xref: /openbmc/linux/fs/ext4/super.c (revision 9b799b78)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/buffer_head.h>
29 #include <linux/exportfs.h>
30 #include <linux/vfs.h>
31 #include <linux/random.h>
32 #include <linux/mount.h>
33 #include <linux/namei.h>
34 #include <linux/quotaops.h>
35 #include <linux/seq_file.h>
36 #include <linux/proc_fs.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 static int ext4_mballoc_ready;
62 
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 			     unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 					struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 				   struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 		       const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85 
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 	.owner		= THIS_MODULE,
89 	.name		= "ext2",
90 	.mount		= ext4_mount,
91 	.kill_sb	= kill_block_super,
92 	.fs_flags	= FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100 
101 
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 	.owner		= THIS_MODULE,
105 	.name		= "ext3",
106 	.mount		= ext4_mount,
107 	.kill_sb	= kill_block_super,
108 	.fs_flags	= FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116 
117 static int ext4_verify_csum_type(struct super_block *sb,
118 				 struct ext4_super_block *es)
119 {
120 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 		return 1;
123 
124 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126 
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 				   struct ext4_super_block *es)
129 {
130 	struct ext4_sb_info *sbi = EXT4_SB(sb);
131 	int offset = offsetof(struct ext4_super_block, s_checksum);
132 	__u32 csum;
133 
134 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135 
136 	return cpu_to_le32(csum);
137 }
138 
139 static int ext4_superblock_csum_verify(struct super_block *sb,
140 				       struct ext4_super_block *es)
141 {
142 	if (!ext4_has_metadata_csum(sb))
143 		return 1;
144 
145 	return es->s_checksum == ext4_superblock_csum(sb, es);
146 }
147 
148 void ext4_superblock_csum_set(struct super_block *sb)
149 {
150 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
151 
152 	if (!ext4_has_metadata_csum(sb))
153 		return;
154 
155 	es->s_checksum = ext4_superblock_csum(sb, es);
156 }
157 
158 void *ext4_kvmalloc(size_t size, gfp_t flags)
159 {
160 	void *ret;
161 
162 	ret = kmalloc(size, flags | __GFP_NOWARN);
163 	if (!ret)
164 		ret = __vmalloc(size, flags, PAGE_KERNEL);
165 	return ret;
166 }
167 
168 void *ext4_kvzalloc(size_t size, gfp_t flags)
169 {
170 	void *ret;
171 
172 	ret = kzalloc(size, flags | __GFP_NOWARN);
173 	if (!ret)
174 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
175 	return ret;
176 }
177 
178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
179 			       struct ext4_group_desc *bg)
180 {
181 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
182 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
184 }
185 
186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
187 			       struct ext4_group_desc *bg)
188 {
189 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
190 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
192 }
193 
194 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
195 			      struct ext4_group_desc *bg)
196 {
197 	return le32_to_cpu(bg->bg_inode_table_lo) |
198 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
200 }
201 
202 __u32 ext4_free_group_clusters(struct super_block *sb,
203 			       struct ext4_group_desc *bg)
204 {
205 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
206 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
208 }
209 
210 __u32 ext4_free_inodes_count(struct super_block *sb,
211 			      struct ext4_group_desc *bg)
212 {
213 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
214 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
216 }
217 
218 __u32 ext4_used_dirs_count(struct super_block *sb,
219 			      struct ext4_group_desc *bg)
220 {
221 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
222 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
224 }
225 
226 __u32 ext4_itable_unused_count(struct super_block *sb,
227 			      struct ext4_group_desc *bg)
228 {
229 	return le16_to_cpu(bg->bg_itable_unused_lo) |
230 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
232 }
233 
234 void ext4_block_bitmap_set(struct super_block *sb,
235 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
238 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241 
242 void ext4_inode_bitmap_set(struct super_block *sb,
243 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
246 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249 
250 void ext4_inode_table_set(struct super_block *sb,
251 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
254 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
256 }
257 
258 void ext4_free_group_clusters_set(struct super_block *sb,
259 				  struct ext4_group_desc *bg, __u32 count)
260 {
261 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
262 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
264 }
265 
266 void ext4_free_inodes_set(struct super_block *sb,
267 			  struct ext4_group_desc *bg, __u32 count)
268 {
269 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
270 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
272 }
273 
274 void ext4_used_dirs_set(struct super_block *sb,
275 			  struct ext4_group_desc *bg, __u32 count)
276 {
277 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
278 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
280 }
281 
282 void ext4_itable_unused_set(struct super_block *sb,
283 			  struct ext4_group_desc *bg, __u32 count)
284 {
285 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
286 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
288 }
289 
290 
291 static void __save_error_info(struct super_block *sb, const char *func,
292 			    unsigned int line)
293 {
294 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
295 
296 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
297 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
298 	es->s_last_error_time = cpu_to_le32(get_seconds());
299 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
300 	es->s_last_error_line = cpu_to_le32(line);
301 	if (!es->s_first_error_time) {
302 		es->s_first_error_time = es->s_last_error_time;
303 		strncpy(es->s_first_error_func, func,
304 			sizeof(es->s_first_error_func));
305 		es->s_first_error_line = cpu_to_le32(line);
306 		es->s_first_error_ino = es->s_last_error_ino;
307 		es->s_first_error_block = es->s_last_error_block;
308 	}
309 	/*
310 	 * Start the daily error reporting function if it hasn't been
311 	 * started already
312 	 */
313 	if (!es->s_error_count)
314 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
315 	le32_add_cpu(&es->s_error_count, 1);
316 }
317 
318 static void save_error_info(struct super_block *sb, const char *func,
319 			    unsigned int line)
320 {
321 	__save_error_info(sb, func, line);
322 	ext4_commit_super(sb, 1);
323 }
324 
325 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
326 {
327 	struct super_block		*sb = journal->j_private;
328 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
329 	int				error = is_journal_aborted(journal);
330 	struct ext4_journal_cb_entry	*jce;
331 
332 	BUG_ON(txn->t_state == T_FINISHED);
333 	spin_lock(&sbi->s_md_lock);
334 	while (!list_empty(&txn->t_private_list)) {
335 		jce = list_entry(txn->t_private_list.next,
336 				 struct ext4_journal_cb_entry, jce_list);
337 		list_del_init(&jce->jce_list);
338 		spin_unlock(&sbi->s_md_lock);
339 		jce->jce_func(sb, jce, error);
340 		spin_lock(&sbi->s_md_lock);
341 	}
342 	spin_unlock(&sbi->s_md_lock);
343 }
344 
345 /* Deal with the reporting of failure conditions on a filesystem such as
346  * inconsistencies detected or read IO failures.
347  *
348  * On ext2, we can store the error state of the filesystem in the
349  * superblock.  That is not possible on ext4, because we may have other
350  * write ordering constraints on the superblock which prevent us from
351  * writing it out straight away; and given that the journal is about to
352  * be aborted, we can't rely on the current, or future, transactions to
353  * write out the superblock safely.
354  *
355  * We'll just use the jbd2_journal_abort() error code to record an error in
356  * the journal instead.  On recovery, the journal will complain about
357  * that error until we've noted it down and cleared it.
358  */
359 
360 static void ext4_handle_error(struct super_block *sb)
361 {
362 	if (sb->s_flags & MS_RDONLY)
363 		return;
364 
365 	if (!test_opt(sb, ERRORS_CONT)) {
366 		journal_t *journal = EXT4_SB(sb)->s_journal;
367 
368 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
369 		if (journal)
370 			jbd2_journal_abort(journal, -EIO);
371 	}
372 	if (test_opt(sb, ERRORS_RO)) {
373 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
374 		/*
375 		 * Make sure updated value of ->s_mount_flags will be visible
376 		 * before ->s_flags update
377 		 */
378 		smp_wmb();
379 		sb->s_flags |= MS_RDONLY;
380 	}
381 	if (test_opt(sb, ERRORS_PANIC))
382 		panic("EXT4-fs (device %s): panic forced after error\n",
383 			sb->s_id);
384 }
385 
386 #define ext4_error_ratelimit(sb)					\
387 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
388 			     "EXT4-fs error")
389 
390 void __ext4_error(struct super_block *sb, const char *function,
391 		  unsigned int line, const char *fmt, ...)
392 {
393 	struct va_format vaf;
394 	va_list args;
395 
396 	if (ext4_error_ratelimit(sb)) {
397 		va_start(args, fmt);
398 		vaf.fmt = fmt;
399 		vaf.va = &args;
400 		printk(KERN_CRIT
401 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
402 		       sb->s_id, function, line, current->comm, &vaf);
403 		va_end(args);
404 	}
405 	save_error_info(sb, function, line);
406 	ext4_handle_error(sb);
407 }
408 
409 void __ext4_error_inode(struct inode *inode, const char *function,
410 			unsigned int line, ext4_fsblk_t block,
411 			const char *fmt, ...)
412 {
413 	va_list args;
414 	struct va_format vaf;
415 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
416 
417 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
418 	es->s_last_error_block = cpu_to_le64(block);
419 	if (ext4_error_ratelimit(inode->i_sb)) {
420 		va_start(args, fmt);
421 		vaf.fmt = fmt;
422 		vaf.va = &args;
423 		if (block)
424 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
425 			       "inode #%lu: block %llu: comm %s: %pV\n",
426 			       inode->i_sb->s_id, function, line, inode->i_ino,
427 			       block, current->comm, &vaf);
428 		else
429 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
430 			       "inode #%lu: comm %s: %pV\n",
431 			       inode->i_sb->s_id, function, line, inode->i_ino,
432 			       current->comm, &vaf);
433 		va_end(args);
434 	}
435 	save_error_info(inode->i_sb, function, line);
436 	ext4_handle_error(inode->i_sb);
437 }
438 
439 void __ext4_error_file(struct file *file, const char *function,
440 		       unsigned int line, ext4_fsblk_t block,
441 		       const char *fmt, ...)
442 {
443 	va_list args;
444 	struct va_format vaf;
445 	struct ext4_super_block *es;
446 	struct inode *inode = file_inode(file);
447 	char pathname[80], *path;
448 
449 	es = EXT4_SB(inode->i_sb)->s_es;
450 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
451 	if (ext4_error_ratelimit(inode->i_sb)) {
452 		path = d_path(&(file->f_path), pathname, sizeof(pathname));
453 		if (IS_ERR(path))
454 			path = "(unknown)";
455 		va_start(args, fmt);
456 		vaf.fmt = fmt;
457 		vaf.va = &args;
458 		if (block)
459 			printk(KERN_CRIT
460 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
461 			       "block %llu: comm %s: path %s: %pV\n",
462 			       inode->i_sb->s_id, function, line, inode->i_ino,
463 			       block, current->comm, path, &vaf);
464 		else
465 			printk(KERN_CRIT
466 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
467 			       "comm %s: path %s: %pV\n",
468 			       inode->i_sb->s_id, function, line, inode->i_ino,
469 			       current->comm, path, &vaf);
470 		va_end(args);
471 	}
472 	save_error_info(inode->i_sb, function, line);
473 	ext4_handle_error(inode->i_sb);
474 }
475 
476 const char *ext4_decode_error(struct super_block *sb, int errno,
477 			      char nbuf[16])
478 {
479 	char *errstr = NULL;
480 
481 	switch (errno) {
482 	case -EIO:
483 		errstr = "IO failure";
484 		break;
485 	case -ENOMEM:
486 		errstr = "Out of memory";
487 		break;
488 	case -EROFS:
489 		if (!sb || (EXT4_SB(sb)->s_journal &&
490 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
491 			errstr = "Journal has aborted";
492 		else
493 			errstr = "Readonly filesystem";
494 		break;
495 	default:
496 		/* If the caller passed in an extra buffer for unknown
497 		 * errors, textualise them now.  Else we just return
498 		 * NULL. */
499 		if (nbuf) {
500 			/* Check for truncated error codes... */
501 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
502 				errstr = nbuf;
503 		}
504 		break;
505 	}
506 
507 	return errstr;
508 }
509 
510 /* __ext4_std_error decodes expected errors from journaling functions
511  * automatically and invokes the appropriate error response.  */
512 
513 void __ext4_std_error(struct super_block *sb, const char *function,
514 		      unsigned int line, int errno)
515 {
516 	char nbuf[16];
517 	const char *errstr;
518 
519 	/* Special case: if the error is EROFS, and we're not already
520 	 * inside a transaction, then there's really no point in logging
521 	 * an error. */
522 	if (errno == -EROFS && journal_current_handle() == NULL &&
523 	    (sb->s_flags & MS_RDONLY))
524 		return;
525 
526 	if (ext4_error_ratelimit(sb)) {
527 		errstr = ext4_decode_error(sb, errno, nbuf);
528 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
529 		       sb->s_id, function, line, errstr);
530 	}
531 
532 	save_error_info(sb, function, line);
533 	ext4_handle_error(sb);
534 }
535 
536 /*
537  * ext4_abort is a much stronger failure handler than ext4_error.  The
538  * abort function may be used to deal with unrecoverable failures such
539  * as journal IO errors or ENOMEM at a critical moment in log management.
540  *
541  * We unconditionally force the filesystem into an ABORT|READONLY state,
542  * unless the error response on the fs has been set to panic in which
543  * case we take the easy way out and panic immediately.
544  */
545 
546 void __ext4_abort(struct super_block *sb, const char *function,
547 		unsigned int line, const char *fmt, ...)
548 {
549 	va_list args;
550 
551 	save_error_info(sb, function, line);
552 	va_start(args, fmt);
553 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
554 	       function, line);
555 	vprintk(fmt, args);
556 	printk("\n");
557 	va_end(args);
558 
559 	if ((sb->s_flags & MS_RDONLY) == 0) {
560 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
561 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
562 		/*
563 		 * Make sure updated value of ->s_mount_flags will be visible
564 		 * before ->s_flags update
565 		 */
566 		smp_wmb();
567 		sb->s_flags |= MS_RDONLY;
568 		if (EXT4_SB(sb)->s_journal)
569 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
570 		save_error_info(sb, function, line);
571 	}
572 	if (test_opt(sb, ERRORS_PANIC))
573 		panic("EXT4-fs panic from previous error\n");
574 }
575 
576 void __ext4_msg(struct super_block *sb,
577 		const char *prefix, const char *fmt, ...)
578 {
579 	struct va_format vaf;
580 	va_list args;
581 
582 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
583 		return;
584 
585 	va_start(args, fmt);
586 	vaf.fmt = fmt;
587 	vaf.va = &args;
588 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
589 	va_end(args);
590 }
591 
592 void __ext4_warning(struct super_block *sb, const char *function,
593 		    unsigned int line, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
599 			  "EXT4-fs warning"))
600 		return;
601 
602 	va_start(args, fmt);
603 	vaf.fmt = fmt;
604 	vaf.va = &args;
605 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
606 	       sb->s_id, function, line, &vaf);
607 	va_end(args);
608 }
609 
610 void __ext4_grp_locked_error(const char *function, unsigned int line,
611 			     struct super_block *sb, ext4_group_t grp,
612 			     unsigned long ino, ext4_fsblk_t block,
613 			     const char *fmt, ...)
614 __releases(bitlock)
615 __acquires(bitlock)
616 {
617 	struct va_format vaf;
618 	va_list args;
619 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
620 
621 	es->s_last_error_ino = cpu_to_le32(ino);
622 	es->s_last_error_block = cpu_to_le64(block);
623 	__save_error_info(sb, function, line);
624 
625 	if (ext4_error_ratelimit(sb)) {
626 		va_start(args, fmt);
627 		vaf.fmt = fmt;
628 		vaf.va = &args;
629 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
630 		       sb->s_id, function, line, grp);
631 		if (ino)
632 			printk(KERN_CONT "inode %lu: ", ino);
633 		if (block)
634 			printk(KERN_CONT "block %llu:",
635 			       (unsigned long long) block);
636 		printk(KERN_CONT "%pV\n", &vaf);
637 		va_end(args);
638 	}
639 
640 	if (test_opt(sb, ERRORS_CONT)) {
641 		ext4_commit_super(sb, 0);
642 		return;
643 	}
644 
645 	ext4_unlock_group(sb, grp);
646 	ext4_handle_error(sb);
647 	/*
648 	 * We only get here in the ERRORS_RO case; relocking the group
649 	 * may be dangerous, but nothing bad will happen since the
650 	 * filesystem will have already been marked read/only and the
651 	 * journal has been aborted.  We return 1 as a hint to callers
652 	 * who might what to use the return value from
653 	 * ext4_grp_locked_error() to distinguish between the
654 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
655 	 * aggressively from the ext4 function in question, with a
656 	 * more appropriate error code.
657 	 */
658 	ext4_lock_group(sb, grp);
659 	return;
660 }
661 
662 void ext4_update_dynamic_rev(struct super_block *sb)
663 {
664 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
665 
666 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
667 		return;
668 
669 	ext4_warning(sb,
670 		     "updating to rev %d because of new feature flag, "
671 		     "running e2fsck is recommended",
672 		     EXT4_DYNAMIC_REV);
673 
674 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
675 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
676 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
677 	/* leave es->s_feature_*compat flags alone */
678 	/* es->s_uuid will be set by e2fsck if empty */
679 
680 	/*
681 	 * The rest of the superblock fields should be zero, and if not it
682 	 * means they are likely already in use, so leave them alone.  We
683 	 * can leave it up to e2fsck to clean up any inconsistencies there.
684 	 */
685 }
686 
687 /*
688  * Open the external journal device
689  */
690 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
691 {
692 	struct block_device *bdev;
693 	char b[BDEVNAME_SIZE];
694 
695 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
696 	if (IS_ERR(bdev))
697 		goto fail;
698 	return bdev;
699 
700 fail:
701 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
702 			__bdevname(dev, b), PTR_ERR(bdev));
703 	return NULL;
704 }
705 
706 /*
707  * Release the journal device
708  */
709 static void ext4_blkdev_put(struct block_device *bdev)
710 {
711 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
712 }
713 
714 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
715 {
716 	struct block_device *bdev;
717 	bdev = sbi->journal_bdev;
718 	if (bdev) {
719 		ext4_blkdev_put(bdev);
720 		sbi->journal_bdev = NULL;
721 	}
722 }
723 
724 static inline struct inode *orphan_list_entry(struct list_head *l)
725 {
726 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
727 }
728 
729 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
730 {
731 	struct list_head *l;
732 
733 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
734 		 le32_to_cpu(sbi->s_es->s_last_orphan));
735 
736 	printk(KERN_ERR "sb_info orphan list:\n");
737 	list_for_each(l, &sbi->s_orphan) {
738 		struct inode *inode = orphan_list_entry(l);
739 		printk(KERN_ERR "  "
740 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
741 		       inode->i_sb->s_id, inode->i_ino, inode,
742 		       inode->i_mode, inode->i_nlink,
743 		       NEXT_ORPHAN(inode));
744 	}
745 }
746 
747 static void ext4_put_super(struct super_block *sb)
748 {
749 	struct ext4_sb_info *sbi = EXT4_SB(sb);
750 	struct ext4_super_block *es = sbi->s_es;
751 	int i, err;
752 
753 	ext4_unregister_li_request(sb);
754 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
755 
756 	flush_workqueue(sbi->rsv_conversion_wq);
757 	destroy_workqueue(sbi->rsv_conversion_wq);
758 
759 	if (sbi->s_journal) {
760 		err = jbd2_journal_destroy(sbi->s_journal);
761 		sbi->s_journal = NULL;
762 		if (err < 0)
763 			ext4_abort(sb, "Couldn't clean up the journal");
764 	}
765 
766 	ext4_es_unregister_shrinker(sbi);
767 	del_timer_sync(&sbi->s_err_report);
768 	ext4_release_system_zone(sb);
769 	ext4_mb_release(sb);
770 	ext4_ext_release(sb);
771 	ext4_xattr_put_super(sb);
772 
773 	if (!(sb->s_flags & MS_RDONLY)) {
774 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
775 		es->s_state = cpu_to_le16(sbi->s_mount_state);
776 	}
777 	if (!(sb->s_flags & MS_RDONLY))
778 		ext4_commit_super(sb, 1);
779 
780 	if (sbi->s_proc) {
781 		remove_proc_entry("options", sbi->s_proc);
782 		remove_proc_entry(sb->s_id, ext4_proc_root);
783 	}
784 	kobject_del(&sbi->s_kobj);
785 
786 	for (i = 0; i < sbi->s_gdb_count; i++)
787 		brelse(sbi->s_group_desc[i]);
788 	kvfree(sbi->s_group_desc);
789 	kvfree(sbi->s_flex_groups);
790 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
791 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
792 	percpu_counter_destroy(&sbi->s_dirs_counter);
793 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
794 	brelse(sbi->s_sbh);
795 #ifdef CONFIG_QUOTA
796 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
797 		kfree(sbi->s_qf_names[i]);
798 #endif
799 
800 	/* Debugging code just in case the in-memory inode orphan list
801 	 * isn't empty.  The on-disk one can be non-empty if we've
802 	 * detected an error and taken the fs readonly, but the
803 	 * in-memory list had better be clean by this point. */
804 	if (!list_empty(&sbi->s_orphan))
805 		dump_orphan_list(sb, sbi);
806 	J_ASSERT(list_empty(&sbi->s_orphan));
807 
808 	invalidate_bdev(sb->s_bdev);
809 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
810 		/*
811 		 * Invalidate the journal device's buffers.  We don't want them
812 		 * floating about in memory - the physical journal device may
813 		 * hotswapped, and it breaks the `ro-after' testing code.
