1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ, op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 207 { 208 if (trylock_buffer(bh)) { 209 if (wait) 210 return ext4_read_bh(bh, op_flags, NULL); 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 if (wait) { 215 wait_on_buffer(bh); 216 if (buffer_uptodate(bh)) 217 return 0; 218 return -EIO; 219 } 220 return 0; 221 } 222 223 /* 224 * This works like __bread_gfp() except it uses ERR_PTR for error 225 * returns. Currently with sb_bread it's impossible to distinguish 226 * between ENOMEM and EIO situations (since both result in a NULL 227 * return. 228 */ 229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 230 sector_t block, int op_flags, 231 gfp_t gfp) 232 { 233 struct buffer_head *bh; 234 int ret; 235 236 bh = sb_getblk_gfp(sb, block, gfp); 237 if (bh == NULL) 238 return ERR_PTR(-ENOMEM); 239 if (ext4_buffer_uptodate(bh)) 240 return bh; 241 242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 243 if (ret) { 244 put_bh(bh); 245 return ERR_PTR(ret); 246 } 247 return bh; 248 } 249 250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 251 int op_flags) 252 { 253 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 254 } 255 256 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 257 sector_t block) 258 { 259 return __ext4_sb_bread_gfp(sb, block, 0, 0); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 265 266 if (likely(bh)) { 267 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 268 brelse(bh); 269 } 270 } 271 272 static int ext4_verify_csum_type(struct super_block *sb, 273 struct ext4_super_block *es) 274 { 275 if (!ext4_has_feature_metadata_csum(sb)) 276 return 1; 277 278 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 279 } 280 281 __le32 ext4_superblock_csum(struct super_block *sb, 282 struct ext4_super_block *es) 283 { 284 struct ext4_sb_info *sbi = EXT4_SB(sb); 285 int offset = offsetof(struct ext4_super_block, s_checksum); 286 __u32 csum; 287 288 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 289 290 return cpu_to_le32(csum); 291 } 292 293 static int ext4_superblock_csum_verify(struct super_block *sb, 294 struct ext4_super_block *es) 295 { 296 if (!ext4_has_metadata_csum(sb)) 297 return 1; 298 299 return es->s_checksum == ext4_superblock_csum(sb, es); 300 } 301 302 void ext4_superblock_csum_set(struct super_block *sb) 303 { 304 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 305 306 if (!ext4_has_metadata_csum(sb)) 307 return; 308 309 es->s_checksum = ext4_superblock_csum(sb, es); 310 } 311 312 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 313 struct ext4_group_desc *bg) 314 { 315 return le32_to_cpu(bg->bg_block_bitmap_lo) | 316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 317 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 318 } 319 320 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 321 struct ext4_group_desc *bg) 322 { 323 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 325 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 326 } 327 328 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 329 struct ext4_group_desc *bg) 330 { 331 return le32_to_cpu(bg->bg_inode_table_lo) | 332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 334 } 335 336 __u32 ext4_free_group_clusters(struct super_block *sb, 337 struct ext4_group_desc *bg) 338 { 339 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 341 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 342 } 343 344 __u32 ext4_free_inodes_count(struct super_block *sb, 345 struct ext4_group_desc *bg) 346 { 347 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 349 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 350 } 351 352 __u32 ext4_used_dirs_count(struct super_block *sb, 353 struct ext4_group_desc *bg) 354 { 355 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 357 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 358 } 359 360 __u32 ext4_itable_unused_count(struct super_block *sb, 361 struct ext4_group_desc *bg) 362 { 363 return le16_to_cpu(bg->bg_itable_unused_lo) | 364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 365 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 366 } 367 368 void ext4_block_bitmap_set(struct super_block *sb, 369 struct ext4_group_desc *bg, ext4_fsblk_t blk) 370 { 371 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 373 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 374 } 375 376 void ext4_inode_bitmap_set(struct super_block *sb, 377 struct ext4_group_desc *bg, ext4_fsblk_t blk) 378 { 379 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 381 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 382 } 383 384 void ext4_inode_table_set(struct super_block *sb, 385 struct ext4_group_desc *bg, ext4_fsblk_t blk) 386 { 387 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 389 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 390 } 391 392 void ext4_free_group_clusters_set(struct super_block *sb, 393 struct ext4_group_desc *bg, __u32 count) 394 { 395 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 397 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 398 } 399 400 void ext4_free_inodes_set(struct super_block *sb, 401 struct ext4_group_desc *bg, __u32 count) 402 { 403 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 405 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 406 } 407 408 void ext4_used_dirs_set(struct super_block *sb, 409 struct ext4_group_desc *bg, __u32 count) 410 { 411 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 413 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 414 } 415 416 void ext4_itable_unused_set(struct super_block *sb, 417 struct ext4_group_desc *bg, __u32 count) 418 { 419 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 421 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 422 } 423 424 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 425 { 426 now = clamp_val(now, 0, (1ull << 40) - 1); 427 428 *lo = cpu_to_le32(lower_32_bits(now)); 429 *hi = upper_32_bits(now); 430 } 431 432 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 433 { 434 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 435 } 436 #define ext4_update_tstamp(es, tstamp) \ 437 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 438 ktime_get_real_seconds()) 439 #define ext4_get_tstamp(es, tstamp) \ 440 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 441 442 /* 443 * The del_gendisk() function uninitializes the disk-specific data 444 * structures, including the bdi structure, without telling anyone 445 * else. Once this happens, any attempt to call mark_buffer_dirty() 446 * (for example, by ext4_commit_super), will cause a kernel OOPS. 447 * This is a kludge to prevent these oops until we can put in a proper 448 * hook in del_gendisk() to inform the VFS and file system layers. 449 */ 450 static int block_device_ejected(struct super_block *sb) 451 { 452 struct inode *bd_inode = sb->s_bdev->bd_inode; 453 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 454 455 return bdi->dev == NULL; 456 } 457 458 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 459 { 460 struct super_block *sb = journal->j_private; 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 int error = is_journal_aborted(journal); 463 struct ext4_journal_cb_entry *jce; 464 465 BUG_ON(txn->t_state == T_FINISHED); 466 467 ext4_process_freed_data(sb, txn->t_tid); 468 469 spin_lock(&sbi->s_md_lock); 470 while (!list_empty(&txn->t_private_list)) { 471 jce = list_entry(txn->t_private_list.next, 472 struct ext4_journal_cb_entry, jce_list); 473 list_del_init(&jce->jce_list); 474 spin_unlock(&sbi->s_md_lock); 475 jce->jce_func(sb, jce, error); 476 spin_lock(&sbi->s_md_lock); 477 } 478 spin_unlock(&sbi->s_md_lock); 479 } 480 481 /* 482 * This writepage callback for write_cache_pages() 483 * takes care of a few cases after page cleaning. 484 * 485 * write_cache_pages() already checks for dirty pages 486 * and calls clear_page_dirty_for_io(), which we want, 487 * to write protect the pages. 488 * 489 * However, we may have to redirty a page (see below.) 490 */ 491 static int ext4_journalled_writepage_callback(struct page *page, 492 struct writeback_control *wbc, 493 void *data) 494 { 495 transaction_t *transaction = (transaction_t *) data; 496 struct buffer_head *bh, *head; 497 struct journal_head *jh; 498 499 bh = head = page_buffers(page); 500 do { 501 /* 502 * We have to redirty a page in these cases: 503 * 1) If buffer is dirty, it means the page was dirty because it 504 * contains a buffer that needs checkpointing. So the dirty bit 505 * needs to be preserved so that checkpointing writes the buffer 506 * properly. 507 * 2) If buffer is not part of the committing transaction 508 * (we may have just accidentally come across this buffer because 509 * inode range tracking is not exact) or if the currently running 510 * transaction already contains this buffer as well, dirty bit 511 * needs to be preserved so that the buffer gets writeprotected 512 * properly on running transaction's commit. 513 */ 514 jh = bh2jh(bh); 515 if (buffer_dirty(bh) || 516 (jh && (jh->b_transaction != transaction || 517 jh->b_next_transaction))) { 518 redirty_page_for_writepage(wbc, page); 519 goto out; 520 } 521 } while ((bh = bh->b_this_page) != head); 522 523 out: 524 return AOP_WRITEPAGE_ACTIVATE; 525 } 526 527 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 528 { 529 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 530 struct writeback_control wbc = { 531 .sync_mode = WB_SYNC_ALL, 532 .nr_to_write = LONG_MAX, 533 .range_start = jinode->i_dirty_start, 534 .range_end = jinode->i_dirty_end, 535 }; 536 537 return write_cache_pages(mapping, &wbc, 538 ext4_journalled_writepage_callback, 539 jinode->i_transaction); 540 } 541 542 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 543 { 544 int ret; 545 546 if (ext4_should_journal_data(jinode->i_vfs_inode)) 547 ret = ext4_journalled_submit_inode_data_buffers(jinode); 548 else 549 ret = jbd2_journal_submit_inode_data_buffers(jinode); 550 551 return ret; 552 } 553 554 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 555 { 556 int ret = 0; 557 558 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 559 ret = jbd2_journal_finish_inode_data_buffers(jinode); 560 561 return ret; 562 } 563 564 static bool system_going_down(void) 565 { 566 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 567 || system_state == SYSTEM_RESTART; 568 } 569 570 struct ext4_err_translation { 571 int code; 572 int errno; 573 }; 574 575 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 576 577 static struct ext4_err_translation err_translation[] = { 578 EXT4_ERR_TRANSLATE(EIO), 579 EXT4_ERR_TRANSLATE(ENOMEM), 580 EXT4_ERR_TRANSLATE(EFSBADCRC), 581 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 582 EXT4_ERR_TRANSLATE(ENOSPC), 583 EXT4_ERR_TRANSLATE(ENOKEY), 584 EXT4_ERR_TRANSLATE(EROFS), 585 EXT4_ERR_TRANSLATE(EFBIG), 586 EXT4_ERR_TRANSLATE(EEXIST), 587 EXT4_ERR_TRANSLATE(ERANGE), 588 EXT4_ERR_TRANSLATE(EOVERFLOW), 589 EXT4_ERR_TRANSLATE(EBUSY), 590 EXT4_ERR_TRANSLATE(ENOTDIR), 591 EXT4_ERR_TRANSLATE(ENOTEMPTY), 592 EXT4_ERR_TRANSLATE(ESHUTDOWN), 593 EXT4_ERR_TRANSLATE(EFAULT), 594 }; 595 596 static int ext4_errno_to_code(int errno) 597 { 598 int i; 599 600 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 601 if (err_translation[i].errno == errno) 602 return err_translation[i].code; 603 return EXT4_ERR_UNKNOWN; 604 } 605 606 static void save_error_info(struct super_block *sb, int error, 607 __u32 ino, __u64 block, 608 const char *func, unsigned int line) 609 { 610 struct ext4_sb_info *sbi = EXT4_SB(sb); 611 612 /* We default to EFSCORRUPTED error... */ 613 if (error == 0) 614 error = EFSCORRUPTED; 615 616 spin_lock(&sbi->s_error_lock); 617 sbi->s_add_error_count++; 618 sbi->s_last_error_code = error; 619 sbi->s_last_error_line = line; 620 sbi->s_last_error_ino = ino; 621 sbi->s_last_error_block = block; 622 sbi->s_last_error_func = func; 623 sbi->s_last_error_time = ktime_get_real_seconds(); 624 if (!sbi->s_first_error_time) { 625 sbi->s_first_error_code = error; 626 sbi->s_first_error_line = line; 627 sbi->s_first_error_ino = ino; 628 sbi->s_first_error_block = block; 629 sbi->s_first_error_func = func; 630 sbi->s_first_error_time = sbi->s_last_error_time; 631 } 632 spin_unlock(&sbi->s_error_lock); 633 } 634 635 /* Deal with the reporting of failure conditions on a filesystem such as 636 * inconsistencies detected or read IO failures. 637 * 638 * On ext2, we can store the error state of the filesystem in the 639 * superblock. That is not possible on ext4, because we may have other 640 * write ordering constraints on the superblock which prevent us from 641 * writing it out straight away; and given that the journal is about to 642 * be aborted, we can't rely on the current, or future, transactions to 643 * write out the superblock safely. 644 * 645 * We'll just use the jbd2_journal_abort() error code to record an error in 646 * the journal instead. On recovery, the journal will complain about 647 * that error until we've noted it down and cleared it. 648 * 649 * If force_ro is set, we unconditionally force the filesystem into an 650 * ABORT|READONLY state, unless the error response on the fs has been set to 651 * panic in which case we take the easy way out and panic immediately. This is 652 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 653 * at a critical moment in log management. 654 */ 655 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 656 __u32 ino, __u64 block, 657 const char *func, unsigned int line) 658 { 659 journal_t *journal = EXT4_SB(sb)->s_journal; 660 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 661 662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 663 if (test_opt(sb, WARN_ON_ERROR)) 664 WARN_ON_ONCE(1); 665 666 if (!continue_fs && !sb_rdonly(sb)) { 667 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 668 if (journal) 669 jbd2_journal_abort(journal, -EIO); 670 } 671 672 if (!bdev_read_only(sb->s_bdev)) { 673 save_error_info(sb, error, ino, block, func, line); 674 /* 675 * In case the fs should keep running, we need to writeout 676 * superblock through the journal. Due to lock ordering 677 * constraints, it may not be safe to do it right here so we 678 * defer superblock flushing to a workqueue. 679 */ 680 if (continue_fs && journal) 681 schedule_work(&EXT4_SB(sb)->s_error_work); 682 else 683 ext4_commit_super(sb); 684 } 685 686 /* 687 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 688 * could panic during 'reboot -f' as the underlying device got already 689 * disabled. 690 */ 691 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 692 panic("EXT4-fs (device %s): panic forced after error\n", 693 sb->s_id); 694 } 695 696 if (sb_rdonly(sb) || continue_fs) 697 return; 698 699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 700 /* 701 * Make sure updated value of ->s_mount_flags will be visible before 702 * ->s_flags update 703 */ 704 smp_wmb(); 705 sb->s_flags |= SB_RDONLY; 706 } 707 708 static void flush_stashed_error_work(struct work_struct *work) 709 { 710 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 711 s_error_work); 712 journal_t *journal = sbi->s_journal; 713 handle_t *handle; 714 715 /* 716 * If the journal is still running, we have to write out superblock 717 * through the journal to avoid collisions of other journalled sb 718 * updates. 719 * 720 * We use directly jbd2 functions here to avoid recursing back into 721 * ext4 error handling code during handling of previous errors. 722 */ 723 if (!sb_rdonly(sbi->s_sb) && journal) { 724 struct buffer_head *sbh = sbi->s_sbh; 725 handle = jbd2_journal_start(journal, 1); 726 if (IS_ERR(handle)) 727 goto write_directly; 728 if (jbd2_journal_get_write_access(handle, sbh)) { 729 jbd2_journal_stop(handle); 730 goto write_directly; 731 } 732 ext4_update_super(sbi->s_sb); 733 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 734 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 735 "superblock detected"); 736 clear_buffer_write_io_error(sbh); 737 set_buffer_uptodate(sbh); 738 } 739 740 if (jbd2_journal_dirty_metadata(handle, sbh)) { 741 jbd2_journal_stop(handle); 742 goto write_directly; 743 } 744 jbd2_journal_stop(handle); 745 ext4_notify_error_sysfs(sbi); 746 return; 747 } 748 write_directly: 749 /* 750 * Write through journal failed. Write sb directly to get error info 751 * out and hope for the best. 752 */ 753 ext4_commit_super(sbi->s_sb); 754 ext4_notify_error_sysfs(sbi); 755 } 756 757 #define ext4_error_ratelimit(sb) \ 758 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 759 "EXT4-fs error") 760 761 void __ext4_error(struct super_block *sb, const char *function, 762 unsigned int line, bool force_ro, int error, __u64 block, 763 const char *fmt, ...) 764 { 765 struct va_format vaf; 766 va_list args; 767 768 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 769 return; 770 771 trace_ext4_error(sb, function, line); 772 if (ext4_error_ratelimit(sb)) { 773 va_start(args, fmt); 774 vaf.fmt = fmt; 775 vaf.va = &args; 776 printk(KERN_CRIT 777 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 778 sb->s_id, function, line, current->comm, &vaf); 779 va_end(args); 780 } 781 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 782 783 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 784 } 785 786 void __ext4_error_inode(struct inode *inode, const char *function, 787 unsigned int line, ext4_fsblk_t block, int error, 788 const char *fmt, ...) 