1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, int error, 339 __u32 ino, __u64 block, 340 const char *func, unsigned int line) 341 { 342 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 343 int err; 344 345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 346 if (bdev_read_only(sb->s_bdev)) 347 return; 348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 349 ext4_update_tstamp(es, s_last_error_time); 350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 351 es->s_last_error_line = cpu_to_le32(line); 352 es->s_last_error_ino = cpu_to_le32(ino); 353 es->s_last_error_block = cpu_to_le64(block); 354 switch (error) { 355 case EIO: 356 err = EXT4_ERR_EIO; 357 break; 358 case ENOMEM: 359 err = EXT4_ERR_ENOMEM; 360 break; 361 case EFSBADCRC: 362 err = EXT4_ERR_EFSBADCRC; 363 break; 364 case 0: 365 case EFSCORRUPTED: 366 err = EXT4_ERR_EFSCORRUPTED; 367 break; 368 case ENOSPC: 369 err = EXT4_ERR_ENOSPC; 370 break; 371 case ENOKEY: 372 err = EXT4_ERR_ENOKEY; 373 break; 374 case EROFS: 375 err = EXT4_ERR_EROFS; 376 break; 377 case EFBIG: 378 err = EXT4_ERR_EFBIG; 379 break; 380 case EEXIST: 381 err = EXT4_ERR_EEXIST; 382 break; 383 case ERANGE: 384 err = EXT4_ERR_ERANGE; 385 break; 386 case EOVERFLOW: 387 err = EXT4_ERR_EOVERFLOW; 388 break; 389 case EBUSY: 390 err = EXT4_ERR_EBUSY; 391 break; 392 case ENOTDIR: 393 err = EXT4_ERR_ENOTDIR; 394 break; 395 case ENOTEMPTY: 396 err = EXT4_ERR_ENOTEMPTY; 397 break; 398 case ESHUTDOWN: 399 err = EXT4_ERR_ESHUTDOWN; 400 break; 401 case EFAULT: 402 err = EXT4_ERR_EFAULT; 403 break; 404 default: 405 err = EXT4_ERR_UNKNOWN; 406 } 407 es->s_last_error_errcode = err; 408 if (!es->s_first_error_time) { 409 es->s_first_error_time = es->s_last_error_time; 410 es->s_first_error_time_hi = es->s_last_error_time_hi; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 es->s_first_error_errcode = es->s_last_error_errcode; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, int error, 428 __u32 ino, __u64 block, 429 const char *func, unsigned int line) 430 { 431 __save_error_info(sb, error, ino, block, func, line); 432 if (!bdev_read_only(sb->s_bdev)) 433 ext4_commit_super(sb, 1); 434 } 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 static bool system_going_down(void) 476 { 477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 478 || system_state == SYSTEM_RESTART; 479 } 480 481 /* Deal with the reporting of failure conditions on a filesystem such as 482 * inconsistencies detected or read IO failures. 483 * 484 * On ext2, we can store the error state of the filesystem in the 485 * superblock. That is not possible on ext4, because we may have other 486 * write ordering constraints on the superblock which prevent us from 487 * writing it out straight away; and given that the journal is about to 488 * be aborted, we can't rely on the current, or future, transactions to 489 * write out the superblock safely. 490 * 491 * We'll just use the jbd2_journal_abort() error code to record an error in 492 * the journal instead. On recovery, the journal will complain about 493 * that error until we've noted it down and cleared it. 494 */ 495 496 static void ext4_handle_error(struct super_block *sb) 497 { 498 if (test_opt(sb, WARN_ON_ERROR)) 499 WARN_ON_ONCE(1); 500 501 if (sb_rdonly(sb)) 502 return; 503 504 if (!test_opt(sb, ERRORS_CONT)) { 505 journal_t *journal = EXT4_SB(sb)->s_journal; 506 507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 508 if (journal) 509 jbd2_journal_abort(journal, -EIO); 510 } 511 /* 512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 513 * could panic during 'reboot -f' as the underlying device got already 514 * disabled. 515 */ 516 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 518 /* 519 * Make sure updated value of ->s_mount_flags will be visible 520 * before ->s_flags update 521 */ 522 smp_wmb(); 523 sb->s_flags |= SB_RDONLY; 524 } else if (test_opt(sb, ERRORS_PANIC)) { 525 panic("EXT4-fs (device %s): panic forced after error\n", 526 sb->s_id); 527 } 528 } 529 530 #define ext4_error_ratelimit(sb) \ 531 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 532 "EXT4-fs error") 533 534 void __ext4_error(struct super_block *sb, const char *function, 535 unsigned int line, int error, __u64 block, 536 const char *fmt, ...) 537 { 538 struct va_format vaf; 539 va_list args; 540 541 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 542 return; 543 544 trace_ext4_error(sb, function, line); 545 if (ext4_error_ratelimit(sb)) { 546 va_start(args, fmt); 547 vaf.fmt = fmt; 548 vaf.va = &args; 549 printk(KERN_CRIT 550 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 551 sb->s_id, function, line, current->comm, &vaf); 552 va_end(args); 553 } 554 save_error_info(sb, error, 0, block, function, line); 555 ext4_handle_error(sb); 556 } 557 558 void __ext4_error_inode(struct inode *inode, const char *function, 559 unsigned int line, ext4_fsblk_t block, int error, 560 const char *fmt, ...) 561 { 562 va_list args; 563 struct va_format vaf; 564 565 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 566 return; 567 568 trace_ext4_error(inode->i_sb, function, line); 569 if (ext4_error_ratelimit(inode->i_sb)) { 570 va_start(args, fmt); 571 vaf.fmt = fmt; 572 vaf.va = &args; 573 if (block) 574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 575 "inode #%lu: block %llu: comm %s: %pV\n", 576 inode->i_sb->s_id, function, line, inode->i_ino, 577 block, current->comm, &vaf); 578 else 579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 580 "inode #%lu: comm %s: %pV\n", 581 inode->i_sb->s_id, function, line, inode->i_ino, 582 current->comm, &vaf); 583 va_end(args); 584 } 585 save_error_info(inode->i_sb, error, inode->i_ino, block, 586 function, line); 587 ext4_handle_error(inode->i_sb); 588 } 589 590 void __ext4_error_file(struct file *file, const char *function, 591 unsigned int line, ext4_fsblk_t block, 592 const char *fmt, ...) 593 { 594 va_list args; 595 struct va_format vaf; 596 struct inode *inode = file_inode(file); 597 char pathname[80], *path; 598 599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 600 return; 601 602 trace_ext4_error(inode->i_sb, function, line); 603 if (ext4_error_ratelimit(inode->i_sb)) { 604 path = file_path(file, pathname, sizeof(pathname)); 605 if (IS_ERR(path)) 606 path = "(unknown)"; 607 va_start(args, fmt); 608 vaf.fmt = fmt; 609 vaf.va = &args; 610 if (block) 611 printk(KERN_CRIT 612 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 613 "block %llu: comm %s: path %s: %pV\n", 614 inode->i_sb->s_id, function, line, inode->i_ino, 615 block, current->comm, path, &vaf); 616 else 617 printk(KERN_CRIT 618 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 619 "comm %s: path %s: %pV\n", 620 inode->i_sb->s_id, function, line, inode->i_ino, 621 current->comm, path, &vaf); 622 va_end(args); 623 } 624 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 625 function, line); 626 ext4_handle_error(inode->i_sb); 627 } 628 629 const char *ext4_decode_error(struct super_block *sb, int errno, 630 char nbuf[16]) 631 { 632 char *errstr = NULL; 633 634 switch (errno) { 635 case -EFSCORRUPTED: 636 errstr = "Corrupt filesystem"; 637 break; 638 case -EFSBADCRC: 639 errstr = "Filesystem failed CRC"; 640 break; 641 case -EIO: 642 errstr = "IO failure"; 643 break; 644 case -ENOMEM: 645 errstr = "Out of memory"; 646 break; 647 case -EROFS: 648 if (!sb || (EXT4_SB(sb)->s_journal && 649 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 650 errstr = "Journal has aborted"; 651 else 652 errstr = "Readonly filesystem"; 653 break; 654 default: 655 /* If the caller passed in an extra buffer for unknown 656 * errors, textualise them now. Else we just return 657 * NULL. */ 658 if (nbuf) { 659 /* Check for truncated error codes... */ 660 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 661 errstr = nbuf; 662 } 663 break; 664 } 665 666 return errstr; 667 } 668 669 /* __ext4_std_error decodes expected errors from journaling functions 670 * automatically and invokes the appropriate error response. */ 671 672 void __ext4_std_error(struct super_block *sb, const char *function, 673 unsigned int line, int errno) 674 { 675 char nbuf[16]; 676 const char *errstr; 677 678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 679 return; 680 681 /* Special case: if the error is EROFS, and we're not already 682 * inside a transaction, then there's really no point in logging 683 * an error. */ 684 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 685 return; 686 687 if (ext4_error_ratelimit(sb)) { 688 errstr = ext4_decode_error(sb, errno, nbuf); 689 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 690 sb->s_id, function, line, errstr); 691 } 692 693 save_error_info(sb, -errno, 0, 0, function, line); 694 ext4_handle_error(sb); 695 } 696 697 /* 698 * ext4_abort is a much stronger failure handler than ext4_error. The 699 * abort function may be used to deal with unrecoverable failures such 700 * as journal IO errors or ENOMEM at a critical moment in log management. 701 * 702 * We unconditionally force the filesystem into an ABORT|READONLY state, 703 * unless the error response on the fs has been set to panic in which 704 * case we take the easy way out and panic immediately. 705 */ 706 707 void __ext4_abort(struct super_block *sb, const char *function, 708 unsigned int line, int error, const char *fmt, ...) 709 { 710 struct va_format vaf; 711 va_list args; 712 713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 714 return; 715 716 save_error_info(sb, error, 0, 0, function, line); 717 va_start(args, fmt); 718 vaf.fmt = fmt; 719 vaf.va = &args; 720 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 721 sb->s_id, function, line, &vaf); 722 va_end(args); 723 724 if (sb_rdonly(sb) == 0) { 725 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 726 if (EXT4_SB(sb)->s_journal) 727 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 728 729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 730 /* 731 * Make sure updated value of ->s_mount_flags will be visible 732 * before ->s_flags update 733 */ 734 smp_wmb(); 735 sb->s_flags |= SB_RDONLY; 736 } 737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) 738 panic("EXT4-fs panic from previous error\n"); 739 } 740 741 void __ext4_msg(struct super_block *sb, 742 const char *prefix, const char *fmt, ...) 743 { 744 struct va_format vaf; 745 va_list args; 746 747 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 748 return; 749 750 va_start(args, fmt); 751 vaf.fmt = fmt; 752 vaf.va = &args; 753 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 754 va_end(args); 755 } 756 757 #define ext4_warning_ratelimit(sb) \ 758 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 759 "EXT4-fs warning") 760 761 void __ext4_warning(struct super_block *sb, const char *function, 762 unsigned int line, const char *fmt, ...) 763 { 764 struct va_format vaf; 765 va_list args; 766 767 if (!ext4_warning_ratelimit(sb)) 768 return; 769 770 va_start(args, fmt); 771 vaf.fmt = fmt; 772 vaf.va = &args; 773 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 774 sb->s_id, function, line, &vaf); 775 va_end(args); 776 } 777 778 void __ext4_warning_inode(const struct inode *inode, const char *function, 779 unsigned int line, const char *fmt, ...) 780 { 781 struct va_format vaf; 782 va_list args; 783 784 if (!ext4_warning_ratelimit(inode->i_sb)) 785 return; 786 787 va_start(args, fmt); 788 vaf.fmt = fmt; 789 vaf.va = &args; 790 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 791 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 792 function, line, inode->i_ino, current->comm, &vaf); 793 va_end(args); 794 } 795 796 void __ext4_grp_locked_error(const char *function, unsigned int line, 797 struct super_block *sb, ext4_group_t grp, 798 unsigned long ino, ext4_fsblk_t block, 799 const char *fmt, ...) 800 __releases(bitlock) 801 __acquires(bitlock) 802 { 803 struct va_format vaf; 804 va_list args; 805 806 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 807 return; 808 809 trace_ext4_error(sb, function, line); 810 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 811 812 if (ext4_error_ratelimit(sb)) { 813 va_start(args, fmt); 814 vaf.fmt = fmt; 815 vaf.va = &args; 816 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 817 sb->s_id, function, line, grp); 818 if (ino) 819 printk(KERN_CONT "inode %lu: ", ino); 820 if (block) 821 printk(KERN_CONT "block %llu:", 822 (unsigned long long) block); 823 printk(KERN_CONT "%pV\n", &vaf); 824 va_end(args); 825 } 826 827 if (test_opt(sb, WARN_ON_ERROR)) 828 WARN_ON_ONCE(1); 829 830 if (test_opt(sb, ERRORS_CONT)) { 831 ext4_commit_super(sb, 0); 832 return; 833 } 834 835 ext4_unlock_group(sb, grp); 836 ext4_commit_super(sb, 1); 837 ext4_handle_error(sb); 838 /* 839 * We only get here in the ERRORS_RO case; relocking the group 840 * may be dangerous, but nothing bad will happen since the 841 * filesystem will have already been marked read/only and the 842 * journal has been aborted. We return 1 as a hint to callers 843 * who might what to use the return value from 844 * ext4_grp_locked_error() to distinguish between the 845 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 846 * aggressively from the ext4 function in question, with a 847 * more appropriate error code. 848 */ 849 ext4_lock_group(sb, grp); 850 return; 851 } 852 853 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 854 ext4_group_t group, 855 unsigned int flags) 856 { 857 struct ext4_sb_info *sbi = EXT4_SB(sb); 858 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 859 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 860 int ret; 861 862 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 863 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 864 &grp->bb_state); 865 if (!ret) 866 percpu_counter_sub(&sbi->s_freeclusters_counter, 867 grp->bb_free); 868 } 869 870 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 871 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 872 &grp->bb_state); 873 if (!ret && gdp) { 874 int count; 875 876 count = ext4_free_inodes_count(sb, gdp); 877 percpu_counter_sub(&sbi->s_freeinodes_counter, 878 count); 879 } 880 } 881 } 882 883 void ext4_update_dynamic_rev(struct super_block *sb) 884 { 885 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 886 887 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 888 return; 889 890 ext4_warning(sb, 891 "updating to rev %d because of new feature flag, " 892 "running e2fsck is recommended", 893 EXT4_DYNAMIC_REV); 894 895 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 896 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 897 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 898 /* leave es->s_feature_*compat flags alone */ 899 /* es->s_uuid will be set by e2fsck if empty */ 900 901 /* 902 * The rest of the superblock fields should be zero, and if not it 903 * means they are likely already in use, so leave them alone. We 904 * can leave it up to e2fsck to clean up any inconsistencies there. 905 */ 906 } 907 908 /* 909 * Open the external journal device 910 */ 911 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 912 { 913 struct block_device *bdev; 914 915 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 916 if (IS_ERR(bdev)) 917 goto fail; 918 return bdev; 919 920 fail: 921 ext4_msg(sb, KERN_ERR, 922 "failed to open journal device unknown-block(%u,%u) %ld", 923 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 924 return NULL; 925 } 926 927 /* 928 * Release the journal device 929 */ 930 static void ext4_blkdev_put(struct block_device *bdev) 931 { 932 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 933 } 934 935 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 936 { 937 struct block_device *bdev; 938 bdev = sbi->journal_bdev; 939 if (bdev) { 940 ext4_blkdev_put(bdev); 941 sbi->journal_bdev = NULL; 942 } 943 } 944 945 static inline struct inode *orphan_list_entry(struct list_head *l) 946 { 947 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 948 } 949 950 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 951 { 952 struct list_head *l; 953 954 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 955 le32_to_cpu(sbi->s_es->s_last_orphan)); 956 957 printk(KERN_ERR "sb_info orphan list:\n"); 958 list_for_each(l, &sbi->s_orphan) { 959 struct inode *inode = orphan_list_entry(l); 960 printk(KERN_ERR " " 961 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 962 inode->i_sb->s_id, inode->i_ino, inode, 963 inode->i_mode, inode->i_nlink, 964 NEXT_ORPHAN(inode)); 965 } 966 } 967 968 #ifdef CONFIG_QUOTA 969 static int ext4_quota_off(struct super_block *sb, int type); 970 971 static inline void ext4_quota_off_umount(struct super_block *sb) 972 { 973 int type; 974 975 /* Use our quota_off function to clear inode flags etc. */ 976 for (type = 0; type < EXT4_MAXQUOTAS; type++) 977 ext4_quota_off(sb, type); 978 } 979 980 /* 981 * This is a helper function which is used in the mount/remount 982 * codepaths (which holds s_umount) to fetch the quota file name. 983 */ 984 static inline char *get_qf_name(struct super_block *sb, 985 struct ext4_sb_info *sbi, 986 int type) 987 { 988 return rcu_dereference_protected(sbi->s_qf_names[type], 989 lockdep_is_held(&sb->s_umount)); 990 } 991 #else 992 static inline void ext4_quota_off_umount(struct super_block *sb) 993 { 994 } 995 #endif 996 997 static void ext4_put_super(struct super_block *sb) 998 { 999 struct ext4_sb_info *sbi = EXT4_SB(sb); 1000 struct ext4_super_block *es = sbi->s_es; 1001 struct buffer_head **group_desc; 1002 struct flex_groups **flex_groups; 1003 int aborted = 0; 1004 int i, err; 1005 1006 ext4_unregister_li_request(sb); 1007 ext4_quota_off_umount(sb); 1008 1009 destroy_workqueue(sbi->rsv_conversion_wq); 1010 1011 /* 1012 * Unregister sysfs before destroying jbd2 journal. 1013 * Since we could still access attr_journal_task attribute via sysfs 1014 * path which could have sbi->s_journal->j_task as NULL 1015 */ 1016 ext4_unregister_sysfs(sb); 1017 1018 if (sbi->s_journal) { 1019 aborted = is_journal_aborted(sbi->s_journal); 1020 err = jbd2_journal_destroy(sbi->s_journal); 1021 sbi->s_journal = NULL; 1022 if ((err < 0) && !aborted) { 1023 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1024 } 1025 } 1026 1027 ext4_es_unregister_shrinker(sbi); 1028 del_timer_sync(&sbi->s_err_report); 1029 ext4_release_system_zone(sb); 1030 ext4_mb_release(sb); 1031 ext4_ext_release(sb); 1032 1033 if (!sb_rdonly(sb) && !aborted) { 1034 ext4_clear_feature_journal_needs_recovery(sb); 1035 es->s_state = cpu_to_le16(sbi->s_mount_state); 1036 } 1037 if (!sb_rdonly(sb)) 1038 ext4_commit_super(sb, 1); 1039 1040 rcu_read_lock(); 1041 group_desc = rcu_dereference(sbi->s_group_desc); 1042 for (i = 0; i < sbi->s_gdb_count; i++) 1043 brelse(group_desc[i]); 1044 kvfree(group_desc); 1045 flex_groups = rcu_dereference(sbi->s_flex_groups); 1046 if (flex_groups) { 1047 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1048 kvfree(flex_groups[i]); 1049 kvfree(flex_groups); 1050 } 1051 rcu_read_unlock(); 1052 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1053 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1054 percpu_counter_destroy(&sbi->s_dirs_counter); 1055 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1056 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1057 #ifdef CONFIG_QUOTA 1058 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1059 kfree(get_qf_name(sb, sbi, i)); 1060 #endif 1061 1062 /* Debugging code just in case the in-memory inode orphan list 1063 * isn't empty. The on-disk one can be non-empty if we've 1064 * detected an error and taken the fs readonly, but the 1065 * in-memory list had better be clean by this point. */ 1066 if (!list_empty(&sbi->s_orphan)) 1067 dump_orphan_list(sb, sbi); 1068 J_ASSERT(list_empty(&sbi->s_orphan)); 1069 1070 sync_blockdev(sb->s_bdev); 1071 invalidate_bdev(sb->s_bdev); 1072 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1073 /* 1074 * Invalidate the journal device's buffers. We don't want them 1075 * floating about in memory - the physical journal device may 1076 * hotswapped, and it breaks the `ro-after' testing code. 1077 */ 1078 sync_blockdev(sbi->journal_bdev); 1079 invalidate_bdev(sbi->journal_bdev); 1080 ext4_blkdev_remove(sbi); 1081 } 1082 1083 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1084 sbi->s_ea_inode_cache = NULL; 1085 1086 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1087 sbi->s_ea_block_cache = NULL; 1088 1089 if (sbi->s_mmp_tsk) 1090 kthread_stop(sbi->s_mmp_tsk); 1091 brelse(sbi->s_sbh); 1092 sb->s_fs_info = NULL; 1093 /* 1094 * Now that we are completely done shutting down the 1095 * superblock, we need to actually destroy the kobject. 1096 */ 1097 kobject_put(&sbi->s_kobj); 1098 wait_for_completion(&sbi->s_kobj_unregister); 1099 if (sbi->s_chksum_driver) 1100 crypto_free_shash(sbi->s_chksum_driver); 1101 kfree(sbi->s_blockgroup_lock); 1102 fs_put_dax(sbi->s_daxdev); 1103 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx); 1104 #ifdef CONFIG_UNICODE 1105 utf8_unload(sbi->s_encoding); 1106 #endif 1107 kfree(sbi); 1108 } 1109 1110 static struct kmem_cache *ext4_inode_cachep; 1111 1112 /* 1113 * Called inside transaction, so use GFP_NOFS 1114 */ 1115 static struct inode *ext4_alloc_inode(struct super_block *sb) 1116 { 1117 struct ext4_inode_info *ei; 1118 1119 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1120 if (!ei) 1121 return NULL; 1122 1123 inode_set_iversion(&ei->vfs_inode, 1); 1124 spin_lock_init(&ei->i_raw_lock); 1125 INIT_LIST_HEAD(&ei->i_prealloc_list); 1126 spin_lock_init(&ei->i_prealloc_lock); 1127 ext4_es_init_tree(&ei->i_es_tree); 1128 rwlock_init(&ei->i_es_lock); 1129 INIT_LIST_HEAD(&ei->i_es_list); 1130 ei->i_es_all_nr = 0; 1131 ei->i_es_shk_nr = 0; 1132 ei->i_es_shrink_lblk = 0; 1133 ei->i_reserved_data_blocks = 0; 1134 spin_lock_init(&(ei->i_block_reservation_lock)); 1135 ext4_init_pending_tree(&ei->i_pending_tree); 1136 #ifdef CONFIG_QUOTA 1137 ei->i_reserved_quota = 0; 1138 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1139 #endif 1140 ei->jinode = NULL; 1141 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1142 spin_lock_init(&ei->i_completed_io_lock); 1143 ei->i_sync_tid = 0; 1144 ei->i_datasync_tid = 0; 1145 atomic_set(&ei->i_unwritten, 0); 1146 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1147 return &ei->vfs_inode; 1148 } 1149 1150 static int ext4_drop_inode(struct inode *inode) 1151 { 1152 int drop = generic_drop_inode(inode); 1153 1154 if (!drop) 1155 drop = fscrypt_drop_inode(inode); 1156 1157 trace_ext4_drop_inode(inode, drop); 1158 return drop; 1159 } 1160 1161 static void ext4_free_in_core_inode(struct inode *inode) 1162 { 1163 fscrypt_free_inode(inode); 1164 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1165 } 1166 1167 static void ext4_destroy_inode(struct inode *inode) 1168 { 1169 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1170 ext4_msg(inode->i_sb, KERN_ERR, 1171 "Inode %lu (%p): orphan list check failed!", 1172 inode->i_ino, EXT4_I(inode)); 1173 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1174 EXT4_I(inode), sizeof(struct ext4_inode_info), 1175 true); 1176 dump_stack(); 1177 } 1178 } 1179 1180 static void init_once(void *foo) 1181 { 1182 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1183 1184 INIT_LIST_HEAD(&ei->i_orphan); 1185 init_rwsem(&ei->xattr_sem); 1186 init_rwsem(&ei->i_data_sem); 1187 init_rwsem(&ei->i_mmap_sem); 1188 inode_init_once(&ei->vfs_inode); 1189 } 1190 1191 static int __init init_inodecache(void) 1192 { 1193 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1194 sizeof(struct ext4_inode_info), 0, 1195 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1196 SLAB_ACCOUNT), 1197 offsetof(struct ext4_inode_info, i_data), 1198 sizeof_field(struct ext4_inode_info, i_data), 1199 init_once); 1200 if (ext4_inode_cachep == NULL) 1201 return -ENOMEM; 1202 return 0; 1203 } 1204 1205 static void destroy_inodecache(void) 1206 { 1207 /* 1208 * Make sure all delayed rcu free inodes are flushed before we 1209 * destroy cache. 