
3376 			memset(buf, 0, PAGE_SIZE);
3377 		cond_resched();
3378 	}
3379 
3380 	/*
3381 	 * Add the internal journal blocks whether the journal has been
3382 	 * loaded or not
3383 	 */
3384 	if (sbi->s_journal && !sbi->journal_bdev)
3385 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3386 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3387 		j_inode = ext4_get_journal_inode(sb, j_inum);
3388 		if (j_inode) {
3389 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3390 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3391 			iput(j_inode);
3392 		} else {
3393 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3394 		}
3395 	}
3396 	sbi->s_overhead = overhead;
3397 	smp_wmb();
3398 	free_page((unsigned long) buf);
3399 	return 0;
3400 }
3401 
3402 static void ext4_set_resv_clusters(struct super_block *sb)
3403 {
3404 	ext4_fsblk_t resv_clusters;
3405 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3406 
3407 	/*
3408 	 * There's no need to reserve anything when we aren't using extents.
3409 	 * The space estimates are exact, there are no unwritten extents,
3410 	 * hole punching doesn't need new metadata... This is needed especially
3411 	 * to keep ext2/3 backward compatibility.
3412 	 */
3413 	if (!ext4_has_feature_extents(sb))
3414 		return;
3415 	/*
3416 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3417 	 * This should cover the situations where we can not afford to run
3418 	 * out of space like for example punch hole, or converting
3419 	 * unwritten extents in delalloc path. In most cases such
3420 	 * allocation would require 1, or 2 blocks, higher numbers are
3421 	 * very rare.
3422 	 */
3423 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3424 			 sbi->s_cluster_bits);
3425 
3426 	do_div(resv_clusters, 50);
3427 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3428 
3429 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3430 }
3431 
3432 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3433 {
3434 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3435 	char *orig_data = kstrdup(data, GFP_KERNEL);
3436 	struct buffer_head *bh;
3437 	struct ext4_super_block *es = NULL;
3438 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3439 	ext4_fsblk_t block;
3440 	ext4_fsblk_t sb_block = get_sb_block(&data);
3441 	ext4_fsblk_t logical_sb_block;
3442 	unsigned long offset = 0;
3443 	unsigned long journal_devnum = 0;
3444 	unsigned long def_mount_opts;
3445 	struct inode *root;
3446 	const char *descr;
3447 	int ret = -ENOMEM;
3448 	int blocksize, clustersize;
3449 	unsigned int db_count;
3450 	unsigned int i;
3451 	int needs_recovery, has_huge_files, has_bigalloc;
3452 	__u64 blocks_count;
3453 	int err = 0;
3454 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3455 	ext4_group_t first_not_zeroed;
3456 
3457 	if ((data && !orig_data) || !sbi)
3458 		goto out_free_base;
3459 
3460 	sbi->s_daxdev = dax_dev;
3461 	sbi->s_blockgroup_lock =
3462 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3463 	if (!sbi->s_blockgroup_lock)
3464 		goto out_free_base;
3465 
3466 	sb->s_fs_info = sbi;
3467 	sbi->s_sb = sb;
3468 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3469 	sbi->s_sb_block = sb_block;
3470 	if (sb->s_bdev->bd_part)
3471 		sbi->s_sectors_written_start =
3472 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3473 
3474 	/* Cleanup superblock name */
3475 	strreplace(sb->s_id, '/', '!');
3476 
3477 	/* -EINVAL is default */
3478 	ret = -EINVAL;
3479 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3480 	if (!blocksize) {
3481 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3482 		goto out_fail;
3483 	}
3484 
3485 	/*
3486 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3487 	 * block sizes.  We need to calculate the offset from buffer start.
3488 	 */
3489 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3490 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3491 		offset = do_div(logical_sb_block, blocksize);
3492 	} else {
3493 		logical_sb_block = sb_block;
3494 	}
3495 
3496 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3497 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3498 		goto out_fail;
3499 	}
3500 	/*
3501 	 * Note: s_es must be initialized as soon as possible because
3502 	 *       some ext4 macro-instructions depend on its value
3503 	 */
3504 	es = (struct ext4_super_block *) (bh->b_data + offset);
3505 	sbi->s_es = es;
3506 	sb->s_magic = le16_to_cpu(es->s_magic);
3507 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3508 		goto cantfind_ext4;
3509 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3510 
3511 	/* Warn if metadata_csum and gdt_csum are both set. */
3512 	if (ext4_has_feature_metadata_csum(sb) &&
3513 	    ext4_has_feature_gdt_csum(sb))
3514 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3515 			     "redundant flags; please run fsck.");
3516 
3517 	/* Check for a known checksum algorithm */
3518 	if (!ext4_verify_csum_type(sb, es)) {
3519 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3520 			 "unknown checksum algorithm.");
3521 		silent = 1;
3522 		goto cantfind_ext4;
3523 	}
3524 
3525 	/* Load the checksum driver */
3526 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3527 	if (IS_ERR(sbi->s_chksum_driver)) {
3528 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3529 		ret = PTR_ERR(sbi->s_chksum_driver);
3530 		sbi->s_chksum_driver = NULL;
3531 		goto failed_mount;
3532 	}
3533 
3534 	/* Check superblock checksum */
3535 	if (!ext4_superblock_csum_verify(sb, es)) {
3536 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3537 			 "invalid superblock checksum.  Run e2fsck?");
3538 		silent = 1;
3539 		ret = -EFSBADCRC;
3540 		goto cantfind_ext4;
3541 	}
3542 
3543 	/* Precompute checksum seed for all metadata */
3544 	if (ext4_has_feature_csum_seed(sb))
3545 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3546 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3547 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3548 					       sizeof(es->s_uuid));
3549 
3550 	/* Set defaults before we parse the mount options */
3551 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3552 	set_opt(sb, INIT_INODE_TABLE);
3553 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3554 		set_opt(sb, DEBUG);
3555 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3556 		set_opt(sb, GRPID);
3557 	if (def_mount_opts & EXT4_DEFM_UID16)
3558 		set_opt(sb, NO_UID32);
3559 	/* xattr user namespace & acls are now defaulted on */
3560 	set_opt(sb, XATTR_USER);
3561 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3562 	set_opt(sb, POSIX_ACL);
3563 #endif
3564 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3565 	if (ext4_has_metadata_csum(sb))
3566 		set_opt(sb, JOURNAL_CHECKSUM);
3567 
3568 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3569 		set_opt(sb, JOURNAL_DATA);
3570 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3571 		set_opt(sb, ORDERED_DATA);
3572 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3573 		set_opt(sb, WRITEBACK_DATA);
3574 
3575 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3576 		set_opt(sb, ERRORS_PANIC);
3577 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3578 		set_opt(sb, ERRORS_CONT);
3579 	else
3580 		set_opt(sb, ERRORS_RO);
3581 	/* block_validity enabled by default; disable with noblock_validity */
3582 	set_opt(sb, BLOCK_VALIDITY);
3583 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3584 		set_opt(sb, DISCARD);
3585 
3586 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3587 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3588 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3589 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3590 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3591 
3592 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3593 		set_opt(sb, BARRIER);
3594 
3595 	/*
3596 	 * enable delayed allocation by default
3597 	 * Use -o nodelalloc to turn it off
3598 	 */
3599 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3600 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3601 		set_opt(sb, DELALLOC);
3602 
3603 	/*
3604 	 * set default s_li_wait_mult for lazyinit, for the case there is
3605 	 * no mount option specified.
3606 	 */
3607 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3608 
3609 	if (sbi->s_es->s_mount_opts[0]) {
3610 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3611 					      sizeof(sbi->s_es->s_mount_opts),
3612 					      GFP_KERNEL);
3613 		if (!s_mount_opts)
3614 			goto failed_mount;
3615 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3616 				   &journal_ioprio, 0)) {
3617 			ext4_msg(sb, KERN_WARNING,
3618 				 "failed to parse options in superblock: %s",
3619 				 s_mount_opts);
3620 		}
3621 		kfree(s_mount_opts);
3622 	}
3623 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3624 	if (!parse_options((char *) data, sb, &journal_devnum,
3625 			   &journal_ioprio, 0))
3626 		goto failed_mount;
3627 
3628 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3629 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3630 			    "with data=journal disables delayed "
3631 			    "allocation and O_DIRECT support!\n");
3632 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3633 			ext4_msg(sb, KERN_ERR, "can't mount with "
3634 				 "both data=journal and delalloc");
3635 			goto failed_mount;
3636 		}
3637 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3638 			ext4_msg(sb, KERN_ERR, "can't mount with "
3639 				 "both data=journal and dioread_nolock");
3640 			goto failed_mount;
3641 		}
3642 		if (test_opt(sb, DAX)) {
3643 			ext4_msg(sb, KERN_ERR, "can't mount with "
3644 				 "both data=journal and dax");
3645 			goto failed_mount;
3646 		}
3647 		if (ext4_has_feature_encrypt(sb)) {
3648 			ext4_msg(sb, KERN_WARNING,
3649 				 "encrypted files will use data=ordered "
3650 				 "instead of data journaling mode");
3651 		}
3652 		if (test_opt(sb, DELALLOC))
3653 			clear_opt(sb, DELALLOC);
3654 	} else {
3655 		sb->s_iflags |= SB_I_CGROUPWB;
3656 	}
3657 
3658 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3659 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3660 
3661 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3662 	    (ext4_has_compat_features(sb) ||
3663 	     ext4_has_ro_compat_features(sb) ||
3664 	     ext4_has_incompat_features(sb)))
3665 		ext4_msg(sb, KERN_WARNING,
3666 		       "feature flags set on rev 0 fs, "
3667 		       "running e2fsck is recommended");
3668 
3669 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3670 		set_opt2(sb, HURD_COMPAT);
3671 		if (ext4_has_feature_64bit(sb)) {
3672 			ext4_msg(sb, KERN_ERR,
3673 				 "The Hurd can't support 64-bit file systems");
3674 			goto failed_mount;
3675 		}
3676 
3677 		/*
3678 		 * ea_inode feature uses l_i_version field which is not
3679 		 * available in HURD_COMPAT mode.