789 { 790 va_list args; 791 struct va_format vaf; 792 793 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 794 return; 795 796 trace_ext4_error(inode->i_sb, function, line); 797 if (ext4_error_ratelimit(inode->i_sb)) { 798 va_start(args, fmt); 799 vaf.fmt = fmt; 800 vaf.va = &args; 801 if (block) 802 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 803 "inode #%lu: block %llu: comm %s: %pV\n", 804 inode->i_sb->s_id, function, line, inode->i_ino, 805 block, current->comm, &vaf); 806 else 807 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 808 "inode #%lu: comm %s: %pV\n", 809 inode->i_sb->s_id, function, line, inode->i_ino, 810 current->comm, &vaf); 811 va_end(args); 812 } 813 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 814 815 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 816 function, line); 817 } 818 819 void __ext4_error_file(struct file *file, const char *function, 820 unsigned int line, ext4_fsblk_t block, 821 const char *fmt, ...) 822 { 823 va_list args; 824 struct va_format vaf; 825 struct inode *inode = file_inode(file); 826 char pathname[80], *path; 827 828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 829 return; 830 831 trace_ext4_error(inode->i_sb, function, line); 832 if (ext4_error_ratelimit(inode->i_sb)) { 833 path = file_path(file, pathname, sizeof(pathname)); 834 if (IS_ERR(path)) 835 path = "(unknown)"; 836 va_start(args, fmt); 837 vaf.fmt = fmt; 838 vaf.va = &args; 839 if (block) 840 printk(KERN_CRIT 841 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 842 "block %llu: comm %s: path %s: %pV\n", 843 inode->i_sb->s_id, function, line, inode->i_ino, 844 block, current->comm, path, &vaf); 845 else 846 printk(KERN_CRIT 847 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 848 "comm %s: path %s: %pV\n", 849 inode->i_sb->s_id, function, line, inode->i_ino, 850 current->comm, path, &vaf); 851 va_end(args); 852 } 853 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 854 855 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 856 function, line); 857 } 858 859 const char *ext4_decode_error(struct super_block *sb, int errno, 860 char nbuf[16]) 861 { 862 char *errstr = NULL; 863 864 switch (errno) { 865 case -EFSCORRUPTED: 866 errstr = "Corrupt filesystem"; 867 break; 868 case -EFSBADCRC: 869 errstr = "Filesystem failed CRC"; 870 break; 871 case -EIO: 872 errstr = "IO failure"; 873 break; 874 case -ENOMEM: 875 errstr = "Out of memory"; 876 break; 877 case -EROFS: 878 if (!sb || (EXT4_SB(sb)->s_journal && 879 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 880 errstr = "Journal has aborted"; 881 else 882 errstr = "Readonly filesystem"; 883 break; 884 default: 885 /* If the caller passed in an extra buffer for unknown 886 * errors, textualise them now. Else we just return 887 * NULL. */ 888 if (nbuf) { 889 /* Check for truncated error codes... */ 890 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 891 errstr = nbuf; 892 } 893 break; 894 } 895 896 return errstr; 897 } 898 899 /* __ext4_std_error decodes expected errors from journaling functions 900 * automatically and invokes the appropriate error response. */ 901 902 void __ext4_std_error(struct super_block *sb, const char *function, 903 unsigned int line, int errno) 904 { 905 char nbuf[16]; 906 const char *errstr; 907 908 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 909 return; 910 911 /* Special case: if the error is EROFS, and we're not already 912 * inside a transaction, then there's really no point in logging 913 * an error. */ 914 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 915 return; 916 917 if (ext4_error_ratelimit(sb)) { 918 errstr = ext4_decode_error(sb, errno, nbuf); 919 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 920 sb->s_id, function, line, errstr); 921 } 922 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 923 924 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 925 } 926 927 void __ext4_msg(struct super_block *sb, 928 const char *prefix, const char *fmt, ...) 929 { 930 struct va_format vaf; 931 va_list args; 932 933 if (sb) { 934 atomic_inc(&EXT4_SB(sb)->s_msg_count); 935 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 936 "EXT4-fs")) 937 return; 938 } 939 940 va_start(args, fmt); 941 vaf.fmt = fmt; 942 vaf.va = &args; 943 if (sb) 944 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 945 else 946 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 947 va_end(args); 948 } 949 950 static int ext4_warning_ratelimit(struct super_block *sb) 951 { 952 atomic_inc(&EXT4_SB(sb)->s_warning_count); 953 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 954 "EXT4-fs warning"); 955 } 956 957 void __ext4_warning(struct super_block *sb, const char *function, 958 unsigned int line, const char *fmt, ...) 959 { 960 struct va_format vaf; 961 va_list args; 962 963 if (!ext4_warning_ratelimit(sb)) 964 return; 965 966 va_start(args, fmt); 967 vaf.fmt = fmt; 968 vaf.va = &args; 969 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 970 sb->s_id, function, line, &vaf); 971 va_end(args); 972 } 973 974 void __ext4_warning_inode(const struct inode *inode, const char *function, 975 unsigned int line, const char *fmt, ...) 976 { 977 struct va_format vaf; 978 va_list args; 979 980 if (!ext4_warning_ratelimit(inode->i_sb)) 981 return; 982 983 va_start(args, fmt); 984 vaf.fmt = fmt; 985 vaf.va = &args; 986 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 987 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 988 function, line, inode->i_ino, current->comm, &vaf); 989 va_end(args); 990 } 991 992 void __ext4_grp_locked_error(const char *function, unsigned int line, 993 struct super_block *sb, ext4_group_t grp, 994 unsigned long ino, ext4_fsblk_t block, 995 const char *fmt, ...) 996 __releases(bitlock) 997 __acquires(bitlock) 998 { 999 struct va_format vaf; 1000 va_list args; 1001 1002 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 1003 return; 1004 1005 trace_ext4_error(sb, function, line); 1006 if (ext4_error_ratelimit(sb)) { 1007 va_start(args, fmt); 1008 vaf.fmt = fmt; 1009 vaf.va = &args; 1010 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1011 sb->s_id, function, line, grp); 1012 if (ino) 1013 printk(KERN_CONT "inode %lu: ", ino); 1014 if (block) 1015 printk(KERN_CONT "block %llu:", 1016 (unsigned long long) block); 1017 printk(KERN_CONT "%pV\n", &vaf); 1018 va_end(args); 1019 } 1020 1021 if (test_opt(sb, ERRORS_CONT)) { 1022 if (test_opt(sb, WARN_ON_ERROR)) 1023 WARN_ON_ONCE(1); 1024 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1025 if (!bdev_read_only(sb->s_bdev)) { 1026 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1027 line); 1028 schedule_work(&EXT4_SB(sb)->s_error_work); 1029 } 1030 return; 1031 } 1032 ext4_unlock_group(sb, grp); 1033 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1034 /* 1035 * We only get here in the ERRORS_RO case; relocking the group 1036 * may be dangerous, but nothing bad will happen since the 1037 * filesystem will have already been marked read/only and the 1038 * journal has been aborted. We return 1 as a hint to callers 1039 * who might what to use the return value from 1040 * ext4_grp_locked_error() to distinguish between the 1041 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1042 * aggressively from the ext4 function in question, with a 1043 * more appropriate error code. 1044 */ 1045 ext4_lock_group(sb, grp); 1046 return; 1047 } 1048 1049 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1050 ext4_group_t group, 1051 unsigned int flags) 1052 { 1053 struct ext4_sb_info *sbi = EXT4_SB(sb); 1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1055 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1056 int ret; 1057 1058 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1059 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1060 &grp->bb_state); 1061 if (!ret) 1062 percpu_counter_sub(&sbi->s_freeclusters_counter, 1063 grp->bb_free); 1064 } 1065 1066 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1067 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1068 &grp->bb_state); 1069 if (!ret && gdp) { 1070 int count; 1071 1072 count = ext4_free_inodes_count(sb, gdp); 1073 percpu_counter_sub(&sbi->s_freeinodes_counter, 1074 count); 1075 } 1076 } 1077 } 1078 1079 void ext4_update_dynamic_rev(struct super_block *sb) 1080 { 1081 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1082 1083 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1084 return; 1085 1086 ext4_warning(sb, 1087 "updating to rev %d because of new feature flag, " 1088 "running e2fsck is recommended", 1089 EXT4_DYNAMIC_REV); 1090 1091 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1092 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1093 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1094 /* leave es->s_feature_*compat flags alone */ 1095 /* es->s_uuid will be set by e2fsck if empty */ 1096 1097 /* 1098 * The rest of the superblock fields should be zero, and if not it 1099 * means they are likely already in use, so leave them alone. We 1100 * can leave it up to e2fsck to clean up any inconsistencies there. 1101 */ 1102 } 1103 1104 /* 1105 * Open the external journal device 1106 */ 1107 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1108 { 1109 struct block_device *bdev; 1110 1111 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1112 if (IS_ERR(bdev)) 1113 goto fail; 1114 return bdev; 1115 1116 fail: 1117 ext4_msg(sb, KERN_ERR, 1118 "failed to open journal device unknown-block(%u,%u) %ld", 1119 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1120 return NULL; 1121 } 1122 1123 /* 1124 * Release the journal device 1125 */ 1126 static void ext4_blkdev_put(struct block_device *bdev) 1127 { 1128 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1129 } 1130 1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1132 { 1133 struct block_device *bdev; 1134 bdev = sbi->s_journal_bdev; 1135 if (bdev) { 1136 ext4_blkdev_put(bdev); 1137 sbi->s_journal_bdev = NULL; 1138 } 1139 } 1140 1141 static inline struct inode *orphan_list_entry(struct list_head *l) 1142 { 1143 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1144 } 1145 1146 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1147 { 1148 struct list_head *l; 1149 1150 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1151 le32_to_cpu(sbi->s_es->s_last_orphan)); 1152 1153 printk(KERN_ERR "sb_info orphan list:\n"); 1154 list_for_each(l, &sbi->s_orphan) { 1155 struct inode *inode = orphan_list_entry(l); 1156 printk(KERN_ERR " " 1157 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1158 inode->i_sb->s_id, inode->i_ino, inode, 1159 inode->i_mode, inode->i_nlink, 1160 NEXT_ORPHAN(inode)); 1161 } 1162 } 1163 1164 #ifdef CONFIG_QUOTA 1165 static int ext4_quota_off(struct super_block *sb, int type); 1166 1167 static inline void ext4_quota_off_umount(struct super_block *sb) 1168 { 1169 int type; 1170 1171 /* Use our quota_off function to clear inode flags etc. */ 1172 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1173 ext4_quota_off(sb, type); 1174 } 1175 1176 /* 1177 * This is a helper function which is used in the mount/remount 1178 * codepaths (which holds s_umount) to fetch the quota file name. 1179 */ 1180 static inline char *get_qf_name(struct super_block *sb, 1181 struct ext4_sb_info *sbi, 1182 int type) 1183 { 1184 return rcu_dereference_protected(sbi->s_qf_names[type], 1185 lockdep_is_held(&sb->s_umount)); 1186 } 1187 #else 1188 static inline void ext4_quota_off_umount(struct super_block *sb) 1189 { 1190 } 1191 #endif 1192 1193 static void ext4_put_super(struct super_block *sb) 1194 { 1195 struct ext4_sb_info *sbi = EXT4_SB(sb); 1196 struct ext4_super_block *es = sbi->s_es; 1197 struct buffer_head **group_desc; 1198 struct flex_groups **flex_groups; 1199 int aborted = 0; 1200 int i, err; 1201 1202 ext4_unregister_li_request(sb); 1203 ext4_quota_off_umount(sb); 1204 1205 flush_work(&sbi->s_error_work); 1206 destroy_workqueue(sbi->rsv_conversion_wq); 1207 ext4_release_orphan_info(sb); 1208 1209 /* 1210 * Unregister sysfs before destroying jbd2 journal. 1211 * Since we could still access attr_journal_task attribute via sysfs 1212 * path which could have sbi->s_journal->j_task as NULL 1213 */ 1214 ext4_unregister_sysfs(sb); 1215 1216 if (sbi->s_journal) { 1217 aborted = is_journal_aborted(sbi->s_journal); 1218 err = jbd2_journal_destroy(sbi->s_journal); 1219 sbi->s_journal = NULL; 1220 if ((err < 0) && !aborted) { 1221 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1222 } 1223 } 1224 1225 ext4_es_unregister_shrinker(sbi); 1226 del_timer_sync(&sbi->s_err_report); 1227 ext4_release_system_zone(sb); 1228 ext4_mb_release(sb); 1229 ext4_ext_release(sb); 1230 1231 if (!sb_rdonly(sb) && !aborted) { 1232 ext4_clear_feature_journal_needs_recovery(sb); 1233 ext4_clear_feature_orphan_present(sb); 1234 es->s_state = cpu_to_le16(sbi->s_mount_state); 1235 } 1236 if (!sb_rdonly(sb)) 1237 ext4_commit_super(sb); 1238 1239 rcu_read_lock(); 1240 group_desc = rcu_dereference(sbi->s_group_desc); 1241 for (i = 0; i < sbi->s_gdb_count; i++) 1242 brelse(group_desc[i]); 1243 kvfree(group_desc); 1244 flex_groups = rcu_dereference(sbi->s_flex_groups); 1245 if (flex_groups) { 1246 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1247 kvfree(flex_groups[i]); 1248 kvfree(flex_groups); 1249 } 1250 rcu_read_unlock(); 1251 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1252 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1253 percpu_counter_destroy(&sbi->s_dirs_counter); 1254 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1255 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1256 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1257 #ifdef CONFIG_QUOTA 1258 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1259 kfree(get_qf_name(sb, sbi, i)); 1260 #endif 1261 1262 /* Debugging code just in case the in-memory inode orphan list 1263 * isn't empty. The on-disk one can be non-empty if we've 1264 * detected an error and taken the fs readonly, but the 1265 * in-memory list had better be clean by this point. */ 1266 if (!list_empty(&sbi->s_orphan)) 1267 dump_orphan_list(sb, sbi); 1268 ASSERT(list_empty(&sbi->s_orphan)); 1269 1270 sync_blockdev(sb->s_bdev); 1271 invalidate_bdev(sb->s_bdev); 1272 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1273 /* 1274 * Invalidate the journal device's buffers. We don't want them 1275 * floating about in memory - the physical journal device may 1276 * hotswapped, and it breaks the `ro-after' testing code. 1277 */ 1278 sync_blockdev(sbi->s_journal_bdev); 1279 invalidate_bdev(sbi->s_journal_bdev); 1280 ext4_blkdev_remove(sbi); 1281 } 1282 1283 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1284 sbi->s_ea_inode_cache = NULL; 1285 1286 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1287 sbi->s_ea_block_cache = NULL; 1288 1289 ext4_stop_mmpd(sbi); 1290 1291 brelse(sbi->s_sbh); 1292 sb->s_fs_info = NULL; 1293 /* 1294 * Now that we are completely done shutting down the 1295 * superblock, we need to actually destroy the kobject. 1296 */ 1297 kobject_put(&sbi->s_kobj); 1298 wait_for_completion(&sbi->s_kobj_unregister); 1299 if (sbi->s_chksum_driver) 1300 crypto_free_shash(sbi->s_chksum_driver); 1301 kfree(sbi->s_blockgroup_lock); 1302 fs_put_dax(sbi->s_daxdev); 1303 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1304 #if IS_ENABLED(CONFIG_UNICODE) 1305 utf8_unload(sb->s_encoding); 1306 #endif 1307 kfree(sbi); 1308 } 1309 1310 static struct kmem_cache *ext4_inode_cachep; 1311 1312 /* 1313 * Called inside transaction, so use GFP_NOFS 1314 */ 1315 static struct inode *ext4_alloc_inode(struct super_block *sb) 1316 { 1317 struct ext4_inode_info *ei; 1318 1319 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1320 if (!ei) 1321 return NULL; 1322 1323 inode_set_iversion(&ei->vfs_inode, 1); 1324 spin_lock_init(&ei->i_raw_lock); 1325 INIT_LIST_HEAD(&ei->i_prealloc_list); 1326 atomic_set(&ei->i_prealloc_active, 0); 1327 spin_lock_init(&ei->i_prealloc_lock); 1328 ext4_es_init_tree(&ei->i_es_tree); 1329 rwlock_init(&ei->i_es_lock); 1330 INIT_LIST_HEAD(&ei->i_es_list); 1331 ei->i_es_all_nr = 0; 1332 ei->i_es_shk_nr = 0; 1333 ei->i_es_shrink_lblk = 0; 1334 ei->i_reserved_data_blocks = 0; 1335 spin_lock_init(&(ei->i_block_reservation_lock)); 1336 ext4_init_pending_tree(&ei->i_pending_tree); 1337 #ifdef CONFIG_QUOTA 1338 ei->i_reserved_quota = 0; 1339 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1340 #endif 1341 ei->jinode = NULL; 1342 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1343 spin_lock_init(&ei->i_completed_io_lock); 1344 ei->i_sync_tid = 0; 1345 ei->i_datasync_tid = 0; 1346 atomic_set(&ei->i_unwritten, 0); 1347 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1348 ext4_fc_init_inode(&ei->vfs_inode); 1349 mutex_init(&ei->i_fc_lock); 1350 return &ei->vfs_inode; 1351 } 1352 1353 static int ext4_drop_inode(struct inode *inode) 1354 { 1355 int drop = generic_drop_inode(inode); 1356 1357 if (!drop) 1358 drop = fscrypt_drop_inode(inode); 1359 1360 trace_ext4_drop_inode(inode, drop); 1361 return drop; 1362 } 1363 1364 static void ext4_free_in_core_inode(struct inode *inode) 1365 { 1366 fscrypt_free_inode(inode); 1367 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1368 pr_warn("%s: inode %ld still in fc list", 1369 __func__, inode->i_ino); 1370 } 1371 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1372 } 1373 1374 static void ext4_destroy_inode(struct inode *inode) 1375 { 1376 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1377 ext4_msg(inode->i_sb, KERN_ERR, 1378 "Inode %lu (%p): orphan list check failed!", 1379 inode->i_ino, EXT4_I(inode)); 1380 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1381 EXT4_I(inode), sizeof(struct ext4_inode_info), 1382 true); 1383 dump_stack(); 1384 } 1385 1386 if (EXT4_I(inode)->i_reserved_data_blocks) 1387 ext4_msg(inode->i_sb, KERN_ERR, 1388 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1389 inode->i_ino, EXT4_I(inode), 1390 EXT4_I(inode)->i_reserved_data_blocks); 1391 } 1392 1393 static void init_once(void *foo) 1394 { 1395 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1396 1397 INIT_LIST_HEAD(&ei->i_orphan); 1398 init_rwsem(&ei->xattr_sem); 1399 init_rwsem(&ei->i_data_sem); 1400 inode_init_once(&ei->vfs_inode); 1401 ext4_fc_init_inode(&ei->vfs_inode); 1402 } 1403 1404 static int __init init_inodecache(void) 1405 { 1406 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1407 sizeof(struct ext4_inode_info), 0, 1408 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1409 SLAB_ACCOUNT), 1410 offsetof(struct ext4_inode_info, i_data), 1411 sizeof_field(struct ext4_inode_info, i_data), 1412 init_once); 1413 if (ext4_inode_cachep == NULL) 1414 return -ENOMEM; 1415 return 0; 1416 } 1417 1418 static void destroy_inodecache(void) 1419 { 1420 /* 1421 * Make sure all delayed rcu free inodes are flushed before we 1422 * destroy cache. 