1210 */ 1211 rcu_barrier(); 1212 kmem_cache_destroy(ext4_inode_cachep); 1213 } 1214 1215 void ext4_clear_inode(struct inode *inode) 1216 { 1217 invalidate_inode_buffers(inode); 1218 clear_inode(inode); 1219 ext4_discard_preallocations(inode); 1220 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1221 dquot_drop(inode); 1222 if (EXT4_I(inode)->jinode) { 1223 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1224 EXT4_I(inode)->jinode); 1225 jbd2_free_inode(EXT4_I(inode)->jinode); 1226 EXT4_I(inode)->jinode = NULL; 1227 } 1228 fscrypt_put_encryption_info(inode); 1229 fsverity_cleanup_inode(inode); 1230 } 1231 1232 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1233 u64 ino, u32 generation) 1234 { 1235 struct inode *inode; 1236 1237 /* 1238 * Currently we don't know the generation for parent directory, so 1239 * a generation of 0 means "accept any" 1240 */ 1241 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1242 if (IS_ERR(inode)) 1243 return ERR_CAST(inode); 1244 if (generation && inode->i_generation != generation) { 1245 iput(inode); 1246 return ERR_PTR(-ESTALE); 1247 } 1248 1249 return inode; 1250 } 1251 1252 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1253 int fh_len, int fh_type) 1254 { 1255 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1256 ext4_nfs_get_inode); 1257 } 1258 1259 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1260 int fh_len, int fh_type) 1261 { 1262 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1263 ext4_nfs_get_inode); 1264 } 1265 1266 static int ext4_nfs_commit_metadata(struct inode *inode) 1267 { 1268 struct writeback_control wbc = { 1269 .sync_mode = WB_SYNC_ALL 1270 }; 1271 1272 trace_ext4_nfs_commit_metadata(inode); 1273 return ext4_write_inode(inode, &wbc); 1274 } 1275 1276 /* 1277 * Try to release metadata pages (indirect blocks, directories) which are 1278 * mapped via the block device. Since these pages could have journal heads 1279 * which would prevent try_to_free_buffers() from freeing them, we must use 1280 * jbd2 layer's try_to_free_buffers() function to release them. 1281 */ 1282 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1283 gfp_t wait) 1284 { 1285 journal_t *journal = EXT4_SB(sb)->s_journal; 1286 1287 WARN_ON(PageChecked(page)); 1288 if (!page_has_buffers(page)) 1289 return 0; 1290 if (journal) 1291 return jbd2_journal_try_to_free_buffers(journal, page, 1292 wait & ~__GFP_DIRECT_RECLAIM); 1293 return try_to_free_buffers(page); 1294 } 1295 1296 #ifdef CONFIG_FS_ENCRYPTION 1297 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1298 { 1299 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1300 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1301 } 1302 1303 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1304 void *fs_data) 1305 { 1306 handle_t *handle = fs_data; 1307 int res, res2, credits, retries = 0; 1308 1309 /* 1310 * Encrypting the root directory is not allowed because e2fsck expects 1311 * lost+found to exist and be unencrypted, and encrypting the root 1312 * directory would imply encrypting the lost+found directory as well as 1313 * the filename "lost+found" itself. 1314 */ 1315 if (inode->i_ino == EXT4_ROOT_INO) 1316 return -EPERM; 1317 1318 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1319 return -EINVAL; 1320 1321 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1322 return -EOPNOTSUPP; 1323 1324 res = ext4_convert_inline_data(inode); 1325 if (res) 1326 return res; 1327 1328 /* 1329 * If a journal handle was specified, then the encryption context is 1330 * being set on a new inode via inheritance and is part of a larger 1331 * transaction to create the inode. Otherwise the encryption context is 1332 * being set on an existing inode in its own transaction. Only in the 1333 * latter case should the "retry on ENOSPC" logic be used. 1334 */ 1335 1336 if (handle) { 1337 res = ext4_xattr_set_handle(handle, inode, 1338 EXT4_XATTR_INDEX_ENCRYPTION, 1339 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1340 ctx, len, 0); 1341 if (!res) { 1342 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1343 ext4_clear_inode_state(inode, 1344 EXT4_STATE_MAY_INLINE_DATA); 1345 /* 1346 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1347 * S_DAX may be disabled 1348 */ 1349 ext4_set_inode_flags(inode, false); 1350 } 1351 return res; 1352 } 1353 1354 res = dquot_initialize(inode); 1355 if (res) 1356 return res; 1357 retry: 1358 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1359 &credits); 1360 if (res) 1361 return res; 1362 1363 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1364 if (IS_ERR(handle)) 1365 return PTR_ERR(handle); 1366 1367 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1368 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1369 ctx, len, 0); 1370 if (!res) { 1371 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1372 /* 1373 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1374 * S_DAX may be disabled 1375 */ 1376 ext4_set_inode_flags(inode, false); 1377 res = ext4_mark_inode_dirty(handle, inode); 1378 if (res) 1379 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1380 } 1381 res2 = ext4_journal_stop(handle); 1382 1383 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1384 goto retry; 1385 if (!res) 1386 res = res2; 1387 return res; 1388 } 1389 1390 static const union fscrypt_context * 1391 ext4_get_dummy_context(struct super_block *sb) 1392 { 1393 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx; 1394 } 1395 1396 static bool ext4_has_stable_inodes(struct super_block *sb) 1397 { 1398 return ext4_has_feature_stable_inodes(sb); 1399 } 1400 1401 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1402 int *ino_bits_ret, int *lblk_bits_ret) 1403 { 1404 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1405 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1406 } 1407 1408 static const struct fscrypt_operations ext4_cryptops = { 1409 .key_prefix = "ext4:", 1410 .get_context = ext4_get_context, 1411 .set_context = ext4_set_context, 1412 .get_dummy_context = ext4_get_dummy_context, 1413 .empty_dir = ext4_empty_dir, 1414 .max_namelen = EXT4_NAME_LEN, 1415 .has_stable_inodes = ext4_has_stable_inodes, 1416 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1417 }; 1418 #endif 1419 1420 #ifdef CONFIG_QUOTA 1421 static const char * const quotatypes[] = INITQFNAMES; 1422 #define QTYPE2NAME(t) (quotatypes[t]) 1423 1424 static int ext4_write_dquot(struct dquot *dquot); 1425 static int ext4_acquire_dquot(struct dquot *dquot); 1426 static int ext4_release_dquot(struct dquot *dquot); 1427 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1428 static int ext4_write_info(struct super_block *sb, int type); 1429 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1430 const struct path *path); 1431 static int ext4_quota_on_mount(struct super_block *sb, int type); 1432 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1433 size_t len, loff_t off); 1434 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1435 const char *data, size_t len, loff_t off); 1436 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1437 unsigned int flags); 1438 static int ext4_enable_quotas(struct super_block *sb); 1439 1440 static struct dquot **ext4_get_dquots(struct inode *inode) 1441 { 1442 return EXT4_I(inode)->i_dquot; 1443 } 1444 1445 static const struct dquot_operations ext4_quota_operations = { 1446 .get_reserved_space = ext4_get_reserved_space, 1447 .write_dquot = ext4_write_dquot, 1448 .acquire_dquot = ext4_acquire_dquot, 1449 .release_dquot = ext4_release_dquot, 1450 .mark_dirty = ext4_mark_dquot_dirty, 1451 .write_info = ext4_write_info, 1452 .alloc_dquot = dquot_alloc, 1453 .destroy_dquot = dquot_destroy, 1454 .get_projid = ext4_get_projid, 1455 .get_inode_usage = ext4_get_inode_usage, 1456 .get_next_id = dquot_get_next_id, 1457 }; 1458 1459 static const struct quotactl_ops ext4_qctl_operations = { 1460 .quota_on = ext4_quota_on, 1461 .quota_off = ext4_quota_off, 1462 .quota_sync = dquot_quota_sync, 1463 .get_state = dquot_get_state, 1464 .set_info = dquot_set_dqinfo, 1465 .get_dqblk = dquot_get_dqblk, 1466 .set_dqblk = dquot_set_dqblk, 1467 .get_nextdqblk = dquot_get_next_dqblk, 1468 }; 1469 #endif 1470 1471 static const struct super_operations ext4_sops = { 1472 .alloc_inode = ext4_alloc_inode, 1473 .free_inode = ext4_free_in_core_inode, 1474 .destroy_inode = ext4_destroy_inode, 1475 .write_inode = ext4_write_inode, 1476 .dirty_inode = ext4_dirty_inode, 1477 .drop_inode = ext4_drop_inode, 1478 .evict_inode = ext4_evict_inode, 1479 .put_super = ext4_put_super, 1480 .sync_fs = ext4_sync_fs, 1481 .freeze_fs = ext4_freeze, 1482 .unfreeze_fs = ext4_unfreeze, 1483 .statfs = ext4_statfs, 1484 .remount_fs = ext4_remount, 1485 .show_options = ext4_show_options, 1486 #ifdef CONFIG_QUOTA 1487 .quota_read = ext4_quota_read, 1488 .quota_write = ext4_quota_write, 1489 .get_dquots = ext4_get_dquots, 1490 #endif 1491 .bdev_try_to_free_page = bdev_try_to_free_page, 1492 }; 1493 1494 static const struct export_operations ext4_export_ops = { 1495 .fh_to_dentry = ext4_fh_to_dentry, 1496 .fh_to_parent = ext4_fh_to_parent, 1497 .get_parent = ext4_get_parent, 1498 .commit_metadata = ext4_nfs_commit_metadata, 1499 }; 1500 1501 enum { 1502 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1503 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1504 Opt_nouid32, Opt_debug, Opt_removed, 1505 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1506 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1507 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1508 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1509 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1510 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1511 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1512 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1513 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1514 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1515 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1516 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1517 Opt_nowarn_on_error, Opt_mblk_io_submit, 1518 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1519 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1520 Opt_inode_readahead_blks, Opt_journal_ioprio, 1521 Opt_dioread_nolock, Opt_dioread_lock, 1522 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1523 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1524 }; 1525 1526 static const match_table_t tokens = { 1527 {Opt_bsd_df, "bsddf"}, 1528 {Opt_minix_df, "minixdf"}, 1529 {Opt_grpid, "grpid"}, 1530 {Opt_grpid, "bsdgroups"}, 1531 {Opt_nogrpid, "nogrpid"}, 1532 {Opt_nogrpid, "sysvgroups"}, 1533 {Opt_resgid, "resgid=%u"}, 1534 {Opt_resuid, "resuid=%u"}, 1535 {Opt_sb, "sb=%u"}, 1536 {Opt_err_cont, "errors=continue"}, 1537 {Opt_err_panic, "errors=panic"}, 1538 {Opt_err_ro, "errors=remount-ro"}, 1539 {Opt_nouid32, "nouid32"}, 1540 {Opt_debug, "debug"}, 1541 {Opt_removed, "oldalloc"}, 1542 {Opt_removed, "orlov"}, 1543 {Opt_user_xattr, "user_xattr"}, 1544 {Opt_nouser_xattr, "nouser_xattr"}, 1545 {Opt_acl, "acl"}, 1546 {Opt_noacl, "noacl"}, 1547 {Opt_noload, "norecovery"}, 1548 {Opt_noload, "noload"}, 1549 {Opt_removed, "nobh"}, 1550 {Opt_removed, "bh"}, 1551 {Opt_commit, "commit=%u"}, 1552 {Opt_min_batch_time, "min_batch_time=%u"}, 1553 {Opt_max_batch_time, "max_batch_time=%u"}, 1554 {Opt_journal_dev, "journal_dev=%u"}, 1555 {Opt_journal_path, "journal_path=%s"}, 1556 {Opt_journal_checksum, "journal_checksum"}, 1557 {Opt_nojournal_checksum, "nojournal_checksum"}, 1558 {Opt_journal_async_commit, "journal_async_commit"}, 1559 {Opt_abort, "abort"}, 1560 {Opt_data_journal, "data=journal"}, 1561 {Opt_data_ordered, "data=ordered"}, 1562 {Opt_data_writeback, "data=writeback"}, 1563 {Opt_data_err_abort, "data_err=abort"}, 1564 {Opt_data_err_ignore, "data_err=ignore"}, 1565 {Opt_offusrjquota, "usrjquota="}, 1566 {Opt_usrjquota, "usrjquota=%s"}, 1567 {Opt_offgrpjquota, "grpjquota="}, 1568 {Opt_grpjquota, "grpjquota=%s"}, 1569 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1570 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1571 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1572 {Opt_grpquota, "grpquota"}, 1573 {Opt_noquota, "noquota"}, 1574 {Opt_quota, "quota"}, 1575 {Opt_usrquota, "usrquota"}, 1576 {Opt_prjquota, "prjquota"}, 1577 {Opt_barrier, "barrier=%u"}, 1578 {Opt_barrier, "barrier"}, 1579 {Opt_nobarrier, "nobarrier"}, 1580 {Opt_i_version, "i_version"}, 1581 {Opt_dax, "dax"}, 1582 {Opt_dax_always, "dax=always"}, 1583 {Opt_dax_inode, "dax=inode"}, 1584 {Opt_dax_never, "dax=never"}, 1585 {Opt_stripe, "stripe=%u"}, 1586 {Opt_delalloc, "delalloc"}, 1587 {Opt_warn_on_error, "warn_on_error"}, 1588 {Opt_nowarn_on_error, "nowarn_on_error"}, 1589 {Opt_lazytime, "lazytime"}, 1590 {Opt_nolazytime, "nolazytime"}, 1591 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1592 {Opt_nodelalloc, "nodelalloc"}, 1593 {Opt_removed, "mblk_io_submit"}, 1594 {Opt_removed, "nomblk_io_submit"}, 1595 {Opt_block_validity, "block_validity"}, 1596 {Opt_noblock_validity, "noblock_validity"}, 1597 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1598 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1599 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1600 {Opt_auto_da_alloc, "auto_da_alloc"}, 1601 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1602 {Opt_dioread_nolock, "dioread_nolock"}, 1603 {Opt_dioread_lock, "nodioread_nolock"}, 1604 {Opt_dioread_lock, "dioread_lock"}, 1605 {Opt_discard, "discard"}, 1606 {Opt_nodiscard, "nodiscard"}, 1607 {Opt_init_itable, "init_itable=%u"}, 1608 {Opt_init_itable, "init_itable"}, 1609 {Opt_noinit_itable, "noinit_itable"}, 1610 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1611 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1612 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1613 {Opt_nombcache, "nombcache"}, 1614 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1615 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1616 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1617 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1618 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1619 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1620 {Opt_err, NULL}, 1621 }; 1622 1623 static ext4_fsblk_t get_sb_block(void **data) 1624 { 1625 ext4_fsblk_t sb_block; 1626 char *options = (char *) *data; 1627 1628 if (!options || strncmp(options, "sb=", 3) != 0) 1629 return 1; /* Default location */ 1630 1631 options += 3; 1632 /* TODO: use simple_strtoll with >32bit ext4 */ 1633 sb_block = simple_strtoul(options, &options, 0); 1634 if (*options && *options != ',') { 1635 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1636 (char *) *data); 1637 return 1; 1638 } 1639 if (*options == ',') 1640 options++; 1641 *data = (void *) options; 1642 1643 return sb_block; 1644 } 1645 1646 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1647 static const char deprecated_msg[] = 1648 "Mount option \"%s\" will be removed by %s\n" 1649 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1650 1651 #ifdef CONFIG_QUOTA 1652 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1653 { 1654 struct ext4_sb_info *sbi = EXT4_SB(sb); 1655 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1656 int ret = -1; 1657 1658 if (sb_any_quota_loaded(sb) && !old_qname) { 1659 ext4_msg(sb, KERN_ERR, 1660 "Cannot change journaled " 1661 "quota options when quota turned on"); 1662 return -1; 1663 } 1664 if (ext4_has_feature_quota(sb)) { 1665 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1666 "ignored when QUOTA feature is enabled"); 1667 return 1; 1668 } 1669 qname = match_strdup(args); 1670 if (!qname) { 1671 ext4_msg(sb, KERN_ERR, 1672 "Not enough memory for storing quotafile name"); 1673 return -1; 1674 } 1675 if (old_qname) { 1676 if (strcmp(old_qname, qname) == 0) 1677 ret = 1; 1678 else 1679 ext4_msg(sb, KERN_ERR, 1680 "%s quota file already specified", 1681 QTYPE2NAME(qtype)); 1682 goto errout; 1683 } 1684 if (strchr(qname, '/')) { 1685 ext4_msg(sb, KERN_ERR, 1686 "quotafile must be on filesystem root"); 1687 goto errout; 1688 } 1689 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1690 set_opt(sb, QUOTA); 1691 return 1; 1692 errout: 1693 kfree(qname); 1694 return ret; 1695 } 1696 1697 static int clear_qf_name(struct super_block *sb, int qtype) 1698 { 1699 1700 struct ext4_sb_info *sbi = EXT4_SB(sb); 1701 char *old_qname = get_qf_name(sb, sbi, qtype); 1702 1703 if (sb_any_quota_loaded(sb) && old_qname) { 1704 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1705 " when quota turned on"); 1706 return -1; 1707 } 1708 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1709 synchronize_rcu(); 1710 kfree(old_qname); 1711 return 1; 1712 } 1713 #endif 1714 1715 #define MOPT_SET 0x0001 1716 #define MOPT_CLEAR 0x0002 1717 #define MOPT_NOSUPPORT 0x0004 1718 #define MOPT_EXPLICIT 0x0008 1719 #define MOPT_CLEAR_ERR 0x0010 1720 #define MOPT_GTE0 0x0020 1721 #ifdef CONFIG_QUOTA 1722 #define MOPT_Q 0 1723 #define MOPT_QFMT 0x0040 1724 #else 1725 #define MOPT_Q MOPT_NOSUPPORT 1726 #define MOPT_QFMT MOPT_NOSUPPORT 1727 #endif 1728 #define MOPT_DATAJ 0x0080 1729 #define MOPT_NO_EXT2 0x0100 1730 #define MOPT_NO_EXT3 0x0200 1731 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1732 #define MOPT_STRING 0x0400 1733 #define MOPT_SKIP 0x0800 1734 1735 static const struct mount_opts { 1736 int token; 1737 int mount_opt; 1738 int flags; 1739 } ext4_mount_opts[] = { 1740 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1741 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1742 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1743 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1744 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1745 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1746 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1747 MOPT_EXT4_ONLY | MOPT_SET}, 1748 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1749 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1750 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1751 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1752 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1753 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1754 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1755 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1756 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1757 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1758 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1759 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1760 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1761 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1762 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1763 EXT4_MOUNT_JOURNAL_CHECKSUM), 1764 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1765 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1766 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1767 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1768 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1769 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1770 MOPT_NO_EXT2}, 1771 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1772 MOPT_NO_EXT2}, 1773 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1774 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1775 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1776 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1777 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1778 {Opt_commit, 0, MOPT_GTE0}, 1779 {Opt_max_batch_time, 0, MOPT_GTE0}, 1780 {Opt_min_batch_time, 0, MOPT_GTE0}, 1781 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1782 {Opt_init_itable, 0, MOPT_GTE0}, 1783 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1784 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1785 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1786 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1787 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1788 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1790 {Opt_stripe, 0, MOPT_GTE0}, 1791 {Opt_resuid, 0, MOPT_GTE0}, 1792 {Opt_resgid, 0, MOPT_GTE0}, 1793 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1794 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1795 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1796 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1797 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1798 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1799 MOPT_NO_EXT2 | MOPT_DATAJ}, 1800 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1801 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1802 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1803 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1804 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1805 #else 1806 {Opt_acl, 0, MOPT_NOSUPPORT}, 1807 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1808 #endif 1809 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1810 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1811 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1812 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1813 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1814 MOPT_SET | MOPT_Q}, 1815 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1816 MOPT_SET | MOPT_Q}, 1817 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1818 MOPT_SET | MOPT_Q}, 1819 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1820 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1821 MOPT_CLEAR | MOPT_Q}, 1822 {Opt_usrjquota, 0, MOPT_Q}, 1823 {Opt_grpjquota, 0, MOPT_Q}, 1824 {Opt_offusrjquota, 0, MOPT_Q}, 1825 {Opt_offgrpjquota, 0, MOPT_Q}, 1826 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1827 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1828 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1829 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1830 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1831 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1832 {Opt_err, 0, 0} 1833 }; 1834 1835 #ifdef CONFIG_UNICODE 1836 static const struct ext4_sb_encodings { 1837 __u16 magic; 1838 char *name; 1839 char *version; 1840 } ext4_sb_encoding_map[] = { 1841 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1842 }; 1843 1844 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1845 const struct ext4_sb_encodings **encoding, 1846 __u16 *flags) 1847 { 1848 __u16 magic = le16_to_cpu(es->s_encoding); 1849 int i; 1850 1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1852 if (magic == ext4_sb_encoding_map[i].magic) 1853 break; 1854 1855 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1856 return -EINVAL; 1857 1858 *encoding = &ext4_sb_encoding_map[i]; 1859 *flags = le16_to_cpu(es->s_encoding_flags); 1860 1861 return 0; 1862 } 1863 #endif 1864 1865 static int ext4_set_test_dummy_encryption(struct super_block *sb, 1866 const char *opt, 1867 const substring_t *arg, 1868 bool is_remount) 1869 { 1870 #ifdef CONFIG_FS_ENCRYPTION 1871 struct ext4_sb_info *sbi = EXT4_SB(sb); 1872 int err; 1873 1874 /* 1875 * This mount option is just for testing, and it's not worthwhile to 1876 * implement the extra complexity (e.g. RCU protection) that would be 1877 * needed to allow it to be set or changed during remount. We do allow 1878 * it to be specified during remount, but only if there is no change. 