xref: /openbmc/linux/fs/ext4/super.c (revision 94214f14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static const struct fs_parameter_spec ext4_param_specs[];
97 
98 /*
99  * Lock ordering
100  *
101  * page fault path:
102  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103  *   -> page lock -> i_data_sem (rw)
104  *
105  * buffered write path:
106  * sb_start_write -> i_mutex -> mmap_lock
107  * sb_start_write -> i_mutex -> transaction start -> page lock ->
108  *   i_data_sem (rw)
109  *
110  * truncate:
111  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112  *   page lock
113  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114  *   i_data_sem (rw)
115  *
116  * direct IO:
117  * sb_start_write -> i_mutex -> mmap_lock
118  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119  *
120  * writepages:
121  * transaction start -> page lock(s) -> i_data_sem (rw)
122  */
123 
124 static const struct fs_context_operations ext4_context_ops = {
125 	.parse_param	= ext4_parse_param,
126 	.get_tree	= ext4_get_tree,
127 	.reconfigure	= ext4_reconfigure,
128 	.free		= ext4_fc_free,
129 };
130 
131 
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 	.owner			= THIS_MODULE,
135 	.name			= "ext2",
136 	.init_fs_context	= ext4_init_fs_context,
137 	.parameters		= ext4_param_specs,
138 	.kill_sb		= kill_block_super,
139 	.fs_flags		= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147 
148 
149 static struct file_system_type ext3_fs_type = {
150 	.owner			= THIS_MODULE,
151 	.name			= "ext3",
152 	.init_fs_context	= ext4_init_fs_context,
153 	.parameters		= ext4_param_specs,
154 	.kill_sb		= kill_block_super,
155 	.fs_flags		= FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160 
161 
162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 				  bh_end_io_t *end_io)
164 {
165 	/*
166 	 * buffer's verified bit is no longer valid after reading from
167 	 * disk again due to write out error, clear it to make sure we
168 	 * recheck the buffer contents.
169 	 */
170 	clear_buffer_verified(bh);
171 
172 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 	get_bh(bh);
174 	submit_bh(REQ_OP_READ | op_flags, bh);
175 }
176 
177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
178 			 bh_end_io_t *end_io)
179 {
180 	BUG_ON(!buffer_locked(bh));
181 
182 	if (ext4_buffer_uptodate(bh)) {
183 		unlock_buffer(bh);
184 		return;
185 	}
186 	__ext4_read_bh(bh, op_flags, end_io);
187 }
188 
189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
190 {
191 	BUG_ON(!buffer_locked(bh));
192 
193 	if (ext4_buffer_uptodate(bh)) {
194 		unlock_buffer(bh);
195 		return 0;
196 	}
197 
198 	__ext4_read_bh(bh, op_flags, end_io);
199 
200 	wait_on_buffer(bh);
201 	if (buffer_uptodate(bh))
202 		return 0;
203 	return -EIO;
204 }
205 
206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
207 {
208 	lock_buffer(bh);
209 	if (!wait) {
210 		ext4_read_bh_nowait(bh, op_flags, NULL);
211 		return 0;
212 	}
213 	return ext4_read_bh(bh, op_flags, NULL);
214 }
215 
216 /*
217  * This works like __bread_gfp() except it uses ERR_PTR for error
218  * returns.  Currently with sb_bread it's impossible to distinguish
219  * between ENOMEM and EIO situations (since both result in a NULL
220  * return.
221  */
222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
223 					       sector_t block,
224 					       blk_opf_t op_flags, gfp_t gfp)
225 {
226 	struct buffer_head *bh;
227 	int ret;
228 
229 	bh = sb_getblk_gfp(sb, block, gfp);
230 	if (bh == NULL)
231 		return ERR_PTR(-ENOMEM);
232 	if (ext4_buffer_uptodate(bh))
233 		return bh;
234 
235 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
236 	if (ret) {
237 		put_bh(bh);
238 		return ERR_PTR(ret);
239 	}
240 	return bh;
241 }
242 
243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
244 				   blk_opf_t op_flags)
245 {
246 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
247 }
248 
249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
250 					    sector_t block)
251 {
252 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
253 }
254 
255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
256 {
257 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
258 
259 	if (likely(bh)) {
260 		if (trylock_buffer(bh))
261 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
262 		brelse(bh);
263 	}
264 }
265 
266 static int ext4_verify_csum_type(struct super_block *sb,
267 				 struct ext4_super_block *es)
268 {
269 	if (!ext4_has_feature_metadata_csum(sb))
270 		return 1;
271 
272 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
273 }
274 
275 __le32 ext4_superblock_csum(struct super_block *sb,
276 			    struct ext4_super_block *es)
277 {
278 	struct ext4_sb_info *sbi = EXT4_SB(sb);
279 	int offset = offsetof(struct ext4_super_block, s_checksum);
280 	__u32 csum;
281 
282 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
283 
284 	return cpu_to_le32(csum);
285 }
286 
287 static int ext4_superblock_csum_verify(struct super_block *sb,
288 				       struct ext4_super_block *es)
289 {
290 	if (!ext4_has_metadata_csum(sb))
291 		return 1;
292 
293 	return es->s_checksum == ext4_superblock_csum(sb, es);
294 }
295 
296 void ext4_superblock_csum_set(struct super_block *sb)
297 {
298 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
299 
300 	if (!ext4_has_metadata_csum(sb))
301 		return;
302 
303 	es->s_checksum = ext4_superblock_csum(sb, es);
304 }
305 
306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307 			       struct ext4_group_desc *bg)
308 {
309 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
310 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312 }
313 
314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320 }
321 
322 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323 			      struct ext4_group_desc *bg)
324 {
325 	return le32_to_cpu(bg->bg_inode_table_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328 }
329 
330 __u32 ext4_free_group_clusters(struct super_block *sb,
331 			       struct ext4_group_desc *bg)
332 {
333 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336 }
337 
338 __u32 ext4_free_inodes_count(struct super_block *sb,
339 			      struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344 }
345 
346 __u32 ext4_used_dirs_count(struct super_block *sb,
347 			      struct ext4_group_desc *bg)
348 {
349 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352 }
353 
354 __u32 ext4_itable_unused_count(struct super_block *sb,
355 			      struct ext4_group_desc *bg)
356 {
357 	return le16_to_cpu(bg->bg_itable_unused_lo) |
358 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360 }
361 
362 void ext4_block_bitmap_set(struct super_block *sb,
363 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368 }
369 
370 void ext4_inode_bitmap_set(struct super_block *sb,
371 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
378 void ext4_inode_table_set(struct super_block *sb,
379 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384 }
385 
386 void ext4_free_group_clusters_set(struct super_block *sb,
387 				  struct ext4_group_desc *bg, __u32 count)
388 {
389 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392 }
393 
394 void ext4_free_inodes_set(struct super_block *sb,
395 			  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400 }
401 
402 void ext4_used_dirs_set(struct super_block *sb,
403 			  struct ext4_group_desc *bg, __u32 count)
404 {
405 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408 }
409 
410 void ext4_itable_unused_set(struct super_block *sb,
411 			  struct ext4_group_desc *bg, __u32 count)
412 {
413 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416 }
417 
418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
419 {
420 	now = clamp_val(now, 0, (1ull << 40) - 1);
421 
422 	*lo = cpu_to_le32(lower_32_bits(now));
423 	*hi = upper_32_bits(now);
424 }
425 
426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
427 {
428 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
429 }
430 #define ext4_update_tstamp(es, tstamp) \
431 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
432 			     ktime_get_real_seconds())
433 #define ext4_get_tstamp(es, tstamp) \
434 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
435 
436 /*
437  * The del_gendisk() function uninitializes the disk-specific data
438  * structures, including the bdi structure, without telling anyone
439  * else.  Once this happens, any attempt to call mark_buffer_dirty()
440  * (for example, by ext4_commit_super), will cause a kernel OOPS.
441  * This is a kludge to prevent these oops until we can put in a proper
442  * hook in del_gendisk() to inform the VFS and file system layers.
443  */
444 static int block_device_ejected(struct super_block *sb)
445 {
446 	struct inode *bd_inode = sb->s_bdev->bd_inode;
447 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448 
449 	return bdi->dev == NULL;
450 }
451 
452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453 {
454 	struct super_block		*sb = journal->j_private;
455 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
456 	int				error = is_journal_aborted(journal);
457 	struct ext4_journal_cb_entry	*jce;
458 
459 	BUG_ON(txn->t_state == T_FINISHED);
460 
461 	ext4_process_freed_data(sb, txn->t_tid);
462 
463 	spin_lock(&sbi->s_md_lock);
464 	while (!list_empty(&txn->t_private_list)) {
465 		jce = list_entry(txn->t_private_list.next,
466 				 struct ext4_journal_cb_entry, jce_list);
467 		list_del_init(&jce->jce_list);
468 		spin_unlock(&sbi->s_md_lock);
469 		jce->jce_func(sb, jce, error);
470 		spin_lock(&sbi->s_md_lock);
471 	}
472 	spin_unlock(&sbi->s_md_lock);
473 }
474 
475 /*
476  * This writepage callback for write_cache_pages()
477  * takes care of a few cases after page cleaning.
478  *
479  * write_cache_pages() already checks for dirty pages
480  * and calls clear_page_dirty_for_io(), which we want,
481  * to write protect the pages.
482  *
483  * However, we may have to redirty a page (see below.)
484  */
485 static int ext4_journalled_writepage_callback(struct page *page,
486 					      struct writeback_control *wbc,
487 					      void *data)
488 {
489 	transaction_t *transaction = (transaction_t *) data;
490 	struct buffer_head *bh, *head;
491 	struct journal_head *jh;
492 
493 	bh = head = page_buffers(page);
494 	do {
495 		/*
496 		 * We have to redirty a page in these cases:
497 		 * 1) If buffer is dirty, it means the page was dirty because it
498 		 * contains a buffer that needs checkpointing. So the dirty bit
499 		 * needs to be preserved so that checkpointing writes the buffer
500 		 * properly.
501 		 * 2) If buffer is not part of the committing transaction
502 		 * (we may have just accidentally come across this buffer because
503 		 * inode range tracking is not exact) or if the currently running
504 		 * transaction already contains this buffer as well, dirty bit
505 		 * needs to be preserved so that the buffer gets writeprotected
506 		 * properly on running transaction's commit.
507 		 */
508 		jh = bh2jh(bh);
509 		if (buffer_dirty(bh) ||
510 		    (jh && (jh->b_transaction != transaction ||
511 			    jh->b_next_transaction))) {
512 			redirty_page_for_writepage(wbc, page);
513 			goto out;
514 		}
515 	} while ((bh = bh->b_this_page) != head);
516 
517 out:
518 	return AOP_WRITEPAGE_ACTIVATE;
519 }
520 
521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
522 {
523 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
524 	struct writeback_control wbc = {
525 		.sync_mode =  WB_SYNC_ALL,
526 		.nr_to_write = LONG_MAX,
527 		.range_start = jinode->i_dirty_start,
528 		.range_end = jinode->i_dirty_end,
529         };
530 
531 	return write_cache_pages(mapping, &wbc,
532 				 ext4_journalled_writepage_callback,
533 				 jinode->i_transaction);
534 }
535 
536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
537 {
538 	int ret;
539 
540 	if (ext4_should_journal_data(jinode->i_vfs_inode))
541 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
542 	else
543 		ret = ext4_normal_submit_inode_data_buffers(jinode);
544 	return ret;
545 }
546 
547 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
548 {
549 	int ret = 0;
550 
551 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
552 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
553 
554 	return ret;
555 }
556 
557 static bool system_going_down(void)
558 {
559 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
560 		|| system_state == SYSTEM_RESTART;
561 }
562 
563 struct ext4_err_translation {
564 	int code;
565 	int errno;
566 };
567 
568 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
569 
570 static struct ext4_err_translation err_translation[] = {
571 	EXT4_ERR_TRANSLATE(EIO),
572 	EXT4_ERR_TRANSLATE(ENOMEM),
573 	EXT4_ERR_TRANSLATE(EFSBADCRC),
574 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
575 	EXT4_ERR_TRANSLATE(ENOSPC),
576 	EXT4_ERR_TRANSLATE(ENOKEY),
577 	EXT4_ERR_TRANSLATE(EROFS),
578 	EXT4_ERR_TRANSLATE(EFBIG),
579 	EXT4_ERR_TRANSLATE(EEXIST),
580 	EXT4_ERR_TRANSLATE(ERANGE),
581 	EXT4_ERR_TRANSLATE(EOVERFLOW),
582 	EXT4_ERR_TRANSLATE(EBUSY),
583 	EXT4_ERR_TRANSLATE(ENOTDIR),
584 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
585 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
586 	EXT4_ERR_TRANSLATE(EFAULT),
587 };
588 
589 static int ext4_errno_to_code(int errno)
590 {
591 	int i;
592 
593 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
594 		if (err_translation[i].errno == errno)
595 			return err_translation[i].code;
596 	return EXT4_ERR_UNKNOWN;
597 }
598 
599 static void save_error_info(struct super_block *sb, int error,
600 			    __u32 ino, __u64 block,
601 			    const char *func, unsigned int line)
602 {
603 	struct ext4_sb_info *sbi = EXT4_SB(sb);
604 
605 	/* We default to EFSCORRUPTED error... */
606 	if (error == 0)
607 		error = EFSCORRUPTED;
608 
609 	spin_lock(&sbi->s_error_lock);
610 	sbi->s_add_error_count++;
611 	sbi->s_last_error_code = error;
612 	sbi->s_last_error_line = line;
613 	sbi->s_last_error_ino = ino;
614 	sbi->s_last_error_block = block;
615 	sbi->s_last_error_func = func;
616 	sbi->s_last_error_time = ktime_get_real_seconds();
617 	if (!sbi->s_first_error_time) {
618 		sbi->s_first_error_code = error;
619 		sbi->s_first_error_line = line;
620 		sbi->s_first_error_ino = ino;
621 		sbi->s_first_error_block = block;
622 		sbi->s_first_error_func = func;
623 		sbi->s_first_error_time = sbi->s_last_error_time;
624 	}
625 	spin_unlock(&sbi->s_error_lock);
626 }
627 
628 /* Deal with the reporting of failure conditions on a filesystem such as
629  * inconsistencies detected or read IO failures.
630  *
631  * On ext2, we can store the error state of the filesystem in the
632  * superblock.  That is not possible on ext4, because we may have other
633  * write ordering constraints on the superblock which prevent us from
634  * writing it out straight away; and given that the journal is about to
635  * be aborted, we can't rely on the current, or future, transactions to
636  * write out the superblock safely.
637  *
638  * We'll just use the jbd2_journal_abort() error code to record an error in
639  * the journal instead.  On recovery, the journal will complain about
640  * that error until we've noted it down and cleared it.
641  *
642  * If force_ro is set, we unconditionally force the filesystem into an
643  * ABORT|READONLY state, unless the error response on the fs has been set to
644  * panic in which case we take the easy way out and panic immediately. This is
645  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
646  * at a critical moment in log management.
647  */
648 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
649 			      __u32 ino, __u64 block,
650 			      const char *func, unsigned int line)
651 {
652 	journal_t *journal = EXT4_SB(sb)->s_journal;
653 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
654 
655 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
656 	if (test_opt(sb, WARN_ON_ERROR))
657 		WARN_ON_ONCE(1);
658 
659 	if (!continue_fs && !sb_rdonly(sb)) {
660 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
661 		if (journal)
662 			jbd2_journal_abort(journal, -EIO);
663 	}
664 
665 	if (!bdev_read_only(sb->s_bdev)) {
666 		save_error_info(sb, error, ino, block, func, line);
667 		/*
668 		 * In case the fs should keep running, we need to writeout
669 		 * superblock through the journal. Due to lock ordering
670 		 * constraints, it may not be safe to do it right here so we
671 		 * defer superblock flushing to a workqueue.
672 		 */
673 		if (continue_fs && journal)
674 			schedule_work(&EXT4_SB(sb)->s_error_work);
675 		else
676 			ext4_commit_super(sb);
677 	}
678 
679 	/*
680 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
681 	 * could panic during 'reboot -f' as the underlying device got already
682 	 * disabled.
683 	 */
684 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
685 		panic("EXT4-fs (device %s): panic forced after error\n",
686 			sb->s_id);
687 	}
688 
689 	if (sb_rdonly(sb) || continue_fs)
690 		return;
691 
692 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
693 	/*
694 	 * Make sure updated value of ->s_mount_flags will be visible before
695 	 * ->s_flags update
696 	 */
697 	smp_wmb();
698 	sb->s_flags |= SB_RDONLY;
699 }
700 
701 static void flush_stashed_error_work(struct work_struct *work)
702 {
703 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
704 						s_error_work);
705 	journal_t *journal = sbi->s_journal;
706 	handle_t *handle;
707 
708 	/*
709 	 * If the journal is still running, we have to write out superblock
710 	 * through the journal to avoid collisions of other journalled sb
711 	 * updates.
712 	 *
713 	 * We use directly jbd2 functions here to avoid recursing back into
714 	 * ext4 error handling code during handling of previous errors.
715 	 */
716 	if (!sb_rdonly(sbi->s_sb) && journal) {
717 		struct buffer_head *sbh = sbi->s_sbh;
718 		handle = jbd2_journal_start(journal, 1);
719 		if (IS_ERR(handle))
720 			goto write_directly;
721 		if (jbd2_journal_get_write_access(handle, sbh)) {
722 			jbd2_journal_stop(handle);
723 			goto write_directly;
724 		}
725 		ext4_update_super(sbi->s_sb);
726 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
727 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
728 				 "superblock detected");
729 			clear_buffer_write_io_error(sbh);
730 			set_buffer_uptodate(sbh);
731 		}
732 
733 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
734 			jbd2_journal_stop(handle);
735 			goto write_directly;
736 		}
737 		jbd2_journal_stop(handle);
738 		ext4_notify_error_sysfs(sbi);
739 		return;
740 	}
741 write_directly:
742 	/*
743 	 * Write through journal failed. Write sb directly to get error info
744 	 * out and hope for the best.
745 	 */
746 	ext4_commit_super(sbi->s_sb);
747 	ext4_notify_error_sysfs(sbi);
748 }
749 
750 #define ext4_error_ratelimit(sb)					\
751 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
752 			     "EXT4-fs error")
753 
754 void __ext4_error(struct super_block *sb, const char *function,
755 		  unsigned int line, bool force_ro, int error, __u64 block,
756 		  const char *fmt, ...)
757 {
758 	struct va_format vaf;
759 	va_list args;
760 
761 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
762 		return;
763 
764 	trace_ext4_error(sb, function, line);
765 	if (ext4_error_ratelimit(sb)) {
766 		va_start(args, fmt);
767 		vaf.fmt = fmt;
768 		vaf.va = &args;
769 		printk(KERN_CRIT
770 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
771 		       sb->s_id, function, line, current->comm, &vaf);
772 		va_end(args);
773 	}
774 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
775 
776 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
777 }
778 
779 void __ext4_error_inode(struct inode *inode, const char *function,
780 			unsigned int line, ext4_fsblk_t block, int error,
781 			const char *fmt, ...)
782 {
783 	va_list args;
784 	struct va_format vaf;
785 
786 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
787 		return;
788 
789 	trace_ext4_error(inode->i_sb, function, line);
790 	if (ext4_error_ratelimit(inode->i_sb)) {
791 		va_start(args, fmt);
792 		vaf.fmt = fmt;
793 		vaf.va = &args;
794 		if (block)
795 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
796 			       "inode #%lu: block %llu: comm %s: %pV\n",
797 			       inode->i_sb->s_id, function, line, inode->i_ino,
798 			       block, current->comm, &vaf);
799 		else
800 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
801 			       "inode #%lu: comm %s: %pV\n",
802 			       inode->i_sb->s_id, function, line, inode->i_ino,
803 			       current->comm, &vaf);
804 		va_end(args);
805 	}
806 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
807 
808 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
809 			  function, line);
810 }
811 
812 void __ext4_error_file(struct file *file, const char *function,
813 		       unsigned int line, ext4_fsblk_t block,
814 		       const char *fmt, ...)
815 {
816 	va_list args;
817 	struct va_format vaf;
818 	struct inode *inode = file_inode(file);
819 	char pathname[80], *path;
820 
821 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
822 		return;
823 
824 	trace_ext4_error(inode->i_sb, function, line);
825 	if (ext4_error_ratelimit(inode->i_sb)) {
826 		path = file_path(file, pathname, sizeof(pathname));
827 		if (IS_ERR(path))
828 			path = "(unknown)";
829 		va_start(args, fmt);
830 		vaf.fmt = fmt;
831 		vaf.va = &args;
832 		if (block)
833 			printk(KERN_CRIT
834 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
835 			       "block %llu: comm %s: path %s: %pV\n",
836 			       inode->i_sb->s_id, function, line, inode->i_ino,
837 			       block, current->comm, path, &vaf);
838 		else
839 			printk(KERN_CRIT
840 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
841 			       "comm %s: path %s: %pV\n",
842 			       inode->i_sb->s_id, function, line, inode->i_ino,
843 			       current->comm, path, &vaf);
844 		va_end(args);
845 	}
846 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
847 
848 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
849 			  function, line);
850 }
851 
852 const char *ext4_decode_error(struct super_block *sb, int errno,
853 			      char nbuf[16])
854 {
855 	char *errstr = NULL;
856 
857 	switch (errno) {
858 	case -EFSCORRUPTED:
859 		errstr = "Corrupt filesystem";
860 		break;
861 	case -EFSBADCRC:
862 		errstr = "Filesystem failed CRC";
863 		break;
864 	case -EIO:
865 		errstr = "IO failure";
866 		break;
867 	case -ENOMEM:
868 		errstr = "Out of memory";
869 		break;
870 	case -EROFS:
871 		if (!sb || (EXT4_SB(sb)->s_journal &&
872 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
873 			errstr = "Journal has aborted";
874 		else
875 			errstr = "Readonly filesystem";
876 		break;
877 	default:
878 		/* If the caller passed in an extra buffer for unknown
879 		 * errors, textualise them now.  Else we just return
880 		 * NULL. */
881 		if (nbuf) {
882 			/* Check for truncated error codes... */
883 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
884 				errstr = nbuf;
885 		}
886 		break;
887 	}
888 
889 	return errstr;
890 }
891 
892 /* __ext4_std_error decodes expected errors from journaling functions
893  * automatically and invokes the appropriate error response.  */
894 
895 void __ext4_std_error(struct super_block *sb, const char *function,
896 		      unsigned int line, int errno)
897 {
898 	char nbuf[16];
899 	const char *errstr;
900 
901 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
902 		return;
903 
904 	/* Special case: if the error is EROFS, and we're not already
905 	 * inside a transaction, then there's really no point in logging
906 	 * an error. */
907 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
908 		return;
909 
910 	if (ext4_error_ratelimit(sb)) {
911 		errstr = ext4_decode_error(sb, errno, nbuf);
912 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
913 		       sb->s_id, function, line, errstr);
914 	}
915 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
916 
917 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
918 }
919 
920 void __ext4_msg(struct super_block *sb,
921 		const char *prefix, const char *fmt, ...)
922 {
923 	struct va_format vaf;
924 	va_list args;
925 
926 	if (sb) {
927 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
928 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
929 				  "EXT4-fs"))
930 			return;
931 	}
932 
933 	va_start(args, fmt);
934 	vaf.fmt = fmt;
935 	vaf.va = &args;
936 	if (sb)
937 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
938 	else
939 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
940 	va_end(args);
941 }
942 
943 static int ext4_warning_ratelimit(struct super_block *sb)
944 {
945 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
946 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
947 			    "EXT4-fs warning");
948 }
949 
950 void __ext4_warning(struct super_block *sb, const char *function,
951 		    unsigned int line, const char *fmt, ...)
952 {
953 	struct va_format vaf;
954 	va_list args;
955 
956 	if (!ext4_warning_ratelimit(sb))
957 		return;
958 
959 	va_start(args, fmt);
960 	vaf.fmt = fmt;
961 	vaf.va = &args;
962 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
963 	       sb->s_id, function, line, &vaf);
964 	va_end(args);
965 }
966 
967 void __ext4_warning_inode(const struct inode *inode, const char *function,
968 			  unsigned int line, const char *fmt, ...)
969 {
970 	struct va_format vaf;
971 	va_list args;
972 
973 	if (!ext4_warning_ratelimit(inode->i_sb))
974 		return;
975 
976 	va_start(args, fmt);
977 	vaf.fmt = fmt;
978 	vaf.va = &args;
979 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
980 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
981 	       function, line, inode->i_ino, current->comm, &vaf);
982 	va_end(args);
983 }
984 
985 void __ext4_grp_locked_error(const char *function, unsigned int line,
986 			     struct super_block *sb, ext4_group_t grp,
987 			     unsigned long ino, ext4_fsblk_t block,
988 			     const char *fmt, ...)
989 __releases(bitlock)
990 __acquires(bitlock)
991 {
992 	struct va_format vaf;
993 	va_list args;
994 
995 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
996 		return;
997 
998 	trace_ext4_error(sb, function, line);
999 	if (ext4_error_ratelimit(sb)) {
1000 		va_start(args, fmt);
1001 		vaf.fmt = fmt;
1002 		vaf.va = &args;
1003 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1004 		       sb->s_id, function, line, grp);
1005 		if (ino)
1006 			printk(KERN_CONT "inode %lu: ", ino);
1007 		if (block)
1008 			printk(KERN_CONT "block %llu:",
1009 			       (unsigned long long) block);
1010 		printk(KERN_CONT "%pV\n", &vaf);
1011 		va_end(args);
1012 	}
1013 
1014 	if (test_opt(sb, ERRORS_CONT)) {
1015 		if (test_opt(sb, WARN_ON_ERROR))
1016 			WARN_ON_ONCE(1);
1017 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1018 		if (!bdev_read_only(sb->s_bdev)) {
1019 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1020 					line);
1021 			schedule_work(&EXT4_SB(sb)->s_error_work);
1022 		}
1023 		return;
1024 	}
1025 	ext4_unlock_group(sb, grp);
1026 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1027 	/*
1028 	 * We only get here in the ERRORS_RO case; relocking the group
1029 	 * may be dangerous, but nothing bad will happen since the
1030 	 * filesystem will have already been marked read/only and the
1031 	 * journal has been aborted.  We return 1 as a hint to callers
1032 	 * who might what to use the return value from
1033 	 * ext4_grp_locked_error() to distinguish between the
1034 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1035 	 * aggressively from the ext4 function in question, with a
1036 	 * more appropriate error code.