3680 		 */
3681 		if (ext4_has_feature_ea_inode(sb)) {
3682 			ext4_msg(sb, KERN_ERR,
3683 				 "ea_inode feature is not supported for Hurd");
3684 			goto failed_mount;
3685 		}
3686 	}
3687 
3688 	if (IS_EXT2_SB(sb)) {
3689 		if (ext2_feature_set_ok(sb))
3690 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3691 				 "using the ext4 subsystem");
3692 		else {
3693 			/*
3694 			 * If we're probing be silent, if this looks like
3695 			 * it's actually an ext[34] filesystem.
3696 			 */
3697 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3698 				goto failed_mount;
3699 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3700 				 "to feature incompatibilities");
3701 			goto failed_mount;
3702 		}
3703 	}
3704 
3705 	if (IS_EXT3_SB(sb)) {
3706 		if (ext3_feature_set_ok(sb))
3707 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3708 				 "using the ext4 subsystem");
3709 		else {
3710 			/*
3711 			 * If we're probing be silent, if this looks like
3712 			 * it's actually an ext4 filesystem.
3713 			 */
3714 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3715 				goto failed_mount;
3716 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3717 				 "to feature incompatibilities");
3718 			goto failed_mount;
3719 		}
3720 	}
3721 
3722 	/*
3723 	 * Check feature flags regardless of the revision level, since we
3724 	 * previously didn't change the revision level when setting the flags,
3725 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3726 	 */
3727 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3728 		goto failed_mount;
3729 
3730 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3731 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3732 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3733 		ext4_msg(sb, KERN_ERR,
3734 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3735 			 blocksize, le32_to_cpu(es->s_log_block_size));
3736 		goto failed_mount;
3737 	}
3738 	if (le32_to_cpu(es->s_log_block_size) >
3739 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3740 		ext4_msg(sb, KERN_ERR,
3741 			 "Invalid log block size: %u",
3742 			 le32_to_cpu(es->s_log_block_size));
3743 		goto failed_mount;
3744 	}
3745 
3746 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3747 		ext4_msg(sb, KERN_ERR,
3748 			 "Number of reserved GDT blocks insanely large: %d",
3749 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3750 		goto failed_mount;
3751 	}
3752 
3753 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3754 		if (ext4_has_feature_inline_data(sb)) {
3755 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3756 					" that may contain inline data");
3757 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3758 		}
3759 		if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3760 			ext4_msg(sb, KERN_ERR,
3761 				"DAX unsupported by block device. Turning off DAX.");
3762 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3763 		}
3764 	}
3765 
3766 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3767 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3768 			 es->s_encryption_level);
3769 		goto failed_mount;
3770 	}
3771 
3772 	if (sb->s_blocksize != blocksize) {
3773 		/* Validate the filesystem blocksize */
3774 		if (!sb_set_blocksize(sb, blocksize)) {
3775 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3776 					blocksize);
3777 			goto failed_mount;
3778 		}
3779 
3780 		brelse(bh);
3781 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3782 		offset = do_div(logical_sb_block, blocksize);
3783 		bh = sb_bread_unmovable(sb, logical_sb_block);
3784 		if (!bh) {
3785 			ext4_msg(sb, KERN_ERR,
3786 			       "Can't read superblock on 2nd try");
3787 			goto failed_mount;
3788 		}
3789 		es = (struct ext4_super_block *)(bh->b_data + offset);
3790 		sbi->s_es = es;
3791 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3792 			ext4_msg(sb, KERN_ERR,
3793 			       "Magic mismatch, very weird!");
3794 			goto failed_mount;
3795 		}
3796 	}
3797 
3798 	has_huge_files = ext4_has_feature_huge_file(sb);
3799 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3800 						      has_huge_files);
3801 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3802 
3803 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3804 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3805 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3806 	} else {
3807 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3808 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3809 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3810 		    (!is_power_of_2(sbi->s_inode_size)) ||
3811 		    (sbi->s_inode_size > blocksize)) {
3812 			ext4_msg(sb, KERN_ERR,
3813 			       "unsupported inode size: %d",
3814 			       sbi->s_inode_size);
3815 			goto failed_mount;
3816 		}
3817 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3818 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3819 	}
3820 
3821 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3822 	if (ext4_has_feature_64bit(sb)) {
3823 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3824 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3825 		    !is_power_of_2(sbi->s_desc_size)) {
3826 			ext4_msg(sb, KERN_ERR,
3827 			       "unsupported descriptor size %lu",
3828 			       sbi->s_desc_size);
3829 			goto failed_mount;
3830 		}
3831 	} else
3832 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3833 
3834 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3835 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3836 
3837 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3838 	if (sbi->s_inodes_per_block == 0)
3839 		goto cantfind_ext4;
3840 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3841 	    sbi->s_inodes_per_group > blocksize * 8) {
3842 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3843 			 sbi->s_blocks_per_group);
3844 		goto failed_mount;
3845 	}
3846 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3847 					sbi->s_inodes_per_block;
3848 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3849 	sbi->s_sbh = bh;
3850 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3851 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3852 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3853 
3854 	for (i = 0; i < 4; i++)
3855 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3856 	sbi->s_def_hash_version = es->s_def_hash_version;
3857 	if (ext4_has_feature_dir_index(sb)) {
3858 		i = le32_to_cpu(es->s_flags);
3859 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3860 			sbi->s_hash_unsigned = 3;
3861 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3862 #ifdef __CHAR_UNSIGNED__
3863 			if (!sb_rdonly(sb))
3864 				es->s_flags |=
3865 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3866 			sbi->s_hash_unsigned = 3;
3867 #else
3868 			if (!sb_rdonly(sb))
3869 				es->s_flags |=
3870 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3871 #endif
3872 		}
3873 	}
3874 
3875 	/* Handle clustersize */
3876 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3877 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3878 	if (has_bigalloc) {
3879 		if (clustersize < blocksize) {
3880 			ext4_msg(sb, KERN_ERR,
3881 				 "cluster size (%d) smaller than "
3882 				 "block size (%d)", clustersize, blocksize);
3883 			goto failed_mount;
3884 		}
3885 		if (le32_to_cpu(es->s_log_cluster_size) >
3886 		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3887 			ext4_msg(sb, KERN_ERR,
3888 				 "Invalid log cluster size: %u",
3889 				 le32_to_cpu(es->s_log_cluster_size));
3890 			goto failed_mount;
3891 		}
3892 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3893 			le32_to_cpu(es->s_log_block_size);
3894 		sbi->s_clusters_per_group =
3895 			le32_to_cpu(es->s_clusters_per_group);
3896 		if (sbi->s_clusters_per_group > blocksize * 8) {
3897 			ext4_msg(sb, KERN_ERR,
3898 				 "#clusters per group too big: %lu",
3899 				 sbi->s_clusters_per_group);
3900 			goto failed_mount;
3901 		}
3902 		if (sbi->s_blocks_per_group !=
3903 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3904 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3905 				 "clusters per group (%lu) inconsistent",
3906 				 sbi->s_blocks_per_group,
3907 				 sbi->s_clusters_per_group);
3908 			goto failed_mount;
3909 		}
3910 	} else {
3911 		if (clustersize != blocksize) {
3912 			ext4_warning(sb, "fragment/cluster size (%d) != "
3913 				     "block size (%d)", clustersize,
3914 				     blocksize);
3915 			clustersize = blocksize;
3916 		}
3917 		if (sbi->s_blocks_per_group > blocksize * 8) {
3918 			ext4_msg(sb, KERN_ERR,
3919 				 "#blocks per group too big: %lu",
3920 				 sbi->s_blocks_per_group);
3921 			goto failed_mount;
3922 		}
3923 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3924 		sbi->s_cluster_bits = 0;
3925 	}
3926 	sbi->s_cluster_ratio = clustersize / blocksize;
3927 
3928 	/* Do we have standard group size of clustersize * 8 blocks ? */
3929 	if (sbi->s_blocks_per_group == clustersize << 3)
3930 		set_opt2(sb, STD_GROUP_SIZE);
3931 
3932 	/*
3933 	 * Test whether we have more sectors than will fit in sector_t,
3934 	 * and whether the max offset is addressable by the page cache.
3935 	 */
3936 	err = generic_check_addressable(sb->s_blocksize_bits,
3937 					ext4_blocks_count(es));
3938 	if (err) {
3939 		ext4_msg(sb, KERN_ERR, "filesystem"
3940 			 " too large to mount safely on this system");
3941 		if (sizeof(sector_t) < 8)
3942 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3943 		goto failed_mount;
3944 	}
3945 
3946 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3947 		goto cantfind_ext4;
3948 
3949 	/* check blocks count against device size */
3950 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3951 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3952 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3953 		       "exceeds size of device (%llu blocks)",
3954 		       ext4_blocks_count(es), blocks_count);
3955 		goto failed_mount;
3956 	}
3957 
3958 	/*
3959 	 * It makes no sense for the first data block to be beyond the end
3960 	 * of the filesystem.