1423 */ 1424 rcu_barrier(); 1425 kmem_cache_destroy(ext4_inode_cachep); 1426 } 1427 1428 void ext4_clear_inode(struct inode *inode) 1429 { 1430 ext4_fc_del(inode); 1431 invalidate_inode_buffers(inode); 1432 clear_inode(inode); 1433 ext4_discard_preallocations(inode, 0); 1434 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1435 dquot_drop(inode); 1436 if (EXT4_I(inode)->jinode) { 1437 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1438 EXT4_I(inode)->jinode); 1439 jbd2_free_inode(EXT4_I(inode)->jinode); 1440 EXT4_I(inode)->jinode = NULL; 1441 } 1442 fscrypt_put_encryption_info(inode); 1443 fsverity_cleanup_inode(inode); 1444 } 1445 1446 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1447 u64 ino, u32 generation) 1448 { 1449 struct inode *inode; 1450 1451 /* 1452 * Currently we don't know the generation for parent directory, so 1453 * a generation of 0 means "accept any" 1454 */ 1455 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1456 if (IS_ERR(inode)) 1457 return ERR_CAST(inode); 1458 if (generation && inode->i_generation != generation) { 1459 iput(inode); 1460 return ERR_PTR(-ESTALE); 1461 } 1462 1463 return inode; 1464 } 1465 1466 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1467 int fh_len, int fh_type) 1468 { 1469 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1470 ext4_nfs_get_inode); 1471 } 1472 1473 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1474 int fh_len, int fh_type) 1475 { 1476 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1477 ext4_nfs_get_inode); 1478 } 1479 1480 static int ext4_nfs_commit_metadata(struct inode *inode) 1481 { 1482 struct writeback_control wbc = { 1483 .sync_mode = WB_SYNC_ALL 1484 }; 1485 1486 trace_ext4_nfs_commit_metadata(inode); 1487 return ext4_write_inode(inode, &wbc); 1488 } 1489 1490 #ifdef CONFIG_FS_ENCRYPTION 1491 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1492 { 1493 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1494 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1495 } 1496 1497 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1498 void *fs_data) 1499 { 1500 handle_t *handle = fs_data; 1501 int res, res2, credits, retries = 0; 1502 1503 /* 1504 * Encrypting the root directory is not allowed because e2fsck expects 1505 * lost+found to exist and be unencrypted, and encrypting the root 1506 * directory would imply encrypting the lost+found directory as well as 1507 * the filename "lost+found" itself. 1508 */ 1509 if (inode->i_ino == EXT4_ROOT_INO) 1510 return -EPERM; 1511 1512 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1513 return -EINVAL; 1514 1515 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1516 return -EOPNOTSUPP; 1517 1518 res = ext4_convert_inline_data(inode); 1519 if (res) 1520 return res; 1521 1522 /* 1523 * If a journal handle was specified, then the encryption context is 1524 * being set on a new inode via inheritance and is part of a larger 1525 * transaction to create the inode. Otherwise the encryption context is 1526 * being set on an existing inode in its own transaction. Only in the 1527 * latter case should the "retry on ENOSPC" logic be used. 1528 */ 1529 1530 if (handle) { 1531 res = ext4_xattr_set_handle(handle, inode, 1532 EXT4_XATTR_INDEX_ENCRYPTION, 1533 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1534 ctx, len, 0); 1535 if (!res) { 1536 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1537 ext4_clear_inode_state(inode, 1538 EXT4_STATE_MAY_INLINE_DATA); 1539 /* 1540 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1541 * S_DAX may be disabled 1542 */ 1543 ext4_set_inode_flags(inode, false); 1544 } 1545 return res; 1546 } 1547 1548 res = dquot_initialize(inode); 1549 if (res) 1550 return res; 1551 retry: 1552 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1553 &credits); 1554 if (res) 1555 return res; 1556 1557 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1558 if (IS_ERR(handle)) 1559 return PTR_ERR(handle); 1560 1561 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1562 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1563 ctx, len, 0); 1564 if (!res) { 1565 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1566 /* 1567 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1568 * S_DAX may be disabled 1569 */ 1570 ext4_set_inode_flags(inode, false); 1571 res = ext4_mark_inode_dirty(handle, inode); 1572 if (res) 1573 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1574 } 1575 res2 = ext4_journal_stop(handle); 1576 1577 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1578 goto retry; 1579 if (!res) 1580 res = res2; 1581 return res; 1582 } 1583 1584 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1585 { 1586 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1587 } 1588 1589 static bool ext4_has_stable_inodes(struct super_block *sb) 1590 { 1591 return ext4_has_feature_stable_inodes(sb); 1592 } 1593 1594 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1595 int *ino_bits_ret, int *lblk_bits_ret) 1596 { 1597 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1598 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1599 } 1600 1601 static const struct fscrypt_operations ext4_cryptops = { 1602 .key_prefix = "ext4:", 1603 .get_context = ext4_get_context, 1604 .set_context = ext4_set_context, 1605 .get_dummy_policy = ext4_get_dummy_policy, 1606 .empty_dir = ext4_empty_dir, 1607 .has_stable_inodes = ext4_has_stable_inodes, 1608 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1609 }; 1610 #endif 1611 1612 #ifdef CONFIG_QUOTA 1613 static const char * const quotatypes[] = INITQFNAMES; 1614 #define QTYPE2NAME(t) (quotatypes[t]) 1615 1616 static int ext4_write_dquot(struct dquot *dquot); 1617 static int ext4_acquire_dquot(struct dquot *dquot); 1618 static int ext4_release_dquot(struct dquot *dquot); 1619 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1620 static int ext4_write_info(struct super_block *sb, int type); 1621 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1622 const struct path *path); 1623 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1624 size_t len, loff_t off); 1625 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1626 const char *data, size_t len, loff_t off); 1627 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1628 unsigned int flags); 1629 1630 static struct dquot **ext4_get_dquots(struct inode *inode) 1631 { 1632 return EXT4_I(inode)->i_dquot; 1633 } 1634 1635 static const struct dquot_operations ext4_quota_operations = { 1636 .get_reserved_space = ext4_get_reserved_space, 1637 .write_dquot = ext4_write_dquot, 1638 .acquire_dquot = ext4_acquire_dquot, 1639 .release_dquot = ext4_release_dquot, 1640 .mark_dirty = ext4_mark_dquot_dirty, 1641 .write_info = ext4_write_info, 1642 .alloc_dquot = dquot_alloc, 1643 .destroy_dquot = dquot_destroy, 1644 .get_projid = ext4_get_projid, 1645 .get_inode_usage = ext4_get_inode_usage, 1646 .get_next_id = dquot_get_next_id, 1647 }; 1648 1649 static const struct quotactl_ops ext4_qctl_operations = { 1650 .quota_on = ext4_quota_on, 1651 .quota_off = ext4_quota_off, 1652 .quota_sync = dquot_quota_sync, 1653 .get_state = dquot_get_state, 1654 .set_info = dquot_set_dqinfo, 1655 .get_dqblk = dquot_get_dqblk, 1656 .set_dqblk = dquot_set_dqblk, 1657 .get_nextdqblk = dquot_get_next_dqblk, 1658 }; 1659 #endif 1660 1661 static const struct super_operations ext4_sops = { 1662 .alloc_inode = ext4_alloc_inode, 1663 .free_inode = ext4_free_in_core_inode, 1664 .destroy_inode = ext4_destroy_inode, 1665 .write_inode = ext4_write_inode, 1666 .dirty_inode = ext4_dirty_inode, 1667 .drop_inode = ext4_drop_inode, 1668 .evict_inode = ext4_evict_inode, 1669 .put_super = ext4_put_super, 1670 .sync_fs = ext4_sync_fs, 1671 .freeze_fs = ext4_freeze, 1672 .unfreeze_fs = ext4_unfreeze, 1673 .statfs = ext4_statfs, 1674 .show_options = ext4_show_options, 1675 #ifdef CONFIG_QUOTA 1676 .quota_read = ext4_quota_read, 1677 .quota_write = ext4_quota_write, 1678 .get_dquots = ext4_get_dquots, 1679 #endif 1680 }; 1681 1682 static const struct export_operations ext4_export_ops = { 1683 .fh_to_dentry = ext4_fh_to_dentry, 1684 .fh_to_parent = ext4_fh_to_parent, 1685 .get_parent = ext4_get_parent, 1686 .commit_metadata = ext4_nfs_commit_metadata, 1687 }; 1688 1689 enum { 1690 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1691 Opt_resgid, Opt_resuid, Opt_sb, 1692 Opt_nouid32, Opt_debug, Opt_removed, 1693 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1694 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1695 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1696 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1697 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1698 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1699 Opt_inlinecrypt, 1700 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1701 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1702 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1703 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1704 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1705 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1706 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1707 Opt_inode_readahead_blks, Opt_journal_ioprio, 1708 Opt_dioread_nolock, Opt_dioread_lock, 1709 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1710 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1711 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1712 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1713 #ifdef CONFIG_EXT4_DEBUG 1714 Opt_fc_debug_max_replay, Opt_fc_debug_force 1715 #endif 1716 }; 1717 1718 static const struct constant_table ext4_param_errors[] = { 1719 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1720 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1721 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1722 {} 1723 }; 1724 1725 static const struct constant_table ext4_param_data[] = { 1726 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1727 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1728 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1729 {} 1730 }; 1731 1732 static const struct constant_table ext4_param_data_err[] = { 1733 {"abort", Opt_data_err_abort}, 1734 {"ignore", Opt_data_err_ignore}, 1735 {} 1736 }; 1737 1738 static const struct constant_table ext4_param_jqfmt[] = { 1739 {"vfsold", QFMT_VFS_OLD}, 1740 {"vfsv0", QFMT_VFS_V0}, 1741 {"vfsv1", QFMT_VFS_V1}, 1742 {} 1743 }; 1744 1745 static const struct constant_table ext4_param_dax[] = { 1746 {"always", Opt_dax_always}, 1747 {"inode", Opt_dax_inode}, 1748 {"never", Opt_dax_never}, 1749 {} 1750 }; 1751 1752 /* String parameter that allows empty argument */ 1753 #define fsparam_string_empty(NAME, OPT) \ 1754 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1755 1756 /* 1757 * Mount option specification 1758 * We don't use fsparam_flag_no because of the way we set the 1759 * options and the way we show them in _ext4_show_options(). To 1760 * keep the changes to a minimum, let's keep the negative options 1761 * separate for now. 1762 */ 1763 static const struct fs_parameter_spec ext4_param_specs[] = { 1764 fsparam_flag ("bsddf", Opt_bsd_df), 1765 fsparam_flag ("minixdf", Opt_minix_df), 1766 fsparam_flag ("grpid", Opt_grpid), 1767 fsparam_flag ("bsdgroups", Opt_grpid), 1768 fsparam_flag ("nogrpid", Opt_nogrpid), 1769 fsparam_flag ("sysvgroups", Opt_nogrpid), 1770 fsparam_u32 ("resgid", Opt_resgid), 1771 fsparam_u32 ("resuid", Opt_resuid), 1772 fsparam_u32 ("sb", Opt_sb), 1773 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1774 fsparam_flag ("nouid32", Opt_nouid32), 1775 fsparam_flag ("debug", Opt_debug), 1776 fsparam_flag ("oldalloc", Opt_removed), 1777 fsparam_flag ("orlov", Opt_removed), 1778 fsparam_flag ("user_xattr", Opt_user_xattr), 1779 fsparam_flag ("nouser_xattr", Opt_nouser_xattr), 1780 fsparam_flag ("acl", Opt_acl), 1781 fsparam_flag ("noacl", Opt_noacl), 1782 fsparam_flag ("norecovery", Opt_noload), 1783 fsparam_flag ("noload", Opt_noload), 1784 fsparam_flag ("bh", Opt_removed), 1785 fsparam_flag ("nobh", Opt_removed), 1786 fsparam_u32 ("commit", Opt_commit), 1787 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1788 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1789 fsparam_u32 ("journal_dev", Opt_journal_dev), 1790 fsparam_bdev ("journal_path", Opt_journal_path), 1791 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1792 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1793 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1794 fsparam_flag ("abort", Opt_abort), 1795 fsparam_enum ("data", Opt_data, ext4_param_data), 1796 fsparam_enum ("data_err", Opt_data_err, 1797 ext4_param_data_err), 1798 fsparam_string_empty 1799 ("usrjquota", Opt_usrjquota), 1800 fsparam_string_empty 1801 ("grpjquota", Opt_grpjquota), 1802 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1803 fsparam_flag ("grpquota", Opt_grpquota), 1804 fsparam_flag ("quota", Opt_quota), 1805 fsparam_flag ("noquota", Opt_noquota), 1806 fsparam_flag ("usrquota", Opt_usrquota), 1807 fsparam_flag ("prjquota", Opt_prjquota), 1808 fsparam_flag ("barrier", Opt_barrier), 1809 fsparam_u32 ("barrier", Opt_barrier), 1810 fsparam_flag ("nobarrier", Opt_nobarrier), 1811 fsparam_flag ("i_version", Opt_i_version), 1812 fsparam_flag ("dax", Opt_dax), 1813 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1814 fsparam_u32 ("stripe", Opt_stripe), 1815 fsparam_flag ("delalloc", Opt_delalloc), 1816 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1817 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1818 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1819 fsparam_u32 ("debug_want_extra_isize", 1820 Opt_debug_want_extra_isize), 1821 fsparam_flag ("mblk_io_submit", Opt_removed), 1822 fsparam_flag ("nomblk_io_submit", Opt_removed), 1823 fsparam_flag ("block_validity", Opt_block_validity), 1824 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1825 fsparam_u32 ("inode_readahead_blks", 1826 Opt_inode_readahead_blks), 1827 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1828 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1829 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1830 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1831 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1832 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1833 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1834 fsparam_flag ("discard", Opt_discard), 1835 fsparam_flag ("nodiscard", Opt_nodiscard), 1836 fsparam_u32 ("init_itable", Opt_init_itable), 1837 fsparam_flag ("init_itable", Opt_init_itable), 1838 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1839 #ifdef CONFIG_EXT4_DEBUG 1840 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1841 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1842 #endif 1843 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1844 fsparam_flag ("test_dummy_encryption", 1845 Opt_test_dummy_encryption), 1846 fsparam_string ("test_dummy_encryption", 1847 Opt_test_dummy_encryption), 1848 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1849 fsparam_flag ("nombcache", Opt_nombcache), 1850 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1851 fsparam_flag ("prefetch_block_bitmaps", 1852 Opt_removed), 1853 fsparam_flag ("no_prefetch_block_bitmaps", 1854 Opt_no_prefetch_block_bitmaps), 1855 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1856 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1857 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1858 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1859 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1860 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1861 {} 1862 }; 1863 1864 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1865 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1866 1867 static const char deprecated_msg[] = 1868 "Mount option \"%s\" will be removed by %s\n" 1869 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1870 1871 #define MOPT_SET 0x0001 1872 #define MOPT_CLEAR 0x0002 1873 #define MOPT_NOSUPPORT 0x0004 1874 #define MOPT_EXPLICIT 0x0008 1875 #ifdef CONFIG_QUOTA 1876 #define MOPT_Q 0 1877 #define MOPT_QFMT 0x0010 1878 #else 1879 #define MOPT_Q MOPT_NOSUPPORT 1880 #define MOPT_QFMT MOPT_NOSUPPORT 1881 #endif 1882 #define MOPT_NO_EXT2 0x0020 1883 #define MOPT_NO_EXT3 0x0040 1884 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1885 #define MOPT_SKIP 0x0080 1886 #define MOPT_2 0x0100 1887 1888 static const struct mount_opts { 1889 int token; 1890 int mount_opt; 1891 int flags; 1892 } ext4_mount_opts[] = { 1893 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1894 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1895 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1896 