814 		 */
815 		sync_blockdev(sbi->journal_bdev);
816 		invalidate_bdev(sbi->journal_bdev);
817 		ext4_blkdev_remove(sbi);
818 	}
819 	if (sbi->s_mb_cache) {
820 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
821 		sbi->s_mb_cache = NULL;
822 	}
823 	if (sbi->s_mmp_tsk)
824 		kthread_stop(sbi->s_mmp_tsk);
825 	sb->s_fs_info = NULL;
826 	/*
827 	 * Now that we are completely done shutting down the
828 	 * superblock, we need to actually destroy the kobject.
829 	 */
830 	kobject_put(&sbi->s_kobj);
831 	wait_for_completion(&sbi->s_kobj_unregister);
832 	if (sbi->s_chksum_driver)
833 		crypto_free_shash(sbi->s_chksum_driver);
834 	kfree(sbi->s_blockgroup_lock);
835 	kfree(sbi);
836 }
837 
838 static struct kmem_cache *ext4_inode_cachep;
839 
840 /*
841  * Called inside transaction, so use GFP_NOFS
842  */
843 static struct inode *ext4_alloc_inode(struct super_block *sb)
844 {
845 	struct ext4_inode_info *ei;
846 
847 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
848 	if (!ei)
849 		return NULL;
850 
851 	ei->vfs_inode.i_version = 1;
852 	spin_lock_init(&ei->i_raw_lock);
853 	INIT_LIST_HEAD(&ei->i_prealloc_list);
854 	spin_lock_init(&ei->i_prealloc_lock);
855 	ext4_es_init_tree(&ei->i_es_tree);
856 	rwlock_init(&ei->i_es_lock);
857 	INIT_LIST_HEAD(&ei->i_es_list);
858 	ei->i_es_all_nr = 0;
859 	ei->i_es_shk_nr = 0;
860 	ei->i_es_shrink_lblk = 0;
861 	ei->i_reserved_data_blocks = 0;
862 	ei->i_reserved_meta_blocks = 0;
863 	ei->i_allocated_meta_blocks = 0;
864 	ei->i_da_metadata_calc_len = 0;
865 	ei->i_da_metadata_calc_last_lblock = 0;
866 	spin_lock_init(&(ei->i_block_reservation_lock));
867 #ifdef CONFIG_QUOTA
868 	ei->i_reserved_quota = 0;
869 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
870 #endif
871 	ei->jinode = NULL;
872 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
873 	spin_lock_init(&ei->i_completed_io_lock);
874 	ei->i_sync_tid = 0;
875 	ei->i_datasync_tid = 0;
876 	atomic_set(&ei->i_ioend_count, 0);
877 	atomic_set(&ei->i_unwritten, 0);
878 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
879 #ifdef CONFIG_EXT4_FS_ENCRYPTION
880 	ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
881 #endif
882 
883 	return &ei->vfs_inode;
884 }
885 
886 static int ext4_drop_inode(struct inode *inode)
887 {
888 	int drop = generic_drop_inode(inode);
889 
890 	trace_ext4_drop_inode(inode, drop);
891 	return drop;
892 }
893 
894 static void ext4_i_callback(struct rcu_head *head)
895 {
896 	struct inode *inode = container_of(head, struct inode, i_rcu);
897 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
898 }
899 
900 static void ext4_destroy_inode(struct inode *inode)
901 {
902 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
903 		ext4_msg(inode->i_sb, KERN_ERR,
904 			 "Inode %lu (%p): orphan list check failed!",
905 			 inode->i_ino, EXT4_I(inode));
906 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
907 				EXT4_I(inode), sizeof(struct ext4_inode_info),
908 				true);
909 		dump_stack();
910 	}
911 	call_rcu(&inode->i_rcu, ext4_i_callback);
912 }
913 
914 static void init_once(void *foo)
915 {
916 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
917 
918 	INIT_LIST_HEAD(&ei->i_orphan);
919 	init_rwsem(&ei->xattr_sem);
920 	init_rwsem(&ei->i_data_sem);
921 	inode_init_once(&ei->vfs_inode);
922 }
923 
924 static int __init init_inodecache(void)
925 {
926 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
927 					     sizeof(struct ext4_inode_info),
928 					     0, (SLAB_RECLAIM_ACCOUNT|
929 						SLAB_MEM_SPREAD),
930 					     init_once);
931 	if (ext4_inode_cachep == NULL)
932 		return -ENOMEM;
933 	return 0;
934 }
935 
936 static void destroy_inodecache(void)
937 {
938 	/*
939 	 * Make sure all delayed rcu free inodes are flushed before we
940 	 * destroy cache.
941 	 */
942 	rcu_barrier();
943 	kmem_cache_destroy(ext4_inode_cachep);
944 }
945 
946 void ext4_clear_inode(struct inode *inode)
947 {
948 	invalidate_inode_buffers(inode);
949 	clear_inode(inode);
950 	dquot_drop(inode);
951 	ext4_discard_preallocations(inode);
952 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
953 	if (EXT4_I(inode)->jinode) {
954 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
955 					       EXT4_I(inode)->jinode);
956 		jbd2_free_inode(EXT4_I(inode)->jinode);
957 		EXT4_I(inode)->jinode = NULL;
958 	}
959 }
960 
961 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
962 					u64 ino, u32 generation)
963 {
964 	struct inode *inode;
965 
966 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
967 		return ERR_PTR(-ESTALE);
968 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
969 		return ERR_PTR(-ESTALE);
970 
971 	/* iget isn't really right if the inode is currently unallocated!!
972 	 *
973 	 * ext4_read_inode will return a bad_inode if the inode had been
974 	 * deleted, so we should be safe.
975 	 *
976 	 * Currently we don't know the generation for parent directory, so
977 	 * a generation of 0 means "accept any"
978 	 */
979 	inode = ext4_iget_normal(sb, ino);
980 	if (IS_ERR(inode))
981 		return ERR_CAST(inode);
982 	if (generation && inode->i_generation != generation) {
983 		iput(inode);
984 		return ERR_PTR(-ESTALE);
985 	}
986 
987 	return inode;
988 }
989 
990 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
991 					int fh_len, int fh_type)
992 {
993 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
994 				    ext4_nfs_get_inode);
995 }
996 
997 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
998 					int fh_len, int fh_type)
999 {
1000 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1001 				    ext4_nfs_get_inode);
1002 }
1003 
1004 /*
1005  * Try to release metadata pages (indirect blocks, directories) which are
1006  * mapped via the block device.  Since these pages could have journal heads
1007  * which would prevent try_to_free_buffers() from freeing them, we must use
1008  * jbd2 layer's try_to_free_buffers() function to release them.
1009  */
1010 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1011 				 gfp_t wait)
1012 {
1013 	journal_t *journal = EXT4_SB(sb)->s_journal;
1014 
1015 	WARN_ON(PageChecked(page));
1016 	if (!page_has_buffers(page))
1017 		return 0;
1018 	if (journal)
1019 		return jbd2_journal_try_to_free_buffers(journal, page,
1020 							wait & ~__GFP_WAIT);
1021 	return try_to_free_buffers(page);
1022 }
1023 
1024 #ifdef CONFIG_QUOTA
1025 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1026 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1027 
1028 static int ext4_write_dquot(struct dquot *dquot);
1029 static int ext4_acquire_dquot(struct dquot *dquot);
1030 static int ext4_release_dquot(struct dquot *dquot);
1031 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1032 static int ext4_write_info(struct super_block *sb, int type);
1033 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1034 			 struct path *path);
1035 static int ext4_quota_off(struct super_block *sb, int type);
1036 static int ext4_quota_on_mount(struct super_block *sb, int type);
1037 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1038 			       size_t len, loff_t off);
1039 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1040 				const char *data, size_t len, loff_t off);
1041 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1042 			     unsigned int flags);
1043 static int ext4_enable_quotas(struct super_block *sb);
1044 
1045 static struct dquot **ext4_get_dquots(struct inode *inode)
1046 {
1047 	return EXT4_I(inode)->i_dquot;
1048 }
1049 
1050 static const struct dquot_operations ext4_quota_operations = {
1051 	.get_reserved_space = ext4_get_reserved_space,
1052 	.write_dquot	= ext4_write_dquot,
1053 	.acquire_dquot	= ext4_acquire_dquot,
1054 	.release_dquot	= ext4_release_dquot,
1055 	.mark_dirty	= ext4_mark_dquot_dirty,
1056 	.write_info	= ext4_write_info,
1057 	.alloc_dquot	= dquot_alloc,
1058 	.destroy_dquot	= dquot_destroy,
1059 };
1060 
1061 static const struct quotactl_ops ext4_qctl_operations = {
1062 	.quota_on	= ext4_quota_on,
1063 	.quota_off	= ext4_quota_off,
1064 	.quota_sync	= dquot_quota_sync,
1065 	.get_state	= dquot_get_state,
1066 	.set_info	= dquot_set_dqinfo,
1067 	.get_dqblk	= dquot_get_dqblk,
1068 	.set_dqblk	= dquot_set_dqblk
1069 };
1070 #endif
1071 
1072 static const struct super_operations ext4_sops = {
1073 	.alloc_inode	= ext4_alloc_inode,
1074 	.destroy_inode	= ext4_destroy_inode,
1075 	.write_inode	= ext4_write_inode,
1076 	.dirty_inode	= ext4_dirty_inode,
1077 	.drop_inode	= ext4_drop_inode,
1078 	.evict_inode	= ext4_evict_inode,
1079 	.put_super	= ext4_put_super,
1080 	.sync_fs	= ext4_sync_fs,
1081 	.freeze_fs	= ext4_freeze,
1082 	.unfreeze_fs	= ext4_unfreeze,
1083 	.statfs		= ext4_statfs,
1084 	.remount_fs	= ext4_remount,
1085 	.show_options	= ext4_show_options,
1086 #ifdef CONFIG_QUOTA
1087 	.quota_read	= ext4_quota_read,
1088 	.quota_write	= ext4_quota_write,
1089 	.get_dquots	= ext4_get_dquots,
1090 #endif
1091 	.bdev_try_to_free_page = bdev_try_to_free_page,
1092 };
1093 
1094 static const struct export_operations ext4_export_ops = {
1095 	.fh_to_dentry = ext4_fh_to_dentry,
1096 	.fh_to_parent = ext4_fh_to_parent,
1097 	.get_parent = ext4_get_parent,
1098 };
1099 
1100 enum {
1101 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1102 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1103 	Opt_nouid32, Opt_debug, Opt_removed,
1104 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1105 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1106 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1107 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1108 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1109 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1110 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1111 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1112 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1113 	Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1114 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1115 	Opt_lazytime, Opt_nolazytime,
1116 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1117 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1118 	Opt_dioread_nolock, Opt_dioread_lock,
1119 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1120 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1121 };
1122 
1123 static const match_table_t tokens = {
1124 	{Opt_bsd_df, "bsddf"},
1125 	{Opt_minix_df, "minixdf"},
1126 	{Opt_grpid, "grpid"},
1127 	{Opt_grpid, "bsdgroups"},
1128 	{Opt_nogrpid, "nogrpid"},
1129 	{Opt_nogrpid, "sysvgroups"},
1130 	{Opt_resgid, "resgid=%u"},
1131 	{Opt_resuid, "resuid=%u"},
1132 	{Opt_sb, "sb=%u"},
1133 	{Opt_err_cont, "errors=continue"},
1134 	{Opt_err_panic, "errors=panic"},
1135 	{Opt_err_ro, "errors=remount-ro"},
1136 	{Opt_nouid32, "nouid32"},
1137 	{Opt_debug, "debug"},
1138 	{Opt_removed, "oldalloc"},
1139 	{Opt_removed, "orlov"},
1140 	{Opt_user_xattr, "user_xattr"},
1141 	{Opt_nouser_xattr, "nouser_xattr"},
1142 	{Opt_acl, "acl"},
1143 	{Opt_noacl, "noacl"},
1144 	{Opt_noload, "norecovery"},
1145 	{Opt_noload, "noload"},
1146 	{Opt_removed, "nobh"},
1147 	{Opt_removed, "bh"},
1148 	{Opt_commit, "commit=%u"},
1149 	{Opt_min_batch_time, "min_batch_time=%u"},
1150 	{Opt_max_batch_time, "max_batch_time=%u"},
1151 	{Opt_journal_dev, "journal_dev=%u"},
1152 	{Opt_journal_path, "journal_path=%s"},
1153 	{Opt_journal_checksum, "journal_checksum"},
1154 	{Opt_nojournal_checksum, "nojournal_checksum"},
1155 	{Opt_journal_async_commit, "journal_async_commit"},
1156 	{Opt_abort, "abort"},
1157 	{Opt_data_journal, "data=journal"},
1158 	{Opt_data_ordered, "data=ordered"},
1159 	{Opt_data_writeback, "data=writeback"},
1160 	{Opt_data_err_abort, "data_err=abort"},
1161 	{Opt_data_err_ignore, "data_err=ignore"},
1162 	{Opt_offusrjquota, "usrjquota="},
1163 	{Opt_usrjquota, "usrjquota=%s"},
1164 	{Opt_offgrpjquota, "grpjquota="},
1165 	{Opt_grpjquota, "grpjquota=%s"},
1166 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1167 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1168 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1169 	{Opt_grpquota, "grpquota"},
1170 	{Opt_noquota, "noquota"},
1171 	{Opt_quota, "quota"},
1172 	{Opt_usrquota, "usrquota"},
1173 	{Opt_barrier, "barrier=%u"},
1174 	{Opt_barrier, "barrier"},
1175 	{Opt_nobarrier, "nobarrier"},
1176 	{Opt_i_version, "i_version"},
1177 	{Opt_dax, "dax"},
1178 	{Opt_stripe, "stripe=%u"},
1179 	{Opt_delalloc, "delalloc"},
1180 	{Opt_lazytime, "lazytime"},
1181 	{Opt_nolazytime, "nolazytime"},
1182 	{Opt_nodelalloc, "nodelalloc"},
1183 	{Opt_removed, "mblk_io_submit"},
1184 	{Opt_removed, "nomblk_io_submit"},
1185 	{Opt_block_validity, "block_validity"},
1186 	{Opt_noblock_validity, "noblock_validity"},
1187 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1188 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1189 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1190 	{Opt_auto_da_alloc, "auto_da_alloc"},
1191 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1192 	{Opt_dioread_nolock, "dioread_nolock"},
1193 	{Opt_dioread_lock, "dioread_lock"},
1194 	{Opt_discard, "discard"},
1195 	{Opt_nodiscard, "nodiscard"},
1196 	{Opt_init_itable, "init_itable=%u"},
1197 	{Opt_init_itable, "init_itable"},
1198 	{Opt_noinit_itable, "noinit_itable"},
1199 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1200 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1201 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1202 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1203 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1204 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1205 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1206 	{Opt_err, NULL},
1207 };
1208 
1209 static ext4_fsblk_t get_sb_block(void **data)
1210 {
1211 	ext4_fsblk_t	sb_block;
1212 	char		*options = (char *) *data;
1213 
1214 	if (!options || strncmp(options, "sb=", 3) != 0)
1215 		return 1;	/* Default location */
1216 
1217 	options += 3;
1218 	/* TODO: use simple_strtoll with >32bit ext4 */
1219 	sb_block = simple_strtoul(options, &options, 0);
1220 	if (*options && *options != ',') {
1221 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1222 		       (char *) *data);
1223 		return 1;
1224 	}
1225 	if (*options == ',')
1226 		options++;
1227 	*data = (void *) options;
1228 
1229 	return sb_block;
1230 }
1231 
1232 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1233 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1234 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1235 
1236 #ifdef CONFIG_QUOTA
1237 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1238 {
1239 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1240 	char *qname;
1241 	int ret = -1;
1242 
1243 	if (sb_any_quota_loaded(sb) &&
1244 		!sbi->s_qf_names[qtype]) {
1245 		ext4_msg(sb, KERN_ERR,
1246 			"Cannot change journaled "
1247 			"quota options when quota turned on");
1248 		return -1;
1249 	}
1250 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1251 		ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1252 			 "when QUOTA feature is enabled");
1253 		return -1;
1254 	}
1255 	qname = match_strdup(args);
1256 	if (!qname) {
1257 		ext4_msg(sb, KERN_ERR,
1258 			"Not enough memory for storing quotafile name");
1259 		return -1;
1260 	}
1261 	if (sbi->s_qf_names[qtype]) {
1262 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1263 			ret = 1;
1264 		else
1265 			ext4_msg(sb, KERN_ERR,
1266 				 "%s quota file already specified",
1267 				 QTYPE2NAME(qtype));
1268 		goto errout;
1269 	}
1270 	if (strchr(qname, '/')) {
1271 		ext4_msg(sb, KERN_ERR,
1272 			"quotafile must be on filesystem root");
1273 		goto errout;
1274 	}
1275 	sbi->s_qf_names[qtype] = qname;
1276 	set_opt(sb, QUOTA);
1277 	return 1;
1278 errout:
1279 	kfree(qname);
1280 	return ret;
1281 }
1282 
1283 static int clear_qf_name(struct super_block *sb, int qtype)
1284 {
1285 
1286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1287 
1288 	if (sb_any_quota_loaded(sb) &&
1289 		sbi->s_qf_names[qtype]) {
1290 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1291 			" when quota turned on");
1292 		return -1;
1293 	}
1294 	kfree(sbi->s_qf_names[qtype]);
1295 	sbi->s_qf_names[qtype] = NULL;
1296 	return 1;
1297 }
1298 #endif
1299 
1300 #define MOPT_SET	0x0001
1301 #define MOPT_CLEAR	0x0002
1302 #define MOPT_NOSUPPORT	0x0004
1303 #define MOPT_EXPLICIT	0x0008
1304 #define MOPT_CLEAR_ERR	0x0010
1305 #define MOPT_GTE0	0x0020
1306 #ifdef CONFIG_QUOTA
1307 #define MOPT_Q		0
1308 #define MOPT_QFMT	0x0040
1309 #else
1310 #define MOPT_Q		MOPT_NOSUPPORT
1311 #define MOPT_QFMT	MOPT_NOSUPPORT
1312 #endif
1313 #define MOPT_DATAJ	0x0080
1314 #define MOPT_NO_EXT2	0x0100
1315 #define MOPT_NO_EXT3	0x0200
1316 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1317 #define MOPT_STRING	0x0400
1318 
1319 static const struct mount_opts {
1320 	int	token;
1321 	int	mount_opt;
1322 	int	flags;
1323 } ext4_mount_opts[] = {
1324 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1325 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1326 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1327 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1328 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1329 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1330 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1331 	 MOPT_EXT4_ONLY | MOPT_SET},
1332 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1333 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1334 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1335 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1336 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1337 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1338 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1339 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1340 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1341 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1342 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1343 	 MOPT_EXT4_ONLY | MOPT_SET},
1344 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1345 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1346 	 MOPT_EXT4_ONLY | MOPT_SET},
1347 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1348 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1349 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1350 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1351 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1352 	 MOPT_NO_EXT2 | MOPT_SET},
1353 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1354 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1355 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1356 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1357 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1358 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1359 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1360 	{Opt_commit, 0, MOPT_GTE0},
1361 	{Opt_max_batch_time, 0, MOPT_GTE0},
1362 	{Opt_min_batch_time, 0, MOPT_GTE0},
1363 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1364 	{Opt_init_itable, 0, MOPT_GTE0},
1365 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1366 	{Opt_stripe, 0, MOPT_GTE0},
1367 	{Opt_resuid, 0, MOPT_GTE0},
1368 	{Opt_resgid, 0, MOPT_GTE0},
1369 	{Opt_journal_dev, 0, MOPT_GTE0},
1370 	{Opt_journal_path, 0, MOPT_STRING},
1371 	{Opt_journal_ioprio, 0, MOPT_GTE0},
1372 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1373 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1375 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1376 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1377 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1378 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1379 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1380 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1381 #else
1382 	{Opt_acl, 0, MOPT_NOSUPPORT},
1383 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1384 #endif
1385 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1386 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1387 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1388 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1389 							MOPT_SET | MOPT_Q},
1390 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1391 							MOPT_SET | MOPT_Q},
1392 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1393 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1394 	{Opt_usrjquota, 0, MOPT_Q},
1395 	{Opt_grpjquota, 0, MOPT_Q},
1396 	{Opt_offusrjquota, 0, MOPT_Q},
1397 	{Opt_offgrpjquota, 0, MOPT_Q},
1398 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1399 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1400 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1401 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1402 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1403 	{Opt_err, 0, 0}
1404 };
1405 
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407 			    substring_t *args, unsigned long *journal_devnum,
1408 			    unsigned int *journal_ioprio, int is_remount)
1409 {
1410 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1411 	const struct mount_opts *m;
1412 	kuid_t uid;
1413 	kgid_t gid;
1414 	int arg = 0;
1415 
1416 #ifdef CONFIG_QUOTA
1417 	if (token == Opt_usrjquota)
1418 		return set_qf_name(sb, USRQUOTA, &args[0]);
1419 	else if (token == Opt_grpjquota)
1420 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1421 	else if (token == Opt_offusrjquota)
1422 		return clear_qf_name(sb, USRQUOTA);
1423 	else if (token == Opt_offgrpjquota)
1424 		return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426 	switch (token) {
1427 	case Opt_noacl:
1428 	case Opt_nouser_xattr:
1429 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430 		break;
1431 	case Opt_sb:
1432 		return 1;	/* handled by get_sb_block() */
1433 	case Opt_removed:
1434 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435 		return 1;
1436 	case Opt_abort:
1437 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438 		return 1;
1439 	case Opt_i_version:
1440 		sb->s_flags |= MS_I_VERSION;
1441 		return 1;
1442 	case Opt_lazytime:
1443 		sb->s_flags |= MS_LAZYTIME;
1444 		return 1;
1445 	case Opt_nolazytime:
1446 		sb->s_flags &= ~MS_LAZYTIME;
1447 		return 1;
1448 	}
1449 
1450 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1451 		if (token == m->token)
1452 			break;
1453 
1454 	if (m->token == Opt_err) {
1455 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1456 			 "or missing value", opt);
1457 		return -1;
1458 	}
1459 
1460 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1461 		ext4_msg(sb, KERN_ERR,
1462 			 "Mount option \"%s\" incompatible with ext2", opt);
1463 		return -1;
1464 	}
1465 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1466 		ext4_msg(sb, KERN_ERR,
1467 			 "Mount option \"%s\" incompatible with ext3", opt);
1468 		return -1;
1469 	}
1470 
1471 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1472 		return -1;
1473 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1474 		return -1;