3961 	 */
3962 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3963 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3964 			 "block %u is beyond end of filesystem (%llu)",
3965 			 le32_to_cpu(es->s_first_data_block),
3966 			 ext4_blocks_count(es));
3967 		goto failed_mount;
3968 	}
3969 	blocks_count = (ext4_blocks_count(es) -
3970 			le32_to_cpu(es->s_first_data_block) +
3971 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3972 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3973 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3974 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3975 		       "(block count %llu, first data block %u, "
3976 		       "blocks per group %lu)", sbi->s_groups_count,
3977 		       ext4_blocks_count(es),
3978 		       le32_to_cpu(es->s_first_data_block),
3979 		       EXT4_BLOCKS_PER_GROUP(sb));
3980 		goto failed_mount;
3981 	}
3982 	sbi->s_groups_count = blocks_count;
3983 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3984 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3985 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3986 		   EXT4_DESC_PER_BLOCK(sb);
3987 	if (ext4_has_feature_meta_bg(sb)) {
3988 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3989 			ext4_msg(sb, KERN_WARNING,
3990 				 "first meta block group too large: %u "
3991 				 "(group descriptor block count %u)",
3992 				 le32_to_cpu(es->s_first_meta_bg), db_count);
3993 			goto failed_mount;
3994 		}
3995 	}
3996 	sbi->s_group_desc = kvmalloc(db_count *
3997 					  sizeof(struct buffer_head *),
3998 					  GFP_KERNEL);
3999 	if (sbi->s_group_desc == NULL) {
4000 		ext4_msg(sb, KERN_ERR, "not enough memory");
4001 		ret = -ENOMEM;
4002 		goto failed_mount;
4003 	}
4004 
4005 	bgl_lock_init(sbi->s_blockgroup_lock);
4006 
4007 	/* Pre-read the descriptors into the buffer cache */
4008 	for (i = 0; i < db_count; i++) {
4009 		block = descriptor_loc(sb, logical_sb_block, i);
4010 		sb_breadahead(sb, block);
4011 	}
4012 
4013 	for (i = 0; i < db_count; i++) {
4014 		block = descriptor_loc(sb, logical_sb_block, i);
4015 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4016 		if (!sbi->s_group_desc[i]) {
4017 			ext4_msg(sb, KERN_ERR,
4018 			       "can't read group descriptor %d", i);
4019 			db_count = i;
4020 			goto failed_mount2;
4021 		}
4022 	}
4023 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4024 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4025 		ret = -EFSCORRUPTED;
4026 		goto failed_mount2;
4027 	}
4028 
4029 	sbi->s_gdb_count = db_count;
4030 
4031 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4032 
4033 	/* Register extent status tree shrinker */
4034 	if (ext4_es_register_shrinker(sbi))
4035 		goto failed_mount3;
4036 
4037 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4038 	sbi->s_extent_max_zeroout_kb = 32;
4039 
4040 	/*
4041 	 * set up enough so that it can read an inode
4042 	 */
4043 	sb->s_op = &ext4_sops;
4044 	sb->s_export_op = &ext4_export_ops;
4045 	sb->s_xattr = ext4_xattr_handlers;
4046 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4047 	sb->s_cop = &ext4_cryptops;
4048 #endif
4049 #ifdef CONFIG_QUOTA
4050 	sb->dq_op = &ext4_quota_operations;
4051 	if (ext4_has_feature_quota(sb))
4052 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4053 	else
4054 		sb->s_qcop = &ext4_qctl_operations;
4055 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4056 #endif
4057 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4058 
4059 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4060 	mutex_init(&sbi->s_orphan_lock);
4061 
4062 	sb->s_root = NULL;
4063 
4064 	needs_recovery = (es->s_last_orphan != 0 ||
4065 			  ext4_has_feature_journal_needs_recovery(sb));
4066 
4067 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4068 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4069 			goto failed_mount3a;
4070 
4071 	/*
4072 	 * The first inode we look at is the journal inode.  Don't try
4073 	 * root first: it may be modified in the journal!
4074 	 */
4075 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4076 		err = ext4_load_journal(sb, es, journal_devnum);
4077 		if (err)
4078 			goto failed_mount3a;
4079 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4080 		   ext4_has_feature_journal_needs_recovery(sb)) {
4081 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4082 		       "suppressed and not mounted read-only");
4083 		goto failed_mount_wq;
4084 	} else {
4085 		/* Nojournal mode, all journal mount options are illegal */
4086 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4087 			ext4_msg(sb, KERN_ERR, "can't mount with "
4088 				 "journal_checksum, fs mounted w/o journal");
4089 			goto failed_mount_wq;
4090 		}
4091 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4092 			ext4_msg(sb, KERN_ERR, "can't mount with "
4093 				 "journal_async_commit, fs mounted w/o journal");
4094 			goto failed_mount_wq;
4095 		}
4096 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4097 			ext4_msg(sb, KERN_ERR, "can't mount with "
4098 				 "commit=%lu, fs mounted w/o journal",
4099 				 sbi->s_commit_interval / HZ);
4100 			goto failed_mount_wq;
4101 		}
4102 		if (EXT4_MOUNT_DATA_FLAGS &
4103 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4104 			ext4_msg(sb, KERN_ERR, "can't mount with "
4105 				 "data=, fs mounted w/o journal");
4106 			goto failed_mount_wq;
4107 		}
4108 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4109 		clear_opt(sb, JOURNAL_CHECKSUM);
4110 		clear_opt(sb, DATA_FLAGS);
4111 		sbi->s_journal = NULL;
4112 		needs_recovery = 0;
4113 		goto no_journal;
4114 	}
4115 
4116 	if (ext4_has_feature_64bit(sb) &&
4117 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4118 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4119 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4120 		goto failed_mount_wq;
4121 	}
4122 
4123 	if (!set_journal_csum_feature_set(sb)) {
4124 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4125 			 "feature set");
4126 		goto failed_mount_wq;
4127 	}
4128 
4129 	/* We have now updated the journal if required, so we can
4130 	 * validate the data journaling mode. */
4131 	switch (test_opt(sb, DATA_FLAGS)) {
4132 	case 0:
4133 		/* No mode set, assume a default based on the journal
4134 		 * capabilities: ORDERED_DATA if the journal can
4135 		 * cope, else JOURNAL_DATA
4136 		 */
4137 		if (jbd2_journal_check_available_features
4138 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4139 			set_opt(sb, ORDERED_DATA);
4140 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4141 		} else {
4142 			set_opt(sb, JOURNAL_DATA);
4143 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4144 		}
4145 		break;
4146 
4147 	case EXT4_MOUNT_ORDERED_DATA:
4148 	case EXT4_MOUNT_WRITEBACK_DATA:
4149 		if (!jbd2_journal_check_available_features
4150 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4151 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4152 			       "requested data journaling mode");
4153 			goto failed_mount_wq;
4154 		}
4155 	default:
4156 		break;
4157 	}
4158 
4159 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4160 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4161 		ext4_msg(sb, KERN_ERR, "can't mount with "
4162 			"journal_async_commit in data=ordered mode");
4163 		goto failed_mount_wq;
4164 	}
4165 
4166 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4167 
4168 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4169 
4170 no_journal:
4171 	if (!test_opt(sb, NO_MBCACHE)) {
4172 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4173 		if (!sbi->s_ea_block_cache) {
4174 			ext4_msg(sb, KERN_ERR,
4175 				 "Failed to create ea_block_cache");
4176 			goto failed_mount_wq;
4177 		}
4178 
4179 		if (ext4_has_feature_ea_inode(sb)) {
4180 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4181 			if (!sbi->s_ea_inode_cache) {
4182 				ext4_msg(sb, KERN_ERR,
4183 					 "Failed to create ea_inode_cache");
4184 				goto failed_mount_wq;
4185 			}
4186 		}
4187 	}
4188 
4189 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4190 	    (blocksize != PAGE_SIZE)) {
4191 		ext4_msg(sb, KERN_ERR,
4192 			 "Unsupported blocksize for fs encryption");
4193 		goto failed_mount_wq;
4194 	}
4195 
4196 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4197 	    !ext4_has_feature_encrypt(sb)) {
4198 		ext4_set_feature_encrypt(sb);
4199 		ext4_commit_super(sb, 1);
4200 	}
4201 
4202 	/*
4203 	 * Get the # of file system overhead blocks from the
4204 	 * superblock if present.
4205 	 */
4206 	if (es->s_overhead_clusters)
4207 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4208 	else {
4209 		err = ext4_calculate_overhead(sb);
4210 		if (err)
4211 			goto failed_mount_wq;
4212 	}
4213 
4214 	/*
4215 	 * The maximum number of concurrent works can be high and
4216 	 * concurrency isn't really necessary.  Limit it to 1.
4217 	 */
4218 	EXT4_SB(sb)->rsv_conversion_wq =
4219 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4220 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4221 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4222 		ret = -ENOMEM;
4223 		goto failed_mount4;
4224 	}
4225 
4226 	/*
4227 	 * The jbd2_journal_load will have done any necessary log recovery,
4228 	 * so we can safely mount the rest of the filesystem now.