1037 	 */
1038 	ext4_lock_group(sb, grp);
1039 	return;
1040 }
1041 
1042 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1043 				     ext4_group_t group,
1044 				     unsigned int flags)
1045 {
1046 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1047 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1048 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1049 	int ret;
1050 
1051 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1052 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1053 					    &grp->bb_state);
1054 		if (!ret)
1055 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1056 					   grp->bb_free);
1057 	}
1058 
1059 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1060 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1061 					    &grp->bb_state);
1062 		if (!ret && gdp) {
1063 			int count;
1064 
1065 			count = ext4_free_inodes_count(sb, gdp);
1066 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1067 					   count);
1068 		}
1069 	}
1070 }
1071 
1072 void ext4_update_dynamic_rev(struct super_block *sb)
1073 {
1074 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1075 
1076 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1077 		return;
1078 
1079 	ext4_warning(sb,
1080 		     "updating to rev %d because of new feature flag, "
1081 		     "running e2fsck is recommended",
1082 		     EXT4_DYNAMIC_REV);
1083 
1084 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1085 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1086 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1087 	/* leave es->s_feature_*compat flags alone */
1088 	/* es->s_uuid will be set by e2fsck if empty */
1089 
1090 	/*
1091 	 * The rest of the superblock fields should be zero, and if not it
1092 	 * means they are likely already in use, so leave them alone.  We
1093 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1094 	 */
1095 }
1096 
1097 /*
1098  * Open the external journal device
1099  */
1100 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1101 {
1102 	struct block_device *bdev;
1103 
1104 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1105 	if (IS_ERR(bdev))
1106 		goto fail;
1107 	return bdev;
1108 
1109 fail:
1110 	ext4_msg(sb, KERN_ERR,
1111 		 "failed to open journal device unknown-block(%u,%u) %ld",
1112 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1113 	return NULL;
1114 }
1115 
1116 /*
1117  * Release the journal device
1118  */
1119 static void ext4_blkdev_put(struct block_device *bdev)
1120 {
1121 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1122 }
1123 
1124 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1125 {
1126 	struct block_device *bdev;
1127 	bdev = sbi->s_journal_bdev;
1128 	if (bdev) {
1129 		ext4_blkdev_put(bdev);
1130 		sbi->s_journal_bdev = NULL;
1131 	}
1132 }
1133 
1134 static inline struct inode *orphan_list_entry(struct list_head *l)
1135 {
1136 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1137 }
1138 
1139 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1140 {
1141 	struct list_head *l;
1142 
1143 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1144 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1145 
1146 	printk(KERN_ERR "sb_info orphan list:\n");
1147 	list_for_each(l, &sbi->s_orphan) {
1148 		struct inode *inode = orphan_list_entry(l);
1149 		printk(KERN_ERR "  "
1150 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1151 		       inode->i_sb->s_id, inode->i_ino, inode,
1152 		       inode->i_mode, inode->i_nlink,
1153 		       NEXT_ORPHAN(inode));
1154 	}
1155 }
1156 
1157 #ifdef CONFIG_QUOTA
1158 static int ext4_quota_off(struct super_block *sb, int type);
1159 
1160 static inline void ext4_quota_off_umount(struct super_block *sb)
1161 {
1162 	int type;
1163 
1164 	/* Use our quota_off function to clear inode flags etc. */
1165 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1166 		ext4_quota_off(sb, type);
1167 }
1168 
1169 /*
1170  * This is a helper function which is used in the mount/remount
1171  * codepaths (which holds s_umount) to fetch the quota file name.
1172  */
1173 static inline char *get_qf_name(struct super_block *sb,
1174 				struct ext4_sb_info *sbi,
1175 				int type)
1176 {
1177 	return rcu_dereference_protected(sbi->s_qf_names[type],
1178 					 lockdep_is_held(&sb->s_umount));
1179 }
1180 #else
1181 static inline void ext4_quota_off_umount(struct super_block *sb)
1182 {
1183 }
1184 #endif
1185 
1186 static void ext4_put_super(struct super_block *sb)
1187 {
1188 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 	struct ext4_super_block *es = sbi->s_es;
1190 	struct buffer_head **group_desc;
1191 	struct flex_groups **flex_groups;
1192 	int aborted = 0;
1193 	int i, err;
1194 
1195 	/*
1196 	 * Unregister sysfs before destroying jbd2 journal.
1197 	 * Since we could still access attr_journal_task attribute via sysfs
1198 	 * path which could have sbi->s_journal->j_task as NULL
1199 	 * Unregister sysfs before flush sbi->s_error_work.
1200 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1201 	 * read metadata verify failed then will queue error work.
1202 	 * flush_stashed_error_work will call start_this_handle may trigger
1203 	 * BUG_ON.
1204 	 */
1205 	ext4_unregister_sysfs(sb);
1206 
1207 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1208 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1209 			 &sb->s_uuid);
1210 
1211 	ext4_unregister_li_request(sb);
1212 	ext4_quota_off_umount(sb);
1213 
1214 	flush_work(&sbi->s_error_work);
1215 	destroy_workqueue(sbi->rsv_conversion_wq);
1216 	ext4_release_orphan_info(sb);
1217 
1218 	if (sbi->s_journal) {
1219 		aborted = is_journal_aborted(sbi->s_journal);
1220 		err = jbd2_journal_destroy(sbi->s_journal);
1221 		sbi->s_journal = NULL;
1222 		if ((err < 0) && !aborted) {
1223 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1224 		}
1225 	}
1226 
1227 	ext4_es_unregister_shrinker(sbi);
1228 	timer_shutdown_sync(&sbi->s_err_report);
1229 	ext4_release_system_zone(sb);
1230 	ext4_mb_release(sb);
1231 	ext4_ext_release(sb);
1232 
1233 	if (!sb_rdonly(sb) && !aborted) {
1234 		ext4_clear_feature_journal_needs_recovery(sb);
1235 		ext4_clear_feature_orphan_present(sb);
1236 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 	}
1238 	if (!sb_rdonly(sb))
1239 		ext4_commit_super(sb);
1240 
1241 	rcu_read_lock();
1242 	group_desc = rcu_dereference(sbi->s_group_desc);
1243 	for (i = 0; i < sbi->s_gdb_count; i++)
1244 		brelse(group_desc[i]);
1245 	kvfree(group_desc);
1246 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1247 	if (flex_groups) {
1248 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249 			kvfree(flex_groups[i]);
1250 		kvfree(flex_groups);
1251 	}
1252 	rcu_read_unlock();
1253 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255 	percpu_counter_destroy(&sbi->s_dirs_counter);
1256 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259 #ifdef CONFIG_QUOTA
1260 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261 		kfree(get_qf_name(sb, sbi, i));
1262 #endif
1263 
1264 	/* Debugging code just in case the in-memory inode orphan list
1265 	 * isn't empty.  The on-disk one can be non-empty if we've
1266 	 * detected an error and taken the fs readonly, but the
1267 	 * in-memory list had better be clean by this point. */
1268 	if (!list_empty(&sbi->s_orphan))
1269 		dump_orphan_list(sb, sbi);
1270 	ASSERT(list_empty(&sbi->s_orphan));
1271 
1272 	sync_blockdev(sb->s_bdev);
1273 	invalidate_bdev(sb->s_bdev);
1274 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275 		/*
1276 		 * Invalidate the journal device's buffers.  We don't want them
1277 		 * floating about in memory - the physical journal device may
1278 		 * hotswapped, and it breaks the `ro-after' testing code.
1279 		 */
1280 		sync_blockdev(sbi->s_journal_bdev);
1281 		invalidate_bdev(sbi->s_journal_bdev);
1282 		ext4_blkdev_remove(sbi);
1283 	}
1284 
1285 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286 	sbi->s_ea_inode_cache = NULL;
1287 
1288 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289 	sbi->s_ea_block_cache = NULL;
1290 
1291 	ext4_stop_mmpd(sbi);
1292 
1293 	brelse(sbi->s_sbh);
1294 	sb->s_fs_info = NULL;
1295 	/*
1296 	 * Now that we are completely done shutting down the
1297 	 * superblock, we need to actually destroy the kobject.
1298 	 */
1299 	kobject_put(&sbi->s_kobj);
1300 	wait_for_completion(&sbi->s_kobj_unregister);
1301 	if (sbi->s_chksum_driver)
1302 		crypto_free_shash(sbi->s_chksum_driver);
1303 	kfree(sbi->s_blockgroup_lock);
1304 	fs_put_dax(sbi->s_daxdev, NULL);
1305 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306 #if IS_ENABLED(CONFIG_UNICODE)
1307 	utf8_unload(sb->s_encoding);
1308 #endif
1309 	kfree(sbi);
1310 }
1311 
1312 static struct kmem_cache *ext4_inode_cachep;
1313 
1314 /*
1315  * Called inside transaction, so use GFP_NOFS
1316  */
1317 static struct inode *ext4_alloc_inode(struct super_block *sb)
1318 {
1319 	struct ext4_inode_info *ei;
1320 
1321 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322 	if (!ei)
1323 		return NULL;
1324 
1325 	inode_set_iversion(&ei->vfs_inode, 1);
1326 	ei->i_flags = 0;
1327 	spin_lock_init(&ei->i_raw_lock);
1328 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1329 	atomic_set(&ei->i_prealloc_active, 0);
1330 	spin_lock_init(&ei->i_prealloc_lock);
1331 	ext4_es_init_tree(&ei->i_es_tree);
1332 	rwlock_init(&ei->i_es_lock);
1333 	INIT_LIST_HEAD(&ei->i_es_list);
1334 	ei->i_es_all_nr = 0;
1335 	ei->i_es_shk_nr = 0;
1336 	ei->i_es_shrink_lblk = 0;
1337 	ei->i_reserved_data_blocks = 0;
1338 	spin_lock_init(&(ei->i_block_reservation_lock));
1339 	ext4_init_pending_tree(&ei->i_pending_tree);
1340 #ifdef CONFIG_QUOTA
1341 	ei->i_reserved_quota = 0;
1342 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343 #endif
1344 	ei->jinode = NULL;
1345 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346 	spin_lock_init(&ei->i_completed_io_lock);
1347 	ei->i_sync_tid = 0;
1348 	ei->i_datasync_tid = 0;
1349 	atomic_set(&ei->i_unwritten, 0);
1350 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351 	ext4_fc_init_inode(&ei->vfs_inode);
1352 	mutex_init(&ei->i_fc_lock);
1353 	return &ei->vfs_inode;
1354 }
1355 
1356 static int ext4_drop_inode(struct inode *inode)
1357 {
1358 	int drop = generic_drop_inode(inode);
1359 
1360 	if (!drop)
1361 		drop = fscrypt_drop_inode(inode);
1362 
1363 	trace_ext4_drop_inode(inode, drop);
1364 	return drop;
1365 }
1366 
1367 static void ext4_free_in_core_inode(struct inode *inode)
1368 {
1369 	fscrypt_free_inode(inode);
1370 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371 		pr_warn("%s: inode %ld still in fc list",
1372 			__func__, inode->i_ino);
1373 	}
1374 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375 }
1376 
1377 static void ext4_destroy_inode(struct inode *inode)
1378 {
1379 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380 		ext4_msg(inode->i_sb, KERN_ERR,
1381 			 "Inode %lu (%p): orphan list check failed!",
1382 			 inode->i_ino, EXT4_I(inode));
1383 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1385 				true);
1386 		dump_stack();
1387 	}
1388 
1389 	if (EXT4_I(inode)->i_reserved_data_blocks)
1390 		ext4_msg(inode->i_sb, KERN_ERR,
1391 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392 			 inode->i_ino, EXT4_I(inode),
1393 			 EXT4_I(inode)->i_reserved_data_blocks);
1394 }
1395 
1396 static void init_once(void *foo)
1397 {
1398 	struct ext4_inode_info *ei = foo;
1399 
1400 	INIT_LIST_HEAD(&ei->i_orphan);
1401 	init_rwsem(&ei->xattr_sem);
1402 	init_rwsem(&ei->i_data_sem);
1403 	inode_init_once(&ei->vfs_inode);
1404 	ext4_fc_init_inode(&ei->vfs_inode);
1405 }
1406 
1407 static int __init init_inodecache(void)
1408 {
1409 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410 				sizeof(struct ext4_inode_info), 0,
1411 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412 					SLAB_ACCOUNT),
1413 				offsetof(struct ext4_inode_info, i_data),
1414 				sizeof_field(struct ext4_inode_info, i_data),
1415 				init_once);
1416 	if (ext4_inode_cachep == NULL)
1417 		return -ENOMEM;
1418 	return 0;
1419 }
1420 
1421 static void destroy_inodecache(void)
1422 {
1423 	/*
1424 	 * Make sure all delayed rcu free inodes are flushed before we
1425 	 * destroy cache.
1426 	 */
1427 	rcu_barrier();
1428 	kmem_cache_destroy(ext4_inode_cachep);
1429 }
1430 
1431 void ext4_clear_inode(struct inode *inode)
1432 {
1433 	ext4_fc_del(inode);
1434 	invalidate_inode_buffers(inode);
1435 	clear_inode(inode);
1436 	ext4_discard_preallocations(inode, 0);
1437 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438 	dquot_drop(inode);
1439 	if (EXT4_I(inode)->jinode) {
1440 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441 					       EXT4_I(inode)->jinode);
1442 		jbd2_free_inode(EXT4_I(inode)->jinode);
1443 		EXT4_I(inode)->jinode = NULL;
1444 	}
1445 	fscrypt_put_encryption_info(inode);
1446 	fsverity_cleanup_inode(inode);
1447 }
1448 
1449 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450 					u64 ino, u32 generation)
1451 {
1452 	struct inode *inode;
1453 
1454 	/*
1455 	 * Currently we don't know the generation for parent directory, so
1456 	 * a generation of 0 means "accept any"
1457 	 */
1458 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459 	if (IS_ERR(inode))
1460 		return ERR_CAST(inode);
1461 	if (generation && inode->i_generation != generation) {
1462 		iput(inode);
1463 		return ERR_PTR(-ESTALE);
1464 	}
1465 
1466 	return inode;
1467 }
1468 
1469 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470 					int fh_len, int fh_type)
1471 {
1472 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473 				    ext4_nfs_get_inode);
1474 }
1475 
1476 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477 					int fh_len, int fh_type)
1478 {
1479 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480 				    ext4_nfs_get_inode);
1481 }
1482 
1483 static int ext4_nfs_commit_metadata(struct inode *inode)
1484 {
1485 	struct writeback_control wbc = {
1486 		.sync_mode = WB_SYNC_ALL
1487 	};
1488 
1489 	trace_ext4_nfs_commit_metadata(inode);
1490 	return ext4_write_inode(inode, &wbc);
1491 }
1492 
1493 #ifdef CONFIG_QUOTA
1494 static const char * const quotatypes[] = INITQFNAMES;
1495 #define QTYPE2NAME(t) (quotatypes[t])
1496 
1497 static int ext4_write_dquot(struct dquot *dquot);
1498 static int ext4_acquire_dquot(struct dquot *dquot);
1499 static int ext4_release_dquot(struct dquot *dquot);
1500 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501 static int ext4_write_info(struct super_block *sb, int type);
1502 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503 			 const struct path *path);
1504 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505 			       size_t len, loff_t off);
1506 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507 				const char *data, size_t len, loff_t off);
1508 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509 			     unsigned int flags);
1510 
1511 static struct dquot **ext4_get_dquots(struct inode *inode)
1512 {
1513 	return EXT4_I(inode)->i_dquot;
1514 }
1515 
1516 static const struct dquot_operations ext4_quota_operations = {
1517 	.get_reserved_space	= ext4_get_reserved_space,
1518 	.write_dquot		= ext4_write_dquot,
1519 	.acquire_dquot		= ext4_acquire_dquot,
1520 	.release_dquot		= ext4_release_dquot,
1521 	.mark_dirty		= ext4_mark_dquot_dirty,
1522 	.write_info		= ext4_write_info,
1523 	.alloc_dquot		= dquot_alloc,
1524 	.destroy_dquot		= dquot_destroy,
1525 	.get_projid		= ext4_get_projid,
1526 	.get_inode_usage	= ext4_get_inode_usage,
1527 	.get_next_id		= dquot_get_next_id,
1528 };
1529 
1530 static const struct quotactl_ops ext4_qctl_operations = {
1531 	.quota_on	= ext4_quota_on,
1532 	.quota_off	= ext4_quota_off,
1533 	.quota_sync	= dquot_quota_sync,
1534 	.get_state	= dquot_get_state,
1535 	.set_info	= dquot_set_dqinfo,
1536 	.get_dqblk	= dquot_get_dqblk,
1537 	.set_dqblk	= dquot_set_dqblk,
1538 	.get_nextdqblk	= dquot_get_next_dqblk,
1539 };
1540 #endif
1541 
1542 static const struct super_operations ext4_sops = {
1543 	.alloc_inode	= ext4_alloc_inode,
1544 	.free_inode	= ext4_free_in_core_inode,
1545 	.destroy_inode	= ext4_destroy_inode,
1546 	.write_inode	= ext4_write_inode,
1547 	.dirty_inode	= ext4_dirty_inode,
1548 	.drop_inode	= ext4_drop_inode,
1549 	.evict_inode	= ext4_evict_inode,
1550 	.put_super	= ext4_put_super,
1551 	.sync_fs	= ext4_sync_fs,
1552 	.freeze_fs	= ext4_freeze,
1553 	.unfreeze_fs	= ext4_unfreeze,
1554 	.statfs		= ext4_statfs,
1555 	.show_options	= ext4_show_options,
1556 #ifdef CONFIG_QUOTA
1557 	.quota_read	= ext4_quota_read,
1558 	.quota_write	= ext4_quota_write,
1559 	.get_dquots	= ext4_get_dquots,
1560 #endif
1561 };
1562 
1563 static const struct export_operations ext4_export_ops = {
1564 	.fh_to_dentry = ext4_fh_to_dentry,
1565 	.fh_to_parent = ext4_fh_to_parent,
1566 	.get_parent = ext4_get_parent,
1567 	.commit_metadata = ext4_nfs_commit_metadata,
1568 };
1569 
1570 enum {
1571 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572 	Opt_resgid, Opt_resuid, Opt_sb,
1573 	Opt_nouid32, Opt_debug, Opt_removed,
1574 	Opt_user_xattr, Opt_acl,
1575 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580 	Opt_inlinecrypt,
1581 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1589 	Opt_dioread_nolock, Opt_dioread_lock,
1590 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594 #ifdef CONFIG_EXT4_DEBUG
1595 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1596 #endif
1597 };
1598 
1599 static const struct constant_table ext4_param_errors[] = {
1600 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1601 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1602 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1603 	{}
1604 };
1605 
1606 static const struct constant_table ext4_param_data[] = {
1607 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1608 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1609 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1610 	{}
1611 };
1612 
1613 static const struct constant_table ext4_param_data_err[] = {
1614 	{"abort",	Opt_data_err_abort},
1615 	{"ignore",	Opt_data_err_ignore},
1616 	{}
1617 };
1618 
1619 static const struct constant_table ext4_param_jqfmt[] = {
1620 	{"vfsold",	QFMT_VFS_OLD},
1621 	{"vfsv0",	QFMT_VFS_V0},
1622 	{"vfsv1",	QFMT_VFS_V1},
1623 	{}
1624 };
1625 
1626 static const struct constant_table ext4_param_dax[] = {
1627 	{"always",	Opt_dax_always},
1628 	{"inode",	Opt_dax_inode},
1629 	{"never",	Opt_dax_never},
1630 	{}
1631 };
1632 
1633 /* String parameter that allows empty argument */
1634 #define fsparam_string_empty(NAME, OPT) \
1635 	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1636 
1637 /*
1638  * Mount option specification
1639  * We don't use fsparam_flag_no because of the way we set the
1640  * options and the way we show them in _ext4_show_options(). To
1641  * keep the changes to a minimum, let's keep the negative options
1642  * separate for now.
1643  */
1644 static const struct fs_parameter_spec ext4_param_specs[] = {
1645 	fsparam_flag	("bsddf",		Opt_bsd_df),
1646 	fsparam_flag	("minixdf",		Opt_minix_df),
1647 	fsparam_flag	("grpid",		Opt_grpid),
1648 	fsparam_flag	("bsdgroups",		Opt_grpid),
1649 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1650 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1651 	fsparam_u32	("resgid",		Opt_resgid),
1652 	fsparam_u32	("resuid",		Opt_resuid),
1653 	fsparam_u32	("sb",			Opt_sb),
1654 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1655 	fsparam_flag	("nouid32",		Opt_nouid32),
1656 	fsparam_flag	("debug",		Opt_debug),
1657 	fsparam_flag	("oldalloc",		Opt_removed),
1658 	fsparam_flag	("orlov",		Opt_removed),
1659 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1660 	fsparam_flag	("acl",			Opt_acl),
1661 	fsparam_flag	("norecovery",		Opt_noload),
1662 	fsparam_flag	("noload",		Opt_noload),
1663 	fsparam_flag	("bh",			Opt_removed),
1664 	fsparam_flag	("nobh",		Opt_removed),
1665 	fsparam_u32	("commit",		Opt_commit),
1666 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1667 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1668 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1669 	fsparam_bdev	("journal_path",	Opt_journal_path),
1670 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1671 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1672 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1673 	fsparam_flag	("abort",		Opt_abort),
1674 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1675 	fsparam_enum	("data_err",		Opt_data_err,
1676 						ext4_param_data_err),
1677 	fsparam_string_empty
1678 			("usrjquota",		Opt_usrjquota),
1679 	fsparam_string_empty
1680 			("grpjquota",		Opt_grpjquota),
1681 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1682 	fsparam_flag	("grpquota",		Opt_grpquota),
1683 	fsparam_flag	("quota",		Opt_quota),
1684 	fsparam_flag	("noquota",		Opt_noquota),
1685 	fsparam_flag	("usrquota",		Opt_usrquota),
1686 	fsparam_flag	("prjquota",		Opt_prjquota),
1687 	fsparam_flag	("barrier",		Opt_barrier),
1688 	fsparam_u32	("barrier",		Opt_barrier),
1689 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1690 	fsparam_flag	("i_version",		Opt_removed),
1691 	fsparam_flag	("dax",			Opt_dax),
1692 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1693 	fsparam_u32	("stripe",		Opt_stripe),
1694 	fsparam_flag	("delalloc",		Opt_delalloc),
1695 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1696 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1697 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1698 	fsparam_u32	("debug_want_extra_isize",
1699 						Opt_debug_want_extra_isize),
1700 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1701 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1702 	fsparam_flag	("block_validity",	Opt_block_validity),
1703 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1704 	fsparam_u32	("inode_readahead_blks",
1705 						Opt_inode_readahead_blks),
1706 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1707 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1708 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1709 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1710 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1711 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1712 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1713 	fsparam_flag	("discard",		Opt_discard),
1714 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1715 	fsparam_u32	("init_itable",		Opt_init_itable),
1716 	fsparam_flag	("init_itable",		Opt_init_itable),
1717 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1718 #ifdef CONFIG_EXT4_DEBUG
1719 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1720 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1721 #endif
1722 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1723 	fsparam_flag	("test_dummy_encryption",
1724 						Opt_test_dummy_encryption),
1725 	fsparam_string	("test_dummy_encryption",
1726 						Opt_test_dummy_encryption),
1727 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1728 	fsparam_flag	("nombcache",		Opt_nombcache),
1729 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1730 	fsparam_flag	("prefetch_block_bitmaps",
1731 						Opt_removed),
1732 	fsparam_flag	("no_prefetch_block_bitmaps",
1733 						Opt_no_prefetch_block_bitmaps),
1734 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1735 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1736 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1737 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1738 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1739 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1740 	{}
1741 };
1742 
1743 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1744 
1745 #define MOPT_SET	0x0001
1746 #define MOPT_CLEAR	0x0002
1747 #define MOPT_NOSUPPORT	0x0004
1748 #define MOPT_EXPLICIT	0x0008
1749 #ifdef CONFIG_QUOTA
1750 #define MOPT_Q		0
1751 #define MOPT_QFMT	0x0010
1752 #else
1753 #define MOPT_Q		MOPT_NOSUPPORT
1754 #define MOPT_QFMT	MOPT_NOSUPPORT
1755 #endif
1756 #define MOPT_NO_EXT2	0x0020
1757 #define MOPT_NO_EXT3	0x0040
1758 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759 #define MOPT_SKIP	0x0080
1760 #define	MOPT_2		0x0100
1761 
1762 static const struct mount_opts {
1763 	int	token;
1764 	int	mount_opt;
1765 	int	flags;
1766 } ext4_mount_opts[] = {
1767 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774 	 MOPT_EXT4_ONLY | MOPT_SET},
1775 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785 	{Opt_commit, 0, MOPT_NO_EXT2},
1786 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1792 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1795 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1802 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1803 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804 	{Opt_data, 0, MOPT_NO_EXT2},
1805 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1806 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1807 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1808 #else
1809 	{Opt_acl, 0, MOPT_NOSUPPORT},
1810 #endif
1811 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1813 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815 							MOPT_SET | MOPT_Q},
1816 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817 							MOPT_SET | MOPT_Q},
1818 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819 							MOPT_SET | MOPT_Q},
1820 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822 							MOPT_CLEAR | MOPT_Q},
1823 	{Opt_usrjquota, 0, MOPT_Q},
1824 	{Opt_grpjquota, 0, MOPT_Q},
1825 	{Opt_jqfmt, 0, MOPT_QFMT},
1826 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828 	 MOPT_SET},
1829 #ifdef CONFIG_EXT4_DEBUG
1830 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832 #endif
1833 	{Opt_err, 0, 0}
1834 };
1835 
1836 #if IS_ENABLED(CONFIG_UNICODE)
1837 static const struct ext4_sb_encodings {
1838 	__u16 magic;
1839 	char *name;
1840 	unsigned int version;
1841 } ext4_sb_encoding_map[] = {
1842 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843 };
1844 
1845 static const struct ext4_sb_encodings *
1846 ext4_sb_read_encoding(const struct ext4_super_block *es)
1847 {
1848 	__u16 magic = le16_to_cpu(es->s_encoding);
1849 	int i;
1850 
1851 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852 		if (magic == ext4_sb_encoding_map[i].magic)
1853 			return &ext4_sb_encoding_map[i];
1854 
1855 	return NULL;
1856 }
1857 #endif
1858 
1859 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1860 #define EXT4_SPEC_JQFMT				(1 <<  1)
1861 #define EXT4_SPEC_DATAJ				(1 <<  2)
1862 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1863 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1864 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1865 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1866 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1867 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1868 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1869 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1870 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1871 #define EXT4_SPEC_s_stripe			(1 << 13)
1872 #define EXT4_SPEC_s_resuid			(1 << 14)
1873 #define EXT4_SPEC_s_resgid			(1 << 15)
1874 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1875 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1876 #define EXT4_SPEC_s_sb_block			(1 << 18)
1877 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1878 
1879 struct ext4_fs_context {
1880 	char		*s_qf_names[EXT4_MAXQUOTAS];
1881 	struct fscrypt_dummy_policy dummy_enc_policy;
1882 	int		s_jquota_fmt;	/* Format of quota to use */
1883 #ifdef CONFIG_EXT4_DEBUG
1884 	int s_fc_debug_max_replay;
1885 #endif
1886 	unsigned short	qname_spec;
1887 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1888 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1889 	unsigned long	journal_devnum;
1890 	unsigned long	s_commit_interval;
1891 	unsigned long	s_stripe;
1892 	unsigned int	s_inode_readahead_blks;
1893 	unsigned int	s_want_extra_isize;
1894 	unsigned int	s_li_wait_mult;
1895 	unsigned int	s_max_dir_size_kb;
1896 	unsigned int	journal_ioprio;
1897 	unsigned int	vals_s_mount_opt;
1898 	unsigned int	mask_s_mount_opt;
1899 	unsigned int	vals_s_mount_opt2;
1900 	unsigned int	mask_s_mount_opt2;
1901 	unsigned long	vals_s_mount_flags;
1902 	unsigned long	mask_s_mount_flags;
1903 	unsigned int	opt_flags;	/* MOPT flags */
1904 	unsigned int	spec;
1905 	u32		s_max_batch_time;
1906 	u32		s_min_batch_time;
1907 	kuid_t		s_resuid;
1908 	kgid_t		s_resgid;
1909 	ext4_fsblk_t	s_sb_block;
1910 };
1911 
1912 static void ext4_fc_free(struct fs_context *fc)
1913 {
1914 	struct ext4_fs_context *ctx = fc->fs_private;
1915 	int i;
1916 
1917 	if (!ctx)
1918 		return;
1919 
1920 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921 		kfree(ctx->s_qf_names[i]);
1922 
1923 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924 	kfree(ctx);
1925 }
1926 
1927 int ext4_init_fs_context(struct fs_context *fc)
1928 {
1929 	struct ext4_fs_context *ctx;
1930 
1931 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932 	if (!ctx)
1933 		return -ENOMEM;
1934 
1935 	fc->fs_private = ctx;
1936 	fc->ops = &ext4_context_ops;
1937 
1938 	return 0;
1939 }
1940 
1941 #ifdef CONFIG_QUOTA
1942 /*
1943  * Note the name of the specified quota file.
