1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ | op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 207 { 208 lock_buffer(bh); 209 if (!wait) { 210 ext4_read_bh_nowait(bh, op_flags, NULL); 211 return 0; 212 } 213 return ext4_read_bh(bh, op_flags, NULL); 214 } 215 216 /* 217 * This works like __bread_gfp() except it uses ERR_PTR for error 218 * returns. Currently with sb_bread it's impossible to distinguish 219 * between ENOMEM and EIO situations (since both result in a NULL 220 * return. 221 */ 222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 223 sector_t block, 224 blk_opf_t op_flags, gfp_t gfp) 225 { 226 struct buffer_head *bh; 227 int ret; 228 229 bh = sb_getblk_gfp(sb, block, gfp); 230 if (bh == NULL) 231 return ERR_PTR(-ENOMEM); 232 if (ext4_buffer_uptodate(bh)) 233 return bh; 234 235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 236 if (ret) { 237 put_bh(bh); 238 return ERR_PTR(ret); 239 } 240 return bh; 241 } 242 243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 244 blk_opf_t op_flags) 245 { 246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 247 } 248 249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 250 sector_t block) 251 { 252 return __ext4_sb_bread_gfp(sb, block, 0, 0); 253 } 254 255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 256 { 257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 258 259 if (likely(bh)) { 260 if (trylock_buffer(bh)) 261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 262 brelse(bh); 263 } 264 } 265 266 static int ext4_verify_csum_type(struct super_block *sb, 267 struct ext4_super_block *es) 268 { 269 if (!ext4_has_feature_metadata_csum(sb)) 270 return 1; 271 272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 273 } 274 275 __le32 ext4_superblock_csum(struct super_block *sb, 276 struct ext4_super_block *es) 277 { 278 struct ext4_sb_info *sbi = EXT4_SB(sb); 279 int offset = offsetof(struct ext4_super_block, s_checksum); 280 __u32 csum; 281 282 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 283 284 return cpu_to_le32(csum); 285 } 286 287 static int ext4_superblock_csum_verify(struct super_block *sb, 288 struct ext4_super_block *es) 289 { 290 if (!ext4_has_metadata_csum(sb)) 291 return 1; 292 293 return es->s_checksum == ext4_superblock_csum(sb, es); 294 } 295 296 void ext4_superblock_csum_set(struct super_block *sb) 297 { 298 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 299 300 if (!ext4_has_metadata_csum(sb)) 301 return; 302 303 es->s_checksum = ext4_superblock_csum(sb, es); 304 } 305 306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 307 struct ext4_group_desc *bg) 308 { 309 return le32_to_cpu(bg->bg_block_bitmap_lo) | 310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 312 } 313 314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_table_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 328 } 329 330 __u32 ext4_free_group_clusters(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 336 } 337 338 __u32 ext4_free_inodes_count(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_used_dirs_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_itable_unused_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_itable_unused_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 360 } 361 362 void ext4_block_bitmap_set(struct super_block *sb, 363 struct ext4_group_desc *bg, ext4_fsblk_t blk) 364 { 365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 368 } 369 370 void ext4_inode_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_table_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_free_group_clusters_set(struct super_block *sb, 387 struct ext4_group_desc *bg, __u32 count) 388 { 389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 392 } 393 394 void ext4_free_inodes_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_used_dirs_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_itable_unused_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 416 } 417 418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 419 { 420 now = clamp_val(now, 0, (1ull << 40) - 1); 421 422 *lo = cpu_to_le32(lower_32_bits(now)); 423 *hi = upper_32_bits(now); 424 } 425 426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 427 { 428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 429 } 430 #define ext4_update_tstamp(es, tstamp) \ 431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 432 ktime_get_real_seconds()) 433 #define ext4_get_tstamp(es, tstamp) \ 434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 /* 476 * This writepage callback for write_cache_pages() 477 * takes care of a few cases after page cleaning. 478 * 479 * write_cache_pages() already checks for dirty pages 480 * and calls clear_page_dirty_for_io(), which we want, 481 * to write protect the pages. 482 * 483 * However, we may have to redirty a page (see below.) 484 */ 485 static int ext4_journalled_writepage_callback(struct folio *folio, 486 struct writeback_control *wbc, 487 void *data) 488 { 489 transaction_t *transaction = (transaction_t *) data; 490 struct buffer_head *bh, *head; 491 struct journal_head *jh; 492 493 bh = head = folio_buffers(folio); 494 do { 495 /* 496 * We have to redirty a page in these cases: 497 * 1) If buffer is dirty, it means the page was dirty because it 498 * contains a buffer that needs checkpointing. So the dirty bit 499 * needs to be preserved so that checkpointing writes the buffer 500 * properly. 501 * 2) If buffer is not part of the committing transaction 502 * (we may have just accidentally come across this buffer because 503 * inode range tracking is not exact) or if the currently running 504 * transaction already contains this buffer as well, dirty bit 505 * needs to be preserved so that the buffer gets writeprotected 506 * properly on running transaction's commit. 507 */ 508 jh = bh2jh(bh); 509 if (buffer_dirty(bh) || 510 (jh && (jh->b_transaction != transaction || 511 jh->b_next_transaction))) { 512 folio_redirty_for_writepage(wbc, folio); 513 goto out; 514 } 515 } while ((bh = bh->b_this_page) != head); 516 517 out: 518 return AOP_WRITEPAGE_ACTIVATE; 519 } 520 521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 522 { 523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 524 struct writeback_control wbc = { 525 .sync_mode = WB_SYNC_ALL, 526 .nr_to_write = LONG_MAX, 527 .range_start = jinode->i_dirty_start, 528 .range_end = jinode->i_dirty_end, 529 }; 530 531 return write_cache_pages(mapping, &wbc, 532 ext4_journalled_writepage_callback, 533 jinode->i_transaction); 534 } 535 536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 537 { 538 int ret; 539 540 if (ext4_should_journal_data(jinode->i_vfs_inode)) 541 ret = ext4_journalled_submit_inode_data_buffers(jinode); 542 else 543 ret = ext4_normal_submit_inode_data_buffers(jinode); 544 return ret; 545 } 546 547 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 548 { 549 int ret = 0; 550 551 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 552 ret = jbd2_journal_finish_inode_data_buffers(jinode); 553 554 return ret; 555 } 556 557 static bool system_going_down(void) 558 { 559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 560 || system_state == SYSTEM_RESTART; 561 } 562 563 struct ext4_err_translation { 564 int code; 565 int errno; 566 }; 567 568 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 569 570 static struct ext4_err_translation err_translation[] = { 571 EXT4_ERR_TRANSLATE(EIO), 572 EXT4_ERR_TRANSLATE(ENOMEM), 573 EXT4_ERR_TRANSLATE(EFSBADCRC), 574 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 575 EXT4_ERR_TRANSLATE(ENOSPC), 576 EXT4_ERR_TRANSLATE(ENOKEY), 577 EXT4_ERR_TRANSLATE(EROFS), 578 EXT4_ERR_TRANSLATE(EFBIG), 579 EXT4_ERR_TRANSLATE(EEXIST), 580 EXT4_ERR_TRANSLATE(ERANGE), 581 EXT4_ERR_TRANSLATE(EOVERFLOW), 582 EXT4_ERR_TRANSLATE(EBUSY), 583 EXT4_ERR_TRANSLATE(ENOTDIR), 584 EXT4_ERR_TRANSLATE(ENOTEMPTY), 585 EXT4_ERR_TRANSLATE(ESHUTDOWN), 586 EXT4_ERR_TRANSLATE(EFAULT), 587 }; 588 589 static int ext4_errno_to_code(int errno) 590 { 591 int i; 592 593 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 594 if (err_translation[i].errno == errno) 595 return err_translation[i].code; 596 return EXT4_ERR_UNKNOWN; 597 } 598 599 static void save_error_info(struct super_block *sb, int error, 600 __u32 ino, __u64 block, 601 const char *func, unsigned int line) 602 { 603 struct ext4_sb_info *sbi = EXT4_SB(sb); 604 605 /* We default to EFSCORRUPTED error... */ 606 if (error == 0) 607 error = EFSCORRUPTED; 608 609 spin_lock(&sbi->s_error_lock); 610 sbi->s_add_error_count++; 611 sbi->s_last_error_code = error; 612 sbi->s_last_error_line = line; 613 sbi->s_last_error_ino = ino; 614 sbi->s_last_error_block = block; 615 sbi->s_last_error_func = func; 616 sbi->s_last_error_time = ktime_get_real_seconds(); 617 if (!sbi->s_first_error_time) { 618 sbi->s_first_error_code = error; 619 sbi->s_first_error_line = line; 620 sbi->s_first_error_ino = ino; 621 sbi->s_first_error_block = block; 622 sbi->s_first_error_func = func; 623 sbi->s_first_error_time = sbi->s_last_error_time; 624 } 625 spin_unlock(&sbi->s_error_lock); 626 } 627 628 /* Deal with the reporting of failure conditions on a filesystem such as 629 * inconsistencies detected or read IO failures. 630 * 631 * On ext2, we can store the error state of the filesystem in the 632 * superblock. That is not possible on ext4, because we may have other 633 * write ordering constraints on the superblock which prevent us from 634 * writing it out straight away; and given that the journal is about to 635 * be aborted, we can't rely on the current, or future, transactions to 636 * write out the superblock safely. 637 * 638 * We'll just use the jbd2_journal_abort() error code to record an error in 639 * the journal instead. On recovery, the journal will complain about 640 * that error until we've noted it down and cleared it. 641 * 642 * If force_ro is set, we unconditionally force the filesystem into an 643 * ABORT|READONLY state, unless the error response on the fs has been set to 644 * panic in which case we take the easy way out and panic immediately. This is 645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 646 * at a critical moment in log management. 647 */ 648 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 649 __u32 ino, __u64 block, 650 const char *func, unsigned int line) 651 { 652 journal_t *journal = EXT4_SB(sb)->s_journal; 653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 654 655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 656 if (test_opt(sb, WARN_ON_ERROR)) 657 WARN_ON_ONCE(1); 658 659 if (!continue_fs && !sb_rdonly(sb)) { 660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 661 if (journal) 662 jbd2_journal_abort(journal, -EIO); 663 } 664 665 if (!bdev_read_only(sb->s_bdev)) { 666 save_error_info(sb, error, ino, block, func, line); 667 /* 668 * In case the fs should keep running, we need to writeout 669 * superblock through the journal. Due to lock ordering 670 * constraints, it may not be safe to do it right here so we 671 * defer superblock flushing to a workqueue. 672 */ 673 if (continue_fs && journal) 674 schedule_work(&EXT4_SB(sb)->s_error_work); 675 else 676 ext4_commit_super(sb); 677 } 678 679 /* 680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 681 * could panic during 'reboot -f' as the underlying device got already 682 * disabled. 683 */ 684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 685 panic("EXT4-fs (device %s): panic forced after error\n", 686 sb->s_id); 687 } 688 689 if (sb_rdonly(sb) || continue_fs) 690 return; 691 692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 693 /* 694 * Make sure updated value of ->s_mount_flags will be visible before 695 * ->s_flags update 696 */ 697 smp_wmb(); 698 sb->s_flags |= SB_RDONLY; 699 } 700 701 static void flush_stashed_error_work(struct work_struct *work) 702 { 703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 704 s_error_work); 705 journal_t *journal = sbi->s_journal; 706 handle_t *handle; 707 708 /* 709 * If the journal is still running, we have to write out superblock 710 * through the journal to avoid collisions of other journalled sb 711 * updates. 712 * 713 * We use directly jbd2 functions here to avoid recursing back into 714 * ext4 error handling code during handling of previous errors. 715 */ 716 if (!sb_rdonly(sbi->s_sb) && journal) { 717 struct buffer_head *sbh = sbi->s_sbh; 718 handle = jbd2_journal_start(journal, 1); 719 if (IS_ERR(handle)) 720 goto write_directly; 721 if (jbd2_journal_get_write_access(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 ext4_update_super(sbi->s_sb); 726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 728 "superblock detected"); 729 clear_buffer_write_io_error(sbh); 730 set_buffer_uptodate(sbh); 731 } 732 733 if (jbd2_journal_dirty_metadata(handle, sbh)) { 734 jbd2_journal_stop(handle); 735 goto write_directly; 736 } 737 jbd2_journal_stop(handle); 738 ext4_notify_error_sysfs(sbi); 739 return; 740 } 741 write_directly: 742 /* 743 * Write through journal failed. Write sb directly to get error info 744 * out and hope for the best. 745 */ 746 ext4_commit_super(sbi->s_sb); 747 ext4_notify_error_sysfs(sbi); 748 } 749 750 #define ext4_error_ratelimit(sb) \ 751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 752 "EXT4-fs error") 753 754 void __ext4_error(struct super_block *sb, const char *function, 755 unsigned int line, bool force_ro, int error, __u64 block, 756 const char *fmt, ...) 757 { 758 struct va_format vaf; 759 va_list args; 760 761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 762 return; 763 764 trace_ext4_error(sb, function, line); 765 if (ext4_error_ratelimit(sb)) { 766 va_start(args, fmt); 767 vaf.fmt = fmt; 768 vaf.va = &args; 769 printk(KERN_CRIT 770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 771 sb->s_id, function, line, current->comm, &vaf); 772 va_end(args); 773 } 774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 775 776 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 777 } 778 779 void __ext4_error_inode(struct inode *inode, const char *function, 780 unsigned int line, ext4_fsblk_t block, int error, 781 const char *fmt, ...) 782 { 783 va_list args; 784 struct va_format vaf; 785 786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 787 return; 788 789 trace_ext4_error(inode->i_sb, function, line); 790 if (ext4_error_ratelimit(inode->i_sb)) { 791 va_start(args, fmt); 792 vaf.fmt = fmt; 793 vaf.va = &args; 794 if (block) 795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 796 "inode #%lu: block %llu: comm %s: %pV\n", 797 inode->i_sb->s_id, function, line, inode->i_ino, 798 block, current->comm, &vaf); 799 else 800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 801 "inode #%lu: comm %s: %pV\n", 802 inode->i_sb->s_id, function, line, inode->i_ino, 803 current->comm, &vaf); 804 va_end(args); 805 } 806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 807 808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 809 function, line); 810 } 811 812 void __ext4_error_file(struct file *file, const char *function, 813 unsigned int line, ext4_fsblk_t block, 814 const char *fmt, ...) 815 { 816 va_list args; 817 struct va_format vaf; 818 struct inode *inode = file_inode(file); 819 char pathname[80], *path; 820 821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 822 return; 823 824 trace_ext4_error(inode->i_sb, function, line); 825 if (ext4_error_ratelimit(inode->i_sb)) { 826 path = file_path(file, pathname, sizeof(pathname)); 827 if (IS_ERR(path)) 828 path = "(unknown)"; 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 if (block) 833 printk(KERN_CRIT 834 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 835 "block %llu: comm %s: path %s: %pV\n", 836 inode->i_sb->s_id, function, line, inode->i_ino, 837 block, current->comm, path, &vaf); 838 else 839 printk(KERN_CRIT 840 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 841 "comm %s: path %s: %pV\n", 842 inode->i_sb->s_id, function, line, inode->i_ino, 843 current->comm, path, &vaf); 844 va_end(args); 845 } 846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 847 848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 849 function, line); 850 } 851 852 const char *ext4_decode_error(struct super_block *sb, int errno, 853 char nbuf[16]) 854 { 855 char *errstr = NULL; 856 857 switch (errno) { 858 case -EFSCORRUPTED: 859 errstr = "Corrupt filesystem"; 860 break; 861 case -EFSBADCRC: 862 errstr = "Filesystem failed CRC"; 863 break; 864 case -EIO: 865 errstr = "IO failure"; 866 break; 867 case -ENOMEM: 868 errstr = "Out of memory"; 869 break; 870 case -EROFS: 871 if (!sb || (EXT4_SB(sb)->s_journal && 872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 873 errstr = "Journal has aborted"; 874 else 875 errstr = "Readonly filesystem"; 876 break; 877 default: 878 /* If the caller passed in an extra buffer for unknown 879 * errors, textualise them now. Else we just return 880 * NULL. */ 881 if (nbuf) { 882 /* Check for truncated error codes... */ 883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 884 errstr = nbuf; 885 } 886 break; 887 } 888 889 return errstr; 890 } 891 892 /* __ext4_std_error decodes expected errors from journaling functions 893 * automatically and invokes the appropriate error response. */ 894 895 void __ext4_std_error(struct super_block *sb, const char *function, 896 unsigned int line, int errno) 897 { 898 char nbuf[16]; 899 const char *errstr; 900 901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 902 return; 903 904 /* Special case: if the error is EROFS, and we're not already 905 * inside a transaction, then there's really no point in logging 906 * an error. */ 907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 908 return; 909 910 if (ext4_error_ratelimit(sb)) { 911 errstr = ext4_decode_error(sb, errno, nbuf); 912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 913 sb->s_id, function, line, errstr); 914 } 915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 916 917 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 918 } 919 920 void __ext4_msg(struct super_block *sb, 921 const char *prefix, const char *fmt, ...) 922 { 923 struct va_format vaf; 924 va_list args; 925 926 if (sb) { 927 atomic_inc(&EXT4_SB(sb)->s_msg_count); 928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 929 "EXT4-fs")) 930 return; 931 } 932 933 va_start(args, fmt); 934 vaf.fmt = fmt; 935 vaf.va = &args; 936 if (sb) 937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 938 else 939 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 940 va_end(args); 941 } 942 943 static int ext4_warning_ratelimit(struct super_block *sb) 944 { 945 atomic_inc(&EXT4_SB(sb)->s_warning_count); 946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 947 "EXT4-fs warning"); 948 } 949 950 void __ext4_warning(struct super_block *sb, const char *function, 951 unsigned int line, const char *fmt, ...) 952 { 953 struct va_format vaf; 954 va_list args; 955 956 if (!ext4_warning_ratelimit(sb)) 957 return; 958 959 va_start(args, fmt); 960 vaf.fmt = fmt; 961 vaf.va = &args; 962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 963 sb->s_id, function, line, &vaf); 964 va_end(args); 965 } 966 967 void __ext4_warning_inode(const struct inode *inode, const char *function, 968 unsigned int line, const char *fmt, ...) 969 { 970 struct va_format vaf; 971 va_list args; 972 973 if (!ext4_warning_ratelimit(inode->i_sb)) 974 return; 975 976 va_start(args, fmt); 977 vaf.fmt = fmt; 978 vaf.va = &args; 979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 981 function, line, inode->i_ino, current->comm, &vaf); 982 va_end(args); 983 } 984 985 void __ext4_grp_locked_error(const char *function, unsigned int line, 986 struct super_block *sb, ext4_group_t grp, 987 unsigned long ino, ext4_fsblk_t block, 988 const char *fmt, ...) 989 __releases(bitlock) 990 __acquires(bitlock) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 996 return; 997 998 trace_ext4_error(sb, function, line); 999 if (ext4_error_ratelimit(sb)) { 1000 va_start(args, fmt); 1001 vaf.fmt = fmt; 1002 vaf.va = &args; 1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1004 sb->s_id, function, line, grp); 1005 if (ino) 1006 printk(KERN_CONT "inode %lu: ", ino); 1007 if (block) 1008 printk(KERN_CONT "block %llu:", 1009 (unsigned long long) block); 1010 printk(KERN_CONT "%pV\n", &vaf); 1011 va_end(args); 1012 } 1013 1014 if (test_opt(sb, ERRORS_CONT)) { 1015 if (test_opt(sb, WARN_ON_ERROR)) 1016 WARN_ON_ONCE(1); 1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1018 if (!bdev_read_only(sb->s_bdev)) { 1019 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1020 line); 1021 schedule_work(&EXT4_SB(sb)->s_error_work); 1022 } 1023 return; 1024 } 1025 ext4_unlock_group(sb, grp); 1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1027 /* 1028 * We only get here in the ERRORS_RO case; relocking the group 1029 * may be dangerous, but nothing bad will happen since the 1030 * filesystem will have already been marked read/only and the 1031 * journal has been aborted. We return 1 as a hint to callers 1032 * who might what to use the return value from 1033 * ext4_grp_locked_error() to distinguish between the 1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1035 * aggressively from the ext4 function in question, with a 1036 * more appropriate error code. 1037 */ 1038 ext4_lock_group(sb, grp); 1039 return; 1040 } 1041 1042 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1043 ext4_group_t group, 1044 unsigned int flags) 1045 { 1046 struct ext4_sb_info *sbi = EXT4_SB(sb); 1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1049 int ret; 1050 1051 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1052 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1053 &grp->bb_state); 1054 if (!ret) 1055 percpu_counter_sub(&sbi->s_freeclusters_counter, 1056 grp->bb_free); 1057 } 1058 1059 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1060 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1061 &grp->bb_state); 1062 if (!ret && gdp) { 1063 int count; 1064 1065 count = ext4_free_inodes_count(sb, gdp); 1066 percpu_counter_sub(&sbi->s_freeinodes_counter, 1067 count); 1068 } 1069 } 1070 } 1071 1072 void ext4_update_dynamic_rev(struct super_block *sb) 1073 { 1074 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1075 1076 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1077 return; 1078 1079 ext4_warning(sb, 1080 "updating to rev %d because of new feature flag, " 1081 "running e2fsck is recommended", 1082 EXT4_DYNAMIC_REV); 1083 1084 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1085 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1086 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1087 /* leave es->s_feature_*compat flags alone */ 1088 /* es->s_uuid will be set by e2fsck if empty */ 1089 1090 /* 1091 * The rest of the superblock fields should be zero, and if not it 1092 * means they are likely already in use, so leave them alone. We 1093 * can leave it up to e2fsck to clean up any inconsistencies there. 1094 */ 1095 } 1096 1097 /* 1098 * Open the external journal device 1099 */ 1100 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1101 { 1102 struct block_device *bdev; 1103 1104 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1105 if (IS_ERR(bdev)) 1106 goto fail; 1107 return bdev; 1108 1109 fail: 1110 ext4_msg(sb, KERN_ERR, 1111 "failed to open journal device unknown-block(%u,%u) %ld", 1112 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1113 return NULL; 1114 } 1115 1116 /* 1117 * Release the journal device 1118 */ 1119 static void ext4_blkdev_put(struct block_device *bdev) 1120 { 1121 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1122 } 1123 1124 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1125 { 1126 struct block_device *bdev; 1127 bdev = sbi->s_journal_bdev; 1128 if (bdev) { 1129 ext4_blkdev_put(bdev); 1130 sbi->s_journal_bdev = NULL; 1131 } 1132 } 1133 1134 static inline struct inode *orphan_list_entry(struct list_head *l) 1135 { 1136 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1137 } 1138 1139 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1140 { 1141 struct list_head *l; 1142 1143 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1144 le32_to_cpu(sbi->s_es->s_last_orphan)); 1145 1146 printk(KERN_ERR "sb_info orphan list:\n"); 1147 list_for_each(l, &sbi->s_orphan) { 1148 struct inode *inode = orphan_list_entry(l); 1149 printk(KERN_ERR " " 1150 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1151 inode->i_sb->s_id, inode->i_ino, inode, 1152 inode->i_mode, inode->i_nlink, 1153 NEXT_ORPHAN(inode)); 1154 } 1155 } 1156 1157 #ifdef CONFIG_QUOTA 1158 static int ext4_quota_off(struct super_block *sb, int type); 1159 1160 static inline void ext4_quota_off_umount(struct super_block *sb) 1161 { 1162 int type; 1163 1164 /* Use our quota_off function to clear inode flags etc. */ 1165 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1166 ext4_quota_off(sb, type); 1167 } 1168 1169 /* 1170 * This is a helper function which is used in the mount/remount 1171 * codepaths (which holds s_umount) to fetch the quota file name. 1172 */ 1173 static inline char *get_qf_name(struct super_block *sb, 1174 struct ext4_sb_info *sbi, 1175 int type) 1176 { 1177 return rcu_dereference_protected(sbi->s_qf_names[type], 1178 lockdep_is_held(&sb->s_umount)); 1179 } 1180 #else 1181 static inline void ext4_quota_off_umount(struct super_block *sb) 1182 { 1183 } 1184 #endif 1185 1186 static void ext4_put_super(struct super_block *sb) 1187 { 1188 struct ext4_sb_info *sbi = EXT4_SB(sb); 1189 struct ext4_super_block *es = sbi->s_es; 1190 struct buffer_head **group_desc; 1191 struct flex_groups **flex_groups; 1192 int aborted = 0; 1193 int i, err; 1194 1195 /* 1196 * Unregister sysfs before destroying jbd2 journal. 