4229 	 */
4230 
4231 	root = ext4_iget(sb, EXT4_ROOT_INO);
4232 	if (IS_ERR(root)) {
4233 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4234 		ret = PTR_ERR(root);
4235 		root = NULL;
4236 		goto failed_mount4;
4237 	}
4238 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4239 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4240 		iput(root);
4241 		goto failed_mount4;
4242 	}
4243 	sb->s_root = d_make_root(root);
4244 	if (!sb->s_root) {
4245 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4246 		ret = -ENOMEM;
4247 		goto failed_mount4;
4248 	}
4249 
4250 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4251 	if (ret == -EROFS) {
4252 		sb->s_flags |= SB_RDONLY;
4253 		ret = 0;
4254 	} else if (ret)
4255 		goto failed_mount4a;
4256 
4257 	/* determine the minimum size of new large inodes, if present */
4258 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4259 	    sbi->s_want_extra_isize == 0) {
4260 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4261 						     EXT4_GOOD_OLD_INODE_SIZE;
4262 		if (ext4_has_feature_extra_isize(sb)) {
4263 			if (sbi->s_want_extra_isize <
4264 			    le16_to_cpu(es->s_want_extra_isize))
4265 				sbi->s_want_extra_isize =
4266 					le16_to_cpu(es->s_want_extra_isize);
4267 			if (sbi->s_want_extra_isize <
4268 			    le16_to_cpu(es->s_min_extra_isize))
4269 				sbi->s_want_extra_isize =
4270 					le16_to_cpu(es->s_min_extra_isize);
4271 		}
4272 	}
4273 	/* Check if enough inode space is available */
4274 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4275 							sbi->s_inode_size) {
4276 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4277 						       EXT4_GOOD_OLD_INODE_SIZE;
4278 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4279 			 "available");
4280 	}
4281 
4282 	ext4_set_resv_clusters(sb);
4283 
4284 	err = ext4_setup_system_zone(sb);
4285 	if (err) {
4286 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4287 			 "zone (%d)", err);
4288 		goto failed_mount4a;
4289 	}
4290 
4291 	ext4_ext_init(sb);
4292 	err = ext4_mb_init(sb);
4293 	if (err) {
4294 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4295 			 err);
4296 		goto failed_mount5;
4297 	}
4298 
4299 	block = ext4_count_free_clusters(sb);
4300 	ext4_free_blocks_count_set(sbi->s_es,
4301 				   EXT4_C2B(sbi, block));
4302 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4303 				  GFP_KERNEL);
4304 	if (!err) {
4305 		unsigned long freei = ext4_count_free_inodes(sb);
4306 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4307 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4308 					  GFP_KERNEL);
4309 	}
4310 	if (!err)
4311 		err = percpu_counter_init(&sbi->s_dirs_counter,
4312 					  ext4_count_dirs(sb), GFP_KERNEL);
4313 	if (!err)
4314 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4315 					  GFP_KERNEL);
4316 	if (!err)
4317 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4318 
4319 	if (err) {
4320 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4321 		goto failed_mount6;
4322 	}
4323 
4324 	if (ext4_has_feature_flex_bg(sb))
4325 		if (!ext4_fill_flex_info(sb)) {
4326 			ext4_msg(sb, KERN_ERR,
4327 			       "unable to initialize "
4328 			       "flex_bg meta info!");
4329 			goto failed_mount6;
4330 		}
4331 
4332 	err = ext4_register_li_request(sb, first_not_zeroed);
4333 	if (err)
4334 		goto failed_mount6;
4335 
4336 	err = ext4_register_sysfs(sb);
4337 	if (err)
4338 		goto failed_mount7;
4339 
4340 #ifdef CONFIG_QUOTA
4341 	/* Enable quota usage during mount. */
4342 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4343 		err = ext4_enable_quotas(sb);
4344 		if (err)
4345 			goto failed_mount8;
4346 	}
4347 #endif  /* CONFIG_QUOTA */
4348 
4349 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4350 	ext4_orphan_cleanup(sb, es);
4351 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4352 	if (needs_recovery) {
4353 		ext4_msg(sb, KERN_INFO, "recovery complete");
4354 		ext4_mark_recovery_complete(sb, es);
4355 	}
4356 	if (EXT4_SB(sb)->s_journal) {
4357 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4358 			descr = " journalled data mode";
4359 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4360 			descr = " ordered data mode";
4361 		else
4362 			descr = " writeback data mode";
4363 	} else
4364 		descr = "out journal";
4365 
4366 	if (test_opt(sb, DISCARD)) {
4367 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4368 		if (!blk_queue_discard(q))
4369 			ext4_msg(sb, KERN_WARNING,
4370 				 "mounting with \"discard\" option, but "
4371 				 "the device does not support discard");
4372 	}
4373 
4374 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4375 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4376 			 "Opts: %.*s%s%s", descr,
4377 			 (int) sizeof(sbi->s_es->s_mount_opts),
4378 			 sbi->s_es->s_mount_opts,
4379 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4380 
4381 	if (es->s_error_count)
4382 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4383 
4384 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4385 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4386 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4387 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4388 
4389 	kfree(orig_data);
4390 	return 0;
4391 
4392 cantfind_ext4:
4393 	if (!silent)
4394 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4395 	goto failed_mount;
4396 
4397 #ifdef CONFIG_QUOTA
4398 failed_mount8:
4399 	ext4_unregister_sysfs(sb);
4400 #endif
4401 failed_mount7:
4402 	ext4_unregister_li_request(sb);
4403 failed_mount6:
4404 	ext4_mb_release(sb);
4405 	if (sbi->s_flex_groups)
4406 		kvfree(sbi->s_flex_groups);
4407 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4408 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4409 	percpu_counter_destroy(&sbi->s_dirs_counter);
4410 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4411 failed_mount5:
4412 	ext4_ext_release(sb);
4413 	ext4_release_system_zone(sb);
4414 failed_mount4a:
4415 	dput(sb->s_root);
4416 	sb->s_root = NULL;
4417 failed_mount4:
4418 	ext4_msg(sb, KERN_ERR, "mount failed");
4419 	if (EXT4_SB(sb)->rsv_conversion_wq)
4420 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4421 failed_mount_wq:
4422 	if (sbi->s_ea_inode_cache) {
4423 		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4424 		sbi->s_ea_inode_cache = NULL;
4425 	}
4426 	if (sbi->s_ea_block_cache) {
4427 		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4428 		sbi->s_ea_block_cache = NULL;
4429 	}
4430 	if (sbi->s_journal) {
4431 		jbd2_journal_destroy(sbi->s_journal);
4432 		sbi->s_journal = NULL;
4433 	}
4434 failed_mount3a:
4435 	ext4_es_unregister_shrinker(sbi);
4436 failed_mount3:
4437 	del_timer_sync(&sbi->s_err_report);
4438 	if (sbi->s_mmp_tsk)
4439 		kthread_stop(sbi->s_mmp_tsk);
4440 failed_mount2:
4441 	for (i = 0; i < db_count; i++)
4442 		brelse(sbi->s_group_desc[i]);
4443 	kvfree(sbi->s_group_desc);
4444 failed_mount:
4445 	if (sbi->s_chksum_driver)
4446 		crypto_free_shash(sbi->s_chksum_driver);
4447 #ifdef CONFIG_QUOTA
4448 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4449 		kfree(sbi->s_qf_names[i]);
4450 #endif
4451 	ext4_blkdev_remove(sbi);
4452 	brelse(bh);
4453 out_fail:
4454 	sb->s_fs_info = NULL;
4455 	kfree(sbi->s_blockgroup_lock);
4456 out_free_base:
4457 	kfree(sbi);
4458 	kfree(orig_data);
4459 	fs_put_dax(dax_dev);
4460 	return err ? err : ret;
4461 }
4462 
4463 /*
4464  * Setup any per-fs journal parameters now.  We'll do this both on
4465  * initial mount, once the journal has been initialised but before we've
4466  * done any recovery; and again on any subsequent remount.
4467  */
4468 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4469 {
4470 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4471 
4472 	journal->j_commit_interval = sbi->s_commit_interval;
4473 	journal->j_min_batch_time = sbi->s_min_batch_time;
4474 	journal->j_max_batch_time = sbi->s_max_batch_time;
4475 
4476 	write_lock(&journal->j_state_lock);
4477 	if (test_opt(sb, BARRIER))
4478 		journal->j_flags |= JBD2_BARRIER;
4479 	else
4480 		journal->j_flags &= ~JBD2_BARRIER;
4481 	if (test_opt(sb, DATA_ERR_ABORT))
4482 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4483 	else
4484 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4485 	write_unlock(&journal->j_state_lock);
4486 }
4487 
4488 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4489 					     unsigned int journal_inum)
4490 {
4491 	struct inode *journal_inode;
4492 
4493 	/*
4494 	 * Test for the existence of a valid inode on disk.  Bad things
4495 	 * happen if we iget() an unused inode, as the subsequent iput()
4496 	 * will try to delete it.
4497 	 */
4498 	journal_inode = ext4_iget(sb, journal_inum);
4499 	if (IS_ERR(journal_inode)) {
4500 		ext4_msg(sb, KERN_ERR, "no journal found");
4501 		return NULL;
4502 	}
4503 	if (!journal_inode->i_nlink) {
4504 		make_bad_inode(journal_inode);
4505 		iput(journal_inode);
4506 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4507 		return NULL;
4508 	}
4509 
4510 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4511 		  journal_inode, journal_inode->i_size);
4512 	if (!S_ISREG(journal_inode->i_mode)) {
4513 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4514 		iput(journal_inode);
4515 		return NULL;
4516 	}
4517 	return journal_inode;
4518 }
4519 
4520 static journal_t *ext4_get_journal(struct super_block *sb,
4521 				   unsigned int journal_inum)
4522 {
4523 	struct inode *journal_inode;
4524 	journal_t *journal;
4525 
4526 	BUG_ON(!ext4_has_feature_journal(sb));
4527 
4528 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4529 	if (!journal_inode)
4530 		return NULL;
4531 
4532 	journal = jbd2_journal_init_inode(journal_inode);
4533 	if (!journal) {
4534 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4535 		iput(journal_inode);
4536 		return NULL;
4537 	}
4538 	journal->j_private = sb;
4539 	ext4_init_journal_params(sb, journal);
4540 	return journal;
4541 }
4542 
4543 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4544 				       dev_t j_dev)
4545 {
4546 	struct buffer_head *bh;
4547 	journal_t *journal;
4548 	ext4_fsblk_t start;
4549 	ext4_fsblk_t len;
4550 	int hblock, blocksize;
4551 	ext4_fsblk_t sb_block;
4552 	unsigned long offset;
4553 	struct ext4_super_block *es;
4554 	struct block_device *bdev;
4555 
4556 	BUG_ON(!ext4_has_feature_journal(sb));
4557 
4558 	bdev = ext4_blkdev_get(j_dev, sb);
4559 	if (bdev == NULL)
4560 		return NULL;
4561 
4562 	blocksize = sb->s_blocksize;
4563 	hblock = bdev_logical_block_size(bdev);
4564 	if (blocksize < hblock) {
4565 		ext4_msg(sb, KERN_ERR,
4566 			"blocksize too small for journal device");
4567 		goto out_bdev;
4568 	}
4569 
4570 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4571 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4572 	set_blocksize(bdev, blocksize);
4573 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4574 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4575 		       "external journal");
4576 		goto out_bdev;
4577 	}
4578 
4579 	es = (struct ext4_super_block *) (bh->b_data + offset);
4580 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4581 	    !(le32_to_cpu(es->s_feature_incompat) &
4582 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4583 		ext4_msg(sb, KERN_ERR, "external journal has "
4584 					"bad superblock");
4585 		brelse(bh);
4586 		goto out_bdev;
4587 	}
4588 
4589 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4590 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4591 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4592 		ext4_msg(sb, KERN_ERR, "external journal has "
4593 				       "corrupt superblock");
4594 		brelse(bh);
4595 		goto out_bdev;
4596 	}
4597 
4598 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4599 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4600 		brelse(bh);
4601 		goto out_bdev;
4602 	}
4603 
4604 	len = ext4_blocks_count(es);
4605 	start = sb_block + 1;
4606 	brelse(bh);	/* we're done with the superblock */
4607 
4608 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4609 					start, len, blocksize);
4610 	if (!journal) {
4611 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4612 		goto out_bdev;
4613 	}
4614 	journal->j_private = sb;
4615 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4616 	wait_on_buffer(journal->j_sb_buffer);
4617 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4618 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4619 		goto out_journal;
4620 	}
4621 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4622 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4623 					"user (unsupported) - %d",
4624 			be32_to_cpu(journal->j_superblock->s_nr_users));
4625 		goto out_journal;
4626 	}
4627 	EXT4_SB(sb)->journal_bdev = bdev;
4628 	ext4_init_journal_params(sb, journal);
4629 	return journal;
4630 
4631 out_journal:
4632 	jbd2_journal_destroy(journal);
4633 out_bdev:
4634 	ext4_blkdev_put(bdev);
4635 	return NULL;
4636 }
4637 
4638 static int ext4_load_journal(struct super_block *sb,
4639 			     struct ext4_super_block *es,
4640 			     unsigned long journal_devnum)
4641 {
4642 	journal_t *journal;
4643 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4644 	dev_t journal_dev;
4645 	int err = 0;
4646 	int really_read_only;
4647 
4648 	BUG_ON(!ext4_has_feature_journal(sb));
4649 
4650 	if (journal_devnum &&
4651 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4652 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4653 			"numbers have changed");
4654 		journal_dev = new_decode_dev(journal_devnum);
4655 	} else
4656 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4657 
4658 	really_read_only = bdev_read_only(sb->s_bdev);
4659 
4660 	/*
4661 	 * Are we loading a blank journal or performing recovery after a
4662 	 * crash?  For recovery, we need to check in advance whether we
4663 	 * can get read-write access to the device.