1944  */
1945 static int note_qf_name(struct fs_context *fc, int qtype,
1946 		       struct fs_parameter *param)
1947 {
1948 	struct ext4_fs_context *ctx = fc->fs_private;
1949 	char *qname;
1950 
1951 	if (param->size < 1) {
1952 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953 		return -EINVAL;
1954 	}
1955 	if (strchr(param->string, '/')) {
1956 		ext4_msg(NULL, KERN_ERR,
1957 			 "quotafile must be on filesystem root");
1958 		return -EINVAL;
1959 	}
1960 	if (ctx->s_qf_names[qtype]) {
1961 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962 			ext4_msg(NULL, KERN_ERR,
1963 				 "%s quota file already specified",
1964 				 QTYPE2NAME(qtype));
1965 			return -EINVAL;
1966 		}
1967 		return 0;
1968 	}
1969 
1970 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971 	if (!qname) {
1972 		ext4_msg(NULL, KERN_ERR,
1973 			 "Not enough memory for storing quotafile name");
1974 		return -ENOMEM;
1975 	}
1976 	ctx->s_qf_names[qtype] = qname;
1977 	ctx->qname_spec |= 1 << qtype;
1978 	ctx->spec |= EXT4_SPEC_JQUOTA;
1979 	return 0;
1980 }
1981 
1982 /*
1983  * Clear the name of the specified quota file.
1984  */
1985 static int unnote_qf_name(struct fs_context *fc, int qtype)
1986 {
1987 	struct ext4_fs_context *ctx = fc->fs_private;
1988 
1989 	if (ctx->s_qf_names[qtype])
1990 		kfree(ctx->s_qf_names[qtype]);
1991 
1992 	ctx->s_qf_names[qtype] = NULL;
1993 	ctx->qname_spec |= 1 << qtype;
1994 	ctx->spec |= EXT4_SPEC_JQUOTA;
1995 	return 0;
1996 }
1997 #endif
1998 
1999 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000 					    struct ext4_fs_context *ctx)
2001 {
2002 	int err;
2003 
2004 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005 		ext4_msg(NULL, KERN_WARNING,
2006 			 "test_dummy_encryption option not supported");
2007 		return -EINVAL;
2008 	}
2009 	err = fscrypt_parse_test_dummy_encryption(param,
2010 						  &ctx->dummy_enc_policy);
2011 	if (err == -EINVAL) {
2012 		ext4_msg(NULL, KERN_WARNING,
2013 			 "Value of option \"%s\" is unrecognized", param->key);
2014 	} else if (err == -EEXIST) {
2015 		ext4_msg(NULL, KERN_WARNING,
2016 			 "Conflicting test_dummy_encryption options");
2017 		return -EINVAL;
2018 	}
2019 	return err;
2020 }
2021 
2022 #define EXT4_SET_CTX(name)						\
2023 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2024 				  unsigned long flag)			\
2025 {									\
2026 	ctx->mask_s_##name |= flag;					\
2027 	ctx->vals_s_##name |= flag;					\
2028 }
2029 
2030 #define EXT4_CLEAR_CTX(name)						\
2031 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2032 				    unsigned long flag)			\
2033 {									\
2034 	ctx->mask_s_##name |= flag;					\
2035 	ctx->vals_s_##name &= ~flag;					\
2036 }
2037 
2038 #define EXT4_TEST_CTX(name)						\
2039 static inline unsigned long						\
2040 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2041 {									\
2042 	return (ctx->vals_s_##name & flag);				\
2043 }
2044 
2045 EXT4_SET_CTX(flags); /* set only */
2046 EXT4_SET_CTX(mount_opt);
2047 EXT4_CLEAR_CTX(mount_opt);
2048 EXT4_TEST_CTX(mount_opt);
2049 EXT4_SET_CTX(mount_opt2);
2050 EXT4_CLEAR_CTX(mount_opt2);
2051 EXT4_TEST_CTX(mount_opt2);
2052 
2053 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054 {
2055 	set_bit(bit, &ctx->mask_s_mount_flags);
2056 	set_bit(bit, &ctx->vals_s_mount_flags);
2057 }
2058 
2059 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060 {
2061 	struct ext4_fs_context *ctx = fc->fs_private;
2062 	struct fs_parse_result result;
2063 	const struct mount_opts *m;
2064 	int is_remount;
2065 	kuid_t uid;
2066 	kgid_t gid;
2067 	int token;
2068 
2069 	token = fs_parse(fc, ext4_param_specs, param, &result);
2070 	if (token < 0)
2071 		return token;
2072 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2073 
2074 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075 		if (token == m->token)
2076 			break;
2077 
2078 	ctx->opt_flags |= m->flags;
2079 
2080 	if (m->flags & MOPT_EXPLICIT) {
2081 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084 			ctx_set_mount_opt2(ctx,
2085 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086 		} else
2087 			return -EINVAL;
2088 	}
2089 
2090 	if (m->flags & MOPT_NOSUPPORT) {
2091 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092 			 param->key);
2093 		return 0;
2094 	}
2095 
2096 	switch (token) {
2097 #ifdef CONFIG_QUOTA
2098 	case Opt_usrjquota:
2099 		if (!*param->string)
2100 			return unnote_qf_name(fc, USRQUOTA);
2101 		else
2102 			return note_qf_name(fc, USRQUOTA, param);
2103 	case Opt_grpjquota:
2104 		if (!*param->string)
2105 			return unnote_qf_name(fc, GRPQUOTA);
2106 		else
2107 			return note_qf_name(fc, GRPQUOTA, param);
2108 #endif
2109 	case Opt_sb:
2110 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111 			ext4_msg(NULL, KERN_WARNING,
2112 				 "Ignoring %s option on remount", param->key);
2113 		} else {
2114 			ctx->s_sb_block = result.uint_32;
2115 			ctx->spec |= EXT4_SPEC_s_sb_block;
2116 		}
2117 		return 0;
2118 	case Opt_removed:
2119 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120 			 param->key);
2121 		return 0;
2122 	case Opt_abort:
2123 		ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124 		return 0;
2125 	case Opt_inlinecrypt:
2126 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127 		ctx_set_flags(ctx, SB_INLINECRYPT);
2128 #else
2129 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130 #endif
2131 		return 0;
2132 	case Opt_errors:
2133 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134 		ctx_set_mount_opt(ctx, result.uint_32);
2135 		return 0;
2136 #ifdef CONFIG_QUOTA
2137 	case Opt_jqfmt:
2138 		ctx->s_jquota_fmt = result.uint_32;
2139 		ctx->spec |= EXT4_SPEC_JQFMT;
2140 		return 0;
2141 #endif
2142 	case Opt_data:
2143 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144 		ctx_set_mount_opt(ctx, result.uint_32);
2145 		ctx->spec |= EXT4_SPEC_DATAJ;
2146 		return 0;
2147 	case Opt_commit:
2148 		if (result.uint_32 == 0)
2149 			ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150 		else if (result.uint_32 > INT_MAX / HZ) {
2151 			ext4_msg(NULL, KERN_ERR,
2152 				 "Invalid commit interval %d, "
2153 				 "must be smaller than %d",
2154 				 result.uint_32, INT_MAX / HZ);
2155 			return -EINVAL;
2156 		}
2157 		ctx->s_commit_interval = HZ * result.uint_32;
2158 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2159 		return 0;
2160 	case Opt_debug_want_extra_isize:
2161 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162 			ext4_msg(NULL, KERN_ERR,
2163 				 "Invalid want_extra_isize %d", result.uint_32);
2164 			return -EINVAL;
2165 		}
2166 		ctx->s_want_extra_isize = result.uint_32;
2167 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168 		return 0;
2169 	case Opt_max_batch_time:
2170 		ctx->s_max_batch_time = result.uint_32;
2171 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172 		return 0;
2173 	case Opt_min_batch_time:
2174 		ctx->s_min_batch_time = result.uint_32;
2175 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176 		return 0;
2177 	case Opt_inode_readahead_blks:
2178 		if (result.uint_32 &&
2179 		    (result.uint_32 > (1 << 30) ||
2180 		     !is_power_of_2(result.uint_32))) {
2181 			ext4_msg(NULL, KERN_ERR,
2182 				 "EXT4-fs: inode_readahead_blks must be "
2183 				 "0 or a power of 2 smaller than 2^31");
2184 			return -EINVAL;
2185 		}
2186 		ctx->s_inode_readahead_blks = result.uint_32;
2187 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188 		return 0;
2189 	case Opt_init_itable:
2190 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192 		if (param->type == fs_value_is_string)
2193 			ctx->s_li_wait_mult = result.uint_32;
2194 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195 		return 0;
2196 	case Opt_max_dir_size_kb:
2197 		ctx->s_max_dir_size_kb = result.uint_32;
2198 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199 		return 0;
2200 #ifdef CONFIG_EXT4_DEBUG
2201 	case Opt_fc_debug_max_replay:
2202 		ctx->s_fc_debug_max_replay = result.uint_32;
2203 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204 		return 0;
2205 #endif
2206 	case Opt_stripe:
2207 		ctx->s_stripe = result.uint_32;
2208 		ctx->spec |= EXT4_SPEC_s_stripe;
2209 		return 0;
2210 	case Opt_resuid:
2211 		uid = make_kuid(current_user_ns(), result.uint_32);
2212 		if (!uid_valid(uid)) {
2213 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214 				 result.uint_32);
2215 			return -EINVAL;
2216 		}
2217 		ctx->s_resuid = uid;
2218 		ctx->spec |= EXT4_SPEC_s_resuid;
2219 		return 0;
2220 	case Opt_resgid:
2221 		gid = make_kgid(current_user_ns(), result.uint_32);
2222 		if (!gid_valid(gid)) {
2223 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224 				 result.uint_32);
2225 			return -EINVAL;
2226 		}
2227 		ctx->s_resgid = gid;
2228 		ctx->spec |= EXT4_SPEC_s_resgid;
2229 		return 0;
2230 	case Opt_journal_dev:
2231 		if (is_remount) {
2232 			ext4_msg(NULL, KERN_ERR,
2233 				 "Cannot specify journal on remount");
2234 			return -EINVAL;
2235 		}
2236 		ctx->journal_devnum = result.uint_32;
2237 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238 		return 0;
2239 	case Opt_journal_path:
2240 	{
2241 		struct inode *journal_inode;
2242 		struct path path;
2243 		int error;
2244 
2245 		if (is_remount) {
2246 			ext4_msg(NULL, KERN_ERR,
2247 				 "Cannot specify journal on remount");
2248 			return -EINVAL;
2249 		}
2250 
2251 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252 		if (error) {
2253 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2254 				 "journal device path");
2255 			return -EINVAL;
2256 		}
2257 
2258 		journal_inode = d_inode(path.dentry);
2259 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261 		path_put(&path);
2262 		return 0;
2263 	}
2264 	case Opt_journal_ioprio:
2265 		if (result.uint_32 > 7) {
2266 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267 				 " (must be 0-7)");
2268 			return -EINVAL;
2269 		}
2270 		ctx->journal_ioprio =
2271 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273 		return 0;
2274 	case Opt_test_dummy_encryption:
2275 		return ext4_parse_test_dummy_encryption(param, ctx);
2276 	case Opt_dax:
2277 	case Opt_dax_type:
2278 #ifdef CONFIG_FS_DAX
2279 	{
2280 		int type = (token == Opt_dax) ?
2281 			   Opt_dax : result.uint_32;
2282 
2283 		switch (type) {
2284 		case Opt_dax:
2285 		case Opt_dax_always:
2286 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288 			break;
2289 		case Opt_dax_never:
2290 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292 			break;
2293 		case Opt_dax_inode:
2294 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296 			/* Strictly for printing options */
2297 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298 			break;
2299 		}
2300 		return 0;
2301 	}
2302 #else
2303 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304 		return -EINVAL;
2305 #endif
2306 	case Opt_data_err:
2307 		if (result.uint_32 == Opt_data_err_abort)
2308 			ctx_set_mount_opt(ctx, m->mount_opt);
2309 		else if (result.uint_32 == Opt_data_err_ignore)
2310 			ctx_clear_mount_opt(ctx, m->mount_opt);
2311 		return 0;
2312 	case Opt_mb_optimize_scan:
2313 		if (result.int_32 == 1) {
2314 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316 		} else if (result.int_32 == 0) {
2317 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319 		} else {
2320 			ext4_msg(NULL, KERN_WARNING,
2321 				 "mb_optimize_scan should be set to 0 or 1.");
2322 			return -EINVAL;
2323 		}
2324 		return 0;
2325 	}
2326 
2327 	/*
2328 	 * At this point we should only be getting options requiring MOPT_SET,
2329 	 * or MOPT_CLEAR. Anything else is a bug
2330 	 */
2331 	if (m->token == Opt_err) {
2332 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333 			 param->key);
2334 		WARN_ON(1);
2335 		return -EINVAL;
2336 	}
2337 
2338 	else {
2339 		unsigned int set = 0;
2340 
2341 		if ((param->type == fs_value_is_flag) ||
2342 		    result.uint_32 > 0)
2343 			set = 1;
2344 
2345 		if (m->flags & MOPT_CLEAR)
2346 			set = !set;
2347 		else if (unlikely(!(m->flags & MOPT_SET))) {
2348 			ext4_msg(NULL, KERN_WARNING,
2349 				 "buggy handling of option %s",
2350 				 param->key);
2351 			WARN_ON(1);
2352 			return -EINVAL;
2353 		}
2354 		if (m->flags & MOPT_2) {
2355 			if (set != 0)
2356 				ctx_set_mount_opt2(ctx, m->mount_opt);
2357 			else
2358 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2359 		} else {
2360 			if (set != 0)
2361 				ctx_set_mount_opt(ctx, m->mount_opt);
2362 			else
2363 				ctx_clear_mount_opt(ctx, m->mount_opt);
2364 		}
2365 	}
2366 
2367 	return 0;
2368 }
2369 
2370 static int parse_options(struct fs_context *fc, char *options)
2371 {
2372 	struct fs_parameter param;
2373 	int ret;
2374 	char *key;
2375 
2376 	if (!options)
2377 		return 0;
2378 
2379 	while ((key = strsep(&options, ",")) != NULL) {
2380 		if (*key) {
2381 			size_t v_len = 0;
2382 			char *value = strchr(key, '=');
2383 
2384 			param.type = fs_value_is_flag;
2385 			param.string = NULL;
2386 
2387 			if (value) {
2388 				if (value == key)
2389 					continue;
2390 
2391 				*value++ = 0;
2392 				v_len = strlen(value);
2393 				param.string = kmemdup_nul(value, v_len,
2394 							   GFP_KERNEL);
2395 				if (!param.string)
2396 					return -ENOMEM;
2397 				param.type = fs_value_is_string;
2398 			}
2399 
2400 			param.key = key;
2401 			param.size = v_len;
2402 
2403 			ret = ext4_parse_param(fc, &param);
2404 			if (param.string)
2405 				kfree(param.string);
2406 			if (ret < 0)
2407 				return ret;
2408 		}
2409 	}
2410 
2411 	ret = ext4_validate_options(fc);
2412 	if (ret < 0)
2413 		return ret;
2414 
2415 	return 0;
2416 }
2417 
2418 static int parse_apply_sb_mount_options(struct super_block *sb,
2419 					struct ext4_fs_context *m_ctx)
2420 {
2421 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 	char *s_mount_opts = NULL;
2423 	struct ext4_fs_context *s_ctx = NULL;
2424 	struct fs_context *fc = NULL;
2425 	int ret = -ENOMEM;
2426 
2427 	if (!sbi->s_es->s_mount_opts[0])
2428 		return 0;
2429 
2430 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431 				sizeof(sbi->s_es->s_mount_opts),
2432 				GFP_KERNEL);
2433 	if (!s_mount_opts)
2434 		return ret;
2435 
2436 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437 	if (!fc)
2438 		goto out_free;
2439 
2440 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441 	if (!s_ctx)
2442 		goto out_free;
2443 
2444 	fc->fs_private = s_ctx;
2445 	fc->s_fs_info = sbi;
2446 
2447 	ret = parse_options(fc, s_mount_opts);
2448 	if (ret < 0)
2449 		goto parse_failed;
2450 
2451 	ret = ext4_check_opt_consistency(fc, sb);
2452 	if (ret < 0) {
2453 parse_failed:
2454 		ext4_msg(sb, KERN_WARNING,
2455 			 "failed to parse options in superblock: %s",
2456 			 s_mount_opts);
2457 		ret = 0;
2458 		goto out_free;
2459 	}
2460 
2461 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2463 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465 
2466 	ext4_apply_options(fc, sb);
2467 	ret = 0;
2468 
2469 out_free:
2470 	if (fc) {
2471 		ext4_fc_free(fc);
2472 		kfree(fc);
2473 	}
2474 	kfree(s_mount_opts);
2475 	return ret;
2476 }
2477 
2478 static void ext4_apply_quota_options(struct fs_context *fc,
2479 				     struct super_block *sb)
2480 {
2481 #ifdef CONFIG_QUOTA
2482 	bool quota_feature = ext4_has_feature_quota(sb);
2483 	struct ext4_fs_context *ctx = fc->fs_private;
2484 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2485 	char *qname;
2486 	int i;
2487 
2488 	if (quota_feature)
2489 		return;
2490 
2491 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 			if (!(ctx->qname_spec & (1 << i)))
2494 				continue;
2495 
2496 			qname = ctx->s_qf_names[i]; /* May be NULL */
2497 			if (qname)
2498 				set_opt(sb, QUOTA);
2499 			ctx->s_qf_names[i] = NULL;
2500 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501 						lockdep_is_held(&sb->s_umount));
2502 			if (qname)
2503 				kfree_rcu(qname);
2504 		}
2505 	}
2506 
2507 	if (ctx->spec & EXT4_SPEC_JQFMT)
2508 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509 #endif
2510 }
2511 
2512 /*
2513  * Check quota settings consistency.
2514  */
2515 static int ext4_check_quota_consistency(struct fs_context *fc,
2516 					struct super_block *sb)
2517 {
2518 #ifdef CONFIG_QUOTA
2519 	struct ext4_fs_context *ctx = fc->fs_private;
2520 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2521 	bool quota_feature = ext4_has_feature_quota(sb);
2522 	bool quota_loaded = sb_any_quota_loaded(sb);
2523 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524 	int quota_flags, i;
2525 
2526 	/*
2527 	 * We do the test below only for project quotas. 'usrquota' and
2528 	 * 'grpquota' mount options are allowed even without quota feature
2529 	 * to support legacy quotas in quota files.
2530 	 */
2531 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532 	    !ext4_has_feature_project(sb)) {
2533 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534 			 "Cannot enable project quota enforcement.");
2535 		return -EINVAL;
2536 	}
2537 
2538 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540 	if (quota_loaded &&
2541 	    ctx->mask_s_mount_opt & quota_flags &&
2542 	    !ctx_test_mount_opt(ctx, quota_flags))
2543 		goto err_quota_change;
2544 
2545 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546 
2547 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 			if (!(ctx->qname_spec & (1 << i)))
2549 				continue;
2550 
2551 			if (quota_loaded &&
2552 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553 				goto err_jquota_change;
2554 
2555 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556 			    strcmp(get_qf_name(sb, sbi, i),
2557 				   ctx->s_qf_names[i]) != 0)
2558 				goto err_jquota_specified;
2559 		}
2560 
2561 		if (quota_feature) {
2562 			ext4_msg(NULL, KERN_INFO,
2563 				 "Journaled quota options ignored when "
2564 				 "QUOTA feature is enabled");
2565 			return 0;
2566 		}
2567 	}
2568 
2569 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2570 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571 			goto err_jquota_change;
2572 		if (quota_feature) {
2573 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574 				 "ignored when QUOTA feature is enabled");
2575 			return 0;
2576 		}
2577 	}
2578 
2579 	/* Make sure we don't mix old and new quota format */
2580 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581 		       ctx->s_qf_names[USRQUOTA]);
2582 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583 		       ctx->s_qf_names[GRPQUOTA]);
2584 
2585 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586 		    test_opt(sb, USRQUOTA));
2587 
2588 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589 		    test_opt(sb, GRPQUOTA));
2590 
2591 	if (usr_qf_name) {
2592 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593 		usrquota = false;
2594 	}
2595 	if (grp_qf_name) {
2596 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597 		grpquota = false;
2598 	}
2599 
2600 	if (usr_qf_name || grp_qf_name) {
2601 		if (usrquota || grpquota) {
2602 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2603 				 "format mixing");
2604 			return -EINVAL;
2605 		}
2606 
2607 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609 				 "not specified");
2610 			return -EINVAL;
2611 		}
2612 	}
2613 
2614 	return 0;
2615 
2616 err_quota_change:
2617 	ext4_msg(NULL, KERN_ERR,
2618 		 "Cannot change quota options when quota turned on");
2619 	return -EINVAL;
2620 err_jquota_change:
2621 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622 		 "options when quota turned on");
2623 	return -EINVAL;
2624 err_jquota_specified:
2625 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626 		 QTYPE2NAME(i));
2627 	return -EINVAL;
2628 #else
2629 	return 0;
2630 #endif
2631 }
2632 
2633 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634 					    struct super_block *sb)
2635 {
2636 	const struct ext4_fs_context *ctx = fc->fs_private;
2637 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638 	int err;
2639 
2640 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641 		return 0;
2642 
2643 	if (!ext4_has_feature_encrypt(sb)) {
2644 		ext4_msg(NULL, KERN_WARNING,
2645 			 "test_dummy_encryption requires encrypt feature");
2646 		return -EINVAL;
2647 	}
2648 	/*
2649 	 * This mount option is just for testing, and it's not worthwhile to
2650 	 * implement the extra complexity (e.g. RCU protection) that would be
2651 	 * needed to allow it to be set or changed during remount.  We do allow
2652 	 * it to be specified during remount, but only if there is no change.
2653 	 */
2654 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656 						 &ctx->dummy_enc_policy))
2657 			return 0;
2658 		ext4_msg(NULL, KERN_WARNING,
2659 			 "Can't set or change test_dummy_encryption on remount");
2660 		return -EINVAL;
2661 	}
2662 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2663 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665 						 &ctx->dummy_enc_policy))
2666 			return 0;
2667 		ext4_msg(NULL, KERN_WARNING,
2668 			 "Conflicting test_dummy_encryption options");
2669 		return -EINVAL;
2670 	}
2671 	/*
2672 	 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673 	 * technically it should be delayed until ext4_apply_options() like the
2674 	 * other changes.  But since we never get here for remounts (see above),
2675 	 * and this is the last chance to report errors, we do it here.