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1897 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1898 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1899 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1900 MOPT_EXT4_ONLY | MOPT_SET}, 1901 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1902 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1903 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1904 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1905 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1906 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1907 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1908 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1909 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1910 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1911 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1912 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1913 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1914 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1915 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1916 EXT4_MOUNT_JOURNAL_CHECKSUM), 1917 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1918 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1919 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1920 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1921 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1922 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1923 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1924 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1925 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1926 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1927 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1928 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1929 {Opt_data, 0, MOPT_NO_EXT2}, 1930 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1931 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1932 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1933 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1934 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1935 #else 1936 {Opt_acl, 0, MOPT_NOSUPPORT}, 1937 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1938 #endif 1939 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1940 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1941 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1942 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1943 MOPT_SET | MOPT_Q}, 1944 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1945 MOPT_SET | MOPT_Q}, 1946 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1947 MOPT_SET | MOPT_Q}, 1948 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1949 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1950 MOPT_CLEAR | MOPT_Q}, 1951 {Opt_usrjquota, 0, MOPT_Q}, 1952 {Opt_grpjquota, 0, MOPT_Q}, 1953 {Opt_jqfmt, 0, MOPT_QFMT}, 1954 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1955 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1956 MOPT_SET}, 1957 #ifdef CONFIG_EXT4_DEBUG 1958 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1959 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1960 #endif 1961 {Opt_err, 0, 0} 1962 }; 1963 1964 #if IS_ENABLED(CONFIG_UNICODE) 1965 static const struct ext4_sb_encodings { 1966 __u16 magic; 1967 char *name; 1968 unsigned int version; 1969 } ext4_sb_encoding_map[] = { 1970 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1971 }; 1972 1973 static const struct ext4_sb_encodings * 1974 ext4_sb_read_encoding(const struct ext4_super_block *es) 1975 { 1976 __u16 magic = le16_to_cpu(es->s_encoding); 1977 int i; 1978 1979 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1980 if (magic == ext4_sb_encoding_map[i].magic) 1981 return &ext4_sb_encoding_map[i]; 1982 1983 return NULL; 1984 } 1985 #endif 1986 1987 static int ext4_set_test_dummy_encryption(struct super_block *sb, char *arg) 1988 { 1989 #ifdef CONFIG_FS_ENCRYPTION 1990 struct ext4_sb_info *sbi = EXT4_SB(sb); 1991 int err; 1992 1993 err = fscrypt_set_test_dummy_encryption(sb, arg, 1994 &sbi->s_dummy_enc_policy); 1995 if (err) { 1996 ext4_msg(sb, KERN_WARNING, 1997 "Error while setting test dummy encryption [%d]", err); 1998 return err; 1999 } 2000 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2001 #endif 2002 return 0; 2003 } 2004 2005 #define EXT4_SPEC_JQUOTA (1 << 0) 2006 #define EXT4_SPEC_JQFMT (1 << 1) 2007 #define EXT4_SPEC_DATAJ (1 << 2) 2008 #define EXT4_SPEC_SB_BLOCK (1 << 3) 2009 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 2010 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 2011 #define EXT4_SPEC_DUMMY_ENCRYPTION (1 << 6) 2012 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 2013 #define EXT4_SPEC_s_max_batch_time (1 << 8) 2014 #define EXT4_SPEC_s_min_batch_time (1 << 9) 2015 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 2016 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 2017 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 2018 #define EXT4_SPEC_s_stripe (1 << 13) 2019 #define EXT4_SPEC_s_resuid (1 << 14) 2020 #define EXT4_SPEC_s_resgid (1 << 15) 2021 #define EXT4_SPEC_s_commit_interval (1 << 16) 2022 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 2023 #define EXT4_SPEC_s_sb_block (1 << 18) 2024 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 2025 2026 struct ext4_fs_context { 2027 char *s_qf_names[EXT4_MAXQUOTAS]; 2028 char *test_dummy_enc_arg; 2029 int s_jquota_fmt; /* Format of quota to use */ 2030 #ifdef CONFIG_EXT4_DEBUG 2031 int s_fc_debug_max_replay; 2032 #endif 2033 unsigned short qname_spec; 2034 unsigned long vals_s_flags; /* Bits to set in s_flags */ 2035 unsigned long mask_s_flags; /* Bits changed in s_flags */ 2036 unsigned long journal_devnum; 2037 unsigned long s_commit_interval; 2038 unsigned long s_stripe; 2039 unsigned int s_inode_readahead_blks; 2040 unsigned int s_want_extra_isize; 2041 unsigned int s_li_wait_mult; 2042 unsigned int s_max_dir_size_kb; 2043 unsigned int journal_ioprio; 2044 unsigned int vals_s_mount_opt; 2045 unsigned int mask_s_mount_opt; 2046 unsigned int vals_s_mount_opt2; 2047 unsigned int mask_s_mount_opt2; 2048 unsigned long vals_s_mount_flags; 2049 unsigned long mask_s_mount_flags; 2050 unsigned int opt_flags; /* MOPT flags */ 2051 unsigned int spec; 2052 u32 s_max_batch_time; 2053 u32 s_min_batch_time; 2054 kuid_t s_resuid; 2055 kgid_t s_resgid; 2056 ext4_fsblk_t s_sb_block; 2057 }; 2058 2059 static void ext4_fc_free(struct fs_context *fc) 2060 { 2061 struct ext4_fs_context *ctx = fc->fs_private; 2062 int i; 2063 2064 if (!ctx) 2065 return; 2066 2067 for (i = 0; i < EXT4_MAXQUOTAS; i++) 2068 kfree(ctx->s_qf_names[i]); 2069 2070 kfree(ctx->test_dummy_enc_arg); 2071 kfree(ctx); 2072 } 2073 2074 int ext4_init_fs_context(struct fs_context *fc) 2075 { 2076 struct ext4_fs_context *ctx; 2077 2078 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2079 if (!ctx) 2080 return -ENOMEM; 2081 2082 fc->fs_private = ctx; 2083 fc->ops = &ext4_context_ops; 2084 2085 return 0; 2086 } 2087 2088 #ifdef CONFIG_QUOTA 2089 /* 2090 * Note the name of the specified quota file. 2091 */ 2092 static int note_qf_name(struct fs_context *fc, int qtype, 2093 struct fs_parameter *param) 2094 { 2095 struct ext4_fs_context *ctx = fc->fs_private; 2096 char *qname; 2097 2098 if (param->size < 1) { 2099 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2100 return -EINVAL; 2101 } 2102 if (strchr(param->string, '/')) { 2103 ext4_msg(NULL, KERN_ERR, 2104 "quotafile must be on filesystem root"); 2105 return -EINVAL; 2106 } 2107 if (ctx->s_qf_names[qtype]) { 2108 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2109 ext4_msg(NULL, KERN_ERR, 2110 "%s quota file already specified", 2111 QTYPE2NAME(qtype)); 2112 return -EINVAL; 2113 } 2114 return 0; 2115 } 2116 2117 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2118 if (!qname) { 2119 ext4_msg(NULL, KERN_ERR, 2120 "Not enough memory for storing quotafile name"); 2121 return -ENOMEM; 2122 } 2123 ctx->s_qf_names[qtype] = qname; 2124 ctx->qname_spec |= 1 << qtype; 2125 ctx->spec |= EXT4_SPEC_JQUOTA; 2126 return 0; 2127 } 2128 2129 /* 2130 * Clear the name of the specified quota file. 2131 */ 2132 static int unnote_qf_name(struct fs_context *fc, int qtype) 2133 { 2134 struct ext4_fs_context *ctx = fc->fs_private; 2135 2136 if (ctx->s_qf_names[qtype]) 2137 kfree(ctx->s_qf_names[qtype]); 2138 2139 ctx->s_qf_names[qtype] = NULL; 2140 ctx->qname_spec |= 1 << qtype; 2141 ctx->spec |= EXT4_SPEC_JQUOTA; 2142 return 0; 2143 } 2144 #endif 2145 2146 #define EXT4_SET_CTX(name) \ 2147 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2148 unsigned long flag) \ 2149 { \ 2150 ctx->mask_s_##name |= flag; \ 2151 ctx->vals_s_##name |= flag; \ 2152 } 2153 2154 #define EXT4_CLEAR_CTX(name) \ 2155 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2156 unsigned long flag) \ 2157 { \ 2158 ctx->mask_s_##name |= flag; \ 2159 ctx->vals_s_##name &= ~flag; \ 2160 } 2161 2162 #define EXT4_TEST_CTX(name) \ 2163 static inline unsigned long \ 2164 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2165 { \ 2166 return (ctx->vals_s_##name & flag); \ 2167 } 2168 2169 EXT4_SET_CTX(flags); /* set only */ 2170 EXT4_SET_CTX(mount_opt); 2171 EXT4_CLEAR_CTX(mount_opt); 2172 EXT4_TEST_CTX(mount_opt); 2173 EXT4_SET_CTX(mount_opt2); 2174 EXT4_CLEAR_CTX(mount_opt2); 2175 EXT4_TEST_CTX(mount_opt2); 2176 2177 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2178 { 2179 set_bit(bit, &ctx->mask_s_mount_flags); 2180 set_bit(bit, &ctx->vals_s_mount_flags); 2181 } 2182 2183 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2184 { 2185 struct ext4_fs_context *ctx = fc->fs_private; 2186 struct fs_parse_result result; 2187 const struct mount_opts *m; 2188 int is_remount; 2189 kuid_t uid; 2190 kgid_t gid; 2191 int token; 2192 2193 token = fs_parse(fc, ext4_param_specs, param, &result); 2194 if (token < 0) 2195 return token; 2196 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2197 2198 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2199 if (token == m->token) 2200 break; 2201 2202 ctx->opt_flags |= m->flags; 2203 2204 if (m->flags & MOPT_EXPLICIT) { 2205 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2206 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2207 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2208 ctx_set_mount_opt2(ctx, 2209 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2210 } else 2211 return -EINVAL; 2212 } 2213 2214 if (m->flags & MOPT_NOSUPPORT) { 2215 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2216 param->key); 2217 return 0; 2218 } 2219 2220 switch (token) { 2221 #ifdef CONFIG_QUOTA 2222 case Opt_usrjquota: 2223 if (!*param->string) 2224 return unnote_qf_name(fc, USRQUOTA); 2225 else 2226 return note_qf_name(fc, USRQUOTA, param); 2227 case Opt_grpjquota: 2228 if (!*param->string) 2229 return unnote_qf_name(fc, GRPQUOTA); 2230 else 2231 return note_qf_name(fc, GRPQUOTA, param); 2232 #endif 2233 case Opt_noacl: 2234 case Opt_nouser_xattr: 2235 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5"); 2236 break; 2237 case Opt_sb: 2238 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2239 ext4_msg(NULL, KERN_WARNING, 2240 "Ignoring %s option on remount", param->key); 2241 } else { 2242 ctx->s_sb_block = result.uint_32; 2243 ctx->spec |= EXT4_SPEC_s_sb_block; 2244 } 2245 return 0; 2246 case Opt_removed: 2247 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2248 param->key); 2249 return 0; 2250 case Opt_abort: 2251 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2252 return 0; 2253 case Opt_i_version: 2254 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20"); 2255 ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n"); 2256 ctx_set_flags(ctx, SB_I_VERSION); 2257 return 0; 2258 case Opt_inlinecrypt: 2259 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2260 ctx_set_flags(ctx, SB_INLINECRYPT); 2261 #else 2262 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2263 #endif 2264 return 0; 2265 case Opt_errors: 2266 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2267 ctx_set_mount_opt(ctx, result.uint_32); 2268 return 0; 2269 #ifdef CONFIG_QUOTA 2270 case Opt_jqfmt: 2271 ctx->s_jquota_fmt = result.uint_32; 2272 ctx->spec |= EXT4_SPEC_JQFMT; 2273 return 0; 2274 #endif 2275 case Opt_data: 2276 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2277 ctx_set_mount_opt(ctx, result.uint_32); 2278 ctx->spec |= EXT4_SPEC_DATAJ; 2279 return 0; 2280 case Opt_commit: 2281 if (result.uint_32 == 0) 2282 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE; 2283 else if (result.uint_32 > INT_MAX / HZ) { 2284 ext4_msg(NULL, KERN_ERR, 2285 "Invalid commit interval %d, " 2286 "must be smaller than %d", 2287 result.uint_32, INT_MAX / HZ); 2288 return -EINVAL; 2289 } 2290 ctx->s_commit_interval = HZ * result.uint_32; 2291 ctx->spec |= EXT4_SPEC_s_commit_interval; 2292 return 0; 2293 case Opt_debug_want_extra_isize: 2294 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2295 ext4_msg(NULL, KERN_ERR, 2296 "Invalid want_extra_isize %d", result.uint_32); 2297 return -EINVAL; 2298 } 2299 ctx->s_want_extra_isize = result.uint_32; 2300 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2301 return 0; 2302 case Opt_max_batch_time: 2303 ctx->s_max_batch_time = result.uint_32; 2304 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2305 return 0; 2306 case Opt_min_batch_time: 2307 ctx->s_min_batch_time = result.uint_32; 2308 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2309 return 0; 2310 case Opt_inode_readahead_blks: 2311 if (result.uint_32 && 2312 (result.uint_32 > (1 << 30) || 2313 !is_power_of_2(result.uint_32))) { 2314 ext4_msg(NULL, KERN_ERR, 2315 "EXT4-fs: inode_readahead_blks must be " 2316 "0 or a power of 2 smaller than 2^31"); 2317 return -EINVAL; 2318 } 2319 ctx->s_inode_readahead_blks = result.uint_32; 2320 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2321 return 0; 2322 case Opt_init_itable: 2323 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2324 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2325 if (param->type == fs_value_is_string) 2326 ctx->s_li_wait_mult = result.uint_32; 2327 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2328 return 0; 2329 case Opt_max_dir_size_kb: 2330 ctx->s_max_dir_size_kb = result.uint_32; 2331 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2332 return 0; 2333 #ifdef CONFIG_EXT4_DEBUG 2334 case Opt_fc_debug_max_replay: 2335 ctx->s_fc_debug_max_replay = result.uint_32; 2336 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2337 return 0; 2338 #endif 2339 case Opt_stripe: 2340 ctx->s_stripe = result.uint_32; 2341 ctx->spec |= EXT4_SPEC_s_stripe; 2342 return 0; 2343 case Opt_resuid: 2344 uid = make_kuid(current_user_ns(), result.uint_32); 2345 if (!uid_valid(uid)) { 2346 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2347 result.uint_32); 2348 return -EINVAL; 2349 } 2350 ctx->s_resuid = uid; 2351 ctx->spec |= EXT4_SPEC_s_resuid; 2352 return 0; 2353 case Opt_resgid: 2354 gid = make_kgid(current_user_ns(), result.uint_32); 2355 if (!gid_valid(gid)) { 2356 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2357 result.uint_32); 2358 return -EINVAL; 2359 } 2360 ctx->s_resgid = gid; 2361 ctx->spec |= EXT4_SPEC_s_resgid; 2362 return 0; 2363 case Opt_journal_dev: 2364 if (is_remount) { 2365 ext4_msg(NULL, KERN_ERR, 2366 "Cannot specify journal on remount"); 2367 return -EINVAL; 2368 } 2369 ctx->journal_devnum = result.uint_32; 2370 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2371 return 0; 2372 case Opt_journal_path: 2373 { 2374 struct inode *journal_inode; 2375 struct path path; 2376 int error; 2377 2378 if (is_remount) { 2379 ext4_msg(NULL, KERN_ERR, 2380 "Cannot specify journal on remount"); 2381 return -EINVAL; 2382 } 2383 2384 error = fs_lookup_param(fc, param, 1, &path); 2385 if (error) { 2386 ext4_msg(NULL, KERN_ERR, "error: could not find " 2387 "journal device path"); 2388 return -EINVAL; 2389 } 2390 2391 journal_inode = d_inode(path.dentry); 2392 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2393 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2394 path_put(&path); 2395 return 0; 2396 } 2397 case Opt_journal_ioprio: 2398 if (result.uint_32 > 7) { 2399 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2400 " (must be 0-7)"); 2401 return -EINVAL; 2402 } 2403 ctx->journal_ioprio = 2404 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2405 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2406 return 0; 2407 case Opt_test_dummy_encryption: 2408 #ifdef CONFIG_FS_ENCRYPTION 2409 if (param->type == fs_value_is_flag) { 2410 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION; 2411 ctx->test_dummy_enc_arg = NULL; 2412 return 0; 2413 } 2414 if (*param->string && 2415 !(!strcmp(param->string, "v1") || 2416 !strcmp(param->string, "v2"))) { 2417 ext4_msg(NULL, KERN_WARNING, 2418 "Value of option \"%s\" is unrecognized", 2419 param->key); 2420 return -EINVAL; 2421 } 2422 ctx->spec |= EXT4_SPEC_DUMMY_ENCRYPTION; 2423 ctx->test_dummy_enc_arg = kmemdup_nul(param->string, param->size, 2424 GFP_KERNEL); 2425 #else 2426 ext4_msg(NULL, KERN_WARNING, 2427 "Test dummy encryption mount option ignored"); 2428 #endif 2429 return 0; 2430 case Opt_dax: 2431 case Opt_dax_type: 2432 #ifdef CONFIG_FS_DAX 2433 { 2434 int type = (token == Opt_dax) ? 