1475 	if (m->flags & MOPT_EXPLICIT)
1476 		set_opt2(sb, EXPLICIT_DELALLOC);
1477 	if (m->flags & MOPT_CLEAR_ERR)
1478 		clear_opt(sb, ERRORS_MASK);
1479 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1480 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1481 			 "options when quota turned on");
1482 		return -1;
1483 	}
1484 
1485 	if (m->flags & MOPT_NOSUPPORT) {
1486 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1487 	} else if (token == Opt_commit) {
1488 		if (arg == 0)
1489 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1490 		sbi->s_commit_interval = HZ * arg;
1491 	} else if (token == Opt_max_batch_time) {
1492 		sbi->s_max_batch_time = arg;
1493 	} else if (token == Opt_min_batch_time) {
1494 		sbi->s_min_batch_time = arg;
1495 	} else if (token == Opt_inode_readahead_blks) {
1496 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1497 			ext4_msg(sb, KERN_ERR,
1498 				 "EXT4-fs: inode_readahead_blks must be "
1499 				 "0 or a power of 2 smaller than 2^31");
1500 			return -1;
1501 		}
1502 		sbi->s_inode_readahead_blks = arg;
1503 	} else if (token == Opt_init_itable) {
1504 		set_opt(sb, INIT_INODE_TABLE);
1505 		if (!args->from)
1506 			arg = EXT4_DEF_LI_WAIT_MULT;
1507 		sbi->s_li_wait_mult = arg;
1508 	} else if (token == Opt_max_dir_size_kb) {
1509 		sbi->s_max_dir_size_kb = arg;
1510 	} else if (token == Opt_stripe) {
1511 		sbi->s_stripe = arg;
1512 	} else if (token == Opt_resuid) {
1513 		uid = make_kuid(current_user_ns(), arg);
1514 		if (!uid_valid(uid)) {
1515 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1516 			return -1;
1517 		}
1518 		sbi->s_resuid = uid;
1519 	} else if (token == Opt_resgid) {
1520 		gid = make_kgid(current_user_ns(), arg);
1521 		if (!gid_valid(gid)) {
1522 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1523 			return -1;
1524 		}
1525 		sbi->s_resgid = gid;
1526 	} else if (token == Opt_journal_dev) {
1527 		if (is_remount) {
1528 			ext4_msg(sb, KERN_ERR,
1529 				 "Cannot specify journal on remount");
1530 			return -1;
1531 		}
1532 		*journal_devnum = arg;
1533 	} else if (token == Opt_journal_path) {
1534 		char *journal_path;
1535 		struct inode *journal_inode;
1536 		struct path path;
1537 		int error;
1538 
1539 		if (is_remount) {
1540 			ext4_msg(sb, KERN_ERR,
1541 				 "Cannot specify journal on remount");
1542 			return -1;
1543 		}
1544 		journal_path = match_strdup(&args[0]);
1545 		if (!journal_path) {
1546 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1547 				"journal device string");
1548 			return -1;
1549 		}
1550 
1551 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1552 		if (error) {
1553 			ext4_msg(sb, KERN_ERR, "error: could not find "
1554 				"journal device path: error %d", error);
1555 			kfree(journal_path);
1556 			return -1;
1557 		}
1558 
1559 		journal_inode = d_inode(path.dentry);
1560 		if (!S_ISBLK(journal_inode->i_mode)) {
1561 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1562 				"is not a block device", journal_path);
1563 			path_put(&path);
1564 			kfree(journal_path);
1565 			return -1;
1566 		}
1567 
1568 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1569 		path_put(&path);
1570 		kfree(journal_path);
1571 	} else if (token == Opt_journal_ioprio) {
1572 		if (arg > 7) {
1573 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1574 				 " (must be 0-7)");
1575 			return -1;
1576 		}
1577 		*journal_ioprio =
1578 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1579 	} else if (token == Opt_test_dummy_encryption) {
1580 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1581 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1582 		ext4_msg(sb, KERN_WARNING,
1583 			 "Test dummy encryption mode enabled");
1584 #else
1585 		ext4_msg(sb, KERN_WARNING,
1586 			 "Test dummy encryption mount option ignored");
1587 #endif
1588 	} else if (m->flags & MOPT_DATAJ) {
1589 		if (is_remount) {
1590 			if (!sbi->s_journal)
1591 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1592 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1593 				ext4_msg(sb, KERN_ERR,
1594 					 "Cannot change data mode on remount");
1595 				return -1;
1596 			}
1597 		} else {
1598 			clear_opt(sb, DATA_FLAGS);
1599 			sbi->s_mount_opt |= m->mount_opt;
1600 		}
1601 #ifdef CONFIG_QUOTA
1602 	} else if (m->flags & MOPT_QFMT) {
1603 		if (sb_any_quota_loaded(sb) &&
1604 		    sbi->s_jquota_fmt != m->mount_opt) {
1605 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1606 				 "quota options when quota turned on");
1607 			return -1;
1608 		}
1609 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1610 					       EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1611 			ext4_msg(sb, KERN_ERR,
1612 				 "Cannot set journaled quota options "
1613 				 "when QUOTA feature is enabled");
1614 			return -1;
1615 		}
1616 		sbi->s_jquota_fmt = m->mount_opt;
1617 #endif
1618 #ifndef CONFIG_FS_DAX
1619 	} else if (token == Opt_dax) {
1620 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1621 		return -1;
1622 #endif
1623 	} else {
1624 		if (!args->from)
1625 			arg = 1;
1626 		if (m->flags & MOPT_CLEAR)
1627 			arg = !arg;
1628 		else if (unlikely(!(m->flags & MOPT_SET))) {
1629 			ext4_msg(sb, KERN_WARNING,
1630 				 "buggy handling of option %s", opt);
1631 			WARN_ON(1);
1632 			return -1;
1633 		}
1634 		if (arg != 0)
1635 			sbi->s_mount_opt |= m->mount_opt;
1636 		else
1637 			sbi->s_mount_opt &= ~m->mount_opt;
1638 	}
1639 	return 1;
1640 }
1641 
1642 static int parse_options(char *options, struct super_block *sb,
1643 			 unsigned long *journal_devnum,
1644 			 unsigned int *journal_ioprio,
1645 			 int is_remount)
1646 {
1647 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1648 	char *p;
1649 	substring_t args[MAX_OPT_ARGS];
1650 	int token;
1651 
1652 	if (!options)
1653 		return 1;
1654 
1655 	while ((p = strsep(&options, ",")) != NULL) {
1656 		if (!*p)
1657 			continue;
1658 		/*
1659 		 * Initialize args struct so we know whether arg was
1660 		 * found; some options take optional arguments.
1661 		 */
1662 		args[0].to = args[0].from = NULL;
1663 		token = match_token(p, tokens, args);
1664 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1665 				     journal_ioprio, is_remount) < 0)
1666 			return 0;
1667 	}
1668 #ifdef CONFIG_QUOTA
1669 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1670 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1671 		ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1672 			 "feature is enabled");
1673 		return 0;
1674 	}
1675 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1676 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1677 			clear_opt(sb, USRQUOTA);
1678 
1679 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1680 			clear_opt(sb, GRPQUOTA);
1681 
1682 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1683 			ext4_msg(sb, KERN_ERR, "old and new quota "
1684 					"format mixing");
1685 			return 0;
1686 		}
1687 
1688 		if (!sbi->s_jquota_fmt) {
1689 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1690 					"not specified");
1691 			return 0;
1692 		}
1693 	}
1694 #endif
1695 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1696 		int blocksize =
1697 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1698 
1699 		if (blocksize < PAGE_CACHE_SIZE) {
1700 			ext4_msg(sb, KERN_ERR, "can't mount with "
1701 				 "dioread_nolock if block size != PAGE_SIZE");
1702 			return 0;
1703 		}
1704 	}
1705 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1706 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1707 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1708 			 "in data=ordered mode");
1709 		return 0;
1710 	}
1711 	return 1;
1712 }
1713 
1714 static inline void ext4_show_quota_options(struct seq_file *seq,
1715 					   struct super_block *sb)
1716 {
1717 #if defined(CONFIG_QUOTA)
1718 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1719 
1720 	if (sbi->s_jquota_fmt) {
1721 		char *fmtname = "";
1722 
1723 		switch (sbi->s_jquota_fmt) {
1724 		case QFMT_VFS_OLD:
1725 			fmtname = "vfsold";
1726 			break;
1727 		case QFMT_VFS_V0:
1728 			fmtname = "vfsv0";
1729 			break;
1730 		case QFMT_VFS_V1:
1731 			fmtname = "vfsv1";
1732 			break;
1733 		}
1734 		seq_printf(seq, ",jqfmt=%s", fmtname);
1735 	}
1736 
1737 	if (sbi->s_qf_names[USRQUOTA])
1738 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1739 
1740 	if (sbi->s_qf_names[GRPQUOTA])
1741 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1742 #endif
1743 }
1744 
1745 static const char *token2str(int token)
1746 {
1747 	const struct match_token *t;
1748 
1749 	for (t = tokens; t->token != Opt_err; t++)
1750 		if (t->token == token && !strchr(t->pattern, '='))
1751 			break;
1752 	return t->pattern;
1753 }
1754 
1755 /*
1756  * Show an option if
1757  *  - it's set to a non-default value OR
1758  *  - if the per-sb default is different from the global default
1759  */
1760 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1761 			      int nodefs)
1762 {
1763 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1764 	struct ext4_super_block *es = sbi->s_es;
1765 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1766 	const struct mount_opts *m;
1767 	char sep = nodefs ? '\n' : ',';
1768 
1769 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1770 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1771 
1772 	if (sbi->s_sb_block != 1)
1773 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1774 
1775 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1776 		int want_set = m->flags & MOPT_SET;
1777 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1778 		    (m->flags & MOPT_CLEAR_ERR))
1779 			continue;
1780 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1781 			continue; /* skip if same as the default */
1782 		if ((want_set &&
1783 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1784 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1785 			continue; /* select Opt_noFoo vs Opt_Foo */
1786 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1787 	}
1788 
1789 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1790 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1791 		SEQ_OPTS_PRINT("resuid=%u",
1792 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1793 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1794 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1795 		SEQ_OPTS_PRINT("resgid=%u",
1796 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1797 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1798 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1799 		SEQ_OPTS_PUTS("errors=remount-ro");
1800 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1801 		SEQ_OPTS_PUTS("errors=continue");
1802 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1803 		SEQ_OPTS_PUTS("errors=panic");
1804 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1805 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1806 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1807 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1808 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1809 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1810 	if (sb->s_flags & MS_I_VERSION)
1811 		SEQ_OPTS_PUTS("i_version");
1812 	if (nodefs || sbi->s_stripe)
1813 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1814 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1815 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1816 			SEQ_OPTS_PUTS("data=journal");
1817 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1818 			SEQ_OPTS_PUTS("data=ordered");
1819 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1820 			SEQ_OPTS_PUTS("data=writeback");
1821 	}
1822 	if (nodefs ||
1823 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1824 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1825 			       sbi->s_inode_readahead_blks);
1826 
1827 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1828 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1829 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1830 	if (nodefs || sbi->s_max_dir_size_kb)
1831 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1832 
1833 	ext4_show_quota_options(seq, sb);
1834 	return 0;
1835 }
1836 
1837 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1838 {
1839 	return _ext4_show_options(seq, root->d_sb, 0);
1840 }
1841 
1842 static int options_seq_show(struct seq_file *seq, void *offset)
1843 {
1844 	struct super_block *sb = seq->private;
1845 	int rc;
1846 
1847 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1848 	rc = _ext4_show_options(seq, sb, 1);
1849 	seq_puts(seq, "\n");
1850 	return rc;
1851 }
1852 
1853 static int options_open_fs(struct inode *inode, struct file *file)
1854 {
1855 	return single_open(file, options_seq_show, PDE_DATA(inode));
1856 }
1857 
1858 static const struct file_operations ext4_seq_options_fops = {
1859 	.owner = THIS_MODULE,
1860 	.open = options_open_fs,
1861 	.read = seq_read,
1862 	.llseek = seq_lseek,
1863 	.release = single_release,
1864 };
1865 
1866 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1867 			    int read_only)
1868 {
1869 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1870 	int res = 0;
1871 
1872 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1873 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1874 			 "forcing read-only mode");
1875 		res = MS_RDONLY;
1876 	}
1877 	if (read_only)
1878 		goto done;
1879 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1880 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1881 			 "running e2fsck is recommended");
1882 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
1883 		ext4_msg(sb, KERN_WARNING,
1884 			 "warning: mounting fs with errors, "
1885 			 "running e2fsck is recommended");
1886 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1887 		 le16_to_cpu(es->s_mnt_count) >=
1888 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1889 		ext4_msg(sb, KERN_WARNING,
1890 			 "warning: maximal mount count reached, "
1891 			 "running e2fsck is recommended");
1892 	else if (le32_to_cpu(es->s_checkinterval) &&
1893 		(le32_to_cpu(es->s_lastcheck) +
1894 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1895 		ext4_msg(sb, KERN_WARNING,
1896 			 "warning: checktime reached, "
1897 			 "running e2fsck is recommended");
1898 	if (!sbi->s_journal)
1899 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1900 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1901 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1902 	le16_add_cpu(&es->s_mnt_count, 1);
1903 	es->s_mtime = cpu_to_le32(get_seconds());
1904 	ext4_update_dynamic_rev(sb);
1905 	if (sbi->s_journal)
1906 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1907 
1908 	ext4_commit_super(sb, 1);
1909 done:
1910 	if (test_opt(sb, DEBUG))
1911 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1912 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1913 			sb->s_blocksize,
1914 			sbi->s_groups_count,
1915 			EXT4_BLOCKS_PER_GROUP(sb),
1916 			EXT4_INODES_PER_GROUP(sb),
1917 			sbi->s_mount_opt, sbi->s_mount_opt2);
1918 
1919 	cleancache_init_fs(sb);
1920 	return res;
1921 }
1922 
1923 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1924 {
1925 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1926 	struct flex_groups *new_groups;
1927 	int size;
1928 
1929 	if (!sbi->s_log_groups_per_flex)
1930 		return 0;
1931 
1932 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1933 	if (size <= sbi->s_flex_groups_allocated)
1934 		return 0;
1935 
1936 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1937 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1938 	if (!new_groups) {
1939 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1940 			 size / (int) sizeof(struct flex_groups));
1941 		return -ENOMEM;
1942 	}
1943 
1944 	if (sbi->s_flex_groups) {
1945 		memcpy(new_groups, sbi->s_flex_groups,
1946 		       (sbi->s_flex_groups_allocated *
1947 			sizeof(struct flex_groups)));
1948 		kvfree(sbi->s_flex_groups);
1949 	}
1950 	sbi->s_flex_groups = new_groups;
1951 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1952 	return 0;
1953 }
1954 
1955 static int ext4_fill_flex_info(struct super_block *sb)
1956 {
1957 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1958 	struct ext4_group_desc *gdp = NULL;
1959 	ext4_group_t flex_group;
1960 	int i, err;
1961 
1962 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1963 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1964 		sbi->s_log_groups_per_flex = 0;
1965 		return 1;
1966 	}
1967 
1968 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1969 	if (err)
1970 		goto failed;
1971 
1972 	for (i = 0; i < sbi->s_groups_count; i++) {
1973 		gdp = ext4_get_group_desc(sb, i, NULL);
1974 
1975 		flex_group = ext4_flex_group(sbi, i);
1976 		atomic_add(ext4_free_inodes_count(sb, gdp),
1977 			   &sbi->s_flex_groups[flex_group].free_inodes);
1978 		atomic64_add(ext4_free_group_clusters(sb, gdp),
1979 			     &sbi->s_flex_groups[flex_group].free_clusters);
1980 		atomic_add(ext4_used_dirs_count(sb, gdp),
1981 			   &sbi->s_flex_groups[flex_group].used_dirs);
1982 	}
1983 
1984 	return 1;
1985 failed:
1986 	return 0;
1987 }
1988 
1989 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1990 				   struct ext4_group_desc *gdp)
1991 {
1992 	int offset;
1993 	__u16 crc = 0;
1994 	__le32 le_group = cpu_to_le32(block_group);
1995 
1996 	if (ext4_has_metadata_csum(sbi->s_sb)) {
1997 		/* Use new metadata_csum algorithm */
1998 		__le16 save_csum;
1999 		__u32 csum32;
2000 
2001 		save_csum = gdp->bg_checksum;
2002 		gdp->bg_checksum = 0;
2003 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2004 				     sizeof(le_group));
2005 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2006 				     sbi->s_desc_size);
2007 		gdp->bg_checksum = save_csum;
2008 
2009 		crc = csum32 & 0xFFFF;
2010 		goto out;
2011 	}
2012 
2013 	/* old crc16 code */
2014 	if (!(sbi->s_es->s_feature_ro_compat &
2015 	      cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2016 		return 0;
2017 
2018 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2019 
2020 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2021 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2022 	crc = crc16(crc, (__u8 *)gdp, offset);
2023 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2024 	/* for checksum of struct ext4_group_desc do the rest...*/
2025 	if ((sbi->s_es->s_feature_incompat &
2026 	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2027 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2028 		crc = crc16(crc, (__u8 *)gdp + offset,
2029 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2030 				offset);
2031 
2032 out:
2033 	return cpu_to_le16(crc);
2034 }
2035 
2036 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2037 				struct ext4_group_desc *gdp)
2038 {
2039 	if (ext4_has_group_desc_csum(sb) &&
2040 	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2041 						      block_group, gdp)))
2042 		return 0;
2043 
2044 	return 1;
2045 }
2046 
2047 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2048 			      struct ext4_group_desc *gdp)
2049 {
2050 	if (!ext4_has_group_desc_csum(sb))
2051 		return;
2052 	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2053 }
2054 
2055 /* Called at mount-time, super-block is locked */
2056 static int ext4_check_descriptors(struct super_block *sb,
2057 				  ext4_group_t *first_not_zeroed)
2058 {
2059 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2060 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2061 	ext4_fsblk_t last_block;
2062 	ext4_fsblk_t block_bitmap;
2063 	ext4_fsblk_t inode_bitmap;
2064 	ext4_fsblk_t inode_table;
2065 	int flexbg_flag = 0;
2066 	ext4_group_t i, grp = sbi->s_groups_count;
2067 
2068 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2069 		flexbg_flag = 1;
2070 
2071 	ext4_debug("Checking group descriptors");
2072 
2073 	for (i = 0; i < sbi->s_groups_count; i++) {
2074 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2075 
2076 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2077 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2078 		else
2079 			last_block = first_block +
2080 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2081 
2082 		if ((grp == sbi->s_groups_count) &&
2083 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2084 			grp = i;
2085 
2086 		block_bitmap = ext4_block_bitmap(sb, gdp);
2087 		if (block_bitmap < first_block || block_bitmap > last_block) {
2088 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2089 			       "Block bitmap for group %u not in group "
2090 			       "(block %llu)!", i, block_bitmap);
2091 			return 0;
2092 		}
2093 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2094 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2095 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2096 			       "Inode bitmap for group %u not in group "
2097 			       "(block %llu)!", i, inode_bitmap);
2098 			return 0;
2099 		}
2100 		inode_table = ext4_inode_table(sb, gdp);
2101 		if (inode_table < first_block ||
2102 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2103 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2104 			       "Inode table for group %u not in group "
2105 			       "(block %llu)!", i, inode_table);
2106 			return 0;
2107 		}
2108 		ext4_lock_group(sb, i);
2109 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2110 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2111 				 "Checksum for group %u failed (%u!=%u)",
2112 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2113 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2114 			if (!(sb->s_flags & MS_RDONLY)) {
2115 				ext4_unlock_group(sb, i);
2116 				return 0;
2117 			}
2118 		}
2119 		ext4_unlock_group(sb, i);
2120 		if (!flexbg_flag)
2121 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2122 	}
2123 	if (NULL != first_not_zeroed)
2124 		*first_not_zeroed = grp;
2125 	return 1;
2126 }
2127 
2128 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2129  * the superblock) which were deleted from all directories, but held open by
2130  * a process at the time of a crash.  We walk the list and try to delete these
2131  * inodes at recovery time (only with a read-write filesystem).
2132  *
2133  * In order to keep the orphan inode chain consistent during traversal (in
2134  * case of crash during recovery), we link each inode into the superblock
2135  * orphan list_head and handle it the same way as an inode deletion during
2136  * normal operation (which journals the operations for us).
2137  *
2138  * We only do an iget() and an iput() on each inode, which is very safe if we
2139  * accidentally point at an in-use or already deleted inode.  The worst that
2140  * can happen in this case is that we get a "bit already cleared" message from
2141  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2142  * e2fsck was run on this filesystem, and it must have already done the orphan
2143  * inode cleanup for us, so we can safely abort without any further action.