2676 	 */
2677 	err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678 	if (err)
2679 		ext4_msg(NULL, KERN_WARNING,
2680 			 "Error adding test dummy encryption key [%d]", err);
2681 	return err;
2682 }
2683 
2684 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685 					     struct super_block *sb)
2686 {
2687 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688 	    /* if already set, it was already verified to be the same */
2689 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690 		return;
2691 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694 }
2695 
2696 static int ext4_check_opt_consistency(struct fs_context *fc,
2697 				      struct super_block *sb)
2698 {
2699 	struct ext4_fs_context *ctx = fc->fs_private;
2700 	struct ext4_sb_info *sbi = fc->s_fs_info;
2701 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702 	int err;
2703 
2704 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705 		ext4_msg(NULL, KERN_ERR,
2706 			 "Mount option(s) incompatible with ext2");
2707 		return -EINVAL;
2708 	}
2709 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710 		ext4_msg(NULL, KERN_ERR,
2711 			 "Mount option(s) incompatible with ext3");
2712 		return -EINVAL;
2713 	}
2714 
2715 	if (ctx->s_want_extra_isize >
2716 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717 		ext4_msg(NULL, KERN_ERR,
2718 			 "Invalid want_extra_isize %d",
2719 			 ctx->s_want_extra_isize);
2720 		return -EINVAL;
2721 	}
2722 
2723 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724 		int blocksize =
2725 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726 		if (blocksize < PAGE_SIZE)
2727 			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728 				 "experimental mount option 'dioread_nolock' "
2729 				 "for blocksize < PAGE_SIZE");
2730 	}
2731 
2732 	err = ext4_check_test_dummy_encryption(fc, sb);
2733 	if (err)
2734 		return err;
2735 
2736 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737 		if (!sbi->s_journal) {
2738 			ext4_msg(NULL, KERN_WARNING,
2739 				 "Remounting file system with no journal "
2740 				 "so ignoring journalled data option");
2741 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743 			   test_opt(sb, DATA_FLAGS)) {
2744 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745 				 "on remount");
2746 			return -EINVAL;
2747 		}
2748 	}
2749 
2750 	if (is_remount) {
2751 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2754 				 "both data=journal and dax");
2755 			return -EINVAL;
2756 		}
2757 
2758 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761 fail_dax_change_remount:
2762 			ext4_msg(NULL, KERN_ERR, "can't change "
2763 				 "dax mount option while remounting");
2764 			return -EINVAL;
2765 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768 			goto fail_dax_change_remount;
2769 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773 			goto fail_dax_change_remount;
2774 		}
2775 	}
2776 
2777 	return ext4_check_quota_consistency(fc, sb);
2778 }
2779 
2780 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781 {
2782 	struct ext4_fs_context *ctx = fc->fs_private;
2783 	struct ext4_sb_info *sbi = fc->s_fs_info;
2784 
2785 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789 	sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790 	sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791 	sb->s_flags &= ~ctx->mask_s_flags;
2792 	sb->s_flags |= ctx->vals_s_flags;
2793 
2794 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795 	APPLY(s_commit_interval);
2796 	APPLY(s_stripe);
2797 	APPLY(s_max_batch_time);
2798 	APPLY(s_min_batch_time);
2799 	APPLY(s_want_extra_isize);
2800 	APPLY(s_inode_readahead_blks);
2801 	APPLY(s_max_dir_size_kb);
2802 	APPLY(s_li_wait_mult);
2803 	APPLY(s_resgid);
2804 	APPLY(s_resuid);
2805 
2806 #ifdef CONFIG_EXT4_DEBUG
2807 	APPLY(s_fc_debug_max_replay);
2808 #endif
2809 
2810 	ext4_apply_quota_options(fc, sb);
2811 	ext4_apply_test_dummy_encryption(ctx, sb);
2812 }
2813 
2814 
2815 static int ext4_validate_options(struct fs_context *fc)
2816 {
2817 #ifdef CONFIG_QUOTA
2818 	struct ext4_fs_context *ctx = fc->fs_private;
2819 	char *usr_qf_name, *grp_qf_name;
2820 
2821 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823 
2824 	if (usr_qf_name || grp_qf_name) {
2825 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827 
2828 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830 
2831 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2834 				 "format mixing");
2835 			return -EINVAL;
2836 		}
2837 	}
2838 #endif
2839 	return 1;
2840 }
2841 
2842 static inline void ext4_show_quota_options(struct seq_file *seq,
2843 					   struct super_block *sb)
2844 {
2845 #if defined(CONFIG_QUOTA)
2846 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 	char *usr_qf_name, *grp_qf_name;
2848 
2849 	if (sbi->s_jquota_fmt) {
2850 		char *fmtname = "";
2851 
2852 		switch (sbi->s_jquota_fmt) {
2853 		case QFMT_VFS_OLD:
2854 			fmtname = "vfsold";
2855 			break;
2856 		case QFMT_VFS_V0:
2857 			fmtname = "vfsv0";
2858 			break;
2859 		case QFMT_VFS_V1:
2860 			fmtname = "vfsv1";
2861 			break;
2862 		}
2863 		seq_printf(seq, ",jqfmt=%s", fmtname);
2864 	}
2865 
2866 	rcu_read_lock();
2867 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869 	if (usr_qf_name)
2870 		seq_show_option(seq, "usrjquota", usr_qf_name);
2871 	if (grp_qf_name)
2872 		seq_show_option(seq, "grpjquota", grp_qf_name);
2873 	rcu_read_unlock();
2874 #endif
2875 }
2876 
2877 static const char *token2str(int token)
2878 {
2879 	const struct fs_parameter_spec *spec;
2880 
2881 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882 		if (spec->opt == token && !spec->type)
2883 			break;
2884 	return spec->name;
2885 }
2886 
2887 /*
2888  * Show an option if
2889  *  - it's set to a non-default value OR
2890  *  - if the per-sb default is different from the global default
2891  */
2892 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893 			      int nodefs)
2894 {
2895 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 	struct ext4_super_block *es = sbi->s_es;
2897 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898 	const struct mount_opts *m;
2899 	char sep = nodefs ? '\n' : ',';
2900 
2901 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903 
2904 	if (sbi->s_sb_block != 1)
2905 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906 
2907 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908 		int want_set = m->flags & MOPT_SET;
2909 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910 		    m->flags & MOPT_SKIP)
2911 			continue;
2912 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913 			continue; /* skip if same as the default */
2914 		if ((want_set &&
2915 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917 			continue; /* select Opt_noFoo vs Opt_Foo */
2918 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2919 	}
2920 
2921 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923 		SEQ_OPTS_PRINT("resuid=%u",
2924 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927 		SEQ_OPTS_PRINT("resgid=%u",
2928 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931 		SEQ_OPTS_PUTS("errors=remount-ro");
2932 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933 		SEQ_OPTS_PUTS("errors=continue");
2934 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935 		SEQ_OPTS_PUTS("errors=panic");
2936 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2942 	if (nodefs || sbi->s_stripe)
2943 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945 			(sbi->s_mount_opt ^ def_mount_opt)) {
2946 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947 			SEQ_OPTS_PUTS("data=journal");
2948 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949 			SEQ_OPTS_PUTS("data=ordered");
2950 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951 			SEQ_OPTS_PUTS("data=writeback");
2952 	}
2953 	if (nodefs ||
2954 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956 			       sbi->s_inode_readahead_blks);
2957 
2958 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961 	if (nodefs || sbi->s_max_dir_size_kb)
2962 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963 	if (test_opt(sb, DATA_ERR_ABORT))
2964 		SEQ_OPTS_PUTS("data_err=abort");
2965 
2966 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967 
2968 	if (sb->s_flags & SB_INLINECRYPT)
2969 		SEQ_OPTS_PUTS("inlinecrypt");
2970 
2971 	if (test_opt(sb, DAX_ALWAYS)) {
2972 		if (IS_EXT2_SB(sb))
2973 			SEQ_OPTS_PUTS("dax");
2974 		else
2975 			SEQ_OPTS_PUTS("dax=always");
2976 	} else if (test_opt2(sb, DAX_NEVER)) {
2977 		SEQ_OPTS_PUTS("dax=never");
2978 	} else if (test_opt2(sb, DAX_INODE)) {
2979 		SEQ_OPTS_PUTS("dax=inode");
2980 	}
2981 
2982 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988 	}
2989 
2990 	ext4_show_quota_options(seq, sb);
2991 	return 0;
2992 }
2993 
2994 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995 {
2996 	return _ext4_show_options(seq, root->d_sb, 0);
2997 }
2998 
2999 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000 {
3001 	struct super_block *sb = seq->private;
3002 	int rc;
3003 
3004 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005 	rc = _ext4_show_options(seq, sb, 1);
3006 	seq_puts(seq, "\n");
3007 	return rc;
3008 }
3009 
3010 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011 			    int read_only)
3012 {
3013 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3014 	int err = 0;
3015 
3016 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3018 			 "forcing read-only mode");
3019 		err = -EROFS;
3020 		goto done;
3021 	}
3022 	if (read_only)
3023 		goto done;
3024 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026 			 "running e2fsck is recommended");
3027 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028 		ext4_msg(sb, KERN_WARNING,
3029 			 "warning: mounting fs with errors, "
3030 			 "running e2fsck is recommended");
3031 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032 		 le16_to_cpu(es->s_mnt_count) >=
3033 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034 		ext4_msg(sb, KERN_WARNING,
3035 			 "warning: maximal mount count reached, "
3036 			 "running e2fsck is recommended");
3037 	else if (le32_to_cpu(es->s_checkinterval) &&
3038 		 (ext4_get_tstamp(es, s_lastcheck) +
3039 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040 		ext4_msg(sb, KERN_WARNING,
3041 			 "warning: checktime reached, "
3042 			 "running e2fsck is recommended");
3043 	if (!sbi->s_journal)
3044 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047 	le16_add_cpu(&es->s_mnt_count, 1);
3048 	ext4_update_tstamp(es, s_mtime);
3049 	if (sbi->s_journal) {
3050 		ext4_set_feature_journal_needs_recovery(sb);
3051 		if (ext4_has_feature_orphan_file(sb))
3052 			ext4_set_feature_orphan_present(sb);
3053 	}
3054 
3055 	err = ext4_commit_super(sb);
3056 done:
3057 	if (test_opt(sb, DEBUG))
3058 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060 			sb->s_blocksize,
3061 			sbi->s_groups_count,
3062 			EXT4_BLOCKS_PER_GROUP(sb),
3063 			EXT4_INODES_PER_GROUP(sb),
3064 			sbi->s_mount_opt, sbi->s_mount_opt2);
3065 	return err;
3066 }
3067 
3068 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069 {
3070 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 	struct flex_groups **old_groups, **new_groups;
3072 	int size, i, j;
3073 
3074 	if (!sbi->s_log_groups_per_flex)
3075 		return 0;
3076 
3077 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078 	if (size <= sbi->s_flex_groups_allocated)
3079 		return 0;
3080 
3081 	new_groups = kvzalloc(roundup_pow_of_two(size *
3082 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083 	if (!new_groups) {
3084 		ext4_msg(sb, KERN_ERR,
3085 			 "not enough memory for %d flex group pointers", size);
3086 		return -ENOMEM;
3087 	}
3088 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3090 					 sizeof(struct flex_groups)),
3091 					 GFP_KERNEL);
3092 		if (!new_groups[i]) {
3093 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094 				kvfree(new_groups[j]);
3095 			kvfree(new_groups);
3096 			ext4_msg(sb, KERN_ERR,
3097 				 "not enough memory for %d flex groups", size);
3098 			return -ENOMEM;
3099 		}
3100 	}
3101 	rcu_read_lock();
3102 	old_groups = rcu_dereference(sbi->s_flex_groups);
3103 	if (old_groups)
3104 		memcpy(new_groups, old_groups,
3105 		       (sbi->s_flex_groups_allocated *
3106 			sizeof(struct flex_groups *)));
3107 	rcu_read_unlock();
3108 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109 	sbi->s_flex_groups_allocated = size;
3110 	if (old_groups)
3111 		ext4_kvfree_array_rcu(old_groups);
3112 	return 0;
3113 }
3114 
3115 static int ext4_fill_flex_info(struct super_block *sb)
3116 {
3117 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 	struct ext4_group_desc *gdp = NULL;
3119 	struct flex_groups *fg;
3120 	ext4_group_t flex_group;
3121 	int i, err;
3122 
3123 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125 		sbi->s_log_groups_per_flex = 0;
3126 		return 1;
3127 	}
3128 
3129 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130 	if (err)
3131 		goto failed;
3132 
3133 	for (i = 0; i < sbi->s_groups_count; i++) {
3134 		gdp = ext4_get_group_desc(sb, i, NULL);
3135 
3136 		flex_group = ext4_flex_group(sbi, i);
3137 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3140 			     &fg->free_clusters);
3141 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3142 	}
3143 
3144 	return 1;
3145 failed:
3146 	return 0;
3147 }
3148 
3149 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150 				   struct ext4_group_desc *gdp)
3151 {
3152 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153 	__u16 crc = 0;
3154 	__le32 le_group = cpu_to_le32(block_group);
3155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3156 
3157 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3158 		/* Use new metadata_csum algorithm */
3159 		__u32 csum32;
3160 		__u16 dummy_csum = 0;
3161 
3162 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163 				     sizeof(le_group));
3164 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166 				     sizeof(dummy_csum));
3167 		offset += sizeof(dummy_csum);
3168 		if (offset < sbi->s_desc_size)
3169 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170 					     sbi->s_desc_size - offset);
3171 
3172 		crc = csum32 & 0xFFFF;
3173 		goto out;
3174 	}
3175 
3176 	/* old crc16 code */
3177 	if (!ext4_has_feature_gdt_csum(sb))
3178 		return 0;
3179 
3180 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182 	crc = crc16(crc, (__u8 *)gdp, offset);
3183 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184 	/* for checksum of struct ext4_group_desc do the rest...*/
3185 	if (ext4_has_feature_64bit(sb) &&
3186 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187 		crc = crc16(crc, (__u8 *)gdp + offset,
3188 			    le16_to_cpu(sbi->s_es->s_desc_size) -
3189 				offset);
3190 
3191 out:
3192 	return cpu_to_le16(crc);
3193 }
3194 
3195 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196 				struct ext4_group_desc *gdp)
3197 {
3198 	if (ext4_has_group_desc_csum(sb) &&
3199 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200 		return 0;
3201 
3202 	return 1;
3203 }
3204 
3205 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206 			      struct ext4_group_desc *gdp)
3207 {
3208 	if (!ext4_has_group_desc_csum(sb))
3209 		return;
3210 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211 }
3212 
3213 /* Called at mount-time, super-block is locked */
3214 static int ext4_check_descriptors(struct super_block *sb,
3215 				  ext4_fsblk_t sb_block,
3216 				  ext4_group_t *first_not_zeroed)
3217 {
3218 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3219 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220 	ext4_fsblk_t last_block;
3221 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222 	ext4_fsblk_t block_bitmap;
3223 	ext4_fsblk_t inode_bitmap;
3224 	ext4_fsblk_t inode_table;
3225 	int flexbg_flag = 0;
3226 	ext4_group_t i, grp = sbi->s_groups_count;
3227 
3228 	if (ext4_has_feature_flex_bg(sb))
3229 		flexbg_flag = 1;
3230 
3231 	ext4_debug("Checking group descriptors");
3232 
3233 	for (i = 0; i < sbi->s_groups_count; i++) {
3234 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235 
3236 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3238 		else
3239 			last_block = first_block +
3240 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241 
3242 		if ((grp == sbi->s_groups_count) &&
3243 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244 			grp = i;
3245 
3246 		block_bitmap = ext4_block_bitmap(sb, gdp);
3247 		if (block_bitmap == sb_block) {
3248 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249 				 "Block bitmap for group %u overlaps "
3250 				 "superblock", i);
3251 			if (!sb_rdonly(sb))
3252 				return 0;
3253 		}
3254 		if (block_bitmap >= sb_block + 1 &&
3255 		    block_bitmap <= last_bg_block) {
3256 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257 				 "Block bitmap for group %u overlaps "
3258 				 "block group descriptors", i);
3259 			if (!sb_rdonly(sb))
3260 				return 0;
3261 		}
3262 		if (block_bitmap < first_block || block_bitmap > last_block) {
3263 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264 			       "Block bitmap for group %u not in group "
3265 			       "(block %llu)!", i, block_bitmap);
3266 			return 0;
3267 		}
3268 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269 		if (inode_bitmap == sb_block) {
3270 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271 				 "Inode bitmap for group %u overlaps "
3272 				 "superblock", i);
3273 			if (!sb_rdonly(sb))
3274 				return 0;
3275 		}
3276 		if (inode_bitmap >= sb_block + 1 &&
3277 		    inode_bitmap <= last_bg_block) {
3278 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279 				 "Inode bitmap for group %u overlaps "
3280 				 "block group descriptors", i);
3281 			if (!sb_rdonly(sb))
3282 				return 0;
3283 		}
3284 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286 			       "Inode bitmap for group %u not in group "
3287 			       "(block %llu)!", i, inode_bitmap);
3288 			return 0;
3289 		}
3290 		inode_table = ext4_inode_table(sb, gdp);
3291 		if (inode_table == sb_block) {
3292 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293 				 "Inode table for group %u overlaps "
3294 				 "superblock", i);
3295 			if (!sb_rdonly(sb))
3296 				return 0;
3297 		}
3298 		if (inode_table >= sb_block + 1 &&
3299 		    inode_table <= last_bg_block) {
3300 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301 				 "Inode table for group %u overlaps "
3302 				 "block group descriptors", i);
3303 			if (!sb_rdonly(sb))
3304 				return 0;
3305 		}
3306 		if (inode_table < first_block ||
3307 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 			       "Inode table for group %u not in group "
3310 			       "(block %llu)!", i, inode_table);
3311 			return 0;
3312 		}
3313 		ext4_lock_group(sb, i);
3314 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 				 "Checksum for group %u failed (%u!=%u)",
3317 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3319 			if (!sb_rdonly(sb)) {
3320 				ext4_unlock_group(sb, i);
3321 				return 0;
3322 			}
3323 		}
3324 		ext4_unlock_group(sb, i);
3325 		if (!flexbg_flag)
3326 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327 	}
3328 	if (NULL != first_not_zeroed)
3329 		*first_not_zeroed = grp;
3330 	return 1;
3331 }
3332 
3333 /*
3334  * Maximal extent format file size.
3335  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336  * extent format containers, within a sector_t, and within i_blocks
3337  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3338  * so that won't be a limiting factor.
3339  *
3340  * However there is other limiting factor. We do store extents in the form
3341  * of starting block and length, hence the resulting length of the extent
3342  * covering maximum file size must fit into on-disk format containers as
3343  * well. Given that length is always by 1 unit bigger than max unit (because
3344  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345  *
3346  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347  */
3348 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349 {
3350 	loff_t res;
3351 	loff_t upper_limit = MAX_LFS_FILESIZE;
3352 
3353 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354 
3355 	if (!has_huge_files) {
3356 		upper_limit = (1LL << 32) - 1;
3357 
3358 		/* total blocks in file system block size */
3359 		upper_limit >>= (blkbits - 9);
3360 		upper_limit <<= blkbits;
3361 	}
3362 
3363 	/*
3364 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365 	 * by one fs block, so ee_len can cover the extent of maximum file
3366 	 * size
3367 	 */
3368 	res = (1LL << 32) - 1;
3369 	res <<= blkbits;
3370 
3371 	/* Sanity check against vm- & vfs- imposed limits */
3372 	if (res > upper_limit)
3373 		res = upper_limit;
3374 
3375 	return res;
3376 }
3377 
3378 /*
3379  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3380  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381  * We need to be 1 filesystem block less than the 2^48 sector limit.
3382  */
3383 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384 {
3385 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386 	int meta_blocks;
3387 	unsigned int ppb = 1 << (bits - 2);
3388 
3389 	/*
3390 	 * This is calculated to be the largest file size for a dense, block
3391 	 * mapped file such that the file's total number of 512-byte sectors,
3392 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393 	 *
3394 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395 	 * number of 512-byte sectors of the file.
3396 	 */
3397 	if (!has_huge_files) {
3398 		/*
3399 		 * !has_huge_files or implies that the inode i_block field
3400 		 * represents total file blocks in 2^32 512-byte sectors ==
3401 		 * size of vfs inode i_blocks * 8
3402 		 */
3403 		upper_limit = (1LL << 32) - 1;
3404 
3405 		/* total blocks in file system block size */
3406 		upper_limit >>= (bits - 9);
3407 
3408 	} else {
3409 		/*
3410 		 * We use 48 bit ext4_inode i_blocks
3411 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3412 		 * represent total number of blocks in
3413 		 * file system block size
3414 		 */
3415 		upper_limit = (1LL << 48) - 1;
3416 
3417 	}
3418 
3419 	/* Compute how many blocks we can address by block tree */
3420 	res += ppb;
3421 	res += ppb * ppb;
3422 	res += ((loff_t)ppb) * ppb * ppb;
3423 	/* Compute how many metadata blocks are needed */
3424 	meta_blocks = 1;
3425 	meta_blocks += 1 + ppb;
3426 	meta_blocks += 1 + ppb + ppb * ppb;
3427 	/* Does block tree limit file size? */
3428 	if (res + meta_blocks <= upper_limit)
3429 		goto check_lfs;
3430 
3431 	res = upper_limit;
3432 	/* How many metadata blocks are needed for addressing upper_limit? */
3433 	upper_limit -= EXT4_NDIR_BLOCKS;
3434 	/* indirect blocks */
3435 	meta_blocks = 1;
3436 	upper_limit -= ppb;
3437 	/* double indirect blocks */
3438 	if (upper_limit < ppb * ppb) {
3439 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440 		res -= meta_blocks;
3441 		goto check_lfs;
3442 	}
3443 	meta_blocks += 1 + ppb;
3444 	upper_limit -= ppb * ppb;
3445 	/* tripple indirect blocks for the rest */
3446 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448 	res -= meta_blocks;
3449 check_lfs:
3450 	res <<= bits;
3451 	if (res > MAX_LFS_FILESIZE)
3452 		res = MAX_LFS_FILESIZE;
3453 
3454 	return res;
3455 }
3456 
3457 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458 				   ext4_fsblk_t logical_sb_block, int nr)
3459 {
3460 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3461 	ext4_group_t bg, first_meta_bg;
3462 	int has_super = 0;
3463 
3464 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465 
3466 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467 		return logical_sb_block + nr + 1;
3468 	bg = sbi->s_desc_per_block * nr;
3469 	if (ext4_bg_has_super(sb, bg))
3470 		has_super = 1;
3471 
3472 	/*
3473 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3475 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476 	 * compensate.
3477 	 */
3478 	if (sb->s_blocksize == 1024 && nr == 0 &&
3479 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480 		has_super++;
3481 
3482 	return (has_super + ext4_group_first_block_no(sb, bg));
3483 }
3484 
3485 /**
3486  * ext4_get_stripe_size: Get the stripe size.
3487  * @sbi: In memory super block info
3488  *
3489  * If we have specified it via mount option, then
3490  * use the mount option value. If the value specified at mount time is
3491  * greater than the blocks per group use the super block value.
3492  * If the super block value is greater than blocks per group return 0.
3493  * Allocator needs it be less than blocks per group.
3494  *
3495  */
3496 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497 {
3498 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499 	unsigned long stripe_width =
3500 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501 	int ret;
3502 
3503 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504 		ret = sbi->s_stripe;
3505 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506 		ret = stripe_width;
3507 	else if (stride && stride <= sbi->s_blocks_per_group)
3508 		ret = stride;
3509 	else
3510 		ret = 0;
3511 
3512 	/*
3513 	 * If the stripe width is 1, this makes no sense and
3514 	 * we set it to 0 to turn off stripe handling code.
3515 	 */
3516 	if (ret <= 1)
3517 		ret = 0;
3518 
3519 	return ret;
3520 }
3521 
3522 /*
3523  * Check whether this filesystem can be mounted based on
3524  * the features present and the RDONLY/RDWR mount requested.
3525  * Returns 1 if this filesystem can be mounted as requested,
3526  * 0 if it cannot be.
3527  */
3528 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529 {
3530 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531 		ext4_msg(sb, KERN_ERR,
3532 			"Couldn't mount because of "
3533 			"unsupported optional features (%x)",
3534 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535 			~EXT4_FEATURE_INCOMPAT_SUPP));
3536 		return 0;
3537 	}
3538 
3539 #if !IS_ENABLED(CONFIG_UNICODE)
3540 	if (ext4_has_feature_casefold(sb)) {
3541 		ext4_msg(sb, KERN_ERR,
3542 			 "Filesystem with casefold feature cannot be "
3543 			 "mounted without CONFIG_UNICODE");
3544 		return 0;
3545 	}
3546 #endif
3547 
3548 	if (readonly)
3549 		return 1;
3550 
3551 	if (ext4_has_feature_readonly(sb)) {
3552 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553 		sb->s_flags |= SB_RDONLY;
3554 		return 1;
3555 	}
3556 
3557 	/* Check that feature set is OK for a read-write mount */
3558 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560 			 "unsupported optional features (%x)",
3561 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3563 		return 0;
3564 	}
3565 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566 		ext4_msg(sb, KERN_ERR,
3567 			 "Can't support bigalloc feature without "
3568 			 "extents feature\n");
3569 		return 0;
3570 	}
3571 
3572 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573 	if (!readonly && (ext4_has_feature_quota(sb) ||
3574 			  ext4_has_feature_project(sb))) {
3575 		ext4_msg(sb, KERN_ERR,
3576 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3577 		return 0;
3578 	}
3579 #endif  /* CONFIG_QUOTA */
3580 	return 1;
3581 }
3582 
3583 /*
3584  * This function is called once a day if we have errors logged
3585  * on the file system
3586  */
3587 static void print_daily_error_info(struct timer_list *t)
3588 {
3589 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590 	struct super_block *sb = sbi->s_sb;
3591 	struct ext4_super_block *es = sbi->s_es;
3592 
3593 	if (es->s_error_count)
3594 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3595 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596 			 le32_to_cpu(es->s_error_count));
3597 	if (es->s_first_error_time) {
3598 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599 		       sb->s_id,
3600 		       ext4_get_tstamp(es, s_first_error_time),
3601 		       (int) sizeof(es->s_first_error_func),
3602 		       es->s_first_error_func,
3603 		       le32_to_cpu(es->s_first_error_line));
3604 		if (es->s_first_error_ino)
3605 			printk(KERN_CONT ": inode %u",
3606 			       le32_to_cpu(es->s_first_error_ino));
3607 		if (es->s_first_error_block)
3608 			printk(KERN_CONT ": block %llu", (unsigned long long)
3609 			       le64_to_cpu(es->s_first_error_block));
3610 		printk(KERN_CONT "\n");
3611 	}
3612 	if (es->s_last_error_time) {
3613 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614 		       sb->s_id,
3615 		       ext4_get_tstamp(es, s_last_error_time),
3616 		       (int) sizeof(es->s_last_error_func),
3617 		       es->s_last_error_func,
3618 		       le32_to_cpu(es->s_last_error_line));
3619 		if (es->s_last_error_ino)
3620 			printk(KERN_CONT ": inode %u",
3621 			       le32_to_cpu(es->s_last_error_ino));
3622 		if (es->s_last_error_block)
3623 			printk(KERN_CONT ": block %llu", (unsigned long long)
3624 			       le64_to_cpu(es->s_last_error_block));
3625 		printk(KERN_CONT "\n");
3626 	}
3627 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3628 }
3629 
3630 /* Find next suitable group and run ext4_init_inode_table */
3631 static int ext4_run_li_request(struct ext4_li_request *elr)
3632 {
3633 	struct ext4_group_desc *gdp = NULL;
3634 	struct super_block *sb = elr->lr_super;
3635 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636 	ext4_group_t group = elr->lr_next_group;
3637 	unsigned int prefetch_ios = 0;
3638 	int ret = 0;
3639 	u64 start_time;
3640 
3641 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644 		if (prefetch_ios)
3645 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646 					      prefetch_ios);
3647 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648 					    prefetch_ios);
3649 		if (group >= elr->lr_next_group) {
3650 			ret = 1;
3651 			if (elr->lr_first_not_zeroed != ngroups &&
3652 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653 				elr->lr_next_group = elr->lr_first_not_zeroed;
3654 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655 				ret = 0;
3656 			}
3657 		}
3658 		return ret;
3659 	}
3660 
3661 	for (; group < ngroups; group++) {
3662 		gdp = ext4_get_group_desc(sb, group, NULL);
3663 		if (!gdp) {
3664 			ret = 1;
3665 			break;
3666 		}
3667 
3668 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669 			break;
3670 	}
3671 
3672 	if (group >= ngroups)
3673 		ret = 1;
3674 
3675 	if (!ret) {
3676 		start_time = ktime_get_real_ns();
3677 		ret = ext4_init_inode_table(sb, group,
3678 					    elr->lr_timeout ? 0 : 1);
3679 		trace_ext4_lazy_itable_init(sb, group);
3680 		if (elr->lr_timeout == 0) {
3681 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3683 		}
3684 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3685 		elr->lr_next_group = group + 1;
3686 	}
3687 	return ret;
3688 }
3689 
3690 /*
3691  * Remove lr_request from the list_request and free the
3692  * request structure. Should be called with li_list_mtx held
3693  */
3694 static void ext4_remove_li_request(struct ext4_li_request *elr)
3695 {
3696 	if (!elr)
3697 		return;
3698 
3699 	list_del(&elr->lr_request);
3700 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701 	kfree(elr);
3702 }
3703 
3704 static void ext4_unregister_li_request(struct super_block *sb)
3705 {
3706 	mutex_lock(&ext4_li_mtx);
3707 	if (!ext4_li_info) {
3708 		mutex_unlock(&ext4_li_mtx);
3709 		return;
3710 	}
3711 
3712 	mutex_lock(&ext4_li_info->li_list_mtx);
3713 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714 	mutex_unlock(&ext4_li_info->li_list_mtx);
3715 	mutex_unlock(&ext4_li_mtx);
3716 }
3717 
3718 static struct task_struct *ext4_lazyinit_task;
3719 
3720 /*
3721  * This is the function where ext4lazyinit thread lives. It walks
3722  * through the request list searching for next scheduled filesystem.
3723  * When such a fs is found, run the lazy initialization request
3724  * (ext4_rn_li_request) and keep track of the time spend in this
3725  * function. Based on that time we compute next schedule time of
3726  * the request. When walking through the list is complete, compute
3727  * next waking time and put itself into sleep.