4664 	 */
4665 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4666 		if (sb_rdonly(sb)) {
4667 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4668 					"required on readonly filesystem");
4669 			if (really_read_only) {
4670 				ext4_msg(sb, KERN_ERR, "write access "
4671 					"unavailable, cannot proceed "
4672 					"(try mounting with noload)");
4673 				return -EROFS;
4674 			}
4675 			ext4_msg(sb, KERN_INFO, "write access will "
4676 			       "be enabled during recovery");
4677 		}
4678 	}
4679 
4680 	if (journal_inum && journal_dev) {
4681 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4682 		       "and inode journals!");
4683 		return -EINVAL;
4684 	}
4685 
4686 	if (journal_inum) {
4687 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4688 			return -EINVAL;
4689 	} else {
4690 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4691 			return -EINVAL;
4692 	}
4693 
4694 	if (!(journal->j_flags & JBD2_BARRIER))
4695 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4696 
4697 	if (!ext4_has_feature_journal_needs_recovery(sb))
4698 		err = jbd2_journal_wipe(journal, !really_read_only);
4699 	if (!err) {
4700 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4701 		if (save)
4702 			memcpy(save, ((char *) es) +
4703 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4704 		err = jbd2_journal_load(journal);
4705 		if (save)
4706 			memcpy(((char *) es) + EXT4_S_ERR_START,
4707 			       save, EXT4_S_ERR_LEN);
4708 		kfree(save);
4709 	}
4710 
4711 	if (err) {
4712 		ext4_msg(sb, KERN_ERR, "error loading journal");
4713 		jbd2_journal_destroy(journal);
4714 		return err;
4715 	}
4716 
4717 	EXT4_SB(sb)->s_journal = journal;
4718 	ext4_clear_journal_err(sb, es);
4719 
4720 	if (!really_read_only && journal_devnum &&
4721 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4722 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4723 
4724 		/* Make sure we flush the recovery flag to disk. */
4725 		ext4_commit_super(sb, 1);
4726 	}
4727 
4728 	return 0;
4729 }
4730 
4731 static int ext4_commit_super(struct super_block *sb, int sync)
4732 {
4733 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4735 	int error = 0;
4736 
4737 	if (!sbh || block_device_ejected(sb))
4738 		return error;
4739 	/*
4740 	 * If the file system is mounted read-only, don't update the
4741 	 * superblock write time.  This avoids updating the superblock
4742 	 * write time when we are mounting the root file system
4743 	 * read/only but we need to replay the journal; at that point,
4744 	 * for people who are east of GMT and who make their clock
4745 	 * tick in localtime for Windows bug-for-bug compatibility,
4746 	 * the clock is set in the future, and this will cause e2fsck
4747 	 * to complain and force a full file system check.
4748 	 */
4749 	if (!(sb->s_flags & SB_RDONLY))
4750 		es->s_wtime = cpu_to_le32(get_seconds());
4751 	if (sb->s_bdev->bd_part)
4752 		es->s_kbytes_written =
4753 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4754 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4755 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4756 	else
4757 		es->s_kbytes_written =
4758 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4759 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4760 		ext4_free_blocks_count_set(es,
4761 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4762 				&EXT4_SB(sb)->s_freeclusters_counter)));
4763 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4764 		es->s_free_inodes_count =
4765 			cpu_to_le32(percpu_counter_sum_positive(
4766 				&EXT4_SB(sb)->s_freeinodes_counter));
4767 	BUFFER_TRACE(sbh, "marking dirty");
4768 	ext4_superblock_csum_set(sb);
4769 	if (sync)
4770 		lock_buffer(sbh);
4771 	if (buffer_write_io_error(sbh)) {
4772 		/*
4773 		 * Oh, dear.  A previous attempt to write the
4774 		 * superblock failed.  This could happen because the
4775 		 * USB device was yanked out.  Or it could happen to
4776 		 * be a transient write error and maybe the block will
4777 		 * be remapped.  Nothing we can do but to retry the
4778 		 * write and hope for the best.
4779 		 */
4780 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4781 		       "superblock detected");
4782 		clear_buffer_write_io_error(sbh);
4783 		set_buffer_uptodate(sbh);
4784 	}
4785 	mark_buffer_dirty(sbh);
4786 	if (sync) {
4787 		unlock_buffer(sbh);
4788 		error = __sync_dirty_buffer(sbh,
4789 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4790 		if (buffer_write_io_error(sbh)) {
4791 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4792 			       "superblock");
4793 			clear_buffer_write_io_error(sbh);
4794 			set_buffer_uptodate(sbh);
4795 		}
4796 	}
4797 	return error;
4798 }
4799 
4800 /*
4801  * Have we just finished recovery?  If so, and if we are mounting (or
4802  * remounting) the filesystem readonly, then we will end up with a
4803  * consistent fs on disk.  Record that fact.
4804  */
4805 static void ext4_mark_recovery_complete(struct super_block *sb,
4806 					struct ext4_super_block *es)
4807 {
4808 	journal_t *journal = EXT4_SB(sb)->s_journal;
4809 
4810 	if (!ext4_has_feature_journal(sb)) {
4811 		BUG_ON(journal != NULL);
4812 		return;
4813 	}
4814 	jbd2_journal_lock_updates(journal);
4815 	if (jbd2_journal_flush(journal) < 0)
4816 		goto out;
4817 
4818 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4819 		ext4_clear_feature_journal_needs_recovery(sb);
4820 		ext4_commit_super(sb, 1);
4821 	}
4822 
4823 out:
4824 	jbd2_journal_unlock_updates(journal);
4825 }
4826 
4827 /*
4828  * If we are mounting (or read-write remounting) a filesystem whose journal
4829  * has recorded an error from a previous lifetime, move that error to the
4830  * main filesystem now.
4831  */
4832 static void ext4_clear_journal_err(struct super_block *sb,
4833 				   struct ext4_super_block *es)
4834 {
4835 	journal_t *journal;
4836 	int j_errno;
4837 	const char *errstr;
4838 
4839 	BUG_ON(!ext4_has_feature_journal(sb));
4840 
4841 	journal = EXT4_SB(sb)->s_journal;
4842 
4843 	/*
4844 	 * Now check for any error status which may have been recorded in the
4845 	 * journal by a prior ext4_error() or ext4_abort()
4846 	 */
4847 
4848 	j_errno = jbd2_journal_errno(journal);
4849 	if (j_errno) {
4850 		char nbuf[16];
4851 
4852 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4853 		ext4_warning(sb, "Filesystem error recorded "
4854 			     "from previous mount: %s", errstr);
4855 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4856 
4857 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4858 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4859 		ext4_commit_super(sb, 1);
4860 
4861 		jbd2_journal_clear_err(journal);
4862 		jbd2_journal_update_sb_errno(journal);
4863 	}
4864 }
4865 
4866 /*
4867  * Force the running and committing transactions to commit,
4868  * and wait on the commit.
4869  */
4870 int ext4_force_commit(struct super_block *sb)
4871 {
4872 	journal_t *journal;
4873 
4874 	if (sb_rdonly(sb))
4875 		return 0;
4876 
4877 	journal = EXT4_SB(sb)->s_journal;
4878 	return ext4_journal_force_commit(journal);
4879 }
4880 
4881 static int ext4_sync_fs(struct super_block *sb, int wait)
4882 {
4883 	int ret = 0;
4884 	tid_t target;
4885 	bool needs_barrier = false;
4886 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4887 
4888 	if (unlikely(ext4_forced_shutdown(sbi)))
4889 		return 0;
4890 
4891 	trace_ext4_sync_fs(sb, wait);
4892 	flush_workqueue(sbi->rsv_conversion_wq);
4893 	/*
4894 	 * Writeback quota in non-journalled quota case - journalled quota has
4895 	 * no dirty dquots
4896 	 */
4897 	dquot_writeback_dquots(sb, -1);
4898 	/*
4899 	 * Data writeback is possible w/o journal transaction, so barrier must
4900 	 * being sent at the end of the function. But we can skip it if
4901 	 * transaction_commit will do it for us.
4902 	 */
4903 	if (sbi->s_journal) {
4904 		target = jbd2_get_latest_transaction(sbi->s_journal);
4905 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4906 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4907 			needs_barrier = true;
4908 
4909 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4910 			if (wait)
4911 				ret = jbd2_log_wait_commit(sbi->s_journal,
4912 							   target);
4913 		}
4914 	} else if (wait && test_opt(sb, BARRIER))
4915 		needs_barrier = true;
4916 	if (needs_barrier) {
4917 		int err;
4918 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4919 		if (!ret)
4920 			ret = err;
4921 	}
4922 
4923 	return ret;
4924 }
4925 
4926 /*
4927  * LVM calls this function before a (read-only) snapshot is created.  This
4928  * gives us a chance to flush the journal completely and mark the fs clean.
4929  *
4930  * Note that only this function cannot bring a filesystem to be in a clean
4931  * state independently. It relies on upper layer to stop all data & metadata
4932  * modifications.