1879 */ 1880 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) { 1881 ext4_msg(sb, KERN_WARNING, 1882 "Can't set test_dummy_encryption on remount"); 1883 return -1; 1884 } 1885 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx); 1886 if (err) { 1887 if (err == -EEXIST) 1888 ext4_msg(sb, KERN_WARNING, 1889 "Can't change test_dummy_encryption on remount"); 1890 else if (err == -EINVAL) 1891 ext4_msg(sb, KERN_WARNING, 1892 "Value of option \"%s\" is unrecognized", opt); 1893 else 1894 ext4_msg(sb, KERN_WARNING, 1895 "Error processing option \"%s\" [%d]", 1896 opt, err); 1897 return -1; 1898 } 1899 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 1900 #else 1901 ext4_msg(sb, KERN_WARNING, 1902 "Test dummy encryption mount option ignored"); 1903 #endif 1904 return 1; 1905 } 1906 1907 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1908 substring_t *args, unsigned long *journal_devnum, 1909 unsigned int *journal_ioprio, int is_remount) 1910 { 1911 struct ext4_sb_info *sbi = EXT4_SB(sb); 1912 const struct mount_opts *m; 1913 kuid_t uid; 1914 kgid_t gid; 1915 int arg = 0; 1916 1917 #ifdef CONFIG_QUOTA 1918 if (token == Opt_usrjquota) 1919 return set_qf_name(sb, USRQUOTA, &args[0]); 1920 else if (token == Opt_grpjquota) 1921 return set_qf_name(sb, GRPQUOTA, &args[0]); 1922 else if (token == Opt_offusrjquota) 1923 return clear_qf_name(sb, USRQUOTA); 1924 else if (token == Opt_offgrpjquota) 1925 return clear_qf_name(sb, GRPQUOTA); 1926 #endif 1927 switch (token) { 1928 case Opt_noacl: 1929 case Opt_nouser_xattr: 1930 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1931 break; 1932 case Opt_sb: 1933 return 1; /* handled by get_sb_block() */ 1934 case Opt_removed: 1935 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1936 return 1; 1937 case Opt_abort: 1938 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1939 return 1; 1940 case Opt_i_version: 1941 sb->s_flags |= SB_I_VERSION; 1942 return 1; 1943 case Opt_lazytime: 1944 sb->s_flags |= SB_LAZYTIME; 1945 return 1; 1946 case Opt_nolazytime: 1947 sb->s_flags &= ~SB_LAZYTIME; 1948 return 1; 1949 } 1950 1951 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1952 if (token == m->token) 1953 break; 1954 1955 if (m->token == Opt_err) { 1956 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1957 "or missing value", opt); 1958 return -1; 1959 } 1960 1961 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1962 ext4_msg(sb, KERN_ERR, 1963 "Mount option \"%s\" incompatible with ext2", opt); 1964 return -1; 1965 } 1966 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1967 ext4_msg(sb, KERN_ERR, 1968 "Mount option \"%s\" incompatible with ext3", opt); 1969 return -1; 1970 } 1971 1972 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1973 return -1; 1974 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1975 return -1; 1976 if (m->flags & MOPT_EXPLICIT) { 1977 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1978 set_opt2(sb, EXPLICIT_DELALLOC); 1979 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1980 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1981 } else 1982 return -1; 1983 } 1984 if (m->flags & MOPT_CLEAR_ERR) 1985 clear_opt(sb, ERRORS_MASK); 1986 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1987 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1988 "options when quota turned on"); 1989 return -1; 1990 } 1991 1992 if (m->flags & MOPT_NOSUPPORT) { 1993 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1994 } else if (token == Opt_commit) { 1995 if (arg == 0) 1996 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1997 else if (arg > INT_MAX / HZ) { 1998 ext4_msg(sb, KERN_ERR, 1999 "Invalid commit interval %d, " 2000 "must be smaller than %d", 2001 arg, INT_MAX / HZ); 2002 return -1; 2003 } 2004 sbi->s_commit_interval = HZ * arg; 2005 } else if (token == Opt_debug_want_extra_isize) { 2006 if ((arg & 1) || 2007 (arg < 4) || 2008 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2009 ext4_msg(sb, KERN_ERR, 2010 "Invalid want_extra_isize %d", arg); 2011 return -1; 2012 } 2013 sbi->s_want_extra_isize = arg; 2014 } else if (token == Opt_max_batch_time) { 2015 sbi->s_max_batch_time = arg; 2016 } else if (token == Opt_min_batch_time) { 2017 sbi->s_min_batch_time = arg; 2018 } else if (token == Opt_inode_readahead_blks) { 2019 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2020 ext4_msg(sb, KERN_ERR, 2021 "EXT4-fs: inode_readahead_blks must be " 2022 "0 or a power of 2 smaller than 2^31"); 2023 return -1; 2024 } 2025 sbi->s_inode_readahead_blks = arg; 2026 } else if (token == Opt_init_itable) { 2027 set_opt(sb, INIT_INODE_TABLE); 2028 if (!args->from) 2029 arg = EXT4_DEF_LI_WAIT_MULT; 2030 sbi->s_li_wait_mult = arg; 2031 } else if (token == Opt_max_dir_size_kb) { 2032 sbi->s_max_dir_size_kb = arg; 2033 } else if (token == Opt_stripe) { 2034 sbi->s_stripe = arg; 2035 } else if (token == Opt_resuid) { 2036 uid = make_kuid(current_user_ns(), arg); 2037 if (!uid_valid(uid)) { 2038 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2039 return -1; 2040 } 2041 sbi->s_resuid = uid; 2042 } else if (token == Opt_resgid) { 2043 gid = make_kgid(current_user_ns(), arg); 2044 if (!gid_valid(gid)) { 2045 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2046 return -1; 2047 } 2048 sbi->s_resgid = gid; 2049 } else if (token == Opt_journal_dev) { 2050 if (is_remount) { 2051 ext4_msg(sb, KERN_ERR, 2052 "Cannot specify journal on remount"); 2053 return -1; 2054 } 2055 *journal_devnum = arg; 2056 } else if (token == Opt_journal_path) { 2057 char *journal_path; 2058 struct inode *journal_inode; 2059 struct path path; 2060 int error; 2061 2062 if (is_remount) { 2063 ext4_msg(sb, KERN_ERR, 2064 "Cannot specify journal on remount"); 2065 return -1; 2066 } 2067 journal_path = match_strdup(&args[0]); 2068 if (!journal_path) { 2069 ext4_msg(sb, KERN_ERR, "error: could not dup " 2070 "journal device string"); 2071 return -1; 2072 } 2073 2074 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2075 if (error) { 2076 ext4_msg(sb, KERN_ERR, "error: could not find " 2077 "journal device path: error %d", error); 2078 kfree(journal_path); 2079 return -1; 2080 } 2081 2082 journal_inode = d_inode(path.dentry); 2083 if (!S_ISBLK(journal_inode->i_mode)) { 2084 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2085 "is not a block device", journal_path); 2086 path_put(&path); 2087 kfree(journal_path); 2088 return -1; 2089 } 2090 2091 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2092 path_put(&path); 2093 kfree(journal_path); 2094 } else if (token == Opt_journal_ioprio) { 2095 if (arg > 7) { 2096 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2097 " (must be 0-7)"); 2098 return -1; 2099 } 2100 *journal_ioprio = 2101 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2102 } else if (token == Opt_test_dummy_encryption) { 2103 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2104 is_remount); 2105 } else if (m->flags & MOPT_DATAJ) { 2106 if (is_remount) { 2107 if (!sbi->s_journal) 2108 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2109 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2110 ext4_msg(sb, KERN_ERR, 2111 "Cannot change data mode on remount"); 2112 return -1; 2113 } 2114 } else { 2115 clear_opt(sb, DATA_FLAGS); 2116 sbi->s_mount_opt |= m->mount_opt; 2117 } 2118 #ifdef CONFIG_QUOTA 2119 } else if (m->flags & MOPT_QFMT) { 2120 if (sb_any_quota_loaded(sb) && 2121 sbi->s_jquota_fmt != m->mount_opt) { 2122 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2123 "quota options when quota turned on"); 2124 return -1; 2125 } 2126 if (ext4_has_feature_quota(sb)) { 2127 ext4_msg(sb, KERN_INFO, 2128 "Quota format mount options ignored " 2129 "when QUOTA feature is enabled"); 2130 return 1; 2131 } 2132 sbi->s_jquota_fmt = m->mount_opt; 2133 #endif 2134 } else if (token == Opt_dax || token == Opt_dax_always || 2135 token == Opt_dax_inode || token == Opt_dax_never) { 2136 #ifdef CONFIG_FS_DAX 2137 switch (token) { 2138 case Opt_dax: 2139 case Opt_dax_always: 2140 if (is_remount && 2141 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2142 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2143 fail_dax_change_remount: 2144 ext4_msg(sb, KERN_ERR, "can't change " 2145 "dax mount option while remounting"); 2146 return -1; 2147 } 2148 if (is_remount && 2149 (test_opt(sb, DATA_FLAGS) == 2150 EXT4_MOUNT_JOURNAL_DATA)) { 2151 ext4_msg(sb, KERN_ERR, "can't mount with " 2152 "both data=journal and dax"); 2153 return -1; 2154 } 2155 ext4_msg(sb, KERN_WARNING, 2156 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2157 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2158 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2159 break; 2160 case Opt_dax_never: 2161 if (is_remount && 2162 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2163 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2164 goto fail_dax_change_remount; 2165 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2166 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2167 break; 2168 case Opt_dax_inode: 2169 if (is_remount && 2170 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2171 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2172 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2173 goto fail_dax_change_remount; 2174 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2175 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2176 /* Strictly for printing options */ 2177 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2178 break; 2179 } 2180 #else 2181 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2182 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2183 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2184 return -1; 2185 #endif 2186 } else if (token == Opt_data_err_abort) { 2187 sbi->s_mount_opt |= m->mount_opt; 2188 } else if (token == Opt_data_err_ignore) { 2189 sbi->s_mount_opt &= ~m->mount_opt; 2190 } else { 2191 if (!args->from) 2192 arg = 1; 2193 if (m->flags & MOPT_CLEAR) 2194 arg = !arg; 2195 else if (unlikely(!(m->flags & MOPT_SET))) { 2196 ext4_msg(sb, KERN_WARNING, 2197 "buggy handling of option %s", opt); 2198 WARN_ON(1); 2199 return -1; 2200 } 2201 if (arg != 0) 2202 sbi->s_mount_opt |= m->mount_opt; 2203 else 2204 sbi->s_mount_opt &= ~m->mount_opt; 2205 } 2206 return 1; 2207 } 2208 2209 static int parse_options(char *options, struct super_block *sb, 2210 unsigned long *journal_devnum, 2211 unsigned int *journal_ioprio, 2212 int is_remount) 2213 { 2214 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2215 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2216 substring_t args[MAX_OPT_ARGS]; 2217 int token; 2218 2219 if (!options) 2220 return 1; 2221 2222 while ((p = strsep(&options, ",")) != NULL) { 2223 if (!*p) 2224 continue; 2225 /* 2226 * Initialize args struct so we know whether arg was 2227 * found; some options take optional arguments. 2228 */ 2229 args[0].to = args[0].from = NULL; 2230 token = match_token(p, tokens, args); 2231 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2232 journal_ioprio, is_remount) < 0) 2233 return 0; 2234 } 2235 #ifdef CONFIG_QUOTA 2236 /* 2237 * We do the test below only for project quotas. 'usrquota' and 2238 * 'grpquota' mount options are allowed even without quota feature 2239 * to support legacy quotas in quota files. 2240 */ 2241 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2242 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2243 "Cannot enable project quota enforcement."); 2244 return 0; 2245 } 2246 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2247 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2248 if (usr_qf_name || grp_qf_name) { 2249 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2250 clear_opt(sb, USRQUOTA); 2251 2252 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2253 clear_opt(sb, GRPQUOTA); 2254 2255 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2256 ext4_msg(sb, KERN_ERR, "old and new quota " 2257 "format mixing"); 2258 return 0; 2259 } 2260 2261 if (!sbi->s_jquota_fmt) { 2262 ext4_msg(sb, KERN_ERR, "journaled quota format " 2263 "not specified"); 2264 return 0; 2265 } 2266 } 2267 #endif 2268 if (test_opt(sb, DIOREAD_NOLOCK)) { 2269 int blocksize = 2270 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2271 if (blocksize < PAGE_SIZE) 2272 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2273 "experimental mount option 'dioread_nolock' " 2274 "for blocksize < PAGE_SIZE"); 2275 } 2276 return 1; 2277 } 2278 2279 static inline void ext4_show_quota_options(struct seq_file *seq, 2280 struct super_block *sb) 2281 { 2282 #if defined(CONFIG_QUOTA) 2283 struct ext4_sb_info *sbi = EXT4_SB(sb); 2284 char *usr_qf_name, *grp_qf_name; 2285 2286 if (sbi->s_jquota_fmt) { 2287 char *fmtname = ""; 2288 2289 switch (sbi->s_jquota_fmt) { 2290 case QFMT_VFS_OLD: 2291 fmtname = "vfsold"; 2292 break; 2293 case QFMT_VFS_V0: 2294 fmtname = "vfsv0"; 2295 break; 2296 case QFMT_VFS_V1: 2297 fmtname = "vfsv1"; 2298 break; 2299 } 2300 seq_printf(seq, ",jqfmt=%s", fmtname); 2301 } 2302 2303 rcu_read_lock(); 2304 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2305 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2306 if (usr_qf_name) 2307 seq_show_option(seq, "usrjquota", usr_qf_name); 2308 if (grp_qf_name) 2309 seq_show_option(seq, "grpjquota", grp_qf_name); 2310 rcu_read_unlock(); 2311 #endif 2312 } 2313 2314 static const char *token2str(int token) 2315 { 2316 const struct match_token *t; 2317 2318 for (t = tokens; t->token != Opt_err; t++) 2319 if (t->token == token && !strchr(t->pattern, '=')) 2320 break; 2321 return t->pattern; 2322 } 2323 2324 /* 2325 * Show an option if 2326 * - it's set to a non-default value OR 2327 * - if the per-sb default is different from the global default 2328 */ 2329 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2330 int nodefs) 2331 { 2332 struct ext4_sb_info *sbi = EXT4_SB(sb); 2333 struct ext4_super_block *es = sbi->s_es; 2334 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2335 const struct mount_opts *m; 2336 char sep = nodefs ? '\n' : ','; 2337 2338 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2339 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2340 2341 if (sbi->s_sb_block != 1) 2342 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2343 2344 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2345 int want_set = m->flags & MOPT_SET; 2346 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2347 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2348 continue; 2349 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2350 continue; /* skip if same as the default */ 2351 if ((want_set && 2352 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2353 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2354 continue; /* select Opt_noFoo vs Opt_Foo */ 2355 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2356 } 2357 2358 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2359 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2360 SEQ_OPTS_PRINT("resuid=%u", 2361 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2362 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2363 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2364 SEQ_OPTS_PRINT("resgid=%u", 2365 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2366 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2367 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2368 SEQ_OPTS_PUTS("errors=remount-ro"); 2369 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2370 SEQ_OPTS_PUTS("errors=continue"); 2371 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2372 SEQ_OPTS_PUTS("errors=panic"); 2373 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2374 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2375 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2376 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2377 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2378 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2379 if (sb->s_flags & SB_I_VERSION) 2380 SEQ_OPTS_PUTS("i_version"); 2381 if (nodefs || sbi->s_stripe) 2382 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2383 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2384 (sbi->s_mount_opt ^ def_mount_opt)) { 2385 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2386 SEQ_OPTS_PUTS("data=journal"); 2387 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2388 SEQ_OPTS_PUTS("data=ordered"); 2389 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2390 SEQ_OPTS_PUTS("data=writeback"); 2391 } 2392 if (nodefs || 2393 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2394 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2395 sbi->s_inode_readahead_blks); 2396 2397 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2398 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2399 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2400 if (nodefs || sbi->s_max_dir_size_kb) 2401 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2402 if (test_opt(sb, DATA_ERR_ABORT)) 2403 SEQ_OPTS_PUTS("data_err=abort"); 2404 2405 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2406 2407 if (test_opt(sb, DAX_ALWAYS)) { 2408 if (IS_EXT2_SB(sb)) 2409 SEQ_OPTS_PUTS("dax"); 2410 else 2411 SEQ_OPTS_PUTS("dax=always"); 2412 } else if (test_opt2(sb, DAX_NEVER)) { 2413 SEQ_OPTS_PUTS("dax=never"); 2414 } else if (test_opt2(sb, DAX_INODE)) { 2415 SEQ_OPTS_PUTS("dax=inode"); 2416 } 2417 2418 ext4_show_quota_options(seq, sb); 2419 return 0; 2420 } 2421 2422 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2423 { 2424 return _ext4_show_options(seq, root->d_sb, 0); 2425 } 2426 2427 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2428 { 2429 struct super_block *sb = seq->private; 2430 int rc; 2431 2432 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2433 rc = _ext4_show_options(seq, sb, 1); 2434 seq_puts(seq, "\n"); 2435 return rc; 2436 } 2437 2438 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2439 int read_only) 2440 { 2441 struct ext4_sb_info *sbi = EXT4_SB(sb); 2442 int err = 0; 2443 2444 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2445 ext4_msg(sb, KERN_ERR, "revision level too high, " 2446 "forcing read-only mode"); 2447 err = -EROFS; 2448 goto done; 2449 } 2450 if (read_only) 2451 goto done; 2452 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2453 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2454 "running e2fsck is recommended"); 2455 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2456 ext4_msg(sb, KERN_WARNING, 2457 "warning: mounting fs with errors, " 2458 "running e2fsck is recommended"); 2459 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2460 le16_to_cpu(es->s_mnt_count) >= 2461 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2462 ext4_msg(sb, KERN_WARNING, 2463 "warning: maximal mount count reached, " 2464 "running e2fsck is recommended"); 2465 else if (le32_to_cpu(es->s_checkinterval) && 2466 (ext4_get_tstamp(es, s_lastcheck) + 2467 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2468 ext4_msg(sb, KERN_WARNING, 2469 "warning: checktime reached, " 2470 "running e2fsck is recommended"); 2471 if (!sbi->s_journal) 2472 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2473 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2474 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2475 le16_add_cpu(&es->s_mnt_count, 1); 2476 ext4_update_tstamp(es, s_mtime); 2477 if (sbi->s_journal) 2478 ext4_set_feature_journal_needs_recovery(sb); 2479 2480 err = ext4_commit_super(sb, 1); 2481 done: 2482 if (test_opt(sb, DEBUG)) 2483 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2484 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2485 sb->s_blocksize, 2486 sbi->s_groups_count, 2487 EXT4_BLOCKS_PER_GROUP(sb), 2488 EXT4_INODES_PER_GROUP(sb), 2489 sbi->s_mount_opt, sbi->s_mount_opt2); 2490 2491 cleancache_init_fs(sb); 2492 return err; 2493 } 2494 2495 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2496 { 2497 struct ext4_sb_info *sbi = EXT4_SB(sb); 2498 struct flex_groups **old_groups, **new_groups; 2499 int size, i, j; 2500 2501 if (!sbi->s_log_groups_per_flex) 2502 return 0; 2503 2504 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2505 if (size <= sbi->s_flex_groups_allocated) 2506 return 0; 2507 2508 new_groups = kvzalloc(roundup_pow_of_two(size * 2509 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2510 if (!new_groups) { 2511 ext4_msg(sb, KERN_ERR, 2512 "not enough memory for %d flex group pointers", size); 2513 return -ENOMEM; 2514 } 2515 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2516 new_groups[i] = kvzalloc(roundup_pow_of_two( 2517 sizeof(struct flex_groups)), 2518 GFP_KERNEL); 2519 if (!new_groups[i]) { 2520 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2521 kvfree(new_groups[j]); 2522 kvfree(new_groups); 2523 ext4_msg(sb, KERN_ERR, 2524 "not enough memory for %d flex groups", size); 2525 return -ENOMEM; 2526 } 2527 } 2528 rcu_read_lock(); 2529 old_groups = rcu_dereference(sbi->s_flex_groups); 2530 if (old_groups) 2531 memcpy(new_groups, old_groups, 2532 (sbi->s_flex_groups_allocated * 2533 sizeof(struct flex_groups *))); 2534 rcu_read_unlock(); 2535 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2536 sbi->s_flex_groups_allocated = size; 2537 if (old_groups) 2538 ext4_kvfree_array_rcu(old_groups); 2539 return 0; 2540 } 2541 2542 static int ext4_fill_flex_info(struct super_block *sb) 2543 { 2544 struct ext4_sb_info *sbi = EXT4_SB(sb); 2545 struct ext4_group_desc *gdp = NULL; 2546 struct flex_groups *fg; 2547 ext4_group_t flex_group; 2548 int i, err; 2549 2550 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2551 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2552 sbi->s_log_groups_per_flex = 0; 2553 return 1; 2554 } 2555 2556 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2557 if (err) 2558 goto failed; 2559 2560 for (i = 0; i < sbi->s_groups_count; i++) { 2561 gdp = ext4_get_group_desc(sb, i, NULL); 2562 2563 flex_group = ext4_flex_group(sbi, i); 2564 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2565 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2566 atomic64_add(ext4_free_group_clusters(sb, gdp), 2567 &fg->free_clusters); 2568 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2569 } 2570 2571 return 1; 2572 failed: 2573 return 0; 2574 } 2575 2576 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2577 struct ext4_group_desc *gdp) 2578 { 2579 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2580 __u16 crc = 0; 2581 __le32 le_group = cpu_to_le32(block_group); 2582 struct ext4_sb_info *sbi = EXT4_SB(sb); 2583 2584 if (ext4_has_metadata_csum(sbi->s_sb)) { 2585 /* Use new metadata_csum algorithm */ 2586 __u32 csum32; 2587 __u16 dummy_csum = 0; 2588 2589 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2590 sizeof(le_group)); 2591 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2592 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2593 sizeof(dummy_csum)); 2594 offset += sizeof(dummy_csum); 2595 if (offset < sbi->s_desc_size) 2596 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2597 sbi->s_desc_size - offset); 2598 2599 crc = csum32 & 0xFFFF; 2600 goto out; 2601 } 2602 2603 /* old crc16 code */ 2604 if (!ext4_has_feature_gdt_csum(sb)) 2605 return 0; 2606 2607 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2608 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2609 crc = crc16(crc, (__u8 *)gdp, offset); 2610 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2611 /* for checksum of struct ext4_group_desc do the rest...