1197 * Since we could still access attr_journal_task attribute via sysfs 1198 * path which could have sbi->s_journal->j_task as NULL 1199 * Unregister sysfs before flush sbi->s_error_work. 1200 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1201 * read metadata verify failed then will queue error work. 1202 * flush_stashed_error_work will call start_this_handle may trigger 1203 * BUG_ON. 1204 */ 1205 ext4_unregister_sysfs(sb); 1206 1207 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1208 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1209 &sb->s_uuid); 1210 1211 ext4_unregister_li_request(sb); 1212 ext4_quota_off_umount(sb); 1213 1214 flush_work(&sbi->s_error_work); 1215 destroy_workqueue(sbi->rsv_conversion_wq); 1216 ext4_release_orphan_info(sb); 1217 1218 if (sbi->s_journal) { 1219 aborted = is_journal_aborted(sbi->s_journal); 1220 err = jbd2_journal_destroy(sbi->s_journal); 1221 sbi->s_journal = NULL; 1222 if ((err < 0) && !aborted) { 1223 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1224 } 1225 } 1226 1227 ext4_es_unregister_shrinker(sbi); 1228 timer_shutdown_sync(&sbi->s_err_report); 1229 ext4_release_system_zone(sb); 1230 ext4_mb_release(sb); 1231 ext4_ext_release(sb); 1232 1233 if (!sb_rdonly(sb) && !aborted) { 1234 ext4_clear_feature_journal_needs_recovery(sb); 1235 ext4_clear_feature_orphan_present(sb); 1236 es->s_state = cpu_to_le16(sbi->s_mount_state); 1237 } 1238 if (!sb_rdonly(sb)) 1239 ext4_commit_super(sb); 1240 1241 rcu_read_lock(); 1242 group_desc = rcu_dereference(sbi->s_group_desc); 1243 for (i = 0; i < sbi->s_gdb_count; i++) 1244 brelse(group_desc[i]); 1245 kvfree(group_desc); 1246 flex_groups = rcu_dereference(sbi->s_flex_groups); 1247 if (flex_groups) { 1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1249 kvfree(flex_groups[i]); 1250 kvfree(flex_groups); 1251 } 1252 rcu_read_unlock(); 1253 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1254 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1255 percpu_counter_destroy(&sbi->s_dirs_counter); 1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1258 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1259 #ifdef CONFIG_QUOTA 1260 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1261 kfree(get_qf_name(sb, sbi, i)); 1262 #endif 1263 1264 /* Debugging code just in case the in-memory inode orphan list 1265 * isn't empty. The on-disk one can be non-empty if we've 1266 * detected an error and taken the fs readonly, but the 1267 * in-memory list had better be clean by this point. */ 1268 if (!list_empty(&sbi->s_orphan)) 1269 dump_orphan_list(sb, sbi); 1270 ASSERT(list_empty(&sbi->s_orphan)); 1271 1272 sync_blockdev(sb->s_bdev); 1273 invalidate_bdev(sb->s_bdev); 1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1275 /* 1276 * Invalidate the journal device's buffers. We don't want them 1277 * floating about in memory - the physical journal device may 1278 * hotswapped, and it breaks the `ro-after' testing code. 1279 */ 1280 sync_blockdev(sbi->s_journal_bdev); 1281 invalidate_bdev(sbi->s_journal_bdev); 1282 ext4_blkdev_remove(sbi); 1283 } 1284 1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1286 sbi->s_ea_inode_cache = NULL; 1287 1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1289 sbi->s_ea_block_cache = NULL; 1290 1291 ext4_stop_mmpd(sbi); 1292 1293 brelse(sbi->s_sbh); 1294 sb->s_fs_info = NULL; 1295 /* 1296 * Now that we are completely done shutting down the 1297 * superblock, we need to actually destroy the kobject. 1298 */ 1299 kobject_put(&sbi->s_kobj); 1300 wait_for_completion(&sbi->s_kobj_unregister); 1301 if (sbi->s_chksum_driver) 1302 crypto_free_shash(sbi->s_chksum_driver); 1303 kfree(sbi->s_blockgroup_lock); 1304 fs_put_dax(sbi->s_daxdev, NULL); 1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1306 #if IS_ENABLED(CONFIG_UNICODE) 1307 utf8_unload(sb->s_encoding); 1308 #endif 1309 kfree(sbi); 1310 } 1311 1312 static struct kmem_cache *ext4_inode_cachep; 1313 1314 /* 1315 * Called inside transaction, so use GFP_NOFS 1316 */ 1317 static struct inode *ext4_alloc_inode(struct super_block *sb) 1318 { 1319 struct ext4_inode_info *ei; 1320 1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1322 if (!ei) 1323 return NULL; 1324 1325 inode_set_iversion(&ei->vfs_inode, 1); 1326 ei->i_flags = 0; 1327 spin_lock_init(&ei->i_raw_lock); 1328 INIT_LIST_HEAD(&ei->i_prealloc_list); 1329 atomic_set(&ei->i_prealloc_active, 0); 1330 spin_lock_init(&ei->i_prealloc_lock); 1331 ext4_es_init_tree(&ei->i_es_tree); 1332 rwlock_init(&ei->i_es_lock); 1333 INIT_LIST_HEAD(&ei->i_es_list); 1334 ei->i_es_all_nr = 0; 1335 ei->i_es_shk_nr = 0; 1336 ei->i_es_shrink_lblk = 0; 1337 ei->i_reserved_data_blocks = 0; 1338 spin_lock_init(&(ei->i_block_reservation_lock)); 1339 ext4_init_pending_tree(&ei->i_pending_tree); 1340 #ifdef CONFIG_QUOTA 1341 ei->i_reserved_quota = 0; 1342 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1343 #endif 1344 ei->jinode = NULL; 1345 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1346 spin_lock_init(&ei->i_completed_io_lock); 1347 ei->i_sync_tid = 0; 1348 ei->i_datasync_tid = 0; 1349 atomic_set(&ei->i_unwritten, 0); 1350 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1351 ext4_fc_init_inode(&ei->vfs_inode); 1352 mutex_init(&ei->i_fc_lock); 1353 return &ei->vfs_inode; 1354 } 1355 1356 static int ext4_drop_inode(struct inode *inode) 1357 { 1358 int drop = generic_drop_inode(inode); 1359 1360 if (!drop) 1361 drop = fscrypt_drop_inode(inode); 1362 1363 trace_ext4_drop_inode(inode, drop); 1364 return drop; 1365 } 1366 1367 static void ext4_free_in_core_inode(struct inode *inode) 1368 { 1369 fscrypt_free_inode(inode); 1370 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1371 pr_warn("%s: inode %ld still in fc list", 1372 __func__, inode->i_ino); 1373 } 1374 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1375 } 1376 1377 static void ext4_destroy_inode(struct inode *inode) 1378 { 1379 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1380 ext4_msg(inode->i_sb, KERN_ERR, 1381 "Inode %lu (%p): orphan list check failed!", 1382 inode->i_ino, EXT4_I(inode)); 1383 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1384 EXT4_I(inode), sizeof(struct ext4_inode_info), 1385 true); 1386 dump_stack(); 1387 } 1388 1389 if (EXT4_I(inode)->i_reserved_data_blocks) 1390 ext4_msg(inode->i_sb, KERN_ERR, 1391 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1392 inode->i_ino, EXT4_I(inode), 1393 EXT4_I(inode)->i_reserved_data_blocks); 1394 } 1395 1396 static void init_once(void *foo) 1397 { 1398 struct ext4_inode_info *ei = foo; 1399 1400 INIT_LIST_HEAD(&ei->i_orphan); 1401 init_rwsem(&ei->xattr_sem); 1402 init_rwsem(&ei->i_data_sem); 1403 inode_init_once(&ei->vfs_inode); 1404 ext4_fc_init_inode(&ei->vfs_inode); 1405 } 1406 1407 static int __init init_inodecache(void) 1408 { 1409 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1410 sizeof(struct ext4_inode_info), 0, 1411 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1412 SLAB_ACCOUNT), 1413 offsetof(struct ext4_inode_info, i_data), 1414 sizeof_field(struct ext4_inode_info, i_data), 1415 init_once); 1416 if (ext4_inode_cachep == NULL) 1417 return -ENOMEM; 1418 return 0; 1419 } 1420 1421 static void destroy_inodecache(void) 1422 { 1423 /* 1424 * Make sure all delayed rcu free inodes are flushed before we 1425 * destroy cache. 1426 */ 1427 rcu_barrier(); 1428 kmem_cache_destroy(ext4_inode_cachep); 1429 } 1430 1431 void ext4_clear_inode(struct inode *inode) 1432 { 1433 ext4_fc_del(inode); 1434 invalidate_inode_buffers(inode); 1435 clear_inode(inode); 1436 ext4_discard_preallocations(inode, 0); 1437 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1438 dquot_drop(inode); 1439 if (EXT4_I(inode)->jinode) { 1440 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1441 EXT4_I(inode)->jinode); 1442 jbd2_free_inode(EXT4_I(inode)->jinode); 1443 EXT4_I(inode)->jinode = NULL; 1444 } 1445 fscrypt_put_encryption_info(inode); 1446 fsverity_cleanup_inode(inode); 1447 } 1448 1449 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1450 u64 ino, u32 generation) 1451 { 1452 struct inode *inode; 1453 1454 /* 1455 * Currently we don't know the generation for parent directory, so 1456 * a generation of 0 means "accept any" 1457 */ 1458 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1459 if (IS_ERR(inode)) 1460 return ERR_CAST(inode); 1461 if (generation && inode->i_generation != generation) { 1462 iput(inode); 1463 return ERR_PTR(-ESTALE); 1464 } 1465 1466 return inode; 1467 } 1468 1469 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1470 int fh_len, int fh_type) 1471 { 1472 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1473 ext4_nfs_get_inode); 1474 } 1475 1476 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1477 int fh_len, int fh_type) 1478 { 1479 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1480 ext4_nfs_get_inode); 1481 } 1482 1483 static int ext4_nfs_commit_metadata(struct inode *inode) 1484 { 1485 struct writeback_control wbc = { 1486 .sync_mode = WB_SYNC_ALL 1487 }; 1488 1489 trace_ext4_nfs_commit_metadata(inode); 1490 return ext4_write_inode(inode, &wbc); 1491 } 1492 1493 #ifdef CONFIG_QUOTA 1494 static const char * const quotatypes[] = INITQFNAMES; 1495 #define QTYPE2NAME(t) (quotatypes[t]) 1496 1497 static int ext4_write_dquot(struct dquot *dquot); 1498 static int ext4_acquire_dquot(struct dquot *dquot); 1499 static int ext4_release_dquot(struct dquot *dquot); 1500 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1501 static int ext4_write_info(struct super_block *sb, int type); 1502 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1503 const struct path *path); 1504 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1505 size_t len, loff_t off); 1506 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1507 const char *data, size_t len, loff_t off); 1508 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1509 unsigned int flags); 1510 1511 static struct dquot **ext4_get_dquots(struct inode *inode) 1512 { 1513 return EXT4_I(inode)->i_dquot; 1514 } 1515 1516 static const struct dquot_operations ext4_quota_operations = { 1517 .get_reserved_space = ext4_get_reserved_space, 1518 .write_dquot = ext4_write_dquot, 1519 .acquire_dquot = ext4_acquire_dquot, 1520 .release_dquot = ext4_release_dquot, 1521 .mark_dirty = ext4_mark_dquot_dirty, 1522 .write_info = ext4_write_info, 1523 .alloc_dquot = dquot_alloc, 1524 .destroy_dquot = dquot_destroy, 1525 .get_projid = ext4_get_projid, 1526 .get_inode_usage = ext4_get_inode_usage, 1527 .get_next_id = dquot_get_next_id, 1528 }; 1529 1530 static const struct quotactl_ops ext4_qctl_operations = { 1531 .quota_on = ext4_quota_on, 1532 .quota_off = ext4_quota_off, 1533 .quota_sync = dquot_quota_sync, 1534 .get_state = dquot_get_state, 1535 .set_info = dquot_set_dqinfo, 1536 .get_dqblk = dquot_get_dqblk, 1537 .set_dqblk = dquot_set_dqblk, 1538 .get_nextdqblk = dquot_get_next_dqblk, 1539 }; 1540 #endif 1541 1542 static const struct super_operations ext4_sops = { 1543 .alloc_inode = ext4_alloc_inode, 1544 .free_inode = ext4_free_in_core_inode, 1545 .destroy_inode = ext4_destroy_inode, 1546 .write_inode = ext4_write_inode, 1547 .dirty_inode = ext4_dirty_inode, 1548 .drop_inode = ext4_drop_inode, 1549 .evict_inode = ext4_evict_inode, 1550 .put_super = ext4_put_super, 1551 .sync_fs = ext4_sync_fs, 1552 .freeze_fs = ext4_freeze, 1553 .unfreeze_fs = ext4_unfreeze, 1554 .statfs = ext4_statfs, 1555 .show_options = ext4_show_options, 1556 #ifdef CONFIG_QUOTA 1557 .quota_read = ext4_quota_read, 1558 .quota_write = ext4_quota_write, 1559 .get_dquots = ext4_get_dquots, 1560 #endif 1561 }; 1562 1563 static const struct export_operations ext4_export_ops = { 1564 .fh_to_dentry = ext4_fh_to_dentry, 1565 .fh_to_parent = ext4_fh_to_parent, 1566 .get_parent = ext4_get_parent, 1567 .commit_metadata = ext4_nfs_commit_metadata, 1568 }; 1569 1570 enum { 1571 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1572 Opt_resgid, Opt_resuid, Opt_sb, 1573 Opt_nouid32, Opt_debug, Opt_removed, 1574 Opt_user_xattr, Opt_acl, 1575 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1576 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1577 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1578 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1579 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1580 Opt_inlinecrypt, 1581 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1582 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1583 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1584 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1585 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1586 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1587 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1588 Opt_inode_readahead_blks, Opt_journal_ioprio, 1589 Opt_dioread_nolock, Opt_dioread_lock, 1590 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1591 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1592 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1593 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1594 #ifdef CONFIG_EXT4_DEBUG 1595 Opt_fc_debug_max_replay, Opt_fc_debug_force 1596 #endif 1597 }; 1598 1599 static const struct constant_table ext4_param_errors[] = { 1600 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1601 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1602 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1603 {} 1604 }; 1605 1606 static const struct constant_table ext4_param_data[] = { 1607 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1608 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1609 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1610 {} 1611 }; 1612 1613 static const struct constant_table ext4_param_data_err[] = { 1614 {"abort", Opt_data_err_abort}, 1615 {"ignore", Opt_data_err_ignore}, 1616 {} 1617 }; 1618 1619 static const struct constant_table ext4_param_jqfmt[] = { 1620 {"vfsold", QFMT_VFS_OLD}, 1621 {"vfsv0", QFMT_VFS_V0}, 1622 {"vfsv1", QFMT_VFS_V1}, 1623 {} 1624 }; 1625 1626 static const struct constant_table ext4_param_dax[] = { 1627 {"always", Opt_dax_always}, 1628 {"inode", Opt_dax_inode}, 1629 {"never", Opt_dax_never}, 1630 {} 1631 }; 1632 1633 /* String parameter that allows empty argument */ 1634 #define fsparam_string_empty(NAME, OPT) \ 1635 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1636 1637 /* 1638 * Mount option specification 1639 * We don't use fsparam_flag_no because of the way we set the 1640 * options and the way we show them in _ext4_show_options(). To 1641 * keep the changes to a minimum, let's keep the negative options 1642 * separate for now. 1643 */ 1644 static const struct fs_parameter_spec ext4_param_specs[] = { 1645 fsparam_flag ("bsddf", Opt_bsd_df), 1646 fsparam_flag ("minixdf", Opt_minix_df), 1647 fsparam_flag ("grpid", Opt_grpid), 1648 fsparam_flag ("bsdgroups", Opt_grpid), 1649 fsparam_flag ("nogrpid", Opt_nogrpid), 1650 fsparam_flag ("sysvgroups", Opt_nogrpid), 1651 fsparam_u32 ("resgid", Opt_resgid), 1652 fsparam_u32 ("resuid", Opt_resuid), 1653 fsparam_u32 ("sb", Opt_sb), 1654 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1655 fsparam_flag ("nouid32", Opt_nouid32), 1656 fsparam_flag ("debug", Opt_debug), 1657 fsparam_flag ("oldalloc", Opt_removed), 1658 fsparam_flag ("orlov", Opt_removed), 1659 fsparam_flag ("user_xattr", Opt_user_xattr), 1660 fsparam_flag ("acl", Opt_acl), 1661 fsparam_flag ("norecovery", Opt_noload), 1662 fsparam_flag ("noload", Opt_noload), 1663 fsparam_flag ("bh", Opt_removed), 1664 fsparam_flag ("nobh", Opt_removed), 1665 fsparam_u32 ("commit", Opt_commit), 1666 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1667 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1668 fsparam_u32 ("journal_dev", Opt_journal_dev), 1669 fsparam_bdev ("journal_path", Opt_journal_path), 1670 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1671 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1672 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1673 fsparam_flag ("abort", Opt_abort), 1674 fsparam_enum ("data", Opt_data, ext4_param_data), 1675 fsparam_enum ("data_err", Opt_data_err, 1676 ext4_param_data_err), 1677 fsparam_string_empty 1678 ("usrjquota", Opt_usrjquota), 1679 fsparam_string_empty 1680 ("grpjquota", Opt_grpjquota), 1681 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1682 fsparam_flag ("grpquota", Opt_grpquota), 1683 fsparam_flag ("quota", Opt_quota), 1684 fsparam_flag ("noquota", Opt_noquota), 1685 fsparam_flag ("usrquota", Opt_usrquota), 1686 fsparam_flag ("prjquota", Opt_prjquota), 1687 fsparam_flag ("barrier", Opt_barrier), 1688 fsparam_u32 ("barrier", Opt_barrier), 1689 fsparam_flag ("nobarrier", Opt_nobarrier), 1690 fsparam_flag ("i_version", Opt_removed), 1691 fsparam_flag ("dax", Opt_dax), 1692 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1693 fsparam_u32 ("stripe", Opt_stripe), 1694 fsparam_flag ("delalloc", Opt_delalloc), 1695 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1696 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1697 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1698 fsparam_u32 ("debug_want_extra_isize", 1699 Opt_debug_want_extra_isize), 1700 fsparam_flag ("mblk_io_submit", Opt_removed), 1701 fsparam_flag ("nomblk_io_submit", Opt_removed), 1702 fsparam_flag ("block_validity", Opt_block_validity), 1703 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1704 fsparam_u32 ("inode_readahead_blks", 1705 Opt_inode_readahead_blks), 1706 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1707 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1708 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1709 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1710 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1711 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1712 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1713 fsparam_flag ("discard", Opt_discard), 1714 fsparam_flag ("nodiscard", Opt_nodiscard), 1715 fsparam_u32 ("init_itable", Opt_init_itable), 1716 fsparam_flag ("init_itable", Opt_init_itable), 1717 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1718 #ifdef CONFIG_EXT4_DEBUG 1719 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1720 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1721 #endif 1722 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1723 fsparam_flag ("test_dummy_encryption", 1724 Opt_test_dummy_encryption), 1725 fsparam_string ("test_dummy_encryption", 1726 Opt_test_dummy_encryption), 1727 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1728 fsparam_flag ("nombcache", Opt_nombcache), 1729 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1730 fsparam_flag ("prefetch_block_bitmaps", 1731 Opt_removed), 1732 fsparam_flag ("no_prefetch_block_bitmaps", 1733 Opt_no_prefetch_block_bitmaps), 1734 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1735 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1736 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1737 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1738 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1739 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1740 {} 1741 }; 1742 1743 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1744 1745 #define MOPT_SET 0x0001 1746 #define MOPT_CLEAR 0x0002 1747 #define MOPT_NOSUPPORT 0x0004 1748 #define MOPT_EXPLICIT 0x0008 1749 #ifdef CONFIG_QUOTA 1750 #define MOPT_Q 0 1751 #define MOPT_QFMT 0x0010 1752 #else 1753 #define MOPT_Q MOPT_NOSUPPORT 1754 #define MOPT_QFMT MOPT_NOSUPPORT 1755 #endif 1756 #define MOPT_NO_EXT2 0x0020 1757 #define MOPT_NO_EXT3 0x0040 1758 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1759 #define MOPT_SKIP 0x0080 1760 #define MOPT_2 0x0100 1761 1762 static const struct mount_opts { 1763 int token; 1764 int mount_opt; 1765 int flags; 1766 } ext4_mount_opts[] = { 1767 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1768 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1769 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1770 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1771 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1772 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1773 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1774 MOPT_EXT4_ONLY | MOPT_SET}, 1775 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1776 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1777 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1778 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1779 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1780 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1781 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1782 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1783 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1784 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1785 {Opt_commit, 0, MOPT_NO_EXT2}, 1786 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1787 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1788 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1790 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1791 EXT4_MOUNT_JOURNAL_CHECKSUM), 1792 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1793 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1794 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1795 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1796 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1797 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1798 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1799 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1800 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1801 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1802 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1804 {Opt_data, 0, MOPT_NO_EXT2}, 1805 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1806 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1807 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1808 #else 1809 {Opt_acl, 0, MOPT_NOSUPPORT}, 1810 #endif 1811 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1812 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1813 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1814 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1815 MOPT_SET | MOPT_Q}, 1816 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1817 MOPT_SET | MOPT_Q}, 1818 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1819 MOPT_SET | MOPT_Q}, 1820 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1821 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1822 MOPT_CLEAR | MOPT_Q}, 1823 {Opt_usrjquota, 0, MOPT_Q}, 1824 {Opt_grpjquota, 0, MOPT_Q}, 1825 {Opt_jqfmt, 0, MOPT_QFMT}, 1826 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1827 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1828 MOPT_SET}, 1829 #ifdef CONFIG_EXT4_DEBUG 1830 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1831 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1832 #endif 1833 {Opt_err, 0, 0} 1834 }; 1835 1836 #if IS_ENABLED(CONFIG_UNICODE) 1837 static const struct ext4_sb_encodings { 1838 __u16 magic; 1839 char *name; 1840 unsigned int version; 1841 } ext4_sb_encoding_map[] = { 1842 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1843 }; 1844 1845 static const struct ext4_sb_encodings * 1846 ext4_sb_read_encoding(const struct ext4_super_block *es) 1847 { 1848 __u16 magic = le16_to_cpu(es->s_encoding); 1849 int i; 1850 1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1852 if (magic == ext4_sb_encoding_map[i].magic) 1853 return &ext4_sb_encoding_map[i]; 1854 1855 return NULL; 1856 } 1857 #endif 1858 1859 #define EXT4_SPEC_JQUOTA (1 << 0) 1860 #define EXT4_SPEC_JQFMT (1 << 1) 1861 #define EXT4_SPEC_DATAJ (1 << 2) 1862 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1863 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1864 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1865 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1866 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1867 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1868 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1869 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1870 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1871 #define EXT4_SPEC_s_stripe (1 << 13) 1872 #define EXT4_SPEC_s_resuid (1 << 14) 1873 #define EXT4_SPEC_s_resgid (1 << 15) 1874 #define EXT4_SPEC_s_commit_interval (1 << 16) 1875 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1876 #define EXT4_SPEC_s_sb_block (1 << 18) 1877 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1878 1879 struct ext4_fs_context { 1880 char *s_qf_names[EXT4_MAXQUOTAS]; 1881 struct fscrypt_dummy_policy dummy_enc_policy; 1882 int s_jquota_fmt; /* Format of quota to use */ 1883 #ifdef CONFIG_EXT4_DEBUG 1884 int s_fc_debug_max_replay; 1885 #endif 1886 unsigned short qname_spec; 1887 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1888 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1889 unsigned long journal_devnum; 1890 unsigned long s_commit_interval; 1891 unsigned long s_stripe; 1892 unsigned int s_inode_readahead_blks; 1893 unsigned int s_want_extra_isize; 1894 unsigned int s_li_wait_mult; 1895 unsigned int s_max_dir_size_kb; 1896 unsigned int journal_ioprio; 1897 unsigned int vals_s_mount_opt; 1898 unsigned int mask_s_mount_opt; 1899 unsigned int vals_s_mount_opt2; 1900 unsigned int mask_s_mount_opt2; 1901 unsigned long vals_s_mount_flags; 1902 unsigned long mask_s_mount_flags; 1903 unsigned int opt_flags; /* MOPT flags */ 1904 unsigned int spec; 1905 u32 s_max_batch_time; 1906 u32 s_min_batch_time; 1907 kuid_t s_resuid; 1908 kgid_t s_resgid; 1909 ext4_fsblk_t s_sb_block; 1910 }; 1911 1912 static void ext4_fc_free(struct fs_context *fc) 1913 { 1914 struct ext4_fs_context *ctx = fc->fs_private; 1915 int i; 1916 1917 if (!ctx) 1918 return; 1919 1920 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1921 kfree(ctx->s_qf_names[i]); 1922 1923 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1924 kfree(ctx); 1925 } 1926 1927 int ext4_init_fs_context(struct fs_context *fc) 1928 { 1929 struct ext4_fs_context *ctx; 1930 1931 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1932 if (!ctx) 1933 return -ENOMEM; 1934 1935 fc->fs_private = ctx; 1936 fc->ops = &ext4_context_ops; 1937 1938 return 0; 1939 } 1940 1941 #ifdef CONFIG_QUOTA 1942 /* 1943 * Note the name of the specified quota file. 1944 */ 1945 static int note_qf_name(struct fs_context *fc, int qtype, 1946 struct fs_parameter *param) 1947 { 1948 struct ext4_fs_context *ctx = fc->fs_private; 1949 char *qname; 1950 1951 if (param->size < 1) { 1952 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 1953 return -EINVAL; 1954 } 1955 if (strchr(param->string, '/')) { 1956 ext4_msg(NULL, KERN_ERR, 1957 "quotafile must be on filesystem root"); 1958 return -EINVAL; 1959 } 1960 if (ctx->s_qf_names[qtype]) { 1961 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 1962 ext4_msg(NULL, KERN_ERR, 1963 "%s quota file already specified", 1964 QTYPE2NAME(qtype)); 1965 return -EINVAL; 1966 } 1967 return 0; 1968 } 1969 1970 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 1971 if (!qname) { 1972 ext4_msg(NULL, KERN_ERR, 1973 "Not enough memory for storing quotafile name"); 1974 return -ENOMEM; 1975 } 1976 ctx->s_qf_names[qtype] = qname; 1977 ctx->qname_spec |= 1 << qtype; 1978 ctx->spec |= EXT4_SPEC_JQUOTA; 1979 return 0; 1980 } 1981 1982 /* 1983 * Clear the name of the specified quota file. 1984 */ 1985 static int unnote_qf_name(struct fs_context *fc, int qtype) 1986 { 1987 struct ext4_fs_context *ctx = fc->fs_private; 1988 1989 if (ctx->s_qf_names[qtype]) 1990 kfree(ctx->s_qf_names[qtype]); 1991 1992 ctx->s_qf_names[qtype] = NULL; 1993 ctx->qname_spec |= 1 << qtype; 1994 ctx->spec |= EXT4_SPEC_JQUOTA; 1995 return 0; 1996 } 1997 #endif 1998 1999 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2000 struct ext4_fs_context *ctx) 2001 { 2002 int err; 2003 2004 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2005 ext4_msg(NULL, KERN_WARNING, 2006 "test_dummy_encryption option not supported"); 2007 return -EINVAL; 2008 } 2009 err = fscrypt_parse_test_dummy_encryption(param, 2010 &ctx->dummy_enc_policy); 2011 if (err == -EINVAL) { 2012 ext4_msg(NULL, KERN_WARNING, 2013 "Value of option \"%s\" is unrecognized", param->key); 2014 } else if (err == -EEXIST) { 2015 ext4_msg(NULL, KERN_WARNING, 2016 "Conflicting test_dummy_encryption options"); 2017 return -EINVAL; 2018 } 2019 return err; 2020 } 2021 2022 #define EXT4_SET_CTX(name) \ 2023 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2024 unsigned long flag) \ 2025 { \ 2026 ctx->mask_s_##name |= flag; \ 2027 ctx->vals_s_##name |= flag; \ 2028 } 2029 2030 #define EXT4_CLEAR_CTX(name) \ 2031 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2032 unsigned long flag) \ 2033 { \ 2034 ctx->mask_s_##name |= flag; \ 2035 ctx->vals_s_##name &= ~flag; \ 2036 } 2037 2038 #define EXT4_TEST_CTX(name) \ 2039 static inline unsigned long \ 2040 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2041 { \ 2042 return (ctx->vals_s_##name & flag); \ 2043 } 2044 2045 EXT4_SET_CTX(flags); /* set only */ 2046 EXT4_SET_CTX(mount_opt); 2047 EXT4_CLEAR_CTX(mount_opt); 2048 EXT4_TEST_CTX(mount_opt); 2049 EXT4_SET_CTX(mount_opt2); 2050 EXT4_CLEAR_CTX(mount_opt2); 2051 EXT4_TEST_CTX(mount_opt2); 2052 2053 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2054 { 2055 set_bit(bit, &ctx->mask_s_mount_flags); 2056 set_bit(bit, &ctx->vals_s_mount_flags); 2057 } 2058 2059 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2060 { 2061 struct ext4_fs_context *ctx = fc->fs_private; 2062 struct fs_parse_result result; 2063 const struct mount_opts *m; 2064 int is_remount; 2065 kuid_t uid; 2066 kgid_t gid; 2067 int token; 2068 2069 token = fs_parse(fc, ext4_param_specs, param, &result); 2070 if (token < 0) 2071 return token; 2072 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2073 2074 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2075 if (token == m->token) 2076 break; 2077 2078 ctx->opt_flags |= m->flags; 2079 2080 if (m->flags & MOPT_EXPLICIT) { 2081 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2082 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2083 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2084 ctx_set_mount_opt2(ctx, 2085 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2086 } else 2087 return -EINVAL; 2088 } 2089 2090 if (m->flags & MOPT_NOSUPPORT) { 2091 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2092 param->key); 2093 return 0; 2094 } 2095 2096 switch (token) { 2097 #ifdef CONFIG_QUOTA 2098 case Opt_usrjquota: 2099 if (!