2144  */
2145 static void ext4_orphan_cleanup(struct super_block *sb,
2146 				struct ext4_super_block *es)
2147 {
2148 	unsigned int s_flags = sb->s_flags;
2149 	int nr_orphans = 0, nr_truncates = 0;
2150 #ifdef CONFIG_QUOTA
2151 	int i;
2152 #endif
2153 	if (!es->s_last_orphan) {
2154 		jbd_debug(4, "no orphan inodes to clean up\n");
2155 		return;
2156 	}
2157 
2158 	if (bdev_read_only(sb->s_bdev)) {
2159 		ext4_msg(sb, KERN_ERR, "write access "
2160 			"unavailable, skipping orphan cleanup");
2161 		return;
2162 	}
2163 
2164 	/* Check if feature set would not allow a r/w mount */
2165 	if (!ext4_feature_set_ok(sb, 0)) {
2166 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2167 			 "unknown ROCOMPAT features");
2168 		return;
2169 	}
2170 
2171 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2172 		/* don't clear list on RO mount w/ errors */
2173 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2174 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2175 				  "clearing orphan list.\n");
2176 			es->s_last_orphan = 0;
2177 		}
2178 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2179 		return;
2180 	}
2181 
2182 	if (s_flags & MS_RDONLY) {
2183 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2184 		sb->s_flags &= ~MS_RDONLY;
2185 	}
2186 #ifdef CONFIG_QUOTA
2187 	/* Needed for iput() to work correctly and not trash data */
2188 	sb->s_flags |= MS_ACTIVE;
2189 	/* Turn on quotas so that they are updated correctly */
2190 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2191 		if (EXT4_SB(sb)->s_qf_names[i]) {
2192 			int ret = ext4_quota_on_mount(sb, i);
2193 			if (ret < 0)
2194 				ext4_msg(sb, KERN_ERR,
2195 					"Cannot turn on journaled "
2196 					"quota: error %d", ret);
2197 		}
2198 	}
2199 #endif
2200 
2201 	while (es->s_last_orphan) {
2202 		struct inode *inode;
2203 
2204 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2205 		if (IS_ERR(inode)) {
2206 			es->s_last_orphan = 0;
2207 			break;
2208 		}
2209 
2210 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2211 		dquot_initialize(inode);
2212 		if (inode->i_nlink) {
2213 			if (test_opt(sb, DEBUG))
2214 				ext4_msg(sb, KERN_DEBUG,
2215 					"%s: truncating inode %lu to %lld bytes",
2216 					__func__, inode->i_ino, inode->i_size);
2217 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2218 				  inode->i_ino, inode->i_size);
2219 			mutex_lock(&inode->i_mutex);
2220 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2221 			ext4_truncate(inode);
2222 			mutex_unlock(&inode->i_mutex);
2223 			nr_truncates++;
2224 		} else {
2225 			if (test_opt(sb, DEBUG))
2226 				ext4_msg(sb, KERN_DEBUG,
2227 					"%s: deleting unreferenced inode %lu",
2228 					__func__, inode->i_ino);
2229 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2230 				  inode->i_ino);
2231 			nr_orphans++;
2232 		}
2233 		iput(inode);  /* The delete magic happens here! */
2234 	}
2235 
2236 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2237 
2238 	if (nr_orphans)
2239 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2240 		       PLURAL(nr_orphans));
2241 	if (nr_truncates)
2242 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2243 		       PLURAL(nr_truncates));
2244 #ifdef CONFIG_QUOTA
2245 	/* Turn quotas off */
2246 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2247 		if (sb_dqopt(sb)->files[i])
2248 			dquot_quota_off(sb, i);
2249 	}
2250 #endif
2251 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2252 }
2253 
2254 /*
2255  * Maximal extent format file size.
2256  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2257  * extent format containers, within a sector_t, and within i_blocks
2258  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2259  * so that won't be a limiting factor.
2260  *
2261  * However there is other limiting factor. We do store extents in the form
2262  * of starting block and length, hence the resulting length of the extent
2263  * covering maximum file size must fit into on-disk format containers as
2264  * well. Given that length is always by 1 unit bigger than max unit (because
2265  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2266  *
2267  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2268  */
2269 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2270 {
2271 	loff_t res;
2272 	loff_t upper_limit = MAX_LFS_FILESIZE;
2273 
2274 	/* small i_blocks in vfs inode? */
2275 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2276 		/*
2277 		 * CONFIG_LBDAF is not enabled implies the inode
2278 		 * i_block represent total blocks in 512 bytes
2279 		 * 32 == size of vfs inode i_blocks * 8
2280 		 */
2281 		upper_limit = (1LL << 32) - 1;
2282 
2283 		/* total blocks in file system block size */
2284 		upper_limit >>= (blkbits - 9);
2285 		upper_limit <<= blkbits;
2286 	}
2287 
2288 	/*
2289 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2290 	 * by one fs block, so ee_len can cover the extent of maximum file
2291 	 * size
2292 	 */
2293 	res = (1LL << 32) - 1;
2294 	res <<= blkbits;
2295 
2296 	/* Sanity check against vm- & vfs- imposed limits */
2297 	if (res > upper_limit)
2298 		res = upper_limit;
2299 
2300 	return res;
2301 }
2302 
2303 /*
2304  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2305  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2306  * We need to be 1 filesystem block less than the 2^48 sector limit.
2307  */
2308 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2309 {
2310 	loff_t res = EXT4_NDIR_BLOCKS;
2311 	int meta_blocks;
2312 	loff_t upper_limit;
2313 	/* This is calculated to be the largest file size for a dense, block
2314 	 * mapped file such that the file's total number of 512-byte sectors,
2315 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2316 	 *
2317 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2318 	 * number of 512-byte sectors of the file.
2319 	 */
2320 
2321 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2322 		/*
2323 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2324 		 * the inode i_block field represents total file blocks in
2325 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2326 		 */
2327 		upper_limit = (1LL << 32) - 1;
2328 
2329 		/* total blocks in file system block size */
2330 		upper_limit >>= (bits - 9);
2331 
2332 	} else {
2333 		/*
2334 		 * We use 48 bit ext4_inode i_blocks
2335 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2336 		 * represent total number of blocks in
2337 		 * file system block size
2338 		 */
2339 		upper_limit = (1LL << 48) - 1;
2340 
2341 	}
2342 
2343 	/* indirect blocks */
2344 	meta_blocks = 1;
2345 	/* double indirect blocks */
2346 	meta_blocks += 1 + (1LL << (bits-2));
2347 	/* tripple indirect blocks */
2348 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2349 
2350 	upper_limit -= meta_blocks;
2351 	upper_limit <<= bits;
2352 
2353 	res += 1LL << (bits-2);
2354 	res += 1LL << (2*(bits-2));
2355 	res += 1LL << (3*(bits-2));
2356 	res <<= bits;
2357 	if (res > upper_limit)
2358 		res = upper_limit;
2359 
2360 	if (res > MAX_LFS_FILESIZE)
2361 		res = MAX_LFS_FILESIZE;
2362 
2363 	return res;
2364 }
2365 
2366 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2367 				   ext4_fsblk_t logical_sb_block, int nr)
2368 {
2369 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2370 	ext4_group_t bg, first_meta_bg;
2371 	int has_super = 0;
2372 
2373 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2374 
2375 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2376 	    nr < first_meta_bg)
2377 		return logical_sb_block + nr + 1;
2378 	bg = sbi->s_desc_per_block * nr;
2379 	if (ext4_bg_has_super(sb, bg))
2380 		has_super = 1;
2381 
2382 	/*
2383 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2384 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2385 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2386 	 * compensate.
2387 	 */
2388 	if (sb->s_blocksize == 1024 && nr == 0 &&
2389 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2390 		has_super++;
2391 
2392 	return (has_super + ext4_group_first_block_no(sb, bg));
2393 }
2394 
2395 /**
2396  * ext4_get_stripe_size: Get the stripe size.
2397  * @sbi: In memory super block info
2398  *
2399  * If we have specified it via mount option, then
2400  * use the mount option value. If the value specified at mount time is
2401  * greater than the blocks per group use the super block value.
2402  * If the super block value is greater than blocks per group return 0.
2403  * Allocator needs it be less than blocks per group.
2404  *
2405  */
2406 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2407 {
2408 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2409 	unsigned long stripe_width =
2410 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2411 	int ret;
2412 
2413 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2414 		ret = sbi->s_stripe;
2415 	else if (stripe_width <= sbi->s_blocks_per_group)
2416 		ret = stripe_width;
2417 	else if (stride <= sbi->s_blocks_per_group)
2418 		ret = stride;
2419 	else
2420 		ret = 0;
2421 
2422 	/*
2423 	 * If the stripe width is 1, this makes no sense and
2424 	 * we set it to 0 to turn off stripe handling code.
2425 	 */
2426 	if (ret <= 1)
2427 		ret = 0;
2428 
2429 	return ret;
2430 }
2431 
2432 /* sysfs supprt */
2433 
2434 struct ext4_attr {
2435 	struct attribute attr;
2436 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2437 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2438 			 const char *, size_t);
2439 	union {
2440 		int offset;
2441 		int deprecated_val;
2442 	} u;
2443 };
2444 
2445 static int parse_strtoull(const char *buf,
2446 		unsigned long long max, unsigned long long *value)
2447 {
2448 	int ret;
2449 
2450 	ret = kstrtoull(skip_spaces(buf), 0, value);
2451 	if (!ret && *value > max)
2452 		ret = -EINVAL;
2453 	return ret;
2454 }
2455 
2456 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2457 					      struct ext4_sb_info *sbi,
2458 					      char *buf)
2459 {
2460 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2461 		(s64) EXT4_C2B(sbi,
2462 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2463 }
2464 
2465 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2466 					 struct ext4_sb_info *sbi, char *buf)
2467 {
2468 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2469 
2470 	if (!sb->s_bdev->bd_part)
2471 		return snprintf(buf, PAGE_SIZE, "0\n");
2472 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2473 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2474 			 sbi->s_sectors_written_start) >> 1);
2475 }
2476 
2477 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2478 					  struct ext4_sb_info *sbi, char *buf)
2479 {
2480 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2481 
2482 	if (!sb->s_bdev->bd_part)
2483 		return snprintf(buf, PAGE_SIZE, "0\n");
2484 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2485 			(unsigned long long)(sbi->s_kbytes_written +
2486 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2487 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2488 }
2489 
2490 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2491 					  struct ext4_sb_info *sbi,
2492 					  const char *buf, size_t count)
2493 {
2494 	unsigned long t;
2495 	int ret;
2496 
2497 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2498 	if (ret)
2499 		return ret;
2500 
2501 	if (t && (!is_power_of_2(t) || t > 0x40000000))
2502 		return -EINVAL;
2503 
2504 	sbi->s_inode_readahead_blks = t;
2505 	return count;
2506 }
2507 
2508 static ssize_t sbi_ui_show(struct ext4_attr *a,
2509 			   struct ext4_sb_info *sbi, char *buf)
2510 {
2511 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2512 
2513 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2514 }
2515 
2516 static ssize_t sbi_ui_store(struct ext4_attr *a,
2517 			    struct ext4_sb_info *sbi,
2518 			    const char *buf, size_t count)
2519 {
2520 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2521 	unsigned long t;
2522 	int ret;
2523 
2524 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2525 	if (ret)
2526 		return ret;
2527 	*ui = t;
2528 	return count;
2529 }
2530 
2531 static ssize_t es_ui_show(struct ext4_attr *a,
2532 			   struct ext4_sb_info *sbi, char *buf)
2533 {
2534 
2535 	unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2536 			   a->u.offset);
2537 
2538 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2539 }
2540 
2541 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2542 				  struct ext4_sb_info *sbi, char *buf)
2543 {
2544 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2545 		(unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2546 }
2547 
2548 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2549 				   struct ext4_sb_info *sbi,
2550 				   const char *buf, size_t count)
2551 {
2552 	unsigned long long val;
2553 	int ret;
2554 
2555 	if (parse_strtoull(buf, -1ULL, &val))
2556 		return -EINVAL;
2557 	ret = ext4_reserve_clusters(sbi, val);
2558 
2559 	return ret ? ret : count;
2560 }
2561 
2562 static ssize_t trigger_test_error(struct ext4_attr *a,
2563 				  struct ext4_sb_info *sbi,
2564 				  const char *buf, size_t count)
2565 {
2566 	int len = count;
2567 
2568 	if (!capable(CAP_SYS_ADMIN))
2569 		return -EPERM;
2570 
2571 	if (len && buf[len-1] == '\n')
2572 		len--;
2573 
2574 	if (len)
2575 		ext4_error(sbi->s_sb, "%.*s", len, buf);
2576 	return count;
2577 }
2578 
2579 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2580 				   struct ext4_sb_info *sbi, char *buf)
2581 {
2582 	return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2583 }
2584 
2585 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2586 static struct ext4_attr ext4_attr_##_name = {			\
2587 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2588 	.show	= _show,					\
2589 	.store	= _store,					\
2590 	.u = {							\
2591 		.offset = offsetof(struct ext4_sb_info, _elname),\
2592 	},							\
2593 }
2594 
2595 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname)		\
2596 static struct ext4_attr ext4_attr_##_name = {				\
2597 	.attr = {.name = __stringify(_name), .mode = _mode },		\
2598 	.show	= _show,						\
2599 	.store	= _store,						\
2600 	.u = {								\
2601 		.offset = offsetof(struct ext4_super_block, _elname),	\
2602 	},								\
2603 }
2604 
2605 #define EXT4_ATTR(name, mode, show, store) \
2606 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2607 
2608 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2609 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2610 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2611 
2612 #define EXT4_RO_ATTR_ES_UI(name, elname)	\
2613 	EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2614 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2615 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2616 
2617 #define ATTR_LIST(name) &ext4_attr_##name.attr
2618 #define EXT4_DEPRECATED_ATTR(_name, _val)	\
2619 static struct ext4_attr ext4_attr_##_name = {			\
2620 	.attr = {.name = __stringify(_name), .mode = 0444 },	\
2621 	.show	= sbi_deprecated_show,				\
2622 	.u = {							\
2623 		.deprecated_val = _val,				\
2624 	},							\
2625 }
2626 
2627 EXT4_RO_ATTR(delayed_allocation_blocks);
2628 EXT4_RO_ATTR(session_write_kbytes);
2629 EXT4_RO_ATTR(lifetime_write_kbytes);
2630 EXT4_RW_ATTR(reserved_clusters);
2631 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2632 		 inode_readahead_blks_store, s_inode_readahead_blks);
2633 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2634 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2635 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2636 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2637 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2638 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2639 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2640 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2641 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2642 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2643 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2644 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2645 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2646 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2647 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2648 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2649 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2650 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2651 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2652 
2653 static struct attribute *ext4_attrs[] = {
2654 	ATTR_LIST(delayed_allocation_blocks),
2655 	ATTR_LIST(session_write_kbytes),
2656 	ATTR_LIST(lifetime_write_kbytes),
2657 	ATTR_LIST(reserved_clusters),
2658 	ATTR_LIST(inode_readahead_blks),
2659 	ATTR_LIST(inode_goal),
2660 	ATTR_LIST(mb_stats),
2661 	ATTR_LIST(mb_max_to_scan),
2662 	ATTR_LIST(mb_min_to_scan),
2663 	ATTR_LIST(mb_order2_req),
2664 	ATTR_LIST(mb_stream_req),
2665 	ATTR_LIST(mb_group_prealloc),
2666 	ATTR_LIST(max_writeback_mb_bump),
2667 	ATTR_LIST(extent_max_zeroout_kb),
2668 	ATTR_LIST(trigger_fs_error),
2669 	ATTR_LIST(err_ratelimit_interval_ms),
2670 	ATTR_LIST(err_ratelimit_burst),
2671 	ATTR_LIST(warning_ratelimit_interval_ms),
2672 	ATTR_LIST(warning_ratelimit_burst),
2673 	ATTR_LIST(msg_ratelimit_interval_ms),
2674 	ATTR_LIST(msg_ratelimit_burst),
2675 	ATTR_LIST(errors_count),
2676 	ATTR_LIST(first_error_time),
2677 	ATTR_LIST(last_error_time),
2678 	NULL,
2679 };
2680 
2681 /* Features this copy of ext4 supports */
2682 EXT4_INFO_ATTR(lazy_itable_init);
2683 EXT4_INFO_ATTR(batched_discard);
2684 EXT4_INFO_ATTR(meta_bg_resize);
2685 EXT4_INFO_ATTR(encryption);
2686 
2687 static struct attribute *ext4_feat_attrs[] = {
2688 	ATTR_LIST(lazy_itable_init),
2689 	ATTR_LIST(batched_discard),
2690 	ATTR_LIST(meta_bg_resize),
2691 	ATTR_LIST(encryption),
2692 	NULL,
2693 };
2694 
2695 static ssize_t ext4_attr_show(struct kobject *kobj,
2696 			      struct attribute *attr, char *buf)
2697 {
2698 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2699 						s_kobj);
2700 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2701 
2702 	return a->show ? a->show(a, sbi, buf) : 0;
2703 }
2704 
2705 static ssize_t ext4_attr_store(struct kobject *kobj,
2706 			       struct attribute *attr,
2707 			       const char *buf, size_t len)
2708 {
2709 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2710 						s_kobj);
2711 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2712 
2713 	return a->store ? a->store(a, sbi, buf, len) : 0;
2714 }
2715 
2716 static void ext4_sb_release(struct kobject *kobj)
2717 {
2718 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2719 						s_kobj);
2720 	complete(&sbi->s_kobj_unregister);
2721 }
2722 
2723 static const struct sysfs_ops ext4_attr_ops = {
2724 	.show	= ext4_attr_show,
2725 	.store	= ext4_attr_store,
2726 };
2727 
2728 static struct kobj_type ext4_ktype = {
2729 	.default_attrs	= ext4_attrs,
2730 	.sysfs_ops	= &ext4_attr_ops,
2731 	.release	= ext4_sb_release,
2732 };
2733 
2734 static void ext4_feat_release(struct kobject *kobj)
2735 {
2736 	complete(&ext4_feat->f_kobj_unregister);
2737 }
2738 
2739 static ssize_t ext4_feat_show(struct kobject *kobj,
2740 			      struct attribute *attr, char *buf)
2741 {
2742 	return snprintf(buf, PAGE_SIZE, "supported\n");
2743 }
2744 
2745 /*
2746  * We can not use ext4_attr_show/store because it relies on the kobject
2747  * being embedded in the ext4_sb_info structure which is definitely not
2748  * true in this case.
2749  */
2750 static const struct sysfs_ops ext4_feat_ops = {
2751 	.show	= ext4_feat_show,
2752 	.store	= NULL,
2753 };
2754 
2755 static struct kobj_type ext4_feat_ktype = {
2756 	.default_attrs	= ext4_feat_attrs,
2757 	.sysfs_ops	= &ext4_feat_ops,
2758 	.release	= ext4_feat_release,
2759 };
2760 
2761 /*
2762  * Check whether this filesystem can be mounted based on
2763  * the features present and the RDONLY/RDWR mount requested.
2764  * Returns 1 if this filesystem can be mounted as requested,
2765  * 0 if it cannot be.