*/ 2612 if (ext4_has_feature_64bit(sb) && 2613 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2614 crc = crc16(crc, (__u8 *)gdp + offset, 2615 le16_to_cpu(sbi->s_es->s_desc_size) - 2616 offset); 2617 2618 out: 2619 return cpu_to_le16(crc); 2620 } 2621 2622 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2623 struct ext4_group_desc *gdp) 2624 { 2625 if (ext4_has_group_desc_csum(sb) && 2626 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2627 return 0; 2628 2629 return 1; 2630 } 2631 2632 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2633 struct ext4_group_desc *gdp) 2634 { 2635 if (!ext4_has_group_desc_csum(sb)) 2636 return; 2637 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2638 } 2639 2640 /* Called at mount-time, super-block is locked */ 2641 static int ext4_check_descriptors(struct super_block *sb, 2642 ext4_fsblk_t sb_block, 2643 ext4_group_t *first_not_zeroed) 2644 { 2645 struct ext4_sb_info *sbi = EXT4_SB(sb); 2646 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2647 ext4_fsblk_t last_block; 2648 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2649 ext4_fsblk_t block_bitmap; 2650 ext4_fsblk_t inode_bitmap; 2651 ext4_fsblk_t inode_table; 2652 int flexbg_flag = 0; 2653 ext4_group_t i, grp = sbi->s_groups_count; 2654 2655 if (ext4_has_feature_flex_bg(sb)) 2656 flexbg_flag = 1; 2657 2658 ext4_debug("Checking group descriptors"); 2659 2660 for (i = 0; i < sbi->s_groups_count; i++) { 2661 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2662 2663 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2664 last_block = ext4_blocks_count(sbi->s_es) - 1; 2665 else 2666 last_block = first_block + 2667 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2668 2669 if ((grp == sbi->s_groups_count) && 2670 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2671 grp = i; 2672 2673 block_bitmap = ext4_block_bitmap(sb, gdp); 2674 if (block_bitmap == sb_block) { 2675 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2676 "Block bitmap for group %u overlaps " 2677 "superblock", i); 2678 if (!sb_rdonly(sb)) 2679 return 0; 2680 } 2681 if (block_bitmap >= sb_block + 1 && 2682 block_bitmap <= last_bg_block) { 2683 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2684 "Block bitmap for group %u overlaps " 2685 "block group descriptors", i); 2686 if (!sb_rdonly(sb)) 2687 return 0; 2688 } 2689 if (block_bitmap < first_block || block_bitmap > last_block) { 2690 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2691 "Block bitmap for group %u not in group " 2692 "(block %llu)!", i, block_bitmap); 2693 return 0; 2694 } 2695 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2696 if (inode_bitmap == sb_block) { 2697 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2698 "Inode bitmap for group %u overlaps " 2699 "superblock", i); 2700 if (!sb_rdonly(sb)) 2701 return 0; 2702 } 2703 if (inode_bitmap >= sb_block + 1 && 2704 inode_bitmap <= last_bg_block) { 2705 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2706 "Inode bitmap for group %u overlaps " 2707 "block group descriptors", i); 2708 if (!sb_rdonly(sb)) 2709 return 0; 2710 } 2711 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2712 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2713 "Inode bitmap for group %u not in group " 2714 "(block %llu)!", i, inode_bitmap); 2715 return 0; 2716 } 2717 inode_table = ext4_inode_table(sb, gdp); 2718 if (inode_table == sb_block) { 2719 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2720 "Inode table for group %u overlaps " 2721 "superblock", i); 2722 if (!sb_rdonly(sb)) 2723 return 0; 2724 } 2725 if (inode_table >= sb_block + 1 && 2726 inode_table <= last_bg_block) { 2727 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2728 "Inode table for group %u overlaps " 2729 "block group descriptors", i); 2730 if (!sb_rdonly(sb)) 2731 return 0; 2732 } 2733 if (inode_table < first_block || 2734 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2735 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2736 "Inode table for group %u not in group " 2737 "(block %llu)!", i, inode_table); 2738 return 0; 2739 } 2740 ext4_lock_group(sb, i); 2741 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2742 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2743 "Checksum for group %u failed (%u!=%u)", 2744 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2745 gdp)), le16_to_cpu(gdp->bg_checksum)); 2746 if (!sb_rdonly(sb)) { 2747 ext4_unlock_group(sb, i); 2748 return 0; 2749 } 2750 } 2751 ext4_unlock_group(sb, i); 2752 if (!flexbg_flag) 2753 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2754 } 2755 if (NULL != first_not_zeroed) 2756 *first_not_zeroed = grp; 2757 return 1; 2758 } 2759 2760 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2761 * the superblock) which were deleted from all directories, but held open by 2762 * a process at the time of a crash. We walk the list and try to delete these 2763 * inodes at recovery time (only with a read-write filesystem). 2764 * 2765 * In order to keep the orphan inode chain consistent during traversal (in 2766 * case of crash during recovery), we link each inode into the superblock 2767 * orphan list_head and handle it the same way as an inode deletion during 2768 * normal operation (which journals the operations for us). 2769 * 2770 * We only do an iget() and an iput() on each inode, which is very safe if we 2771 * accidentally point at an in-use or already deleted inode. The worst that 2772 * can happen in this case is that we get a "bit already cleared" message from 2773 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2774 * e2fsck was run on this filesystem, and it must have already done the orphan 2775 * inode cleanup for us, so we can safely abort without any further action. 2776 */ 2777 static void ext4_orphan_cleanup(struct super_block *sb, 2778 struct ext4_super_block *es) 2779 { 2780 unsigned int s_flags = sb->s_flags; 2781 int ret, nr_orphans = 0, nr_truncates = 0; 2782 #ifdef CONFIG_QUOTA 2783 int quota_update = 0; 2784 int i; 2785 #endif 2786 if (!es->s_last_orphan) { 2787 jbd_debug(4, "no orphan inodes to clean up\n"); 2788 return; 2789 } 2790 2791 if (bdev_read_only(sb->s_bdev)) { 2792 ext4_msg(sb, KERN_ERR, "write access " 2793 "unavailable, skipping orphan cleanup"); 2794 return; 2795 } 2796 2797 /* Check if feature set would not allow a r/w mount */ 2798 if (!ext4_feature_set_ok(sb, 0)) { 2799 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2800 "unknown ROCOMPAT features"); 2801 return; 2802 } 2803 2804 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2805 /* don't clear list on RO mount w/ errors */ 2806 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2807 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2808 "clearing orphan list.\n"); 2809 es->s_last_orphan = 0; 2810 } 2811 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2812 return; 2813 } 2814 2815 if (s_flags & SB_RDONLY) { 2816 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2817 sb->s_flags &= ~SB_RDONLY; 2818 } 2819 #ifdef CONFIG_QUOTA 2820 /* Needed for iput() to work correctly and not trash data */ 2821 sb->s_flags |= SB_ACTIVE; 2822 2823 /* 2824 * Turn on quotas which were not enabled for read-only mounts if 2825 * filesystem has quota feature, so that they are updated correctly. 2826 */ 2827 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2828 int ret = ext4_enable_quotas(sb); 2829 2830 if (!ret) 2831 quota_update = 1; 2832 else 2833 ext4_msg(sb, KERN_ERR, 2834 "Cannot turn on quotas: error %d", ret); 2835 } 2836 2837 /* Turn on journaled quotas used for old sytle */ 2838 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2839 if (EXT4_SB(sb)->s_qf_names[i]) { 2840 int ret = ext4_quota_on_mount(sb, i); 2841 2842 if (!ret) 2843 quota_update = 1; 2844 else 2845 ext4_msg(sb, KERN_ERR, 2846 "Cannot turn on journaled " 2847 "quota: type %d: error %d", i, ret); 2848 } 2849 } 2850 #endif 2851 2852 while (es->s_last_orphan) { 2853 struct inode *inode; 2854 2855 /* 2856 * We may have encountered an error during cleanup; if 2857 * so, skip the rest. 2858 */ 2859 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2860 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2861 es->s_last_orphan = 0; 2862 break; 2863 } 2864 2865 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2866 if (IS_ERR(inode)) { 2867 es->s_last_orphan = 0; 2868 break; 2869 } 2870 2871 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2872 dquot_initialize(inode); 2873 if (inode->i_nlink) { 2874 if (test_opt(sb, DEBUG)) 2875 ext4_msg(sb, KERN_DEBUG, 2876 "%s: truncating inode %lu to %lld bytes", 2877 __func__, inode->i_ino, inode->i_size); 2878 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2879 inode->i_ino, inode->i_size); 2880 inode_lock(inode); 2881 truncate_inode_pages(inode->i_mapping, inode->i_size); 2882 ret = ext4_truncate(inode); 2883 if (ret) 2884 ext4_std_error(inode->i_sb, ret); 2885 inode_unlock(inode); 2886 nr_truncates++; 2887 } else { 2888 if (test_opt(sb, DEBUG)) 2889 ext4_msg(sb, KERN_DEBUG, 2890 "%s: deleting unreferenced inode %lu", 2891 __func__, inode->i_ino); 2892 jbd_debug(2, "deleting unreferenced inode %lu\n", 2893 inode->i_ino); 2894 nr_orphans++; 2895 } 2896 iput(inode); /* The delete magic happens here! */ 2897 } 2898 2899 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2900 2901 if (nr_orphans) 2902 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2903 PLURAL(nr_orphans)); 2904 if (nr_truncates) 2905 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2906 PLURAL(nr_truncates)); 2907 #ifdef CONFIG_QUOTA 2908 /* Turn off quotas if they were enabled for orphan cleanup */ 2909 if (quota_update) { 2910 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2911 if (sb_dqopt(sb)->files[i]) 2912 dquot_quota_off(sb, i); 2913 } 2914 } 2915 #endif 2916 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2917 } 2918 2919 /* 2920 * Maximal extent format file size. 2921 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2922 * extent format containers, within a sector_t, and within i_blocks 2923 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2924 * so that won't be a limiting factor. 2925 * 2926 * However there is other limiting factor. We do store extents in the form 2927 * of starting block and length, hence the resulting length of the extent 2928 * covering maximum file size must fit into on-disk format containers as 2929 * well. Given that length is always by 1 unit bigger than max unit (because 2930 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2931 * 2932 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2933 */ 2934 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2935 { 2936 loff_t res; 2937 loff_t upper_limit = MAX_LFS_FILESIZE; 2938 2939 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2940 2941 if (!has_huge_files) { 2942 upper_limit = (1LL << 32) - 1; 2943 2944 /* total blocks in file system block size */ 2945 upper_limit >>= (blkbits - 9); 2946 upper_limit <<= blkbits; 2947 } 2948 2949 /* 2950 * 32-bit extent-start container, ee_block. We lower the maxbytes 2951 * by one fs block, so ee_len can cover the extent of maximum file 2952 * size 2953 */ 2954 res = (1LL << 32) - 1; 2955 res <<= blkbits; 2956 2957 /* Sanity check against vm- & vfs- imposed limits */ 2958 if (res > upper_limit) 2959 res = upper_limit; 2960 2961 return res; 2962 } 2963 2964 /* 2965 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2966 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2967 * We need to be 1 filesystem block less than the 2^48 sector limit. 2968 */ 2969 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2970 { 2971 loff_t res = EXT4_NDIR_BLOCKS; 2972 int meta_blocks; 2973 loff_t upper_limit; 2974 /* This is calculated to be the largest file size for a dense, block 2975 * mapped file such that the file's total number of 512-byte sectors, 2976 * including data and all indirect blocks, does not exceed (2^48 - 1). 2977 * 2978 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2979 * number of 512-byte sectors of the file. 2980 */ 2981 2982 if (!has_huge_files) { 2983 /* 2984 * !has_huge_files or implies that the inode i_block field 2985 * represents total file blocks in 2^32 512-byte sectors == 2986 * size of vfs inode i_blocks * 8 2987 */ 2988 upper_limit = (1LL << 32) - 1; 2989 2990 /* total blocks in file system block size */ 2991 upper_limit >>= (bits - 9); 2992 2993 } else { 2994 /* 2995 * We use 48 bit ext4_inode i_blocks 2996 * With EXT4_HUGE_FILE_FL set the i_blocks 2997 * represent total number of blocks in 2998 * file system block size 2999 */ 3000 upper_limit = (1LL << 48) - 1; 3001 3002 } 3003 3004 /* indirect blocks */ 3005 meta_blocks = 1; 3006 /* double indirect blocks */ 3007 meta_blocks += 1 + (1LL << (bits-2)); 3008 /* tripple indirect blocks */ 3009 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3010 3011 upper_limit -= meta_blocks; 3012 upper_limit <<= bits; 3013 3014 res += 1LL << (bits-2); 3015 res += 1LL << (2*(bits-2)); 3016 res += 1LL << (3*(bits-2)); 3017 res <<= bits; 3018 if (res > upper_limit) 3019 res = upper_limit; 3020 3021 if (res > MAX_LFS_FILESIZE) 3022 res = MAX_LFS_FILESIZE; 3023 3024 return res; 3025 } 3026 3027 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3028 ext4_fsblk_t logical_sb_block, int nr) 3029 { 3030 struct ext4_sb_info *sbi = EXT4_SB(sb); 3031 ext4_group_t bg, first_meta_bg; 3032 int has_super = 0; 3033 3034 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3035 3036 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3037 return logical_sb_block + nr + 1; 3038 bg = sbi->s_desc_per_block * nr; 3039 if (ext4_bg_has_super(sb, bg)) 3040 has_super = 1; 3041 3042 /* 3043 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3044 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3045 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3046 * compensate. 3047 */ 3048 if (sb->s_blocksize == 1024 && nr == 0 && 3049 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3050 has_super++; 3051 3052 return (has_super + ext4_group_first_block_no(sb, bg)); 3053 } 3054 3055 /** 3056 * ext4_get_stripe_size: Get the stripe size. 3057 * @sbi: In memory super block info 3058 * 3059 * If we have specified it via mount option, then 3060 * use the mount option value. If the value specified at mount time is 3061 * greater than the blocks per group use the super block value. 3062 * If the super block value is greater than blocks per group return 0. 3063 * Allocator needs it be less than blocks per group. 3064 * 3065 */ 3066 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3067 { 3068 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3069 unsigned long stripe_width = 3070 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3071 int ret; 3072 3073 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3074 ret = sbi->s_stripe; 3075 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3076 ret = stripe_width; 3077 else if (stride && stride <= sbi->s_blocks_per_group) 3078 ret = stride; 3079 else 3080 ret = 0; 3081 3082 /* 3083 * If the stripe width is 1, this makes no sense and 3084 * we set it to 0 to turn off stripe handling code. 3085 */ 3086 if (ret <= 1) 3087 ret = 0; 3088 3089 return ret; 3090 } 3091 3092 /* 3093 * Check whether this filesystem can be mounted based on 3094 * the features present and the RDONLY/RDWR mount requested. 3095 * Returns 1 if this filesystem can be mounted as requested, 3096 * 0 if it cannot be. 3097 */ 3098 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3099 { 3100 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3101 ext4_msg(sb, KERN_ERR, 3102 "Couldn't mount because of " 3103 "unsupported optional features (%x)", 3104 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3105 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3106 return 0; 3107 } 3108 3109 #ifndef CONFIG_UNICODE 3110 if (ext4_has_feature_casefold(sb)) { 3111 ext4_msg(sb, KERN_ERR, 3112 "Filesystem with casefold feature cannot be " 3113 "mounted without CONFIG_UNICODE"); 3114 return 0; 3115 } 3116 #endif 3117 3118 if (readonly) 3119 return 1; 3120 3121 if (ext4_has_feature_readonly(sb)) { 3122 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3123 sb->s_flags |= SB_RDONLY; 3124 return 1; 3125 } 3126 3127 /* Check that feature set is OK for a read-write mount */ 3128 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3129 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3130 "unsupported optional features (%x)", 3131 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3132 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3133 return 0; 3134 } 3135 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3136 ext4_msg(sb, KERN_ERR, 3137 "Can't support bigalloc feature without " 3138 "extents feature\n"); 3139 return 0; 3140 } 3141 3142 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3143 if (!readonly && (ext4_has_feature_quota(sb) || 3144 ext4_has_feature_project(sb))) { 3145 ext4_msg(sb, KERN_ERR, 3146 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3147 return 0; 3148 } 3149 #endif /* CONFIG_QUOTA */ 3150 return 1; 3151 } 3152 3153 /* 3154 * This function is called once a day if we have errors logged 3155 * on the file system 3156 */ 3157 static void print_daily_error_info(struct timer_list *t) 3158 { 3159 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3160 struct super_block *sb = sbi->s_sb; 3161 struct ext4_super_block *es = sbi->s_es; 3162 3163 if (es->s_error_count) 3164 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3165 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3166 le32_to_cpu(es->s_error_count)); 3167 if (es->s_first_error_time) { 3168 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3169 sb->s_id, 3170 ext4_get_tstamp(es, s_first_error_time), 3171 (int) sizeof(es->s_first_error_func), 3172 es->s_first_error_func, 3173 le32_to_cpu(es->s_first_error_line)); 3174 if (es->s_first_error_ino) 3175 printk(KERN_CONT ": inode %u", 3176 le32_to_cpu(es->s_first_error_ino)); 3177 if (es->s_first_error_block) 3178 printk(KERN_CONT ": block %llu", (unsigned long long) 3179 le64_to_cpu(es->s_first_error_block)); 3180 printk(KERN_CONT "\n"); 3181 } 3182 if (es->s_last_error_time) { 3183 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3184 sb->s_id, 3185 ext4_get_tstamp(es, s_last_error_time), 3186 (int) sizeof(es->s_last_error_func), 3187 es->s_last_error_func, 3188 le32_to_cpu(es->s_last_error_line)); 3189 if (es->s_last_error_ino) 3190 printk(KERN_CONT ": inode %u", 3191 le32_to_cpu(es->s_last_error_ino)); 3192 if (es->s_last_error_block) 3193 printk(KERN_CONT ": block %llu", (unsigned long long) 3194 le64_to_cpu(es->s_last_error_block)); 3195 printk(KERN_CONT "\n"); 3196 } 3197 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3198 } 3199 3200 /* Find next suitable group and run ext4_init_inode_table */ 3201 static int ext4_run_li_request(struct ext4_li_request *elr) 3202 { 3203 struct ext4_group_desc *gdp = NULL; 3204 ext4_group_t group, ngroups; 3205 struct super_block *sb; 3206 unsigned long timeout = 0; 3207 int ret = 0; 3208 3209 sb = elr->lr_super; 3210 ngroups = EXT4_SB(sb)->s_groups_count; 3211 3212 for (group = elr->lr_next_group; group < ngroups; group++) { 3213 gdp = ext4_get_group_desc(sb, group, NULL); 3214 if (!gdp) { 3215 ret = 1; 3216 break; 3217 } 3218 3219 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3220 break; 3221 } 3222 3223 if (group >= ngroups) 3224 ret = 1; 3225 3226 if (!ret) { 3227 timeout = jiffies; 3228 ret = ext4_init_inode_table(sb, group, 3229 elr->lr_timeout ? 0 : 1); 3230 if (elr->lr_timeout == 0) { 3231 timeout = (jiffies - timeout) * 3232 elr->lr_sbi->s_li_wait_mult; 3233 elr->lr_timeout = timeout; 3234 } 3235 elr->lr_next_sched = jiffies + elr->lr_timeout; 3236 elr->lr_next_group = group + 1; 3237 } 3238 return ret; 3239 } 3240 3241 /* 3242 * Remove lr_request from the list_request and free the 3243 * request structure. Should be called with li_list_mtx held 3244 */ 3245 static void ext4_remove_li_request(struct ext4_li_request *elr) 3246 { 3247 struct ext4_sb_info *sbi; 3248 3249 if (!elr) 3250 return; 3251 3252 sbi = elr->lr_sbi; 3253 3254 list_del(&elr->lr_request); 3255 sbi->s_li_request = NULL; 3256 kfree(elr); 3257 } 3258 3259 static void ext4_unregister_li_request(struct super_block *sb) 3260 { 3261 mutex_lock(&ext4_li_mtx); 3262 if (!ext4_li_info) { 3263 mutex_unlock(&ext4_li_mtx); 3264 return; 3265 } 3266 3267 mutex_lock(&ext4_li_info->li_list_mtx); 3268 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3269 mutex_unlock(&ext4_li_info->li_list_mtx); 3270 mutex_unlock(&ext4_li_mtx); 3271 } 3272 3273 static struct task_struct *ext4_lazyinit_task; 3274 3275 /* 3276 * This is the function where ext4lazyinit thread lives. It walks 3277 * through the request list searching for next scheduled filesystem. 3278 * When such a fs is found, run the lazy initialization request 3279 * (ext4_rn_li_request) and keep track of the time spend in this 3280 * function. Based on that time we compute next schedule time of 3281 * the request. When walking through the list is complete, compute 3282 * next waking time and put itself into sleep. 