*param->string) 2100 return unnote_qf_name(fc, USRQUOTA); 2101 else 2102 return note_qf_name(fc, USRQUOTA, param); 2103 case Opt_grpjquota: 2104 if (!*param->string) 2105 return unnote_qf_name(fc, GRPQUOTA); 2106 else 2107 return note_qf_name(fc, GRPQUOTA, param); 2108 #endif 2109 case Opt_sb: 2110 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2111 ext4_msg(NULL, KERN_WARNING, 2112 "Ignoring %s option on remount", param->key); 2113 } else { 2114 ctx->s_sb_block = result.uint_32; 2115 ctx->spec |= EXT4_SPEC_s_sb_block; 2116 } 2117 return 0; 2118 case Opt_removed: 2119 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2120 param->key); 2121 return 0; 2122 case Opt_abort: 2123 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2124 return 0; 2125 case Opt_inlinecrypt: 2126 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2127 ctx_set_flags(ctx, SB_INLINECRYPT); 2128 #else 2129 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2130 #endif 2131 return 0; 2132 case Opt_errors: 2133 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2134 ctx_set_mount_opt(ctx, result.uint_32); 2135 return 0; 2136 #ifdef CONFIG_QUOTA 2137 case Opt_jqfmt: 2138 ctx->s_jquota_fmt = result.uint_32; 2139 ctx->spec |= EXT4_SPEC_JQFMT; 2140 return 0; 2141 #endif 2142 case Opt_data: 2143 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2144 ctx_set_mount_opt(ctx, result.uint_32); 2145 ctx->spec |= EXT4_SPEC_DATAJ; 2146 return 0; 2147 case Opt_commit: 2148 if (result.uint_32 == 0) 2149 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE; 2150 else if (result.uint_32 > INT_MAX / HZ) { 2151 ext4_msg(NULL, KERN_ERR, 2152 "Invalid commit interval %d, " 2153 "must be smaller than %d", 2154 result.uint_32, INT_MAX / HZ); 2155 return -EINVAL; 2156 } 2157 ctx->s_commit_interval = HZ * result.uint_32; 2158 ctx->spec |= EXT4_SPEC_s_commit_interval; 2159 return 0; 2160 case Opt_debug_want_extra_isize: 2161 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2162 ext4_msg(NULL, KERN_ERR, 2163 "Invalid want_extra_isize %d", result.uint_32); 2164 return -EINVAL; 2165 } 2166 ctx->s_want_extra_isize = result.uint_32; 2167 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2168 return 0; 2169 case Opt_max_batch_time: 2170 ctx->s_max_batch_time = result.uint_32; 2171 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2172 return 0; 2173 case Opt_min_batch_time: 2174 ctx->s_min_batch_time = result.uint_32; 2175 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2176 return 0; 2177 case Opt_inode_readahead_blks: 2178 if (result.uint_32 && 2179 (result.uint_32 > (1 << 30) || 2180 !is_power_of_2(result.uint_32))) { 2181 ext4_msg(NULL, KERN_ERR, 2182 "EXT4-fs: inode_readahead_blks must be " 2183 "0 or a power of 2 smaller than 2^31"); 2184 return -EINVAL; 2185 } 2186 ctx->s_inode_readahead_blks = result.uint_32; 2187 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2188 return 0; 2189 case Opt_init_itable: 2190 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2191 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2192 if (param->type == fs_value_is_string) 2193 ctx->s_li_wait_mult = result.uint_32; 2194 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2195 return 0; 2196 case Opt_max_dir_size_kb: 2197 ctx->s_max_dir_size_kb = result.uint_32; 2198 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2199 return 0; 2200 #ifdef CONFIG_EXT4_DEBUG 2201 case Opt_fc_debug_max_replay: 2202 ctx->s_fc_debug_max_replay = result.uint_32; 2203 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2204 return 0; 2205 #endif 2206 case Opt_stripe: 2207 ctx->s_stripe = result.uint_32; 2208 ctx->spec |= EXT4_SPEC_s_stripe; 2209 return 0; 2210 case Opt_resuid: 2211 uid = make_kuid(current_user_ns(), result.uint_32); 2212 if (!uid_valid(uid)) { 2213 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2214 result.uint_32); 2215 return -EINVAL; 2216 } 2217 ctx->s_resuid = uid; 2218 ctx->spec |= EXT4_SPEC_s_resuid; 2219 return 0; 2220 case Opt_resgid: 2221 gid = make_kgid(current_user_ns(), result.uint_32); 2222 if (!gid_valid(gid)) { 2223 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2224 result.uint_32); 2225 return -EINVAL; 2226 } 2227 ctx->s_resgid = gid; 2228 ctx->spec |= EXT4_SPEC_s_resgid; 2229 return 0; 2230 case Opt_journal_dev: 2231 if (is_remount) { 2232 ext4_msg(NULL, KERN_ERR, 2233 "Cannot specify journal on remount"); 2234 return -EINVAL; 2235 } 2236 ctx->journal_devnum = result.uint_32; 2237 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2238 return 0; 2239 case Opt_journal_path: 2240 { 2241 struct inode *journal_inode; 2242 struct path path; 2243 int error; 2244 2245 if (is_remount) { 2246 ext4_msg(NULL, KERN_ERR, 2247 "Cannot specify journal on remount"); 2248 return -EINVAL; 2249 } 2250 2251 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2252 if (error) { 2253 ext4_msg(NULL, KERN_ERR, "error: could not find " 2254 "journal device path"); 2255 return -EINVAL; 2256 } 2257 2258 journal_inode = d_inode(path.dentry); 2259 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2261 path_put(&path); 2262 return 0; 2263 } 2264 case Opt_journal_ioprio: 2265 if (result.uint_32 > 7) { 2266 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2267 " (must be 0-7)"); 2268 return -EINVAL; 2269 } 2270 ctx->journal_ioprio = 2271 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2272 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2273 return 0; 2274 case Opt_test_dummy_encryption: 2275 return ext4_parse_test_dummy_encryption(param, ctx); 2276 case Opt_dax: 2277 case Opt_dax_type: 2278 #ifdef CONFIG_FS_DAX 2279 { 2280 int type = (token == Opt_dax) ? 2281 Opt_dax : result.uint_32; 2282 2283 switch (type) { 2284 case Opt_dax: 2285 case Opt_dax_always: 2286 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2287 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2288 break; 2289 case Opt_dax_never: 2290 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2291 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2292 break; 2293 case Opt_dax_inode: 2294 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2295 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2296 /* Strictly for printing options */ 2297 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2298 break; 2299 } 2300 return 0; 2301 } 2302 #else 2303 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2304 return -EINVAL; 2305 #endif 2306 case Opt_data_err: 2307 if (result.uint_32 == Opt_data_err_abort) 2308 ctx_set_mount_opt(ctx, m->mount_opt); 2309 else if (result.uint_32 == Opt_data_err_ignore) 2310 ctx_clear_mount_opt(ctx, m->mount_opt); 2311 return 0; 2312 case Opt_mb_optimize_scan: 2313 if (result.int_32 == 1) { 2314 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2315 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2316 } else if (result.int_32 == 0) { 2317 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2318 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2319 } else { 2320 ext4_msg(NULL, KERN_WARNING, 2321 "mb_optimize_scan should be set to 0 or 1."); 2322 return -EINVAL; 2323 } 2324 return 0; 2325 } 2326 2327 /* 2328 * At this point we should only be getting options requiring MOPT_SET, 2329 * or MOPT_CLEAR. Anything else is a bug 2330 */ 2331 if (m->token == Opt_err) { 2332 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2333 param->key); 2334 WARN_ON(1); 2335 return -EINVAL; 2336 } 2337 2338 else { 2339 unsigned int set = 0; 2340 2341 if ((param->type == fs_value_is_flag) || 2342 result.uint_32 > 0) 2343 set = 1; 2344 2345 if (m->flags & MOPT_CLEAR) 2346 set = !set; 2347 else if (unlikely(!(m->flags & MOPT_SET))) { 2348 ext4_msg(NULL, KERN_WARNING, 2349 "buggy handling of option %s", 2350 param->key); 2351 WARN_ON(1); 2352 return -EINVAL; 2353 } 2354 if (m->flags & MOPT_2) { 2355 if (set != 0) 2356 ctx_set_mount_opt2(ctx, m->mount_opt); 2357 else 2358 ctx_clear_mount_opt2(ctx, m->mount_opt); 2359 } else { 2360 if (set != 0) 2361 ctx_set_mount_opt(ctx, m->mount_opt); 2362 else 2363 ctx_clear_mount_opt(ctx, m->mount_opt); 2364 } 2365 } 2366 2367 return 0; 2368 } 2369 2370 static int parse_options(struct fs_context *fc, char *options) 2371 { 2372 struct fs_parameter param; 2373 int ret; 2374 char *key; 2375 2376 if (!options) 2377 return 0; 2378 2379 while ((key = strsep(&options, ",")) != NULL) { 2380 if (*key) { 2381 size_t v_len = 0; 2382 char *value = strchr(key, '='); 2383 2384 param.type = fs_value_is_flag; 2385 param.string = NULL; 2386 2387 if (value) { 2388 if (value == key) 2389 continue; 2390 2391 *value++ = 0; 2392 v_len = strlen(value); 2393 param.string = kmemdup_nul(value, v_len, 2394 GFP_KERNEL); 2395 if (!param.string) 2396 return -ENOMEM; 2397 param.type = fs_value_is_string; 2398 } 2399 2400 param.key = key; 2401 param.size = v_len; 2402 2403 ret = ext4_parse_param(fc, ¶m); 2404 if (param.string) 2405 kfree(param.string); 2406 if (ret < 0) 2407 return ret; 2408 } 2409 } 2410 2411 ret = ext4_validate_options(fc); 2412 if (ret < 0) 2413 return ret; 2414 2415 return 0; 2416 } 2417 2418 static int parse_apply_sb_mount_options(struct super_block *sb, 2419 struct ext4_fs_context *m_ctx) 2420 { 2421 struct ext4_sb_info *sbi = EXT4_SB(sb); 2422 char *s_mount_opts = NULL; 2423 struct ext4_fs_context *s_ctx = NULL; 2424 struct fs_context *fc = NULL; 2425 int ret = -ENOMEM; 2426 2427 if (!sbi->s_es->s_mount_opts[0]) 2428 return 0; 2429 2430 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2431 sizeof(sbi->s_es->s_mount_opts), 2432 GFP_KERNEL); 2433 if (!s_mount_opts) 2434 return ret; 2435 2436 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2437 if (!fc) 2438 goto out_free; 2439 2440 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2441 if (!s_ctx) 2442 goto out_free; 2443 2444 fc->fs_private = s_ctx; 2445 fc->s_fs_info = sbi; 2446 2447 ret = parse_options(fc, s_mount_opts); 2448 if (ret < 0) 2449 goto parse_failed; 2450 2451 ret = ext4_check_opt_consistency(fc, sb); 2452 if (ret < 0) { 2453 parse_failed: 2454 ext4_msg(sb, KERN_WARNING, 2455 "failed to parse options in superblock: %s", 2456 s_mount_opts); 2457 ret = 0; 2458 goto out_free; 2459 } 2460 2461 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2462 m_ctx->journal_devnum = s_ctx->journal_devnum; 2463 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2464 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2465 2466 ext4_apply_options(fc, sb); 2467 ret = 0; 2468 2469 out_free: 2470 if (fc) { 2471 ext4_fc_free(fc); 2472 kfree(fc); 2473 } 2474 kfree(s_mount_opts); 2475 return ret; 2476 } 2477 2478 static void ext4_apply_quota_options(struct fs_context *fc, 2479 struct super_block *sb) 2480 { 2481 #ifdef CONFIG_QUOTA 2482 bool quota_feature = ext4_has_feature_quota(sb); 2483 struct ext4_fs_context *ctx = fc->fs_private; 2484 struct ext4_sb_info *sbi = EXT4_SB(sb); 2485 char *qname; 2486 int i; 2487 2488 if (quota_feature) 2489 return; 2490 2491 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2493 if (!(ctx->qname_spec & (1 << i))) 2494 continue; 2495 2496 qname = ctx->s_qf_names[i]; /* May be NULL */ 2497 if (qname) 2498 set_opt(sb, QUOTA); 2499 ctx->s_qf_names[i] = NULL; 2500 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2501 lockdep_is_held(&sb->s_umount)); 2502 if (qname) 2503 kfree_rcu(qname); 2504 } 2505 } 2506 2507 if (ctx->spec & EXT4_SPEC_JQFMT) 2508 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2509 #endif 2510 } 2511 2512 /* 2513 * Check quota settings consistency. 2514 */ 2515 static int ext4_check_quota_consistency(struct fs_context *fc, 2516 struct super_block *sb) 2517 { 2518 #ifdef CONFIG_QUOTA 2519 struct ext4_fs_context *ctx = fc->fs_private; 2520 struct ext4_sb_info *sbi = EXT4_SB(sb); 2521 bool quota_feature = ext4_has_feature_quota(sb); 2522 bool quota_loaded = sb_any_quota_loaded(sb); 2523 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2524 int quota_flags, i; 2525 2526 /* 2527 * We do the test below only for project quotas. 'usrquota' and 2528 * 'grpquota' mount options are allowed even without quota feature 2529 * to support legacy quotas in quota files. 2530 */ 2531 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2532 !ext4_has_feature_project(sb)) { 2533 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2534 "Cannot enable project quota enforcement."); 2535 return -EINVAL; 2536 } 2537 2538 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2539 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2540 if (quota_loaded && 2541 ctx->mask_s_mount_opt & quota_flags && 2542 !ctx_test_mount_opt(ctx, quota_flags)) 2543 goto err_quota_change; 2544 2545 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2546 2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2548 if (!(ctx->qname_spec & (1 << i))) 2549 continue; 2550 2551 if (quota_loaded && 2552 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2553 goto err_jquota_change; 2554 2555 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2556 strcmp(get_qf_name(sb, sbi, i), 2557 ctx->s_qf_names[i]) != 0) 2558 goto err_jquota_specified; 2559 } 2560 2561 if (quota_feature) { 2562 ext4_msg(NULL, KERN_INFO, 2563 "Journaled quota options ignored when " 2564 "QUOTA feature is enabled"); 2565 return 0; 2566 } 2567 } 2568 2569 if (ctx->spec & EXT4_SPEC_JQFMT) { 2570 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2571 goto err_jquota_change; 2572 if (quota_feature) { 2573 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2574 "ignored when QUOTA feature is enabled"); 2575 return 0; 2576 } 2577 } 2578 2579 /* Make sure we don't mix old and new quota format */ 2580 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2581 ctx->s_qf_names[USRQUOTA]); 2582 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2583 ctx->s_qf_names[GRPQUOTA]); 2584 2585 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2586 test_opt(sb, USRQUOTA)); 2587 2588 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2589 test_opt(sb, GRPQUOTA)); 2590 2591 if (usr_qf_name) { 2592 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2593 usrquota = false; 2594 } 2595 if (grp_qf_name) { 2596 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2597 grpquota = false; 2598 } 2599 2600 if (usr_qf_name || grp_qf_name) { 2601 if (usrquota || grpquota) { 2602 ext4_msg(NULL, KERN_ERR, "old and new quota " 2603 "format mixing"); 2604 return -EINVAL; 2605 } 2606 2607 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2608 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2609 "not specified"); 2610 return -EINVAL; 2611 } 2612 } 2613 2614 return 0; 2615 2616 err_quota_change: 2617 ext4_msg(NULL, KERN_ERR, 2618 "Cannot change quota options when quota turned on"); 2619 return -EINVAL; 2620 err_jquota_change: 2621 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2622 "options when quota turned on"); 2623 return -EINVAL; 2624 err_jquota_specified: 2625 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2626 QTYPE2NAME(i)); 2627 return -EINVAL; 2628 #else 2629 return 0; 2630 #endif 2631 } 2632 2633 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2634 struct super_block *sb) 2635 { 2636 const struct ext4_fs_context *ctx = fc->fs_private; 2637 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2638 2639 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2640 return 0; 2641 2642 if (!ext4_has_feature_encrypt(sb)) { 2643 ext4_msg(NULL, KERN_WARNING, 2644 "test_dummy_encryption requires encrypt feature"); 2645 return -EINVAL; 2646 } 2647 /* 2648 * This mount option is just for testing, and it's not worthwhile to 2649 * implement the extra complexity (e.g. RCU protection) that would be 2650 * needed to allow it to be set or changed during remount. We do allow 2651 * it to be specified during remount, but only if there is no change. 2652 */ 2653 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2654 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2655 &ctx->dummy_enc_policy)) 2656 return 0; 2657 ext4_msg(NULL, KERN_WARNING, 2658 "Can't set or change test_dummy_encryption on remount"); 2659 return -EINVAL; 2660 } 2661 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2662 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2663 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2664 &ctx->dummy_enc_policy)) 2665 return 0; 2666 ext4_msg(NULL, KERN_WARNING, 2667 "Conflicting test_dummy_encryption options"); 2668 return -EINVAL; 2669 } 2670 return 0; 2671 } 2672 2673 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2674 struct super_block *sb) 2675 { 2676 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2677 /* if already set, it was already verified to be the same */ 2678 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2679 return; 2680 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2681 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2682 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2683 } 2684 2685 static int ext4_check_opt_consistency(struct fs_context *fc, 2686 struct super_block *sb) 2687 { 2688 struct ext4_fs_context *ctx = fc->fs_private; 2689 struct ext4_sb_info *sbi = fc->s_fs_info; 2690 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2691 int err; 2692 2693 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2694 ext4_msg(NULL, KERN_ERR, 2695 "Mount option(s) incompatible with ext2"); 2696 return -EINVAL; 2697 } 2698 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2699 ext4_msg(NULL, KERN_ERR, 2700 "Mount option(s) incompatible with ext3"); 2701 return -EINVAL; 2702 } 2703 2704 if (ctx->s_want_extra_isize > 2705 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2706 ext4_msg(NULL, KERN_ERR, 2707 "Invalid want_extra_isize %d", 2708 ctx->s_want_extra_isize); 2709 return -EINVAL; 2710 } 2711 2712 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2713 int blocksize = 2714 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2715 if (blocksize < PAGE_SIZE) 2716 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2717 "experimental mount option 'dioread_nolock' " 2718 "for blocksize < PAGE_SIZE"); 2719 } 2720 2721 err = ext4_check_test_dummy_encryption(fc, sb); 2722 if (err) 2723 return err; 2724 2725 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2726 if (!sbi->s_journal) { 2727 ext4_msg(NULL, KERN_WARNING, 2728 "Remounting file system with no journal " 2729 "so ignoring journalled data option"); 2730 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2731 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2732 test_opt(sb, DATA_FLAGS)) { 2733 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2734 "on remount"); 2735 return -EINVAL; 2736 } 2737 } 2738 2739 if (is_remount) { 2740 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2741 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2742 ext4_msg(NULL, KERN_ERR, "can't mount with " 2743 "both data=journal and dax"); 2744 return -EINVAL; 2745 } 2746 2747 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2748 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2749 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2750 fail_dax_change_remount: 2751 ext4_msg(NULL, KERN_ERR, "can't change " 2752 "dax mount option while remounting"); 2753 return -EINVAL; 2754 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2755 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2756 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2757 goto fail_dax_change_remount; 2758 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2759 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2760 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2761 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2762 goto fail_dax_change_remount; 2763 } 2764 } 2765 2766 return ext4_check_quota_consistency(fc, sb); 2767 } 2768 2769 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2770 { 2771 struct ext4_fs_context *ctx = fc->fs_private; 2772 struct ext4_sb_info *sbi = fc->s_fs_info; 2773 2774 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2775 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2776 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2777 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2778 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2779 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2780 sb->s_flags &= ~ctx->mask_s_flags; 2781 sb->s_flags |= ctx->vals_s_flags; 2782 2783 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2784 APPLY(s_commit_interval); 2785 APPLY(s_stripe); 2786 APPLY(s_max_batch_time); 2787 APPLY(s_min_batch_time); 2788 APPLY(s_want_extra_isize); 2789 APPLY(s_inode_readahead_blks); 2790 APPLY(s_max_dir_size_kb); 2791 APPLY(s_li_wait_mult); 2792 APPLY(s_resgid); 2793 APPLY(s_resuid); 2794 2795 #ifdef CONFIG_EXT4_DEBUG 2796 APPLY(s_fc_debug_max_replay); 2797 #endif 2798 2799 ext4_apply_quota_options(fc, sb); 2800 ext4_apply_test_dummy_encryption(ctx, sb); 2801 } 2802 2803 2804 static int ext4_validate_options(struct fs_context *fc) 2805 { 2806 #ifdef CONFIG_QUOTA 2807 struct ext4_fs_context *ctx = fc->fs_private; 2808 char *usr_qf_name, *grp_qf_name; 2809 2810 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2811 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2812 2813 if (usr_qf_name || grp_qf_name) { 2814 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2815 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2816 2817 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2818 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2819 2820 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2821 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2822 ext4_msg(NULL, KERN_ERR, "old and new quota " 2823 "format mixing"); 2824 return -EINVAL; 2825 } 2826 } 2827 #endif 2828 return 1; 2829 } 2830 2831 static inline void ext4_show_quota_options(struct seq_file *seq, 2832 struct super_block *sb) 2833 { 2834 #if defined(CONFIG_QUOTA) 2835 struct ext4_sb_info *sbi = EXT4_SB(sb); 2836 char *usr_qf_name, *grp_qf_name; 2837 2838 if (sbi->s_jquota_fmt) { 2839 char *fmtname = ""; 2840 2841 switch (sbi->s_jquota_fmt) { 2842 case QFMT_VFS_OLD: 2843 fmtname = "vfsold"; 2844 break; 2845 case QFMT_VFS_V0: 2846 fmtname = "vfsv0"; 2847 break; 2848 case QFMT_VFS_V1: 2849 fmtname = "vfsv1"; 2850 break; 2851 } 2852 seq_printf(seq, ",jqfmt=%s", fmtname); 2853 } 2854 2855 rcu_read_lock(); 2856 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2857 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2858 if (usr_qf_name) 2859 seq_show_option(seq, "usrjquota", usr_qf_name); 2860 if (grp_qf_name) 2861 seq_show_option(seq, "grpjquota", grp_qf_name); 2862 rcu_read_unlock(); 2863 #endif 2864 } 2865 2866 static const char *token2str(int token) 2867 { 2868 const struct fs_parameter_spec *spec; 2869 2870 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2871 if (spec->opt == token && !spec->type) 2872 break; 2873 return spec->name; 2874 } 2875 2876 /* 2877 * Show an option if 2878 * - it's set to a non-default value OR 2879 * - if the per-sb default is different from the global default 2880 */ 2881 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2882 int nodefs) 2883 { 2884 struct ext4_sb_info *sbi = EXT4_SB(sb); 2885 struct ext4_super_block *es = sbi->s_es; 2886 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2887 const struct mount_opts *m; 2888 char sep = nodefs ? '\n' : ','; 2889 2890 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2891 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2892 2893 if (sbi->s_sb_block != 1) 2894 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2895 2896 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2897 int want_set = m->flags & MOPT_SET; 2898 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2899 m->flags & MOPT_SKIP) 2900 continue; 2901 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2902 continue; /* skip if same as the default */ 2903 if ((want_set && 2904 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2905 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2906 continue; /* select Opt_noFoo vs Opt_Foo */ 2907 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2908 } 2909 2910 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2911 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2912 SEQ_OPTS_PRINT("resuid=%u", 2913 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2914 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2915 