3728  */
3729 static int ext4_lazyinit_thread(void *arg)
3730 {
3731 	struct ext4_lazy_init *eli = arg;
3732 	struct list_head *pos, *n;
3733 	struct ext4_li_request *elr;
3734 	unsigned long next_wakeup, cur;
3735 
3736 	BUG_ON(NULL == eli);
3737 	set_freezable();
3738 
3739 cont_thread:
3740 	while (true) {
3741 		next_wakeup = MAX_JIFFY_OFFSET;
3742 
3743 		mutex_lock(&eli->li_list_mtx);
3744 		if (list_empty(&eli->li_request_list)) {
3745 			mutex_unlock(&eli->li_list_mtx);
3746 			goto exit_thread;
3747 		}
3748 		list_for_each_safe(pos, n, &eli->li_request_list) {
3749 			int err = 0;
3750 			int progress = 0;
3751 			elr = list_entry(pos, struct ext4_li_request,
3752 					 lr_request);
3753 
3754 			if (time_before(jiffies, elr->lr_next_sched)) {
3755 				if (time_before(elr->lr_next_sched, next_wakeup))
3756 					next_wakeup = elr->lr_next_sched;
3757 				continue;
3758 			}
3759 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3760 				if (sb_start_write_trylock(elr->lr_super)) {
3761 					progress = 1;
3762 					/*
3763 					 * We hold sb->s_umount, sb can not
3764 					 * be removed from the list, it is
3765 					 * now safe to drop li_list_mtx
3766 					 */
3767 					mutex_unlock(&eli->li_list_mtx);
3768 					err = ext4_run_li_request(elr);
3769 					sb_end_write(elr->lr_super);
3770 					mutex_lock(&eli->li_list_mtx);
3771 					n = pos->next;
3772 				}
3773 				up_read((&elr->lr_super->s_umount));
3774 			}
3775 			/* error, remove the lazy_init job */
3776 			if (err) {
3777 				ext4_remove_li_request(elr);
3778 				continue;
3779 			}
3780 			if (!progress) {
3781 				elr->lr_next_sched = jiffies +
3782 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3783 			}
3784 			if (time_before(elr->lr_next_sched, next_wakeup))
3785 				next_wakeup = elr->lr_next_sched;
3786 		}
3787 		mutex_unlock(&eli->li_list_mtx);
3788 
3789 		try_to_freeze();
3790 
3791 		cur = jiffies;
3792 		if ((time_after_eq(cur, next_wakeup)) ||
3793 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3794 			cond_resched();
3795 			continue;
3796 		}
3797 
3798 		schedule_timeout_interruptible(next_wakeup - cur);
3799 
3800 		if (kthread_should_stop()) {
3801 			ext4_clear_request_list();
3802 			goto exit_thread;
3803 		}
3804 	}
3805 
3806 exit_thread:
3807 	/*
3808 	 * It looks like the request list is empty, but we need
3809 	 * to check it under the li_list_mtx lock, to prevent any
3810 	 * additions into it, and of course we should lock ext4_li_mtx
3811 	 * to atomically free the list and ext4_li_info, because at
3812 	 * this point another ext4 filesystem could be registering
3813 	 * new one.
3814 	 */
3815 	mutex_lock(&ext4_li_mtx);
3816 	mutex_lock(&eli->li_list_mtx);
3817 	if (!list_empty(&eli->li_request_list)) {
3818 		mutex_unlock(&eli->li_list_mtx);
3819 		mutex_unlock(&ext4_li_mtx);
3820 		goto cont_thread;
3821 	}
3822 	mutex_unlock(&eli->li_list_mtx);
3823 	kfree(ext4_li_info);
3824 	ext4_li_info = NULL;
3825 	mutex_unlock(&ext4_li_mtx);
3826 
3827 	return 0;
3828 }
3829 
3830 static void ext4_clear_request_list(void)
3831 {
3832 	struct list_head *pos, *n;
3833 	struct ext4_li_request *elr;
3834 
3835 	mutex_lock(&ext4_li_info->li_list_mtx);
3836 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837 		elr = list_entry(pos, struct ext4_li_request,
3838 				 lr_request);
3839 		ext4_remove_li_request(elr);
3840 	}
3841 	mutex_unlock(&ext4_li_info->li_list_mtx);
3842 }
3843 
3844 static int ext4_run_lazyinit_thread(void)
3845 {
3846 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847 					 ext4_li_info, "ext4lazyinit");
3848 	if (IS_ERR(ext4_lazyinit_task)) {
3849 		int err = PTR_ERR(ext4_lazyinit_task);
3850 		ext4_clear_request_list();
3851 		kfree(ext4_li_info);
3852 		ext4_li_info = NULL;
3853 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854 				 "initialization thread\n",
3855 				 err);
3856 		return err;
3857 	}
3858 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859 	return 0;
3860 }
3861 
3862 /*
3863  * Check whether it make sense to run itable init. thread or not.
3864  * If there is at least one uninitialized inode table, return
3865  * corresponding group number, else the loop goes through all
3866  * groups and return total number of groups.
3867  */
3868 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869 {
3870 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871 	struct ext4_group_desc *gdp = NULL;
3872 
3873 	if (!ext4_has_group_desc_csum(sb))
3874 		return ngroups;
3875 
3876 	for (group = 0; group < ngroups; group++) {
3877 		gdp = ext4_get_group_desc(sb, group, NULL);
3878 		if (!gdp)
3879 			continue;
3880 
3881 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882 			break;
3883 	}
3884 
3885 	return group;
3886 }
3887 
3888 static int ext4_li_info_new(void)
3889 {
3890 	struct ext4_lazy_init *eli = NULL;
3891 
3892 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893 	if (!eli)
3894 		return -ENOMEM;
3895 
3896 	INIT_LIST_HEAD(&eli->li_request_list);
3897 	mutex_init(&eli->li_list_mtx);
3898 
3899 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3900 
3901 	ext4_li_info = eli;
3902 
3903 	return 0;
3904 }
3905 
3906 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907 					    ext4_group_t start)
3908 {
3909 	struct ext4_li_request *elr;
3910 
3911 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912 	if (!elr)
3913 		return NULL;
3914 
3915 	elr->lr_super = sb;
3916 	elr->lr_first_not_zeroed = start;
3917 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919 		elr->lr_next_group = start;
3920 	} else {
3921 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922 	}
3923 
3924 	/*
3925 	 * Randomize first schedule time of the request to
3926 	 * spread the inode table initialization requests
3927 	 * better.
3928 	 */
3929 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3930 	return elr;
3931 }
3932 
3933 int ext4_register_li_request(struct super_block *sb,
3934 			     ext4_group_t first_not_zeroed)
3935 {
3936 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3937 	struct ext4_li_request *elr = NULL;
3938 	ext4_group_t ngroups = sbi->s_groups_count;
3939 	int ret = 0;
3940 
3941 	mutex_lock(&ext4_li_mtx);
3942 	if (sbi->s_li_request != NULL) {
3943 		/*
3944 		 * Reset timeout so it can be computed again, because
3945 		 * s_li_wait_mult might have changed.
3946 		 */
3947 		sbi->s_li_request->lr_timeout = 0;
3948 		goto out;
3949 	}
3950 
3951 	if (sb_rdonly(sb) ||
3952 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954 		goto out;
3955 
3956 	elr = ext4_li_request_new(sb, first_not_zeroed);
3957 	if (!elr) {
3958 		ret = -ENOMEM;
3959 		goto out;
3960 	}
3961 
3962 	if (NULL == ext4_li_info) {
3963 		ret = ext4_li_info_new();
3964 		if (ret)
3965 			goto out;
3966 	}
3967 
3968 	mutex_lock(&ext4_li_info->li_list_mtx);
3969 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970 	mutex_unlock(&ext4_li_info->li_list_mtx);
3971 
3972 	sbi->s_li_request = elr;
3973 	/*
3974 	 * set elr to NULL here since it has been inserted to
3975 	 * the request_list and the removal and free of it is
3976 	 * handled by ext4_clear_request_list from now on.
3977 	 */
3978 	elr = NULL;
3979 
3980 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981 		ret = ext4_run_lazyinit_thread();
3982 		if (ret)
3983 			goto out;
3984 	}
3985 out:
3986 	mutex_unlock(&ext4_li_mtx);
3987 	if (ret)
3988 		kfree(elr);
3989 	return ret;
3990 }
3991 
3992 /*
3993  * We do not need to lock anything since this is called on
3994  * module unload.
3995  */
3996 static void ext4_destroy_lazyinit_thread(void)
3997 {
3998 	/*
3999 	 * If thread exited earlier
4000 	 * there's nothing to be done.
4001 	 */
4002 	if (!ext4_li_info || !ext4_lazyinit_task)
4003 		return;
4004 
4005 	kthread_stop(ext4_lazyinit_task);
4006 }
4007 
4008 static int set_journal_csum_feature_set(struct super_block *sb)
4009 {
4010 	int ret = 1;
4011 	int compat, incompat;
4012 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4013 
4014 	if (ext4_has_metadata_csum(sb)) {
4015 		/* journal checksum v3 */
4016 		compat = 0;
4017 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018 	} else {
4019 		/* journal checksum v1 */
4020 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021 		incompat = 0;
4022 	}
4023 
4024 	jbd2_journal_clear_features(sbi->s_journal,
4025 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029 		ret = jbd2_journal_set_features(sbi->s_journal,
4030 				compat, 0,
4031 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032 				incompat);
4033 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034 		ret = jbd2_journal_set_features(sbi->s_journal,
4035 				compat, 0,
4036 				incompat);
4037 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039 	} else {
4040 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042 	}
4043 
4044 	return ret;
4045 }
4046 
4047 /*
4048  * Note: calculating the overhead so we can be compatible with
4049  * historical BSD practice is quite difficult in the face of
4050  * clusters/bigalloc.  This is because multiple metadata blocks from
4051  * different block group can end up in the same allocation cluster.
4052  * Calculating the exact overhead in the face of clustered allocation
4053  * requires either O(all block bitmaps) in memory or O(number of block
4054  * groups**2) in time.  We will still calculate the superblock for
4055  * older file systems --- and if we come across with a bigalloc file
4056  * system with zero in s_overhead_clusters the estimate will be close to
4057  * correct especially for very large cluster sizes --- but for newer
4058  * file systems, it's better to calculate this figure once at mkfs
4059  * time, and store it in the superblock.  If the superblock value is
4060  * present (even for non-bigalloc file systems), we will use it.
4061  */
4062 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063 			  char *buf)
4064 {
4065 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4066 	struct ext4_group_desc	*gdp;
4067 	ext4_fsblk_t		first_block, last_block, b;
4068 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4069 	int			s, j, count = 0;
4070 	int			has_super = ext4_bg_has_super(sb, grp);
4071 
4072 	if (!ext4_has_feature_bigalloc(sb))
4073 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4074 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075 			sbi->s_itb_per_group + 2);
4076 
4077 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4079 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080 	for (i = 0; i < ngroups; i++) {
4081 		gdp = ext4_get_group_desc(sb, i, NULL);
4082 		b = ext4_block_bitmap(sb, gdp);
4083 		if (b >= first_block && b <= last_block) {
4084 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085 			count++;
4086 		}
4087 		b = ext4_inode_bitmap(sb, gdp);
4088 		if (b >= first_block && b <= last_block) {
4089 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090 			count++;
4091 		}
4092 		b = ext4_inode_table(sb, gdp);
4093 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095 				int c = EXT4_B2C(sbi, b - first_block);
4096 				ext4_set_bit(c, buf);
4097 				count++;
4098 			}
4099 		if (i != grp)
4100 			continue;
4101 		s = 0;
4102 		if (ext4_bg_has_super(sb, grp)) {
4103 			ext4_set_bit(s++, buf);
4104 			count++;
4105 		}
4106 		j = ext4_bg_num_gdb(sb, grp);
4107 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108 			ext4_error(sb, "Invalid number of block group "
4109 				   "descriptor blocks: %d", j);
4110 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111 		}
4112 		count += j;
4113 		for (; j > 0; j--)
4114 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115 	}
4116 	if (!count)
4117 		return 0;
4118 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4119 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120 }
4121 
4122 /*
4123  * Compute the overhead and stash it in sbi->s_overhead
4124  */
4125 int ext4_calculate_overhead(struct super_block *sb)
4126 {
4127 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4128 	struct ext4_super_block *es = sbi->s_es;
4129 	struct inode *j_inode;
4130 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132 	ext4_fsblk_t overhead = 0;
4133 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134 
4135 	if (!buf)
4136 		return -ENOMEM;
4137 
4138 	/*
4139 	 * Compute the overhead (FS structures).  This is constant
4140 	 * for a given filesystem unless the number of block groups
4141 	 * changes so we cache the previous value until it does.
4142 	 */
4143 
4144 	/*
4145 	 * All of the blocks before first_data_block are overhead
4146 	 */
4147 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148 
4149 	/*
4150 	 * Add the overhead found in each block group
4151 	 */
4152 	for (i = 0; i < ngroups; i++) {
4153 		int blks;
4154 
4155 		blks = count_overhead(sb, i, buf);
4156 		overhead += blks;
4157 		if (blks)
4158 			memset(buf, 0, PAGE_SIZE);
4159 		cond_resched();
4160 	}
4161 
4162 	/*
4163 	 * Add the internal journal blocks whether the journal has been
4164 	 * loaded or not
4165 	 */
4166 	if (sbi->s_journal && !sbi->s_journal_bdev)
4167 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169 		/* j_inum for internal journal is non-zero */
4170 		j_inode = ext4_get_journal_inode(sb, j_inum);
4171 		if (j_inode) {
4172 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174 			iput(j_inode);
4175 		} else {
4176 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4177 		}
4178 	}
4179 	sbi->s_overhead = overhead;
4180 	smp_wmb();
4181 	free_page((unsigned long) buf);
4182 	return 0;
4183 }
4184 
4185 static void ext4_set_resv_clusters(struct super_block *sb)
4186 {
4187 	ext4_fsblk_t resv_clusters;
4188 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4189 
4190 	/*
4191 	 * There's no need to reserve anything when we aren't using extents.
4192 	 * The space estimates are exact, there are no unwritten extents,
4193 	 * hole punching doesn't need new metadata... This is needed especially
4194 	 * to keep ext2/3 backward compatibility.
4195 	 */
4196 	if (!ext4_has_feature_extents(sb))
4197 		return;
4198 	/*
4199 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200 	 * This should cover the situations where we can not afford to run
4201 	 * out of space like for example punch hole, or converting
4202 	 * unwritten extents in delalloc path. In most cases such
4203 	 * allocation would require 1, or 2 blocks, higher numbers are
4204 	 * very rare.
4205 	 */
4206 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207 			 sbi->s_cluster_bits);
4208 
4209 	do_div(resv_clusters, 50);
4210 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211 
4212 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213 }
4214 
4215 static const char *ext4_quota_mode(struct super_block *sb)
4216 {
4217 #ifdef CONFIG_QUOTA
4218 	if (!ext4_quota_capable(sb))
4219 		return "none";
4220 
4221 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222 		return "journalled";
4223 	else
4224 		return "writeback";
4225 #else
4226 	return "disabled";
4227 #endif
4228 }
4229 
4230 static void ext4_setup_csum_trigger(struct super_block *sb,
4231 				    enum ext4_journal_trigger_type type,
4232 				    void (*trigger)(
4233 					struct jbd2_buffer_trigger_type *type,
4234 					struct buffer_head *bh,
4235 					void *mapped_data,
4236 					size_t size))
4237 {
4238 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4239 
4240 	sbi->s_journal_triggers[type].sb = sb;
4241 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242 }
4243 
4244 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245 {
4246 	if (!sbi)
4247 		return;
4248 
4249 	kfree(sbi->s_blockgroup_lock);
4250 	fs_put_dax(sbi->s_daxdev, NULL);
4251 	kfree(sbi);
4252 }
4253 
4254 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255 {
4256 	struct ext4_sb_info *sbi;
4257 
4258 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259 	if (!sbi)
4260 		return NULL;
4261 
4262 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263 					   NULL, NULL);
4264 
4265 	sbi->s_blockgroup_lock =
4266 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4267 
4268 	if (!sbi->s_blockgroup_lock)
4269 		goto err_out;
4270 
4271 	sb->s_fs_info = sbi;
4272 	sbi->s_sb = sb;
4273 	return sbi;
4274 err_out:
4275 	fs_put_dax(sbi->s_daxdev, NULL);
4276 	kfree(sbi);
4277 	return NULL;
4278 }
4279 
4280 static void ext4_set_def_opts(struct super_block *sb,
4281 			      struct ext4_super_block *es)
4282 {
4283 	unsigned long def_mount_opts;
4284 
4285 	/* Set defaults before we parse the mount options */
4286 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287 	set_opt(sb, INIT_INODE_TABLE);
4288 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4289 		set_opt(sb, DEBUG);
4290 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291 		set_opt(sb, GRPID);
4292 	if (def_mount_opts & EXT4_DEFM_UID16)
4293 		set_opt(sb, NO_UID32);
4294 	/* xattr user namespace & acls are now defaulted on */
4295 	set_opt(sb, XATTR_USER);
4296 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4297 	set_opt(sb, POSIX_ACL);
4298 #endif
4299 	if (ext4_has_feature_fast_commit(sb))
4300 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4301 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4302 	if (ext4_has_metadata_csum(sb))
4303 		set_opt(sb, JOURNAL_CHECKSUM);
4304 
4305 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306 		set_opt(sb, JOURNAL_DATA);
4307 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308 		set_opt(sb, ORDERED_DATA);
4309 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310 		set_opt(sb, WRITEBACK_DATA);
4311 
4312 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313 		set_opt(sb, ERRORS_PANIC);
4314 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315 		set_opt(sb, ERRORS_CONT);
4316 	else
4317 		set_opt(sb, ERRORS_RO);
4318 	/* block_validity enabled by default; disable with noblock_validity */
4319 	set_opt(sb, BLOCK_VALIDITY);
4320 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4321 		set_opt(sb, DISCARD);
4322 
4323 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324 		set_opt(sb, BARRIER);
4325 
4326 	/*
4327 	 * enable delayed allocation by default
4328 	 * Use -o nodelalloc to turn it off
4329 	 */
4330 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332 		set_opt(sb, DELALLOC);
4333 
4334 	if (sb->s_blocksize == PAGE_SIZE)
4335 		set_opt(sb, DIOREAD_NOLOCK);
4336 }
4337 
4338 static int ext4_handle_clustersize(struct super_block *sb)
4339 {
4340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4341 	struct ext4_super_block *es = sbi->s_es;
4342 	int clustersize;
4343 
4344 	/* Handle clustersize */
4345 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346 	if (ext4_has_feature_bigalloc(sb)) {
4347 		if (clustersize < sb->s_blocksize) {
4348 			ext4_msg(sb, KERN_ERR,
4349 				 "cluster size (%d) smaller than "
4350 				 "block size (%lu)", clustersize, sb->s_blocksize);
4351 			return -EINVAL;
4352 		}
4353 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354 			le32_to_cpu(es->s_log_block_size);
4355 		sbi->s_clusters_per_group =
4356 			le32_to_cpu(es->s_clusters_per_group);
4357 		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358 			ext4_msg(sb, KERN_ERR,
4359 				 "#clusters per group too big: %lu",
4360 				 sbi->s_clusters_per_group);
4361 			return -EINVAL;
4362 		}
4363 		if (sbi->s_blocks_per_group !=
4364 		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366 				 "clusters per group (%lu) inconsistent",
4367 				 sbi->s_blocks_per_group,
4368 				 sbi->s_clusters_per_group);
4369 			return -EINVAL;
4370 		}
4371 	} else {
4372 		if (clustersize != sb->s_blocksize) {
4373 			ext4_msg(sb, KERN_ERR,
4374 				 "fragment/cluster size (%d) != "
4375 				 "block size (%lu)", clustersize, sb->s_blocksize);
4376 			return -EINVAL;
4377 		}
4378 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379 			ext4_msg(sb, KERN_ERR,
4380 				 "#blocks per group too big: %lu",
4381 				 sbi->s_blocks_per_group);
4382 			return -EINVAL;
4383 		}
4384 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385 		sbi->s_cluster_bits = 0;
4386 	}
4387 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388 
4389 	/* Do we have standard group size of clustersize * 8 blocks ? */
4390 	if (sbi->s_blocks_per_group == clustersize << 3)
4391 		set_opt2(sb, STD_GROUP_SIZE);
4392 
4393 	return 0;
4394 }
4395 
4396 static void ext4_fast_commit_init(struct super_block *sb)
4397 {
4398 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4399 
4400 	/* Initialize fast commit stuff */
4401 	atomic_set(&sbi->s_fc_subtid, 0);
4402 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406 	sbi->s_fc_bytes = 0;
4407 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408 	sbi->s_fc_ineligible_tid = 0;
4409 	spin_lock_init(&sbi->s_fc_lock);
4410 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411 	sbi->s_fc_replay_state.fc_regions = NULL;
4412 	sbi->s_fc_replay_state.fc_regions_size = 0;
4413 	sbi->s_fc_replay_state.fc_regions_used = 0;
4414 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4415 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418 }
4419 
4420 static int ext4_inode_info_init(struct super_block *sb,
4421 				struct ext4_super_block *es)
4422 {
4423 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4424 
4425 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428 	} else {
4429 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433 				 sbi->s_first_ino);
4434 			return -EINVAL;
4435 		}
4436 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437 		    (!is_power_of_2(sbi->s_inode_size)) ||
4438 		    (sbi->s_inode_size > sb->s_blocksize)) {
4439 			ext4_msg(sb, KERN_ERR,
4440 			       "unsupported inode size: %d",
4441 			       sbi->s_inode_size);
4442 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443 			return -EINVAL;
4444 		}
4445 		/*
4446 		 * i_atime_extra is the last extra field available for
4447 		 * [acm]times in struct ext4_inode. Checking for that
4448 		 * field should suffice to ensure we have extra space
4449 		 * for all three.
4450 		 */
4451 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453 			sb->s_time_gran = 1;
4454 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455 		} else {
4456 			sb->s_time_gran = NSEC_PER_SEC;
4457 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458 		}
4459 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460 	}
4461 
4462 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464 			EXT4_GOOD_OLD_INODE_SIZE;
4465 		if (ext4_has_feature_extra_isize(sb)) {
4466 			unsigned v, max = (sbi->s_inode_size -
4467 					   EXT4_GOOD_OLD_INODE_SIZE);
4468 
4469 			v = le16_to_cpu(es->s_want_extra_isize);
4470 			if (v > max) {
4471 				ext4_msg(sb, KERN_ERR,
4472 					 "bad s_want_extra_isize: %d", v);
4473 				return -EINVAL;
4474 			}
4475 			if (sbi->s_want_extra_isize < v)
4476 				sbi->s_want_extra_isize = v;
4477 
4478 			v = le16_to_cpu(es->s_min_extra_isize);
4479 			if (v > max) {
4480 				ext4_msg(sb, KERN_ERR,
4481 					 "bad s_min_extra_isize: %d", v);
4482 				return -EINVAL;
4483 			}
4484 			if (sbi->s_want_extra_isize < v)
4485 				sbi->s_want_extra_isize = v;
4486 		}
4487 	}
4488 
4489 	return 0;
4490 }
4491 
4492 #if IS_ENABLED(CONFIG_UNICODE)
4493 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494 {
4495 	const struct ext4_sb_encodings *encoding_info;
4496 	struct unicode_map *encoding;
4497 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498 
4499 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500 		return 0;
4501 
4502 	encoding_info = ext4_sb_read_encoding(es);
4503 	if (!encoding_info) {
4504 		ext4_msg(sb, KERN_ERR,
4505 			"Encoding requested by superblock is unknown");
4506 		return -EINVAL;
4507 	}
4508 
4509 	encoding = utf8_load(encoding_info->version);
4510 	if (IS_ERR(encoding)) {
4511 		ext4_msg(sb, KERN_ERR,
4512 			"can't mount with superblock charset: %s-%u.%u.%u "
4513 			"not supported by the kernel. flags: 0x%x.",
4514 			encoding_info->name,
4515 			unicode_major(encoding_info->version),
4516 			unicode_minor(encoding_info->version),
4517 			unicode_rev(encoding_info->version),
4518 			encoding_flags);
4519 		return -EINVAL;
4520 	}
4521 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523 		unicode_major(encoding_info->version),
4524 		unicode_minor(encoding_info->version),
4525 		unicode_rev(encoding_info->version),
4526 		encoding_flags);
4527 
4528 	sb->s_encoding = encoding;
4529 	sb->s_encoding_flags = encoding_flags;
4530 
4531 	return 0;
4532 }
4533 #else
4534 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535 {
4536 	return 0;
4537 }
4538 #endif
4539 
4540 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541 {
4542 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4543 
4544 	/* Warn if metadata_csum and gdt_csum are both set. */
4545 	if (ext4_has_feature_metadata_csum(sb) &&
4546 	    ext4_has_feature_gdt_csum(sb))
4547 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4548 			     "redundant flags; please run fsck.");
4549 
4550 	/* Check for a known checksum algorithm */
4551 	if (!ext4_verify_csum_type(sb, es)) {
4552 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553 			 "unknown checksum algorithm.");
4554 		return -EINVAL;
4555 	}
4556 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557 				ext4_orphan_file_block_trigger);
4558 
4559 	/* Load the checksum driver */
4560 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561 	if (IS_ERR(sbi->s_chksum_driver)) {
4562 		int ret = PTR_ERR(sbi->s_chksum_driver);
4563 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564 		sbi->s_chksum_driver = NULL;
4565 		return ret;
4566 	}
4567 
4568 	/* Check superblock checksum */
4569 	if (!ext4_superblock_csum_verify(sb, es)) {
4570 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571 			 "invalid superblock checksum.  Run e2fsck?");
4572 		return -EFSBADCRC;
4573 	}
4574 
4575 	/* Precompute checksum seed for all metadata */
4576 	if (ext4_has_feature_csum_seed(sb))
4577 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580 					       sizeof(es->s_uuid));
4581 	return 0;
4582 }
4583 
4584 static int ext4_check_feature_compatibility(struct super_block *sb,
4585 					    struct ext4_super_block *es,
4586 					    int silent)
4587 {
4588 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589 	    (ext4_has_compat_features(sb) ||
4590 	     ext4_has_ro_compat_features(sb) ||
4591 	     ext4_has_incompat_features(sb)))
4592 		ext4_msg(sb, KERN_WARNING,
4593 		       "feature flags set on rev 0 fs, "
4594 		       "running e2fsck is recommended");
4595 
4596 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597 		set_opt2(sb, HURD_COMPAT);
4598 		if (ext4_has_feature_64bit(sb)) {
4599 			ext4_msg(sb, KERN_ERR,
4600 				 "The Hurd can't support 64-bit file systems");
4601 			return -EINVAL;
4602 		}
4603 
4604 		/*
4605 		 * ea_inode feature uses l_i_version field which is not
4606 		 * available in HURD_COMPAT mode.
4607 		 */
4608 		if (ext4_has_feature_ea_inode(sb)) {
4609 			ext4_msg(sb, KERN_ERR,
4610 				 "ea_inode feature is not supported for Hurd");
4611 			return -EINVAL;
4612 		}
4613 	}
4614 
4615 	if (IS_EXT2_SB(sb)) {
4616 		if (ext2_feature_set_ok(sb))
4617 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618 				 "using the ext4 subsystem");
4619 		else {
4620 			/*
4621 			 * If we're probing be silent, if this looks like
4622 			 * it's actually an ext[34] filesystem.