3283 */ 3284 static int ext4_lazyinit_thread(void *arg) 3285 { 3286 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3287 struct list_head *pos, *n; 3288 struct ext4_li_request *elr; 3289 unsigned long next_wakeup, cur; 3290 3291 BUG_ON(NULL == eli); 3292 3293 cont_thread: 3294 while (true) { 3295 next_wakeup = MAX_JIFFY_OFFSET; 3296 3297 mutex_lock(&eli->li_list_mtx); 3298 if (list_empty(&eli->li_request_list)) { 3299 mutex_unlock(&eli->li_list_mtx); 3300 goto exit_thread; 3301 } 3302 list_for_each_safe(pos, n, &eli->li_request_list) { 3303 int err = 0; 3304 int progress = 0; 3305 elr = list_entry(pos, struct ext4_li_request, 3306 lr_request); 3307 3308 if (time_before(jiffies, elr->lr_next_sched)) { 3309 if (time_before(elr->lr_next_sched, next_wakeup)) 3310 next_wakeup = elr->lr_next_sched; 3311 continue; 3312 } 3313 if (down_read_trylock(&elr->lr_super->s_umount)) { 3314 if (sb_start_write_trylock(elr->lr_super)) { 3315 progress = 1; 3316 /* 3317 * We hold sb->s_umount, sb can not 3318 * be removed from the list, it is 3319 * now safe to drop li_list_mtx 3320 */ 3321 mutex_unlock(&eli->li_list_mtx); 3322 err = ext4_run_li_request(elr); 3323 sb_end_write(elr->lr_super); 3324 mutex_lock(&eli->li_list_mtx); 3325 n = pos->next; 3326 } 3327 up_read((&elr->lr_super->s_umount)); 3328 } 3329 /* error, remove the lazy_init job */ 3330 if (err) { 3331 ext4_remove_li_request(elr); 3332 continue; 3333 } 3334 if (!progress) { 3335 elr->lr_next_sched = jiffies + 3336 (prandom_u32() 3337 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3338 } 3339 if (time_before(elr->lr_next_sched, next_wakeup)) 3340 next_wakeup = elr->lr_next_sched; 3341 } 3342 mutex_unlock(&eli->li_list_mtx); 3343 3344 try_to_freeze(); 3345 3346 cur = jiffies; 3347 if ((time_after_eq(cur, next_wakeup)) || 3348 (MAX_JIFFY_OFFSET == next_wakeup)) { 3349 cond_resched(); 3350 continue; 3351 } 3352 3353 schedule_timeout_interruptible(next_wakeup - cur); 3354 3355 if (kthread_should_stop()) { 3356 ext4_clear_request_list(); 3357 goto exit_thread; 3358 } 3359 } 3360 3361 exit_thread: 3362 /* 3363 * It looks like the request list is empty, but we need 3364 * to check it under the li_list_mtx lock, to prevent any 3365 * additions into it, and of course we should lock ext4_li_mtx 3366 * to atomically free the list and ext4_li_info, because at 3367 * this point another ext4 filesystem could be registering 3368 * new one. 3369 */ 3370 mutex_lock(&ext4_li_mtx); 3371 mutex_lock(&eli->li_list_mtx); 3372 if (!list_empty(&eli->li_request_list)) { 3373 mutex_unlock(&eli->li_list_mtx); 3374 mutex_unlock(&ext4_li_mtx); 3375 goto cont_thread; 3376 } 3377 mutex_unlock(&eli->li_list_mtx); 3378 kfree(ext4_li_info); 3379 ext4_li_info = NULL; 3380 mutex_unlock(&ext4_li_mtx); 3381 3382 return 0; 3383 } 3384 3385 static void ext4_clear_request_list(void) 3386 { 3387 struct list_head *pos, *n; 3388 struct ext4_li_request *elr; 3389 3390 mutex_lock(&ext4_li_info->li_list_mtx); 3391 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3392 elr = list_entry(pos, struct ext4_li_request, 3393 lr_request); 3394 ext4_remove_li_request(elr); 3395 } 3396 mutex_unlock(&ext4_li_info->li_list_mtx); 3397 } 3398 3399 static int ext4_run_lazyinit_thread(void) 3400 { 3401 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3402 ext4_li_info, "ext4lazyinit"); 3403 if (IS_ERR(ext4_lazyinit_task)) { 3404 int err = PTR_ERR(ext4_lazyinit_task); 3405 ext4_clear_request_list(); 3406 kfree(ext4_li_info); 3407 ext4_li_info = NULL; 3408 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3409 "initialization thread\n", 3410 err); 3411 return err; 3412 } 3413 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3414 return 0; 3415 } 3416 3417 /* 3418 * Check whether it make sense to run itable init. thread or not. 3419 * If there is at least one uninitialized inode table, return 3420 * corresponding group number, else the loop goes through all 3421 * groups and return total number of groups. 3422 */ 3423 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3424 { 3425 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3426 struct ext4_group_desc *gdp = NULL; 3427 3428 if (!ext4_has_group_desc_csum(sb)) 3429 return ngroups; 3430 3431 for (group = 0; group < ngroups; group++) { 3432 gdp = ext4_get_group_desc(sb, group, NULL); 3433 if (!gdp) 3434 continue; 3435 3436 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3437 break; 3438 } 3439 3440 return group; 3441 } 3442 3443 static int ext4_li_info_new(void) 3444 { 3445 struct ext4_lazy_init *eli = NULL; 3446 3447 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3448 if (!eli) 3449 return -ENOMEM; 3450 3451 INIT_LIST_HEAD(&eli->li_request_list); 3452 mutex_init(&eli->li_list_mtx); 3453 3454 eli->li_state |= EXT4_LAZYINIT_QUIT; 3455 3456 ext4_li_info = eli; 3457 3458 return 0; 3459 } 3460 3461 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3462 ext4_group_t start) 3463 { 3464 struct ext4_sb_info *sbi = EXT4_SB(sb); 3465 struct ext4_li_request *elr; 3466 3467 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3468 if (!elr) 3469 return NULL; 3470 3471 elr->lr_super = sb; 3472 elr->lr_sbi = sbi; 3473 elr->lr_next_group = start; 3474 3475 /* 3476 * Randomize first schedule time of the request to 3477 * spread the inode table initialization requests 3478 * better. 3479 */ 3480 elr->lr_next_sched = jiffies + (prandom_u32() % 3481 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3482 return elr; 3483 } 3484 3485 int ext4_register_li_request(struct super_block *sb, 3486 ext4_group_t first_not_zeroed) 3487 { 3488 struct ext4_sb_info *sbi = EXT4_SB(sb); 3489 struct ext4_li_request *elr = NULL; 3490 ext4_group_t ngroups = sbi->s_groups_count; 3491 int ret = 0; 3492 3493 mutex_lock(&ext4_li_mtx); 3494 if (sbi->s_li_request != NULL) { 3495 /* 3496 * Reset timeout so it can be computed again, because 3497 * s_li_wait_mult might have changed. 3498 */ 3499 sbi->s_li_request->lr_timeout = 0; 3500 goto out; 3501 } 3502 3503 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3504 !test_opt(sb, INIT_INODE_TABLE)) 3505 goto out; 3506 3507 elr = ext4_li_request_new(sb, first_not_zeroed); 3508 if (!elr) { 3509 ret = -ENOMEM; 3510 goto out; 3511 } 3512 3513 if (NULL == ext4_li_info) { 3514 ret = ext4_li_info_new(); 3515 if (ret) 3516 goto out; 3517 } 3518 3519 mutex_lock(&ext4_li_info->li_list_mtx); 3520 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3521 mutex_unlock(&ext4_li_info->li_list_mtx); 3522 3523 sbi->s_li_request = elr; 3524 /* 3525 * set elr to NULL here since it has been inserted to 3526 * the request_list and the removal and free of it is 3527 * handled by ext4_clear_request_list from now on. 3528 */ 3529 elr = NULL; 3530 3531 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3532 ret = ext4_run_lazyinit_thread(); 3533 if (ret) 3534 goto out; 3535 } 3536 out: 3537 mutex_unlock(&ext4_li_mtx); 3538 if (ret) 3539 kfree(elr); 3540 return ret; 3541 } 3542 3543 /* 3544 * We do not need to lock anything since this is called on 3545 * module unload. 3546 */ 3547 static void ext4_destroy_lazyinit_thread(void) 3548 { 3549 /* 3550 * If thread exited earlier 3551 * there's nothing to be done. 3552 */ 3553 if (!ext4_li_info || !ext4_lazyinit_task) 3554 return; 3555 3556 kthread_stop(ext4_lazyinit_task); 3557 } 3558 3559 static int set_journal_csum_feature_set(struct super_block *sb) 3560 { 3561 int ret = 1; 3562 int compat, incompat; 3563 struct ext4_sb_info *sbi = EXT4_SB(sb); 3564 3565 if (ext4_has_metadata_csum(sb)) { 3566 /* journal checksum v3 */ 3567 compat = 0; 3568 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3569 } else { 3570 /* journal checksum v1 */ 3571 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3572 incompat = 0; 3573 } 3574 3575 jbd2_journal_clear_features(sbi->s_journal, 3576 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3577 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3578 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3579 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3580 ret = jbd2_journal_set_features(sbi->s_journal, 3581 compat, 0, 3582 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3583 incompat); 3584 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3585 ret = jbd2_journal_set_features(sbi->s_journal, 3586 compat, 0, 3587 incompat); 3588 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3589 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3590 } else { 3591 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3592 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3593 } 3594 3595 return ret; 3596 } 3597 3598 /* 3599 * Note: calculating the overhead so we can be compatible with 3600 * historical BSD practice is quite difficult in the face of 3601 * clusters/bigalloc. This is because multiple metadata blocks from 3602 * different block group can end up in the same allocation cluster. 3603 * Calculating the exact overhead in the face of clustered allocation 3604 * requires either O(all block bitmaps) in memory or O(number of block 3605 * groups**2) in time. We will still calculate the superblock for 3606 * older file systems --- and if we come across with a bigalloc file 3607 * system with zero in s_overhead_clusters the estimate will be close to 3608 * correct especially for very large cluster sizes --- but for newer 3609 * file systems, it's better to calculate this figure once at mkfs 3610 * time, and store it in the superblock. If the superblock value is 3611 * present (even for non-bigalloc file systems), we will use it. 3612 */ 3613 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3614 char *buf) 3615 { 3616 struct ext4_sb_info *sbi = EXT4_SB(sb); 3617 struct ext4_group_desc *gdp; 3618 ext4_fsblk_t first_block, last_block, b; 3619 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3620 int s, j, count = 0; 3621 3622 if (!ext4_has_feature_bigalloc(sb)) 3623 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3624 sbi->s_itb_per_group + 2); 3625 3626 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3627 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3628 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3629 for (i = 0; i < ngroups; i++) { 3630 gdp = ext4_get_group_desc(sb, i, NULL); 3631 b = ext4_block_bitmap(sb, gdp); 3632 if (b >= first_block && b <= last_block) { 3633 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3634 count++; 3635 } 3636 b = ext4_inode_bitmap(sb, gdp); 3637 if (b >= first_block && b <= last_block) { 3638 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3639 count++; 3640 } 3641 b = ext4_inode_table(sb, gdp); 3642 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3643 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3644 int c = EXT4_B2C(sbi, b - first_block); 3645 ext4_set_bit(c, buf); 3646 count++; 3647 } 3648 if (i != grp) 3649 continue; 3650 s = 0; 3651 if (ext4_bg_has_super(sb, grp)) { 3652 ext4_set_bit(s++, buf); 3653 count++; 3654 } 3655 j = ext4_bg_num_gdb(sb, grp); 3656 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3657 ext4_error(sb, "Invalid number of block group " 3658 "descriptor blocks: %d", j); 3659 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3660 } 3661 count += j; 3662 for (; j > 0; j--) 3663 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3664 } 3665 if (!count) 3666 return 0; 3667 return EXT4_CLUSTERS_PER_GROUP(sb) - 3668 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3669 } 3670 3671 /* 3672 * Compute the overhead and stash it in sbi->s_overhead 3673 */ 3674 int ext4_calculate_overhead(struct super_block *sb) 3675 { 3676 struct ext4_sb_info *sbi = EXT4_SB(sb); 3677 struct ext4_super_block *es = sbi->s_es; 3678 struct inode *j_inode; 3679 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3680 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3681 ext4_fsblk_t overhead = 0; 3682 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3683 3684 if (!buf) 3685 return -ENOMEM; 3686 3687 /* 3688 * Compute the overhead (FS structures). This is constant 3689 * for a given filesystem unless the number of block groups 3690 * changes so we cache the previous value until it does. 3691 */ 3692 3693 /* 3694 * All of the blocks before first_data_block are overhead 3695 */ 3696 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3697 3698 /* 3699 * Add the overhead found in each block group 3700 */ 3701 for (i = 0; i < ngroups; i++) { 3702 int blks; 3703 3704 blks = count_overhead(sb, i, buf); 3705 overhead += blks; 3706 if (blks) 3707 memset(buf, 0, PAGE_SIZE); 3708 cond_resched(); 3709 } 3710 3711 /* 3712 * Add the internal journal blocks whether the journal has been 3713 * loaded or not 3714 */ 3715 if (sbi->s_journal && !sbi->journal_bdev) 3716 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3717 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3718 /* j_inum for internal journal is non-zero */ 3719 j_inode = ext4_get_journal_inode(sb, j_inum); 3720 if (j_inode) { 3721 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3722 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3723 iput(j_inode); 3724 } else { 3725 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3726 } 3727 } 3728 sbi->s_overhead = overhead; 3729 smp_wmb(); 3730 free_page((unsigned long) buf); 3731 return 0; 3732 } 3733 3734 static void ext4_set_resv_clusters(struct super_block *sb) 3735 { 3736 ext4_fsblk_t resv_clusters; 3737 struct ext4_sb_info *sbi = EXT4_SB(sb); 3738 3739 /* 3740 * There's no need to reserve anything when we aren't using extents. 3741 * The space estimates are exact, there are no unwritten extents, 3742 * hole punching doesn't need new metadata... This is needed especially 3743 * to keep ext2/3 backward compatibility. 3744 */ 3745 if (!ext4_has_feature_extents(sb)) 3746 return; 3747 /* 3748 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3749 * This should cover the situations where we can not afford to run 3750 * out of space like for example punch hole, or converting 3751 * unwritten extents in delalloc path. In most cases such 3752 * allocation would require 1, or 2 blocks, higher numbers are 3753 * very rare. 3754 */ 3755 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3756 sbi->s_cluster_bits); 3757 3758 do_div(resv_clusters, 50); 3759 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3760 3761 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3762 } 3763 3764 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3765 { 3766 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3767 char *orig_data = kstrdup(data, GFP_KERNEL); 3768 struct buffer_head *bh, **group_desc; 3769 struct ext4_super_block *es = NULL; 3770 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3771 struct flex_groups **flex_groups; 3772 ext4_fsblk_t block; 3773 ext4_fsblk_t sb_block = get_sb_block(&data); 3774 ext4_fsblk_t logical_sb_block; 3775 unsigned long offset = 0; 3776 unsigned long journal_devnum = 0; 3777 unsigned long def_mount_opts; 3778 struct inode *root; 3779 const char *descr; 3780 int ret = -ENOMEM; 3781 int blocksize, clustersize; 3782 unsigned int db_count; 3783 unsigned int i; 3784 int needs_recovery, has_huge_files; 3785 __u64 blocks_count; 3786 int err = 0; 3787 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3788 ext4_group_t first_not_zeroed; 3789 3790 if ((data && !orig_data) || !sbi) 3791 goto out_free_base; 3792 3793 sbi->s_daxdev = dax_dev; 3794 sbi->s_blockgroup_lock = 3795 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3796 if (!sbi->s_blockgroup_lock) 3797 goto out_free_base; 3798 3799 sb->s_fs_info = sbi; 3800 sbi->s_sb = sb; 3801 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3802 sbi->s_sb_block = sb_block; 3803 if (sb->s_bdev->bd_part) 3804 sbi->s_sectors_written_start = 3805 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3806 3807 /* Cleanup superblock name */ 3808 strreplace(sb->s_id, '/', '!'); 3809 3810 /* -EINVAL is default */ 3811 ret = -EINVAL; 3812 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3813 if (!blocksize) { 3814 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3815 goto out_fail; 3816 } 3817 3818 /* 3819 * The ext4 superblock will not be buffer aligned for other than 1kB 3820 * block sizes. We need to calculate the offset from buffer start. 3821 */ 3822 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3823 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3824 offset = do_div(logical_sb_block, blocksize); 3825 } else { 3826 logical_sb_block = sb_block; 3827 } 3828 3829 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3830 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3831 goto out_fail; 3832 } 3833 /* 3834 * Note: s_es must be initialized as soon as possible because 3835 * some ext4 macro-instructions depend on its value 3836 */ 3837 es = (struct ext4_super_block *) (bh->b_data + offset); 3838 sbi->s_es = es; 3839 sb->s_magic = le16_to_cpu(es->s_magic); 3840 if (sb->s_magic != EXT4_SUPER_MAGIC) 3841 goto cantfind_ext4; 3842 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3843 3844 /* Warn if metadata_csum and gdt_csum are both set. */ 3845 if (ext4_has_feature_metadata_csum(sb) && 3846 ext4_has_feature_gdt_csum(sb)) 3847 ext4_warning(sb, "metadata_csum and uninit_bg are " 3848 "redundant flags; please run fsck."); 3849 3850 /* Check for a known checksum algorithm */ 3851 if (!ext4_verify_csum_type(sb, es)) { 3852 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3853 "unknown checksum algorithm."); 3854 silent = 1; 3855 goto cantfind_ext4; 3856 } 3857 3858 /* Load the checksum driver */ 3859 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3860 if (IS_ERR(sbi->s_chksum_driver)) { 3861 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3862 ret = PTR_ERR(sbi->s_chksum_driver); 3863 sbi->s_chksum_driver = NULL; 3864 goto failed_mount; 3865 } 3866 3867 /* Check superblock checksum */ 3868 if (!ext4_superblock_csum_verify(sb, es)) { 3869 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3870 "invalid superblock checksum. Run e2fsck?"); 3871 silent = 1; 3872 ret = -EFSBADCRC; 3873 goto cantfind_ext4; 3874 } 3875 3876 /* Precompute checksum seed for all metadata */ 3877 if (ext4_has_feature_csum_seed(sb)) 3878 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3879 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3880 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3881 sizeof(es->s_uuid)); 3882 3883 /* Set defaults before we parse the mount options */ 3884 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3885 set_opt(sb, INIT_INODE_TABLE); 3886 if (def_mount_opts & EXT4_DEFM_DEBUG) 3887 set_opt(sb, DEBUG); 3888 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3889 set_opt(sb, GRPID); 3890 if (def_mount_opts & EXT4_DEFM_UID16) 3891 set_opt(sb, NO_UID32); 3892 /* xattr user namespace & acls are now defaulted on */ 3893 set_opt(sb, XATTR_USER); 3894 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3895 set_opt(sb, POSIX_ACL); 3896 #endif 3897 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3898 if (ext4_has_metadata_csum(sb)) 3899 set_opt(sb, JOURNAL_CHECKSUM); 3900 3901 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3902 set_opt(sb, JOURNAL_DATA); 3903 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3904 set_opt(sb, ORDERED_DATA); 3905 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3906 set_opt(sb, WRITEBACK_DATA); 3907 3908 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3909 set_opt(sb, ERRORS_PANIC); 3910 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3911 set_opt(sb, ERRORS_CONT); 3912 else 3913 set_opt(sb, ERRORS_RO); 3914 /* block_validity enabled by default; disable with noblock_validity */ 3915 set_opt(sb, BLOCK_VALIDITY); 3916 if (def_mount_opts & EXT4_DEFM_DISCARD) 3917 set_opt(sb, DISCARD); 3918 3919 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3920 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3921 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3922 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3923 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3924 3925 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3926 set_opt(sb, BARRIER); 3927 3928 /* 3929 * enable delayed allocation by default 3930 * Use -o nodelalloc to turn it off 3931 */ 3932 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3933 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3934 set_opt(sb, DELALLOC); 3935 3936 /* 3937 * set default s_li_wait_mult for lazyinit, for the case there is 3938 * no mount option specified. 3939 */ 3940 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3941 3942 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3943 3944 if (blocksize == PAGE_SIZE) 3945 set_opt(sb, DIOREAD_NOLOCK); 3946 3947 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3948 blocksize > EXT4_MAX_BLOCK_SIZE) { 3949 ext4_msg(sb, KERN_ERR, 3950 "Unsupported filesystem blocksize %d (%d log_block_size)", 3951 blocksize, le32_to_cpu(es->s_log_block_size)); 3952 goto failed_mount; 3953 } 3954 3955 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3956 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3957 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3958 } else { 3959 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3960 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3961 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3962 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3963 sbi->s_first_ino); 3964 goto failed_mount; 3965 } 3966 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3967 (!is_power_of_2(sbi->s_inode_size)) || 3968 (sbi->s_inode_size > blocksize)) { 3969 ext4_msg(sb, KERN_ERR, 3970 "unsupported inode size: %d", 3971 sbi->s_inode_size); 3972 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3973 goto failed_mount; 3974 } 3975 /* 3976 * i_atime_extra is the last extra field available for 3977 * [acm]times in struct ext4_inode. Checking for that 3978 * field should suffice to ensure we have extra space 3979 * for all three. 3980 */ 3981 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3982 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3983 sb->s_time_gran = 1; 3984 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3985 } else { 3986 sb->s_time_gran = NSEC_PER_SEC; 3987 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3988 } 3989 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3990 } 3991 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3992 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3993 EXT4_GOOD_OLD_INODE_SIZE; 3994 if (ext4_has_feature_extra_isize(sb)) { 3995 unsigned v, max = (sbi->s_inode_size - 3996 EXT4_GOOD_OLD_INODE_SIZE); 3997 3998 v = le16_to_cpu(es->s_want_extra_isize); 3999 if (v > max) { 4000 ext4_msg(sb, KERN_ERR, 4001 "bad s_want_extra_isize: %d", v); 4002 goto failed_mount; 4003 } 4004 if (sbi->s_want_extra_isize < v) 4005 sbi->s_want_extra_isize = v; 4006 4007 v = le16_to_cpu(es->s_min_extra_isize); 4008 if (v > max) { 4009 ext4_msg(sb, KERN_ERR, 4010 "bad s_min_extra_isize: %d", v); 4011 goto failed_mount; 4012 } 4013 if (sbi->s_want_extra_isize < v) 4014 sbi->s_want_extra_isize = v; 4015 } 4016 } 4017 4018 if (sbi->s_es->s_mount_opts[0]) { 4019 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4020 sizeof(sbi->s_es->s_mount_opts), 4021 GFP_KERNEL); 4022 if (!s_mount_opts) 4023 goto failed_mount; 4024 if (!parse_options(s_mount_opts, sb, &journal_devnum, 4025 &journal_ioprio, 0)) { 4026 ext4_msg(sb, KERN_WARNING, 4027 "failed to parse options in superblock: %s", 4028 s_mount_opts); 4029 } 4030 kfree(s_mount_opts); 4031 } 4032 sbi->s_def_mount_opt = sbi->s_mount_opt; 4033 if (!parse_options((char *) data, sb, &journal_devnum, 4034 &journal_ioprio, 0)) 4035 goto failed_mount; 4036 4037 #ifdef CONFIG_UNICODE 4038 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 4039 const struct ext4_sb_encodings *encoding_info; 4040 struct unicode_map *encoding; 4041 __u16 encoding_flags; 4042 4043 if (ext4_has_feature_encrypt(sb)) { 4044 ext4_msg(sb, KERN_ERR, 4045 "Can't mount with encoding and encryption"); 4046 goto failed_mount; 4047 } 4048 4049 if (ext4_sb_read_encoding(es, &encoding_info, 4050 &encoding_flags)) { 4051 ext4_msg(sb, KERN_ERR, 4052 "Encoding requested by superblock is unknown"); 4053 goto failed_mount; 4054 } 4055 4056 encoding = utf8_load(encoding_info->version); 4057 if (IS_ERR(encoding)) { 4058 ext4_msg(sb, KERN_ERR, 4059 "can't mount with superblock charset: %s-%s " 4060 "not supported by the kernel. flags: 0x%x.", 4061 encoding_info->name, encoding_info->version, 4062 encoding_flags); 4063 goto failed_mount; 4064 } 4065 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4066 "%s-%s with flags 0x%hx", encoding_info->name, 4067 encoding_info->version?:"\b", encoding_flags); 4068 4069 sbi->s_encoding = encoding; 4070 sbi->s_encoding_flags = encoding_flags; 4071 } 4072 #endif 4073 4074 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4075 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 4076 /* can't mount with both data=journal and dioread_nolock. */ 4077 clear_opt(sb, DIOREAD_NOLOCK); 4078 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4079 ext4_msg(sb, KERN_ERR, "can't mount with " 4080 "both data=journal and delalloc"); 4081 goto failed_mount; 4082 } 4083 if (test_opt(sb, DAX_ALWAYS)) { 4084 ext4_msg(sb, KERN_ERR, "can't mount with " 4085 "both data=journal and dax"); 4086 goto failed_mount; 4087 } 4088 if (ext4_has_feature_encrypt(sb)) { 4089 ext4_msg(sb, KERN_WARNING, 4090 "encrypted files will use data=ordered " 4091 "instead of data journaling mode"); 4092 } 4093 if (test_opt(sb, DELALLOC)) 4094 clear_opt(sb, DELALLOC); 4095 } else { 4096 sb->s_iflags |= SB_I_CGROUPWB; 4097 } 4098 4099 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4100 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4101 4102 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4103 (ext4_has_compat_features(sb) || 4104 ext4_has_ro_compat_features(sb) || 4105 ext4_has_incompat_features(sb))) 4106 ext4_msg(sb, KERN_WARNING, 4107 "feature flags set on rev 0 fs, " 4108 "running e2fsck is recommended"); 4109 4110 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4111 set_opt2(sb, HURD_COMPAT); 4112 if (ext4_has_feature_64bit(sb)) { 4113 ext4_msg(sb, KERN_ERR, 4114 "The Hurd can't support 64-bit file systems"); 4115 goto failed_mount; 4116 } 4117 4118 /* 4119 * ea_inode feature uses l_i_version field which is not 4120 * available in HURD_COMPAT mode. 4121 */ 4122 if (ext4_has_feature_ea_inode(sb)) { 4123 ext4_msg(sb, KERN_ERR, 4124 "ea_inode feature is not supported for Hurd"); 4125 goto failed_mount; 4126 } 4127 } 4128 4129 if (IS_EXT2_SB(sb)) { 4130 if (ext2_feature_set_ok(sb)) 4131 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4132 "using the ext4 subsystem"); 4133 else { 4134 /* 4135 * If we're probing be silent, if this looks like 4136 * it's actually an ext[34] filesystem. 