2766  */
2767 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2768 {
2769 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2770 		ext4_msg(sb, KERN_ERR,
2771 			"Couldn't mount because of "
2772 			"unsupported optional features (%x)",
2773 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2774 			~EXT4_FEATURE_INCOMPAT_SUPP));
2775 		return 0;
2776 	}
2777 
2778 	if (readonly)
2779 		return 1;
2780 
2781 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2782 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2783 		sb->s_flags |= MS_RDONLY;
2784 		return 1;
2785 	}
2786 
2787 	/* Check that feature set is OK for a read-write mount */
2788 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2789 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2790 			 "unsupported optional features (%x)",
2791 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2792 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2793 		return 0;
2794 	}
2795 	/*
2796 	 * Large file size enabled file system can only be mounted
2797 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2798 	 */
2799 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2800 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2801 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2802 				 "cannot be mounted RDWR without "
2803 				 "CONFIG_LBDAF");
2804 			return 0;
2805 		}
2806 	}
2807 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2808 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2809 		ext4_msg(sb, KERN_ERR,
2810 			 "Can't support bigalloc feature without "
2811 			 "extents feature\n");
2812 		return 0;
2813 	}
2814 
2815 #ifndef CONFIG_QUOTA
2816 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2817 	    !readonly) {
2818 		ext4_msg(sb, KERN_ERR,
2819 			 "Filesystem with quota feature cannot be mounted RDWR "
2820 			 "without CONFIG_QUOTA");
2821 		return 0;
2822 	}
2823 #endif  /* CONFIG_QUOTA */
2824 	return 1;
2825 }
2826 
2827 /*
2828  * This function is called once a day if we have errors logged
2829  * on the file system
2830  */
2831 static void print_daily_error_info(unsigned long arg)
2832 {
2833 	struct super_block *sb = (struct super_block *) arg;
2834 	struct ext4_sb_info *sbi;
2835 	struct ext4_super_block *es;
2836 
2837 	sbi = EXT4_SB(sb);
2838 	es = sbi->s_es;
2839 
2840 	if (es->s_error_count)
2841 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2842 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2843 			 le32_to_cpu(es->s_error_count));
2844 	if (es->s_first_error_time) {
2845 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2846 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2847 		       (int) sizeof(es->s_first_error_func),
2848 		       es->s_first_error_func,
2849 		       le32_to_cpu(es->s_first_error_line));
2850 		if (es->s_first_error_ino)
2851 			printk(": inode %u",
2852 			       le32_to_cpu(es->s_first_error_ino));
2853 		if (es->s_first_error_block)
2854 			printk(": block %llu", (unsigned long long)
2855 			       le64_to_cpu(es->s_first_error_block));
2856 		printk("\n");
2857 	}
2858 	if (es->s_last_error_time) {
2859 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2860 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2861 		       (int) sizeof(es->s_last_error_func),
2862 		       es->s_last_error_func,
2863 		       le32_to_cpu(es->s_last_error_line));
2864 		if (es->s_last_error_ino)
2865 			printk(": inode %u",
2866 			       le32_to_cpu(es->s_last_error_ino));
2867 		if (es->s_last_error_block)
2868 			printk(": block %llu", (unsigned long long)
2869 			       le64_to_cpu(es->s_last_error_block));
2870 		printk("\n");
2871 	}
2872 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2873 }
2874 
2875 /* Find next suitable group and run ext4_init_inode_table */
2876 static int ext4_run_li_request(struct ext4_li_request *elr)
2877 {
2878 	struct ext4_group_desc *gdp = NULL;
2879 	ext4_group_t group, ngroups;
2880 	struct super_block *sb;
2881 	unsigned long timeout = 0;
2882 	int ret = 0;
2883 
2884 	sb = elr->lr_super;
2885 	ngroups = EXT4_SB(sb)->s_groups_count;
2886 
2887 	sb_start_write(sb);
2888 	for (group = elr->lr_next_group; group < ngroups; group++) {
2889 		gdp = ext4_get_group_desc(sb, group, NULL);
2890 		if (!gdp) {
2891 			ret = 1;
2892 			break;
2893 		}
2894 
2895 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2896 			break;
2897 	}
2898 
2899 	if (group >= ngroups)
2900 		ret = 1;
2901 
2902 	if (!ret) {
2903 		timeout = jiffies;
2904 		ret = ext4_init_inode_table(sb, group,
2905 					    elr->lr_timeout ? 0 : 1);
2906 		if (elr->lr_timeout == 0) {
2907 			timeout = (jiffies - timeout) *
2908 				  elr->lr_sbi->s_li_wait_mult;
2909 			elr->lr_timeout = timeout;
2910 		}
2911 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2912 		elr->lr_next_group = group + 1;
2913 	}
2914 	sb_end_write(sb);
2915 
2916 	return ret;
2917 }
2918 
2919 /*
2920  * Remove lr_request from the list_request and free the
2921  * request structure. Should be called with li_list_mtx held
2922  */
2923 static void ext4_remove_li_request(struct ext4_li_request *elr)
2924 {
2925 	struct ext4_sb_info *sbi;
2926 
2927 	if (!elr)
2928 		return;
2929 
2930 	sbi = elr->lr_sbi;
2931 
2932 	list_del(&elr->lr_request);
2933 	sbi->s_li_request = NULL;
2934 	kfree(elr);
2935 }
2936 
2937 static void ext4_unregister_li_request(struct super_block *sb)
2938 {
2939 	mutex_lock(&ext4_li_mtx);
2940 	if (!ext4_li_info) {
2941 		mutex_unlock(&ext4_li_mtx);
2942 		return;
2943 	}
2944 
2945 	mutex_lock(&ext4_li_info->li_list_mtx);
2946 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2947 	mutex_unlock(&ext4_li_info->li_list_mtx);
2948 	mutex_unlock(&ext4_li_mtx);
2949 }
2950 
2951 static struct task_struct *ext4_lazyinit_task;
2952 
2953 /*
2954  * This is the function where ext4lazyinit thread lives. It walks
2955  * through the request list searching for next scheduled filesystem.
2956  * When such a fs is found, run the lazy initialization request
2957  * (ext4_rn_li_request) and keep track of the time spend in this
2958  * function. Based on that time we compute next schedule time of
2959  * the request. When walking through the list is complete, compute
2960  * next waking time and put itself into sleep.
2961  */
2962 static int ext4_lazyinit_thread(void *arg)
2963 {
2964 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2965 	struct list_head *pos, *n;
2966 	struct ext4_li_request *elr;
2967 	unsigned long next_wakeup, cur;
2968 
2969 	BUG_ON(NULL == eli);
2970 
2971 cont_thread:
2972 	while (true) {
2973 		next_wakeup = MAX_JIFFY_OFFSET;
2974 
2975 		mutex_lock(&eli->li_list_mtx);
2976 		if (list_empty(&eli->li_request_list)) {
2977 			mutex_unlock(&eli->li_list_mtx);
2978 			goto exit_thread;
2979 		}
2980 
2981 		list_for_each_safe(pos, n, &eli->li_request_list) {
2982 			elr = list_entry(pos, struct ext4_li_request,
2983 					 lr_request);
2984 
2985 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2986 				if (ext4_run_li_request(elr) != 0) {
2987 					/* error, remove the lazy_init job */
2988 					ext4_remove_li_request(elr);
2989 					continue;
2990 				}
2991 			}
2992 
2993 			if (time_before(elr->lr_next_sched, next_wakeup))
2994 				next_wakeup = elr->lr_next_sched;
2995 		}
2996 		mutex_unlock(&eli->li_list_mtx);
2997 
2998 		try_to_freeze();
2999 
3000 		cur = jiffies;
3001 		if ((time_after_eq(cur, next_wakeup)) ||
3002 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3003 			cond_resched();
3004 			continue;
3005 		}
3006 
3007 		schedule_timeout_interruptible(next_wakeup - cur);
3008 
3009 		if (kthread_should_stop()) {
3010 			ext4_clear_request_list();
3011 			goto exit_thread;
3012 		}
3013 	}
3014 
3015 exit_thread:
3016 	/*
3017 	 * It looks like the request list is empty, but we need
3018 	 * to check it under the li_list_mtx lock, to prevent any
3019 	 * additions into it, and of course we should lock ext4_li_mtx
3020 	 * to atomically free the list and ext4_li_info, because at
3021 	 * this point another ext4 filesystem could be registering
3022 	 * new one.
3023 	 */
3024 	mutex_lock(&ext4_li_mtx);
3025 	mutex_lock(&eli->li_list_mtx);
3026 	if (!list_empty(&eli->li_request_list)) {
3027 		mutex_unlock(&eli->li_list_mtx);
3028 		mutex_unlock(&ext4_li_mtx);
3029 		goto cont_thread;
3030 	}
3031 	mutex_unlock(&eli->li_list_mtx);
3032 	kfree(ext4_li_info);
3033 	ext4_li_info = NULL;
3034 	mutex_unlock(&ext4_li_mtx);
3035 
3036 	return 0;
3037 }
3038 
3039 static void ext4_clear_request_list(void)
3040 {
3041 	struct list_head *pos, *n;
3042 	struct ext4_li_request *elr;
3043 
3044 	mutex_lock(&ext4_li_info->li_list_mtx);
3045 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3046 		elr = list_entry(pos, struct ext4_li_request,
3047 				 lr_request);
3048 		ext4_remove_li_request(elr);
3049 	}
3050 	mutex_unlock(&ext4_li_info->li_list_mtx);
3051 }
3052 
3053 static int ext4_run_lazyinit_thread(void)
3054 {
3055 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3056 					 ext4_li_info, "ext4lazyinit");
3057 	if (IS_ERR(ext4_lazyinit_task)) {
3058 		int err = PTR_ERR(ext4_lazyinit_task);
3059 		ext4_clear_request_list();
3060 		kfree(ext4_li_info);
3061 		ext4_li_info = NULL;
3062 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3063 				 "initialization thread\n",
3064 				 err);
3065 		return err;
3066 	}
3067 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3068 	return 0;
3069 }
3070 
3071 /*
3072  * Check whether it make sense to run itable init. thread or not.
3073  * If there is at least one uninitialized inode table, return
3074  * corresponding group number, else the loop goes through all
3075  * groups and return total number of groups.
3076  */
3077 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3078 {
3079 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3080 	struct ext4_group_desc *gdp = NULL;
3081 
3082 	for (group = 0; group < ngroups; group++) {
3083 		gdp = ext4_get_group_desc(sb, group, NULL);
3084 		if (!gdp)
3085 			continue;
3086 
3087 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3088 			break;
3089 	}
3090 
3091 	return group;
3092 }
3093 
3094 static int ext4_li_info_new(void)
3095 {
3096 	struct ext4_lazy_init *eli = NULL;
3097 
3098 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3099 	if (!eli)
3100 		return -ENOMEM;
3101 
3102 	INIT_LIST_HEAD(&eli->li_request_list);
3103 	mutex_init(&eli->li_list_mtx);
3104 
3105 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3106 
3107 	ext4_li_info = eli;
3108 
3109 	return 0;
3110 }
3111 
3112 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3113 					    ext4_group_t start)
3114 {
3115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3116 	struct ext4_li_request *elr;
3117 
3118 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3119 	if (!elr)
3120 		return NULL;
3121 
3122 	elr->lr_super = sb;
3123 	elr->lr_sbi = sbi;
3124 	elr->lr_next_group = start;
3125 
3126 	/*
3127 	 * Randomize first schedule time of the request to
3128 	 * spread the inode table initialization requests
3129 	 * better.
3130 	 */
3131 	elr->lr_next_sched = jiffies + (prandom_u32() %
3132 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3133 	return elr;
3134 }
3135 
3136 int ext4_register_li_request(struct super_block *sb,
3137 			     ext4_group_t first_not_zeroed)
3138 {
3139 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3140 	struct ext4_li_request *elr = NULL;
3141 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3142 	int ret = 0;
3143 
3144 	mutex_lock(&ext4_li_mtx);
3145 	if (sbi->s_li_request != NULL) {
3146 		/*
3147 		 * Reset timeout so it can be computed again, because
3148 		 * s_li_wait_mult might have changed.
3149 		 */
3150 		sbi->s_li_request->lr_timeout = 0;
3151 		goto out;
3152 	}
3153 
3154 	if (first_not_zeroed == ngroups ||
3155 	    (sb->s_flags & MS_RDONLY) ||
3156 	    !test_opt(sb, INIT_INODE_TABLE))
3157 		goto out;
3158 
3159 	elr = ext4_li_request_new(sb, first_not_zeroed);
3160 	if (!elr) {
3161 		ret = -ENOMEM;
3162 		goto out;
3163 	}
3164 
3165 	if (NULL == ext4_li_info) {
3166 		ret = ext4_li_info_new();
3167 		if (ret)
3168 			goto out;
3169 	}
3170 
3171 	mutex_lock(&ext4_li_info->li_list_mtx);
3172 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3173 	mutex_unlock(&ext4_li_info->li_list_mtx);
3174 
3175 	sbi->s_li_request = elr;
3176 	/*
3177 	 * set elr to NULL here since it has been inserted to
3178 	 * the request_list and the removal and free of it is
3179 	 * handled by ext4_clear_request_list from now on.
3180 	 */
3181 	elr = NULL;
3182 
3183 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3184 		ret = ext4_run_lazyinit_thread();
3185 		if (ret)
3186 			goto out;
3187 	}
3188 out:
3189 	mutex_unlock(&ext4_li_mtx);
3190 	if (ret)
3191 		kfree(elr);
3192 	return ret;
3193 }
3194 
3195 /*
3196  * We do not need to lock anything since this is called on
3197  * module unload.
3198  */
3199 static void ext4_destroy_lazyinit_thread(void)
3200 {
3201 	/*
3202 	 * If thread exited earlier
3203 	 * there's nothing to be done.
3204 	 */
3205 	if (!ext4_li_info || !ext4_lazyinit_task)
3206 		return;
3207 
3208 	kthread_stop(ext4_lazyinit_task);
3209 }
3210 
3211 static int set_journal_csum_feature_set(struct super_block *sb)
3212 {
3213 	int ret = 1;
3214 	int compat, incompat;
3215 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3216 
3217 	if (ext4_has_metadata_csum(sb)) {
3218 		/* journal checksum v3 */
3219 		compat = 0;
3220 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3221 	} else {
3222 		/* journal checksum v1 */
3223 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3224 		incompat = 0;
3225 	}
3226 
3227 	jbd2_journal_clear_features(sbi->s_journal,
3228 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3229 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3230 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3231 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3232 		ret = jbd2_journal_set_features(sbi->s_journal,
3233 				compat, 0,
3234 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3235 				incompat);
3236 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3237 		ret = jbd2_journal_set_features(sbi->s_journal,
3238 				compat, 0,
3239 				incompat);
3240 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3241 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3242 	} else {
3243 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3244 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3245 	}
3246 
3247 	return ret;
3248 }
3249 
3250 /*
3251  * Note: calculating the overhead so we can be compatible with
3252  * historical BSD practice is quite difficult in the face of
3253  * clusters/bigalloc.  This is because multiple metadata blocks from
3254  * different block group can end up in the same allocation cluster.
3255  * Calculating the exact overhead in the face of clustered allocation
3256  * requires either O(all block bitmaps) in memory or O(number of block
3257  * groups**2) in time.  We will still calculate the superblock for
3258  * older file systems --- and if we come across with a bigalloc file
3259  * system with zero in s_overhead_clusters the estimate will be close to
3260  * correct especially for very large cluster sizes --- but for newer
3261  * file systems, it's better to calculate this figure once at mkfs
3262  * time, and store it in the superblock.  If the superblock value is
3263  * present (even for non-bigalloc file systems), we will use it.
3264  */
3265 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3266 			  char *buf)
3267 {
3268 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3269 	struct ext4_group_desc	*gdp;
3270 	ext4_fsblk_t		first_block, last_block, b;
3271 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3272 	int			s, j, count = 0;
3273 
3274 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3275 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3276 			sbi->s_itb_per_group + 2);
3277 
3278 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3279 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3280 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3281 	for (i = 0; i < ngroups; i++) {
3282 		gdp = ext4_get_group_desc(sb, i, NULL);
3283 		b = ext4_block_bitmap(sb, gdp);
3284 		if (b >= first_block && b <= last_block) {
3285 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3286 			count++;
3287 		}
3288 		b = ext4_inode_bitmap(sb, gdp);
3289 		if (b >= first_block && b <= last_block) {
3290 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3291 			count++;
3292 		}
3293 		b = ext4_inode_table(sb, gdp);
3294 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3295 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3296 				int c = EXT4_B2C(sbi, b - first_block);
3297 				ext4_set_bit(c, buf);
3298 				count++;
3299 			}
3300 		if (i != grp)
3301 			continue;
3302 		s = 0;
3303 		if (ext4_bg_has_super(sb, grp)) {
3304 			ext4_set_bit(s++, buf);
3305 			count++;
3306 		}
3307 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3308 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309 			count++;
3310 		}
3311 	}
3312 	if (!count)
3313 		return 0;
3314 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3315 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3316 }
3317 
3318 /*
3319  * Compute the overhead and stash it in sbi->s_overhead
3320  */
3321 int ext4_calculate_overhead(struct super_block *sb)
3322 {
3323 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3324 	struct ext4_super_block *es = sbi->s_es;
3325 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326 	ext4_fsblk_t overhead = 0;
3327 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3328 
3329 	if (!buf)
3330 		return -ENOMEM;
3331 
3332 	/*
3333 	 * Compute the overhead (FS structures).  This is constant
3334 	 * for a given filesystem unless the number of block groups
3335 	 * changes so we cache the previous value until it does.
3336 	 */
3337 
3338 	/*
3339 	 * All of the blocks before first_data_block are overhead
3340 	 */
3341 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3342 
3343 	/*
3344 	 * Add the overhead found in each block group
3345 	 */
3346 	for (i = 0; i < ngroups; i++) {
3347 		int blks;
3348 
3349 		blks = count_overhead(sb, i, buf);
3350 		overhead += blks;
3351 		if (blks)
3352 			memset(buf, 0, PAGE_SIZE);
3353 		cond_resched();
3354 	}
3355 	/* Add the internal journal blocks as well */
3356 	if (sbi->s_journal && !sbi->journal_bdev)
3357 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3358 
3359 	sbi->s_overhead = overhead;
3360 	smp_wmb();
3361 	free_page((unsigned long) buf);
3362 	return 0;
3363 }
3364 
3365 
3366 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3367 {
3368 	ext4_fsblk_t resv_clusters;
3369 
3370 	/*
3371 	 * There's no need to reserve anything when we aren't using extents.
3372 	 * The space estimates are exact, there are no unwritten extents,
3373 	 * hole punching doesn't need new metadata... This is needed especially
3374 	 * to keep ext2/3 backward compatibility.
3375 	 */
3376 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3377 		return 0;
3378 	/*
3379 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3380 	 * This should cover the situations where we can not afford to run
3381 	 * out of space like for example punch hole, or converting
3382 	 * unwritten extents in delalloc path. In most cases such
3383 	 * allocation would require 1, or 2 blocks, higher numbers are
3384 	 * very rare.
3385 	 */
3386 	resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3387 			EXT4_SB(sb)->s_cluster_bits;
3388 
3389 	do_div(resv_clusters, 50);
3390 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3391 
3392 	return resv_clusters;
3393 }
3394 
3395 
3396 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3397 {
3398 	ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3399 				sbi->s_cluster_bits;
3400 
3401 	if (count >= clusters)
3402 		return -EINVAL;
3403 
3404 	atomic64_set(&sbi->s_resv_clusters, count);
3405 	return 0;
3406 }
3407 
3408 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3409 {
3410 	char *orig_data = kstrdup(data, GFP_KERNEL);
3411 	struct buffer_head *bh;
3412 	struct ext4_super_block *es = NULL;
3413 	struct ext4_sb_info *sbi;
3414 	ext4_fsblk_t block;
3415 	ext4_fsblk_t sb_block = get_sb_block(&data);
3416 	ext4_fsblk_t logical_sb_block;
3417 	unsigned long offset = 0;
3418 	unsigned long journal_devnum = 0;
3419 	unsigned long def_mount_opts;
3420 	struct inode *root;
3421 	char *cp;
3422 	const char *descr;
3423 	int ret = -ENOMEM;
3424 	int blocksize, clustersize;
3425 	unsigned int db_count;
3426 	unsigned int i;
3427 	int needs_recovery, has_huge_files, has_bigalloc;
3428 	__u64 blocks_count;
3429 	int err = 0;
3430 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431 	ext4_group_t first_not_zeroed;
3432 
3433 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3434 	if (!sbi)
3435 		goto out_free_orig;
3436 
3437 	sbi->s_blockgroup_lock =
3438 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439 	if (!sbi->s_blockgroup_lock) {
3440 		kfree(sbi);
3441 		goto out_free_orig;
3442 	}
3443 	sb->s_fs_info = sbi;
3444 	sbi->s_sb = sb;
3445 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3446 	sbi->s_sb_block = sb_block;
3447 	if (sb->s_bdev->bd_part)
3448 		sbi->s_sectors_written_start =
3449 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3450 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3451 	/* Modes of operations for file and directory encryption. */
3452 	sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
3453 	sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
3454 #endif
3455 
3456 	/* Cleanup superblock name */
3457 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3458 		*cp = '!';
3459 
3460 	/* -EINVAL is default */
3461 	ret = -EINVAL;
3462 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3463 	if (!blocksize) {
3464 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3465 		goto out_fail;
3466 	}
3467 
3468 	/*
3469 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3470 	 * block sizes.  We need to calculate the offset from buffer start.
3471 	 */
3472 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3473 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3474 		offset = do_div(logical_sb_block, blocksize);
3475 	} else {
3476 		logical_sb_block = sb_block;
3477 	}
3478 
3479 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3480 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3481 		goto out_fail;
3482 	}
3483 	/*
3484 	 * Note: s_es must be initialized as soon as possible because
3485 	 *       some ext4 macro-instructions depend on its value
3486 	 */
3487 	es = (struct ext4_super_block *) (bh->b_data + offset);
3488 	sbi->s_es = es;
3489 	sb->s_magic = le16_to_cpu(es->s_magic);
3490 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3491 		goto cantfind_ext4;
3492 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3493 
3494 	/* Warn if metadata_csum and gdt_csum are both set. */
3495 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3496 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3497 	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3498 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3499 			     "redundant flags; please run fsck.");
3500 
3501 	/* Check for a known checksum algorithm */
3502 	if (!ext4_verify_csum_type(sb, es)) {
3503 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3504 			 "unknown checksum algorithm.");
3505 		silent = 1;
3506 		goto cantfind_ext4;
3507 	}
3508 
3509 	/* Load the checksum driver */
3510 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3511 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3512 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3513 		if (IS_ERR(sbi->s_chksum_driver)) {
3514 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3515 			ret = PTR_ERR(sbi->s_chksum_driver);
3516 			sbi->s_chksum_driver = NULL;
3517 			goto failed_mount;
3518 		}
3519 	}
3520 
3521 	/* Check superblock checksum */
3522 	if (!ext4_superblock_csum_verify(sb, es)) {
3523 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3524 			 "invalid superblock checksum.  Run e2fsck?");
3525 		silent = 1;
3526 		goto cantfind_ext4;
3527 	}
3528 
3529 	/* Precompute checksum seed for all metadata */
3530 	if (ext4_has_metadata_csum(sb))
3531 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3532 					       sizeof(es->s_uuid));
3533 
3534 	/* Set defaults before we parse the mount options */
3535 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3536 	set_opt(sb, INIT_INODE_TABLE);
3537 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3538 		set_opt(sb, DEBUG);
3539 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3540 		set_opt(sb, GRPID);
3541 	if (def_mount_opts & EXT4_DEFM_UID16)
3542 		set_opt(sb, NO_UID32);
3543 	/* xattr user namespace & acls are now defaulted on */
3544 	set_opt(sb, XATTR_USER);
3545 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3546 	set_opt(sb, POSIX_ACL);
3547 #endif
3548 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3549 	if (ext4_has_metadata_csum(sb))
3550 		set_opt(sb, JOURNAL_CHECKSUM);
3551 
3552 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3553 		set_opt(sb, JOURNAL_DATA);
3554 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3555 		set_opt(sb, ORDERED_DATA);
3556 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3557 		set_opt(sb, WRITEBACK_DATA);
3558 
3559 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3560 		set_opt(sb, ERRORS_PANIC);
3561 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3562 		set_opt(sb, ERRORS_CONT);
3563 	else
3564 		set_opt(sb, ERRORS_RO);
3565 	/* block_validity enabled by default; disable with noblock_validity */
3566 	set_opt(sb, BLOCK_VALIDITY);
3567 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3568 		set_opt(sb, DISCARD);
3569 
3570 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3571 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3572 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3573 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3574 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3575 
3576 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3577 		set_opt(sb, BARRIER);
3578 
3579 	/*
3580 	 * enable delayed allocation by default
3581 	 * Use -o nodelalloc to turn it off
3582 	 */
3583 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3584 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3585 		set_opt(sb, DELALLOC);
3586 
3587 	/*
3588 	 * set default s_li_wait_mult for lazyinit, for the case there is
3589 	 * no mount option specified.