4933  */
4934 static int ext4_freeze(struct super_block *sb)
4935 {
4936 	int error = 0;
4937 	journal_t *journal;
4938 
4939 	if (sb_rdonly(sb))
4940 		return 0;
4941 
4942 	journal = EXT4_SB(sb)->s_journal;
4943 
4944 	if (journal) {
4945 		/* Now we set up the journal barrier. */
4946 		jbd2_journal_lock_updates(journal);
4947 
4948 		/*
4949 		 * Don't clear the needs_recovery flag if we failed to
4950 		 * flush the journal.
4951 		 */
4952 		error = jbd2_journal_flush(journal);
4953 		if (error < 0)
4954 			goto out;
4955 
4956 		/* Journal blocked and flushed, clear needs_recovery flag. */
4957 		ext4_clear_feature_journal_needs_recovery(sb);
4958 	}
4959 
4960 	error = ext4_commit_super(sb, 1);
4961 out:
4962 	if (journal)
4963 		/* we rely on upper layer to stop further updates */
4964 		jbd2_journal_unlock_updates(journal);
4965 	return error;
4966 }
4967 
4968 /*
4969  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4970  * flag here, even though the filesystem is not technically dirty yet.
4971  */
4972 static int ext4_unfreeze(struct super_block *sb)
4973 {
4974 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4975 		return 0;
4976 
4977 	if (EXT4_SB(sb)->s_journal) {
4978 		/* Reset the needs_recovery flag before the fs is unlocked. */
4979 		ext4_set_feature_journal_needs_recovery(sb);
4980 	}
4981 
4982 	ext4_commit_super(sb, 1);
4983 	return 0;
4984 }
4985 
4986 /*
4987  * Structure to save mount options for ext4_remount's benefit
4988  */
4989 struct ext4_mount_options {
4990 	unsigned long s_mount_opt;
4991 	unsigned long s_mount_opt2;
4992 	kuid_t s_resuid;
4993 	kgid_t s_resgid;
4994 	unsigned long s_commit_interval;
4995 	u32 s_min_batch_time, s_max_batch_time;
4996 #ifdef CONFIG_QUOTA
4997 	int s_jquota_fmt;
4998 	char *s_qf_names[EXT4_MAXQUOTAS];
4999 #endif
5000 };
5001 
5002 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5003 {
5004 	struct ext4_super_block *es;
5005 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5006 	unsigned long old_sb_flags;
5007 	struct ext4_mount_options old_opts;
5008 	int enable_quota = 0;
5009 	ext4_group_t g;
5010 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5011 	int err = 0;
5012 #ifdef CONFIG_QUOTA
5013 	int i, j;
5014 #endif
5015 	char *orig_data = kstrdup(data, GFP_KERNEL);
5016 
5017 	/* Store the original options */
5018 	old_sb_flags = sb->s_flags;
5019 	old_opts.s_mount_opt = sbi->s_mount_opt;
5020 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5021 	old_opts.s_resuid = sbi->s_resuid;
5022 	old_opts.s_resgid = sbi->s_resgid;
5023 	old_opts.s_commit_interval = sbi->s_commit_interval;
5024 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5025 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5026 #ifdef CONFIG_QUOTA
5027 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5028 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5029 		if (sbi->s_qf_names[i]) {
5030 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5031 							 GFP_KERNEL);
5032 			if (!old_opts.s_qf_names[i]) {
5033 				for (j = 0; j < i; j++)
5034 					kfree(old_opts.s_qf_names[j]);
5035 				kfree(orig_data);
5036 				return -ENOMEM;
5037 			}
5038 		} else
5039 			old_opts.s_qf_names[i] = NULL;
5040 #endif
5041 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5042 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5043 
5044 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5045 		err = -EINVAL;
5046 		goto restore_opts;
5047 	}
5048 
5049 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5050 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5051 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5052 			 "during remount not supported; ignoring");
5053 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5054 	}
5055 
5056 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5057 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5058 			ext4_msg(sb, KERN_ERR, "can't mount with "
5059 				 "both data=journal and delalloc");
5060 			err = -EINVAL;
5061 			goto restore_opts;
5062 		}
5063 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5064 			ext4_msg(sb, KERN_ERR, "can't mount with "
5065 				 "both data=journal and dioread_nolock");
5066 			err = -EINVAL;
5067 			goto restore_opts;
5068 		}
5069 		if (test_opt(sb, DAX)) {
5070 			ext4_msg(sb, KERN_ERR, "can't mount with "
5071 				 "both data=journal and dax");
5072 			err = -EINVAL;
5073 			goto restore_opts;
5074 		}
5075 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5076 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5077 			ext4_msg(sb, KERN_ERR, "can't mount with "
5078 				"journal_async_commit in data=ordered mode");
5079 			err = -EINVAL;
5080 			goto restore_opts;
5081 		}
5082 	}
5083 
5084 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5085 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5086 		err = -EINVAL;
5087 		goto restore_opts;
5088 	}
5089 
5090 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5091 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5092 			"dax flag with busy inodes while remounting");
5093 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5094 	}
5095 
5096 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5097 		ext4_abort(sb, "Abort forced by user");
5098 
5099 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5100 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5101 
5102 	es = sbi->s_es;
5103 
5104 	if (sbi->s_journal) {
5105 		ext4_init_journal_params(sb, sbi->s_journal);
5106 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5107 	}
5108 
5109 	if (*flags & SB_LAZYTIME)
5110 		sb->s_flags |= SB_LAZYTIME;
5111 
5112 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5113 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5114 			err = -EROFS;
5115 			goto restore_opts;
5116 		}
5117 
5118 		if (*flags & SB_RDONLY) {
5119 			err = sync_filesystem(sb);
5120 			if (err < 0)
5121 				goto restore_opts;
5122 			err = dquot_suspend(sb, -1);
5123 			if (err < 0)
5124 				goto restore_opts;
5125 
5126 			/*
5127 			 * First of all, the unconditional stuff we have to do
5128 			 * to disable replay of the journal when we next remount
5129 			 */
5130 			sb->s_flags |= SB_RDONLY;
5131 
5132 			/*
5133 			 * OK, test if we are remounting a valid rw partition
5134 			 * readonly, and if so set the rdonly flag and then
5135 			 * mark the partition as valid again.
5136 			 */
5137 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5138 			    (sbi->s_mount_state & EXT4_VALID_FS))
5139 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5140 
5141 			if (sbi->s_journal)
5142 				ext4_mark_recovery_complete(sb, es);
5143 		} else {
5144 			/* Make sure we can mount this feature set readwrite */
5145 			if (ext4_has_feature_readonly(sb) ||
5146 			    !ext4_feature_set_ok(sb, 0)) {
5147 				err = -EROFS;
5148 				goto restore_opts;
5149 			}
5150 			/*
5151 			 * Make sure the group descriptor checksums
5152 			 * are sane.  If they aren't, refuse to remount r/w.
5153 			 */
5154 			for (g = 0; g < sbi->s_groups_count; g++) {
5155 				struct ext4_group_desc *gdp =
5156 					ext4_get_group_desc(sb, g, NULL);
5157 
5158 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5159 					ext4_msg(sb, KERN_ERR,
5160 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5161 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5162 					       le16_to_cpu(gdp->bg_checksum));
5163 					err = -EFSBADCRC;
5164 					goto restore_opts;
5165 				}
5166 			}
5167 
5168 			/*
5169 			 * If we have an unprocessed orphan list hanging
5170 			 * around from a previously readonly bdev mount,
5171 			 * require a full umount/remount for now.
5172 			 */
5173 			if (es->s_last_orphan) {
5174 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5175 				       "remount RDWR because of unprocessed "
5176 				       "orphan inode list.  Please "
5177 				       "umount/remount instead");
5178 				err = -EINVAL;
5179 				goto restore_opts;
5180 			}
5181 
5182 			/*
5183 			 * Mounting a RDONLY partition read-write, so reread
5184 			 * and store the current valid flag.  (It may have
5185 			 * been changed by e2fsck since we originally mounted
5186 			 * the partition.)
5187 			 */
5188 			if (sbi->s_journal)
5189 				ext4_clear_journal_err(sb, es);
5190 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5191 
5192 			err = ext4_setup_super(sb, es, 0);
5193 			if (err)
5194 				goto restore_opts;
5195 
5196 			sb->s_flags &= ~SB_RDONLY;
5197 			if (ext4_has_feature_mmp(sb))
5198 				if (ext4_multi_mount_protect(sb,
5199 						le64_to_cpu(es->s_mmp_block))) {
5200 					err = -EROFS;
5201 					goto restore_opts;
5202 				}
5203 			enable_quota = 1;
5204 		}
5205 	}
5206 
5207 	/*
5208 	 * Reinitialize lazy itable initialization thread based on
5209 	 * current settings
5210 	 */
5211 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5212 		ext4_unregister_li_request(sb);
5213 	else {
5214 		ext4_group_t first_not_zeroed;
5215 		first_not_zeroed = ext4_has_uninit_itable(sb);
5216 		ext4_register_li_request(sb, first_not_zeroed);
5217 	}
5218 
5219 	ext4_setup_system_zone(sb);
5220 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5221 		err = ext4_commit_super(sb, 1);
5222 		if (err)
5223 			goto restore_opts;
5224 	}
5225 
5226 #ifdef CONFIG_QUOTA
5227 	/* Release old quota file names */
5228 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5229 		kfree(old_opts.s_qf_names[i]);
5230 	if (enable_quota) {
5231 		if (sb_any_quota_suspended(sb))
5232 			dquot_resume(sb, -1);
5233 		else if (ext4_has_feature_quota(sb)) {
5234 			err = ext4_enable_quotas(sb);
5235 			if (err)
5236 				goto restore_opts;
5237 		}
5238 	}
5239 #endif
5240 
5241 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5242 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5243 	kfree(orig_data);
5244 	return 0;
5245 
5246 restore_opts:
5247 	sb->s_flags = old_sb_flags;
5248 	sbi->s_mount_opt = old_opts.s_mount_opt;
5249 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5250 	sbi->s_resuid = old_opts.s_resuid;
5251 	sbi->s_resgid = old_opts.s_resgid;
5252 	sbi->s_commit_interval = old_opts.s_commit_interval;
5253 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5254 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5255 #ifdef CONFIG_QUOTA
5256 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5257 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5258 		kfree(sbi->s_qf_names[i]);
5259 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5260 	}
5261 #endif
5262 	kfree(orig_data);
5263 	return err;
5264 }
5265 
5266 #ifdef CONFIG_QUOTA
5267 static int ext4_statfs_project(struct super_block *sb,
5268 			       kprojid_t projid, struct kstatfs *buf)
5269 {
5270 	struct kqid qid;
5271 	struct dquot *dquot;
5272 	u64 limit;
5273 	u64 curblock;
5274 
5275 	qid = make_kqid_projid(projid);
5276 	dquot = dqget(sb, qid);
5277 	if (IS_ERR(dquot))
5278 		return PTR_ERR(dquot);
5279 	spin_lock(&dquot->dq_dqb_lock);
5280 
5281 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5282 		 dquot->dq_dqb.dqb_bsoftlimit :
5283 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5284 	if (limit && buf->f_blocks > limit) {
5285 		curblock = (dquot->dq_dqb.dqb_curspace +
5286 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5287 		buf->f_blocks = limit;
5288 		buf->f_bfree = buf->f_bavail =
5289 			(buf->f_blocks > curblock) ?