2435 Opt_dax : result.uint_32; 2436 2437 switch (type) { 2438 case Opt_dax: 2439 case Opt_dax_always: 2440 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2441 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2442 break; 2443 case Opt_dax_never: 2444 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2445 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2446 break; 2447 case Opt_dax_inode: 2448 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2449 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2450 /* Strictly for printing options */ 2451 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2452 break; 2453 } 2454 return 0; 2455 } 2456 #else 2457 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2458 return -EINVAL; 2459 #endif 2460 case Opt_data_err: 2461 if (result.uint_32 == Opt_data_err_abort) 2462 ctx_set_mount_opt(ctx, m->mount_opt); 2463 else if (result.uint_32 == Opt_data_err_ignore) 2464 ctx_clear_mount_opt(ctx, m->mount_opt); 2465 return 0; 2466 case Opt_mb_optimize_scan: 2467 if (result.int_32 == 1) { 2468 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2469 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2470 } else if (result.int_32 == 0) { 2471 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2472 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2473 } else { 2474 ext4_msg(NULL, KERN_WARNING, 2475 "mb_optimize_scan should be set to 0 or 1."); 2476 return -EINVAL; 2477 } 2478 return 0; 2479 } 2480 2481 /* 2482 * At this point we should only be getting options requiring MOPT_SET, 2483 * or MOPT_CLEAR. Anything else is a bug 2484 */ 2485 if (m->token == Opt_err) { 2486 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2487 param->key); 2488 WARN_ON(1); 2489 return -EINVAL; 2490 } 2491 2492 else { 2493 unsigned int set = 0; 2494 2495 if ((param->type == fs_value_is_flag) || 2496 result.uint_32 > 0) 2497 set = 1; 2498 2499 if (m->flags & MOPT_CLEAR) 2500 set = !set; 2501 else if (unlikely(!(m->flags & MOPT_SET))) { 2502 ext4_msg(NULL, KERN_WARNING, 2503 "buggy handling of option %s", 2504 param->key); 2505 WARN_ON(1); 2506 return -EINVAL; 2507 } 2508 if (m->flags & MOPT_2) { 2509 if (set != 0) 2510 ctx_set_mount_opt2(ctx, m->mount_opt); 2511 else 2512 ctx_clear_mount_opt2(ctx, m->mount_opt); 2513 } else { 2514 if (set != 0) 2515 ctx_set_mount_opt(ctx, m->mount_opt); 2516 else 2517 ctx_clear_mount_opt(ctx, m->mount_opt); 2518 } 2519 } 2520 2521 return 0; 2522 } 2523 2524 static int parse_options(struct fs_context *fc, char *options) 2525 { 2526 struct fs_parameter param; 2527 int ret; 2528 char *key; 2529 2530 if (!options) 2531 return 0; 2532 2533 while ((key = strsep(&options, ",")) != NULL) { 2534 if (*key) { 2535 size_t v_len = 0; 2536 char *value = strchr(key, '='); 2537 2538 param.type = fs_value_is_flag; 2539 param.string = NULL; 2540 2541 if (value) { 2542 if (value == key) 2543 continue; 2544 2545 *value++ = 0; 2546 v_len = strlen(value); 2547 param.string = kmemdup_nul(value, v_len, 2548 GFP_KERNEL); 2549 if (!param.string) 2550 return -ENOMEM; 2551 param.type = fs_value_is_string; 2552 } 2553 2554 param.key = key; 2555 param.size = v_len; 2556 2557 ret = ext4_parse_param(fc, ¶m); 2558 if (param.string) 2559 kfree(param.string); 2560 if (ret < 0) 2561 return ret; 2562 } 2563 } 2564 2565 ret = ext4_validate_options(fc); 2566 if (ret < 0) 2567 return ret; 2568 2569 return 0; 2570 } 2571 2572 static int parse_apply_sb_mount_options(struct super_block *sb, 2573 struct ext4_fs_context *m_ctx) 2574 { 2575 struct ext4_sb_info *sbi = EXT4_SB(sb); 2576 char *s_mount_opts = NULL; 2577 struct ext4_fs_context *s_ctx = NULL; 2578 struct fs_context *fc = NULL; 2579 int ret = -ENOMEM; 2580 2581 if (!sbi->s_es->s_mount_opts[0]) 2582 return 0; 2583 2584 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2585 sizeof(sbi->s_es->s_mount_opts), 2586 GFP_KERNEL); 2587 if (!s_mount_opts) 2588 return ret; 2589 2590 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2591 if (!fc) 2592 goto out_free; 2593 2594 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2595 if (!s_ctx) 2596 goto out_free; 2597 2598 fc->fs_private = s_ctx; 2599 fc->s_fs_info = sbi; 2600 2601 ret = parse_options(fc, s_mount_opts); 2602 if (ret < 0) 2603 goto parse_failed; 2604 2605 ret = ext4_check_opt_consistency(fc, sb); 2606 if (ret < 0) { 2607 parse_failed: 2608 ext4_msg(sb, KERN_WARNING, 2609 "failed to parse options in superblock: %s", 2610 s_mount_opts); 2611 ret = 0; 2612 goto out_free; 2613 } 2614 2615 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2616 m_ctx->journal_devnum = s_ctx->journal_devnum; 2617 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2618 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2619 2620 ret = ext4_apply_options(fc, sb); 2621 2622 out_free: 2623 kfree(s_ctx); 2624 kfree(fc); 2625 kfree(s_mount_opts); 2626 return ret; 2627 } 2628 2629 static void ext4_apply_quota_options(struct fs_context *fc, 2630 struct super_block *sb) 2631 { 2632 #ifdef CONFIG_QUOTA 2633 bool quota_feature = ext4_has_feature_quota(sb); 2634 struct ext4_fs_context *ctx = fc->fs_private; 2635 struct ext4_sb_info *sbi = EXT4_SB(sb); 2636 char *qname; 2637 int i; 2638 2639 if (quota_feature) 2640 return; 2641 2642 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2643 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2644 if (!(ctx->qname_spec & (1 << i))) 2645 continue; 2646 2647 qname = ctx->s_qf_names[i]; /* May be NULL */ 2648 if (qname) 2649 set_opt(sb, QUOTA); 2650 ctx->s_qf_names[i] = NULL; 2651 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2652 lockdep_is_held(&sb->s_umount)); 2653 if (qname) 2654 kfree_rcu(qname); 2655 } 2656 } 2657 2658 if (ctx->spec & EXT4_SPEC_JQFMT) 2659 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2660 #endif 2661 } 2662 2663 /* 2664 * Check quota settings consistency. 2665 */ 2666 static int ext4_check_quota_consistency(struct fs_context *fc, 2667 struct super_block *sb) 2668 { 2669 #ifdef CONFIG_QUOTA 2670 struct ext4_fs_context *ctx = fc->fs_private; 2671 struct ext4_sb_info *sbi = EXT4_SB(sb); 2672 bool quota_feature = ext4_has_feature_quota(sb); 2673 bool quota_loaded = sb_any_quota_loaded(sb); 2674 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2675 int quota_flags, i; 2676 2677 /* 2678 * We do the test below only for project quotas. 'usrquota' and 2679 * 'grpquota' mount options are allowed even without quota feature 2680 * to support legacy quotas in quota files. 2681 */ 2682 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2683 !ext4_has_feature_project(sb)) { 2684 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2685 "Cannot enable project quota enforcement."); 2686 return -EINVAL; 2687 } 2688 2689 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2690 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2691 if (quota_loaded && 2692 ctx->mask_s_mount_opt & quota_flags && 2693 !ctx_test_mount_opt(ctx, quota_flags)) 2694 goto err_quota_change; 2695 2696 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2697 2698 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2699 if (!(ctx->qname_spec & (1 << i))) 2700 continue; 2701 2702 if (quota_loaded && 2703 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2704 goto err_jquota_change; 2705 2706 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2707 strcmp(get_qf_name(sb, sbi, i), 2708 ctx->s_qf_names[i]) != 0) 2709 goto err_jquota_specified; 2710 } 2711 2712 if (quota_feature) { 2713 ext4_msg(NULL, KERN_INFO, 2714 "Journaled quota options ignored when " 2715 "QUOTA feature is enabled"); 2716 return 0; 2717 } 2718 } 2719 2720 if (ctx->spec & EXT4_SPEC_JQFMT) { 2721 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2722 goto err_jquota_change; 2723 if (quota_feature) { 2724 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2725 "ignored when QUOTA feature is enabled"); 2726 return 0; 2727 } 2728 } 2729 2730 /* Make sure we don't mix old and new quota format */ 2731 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2732 ctx->s_qf_names[USRQUOTA]); 2733 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2734 ctx->s_qf_names[GRPQUOTA]); 2735 2736 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2737 test_opt(sb, USRQUOTA)); 2738 2739 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2740 test_opt(sb, GRPQUOTA)); 2741 2742 if (usr_qf_name) { 2743 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2744 usrquota = false; 2745 } 2746 if (grp_qf_name) { 2747 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2748 grpquota = false; 2749 } 2750 2751 if (usr_qf_name || grp_qf_name) { 2752 if (usrquota || grpquota) { 2753 ext4_msg(NULL, KERN_ERR, "old and new quota " 2754 "format mixing"); 2755 return -EINVAL; 2756 } 2757 2758 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2759 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2760 "not specified"); 2761 return -EINVAL; 2762 } 2763 } 2764 2765 return 0; 2766 2767 err_quota_change: 2768 ext4_msg(NULL, KERN_ERR, 2769 "Cannot change quota options when quota turned on"); 2770 return -EINVAL; 2771 err_jquota_change: 2772 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2773 "options when quota turned on"); 2774 return -EINVAL; 2775 err_jquota_specified: 2776 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2777 QTYPE2NAME(i)); 2778 return -EINVAL; 2779 #else 2780 return 0; 2781 #endif 2782 } 2783 2784 static int ext4_check_opt_consistency(struct fs_context *fc, 2785 struct super_block *sb) 2786 { 2787 struct ext4_fs_context *ctx = fc->fs_private; 2788 struct ext4_sb_info *sbi = fc->s_fs_info; 2789 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2790 2791 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2792 ext4_msg(NULL, KERN_ERR, 2793 "Mount option(s) incompatible with ext2"); 2794 return -EINVAL; 2795 } 2796 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2797 ext4_msg(NULL, KERN_ERR, 2798 "Mount option(s) incompatible with ext3"); 2799 return -EINVAL; 2800 } 2801 2802 if (ctx->s_want_extra_isize > 2803 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2804 ext4_msg(NULL, KERN_ERR, 2805 "Invalid want_extra_isize %d", 2806 ctx->s_want_extra_isize); 2807 return -EINVAL; 2808 } 2809 2810 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2811 int blocksize = 2812 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2813 if (blocksize < PAGE_SIZE) 2814 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2815 "experimental mount option 'dioread_nolock' " 2816 "for blocksize < PAGE_SIZE"); 2817 } 2818 2819 #ifdef CONFIG_FS_ENCRYPTION 2820 /* 2821 * This mount option is just for testing, and it's not worthwhile to 2822 * implement the extra complexity (e.g. RCU protection) that would be 2823 * needed to allow it to be set or changed during remount. We do allow 2824 * it to be specified during remount, but only if there is no change. 2825 */ 2826 if ((ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) && 2827 is_remount && !sbi->s_dummy_enc_policy.policy) { 2828 ext4_msg(NULL, KERN_WARNING, 2829 "Can't set test_dummy_encryption on remount"); 2830 return -1; 2831 } 2832 #endif 2833 2834 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2835 if (!sbi->s_journal) { 2836 ext4_msg(NULL, KERN_WARNING, 2837 "Remounting file system with no journal " 2838 "so ignoring journalled data option"); 2839 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2840 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2841 test_opt(sb, DATA_FLAGS)) { 2842 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2843 "on remount"); 2844 return -EINVAL; 2845 } 2846 } 2847 2848 if (is_remount) { 2849 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2850 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2851 ext4_msg(NULL, KERN_ERR, "can't mount with " 2852 "both data=journal and dax"); 2853 return -EINVAL; 2854 } 2855 2856 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2857 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2858 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2859 fail_dax_change_remount: 2860 ext4_msg(NULL, KERN_ERR, "can't change " 2861 "dax mount option while remounting"); 2862 return -EINVAL; 2863 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2864 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2865 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2866 goto fail_dax_change_remount; 2867 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2868 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2869 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2870 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2871 goto fail_dax_change_remount; 2872 } 2873 } 2874 2875 return ext4_check_quota_consistency(fc, sb); 2876 } 2877 2878 static int ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2879 { 2880 struct ext4_fs_context *ctx = fc->fs_private; 2881 struct ext4_sb_info *sbi = fc->s_fs_info; 2882 int ret = 0; 2883 2884 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2885 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2886 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2887 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2888 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2889 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2890 sb->s_flags &= ~ctx->mask_s_flags; 2891 sb->s_flags |= ctx->vals_s_flags; 2892 2893 /* 2894 * i_version differs from common mount option iversion so we have 2895 * to let vfs know that it was set, otherwise it would get cleared 2896 * on remount 2897 */ 2898 if (ctx->mask_s_flags & SB_I_VERSION) 2899 fc->sb_flags |= SB_I_VERSION; 2900 2901 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2902 APPLY(s_commit_interval); 2903 APPLY(s_stripe); 2904 APPLY(s_max_batch_time); 2905 APPLY(s_min_batch_time); 2906 APPLY(s_want_extra_isize); 2907 APPLY(s_inode_readahead_blks); 2908 APPLY(s_max_dir_size_kb); 2909 APPLY(s_li_wait_mult); 2910 APPLY(s_resgid); 2911 APPLY(s_resuid); 2912 2913 #ifdef CONFIG_EXT4_DEBUG 2914 APPLY(s_fc_debug_max_replay); 2915 #endif 2916 2917 ext4_apply_quota_options(fc, sb); 2918 2919 if (ctx->spec & EXT4_SPEC_DUMMY_ENCRYPTION) 2920 ret = ext4_set_test_dummy_encryption(sb, ctx->test_dummy_enc_arg); 2921 2922 return ret; 2923 } 2924 2925 2926 static int ext4_validate_options(struct fs_context *fc) 2927 { 2928 #ifdef CONFIG_QUOTA 2929 struct ext4_fs_context *ctx = fc->fs_private; 2930 char *usr_qf_name, *grp_qf_name; 2931 2932 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2933 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2934 2935 if (usr_qf_name || grp_qf_name) { 2936 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2937 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2938 2939 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2940 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2941 2942 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2943 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2944 ext4_msg(NULL, KERN_ERR, "old and new quota " 2945 "format mixing"); 2946 return -EINVAL; 2947 } 2948 } 2949 #endif 2950 return 1; 2951 } 2952 2953 static inline void ext4_show_quota_options(struct seq_file *seq, 2954 struct super_block *sb) 2955 { 2956 #if defined(CONFIG_QUOTA) 2957 struct ext4_sb_info *sbi = EXT4_SB(sb); 2958 char *usr_qf_name, *grp_qf_name; 2959 2960 if (sbi->s_jquota_fmt) { 2961 char *fmtname = ""; 2962 2963 switch (sbi->s_jquota_fmt) { 2964 case QFMT_VFS_OLD: 2965 fmtname = "vfsold"; 2966 break; 2967 case QFMT_VFS_V0: 2968 fmtname = "vfsv0"; 2969 break; 2970 case QFMT_VFS_V1: 2971 fmtname = "vfsv1"; 2972 break; 2973 } 2974 seq_printf(seq, ",jqfmt=%s", fmtname); 2975 } 2976 2977 rcu_read_lock(); 2978 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2979 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2980 if (usr_qf_name) 2981 seq_show_option(seq, "usrjquota", usr_qf_name); 2982 if (grp_qf_name) 2983 seq_show_option(seq, "grpjquota", grp_qf_name); 2984 rcu_read_unlock(); 2985 #endif 2986 } 2987 2988 static const char *token2str(int token) 2989 { 2990 const struct fs_parameter_spec *spec; 2991 2992 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2993 if (spec->opt == token && !spec->type) 2994 break; 2995 return spec->name; 2996 } 2997 2998 /* 2999 * Show an option if 3000 * - it's set to a non-default value OR 3001 * - if the per-sb default is different from the global default 3002 */ 3003 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 3004 int nodefs) 3005 { 3006 struct ext4_sb_info *sbi = EXT4_SB(sb); 3007 struct ext4_super_block *es = sbi->s_es; 3008 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 3009 const struct mount_opts *m; 3010 char sep = nodefs ? '\n' : ','; 3011 3012 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 3013 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 3014 3015 if (sbi->s_sb_block != 1) 3016 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 3017 3018 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 3019 int want_set = m->flags & MOPT_SET; 3020 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 3021 m->flags & MOPT_SKIP) 3022 continue; 3023 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 3024 continue; /* skip if same as the default */ 3025 if ((want_set && 3026 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 3027 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 3028 continue; /* select Opt_noFoo vs Opt_Foo */ 3029 SEQ_OPTS_PRINT("%s", token2str(m->token)); 3030 } 3031 3032 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 3033 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 3034 SEQ_OPTS_PRINT("resuid=%u", 3035 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 3036 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 3037 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 3038 SEQ_OPTS_PRINT("resgid=%u", 3039 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 3040 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 3041 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3042 