3590 	 */
3591 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3592 
3593 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3594 			   &journal_devnum, &journal_ioprio, 0)) {
3595 		ext4_msg(sb, KERN_WARNING,
3596 			 "failed to parse options in superblock: %s",
3597 			 sbi->s_es->s_mount_opts);
3598 	}
3599 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3600 	if (!parse_options((char *) data, sb, &journal_devnum,
3601 			   &journal_ioprio, 0))
3602 		goto failed_mount;
3603 
3604 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3605 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3606 			    "with data=journal disables delayed "
3607 			    "allocation and O_DIRECT support!\n");
3608 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3609 			ext4_msg(sb, KERN_ERR, "can't mount with "
3610 				 "both data=journal and delalloc");
3611 			goto failed_mount;
3612 		}
3613 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3614 			ext4_msg(sb, KERN_ERR, "can't mount with "
3615 				 "both data=journal and dioread_nolock");
3616 			goto failed_mount;
3617 		}
3618 		if (test_opt(sb, DAX)) {
3619 			ext4_msg(sb, KERN_ERR, "can't mount with "
3620 				 "both data=journal and dax");
3621 			goto failed_mount;
3622 		}
3623 		if (test_opt(sb, DELALLOC))
3624 			clear_opt(sb, DELALLOC);
3625 	}
3626 
3627 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3628 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3629 
3630 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3631 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3632 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3633 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3634 		ext4_msg(sb, KERN_WARNING,
3635 		       "feature flags set on rev 0 fs, "
3636 		       "running e2fsck is recommended");
3637 
3638 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3639 		set_opt2(sb, HURD_COMPAT);
3640 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3641 					      EXT4_FEATURE_INCOMPAT_64BIT)) {
3642 			ext4_msg(sb, KERN_ERR,
3643 				 "The Hurd can't support 64-bit file systems");
3644 			goto failed_mount;
3645 		}
3646 	}
3647 
3648 	if (IS_EXT2_SB(sb)) {
3649 		if (ext2_feature_set_ok(sb))
3650 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3651 				 "using the ext4 subsystem");
3652 		else {
3653 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3654 				 "to feature incompatibilities");
3655 			goto failed_mount;
3656 		}
3657 	}
3658 
3659 	if (IS_EXT3_SB(sb)) {
3660 		if (ext3_feature_set_ok(sb))
3661 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3662 				 "using the ext4 subsystem");
3663 		else {
3664 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3665 				 "to feature incompatibilities");
3666 			goto failed_mount;
3667 		}
3668 	}
3669 
3670 	/*
3671 	 * Check feature flags regardless of the revision level, since we
3672 	 * previously didn't change the revision level when setting the flags,
3673 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3674 	 */
3675 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3676 		goto failed_mount;
3677 
3678 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3679 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3680 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3681 		ext4_msg(sb, KERN_ERR,
3682 		       "Unsupported filesystem blocksize %d", blocksize);
3683 		goto failed_mount;
3684 	}
3685 
3686 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3687 		if (blocksize != PAGE_SIZE) {
3688 			ext4_msg(sb, KERN_ERR,
3689 					"error: unsupported blocksize for dax");
3690 			goto failed_mount;
3691 		}
3692 		if (!sb->s_bdev->bd_disk->fops->direct_access) {
3693 			ext4_msg(sb, KERN_ERR,
3694 					"error: device does not support dax");
3695 			goto failed_mount;
3696 		}
3697 	}
3698 
3699 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3700 	    es->s_encryption_level) {
3701 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3702 			 es->s_encryption_level);
3703 		goto failed_mount;
3704 	}
3705 
3706 	if (sb->s_blocksize != blocksize) {
3707 		/* Validate the filesystem blocksize */
3708 		if (!sb_set_blocksize(sb, blocksize)) {
3709 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3710 					blocksize);
3711 			goto failed_mount;
3712 		}
3713 
3714 		brelse(bh);
3715 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3716 		offset = do_div(logical_sb_block, blocksize);
3717 		bh = sb_bread_unmovable(sb, logical_sb_block);
3718 		if (!bh) {
3719 			ext4_msg(sb, KERN_ERR,
3720 			       "Can't read superblock on 2nd try");
3721 			goto failed_mount;
3722 		}
3723 		es = (struct ext4_super_block *)(bh->b_data + offset);
3724 		sbi->s_es = es;
3725 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3726 			ext4_msg(sb, KERN_ERR,
3727 			       "Magic mismatch, very weird!");
3728 			goto failed_mount;
3729 		}
3730 	}
3731 
3732 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3733 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3734 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3735 						      has_huge_files);
3736 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3737 
3738 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3739 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3740 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3741 	} else {
3742 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3743 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3744 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3745 		    (!is_power_of_2(sbi->s_inode_size)) ||
3746 		    (sbi->s_inode_size > blocksize)) {
3747 			ext4_msg(sb, KERN_ERR,
3748 			       "unsupported inode size: %d",
3749 			       sbi->s_inode_size);
3750 			goto failed_mount;
3751 		}
3752 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3753 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3754 	}
3755 
3756 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3757 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3758 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3759 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3760 		    !is_power_of_2(sbi->s_desc_size)) {
3761 			ext4_msg(sb, KERN_ERR,
3762 			       "unsupported descriptor size %lu",
3763 			       sbi->s_desc_size);
3764 			goto failed_mount;
3765 		}
3766 	} else
3767 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3768 
3769 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3770 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3771 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3772 		goto cantfind_ext4;
3773 
3774 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3775 	if (sbi->s_inodes_per_block == 0)
3776 		goto cantfind_ext4;
3777 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3778 					sbi->s_inodes_per_block;
3779 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3780 	sbi->s_sbh = bh;
3781 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3782 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3783 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3784 
3785 	for (i = 0; i < 4; i++)
3786 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3787 	sbi->s_def_hash_version = es->s_def_hash_version;
3788 	if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3789 		i = le32_to_cpu(es->s_flags);
3790 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3791 			sbi->s_hash_unsigned = 3;
3792 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3793 #ifdef __CHAR_UNSIGNED__
3794 			if (!(sb->s_flags & MS_RDONLY))
3795 				es->s_flags |=
3796 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3797 			sbi->s_hash_unsigned = 3;
3798 #else
3799 			if (!(sb->s_flags & MS_RDONLY))
3800 				es->s_flags |=
3801 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3802 #endif
3803 		}
3804 	}
3805 
3806 	/* Handle clustersize */
3807 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3808 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3809 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3810 	if (has_bigalloc) {
3811 		if (clustersize < blocksize) {
3812 			ext4_msg(sb, KERN_ERR,
3813 				 "cluster size (%d) smaller than "
3814 				 "block size (%d)", clustersize, blocksize);
3815 			goto failed_mount;
3816 		}
3817 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3818 			le32_to_cpu(es->s_log_block_size);
3819 		sbi->s_clusters_per_group =
3820 			le32_to_cpu(es->s_clusters_per_group);
3821 		if (sbi->s_clusters_per_group > blocksize * 8) {
3822 			ext4_msg(sb, KERN_ERR,
3823 				 "#clusters per group too big: %lu",
3824 				 sbi->s_clusters_per_group);
3825 			goto failed_mount;
3826 		}
3827 		if (sbi->s_blocks_per_group !=
3828 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3829 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3830 				 "clusters per group (%lu) inconsistent",
3831 				 sbi->s_blocks_per_group,
3832 				 sbi->s_clusters_per_group);
3833 			goto failed_mount;
3834 		}
3835 	} else {
3836 		if (clustersize != blocksize) {
3837 			ext4_warning(sb, "fragment/cluster size (%d) != "
3838 				     "block size (%d)", clustersize,
3839 				     blocksize);
3840 			clustersize = blocksize;
3841 		}
3842 		if (sbi->s_blocks_per_group > blocksize * 8) {
3843 			ext4_msg(sb, KERN_ERR,
3844 				 "#blocks per group too big: %lu",
3845 				 sbi->s_blocks_per_group);
3846 			goto failed_mount;
3847 		}
3848 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3849 		sbi->s_cluster_bits = 0;
3850 	}
3851 	sbi->s_cluster_ratio = clustersize / blocksize;
3852 
3853 	if (sbi->s_inodes_per_group > blocksize * 8) {
3854 		ext4_msg(sb, KERN_ERR,
3855 		       "#inodes per group too big: %lu",
3856 		       sbi->s_inodes_per_group);
3857 		goto failed_mount;
3858 	}
3859 
3860 	/* Do we have standard group size of clustersize * 8 blocks ? */
3861 	if (sbi->s_blocks_per_group == clustersize << 3)
3862 		set_opt2(sb, STD_GROUP_SIZE);
3863 
3864 	/*
3865 	 * Test whether we have more sectors than will fit in sector_t,
3866 	 * and whether the max offset is addressable by the page cache.
3867 	 */
3868 	err = generic_check_addressable(sb->s_blocksize_bits,
3869 					ext4_blocks_count(es));
3870 	if (err) {
3871 		ext4_msg(sb, KERN_ERR, "filesystem"
3872 			 " too large to mount safely on this system");
3873 		if (sizeof(sector_t) < 8)
3874 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3875 		goto failed_mount;
3876 	}
3877 
3878 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3879 		goto cantfind_ext4;
3880 
3881 	/* check blocks count against device size */
3882 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3883 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3884 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3885 		       "exceeds size of device (%llu blocks)",
3886 		       ext4_blocks_count(es), blocks_count);
3887 		goto failed_mount;
3888 	}
3889 
3890 	/*
3891 	 * It makes no sense for the first data block to be beyond the end
3892 	 * of the filesystem.
3893 	 */
3894 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3895 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3896 			 "block %u is beyond end of filesystem (%llu)",
3897 			 le32_to_cpu(es->s_first_data_block),
3898 			 ext4_blocks_count(es));
3899 		goto failed_mount;
3900 	}
3901 	blocks_count = (ext4_blocks_count(es) -
3902 			le32_to_cpu(es->s_first_data_block) +
3903 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3904 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3905 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3906 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3907 		       "(block count %llu, first data block %u, "
3908 		       "blocks per group %lu)", sbi->s_groups_count,
3909 		       ext4_blocks_count(es),
3910 		       le32_to_cpu(es->s_first_data_block),
3911 		       EXT4_BLOCKS_PER_GROUP(sb));
3912 		goto failed_mount;
3913 	}
3914 	sbi->s_groups_count = blocks_count;
3915 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3916 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3917 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3918 		   EXT4_DESC_PER_BLOCK(sb);
3919 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3920 					  sizeof(struct buffer_head *),
3921 					  GFP_KERNEL);
3922 	if (sbi->s_group_desc == NULL) {
3923 		ext4_msg(sb, KERN_ERR, "not enough memory");
3924 		ret = -ENOMEM;
3925 		goto failed_mount;
3926 	}
3927 
3928 	if (ext4_proc_root)
3929 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3930 
3931 	if (sbi->s_proc)
3932 		proc_create_data("options", S_IRUGO, sbi->s_proc,
3933 				 &ext4_seq_options_fops, sb);
3934 
3935 	bgl_lock_init(sbi->s_blockgroup_lock);
3936 
3937 	for (i = 0; i < db_count; i++) {
3938 		block = descriptor_loc(sb, logical_sb_block, i);
3939 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3940 		if (!sbi->s_group_desc[i]) {
3941 			ext4_msg(sb, KERN_ERR,
3942 			       "can't read group descriptor %d", i);
3943 			db_count = i;
3944 			goto failed_mount2;
3945 		}
3946 	}
3947 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3948 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3949 		goto failed_mount2;
3950 	}
3951 
3952 	sbi->s_gdb_count = db_count;
3953 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3954 	spin_lock_init(&sbi->s_next_gen_lock);
3955 
3956 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3957 		(unsigned long) sb);
3958 
3959 	/* Register extent status tree shrinker */
3960 	if (ext4_es_register_shrinker(sbi))
3961 		goto failed_mount3;
3962 
3963 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3964 	sbi->s_extent_max_zeroout_kb = 32;
3965 
3966 	/*
3967 	 * set up enough so that it can read an inode
3968 	 */
3969 	sb->s_op = &ext4_sops;
3970 	sb->s_export_op = &ext4_export_ops;
3971 	sb->s_xattr = ext4_xattr_handlers;
3972 #ifdef CONFIG_QUOTA
3973 	sb->dq_op = &ext4_quota_operations;
3974 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3975 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3976 	else
3977 		sb->s_qcop = &ext4_qctl_operations;
3978 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3979 #endif
3980 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3981 
3982 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3983 	mutex_init(&sbi->s_orphan_lock);
3984 
3985 	sb->s_root = NULL;
3986 
3987 	needs_recovery = (es->s_last_orphan != 0 ||
3988 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3989 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3990 
3991 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3992 	    !(sb->s_flags & MS_RDONLY))
3993 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3994 			goto failed_mount3a;
3995 
3996 	/*
3997 	 * The first inode we look at is the journal inode.  Don't try
3998 	 * root first: it may be modified in the journal!
3999 	 */
4000 	if (!test_opt(sb, NOLOAD) &&
4001 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4002 		if (ext4_load_journal(sb, es, journal_devnum))
4003 			goto failed_mount3a;
4004 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4005 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4006 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4007 		       "suppressed and not mounted read-only");
4008 		goto failed_mount_wq;
4009 	} else {
4010 		clear_opt(sb, DATA_FLAGS);
4011 		sbi->s_journal = NULL;
4012 		needs_recovery = 0;
4013 		goto no_journal;
4014 	}
4015 
4016 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4017 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4018 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4019 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4020 		goto failed_mount_wq;
4021 	}
4022 
4023 	if (!set_journal_csum_feature_set(sb)) {
4024 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4025 			 "feature set");
4026 		goto failed_mount_wq;
4027 	}
4028 
4029 	/* We have now updated the journal if required, so we can
4030 	 * validate the data journaling mode. */
4031 	switch (test_opt(sb, DATA_FLAGS)) {
4032 	case 0:
4033 		/* No mode set, assume a default based on the journal
4034 		 * capabilities: ORDERED_DATA if the journal can
4035 		 * cope, else JOURNAL_DATA
4036 		 */
4037 		if (jbd2_journal_check_available_features
4038 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4039 			set_opt(sb, ORDERED_DATA);
4040 		else
4041 			set_opt(sb, JOURNAL_DATA);
4042 		break;
4043 
4044 	case EXT4_MOUNT_ORDERED_DATA:
4045 	case EXT4_MOUNT_WRITEBACK_DATA:
4046 		if (!jbd2_journal_check_available_features
4047 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4048 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4049 			       "requested data journaling mode");
4050 			goto failed_mount_wq;
4051 		}
4052 	default:
4053 		break;
4054 	}
4055 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4056 
4057 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4058 
4059 no_journal:
4060 	if (ext4_mballoc_ready) {
4061 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4062 		if (!sbi->s_mb_cache) {
4063 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4064 			goto failed_mount_wq;
4065 		}
4066 	}
4067 
4068 	if (unlikely(sbi->s_mount_flags & EXT4_MF_TEST_DUMMY_ENCRYPTION) &&
4069 	    !(sb->s_flags & MS_RDONLY) &&
4070 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4071 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4072 		ext4_commit_super(sb, 1);
4073 	}
4074 
4075 	/*
4076 	 * Get the # of file system overhead blocks from the
4077 	 * superblock if present.
4078 	 */
4079 	if (es->s_overhead_clusters)
4080 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4081 	else {
4082 		err = ext4_calculate_overhead(sb);
4083 		if (err)
4084 			goto failed_mount_wq;
4085 	}
4086 
4087 	/*
4088 	 * The maximum number of concurrent works can be high and
4089 	 * concurrency isn't really necessary.  Limit it to 1.
4090 	 */
4091 	EXT4_SB(sb)->rsv_conversion_wq =
4092 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4093 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4094 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4095 		ret = -ENOMEM;
4096 		goto failed_mount4;
4097 	}
4098 
4099 	/*
4100 	 * The jbd2_journal_load will have done any necessary log recovery,
4101 	 * so we can safely mount the rest of the filesystem now.
4102 	 */
4103 
4104 	root = ext4_iget(sb, EXT4_ROOT_INO);
4105 	if (IS_ERR(root)) {
4106 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4107 		ret = PTR_ERR(root);
4108 		root = NULL;
4109 		goto failed_mount4;
4110 	}
4111 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4112 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4113 		iput(root);
4114 		goto failed_mount4;
4115 	}
4116 	sb->s_root = d_make_root(root);
4117 	if (!sb->s_root) {
4118 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4119 		ret = -ENOMEM;
4120 		goto failed_mount4;
4121 	}
4122 
4123 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4124 		sb->s_flags |= MS_RDONLY;
4125 
4126 	/* determine the minimum size of new large inodes, if present */
4127 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4128 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4129 						     EXT4_GOOD_OLD_INODE_SIZE;
4130 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4131 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4132 			if (sbi->s_want_extra_isize <
4133 			    le16_to_cpu(es->s_want_extra_isize))
4134 				sbi->s_want_extra_isize =
4135 					le16_to_cpu(es->s_want_extra_isize);
4136 			if (sbi->s_want_extra_isize <
4137 			    le16_to_cpu(es->s_min_extra_isize))
4138 				sbi->s_want_extra_isize =
4139 					le16_to_cpu(es->s_min_extra_isize);
4140 		}
4141 	}
4142 	/* Check if enough inode space is available */
4143 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4144 							sbi->s_inode_size) {
4145 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4146 						       EXT4_GOOD_OLD_INODE_SIZE;
4147 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4148 			 "available");
4149 	}
4150 
4151 	err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4152 	if (err) {
4153 		ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4154 			 "reserved pool", ext4_calculate_resv_clusters(sb));
4155 		goto failed_mount4a;
4156 	}
4157 
4158 	err = ext4_setup_system_zone(sb);
4159 	if (err) {
4160 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4161 			 "zone (%d)", err);
4162 		goto failed_mount4a;
4163 	}
4164 
4165 	ext4_ext_init(sb);
4166 	err = ext4_mb_init(sb);
4167 	if (err) {
4168 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4169 			 err);
4170 		goto failed_mount5;
4171 	}
4172 
4173 	block = ext4_count_free_clusters(sb);
4174 	ext4_free_blocks_count_set(sbi->s_es,
4175 				   EXT4_C2B(sbi, block));
4176 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4177 				  GFP_KERNEL);
4178 	if (!err) {
4179 		unsigned long freei = ext4_count_free_inodes(sb);
4180 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4181 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4182 					  GFP_KERNEL);
4183 	}
4184 	if (!err)
4185 		err = percpu_counter_init(&sbi->s_dirs_counter,
4186 					  ext4_count_dirs(sb), GFP_KERNEL);
4187 	if (!err)
4188 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4189 					  GFP_KERNEL);
4190 	if (err) {
4191 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4192 		goto failed_mount6;
4193 	}
4194 
4195 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4196 		if (!ext4_fill_flex_info(sb)) {
4197 			ext4_msg(sb, KERN_ERR,
4198 			       "unable to initialize "
4199 			       "flex_bg meta info!");
4200 			goto failed_mount6;
4201 		}
4202 
4203 	err = ext4_register_li_request(sb, first_not_zeroed);
4204 	if (err)
4205 		goto failed_mount6;
4206 
4207 	sbi->s_kobj.kset = ext4_kset;
4208 	init_completion(&sbi->s_kobj_unregister);
4209 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4210 				   "%s", sb->s_id);
4211 	if (err)
4212 		goto failed_mount7;
4213 
4214 #ifdef CONFIG_QUOTA
4215 	/* Enable quota usage during mount. */
4216 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4217 	    !(sb->s_flags & MS_RDONLY)) {
4218 		err = ext4_enable_quotas(sb);
4219 		if (err)
4220 			goto failed_mount8;
4221 	}
4222 #endif  /* CONFIG_QUOTA */
4223 
4224 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4225 	ext4_orphan_cleanup(sb, es);
4226 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4227 	if (needs_recovery) {
4228 		ext4_msg(sb, KERN_INFO, "recovery complete");
4229 		ext4_mark_recovery_complete(sb, es);
4230 	}
4231 	if (EXT4_SB(sb)->s_journal) {
4232 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4233 			descr = " journalled data mode";
4234 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4235 			descr = " ordered data mode";
4236 		else
4237 			descr = " writeback data mode";
4238 	} else
4239 		descr = "out journal";
4240 
4241 	if (test_opt(sb, DISCARD)) {
4242 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4243 		if (!blk_queue_discard(q))
4244 			ext4_msg(sb, KERN_WARNING,
4245 				 "mounting with \"discard\" option, but "
4246 				 "the device does not support discard");
4247 	}
4248 
4249 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4250 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4251 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4252 
4253 	if (es->s_error_count)
4254 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4255 
4256 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4257 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4258 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4259 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4260 
4261 	kfree(orig_data);
4262 	return 0;
4263 
4264 cantfind_ext4:
4265 	if (!silent)
4266 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4267 	goto failed_mount;
4268 
4269 #ifdef CONFIG_QUOTA
4270 failed_mount8:
4271 	kobject_del(&sbi->s_kobj);
4272 #endif
4273 failed_mount7:
4274 	ext4_unregister_li_request(sb);
4275 failed_mount6:
4276 	ext4_mb_release(sb);
4277 	if (sbi->s_flex_groups)
4278 		kvfree(sbi->s_flex_groups);
4279 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4280 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4281 	percpu_counter_destroy(&sbi->s_dirs_counter);
4282 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4283 failed_mount5:
4284 	ext4_ext_release(sb);
4285 	ext4_release_system_zone(sb);
4286 failed_mount4a:
4287 	dput(sb->s_root);
4288 	sb->s_root = NULL;
4289 failed_mount4:
4290 	ext4_msg(sb, KERN_ERR, "mount failed");
4291 	if (EXT4_SB(sb)->rsv_conversion_wq)
4292 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4293 failed_mount_wq:
4294 	if (sbi->s_journal) {
4295 		jbd2_journal_destroy(sbi->s_journal);
4296 		sbi->s_journal = NULL;
4297 	}
4298 failed_mount3a:
4299 	ext4_es_unregister_shrinker(sbi);
4300 failed_mount3:
4301 	del_timer_sync(&sbi->s_err_report);
4302 	if (sbi->s_mmp_tsk)
4303 		kthread_stop(sbi->s_mmp_tsk);
4304 failed_mount2:
4305 	for (i = 0; i < db_count; i++)
4306 		brelse(sbi->s_group_desc[i]);
4307 	kvfree(sbi->s_group_desc);
4308 failed_mount:
4309 	if (sbi->s_chksum_driver)
4310 		crypto_free_shash(sbi->s_chksum_driver);
4311 	if (sbi->s_proc) {
4312 		remove_proc_entry("options", sbi->s_proc);
4313 		remove_proc_entry(sb->s_id, ext4_proc_root);
4314 	}
4315 #ifdef CONFIG_QUOTA
4316 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4317 		kfree(sbi->s_qf_names[i]);
4318 #endif
4319 	ext4_blkdev_remove(sbi);
4320 	brelse(bh);
4321 out_fail:
4322 	sb->s_fs_info = NULL;
4323 	kfree(sbi->s_blockgroup_lock);
4324 	kfree(sbi);
4325 out_free_orig:
4326 	kfree(orig_data);
4327 	return err ? err : ret;
4328 }
4329 
4330 /*
4331  * Setup any per-fs journal parameters now.  We'll do this both on
4332  * initial mount, once the journal has been initialised but before we've
4333  * done any recovery; and again on any subsequent remount.