5290 			 (buf->f_blocks - curblock) : 0;
5291 	}
5292 
5293 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5294 		dquot->dq_dqb.dqb_isoftlimit :
5295 		dquot->dq_dqb.dqb_ihardlimit;
5296 	if (limit && buf->f_files > limit) {
5297 		buf->f_files = limit;
5298 		buf->f_ffree =
5299 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5300 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5301 	}
5302 
5303 	spin_unlock(&dquot->dq_dqb_lock);
5304 	dqput(dquot);
5305 	return 0;
5306 }
5307 #endif
5308 
5309 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5310 {
5311 	struct super_block *sb = dentry->d_sb;
5312 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5313 	struct ext4_super_block *es = sbi->s_es;
5314 	ext4_fsblk_t overhead = 0, resv_blocks;
5315 	u64 fsid;
5316 	s64 bfree;
5317 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5318 
5319 	if (!test_opt(sb, MINIX_DF))
5320 		overhead = sbi->s_overhead;
5321 
5322 	buf->f_type = EXT4_SUPER_MAGIC;
5323 	buf->f_bsize = sb->s_blocksize;
5324 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5325 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5326 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5327 	/* prevent underflow in case that few free space is available */
5328 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5329 	buf->f_bavail = buf->f_bfree -
5330 			(ext4_r_blocks_count(es) + resv_blocks);
5331 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5332 		buf->f_bavail = 0;
5333 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5334 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5335 	buf->f_namelen = EXT4_NAME_LEN;
5336 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5337 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5338 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5339 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5340 
5341 #ifdef CONFIG_QUOTA
5342 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5343 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5344 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5345 #endif
5346 	return 0;
5347 }
5348 
5349 
5350 #ifdef CONFIG_QUOTA
5351 
5352 /*
5353  * Helper functions so that transaction is started before we acquire dqio_sem
5354  * to keep correct lock ordering of transaction > dqio_sem
5355  */
5356 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5357 {
5358 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5359 }
5360 
5361 static int ext4_write_dquot(struct dquot *dquot)
5362 {
5363 	int ret, err;
5364 	handle_t *handle;
5365 	struct inode *inode;
5366 
5367 	inode = dquot_to_inode(dquot);
5368 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5369 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5370 	if (IS_ERR(handle))
5371 		return PTR_ERR(handle);
5372 	ret = dquot_commit(dquot);
5373 	err = ext4_journal_stop(handle);
5374 	if (!ret)
5375 		ret = err;
5376 	return ret;
5377 }
5378 
5379 static int ext4_acquire_dquot(struct dquot *dquot)
5380 {
5381 	int ret, err;
5382 	handle_t *handle;
5383 
5384 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5385 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5386 	if (IS_ERR(handle))
5387 		return PTR_ERR(handle);
5388 	ret = dquot_acquire(dquot);
5389 	err = ext4_journal_stop(handle);
5390 	if (!ret)
5391 		ret = err;
5392 	return ret;
5393 }
5394 
5395 static int ext4_release_dquot(struct dquot *dquot)
5396 {
5397 	int ret, err;
5398 	handle_t *handle;
5399 
5400 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5401 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5402 	if (IS_ERR(handle)) {
5403 		/* Release dquot anyway to avoid endless cycle in dqput() */
5404 		dquot_release(dquot);
5405 		return PTR_ERR(handle);
5406 	}
5407 	ret = dquot_release(dquot);
5408 	err = ext4_journal_stop(handle);
5409 	if (!ret)
5410 		ret = err;
5411 	return ret;
5412 }
5413 
5414 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5415 {
5416 	struct super_block *sb = dquot->dq_sb;
5417 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5418 
5419 	/* Are we journaling quotas? */
5420 	if (ext4_has_feature_quota(sb) ||
5421 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5422 		dquot_mark_dquot_dirty(dquot);
5423 		return ext4_write_dquot(dquot);
5424 	} else {
5425 		return dquot_mark_dquot_dirty(dquot);
5426 	}
5427 }
5428 
5429 static int ext4_write_info(struct super_block *sb, int type)
5430 {
5431 	int ret, err;
5432 	handle_t *handle;
5433 
5434 	/* Data block + inode block */
5435 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5436 	if (IS_ERR(handle))
5437 		return PTR_ERR(handle);
5438 	ret = dquot_commit_info(sb, type);
5439 	err = ext4_journal_stop(handle);
5440 	if (!ret)
5441 		ret = err;
5442 	return ret;
5443 }
5444 
5445 /*
5446  * Turn on quotas during mount time - we need to find
5447  * the quota file and such...
5448  */
5449 static int ext4_quota_on_mount(struct super_block *sb, int type)
5450 {
5451 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5452 					EXT4_SB(sb)->s_jquota_fmt, type);
5453 }
5454 
5455 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5456 {
5457 	struct ext4_inode_info *ei = EXT4_I(inode);
5458 
5459 	/* The first argument of lockdep_set_subclass has to be
5460 	 * *exactly* the same as the argument to init_rwsem() --- in
5461 	 * this case, in init_once() --- or lockdep gets unhappy
5462 	 * because the name of the lock is set using the
5463 	 * stringification of the argument to init_rwsem().
5464 	 */
5465 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5466 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5467 }
5468 
5469 /*
5470  * Standard function to be called on quota_on
5471  */
5472 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5473 			 const struct path *path)
5474 {
5475 	int err;
5476 
5477 	if (!test_opt(sb, QUOTA))
5478 		return -EINVAL;
5479 
5480 	/* Quotafile not on the same filesystem? */
5481 	if (path->dentry->d_sb != sb)
5482 		return -EXDEV;
5483 	/* Journaling quota? */
5484 	if (EXT4_SB(sb)->s_qf_names[type]) {
5485 		/* Quotafile not in fs root? */
5486 		if (path->dentry->d_parent != sb->s_root)
5487 			ext4_msg(sb, KERN_WARNING,
5488 				"Quota file not on filesystem root. "
5489 				"Journaled quota will not work");
5490 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5491 	} else {
5492 		/*
5493 		 * Clear the flag just in case mount options changed since
5494 		 * last time.
5495 		 */
5496 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5497 	}
5498 
5499 	/*
5500 	 * When we journal data on quota file, we have to flush journal to see
5501 	 * all updates to the file when we bypass pagecache...
5502 	 */
5503 	if (EXT4_SB(sb)->s_journal &&
5504 	    ext4_should_journal_data(d_inode(path->dentry))) {
5505 		/*
5506 		 * We don't need to lock updates but journal_flush() could
5507 		 * otherwise be livelocked...
5508 		 */
5509 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5510 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5511 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5512 		if (err)
5513 			return err;
5514 	}
5515 
5516 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5517 	err = dquot_quota_on(sb, type, format_id, path);
5518 	if (err) {
5519 		lockdep_set_quota_inode(path->dentry->d_inode,
5520 					     I_DATA_SEM_NORMAL);
5521 	} else {
5522 		struct inode *inode = d_inode(path->dentry);
5523 		handle_t *handle;
5524 
5525 		/*
5526 		 * Set inode flags to prevent userspace from messing with quota
5527 		 * files. If this fails, we return success anyway since quotas
5528 		 * are already enabled and this is not a hard failure.
5529 		 */
5530 		inode_lock(inode);
5531 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5532 		if (IS_ERR(handle))
5533 			goto unlock_inode;
5534 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5535 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5536 				S_NOATIME | S_IMMUTABLE);
5537 		ext4_mark_inode_dirty(handle, inode);
5538 		ext4_journal_stop(handle);
5539 	unlock_inode:
5540 		inode_unlock(inode);
5541 	}
5542 	return err;
5543 }
5544 
5545 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5546 			     unsigned int flags)
5547 {
5548 	int err;
5549 	struct inode *qf_inode;
5550 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5551 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5552 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5553 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5554 	};
5555 
5556 	BUG_ON(!ext4_has_feature_quota(sb));
5557 
5558 	if (!qf_inums[type])
5559 		return -EPERM;
5560 
5561 	qf_inode = ext4_iget(sb, qf_inums[type]);
5562 	if (IS_ERR(qf_inode)) {
5563 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5564 		return PTR_ERR(qf_inode);
5565 	}
5566 
5567 	/* Don't account quota for quota files to avoid recursion */
5568 	qf_inode->i_flags |= S_NOQUOTA;
5569 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5570 	err = dquot_enable(qf_inode, type, format_id, flags);
5571 	iput(qf_inode);
5572 	if (err)
5573 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5574 
5575 	return err;
5576 }
5577 
5578 /* Enable usage tracking for all quota types. */
5579 static int ext4_enable_quotas(struct super_block *sb)
5580 {
5581 	int type, err = 0;
5582 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5583 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5584 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5585 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5586 	};
5587 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5588 		test_opt(sb, USRQUOTA),
5589 		test_opt(sb, GRPQUOTA),
5590 		test_opt(sb, PRJQUOTA),
5591 	};
5592 
5593 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5594 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5595 		if (qf_inums[type]) {
5596 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5597 				DQUOT_USAGE_ENABLED |
5598 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5599 			if (err) {
5600 				for (type--; type >= 0; type--)
5601 					dquot_quota_off(sb, type);
5602 
5603 				ext4_warning(sb,
5604 					"Failed to enable quota tracking "
5605 					"(type=%d, err=%d). Please run "
5606 					"e2fsck to fix.", type, err);
5607 				return err;
5608 			}
5609 		}
5610 	}
5611 	return 0;
5612 }
5613 
5614 static int ext4_quota_off(struct super_block *sb, int type)
5615 {
5616 	struct inode *inode = sb_dqopt(sb)->files[type];
5617 	handle_t *handle;
5618 	int err;
5619 
5620 	/* Force all delayed allocation blocks to be allocated.