SEQ_OPTS_PUTS("errors=remount-ro"); 3043 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3044 SEQ_OPTS_PUTS("errors=continue"); 3045 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3046 SEQ_OPTS_PUTS("errors=panic"); 3047 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3048 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3049 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3050 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3051 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3052 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3053 if (sb->s_flags & SB_I_VERSION) 3054 SEQ_OPTS_PUTS("i_version"); 3055 if (nodefs || sbi->s_stripe) 3056 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3057 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3058 (sbi->s_mount_opt ^ def_mount_opt)) { 3059 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3060 SEQ_OPTS_PUTS("data=journal"); 3061 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3062 SEQ_OPTS_PUTS("data=ordered"); 3063 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3064 SEQ_OPTS_PUTS("data=writeback"); 3065 } 3066 if (nodefs || 3067 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3068 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3069 sbi->s_inode_readahead_blks); 3070 3071 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3072 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3073 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3074 if (nodefs || sbi->s_max_dir_size_kb) 3075 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3076 if (test_opt(sb, DATA_ERR_ABORT)) 3077 SEQ_OPTS_PUTS("data_err=abort"); 3078 3079 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3080 3081 if (sb->s_flags & SB_INLINECRYPT) 3082 SEQ_OPTS_PUTS("inlinecrypt"); 3083 3084 if (test_opt(sb, DAX_ALWAYS)) { 3085 if (IS_EXT2_SB(sb)) 3086 SEQ_OPTS_PUTS("dax"); 3087 else 3088 SEQ_OPTS_PUTS("dax=always"); 3089 } else if (test_opt2(sb, DAX_NEVER)) { 3090 SEQ_OPTS_PUTS("dax=never"); 3091 } else if (test_opt2(sb, DAX_INODE)) { 3092 SEQ_OPTS_PUTS("dax=inode"); 3093 } 3094 ext4_show_quota_options(seq, sb); 3095 return 0; 3096 } 3097 3098 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3099 { 3100 return _ext4_show_options(seq, root->d_sb, 0); 3101 } 3102 3103 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3104 { 3105 struct super_block *sb = seq->private; 3106 int rc; 3107 3108 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3109 rc = _ext4_show_options(seq, sb, 1); 3110 seq_puts(seq, "\n"); 3111 return rc; 3112 } 3113 3114 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3115 int read_only) 3116 { 3117 struct ext4_sb_info *sbi = EXT4_SB(sb); 3118 int err = 0; 3119 3120 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3121 ext4_msg(sb, KERN_ERR, "revision level too high, " 3122 "forcing read-only mode"); 3123 err = -EROFS; 3124 goto done; 3125 } 3126 if (read_only) 3127 goto done; 3128 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3129 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3130 "running e2fsck is recommended"); 3131 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3132 ext4_msg(sb, KERN_WARNING, 3133 "warning: mounting fs with errors, " 3134 "running e2fsck is recommended"); 3135 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3136 le16_to_cpu(es->s_mnt_count) >= 3137 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3138 ext4_msg(sb, KERN_WARNING, 3139 "warning: maximal mount count reached, " 3140 "running e2fsck is recommended"); 3141 else if (le32_to_cpu(es->s_checkinterval) && 3142 (ext4_get_tstamp(es, s_lastcheck) + 3143 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3144 ext4_msg(sb, KERN_WARNING, 3145 "warning: checktime reached, " 3146 "running e2fsck is recommended"); 3147 if (!sbi->s_journal) 3148 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3149 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3150 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3151 le16_add_cpu(&es->s_mnt_count, 1); 3152 ext4_update_tstamp(es, s_mtime); 3153 if (sbi->s_journal) { 3154 ext4_set_feature_journal_needs_recovery(sb); 3155 if (ext4_has_feature_orphan_file(sb)) 3156 ext4_set_feature_orphan_present(sb); 3157 } 3158 3159 err = ext4_commit_super(sb); 3160 done: 3161 if (test_opt(sb, DEBUG)) 3162 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3163 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3164 sb->s_blocksize, 3165 sbi->s_groups_count, 3166 EXT4_BLOCKS_PER_GROUP(sb), 3167 EXT4_INODES_PER_GROUP(sb), 3168 sbi->s_mount_opt, sbi->s_mount_opt2); 3169 return err; 3170 } 3171 3172 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3173 { 3174 struct ext4_sb_info *sbi = EXT4_SB(sb); 3175 struct flex_groups **old_groups, **new_groups; 3176 int size, i, j; 3177 3178 if (!sbi->s_log_groups_per_flex) 3179 return 0; 3180 3181 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3182 if (size <= sbi->s_flex_groups_allocated) 3183 return 0; 3184 3185 new_groups = kvzalloc(roundup_pow_of_two(size * 3186 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3187 if (!new_groups) { 3188 ext4_msg(sb, KERN_ERR, 3189 "not enough memory for %d flex group pointers", size); 3190 return -ENOMEM; 3191 } 3192 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3193 new_groups[i] = kvzalloc(roundup_pow_of_two( 3194 sizeof(struct flex_groups)), 3195 GFP_KERNEL); 3196 if (!new_groups[i]) { 3197 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3198 kvfree(new_groups[j]); 3199 kvfree(new_groups); 3200 ext4_msg(sb, KERN_ERR, 3201 "not enough memory for %d flex groups", size); 3202 return -ENOMEM; 3203 } 3204 } 3205 rcu_read_lock(); 3206 old_groups = rcu_dereference(sbi->s_flex_groups); 3207 if (old_groups) 3208 memcpy(new_groups, old_groups, 3209 (sbi->s_flex_groups_allocated * 3210 sizeof(struct flex_groups *))); 3211 rcu_read_unlock(); 3212 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3213 sbi->s_flex_groups_allocated = size; 3214 if (old_groups) 3215 ext4_kvfree_array_rcu(old_groups); 3216 return 0; 3217 } 3218 3219 static int ext4_fill_flex_info(struct super_block *sb) 3220 { 3221 struct ext4_sb_info *sbi = EXT4_SB(sb); 3222 struct ext4_group_desc *gdp = NULL; 3223 struct flex_groups *fg; 3224 ext4_group_t flex_group; 3225 int i, err; 3226 3227 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3228 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3229 sbi->s_log_groups_per_flex = 0; 3230 return 1; 3231 } 3232 3233 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3234 if (err) 3235 goto failed; 3236 3237 for (i = 0; i < sbi->s_groups_count; i++) { 3238 gdp = ext4_get_group_desc(sb, i, NULL); 3239 3240 flex_group = ext4_flex_group(sbi, i); 3241 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3242 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3243 atomic64_add(ext4_free_group_clusters(sb, gdp), 3244 &fg->free_clusters); 3245 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3246 } 3247 3248 return 1; 3249 failed: 3250 return 0; 3251 } 3252 3253 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3254 struct ext4_group_desc *gdp) 3255 { 3256 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3257 __u16 crc = 0; 3258 __le32 le_group = cpu_to_le32(block_group); 3259 struct ext4_sb_info *sbi = EXT4_SB(sb); 3260 3261 if (ext4_has_metadata_csum(sbi->s_sb)) { 3262 /* Use new metadata_csum algorithm */ 3263 __u32 csum32; 3264 __u16 dummy_csum = 0; 3265 3266 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3267 sizeof(le_group)); 3268 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3269 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3270 sizeof(dummy_csum)); 3271 offset += sizeof(dummy_csum); 3272 if (offset < sbi->s_desc_size) 3273 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3274 sbi->s_desc_size - offset); 3275 3276 crc = csum32 & 0xFFFF; 3277 goto out; 3278 } 3279 3280 /* old crc16 code */ 3281 if (!ext4_has_feature_gdt_csum(sb)) 3282 return 0; 3283 3284 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3285 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3286 crc = crc16(crc, (__u8 *)gdp, offset); 3287 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3288 /* for checksum of struct ext4_group_desc do the rest...*/ 3289 if (ext4_has_feature_64bit(sb) && 3290 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 3291 crc = crc16(crc, (__u8 *)gdp + offset, 3292 le16_to_cpu(sbi->s_es->s_desc_size) - 3293 offset); 3294 3295 out: 3296 return cpu_to_le16(crc); 3297 } 3298 3299 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3300 struct ext4_group_desc *gdp) 3301 { 3302 if (ext4_has_group_desc_csum(sb) && 3303 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3304 return 0; 3305 3306 return 1; 3307 } 3308 3309 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3310 struct ext4_group_desc *gdp) 3311 { 3312 if (!ext4_has_group_desc_csum(sb)) 3313 return; 3314 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3315 } 3316 3317 /* Called at mount-time, super-block is locked */ 3318 static int ext4_check_descriptors(struct super_block *sb, 3319 ext4_fsblk_t sb_block, 3320 ext4_group_t *first_not_zeroed) 3321 { 3322 struct ext4_sb_info *sbi = EXT4_SB(sb); 3323 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3324 ext4_fsblk_t last_block; 3325 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3326 ext4_fsblk_t block_bitmap; 3327 ext4_fsblk_t inode_bitmap; 3328 ext4_fsblk_t inode_table; 3329 int flexbg_flag = 0; 3330 ext4_group_t i, grp = sbi->s_groups_count; 3331 3332 if (ext4_has_feature_flex_bg(sb)) 3333 flexbg_flag = 1; 3334 3335 ext4_debug("Checking group descriptors"); 3336 3337 for (i = 0; i < sbi->s_groups_count; i++) { 3338 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3339 3340 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3341 last_block = ext4_blocks_count(sbi->s_es) - 1; 3342 else 3343 last_block = first_block + 3344 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3345 3346 if ((grp == sbi->s_groups_count) && 3347 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3348 grp = i; 3349 3350 block_bitmap = ext4_block_bitmap(sb, gdp); 3351 if (block_bitmap == sb_block) { 3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3353 "Block bitmap for group %u overlaps " 3354 "superblock", i); 3355 if (!sb_rdonly(sb)) 3356 return 0; 3357 } 3358 if (block_bitmap >= sb_block + 1 && 3359 block_bitmap <= last_bg_block) { 3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3361 "Block bitmap for group %u overlaps " 3362 "block group descriptors", i); 3363 if (!sb_rdonly(sb)) 3364 return 0; 3365 } 3366 if (block_bitmap < first_block || block_bitmap > last_block) { 3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3368 "Block bitmap for group %u not in group " 3369 "(block %llu)!", i, block_bitmap); 3370 return 0; 3371 } 3372 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3373 if (inode_bitmap == sb_block) { 3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3375 "Inode bitmap for group %u overlaps " 3376 "superblock", i); 3377 if (!sb_rdonly(sb)) 3378 return 0; 3379 } 3380 if (inode_bitmap >= sb_block + 1 && 3381 inode_bitmap <= last_bg_block) { 3382 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3383 "Inode bitmap for group %u overlaps " 3384 "block group descriptors", i); 3385 if (!sb_rdonly(sb)) 3386 return 0; 3387 } 3388 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3389 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3390 "Inode bitmap for group %u not in group " 3391 "(block %llu)!", i, inode_bitmap); 3392 return 0; 3393 } 3394 inode_table = ext4_inode_table(sb, gdp); 3395 if (inode_table == sb_block) { 3396 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3397 "Inode table for group %u overlaps " 3398 "superblock", i); 3399 if (!sb_rdonly(sb)) 3400 return 0; 3401 } 3402 if (inode_table >= sb_block + 1 && 3403 inode_table <= last_bg_block) { 3404 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3405 "Inode table for group %u overlaps " 3406 "block group descriptors", i); 3407 if (!sb_rdonly(sb)) 3408 return 0; 3409 } 3410 if (inode_table < first_block || 3411 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3412 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3413 "Inode table for group %u not in group " 3414 "(block %llu)!", i, inode_table); 3415 return 0; 3416 } 3417 ext4_lock_group(sb, i); 3418 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3419 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3420 "Checksum for group %u failed (%u!=%u)", 3421 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3422 gdp)), le16_to_cpu(gdp->bg_checksum)); 3423 if (!sb_rdonly(sb)) { 3424 ext4_unlock_group(sb, i); 3425 return 0; 3426 } 3427 } 3428 ext4_unlock_group(sb, i); 3429 if (!flexbg_flag) 3430 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3431 } 3432 if (NULL != first_not_zeroed) 3433 *first_not_zeroed = grp; 3434 return 1; 3435 } 3436 3437 /* 3438 * Maximal extent format file size. 3439 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3440 * extent format containers, within a sector_t, and within i_blocks 3441 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3442 * so that won't be a limiting factor. 3443 * 3444 * However there is other limiting factor. We do store extents in the form 3445 * of starting block and length, hence the resulting length of the extent 3446 * covering maximum file size must fit into on-disk format containers as 3447 * well. Given that length is always by 1 unit bigger than max unit (because 3448 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3449 * 3450 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3451 */ 3452 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3453 { 3454 loff_t res; 3455 loff_t upper_limit = MAX_LFS_FILESIZE; 3456 3457 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3458 3459 if (!has_huge_files) { 3460 upper_limit = (1LL << 32) - 1; 3461 3462 /* total blocks in file system block size */ 3463 upper_limit >>= (blkbits - 9); 3464 upper_limit <<= blkbits; 3465 } 3466 3467 /* 3468 * 32-bit extent-start container, ee_block. We lower the maxbytes 3469 * by one fs block, so ee_len can cover the extent of maximum file 3470 * size 3471 */ 3472 res = (1LL << 32) - 1; 3473 res <<= blkbits; 3474 3475 /* Sanity check against vm- & vfs- imposed limits */ 3476 if (res > upper_limit) 3477 res = upper_limit; 3478 3479 return res; 3480 } 3481 3482 /* 3483 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3484 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3485 * We need to be 1 filesystem block less than the 2^48 sector limit. 3486 */ 3487 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3488 { 3489 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3490 int meta_blocks; 3491 unsigned int ppb = 1 << (bits - 2); 3492 3493 /* 3494 * This is calculated to be the largest file size for a dense, block 3495 * mapped file such that the file's total number of 512-byte sectors, 3496 * including data and all indirect blocks, does not exceed (2^48 - 1). 3497 * 3498 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3499 * number of 512-byte sectors of the file. 3500 */ 3501 if (!has_huge_files) { 3502 /* 3503 * !has_huge_files or implies that the inode i_block field 3504 * represents total file blocks in 2^32 512-byte sectors == 3505 * size of vfs inode i_blocks * 8 3506 */ 3507 upper_limit = (1LL << 32) - 1; 3508 3509 /* total blocks in file system block size */ 3510 upper_limit >>= (bits - 9); 3511 3512 } else { 3513 /* 3514 * We use 48 bit ext4_inode i_blocks 3515 * With EXT4_HUGE_FILE_FL set the i_blocks 3516 * represent total number of blocks in 3517 * file system block size 3518 */ 3519 upper_limit = (1LL << 48) - 1; 3520 3521 } 3522 3523 /* Compute how many blocks we can address by block tree */ 3524 res += ppb; 3525 res += ppb * ppb; 3526 res += ((loff_t)ppb) * ppb * ppb; 3527 /* Compute how many metadata blocks are needed */ 3528 meta_blocks = 1; 3529 meta_blocks += 1 + ppb; 3530 meta_blocks += 1 + ppb + ppb * ppb; 3531 /* Does block tree limit file size? */ 3532 if (res + meta_blocks <= upper_limit) 3533 goto check_lfs; 3534 3535 res = upper_limit; 3536 /* How many metadata blocks are needed for addressing upper_limit? */ 3537 upper_limit -= EXT4_NDIR_BLOCKS; 3538 /* indirect blocks */ 3539 meta_blocks = 1; 3540 upper_limit -= ppb; 3541 /* double indirect blocks */ 3542 if (upper_limit < ppb * ppb) { 3543 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3544 res -= meta_blocks; 3545 goto check_lfs; 3546 } 3547 meta_blocks += 1 + ppb; 3548 upper_limit -= ppb * ppb; 3549 /* tripple indirect blocks for the rest */ 3550 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3551 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3552 res -= meta_blocks; 3553 check_lfs: 3554 res <<= bits; 3555 if (res > MAX_LFS_FILESIZE) 3556 res = MAX_LFS_FILESIZE; 3557 3558 return res; 3559 } 3560 3561 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3562 ext4_fsblk_t logical_sb_block, int nr) 3563 { 3564 struct ext4_sb_info *sbi = EXT4_SB(sb); 3565 ext4_group_t bg, first_meta_bg; 3566 int has_super = 0; 3567 3568 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3569 3570 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3571 return logical_sb_block + nr + 1; 3572 bg = sbi->s_desc_per_block * nr; 3573 if (ext4_bg_has_super(sb, bg)) 3574 has_super = 1; 3575 3576 /* 3577 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3578 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3579 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3580 * compensate. 