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2916 SEQ_OPTS_PRINT("resgid=%u", 2917 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2918 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2919 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2920 SEQ_OPTS_PUTS("errors=remount-ro"); 2921 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2922 SEQ_OPTS_PUTS("errors=continue"); 2923 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2924 SEQ_OPTS_PUTS("errors=panic"); 2925 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2926 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2927 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2928 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2929 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2930 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2931 if (nodefs || sbi->s_stripe) 2932 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2933 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2934 (sbi->s_mount_opt ^ def_mount_opt)) { 2935 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2936 SEQ_OPTS_PUTS("data=journal"); 2937 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2938 SEQ_OPTS_PUTS("data=ordered"); 2939 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2940 SEQ_OPTS_PUTS("data=writeback"); 2941 } 2942 if (nodefs || 2943 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2944 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2945 sbi->s_inode_readahead_blks); 2946 2947 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2948 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2949 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2950 if (nodefs || sbi->s_max_dir_size_kb) 2951 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2952 if (test_opt(sb, DATA_ERR_ABORT)) 2953 SEQ_OPTS_PUTS("data_err=abort"); 2954 2955 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2956 2957 if (sb->s_flags & SB_INLINECRYPT) 2958 SEQ_OPTS_PUTS("inlinecrypt"); 2959 2960 if (test_opt(sb, DAX_ALWAYS)) { 2961 if (IS_EXT2_SB(sb)) 2962 SEQ_OPTS_PUTS("dax"); 2963 else 2964 SEQ_OPTS_PUTS("dax=always"); 2965 } else if (test_opt2(sb, DAX_NEVER)) { 2966 SEQ_OPTS_PUTS("dax=never"); 2967 } else if (test_opt2(sb, DAX_INODE)) { 2968 SEQ_OPTS_PUTS("dax=inode"); 2969 } 2970 2971 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 2972 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 2973 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 2974 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 2975 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 2976 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 2977 } 2978 2979 ext4_show_quota_options(seq, sb); 2980 return 0; 2981 } 2982 2983 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2984 { 2985 return _ext4_show_options(seq, root->d_sb, 0); 2986 } 2987 2988 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2989 { 2990 struct super_block *sb = seq->private; 2991 int rc; 2992 2993 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2994 rc = _ext4_show_options(seq, sb, 1); 2995 seq_puts(seq, "\n"); 2996 return rc; 2997 } 2998 2999 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3000 int read_only) 3001 { 3002 struct ext4_sb_info *sbi = EXT4_SB(sb); 3003 int err = 0; 3004 3005 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3006 ext4_msg(sb, KERN_ERR, "revision level too high, " 3007 "forcing read-only mode"); 3008 err = -EROFS; 3009 goto done; 3010 } 3011 if (read_only) 3012 goto done; 3013 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3014 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3015 "running e2fsck is recommended"); 3016 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3017 ext4_msg(sb, KERN_WARNING, 3018 "warning: mounting fs with errors, " 3019 "running e2fsck is recommended"); 3020 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3021 le16_to_cpu(es->s_mnt_count) >= 3022 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3023 ext4_msg(sb, KERN_WARNING, 3024 "warning: maximal mount count reached, " 3025 "running e2fsck is recommended"); 3026 else if (le32_to_cpu(es->s_checkinterval) && 3027 (ext4_get_tstamp(es, s_lastcheck) + 3028 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3029 ext4_msg(sb, KERN_WARNING, 3030 "warning: checktime reached, " 3031 "running e2fsck is recommended"); 3032 if (!sbi->s_journal) 3033 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3034 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3035 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3036 le16_add_cpu(&es->s_mnt_count, 1); 3037 ext4_update_tstamp(es, s_mtime); 3038 if (sbi->s_journal) { 3039 ext4_set_feature_journal_needs_recovery(sb); 3040 if (ext4_has_feature_orphan_file(sb)) 3041 ext4_set_feature_orphan_present(sb); 3042 } 3043 3044 err = ext4_commit_super(sb); 3045 done: 3046 if (test_opt(sb, DEBUG)) 3047 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3048 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3049 sb->s_blocksize, 3050 sbi->s_groups_count, 3051 EXT4_BLOCKS_PER_GROUP(sb), 3052 EXT4_INODES_PER_GROUP(sb), 3053 sbi->s_mount_opt, sbi->s_mount_opt2); 3054 return err; 3055 } 3056 3057 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3058 { 3059 struct ext4_sb_info *sbi = EXT4_SB(sb); 3060 struct flex_groups **old_groups, **new_groups; 3061 int size, i, j; 3062 3063 if (!sbi->s_log_groups_per_flex) 3064 return 0; 3065 3066 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3067 if (size <= sbi->s_flex_groups_allocated) 3068 return 0; 3069 3070 new_groups = kvzalloc(roundup_pow_of_two(size * 3071 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3072 if (!new_groups) { 3073 ext4_msg(sb, KERN_ERR, 3074 "not enough memory for %d flex group pointers", size); 3075 return -ENOMEM; 3076 } 3077 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3078 new_groups[i] = kvzalloc(roundup_pow_of_two( 3079 sizeof(struct flex_groups)), 3080 GFP_KERNEL); 3081 if (!new_groups[i]) { 3082 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3083 kvfree(new_groups[j]); 3084 kvfree(new_groups); 3085 ext4_msg(sb, KERN_ERR, 3086 "not enough memory for %d flex groups", size); 3087 return -ENOMEM; 3088 } 3089 } 3090 rcu_read_lock(); 3091 old_groups = rcu_dereference(sbi->s_flex_groups); 3092 if (old_groups) 3093 memcpy(new_groups, old_groups, 3094 (sbi->s_flex_groups_allocated * 3095 sizeof(struct flex_groups *))); 3096 rcu_read_unlock(); 3097 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3098 sbi->s_flex_groups_allocated = size; 3099 if (old_groups) 3100 ext4_kvfree_array_rcu(old_groups); 3101 return 0; 3102 } 3103 3104 static int ext4_fill_flex_info(struct super_block *sb) 3105 { 3106 struct ext4_sb_info *sbi = EXT4_SB(sb); 3107 struct ext4_group_desc *gdp = NULL; 3108 struct flex_groups *fg; 3109 ext4_group_t flex_group; 3110 int i, err; 3111 3112 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3113 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3114 sbi->s_log_groups_per_flex = 0; 3115 return 1; 3116 } 3117 3118 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3119 if (err) 3120 goto failed; 3121 3122 for (i = 0; i < sbi->s_groups_count; i++) { 3123 gdp = ext4_get_group_desc(sb, i, NULL); 3124 3125 flex_group = ext4_flex_group(sbi, i); 3126 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3127 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3128 atomic64_add(ext4_free_group_clusters(sb, gdp), 3129 &fg->free_clusters); 3130 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3131 } 3132 3133 return 1; 3134 failed: 3135 return 0; 3136 } 3137 3138 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3139 struct ext4_group_desc *gdp) 3140 { 3141 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3142 __u16 crc = 0; 3143 __le32 le_group = cpu_to_le32(block_group); 3144 struct ext4_sb_info *sbi = EXT4_SB(sb); 3145 3146 if (ext4_has_metadata_csum(sbi->s_sb)) { 3147 /* Use new metadata_csum algorithm */ 3148 __u32 csum32; 3149 __u16 dummy_csum = 0; 3150 3151 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3152 sizeof(le_group)); 3153 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3154 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3155 sizeof(dummy_csum)); 3156 offset += sizeof(dummy_csum); 3157 if (offset < sbi->s_desc_size) 3158 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3159 sbi->s_desc_size - offset); 3160 3161 crc = csum32 & 0xFFFF; 3162 goto out; 3163 } 3164 3165 /* old crc16 code */ 3166 if (!ext4_has_feature_gdt_csum(sb)) 3167 return 0; 3168 3169 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3170 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3171 crc = crc16(crc, (__u8 *)gdp, offset); 3172 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3173 /* for checksum of struct ext4_group_desc do the rest...*/ 3174 if (ext4_has_feature_64bit(sb) && 3175 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 3176 crc = crc16(crc, (__u8 *)gdp + offset, 3177 le16_to_cpu(sbi->s_es->s_desc_size) - 3178 offset); 3179 3180 out: 3181 return cpu_to_le16(crc); 3182 } 3183 3184 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3185 struct ext4_group_desc *gdp) 3186 { 3187 if (ext4_has_group_desc_csum(sb) && 3188 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3189 return 0; 3190 3191 return 1; 3192 } 3193 3194 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3195 struct ext4_group_desc *gdp) 3196 { 3197 if (!ext4_has_group_desc_csum(sb)) 3198 return; 3199 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3200 } 3201 3202 /* Called at mount-time, super-block is locked */ 3203 static int ext4_check_descriptors(struct super_block *sb, 3204 ext4_fsblk_t sb_block, 3205 ext4_group_t *first_not_zeroed) 3206 { 3207 struct ext4_sb_info *sbi = EXT4_SB(sb); 3208 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3209 ext4_fsblk_t last_block; 3210 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3211 ext4_fsblk_t block_bitmap; 3212 ext4_fsblk_t inode_bitmap; 3213 ext4_fsblk_t inode_table; 3214 int flexbg_flag = 0; 3215 ext4_group_t i, grp = sbi->s_groups_count; 3216 3217 if (ext4_has_feature_flex_bg(sb)) 3218 flexbg_flag = 1; 3219 3220 ext4_debug("Checking group descriptors"); 3221 3222 for (i = 0; i < sbi->s_groups_count; i++) { 3223 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3224 3225 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3226 last_block = ext4_blocks_count(sbi->s_es) - 1; 3227 else 3228 last_block = first_block + 3229 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3230 3231 if ((grp == sbi->s_groups_count) && 3232 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3233 grp = i; 3234 3235 block_bitmap = ext4_block_bitmap(sb, gdp); 3236 if (block_bitmap == sb_block) { 3237 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3238 "Block bitmap for group %u overlaps " 3239 "superblock", i); 3240 if (!sb_rdonly(sb)) 3241 return 0; 3242 } 3243 if (block_bitmap >= sb_block + 1 && 3244 block_bitmap <= last_bg_block) { 3245 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3246 "Block bitmap for group %u overlaps " 3247 "block group descriptors", i); 3248 if (!sb_rdonly(sb)) 3249 return 0; 3250 } 3251 if (block_bitmap < first_block || block_bitmap > last_block) { 3252 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3253 "Block bitmap for group %u not in group " 3254 "(block %llu)!", i, block_bitmap); 3255 return 0; 3256 } 3257 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3258 if (inode_bitmap == sb_block) { 3259 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3260 "Inode bitmap for group %u overlaps " 3261 "superblock", i); 3262 if (!sb_rdonly(sb)) 3263 return 0; 3264 } 3265 if (inode_bitmap >= sb_block + 1 && 3266 inode_bitmap <= last_bg_block) { 3267 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3268 "Inode bitmap for group %u overlaps " 3269 "block group descriptors", i); 3270 if (!sb_rdonly(sb)) 3271 return 0; 3272 } 3273 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3274 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3275 "Inode bitmap for group %u not in group " 3276 "(block %llu)!", i, inode_bitmap); 3277 return 0; 3278 } 3279 inode_table = ext4_inode_table(sb, gdp); 3280 if (inode_table == sb_block) { 3281 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3282 "Inode table for group %u overlaps " 3283 "superblock", i); 3284 if (!sb_rdonly(sb)) 3285 return 0; 3286 } 3287 if (inode_table >= sb_block + 1 && 3288 inode_table <= last_bg_block) { 3289 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3290 "Inode table for group %u overlaps " 3291 "block group descriptors", i); 3292 if (!sb_rdonly(sb)) 3293 return 0; 3294 } 3295 if (inode_table < first_block || 3296 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3297 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3298 "Inode table for group %u not in group " 3299 "(block %llu)!", i, inode_table); 3300 return 0; 3301 } 3302 ext4_lock_group(sb, i); 3303 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3305 "Checksum for group %u failed (%u!=%u)", 3306 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3307 gdp)), le16_to_cpu(gdp->bg_checksum)); 3308 if (!sb_rdonly(sb)) { 3309 ext4_unlock_group(sb, i); 3310 return 0; 3311 } 3312 } 3313 ext4_unlock_group(sb, i); 3314 if (!flexbg_flag) 3315 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3316 } 3317 if (NULL != first_not_zeroed) 3318 *first_not_zeroed = grp; 3319 return 1; 3320 } 3321 3322 /* 3323 * Maximal extent format file size. 3324 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3325 * extent format containers, within a sector_t, and within i_blocks 3326 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3327 * so that won't be a limiting factor. 3328 * 3329 * However there is other limiting factor. We do store extents in the form 3330 * of starting block and length, hence the resulting length of the extent 3331 * covering maximum file size must fit into on-disk format containers as 3332 * well. Given that length is always by 1 unit bigger than max unit (because 3333 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3334 * 3335 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3336 */ 3337 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3338 { 3339 loff_t res; 3340 loff_t upper_limit = MAX_LFS_FILESIZE; 3341 3342 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3343 3344 if (!has_huge_files) { 3345 upper_limit = (1LL << 32) - 1; 3346 3347 /* total blocks in file system block size */ 3348 upper_limit >>= (blkbits - 9); 3349 upper_limit <<= blkbits; 3350 } 3351 3352 /* 3353 * 32-bit extent-start container, ee_block. We lower the maxbytes 3354 * by one fs block, so ee_len can cover the extent of maximum file 3355 * size 3356 */ 3357 res = (1LL << 32) - 1; 3358 res <<= blkbits; 3359 3360 /* Sanity check against vm- & vfs- imposed limits */ 3361 if (res > upper_limit) 3362 res = upper_limit; 3363 3364 return res; 3365 } 3366 3367 /* 3368 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3369 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3370 * We need to be 1 filesystem block less than the 2^48 sector limit. 3371 */ 3372 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3373 { 3374 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3375 int meta_blocks; 3376 unsigned int ppb = 1 << (bits - 2); 3377 3378 /* 3379 * This is calculated to be the largest file size for a dense, block 3380 * mapped file such that the file's total number of 512-byte sectors, 3381 * including data and all indirect blocks, does not exceed (2^48 - 1). 3382 * 3383 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3384 * number of 512-byte sectors of the file. 3385 */ 3386 if (!has_huge_files) { 3387 /* 3388 * !has_huge_files or implies that the inode i_block field 3389 * represents total file blocks in 2^32 512-byte sectors == 3390 * size of vfs inode i_blocks * 8 3391 */ 3392 upper_limit = (1LL << 32) - 1; 3393 3394 /* total blocks in file system block size */ 3395 upper_limit >>= (bits - 9); 3396 3397 } else { 3398 /* 3399 * We use 48 bit ext4_inode i_blocks 3400 * With EXT4_HUGE_FILE_FL set the i_blocks 3401 * represent total number of blocks in 3402 * file system block size 3403 */ 3404 upper_limit = (1LL << 48) - 1; 3405 3406 } 3407 3408 /* Compute how many blocks we can address by block tree */ 3409 res += ppb; 3410 res += ppb * ppb; 3411 res += ((loff_t)ppb) * ppb * ppb; 3412 /* Compute how many metadata blocks are needed */ 3413 meta_blocks = 1; 3414 meta_blocks += 1 + ppb; 3415 meta_blocks += 1 + ppb + ppb * ppb; 3416 /* Does block tree limit file size? */ 3417 if (res + meta_blocks <= upper_limit) 3418 goto check_lfs; 3419 3420 res = upper_limit; 3421 /* How many metadata blocks are needed for addressing upper_limit? */ 3422 upper_limit -= EXT4_NDIR_BLOCKS; 3423 /* indirect blocks */ 3424 meta_blocks = 1; 3425 upper_limit -= ppb; 3426 /* double indirect blocks */ 3427 if (upper_limit < ppb * ppb) { 3428 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3429 res -= meta_blocks; 3430 goto check_lfs; 3431 } 3432 meta_blocks += 1 + ppb; 3433 upper_limit -= ppb * ppb; 3434 /* tripple indirect blocks for the rest */ 3435 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3436 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3437 res -= meta_blocks; 3438 check_lfs: 3439 res <<= bits; 3440 if (res > MAX_LFS_FILESIZE) 3441 res = MAX_LFS_FILESIZE; 3442 3443 return res; 3444 } 3445 3446 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3447 ext4_fsblk_t logical_sb_block, int nr) 3448 { 3449 struct ext4_sb_info *sbi = EXT4_SB(sb); 3450 ext4_group_t bg, first_meta_bg; 3451 int has_super = 0; 3452 3453 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3454 3455 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3456 return logical_sb_block + nr + 1; 3457 bg = sbi->s_desc_per_block * nr; 3458 if (ext4_bg_has_super(sb, bg)) 3459 has_super = 1; 3460 3461 /* 3462 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3463 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3464 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3465 * compensate. 3466 */ 3467 if (sb->s_blocksize == 1024 && nr == 0 && 3468 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3469 has_super++; 3470 3471 return (has_super + ext4_group_first_block_no(sb, bg)); 3472 } 3473 3474 /** 3475 * ext4_get_stripe_size: Get the stripe size. 3476 * @sbi: In memory super block info 3477 * 3478 * If we have specified it via mount option, then 3479 * use the mount option value. If the value specified at mount time is 3480 * greater than the blocks per group use the super block value. 3481 * If the super block value is greater than blocks per group return 0. 3482 * Allocator needs it be less than blocks per group. 3483 * 3484 */ 3485 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3486 { 3487 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3488 unsigned long stripe_width = 3489 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3490 int ret; 3491 3492 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3493 ret = sbi->s_stripe; 3494 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3495 ret = stripe_width; 3496 else if (stride && stride <= sbi->s_blocks_per_group) 3497 ret = stride; 3498 else 3499 ret = 0; 3500 3501 /* 3502 * If the stripe width is 1, this makes no sense and 3503 * we set it to 0 to turn off stripe handling code. 3504 */ 3505 if (ret <= 1) 3506 ret = 0; 3507 3508 return ret; 3509 } 3510 3511 /* 3512 * Check whether this filesystem can be mounted based on 3513 * the features present and the RDONLY/RDWR mount requested. 3514 * Returns 1 if this filesystem can be mounted as requested, 3515 * 0 if it cannot be. 3516 */ 3517 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3518 { 3519 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3520 ext4_msg(sb, KERN_ERR, 3521 "Couldn't mount because of " 3522 "unsupported optional features (%x)", 3523 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3524 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3525 return 0; 3526 } 3527 3528 #if !IS_ENABLED(CONFIG_UNICODE) 3529 if (ext4_has_feature_casefold(sb)) { 3530 ext4_msg(sb, KERN_ERR, 3531 "Filesystem with casefold feature cannot be " 3532 "mounted without CONFIG_UNICODE"); 3533 return 0; 3534 } 3535 #endif 3536 3537 if (readonly) 3538 return 1; 3539 3540 if (ext4_has_feature_readonly(sb)) { 3541 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3542 sb->s_flags |= SB_RDONLY; 3543 return 1; 3544 } 3545 3546 /* Check that feature set is OK for a read-write mount */ 3547 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3548 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3549 "unsupported optional features (%x)", 3550 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3551 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3552 return 0; 3553 } 3554 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3555 ext4_msg(sb, KERN_ERR, 3556 "Can't support bigalloc feature without " 3557 "extents feature\n"); 3558 return 0; 3559 } 3560 3561 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3562 if (!readonly && (ext4_has_feature_quota(sb) || 3563 ext4_has_feature_project(sb))) { 3564 ext4_msg(sb, KERN_ERR, 3565 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3566 return 0; 3567 } 3568 #endif /* CONFIG_QUOTA */ 3569 return 1; 3570 } 3571 3572 /* 3573 * This function is called once a day if we have errors logged 3574 * on the file system 3575 */ 3576 static void print_daily_error_info(struct timer_list *t) 3577 { 3578 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3579 struct super_block *sb = sbi->s_sb; 3580 struct ext4_super_block *es = sbi->s_es; 3581 3582 if (es->s_error_count) 3583 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3584 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3585 le32_to_cpu(es->s_error_count)); 3586 if (es->s_first_error_time) { 3587 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3588 sb->s_id, 3589 ext4_get_tstamp(es, s_first_error_time), 3590 (int) sizeof(es->s_first_error_func), 3591 es->s_first_error_func, 3592 le32_to_cpu(es->s_first_error_line)); 3593 if (es->s_first_error_ino) 3594 printk(KERN_CONT ": inode %u", 3595 le32_to_cpu(es->s_first_error_ino)); 3596 if (es->s_first_error_block) 3597 printk(KERN_CONT ": block %llu", (unsigned long long) 3598 le64_to_cpu(es->s_first_error_block)); 3599 printk(KERN_CONT "\n"); 3600 } 3601 if (es->s_last_error_time) { 3602 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3603 sb->s_id, 3604 ext4_get_tstamp(es, s_last_error_time), 3605 (int) sizeof(es->s_last_error_func), 3606 es->s_last_error_func, 3607 le32_to_cpu(es->s_last_error_line)); 3608 if (es->s_last_error_ino) 3609 printk(KERN_CONT ": inode %u", 3610 le32_to_cpu(es->s_last_error_ino)); 3611 if (es->s_last_error_block) 3612 printk(KERN_CONT ": block %llu", (unsigned long long) 3613 le64_to_cpu(es->s_last_error_block)); 3614 printk(KERN_CONT "\n"); 3615 } 3616 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3617 } 3618 3619 /* Find next suitable group and run ext4_init_inode_table */ 3620 static int ext4_run_li_request(struct ext4_li_request *elr) 3621 { 3622 struct ext4_group_desc *gdp = NULL; 3623 struct super_block *sb = elr->lr_super; 3624 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3625 ext4_group_t group = elr->lr_next_group; 3626 unsigned int prefetch_ios = 0; 3627 int ret = 0; 3628 u64 start_time; 3629 3630 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3631 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3632 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3633 if (prefetch_ios) 3634 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3635 prefetch_ios); 3636 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3637 prefetch_ios); 3638 if (group >= elr->lr_next_group) { 3639 ret = 1; 3640 if (elr->lr_first_not_zeroed != ngroups && 3641 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3642 elr->lr_next_group = elr->lr_first_not_zeroed; 3643 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3644 ret = 0; 3645 } 3646 } 3647 return ret; 3648 } 3649 3650 for (; group < ngroups; group++) { 3651 gdp = ext4_get_group_desc(sb, group, NULL); 3652 if (!gdp) { 3653 ret = 1; 3654 break; 3655 } 3656 3657 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3658 break; 3659 } 3660 3661 if (group >= ngroups) 3662 ret = 1; 3663 3664 if (!ret) { 3665 start_time = ktime_get_real_ns(); 3666 ret = ext4_init_inode_table(sb, group, 3667 elr->lr_timeout ? 0 : 1); 3668 trace_ext4_lazy_itable_init(sb, group); 3669 if (elr->lr_timeout == 0) { 3670 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3671 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3672 } 3673 elr->lr_next_sched = jiffies + elr->lr_timeout; 3674 elr->lr_next_group = group + 1; 3675 } 3676 return ret; 3677 } 3678 3679 /* 3680 * Remove lr_request from the list_request and free the 3681 * request structure. Should be called with li_list_mtx held 3682 */ 3683 static void ext4_remove_li_request(struct ext4_li_request *elr) 3684 { 3685 if (!elr) 3686 return; 3687 3688 list_del(&elr->lr_request); 3689 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3690 kfree(elr); 3691 } 3692 3693 static void ext4_unregister_li_request(struct super_block *sb) 3694 { 3695 mutex_lock(&ext4_li_mtx); 3696 if (!ext4_li_info) { 3697 mutex_unlock(&ext4_li_mtx); 3698 return; 3699 } 3700 3701 mutex_lock(&ext4_li_info->li_list_mtx); 3702 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3703 mutex_unlock(&ext4_li_info->li_list_mtx); 3704 mutex_unlock(&ext4_li_mtx); 3705 } 3706 3707 static struct task_struct *ext4_lazyinit_task; 3708 3709 /* 3710 * This is the function where ext4lazyinit thread lives. It walks 3711 * through the request list searching for next scheduled filesystem. 3712 * When such a fs is found, run the lazy initialization request 3713 * (ext4_rn_li_request) and keep track of the time spend in this 3714 * function. Based on that time we compute next schedule time of 3715 * the request. When walking through the list is complete, compute 3716 * next waking time and put itself into sleep. 