4623 			 */
4624 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625 				return -EINVAL;
4626 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627 				 "to feature incompatibilities");
4628 			return -EINVAL;
4629 		}
4630 	}
4631 
4632 	if (IS_EXT3_SB(sb)) {
4633 		if (ext3_feature_set_ok(sb))
4634 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635 				 "using the ext4 subsystem");
4636 		else {
4637 			/*
4638 			 * If we're probing be silent, if this looks like
4639 			 * it's actually an ext4 filesystem.
4640 			 */
4641 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642 				return -EINVAL;
4643 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644 				 "to feature incompatibilities");
4645 			return -EINVAL;
4646 		}
4647 	}
4648 
4649 	/*
4650 	 * Check feature flags regardless of the revision level, since we
4651 	 * previously didn't change the revision level when setting the flags,
4652 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653 	 */
4654 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655 		return -EINVAL;
4656 
4657 	return 0;
4658 }
4659 
4660 static int ext4_geometry_check(struct super_block *sb,
4661 			       struct ext4_super_block *es)
4662 {
4663 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4664 	__u64 blocks_count;
4665 
4666 	/* check blocks count against device size */
4667 	blocks_count = sb_bdev_nr_blocks(sb);
4668 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670 		       "exceeds size of device (%llu blocks)",
4671 		       ext4_blocks_count(es), blocks_count);
4672 		return -EINVAL;
4673 	}
4674 
4675 	/*
4676 	 * It makes no sense for the first data block to be beyond the end
4677 	 * of the filesystem.
4678 	 */
4679 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681 			 "block %u is beyond end of filesystem (%llu)",
4682 			 le32_to_cpu(es->s_first_data_block),
4683 			 ext4_blocks_count(es));
4684 		return -EINVAL;
4685 	}
4686 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687 	    (sbi->s_cluster_ratio == 1)) {
4688 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689 			 "block is 0 with a 1k block and cluster size");
4690 		return -EINVAL;
4691 	}
4692 
4693 	blocks_count = (ext4_blocks_count(es) -
4694 			le32_to_cpu(es->s_first_data_block) +
4695 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699 		       "(block count %llu, first data block %u, "
4700 		       "blocks per group %lu)", blocks_count,
4701 		       ext4_blocks_count(es),
4702 		       le32_to_cpu(es->s_first_data_block),
4703 		       EXT4_BLOCKS_PER_GROUP(sb));
4704 		return -EINVAL;
4705 	}
4706 	sbi->s_groups_count = blocks_count;
4707 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710 	    le32_to_cpu(es->s_inodes_count)) {
4711 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712 			 le32_to_cpu(es->s_inodes_count),
4713 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714 		return -EINVAL;
4715 	}
4716 
4717 	return 0;
4718 }
4719 
4720 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721 {
4722 	struct buffer_head **group_desc;
4723 	int i;
4724 
4725 	rcu_read_lock();
4726 	group_desc = rcu_dereference(sbi->s_group_desc);
4727 	for (i = 0; i < sbi->s_gdb_count; i++)
4728 		brelse(group_desc[i]);
4729 	kvfree(group_desc);
4730 	rcu_read_unlock();
4731 }
4732 
4733 static int ext4_group_desc_init(struct super_block *sb,
4734 				struct ext4_super_block *es,
4735 				ext4_fsblk_t logical_sb_block,
4736 				ext4_group_t *first_not_zeroed)
4737 {
4738 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4739 	unsigned int db_count;
4740 	ext4_fsblk_t block;
4741 	int ret;
4742 	int i;
4743 
4744 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745 		   EXT4_DESC_PER_BLOCK(sb);
4746 	if (ext4_has_feature_meta_bg(sb)) {
4747 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748 			ext4_msg(sb, KERN_WARNING,
4749 				 "first meta block group too large: %u "
4750 				 "(group descriptor block count %u)",
4751 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4752 			return -EINVAL;
4753 		}
4754 	}
4755 	rcu_assign_pointer(sbi->s_group_desc,
4756 			   kvmalloc_array(db_count,
4757 					  sizeof(struct buffer_head *),
4758 					  GFP_KERNEL));
4759 	if (sbi->s_group_desc == NULL) {
4760 		ext4_msg(sb, KERN_ERR, "not enough memory");
4761 		return -ENOMEM;
4762 	}
4763 
4764 	bgl_lock_init(sbi->s_blockgroup_lock);
4765 
4766 	/* Pre-read the descriptors into the buffer cache */
4767 	for (i = 0; i < db_count; i++) {
4768 		block = descriptor_loc(sb, logical_sb_block, i);
4769 		ext4_sb_breadahead_unmovable(sb, block);
4770 	}
4771 
4772 	for (i = 0; i < db_count; i++) {
4773 		struct buffer_head *bh;
4774 
4775 		block = descriptor_loc(sb, logical_sb_block, i);
4776 		bh = ext4_sb_bread_unmovable(sb, block);
4777 		if (IS_ERR(bh)) {
4778 			ext4_msg(sb, KERN_ERR,
4779 			       "can't read group descriptor %d", i);
4780 			sbi->s_gdb_count = i;
4781 			ret = PTR_ERR(bh);
4782 			goto out;
4783 		}
4784 		rcu_read_lock();
4785 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4786 		rcu_read_unlock();
4787 	}
4788 	sbi->s_gdb_count = db_count;
4789 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791 		ret = -EFSCORRUPTED;
4792 		goto out;
4793 	}
4794 	return 0;
4795 out:
4796 	ext4_group_desc_free(sbi);
4797 	return ret;
4798 }
4799 
4800 static int ext4_load_and_init_journal(struct super_block *sb,
4801 				      struct ext4_super_block *es,
4802 				      struct ext4_fs_context *ctx)
4803 {
4804 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4805 	int err;
4806 
4807 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808 	if (err)
4809 		return err;
4810 
4811 	if (ext4_has_feature_64bit(sb) &&
4812 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4814 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815 		goto out;
4816 	}
4817 
4818 	if (!set_journal_csum_feature_set(sb)) {
4819 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820 			 "feature set");
4821 		goto out;
4822 	}
4823 
4824 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827 		ext4_msg(sb, KERN_ERR,
4828 			"Failed to set fast commit journal feature");
4829 		goto out;
4830 	}
4831 
4832 	/* We have now updated the journal if required, so we can
4833 	 * validate the data journaling mode. */
4834 	switch (test_opt(sb, DATA_FLAGS)) {
4835 	case 0:
4836 		/* No mode set, assume a default based on the journal
4837 		 * capabilities: ORDERED_DATA if the journal can
4838 		 * cope, else JOURNAL_DATA
4839 		 */
4840 		if (jbd2_journal_check_available_features
4841 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842 			set_opt(sb, ORDERED_DATA);
4843 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844 		} else {
4845 			set_opt(sb, JOURNAL_DATA);
4846 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847 		}
4848 		break;
4849 
4850 	case EXT4_MOUNT_ORDERED_DATA:
4851 	case EXT4_MOUNT_WRITEBACK_DATA:
4852 		if (!jbd2_journal_check_available_features
4853 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4855 			       "requested data journaling mode");
4856 			goto out;
4857 		}
4858 		break;
4859 	default:
4860 		break;
4861 	}
4862 
4863 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865 		ext4_msg(sb, KERN_ERR, "can't mount with "
4866 			"journal_async_commit in data=ordered mode");
4867 		goto out;
4868 	}
4869 
4870 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871 
4872 	sbi->s_journal->j_submit_inode_data_buffers =
4873 		ext4_journal_submit_inode_data_buffers;
4874 	sbi->s_journal->j_finish_inode_data_buffers =
4875 		ext4_journal_finish_inode_data_buffers;
4876 
4877 	return 0;
4878 
4879 out:
4880 	/* flush s_error_work before journal destroy. */
4881 	flush_work(&sbi->s_error_work);
4882 	jbd2_journal_destroy(sbi->s_journal);
4883 	sbi->s_journal = NULL;
4884 	return -EINVAL;
4885 }
4886 
4887 static int ext4_journal_data_mode_check(struct super_block *sb)
4888 {
4889 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891 			    "data=journal disables delayed allocation, "
4892 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893 		/* can't mount with both data=journal and dioread_nolock. */
4894 		clear_opt(sb, DIOREAD_NOLOCK);
4895 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897 			ext4_msg(sb, KERN_ERR, "can't mount with "
4898 				 "both data=journal and delalloc");
4899 			return -EINVAL;
4900 		}
4901 		if (test_opt(sb, DAX_ALWAYS)) {
4902 			ext4_msg(sb, KERN_ERR, "can't mount with "
4903 				 "both data=journal and dax");
4904 			return -EINVAL;
4905 		}
4906 		if (ext4_has_feature_encrypt(sb)) {
4907 			ext4_msg(sb, KERN_WARNING,
4908 				 "encrypted files will use data=ordered "
4909 				 "instead of data journaling mode");
4910 		}
4911 		if (test_opt(sb, DELALLOC))
4912 			clear_opt(sb, DELALLOC);
4913 	} else {
4914 		sb->s_iflags |= SB_I_CGROUPWB;
4915 	}
4916 
4917 	return 0;
4918 }
4919 
4920 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921 			   int silent)
4922 {
4923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 	struct ext4_super_block *es;
4925 	ext4_fsblk_t logical_sb_block;
4926 	unsigned long offset = 0;
4927 	struct buffer_head *bh;
4928 	int ret = -EINVAL;
4929 	int blocksize;
4930 
4931 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932 	if (!blocksize) {
4933 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934 		return -EINVAL;
4935 	}
4936 
4937 	/*
4938 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4939 	 * block sizes.  We need to calculate the offset from buffer start.
4940 	 */
4941 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943 		offset = do_div(logical_sb_block, blocksize);
4944 	} else {
4945 		logical_sb_block = sbi->s_sb_block;
4946 	}
4947 
4948 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949 	if (IS_ERR(bh)) {
4950 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951 		return PTR_ERR(bh);
4952 	}
4953 	/*
4954 	 * Note: s_es must be initialized as soon as possible because
4955 	 *       some ext4 macro-instructions depend on its value
4956 	 */
4957 	es = (struct ext4_super_block *) (bh->b_data + offset);
4958 	sbi->s_es = es;
4959 	sb->s_magic = le16_to_cpu(es->s_magic);
4960 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961 		if (!silent)
4962 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963 		goto out;
4964 	}
4965 
4966 	if (le32_to_cpu(es->s_log_block_size) >
4967 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968 		ext4_msg(sb, KERN_ERR,
4969 			 "Invalid log block size: %u",
4970 			 le32_to_cpu(es->s_log_block_size));
4971 		goto out;
4972 	}
4973 	if (le32_to_cpu(es->s_log_cluster_size) >
4974 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975 		ext4_msg(sb, KERN_ERR,
4976 			 "Invalid log cluster size: %u",
4977 			 le32_to_cpu(es->s_log_cluster_size));
4978 		goto out;
4979 	}
4980 
4981 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982 
4983 	/*
4984 	 * If the default block size is not the same as the real block size,
4985 	 * we need to reload it.
4986 	 */
4987 	if (sb->s_blocksize == blocksize) {
4988 		*lsb = logical_sb_block;
4989 		sbi->s_sbh = bh;
4990 		return 0;
4991 	}
4992 
4993 	/*
4994 	 * bh must be released before kill_bdev(), otherwise
4995 	 * it won't be freed and its page also. kill_bdev()
4996 	 * is called by sb_set_blocksize().
4997 	 */
4998 	brelse(bh);
4999 	/* Validate the filesystem blocksize */
5000 	if (!sb_set_blocksize(sb, blocksize)) {
5001 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5002 				blocksize);
5003 		bh = NULL;
5004 		goto out;
5005 	}
5006 
5007 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008 	offset = do_div(logical_sb_block, blocksize);
5009 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010 	if (IS_ERR(bh)) {
5011 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012 		ret = PTR_ERR(bh);
5013 		bh = NULL;
5014 		goto out;
5015 	}
5016 	es = (struct ext4_super_block *)(bh->b_data + offset);
5017 	sbi->s_es = es;
5018 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020 		goto out;
5021 	}
5022 	*lsb = logical_sb_block;
5023 	sbi->s_sbh = bh;
5024 	return 0;
5025 out:
5026 	brelse(bh);
5027 	return ret;
5028 }
5029 
5030 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031 {
5032 	struct ext4_super_block *es = NULL;
5033 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5034 	struct flex_groups **flex_groups;
5035 	ext4_fsblk_t block;
5036 	ext4_fsblk_t logical_sb_block;
5037 	struct inode *root;
5038 	int ret = -ENOMEM;
5039 	unsigned int i;
5040 	int needs_recovery, has_huge_files;
5041 	int err = 0;
5042 	ext4_group_t first_not_zeroed;
5043 	struct ext4_fs_context *ctx = fc->fs_private;
5044 	int silent = fc->sb_flags & SB_SILENT;
5045 
5046 	/* Set defaults for the variables that will be set during parsing */
5047 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049 
5050 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051 	sbi->s_sectors_written_start =
5052 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053 
5054 	/* -EINVAL is default */
5055 	ret = -EINVAL;
5056 	err = ext4_load_super(sb, &logical_sb_block, silent);
5057 	if (err)
5058 		goto out_fail;
5059 
5060 	es = sbi->s_es;
5061 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062 
5063 	err = ext4_init_metadata_csum(sb, es);
5064 	if (err)
5065 		goto failed_mount;
5066 
5067 	ext4_set_def_opts(sb, es);
5068 
5069 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074 
5075 	/*
5076 	 * set default s_li_wait_mult for lazyinit, for the case there is
5077 	 * no mount option specified.
5078 	 */
5079 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080 
5081 	if (ext4_inode_info_init(sb, es))
5082 		goto failed_mount;
5083 
5084 	err = parse_apply_sb_mount_options(sb, ctx);
5085 	if (err < 0)
5086 		goto failed_mount;
5087 
5088 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5089 
5090 	err = ext4_check_opt_consistency(fc, sb);
5091 	if (err < 0)
5092 		goto failed_mount;
5093 
5094 	ext4_apply_options(fc, sb);
5095 
5096 	if (ext4_encoding_init(sb, es))
5097 		goto failed_mount;
5098 
5099 	if (ext4_journal_data_mode_check(sb))
5100 		goto failed_mount;
5101 
5102 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104 
5105 	/* i_version is always enabled now */
5106 	sb->s_flags |= SB_I_VERSION;
5107 
5108 	if (ext4_check_feature_compatibility(sb, es, silent))
5109 		goto failed_mount;
5110 
5111 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112 		ext4_msg(sb, KERN_ERR,
5113 			 "Number of reserved GDT blocks insanely large: %d",
5114 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115 		goto failed_mount;
5116 	}
5117 
5118 	if (sbi->s_daxdev) {
5119 		if (sb->s_blocksize == PAGE_SIZE)
5120 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121 		else
5122 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123 	}
5124 
5125 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126 		if (ext4_has_feature_inline_data(sb)) {
5127 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128 					" that may contain inline data");
5129 			goto failed_mount;
5130 		}
5131 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5132 			ext4_msg(sb, KERN_ERR,
5133 				"DAX unsupported by block device.");
5134 			goto failed_mount;
5135 		}
5136 	}
5137 
5138 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140 			 es->s_encryption_level);
5141 		goto failed_mount;
5142 	}
5143 
5144 	has_huge_files = ext4_has_feature_huge_file(sb);
5145 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146 						      has_huge_files);
5147 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148 
5149 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150 	if (ext4_has_feature_64bit(sb)) {
5151 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153 		    !is_power_of_2(sbi->s_desc_size)) {
5154 			ext4_msg(sb, KERN_ERR,
5155 			       "unsupported descriptor size %lu",
5156 			       sbi->s_desc_size);
5157 			goto failed_mount;
5158 		}
5159 	} else
5160 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161 
5162 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164 
5165 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167 		if (!silent)
5168 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169 		goto failed_mount;
5170 	}
5171 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174 			 sbi->s_inodes_per_group);
5175 		goto failed_mount;
5176 	}
5177 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178 					sbi->s_inodes_per_block;
5179 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5181 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183 
5184 	for (i = 0; i < 4; i++)
5185 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186 	sbi->s_def_hash_version = es->s_def_hash_version;
5187 	if (ext4_has_feature_dir_index(sb)) {
5188 		i = le32_to_cpu(es->s_flags);
5189 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190 			sbi->s_hash_unsigned = 3;
5191 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192 #ifdef __CHAR_UNSIGNED__
5193 			if (!sb_rdonly(sb))
5194 				es->s_flags |=
5195 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196 			sbi->s_hash_unsigned = 3;
5197 #else
5198 			if (!sb_rdonly(sb))
5199 				es->s_flags |=
5200 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201 #endif
5202 		}
5203 	}
5204 
5205 	if (ext4_handle_clustersize(sb))
5206 		goto failed_mount;
5207 
5208 	/*
5209 	 * Test whether we have more sectors than will fit in sector_t,
5210 	 * and whether the max offset is addressable by the page cache.
5211 	 */
5212 	err = generic_check_addressable(sb->s_blocksize_bits,
5213 					ext4_blocks_count(es));
5214 	if (err) {
5215 		ext4_msg(sb, KERN_ERR, "filesystem"
5216 			 " too large to mount safely on this system");
5217 		goto failed_mount;
5218 	}
5219 
5220 	if (ext4_geometry_check(sb, es))
5221 		goto failed_mount;
5222 
5223 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224 	if (err)
5225 		goto failed_mount;
5226 
5227 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228 	spin_lock_init(&sbi->s_error_lock);
5229 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230 
5231 	/* Register extent status tree shrinker */
5232 	if (ext4_es_register_shrinker(sbi))
5233 		goto failed_mount3;
5234 
5235 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5236 	sbi->s_extent_max_zeroout_kb = 32;
5237 
5238 	/*
5239 	 * set up enough so that it can read an inode
5240 	 */
5241 	sb->s_op = &ext4_sops;
5242 	sb->s_export_op = &ext4_export_ops;
5243 	sb->s_xattr = ext4_xattr_handlers;
5244 #ifdef CONFIG_FS_ENCRYPTION
5245 	sb->s_cop = &ext4_cryptops;
5246 #endif
5247 #ifdef CONFIG_FS_VERITY
5248 	sb->s_vop = &ext4_verityops;
5249 #endif
5250 #ifdef CONFIG_QUOTA
5251 	sb->dq_op = &ext4_quota_operations;
5252 	if (ext4_has_feature_quota(sb))
5253 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254 	else
5255 		sb->s_qcop = &ext4_qctl_operations;
5256 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257 #endif
5258 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259 
5260 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261 	mutex_init(&sbi->s_orphan_lock);
5262 
5263 	ext4_fast_commit_init(sb);
5264 
5265 	sb->s_root = NULL;
5266 
5267 	needs_recovery = (es->s_last_orphan != 0 ||
5268 			  ext4_has_feature_orphan_present(sb) ||
5269 			  ext4_has_feature_journal_needs_recovery(sb));
5270 
5271 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5273 			goto failed_mount3a;
5274 
5275 	/*
5276 	 * The first inode we look at is the journal inode.  Don't try
5277 	 * root first: it may be modified in the journal!
5278 	 */
5279 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280 		err = ext4_load_and_init_journal(sb, es, ctx);
5281 		if (err)
5282 			goto failed_mount3a;
5283 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284 		   ext4_has_feature_journal_needs_recovery(sb)) {
5285 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5286 		       "suppressed and not mounted read-only");
5287 		goto failed_mount3a;
5288 	} else {
5289 		/* Nojournal mode, all journal mount options are illegal */
5290 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5291 			ext4_msg(sb, KERN_ERR, "can't mount with "
5292 				 "journal_async_commit, fs mounted w/o journal");
5293 			goto failed_mount3a;
5294 		}
5295 
5296 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5297 			ext4_msg(sb, KERN_ERR, "can't mount with "
5298 				 "journal_checksum, fs mounted w/o journal");
5299 			goto failed_mount3a;
5300 		}
5301 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5302 			ext4_msg(sb, KERN_ERR, "can't mount with "
5303 				 "commit=%lu, fs mounted w/o journal",
5304 				 sbi->s_commit_interval / HZ);
5305 			goto failed_mount3a;
5306 		}
5307 		if (EXT4_MOUNT_DATA_FLAGS &
5308 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5309 			ext4_msg(sb, KERN_ERR, "can't mount with "
5310 				 "data=, fs mounted w/o journal");
5311 			goto failed_mount3a;
5312 		}
5313 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5314 		clear_opt(sb, JOURNAL_CHECKSUM);
5315 		clear_opt(sb, DATA_FLAGS);
5316 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5317 		sbi->s_journal = NULL;
5318 		needs_recovery = 0;
5319 	}
5320 
5321 	if (!test_opt(sb, NO_MBCACHE)) {
5322 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5323 		if (!sbi->s_ea_block_cache) {
5324 			ext4_msg(sb, KERN_ERR,
5325 				 "Failed to create ea_block_cache");
5326 			goto failed_mount_wq;
5327 		}
5328 
5329 		if (ext4_has_feature_ea_inode(sb)) {
5330 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5331 			if (!sbi->s_ea_inode_cache) {
5332 				ext4_msg(sb, KERN_ERR,
5333 					 "Failed to create ea_inode_cache");
5334 				goto failed_mount_wq;
5335 			}
5336 		}
5337 	}
5338 
5339 	if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5340 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5341 		goto failed_mount_wq;
5342 	}
5343 
5344 	/*
5345 	 * Get the # of file system overhead blocks from the
5346 	 * superblock if present.
5347 	 */
5348 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5349 	/* ignore the precalculated value if it is ridiculous */
5350 	if (sbi->s_overhead > ext4_blocks_count(es))
5351 		sbi->s_overhead = 0;
5352 	/*
5353 	 * If the bigalloc feature is not enabled recalculating the
5354 	 * overhead doesn't take long, so we might as well just redo
5355 	 * it to make sure we are using the correct value.
5356 	 */
5357 	if (!ext4_has_feature_bigalloc(sb))
5358 		sbi->s_overhead = 0;
5359 	if (sbi->s_overhead == 0) {
5360 		err = ext4_calculate_overhead(sb);
5361 		if (err)
5362 			goto failed_mount_wq;
5363 	}
5364 
5365 	/*
5366 	 * The maximum number of concurrent works can be high and
5367 	 * concurrency isn't really necessary.  Limit it to 1.
5368 	 */
5369 	EXT4_SB(sb)->rsv_conversion_wq =
5370 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5371 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5372 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5373 		ret = -ENOMEM;
5374 		goto failed_mount4;
5375 	}
5376 
5377 	/*
5378 	 * The jbd2_journal_load will have done any necessary log recovery,
5379 	 * so we can safely mount the rest of the filesystem now.
5380 	 */
5381 
5382 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5383 	if (IS_ERR(root)) {
5384 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5385 		ret = PTR_ERR(root);
5386 		root = NULL;
5387 		goto failed_mount4;
5388 	}
5389 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5390 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5391 		iput(root);
5392 		goto failed_mount4;
5393 	}
5394 
5395 	sb->s_root = d_make_root(root);
5396 	if (!sb->s_root) {
5397 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5398 		ret = -ENOMEM;
5399 		goto failed_mount4;
5400 	}
5401 
5402 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5403 	if (ret == -EROFS) {
5404 		sb->s_flags |= SB_RDONLY;
5405 		ret = 0;
5406 	} else if (ret)
5407 		goto failed_mount4a;
5408 
5409 	ext4_set_resv_clusters(sb);
5410 
5411 	if (test_opt(sb, BLOCK_VALIDITY)) {
5412 		err = ext4_setup_system_zone(sb);
5413 		if (err) {
5414 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5415 				 "zone (%d)", err);
5416 			goto failed_mount4a;
5417 		}
5418 	}
5419 	ext4_fc_replay_cleanup(sb);
5420 
5421 	ext4_ext_init(sb);
5422 
5423 	/*
5424 	 * Enable optimize_scan if number of groups is > threshold. This can be
5425 	 * turned off by passing "mb_optimize_scan=0". This can also be
5426 	 * turned on forcefully by passing "mb_optimize_scan=1".
5427 	 */
5428 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5429 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5430 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5431 		else
5432 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5433 	}
5434 
5435 	err = ext4_mb_init(sb);
5436 	if (err) {
5437 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5438 			 err);
5439 		goto failed_mount5;
5440 	}
5441 
5442 	/*
5443 	 * We can only set up the journal commit callback once
5444 	 * mballoc is initialized
5445 	 */
5446 	if (sbi->s_journal)
5447 		sbi->s_journal->j_commit_callback =
5448 			ext4_journal_commit_callback;
5449 
5450 	block = ext4_count_free_clusters(sb);
5451 	ext4_free_blocks_count_set(sbi->s_es,
5452 				   EXT4_C2B(sbi, block));
5453 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5454 				  GFP_KERNEL);
5455 	if (!err) {
5456 		unsigned long freei = ext4_count_free_inodes(sb);
5457 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5458 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5459 					  GFP_KERNEL);
5460 	}
5461 	if (!err)
5462 		err = percpu_counter_init(&sbi->s_dirs_counter,
5463 					  ext4_count_dirs(sb), GFP_KERNEL);
5464 	if (!err)
5465 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5466 					  GFP_KERNEL);
5467 	if (!err)
5468 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5469 					  GFP_KERNEL);
5470 	if (!err)
5471 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5472 
5473 	if (err) {
5474 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5475 		goto failed_mount6;
5476 	}
5477 
5478 	if (ext4_has_feature_flex_bg(sb))
5479 		if (!ext4_fill_flex_info(sb)) {
5480 			ext4_msg(sb, KERN_ERR,
5481 			       "unable to initialize "
5482 			       "flex_bg meta info!");
5483 			ret = -ENOMEM;
5484 			goto failed_mount6;
5485 		}
5486 
5487 	err = ext4_register_li_request(sb, first_not_zeroed);
5488 	if (err)
5489 		goto failed_mount6;
5490 
5491 	err = ext4_register_sysfs(sb);
5492 	if (err)
5493 		goto failed_mount7;
5494 
5495 	err = ext4_init_orphan_info(sb);
5496 	if (err)
5497 		goto failed_mount8;
5498 #ifdef CONFIG_QUOTA
5499 	/* Enable quota usage during mount. */
5500 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5501 		err = ext4_enable_quotas(sb);
5502 		if (err)
5503 			goto failed_mount9;
5504 	}
5505 #endif  /* CONFIG_QUOTA */
5506 
5507 	/*
5508 	 * Save the original bdev mapping's wb_err value which could be
5509 	 * used to detect the metadata async write error.
5510 	 */
5511 	spin_lock_init(&sbi->s_bdev_wb_lock);
5512 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5513 				 &sbi->s_bdev_wb_err);
5514 	sb->s_bdev->bd_super = sb;
5515 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5516 	ext4_orphan_cleanup(sb, es);
5517 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5518 	/*
5519 	 * Update the checksum after updating free space/inode counters and
5520 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5521 	 * checksum in the buffer cache until it is written out and
5522 	 * e2fsprogs programs trying to open a file system immediately
5523 	 * after it is mounted can fail.