3581 */ 3582 if (sb->s_blocksize == 1024 && nr == 0 && 3583 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3584 has_super++; 3585 3586 return (has_super + ext4_group_first_block_no(sb, bg)); 3587 } 3588 3589 /** 3590 * ext4_get_stripe_size: Get the stripe size. 3591 * @sbi: In memory super block info 3592 * 3593 * If we have specified it via mount option, then 3594 * use the mount option value. If the value specified at mount time is 3595 * greater than the blocks per group use the super block value. 3596 * If the super block value is greater than blocks per group return 0. 3597 * Allocator needs it be less than blocks per group. 3598 * 3599 */ 3600 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3601 { 3602 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3603 unsigned long stripe_width = 3604 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3605 int ret; 3606 3607 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3608 ret = sbi->s_stripe; 3609 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3610 ret = stripe_width; 3611 else if (stride && stride <= sbi->s_blocks_per_group) 3612 ret = stride; 3613 else 3614 ret = 0; 3615 3616 /* 3617 * If the stripe width is 1, this makes no sense and 3618 * we set it to 0 to turn off stripe handling code. 3619 */ 3620 if (ret <= 1) 3621 ret = 0; 3622 3623 return ret; 3624 } 3625 3626 /* 3627 * Check whether this filesystem can be mounted based on 3628 * the features present and the RDONLY/RDWR mount requested. 3629 * Returns 1 if this filesystem can be mounted as requested, 3630 * 0 if it cannot be. 3631 */ 3632 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3633 { 3634 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3635 ext4_msg(sb, KERN_ERR, 3636 "Couldn't mount because of " 3637 "unsupported optional features (%x)", 3638 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3639 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3640 return 0; 3641 } 3642 3643 #if !IS_ENABLED(CONFIG_UNICODE) 3644 if (ext4_has_feature_casefold(sb)) { 3645 ext4_msg(sb, KERN_ERR, 3646 "Filesystem with casefold feature cannot be " 3647 "mounted without CONFIG_UNICODE"); 3648 return 0; 3649 } 3650 #endif 3651 3652 if (readonly) 3653 return 1; 3654 3655 if (ext4_has_feature_readonly(sb)) { 3656 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3657 sb->s_flags |= SB_RDONLY; 3658 return 1; 3659 } 3660 3661 /* Check that feature set is OK for a read-write mount */ 3662 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3663 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3664 "unsupported optional features (%x)", 3665 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3666 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3667 return 0; 3668 } 3669 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3670 ext4_msg(sb, KERN_ERR, 3671 "Can't support bigalloc feature without " 3672 "extents feature\n"); 3673 return 0; 3674 } 3675 3676 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3677 if (!readonly && (ext4_has_feature_quota(sb) || 3678 ext4_has_feature_project(sb))) { 3679 ext4_msg(sb, KERN_ERR, 3680 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3681 return 0; 3682 } 3683 #endif /* CONFIG_QUOTA */ 3684 return 1; 3685 } 3686 3687 /* 3688 * This function is called once a day if we have errors logged 3689 * on the file system 3690 */ 3691 static void print_daily_error_info(struct timer_list *t) 3692 { 3693 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3694 struct super_block *sb = sbi->s_sb; 3695 struct ext4_super_block *es = sbi->s_es; 3696 3697 if (es->s_error_count) 3698 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3699 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3700 le32_to_cpu(es->s_error_count)); 3701 if (es->s_first_error_time) { 3702 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3703 sb->s_id, 3704 ext4_get_tstamp(es, s_first_error_time), 3705 (int) sizeof(es->s_first_error_func), 3706 es->s_first_error_func, 3707 le32_to_cpu(es->s_first_error_line)); 3708 if (es->s_first_error_ino) 3709 printk(KERN_CONT ": inode %u", 3710 le32_to_cpu(es->s_first_error_ino)); 3711 if (es->s_first_error_block) 3712 printk(KERN_CONT ": block %llu", (unsigned long long) 3713 le64_to_cpu(es->s_first_error_block)); 3714 printk(KERN_CONT "\n"); 3715 } 3716 if (es->s_last_error_time) { 3717 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3718 sb->s_id, 3719 ext4_get_tstamp(es, s_last_error_time), 3720 (int) sizeof(es->s_last_error_func), 3721 es->s_last_error_func, 3722 le32_to_cpu(es->s_last_error_line)); 3723 if (es->s_last_error_ino) 3724 printk(KERN_CONT ": inode %u", 3725 le32_to_cpu(es->s_last_error_ino)); 3726 if (es->s_last_error_block) 3727 printk(KERN_CONT ": block %llu", (unsigned long long) 3728 le64_to_cpu(es->s_last_error_block)); 3729 printk(KERN_CONT "\n"); 3730 } 3731 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3732 } 3733 3734 /* Find next suitable group and run ext4_init_inode_table */ 3735 static int ext4_run_li_request(struct ext4_li_request *elr) 3736 { 3737 struct ext4_group_desc *gdp = NULL; 3738 struct super_block *sb = elr->lr_super; 3739 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3740 ext4_group_t group = elr->lr_next_group; 3741 unsigned int prefetch_ios = 0; 3742 int ret = 0; 3743 u64 start_time; 3744 3745 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3746 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3747 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3748 if (prefetch_ios) 3749 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3750 prefetch_ios); 3751 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3752 prefetch_ios); 3753 if (group >= elr->lr_next_group) { 3754 ret = 1; 3755 if (elr->lr_first_not_zeroed != ngroups && 3756 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3757 elr->lr_next_group = elr->lr_first_not_zeroed; 3758 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3759 ret = 0; 3760 } 3761 } 3762 return ret; 3763 } 3764 3765 for (; group < ngroups; group++) { 3766 gdp = ext4_get_group_desc(sb, group, NULL); 3767 if (!gdp) { 3768 ret = 1; 3769 break; 3770 } 3771 3772 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3773 break; 3774 } 3775 3776 if (group >= ngroups) 3777 ret = 1; 3778 3779 if (!ret) { 3780 start_time = ktime_get_real_ns(); 3781 ret = ext4_init_inode_table(sb, group, 3782 elr->lr_timeout ? 0 : 1); 3783 trace_ext4_lazy_itable_init(sb, group); 3784 if (elr->lr_timeout == 0) { 3785 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3786 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3787 } 3788 elr->lr_next_sched = jiffies + elr->lr_timeout; 3789 elr->lr_next_group = group + 1; 3790 } 3791 return ret; 3792 } 3793 3794 /* 3795 * Remove lr_request from the list_request and free the 3796 * request structure. Should be called with li_list_mtx held 3797 */ 3798 static void ext4_remove_li_request(struct ext4_li_request *elr) 3799 { 3800 if (!elr) 3801 return; 3802 3803 list_del(&elr->lr_request); 3804 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3805 kfree(elr); 3806 } 3807 3808 static void ext4_unregister_li_request(struct super_block *sb) 3809 { 3810 mutex_lock(&ext4_li_mtx); 3811 if (!ext4_li_info) { 3812 mutex_unlock(&ext4_li_mtx); 3813 return; 3814 } 3815 3816 mutex_lock(&ext4_li_info->li_list_mtx); 3817 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3818 mutex_unlock(&ext4_li_info->li_list_mtx); 3819 mutex_unlock(&ext4_li_mtx); 3820 } 3821 3822 static struct task_struct *ext4_lazyinit_task; 3823 3824 /* 3825 * This is the function where ext4lazyinit thread lives. It walks 3826 * through the request list searching for next scheduled filesystem. 3827 * When such a fs is found, run the lazy initialization request 3828 * (ext4_rn_li_request) and keep track of the time spend in this 3829 * function. Based on that time we compute next schedule time of 3830 * the request. When walking through the list is complete, compute 3831 * next waking time and put itself into sleep. 3832 */ 3833 static int ext4_lazyinit_thread(void *arg) 3834 { 3835 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3836 struct list_head *pos, *n; 3837 struct ext4_li_request *elr; 3838 unsigned long next_wakeup, cur; 3839 3840 BUG_ON(NULL == eli); 3841 3842 cont_thread: 3843 while (true) { 3844 next_wakeup = MAX_JIFFY_OFFSET; 3845 3846 mutex_lock(&eli->li_list_mtx); 3847 if (list_empty(&eli->li_request_list)) { 3848 mutex_unlock(&eli->li_list_mtx); 3849 goto exit_thread; 3850 } 3851 list_for_each_safe(pos, n, &eli->li_request_list) { 3852 int err = 0; 3853 int progress = 0; 3854 elr = list_entry(pos, struct ext4_li_request, 3855 lr_request); 3856 3857 if (time_before(jiffies, elr->lr_next_sched)) { 3858 if (time_before(elr->lr_next_sched, next_wakeup)) 3859 next_wakeup = elr->lr_next_sched; 3860 continue; 3861 } 3862 if (down_read_trylock(&elr->lr_super->s_umount)) { 3863 if (sb_start_write_trylock(elr->lr_super)) { 3864 progress = 1; 3865 /* 3866 * We hold sb->s_umount, sb can not 3867 * be removed from the list, it is 3868 * now safe to drop li_list_mtx 3869 */ 3870 mutex_unlock(&eli->li_list_mtx); 3871 err = ext4_run_li_request(elr); 3872 sb_end_write(elr->lr_super); 3873 mutex_lock(&eli->li_list_mtx); 3874 n = pos->next; 3875 } 3876 up_read((&elr->lr_super->s_umount)); 3877 } 3878 /* error, remove the lazy_init job */ 3879 if (err) { 3880 ext4_remove_li_request(elr); 3881 continue; 3882 } 3883 if (!progress) { 3884 elr->lr_next_sched = jiffies + 3885 (prandom_u32() 3886 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3887 } 3888 if (time_before(elr->lr_next_sched, next_wakeup)) 3889 next_wakeup = elr->lr_next_sched; 3890 } 3891 mutex_unlock(&eli->li_list_mtx); 3892 3893 try_to_freeze(); 3894 3895 cur = jiffies; 3896 if ((time_after_eq(cur, next_wakeup)) || 3897 (MAX_JIFFY_OFFSET == next_wakeup)) { 3898 cond_resched(); 3899 continue; 3900 } 3901 3902 schedule_timeout_interruptible(next_wakeup - cur); 3903 3904 if (kthread_should_stop()) { 3905 ext4_clear_request_list(); 3906 goto exit_thread; 3907 } 3908 } 3909 3910 exit_thread: 3911 /* 3912 * It looks like the request list is empty, but we need 3913 * to check it under the li_list_mtx lock, to prevent any 3914 * additions into it, and of course we should lock ext4_li_mtx 3915 * to atomically free the list and ext4_li_info, because at 3916 * this point another ext4 filesystem could be registering 3917 * new one. 3918 */ 3919 mutex_lock(&ext4_li_mtx); 3920 mutex_lock(&eli->li_list_mtx); 3921 if (!list_empty(&eli->li_request_list)) { 3922 mutex_unlock(&eli->li_list_mtx); 3923 mutex_unlock(&ext4_li_mtx); 3924 goto cont_thread; 3925 } 3926 mutex_unlock(&eli->li_list_mtx); 3927 kfree(ext4_li_info); 3928 ext4_li_info = NULL; 3929 mutex_unlock(&ext4_li_mtx); 3930 3931 return 0; 3932 } 3933 3934 static void ext4_clear_request_list(void) 3935 { 3936 struct list_head *pos, *n; 3937 struct ext4_li_request *elr; 3938 3939 mutex_lock(&ext4_li_info->li_list_mtx); 3940 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3941 elr = list_entry(pos, struct ext4_li_request, 3942 lr_request); 3943 ext4_remove_li_request(elr); 3944 } 3945 mutex_unlock(&ext4_li_info->li_list_mtx); 3946 } 3947 3948 static int ext4_run_lazyinit_thread(void) 3949 { 3950 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3951 ext4_li_info, "ext4lazyinit"); 3952 if (IS_ERR(ext4_lazyinit_task)) { 3953 int err = PTR_ERR(ext4_lazyinit_task); 3954 ext4_clear_request_list(); 3955 kfree(ext4_li_info); 3956 ext4_li_info = NULL; 3957 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3958 "initialization thread\n", 3959 err); 3960 return err; 3961 } 3962 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3963 return 0; 3964 } 3965 3966 /* 3967 * Check whether it make sense to run itable init. thread or not. 3968 * If there is at least one uninitialized inode table, return 3969 * corresponding group number, else the loop goes through all 3970 * groups and return total number of groups. 3971 */ 3972 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3973 { 3974 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3975 struct ext4_group_desc *gdp = NULL; 3976 3977 if (!ext4_has_group_desc_csum(sb)) 3978 return ngroups; 3979 3980 for (group = 0; group < ngroups; group++) { 3981 gdp = ext4_get_group_desc(sb, group, NULL); 3982 if (!gdp) 3983 continue; 3984 3985 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3986 break; 3987 } 3988 3989 return group; 3990 } 3991 3992 static int ext4_li_info_new(void) 3993 { 3994 struct ext4_lazy_init *eli = NULL; 3995 3996 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3997 if (!eli) 3998 return -ENOMEM; 3999 4000 INIT_LIST_HEAD(&eli->li_request_list); 4001 mutex_init(&eli->li_list_mtx); 4002 4003 eli->li_state |= EXT4_LAZYINIT_QUIT; 4004 4005 ext4_li_info = eli; 4006 4007 return 0; 4008 } 4009 4010 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 4011 ext4_group_t start) 4012 { 4013 struct ext4_li_request *elr; 4014 4015 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 4016 if (!elr) 4017 return NULL; 4018 4019 elr->lr_super = sb; 4020 elr->lr_first_not_zeroed = start; 4021 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 4022 elr->lr_mode = EXT4_LI_MODE_ITABLE; 4023 elr->lr_next_group = start; 4024 } else { 4025 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 4026 } 4027 4028 /* 4029 * Randomize first schedule time of the request to 4030 * spread the inode table initialization requests 4031 * better. 4032 */ 4033 elr->lr_next_sched = jiffies + (prandom_u32() % 4034 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 4035 return elr; 4036 } 4037 4038 int ext4_register_li_request(struct super_block *sb, 4039 ext4_group_t first_not_zeroed) 4040 { 4041 struct ext4_sb_info *sbi = EXT4_SB(sb); 4042 struct ext4_li_request *elr = NULL; 4043 ext4_group_t ngroups = sbi->s_groups_count; 4044 int ret = 0; 4045 4046 mutex_lock(&ext4_li_mtx); 4047 if (sbi->s_li_request != NULL) { 4048 /* 4049 * Reset timeout so it can be computed again, because 4050 * s_li_wait_mult might have changed. 4051 */ 4052 sbi->s_li_request->lr_timeout = 0; 4053 goto out; 4054 } 4055 4056 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4057 (first_not_zeroed == ngroups || sb_rdonly(sb) || 4058 !test_opt(sb, INIT_INODE_TABLE))) 4059 goto out; 4060 4061 elr = ext4_li_request_new(sb, first_not_zeroed); 4062 if (!elr) { 4063 ret = -ENOMEM; 4064 goto out; 4065 } 4066 4067 if (NULL == ext4_li_info) { 4068 ret = ext4_li_info_new(); 4069 if (ret) 4070 goto out; 4071 } 4072 4073 mutex_lock(&ext4_li_info->li_list_mtx); 4074 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4075 mutex_unlock(&ext4_li_info->li_list_mtx); 4076 4077 sbi->s_li_request = elr; 4078 /* 4079 * set elr to NULL here since it has been inserted to 4080 * the request_list and the removal and free of it is 4081 * handled by ext4_clear_request_list from now on. 4082 */ 4083 elr = NULL; 4084 4085 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4086 ret = ext4_run_lazyinit_thread(); 4087 if (ret) 4088 goto out; 4089 } 4090 out: 4091 mutex_unlock(&ext4_li_mtx); 4092 if (ret) 4093 kfree(elr); 4094 return ret; 4095 } 4096 4097 /* 4098 * We do not need to lock anything since this is called on 4099 * module unload. 4100 */ 4101 static void ext4_destroy_lazyinit_thread(void) 4102 { 4103 /* 4104 * If thread exited earlier 4105 * there's nothing to be done. 4106 */ 4107 if (!ext4_li_info || !ext4_lazyinit_task) 4108 return; 4109 4110 kthread_stop(ext4_lazyinit_task); 4111 } 4112 4113 static int set_journal_csum_feature_set(struct super_block *sb) 4114 { 4115 int ret = 1; 4116 int compat, incompat; 4117 struct ext4_sb_info *sbi = EXT4_SB(sb); 4118 4119 if (ext4_has_metadata_csum(sb)) { 4120 /* journal checksum v3 */ 4121 compat = 0; 4122 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4123 } else { 4124 /* journal checksum v1 */ 4125 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4126 incompat = 0; 4127 } 4128 4129 jbd2_journal_clear_features(sbi->s_journal, 4130 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4131 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4132 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4133 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4134 ret = jbd2_journal_set_features(sbi->s_journal, 4135 compat, 0, 4136 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4137 incompat); 4138 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4139 ret = jbd2_journal_set_features(sbi->s_journal, 4140 compat, 0, 4141 incompat); 4142 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4143 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4144 } else { 4145 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4146 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4147 } 4148 4149 return ret; 4150 } 4151 4152 /* 4153 * Note: calculating the overhead so we can be compatible with 4154 * historical BSD practice is quite difficult in the face of 4155 * clusters/bigalloc. This is because multiple metadata blocks from 4156 * different block group can end up in the same allocation cluster. 