4334  */
4335 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4336 {
4337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4338 
4339 	journal->j_commit_interval = sbi->s_commit_interval;
4340 	journal->j_min_batch_time = sbi->s_min_batch_time;
4341 	journal->j_max_batch_time = sbi->s_max_batch_time;
4342 
4343 	write_lock(&journal->j_state_lock);
4344 	if (test_opt(sb, BARRIER))
4345 		journal->j_flags |= JBD2_BARRIER;
4346 	else
4347 		journal->j_flags &= ~JBD2_BARRIER;
4348 	if (test_opt(sb, DATA_ERR_ABORT))
4349 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4350 	else
4351 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4352 	write_unlock(&journal->j_state_lock);
4353 }
4354 
4355 static journal_t *ext4_get_journal(struct super_block *sb,
4356 				   unsigned int journal_inum)
4357 {
4358 	struct inode *journal_inode;
4359 	journal_t *journal;
4360 
4361 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4362 
4363 	/* First, test for the existence of a valid inode on disk.  Bad
4364 	 * things happen if we iget() an unused inode, as the subsequent
4365 	 * iput() will try to delete it. */
4366 
4367 	journal_inode = ext4_iget(sb, journal_inum);
4368 	if (IS_ERR(journal_inode)) {
4369 		ext4_msg(sb, KERN_ERR, "no journal found");
4370 		return NULL;
4371 	}
4372 	if (!journal_inode->i_nlink) {
4373 		make_bad_inode(journal_inode);
4374 		iput(journal_inode);
4375 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4376 		return NULL;
4377 	}
4378 
4379 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4380 		  journal_inode, journal_inode->i_size);
4381 	if (!S_ISREG(journal_inode->i_mode)) {
4382 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4383 		iput(journal_inode);
4384 		return NULL;
4385 	}
4386 
4387 	journal = jbd2_journal_init_inode(journal_inode);
4388 	if (!journal) {
4389 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4390 		iput(journal_inode);
4391 		return NULL;
4392 	}
4393 	journal->j_private = sb;
4394 	ext4_init_journal_params(sb, journal);
4395 	return journal;
4396 }
4397 
4398 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4399 				       dev_t j_dev)
4400 {
4401 	struct buffer_head *bh;
4402 	journal_t *journal;
4403 	ext4_fsblk_t start;
4404 	ext4_fsblk_t len;
4405 	int hblock, blocksize;
4406 	ext4_fsblk_t sb_block;
4407 	unsigned long offset;
4408 	struct ext4_super_block *es;
4409 	struct block_device *bdev;
4410 
4411 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4412 
4413 	bdev = ext4_blkdev_get(j_dev, sb);
4414 	if (bdev == NULL)
4415 		return NULL;
4416 
4417 	blocksize = sb->s_blocksize;
4418 	hblock = bdev_logical_block_size(bdev);
4419 	if (blocksize < hblock) {
4420 		ext4_msg(sb, KERN_ERR,
4421 			"blocksize too small for journal device");
4422 		goto out_bdev;
4423 	}
4424 
4425 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4426 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4427 	set_blocksize(bdev, blocksize);
4428 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4429 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4430 		       "external journal");
4431 		goto out_bdev;
4432 	}
4433 
4434 	es = (struct ext4_super_block *) (bh->b_data + offset);
4435 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4436 	    !(le32_to_cpu(es->s_feature_incompat) &
4437 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4438 		ext4_msg(sb, KERN_ERR, "external journal has "
4439 					"bad superblock");
4440 		brelse(bh);
4441 		goto out_bdev;
4442 	}
4443 
4444 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4445 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4446 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4447 		ext4_msg(sb, KERN_ERR, "external journal has "
4448 				       "corrupt superblock");
4449 		brelse(bh);
4450 		goto out_bdev;
4451 	}
4452 
4453 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4454 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4455 		brelse(bh);
4456 		goto out_bdev;
4457 	}
4458 
4459 	len = ext4_blocks_count(es);
4460 	start = sb_block + 1;
4461 	brelse(bh);	/* we're done with the superblock */
4462 
4463 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4464 					start, len, blocksize);
4465 	if (!journal) {
4466 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4467 		goto out_bdev;
4468 	}
4469 	journal->j_private = sb;
4470 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4471 	wait_on_buffer(journal->j_sb_buffer);
4472 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4473 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4474 		goto out_journal;
4475 	}
4476 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4477 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4478 					"user (unsupported) - %d",
4479 			be32_to_cpu(journal->j_superblock->s_nr_users));
4480 		goto out_journal;
4481 	}
4482 	EXT4_SB(sb)->journal_bdev = bdev;
4483 	ext4_init_journal_params(sb, journal);
4484 	return journal;
4485 
4486 out_journal:
4487 	jbd2_journal_destroy(journal);
4488 out_bdev:
4489 	ext4_blkdev_put(bdev);
4490 	return NULL;
4491 }
4492 
4493 static int ext4_load_journal(struct super_block *sb,
4494 			     struct ext4_super_block *es,
4495 			     unsigned long journal_devnum)
4496 {
4497 	journal_t *journal;
4498 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4499 	dev_t journal_dev;
4500 	int err = 0;
4501 	int really_read_only;
4502 
4503 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4504 
4505 	if (journal_devnum &&
4506 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4507 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4508 			"numbers have changed");
4509 		journal_dev = new_decode_dev(journal_devnum);
4510 	} else
4511 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4512 
4513 	really_read_only = bdev_read_only(sb->s_bdev);
4514 
4515 	/*
4516 	 * Are we loading a blank journal or performing recovery after a
4517 	 * crash?  For recovery, we need to check in advance whether we
4518 	 * can get read-write access to the device.
4519 	 */
4520 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4521 		if (sb->s_flags & MS_RDONLY) {
4522 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4523 					"required on readonly filesystem");
4524 			if (really_read_only) {
4525 				ext4_msg(sb, KERN_ERR, "write access "
4526 					"unavailable, cannot proceed");
4527 				return -EROFS;
4528 			}
4529 			ext4_msg(sb, KERN_INFO, "write access will "
4530 			       "be enabled during recovery");
4531 		}
4532 	}
4533 
4534 	if (journal_inum && journal_dev) {
4535 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4536 		       "and inode journals!");
4537 		return -EINVAL;
4538 	}
4539 
4540 	if (journal_inum) {
4541 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4542 			return -EINVAL;
4543 	} else {
4544 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4545 			return -EINVAL;
4546 	}
4547 
4548 	if (!(journal->j_flags & JBD2_BARRIER))
4549 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4550 
4551 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4552 		err = jbd2_journal_wipe(journal, !really_read_only);
4553 	if (!err) {
4554 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4555 		if (save)
4556 			memcpy(save, ((char *) es) +
4557 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4558 		err = jbd2_journal_load(journal);
4559 		if (save)
4560 			memcpy(((char *) es) + EXT4_S_ERR_START,
4561 			       save, EXT4_S_ERR_LEN);
4562 		kfree(save);
4563 	}
4564 
4565 	if (err) {
4566 		ext4_msg(sb, KERN_ERR, "error loading journal");
4567 		jbd2_journal_destroy(journal);
4568 		return err;
4569 	}
4570 
4571 	EXT4_SB(sb)->s_journal = journal;
4572 	ext4_clear_journal_err(sb, es);
4573 
4574 	if (!really_read_only && journal_devnum &&
4575 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4576 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4577 
4578 		/* Make sure we flush the recovery flag to disk. */
4579 		ext4_commit_super(sb, 1);
4580 	}
4581 
4582 	return 0;
4583 }
4584 
4585 static int ext4_commit_super(struct super_block *sb, int sync)
4586 {
4587 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4588 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4589 	int error = 0;
4590 
4591 	if (!sbh)
4592 		return error;
4593 	if (buffer_write_io_error(sbh)) {
4594 		/*
4595 		 * Oh, dear.  A previous attempt to write the
4596 		 * superblock failed.  This could happen because the
4597 		 * USB device was yanked out.  Or it could happen to
4598 		 * be a transient write error and maybe the block will
4599 		 * be remapped.  Nothing we can do but to retry the
4600 		 * write and hope for the best.
4601 		 */
4602 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4603 		       "superblock detected");
4604 		clear_buffer_write_io_error(sbh);
4605 		set_buffer_uptodate(sbh);
4606 	}
4607 	/*
4608 	 * If the file system is mounted read-only, don't update the
4609 	 * superblock write time.  This avoids updating the superblock
4610 	 * write time when we are mounting the root file system
4611 	 * read/only but we need to replay the journal; at that point,
4612 	 * for people who are east of GMT and who make their clock
4613 	 * tick in localtime for Windows bug-for-bug compatibility,
4614 	 * the clock is set in the future, and this will cause e2fsck
4615 	 * to complain and force a full file system check.
4616 	 */
4617 	if (!(sb->s_flags & MS_RDONLY))
4618 		es->s_wtime = cpu_to_le32(get_seconds());
4619 	if (sb->s_bdev->bd_part)
4620 		es->s_kbytes_written =
4621 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4622 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4623 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4624 	else
4625 		es->s_kbytes_written =
4626 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4627 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4628 		ext4_free_blocks_count_set(es,
4629 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4630 				&EXT4_SB(sb)->s_freeclusters_counter)));
4631 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4632 		es->s_free_inodes_count =
4633 			cpu_to_le32(percpu_counter_sum_positive(
4634 				&EXT4_SB(sb)->s_freeinodes_counter));
4635 	BUFFER_TRACE(sbh, "marking dirty");
4636 	ext4_superblock_csum_set(sb);
4637 	mark_buffer_dirty(sbh);
4638 	if (sync) {
4639 		error = sync_dirty_buffer(sbh);
4640 		if (error)
4641 			return error;
4642 
4643 		error = buffer_write_io_error(sbh);
4644 		if (error) {
4645 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4646 			       "superblock");
4647 			clear_buffer_write_io_error(sbh);
4648 			set_buffer_uptodate(sbh);
4649 		}
4650 	}
4651 	return error;
4652 }
4653 
4654 /*
4655  * Have we just finished recovery?  If so, and if we are mounting (or
4656  * remounting) the filesystem readonly, then we will end up with a
4657  * consistent fs on disk.  Record that fact.
4658  */
4659 static void ext4_mark_recovery_complete(struct super_block *sb,
4660 					struct ext4_super_block *es)
4661 {
4662 	journal_t *journal = EXT4_SB(sb)->s_journal;
4663 
4664 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4665 		BUG_ON(journal != NULL);
4666 		return;
4667 	}
4668 	jbd2_journal_lock_updates(journal);
4669 	if (jbd2_journal_flush(journal) < 0)
4670 		goto out;
4671 
4672 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4673 	    sb->s_flags & MS_RDONLY) {
4674 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4675 		ext4_commit_super(sb, 1);
4676 	}
4677 
4678 out:
4679 	jbd2_journal_unlock_updates(journal);
4680 }
4681 
4682 /*
4683  * If we are mounting (or read-write remounting) a filesystem whose journal
4684  * has recorded an error from a previous lifetime, move that error to the
4685  * main filesystem now.
4686  */
4687 static void ext4_clear_journal_err(struct super_block *sb,
4688 				   struct ext4_super_block *es)
4689 {
4690 	journal_t *journal;
4691 	int j_errno;
4692 	const char *errstr;
4693 
4694 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4695 
4696 	journal = EXT4_SB(sb)->s_journal;
4697 
4698 	/*
4699 	 * Now check for any error status which may have been recorded in the
4700 	 * journal by a prior ext4_error() or ext4_abort()
4701 	 */
4702 
4703 	j_errno = jbd2_journal_errno(journal);
4704 	if (j_errno) {
4705 		char nbuf[16];
4706 
4707 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4708 		ext4_warning(sb, "Filesystem error recorded "
4709 			     "from previous mount: %s", errstr);
4710 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4711 
4712 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4713 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4714 		ext4_commit_super(sb, 1);
4715 
4716 		jbd2_journal_clear_err(journal);
4717 		jbd2_journal_update_sb_errno(journal);
4718 	}
4719 }
4720 
4721 /*
4722  * Force the running and committing transactions to commit,
4723  * and wait on the commit.
4724  */
4725 int ext4_force_commit(struct super_block *sb)
4726 {
4727 	journal_t *journal;
4728 
4729 	if (sb->s_flags & MS_RDONLY)
4730 		return 0;
4731 
4732 	journal = EXT4_SB(sb)->s_journal;
4733 	return ext4_journal_force_commit(journal);
4734 }
4735 
4736 static int ext4_sync_fs(struct super_block *sb, int wait)
4737 {
4738 	int ret = 0;
4739 	tid_t target;
4740 	bool needs_barrier = false;
4741 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4742 
4743 	trace_ext4_sync_fs(sb, wait);
4744 	flush_workqueue(sbi->rsv_conversion_wq);
4745 	/*
4746 	 * Writeback quota in non-journalled quota case - journalled quota has
4747 	 * no dirty dquots
4748 	 */
4749 	dquot_writeback_dquots(sb, -1);
4750 	/*
4751 	 * Data writeback is possible w/o journal transaction, so barrier must
4752 	 * being sent at the end of the function. But we can skip it if
4753 	 * transaction_commit will do it for us.
4754 	 */
4755 	if (sbi->s_journal) {
4756 		target = jbd2_get_latest_transaction(sbi->s_journal);
4757 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4758 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4759 			needs_barrier = true;
4760 
4761 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4762 			if (wait)
4763 				ret = jbd2_log_wait_commit(sbi->s_journal,
4764 							   target);
4765 		}
4766 	} else if (wait && test_opt(sb, BARRIER))
4767 		needs_barrier = true;
4768 	if (needs_barrier) {
4769 		int err;
4770 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4771 		if (!ret)
4772 			ret = err;
4773 	}
4774 
4775 	return ret;
4776 }
4777 
4778 /*
4779  * LVM calls this function before a (read-only) snapshot is created.  This
4780  * gives us a chance to flush the journal completely and mark the fs clean.
4781  *
4782  * Note that only this function cannot bring a filesystem to be in a clean
4783  * state independently. It relies on upper layer to stop all data & metadata
4784  * modifications.
4785  */
4786 static int ext4_freeze(struct super_block *sb)
4787 {
4788 	int error = 0;
4789 	journal_t *journal;
4790 
4791 	if (sb->s_flags & MS_RDONLY)
4792 		return 0;
4793 
4794 	journal = EXT4_SB(sb)->s_journal;
4795 
4796 	if (journal) {
4797 		/* Now we set up the journal barrier. */
4798 		jbd2_journal_lock_updates(journal);
4799 
4800 		/*
4801 		 * Don't clear the needs_recovery flag if we failed to
4802 		 * flush the journal.
4803 		 */
4804 		error = jbd2_journal_flush(journal);
4805 		if (error < 0)
4806 			goto out;
4807 	}
4808 
4809 	/* Journal blocked and flushed, clear needs_recovery flag. */
4810 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4811 	error = ext4_commit_super(sb, 1);
4812 out:
4813 	if (journal)
4814 		/* we rely on upper layer to stop further updates */
4815 		jbd2_journal_unlock_updates(journal);
4816 	return error;
4817 }
4818 
4819 /*
4820  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4821  * flag here, even though the filesystem is not technically dirty yet.
4822  */
4823 static int ext4_unfreeze(struct super_block *sb)
4824 {
4825 	if (sb->s_flags & MS_RDONLY)
4826 		return 0;
4827 
4828 	/* Reset the needs_recovery flag before the fs is unlocked. */
4829 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4830 	ext4_commit_super(sb, 1);
4831 	return 0;
4832 }
4833 
4834 /*
4835  * Structure to save mount options for ext4_remount's benefit
4836  */
4837 struct ext4_mount_options {
4838 	unsigned long s_mount_opt;
4839 	unsigned long s_mount_opt2;
4840 	kuid_t s_resuid;
4841 	kgid_t s_resgid;
4842 	unsigned long s_commit_interval;
4843 	u32 s_min_batch_time, s_max_batch_time;
4844 #ifdef CONFIG_QUOTA
4845 	int s_jquota_fmt;
4846 	char *s_qf_names[EXT4_MAXQUOTAS];
4847 #endif
4848 };
4849 
4850 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4851 {
4852 	struct ext4_super_block *es;
4853 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4854 	unsigned long old_sb_flags;
4855 	struct ext4_mount_options old_opts;
4856 	int enable_quota = 0;
4857 	ext4_group_t g;
4858 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4859 	int err = 0;
4860 #ifdef CONFIG_QUOTA
4861 	int i, j;
4862 #endif
4863 	char *orig_data = kstrdup(data, GFP_KERNEL);
4864 
4865 	/* Store the original options */
4866 	old_sb_flags = sb->s_flags;
4867 	old_opts.s_mount_opt = sbi->s_mount_opt;
4868 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4869 	old_opts.s_resuid = sbi->s_resuid;
4870 	old_opts.s_resgid = sbi->s_resgid;
4871 	old_opts.s_commit_interval = sbi->s_commit_interval;
4872 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4873 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4874 #ifdef CONFIG_QUOTA
4875 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4876 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4877 		if (sbi->s_qf_names[i]) {
4878 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4879 							 GFP_KERNEL);
4880 			if (!old_opts.s_qf_names[i]) {
4881 				for (j = 0; j < i; j++)
4882 					kfree(old_opts.s_qf_names[j]);
4883 				kfree(orig_data);
4884 				return -ENOMEM;
4885 			}
4886 		} else
4887 			old_opts.s_qf_names[i] = NULL;
4888 #endif
4889 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4890 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4891 
4892 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4893 		err = -EINVAL;
4894 		goto restore_opts;
4895 	}
4896 
4897 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4898 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4899 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4900 			 "during remount not supported; ignoring");
4901 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4902 	}
4903 
4904 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4905 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4906 			ext4_msg(sb, KERN_ERR, "can't mount with "
4907 				 "both data=journal and delalloc");
4908 			err = -EINVAL;
4909 			goto restore_opts;
4910 		}
4911 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4912 			ext4_msg(sb, KERN_ERR, "can't mount with "
4913 				 "both data=journal and dioread_nolock");
4914 			err = -EINVAL;
4915 			goto restore_opts;
4916 		}
4917 		if (test_opt(sb, DAX)) {
4918 			ext4_msg(sb, KERN_ERR, "can't mount with "
4919 				 "both data=journal and dax");
4920 			err = -EINVAL;
4921 			goto restore_opts;
4922 		}
4923 	}
4924 
4925 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4926 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4927 			"dax flag with busy inodes while remounting");
4928 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4929 	}
4930 
4931 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4932 		ext4_abort(sb, "Abort forced by user");
4933 
4934 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4935 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4936 
4937 	es = sbi->s_es;
4938 
4939 	if (sbi->s_journal) {
4940 		ext4_init_journal_params(sb, sbi->s_journal);
4941 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4942 	}
4943 
4944 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4945 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4946 			err = -EROFS;
4947 			goto restore_opts;
4948 		}
4949 
4950 		if (*flags & MS_RDONLY) {
4951 			err = sync_filesystem(sb);
4952 			if (err < 0)
4953 				goto restore_opts;
4954 			err = dquot_suspend(sb, -1);
4955 			if (err < 0)
4956 				goto restore_opts;
4957 
4958 			/*
4959 			 * First of all, the unconditional stuff we have to do
4960 			 * to disable replay of the journal when we next remount
4961 			 */
4962 			sb->s_flags |= MS_RDONLY;
4963 
4964 			/*
4965 			 * OK, test if we are remounting a valid rw partition
4966 			 * readonly, and if so set the rdonly flag and then
4967 			 * mark the partition as valid again.