4137 */ 4138 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4139 goto failed_mount; 4140 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4141 "to feature incompatibilities"); 4142 goto failed_mount; 4143 } 4144 } 4145 4146 if (IS_EXT3_SB(sb)) { 4147 if (ext3_feature_set_ok(sb)) 4148 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4149 "using the ext4 subsystem"); 4150 else { 4151 /* 4152 * If we're probing be silent, if this looks like 4153 * it's actually an ext4 filesystem. 4154 */ 4155 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4156 goto failed_mount; 4157 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4158 "to feature incompatibilities"); 4159 goto failed_mount; 4160 } 4161 } 4162 4163 /* 4164 * Check feature flags regardless of the revision level, since we 4165 * previously didn't change the revision level when setting the flags, 4166 * so there is a chance incompat flags are set on a rev 0 filesystem. 4167 */ 4168 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4169 goto failed_mount; 4170 4171 if (le32_to_cpu(es->s_log_block_size) > 4172 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4173 ext4_msg(sb, KERN_ERR, 4174 "Invalid log block size: %u", 4175 le32_to_cpu(es->s_log_block_size)); 4176 goto failed_mount; 4177 } 4178 if (le32_to_cpu(es->s_log_cluster_size) > 4179 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4180 ext4_msg(sb, KERN_ERR, 4181 "Invalid log cluster size: %u", 4182 le32_to_cpu(es->s_log_cluster_size)); 4183 goto failed_mount; 4184 } 4185 4186 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4187 ext4_msg(sb, KERN_ERR, 4188 "Number of reserved GDT blocks insanely large: %d", 4189 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4190 goto failed_mount; 4191 } 4192 4193 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4194 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4195 4196 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4197 if (ext4_has_feature_inline_data(sb)) { 4198 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4199 " that may contain inline data"); 4200 goto failed_mount; 4201 } 4202 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4203 ext4_msg(sb, KERN_ERR, 4204 "DAX unsupported by block device."); 4205 goto failed_mount; 4206 } 4207 } 4208 4209 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4210 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4211 es->s_encryption_level); 4212 goto failed_mount; 4213 } 4214 4215 if (sb->s_blocksize != blocksize) { 4216 /* Validate the filesystem blocksize */ 4217 if (!sb_set_blocksize(sb, blocksize)) { 4218 ext4_msg(sb, KERN_ERR, "bad block size %d", 4219 blocksize); 4220 goto failed_mount; 4221 } 4222 4223 brelse(bh); 4224 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4225 offset = do_div(logical_sb_block, blocksize); 4226 bh = sb_bread_unmovable(sb, logical_sb_block); 4227 if (!bh) { 4228 ext4_msg(sb, KERN_ERR, 4229 "Can't read superblock on 2nd try"); 4230 goto failed_mount; 4231 } 4232 es = (struct ext4_super_block *)(bh->b_data + offset); 4233 sbi->s_es = es; 4234 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4235 ext4_msg(sb, KERN_ERR, 4236 "Magic mismatch, very weird!"); 4237 goto failed_mount; 4238 } 4239 } 4240 4241 has_huge_files = ext4_has_feature_huge_file(sb); 4242 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4243 has_huge_files); 4244 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4245 4246 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4247 if (ext4_has_feature_64bit(sb)) { 4248 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4249 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4250 !is_power_of_2(sbi->s_desc_size)) { 4251 ext4_msg(sb, KERN_ERR, 4252 "unsupported descriptor size %lu", 4253 sbi->s_desc_size); 4254 goto failed_mount; 4255 } 4256 } else 4257 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4258 4259 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4260 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4261 4262 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4263 if (sbi->s_inodes_per_block == 0) 4264 goto cantfind_ext4; 4265 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4266 sbi->s_inodes_per_group > blocksize * 8) { 4267 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4268 sbi->s_inodes_per_group); 4269 goto failed_mount; 4270 } 4271 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4272 sbi->s_inodes_per_block; 4273 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4274 sbi->s_sbh = bh; 4275 sbi->s_mount_state = le16_to_cpu(es->s_state); 4276 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4277 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4278 4279 for (i = 0; i < 4; i++) 4280 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4281 sbi->s_def_hash_version = es->s_def_hash_version; 4282 if (ext4_has_feature_dir_index(sb)) { 4283 i = le32_to_cpu(es->s_flags); 4284 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4285 sbi->s_hash_unsigned = 3; 4286 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4287 #ifdef __CHAR_UNSIGNED__ 4288 if (!sb_rdonly(sb)) 4289 es->s_flags |= 4290 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4291 sbi->s_hash_unsigned = 3; 4292 #else 4293 if (!sb_rdonly(sb)) 4294 es->s_flags |= 4295 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4296 #endif 4297 } 4298 } 4299 4300 /* Handle clustersize */ 4301 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4302 if (ext4_has_feature_bigalloc(sb)) { 4303 if (clustersize < blocksize) { 4304 ext4_msg(sb, KERN_ERR, 4305 "cluster size (%d) smaller than " 4306 "block size (%d)", clustersize, blocksize); 4307 goto failed_mount; 4308 } 4309 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4310 le32_to_cpu(es->s_log_block_size); 4311 sbi->s_clusters_per_group = 4312 le32_to_cpu(es->s_clusters_per_group); 4313 if (sbi->s_clusters_per_group > blocksize * 8) { 4314 ext4_msg(sb, KERN_ERR, 4315 "#clusters per group too big: %lu", 4316 sbi->s_clusters_per_group); 4317 goto failed_mount; 4318 } 4319 if (sbi->s_blocks_per_group != 4320 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4321 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4322 "clusters per group (%lu) inconsistent", 4323 sbi->s_blocks_per_group, 4324 sbi->s_clusters_per_group); 4325 goto failed_mount; 4326 } 4327 } else { 4328 if (clustersize != blocksize) { 4329 ext4_msg(sb, KERN_ERR, 4330 "fragment/cluster size (%d) != " 4331 "block size (%d)", clustersize, blocksize); 4332 goto failed_mount; 4333 } 4334 if (sbi->s_blocks_per_group > blocksize * 8) { 4335 ext4_msg(sb, KERN_ERR, 4336 "#blocks per group too big: %lu", 4337 sbi->s_blocks_per_group); 4338 goto failed_mount; 4339 } 4340 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4341 sbi->s_cluster_bits = 0; 4342 } 4343 sbi->s_cluster_ratio = clustersize / blocksize; 4344 4345 /* Do we have standard group size of clustersize * 8 blocks ? */ 4346 if (sbi->s_blocks_per_group == clustersize << 3) 4347 set_opt2(sb, STD_GROUP_SIZE); 4348 4349 /* 4350 * Test whether we have more sectors than will fit in sector_t, 4351 * and whether the max offset is addressable by the page cache. 4352 */ 4353 err = generic_check_addressable(sb->s_blocksize_bits, 4354 ext4_blocks_count(es)); 4355 if (err) { 4356 ext4_msg(sb, KERN_ERR, "filesystem" 4357 " too large to mount safely on this system"); 4358 goto failed_mount; 4359 } 4360 4361 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4362 goto cantfind_ext4; 4363 4364 /* check blocks count against device size */ 4365 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4366 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4367 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4368 "exceeds size of device (%llu blocks)", 4369 ext4_blocks_count(es), blocks_count); 4370 goto failed_mount; 4371 } 4372 4373 /* 4374 * It makes no sense for the first data block to be beyond the end 4375 * of the filesystem. 4376 */ 4377 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4378 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4379 "block %u is beyond end of filesystem (%llu)", 4380 le32_to_cpu(es->s_first_data_block), 4381 ext4_blocks_count(es)); 4382 goto failed_mount; 4383 } 4384 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4385 (sbi->s_cluster_ratio == 1)) { 4386 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4387 "block is 0 with a 1k block and cluster size"); 4388 goto failed_mount; 4389 } 4390 4391 blocks_count = (ext4_blocks_count(es) - 4392 le32_to_cpu(es->s_first_data_block) + 4393 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4394 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4395 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4396 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4397 "(block count %llu, first data block %u, " 4398 "blocks per group %lu)", blocks_count, 4399 ext4_blocks_count(es), 4400 le32_to_cpu(es->s_first_data_block), 4401 EXT4_BLOCKS_PER_GROUP(sb)); 4402 goto failed_mount; 4403 } 4404 sbi->s_groups_count = blocks_count; 4405 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4406 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4407 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4408 le32_to_cpu(es->s_inodes_count)) { 4409 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4410 le32_to_cpu(es->s_inodes_count), 4411 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4412 ret = -EINVAL; 4413 goto failed_mount; 4414 } 4415 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4416 EXT4_DESC_PER_BLOCK(sb); 4417 if (ext4_has_feature_meta_bg(sb)) { 4418 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4419 ext4_msg(sb, KERN_WARNING, 4420 "first meta block group too large: %u " 4421 "(group descriptor block count %u)", 4422 le32_to_cpu(es->s_first_meta_bg), db_count); 4423 goto failed_mount; 4424 } 4425 } 4426 rcu_assign_pointer(sbi->s_group_desc, 4427 kvmalloc_array(db_count, 4428 sizeof(struct buffer_head *), 4429 GFP_KERNEL)); 4430 if (sbi->s_group_desc == NULL) { 4431 ext4_msg(sb, KERN_ERR, "not enough memory"); 4432 ret = -ENOMEM; 4433 goto failed_mount; 4434 } 4435 4436 bgl_lock_init(sbi->s_blockgroup_lock); 4437 4438 /* Pre-read the descriptors into the buffer cache */ 4439 for (i = 0; i < db_count; i++) { 4440 block = descriptor_loc(sb, logical_sb_block, i); 4441 sb_breadahead_unmovable(sb, block); 4442 } 4443 4444 for (i = 0; i < db_count; i++) { 4445 struct buffer_head *bh; 4446 4447 block = descriptor_loc(sb, logical_sb_block, i); 4448 bh = sb_bread_unmovable(sb, block); 4449 if (!bh) { 4450 ext4_msg(sb, KERN_ERR, 4451 "can't read group descriptor %d", i); 4452 db_count = i; 4453 goto failed_mount2; 4454 } 4455 rcu_read_lock(); 4456 rcu_dereference(sbi->s_group_desc)[i] = bh; 4457 rcu_read_unlock(); 4458 } 4459 sbi->s_gdb_count = db_count; 4460 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4461 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4462 ret = -EFSCORRUPTED; 4463 goto failed_mount2; 4464 } 4465 4466 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4467 4468 /* Register extent status tree shrinker */ 4469 if (ext4_es_register_shrinker(sbi)) 4470 goto failed_mount3; 4471 4472 sbi->s_stripe = ext4_get_stripe_size(sbi); 4473 sbi->s_extent_max_zeroout_kb = 32; 4474 4475 /* 4476 * set up enough so that it can read an inode 4477 */ 4478 sb->s_op = &ext4_sops; 4479 sb->s_export_op = &ext4_export_ops; 4480 sb->s_xattr = ext4_xattr_handlers; 4481 #ifdef CONFIG_FS_ENCRYPTION 4482 sb->s_cop = &ext4_cryptops; 4483 #endif 4484 #ifdef CONFIG_FS_VERITY 4485 sb->s_vop = &ext4_verityops; 4486 #endif 4487 #ifdef CONFIG_QUOTA 4488 sb->dq_op = &ext4_quota_operations; 4489 if (ext4_has_feature_quota(sb)) 4490 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4491 else 4492 sb->s_qcop = &ext4_qctl_operations; 4493 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4494 #endif 4495 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4496 4497 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4498 mutex_init(&sbi->s_orphan_lock); 4499 4500 sb->s_root = NULL; 4501 4502 needs_recovery = (es->s_last_orphan != 0 || 4503 ext4_has_feature_journal_needs_recovery(sb)); 4504 4505 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4506 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4507 goto failed_mount3a; 4508 4509 /* 4510 * The first inode we look at is the journal inode. Don't try 4511 * root first: it may be modified in the journal! 4512 */ 4513 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4514 err = ext4_load_journal(sb, es, journal_devnum); 4515 if (err) 4516 goto failed_mount3a; 4517 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4518 ext4_has_feature_journal_needs_recovery(sb)) { 4519 ext4_msg(sb, KERN_ERR, "required journal recovery " 4520 "suppressed and not mounted read-only"); 4521 goto failed_mount_wq; 4522 } else { 4523 /* Nojournal mode, all journal mount options are illegal */ 4524 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4525 ext4_msg(sb, KERN_ERR, "can't mount with " 4526 "journal_checksum, fs mounted w/o journal"); 4527 goto failed_mount_wq; 4528 } 4529 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4530 ext4_msg(sb, KERN_ERR, "can't mount with " 4531 "journal_async_commit, fs mounted w/o journal"); 4532 goto failed_mount_wq; 4533 } 4534 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4535 ext4_msg(sb, KERN_ERR, "can't mount with " 4536 "commit=%lu, fs mounted w/o journal", 4537 sbi->s_commit_interval / HZ); 4538 goto failed_mount_wq; 4539 } 4540 if (EXT4_MOUNT_DATA_FLAGS & 4541 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4542 ext4_msg(sb, KERN_ERR, "can't mount with " 4543 "data=, fs mounted w/o journal"); 4544 goto failed_mount_wq; 4545 } 4546 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4547 clear_opt(sb, JOURNAL_CHECKSUM); 4548 clear_opt(sb, DATA_FLAGS); 4549 sbi->s_journal = NULL; 4550 needs_recovery = 0; 4551 goto no_journal; 4552 } 4553 4554 if (ext4_has_feature_64bit(sb) && 4555 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4556 JBD2_FEATURE_INCOMPAT_64BIT)) { 4557 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4558 goto failed_mount_wq; 4559 } 4560 4561 if (!set_journal_csum_feature_set(sb)) { 4562 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4563 "feature set"); 4564 goto failed_mount_wq; 4565 } 4566 4567 /* We have now updated the journal if required, so we can 4568 * validate the data journaling mode. */ 4569 switch (test_opt(sb, DATA_FLAGS)) { 4570 case 0: 4571 /* No mode set, assume a default based on the journal 4572 * capabilities: ORDERED_DATA if the journal can 4573 * cope, else JOURNAL_DATA 4574 */ 4575 if (jbd2_journal_check_available_features 4576 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4577 set_opt(sb, ORDERED_DATA); 4578 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4579 } else { 4580 set_opt(sb, JOURNAL_DATA); 4581 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4582 } 4583 break; 4584 4585 case EXT4_MOUNT_ORDERED_DATA: 4586 case EXT4_MOUNT_WRITEBACK_DATA: 4587 if (!jbd2_journal_check_available_features 4588 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4589 ext4_msg(sb, KERN_ERR, "Journal does not support " 4590 "requested data journaling mode"); 4591 goto failed_mount_wq; 4592 } 4593 default: 4594 break; 4595 } 4596 4597 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4598 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4599 ext4_msg(sb, KERN_ERR, "can't mount with " 4600 "journal_async_commit in data=ordered mode"); 4601 goto failed_mount_wq; 4602 } 4603 4604 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4605 4606 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4607 4608 no_journal: 4609 if (!test_opt(sb, NO_MBCACHE)) { 4610 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4611 if (!sbi->s_ea_block_cache) { 4612 ext4_msg(sb, KERN_ERR, 4613 "Failed to create ea_block_cache"); 4614 goto failed_mount_wq; 4615 } 4616 4617 if (ext4_has_feature_ea_inode(sb)) { 4618 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4619 if (!sbi->s_ea_inode_cache) { 4620 ext4_msg(sb, KERN_ERR, 4621 "Failed to create ea_inode_cache"); 4622 goto failed_mount_wq; 4623 } 4624 } 4625 } 4626 4627 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4628 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4629 goto failed_mount_wq; 4630 } 4631 4632 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4633 !ext4_has_feature_encrypt(sb)) { 4634 ext4_set_feature_encrypt(sb); 4635 ext4_commit_super(sb, 1); 4636 } 4637 4638 /* 4639 * Get the # of file system overhead blocks from the 4640 * superblock if present. 4641 */ 4642 if (es->s_overhead_clusters) 4643 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4644 else { 4645 err = ext4_calculate_overhead(sb); 4646 if (err) 4647 goto failed_mount_wq; 4648 } 4649 4650 /* 4651 * The maximum number of concurrent works can be high and 4652 * concurrency isn't really necessary. Limit it to 1. 4653 */ 4654 EXT4_SB(sb)->rsv_conversion_wq = 4655 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4656 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4657 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4658 ret = -ENOMEM; 4659 goto failed_mount4; 4660 } 4661 4662 /* 4663 * The jbd2_journal_load will have done any necessary log recovery, 4664 * so we can safely mount the rest of the filesystem now. 4665 */ 4666 4667 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4668 if (IS_ERR(root)) { 4669 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4670 ret = PTR_ERR(root); 4671 root = NULL; 4672 goto failed_mount4; 4673 } 4674 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4675 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4676 iput(root); 4677 goto failed_mount4; 4678 } 4679 4680 #ifdef CONFIG_UNICODE 4681 if (sbi->s_encoding) 4682 sb->s_d_op = &ext4_dentry_ops; 4683 #endif 4684 4685 sb->s_root = d_make_root(root); 4686 if (!sb->s_root) { 4687 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4688 ret = -ENOMEM; 4689 goto failed_mount4; 4690 } 4691 4692 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4693 if (ret == -EROFS) { 4694 sb->s_flags |= SB_RDONLY; 4695 ret = 0; 4696 } else if (ret) 4697 goto failed_mount4a; 4698 4699 ext4_set_resv_clusters(sb); 4700 4701 err = ext4_setup_system_zone(sb); 4702 if (err) { 4703 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4704 "zone (%d)", err); 4705 goto failed_mount4a; 4706 } 4707 4708 ext4_ext_init(sb); 4709 err = ext4_mb_init(sb); 4710 if (err) { 4711 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4712 err); 4713 goto failed_mount5; 4714 } 4715 4716 block = ext4_count_free_clusters(sb); 4717 ext4_free_blocks_count_set(sbi->s_es, 4718 EXT4_C2B(sbi, block)); 4719 ext4_superblock_csum_set(sb); 4720 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4721 GFP_KERNEL); 4722 if (!err) { 4723 unsigned long freei = ext4_count_free_inodes(sb); 4724 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4725 ext4_superblock_csum_set(sb); 4726 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4727 GFP_KERNEL); 4728 } 4729 if (!err) 4730 err = percpu_counter_init(&sbi->s_dirs_counter, 4731 ext4_count_dirs(sb), GFP_KERNEL); 4732 if (!err) 4733 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4734 GFP_KERNEL); 4735 if (!err) 4736 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4737 4738 if (err) { 4739 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4740 goto failed_mount6; 4741 } 4742 4743 if (ext4_has_feature_flex_bg(sb)) 4744 if (!ext4_fill_flex_info(sb)) { 4745 ext4_msg(sb, KERN_ERR, 4746 "unable to initialize " 4747 "flex_bg meta info!"); 4748 goto failed_mount6; 4749 } 4750 4751 err = ext4_register_li_request(sb, first_not_zeroed); 4752 if (err) 4753 goto failed_mount6; 4754 4755 err = ext4_register_sysfs(sb); 4756 if (err) 4757 goto failed_mount7; 4758 4759 #ifdef CONFIG_QUOTA 4760 /* Enable quota usage during mount. */ 4761 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4762 err = ext4_enable_quotas(sb); 4763 if (err) 4764 goto failed_mount8; 4765 } 4766 #endif /* CONFIG_QUOTA */ 4767 4768 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4769 ext4_orphan_cleanup(sb, es); 4770 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4771 if (needs_recovery) { 4772 ext4_msg(sb, KERN_INFO, "recovery complete"); 4773 ext4_mark_recovery_complete(sb, es); 4774 } 4775 if (EXT4_SB(sb)->s_journal) { 4776 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4777 descr = " journalled data mode"; 4778 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4779 descr = " ordered data mode"; 4780 else 4781 descr = " writeback data mode"; 4782 } else 4783 descr = "out journal"; 4784 4785 if (test_opt(sb, DISCARD)) { 4786 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4787 if (!blk_queue_discard(q)) 4788 ext4_msg(sb, KERN_WARNING, 4789 "mounting with \"discard\" option, but " 4790 "the device does not support discard"); 4791 } 4792 4793 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4794 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4795 "Opts: %.