3717 */ 3718 static int ext4_lazyinit_thread(void *arg) 3719 { 3720 struct ext4_lazy_init *eli = arg; 3721 struct list_head *pos, *n; 3722 struct ext4_li_request *elr; 3723 unsigned long next_wakeup, cur; 3724 3725 BUG_ON(NULL == eli); 3726 set_freezable(); 3727 3728 cont_thread: 3729 while (true) { 3730 next_wakeup = MAX_JIFFY_OFFSET; 3731 3732 mutex_lock(&eli->li_list_mtx); 3733 if (list_empty(&eli->li_request_list)) { 3734 mutex_unlock(&eli->li_list_mtx); 3735 goto exit_thread; 3736 } 3737 list_for_each_safe(pos, n, &eli->li_request_list) { 3738 int err = 0; 3739 int progress = 0; 3740 elr = list_entry(pos, struct ext4_li_request, 3741 lr_request); 3742 3743 if (time_before(jiffies, elr->lr_next_sched)) { 3744 if (time_before(elr->lr_next_sched, next_wakeup)) 3745 next_wakeup = elr->lr_next_sched; 3746 continue; 3747 } 3748 if (down_read_trylock(&elr->lr_super->s_umount)) { 3749 if (sb_start_write_trylock(elr->lr_super)) { 3750 progress = 1; 3751 /* 3752 * We hold sb->s_umount, sb can not 3753 * be removed from the list, it is 3754 * now safe to drop li_list_mtx 3755 */ 3756 mutex_unlock(&eli->li_list_mtx); 3757 err = ext4_run_li_request(elr); 3758 sb_end_write(elr->lr_super); 3759 mutex_lock(&eli->li_list_mtx); 3760 n = pos->next; 3761 } 3762 up_read((&elr->lr_super->s_umount)); 3763 } 3764 /* error, remove the lazy_init job */ 3765 if (err) { 3766 ext4_remove_li_request(elr); 3767 continue; 3768 } 3769 if (!progress) { 3770 elr->lr_next_sched = jiffies + 3771 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3772 } 3773 if (time_before(elr->lr_next_sched, next_wakeup)) 3774 next_wakeup = elr->lr_next_sched; 3775 } 3776 mutex_unlock(&eli->li_list_mtx); 3777 3778 try_to_freeze(); 3779 3780 cur = jiffies; 3781 if ((time_after_eq(cur, next_wakeup)) || 3782 (MAX_JIFFY_OFFSET == next_wakeup)) { 3783 cond_resched(); 3784 continue; 3785 } 3786 3787 schedule_timeout_interruptible(next_wakeup - cur); 3788 3789 if (kthread_should_stop()) { 3790 ext4_clear_request_list(); 3791 goto exit_thread; 3792 } 3793 } 3794 3795 exit_thread: 3796 /* 3797 * It looks like the request list is empty, but we need 3798 * to check it under the li_list_mtx lock, to prevent any 3799 * additions into it, and of course we should lock ext4_li_mtx 3800 * to atomically free the list and ext4_li_info, because at 3801 * this point another ext4 filesystem could be registering 3802 * new one. 3803 */ 3804 mutex_lock(&ext4_li_mtx); 3805 mutex_lock(&eli->li_list_mtx); 3806 if (!list_empty(&eli->li_request_list)) { 3807 mutex_unlock(&eli->li_list_mtx); 3808 mutex_unlock(&ext4_li_mtx); 3809 goto cont_thread; 3810 } 3811 mutex_unlock(&eli->li_list_mtx); 3812 kfree(ext4_li_info); 3813 ext4_li_info = NULL; 3814 mutex_unlock(&ext4_li_mtx); 3815 3816 return 0; 3817 } 3818 3819 static void ext4_clear_request_list(void) 3820 { 3821 struct list_head *pos, *n; 3822 struct ext4_li_request *elr; 3823 3824 mutex_lock(&ext4_li_info->li_list_mtx); 3825 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3826 elr = list_entry(pos, struct ext4_li_request, 3827 lr_request); 3828 ext4_remove_li_request(elr); 3829 } 3830 mutex_unlock(&ext4_li_info->li_list_mtx); 3831 } 3832 3833 static int ext4_run_lazyinit_thread(void) 3834 { 3835 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3836 ext4_li_info, "ext4lazyinit"); 3837 if (IS_ERR(ext4_lazyinit_task)) { 3838 int err = PTR_ERR(ext4_lazyinit_task); 3839 ext4_clear_request_list(); 3840 kfree(ext4_li_info); 3841 ext4_li_info = NULL; 3842 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3843 "initialization thread\n", 3844 err); 3845 return err; 3846 } 3847 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3848 return 0; 3849 } 3850 3851 /* 3852 * Check whether it make sense to run itable init. thread or not. 3853 * If there is at least one uninitialized inode table, return 3854 * corresponding group number, else the loop goes through all 3855 * groups and return total number of groups. 3856 */ 3857 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3858 { 3859 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3860 struct ext4_group_desc *gdp = NULL; 3861 3862 if (!ext4_has_group_desc_csum(sb)) 3863 return ngroups; 3864 3865 for (group = 0; group < ngroups; group++) { 3866 gdp = ext4_get_group_desc(sb, group, NULL); 3867 if (!gdp) 3868 continue; 3869 3870 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3871 break; 3872 } 3873 3874 return group; 3875 } 3876 3877 static int ext4_li_info_new(void) 3878 { 3879 struct ext4_lazy_init *eli = NULL; 3880 3881 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3882 if (!eli) 3883 return -ENOMEM; 3884 3885 INIT_LIST_HEAD(&eli->li_request_list); 3886 mutex_init(&eli->li_list_mtx); 3887 3888 eli->li_state |= EXT4_LAZYINIT_QUIT; 3889 3890 ext4_li_info = eli; 3891 3892 return 0; 3893 } 3894 3895 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3896 ext4_group_t start) 3897 { 3898 struct ext4_li_request *elr; 3899 3900 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3901 if (!elr) 3902 return NULL; 3903 3904 elr->lr_super = sb; 3905 elr->lr_first_not_zeroed = start; 3906 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3907 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3908 elr->lr_next_group = start; 3909 } else { 3910 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3911 } 3912 3913 /* 3914 * Randomize first schedule time of the request to 3915 * spread the inode table initialization requests 3916 * better. 3917 */ 3918 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3919 return elr; 3920 } 3921 3922 int ext4_register_li_request(struct super_block *sb, 3923 ext4_group_t first_not_zeroed) 3924 { 3925 struct ext4_sb_info *sbi = EXT4_SB(sb); 3926 struct ext4_li_request *elr = NULL; 3927 ext4_group_t ngroups = sbi->s_groups_count; 3928 int ret = 0; 3929 3930 mutex_lock(&ext4_li_mtx); 3931 if (sbi->s_li_request != NULL) { 3932 /* 3933 * Reset timeout so it can be computed again, because 3934 * s_li_wait_mult might have changed. 3935 */ 3936 sbi->s_li_request->lr_timeout = 0; 3937 goto out; 3938 } 3939 3940 if (sb_rdonly(sb) || 3941 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3942 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 3943 goto out; 3944 3945 elr = ext4_li_request_new(sb, first_not_zeroed); 3946 if (!elr) { 3947 ret = -ENOMEM; 3948 goto out; 3949 } 3950 3951 if (NULL == ext4_li_info) { 3952 ret = ext4_li_info_new(); 3953 if (ret) 3954 goto out; 3955 } 3956 3957 mutex_lock(&ext4_li_info->li_list_mtx); 3958 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3959 mutex_unlock(&ext4_li_info->li_list_mtx); 3960 3961 sbi->s_li_request = elr; 3962 /* 3963 * set elr to NULL here since it has been inserted to 3964 * the request_list and the removal and free of it is 3965 * handled by ext4_clear_request_list from now on. 3966 */ 3967 elr = NULL; 3968 3969 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3970 ret = ext4_run_lazyinit_thread(); 3971 if (ret) 3972 goto out; 3973 } 3974 out: 3975 mutex_unlock(&ext4_li_mtx); 3976 if (ret) 3977 kfree(elr); 3978 return ret; 3979 } 3980 3981 /* 3982 * We do not need to lock anything since this is called on 3983 * module unload. 3984 */ 3985 static void ext4_destroy_lazyinit_thread(void) 3986 { 3987 /* 3988 * If thread exited earlier 3989 * there's nothing to be done. 3990 */ 3991 if (!ext4_li_info || !ext4_lazyinit_task) 3992 return; 3993 3994 kthread_stop(ext4_lazyinit_task); 3995 } 3996 3997 static int set_journal_csum_feature_set(struct super_block *sb) 3998 { 3999 int ret = 1; 4000 int compat, incompat; 4001 struct ext4_sb_info *sbi = EXT4_SB(sb); 4002 4003 if (ext4_has_metadata_csum(sb)) { 4004 /* journal checksum v3 */ 4005 compat = 0; 4006 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4007 } else { 4008 /* journal checksum v1 */ 4009 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4010 incompat = 0; 4011 } 4012 4013 jbd2_journal_clear_features(sbi->s_journal, 4014 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4015 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4016 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4017 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4018 ret = jbd2_journal_set_features(sbi->s_journal, 4019 compat, 0, 4020 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4021 incompat); 4022 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4023 ret = jbd2_journal_set_features(sbi->s_journal, 4024 compat, 0, 4025 incompat); 4026 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4027 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4028 } else { 4029 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4030 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4031 } 4032 4033 return ret; 4034 } 4035 4036 /* 4037 * Note: calculating the overhead so we can be compatible with 4038 * historical BSD practice is quite difficult in the face of 4039 * clusters/bigalloc. This is because multiple metadata blocks from 4040 * different block group can end up in the same allocation cluster. 4041 * Calculating the exact overhead in the face of clustered allocation 4042 * requires either O(all block bitmaps) in memory or O(number of block 4043 * groups**2) in time. We will still calculate the superblock for 4044 * older file systems --- and if we come across with a bigalloc file 4045 * system with zero in s_overhead_clusters the estimate will be close to 4046 * correct especially for very large cluster sizes --- but for newer 4047 * file systems, it's better to calculate this figure once at mkfs 4048 * time, and store it in the superblock. If the superblock value is 4049 * present (even for non-bigalloc file systems), we will use it. 4050 */ 4051 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4052 char *buf) 4053 { 4054 struct ext4_sb_info *sbi = EXT4_SB(sb); 4055 struct ext4_group_desc *gdp; 4056 ext4_fsblk_t first_block, last_block, b; 4057 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4058 int s, j, count = 0; 4059 int has_super = ext4_bg_has_super(sb, grp); 4060 4061 if (!ext4_has_feature_bigalloc(sb)) 4062 return (has_super + ext4_bg_num_gdb(sb, grp) + 4063 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4064 sbi->s_itb_per_group + 2); 4065 4066 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4067 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4068 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4069 for (i = 0; i < ngroups; i++) { 4070 gdp = ext4_get_group_desc(sb, i, NULL); 4071 b = ext4_block_bitmap(sb, gdp); 4072 if (b >= first_block && b <= last_block) { 4073 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4074 count++; 4075 } 4076 b = ext4_inode_bitmap(sb, gdp); 4077 if (b >= first_block && b <= last_block) { 4078 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4079 count++; 4080 } 4081 b = ext4_inode_table(sb, gdp); 4082 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4083 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4084 int c = EXT4_B2C(sbi, b - first_block); 4085 ext4_set_bit(c, buf); 4086 count++; 4087 } 4088 if (i != grp) 4089 continue; 4090 s = 0; 4091 if (ext4_bg_has_super(sb, grp)) { 4092 ext4_set_bit(s++, buf); 4093 count++; 4094 } 4095 j = ext4_bg_num_gdb(sb, grp); 4096 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4097 ext4_error(sb, "Invalid number of block group " 4098 "descriptor blocks: %d", j); 4099 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4100 } 4101 count += j; 4102 for (; j > 0; j--) 4103 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4104 } 4105 if (!count) 4106 return 0; 4107 return EXT4_CLUSTERS_PER_GROUP(sb) - 4108 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4109 } 4110 4111 /* 4112 * Compute the overhead and stash it in sbi->s_overhead 4113 */ 4114 int ext4_calculate_overhead(struct super_block *sb) 4115 { 4116 struct ext4_sb_info *sbi = EXT4_SB(sb); 4117 struct ext4_super_block *es = sbi->s_es; 4118 struct inode *j_inode; 4119 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4120 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4121 ext4_fsblk_t overhead = 0; 4122 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4123 4124 if (!buf) 4125 return -ENOMEM; 4126 4127 /* 4128 * Compute the overhead (FS structures). This is constant 4129 * for a given filesystem unless the number of block groups 4130 * changes so we cache the previous value until it does. 4131 */ 4132 4133 /* 4134 * All of the blocks before first_data_block are overhead 4135 */ 4136 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4137 4138 /* 4139 * Add the overhead found in each block group 4140 */ 4141 for (i = 0; i < ngroups; i++) { 4142 int blks; 4143 4144 blks = count_overhead(sb, i, buf); 4145 overhead += blks; 4146 if (blks) 4147 memset(buf, 0, PAGE_SIZE); 4148 cond_resched(); 4149 } 4150 4151 /* 4152 * Add the internal journal blocks whether the journal has been 4153 * loaded or not 4154 */ 4155 if (sbi->s_journal && !sbi->s_journal_bdev) 4156 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4157 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4158 /* j_inum for internal journal is non-zero */ 4159 j_inode = ext4_get_journal_inode(sb, j_inum); 4160 if (j_inode) { 4161 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4162 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4163 iput(j_inode); 4164 } else { 4165 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4166 } 4167 } 4168 sbi->s_overhead = overhead; 4169 smp_wmb(); 4170 free_page((unsigned long) buf); 4171 return 0; 4172 } 4173 4174 static void ext4_set_resv_clusters(struct super_block *sb) 4175 { 4176 ext4_fsblk_t resv_clusters; 4177 struct ext4_sb_info *sbi = EXT4_SB(sb); 4178 4179 /* 4180 * There's no need to reserve anything when we aren't using extents. 4181 * The space estimates are exact, there are no unwritten extents, 4182 * hole punching doesn't need new metadata... This is needed especially 4183 * to keep ext2/3 backward compatibility. 4184 */ 4185 if (!ext4_has_feature_extents(sb)) 4186 return; 4187 /* 4188 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4189 * This should cover the situations where we can not afford to run 4190 * out of space like for example punch hole, or converting 4191 * unwritten extents in delalloc path. In most cases such 4192 * allocation would require 1, or 2 blocks, higher numbers are 4193 * very rare. 4194 */ 4195 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4196 sbi->s_cluster_bits); 4197 4198 do_div(resv_clusters, 50); 4199 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4200 4201 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4202 } 4203 4204 static const char *ext4_quota_mode(struct super_block *sb) 4205 { 4206 #ifdef CONFIG_QUOTA 4207 if (!ext4_quota_capable(sb)) 4208 return "none"; 4209 4210 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4211 return "journalled"; 4212 else 4213 return "writeback"; 4214 #else 4215 return "disabled"; 4216 #endif 4217 } 4218 4219 static void ext4_setup_csum_trigger(struct super_block *sb, 4220 enum ext4_journal_trigger_type type, 4221 void (*trigger)( 4222 struct jbd2_buffer_trigger_type *type, 4223 struct buffer_head *bh, 4224 void *mapped_data, 4225 size_t size)) 4226 { 4227 struct ext4_sb_info *sbi = EXT4_SB(sb); 4228 4229 sbi->s_journal_triggers[type].sb = sb; 4230 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4231 } 4232 4233 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4234 { 4235 if (!sbi) 4236 return; 4237 4238 kfree(sbi->s_blockgroup_lock); 4239 fs_put_dax(sbi->s_daxdev, NULL); 4240 kfree(sbi); 4241 } 4242 4243 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4244 { 4245 struct ext4_sb_info *sbi; 4246 4247 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4248 if (!sbi) 4249 return NULL; 4250 4251 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4252 NULL, NULL); 4253 4254 sbi->s_blockgroup_lock = 4255 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4256 4257 if (!sbi->s_blockgroup_lock) 4258 goto err_out; 4259 4260 sb->s_fs_info = sbi; 4261 sbi->s_sb = sb; 4262 return sbi; 4263 err_out: 4264 fs_put_dax(sbi->s_daxdev, NULL); 4265 kfree(sbi); 4266 return NULL; 4267 } 4268 4269 static void ext4_set_def_opts(struct super_block *sb, 4270 struct ext4_super_block *es) 4271 { 4272 unsigned long def_mount_opts; 4273 4274 /* Set defaults before we parse the mount options */ 4275 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4276 set_opt(sb, INIT_INODE_TABLE); 4277 if (def_mount_opts & EXT4_DEFM_DEBUG) 4278 set_opt(sb, DEBUG); 4279 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4280 set_opt(sb, GRPID); 4281 if (def_mount_opts & EXT4_DEFM_UID16) 4282 set_opt(sb, NO_UID32); 4283 /* xattr user namespace & acls are now defaulted on */ 4284 set_opt(sb, XATTR_USER); 4285 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4286 set_opt(sb, POSIX_ACL); 4287 #endif 4288 if (ext4_has_feature_fast_commit(sb)) 4289 set_opt2(sb, JOURNAL_FAST_COMMIT); 4290 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4291 if (ext4_has_metadata_csum(sb)) 4292 set_opt(sb, JOURNAL_CHECKSUM); 4293 4294 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4295 set_opt(sb, JOURNAL_DATA); 4296 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4297 set_opt(sb, ORDERED_DATA); 4298 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4299 set_opt(sb, WRITEBACK_DATA); 4300 4301 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4302 set_opt(sb, ERRORS_PANIC); 4303 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4304 set_opt(sb, ERRORS_CONT); 4305 else 4306 set_opt(sb, ERRORS_RO); 4307 /* block_validity enabled by default; disable with noblock_validity */ 4308 set_opt(sb, BLOCK_VALIDITY); 4309 if (def_mount_opts & EXT4_DEFM_DISCARD) 4310 set_opt(sb, DISCARD); 4311 4312 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4313 set_opt(sb, BARRIER); 4314 4315 /* 4316 * enable delayed allocation by default 4317 * Use -o nodelalloc to turn it off 4318 */ 4319 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4320 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4321 set_opt(sb, DELALLOC); 4322 4323 if (sb->s_blocksize == PAGE_SIZE) 4324 set_opt(sb, DIOREAD_NOLOCK); 4325 } 4326 4327 static int ext4_handle_clustersize(struct super_block *sb) 4328 { 4329 struct ext4_sb_info *sbi = EXT4_SB(sb); 4330 struct ext4_super_block *es = sbi->s_es; 4331 int clustersize; 4332 4333 /* Handle clustersize */ 4334 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4335 if (ext4_has_feature_bigalloc(sb)) { 4336 if (clustersize < sb->s_blocksize) { 4337 ext4_msg(sb, KERN_ERR, 4338 "cluster size (%d) smaller than " 4339 "block size (%lu)", clustersize, sb->s_blocksize); 4340 return -EINVAL; 4341 } 4342 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4343 le32_to_cpu(es->s_log_block_size); 4344 sbi->s_clusters_per_group = 4345 le32_to_cpu(es->s_clusters_per_group); 4346 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4347 ext4_msg(sb, KERN_ERR, 4348 "#clusters per group too big: %lu", 4349 sbi->s_clusters_per_group); 4350 return -EINVAL; 4351 } 4352 if (sbi->s_blocks_per_group != 4353 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4354 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4355 "clusters per group (%lu) inconsistent", 4356 sbi->s_blocks_per_group, 4357 sbi->s_clusters_per_group); 4358 return -EINVAL; 4359 } 4360 } else { 4361 if (clustersize != sb->s_blocksize) { 4362 ext4_msg(sb, KERN_ERR, 4363 "fragment/cluster size (%d) != " 4364 "block size (%lu)", clustersize, sb->s_blocksize); 4365 return -EINVAL; 4366 } 4367 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4368 ext4_msg(sb, KERN_ERR, 4369 "#blocks per group too big: %lu", 4370 sbi->s_blocks_per_group); 4371 return -EINVAL; 4372 } 4373 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4374 sbi->s_cluster_bits = 0; 4375 } 4376 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4377 4378 /* Do we have standard group size of clustersize * 8 blocks ? */ 4379 if (sbi->s_blocks_per_group == clustersize << 3) 4380 set_opt2(sb, STD_GROUP_SIZE); 4381 4382 return 0; 4383 } 4384 4385 static void ext4_fast_commit_init(struct super_block *sb) 4386 { 4387 struct ext4_sb_info *sbi = EXT4_SB(sb); 4388 4389 /* Initialize fast commit stuff */ 4390 atomic_set(&sbi->s_fc_subtid, 0); 4391 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4392 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4393 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4394 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4395 sbi->s_fc_bytes = 0; 4396 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4397 sbi->s_fc_ineligible_tid = 0; 4398 spin_lock_init(&sbi->s_fc_lock); 4399 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4400 sbi->s_fc_replay_state.fc_regions = NULL; 4401 sbi->s_fc_replay_state.fc_regions_size = 0; 4402 sbi->s_fc_replay_state.fc_regions_used = 0; 4403 sbi->s_fc_replay_state.fc_regions_valid = 0; 4404 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4405 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4406 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4407 } 4408 4409 static int ext4_inode_info_init(struct super_block *sb, 4410 struct ext4_super_block *es) 4411 { 4412 struct ext4_sb_info *sbi = EXT4_SB(sb); 4413 4414 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4415 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4416 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4417 } else { 4418 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4419 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4420 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4421 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4422 sbi->s_first_ino); 4423 return -EINVAL; 4424 } 4425 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4426 (!is_power_of_2(sbi->s_inode_size)) || 4427 (sbi->s_inode_size > sb->s_blocksize)) { 4428 ext4_msg(sb, KERN_ERR, 4429 "unsupported inode size: %d", 4430 sbi->s_inode_size); 4431 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4432 return -EINVAL; 4433 } 4434 /* 4435 * i_atime_extra is the last extra field available for 4436 * [acm]times in struct ext4_inode. Checking for that 4437 * field should suffice to ensure we have extra space 4438 * for all three. 4439 */ 4440 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4441 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4442 sb->s_time_gran = 1; 4443 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4444 } else { 4445 sb->s_time_gran = NSEC_PER_SEC; 4446 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4447 } 4448 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4449 } 4450 4451 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4452 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4453 EXT4_GOOD_OLD_INODE_SIZE; 4454 if (ext4_has_feature_extra_isize(sb)) { 4455 unsigned v, max = (sbi->s_inode_size - 4456 EXT4_GOOD_OLD_INODE_SIZE); 4457 4458 v = le16_to_cpu(es->s_want_extra_isize); 4459 if (v > max) { 4460 ext4_msg(sb, KERN_ERR, 4461 "bad s_want_extra_isize: %d", v); 4462 return -EINVAL; 4463 } 4464 if (sbi->s_want_extra_isize < v) 4465 sbi->s_want_extra_isize = v; 4466 4467 v = le16_to_cpu(es->s_min_extra_isize); 4468 if (v > max) { 4469 ext4_msg(sb, KERN_ERR, 4470 "bad s_min_extra_isize: %d", v); 4471 return -EINVAL; 4472 } 4473 if (sbi->s_want_extra_isize < v) 4474 sbi->s_want_extra_isize = v; 4475 } 4476 } 4477 4478 return 0; 4479 } 4480 4481 #if IS_ENABLED(CONFIG_UNICODE) 4482 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4483 { 4484 const struct ext4_sb_encodings *encoding_info; 4485 struct unicode_map *encoding; 4486 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4487 4488 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4489 return 0; 4490 4491 encoding_info = ext4_sb_read_encoding(es); 4492 if (!encoding_info) { 4493 ext4_msg(sb, KERN_ERR, 4494 "Encoding requested by superblock is unknown"); 4495 return -EINVAL; 4496 } 4497 4498 encoding = utf8_load(encoding_info->version); 4499 if (IS_ERR(encoding)) { 4500 ext4_msg(sb, KERN_ERR, 4501 "can't mount with superblock charset: %s-%u.%u.%u " 4502 "not supported by the kernel. flags: 0x%x.", 4503 encoding_info->name, 4504 unicode_major(encoding_info->version), 4505 unicode_minor(encoding_info->version), 4506 unicode_rev(encoding_info->version), 4507 encoding_flags); 4508 return -EINVAL; 4509 } 4510 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4511 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4512 unicode_major(encoding_info->version), 4513 unicode_minor(encoding_info->version), 4514 unicode_rev(encoding_info->version), 4515 encoding_flags); 4516 4517 sb->s_encoding = encoding; 4518 sb->s_encoding_flags = encoding_flags; 4519 4520 return 0; 4521 } 4522 #else 4523 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4524 { 4525 return 0; 4526 } 4527 #endif 4528 4529 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4530 { 4531 struct ext4_sb_info *sbi = EXT4_SB(sb); 4532 4533 /* Warn if metadata_csum and gdt_csum are both set. */ 4534 if (ext4_has_feature_metadata_csum(sb) && 4535 ext4_has_feature_gdt_csum(sb)) 4536 ext4_warning(sb, "metadata_csum and uninit_bg are " 4537 "redundant flags; please run fsck."); 4538 4539 /* Check for a known checksum algorithm */ 4540 if (!ext4_verify_csum_type(sb, es)) { 4541 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4542 "unknown checksum algorithm."); 4543 return -EINVAL; 4544 } 4545 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4546 ext4_orphan_file_block_trigger); 4547 4548 /* Load the checksum driver */ 4549 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4550 if (IS_ERR(sbi->s_chksum_driver)) { 4551 int ret = PTR_ERR(sbi->s_chksum_driver); 4552 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4553 sbi->s_chksum_driver = NULL; 4554 return ret; 4555 } 4556 4557 /* Check superblock checksum */ 4558 if (!ext4_superblock_csum_verify(sb, es)) { 4559 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4560 "invalid superblock checksum. Run e2fsck?"); 4561 return -EFSBADCRC; 4562 } 4563 4564 /* Precompute checksum seed for all metadata */ 4565 if (ext4_has_feature_csum_seed(sb)) 4566 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4567 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4568 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4569 sizeof(es->s_uuid)); 4570 return 0; 4571 } 4572 4573 static int ext4_check_feature_compatibility(struct super_block *sb, 4574 struct ext4_super_block *es, 4575 int silent) 4576 { 4577 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4578 (ext4_has_compat_features(sb) || 4579 ext4_has_ro_compat_features(sb) || 4580 ext4_has_incompat_features(sb))) 4581 ext4_msg(sb, KERN_WARNING, 4582 "feature flags set on rev 0 fs, " 4583 "running e2fsck is recommended"); 4584 4585 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4586 set_opt2(sb, HURD_COMPAT); 4587 if (ext4_has_feature_64bit(sb)) { 4588 ext4_msg(sb, KERN_ERR, 4589 "The Hurd can't support 64-bit file systems"); 4590 return -EINVAL; 4591 } 4592 4593 /* 4594 * ea_inode feature uses l_i_version field which is not 4595 * available in HURD_COMPAT mode. 4596 */ 4597 if (ext4_has_feature_ea_inode(sb)) { 4598 ext4_msg(sb, KERN_ERR, 4599 "ea_inode feature is not supported for Hurd"); 4600 return -EINVAL; 4601 } 4602 } 4603 4604 if (IS_EXT2_SB(sb)) { 4605 if (ext2_feature_set_ok(sb)) 4606 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4607 "using the ext4 subsystem"); 4608 else { 4609 /* 4610 * If we're probing be silent, if this looks like 4611 * it's actually an ext[34] filesystem. 