5621 	 * Caller already holds s_umount sem */
5622 	if (test_opt(sb, DELALLOC))
5623 		sync_filesystem(sb);
5624 
5625 	if (!inode || !igrab(inode))
5626 		goto out;
5627 
5628 	err = dquot_quota_off(sb, type);
5629 	if (err || ext4_has_feature_quota(sb))
5630 		goto out_put;
5631 
5632 	inode_lock(inode);
5633 	/*
5634 	 * Update modification times of quota files when userspace can
5635 	 * start looking at them. If we fail, we return success anyway since
5636 	 * this is not a hard failure and quotas are already disabled.
5637 	 */
5638 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5639 	if (IS_ERR(handle))
5640 		goto out_unlock;
5641 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5642 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5643 	inode->i_mtime = inode->i_ctime = current_time(inode);
5644 	ext4_mark_inode_dirty(handle, inode);
5645 	ext4_journal_stop(handle);
5646 out_unlock:
5647 	inode_unlock(inode);
5648 out_put:
5649 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5650 	iput(inode);
5651 	return err;
5652 out:
5653 	return dquot_quota_off(sb, type);
5654 }
5655 
5656 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5657  * acquiring the locks... As quota files are never truncated and quota code
5658  * itself serializes the operations (and no one else should touch the files)
5659  * we don't have to be afraid of races */
5660 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5661 			       size_t len, loff_t off)
5662 {
5663 	struct inode *inode = sb_dqopt(sb)->files[type];
5664 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5665 	int offset = off & (sb->s_blocksize - 1);
5666 	int tocopy;
5667 	size_t toread;
5668 	struct buffer_head *bh;
5669 	loff_t i_size = i_size_read(inode);
5670 
5671 	if (off > i_size)
5672 		return 0;
5673 	if (off+len > i_size)
5674 		len = i_size-off;
5675 	toread = len;
5676 	while (toread > 0) {
5677 		tocopy = sb->s_blocksize - offset < toread ?
5678 				sb->s_blocksize - offset : toread;
5679 		bh = ext4_bread(NULL, inode, blk, 0);
5680 		if (IS_ERR(bh))
5681 			return PTR_ERR(bh);
5682 		if (!bh)	/* A hole? */
5683 			memset(data, 0, tocopy);
5684 		else
5685 			memcpy(data, bh->b_data+offset, tocopy);
5686 		brelse(bh);
5687 		offset = 0;
5688 		toread -= tocopy;
5689 		data += tocopy;
5690 		blk++;
5691 	}
5692 	return len;
5693 }
5694 
5695 /* Write to quotafile (we know the transaction is already started and has
5696  * enough credits) */
5697 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5698 				const char *data, size_t len, loff_t off)
5699 {
5700 	struct inode *inode = sb_dqopt(sb)->files[type];
5701 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5702 	int err, offset = off & (sb->s_blocksize - 1);
5703 	int retries = 0;
5704 	struct buffer_head *bh;
5705 	handle_t *handle = journal_current_handle();
5706 
5707 	if (EXT4_SB(sb)->s_journal && !handle) {
5708 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5709 			" cancelled because transaction is not started",
5710 			(unsigned long long)off, (unsigned long long)len);
5711 		return -EIO;
5712 	}
5713 	/*
5714 	 * Since we account only one data block in transaction credits,
5715 	 * then it is impossible to cross a block boundary.
5716 	 */
5717 	if (sb->s_blocksize - offset < len) {
5718 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5719 			" cancelled because not block aligned",
5720 			(unsigned long long)off, (unsigned long long)len);
5721 		return -EIO;
5722 	}
5723 
5724 	do {
5725 		bh = ext4_bread(handle, inode, blk,
5726 				EXT4_GET_BLOCKS_CREATE |
5727 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5728 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5729 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5730 	if (IS_ERR(bh))
5731 		return PTR_ERR(bh);
5732 	if (!bh)
5733 		goto out;
5734 	BUFFER_TRACE(bh, "get write access");
5735 	err = ext4_journal_get_write_access(handle, bh);
5736 	if (err) {
5737 		brelse(bh);
5738 		return err;
5739 	}
5740 	lock_buffer(bh);
5741 	memcpy(bh->b_data+offset, data, len);
5742 	flush_dcache_page(bh->b_page);
5743 	unlock_buffer(bh);
5744 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5745 	brelse(bh);
5746 out:
5747 	if (inode->i_size < off + len) {
5748 		i_size_write(inode, off + len);
5749 		EXT4_I(inode)->i_disksize = inode->i_size;
5750 		ext4_mark_inode_dirty(handle, inode);
5751 	}
5752 	return len;
5753 }
5754 
5755 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5756 {
5757 	const struct quota_format_ops	*ops;
5758 
5759 	if (!sb_has_quota_loaded(sb, qid->type))
5760 		return -ESRCH;
5761 	ops = sb_dqopt(sb)->ops[qid->type];
5762 	if (!ops || !ops->get_next_id)
5763 		return -ENOSYS;
5764 	return dquot_get_next_id(sb, qid);
5765 }
5766 #endif
5767 
5768 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5769 		       const char *dev_name, void *data)
5770 {
5771 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5772 }
5773 
5774 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5775 static inline void register_as_ext2(void)
5776 {
5777 	int err = register_filesystem(&ext2_fs_type);
5778 	if (err)
5779 		printk(KERN_WARNING
5780 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5781 }
5782 
5783 static inline void unregister_as_ext2(void)
5784 {
5785 	unregister_filesystem(&ext2_fs_type);
5786 }
5787 
5788 static inline int ext2_feature_set_ok(struct super_block *sb)
5789 {
5790 	if (ext4_has_unknown_ext2_incompat_features(sb))
5791 		return 0;
5792 	if (sb_rdonly(sb))
5793 		return 1;
5794 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5795 		return 0;
5796 	return 1;
5797 }
5798 #else
5799 static inline void register_as_ext2(void) { }
5800 static inline void unregister_as_ext2(void) { }
5801 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5802 #endif
5803 
5804 static inline void register_as_ext3(void)
5805 {
5806 	int err = register_filesystem(&ext3_fs_type);
5807 	if (err)
5808 		printk(KERN_WARNING
5809 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5810 }
5811 
5812 static inline void unregister_as_ext3(void)
5813 {
5814 	unregister_filesystem(&ext3_fs_type);
5815 }
5816 
5817 static inline int ext3_feature_set_ok(struct super_block *sb)
5818 {
5819 	if (ext4_has_unknown_ext3_incompat_features(sb))
5820 		return 0;
5821 	if (!ext4_has_feature_journal(sb))
5822 		return 0;
5823 	if (sb_rdonly(sb))
5824 		return 1;
5825 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5826 		return 0;
5827 	return 1;
5828 }
5829 
5830 static struct file_system_type ext4_fs_type = {
5831 	.owner		= THIS_MODULE,
5832 	.name		= "ext4",
5833 	.mount		= ext4_mount,
5834 	.kill_sb	= kill_block_super,
5835 	.fs_flags	= FS_REQUIRES_DEV,
5836 };
5837 MODULE_ALIAS_FS("ext4");
5838 
5839 /* Shared across all ext4 file systems */
5840 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5841 
5842 static int __init ext4_init_fs(void)
5843 {
5844 	int i, err;
5845 
5846 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5847 	ext4_li_info = NULL;
5848 	mutex_init(&ext4_li_mtx);
5849 
5850 	/* Build-time check for flags consistency */
5851 	ext4_check_flag_values();
5852 
5853 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5854 		init_waitqueue_head(&ext4__ioend_wq[i]);
5855 
5856 	err = ext4_init_es();
5857 	if (err)
5858 		return err;
5859 
5860 	err = ext4_init_pageio();
5861 	if (err)
5862 		goto out5;
5863 
5864 	err = ext4_init_system_zone();
5865 	if (err)
5866 		goto out4;
5867 
5868 	err = ext4_init_sysfs();
5869 	if (err)
5870 		goto out3;
5871 
5872 	err = ext4_init_mballoc();
5873 	if (err)
5874 		goto out2;
5875 	err = init_inodecache();
5876 	if (err)
5877 		goto out1;
5878 	register_as_ext3();
5879 	register_as_ext2();
5880 	err = register_filesystem(&ext4_fs_type);
5881 	if (err)
5882 		goto out;
5883 
5884 	return 0;
5885 out:
5886 	unregister_as_ext2();
5887 	unregister_as_ext3();
5888 	destroy_inodecache();
5889 out1:
5890 	ext4_exit_mballoc();
5891 out2:
5892 	ext4_exit_sysfs();
5893 out3:
5894 	ext4_exit_system_zone();
5895 out4:
5896 	ext4_exit_pageio();
5897 out5:
5898 	ext4_exit_es();
5899 
5900 	return err;
5901 }
5902 
5903 static void __exit ext4_exit_fs(void)
5904 {
5905 	ext4_destroy_lazyinit_thread();
5906 	unregister_as_ext2();
5907 	unregister_as_ext3();
5908 	unregister_filesystem(&ext4_fs_type);
5909 	destroy_inodecache();
5910 	ext4_exit_mballoc();
5911 	ext4_exit_sysfs();
5912 	ext4_exit_system_zone();
5913 	ext4_exit_pageio();
5914 	ext4_exit_es();
5915 }
5916 
5917 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5918 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5919 MODULE_LICENSE("GPL");
5920 MODULE_SOFTDEP("pre: crc32c");
5921 module_init(ext4_init_fs)
5922 module_exit(ext4_exit_fs)
5923