5524 	 */
5525 	ext4_superblock_csum_set(sb);
5526 	if (needs_recovery) {
5527 		ext4_msg(sb, KERN_INFO, "recovery complete");
5528 		err = ext4_mark_recovery_complete(sb, es);
5529 		if (err)
5530 			goto failed_mount9;
5531 	}
5532 
5533 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5534 		ext4_msg(sb, KERN_WARNING,
5535 			 "mounting with \"discard\" option, but the device does not support discard");
5536 
5537 	if (es->s_error_count)
5538 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5539 
5540 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5541 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5542 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5543 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5544 	atomic_set(&sbi->s_warning_count, 0);
5545 	atomic_set(&sbi->s_msg_count, 0);
5546 
5547 	return 0;
5548 
5549 failed_mount9:
5550 	ext4_release_orphan_info(sb);
5551 failed_mount8:
5552 	ext4_unregister_sysfs(sb);
5553 	kobject_put(&sbi->s_kobj);
5554 failed_mount7:
5555 	ext4_unregister_li_request(sb);
5556 failed_mount6:
5557 	ext4_mb_release(sb);
5558 	rcu_read_lock();
5559 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5560 	if (flex_groups) {
5561 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5562 			kvfree(flex_groups[i]);
5563 		kvfree(flex_groups);
5564 	}
5565 	rcu_read_unlock();
5566 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5567 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5568 	percpu_counter_destroy(&sbi->s_dirs_counter);
5569 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5570 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5571 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5572 failed_mount5:
5573 	ext4_ext_release(sb);
5574 	ext4_release_system_zone(sb);
5575 failed_mount4a:
5576 	dput(sb->s_root);
5577 	sb->s_root = NULL;
5578 failed_mount4:
5579 	ext4_msg(sb, KERN_ERR, "mount failed");
5580 	if (EXT4_SB(sb)->rsv_conversion_wq)
5581 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5582 failed_mount_wq:
5583 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5584 	sbi->s_ea_inode_cache = NULL;
5585 
5586 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5587 	sbi->s_ea_block_cache = NULL;
5588 
5589 	if (sbi->s_journal) {
5590 		/* flush s_error_work before journal destroy. */
5591 		flush_work(&sbi->s_error_work);
5592 		jbd2_journal_destroy(sbi->s_journal);
5593 		sbi->s_journal = NULL;
5594 	}
5595 failed_mount3a:
5596 	ext4_es_unregister_shrinker(sbi);
5597 failed_mount3:
5598 	/* flush s_error_work before sbi destroy */
5599 	flush_work(&sbi->s_error_work);
5600 	del_timer_sync(&sbi->s_err_report);
5601 	ext4_stop_mmpd(sbi);
5602 	ext4_group_desc_free(sbi);
5603 failed_mount:
5604 	if (sbi->s_chksum_driver)
5605 		crypto_free_shash(sbi->s_chksum_driver);
5606 
5607 #if IS_ENABLED(CONFIG_UNICODE)
5608 	utf8_unload(sb->s_encoding);
5609 #endif
5610 
5611 #ifdef CONFIG_QUOTA
5612 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5613 		kfree(get_qf_name(sb, sbi, i));
5614 #endif
5615 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5616 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5617 	brelse(sbi->s_sbh);
5618 	ext4_blkdev_remove(sbi);
5619 out_fail:
5620 	sb->s_fs_info = NULL;
5621 	return err ? err : ret;
5622 }
5623 
5624 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5625 {
5626 	struct ext4_fs_context *ctx = fc->fs_private;
5627 	struct ext4_sb_info *sbi;
5628 	const char *descr;
5629 	int ret;
5630 
5631 	sbi = ext4_alloc_sbi(sb);
5632 	if (!sbi)
5633 		return -ENOMEM;
5634 
5635 	fc->s_fs_info = sbi;
5636 
5637 	/* Cleanup superblock name */
5638 	strreplace(sb->s_id, '/', '!');
5639 
5640 	sbi->s_sb_block = 1;	/* Default super block location */
5641 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5642 		sbi->s_sb_block = ctx->s_sb_block;
5643 
5644 	ret = __ext4_fill_super(fc, sb);
5645 	if (ret < 0)
5646 		goto free_sbi;
5647 
5648 	if (sbi->s_journal) {
5649 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5650 			descr = " journalled data mode";
5651 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5652 			descr = " ordered data mode";
5653 		else
5654 			descr = " writeback data mode";
5655 	} else
5656 		descr = "out journal";
5657 
5658 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5659 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. "
5660 			 "Quota mode: %s.", &sb->s_uuid, descr,
5661 			 ext4_quota_mode(sb));
5662 
5663 	/* Update the s_overhead_clusters if necessary */
5664 	ext4_update_overhead(sb, false);
5665 	return 0;
5666 
5667 free_sbi:
5668 	ext4_free_sbi(sbi);
5669 	fc->s_fs_info = NULL;
5670 	return ret;
5671 }
5672 
5673 static int ext4_get_tree(struct fs_context *fc)
5674 {
5675 	return get_tree_bdev(fc, ext4_fill_super);
5676 }
5677 
5678 /*
5679  * Setup any per-fs journal parameters now.  We'll do this both on
5680  * initial mount, once the journal has been initialised but before we've
5681  * done any recovery; and again on any subsequent remount.
5682  */
5683 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684 {
5685 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5686 
5687 	journal->j_commit_interval = sbi->s_commit_interval;
5688 	journal->j_min_batch_time = sbi->s_min_batch_time;
5689 	journal->j_max_batch_time = sbi->s_max_batch_time;
5690 	ext4_fc_init(sb, journal);
5691 
5692 	write_lock(&journal->j_state_lock);
5693 	if (test_opt(sb, BARRIER))
5694 		journal->j_flags |= JBD2_BARRIER;
5695 	else
5696 		journal->j_flags &= ~JBD2_BARRIER;
5697 	if (test_opt(sb, DATA_ERR_ABORT))
5698 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699 	else
5700 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5701 	write_unlock(&journal->j_state_lock);
5702 }
5703 
5704 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705 					     unsigned int journal_inum)
5706 {
5707 	struct inode *journal_inode;
5708 
5709 	/*
5710 	 * Test for the existence of a valid inode on disk.  Bad things
5711 	 * happen if we iget() an unused inode, as the subsequent iput()
5712 	 * will try to delete it.
5713 	 */
5714 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715 	if (IS_ERR(journal_inode)) {
5716 		ext4_msg(sb, KERN_ERR, "no journal found");
5717 		return NULL;
5718 	}
5719 	if (!journal_inode->i_nlink) {
5720 		make_bad_inode(journal_inode);
5721 		iput(journal_inode);
5722 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723 		return NULL;
5724 	}
5725 
5726 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5727 		  journal_inode, journal_inode->i_size);
5728 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730 		iput(journal_inode);
5731 		return NULL;
5732 	}
5733 	return journal_inode;
5734 }
5735 
5736 static journal_t *ext4_get_journal(struct super_block *sb,
5737 				   unsigned int journal_inum)
5738 {
5739 	struct inode *journal_inode;
5740 	journal_t *journal;
5741 
5742 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743 		return NULL;
5744 
5745 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746 	if (!journal_inode)
5747 		return NULL;
5748 
5749 	journal = jbd2_journal_init_inode(journal_inode);
5750 	if (!journal) {
5751 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752 		iput(journal_inode);
5753 		return NULL;
5754 	}
5755 	journal->j_private = sb;
5756 	ext4_init_journal_params(sb, journal);
5757 	return journal;
5758 }
5759 
5760 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761 				       dev_t j_dev)
5762 {
5763 	struct buffer_head *bh;
5764 	journal_t *journal;
5765 	ext4_fsblk_t start;
5766 	ext4_fsblk_t len;
5767 	int hblock, blocksize;
5768 	ext4_fsblk_t sb_block;
5769 	unsigned long offset;
5770 	struct ext4_super_block *es;
5771 	struct block_device *bdev;
5772 
5773 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774 		return NULL;
5775 
5776 	bdev = ext4_blkdev_get(j_dev, sb);
5777 	if (bdev == NULL)
5778 		return NULL;
5779 
5780 	blocksize = sb->s_blocksize;
5781 	hblock = bdev_logical_block_size(bdev);
5782 	if (blocksize < hblock) {
5783 		ext4_msg(sb, KERN_ERR,
5784 			"blocksize too small for journal device");
5785 		goto out_bdev;
5786 	}
5787 
5788 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790 	set_blocksize(bdev, blocksize);
5791 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5792 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793 		       "external journal");
5794 		goto out_bdev;
5795 	}
5796 
5797 	es = (struct ext4_super_block *) (bh->b_data + offset);
5798 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799 	    !(le32_to_cpu(es->s_feature_incompat) &
5800 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801 		ext4_msg(sb, KERN_ERR, "external journal has "
5802 					"bad superblock");
5803 		brelse(bh);
5804 		goto out_bdev;
5805 	}
5806 
5807 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5808 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5810 		ext4_msg(sb, KERN_ERR, "external journal has "
5811 				       "corrupt superblock");
5812 		brelse(bh);
5813 		goto out_bdev;
5814 	}
5815 
5816 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818 		brelse(bh);
5819 		goto out_bdev;
5820 	}
5821 
5822 	len = ext4_blocks_count(es);
5823 	start = sb_block + 1;
5824 	brelse(bh);	/* we're done with the superblock */
5825 
5826 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827 					start, len, blocksize);
5828 	if (!journal) {
5829 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5830 		goto out_bdev;
5831 	}
5832 	journal->j_private = sb;
5833 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5834 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835 		goto out_journal;
5836 	}
5837 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839 					"user (unsupported) - %d",
5840 			be32_to_cpu(journal->j_superblock->s_nr_users));
5841 		goto out_journal;
5842 	}
5843 	EXT4_SB(sb)->s_journal_bdev = bdev;
5844 	ext4_init_journal_params(sb, journal);
5845 	return journal;
5846 
5847 out_journal:
5848 	jbd2_journal_destroy(journal);
5849 out_bdev:
5850 	ext4_blkdev_put(bdev);
5851 	return NULL;
5852 }
5853 
5854 static int ext4_load_journal(struct super_block *sb,
5855 			     struct ext4_super_block *es,
5856 			     unsigned long journal_devnum)
5857 {
5858 	journal_t *journal;
5859 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860 	dev_t journal_dev;
5861 	int err = 0;
5862 	int really_read_only;
5863 	int journal_dev_ro;
5864 
5865 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866 		return -EFSCORRUPTED;
5867 
5868 	if (journal_devnum &&
5869 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871 			"numbers have changed");
5872 		journal_dev = new_decode_dev(journal_devnum);
5873 	} else
5874 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875 
5876 	if (journal_inum && journal_dev) {
5877 		ext4_msg(sb, KERN_ERR,
5878 			 "filesystem has both journal inode and journal device!");
5879 		return -EINVAL;
5880 	}
5881 
5882 	if (journal_inum) {
5883 		journal = ext4_get_journal(sb, journal_inum);
5884 		if (!journal)
5885 			return -EINVAL;
5886 	} else {
5887 		journal = ext4_get_dev_journal(sb, journal_dev);
5888 		if (!journal)
5889 			return -EINVAL;
5890 	}
5891 
5892 	journal_dev_ro = bdev_read_only(journal->j_dev);
5893 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894 
5895 	if (journal_dev_ro && !sb_rdonly(sb)) {
5896 		ext4_msg(sb, KERN_ERR,
5897 			 "journal device read-only, try mounting with '-o ro'");
5898 		err = -EROFS;
5899 		goto err_out;
5900 	}
5901 
5902 	/*
5903 	 * Are we loading a blank journal or performing recovery after a
5904 	 * crash?  For recovery, we need to check in advance whether we
5905 	 * can get read-write access to the device.
5906 	 */
5907 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5908 		if (sb_rdonly(sb)) {
5909 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910 					"required on readonly filesystem");
5911 			if (really_read_only) {
5912 				ext4_msg(sb, KERN_ERR, "write access "
5913 					"unavailable, cannot proceed "
5914 					"(try mounting with noload)");
5915 				err = -EROFS;
5916 				goto err_out;
5917 			}
5918 			ext4_msg(sb, KERN_INFO, "write access will "
5919 			       "be enabled during recovery");
5920 		}
5921 	}
5922 
5923 	if (!(journal->j_flags & JBD2_BARRIER))
5924 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5925 
5926 	if (!ext4_has_feature_journal_needs_recovery(sb))
5927 		err = jbd2_journal_wipe(journal, !really_read_only);
5928 	if (!err) {
5929 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5930 		if (save)
5931 			memcpy(save, ((char *) es) +
5932 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933 		err = jbd2_journal_load(journal);
5934 		if (save)
5935 			memcpy(((char *) es) + EXT4_S_ERR_START,
5936 			       save, EXT4_S_ERR_LEN);
5937 		kfree(save);
5938 	}
5939 
5940 	if (err) {
5941 		ext4_msg(sb, KERN_ERR, "error loading journal");
5942 		goto err_out;
5943 	}
5944 
5945 	EXT4_SB(sb)->s_journal = journal;
5946 	err = ext4_clear_journal_err(sb, es);
5947 	if (err) {
5948 		EXT4_SB(sb)->s_journal = NULL;
5949 		jbd2_journal_destroy(journal);
5950 		return err;
5951 	}
5952 
5953 	if (!really_read_only && journal_devnum &&
5954 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5956 
5957 		/* Make sure we flush the recovery flag to disk. */
5958 		ext4_commit_super(sb);
5959 	}
5960 
5961 	return 0;
5962 
5963 err_out:
5964 	jbd2_journal_destroy(journal);
5965 	return err;
5966 }
5967 
5968 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5969 static void ext4_update_super(struct super_block *sb)
5970 {
5971 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5972 	struct ext4_super_block *es = sbi->s_es;
5973 	struct buffer_head *sbh = sbi->s_sbh;
5974 
5975 	lock_buffer(sbh);
5976 	/*
5977 	 * If the file system is mounted read-only, don't update the
5978 	 * superblock write time.  This avoids updating the superblock
5979 	 * write time when we are mounting the root file system
5980 	 * read/only but we need to replay the journal; at that point,
5981 	 * for people who are east of GMT and who make their clock
5982 	 * tick in localtime for Windows bug-for-bug compatibility,
5983 	 * the clock is set in the future, and this will cause e2fsck
5984 	 * to complain and force a full file system check.
5985 	 */
5986 	if (!(sb->s_flags & SB_RDONLY))
5987 		ext4_update_tstamp(es, s_wtime);
5988 	es->s_kbytes_written =
5989 		cpu_to_le64(sbi->s_kbytes_written +
5990 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991 		      sbi->s_sectors_written_start) >> 1));
5992 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5993 		ext4_free_blocks_count_set(es,
5994 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5995 				&sbi->s_freeclusters_counter)));
5996 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997 		es->s_free_inodes_count =
5998 			cpu_to_le32(percpu_counter_sum_positive(
5999 				&sbi->s_freeinodes_counter));
6000 	/* Copy error information to the on-disk superblock */
6001 	spin_lock(&sbi->s_error_lock);
6002 	if (sbi->s_add_error_count > 0) {
6003 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005 			__ext4_update_tstamp(&es->s_first_error_time,
6006 					     &es->s_first_error_time_hi,
6007 					     sbi->s_first_error_time);
6008 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009 				sizeof(es->s_first_error_func));
6010 			es->s_first_error_line =
6011 				cpu_to_le32(sbi->s_first_error_line);
6012 			es->s_first_error_ino =
6013 				cpu_to_le32(sbi->s_first_error_ino);
6014 			es->s_first_error_block =
6015 				cpu_to_le64(sbi->s_first_error_block);
6016 			es->s_first_error_errcode =
6017 				ext4_errno_to_code(sbi->s_first_error_code);
6018 		}
6019 		__ext4_update_tstamp(&es->s_last_error_time,
6020 				     &es->s_last_error_time_hi,
6021 				     sbi->s_last_error_time);
6022 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023 			sizeof(es->s_last_error_func));
6024 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027 		es->s_last_error_errcode =
6028 				ext4_errno_to_code(sbi->s_last_error_code);
6029 		/*
6030 		 * Start the daily error reporting function if it hasn't been
6031 		 * started already
6032 		 */
6033 		if (!es->s_error_count)
6034 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036 		sbi->s_add_error_count = 0;
6037 	}
6038 	spin_unlock(&sbi->s_error_lock);
6039 
6040 	ext4_superblock_csum_set(sb);
6041 	unlock_buffer(sbh);
6042 }
6043 
6044 static int ext4_commit_super(struct super_block *sb)
6045 {
6046 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047 
6048 	if (!sbh)
6049 		return -EINVAL;
6050 	if (block_device_ejected(sb))
6051 		return -ENODEV;
6052 
6053 	ext4_update_super(sb);
6054 
6055 	lock_buffer(sbh);
6056 	/* Buffer got discarded which means block device got invalidated */
6057 	if (!buffer_mapped(sbh)) {
6058 		unlock_buffer(sbh);
6059 		return -EIO;
6060 	}
6061 
6062 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063 		/*
6064 		 * Oh, dear.  A previous attempt to write the
6065 		 * superblock failed.  This could happen because the
6066 		 * USB device was yanked out.  Or it could happen to
6067 		 * be a transient write error and maybe the block will
6068 		 * be remapped.  Nothing we can do but to retry the
6069 		 * write and hope for the best.
6070 		 */
6071 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072 		       "superblock detected");
6073 		clear_buffer_write_io_error(sbh);
6074 		set_buffer_uptodate(sbh);
6075 	}
6076 	get_bh(sbh);
6077 	/* Clear potential dirty bit if it was journalled update */
6078 	clear_buffer_dirty(sbh);
6079 	sbh->b_end_io = end_buffer_write_sync;
6080 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082 	wait_on_buffer(sbh);
6083 	if (buffer_write_io_error(sbh)) {
6084 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085 		       "superblock");
6086 		clear_buffer_write_io_error(sbh);
6087 		set_buffer_uptodate(sbh);
6088 		return -EIO;
6089 	}
6090 	return 0;
6091 }
6092 
6093 /*
6094  * Have we just finished recovery?  If so, and if we are mounting (or
6095  * remounting) the filesystem readonly, then we will end up with a
6096  * consistent fs on disk.  Record that fact.
6097  */
6098 static int ext4_mark_recovery_complete(struct super_block *sb,
6099 				       struct ext4_super_block *es)
6100 {
6101 	int err;
6102 	journal_t *journal = EXT4_SB(sb)->s_journal;
6103 
6104 	if (!ext4_has_feature_journal(sb)) {
6105 		if (journal != NULL) {
6106 			ext4_error(sb, "Journal got removed while the fs was "
6107 				   "mounted!");
6108 			return -EFSCORRUPTED;
6109 		}
6110 		return 0;
6111 	}
6112 	jbd2_journal_lock_updates(journal);
6113 	err = jbd2_journal_flush(journal, 0);
6114 	if (err < 0)
6115 		goto out;
6116 
6117 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118 	    ext4_has_feature_orphan_present(sb))) {
6119 		if (!ext4_orphan_file_empty(sb)) {
6120 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6121 			err = -EFSCORRUPTED;
6122 			goto out;
6123 		}
6124 		ext4_clear_feature_journal_needs_recovery(sb);
6125 		ext4_clear_feature_orphan_present(sb);
6126 		ext4_commit_super(sb);
6127 	}
6128 out:
6129 	jbd2_journal_unlock_updates(journal);
6130 	return err;
6131 }
6132 
6133 /*
6134  * If we are mounting (or read-write remounting) a filesystem whose journal
6135  * has recorded an error from a previous lifetime, move that error to the
6136  * main filesystem now.
6137  */
6138 static int ext4_clear_journal_err(struct super_block *sb,
6139 				   struct ext4_super_block *es)
6140 {
6141 	journal_t *journal;
6142 	int j_errno;
6143 	const char *errstr;
6144 
6145 	if (!ext4_has_feature_journal(sb)) {
6146 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6147 		return -EFSCORRUPTED;
6148 	}
6149 
6150 	journal = EXT4_SB(sb)->s_journal;
6151 
6152 	/*
6153 	 * Now check for any error status which may have been recorded in the
6154 	 * journal by a prior ext4_error() or ext4_abort()
6155 	 */
6156 
6157 	j_errno = jbd2_journal_errno(journal);
6158 	if (j_errno) {
6159 		char nbuf[16];
6160 
6161 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6162 		ext4_warning(sb, "Filesystem error recorded "
6163 			     "from previous mount: %s", errstr);
6164 		ext4_warning(sb, "Marking fs in need of filesystem check.");
6165 
6166 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168 		ext4_commit_super(sb);
6169 
6170 		jbd2_journal_clear_err(journal);
6171 		jbd2_journal_update_sb_errno(journal);
6172 	}
6173 	return 0;
6174 }
6175 
6176 /*
6177  * Force the running and committing transactions to commit,
6178  * and wait on the commit.
6179  */
6180 int ext4_force_commit(struct super_block *sb)
6181 {
6182 	journal_t *journal;
6183 
6184 	if (sb_rdonly(sb))
6185 		return 0;
6186 
6187 	journal = EXT4_SB(sb)->s_journal;
6188 	return ext4_journal_force_commit(journal);
6189 }
6190 
6191 static int ext4_sync_fs(struct super_block *sb, int wait)
6192 {
6193 	int ret = 0;
6194 	tid_t target;
6195 	bool needs_barrier = false;
6196 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6197 
6198 	if (unlikely(ext4_forced_shutdown(sbi)))
6199 		return 0;
6200 
6201 	trace_ext4_sync_fs(sb, wait);
6202 	flush_workqueue(sbi->rsv_conversion_wq);
6203 	/*
6204 	 * Writeback quota in non-journalled quota case - journalled quota has
6205 	 * no dirty dquots
6206 	 */
6207 	dquot_writeback_dquots(sb, -1);
6208 	/*
6209 	 * Data writeback is possible w/o journal transaction, so barrier must
6210 	 * being sent at the end of the function. But we can skip it if
6211 	 * transaction_commit will do it for us.
6212 	 */
6213 	if (sbi->s_journal) {
6214 		target = jbd2_get_latest_transaction(sbi->s_journal);
6215 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217 			needs_barrier = true;
6218 
6219 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220 			if (wait)
6221 				ret = jbd2_log_wait_commit(sbi->s_journal,
6222 							   target);
6223 		}
6224 	} else if (wait && test_opt(sb, BARRIER))
6225 		needs_barrier = true;
6226 	if (needs_barrier) {
6227 		int err;
6228 		err = blkdev_issue_flush(sb->s_bdev);
6229 		if (!ret)
6230 			ret = err;
6231 	}
6232 
6233 	return ret;
6234 }
6235 
6236 /*
6237  * LVM calls this function before a (read-only) snapshot is created.  This
6238  * gives us a chance to flush the journal completely and mark the fs clean.
6239  *
6240  * Note that only this function cannot bring a filesystem to be in a clean
6241  * state independently. It relies on upper layer to stop all data & metadata
6242  * modifications.
6243  */
6244 static int ext4_freeze(struct super_block *sb)
6245 {
6246 	int error = 0;
6247 	journal_t *journal;
6248 
6249 	if (sb_rdonly(sb))
6250 		return 0;
6251 
6252 	journal = EXT4_SB(sb)->s_journal;
6253 
6254 	if (journal) {
6255 		/* Now we set up the journal barrier. */
6256 		jbd2_journal_lock_updates(journal);
6257 
6258 		/*
6259 		 * Don't clear the needs_recovery flag if we failed to
6260 		 * flush the journal.
6261 		 */
6262 		error = jbd2_journal_flush(journal, 0);
6263 		if (error < 0)
6264 			goto out;
6265 
6266 		/* Journal blocked and flushed, clear needs_recovery flag. */
6267 		ext4_clear_feature_journal_needs_recovery(sb);
6268 		if (ext4_orphan_file_empty(sb))
6269 			ext4_clear_feature_orphan_present(sb);
6270 	}
6271 
6272 	error = ext4_commit_super(sb);
6273 out:
6274 	if (journal)
6275 		/* we rely on upper layer to stop further updates */
6276 		jbd2_journal_unlock_updates(journal);
6277 	return error;
6278 }
6279 
6280 /*
6281  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6282  * flag here, even though the filesystem is not technically dirty yet.
6283  */
6284 static int ext4_unfreeze(struct super_block *sb)
6285 {
6286 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287 		return 0;
6288 
6289 	if (EXT4_SB(sb)->s_journal) {
6290 		/* Reset the needs_recovery flag before the fs is unlocked. */
6291 		ext4_set_feature_journal_needs_recovery(sb);
6292 		if (ext4_has_feature_orphan_file(sb))
6293 			ext4_set_feature_orphan_present(sb);
6294 	}
6295 
6296 	ext4_commit_super(sb);
6297 	return 0;
6298 }
6299 
6300 /*
6301  * Structure to save mount options for ext4_remount's benefit
6302  */
6303 struct ext4_mount_options {
6304 	unsigned long s_mount_opt;
6305 	unsigned long s_mount_opt2;
6306 	kuid_t s_resuid;
6307 	kgid_t s_resgid;
6308 	unsigned long s_commit_interval;
6309 	u32 s_min_batch_time, s_max_batch_time;
6310 #ifdef CONFIG_QUOTA
6311 	int s_jquota_fmt;
6312 	char *s_qf_names[EXT4_MAXQUOTAS];
6313 #endif
6314 };
6315 
6316 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317 {
6318 	struct ext4_fs_context *ctx = fc->fs_private;
6319 	struct ext4_super_block *es;
6320 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6321 	unsigned long old_sb_flags;
6322 	struct ext4_mount_options old_opts;
6323 	ext4_group_t g;
6324 	int err = 0;
6325 #ifdef CONFIG_QUOTA
6326 	int enable_quota = 0;
6327 	int i, j;
6328 	char *to_free[EXT4_MAXQUOTAS];
6329 #endif
6330 
6331 
6332 	/* Store the original options */
6333 	old_sb_flags = sb->s_flags;
6334 	old_opts.s_mount_opt = sbi->s_mount_opt;
6335 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336 	old_opts.s_resuid = sbi->s_resuid;
6337 	old_opts.s_resgid = sbi->s_resgid;
6338 	old_opts.s_commit_interval = sbi->s_commit_interval;
6339 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341 #ifdef CONFIG_QUOTA
6342 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344 		if (sbi->s_qf_names[i]) {
6345 			char *qf_name = get_qf_name(sb, sbi, i);
6346 
6347 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348 			if (!old_opts.s_qf_names[i]) {
6349 				for (j = 0; j < i; j++)
6350 					kfree(old_opts.s_qf_names[j]);
6351 				return -ENOMEM;
6352 			}
6353 		} else
6354 			old_opts.s_qf_names[i] = NULL;
6355 #endif
6356 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358 			ctx->journal_ioprio =
6359 				sbi->s_journal->j_task->io_context->ioprio;
6360 		else
6361 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362 
6363 	}
6364 
6365 	ext4_apply_options(fc, sb);
6366 
6367 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6369 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370 			 "during remount not supported; ignoring");
6371 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372 	}
6373 
6374 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376 			ext4_msg(sb, KERN_ERR, "can't mount with "
6377 				 "both data=journal and delalloc");
6378 			err = -EINVAL;
6379 			goto restore_opts;
6380 		}
6381 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6382 			ext4_msg(sb, KERN_ERR, "can't mount with "
6383 				 "both data=journal and dioread_nolock");
6384 			err = -EINVAL;
6385 			goto restore_opts;
6386 		}
6387 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389 			ext4_msg(sb, KERN_ERR, "can't mount with "
6390 				"journal_async_commit in data=ordered mode");
6391 			err = -EINVAL;
6392 			goto restore_opts;
6393 		}
6394 	}
6395 
6396 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398 		err = -EINVAL;
6399 		goto restore_opts;
6400 	}
6401 
6402 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6404 
6405 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407 
6408 	es = sbi->s_es;
6409 
6410 	if (sbi->s_journal) {
6411 		ext4_init_journal_params(sb, sbi->s_journal);
6412 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413 	}
6414 
6415 	/* Flush outstanding errors before changing fs state */
6416 	flush_work(&sbi->s_error_work);
6417 
6418 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420 			err = -EROFS;
6421 			goto restore_opts;
6422 		}
6423 
6424 		if (fc->sb_flags & SB_RDONLY) {
6425 			err = sync_filesystem(sb);
6426 			if (err < 0)
6427 				goto restore_opts;
6428 			err = dquot_suspend(sb, -1);
6429 			if (err < 0)
6430 				goto restore_opts;
6431 
6432 			/*
6433 			 * First of all, the unconditional stuff we have to do
6434 			 * to disable replay of the journal when we next remount
6435 			 */
6436 			sb->s_flags |= SB_RDONLY;
6437 
6438 			/*
6439 			 * OK, test if we are remounting a valid rw partition
6440 			 * readonly, and if so set the rdonly flag and then
6441 			 * mark the partition as valid again.