4612 */ 4613 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4614 return -EINVAL; 4615 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4616 "to feature incompatibilities"); 4617 return -EINVAL; 4618 } 4619 } 4620 4621 if (IS_EXT3_SB(sb)) { 4622 if (ext3_feature_set_ok(sb)) 4623 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4624 "using the ext4 subsystem"); 4625 else { 4626 /* 4627 * If we're probing be silent, if this looks like 4628 * it's actually an ext4 filesystem. 4629 */ 4630 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4631 return -EINVAL; 4632 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4633 "to feature incompatibilities"); 4634 return -EINVAL; 4635 } 4636 } 4637 4638 /* 4639 * Check feature flags regardless of the revision level, since we 4640 * previously didn't change the revision level when setting the flags, 4641 * so there is a chance incompat flags are set on a rev 0 filesystem. 4642 */ 4643 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4644 return -EINVAL; 4645 4646 return 0; 4647 } 4648 4649 static int ext4_geometry_check(struct super_block *sb, 4650 struct ext4_super_block *es) 4651 { 4652 struct ext4_sb_info *sbi = EXT4_SB(sb); 4653 __u64 blocks_count; 4654 4655 /* check blocks count against device size */ 4656 blocks_count = sb_bdev_nr_blocks(sb); 4657 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4658 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4659 "exceeds size of device (%llu blocks)", 4660 ext4_blocks_count(es), blocks_count); 4661 return -EINVAL; 4662 } 4663 4664 /* 4665 * It makes no sense for the first data block to be beyond the end 4666 * of the filesystem. 4667 */ 4668 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4669 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4670 "block %u is beyond end of filesystem (%llu)", 4671 le32_to_cpu(es->s_first_data_block), 4672 ext4_blocks_count(es)); 4673 return -EINVAL; 4674 } 4675 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4676 (sbi->s_cluster_ratio == 1)) { 4677 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4678 "block is 0 with a 1k block and cluster size"); 4679 return -EINVAL; 4680 } 4681 4682 blocks_count = (ext4_blocks_count(es) - 4683 le32_to_cpu(es->s_first_data_block) + 4684 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4685 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4686 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4687 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4688 "(block count %llu, first data block %u, " 4689 "blocks per group %lu)", blocks_count, 4690 ext4_blocks_count(es), 4691 le32_to_cpu(es->s_first_data_block), 4692 EXT4_BLOCKS_PER_GROUP(sb)); 4693 return -EINVAL; 4694 } 4695 sbi->s_groups_count = blocks_count; 4696 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4697 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4698 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4699 le32_to_cpu(es->s_inodes_count)) { 4700 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4701 le32_to_cpu(es->s_inodes_count), 4702 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4703 return -EINVAL; 4704 } 4705 4706 return 0; 4707 } 4708 4709 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 4710 { 4711 struct buffer_head **group_desc; 4712 int i; 4713 4714 rcu_read_lock(); 4715 group_desc = rcu_dereference(sbi->s_group_desc); 4716 for (i = 0; i < sbi->s_gdb_count; i++) 4717 brelse(group_desc[i]); 4718 kvfree(group_desc); 4719 rcu_read_unlock(); 4720 } 4721 4722 static int ext4_group_desc_init(struct super_block *sb, 4723 struct ext4_super_block *es, 4724 ext4_fsblk_t logical_sb_block, 4725 ext4_group_t *first_not_zeroed) 4726 { 4727 struct ext4_sb_info *sbi = EXT4_SB(sb); 4728 unsigned int db_count; 4729 ext4_fsblk_t block; 4730 int ret; 4731 int i; 4732 4733 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4734 EXT4_DESC_PER_BLOCK(sb); 4735 if (ext4_has_feature_meta_bg(sb)) { 4736 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4737 ext4_msg(sb, KERN_WARNING, 4738 "first meta block group too large: %u " 4739 "(group descriptor block count %u)", 4740 le32_to_cpu(es->s_first_meta_bg), db_count); 4741 return -EINVAL; 4742 } 4743 } 4744 rcu_assign_pointer(sbi->s_group_desc, 4745 kvmalloc_array(db_count, 4746 sizeof(struct buffer_head *), 4747 GFP_KERNEL)); 4748 if (sbi->s_group_desc == NULL) { 4749 ext4_msg(sb, KERN_ERR, "not enough memory"); 4750 return -ENOMEM; 4751 } 4752 4753 bgl_lock_init(sbi->s_blockgroup_lock); 4754 4755 /* Pre-read the descriptors into the buffer cache */ 4756 for (i = 0; i < db_count; i++) { 4757 block = descriptor_loc(sb, logical_sb_block, i); 4758 ext4_sb_breadahead_unmovable(sb, block); 4759 } 4760 4761 for (i = 0; i < db_count; i++) { 4762 struct buffer_head *bh; 4763 4764 block = descriptor_loc(sb, logical_sb_block, i); 4765 bh = ext4_sb_bread_unmovable(sb, block); 4766 if (IS_ERR(bh)) { 4767 ext4_msg(sb, KERN_ERR, 4768 "can't read group descriptor %d", i); 4769 sbi->s_gdb_count = i; 4770 ret = PTR_ERR(bh); 4771 goto out; 4772 } 4773 rcu_read_lock(); 4774 rcu_dereference(sbi->s_group_desc)[i] = bh; 4775 rcu_read_unlock(); 4776 } 4777 sbi->s_gdb_count = db_count; 4778 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4779 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4780 ret = -EFSCORRUPTED; 4781 goto out; 4782 } 4783 return 0; 4784 out: 4785 ext4_group_desc_free(sbi); 4786 return ret; 4787 } 4788 4789 static int ext4_load_and_init_journal(struct super_block *sb, 4790 struct ext4_super_block *es, 4791 struct ext4_fs_context *ctx) 4792 { 4793 struct ext4_sb_info *sbi = EXT4_SB(sb); 4794 int err; 4795 4796 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4797 if (err) 4798 return err; 4799 4800 if (ext4_has_feature_64bit(sb) && 4801 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4802 JBD2_FEATURE_INCOMPAT_64BIT)) { 4803 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4804 goto out; 4805 } 4806 4807 if (!set_journal_csum_feature_set(sb)) { 4808 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4809 "feature set"); 4810 goto out; 4811 } 4812 4813 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4814 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4815 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4816 ext4_msg(sb, KERN_ERR, 4817 "Failed to set fast commit journal feature"); 4818 goto out; 4819 } 4820 4821 /* We have now updated the journal if required, so we can 4822 * validate the data journaling mode. */ 4823 switch (test_opt(sb, DATA_FLAGS)) { 4824 case 0: 4825 /* No mode set, assume a default based on the journal 4826 * capabilities: ORDERED_DATA if the journal can 4827 * cope, else JOURNAL_DATA 4828 */ 4829 if (jbd2_journal_check_available_features 4830 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4831 set_opt(sb, ORDERED_DATA); 4832 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4833 } else { 4834 set_opt(sb, JOURNAL_DATA); 4835 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4836 } 4837 break; 4838 4839 case EXT4_MOUNT_ORDERED_DATA: 4840 case EXT4_MOUNT_WRITEBACK_DATA: 4841 if (!jbd2_journal_check_available_features 4842 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4843 ext4_msg(sb, KERN_ERR, "Journal does not support " 4844 "requested data journaling mode"); 4845 goto out; 4846 } 4847 break; 4848 default: 4849 break; 4850 } 4851 4852 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4853 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4854 ext4_msg(sb, KERN_ERR, "can't mount with " 4855 "journal_async_commit in data=ordered mode"); 4856 goto out; 4857 } 4858 4859 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4860 4861 sbi->s_journal->j_submit_inode_data_buffers = 4862 ext4_journal_submit_inode_data_buffers; 4863 sbi->s_journal->j_finish_inode_data_buffers = 4864 ext4_journal_finish_inode_data_buffers; 4865 4866 return 0; 4867 4868 out: 4869 /* flush s_error_work before journal destroy. */ 4870 flush_work(&sbi->s_error_work); 4871 jbd2_journal_destroy(sbi->s_journal); 4872 sbi->s_journal = NULL; 4873 return -EINVAL; 4874 } 4875 4876 static int ext4_journal_data_mode_check(struct super_block *sb) 4877 { 4878 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4879 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4880 "data=journal disables delayed allocation, " 4881 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4882 /* can't mount with both data=journal and dioread_nolock. */ 4883 clear_opt(sb, DIOREAD_NOLOCK); 4884 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4885 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4886 ext4_msg(sb, KERN_ERR, "can't mount with " 4887 "both data=journal and delalloc"); 4888 return -EINVAL; 4889 } 4890 if (test_opt(sb, DAX_ALWAYS)) { 4891 ext4_msg(sb, KERN_ERR, "can't mount with " 4892 "both data=journal and dax"); 4893 return -EINVAL; 4894 } 4895 if (ext4_has_feature_encrypt(sb)) { 4896 ext4_msg(sb, KERN_WARNING, 4897 "encrypted files will use data=ordered " 4898 "instead of data journaling mode"); 4899 } 4900 if (test_opt(sb, DELALLOC)) 4901 clear_opt(sb, DELALLOC); 4902 } else { 4903 sb->s_iflags |= SB_I_CGROUPWB; 4904 } 4905 4906 return 0; 4907 } 4908 4909 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 4910 int silent) 4911 { 4912 struct ext4_sb_info *sbi = EXT4_SB(sb); 4913 struct ext4_super_block *es; 4914 ext4_fsblk_t logical_sb_block; 4915 unsigned long offset = 0; 4916 struct buffer_head *bh; 4917 int ret = -EINVAL; 4918 int blocksize; 4919 4920 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4921 if (!blocksize) { 4922 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4923 return -EINVAL; 4924 } 4925 4926 /* 4927 * The ext4 superblock will not be buffer aligned for other than 1kB 4928 * block sizes. We need to calculate the offset from buffer start. 4929 */ 4930 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4931 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4932 offset = do_div(logical_sb_block, blocksize); 4933 } else { 4934 logical_sb_block = sbi->s_sb_block; 4935 } 4936 4937 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4938 if (IS_ERR(bh)) { 4939 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4940 return PTR_ERR(bh); 4941 } 4942 /* 4943 * Note: s_es must be initialized as soon as possible because 4944 * some ext4 macro-instructions depend on its value 4945 */ 4946 es = (struct ext4_super_block *) (bh->b_data + offset); 4947 sbi->s_es = es; 4948 sb->s_magic = le16_to_cpu(es->s_magic); 4949 if (sb->s_magic != EXT4_SUPER_MAGIC) { 4950 if (!silent) 4951 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4952 goto out; 4953 } 4954 4955 if (le32_to_cpu(es->s_log_block_size) > 4956 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4957 ext4_msg(sb, KERN_ERR, 4958 "Invalid log block size: %u", 4959 le32_to_cpu(es->s_log_block_size)); 4960 goto out; 4961 } 4962 if (le32_to_cpu(es->s_log_cluster_size) > 4963 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4964 ext4_msg(sb, KERN_ERR, 4965 "Invalid log cluster size: %u", 4966 le32_to_cpu(es->s_log_cluster_size)); 4967 goto out; 4968 } 4969 4970 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4971 4972 /* 4973 * If the default block size is not the same as the real block size, 4974 * we need to reload it. 4975 */ 4976 if (sb->s_blocksize == blocksize) { 4977 *lsb = logical_sb_block; 4978 sbi->s_sbh = bh; 4979 return 0; 4980 } 4981 4982 /* 4983 * bh must be released before kill_bdev(), otherwise 4984 * it won't be freed and its page also. kill_bdev() 4985 * is called by sb_set_blocksize(). 4986 */ 4987 brelse(bh); 4988 /* Validate the filesystem blocksize */ 4989 if (!sb_set_blocksize(sb, blocksize)) { 4990 ext4_msg(sb, KERN_ERR, "bad block size %d", 4991 blocksize); 4992 bh = NULL; 4993 goto out; 4994 } 4995 4996 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4997 offset = do_div(logical_sb_block, blocksize); 4998 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4999 if (IS_ERR(bh)) { 5000 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5001 ret = PTR_ERR(bh); 5002 bh = NULL; 5003 goto out; 5004 } 5005 es = (struct ext4_super_block *)(bh->b_data + offset); 5006 sbi->s_es = es; 5007 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5008 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5009 goto out; 5010 } 5011 *lsb = logical_sb_block; 5012 sbi->s_sbh = bh; 5013 return 0; 5014 out: 5015 brelse(bh); 5016 return ret; 5017 } 5018 5019 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5020 { 5021 struct ext4_super_block *es = NULL; 5022 struct ext4_sb_info *sbi = EXT4_SB(sb); 5023 struct flex_groups **flex_groups; 5024 ext4_fsblk_t block; 5025 ext4_fsblk_t logical_sb_block; 5026 struct inode *root; 5027 int ret = -ENOMEM; 5028 unsigned int i; 5029 int needs_recovery, has_huge_files; 5030 int err = 0; 5031 ext4_group_t first_not_zeroed; 5032 struct ext4_fs_context *ctx = fc->fs_private; 5033 int silent = fc->sb_flags & SB_SILENT; 5034 5035 /* Set defaults for the variables that will be set during parsing */ 5036 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5037 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5038 5039 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5040 sbi->s_sectors_written_start = 5041 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5042 5043 /* -EINVAL is default */ 5044 ret = -EINVAL; 5045 err = ext4_load_super(sb, &logical_sb_block, silent); 5046 if (err) 5047 goto out_fail; 5048 5049 es = sbi->s_es; 5050 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5051 5052 err = ext4_init_metadata_csum(sb, es); 5053 if (err) 5054 goto failed_mount; 5055 5056 ext4_set_def_opts(sb, es); 5057 5058 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5059 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5060 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5061 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5062 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5063 5064 /* 5065 * set default s_li_wait_mult for lazyinit, for the case there is 5066 * no mount option specified. 5067 */ 5068 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5069 5070 if (ext4_inode_info_init(sb, es)) 5071 goto failed_mount; 5072 5073 err = parse_apply_sb_mount_options(sb, ctx); 5074 if (err < 0) 5075 goto failed_mount; 5076 5077 sbi->s_def_mount_opt = sbi->s_mount_opt; 5078 5079 err = ext4_check_opt_consistency(fc, sb); 5080 if (err < 0) 5081 goto failed_mount; 5082 5083 ext4_apply_options(fc, sb); 5084 5085 if (ext4_encoding_init(sb, es)) 5086 goto failed_mount; 5087 5088 if (ext4_journal_data_mode_check(sb)) 5089 goto failed_mount; 5090 5091 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5092 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5093 5094 /* i_version is always enabled now */ 5095 sb->s_flags |= SB_I_VERSION; 5096 5097 if (ext4_check_feature_compatibility(sb, es, silent)) 5098 goto failed_mount; 5099 5100 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 5101 ext4_msg(sb, KERN_ERR, 5102 "Number of reserved GDT blocks insanely large: %d", 5103 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 5104 goto failed_mount; 5105 } 5106 5107 if (sbi->s_daxdev) { 5108 if (sb->s_blocksize == PAGE_SIZE) 5109 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 5110 else 5111 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 5112 } 5113 5114 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 5115 if (ext4_has_feature_inline_data(sb)) { 5116 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 5117 " that may contain inline data"); 5118 goto failed_mount; 5119 } 5120 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 5121 ext4_msg(sb, KERN_ERR, 5122 "DAX unsupported by block device."); 5123 goto failed_mount; 5124 } 5125 } 5126 5127 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 5128 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 5129 es->s_encryption_level); 5130 goto failed_mount; 5131 } 5132 5133 has_huge_files = ext4_has_feature_huge_file(sb); 5134 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5135 has_huge_files); 5136 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5137 5138 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5139 if (ext4_has_feature_64bit(sb)) { 5140 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5141 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5142 !is_power_of_2(sbi->s_desc_size)) { 5143 ext4_msg(sb, KERN_ERR, 5144 "unsupported descriptor size %lu", 5145 sbi->s_desc_size); 5146 goto failed_mount; 5147 } 5148 } else 5149 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5150 5151 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5152 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5153 5154 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5155 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5156 if (!silent) 5157 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5158 goto failed_mount; 5159 } 5160 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5161 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5162 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5163 sbi->s_inodes_per_group); 5164 goto failed_mount; 5165 } 5166 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5167 sbi->s_inodes_per_block; 5168 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5169 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5170 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5171 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5172 5173 for (i = 0; i < 4; i++) 5174 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5175 sbi->s_def_hash_version = es->s_def_hash_version; 5176 if (ext4_has_feature_dir_index(sb)) { 5177 i = le32_to_cpu(es->s_flags); 5178 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5179 sbi->s_hash_unsigned = 3; 5180 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5181 #ifdef __CHAR_UNSIGNED__ 5182 if (!sb_rdonly(sb)) 5183 es->s_flags |= 5184 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5185 sbi->s_hash_unsigned = 3; 5186 #else 5187 if (!sb_rdonly(sb)) 5188 es->s_flags |= 5189 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5190 #endif 5191 } 5192 } 5193 5194 if (ext4_handle_clustersize(sb)) 5195 goto failed_mount; 5196 5197 /* 5198 * Test whether we have more sectors than will fit in sector_t, 5199 * and whether the max offset is addressable by the page cache. 5200 */ 5201 err = generic_check_addressable(sb->s_blocksize_bits, 5202 ext4_blocks_count(es)); 5203 if (err) { 5204 ext4_msg(sb, KERN_ERR, "filesystem" 5205 " too large to mount safely on this system"); 5206 goto failed_mount; 5207 } 5208 5209 if (ext4_geometry_check(sb, es)) 5210 goto failed_mount; 5211 5212 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5213 if (err) 5214 goto failed_mount; 5215 5216 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5217 spin_lock_init(&sbi->s_error_lock); 5218 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5219 5220 /* Register extent status tree shrinker */ 5221 if (ext4_es_register_shrinker(sbi)) 5222 goto failed_mount3; 5223 5224 sbi->s_stripe = ext4_get_stripe_size(sbi); 5225 sbi->s_extent_max_zeroout_kb = 32; 5226 5227 /* 5228 * set up enough so that it can read an inode 5229 */ 5230 sb->s_op = &ext4_sops; 5231 sb->s_export_op = &ext4_export_ops; 5232 sb->s_xattr = ext4_xattr_handlers; 5233 #ifdef CONFIG_FS_ENCRYPTION 5234 sb->s_cop = &ext4_cryptops; 5235 #endif 5236 #ifdef CONFIG_FS_VERITY 5237 sb->s_vop = &ext4_verityops; 5238 #endif 5239 #ifdef CONFIG_QUOTA 5240 sb->dq_op = &ext4_quota_operations; 5241 if (ext4_has_feature_quota(sb)) 5242 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5243 else 5244 sb->s_qcop = &ext4_qctl_operations; 5245 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5246 #endif 5247 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5248 5249 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5250 mutex_init(&sbi->s_orphan_lock); 5251 5252 ext4_fast_commit_init(sb); 5253 5254 sb->s_root = NULL; 5255 5256 needs_recovery = (es->s_last_orphan != 0 || 5257 ext4_has_feature_orphan_present(sb) || 5258 ext4_has_feature_journal_needs_recovery(sb)); 5259 5260 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 5261 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 5262 goto failed_mount3a; 5263 5264 /* 5265 * The first inode we look at is the journal inode. Don't try 5266 * root first: it may be modified in the journal! 5267 */ 5268 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5269 err = ext4_load_and_init_journal(sb, es, ctx); 5270 if (err) 5271 goto failed_mount3a; 5272 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5273 ext4_has_feature_journal_needs_recovery(sb)) { 5274 ext4_msg(sb, KERN_ERR, "required journal recovery " 5275 "suppressed and not mounted read-only"); 5276 goto failed_mount3a; 5277 } else { 5278 /* Nojournal mode, all journal mount options are illegal */ 5279 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5280 ext4_msg(sb, KERN_ERR, "can't mount with " 5281 "journal_async_commit, fs mounted w/o journal"); 5282 goto failed_mount3a; 5283 } 5284 5285 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5286 ext4_msg(sb, KERN_ERR, "can't mount with " 5287 "journal_checksum, fs mounted w/o journal"); 5288 goto failed_mount3a; 5289 } 5290 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5291 ext4_msg(sb, KERN_ERR, "can't mount with " 5292 "commit=%lu, fs mounted w/o journal", 5293 sbi->s_commit_interval / HZ); 5294 goto failed_mount3a; 5295 } 5296 if (EXT4_MOUNT_DATA_FLAGS & 5297 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5298 ext4_msg(sb, KERN_ERR, "can't mount with " 5299 "data=, fs mounted w/o journal"); 5300 goto failed_mount3a; 5301 } 5302 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5303 clear_opt(sb, JOURNAL_CHECKSUM); 5304 clear_opt(sb, DATA_FLAGS); 5305 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5306 sbi->s_journal = NULL; 5307 needs_recovery = 0; 5308 } 5309 5310 if (!test_opt(sb, NO_MBCACHE)) { 5311 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5312 if (!sbi->s_ea_block_cache) { 5313 ext4_msg(sb, KERN_ERR, 5314 "Failed to create ea_block_cache"); 5315 goto failed_mount_wq; 5316 } 5317 5318 if (ext4_has_feature_ea_inode(sb)) { 5319 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5320 if (!sbi->s_ea_inode_cache) { 5321 ext4_msg(sb, KERN_ERR, 5322 "Failed to create ea_inode_cache"); 5323 goto failed_mount_wq; 5324 } 5325 } 5326 } 5327 5328 /* 5329 * Get the # of file system overhead blocks from the 5330 * superblock if present. 5331 */ 5332 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5333 /* ignore the precalculated value if it is ridiculous */ 5334 if (sbi->s_overhead > ext4_blocks_count(es)) 5335 sbi->s_overhead = 0; 5336 /* 5337 * If the bigalloc feature is not enabled recalculating the 5338 * overhead doesn't take long, so we might as well just redo 5339 * it to make sure we are using the correct value. 5340 */ 5341 if (!ext4_has_feature_bigalloc(sb)) 5342 sbi->s_overhead = 0; 5343 if (sbi->s_overhead == 0) { 5344 err = ext4_calculate_overhead(sb); 5345 if (err) 5346 goto failed_mount_wq; 5347 } 5348 5349 /* 5350 * The maximum number of concurrent works can be high and 5351 * concurrency isn't really necessary. Limit it to 1. 5352 */ 5353 EXT4_SB(sb)->rsv_conversion_wq = 5354 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5355 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5356 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5357 ret = -ENOMEM; 5358 goto failed_mount4; 5359 } 5360 5361 /* 5362 * The jbd2_journal_load will have done any necessary log recovery, 5363 * so we can safely mount the rest of the filesystem now. 5364 */ 5365 5366 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5367 if (IS_ERR(root)) { 5368 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5369 ret = PTR_ERR(root); 5370 root = NULL; 5371 goto failed_mount4; 5372 } 5373 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5374 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5375 iput(root); 5376 goto failed_mount4; 5377 } 5378 5379 sb->s_root = d_make_root(root); 5380 if (!sb->s_root) { 5381 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5382 ret = -ENOMEM; 5383 goto failed_mount4; 5384 } 5385 5386 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 5387 if (ret == -EROFS) { 5388 sb->s_flags |= SB_RDONLY; 5389 ret = 0; 5390 } else if (ret) 5391 goto failed_mount4a; 5392 5393 ext4_set_resv_clusters(sb); 5394 5395 if (test_opt(sb, BLOCK_VALIDITY)) { 5396 err = ext4_setup_system_zone(sb); 5397 if (err) { 5398 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5399 "zone (%d)", err); 5400 goto failed_mount4a; 5401 } 5402 } 5403 ext4_fc_replay_cleanup(sb); 5404 5405 ext4_ext_init(sb); 5406 5407 /* 5408 * Enable optimize_scan if number of groups is > threshold. This can be 5409 * turned off by passing "mb_optimize_scan=0". This can also be 5410 * turned on forcefully by passing "mb_optimize_scan=1". 5411 */ 5412 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5413 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5414 set_opt2(sb, MB_OPTIMIZE_SCAN); 5415 else 5416 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5417 } 5418 5419 err = ext4_mb_init(sb); 5420 if (err) { 5421 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5422 err); 5423 goto failed_mount5; 5424 } 5425 5426 /* 5427 * We can only set up the journal commit callback once 5428 * mballoc is initialized 5429 */ 5430 if (sbi->s_journal) 5431 sbi->s_journal->j_commit_callback = 5432 ext4_journal_commit_callback; 5433 5434 block = ext4_count_free_clusters(sb); 5435 ext4_free_blocks_count_set(sbi->s_es, 5436 EXT4_C2B(sbi, block)); 5437 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5438 GFP_KERNEL); 5439 if (!err) { 5440 unsigned long freei = ext4_count_free_inodes(sb); 5441 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5442 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5443 GFP_KERNEL); 5444 } 5445 if (!err) 5446 err = percpu_counter_init(&sbi->s_dirs_counter, 5447 ext4_count_dirs(sb), GFP_KERNEL); 5448 if (!err) 5449 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5450 GFP_KERNEL); 5451 if (!err) 5452 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5453 GFP_KERNEL); 5454 if (!err) 5455 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5456 5457 if (err) { 5458 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5459 goto failed_mount6; 5460 } 5461 5462 if (ext4_has_feature_flex_bg(sb)) 5463 if (!ext4_fill_flex_info(sb)) { 5464 ext4_msg(sb, KERN_ERR, 5465 "unable to initialize " 5466 "flex_bg meta info!"); 5467 ret = -ENOMEM; 5468 goto failed_mount6; 5469 } 5470 5471 err = ext4_register_li_request(sb, first_not_zeroed); 5472 if (err) 5473 goto failed_mount6; 5474 5475 err = ext4_register_sysfs(sb); 5476 if (err) 5477 goto failed_mount7; 5478 5479 err = ext4_init_orphan_info(sb); 5480 if (err) 5481 goto failed_mount8; 5482 #ifdef CONFIG_QUOTA 5483 /* Enable quota usage during mount. */ 5484 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5485 err = ext4_enable_quotas(sb); 5486 if (err) 5487 goto failed_mount9; 5488 } 5489 #endif /* CONFIG_QUOTA */ 5490 5491 /* 5492 * Save the original bdev mapping's wb_err value which could be 5493 * used to detect the metadata async write error. 