*s%s%s", descr, 4796 (int) sizeof(sbi->s_es->s_mount_opts), 4797 sbi->s_es->s_mount_opts, 4798 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4799 4800 if (es->s_error_count) 4801 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4802 4803 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4804 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4805 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4806 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4807 4808 kfree(orig_data); 4809 return 0; 4810 4811 cantfind_ext4: 4812 if (!silent) 4813 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4814 goto failed_mount; 4815 4816 #ifdef CONFIG_QUOTA 4817 failed_mount8: 4818 ext4_unregister_sysfs(sb); 4819 #endif 4820 failed_mount7: 4821 ext4_unregister_li_request(sb); 4822 failed_mount6: 4823 ext4_mb_release(sb); 4824 rcu_read_lock(); 4825 flex_groups = rcu_dereference(sbi->s_flex_groups); 4826 if (flex_groups) { 4827 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4828 kvfree(flex_groups[i]); 4829 kvfree(flex_groups); 4830 } 4831 rcu_read_unlock(); 4832 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4833 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4834 percpu_counter_destroy(&sbi->s_dirs_counter); 4835 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4836 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4837 failed_mount5: 4838 ext4_ext_release(sb); 4839 ext4_release_system_zone(sb); 4840 failed_mount4a: 4841 dput(sb->s_root); 4842 sb->s_root = NULL; 4843 failed_mount4: 4844 ext4_msg(sb, KERN_ERR, "mount failed"); 4845 if (EXT4_SB(sb)->rsv_conversion_wq) 4846 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4847 failed_mount_wq: 4848 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4849 sbi->s_ea_inode_cache = NULL; 4850 4851 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4852 sbi->s_ea_block_cache = NULL; 4853 4854 if (sbi->s_journal) { 4855 jbd2_journal_destroy(sbi->s_journal); 4856 sbi->s_journal = NULL; 4857 } 4858 failed_mount3a: 4859 ext4_es_unregister_shrinker(sbi); 4860 failed_mount3: 4861 del_timer_sync(&sbi->s_err_report); 4862 if (sbi->s_mmp_tsk) 4863 kthread_stop(sbi->s_mmp_tsk); 4864 failed_mount2: 4865 rcu_read_lock(); 4866 group_desc = rcu_dereference(sbi->s_group_desc); 4867 for (i = 0; i < db_count; i++) 4868 brelse(group_desc[i]); 4869 kvfree(group_desc); 4870 rcu_read_unlock(); 4871 failed_mount: 4872 if (sbi->s_chksum_driver) 4873 crypto_free_shash(sbi->s_chksum_driver); 4874 4875 #ifdef CONFIG_UNICODE 4876 utf8_unload(sbi->s_encoding); 4877 #endif 4878 4879 #ifdef CONFIG_QUOTA 4880 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4881 kfree(get_qf_name(sb, sbi, i)); 4882 #endif 4883 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx); 4884 ext4_blkdev_remove(sbi); 4885 brelse(bh); 4886 out_fail: 4887 sb->s_fs_info = NULL; 4888 kfree(sbi->s_blockgroup_lock); 4889 out_free_base: 4890 kfree(sbi); 4891 kfree(orig_data); 4892 fs_put_dax(dax_dev); 4893 return err ? err : ret; 4894 } 4895 4896 /* 4897 * Setup any per-fs journal parameters now. We'll do this both on 4898 * initial mount, once the journal has been initialised but before we've 4899 * done any recovery; and again on any subsequent remount. 4900 */ 4901 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4902 { 4903 struct ext4_sb_info *sbi = EXT4_SB(sb); 4904 4905 journal->j_commit_interval = sbi->s_commit_interval; 4906 journal->j_min_batch_time = sbi->s_min_batch_time; 4907 journal->j_max_batch_time = sbi->s_max_batch_time; 4908 4909 write_lock(&journal->j_state_lock); 4910 if (test_opt(sb, BARRIER)) 4911 journal->j_flags |= JBD2_BARRIER; 4912 else 4913 journal->j_flags &= ~JBD2_BARRIER; 4914 if (test_opt(sb, DATA_ERR_ABORT)) 4915 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4916 else 4917 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4918 write_unlock(&journal->j_state_lock); 4919 } 4920 4921 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4922 unsigned int journal_inum) 4923 { 4924 struct inode *journal_inode; 4925 4926 /* 4927 * Test for the existence of a valid inode on disk. Bad things 4928 * happen if we iget() an unused inode, as the subsequent iput() 4929 * will try to delete it. 4930 */ 4931 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4932 if (IS_ERR(journal_inode)) { 4933 ext4_msg(sb, KERN_ERR, "no journal found"); 4934 return NULL; 4935 } 4936 if (!journal_inode->i_nlink) { 4937 make_bad_inode(journal_inode); 4938 iput(journal_inode); 4939 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4940 return NULL; 4941 } 4942 4943 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4944 journal_inode, journal_inode->i_size); 4945 if (!S_ISREG(journal_inode->i_mode)) { 4946 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4947 iput(journal_inode); 4948 return NULL; 4949 } 4950 return journal_inode; 4951 } 4952 4953 static journal_t *ext4_get_journal(struct super_block *sb, 4954 unsigned int journal_inum) 4955 { 4956 struct inode *journal_inode; 4957 journal_t *journal; 4958 4959 BUG_ON(!ext4_has_feature_journal(sb)); 4960 4961 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4962 if (!journal_inode) 4963 return NULL; 4964 4965 journal = jbd2_journal_init_inode(journal_inode); 4966 if (!journal) { 4967 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4968 iput(journal_inode); 4969 return NULL; 4970 } 4971 journal->j_private = sb; 4972 ext4_init_journal_params(sb, journal); 4973 return journal; 4974 } 4975 4976 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4977 dev_t j_dev) 4978 { 4979 struct buffer_head *bh; 4980 journal_t *journal; 4981 ext4_fsblk_t start; 4982 ext4_fsblk_t len; 4983 int hblock, blocksize; 4984 ext4_fsblk_t sb_block; 4985 unsigned long offset; 4986 struct ext4_super_block *es; 4987 struct block_device *bdev; 4988 4989 BUG_ON(!ext4_has_feature_journal(sb)); 4990 4991 bdev = ext4_blkdev_get(j_dev, sb); 4992 if (bdev == NULL) 4993 return NULL; 4994 4995 blocksize = sb->s_blocksize; 4996 hblock = bdev_logical_block_size(bdev); 4997 if (blocksize < hblock) { 4998 ext4_msg(sb, KERN_ERR, 4999 "blocksize too small for journal device"); 5000 goto out_bdev; 5001 } 5002 5003 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5004 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5005 set_blocksize(bdev, blocksize); 5006 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5007 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5008 "external journal"); 5009 goto out_bdev; 5010 } 5011 5012 es = (struct ext4_super_block *) (bh->b_data + offset); 5013 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5014 !(le32_to_cpu(es->s_feature_incompat) & 5015 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5016 ext4_msg(sb, KERN_ERR, "external journal has " 5017 "bad superblock"); 5018 brelse(bh); 5019 goto out_bdev; 5020 } 5021 5022 if ((le32_to_cpu(es->s_feature_ro_compat) & 5023 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5024 es->s_checksum != ext4_superblock_csum(sb, es)) { 5025 ext4_msg(sb, KERN_ERR, "external journal has " 5026 "corrupt superblock"); 5027 brelse(bh); 5028 goto out_bdev; 5029 } 5030 5031 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5032 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5033 brelse(bh); 5034 goto out_bdev; 5035 } 5036 5037 len = ext4_blocks_count(es); 5038 start = sb_block + 1; 5039 brelse(bh); /* we're done with the superblock */ 5040 5041 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5042 start, len, blocksize); 5043 if (!journal) { 5044 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5045 goto out_bdev; 5046 } 5047 journal->j_private = sb; 5048 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 5049 wait_on_buffer(journal->j_sb_buffer); 5050 if (!buffer_uptodate(journal->j_sb_buffer)) { 5051 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5052 goto out_journal; 5053 } 5054 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5055 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5056 "user (unsupported) - %d", 5057 be32_to_cpu(journal->j_superblock->s_nr_users)); 5058 goto out_journal; 5059 } 5060 EXT4_SB(sb)->journal_bdev = bdev; 5061 ext4_init_journal_params(sb, journal); 5062 return journal; 5063 5064 out_journal: 5065 jbd2_journal_destroy(journal); 5066 out_bdev: 5067 ext4_blkdev_put(bdev); 5068 return NULL; 5069 } 5070 5071 static int ext4_load_journal(struct super_block *sb, 5072 struct ext4_super_block *es, 5073 unsigned long journal_devnum) 5074 { 5075 journal_t *journal; 5076 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5077 dev_t journal_dev; 5078 int err = 0; 5079 int really_read_only; 5080 5081 BUG_ON(!ext4_has_feature_journal(sb)); 5082 5083 if (journal_devnum && 5084 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5085 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5086 "numbers have changed"); 5087 journal_dev = new_decode_dev(journal_devnum); 5088 } else 5089 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5090 5091 really_read_only = bdev_read_only(sb->s_bdev); 5092 5093 /* 5094 * Are we loading a blank journal or performing recovery after a 5095 * crash? For recovery, we need to check in advance whether we 5096 * can get read-write access to the device. 5097 */ 5098 if (ext4_has_feature_journal_needs_recovery(sb)) { 5099 if (sb_rdonly(sb)) { 5100 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5101 "required on readonly filesystem"); 5102 if (really_read_only) { 5103 ext4_msg(sb, KERN_ERR, "write access " 5104 "unavailable, cannot proceed " 5105 "(try mounting with noload)"); 5106 return -EROFS; 5107 } 5108 ext4_msg(sb, KERN_INFO, "write access will " 5109 "be enabled during recovery"); 5110 } 5111 } 5112 5113 if (journal_inum && journal_dev) { 5114 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 5115 "and inode journals!"); 5116 return -EINVAL; 5117 } 5118 5119 if (journal_inum) { 5120 if (!(journal = ext4_get_journal(sb, journal_inum))) 5121 return -EINVAL; 5122 } else { 5123 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 5124 return -EINVAL; 5125 } 5126 5127 if (!(journal->j_flags & JBD2_BARRIER)) 5128 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5129 5130 if (!ext4_has_feature_journal_needs_recovery(sb)) 5131 err = jbd2_journal_wipe(journal, !really_read_only); 5132 if (!err) { 5133 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5134 if (save) 5135 memcpy(save, ((char *) es) + 5136 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5137 err = jbd2_journal_load(journal); 5138 if (save) 5139 memcpy(((char *) es) + EXT4_S_ERR_START, 5140 save, EXT4_S_ERR_LEN); 5141 kfree(save); 5142 } 5143 5144 if (err) { 5145 ext4_msg(sb, KERN_ERR, "error loading journal"); 5146 jbd2_journal_destroy(journal); 5147 return err; 5148 } 5149 5150 EXT4_SB(sb)->s_journal = journal; 5151 ext4_clear_journal_err(sb, es); 5152 5153 if (!really_read_only && journal_devnum && 5154 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5155 es->s_journal_dev = cpu_to_le32(journal_devnum); 5156 5157 /* Make sure we flush the recovery flag to disk. */ 5158 ext4_commit_super(sb, 1); 5159 } 5160 5161 return 0; 5162 } 5163 5164 static int ext4_commit_super(struct super_block *sb, int sync) 5165 { 5166 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5167 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5168 int error = 0; 5169 5170 if (!sbh || block_device_ejected(sb)) 5171 return error; 5172 5173 /* 5174 * The superblock bh should be mapped, but it might not be if the 5175 * device was hot-removed. Not much we can do but fail the I/O. 5176 */ 5177 if (!buffer_mapped(sbh)) 5178 return error; 5179 5180 /* 5181 * If the file system is mounted read-only, don't update the 5182 * superblock write time. This avoids updating the superblock 5183 * write time when we are mounting the root file system 5184 * read/only but we need to replay the journal; at that point, 5185 * for people who are east of GMT and who make their clock 5186 * tick in localtime for Windows bug-for-bug compatibility, 5187 * the clock is set in the future, and this will cause e2fsck 5188 * to complain and force a full file system check. 5189 */ 5190 if (!(sb->s_flags & SB_RDONLY)) 5191 ext4_update_tstamp(es, s_wtime); 5192 if (sb->s_bdev->bd_part) 5193 es->s_kbytes_written = 5194 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5195 ((part_stat_read(sb->s_bdev->bd_part, 5196 sectors[STAT_WRITE]) - 5197 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5198 else 5199 es->s_kbytes_written = 5200 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5201 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5202 ext4_free_blocks_count_set(es, 5203 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5204 &EXT4_SB(sb)->s_freeclusters_counter))); 5205 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5206 es->s_free_inodes_count = 5207 cpu_to_le32(percpu_counter_sum_positive( 5208 &EXT4_SB(sb)->s_freeinodes_counter)); 5209 BUFFER_TRACE(sbh, "marking dirty"); 5210 ext4_superblock_csum_set(sb); 5211 if (sync) 5212 lock_buffer(sbh); 5213 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5214 /* 5215 * Oh, dear. A previous attempt to write the 5216 * superblock failed. This could happen because the 5217 * USB device was yanked out. Or it could happen to 5218 * be a transient write error and maybe the block will 5219 * be remapped. Nothing we can do but to retry the 5220 * write and hope for the best. 5221 */ 5222 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5223 "superblock detected"); 5224 clear_buffer_write_io_error(sbh); 5225 set_buffer_uptodate(sbh); 5226 } 5227 mark_buffer_dirty(sbh); 5228 if (sync) { 5229 unlock_buffer(sbh); 5230 error = __sync_dirty_buffer(sbh, 5231 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5232 if (buffer_write_io_error(sbh)) { 5233 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5234 "superblock"); 5235 clear_buffer_write_io_error(sbh); 5236 set_buffer_uptodate(sbh); 5237 } 5238 } 5239 return error; 5240 } 5241 5242 /* 5243 * Have we just finished recovery? If so, and if we are mounting (or 5244 * remounting) the filesystem readonly, then we will end up with a 5245 * consistent fs on disk. Record that fact. 5246 */ 5247 static void ext4_mark_recovery_complete(struct super_block *sb, 5248 struct ext4_super_block *es) 5249 { 5250 journal_t *journal = EXT4_SB(sb)->s_journal; 5251 5252 if (!ext4_has_feature_journal(sb)) { 5253 BUG_ON(journal != NULL); 5254 return; 5255 } 5256 jbd2_journal_lock_updates(journal); 5257 if (jbd2_journal_flush(journal) < 0) 5258 goto out; 5259 5260 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5261 ext4_clear_feature_journal_needs_recovery(sb); 5262 ext4_commit_super(sb, 1); 5263 } 5264 5265 out: 5266 jbd2_journal_unlock_updates(journal); 5267 } 5268 5269 /* 5270 * If we are mounting (or read-write remounting) a filesystem whose journal 5271 * has recorded an error from a previous lifetime, move that error to the 5272 * main filesystem now. 5273 */ 5274 static void ext4_clear_journal_err(struct super_block *sb, 5275 struct ext4_super_block *es) 5276 { 5277 journal_t *journal; 5278 int j_errno; 5279 const char *errstr; 5280 5281 BUG_ON(!ext4_has_feature_journal(sb)); 5282 5283 journal = EXT4_SB(sb)->s_journal; 5284 5285 /* 5286 * Now check for any error status which may have been recorded in the 5287 * journal by a prior ext4_error() or ext4_abort() 5288 */ 5289 5290 j_errno = jbd2_journal_errno(journal); 5291 if (j_errno) { 5292 char nbuf[16]; 5293 5294 errstr = ext4_decode_error(sb, j_errno, nbuf); 5295 ext4_warning(sb, "Filesystem error recorded " 5296 "from previous mount: %s", errstr); 5297 ext4_warning(sb, "Marking fs in need of filesystem check."); 5298 5299 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5300 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5301 ext4_commit_super(sb, 1); 5302 5303 jbd2_journal_clear_err(journal); 5304 jbd2_journal_update_sb_errno(journal); 5305 } 5306 } 5307 5308 /* 5309 * Force the running and committing transactions to commit, 5310 * and wait on the commit. 5311 */ 5312 int ext4_force_commit(struct super_block *sb) 5313 { 5314 journal_t *journal; 5315 5316 if (sb_rdonly(sb)) 5317 return 0; 5318 5319 journal = EXT4_SB(sb)->s_journal; 5320 return ext4_journal_force_commit(journal); 5321 } 5322 5323 static int ext4_sync_fs(struct super_block *sb, int wait) 5324 { 5325 int ret = 0; 5326 tid_t target; 5327 bool needs_barrier = false; 5328 struct ext4_sb_info *sbi = EXT4_SB(sb); 5329 5330 if (unlikely(ext4_forced_shutdown(sbi))) 5331 return 0; 5332 5333 trace_ext4_sync_fs(sb, wait); 5334 flush_workqueue(sbi->rsv_conversion_wq); 5335 /* 5336 * Writeback quota in non-journalled quota case - journalled quota has 5337 * no dirty dquots 5338 */ 5339 dquot_writeback_dquots(sb, -1); 5340 /* 5341 * Data writeback is possible w/o journal transaction, so barrier must 5342 * being sent at the end of the function. But we can skip it if 5343 * transaction_commit will do it for us. 5344 */ 5345 if (sbi->s_journal) { 5346 target = jbd2_get_latest_transaction(sbi->s_journal); 5347 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5348 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5349 needs_barrier = true; 5350 5351 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5352 if (wait) 5353 ret = jbd2_log_wait_commit(sbi->s_journal, 5354 target); 5355 } 5356 } else if (wait && test_opt(sb, BARRIER)) 5357 needs_barrier = true; 5358 if (needs_barrier) { 5359 int err; 5360 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 5361 if (!ret) 5362 ret = err; 5363 } 5364 5365 return ret; 5366 } 5367 5368 /* 5369 * LVM calls this function before a (read-only) snapshot is created. This 5370 * gives us a chance to flush the journal completely and mark the fs clean. 5371 * 5372 * Note that only this function cannot bring a filesystem to be in a clean 5373 * state independently. It relies on upper layer to stop all data & metadata 5374 * modifications. 5375 */ 5376 static int ext4_freeze(struct super_block *sb) 5377 { 5378 int error = 0; 5379 journal_t *journal; 5380 5381 if (sb_rdonly(sb)) 5382 return 0; 5383 5384 journal = EXT4_SB(sb)->s_journal; 5385 5386 if (journal) { 5387 /* Now we set up the journal barrier. */ 5388 jbd2_journal_lock_updates(journal); 5389 5390 /* 5391 * Don't clear the needs_recovery flag if we failed to 5392 * flush the journal. 5393 */ 5394 error = jbd2_journal_flush(journal); 5395 if (error < 0) 5396 goto out; 5397 5398 /* Journal blocked and flushed, clear needs_recovery flag. */ 5399 ext4_clear_feature_journal_needs_recovery(sb); 5400 } 5401 5402 error = ext4_commit_super(sb, 1); 5403 out: 5404 if (journal) 5405 /* we rely on upper layer to stop further updates */ 5406 jbd2_journal_unlock_updates(journal); 5407 return error; 5408 } 5409 5410 /* 5411 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5412 * flag here, even though the filesystem is not technically dirty yet. 5413 */ 5414 static int ext4_unfreeze(struct super_block *sb) 5415 { 5416 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5417 return 0; 5418 5419 if (EXT4_SB(sb)->s_journal) { 5420 /* Reset the needs_recovery flag before the fs is unlocked. */ 5421 ext4_set_feature_journal_needs_recovery(sb); 5422 } 5423 5424 ext4_commit_super(sb, 1); 5425 return 0; 5426 } 5427 5428 /* 5429 * Structure to save mount options for ext4_remount's benefit 5430 */ 5431 struct ext4_mount_options { 5432 unsigned long s_mount_opt; 5433 unsigned long s_mount_opt2; 5434 kuid_t s_resuid; 5435 kgid_t s_resgid; 5436 unsigned long s_commit_interval; 5437 u32 s_min_batch_time, s_max_batch_time; 5438 #ifdef CONFIG_QUOTA 5439 int s_jquota_fmt; 5440 char *s_qf_names[EXT4_MAXQUOTAS]; 5441 #endif 5442 }; 5443 5444 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5445 { 5446 struct ext4_super_block *es; 5447 struct ext4_sb_info *sbi = EXT4_SB(sb); 5448 unsigned long old_sb_flags; 5449 struct ext4_mount_options old_opts; 5450 int enable_quota = 0; 5451 ext4_group_t g; 5452 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5453 int err = 0; 5454 #ifdef CONFIG_QUOTA 5455 int i, j; 5456 char *to_free[EXT4_MAXQUOTAS]; 5457 #endif 5458 char *orig_data = kstrdup(data, GFP_KERNEL); 5459 5460 if (data && !orig_data) 5461 return -ENOMEM; 5462 5463 /* Store the original options */ 5464 old_sb_flags = sb->s_flags; 5465 old_opts.s_mount_opt = sbi->s_mount_opt; 5466 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5467 old_opts.s_resuid = sbi->s_resuid; 5468 old_opts.s_resgid = sbi->s_resgid; 5469 old_opts.s_commit_interval = sbi->s_commit_interval; 5470 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5471 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5472 #ifdef CONFIG_QUOTA 5473 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5474 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5475 if (sbi->s_qf_names[i]) { 5476 char *qf_name = get_qf_name(sb, sbi, i); 5477 5478 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5479 if (!old_opts.s_qf_names[i]) { 5480 for (j = 0; j < i; j++) 5481 kfree(old_opts.s_qf_names[j]); 5482 kfree(orig_data); 5483 return -ENOMEM; 5484 } 5485 } else 5486 old_opts.s_qf_names[i] = NULL; 5487 #endif 5488 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5489 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5490 5491 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5492 err = -EINVAL; 5493 goto restore_opts; 5494 } 5495 5496 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5497 test_opt(sb, JOURNAL_CHECKSUM)) { 5498 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5499 "during remount not supported; ignoring"); 5500 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5501 } 5502 5503 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5504 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5505 ext4_msg(sb, KERN_ERR, "can't mount with " 5506 "both data=journal and delalloc"); 5507 err = -EINVAL; 5508 goto restore_opts; 5509 } 5510 if (test_opt(sb, DIOREAD_NOLOCK)) { 5511 ext4_msg(sb, KERN_ERR, "can't mount with " 5512 "both data=journal and dioread_nolock"); 5513 err = -EINVAL; 5514 goto restore_opts; 5515 } 5516 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5517 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5518 ext4_msg(sb, KERN_ERR, "can't mount with " 5519 "journal_async_commit in data=ordered mode"); 5520 err = -EINVAL; 5521 goto restore_opts; 5522 } 5523 } 5524 5525 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5526 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5527 err = -EINVAL; 5528 goto restore_opts; 5529 } 5530 5531 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5532 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5533 5534 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5535 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5536 5537 es = sbi->s_es; 5538 5539 if (sbi->s_journal) { 5540 ext4_init_journal_params(sb, sbi->s_journal); 5541 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5542 } 5543 5544 if (*flags & SB_LAZYTIME) 5545 sb->s_flags |= SB_LAZYTIME; 5546 5547 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5548 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5549 err = -EROFS; 5550 goto restore_opts; 5551 } 5552 5553 if (*flags & SB_RDONLY) { 5554 err = sync_filesystem(sb); 5555 if (err < 0) 5556 goto restore_opts; 5557 err = dquot_suspend(sb, -1); 5558 if (err < 0) 5559 goto restore_opts; 5560 5561 /* 5562 * First of all, the unconditional stuff we have to do 5563 * to disable replay of the journal when we next remount 5564 */ 5565 sb->s_flags |= SB_RDONLY; 5566 5567 /* 5568 * OK, test if we are remounting a valid rw partition 5569 * readonly, and if so set the rdonly flag and then 5570 * mark the partition as valid again. 