4968 			 */
4969 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4970 			    (sbi->s_mount_state & EXT4_VALID_FS))
4971 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4972 
4973 			if (sbi->s_journal)
4974 				ext4_mark_recovery_complete(sb, es);
4975 		} else {
4976 			/* Make sure we can mount this feature set readwrite */
4977 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4978 					EXT4_FEATURE_RO_COMPAT_READONLY) ||
4979 			    !ext4_feature_set_ok(sb, 0)) {
4980 				err = -EROFS;
4981 				goto restore_opts;
4982 			}
4983 			/*
4984 			 * Make sure the group descriptor checksums
4985 			 * are sane.  If they aren't, refuse to remount r/w.
4986 			 */
4987 			for (g = 0; g < sbi->s_groups_count; g++) {
4988 				struct ext4_group_desc *gdp =
4989 					ext4_get_group_desc(sb, g, NULL);
4990 
4991 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4992 					ext4_msg(sb, KERN_ERR,
4993 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4994 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4995 					       le16_to_cpu(gdp->bg_checksum));
4996 					err = -EINVAL;
4997 					goto restore_opts;
4998 				}
4999 			}
5000 
5001 			/*
5002 			 * If we have an unprocessed orphan list hanging
5003 			 * around from a previously readonly bdev mount,
5004 			 * require a full umount/remount for now.
5005 			 */
5006 			if (es->s_last_orphan) {
5007 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5008 				       "remount RDWR because of unprocessed "
5009 				       "orphan inode list.  Please "
5010 				       "umount/remount instead");
5011 				err = -EINVAL;
5012 				goto restore_opts;
5013 			}
5014 
5015 			/*
5016 			 * Mounting a RDONLY partition read-write, so reread
5017 			 * and store the current valid flag.  (It may have
5018 			 * been changed by e2fsck since we originally mounted
5019 			 * the partition.)
5020 			 */
5021 			if (sbi->s_journal)
5022 				ext4_clear_journal_err(sb, es);
5023 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5024 			if (!ext4_setup_super(sb, es, 0))
5025 				sb->s_flags &= ~MS_RDONLY;
5026 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5027 						     EXT4_FEATURE_INCOMPAT_MMP))
5028 				if (ext4_multi_mount_protect(sb,
5029 						le64_to_cpu(es->s_mmp_block))) {
5030 					err = -EROFS;
5031 					goto restore_opts;
5032 				}
5033 			enable_quota = 1;
5034 		}
5035 	}
5036 
5037 	/*
5038 	 * Reinitialize lazy itable initialization thread based on
5039 	 * current settings
5040 	 */
5041 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5042 		ext4_unregister_li_request(sb);
5043 	else {
5044 		ext4_group_t first_not_zeroed;
5045 		first_not_zeroed = ext4_has_uninit_itable(sb);
5046 		ext4_register_li_request(sb, first_not_zeroed);
5047 	}
5048 
5049 	ext4_setup_system_zone(sb);
5050 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5051 		ext4_commit_super(sb, 1);
5052 
5053 #ifdef CONFIG_QUOTA
5054 	/* Release old quota file names */
5055 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5056 		kfree(old_opts.s_qf_names[i]);
5057 	if (enable_quota) {
5058 		if (sb_any_quota_suspended(sb))
5059 			dquot_resume(sb, -1);
5060 		else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5061 					EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5062 			err = ext4_enable_quotas(sb);
5063 			if (err)
5064 				goto restore_opts;
5065 		}
5066 	}
5067 #endif
5068 
5069 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5070 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5071 	kfree(orig_data);
5072 	return 0;
5073 
5074 restore_opts:
5075 	sb->s_flags = old_sb_flags;
5076 	sbi->s_mount_opt = old_opts.s_mount_opt;
5077 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5078 	sbi->s_resuid = old_opts.s_resuid;
5079 	sbi->s_resgid = old_opts.s_resgid;
5080 	sbi->s_commit_interval = old_opts.s_commit_interval;
5081 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5082 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5083 #ifdef CONFIG_QUOTA
5084 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5085 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5086 		kfree(sbi->s_qf_names[i]);
5087 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5088 	}
5089 #endif
5090 	kfree(orig_data);
5091 	return err;
5092 }
5093 
5094 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5095 {
5096 	struct super_block *sb = dentry->d_sb;
5097 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5098 	struct ext4_super_block *es = sbi->s_es;
5099 	ext4_fsblk_t overhead = 0, resv_blocks;
5100 	u64 fsid;
5101 	s64 bfree;
5102 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5103 
5104 	if (!test_opt(sb, MINIX_DF))
5105 		overhead = sbi->s_overhead;
5106 
5107 	buf->f_type = EXT4_SUPER_MAGIC;
5108 	buf->f_bsize = sb->s_blocksize;
5109 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5110 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5111 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5112 	/* prevent underflow in case that few free space is available */
5113 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5114 	buf->f_bavail = buf->f_bfree -
5115 			(ext4_r_blocks_count(es) + resv_blocks);
5116 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5117 		buf->f_bavail = 0;
5118 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5119 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5120 	buf->f_namelen = EXT4_NAME_LEN;
5121 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5122 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5123 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5124 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5125 
5126 	return 0;
5127 }
5128 
5129 /* Helper function for writing quotas on sync - we need to start transaction
5130  * before quota file is locked for write. Otherwise the are possible deadlocks:
5131  * Process 1                         Process 2
5132  * ext4_create()                     quota_sync()
5133  *   jbd2_journal_start()                  write_dquot()
5134  *   dquot_initialize()                         down(dqio_mutex)
5135  *     down(dqio_mutex)                    jbd2_journal_start()
5136  *
5137  */
5138 
5139 #ifdef CONFIG_QUOTA
5140 
5141 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5142 {
5143 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5144 }
5145 
5146 static int ext4_write_dquot(struct dquot *dquot)
5147 {
5148 	int ret, err;
5149 	handle_t *handle;
5150 	struct inode *inode;
5151 
5152 	inode = dquot_to_inode(dquot);
5153 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5154 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5155 	if (IS_ERR(handle))
5156 		return PTR_ERR(handle);
5157 	ret = dquot_commit(dquot);
5158 	err = ext4_journal_stop(handle);
5159 	if (!ret)
5160 		ret = err;
5161 	return ret;
5162 }
5163 
5164 static int ext4_acquire_dquot(struct dquot *dquot)
5165 {
5166 	int ret, err;
5167 	handle_t *handle;
5168 
5169 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5170 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5171 	if (IS_ERR(handle))
5172 		return PTR_ERR(handle);
5173 	ret = dquot_acquire(dquot);
5174 	err = ext4_journal_stop(handle);
5175 	if (!ret)
5176 		ret = err;
5177 	return ret;
5178 }
5179 
5180 static int ext4_release_dquot(struct dquot *dquot)
5181 {
5182 	int ret, err;
5183 	handle_t *handle;
5184 
5185 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5186 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5187 	if (IS_ERR(handle)) {
5188 		/* Release dquot anyway to avoid endless cycle in dqput() */
5189 		dquot_release(dquot);
5190 		return PTR_ERR(handle);
5191 	}
5192 	ret = dquot_release(dquot);
5193 	err = ext4_journal_stop(handle);
5194 	if (!ret)
5195 		ret = err;
5196 	return ret;
5197 }
5198 
5199 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5200 {
5201 	struct super_block *sb = dquot->dq_sb;
5202 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5203 
5204 	/* Are we journaling quotas? */
5205 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5206 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5207 		dquot_mark_dquot_dirty(dquot);
5208 		return ext4_write_dquot(dquot);
5209 	} else {
5210 		return dquot_mark_dquot_dirty(dquot);
5211 	}
5212 }
5213 
5214 static int ext4_write_info(struct super_block *sb, int type)
5215 {
5216 	int ret, err;
5217 	handle_t *handle;
5218 
5219 	/* Data block + inode block */
5220 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5221 	if (IS_ERR(handle))
5222 		return PTR_ERR(handle);
5223 	ret = dquot_commit_info(sb, type);
5224 	err = ext4_journal_stop(handle);
5225 	if (!ret)
5226 		ret = err;
5227 	return ret;
5228 }
5229 
5230 /*
5231  * Turn on quotas during mount time - we need to find
5232  * the quota file and such...
5233  */
5234 static int ext4_quota_on_mount(struct super_block *sb, int type)
5235 {
5236 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5237 					EXT4_SB(sb)->s_jquota_fmt, type);
5238 }
5239 
5240 /*
5241  * Standard function to be called on quota_on
5242  */
5243 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5244 			 struct path *path)
5245 {
5246 	int err;
5247 
5248 	if (!test_opt(sb, QUOTA))
5249 		return -EINVAL;
5250 
5251 	/* Quotafile not on the same filesystem? */
5252 	if (path->dentry->d_sb != sb)
5253 		return -EXDEV;
5254 	/* Journaling quota? */
5255 	if (EXT4_SB(sb)->s_qf_names[type]) {
5256 		/* Quotafile not in fs root? */
5257 		if (path->dentry->d_parent != sb->s_root)
5258 			ext4_msg(sb, KERN_WARNING,
5259 				"Quota file not on filesystem root. "
5260 				"Journaled quota will not work");
5261 	}
5262 
5263 	/*
5264 	 * When we journal data on quota file, we have to flush journal to see
5265 	 * all updates to the file when we bypass pagecache...
5266 	 */
5267 	if (EXT4_SB(sb)->s_journal &&
5268 	    ext4_should_journal_data(d_inode(path->dentry))) {
5269 		/*
5270 		 * We don't need to lock updates but journal_flush() could
5271 		 * otherwise be livelocked...
5272 		 */
5273 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5274 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5275 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5276 		if (err)
5277 			return err;
5278 	}
5279 
5280 	return dquot_quota_on(sb, type, format_id, path);
5281 }
5282 
5283 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5284 			     unsigned int flags)
5285 {
5286 	int err;
5287 	struct inode *qf_inode;
5288 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5289 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5290 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5291 	};
5292 
5293 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5294 
5295 	if (!qf_inums[type])
5296 		return -EPERM;
5297 
5298 	qf_inode = ext4_iget(sb, qf_inums[type]);
5299 	if (IS_ERR(qf_inode)) {
5300 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5301 		return PTR_ERR(qf_inode);
5302 	}
5303 
5304 	/* Don't account quota for quota files to avoid recursion */
5305 	qf_inode->i_flags |= S_NOQUOTA;
5306 	err = dquot_enable(qf_inode, type, format_id, flags);
5307 	iput(qf_inode);
5308 
5309 	return err;
5310 }
5311 
5312 /* Enable usage tracking for all quota types. */
5313 static int ext4_enable_quotas(struct super_block *sb)
5314 {
5315 	int type, err = 0;
5316 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5317 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5318 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5319 	};
5320 
5321 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5322 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5323 		if (qf_inums[type]) {
5324 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5325 						DQUOT_USAGE_ENABLED);
5326 			if (err) {
5327 				ext4_warning(sb,
5328 					"Failed to enable quota tracking "
5329 					"(type=%d, err=%d). Please run "
5330 					"e2fsck to fix.", type, err);
5331 				return err;
5332 			}
5333 		}
5334 	}
5335 	return 0;
5336 }
5337 
5338 static int ext4_quota_off(struct super_block *sb, int type)
5339 {
5340 	struct inode *inode = sb_dqopt(sb)->files[type];
5341 	handle_t *handle;
5342 
5343 	/* Force all delayed allocation blocks to be allocated.
5344 	 * Caller already holds s_umount sem */
5345 	if (test_opt(sb, DELALLOC))
5346 		sync_filesystem(sb);
5347 
5348 	if (!inode)
5349 		goto out;
5350 
5351 	/* Update modification times of quota files when userspace can
5352 	 * start looking at them */
5353 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5354 	if (IS_ERR(handle))
5355 		goto out;
5356 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5357 	ext4_mark_inode_dirty(handle, inode);
5358 	ext4_journal_stop(handle);
5359 
5360 out:
5361 	return dquot_quota_off(sb, type);
5362 }
5363 
5364 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5365  * acquiring the locks... As quota files are never truncated and quota code
5366  * itself serializes the operations (and no one else should touch the files)
5367  * we don't have to be afraid of races */
5368 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5369 			       size_t len, loff_t off)
5370 {
5371 	struct inode *inode = sb_dqopt(sb)->files[type];
5372 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5373 	int offset = off & (sb->s_blocksize - 1);
5374 	int tocopy;
5375 	size_t toread;
5376 	struct buffer_head *bh;
5377 	loff_t i_size = i_size_read(inode);
5378 
5379 	if (off > i_size)
5380 		return 0;
5381 	if (off+len > i_size)
5382 		len = i_size-off;
5383 	toread = len;
5384 	while (toread > 0) {
5385 		tocopy = sb->s_blocksize - offset < toread ?
5386 				sb->s_blocksize - offset : toread;
5387 		bh = ext4_bread(NULL, inode, blk, 0);
5388 		if (IS_ERR(bh))
5389 			return PTR_ERR(bh);
5390 		if (!bh)	/* A hole? */
5391 			memset(data, 0, tocopy);
5392 		else
5393 			memcpy(data, bh->b_data+offset, tocopy);
5394 		brelse(bh);
5395 		offset = 0;
5396 		toread -= tocopy;
5397 		data += tocopy;
5398 		blk++;
5399 	}
5400 	return len;
5401 }
5402 
5403 /* Write to quotafile (we know the transaction is already started and has
5404  * enough credits) */
5405 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5406 				const char *data, size_t len, loff_t off)
5407 {
5408 	struct inode *inode = sb_dqopt(sb)->files[type];
5409 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5410 	int err, offset = off & (sb->s_blocksize - 1);
5411 	struct buffer_head *bh;
5412 	handle_t *handle = journal_current_handle();
5413 
5414 	if (EXT4_SB(sb)->s_journal && !handle) {
5415 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5416 			" cancelled because transaction is not started",
5417 			(unsigned long long)off, (unsigned long long)len);
5418 		return -EIO;
5419 	}
5420 	/*
5421 	 * Since we account only one data block in transaction credits,
5422 	 * then it is impossible to cross a block boundary.
5423 	 */
5424 	if (sb->s_blocksize - offset < len) {
5425 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5426 			" cancelled because not block aligned",
5427 			(unsigned long long)off, (unsigned long long)len);
5428 		return -EIO;
5429 	}
5430 
5431 	bh = ext4_bread(handle, inode, blk, 1);
5432 	if (IS_ERR(bh))
5433 		return PTR_ERR(bh);
5434 	if (!bh)
5435 		goto out;
5436 	BUFFER_TRACE(bh, "get write access");
5437 	err = ext4_journal_get_write_access(handle, bh);
5438 	if (err) {
5439 		brelse(bh);
5440 		return err;
5441 	}
5442 	lock_buffer(bh);
5443 	memcpy(bh->b_data+offset, data, len);
5444 	flush_dcache_page(bh->b_page);
5445 	unlock_buffer(bh);
5446 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5447 	brelse(bh);
5448 out:
5449 	if (inode->i_size < off + len) {
5450 		i_size_write(inode, off + len);
5451 		EXT4_I(inode)->i_disksize = inode->i_size;
5452 		ext4_mark_inode_dirty(handle, inode);
5453 	}
5454 	return len;
5455 }
5456 
5457 #endif
5458 
5459 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5460 		       const char *dev_name, void *data)
5461 {
5462 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5463 }
5464 
5465 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5466 static inline void register_as_ext2(void)
5467 {
5468 	int err = register_filesystem(&ext2_fs_type);
5469 	if (err)
5470 		printk(KERN_WARNING
5471 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5472 }
5473 
5474 static inline void unregister_as_ext2(void)
5475 {
5476 	unregister_filesystem(&ext2_fs_type);
5477 }
5478 
5479 static inline int ext2_feature_set_ok(struct super_block *sb)
5480 {
5481 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5482 		return 0;
5483 	if (sb->s_flags & MS_RDONLY)
5484 		return 1;
5485 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5486 		return 0;
5487 	return 1;
5488 }
5489 #else
5490 static inline void register_as_ext2(void) { }
5491 static inline void unregister_as_ext2(void) { }
5492 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5493 #endif
5494 
5495 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5496 static inline void register_as_ext3(void)
5497 {
5498 	int err = register_filesystem(&ext3_fs_type);
5499 	if (err)
5500 		printk(KERN_WARNING
5501 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5502 }
5503 
5504 static inline void unregister_as_ext3(void)
5505 {
5506 	unregister_filesystem(&ext3_fs_type);
5507 }
5508 
5509 static inline int ext3_feature_set_ok(struct super_block *sb)
5510 {
5511 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5512 		return 0;
5513 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5514 		return 0;
5515 	if (sb->s_flags & MS_RDONLY)
5516 		return 1;
5517 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5518 		return 0;
5519 	return 1;
5520 }
5521 #else
5522 static inline void register_as_ext3(void) { }
5523 static inline void unregister_as_ext3(void) { }
5524 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5525 #endif
5526 
5527 static struct file_system_type ext4_fs_type = {
5528 	.owner		= THIS_MODULE,
5529 	.name		= "ext4",
5530 	.mount		= ext4_mount,
5531 	.kill_sb	= kill_block_super,
5532 	.fs_flags	= FS_REQUIRES_DEV,
5533 };
5534 MODULE_ALIAS_FS("ext4");
5535 
5536 static int __init ext4_init_feat_adverts(void)
5537 {
5538 	struct ext4_features *ef;
5539 	int ret = -ENOMEM;
5540 
5541 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5542 	if (!ef)
5543 		goto out;
5544 
5545 	ef->f_kobj.kset = ext4_kset;
5546 	init_completion(&ef->f_kobj_unregister);
5547 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5548 				   "features");
5549 	if (ret) {
5550 		kfree(ef);
5551 		goto out;
5552 	}
5553 
5554 	ext4_feat = ef;
5555 	ret = 0;
5556 out:
5557 	return ret;
5558 }
5559 
5560 static void ext4_exit_feat_adverts(void)
5561 {
5562 	kobject_put(&ext4_feat->f_kobj);
5563 	wait_for_completion(&ext4_feat->f_kobj_unregister);
5564 	kfree(ext4_feat);
5565 }
5566 
5567 /* Shared across all ext4 file systems */
5568 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5569 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5570 
5571 static int __init ext4_init_fs(void)
5572 {
5573 	int i, err;
5574 
5575 	ext4_li_info = NULL;
5576 	mutex_init(&ext4_li_mtx);
5577 
5578 	/* Build-time check for flags consistency */
5579 	ext4_check_flag_values();
5580 
5581 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5582 		mutex_init(&ext4__aio_mutex[i]);
5583 		init_waitqueue_head(&ext4__ioend_wq[i]);
5584 	}
5585 
5586 	err = ext4_init_es();
5587 	if (err)
5588 		return err;
5589 
5590 	err = ext4_init_pageio();
5591 	if (err)
5592 		goto out7;
5593 
5594 	err = ext4_init_system_zone();
5595 	if (err)
5596 		goto out6;
5597 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5598 	if (!ext4_kset) {
5599 		err = -ENOMEM;
5600 		goto out5;
5601 	}
5602 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5603 
5604 	err = ext4_init_feat_adverts();
5605 	if (err)
5606 		goto out4;
5607 
5608 	err = ext4_init_mballoc();
5609 	if (err)
5610 		goto out2;
5611 	else
5612 		ext4_mballoc_ready = 1;
5613 	err = init_inodecache();
5614 	if (err)
5615 		goto out1;
5616 	register_as_ext3();
5617 	register_as_ext2();
5618 	err = register_filesystem(&ext4_fs_type);
5619 	if (err)
5620 		goto out;
5621 
5622 	return 0;
5623 out:
5624 	unregister_as_ext2();
5625 	unregister_as_ext3();
5626 	destroy_inodecache();
5627 out1:
5628 	ext4_mballoc_ready = 0;
5629 	ext4_exit_mballoc();
5630 out2:
5631 	ext4_exit_feat_adverts();
5632 out4:
5633 	if (ext4_proc_root)
5634 		remove_proc_entry("fs/ext4", NULL);
5635 	kset_unregister(ext4_kset);
5636 out5:
5637 	ext4_exit_system_zone();
5638 out6:
5639 	ext4_exit_pageio();
5640 out7:
5641 	ext4_exit_es();
5642 
5643 	return err;
5644 }
5645 
5646 static void __exit ext4_exit_fs(void)
5647 {
5648 	ext4_destroy_lazyinit_thread();
5649 	unregister_as_ext2();
5650 	unregister_as_ext3();
5651 	unregister_filesystem(&ext4_fs_type);
5652 	destroy_inodecache();
5653 	ext4_exit_mballoc();
5654 	ext4_exit_feat_adverts();
5655 	remove_proc_entry("fs/ext4", NULL);
5656 	kset_unregister(ext4_kset);
5657 	ext4_exit_system_zone();
5658 	ext4_exit_pageio();
5659 	ext4_exit_es();
5660 }
5661 
5662 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5663 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5664 MODULE_LICENSE("GPL");
5665 module_init(ext4_init_fs)
5666 module_exit(ext4_exit_fs)
5667