5494 */ 5495 spin_lock_init(&sbi->s_bdev_wb_lock); 5496 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5497 &sbi->s_bdev_wb_err); 5498 sb->s_bdev->bd_super = sb; 5499 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5500 ext4_orphan_cleanup(sb, es); 5501 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5502 /* 5503 * Update the checksum after updating free space/inode counters and 5504 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5505 * checksum in the buffer cache until it is written out and 5506 * e2fsprogs programs trying to open a file system immediately 5507 * after it is mounted can fail. 5508 */ 5509 ext4_superblock_csum_set(sb); 5510 if (needs_recovery) { 5511 ext4_msg(sb, KERN_INFO, "recovery complete"); 5512 err = ext4_mark_recovery_complete(sb, es); 5513 if (err) 5514 goto failed_mount9; 5515 } 5516 5517 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5518 ext4_msg(sb, KERN_WARNING, 5519 "mounting with \"discard\" option, but the device does not support discard"); 5520 5521 if (es->s_error_count) 5522 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5523 5524 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5525 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5526 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5527 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5528 atomic_set(&sbi->s_warning_count, 0); 5529 atomic_set(&sbi->s_msg_count, 0); 5530 5531 return 0; 5532 5533 failed_mount9: 5534 ext4_release_orphan_info(sb); 5535 failed_mount8: 5536 ext4_unregister_sysfs(sb); 5537 kobject_put(&sbi->s_kobj); 5538 failed_mount7: 5539 ext4_unregister_li_request(sb); 5540 failed_mount6: 5541 ext4_mb_release(sb); 5542 rcu_read_lock(); 5543 flex_groups = rcu_dereference(sbi->s_flex_groups); 5544 if (flex_groups) { 5545 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5546 kvfree(flex_groups[i]); 5547 kvfree(flex_groups); 5548 } 5549 rcu_read_unlock(); 5550 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5551 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5552 percpu_counter_destroy(&sbi->s_dirs_counter); 5553 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5554 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5555 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5556 failed_mount5: 5557 ext4_ext_release(sb); 5558 ext4_release_system_zone(sb); 5559 failed_mount4a: 5560 dput(sb->s_root); 5561 sb->s_root = NULL; 5562 failed_mount4: 5563 ext4_msg(sb, KERN_ERR, "mount failed"); 5564 if (EXT4_SB(sb)->rsv_conversion_wq) 5565 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5566 failed_mount_wq: 5567 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5568 sbi->s_ea_inode_cache = NULL; 5569 5570 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5571 sbi->s_ea_block_cache = NULL; 5572 5573 if (sbi->s_journal) { 5574 /* flush s_error_work before journal destroy. */ 5575 flush_work(&sbi->s_error_work); 5576 jbd2_journal_destroy(sbi->s_journal); 5577 sbi->s_journal = NULL; 5578 } 5579 failed_mount3a: 5580 ext4_es_unregister_shrinker(sbi); 5581 failed_mount3: 5582 /* flush s_error_work before sbi destroy */ 5583 flush_work(&sbi->s_error_work); 5584 del_timer_sync(&sbi->s_err_report); 5585 ext4_stop_mmpd(sbi); 5586 ext4_group_desc_free(sbi); 5587 failed_mount: 5588 if (sbi->s_chksum_driver) 5589 crypto_free_shash(sbi->s_chksum_driver); 5590 5591 #if IS_ENABLED(CONFIG_UNICODE) 5592 utf8_unload(sb->s_encoding); 5593 #endif 5594 5595 #ifdef CONFIG_QUOTA 5596 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5597 kfree(get_qf_name(sb, sbi, i)); 5598 #endif 5599 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5600 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5601 brelse(sbi->s_sbh); 5602 ext4_blkdev_remove(sbi); 5603 out_fail: 5604 sb->s_fs_info = NULL; 5605 return err ? err : ret; 5606 } 5607 5608 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5609 { 5610 struct ext4_fs_context *ctx = fc->fs_private; 5611 struct ext4_sb_info *sbi; 5612 const char *descr; 5613 int ret; 5614 5615 sbi = ext4_alloc_sbi(sb); 5616 if (!sbi) 5617 return -ENOMEM; 5618 5619 fc->s_fs_info = sbi; 5620 5621 /* Cleanup superblock name */ 5622 strreplace(sb->s_id, '/', '!'); 5623 5624 sbi->s_sb_block = 1; /* Default super block location */ 5625 if (ctx->spec & EXT4_SPEC_s_sb_block) 5626 sbi->s_sb_block = ctx->s_sb_block; 5627 5628 ret = __ext4_fill_super(fc, sb); 5629 if (ret < 0) 5630 goto free_sbi; 5631 5632 if (sbi->s_journal) { 5633 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5634 descr = " journalled data mode"; 5635 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5636 descr = " ordered data mode"; 5637 else 5638 descr = " writeback data mode"; 5639 } else 5640 descr = "out journal"; 5641 5642 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5643 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. " 5644 "Quota mode: %s.", &sb->s_uuid, descr, 5645 ext4_quota_mode(sb)); 5646 5647 /* Update the s_overhead_clusters if necessary */ 5648 ext4_update_overhead(sb, false); 5649 return 0; 5650 5651 free_sbi: 5652 ext4_free_sbi(sbi); 5653 fc->s_fs_info = NULL; 5654 return ret; 5655 } 5656 5657 static int ext4_get_tree(struct fs_context *fc) 5658 { 5659 return get_tree_bdev(fc, ext4_fill_super); 5660 } 5661 5662 /* 5663 * Setup any per-fs journal parameters now. We'll do this both on 5664 * initial mount, once the journal has been initialised but before we've 5665 * done any recovery; and again on any subsequent remount. 5666 */ 5667 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5668 { 5669 struct ext4_sb_info *sbi = EXT4_SB(sb); 5670 5671 journal->j_commit_interval = sbi->s_commit_interval; 5672 journal->j_min_batch_time = sbi->s_min_batch_time; 5673 journal->j_max_batch_time = sbi->s_max_batch_time; 5674 ext4_fc_init(sb, journal); 5675 5676 write_lock(&journal->j_state_lock); 5677 if (test_opt(sb, BARRIER)) 5678 journal->j_flags |= JBD2_BARRIER; 5679 else 5680 journal->j_flags &= ~JBD2_BARRIER; 5681 if (test_opt(sb, DATA_ERR_ABORT)) 5682 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5683 else 5684 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5685 write_unlock(&journal->j_state_lock); 5686 } 5687 5688 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5689 unsigned int journal_inum) 5690 { 5691 struct inode *journal_inode; 5692 5693 /* 5694 * Test for the existence of a valid inode on disk. Bad things 5695 * happen if we iget() an unused inode, as the subsequent iput() 5696 * will try to delete it. 5697 */ 5698 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5699 if (IS_ERR(journal_inode)) { 5700 ext4_msg(sb, KERN_ERR, "no journal found"); 5701 return NULL; 5702 } 5703 if (!journal_inode->i_nlink) { 5704 make_bad_inode(journal_inode); 5705 iput(journal_inode); 5706 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5707 return NULL; 5708 } 5709 5710 ext4_debug("Journal inode found at %p: %lld bytes\n", 5711 journal_inode, journal_inode->i_size); 5712 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5713 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5714 iput(journal_inode); 5715 return NULL; 5716 } 5717 return journal_inode; 5718 } 5719 5720 static journal_t *ext4_get_journal(struct super_block *sb, 5721 unsigned int journal_inum) 5722 { 5723 struct inode *journal_inode; 5724 journal_t *journal; 5725 5726 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5727 return NULL; 5728 5729 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5730 if (!journal_inode) 5731 return NULL; 5732 5733 journal = jbd2_journal_init_inode(journal_inode); 5734 if (!journal) { 5735 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5736 iput(journal_inode); 5737 return NULL; 5738 } 5739 journal->j_private = sb; 5740 ext4_init_journal_params(sb, journal); 5741 return journal; 5742 } 5743 5744 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5745 dev_t j_dev) 5746 { 5747 struct buffer_head *bh; 5748 journal_t *journal; 5749 ext4_fsblk_t start; 5750 ext4_fsblk_t len; 5751 int hblock, blocksize; 5752 ext4_fsblk_t sb_block; 5753 unsigned long offset; 5754 struct ext4_super_block *es; 5755 struct block_device *bdev; 5756 5757 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5758 return NULL; 5759 5760 bdev = ext4_blkdev_get(j_dev, sb); 5761 if (bdev == NULL) 5762 return NULL; 5763 5764 blocksize = sb->s_blocksize; 5765 hblock = bdev_logical_block_size(bdev); 5766 if (blocksize < hblock) { 5767 ext4_msg(sb, KERN_ERR, 5768 "blocksize too small for journal device"); 5769 goto out_bdev; 5770 } 5771 5772 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5773 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5774 set_blocksize(bdev, blocksize); 5775 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5776 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5777 "external journal"); 5778 goto out_bdev; 5779 } 5780 5781 es = (struct ext4_super_block *) (bh->b_data + offset); 5782 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5783 !(le32_to_cpu(es->s_feature_incompat) & 5784 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5785 ext4_msg(sb, KERN_ERR, "external journal has " 5786 "bad superblock"); 5787 brelse(bh); 5788 goto out_bdev; 5789 } 5790 5791 if ((le32_to_cpu(es->s_feature_ro_compat) & 5792 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5793 es->s_checksum != ext4_superblock_csum(sb, es)) { 5794 ext4_msg(sb, KERN_ERR, "external journal has " 5795 "corrupt superblock"); 5796 brelse(bh); 5797 goto out_bdev; 5798 } 5799 5800 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5801 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5802 brelse(bh); 5803 goto out_bdev; 5804 } 5805 5806 len = ext4_blocks_count(es); 5807 start = sb_block + 1; 5808 brelse(bh); /* we're done with the superblock */ 5809 5810 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5811 start, len, blocksize); 5812 if (!journal) { 5813 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5814 goto out_bdev; 5815 } 5816 journal->j_private = sb; 5817 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5818 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5819 goto out_journal; 5820 } 5821 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5822 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5823 "user (unsupported) - %d", 5824 be32_to_cpu(journal->j_superblock->s_nr_users)); 5825 goto out_journal; 5826 } 5827 EXT4_SB(sb)->s_journal_bdev = bdev; 5828 ext4_init_journal_params(sb, journal); 5829 return journal; 5830 5831 out_journal: 5832 jbd2_journal_destroy(journal); 5833 out_bdev: 5834 ext4_blkdev_put(bdev); 5835 return NULL; 5836 } 5837 5838 static int ext4_load_journal(struct super_block *sb, 5839 struct ext4_super_block *es, 5840 unsigned long journal_devnum) 5841 { 5842 journal_t *journal; 5843 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5844 dev_t journal_dev; 5845 int err = 0; 5846 int really_read_only; 5847 int journal_dev_ro; 5848 5849 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5850 return -EFSCORRUPTED; 5851 5852 if (journal_devnum && 5853 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5854 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5855 "numbers have changed"); 5856 journal_dev = new_decode_dev(journal_devnum); 5857 } else 5858 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5859 5860 if (journal_inum && journal_dev) { 5861 ext4_msg(sb, KERN_ERR, 5862 "filesystem has both journal inode and journal device!"); 5863 return -EINVAL; 5864 } 5865 5866 if (journal_inum) { 5867 journal = ext4_get_journal(sb, journal_inum); 5868 if (!journal) 5869 return -EINVAL; 5870 } else { 5871 journal = ext4_get_dev_journal(sb, journal_dev); 5872 if (!journal) 5873 return -EINVAL; 5874 } 5875 5876 journal_dev_ro = bdev_read_only(journal->j_dev); 5877 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5878 5879 if (journal_dev_ro && !sb_rdonly(sb)) { 5880 ext4_msg(sb, KERN_ERR, 5881 "journal device read-only, try mounting with '-o ro'"); 5882 err = -EROFS; 5883 goto err_out; 5884 } 5885 5886 /* 5887 * Are we loading a blank journal or performing recovery after a 5888 * crash? For recovery, we need to check in advance whether we 5889 * can get read-write access to the device. 5890 */ 5891 if (ext4_has_feature_journal_needs_recovery(sb)) { 5892 if (sb_rdonly(sb)) { 5893 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5894 "required on readonly filesystem"); 5895 if (really_read_only) { 5896 ext4_msg(sb, KERN_ERR, "write access " 5897 "unavailable, cannot proceed " 5898 "(try mounting with noload)"); 5899 err = -EROFS; 5900 goto err_out; 5901 } 5902 ext4_msg(sb, KERN_INFO, "write access will " 5903 "be enabled during recovery"); 5904 } 5905 } 5906 5907 if (!(journal->j_flags & JBD2_BARRIER)) 5908 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5909 5910 if (!ext4_has_feature_journal_needs_recovery(sb)) 5911 err = jbd2_journal_wipe(journal, !really_read_only); 5912 if (!err) { 5913 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5914 if (save) 5915 memcpy(save, ((char *) es) + 5916 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5917 err = jbd2_journal_load(journal); 5918 if (save) 5919 memcpy(((char *) es) + EXT4_S_ERR_START, 5920 save, EXT4_S_ERR_LEN); 5921 kfree(save); 5922 } 5923 5924 if (err) { 5925 ext4_msg(sb, KERN_ERR, "error loading journal"); 5926 goto err_out; 5927 } 5928 5929 EXT4_SB(sb)->s_journal = journal; 5930 err = ext4_clear_journal_err(sb, es); 5931 if (err) { 5932 EXT4_SB(sb)->s_journal = NULL; 5933 jbd2_journal_destroy(journal); 5934 return err; 5935 } 5936 5937 if (!really_read_only && journal_devnum && 5938 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5939 es->s_journal_dev = cpu_to_le32(journal_devnum); 5940 5941 /* Make sure we flush the recovery flag to disk. */ 5942 ext4_commit_super(sb); 5943 } 5944 5945 return 0; 5946 5947 err_out: 5948 jbd2_journal_destroy(journal); 5949 return err; 5950 } 5951 5952 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5953 static void ext4_update_super(struct super_block *sb) 5954 { 5955 struct ext4_sb_info *sbi = EXT4_SB(sb); 5956 struct ext4_super_block *es = sbi->s_es; 5957 struct buffer_head *sbh = sbi->s_sbh; 5958 5959 lock_buffer(sbh); 5960 /* 5961 * If the file system is mounted read-only, don't update the 5962 * superblock write time. This avoids updating the superblock 5963 * write time when we are mounting the root file system 5964 * read/only but we need to replay the journal; at that point, 5965 * for people who are east of GMT and who make their clock 5966 * tick in localtime for Windows bug-for-bug compatibility, 5967 * the clock is set in the future, and this will cause e2fsck 5968 * to complain and force a full file system check. 5969 */ 5970 if (!(sb->s_flags & SB_RDONLY)) 5971 ext4_update_tstamp(es, s_wtime); 5972 es->s_kbytes_written = 5973 cpu_to_le64(sbi->s_kbytes_written + 5974 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5975 sbi->s_sectors_written_start) >> 1)); 5976 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5977 ext4_free_blocks_count_set(es, 5978 EXT4_C2B(sbi, percpu_counter_sum_positive( 5979 &sbi->s_freeclusters_counter))); 5980 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5981 es->s_free_inodes_count = 5982 cpu_to_le32(percpu_counter_sum_positive( 5983 &sbi->s_freeinodes_counter)); 5984 /* Copy error information to the on-disk superblock */ 5985 spin_lock(&sbi->s_error_lock); 5986 if (sbi->s_add_error_count > 0) { 5987 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5988 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5989 __ext4_update_tstamp(&es->s_first_error_time, 5990 &es->s_first_error_time_hi, 5991 sbi->s_first_error_time); 5992 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5993 sizeof(es->s_first_error_func)); 5994 es->s_first_error_line = 5995 cpu_to_le32(sbi->s_first_error_line); 5996 es->s_first_error_ino = 5997 cpu_to_le32(sbi->s_first_error_ino); 5998 es->s_first_error_block = 5999 cpu_to_le64(sbi->s_first_error_block); 6000 es->s_first_error_errcode = 6001 ext4_errno_to_code(sbi->s_first_error_code); 6002 } 6003 __ext4_update_tstamp(&es->s_last_error_time, 6004 &es->s_last_error_time_hi, 6005 sbi->s_last_error_time); 6006 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6007 sizeof(es->s_last_error_func)); 6008 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6009 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6010 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6011 es->s_last_error_errcode = 6012 ext4_errno_to_code(sbi->s_last_error_code); 6013 /* 6014 * Start the daily error reporting function if it hasn't been 6015 * started already 6016 */ 6017 if (!es->s_error_count) 6018 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6019 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6020 sbi->s_add_error_count = 0; 6021 } 6022 spin_unlock(&sbi->s_error_lock); 6023 6024 ext4_superblock_csum_set(sb); 6025 unlock_buffer(sbh); 6026 } 6027 6028 static int ext4_commit_super(struct super_block *sb) 6029 { 6030 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6031 6032 if (!sbh) 6033 return -EINVAL; 6034 if (block_device_ejected(sb)) 6035 return -ENODEV; 6036 6037 ext4_update_super(sb); 6038 6039 lock_buffer(sbh); 6040 /* Buffer got discarded which means block device got invalidated */ 6041 if (!buffer_mapped(sbh)) { 6042 unlock_buffer(sbh); 6043 return -EIO; 6044 } 6045 6046 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6047 /* 6048 * Oh, dear. A previous attempt to write the 6049 * superblock failed. This could happen because the 6050 * USB device was yanked out. Or it could happen to 6051 * be a transient write error and maybe the block will 6052 * be remapped. Nothing we can do but to retry the 6053 * write and hope for the best. 6054 */ 6055 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6056 "superblock detected"); 6057 clear_buffer_write_io_error(sbh); 6058 set_buffer_uptodate(sbh); 6059 } 6060 get_bh(sbh); 6061 /* Clear potential dirty bit if it was journalled update */ 6062 clear_buffer_dirty(sbh); 6063 sbh->b_end_io = end_buffer_write_sync; 6064 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6065 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6066 wait_on_buffer(sbh); 6067 if (buffer_write_io_error(sbh)) { 6068 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6069 "superblock"); 6070 clear_buffer_write_io_error(sbh); 6071 set_buffer_uptodate(sbh); 6072 return -EIO; 6073 } 6074 return 0; 6075 } 6076 6077 /* 6078 * Have we just finished recovery? If so, and if we are mounting (or 6079 * remounting) the filesystem readonly, then we will end up with a 6080 * consistent fs on disk. Record that fact. 6081 */ 6082 static int ext4_mark_recovery_complete(struct super_block *sb, 6083 struct ext4_super_block *es) 6084 { 6085 int err; 6086 journal_t *journal = EXT4_SB(sb)->s_journal; 6087 6088 if (!ext4_has_feature_journal(sb)) { 6089 if (journal != NULL) { 6090 ext4_error(sb, "Journal got removed while the fs was " 6091 "mounted!"); 6092 return -EFSCORRUPTED; 6093 } 6094 return 0; 6095 } 6096 jbd2_journal_lock_updates(journal); 6097 err = jbd2_journal_flush(journal, 0); 6098 if (err < 0) 6099 goto out; 6100 6101 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6102 ext4_has_feature_orphan_present(sb))) { 6103 if (!ext4_orphan_file_empty(sb)) { 6104 ext4_error(sb, "Orphan file not empty on read-only fs."); 6105 err = -EFSCORRUPTED; 6106 goto out; 6107 } 6108 ext4_clear_feature_journal_needs_recovery(sb); 6109 ext4_clear_feature_orphan_present(sb); 6110 ext4_commit_super(sb); 6111 } 6112 out: 6113 jbd2_journal_unlock_updates(journal); 6114 return err; 6115 } 6116 6117 /* 6118 * If we are mounting (or read-write remounting) a filesystem whose journal 6119 * has recorded an error from a previous lifetime, move that error to the 6120 * main filesystem now. 6121 */ 6122 static int ext4_clear_journal_err(struct super_block *sb, 6123 struct ext4_super_block *es) 6124 { 6125 journal_t *journal; 6126 int j_errno; 6127 const char *errstr; 6128 6129 if (!ext4_has_feature_journal(sb)) { 6130 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6131 return -EFSCORRUPTED; 6132 } 6133 6134 journal = EXT4_SB(sb)->s_journal; 6135 6136 /* 6137 * Now check for any error status which may have been recorded in the 6138 * journal by a prior ext4_error() or ext4_abort() 6139 */ 6140 6141 j_errno = jbd2_journal_errno(journal); 6142 if (j_errno) { 6143 char nbuf[16]; 6144 6145 errstr = ext4_decode_error(sb, j_errno, nbuf); 6146 ext4_warning(sb, "Filesystem error recorded " 6147 "from previous mount: %s", errstr); 6148 ext4_warning(sb, "Marking fs in need of filesystem check."); 6149 6150 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6151 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6152 ext4_commit_super(sb); 6153 6154 jbd2_journal_clear_err(journal); 6155 jbd2_journal_update_sb_errno(journal); 6156 } 6157 return 0; 6158 } 6159 6160 /* 6161 * Force the running and committing transactions to commit, 6162 * and wait on the commit. 6163 */ 6164 int ext4_force_commit(struct super_block *sb) 6165 { 6166 journal_t *journal; 6167 6168 if (sb_rdonly(sb)) 6169 return 0; 6170 6171 journal = EXT4_SB(sb)->s_journal; 6172 return ext4_journal_force_commit(journal); 6173 } 6174 6175 static int ext4_sync_fs(struct super_block *sb, int wait) 6176 { 6177 int ret = 0; 6178 tid_t target; 6179 bool needs_barrier = false; 6180 struct ext4_sb_info *sbi = EXT4_SB(sb); 6181 6182 if (unlikely(ext4_forced_shutdown(sbi))) 6183 return 0; 6184 6185 trace_ext4_sync_fs(sb, wait); 6186 flush_workqueue(sbi->rsv_conversion_wq); 6187 /* 6188 * Writeback quota in non-journalled quota case - journalled quota has 6189 * no dirty dquots 6190 */ 6191 dquot_writeback_dquots(sb, -1); 6192 /* 6193 * Data writeback is possible w/o journal transaction, so barrier must 6194 * being sent at the end of the function. But we can skip it if 6195 * transaction_commit will do it for us. 6196 */ 6197 if (sbi->s_journal) { 6198 target = jbd2_get_latest_transaction(sbi->s_journal); 6199 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6200 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6201 needs_barrier = true; 6202 6203 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6204 if (wait) 6205 ret = jbd2_log_wait_commit(sbi->s_journal, 6206 target); 6207 } 6208 } else if (wait && test_opt(sb, BARRIER)) 6209 needs_barrier = true; 6210 if (needs_barrier) { 6211 int err; 6212 err = blkdev_issue_flush(sb->s_bdev); 6213 if (!ret) 6214 ret = err; 6215 } 6216 6217 return ret; 6218 } 6219 6220 /* 6221 * LVM calls this function before a (read-only) snapshot is created. This 6222 * gives us a chance to flush the journal completely and mark the fs clean. 6223 * 6224 * Note that only this function cannot bring a filesystem to be in a clean 6225 * state independently. It relies on upper layer to stop all data & metadata 6226 * modifications. 6227 */ 6228 static int ext4_freeze(struct super_block *sb) 6229 { 6230 int error = 0; 6231 journal_t *journal; 6232 6233 if (sb_rdonly(sb)) 6234 return 0; 6235 6236 journal = EXT4_SB(sb)->s_journal; 6237 6238 if (journal) { 6239 /* Now we set up the journal barrier. */ 6240 jbd2_journal_lock_updates(journal); 6241 6242 /* 6243 * Don't clear the needs_recovery flag if we failed to 6244 * flush the journal. 6245 */ 6246 error = jbd2_journal_flush(journal, 0); 6247 if (error < 0) 6248 goto out; 6249 6250 /* Journal blocked and flushed, clear needs_recovery flag. */ 6251 ext4_clear_feature_journal_needs_recovery(sb); 6252 if (ext4_orphan_file_empty(sb)) 6253 ext4_clear_feature_orphan_present(sb); 6254 } 6255 6256 error = ext4_commit_super(sb); 6257 out: 6258 if (journal) 6259 /* we rely on upper layer to stop further updates */ 6260 jbd2_journal_unlock_updates(journal); 6261 return error; 6262 } 6263 6264 /* 6265 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6266 * flag here, even though the filesystem is not technically dirty yet. 6267 */ 6268 static int ext4_unfreeze(struct super_block *sb) 6269 { 6270 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6271 return 0; 6272 6273 if (EXT4_SB(sb)->s_journal) { 6274 /* Reset the needs_recovery flag before the fs is unlocked. */ 6275 ext4_set_feature_journal_needs_recovery(sb); 6276 if (ext4_has_feature_orphan_file(sb)) 6277 ext4_set_feature_orphan_present(sb); 6278 } 6279 6280 ext4_commit_super(sb); 6281 return 0; 6282 } 6283 6284 /* 6285 * Structure to save mount options for ext4_remount's benefit 6286 */ 6287 struct ext4_mount_options { 6288 unsigned long s_mount_opt; 6289 unsigned long s_mount_opt2; 6290 kuid_t s_resuid; 6291 kgid_t s_resgid; 6292 unsigned long s_commit_interval; 6293 u32 s_min_batch_time, s_max_batch_time; 6294 #ifdef CONFIG_QUOTA 6295 int s_jquota_fmt; 6296 char *s_qf_names[EXT4_MAXQUOTAS]; 6297 #endif 6298 }; 6299 6300 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6301 { 6302 struct ext4_fs_context *ctx = fc->fs_private; 6303 struct ext4_super_block *es; 6304 struct ext4_sb_info *sbi = EXT4_SB(sb); 6305 unsigned long old_sb_flags; 6306 struct ext4_mount_options old_opts; 6307 ext4_group_t g; 6308 int err = 0; 6309 #ifdef CONFIG_QUOTA 6310 int enable_quota = 0; 6311 int i, j; 6312 char *to_free[EXT4_MAXQUOTAS]; 6313 #endif 6314 6315 6316 /* Store the original options */ 6317 old_sb_flags = sb->s_flags; 6318 old_opts.s_mount_opt = sbi->s_mount_opt; 6319 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6320 old_opts.s_resuid = sbi->s_resuid; 6321 old_opts.s_resgid = sbi->s_resgid; 6322 old_opts.s_commit_interval = sbi->s_commit_interval; 6323 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6324 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6325 #ifdef CONFIG_QUOTA 6326 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6327 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6328 if (sbi->s_qf_names[i]) { 6329 char *qf_name = get_qf_name(sb, sbi, i); 6330 6331 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6332 if (!old_opts.s_qf_names[i]) { 6333 for (j = 0; j < i; j++) 6334 kfree(old_opts.s_qf_names[j]); 6335 return -ENOMEM; 6336 } 6337 } else 6338 old_opts.s_qf_names[i] = NULL; 6339 #endif 6340 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6341 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6342 ctx->journal_ioprio = 6343 sbi->s_journal->j_task->io_context->ioprio; 6344 else 6345 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6346 6347 } 6348 6349 ext4_apply_options(fc, sb); 6350 6351 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6352 test_opt(sb, JOURNAL_CHECKSUM)) { 6353 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6354 "during remount not supported; ignoring"); 6355 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6356 } 6357 6358 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6359 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6360 ext4_msg(sb, KERN_ERR, "can't mount with " 6361 "both data=journal and delalloc"); 6362 err = -EINVAL; 6363 goto restore_opts; 6364 } 6365 if (test_opt(sb, DIOREAD_NOLOCK)) { 6366 ext4_msg(sb, KERN_ERR, "can't mount with " 6367 "both data=journal and dioread_nolock"); 6368 err = -EINVAL; 6369 goto restore_opts; 6370 } 6371 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6372 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6373 ext4_msg(sb, KERN_ERR, "can't mount with " 6374 "journal_async_commit in data=ordered mode"); 6375 err = -EINVAL; 6376 goto restore_opts; 6377 } 6378 } 6379 6380 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6381 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6382 err = -EINVAL; 6383 goto restore_opts; 6384 } 6385 6386 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6387 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6388 6389 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6390 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6391 6392 es = sbi->s_es; 6393 6394 if (sbi->s_journal) { 6395 ext4_init_journal_params(sb, sbi->s_journal); 6396 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6397 } 6398 6399 /* Flush outstanding errors before changing fs state */ 6400 flush_work(&sbi->s_error_work); 6401 6402 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6403 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6404 err = -EROFS; 6405 goto restore_opts; 6406 } 6407 6408 if (fc->sb_flags & SB_RDONLY) { 6409 err = sync_filesystem(sb); 6410 if (err < 0) 6411 goto restore_opts; 6412 err = dquot_suspend(sb, -1); 6413 if (err < 0) 6414 goto restore_opts; 6415 6416 /* 6417 * First of all, the unconditional stuff we have to do 6418 * to disable replay of the journal when we next remount 6419 */ 6420 sb->s_flags |= SB_RDONLY; 6421 6422 /* 6423 * OK, test if we are remounting a valid rw partition 6424 * readonly, and if so set the rdonly flag and then 6425 * mark the partition as valid again. 