5571 */ 5572 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5573 (sbi->s_mount_state & EXT4_VALID_FS)) 5574 es->s_state = cpu_to_le16(sbi->s_mount_state); 5575 5576 if (sbi->s_journal) 5577 ext4_mark_recovery_complete(sb, es); 5578 if (sbi->s_mmp_tsk) 5579 kthread_stop(sbi->s_mmp_tsk); 5580 } else { 5581 /* Make sure we can mount this feature set readwrite */ 5582 if (ext4_has_feature_readonly(sb) || 5583 !ext4_feature_set_ok(sb, 0)) { 5584 err = -EROFS; 5585 goto restore_opts; 5586 } 5587 /* 5588 * Make sure the group descriptor checksums 5589 * are sane. If they aren't, refuse to remount r/w. 5590 */ 5591 for (g = 0; g < sbi->s_groups_count; g++) { 5592 struct ext4_group_desc *gdp = 5593 ext4_get_group_desc(sb, g, NULL); 5594 5595 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5596 ext4_msg(sb, KERN_ERR, 5597 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5598 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5599 le16_to_cpu(gdp->bg_checksum)); 5600 err = -EFSBADCRC; 5601 goto restore_opts; 5602 } 5603 } 5604 5605 /* 5606 * If we have an unprocessed orphan list hanging 5607 * around from a previously readonly bdev mount, 5608 * require a full umount/remount for now. 5609 */ 5610 if (es->s_last_orphan) { 5611 ext4_msg(sb, KERN_WARNING, "Couldn't " 5612 "remount RDWR because of unprocessed " 5613 "orphan inode list. Please " 5614 "umount/remount instead"); 5615 err = -EINVAL; 5616 goto restore_opts; 5617 } 5618 5619 /* 5620 * Mounting a RDONLY partition read-write, so reread 5621 * and store the current valid flag. (It may have 5622 * been changed by e2fsck since we originally mounted 5623 * the partition.) 5624 */ 5625 if (sbi->s_journal) 5626 ext4_clear_journal_err(sb, es); 5627 sbi->s_mount_state = le16_to_cpu(es->s_state); 5628 5629 err = ext4_setup_super(sb, es, 0); 5630 if (err) 5631 goto restore_opts; 5632 5633 sb->s_flags &= ~SB_RDONLY; 5634 if (ext4_has_feature_mmp(sb)) 5635 if (ext4_multi_mount_protect(sb, 5636 le64_to_cpu(es->s_mmp_block))) { 5637 err = -EROFS; 5638 goto restore_opts; 5639 } 5640 enable_quota = 1; 5641 } 5642 } 5643 5644 /* 5645 * Reinitialize lazy itable initialization thread based on 5646 * current settings 5647 */ 5648 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5649 ext4_unregister_li_request(sb); 5650 else { 5651 ext4_group_t first_not_zeroed; 5652 first_not_zeroed = ext4_has_uninit_itable(sb); 5653 ext4_register_li_request(sb, first_not_zeroed); 5654 } 5655 5656 ext4_setup_system_zone(sb); 5657 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5658 err = ext4_commit_super(sb, 1); 5659 if (err) 5660 goto restore_opts; 5661 } 5662 5663 #ifdef CONFIG_QUOTA 5664 /* Release old quota file names */ 5665 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5666 kfree(old_opts.s_qf_names[i]); 5667 if (enable_quota) { 5668 if (sb_any_quota_suspended(sb)) 5669 dquot_resume(sb, -1); 5670 else if (ext4_has_feature_quota(sb)) { 5671 err = ext4_enable_quotas(sb); 5672 if (err) 5673 goto restore_opts; 5674 } 5675 } 5676 #endif 5677 5678 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5679 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5680 kfree(orig_data); 5681 return 0; 5682 5683 restore_opts: 5684 sb->s_flags = old_sb_flags; 5685 sbi->s_mount_opt = old_opts.s_mount_opt; 5686 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5687 sbi->s_resuid = old_opts.s_resuid; 5688 sbi->s_resgid = old_opts.s_resgid; 5689 sbi->s_commit_interval = old_opts.s_commit_interval; 5690 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5691 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5692 #ifdef CONFIG_QUOTA 5693 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5694 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5695 to_free[i] = get_qf_name(sb, sbi, i); 5696 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5697 } 5698 synchronize_rcu(); 5699 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5700 kfree(to_free[i]); 5701 #endif 5702 kfree(orig_data); 5703 return err; 5704 } 5705 5706 #ifdef CONFIG_QUOTA 5707 static int ext4_statfs_project(struct super_block *sb, 5708 kprojid_t projid, struct kstatfs *buf) 5709 { 5710 struct kqid qid; 5711 struct dquot *dquot; 5712 u64 limit; 5713 u64 curblock; 5714 5715 qid = make_kqid_projid(projid); 5716 dquot = dqget(sb, qid); 5717 if (IS_ERR(dquot)) 5718 return PTR_ERR(dquot); 5719 spin_lock(&dquot->dq_dqb_lock); 5720 5721 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 5722 dquot->dq_dqb.dqb_bhardlimit); 5723 limit >>= sb->s_blocksize_bits; 5724 5725 if (limit && buf->f_blocks > limit) { 5726 curblock = (dquot->dq_dqb.dqb_curspace + 5727 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5728 buf->f_blocks = limit; 5729 buf->f_bfree = buf->f_bavail = 5730 (buf->f_blocks > curblock) ? 5731 (buf->f_blocks - curblock) : 0; 5732 } 5733 5734 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 5735 dquot->dq_dqb.dqb_ihardlimit); 5736 if (limit && buf->f_files > limit) { 5737 buf->f_files = limit; 5738 buf->f_ffree = 5739 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5740 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5741 } 5742 5743 spin_unlock(&dquot->dq_dqb_lock); 5744 dqput(dquot); 5745 return 0; 5746 } 5747 #endif 5748 5749 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5750 { 5751 struct super_block *sb = dentry->d_sb; 5752 struct ext4_sb_info *sbi = EXT4_SB(sb); 5753 struct ext4_super_block *es = sbi->s_es; 5754 ext4_fsblk_t overhead = 0, resv_blocks; 5755 u64 fsid; 5756 s64 bfree; 5757 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5758 5759 if (!test_opt(sb, MINIX_DF)) 5760 overhead = sbi->s_overhead; 5761 5762 buf->f_type = EXT4_SUPER_MAGIC; 5763 buf->f_bsize = sb->s_blocksize; 5764 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5765 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5766 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5767 /* prevent underflow in case that few free space is available */ 5768 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5769 buf->f_bavail = buf->f_bfree - 5770 (ext4_r_blocks_count(es) + resv_blocks); 5771 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5772 buf->f_bavail = 0; 5773 buf->f_files = le32_to_cpu(es->s_inodes_count); 5774 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5775 buf->f_namelen = EXT4_NAME_LEN; 5776 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5777 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5778 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5779 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5780 5781 #ifdef CONFIG_QUOTA 5782 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5783 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5784 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5785 #endif 5786 return 0; 5787 } 5788 5789 5790 #ifdef CONFIG_QUOTA 5791 5792 /* 5793 * Helper functions so that transaction is started before we acquire dqio_sem 5794 * to keep correct lock ordering of transaction > dqio_sem 5795 */ 5796 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5797 { 5798 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5799 } 5800 5801 static int ext4_write_dquot(struct dquot *dquot) 5802 { 5803 int ret, err; 5804 handle_t *handle; 5805 struct inode *inode; 5806 5807 inode = dquot_to_inode(dquot); 5808 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5809 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5810 if (IS_ERR(handle)) 5811 return PTR_ERR(handle); 5812 ret = dquot_commit(dquot); 5813 err = ext4_journal_stop(handle); 5814 if (!ret) 5815 ret = err; 5816 return ret; 5817 } 5818 5819 static int ext4_acquire_dquot(struct dquot *dquot) 5820 { 5821 int ret, err; 5822 handle_t *handle; 5823 5824 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5825 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5826 if (IS_ERR(handle)) 5827 return PTR_ERR(handle); 5828 ret = dquot_acquire(dquot); 5829 err = ext4_journal_stop(handle); 5830 if (!ret) 5831 ret = err; 5832 return ret; 5833 } 5834 5835 static int ext4_release_dquot(struct dquot *dquot) 5836 { 5837 int ret, err; 5838 handle_t *handle; 5839 5840 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5841 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5842 if (IS_ERR(handle)) { 5843 /* Release dquot anyway to avoid endless cycle in dqput() */ 5844 dquot_release(dquot); 5845 return PTR_ERR(handle); 5846 } 5847 ret = dquot_release(dquot); 5848 err = ext4_journal_stop(handle); 5849 if (!ret) 5850 ret = err; 5851 return ret; 5852 } 5853 5854 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5855 { 5856 struct super_block *sb = dquot->dq_sb; 5857 struct ext4_sb_info *sbi = EXT4_SB(sb); 5858 5859 /* Are we journaling quotas? */ 5860 if (ext4_has_feature_quota(sb) || 5861 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5862 dquot_mark_dquot_dirty(dquot); 5863 return ext4_write_dquot(dquot); 5864 } else { 5865 return dquot_mark_dquot_dirty(dquot); 5866 } 5867 } 5868 5869 static int ext4_write_info(struct super_block *sb, int type) 5870 { 5871 int ret, err; 5872 handle_t *handle; 5873 5874 /* Data block + inode block */ 5875 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5876 if (IS_ERR(handle)) 5877 return PTR_ERR(handle); 5878 ret = dquot_commit_info(sb, type); 5879 err = ext4_journal_stop(handle); 5880 if (!ret) 5881 ret = err; 5882 return ret; 5883 } 5884 5885 /* 5886 * Turn on quotas during mount time - we need to find 5887 * the quota file and such... 5888 */ 5889 static int ext4_quota_on_mount(struct super_block *sb, int type) 5890 { 5891 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5892 EXT4_SB(sb)->s_jquota_fmt, type); 5893 } 5894 5895 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5896 { 5897 struct ext4_inode_info *ei = EXT4_I(inode); 5898 5899 /* The first argument of lockdep_set_subclass has to be 5900 * *exactly* the same as the argument to init_rwsem() --- in 5901 * this case, in init_once() --- or lockdep gets unhappy 5902 * because the name of the lock is set using the 5903 * stringification of the argument to init_rwsem(). 5904 */ 5905 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5906 lockdep_set_subclass(&ei->i_data_sem, subclass); 5907 } 5908 5909 /* 5910 * Standard function to be called on quota_on 5911 */ 5912 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5913 const struct path *path) 5914 { 5915 int err; 5916 5917 if (!test_opt(sb, QUOTA)) 5918 return -EINVAL; 5919 5920 /* Quotafile not on the same filesystem? */ 5921 if (path->dentry->d_sb != sb) 5922 return -EXDEV; 5923 /* Journaling quota? */ 5924 if (EXT4_SB(sb)->s_qf_names[type]) { 5925 /* Quotafile not in fs root? */ 5926 if (path->dentry->d_parent != sb->s_root) 5927 ext4_msg(sb, KERN_WARNING, 5928 "Quota file not on filesystem root. " 5929 "Journaled quota will not work"); 5930 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5931 } else { 5932 /* 5933 * Clear the flag just in case mount options changed since 5934 * last time. 5935 */ 5936 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5937 } 5938 5939 /* 5940 * When we journal data on quota file, we have to flush journal to see 5941 * all updates to the file when we bypass pagecache... 5942 */ 5943 if (EXT4_SB(sb)->s_journal && 5944 ext4_should_journal_data(d_inode(path->dentry))) { 5945 /* 5946 * We don't need to lock updates but journal_flush() could 5947 * otherwise be livelocked... 5948 */ 5949 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5950 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5951 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5952 if (err) 5953 return err; 5954 } 5955 5956 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5957 err = dquot_quota_on(sb, type, format_id, path); 5958 if (err) { 5959 lockdep_set_quota_inode(path->dentry->d_inode, 5960 I_DATA_SEM_NORMAL); 5961 } else { 5962 struct inode *inode = d_inode(path->dentry); 5963 handle_t *handle; 5964 5965 /* 5966 * Set inode flags to prevent userspace from messing with quota 5967 * files. If this fails, we return success anyway since quotas 5968 * are already enabled and this is not a hard failure. 5969 */ 5970 inode_lock(inode); 5971 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5972 if (IS_ERR(handle)) 5973 goto unlock_inode; 5974 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5975 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5976 S_NOATIME | S_IMMUTABLE); 5977 err = ext4_mark_inode_dirty(handle, inode); 5978 ext4_journal_stop(handle); 5979 unlock_inode: 5980 inode_unlock(inode); 5981 } 5982 return err; 5983 } 5984 5985 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5986 unsigned int flags) 5987 { 5988 int err; 5989 struct inode *qf_inode; 5990 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5991 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5992 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5993 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5994 }; 5995 5996 BUG_ON(!ext4_has_feature_quota(sb)); 5997 5998 if (!qf_inums[type]) 5999 return -EPERM; 6000 6001 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6002 if (IS_ERR(qf_inode)) { 6003 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6004 return PTR_ERR(qf_inode); 6005 } 6006 6007 /* Don't account quota for quota files to avoid recursion */ 6008 qf_inode->i_flags |= S_NOQUOTA; 6009 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6010 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6011 if (err) 6012 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6013 iput(qf_inode); 6014 6015 return err; 6016 } 6017 6018 /* Enable usage tracking for all quota types. */ 6019 static int ext4_enable_quotas(struct super_block *sb) 6020 { 6021 int type, err = 0; 6022 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6023 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6024 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6025 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6026 }; 6027 bool quota_mopt[EXT4_MAXQUOTAS] = { 6028 test_opt(sb, USRQUOTA), 6029 test_opt(sb, GRPQUOTA), 6030 test_opt(sb, PRJQUOTA), 6031 }; 6032 6033 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6034 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6035 if (qf_inums[type]) { 6036 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6037 DQUOT_USAGE_ENABLED | 6038 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6039 if (err) { 6040 ext4_warning(sb, 6041 "Failed to enable quota tracking " 6042 "(type=%d, err=%d). Please run " 6043 "e2fsck to fix.", type, err); 6044 for (type--; type >= 0; type--) 6045 dquot_quota_off(sb, type); 6046 6047 return err; 6048 } 6049 } 6050 } 6051 return 0; 6052 } 6053 6054 static int ext4_quota_off(struct super_block *sb, int type) 6055 { 6056 struct inode *inode = sb_dqopt(sb)->files[type]; 6057 handle_t *handle; 6058 int err; 6059 6060 /* Force all delayed allocation blocks to be allocated. 6061 * Caller already holds s_umount sem */ 6062 if (test_opt(sb, DELALLOC)) 6063 sync_filesystem(sb); 6064 6065 if (!inode || !igrab(inode)) 6066 goto out; 6067 6068 err = dquot_quota_off(sb, type); 6069 if (err || ext4_has_feature_quota(sb)) 6070 goto out_put; 6071 6072 inode_lock(inode); 6073 /* 6074 * Update modification times of quota files when userspace can 6075 * start looking at them. If we fail, we return success anyway since 6076 * this is not a hard failure and quotas are already disabled. 6077 */ 6078 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6079 if (IS_ERR(handle)) { 6080 err = PTR_ERR(handle); 6081 goto out_unlock; 6082 } 6083 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6084 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6085 inode->i_mtime = inode->i_ctime = current_time(inode); 6086 err = ext4_mark_inode_dirty(handle, inode); 6087 ext4_journal_stop(handle); 6088 out_unlock: 6089 inode_unlock(inode); 6090 out_put: 6091 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6092 iput(inode); 6093 return err; 6094 out: 6095 return dquot_quota_off(sb, type); 6096 } 6097 6098 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6099 * acquiring the locks... As quota files are never truncated and quota code 6100 * itself serializes the operations (and no one else should touch the files) 6101 * we don't have to be afraid of races */ 6102 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6103 size_t len, loff_t off) 6104 { 6105 struct inode *inode = sb_dqopt(sb)->files[type]; 6106 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6107 int offset = off & (sb->s_blocksize - 1); 6108 int tocopy; 6109 size_t toread; 6110 struct buffer_head *bh; 6111 loff_t i_size = i_size_read(inode); 6112 6113 if (off > i_size) 6114 return 0; 6115 if (off+len > i_size) 6116 len = i_size-off; 6117 toread = len; 6118 while (toread > 0) { 6119 tocopy = sb->s_blocksize - offset < toread ? 6120 sb->s_blocksize - offset : toread; 6121 bh = ext4_bread(NULL, inode, blk, 0); 6122 if (IS_ERR(bh)) 6123 return PTR_ERR(bh); 6124 if (!bh) /* A hole? */ 6125 memset(data, 0, tocopy); 6126 else 6127 memcpy(data, bh->b_data+offset, tocopy); 6128 brelse(bh); 6129 offset = 0; 6130 toread -= tocopy; 6131 data += tocopy; 6132 blk++; 6133 } 6134 return len; 6135 } 6136 6137 /* Write to quotafile (we know the transaction is already started and has 6138 * enough credits) */ 6139 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6140 const char *data, size_t len, loff_t off) 6141 { 6142 struct inode *inode = sb_dqopt(sb)->files[type]; 6143 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6144 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6145 int retries = 0; 6146 struct buffer_head *bh; 6147 handle_t *handle = journal_current_handle(); 6148 6149 if (EXT4_SB(sb)->s_journal && !handle) { 6150 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6151 " cancelled because transaction is not started", 6152 (unsigned long long)off, (unsigned long long)len); 6153 return -EIO; 6154 } 6155 /* 6156 * Since we account only one data block in transaction credits, 6157 * then it is impossible to cross a block boundary. 6158 */ 6159 if (sb->s_blocksize - offset < len) { 6160 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6161 " cancelled because not block aligned", 6162 (unsigned long long)off, (unsigned long long)len); 6163 return -EIO; 6164 } 6165 6166 do { 6167 bh = ext4_bread(handle, inode, blk, 6168 EXT4_GET_BLOCKS_CREATE | 6169 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6170 } while (PTR_ERR(bh) == -ENOSPC && 6171 ext4_should_retry_alloc(inode->i_sb, &retries)); 6172 if (IS_ERR(bh)) 6173 return PTR_ERR(bh); 6174 if (!bh) 6175 goto out; 6176 BUFFER_TRACE(bh, "get write access"); 6177 err = ext4_journal_get_write_access(handle, bh); 6178 if (err) { 6179 brelse(bh); 6180 return err; 6181 } 6182 lock_buffer(bh); 6183 memcpy(bh->b_data+offset, data, len); 6184 flush_dcache_page(bh->b_page); 6185 unlock_buffer(bh); 6186 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6187 brelse(bh); 6188 out: 6189 if (inode->i_size < off + len) { 6190 i_size_write(inode, off + len); 6191 EXT4_I(inode)->i_disksize = inode->i_size; 6192 err2 = ext4_mark_inode_dirty(handle, inode); 6193 if (unlikely(err2 && !err)) 6194 err = err2; 6195 } 6196 return err ? err : len; 6197 } 6198 #endif 6199 6200 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6201 const char *dev_name, void *data) 6202 { 6203 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6204 } 6205 6206 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6207 static inline void register_as_ext2(void) 6208 { 6209 int err = register_filesystem(&ext2_fs_type); 6210 if (err) 6211 printk(KERN_WARNING 6212 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6213 } 6214 6215 static inline void unregister_as_ext2(void) 6216 { 6217 unregister_filesystem(&ext2_fs_type); 6218 } 6219 6220 static inline int ext2_feature_set_ok(struct super_block *sb) 6221 { 6222 if (ext4_has_unknown_ext2_incompat_features(sb)) 6223 return 0; 6224 if (sb_rdonly(sb)) 6225 return 1; 6226 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6227 return 0; 6228 return 1; 6229 } 6230 #else 6231 static inline void register_as_ext2(void) { } 6232 static inline void unregister_as_ext2(void) { } 6233 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6234 #endif 6235 6236 static inline void register_as_ext3(void) 6237 { 6238 int err = register_filesystem(&ext3_fs_type); 6239 if (err) 6240 printk(KERN_WARNING 6241 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6242 } 6243 6244 static inline void unregister_as_ext3(void) 6245 { 6246 unregister_filesystem(&ext3_fs_type); 6247 } 6248 6249 static inline int ext3_feature_set_ok(struct super_block *sb) 6250 { 6251 if (ext4_has_unknown_ext3_incompat_features(sb)) 6252 return 0; 6253 if (!ext4_has_feature_journal(sb)) 6254 return 0; 6255 if (sb_rdonly(sb)) 6256 return 1; 6257 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6258 return 0; 6259 return 1; 6260 } 6261 6262 static struct file_system_type ext4_fs_type = { 6263 .owner = THIS_MODULE, 6264 .name = "ext4", 6265 .mount = ext4_mount, 6266 .kill_sb = kill_block_super, 6267 .fs_flags = FS_REQUIRES_DEV, 6268 }; 6269 MODULE_ALIAS_FS("ext4"); 6270 6271 /* Shared across all ext4 file systems */ 6272 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6273 6274 static int __init ext4_init_fs(void) 6275 { 6276 int i, err; 6277 6278 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6279 ext4_li_info = NULL; 6280 mutex_init(&ext4_li_mtx); 6281 6282 /* Build-time check for flags consistency */ 6283 ext4_check_flag_values(); 6284 6285 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6286 init_waitqueue_head(&ext4__ioend_wq[i]); 6287 6288 err = ext4_init_es(); 6289 if (err) 6290 return err; 6291 6292 err = ext4_init_pending(); 6293 if (err) 6294 goto out7; 6295 6296 err = ext4_init_post_read_processing(); 6297 if (err) 6298 goto out6; 6299 6300 err = ext4_init_pageio(); 6301 if (err) 6302 goto out5; 6303 6304 err = ext4_init_system_zone(); 6305 if (err) 6306 goto out4; 6307 6308 err = ext4_init_sysfs(); 6309 if (err) 6310 goto out3; 6311 6312 err = ext4_init_mballoc(); 6313 if (err) 6314 goto out2; 6315 err = init_inodecache(); 6316 if (err) 6317 goto out1; 6318 register_as_ext3(); 6319 register_as_ext2(); 6320 err = register_filesystem(&ext4_fs_type); 6321 if (err) 6322 goto out; 6323 6324 return 0; 6325 out: 6326 unregister_as_ext2(); 6327 unregister_as_ext3(); 6328 destroy_inodecache(); 6329 out1: 6330 ext4_exit_mballoc(); 6331 out2: 6332 ext4_exit_sysfs(); 6333 out3: 6334 ext4_exit_system_zone(); 6335 out4: 6336 ext4_exit_pageio(); 6337 out5: 6338 ext4_exit_post_read_processing(); 6339 out6: 6340 ext4_exit_pending(); 6341 out7: 6342 ext4_exit_es(); 6343 6344 return err; 6345 } 6346 6347 static void __exit ext4_exit_fs(void) 6348 { 6349 ext4_destroy_lazyinit_thread(); 6350 unregister_as_ext2(); 6351 unregister_as_ext3(); 6352 unregister_filesystem(&ext4_fs_type); 6353 destroy_inodecache(); 6354 ext4_exit_mballoc(); 6355 ext4_exit_sysfs(); 6356 ext4_exit_system_zone(); 6357 ext4_exit_pageio(); 6358 ext4_exit_post_read_processing(); 6359 ext4_exit_es(); 6360 ext4_exit_pending(); 6361 } 6362 6363 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6364 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6365 MODULE_LICENSE("GPL"); 6366 MODULE_SOFTDEP("pre: crc32c"); 6367 module_init(ext4_init_fs) 6368 module_exit(ext4_exit_fs) 6369