6442 			 */
6443 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444 			    (sbi->s_mount_state & EXT4_VALID_FS))
6445 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6446 
6447 			if (sbi->s_journal) {
6448 				/*
6449 				 * We let remount-ro finish even if marking fs
6450 				 * as clean failed...
6451 				 */
6452 				ext4_mark_recovery_complete(sb, es);
6453 			}
6454 		} else {
6455 			/* Make sure we can mount this feature set readwrite */
6456 			if (ext4_has_feature_readonly(sb) ||
6457 			    !ext4_feature_set_ok(sb, 0)) {
6458 				err = -EROFS;
6459 				goto restore_opts;
6460 			}
6461 			/*
6462 			 * Make sure the group descriptor checksums
6463 			 * are sane.  If they aren't, refuse to remount r/w.
6464 			 */
6465 			for (g = 0; g < sbi->s_groups_count; g++) {
6466 				struct ext4_group_desc *gdp =
6467 					ext4_get_group_desc(sb, g, NULL);
6468 
6469 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470 					ext4_msg(sb, KERN_ERR,
6471 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473 					       le16_to_cpu(gdp->bg_checksum));
6474 					err = -EFSBADCRC;
6475 					goto restore_opts;
6476 				}
6477 			}
6478 
6479 			/*
6480 			 * If we have an unprocessed orphan list hanging
6481 			 * around from a previously readonly bdev mount,
6482 			 * require a full umount/remount for now.
6483 			 */
6484 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6486 				       "remount RDWR because of unprocessed "
6487 				       "orphan inode list.  Please "
6488 				       "umount/remount instead");
6489 				err = -EINVAL;
6490 				goto restore_opts;
6491 			}
6492 
6493 			/*
6494 			 * Mounting a RDONLY partition read-write, so reread
6495 			 * and store the current valid flag.  (It may have
6496 			 * been changed by e2fsck since we originally mounted
6497 			 * the partition.)
6498 			 */
6499 			if (sbi->s_journal) {
6500 				err = ext4_clear_journal_err(sb, es);
6501 				if (err)
6502 					goto restore_opts;
6503 			}
6504 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505 					      ~EXT4_FC_REPLAY);
6506 
6507 			err = ext4_setup_super(sb, es, 0);
6508 			if (err)
6509 				goto restore_opts;
6510 
6511 			sb->s_flags &= ~SB_RDONLY;
6512 			if (ext4_has_feature_mmp(sb))
6513 				if (ext4_multi_mount_protect(sb,
6514 						le64_to_cpu(es->s_mmp_block))) {
6515 					err = -EROFS;
6516 					goto restore_opts;
6517 				}
6518 #ifdef CONFIG_QUOTA
6519 			enable_quota = 1;
6520 #endif
6521 		}
6522 	}
6523 
6524 	/*
6525 	 * Reinitialize lazy itable initialization thread based on
6526 	 * current settings
6527 	 */
6528 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529 		ext4_unregister_li_request(sb);
6530 	else {
6531 		ext4_group_t first_not_zeroed;
6532 		first_not_zeroed = ext4_has_uninit_itable(sb);
6533 		ext4_register_li_request(sb, first_not_zeroed);
6534 	}
6535 
6536 	/*
6537 	 * Handle creation of system zone data early because it can fail.
6538 	 * Releasing of existing data is done when we are sure remount will
6539 	 * succeed.
6540 	 */
6541 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542 		err = ext4_setup_system_zone(sb);
6543 		if (err)
6544 			goto restore_opts;
6545 	}
6546 
6547 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548 		err = ext4_commit_super(sb);
6549 		if (err)
6550 			goto restore_opts;
6551 	}
6552 
6553 #ifdef CONFIG_QUOTA
6554 	/* Release old quota file names */
6555 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556 		kfree(old_opts.s_qf_names[i]);
6557 	if (enable_quota) {
6558 		if (sb_any_quota_suspended(sb))
6559 			dquot_resume(sb, -1);
6560 		else if (ext4_has_feature_quota(sb)) {
6561 			err = ext4_enable_quotas(sb);
6562 			if (err)
6563 				goto restore_opts;
6564 		}
6565 	}
6566 #endif
6567 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568 		ext4_release_system_zone(sb);
6569 
6570 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571 		ext4_stop_mmpd(sbi);
6572 
6573 	return 0;
6574 
6575 restore_opts:
6576 	sb->s_flags = old_sb_flags;
6577 	sbi->s_mount_opt = old_opts.s_mount_opt;
6578 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579 	sbi->s_resuid = old_opts.s_resuid;
6580 	sbi->s_resgid = old_opts.s_resgid;
6581 	sbi->s_commit_interval = old_opts.s_commit_interval;
6582 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6584 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585 		ext4_release_system_zone(sb);
6586 #ifdef CONFIG_QUOTA
6587 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589 		to_free[i] = get_qf_name(sb, sbi, i);
6590 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591 	}
6592 	synchronize_rcu();
6593 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594 		kfree(to_free[i]);
6595 #endif
6596 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597 		ext4_stop_mmpd(sbi);
6598 	return err;
6599 }
6600 
6601 static int ext4_reconfigure(struct fs_context *fc)
6602 {
6603 	struct super_block *sb = fc->root->d_sb;
6604 	int ret;
6605 
6606 	fc->s_fs_info = EXT4_SB(sb);
6607 
6608 	ret = ext4_check_opt_consistency(fc, sb);
6609 	if (ret < 0)
6610 		return ret;
6611 
6612 	ret = __ext4_remount(fc, sb);
6613 	if (ret < 0)
6614 		return ret;
6615 
6616 	ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.",
6617 		 &sb->s_uuid, ext4_quota_mode(sb));
6618 
6619 	return 0;
6620 }
6621 
6622 #ifdef CONFIG_QUOTA
6623 static int ext4_statfs_project(struct super_block *sb,
6624 			       kprojid_t projid, struct kstatfs *buf)
6625 {
6626 	struct kqid qid;
6627 	struct dquot *dquot;
6628 	u64 limit;
6629 	u64 curblock;
6630 
6631 	qid = make_kqid_projid(projid);
6632 	dquot = dqget(sb, qid);
6633 	if (IS_ERR(dquot))
6634 		return PTR_ERR(dquot);
6635 	spin_lock(&dquot->dq_dqb_lock);
6636 
6637 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638 			     dquot->dq_dqb.dqb_bhardlimit);
6639 	limit >>= sb->s_blocksize_bits;
6640 
6641 	if (limit && buf->f_blocks > limit) {
6642 		curblock = (dquot->dq_dqb.dqb_curspace +
6643 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644 		buf->f_blocks = limit;
6645 		buf->f_bfree = buf->f_bavail =
6646 			(buf->f_blocks > curblock) ?
6647 			 (buf->f_blocks - curblock) : 0;
6648 	}
6649 
6650 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651 			     dquot->dq_dqb.dqb_ihardlimit);
6652 	if (limit && buf->f_files > limit) {
6653 		buf->f_files = limit;
6654 		buf->f_ffree =
6655 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657 	}
6658 
6659 	spin_unlock(&dquot->dq_dqb_lock);
6660 	dqput(dquot);
6661 	return 0;
6662 }
6663 #endif
6664 
6665 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666 {
6667 	struct super_block *sb = dentry->d_sb;
6668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6669 	struct ext4_super_block *es = sbi->s_es;
6670 	ext4_fsblk_t overhead = 0, resv_blocks;
6671 	s64 bfree;
6672 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673 
6674 	if (!test_opt(sb, MINIX_DF))
6675 		overhead = sbi->s_overhead;
6676 
6677 	buf->f_type = EXT4_SUPER_MAGIC;
6678 	buf->f_bsize = sb->s_blocksize;
6679 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682 	/* prevent underflow in case that few free space is available */
6683 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684 	buf->f_bavail = buf->f_bfree -
6685 			(ext4_r_blocks_count(es) + resv_blocks);
6686 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687 		buf->f_bavail = 0;
6688 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6689 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690 	buf->f_namelen = EXT4_NAME_LEN;
6691 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6692 
6693 #ifdef CONFIG_QUOTA
6694 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697 #endif
6698 	return 0;
6699 }
6700 
6701 
6702 #ifdef CONFIG_QUOTA
6703 
6704 /*
6705  * Helper functions so that transaction is started before we acquire dqio_sem
6706  * to keep correct lock ordering of transaction > dqio_sem
6707  */
6708 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709 {
6710 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711 }
6712 
6713 static int ext4_write_dquot(struct dquot *dquot)
6714 {
6715 	int ret, err;
6716 	handle_t *handle;
6717 	struct inode *inode;
6718 
6719 	inode = dquot_to_inode(dquot);
6720 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722 	if (IS_ERR(handle))
6723 		return PTR_ERR(handle);
6724 	ret = dquot_commit(dquot);
6725 	err = ext4_journal_stop(handle);
6726 	if (!ret)
6727 		ret = err;
6728 	return ret;
6729 }
6730 
6731 static int ext4_acquire_dquot(struct dquot *dquot)
6732 {
6733 	int ret, err;
6734 	handle_t *handle;
6735 
6736 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738 	if (IS_ERR(handle))
6739 		return PTR_ERR(handle);
6740 	ret = dquot_acquire(dquot);
6741 	err = ext4_journal_stop(handle);
6742 	if (!ret)
6743 		ret = err;
6744 	return ret;
6745 }
6746 
6747 static int ext4_release_dquot(struct dquot *dquot)
6748 {
6749 	int ret, err;
6750 	handle_t *handle;
6751 
6752 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754 	if (IS_ERR(handle)) {
6755 		/* Release dquot anyway to avoid endless cycle in dqput() */
6756 		dquot_release(dquot);
6757 		return PTR_ERR(handle);
6758 	}
6759 	ret = dquot_release(dquot);
6760 	err = ext4_journal_stop(handle);
6761 	if (!ret)
6762 		ret = err;
6763 	return ret;
6764 }
6765 
6766 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767 {
6768 	struct super_block *sb = dquot->dq_sb;
6769 
6770 	if (ext4_is_quota_journalled(sb)) {
6771 		dquot_mark_dquot_dirty(dquot);
6772 		return ext4_write_dquot(dquot);
6773 	} else {
6774 		return dquot_mark_dquot_dirty(dquot);
6775 	}
6776 }
6777 
6778 static int ext4_write_info(struct super_block *sb, int type)
6779 {
6780 	int ret, err;
6781 	handle_t *handle;
6782 
6783 	/* Data block + inode block */
6784 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785 	if (IS_ERR(handle))
6786 		return PTR_ERR(handle);
6787 	ret = dquot_commit_info(sb, type);
6788 	err = ext4_journal_stop(handle);
6789 	if (!ret)
6790 		ret = err;
6791 	return ret;
6792 }
6793 
6794 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795 {
6796 	struct ext4_inode_info *ei = EXT4_I(inode);
6797 
6798 	/* The first argument of lockdep_set_subclass has to be
6799 	 * *exactly* the same as the argument to init_rwsem() --- in
6800 	 * this case, in init_once() --- or lockdep gets unhappy
6801 	 * because the name of the lock is set using the
6802 	 * stringification of the argument to init_rwsem().
6803 	 */
6804 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6805 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6806 }
6807 
6808 /*
6809  * Standard function to be called on quota_on
6810  */
6811 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812 			 const struct path *path)
6813 {
6814 	int err;
6815 
6816 	if (!test_opt(sb, QUOTA))
6817 		return -EINVAL;
6818 
6819 	/* Quotafile not on the same filesystem? */
6820 	if (path->dentry->d_sb != sb)
6821 		return -EXDEV;
6822 
6823 	/* Quota already enabled for this file? */
6824 	if (IS_NOQUOTA(d_inode(path->dentry)))
6825 		return -EBUSY;
6826 
6827 	/* Journaling quota? */
6828 	if (EXT4_SB(sb)->s_qf_names[type]) {
6829 		/* Quotafile not in fs root? */
6830 		if (path->dentry->d_parent != sb->s_root)
6831 			ext4_msg(sb, KERN_WARNING,
6832 				"Quota file not on filesystem root. "
6833 				"Journaled quota will not work");
6834 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835 	} else {
6836 		/*
6837 		 * Clear the flag just in case mount options changed since
6838 		 * last time.
6839 		 */
6840 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841 	}
6842 
6843 	/*
6844 	 * When we journal data on quota file, we have to flush journal to see
6845 	 * all updates to the file when we bypass pagecache...
6846 	 */
6847 	if (EXT4_SB(sb)->s_journal &&
6848 	    ext4_should_journal_data(d_inode(path->dentry))) {
6849 		/*
6850 		 * We don't need to lock updates but journal_flush() could
6851 		 * otherwise be livelocked...
6852 		 */
6853 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856 		if (err)
6857 			return err;
6858 	}
6859 
6860 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861 	err = dquot_quota_on(sb, type, format_id, path);
6862 	if (!err) {
6863 		struct inode *inode = d_inode(path->dentry);
6864 		handle_t *handle;
6865 
6866 		/*
6867 		 * Set inode flags to prevent userspace from messing with quota
6868 		 * files. If this fails, we return success anyway since quotas
6869 		 * are already enabled and this is not a hard failure.
6870 		 */
6871 		inode_lock(inode);
6872 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873 		if (IS_ERR(handle))
6874 			goto unlock_inode;
6875 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877 				S_NOATIME | S_IMMUTABLE);
6878 		err = ext4_mark_inode_dirty(handle, inode);
6879 		ext4_journal_stop(handle);
6880 	unlock_inode:
6881 		inode_unlock(inode);
6882 		if (err)
6883 			dquot_quota_off(sb, type);
6884 	}
6885 	if (err)
6886 		lockdep_set_quota_inode(path->dentry->d_inode,
6887 					     I_DATA_SEM_NORMAL);
6888 	return err;
6889 }
6890 
6891 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892 {
6893 	switch (type) {
6894 	case USRQUOTA:
6895 		return qf_inum == EXT4_USR_QUOTA_INO;
6896 	case GRPQUOTA:
6897 		return qf_inum == EXT4_GRP_QUOTA_INO;
6898 	case PRJQUOTA:
6899 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900 	default:
6901 		BUG();
6902 	}
6903 }
6904 
6905 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906 			     unsigned int flags)
6907 {
6908 	int err;
6909 	struct inode *qf_inode;
6910 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914 	};
6915 
6916 	BUG_ON(!ext4_has_feature_quota(sb));
6917 
6918 	if (!qf_inums[type])
6919 		return -EPERM;
6920 
6921 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923 				qf_inums[type], type);
6924 		return -EUCLEAN;
6925 	}
6926 
6927 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928 	if (IS_ERR(qf_inode)) {
6929 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930 				qf_inums[type], type);
6931 		return PTR_ERR(qf_inode);
6932 	}
6933 
6934 	/* Don't account quota for quota files to avoid recursion */
6935 	qf_inode->i_flags |= S_NOQUOTA;
6936 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6938 	if (err)
6939 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940 	iput(qf_inode);
6941 
6942 	return err;
6943 }
6944 
6945 /* Enable usage tracking for all quota types. */
6946 int ext4_enable_quotas(struct super_block *sb)
6947 {
6948 	int type, err = 0;
6949 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953 	};
6954 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6955 		test_opt(sb, USRQUOTA),
6956 		test_opt(sb, GRPQUOTA),
6957 		test_opt(sb, PRJQUOTA),
6958 	};
6959 
6960 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962 		if (qf_inums[type]) {
6963 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964 				DQUOT_USAGE_ENABLED |
6965 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966 			if (err) {
6967 				ext4_warning(sb,
6968 					"Failed to enable quota tracking "
6969 					"(type=%d, err=%d, ino=%lu). "
6970 					"Please run e2fsck to fix.", type,
6971 					err, qf_inums[type]);
6972 				for (type--; type >= 0; type--) {
6973 					struct inode *inode;
6974 
6975 					inode = sb_dqopt(sb)->files[type];
6976 					if (inode)
6977 						inode = igrab(inode);
6978 					dquot_quota_off(sb, type);
6979 					if (inode) {
6980 						lockdep_set_quota_inode(inode,
6981 							I_DATA_SEM_NORMAL);
6982 						iput(inode);
6983 					}
6984 				}
6985 
6986 				return err;
6987 			}
6988 		}
6989 	}
6990 	return 0;
6991 }
6992 
6993 static int ext4_quota_off(struct super_block *sb, int type)
6994 {
6995 	struct inode *inode = sb_dqopt(sb)->files[type];
6996 	handle_t *handle;
6997 	int err;
6998 
6999 	/* Force all delayed allocation blocks to be allocated.
7000 	 * Caller already holds s_umount sem */
7001 	if (test_opt(sb, DELALLOC))
7002 		sync_filesystem(sb);
7003 
7004 	if (!inode || !igrab(inode))
7005 		goto out;
7006 
7007 	err = dquot_quota_off(sb, type);
7008 	if (err || ext4_has_feature_quota(sb))
7009 		goto out_put;
7010 
7011 	inode_lock(inode);
7012 	/*
7013 	 * Update modification times of quota files when userspace can
7014 	 * start looking at them. If we fail, we return success anyway since
7015 	 * this is not a hard failure and quotas are already disabled.
7016 	 */
7017 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018 	if (IS_ERR(handle)) {
7019 		err = PTR_ERR(handle);
7020 		goto out_unlock;
7021 	}
7022 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024 	inode->i_mtime = inode->i_ctime = current_time(inode);
7025 	err = ext4_mark_inode_dirty(handle, inode);
7026 	ext4_journal_stop(handle);
7027 out_unlock:
7028 	inode_unlock(inode);
7029 out_put:
7030 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031 	iput(inode);
7032 	return err;
7033 out:
7034 	return dquot_quota_off(sb, type);
7035 }
7036 
7037 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7038  * acquiring the locks... As quota files are never truncated and quota code
7039  * itself serializes the operations (and no one else should touch the files)
7040  * we don't have to be afraid of races */
7041 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042 			       size_t len, loff_t off)
7043 {
7044 	struct inode *inode = sb_dqopt(sb)->files[type];
7045 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046 	int offset = off & (sb->s_blocksize - 1);
7047 	int tocopy;
7048 	size_t toread;
7049 	struct buffer_head *bh;
7050 	loff_t i_size = i_size_read(inode);
7051 
7052 	if (off > i_size)
7053 		return 0;
7054 	if (off+len > i_size)
7055 		len = i_size-off;
7056 	toread = len;
7057 	while (toread > 0) {
7058 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7059 		bh = ext4_bread(NULL, inode, blk, 0);
7060 		if (IS_ERR(bh))
7061 			return PTR_ERR(bh);
7062 		if (!bh)	/* A hole? */
7063 			memset(data, 0, tocopy);
7064 		else
7065 			memcpy(data, bh->b_data+offset, tocopy);
7066 		brelse(bh);
7067 		offset = 0;
7068 		toread -= tocopy;
7069 		data += tocopy;
7070 		blk++;
7071 	}
7072 	return len;
7073 }
7074 
7075 /* Write to quotafile (we know the transaction is already started and has
7076  * enough credits) */
7077 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7078 				const char *data, size_t len, loff_t off)
7079 {
7080 	struct inode *inode = sb_dqopt(sb)->files[type];
7081 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7082 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7083 	int retries = 0;
7084 	struct buffer_head *bh;
7085 	handle_t *handle = journal_current_handle();
7086 
7087 	if (!handle) {
7088 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7089 			" cancelled because transaction is not started",
7090 			(unsigned long long)off, (unsigned long long)len);
7091 		return -EIO;
7092 	}
7093 	/*
7094 	 * Since we account only one data block in transaction credits,
7095 	 * then it is impossible to cross a block boundary.
7096 	 */
7097 	if (sb->s_blocksize - offset < len) {
7098 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7099 			" cancelled because not block aligned",
7100 			(unsigned long long)off, (unsigned long long)len);
7101 		return -EIO;
7102 	}
7103 
7104 	do {
7105 		bh = ext4_bread(handle, inode, blk,
7106 				EXT4_GET_BLOCKS_CREATE |
7107 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7108 	} while (PTR_ERR(bh) == -ENOSPC &&
7109 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7110 	if (IS_ERR(bh))
7111 		return PTR_ERR(bh);
7112 	if (!bh)
7113 		goto out;
7114 	BUFFER_TRACE(bh, "get write access");
7115 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7116 	if (err) {
7117 		brelse(bh);
7118 		return err;
7119 	}
7120 	lock_buffer(bh);
7121 	memcpy(bh->b_data+offset, data, len);
7122 	flush_dcache_page(bh->b_page);
7123 	unlock_buffer(bh);
7124 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7125 	brelse(bh);
7126 out:
7127 	if (inode->i_size < off + len) {
7128 		i_size_write(inode, off + len);
7129 		EXT4_I(inode)->i_disksize = inode->i_size;
7130 		err2 = ext4_mark_inode_dirty(handle, inode);
7131 		if (unlikely(err2 && !err))
7132 			err = err2;
7133 	}
7134 	return err ? err : len;
7135 }
7136 #endif
7137 
7138 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7139 static inline void register_as_ext2(void)
7140 {
7141 	int err = register_filesystem(&ext2_fs_type);
7142 	if (err)
7143 		printk(KERN_WARNING
7144 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7145 }
7146 
7147 static inline void unregister_as_ext2(void)
7148 {
7149 	unregister_filesystem(&ext2_fs_type);
7150 }
7151 
7152 static inline int ext2_feature_set_ok(struct super_block *sb)
7153 {
7154 	if (ext4_has_unknown_ext2_incompat_features(sb))
7155 		return 0;
7156 	if (sb_rdonly(sb))
7157 		return 1;
7158 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7159 		return 0;
7160 	return 1;
7161 }
7162 #else
7163 static inline void register_as_ext2(void) { }
7164 static inline void unregister_as_ext2(void) { }
7165 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7166 #endif
7167 
7168 static inline void register_as_ext3(void)
7169 {
7170 	int err = register_filesystem(&ext3_fs_type);
7171 	if (err)
7172 		printk(KERN_WARNING
7173 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7174 }
7175 
7176 static inline void unregister_as_ext3(void)
7177 {
7178 	unregister_filesystem(&ext3_fs_type);
7179 }
7180 
7181 static inline int ext3_feature_set_ok(struct super_block *sb)
7182 {
7183 	if (ext4_has_unknown_ext3_incompat_features(sb))
7184 		return 0;
7185 	if (!ext4_has_feature_journal(sb))
7186 		return 0;
7187 	if (sb_rdonly(sb))
7188 		return 1;
7189 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7190 		return 0;
7191 	return 1;
7192 }
7193 
7194 static struct file_system_type ext4_fs_type = {
7195 	.owner			= THIS_MODULE,
7196 	.name			= "ext4",
7197 	.init_fs_context	= ext4_init_fs_context,
7198 	.parameters		= ext4_param_specs,
7199 	.kill_sb		= kill_block_super,
7200 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7201 };
7202 MODULE_ALIAS_FS("ext4");
7203 
7204 /* Shared across all ext4 file systems */
7205 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7206 
7207 static int __init ext4_init_fs(void)
7208 {
7209 	int i, err;
7210 
7211 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7212 	ext4_li_info = NULL;
7213 
7214 	/* Build-time check for flags consistency */
7215 	ext4_check_flag_values();
7216 
7217 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7218 		init_waitqueue_head(&ext4__ioend_wq[i]);
7219 
7220 	err = ext4_init_es();
7221 	if (err)
7222 		return err;
7223 
7224 	err = ext4_init_pending();
7225 	if (err)
7226 		goto out7;
7227 
7228 	err = ext4_init_post_read_processing();
7229 	if (err)
7230 		goto out6;
7231 
7232 	err = ext4_init_pageio();
7233 	if (err)
7234 		goto out5;
7235 
7236 	err = ext4_init_system_zone();
7237 	if (err)
7238 		goto out4;
7239 
7240 	err = ext4_init_sysfs();
7241 	if (err)
7242 		goto out3;
7243 
7244 	err = ext4_init_mballoc();
7245 	if (err)
7246 		goto out2;
7247 	err = init_inodecache();
7248 	if (err)
7249 		goto out1;
7250 
7251 	err = ext4_fc_init_dentry_cache();
7252 	if (err)
7253 		goto out05;
7254 
7255 	register_as_ext3();
7256 	register_as_ext2();
7257 	err = register_filesystem(&ext4_fs_type);
7258 	if (err)
7259 		goto out;
7260 
7261 	return 0;
7262 out:
7263 	unregister_as_ext2();
7264 	unregister_as_ext3();
7265 	ext4_fc_destroy_dentry_cache();
7266 out05:
7267 	destroy_inodecache();
7268 out1:
7269 	ext4_exit_mballoc();
7270 out2:
7271 	ext4_exit_sysfs();
7272 out3:
7273 	ext4_exit_system_zone();
7274 out4:
7275 	ext4_exit_pageio();
7276 out5:
7277 	ext4_exit_post_read_processing();
7278 out6:
7279 	ext4_exit_pending();
7280 out7:
7281 	ext4_exit_es();
7282 
7283 	return err;
7284 }
7285 
7286 static void __exit ext4_exit_fs(void)
7287 {
7288 	ext4_destroy_lazyinit_thread();
7289 	unregister_as_ext2();
7290 	unregister_as_ext3();
7291 	unregister_filesystem(&ext4_fs_type);
7292 	ext4_fc_destroy_dentry_cache();
7293 	destroy_inodecache();
7294 	ext4_exit_mballoc();
7295 	ext4_exit_sysfs();
7296 	ext4_exit_system_zone();
7297 	ext4_exit_pageio();
7298 	ext4_exit_post_read_processing();
7299 	ext4_exit_es();
7300 	ext4_exit_pending();
7301 }
7302 
7303 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7304 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7305 MODULE_LICENSE("GPL");
7306 MODULE_SOFTDEP("pre: crc32c");
7307 module_init(ext4_init_fs)
7308 module_exit(ext4_exit_fs)
7309