6426 */ 6427 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6428 (sbi->s_mount_state & EXT4_VALID_FS)) 6429 es->s_state = cpu_to_le16(sbi->s_mount_state); 6430 6431 if (sbi->s_journal) { 6432 /* 6433 * We let remount-ro finish even if marking fs 6434 * as clean failed... 6435 */ 6436 ext4_mark_recovery_complete(sb, es); 6437 } 6438 } else { 6439 /* Make sure we can mount this feature set readwrite */ 6440 if (ext4_has_feature_readonly(sb) || 6441 !ext4_feature_set_ok(sb, 0)) { 6442 err = -EROFS; 6443 goto restore_opts; 6444 } 6445 /* 6446 * Make sure the group descriptor checksums 6447 * are sane. If they aren't, refuse to remount r/w. 6448 */ 6449 for (g = 0; g < sbi->s_groups_count; g++) { 6450 struct ext4_group_desc *gdp = 6451 ext4_get_group_desc(sb, g, NULL); 6452 6453 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6454 ext4_msg(sb, KERN_ERR, 6455 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6456 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6457 le16_to_cpu(gdp->bg_checksum)); 6458 err = -EFSBADCRC; 6459 goto restore_opts; 6460 } 6461 } 6462 6463 /* 6464 * If we have an unprocessed orphan list hanging 6465 * around from a previously readonly bdev mount, 6466 * require a full umount/remount for now. 6467 */ 6468 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6469 ext4_msg(sb, KERN_WARNING, "Couldn't " 6470 "remount RDWR because of unprocessed " 6471 "orphan inode list. Please " 6472 "umount/remount instead"); 6473 err = -EINVAL; 6474 goto restore_opts; 6475 } 6476 6477 /* 6478 * Mounting a RDONLY partition read-write, so reread 6479 * and store the current valid flag. (It may have 6480 * been changed by e2fsck since we originally mounted 6481 * the partition.) 6482 */ 6483 if (sbi->s_journal) { 6484 err = ext4_clear_journal_err(sb, es); 6485 if (err) 6486 goto restore_opts; 6487 } 6488 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6489 ~EXT4_FC_REPLAY); 6490 6491 err = ext4_setup_super(sb, es, 0); 6492 if (err) 6493 goto restore_opts; 6494 6495 sb->s_flags &= ~SB_RDONLY; 6496 if (ext4_has_feature_mmp(sb)) 6497 if (ext4_multi_mount_protect(sb, 6498 le64_to_cpu(es->s_mmp_block))) { 6499 err = -EROFS; 6500 goto restore_opts; 6501 } 6502 #ifdef CONFIG_QUOTA 6503 enable_quota = 1; 6504 #endif 6505 } 6506 } 6507 6508 /* 6509 * Reinitialize lazy itable initialization thread based on 6510 * current settings 6511 */ 6512 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6513 ext4_unregister_li_request(sb); 6514 else { 6515 ext4_group_t first_not_zeroed; 6516 first_not_zeroed = ext4_has_uninit_itable(sb); 6517 ext4_register_li_request(sb, first_not_zeroed); 6518 } 6519 6520 /* 6521 * Handle creation of system zone data early because it can fail. 6522 * Releasing of existing data is done when we are sure remount will 6523 * succeed. 6524 */ 6525 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6526 err = ext4_setup_system_zone(sb); 6527 if (err) 6528 goto restore_opts; 6529 } 6530 6531 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6532 err = ext4_commit_super(sb); 6533 if (err) 6534 goto restore_opts; 6535 } 6536 6537 #ifdef CONFIG_QUOTA 6538 /* Release old quota file names */ 6539 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6540 kfree(old_opts.s_qf_names[i]); 6541 if (enable_quota) { 6542 if (sb_any_quota_suspended(sb)) 6543 dquot_resume(sb, -1); 6544 else if (ext4_has_feature_quota(sb)) { 6545 err = ext4_enable_quotas(sb); 6546 if (err) 6547 goto restore_opts; 6548 } 6549 } 6550 #endif 6551 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6552 ext4_release_system_zone(sb); 6553 6554 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6555 ext4_stop_mmpd(sbi); 6556 6557 return 0; 6558 6559 restore_opts: 6560 sb->s_flags = old_sb_flags; 6561 sbi->s_mount_opt = old_opts.s_mount_opt; 6562 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6563 sbi->s_resuid = old_opts.s_resuid; 6564 sbi->s_resgid = old_opts.s_resgid; 6565 sbi->s_commit_interval = old_opts.s_commit_interval; 6566 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6567 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6568 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6569 ext4_release_system_zone(sb); 6570 #ifdef CONFIG_QUOTA 6571 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6572 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6573 to_free[i] = get_qf_name(sb, sbi, i); 6574 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6575 } 6576 synchronize_rcu(); 6577 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6578 kfree(to_free[i]); 6579 #endif 6580 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6581 ext4_stop_mmpd(sbi); 6582 return err; 6583 } 6584 6585 static int ext4_reconfigure(struct fs_context *fc) 6586 { 6587 struct super_block *sb = fc->root->d_sb; 6588 int ret; 6589 6590 fc->s_fs_info = EXT4_SB(sb); 6591 6592 ret = ext4_check_opt_consistency(fc, sb); 6593 if (ret < 0) 6594 return ret; 6595 6596 ret = __ext4_remount(fc, sb); 6597 if (ret < 0) 6598 return ret; 6599 6600 ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.", 6601 &sb->s_uuid, ext4_quota_mode(sb)); 6602 6603 return 0; 6604 } 6605 6606 #ifdef CONFIG_QUOTA 6607 static int ext4_statfs_project(struct super_block *sb, 6608 kprojid_t projid, struct kstatfs *buf) 6609 { 6610 struct kqid qid; 6611 struct dquot *dquot; 6612 u64 limit; 6613 u64 curblock; 6614 6615 qid = make_kqid_projid(projid); 6616 dquot = dqget(sb, qid); 6617 if (IS_ERR(dquot)) 6618 return PTR_ERR(dquot); 6619 spin_lock(&dquot->dq_dqb_lock); 6620 6621 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6622 dquot->dq_dqb.dqb_bhardlimit); 6623 limit >>= sb->s_blocksize_bits; 6624 6625 if (limit && buf->f_blocks > limit) { 6626 curblock = (dquot->dq_dqb.dqb_curspace + 6627 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6628 buf->f_blocks = limit; 6629 buf->f_bfree = buf->f_bavail = 6630 (buf->f_blocks > curblock) ? 6631 (buf->f_blocks - curblock) : 0; 6632 } 6633 6634 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6635 dquot->dq_dqb.dqb_ihardlimit); 6636 if (limit && buf->f_files > limit) { 6637 buf->f_files = limit; 6638 buf->f_ffree = 6639 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6640 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6641 } 6642 6643 spin_unlock(&dquot->dq_dqb_lock); 6644 dqput(dquot); 6645 return 0; 6646 } 6647 #endif 6648 6649 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6650 { 6651 struct super_block *sb = dentry->d_sb; 6652 struct ext4_sb_info *sbi = EXT4_SB(sb); 6653 struct ext4_super_block *es = sbi->s_es; 6654 ext4_fsblk_t overhead = 0, resv_blocks; 6655 s64 bfree; 6656 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6657 6658 if (!test_opt(sb, MINIX_DF)) 6659 overhead = sbi->s_overhead; 6660 6661 buf->f_type = EXT4_SUPER_MAGIC; 6662 buf->f_bsize = sb->s_blocksize; 6663 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6664 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6665 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6666 /* prevent underflow in case that few free space is available */ 6667 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6668 buf->f_bavail = buf->f_bfree - 6669 (ext4_r_blocks_count(es) + resv_blocks); 6670 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6671 buf->f_bavail = 0; 6672 buf->f_files = le32_to_cpu(es->s_inodes_count); 6673 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6674 buf->f_namelen = EXT4_NAME_LEN; 6675 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6676 6677 #ifdef CONFIG_QUOTA 6678 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6679 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6680 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6681 #endif 6682 return 0; 6683 } 6684 6685 6686 #ifdef CONFIG_QUOTA 6687 6688 /* 6689 * Helper functions so that transaction is started before we acquire dqio_sem 6690 * to keep correct lock ordering of transaction > dqio_sem 6691 */ 6692 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6693 { 6694 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6695 } 6696 6697 static int ext4_write_dquot(struct dquot *dquot) 6698 { 6699 int ret, err; 6700 handle_t *handle; 6701 struct inode *inode; 6702 6703 inode = dquot_to_inode(dquot); 6704 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6705 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6706 if (IS_ERR(handle)) 6707 return PTR_ERR(handle); 6708 ret = dquot_commit(dquot); 6709 err = ext4_journal_stop(handle); 6710 if (!ret) 6711 ret = err; 6712 return ret; 6713 } 6714 6715 static int ext4_acquire_dquot(struct dquot *dquot) 6716 { 6717 int ret, err; 6718 handle_t *handle; 6719 6720 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6721 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6722 if (IS_ERR(handle)) 6723 return PTR_ERR(handle); 6724 ret = dquot_acquire(dquot); 6725 err = ext4_journal_stop(handle); 6726 if (!ret) 6727 ret = err; 6728 return ret; 6729 } 6730 6731 static int ext4_release_dquot(struct dquot *dquot) 6732 { 6733 int ret, err; 6734 handle_t *handle; 6735 6736 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6737 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6738 if (IS_ERR(handle)) { 6739 /* Release dquot anyway to avoid endless cycle in dqput() */ 6740 dquot_release(dquot); 6741 return PTR_ERR(handle); 6742 } 6743 ret = dquot_release(dquot); 6744 err = ext4_journal_stop(handle); 6745 if (!ret) 6746 ret = err; 6747 return ret; 6748 } 6749 6750 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6751 { 6752 struct super_block *sb = dquot->dq_sb; 6753 6754 if (ext4_is_quota_journalled(sb)) { 6755 dquot_mark_dquot_dirty(dquot); 6756 return ext4_write_dquot(dquot); 6757 } else { 6758 return dquot_mark_dquot_dirty(dquot); 6759 } 6760 } 6761 6762 static int ext4_write_info(struct super_block *sb, int type) 6763 { 6764 int ret, err; 6765 handle_t *handle; 6766 6767 /* Data block + inode block */ 6768 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6769 if (IS_ERR(handle)) 6770 return PTR_ERR(handle); 6771 ret = dquot_commit_info(sb, type); 6772 err = ext4_journal_stop(handle); 6773 if (!ret) 6774 ret = err; 6775 return ret; 6776 } 6777 6778 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6779 { 6780 struct ext4_inode_info *ei = EXT4_I(inode); 6781 6782 /* The first argument of lockdep_set_subclass has to be 6783 * *exactly* the same as the argument to init_rwsem() --- in 6784 * this case, in init_once() --- or lockdep gets unhappy 6785 * because the name of the lock is set using the 6786 * stringification of the argument to init_rwsem(). 6787 */ 6788 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6789 lockdep_set_subclass(&ei->i_data_sem, subclass); 6790 } 6791 6792 /* 6793 * Standard function to be called on quota_on 6794 */ 6795 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6796 const struct path *path) 6797 { 6798 int err; 6799 6800 if (!test_opt(sb, QUOTA)) 6801 return -EINVAL; 6802 6803 /* Quotafile not on the same filesystem? */ 6804 if (path->dentry->d_sb != sb) 6805 return -EXDEV; 6806 6807 /* Quota already enabled for this file? */ 6808 if (IS_NOQUOTA(d_inode(path->dentry))) 6809 return -EBUSY; 6810 6811 /* Journaling quota? */ 6812 if (EXT4_SB(sb)->s_qf_names[type]) { 6813 /* Quotafile not in fs root? */ 6814 if (path->dentry->d_parent != sb->s_root) 6815 ext4_msg(sb, KERN_WARNING, 6816 "Quota file not on filesystem root. " 6817 "Journaled quota will not work"); 6818 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6819 } else { 6820 /* 6821 * Clear the flag just in case mount options changed since 6822 * last time. 6823 */ 6824 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6825 } 6826 6827 /* 6828 * When we journal data on quota file, we have to flush journal to see 6829 * all updates to the file when we bypass pagecache... 6830 */ 6831 if (EXT4_SB(sb)->s_journal && 6832 ext4_should_journal_data(d_inode(path->dentry))) { 6833 /* 6834 * We don't need to lock updates but journal_flush() could 6835 * otherwise be livelocked... 6836 */ 6837 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6838 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6839 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6840 if (err) 6841 return err; 6842 } 6843 6844 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6845 err = dquot_quota_on(sb, type, format_id, path); 6846 if (!err) { 6847 struct inode *inode = d_inode(path->dentry); 6848 handle_t *handle; 6849 6850 /* 6851 * Set inode flags to prevent userspace from messing with quota 6852 * files. If this fails, we return success anyway since quotas 6853 * are already enabled and this is not a hard failure. 6854 */ 6855 inode_lock(inode); 6856 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6857 if (IS_ERR(handle)) 6858 goto unlock_inode; 6859 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6860 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6861 S_NOATIME | S_IMMUTABLE); 6862 err = ext4_mark_inode_dirty(handle, inode); 6863 ext4_journal_stop(handle); 6864 unlock_inode: 6865 inode_unlock(inode); 6866 if (err) 6867 dquot_quota_off(sb, type); 6868 } 6869 if (err) 6870 lockdep_set_quota_inode(path->dentry->d_inode, 6871 I_DATA_SEM_NORMAL); 6872 return err; 6873 } 6874 6875 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 6876 { 6877 switch (type) { 6878 case USRQUOTA: 6879 return qf_inum == EXT4_USR_QUOTA_INO; 6880 case GRPQUOTA: 6881 return qf_inum == EXT4_GRP_QUOTA_INO; 6882 case PRJQUOTA: 6883 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 6884 default: 6885 BUG(); 6886 } 6887 } 6888 6889 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6890 unsigned int flags) 6891 { 6892 int err; 6893 struct inode *qf_inode; 6894 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6895 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6896 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6897 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6898 }; 6899 6900 BUG_ON(!ext4_has_feature_quota(sb)); 6901 6902 if (!qf_inums[type]) 6903 return -EPERM; 6904 6905 if (!ext4_check_quota_inum(type, qf_inums[type])) { 6906 ext4_error(sb, "Bad quota inum: %lu, type: %d", 6907 qf_inums[type], type); 6908 return -EUCLEAN; 6909 } 6910 6911 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6912 if (IS_ERR(qf_inode)) { 6913 ext4_error(sb, "Bad quota inode: %lu, type: %d", 6914 qf_inums[type], type); 6915 return PTR_ERR(qf_inode); 6916 } 6917 6918 /* Don't account quota for quota files to avoid recursion */ 6919 qf_inode->i_flags |= S_NOQUOTA; 6920 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6921 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6922 if (err) 6923 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6924 iput(qf_inode); 6925 6926 return err; 6927 } 6928 6929 /* Enable usage tracking for all quota types. */ 6930 int ext4_enable_quotas(struct super_block *sb) 6931 { 6932 int type, err = 0; 6933 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6934 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6935 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6936 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6937 }; 6938 bool quota_mopt[EXT4_MAXQUOTAS] = { 6939 test_opt(sb, USRQUOTA), 6940 test_opt(sb, GRPQUOTA), 6941 test_opt(sb, PRJQUOTA), 6942 }; 6943 6944 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6945 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6946 if (qf_inums[type]) { 6947 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6948 DQUOT_USAGE_ENABLED | 6949 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6950 if (err) { 6951 ext4_warning(sb, 6952 "Failed to enable quota tracking " 6953 "(type=%d, err=%d, ino=%lu). " 6954 "Please run e2fsck to fix.", type, 6955 err, qf_inums[type]); 6956 for (type--; type >= 0; type--) { 6957 struct inode *inode; 6958 6959 inode = sb_dqopt(sb)->files[type]; 6960 if (inode) 6961 inode = igrab(inode); 6962 dquot_quota_off(sb, type); 6963 if (inode) { 6964 lockdep_set_quota_inode(inode, 6965 I_DATA_SEM_NORMAL); 6966 iput(inode); 6967 } 6968 } 6969 6970 return err; 6971 } 6972 } 6973 } 6974 return 0; 6975 } 6976 6977 static int ext4_quota_off(struct super_block *sb, int type) 6978 { 6979 struct inode *inode = sb_dqopt(sb)->files[type]; 6980 handle_t *handle; 6981 int err; 6982 6983 /* Force all delayed allocation blocks to be allocated. 6984 * Caller already holds s_umount sem */ 6985 if (test_opt(sb, DELALLOC)) 6986 sync_filesystem(sb); 6987 6988 if (!inode || !igrab(inode)) 6989 goto out; 6990 6991 err = dquot_quota_off(sb, type); 6992 if (err || ext4_has_feature_quota(sb)) 6993 goto out_put; 6994 6995 inode_lock(inode); 6996 /* 6997 * Update modification times of quota files when userspace can 6998 * start looking at them. If we fail, we return success anyway since 6999 * this is not a hard failure and quotas are already disabled. 7000 */ 7001 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7002 if (IS_ERR(handle)) { 7003 err = PTR_ERR(handle); 7004 goto out_unlock; 7005 } 7006 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7007 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7008 inode->i_mtime = inode->i_ctime = current_time(inode); 7009 err = ext4_mark_inode_dirty(handle, inode); 7010 ext4_journal_stop(handle); 7011 out_unlock: 7012 inode_unlock(inode); 7013 out_put: 7014 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7015 iput(inode); 7016 return err; 7017 out: 7018 return dquot_quota_off(sb, type); 7019 } 7020 7021 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7022 * acquiring the locks... As quota files are never truncated and quota code 7023 * itself serializes the operations (and no one else should touch the files) 7024 * we don't have to be afraid of races */ 7025 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7026 size_t len, loff_t off) 7027 { 7028 struct inode *inode = sb_dqopt(sb)->files[type]; 7029 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7030 int offset = off & (sb->s_blocksize - 1); 7031 int tocopy; 7032 size_t toread; 7033 struct buffer_head *bh; 7034 loff_t i_size = i_size_read(inode); 7035 7036 if (off > i_size) 7037 return 0; 7038 if (off+len > i_size) 7039 len = i_size-off; 7040 toread = len; 7041 while (toread > 0) { 7042 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7043 bh = ext4_bread(NULL, inode, blk, 0); 7044 if (IS_ERR(bh)) 7045 return PTR_ERR(bh); 7046 if (!bh) /* A hole? */ 7047 memset(data, 0, tocopy); 7048 else 7049 memcpy(data, bh->b_data+offset, tocopy); 7050 brelse(bh); 7051 offset = 0; 7052 toread -= tocopy; 7053 data += tocopy; 7054 blk++; 7055 } 7056 return len; 7057 } 7058 7059 /* Write to quotafile (we know the transaction is already started and has 7060 * enough credits) */ 7061 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7062 const char *data, size_t len, loff_t off) 7063 { 7064 struct inode *inode = sb_dqopt(sb)->files[type]; 7065 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7066 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7067 int retries = 0; 7068 struct buffer_head *bh; 7069 handle_t *handle = journal_current_handle(); 7070 7071 if (!handle) { 7072 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7073 " cancelled because transaction is not started", 7074 (unsigned long long)off, (unsigned long long)len); 7075 return -EIO; 7076 } 7077 /* 7078 * Since we account only one data block in transaction credits, 7079 * then it is impossible to cross a block boundary. 7080 */ 7081 if (sb->s_blocksize - offset < len) { 7082 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7083 " cancelled because not block aligned", 7084 (unsigned long long)off, (unsigned long long)len); 7085 return -EIO; 7086 } 7087 7088 do { 7089 bh = ext4_bread(handle, inode, blk, 7090 EXT4_GET_BLOCKS_CREATE | 7091 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7092 } while (PTR_ERR(bh) == -ENOSPC && 7093 ext4_should_retry_alloc(inode->i_sb, &retries)); 7094 if (IS_ERR(bh)) 7095 return PTR_ERR(bh); 7096 if (!bh) 7097 goto out; 7098 BUFFER_TRACE(bh, "get write access"); 7099 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7100 if (err) { 7101 brelse(bh); 7102 return err; 7103 } 7104 lock_buffer(bh); 7105 memcpy(bh->b_data+offset, data, len); 7106 flush_dcache_page(bh->b_page); 7107 unlock_buffer(bh); 7108 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7109 brelse(bh); 7110 out: 7111 if (inode->i_size < off + len) { 7112 i_size_write(inode, off + len); 7113 EXT4_I(inode)->i_disksize = inode->i_size; 7114 err2 = ext4_mark_inode_dirty(handle, inode); 7115 if (unlikely(err2 && !err)) 7116 err = err2; 7117 } 7118 return err ? err : len; 7119 } 7120 #endif 7121 7122 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7123 static inline void register_as_ext2(void) 7124 { 7125 int err = register_filesystem(&ext2_fs_type); 7126 if (err) 7127 printk(KERN_WARNING 7128 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7129 } 7130 7131 static inline void unregister_as_ext2(void) 7132 { 7133 unregister_filesystem(&ext2_fs_type); 7134 } 7135 7136 static inline int ext2_feature_set_ok(struct super_block *sb) 7137 { 7138 if (ext4_has_unknown_ext2_incompat_features(sb)) 7139 return 0; 7140 if (sb_rdonly(sb)) 7141 return 1; 7142 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7143 return 0; 7144 return 1; 7145 } 7146 #else 7147 static inline void register_as_ext2(void) { } 7148 static inline void unregister_as_ext2(void) { } 7149 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7150 #endif 7151 7152 static inline void register_as_ext3(void) 7153 { 7154 int err = register_filesystem(&ext3_fs_type); 7155 if (err) 7156 printk(KERN_WARNING 7157 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7158 } 7159 7160 static inline void unregister_as_ext3(void) 7161 { 7162 unregister_filesystem(&ext3_fs_type); 7163 } 7164 7165 static inline int ext3_feature_set_ok(struct super_block *sb) 7166 { 7167 if (ext4_has_unknown_ext3_incompat_features(sb)) 7168 return 0; 7169 if (!ext4_has_feature_journal(sb)) 7170 return 0; 7171 if (sb_rdonly(sb)) 7172 return 1; 7173 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7174 return 0; 7175 return 1; 7176 } 7177 7178 static struct file_system_type ext4_fs_type = { 7179 .owner = THIS_MODULE, 7180 .name = "ext4", 7181 .init_fs_context = ext4_init_fs_context, 7182 .parameters = ext4_param_specs, 7183 .kill_sb = kill_block_super, 7184 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7185 }; 7186 MODULE_ALIAS_FS("ext4"); 7187 7188 /* Shared across all ext4 file systems */ 7189 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7190 7191 static int __init ext4_init_fs(void) 7192 { 7193 int i, err; 7194 7195 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7196 ext4_li_info = NULL; 7197 7198 /* Build-time check for flags consistency */ 7199 ext4_check_flag_values(); 7200 7201 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7202 init_waitqueue_head(&ext4__ioend_wq[i]); 7203 7204 err = ext4_init_es(); 7205 if (err) 7206 return err; 7207 7208 err = ext4_init_pending(); 7209 if (err) 7210 goto out7; 7211 7212 err = ext4_init_post_read_processing(); 7213 if (err) 7214 goto out6; 7215 7216 err = ext4_init_pageio(); 7217 if (err) 7218 goto out5; 7219 7220 err = ext4_init_system_zone(); 7221 if (err) 7222 goto out4; 7223 7224 err = ext4_init_sysfs(); 7225 if (err) 7226 goto out3; 7227 7228 err = ext4_init_mballoc(); 7229 if (err) 7230 goto out2; 7231 err = init_inodecache(); 7232 if (err) 7233 goto out1; 7234 7235 err = ext4_fc_init_dentry_cache(); 7236 if (err) 7237 goto out05; 7238 7239 register_as_ext3(); 7240 register_as_ext2(); 7241 err = register_filesystem(&ext4_fs_type); 7242 if (err) 7243 goto out; 7244 7245 return 0; 7246 out: 7247 unregister_as_ext2(); 7248 unregister_as_ext3(); 7249 ext4_fc_destroy_dentry_cache(); 7250 out05: 7251 destroy_inodecache(); 7252 out1: 7253 ext4_exit_mballoc(); 7254 out2: 7255 ext4_exit_sysfs(); 7256 out3: 7257 ext4_exit_system_zone(); 7258 out4: 7259 ext4_exit_pageio(); 7260 out5: 7261 ext4_exit_post_read_processing(); 7262 out6: 7263 ext4_exit_pending(); 7264 out7: 7265 ext4_exit_es(); 7266 7267 return err; 7268 } 7269 7270 static void __exit ext4_exit_fs(void) 7271 { 7272 ext4_destroy_lazyinit_thread(); 7273 unregister_as_ext2(); 7274 unregister_as_ext3(); 7275 unregister_filesystem(&ext4_fs_type); 7276 ext4_fc_destroy_dentry_cache(); 7277 destroy_inodecache(); 7278 ext4_exit_mballoc(); 7279 ext4_exit_sysfs(); 7280 ext4_exit_system_zone(); 7281 ext4_exit_pageio(); 7282 ext4_exit_post_read_processing(); 7283 ext4_exit_es(); 7284 ext4_exit_pending(); 7285 } 7286 7287 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7288 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7289 MODULE_LICENSE("GPL"); 7290 MODULE_SOFTDEP("pre: crc32c"); 7291 module_init(ext4_init_fs) 7292 module_exit(ext4_exit_fs) 7293