4157 * Calculating the exact overhead in the face of clustered allocation 4158 * requires either O(all block bitmaps) in memory or O(number of block 4159 * groups**2) in time. We will still calculate the superblock for 4160 * older file systems --- and if we come across with a bigalloc file 4161 * system with zero in s_overhead_clusters the estimate will be close to 4162 * correct especially for very large cluster sizes --- but for newer 4163 * file systems, it's better to calculate this figure once at mkfs 4164 * time, and store it in the superblock. If the superblock value is 4165 * present (even for non-bigalloc file systems), we will use it. 4166 */ 4167 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4168 char *buf) 4169 { 4170 struct ext4_sb_info *sbi = EXT4_SB(sb); 4171 struct ext4_group_desc *gdp; 4172 ext4_fsblk_t first_block, last_block, b; 4173 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4174 int s, j, count = 0; 4175 4176 if (!ext4_has_feature_bigalloc(sb)) 4177 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 4178 sbi->s_itb_per_group + 2); 4179 4180 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4181 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4182 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4183 for (i = 0; i < ngroups; i++) { 4184 gdp = ext4_get_group_desc(sb, i, NULL); 4185 b = ext4_block_bitmap(sb, gdp); 4186 if (b >= first_block && b <= last_block) { 4187 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4188 count++; 4189 } 4190 b = ext4_inode_bitmap(sb, gdp); 4191 if (b >= first_block && b <= last_block) { 4192 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4193 count++; 4194 } 4195 b = ext4_inode_table(sb, gdp); 4196 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4197 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4198 int c = EXT4_B2C(sbi, b - first_block); 4199 ext4_set_bit(c, buf); 4200 count++; 4201 } 4202 if (i != grp) 4203 continue; 4204 s = 0; 4205 if (ext4_bg_has_super(sb, grp)) { 4206 ext4_set_bit(s++, buf); 4207 count++; 4208 } 4209 j = ext4_bg_num_gdb(sb, grp); 4210 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4211 ext4_error(sb, "Invalid number of block group " 4212 "descriptor blocks: %d", j); 4213 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4214 } 4215 count += j; 4216 for (; j > 0; j--) 4217 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4218 } 4219 if (!count) 4220 return 0; 4221 return EXT4_CLUSTERS_PER_GROUP(sb) - 4222 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4223 } 4224 4225 /* 4226 * Compute the overhead and stash it in sbi->s_overhead 4227 */ 4228 int ext4_calculate_overhead(struct super_block *sb) 4229 { 4230 struct ext4_sb_info *sbi = EXT4_SB(sb); 4231 struct ext4_super_block *es = sbi->s_es; 4232 struct inode *j_inode; 4233 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4234 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4235 ext4_fsblk_t overhead = 0; 4236 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4237 4238 if (!buf) 4239 return -ENOMEM; 4240 4241 /* 4242 * Compute the overhead (FS structures). This is constant 4243 * for a given filesystem unless the number of block groups 4244 * changes so we cache the previous value until it does. 4245 */ 4246 4247 /* 4248 * All of the blocks before first_data_block are overhead 4249 */ 4250 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4251 4252 /* 4253 * Add the overhead found in each block group 4254 */ 4255 for (i = 0; i < ngroups; i++) { 4256 int blks; 4257 4258 blks = count_overhead(sb, i, buf); 4259 overhead += blks; 4260 if (blks) 4261 memset(buf, 0, PAGE_SIZE); 4262 cond_resched(); 4263 } 4264 4265 /* 4266 * Add the internal journal blocks whether the journal has been 4267 * loaded or not 4268 */ 4269 if (sbi->s_journal && !sbi->s_journal_bdev) 4270 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4271 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4272 /* j_inum for internal journal is non-zero */ 4273 j_inode = ext4_get_journal_inode(sb, j_inum); 4274 if (j_inode) { 4275 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4276 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4277 iput(j_inode); 4278 } else { 4279 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4280 } 4281 } 4282 sbi->s_overhead = overhead; 4283 smp_wmb(); 4284 free_page((unsigned long) buf); 4285 return 0; 4286 } 4287 4288 static void ext4_set_resv_clusters(struct super_block *sb) 4289 { 4290 ext4_fsblk_t resv_clusters; 4291 struct ext4_sb_info *sbi = EXT4_SB(sb); 4292 4293 /* 4294 * There's no need to reserve anything when we aren't using extents. 4295 * The space estimates are exact, there are no unwritten extents, 4296 * hole punching doesn't need new metadata... This is needed especially 4297 * to keep ext2/3 backward compatibility. 4298 */ 4299 if (!ext4_has_feature_extents(sb)) 4300 return; 4301 /* 4302 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4303 * This should cover the situations where we can not afford to run 4304 * out of space like for example punch hole, or converting 4305 * unwritten extents in delalloc path. In most cases such 4306 * allocation would require 1, or 2 blocks, higher numbers are 4307 * very rare. 4308 */ 4309 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4310 sbi->s_cluster_bits); 4311 4312 do_div(resv_clusters, 50); 4313 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4314 4315 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4316 } 4317 4318 static const char *ext4_quota_mode(struct super_block *sb) 4319 { 4320 #ifdef CONFIG_QUOTA 4321 if (!ext4_quota_capable(sb)) 4322 return "none"; 4323 4324 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4325 return "journalled"; 4326 else 4327 return "writeback"; 4328 #else 4329 return "disabled"; 4330 #endif 4331 } 4332 4333 static void ext4_setup_csum_trigger(struct super_block *sb, 4334 enum ext4_journal_trigger_type type, 4335 void (*trigger)( 4336 struct jbd2_buffer_trigger_type *type, 4337 struct buffer_head *bh, 4338 void *mapped_data, 4339 size_t size)) 4340 { 4341 struct ext4_sb_info *sbi = EXT4_SB(sb); 4342 4343 sbi->s_journal_triggers[type].sb = sb; 4344 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4345 } 4346 4347 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4348 { 4349 if (!sbi) 4350 return; 4351 4352 kfree(sbi->s_blockgroup_lock); 4353 fs_put_dax(sbi->s_daxdev); 4354 kfree(sbi); 4355 } 4356 4357 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4358 { 4359 struct ext4_sb_info *sbi; 4360 4361 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4362 if (!sbi) 4363 return NULL; 4364 4365 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off); 4366 4367 sbi->s_blockgroup_lock = 4368 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4369 4370 if (!sbi->s_blockgroup_lock) 4371 goto err_out; 4372 4373 sb->s_fs_info = sbi; 4374 sbi->s_sb = sb; 4375 return sbi; 4376 err_out: 4377 fs_put_dax(sbi->s_daxdev); 4378 kfree(sbi); 4379 return NULL; 4380 } 4381 4382 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 4383 { 4384 struct buffer_head *bh, **group_desc; 4385 struct ext4_super_block *es = NULL; 4386 struct ext4_sb_info *sbi = EXT4_SB(sb); 4387 struct flex_groups **flex_groups; 4388 ext4_fsblk_t block; 4389 ext4_fsblk_t logical_sb_block; 4390 unsigned long offset = 0; 4391 unsigned long def_mount_opts; 4392 struct inode *root; 4393 int ret = -ENOMEM; 4394 int blocksize, clustersize; 4395 unsigned int db_count; 4396 unsigned int i; 4397 int needs_recovery, has_huge_files; 4398 __u64 blocks_count; 4399 int err = 0; 4400 ext4_group_t first_not_zeroed; 4401 struct ext4_fs_context *ctx = fc->fs_private; 4402 int silent = fc->sb_flags & SB_SILENT; 4403 4404 /* Set defaults for the variables that will be set during parsing */ 4405 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4406 4407 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4408 sbi->s_sectors_written_start = 4409 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4410 4411 /* -EINVAL is default */ 4412 ret = -EINVAL; 4413 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4414 if (!blocksize) { 4415 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4416 goto out_fail; 4417 } 4418 4419 /* 4420 * The ext4 superblock will not be buffer aligned for other than 1kB 4421 * block sizes. We need to calculate the offset from buffer start. 4422 */ 4423 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4424 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4425 offset = do_div(logical_sb_block, blocksize); 4426 } else { 4427 logical_sb_block = sbi->s_sb_block; 4428 } 4429 4430 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4431 if (IS_ERR(bh)) { 4432 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4433 ret = PTR_ERR(bh); 4434 goto out_fail; 4435 } 4436 /* 4437 * Note: s_es must be initialized as soon as possible because 4438 * some ext4 macro-instructions depend on its value 4439 */ 4440 es = (struct ext4_super_block *) (bh->b_data + offset); 4441 sbi->s_es = es; 4442 sb->s_magic = le16_to_cpu(es->s_magic); 4443 if (sb->s_magic != EXT4_SUPER_MAGIC) 4444 goto cantfind_ext4; 4445 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4446 4447 /* Warn if metadata_csum and gdt_csum are both set. */ 4448 if (ext4_has_feature_metadata_csum(sb) && 4449 ext4_has_feature_gdt_csum(sb)) 4450 ext4_warning(sb, "metadata_csum and uninit_bg are " 4451 "redundant flags; please run fsck."); 4452 4453 /* Check for a known checksum algorithm */ 4454 if (!ext4_verify_csum_type(sb, es)) { 4455 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4456 "unknown checksum algorithm."); 4457 silent = 1; 4458 goto cantfind_ext4; 4459 } 4460 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4461 ext4_orphan_file_block_trigger); 4462 4463 /* Load the checksum driver */ 4464 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4465 if (IS_ERR(sbi->s_chksum_driver)) { 4466 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4467 ret = PTR_ERR(sbi->s_chksum_driver); 4468 sbi->s_chksum_driver = NULL; 4469 goto failed_mount; 4470 } 4471 4472 /* Check superblock checksum */ 4473 if (!ext4_superblock_csum_verify(sb, es)) { 4474 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4475 "invalid superblock checksum. Run e2fsck?"); 4476 silent = 1; 4477 ret = -EFSBADCRC; 4478 goto cantfind_ext4; 4479 } 4480 4481 /* Precompute checksum seed for all metadata */ 4482 if (ext4_has_feature_csum_seed(sb)) 4483 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4484 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4485 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4486 sizeof(es->s_uuid)); 4487 4488 /* Set defaults before we parse the mount options */ 4489 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4490 set_opt(sb, INIT_INODE_TABLE); 4491 if (def_mount_opts & EXT4_DEFM_DEBUG) 4492 set_opt(sb, DEBUG); 4493 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4494 set_opt(sb, GRPID); 4495 if (def_mount_opts & EXT4_DEFM_UID16) 4496 set_opt(sb, NO_UID32); 4497 /* xattr user namespace & acls are now defaulted on */ 4498 set_opt(sb, XATTR_USER); 4499 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4500 set_opt(sb, POSIX_ACL); 4501 #endif 4502 if (ext4_has_feature_fast_commit(sb)) 4503 set_opt2(sb, JOURNAL_FAST_COMMIT); 4504 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4505 if (ext4_has_metadata_csum(sb)) 4506 set_opt(sb, JOURNAL_CHECKSUM); 4507 4508 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4509 set_opt(sb, JOURNAL_DATA); 4510 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4511 set_opt(sb, ORDERED_DATA); 4512 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4513 set_opt(sb, WRITEBACK_DATA); 4514 4515 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4516 set_opt(sb, ERRORS_PANIC); 4517 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4518 set_opt(sb, ERRORS_CONT); 4519 else 4520 set_opt(sb, ERRORS_RO); 4521 /* block_validity enabled by default; disable with noblock_validity */ 4522 set_opt(sb, BLOCK_VALIDITY); 4523 if (def_mount_opts & EXT4_DEFM_DISCARD) 4524 set_opt(sb, DISCARD); 4525 4526 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4527 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4528 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4529 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4530 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4531 4532 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4533 set_opt(sb, BARRIER); 4534 4535 /* 4536 * enable delayed allocation by default 4537 * Use -o nodelalloc to turn it off 4538 */ 4539 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4540 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4541 set_opt(sb, DELALLOC); 4542 4543 /* 4544 * set default s_li_wait_mult for lazyinit, for the case there is 4545 * no mount option specified. 4546 */ 4547 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4548 4549 if (le32_to_cpu(es->s_log_block_size) > 4550 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4551 ext4_msg(sb, KERN_ERR, 4552 "Invalid log block size: %u", 4553 le32_to_cpu(es->s_log_block_size)); 4554 goto failed_mount; 4555 } 4556 if (le32_to_cpu(es->s_log_cluster_size) > 4557 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4558 ext4_msg(sb, KERN_ERR, 4559 "Invalid log cluster size: %u", 4560 le32_to_cpu(es->s_log_cluster_size)); 4561 goto failed_mount; 4562 } 4563 4564 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4565 4566 if (blocksize == PAGE_SIZE) 4567 set_opt(sb, DIOREAD_NOLOCK); 4568 4569 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4570 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4571 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4572 } else { 4573 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4574 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4575 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4576 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4577 sbi->s_first_ino); 4578 goto failed_mount; 4579 } 4580 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4581 (!is_power_of_2(sbi->s_inode_size)) || 4582 (sbi->s_inode_size > blocksize)) { 4583 ext4_msg(sb, KERN_ERR, 4584 "unsupported inode size: %d", 4585 sbi->s_inode_size); 4586 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4587 goto failed_mount; 4588 } 4589 /* 4590 * i_atime_extra is the last extra field available for 4591 * [acm]times in struct ext4_inode. Checking for that 4592 * field should suffice to ensure we have extra space 4593 * for all three. 4594 */ 4595 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4596 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4597 sb->s_time_gran = 1; 4598 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4599 } else { 4600 sb->s_time_gran = NSEC_PER_SEC; 4601 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4602 } 4603 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4604 } 4605 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4606 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4607 EXT4_GOOD_OLD_INODE_SIZE; 4608 if (ext4_has_feature_extra_isize(sb)) { 4609 unsigned v, max = (sbi->s_inode_size - 4610 EXT4_GOOD_OLD_INODE_SIZE); 4611 4612 v = le16_to_cpu(es->s_want_extra_isize); 4613 if (v > max) { 4614 ext4_msg(sb, KERN_ERR, 4615 "bad s_want_extra_isize: %d", v); 4616 goto failed_mount; 4617 } 4618 if (sbi->s_want_extra_isize < v) 4619 sbi->s_want_extra_isize = v; 4620 4621 v = le16_to_cpu(es->s_min_extra_isize); 4622 if (v > max) { 4623 ext4_msg(sb, KERN_ERR, 4624 "bad s_min_extra_isize: %d", v); 4625 goto failed_mount; 4626 } 4627 if (sbi->s_want_extra_isize < v) 4628 sbi->s_want_extra_isize = v; 4629 } 4630 } 4631 4632 err = parse_apply_sb_mount_options(sb, ctx); 4633 if (err < 0) 4634 goto failed_mount; 4635 4636 sbi->s_def_mount_opt = sbi->s_mount_opt; 4637 4638 err = ext4_check_opt_consistency(fc, sb); 4639 if (err < 0) 4640 goto failed_mount; 4641 4642 err = ext4_apply_options(fc, sb); 4643 if (err < 0) 4644 goto failed_mount; 4645 4646 #if IS_ENABLED(CONFIG_UNICODE) 4647 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4648 const struct ext4_sb_encodings *encoding_info; 4649 struct unicode_map *encoding; 4650 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4651 4652 encoding_info = ext4_sb_read_encoding(es); 4653 if (!encoding_info) { 4654 ext4_msg(sb, KERN_ERR, 4655 "Encoding requested by superblock is unknown"); 4656 goto failed_mount; 4657 } 4658 4659 encoding = utf8_load(encoding_info->version); 4660 if (IS_ERR(encoding)) { 4661 ext4_msg(sb, KERN_ERR, 4662 "can't mount with superblock charset: %s-%u.%u.%u " 4663 "not supported by the kernel. flags: 0x%x.", 4664 encoding_info->name, 4665 unicode_major(encoding_info->version), 4666 unicode_minor(encoding_info->version), 4667 unicode_rev(encoding_info->version), 4668 encoding_flags); 4669 goto failed_mount; 4670 } 4671 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4672 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4673 unicode_major(encoding_info->version), 4674 unicode_minor(encoding_info->version), 4675 unicode_rev(encoding_info->version), 4676 encoding_flags); 4677 4678 sb->s_encoding = encoding; 4679 sb->s_encoding_flags = encoding_flags; 4680 } 4681 #endif 4682 4683 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4684 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4685 /* can't mount with both data=journal and dioread_nolock. */ 4686 clear_opt(sb, DIOREAD_NOLOCK); 4687 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4688 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4689 ext4_msg(sb, KERN_ERR, "can't mount with " 4690 "both data=journal and delalloc"); 4691 goto failed_mount; 4692 } 4693 if (test_opt(sb, DAX_ALWAYS)) { 4694 ext4_msg(sb, KERN_ERR, "can't mount with " 4695 "both data=journal and dax"); 4696 goto failed_mount; 4697 } 4698 if (ext4_has_feature_encrypt(sb)) { 4699 ext4_msg(sb, KERN_WARNING, 4700 "encrypted files will use data=ordered " 4701 "instead of data journaling mode"); 4702 } 4703 if (test_opt(sb, DELALLOC)) 4704 clear_opt(sb, DELALLOC); 4705 } else { 4706 sb->s_iflags |= SB_I_CGROUPWB; 4707 } 4708 4709 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4710 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4711 4712 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4713 (ext4_has_compat_features(sb) || 4714 ext4_has_ro_compat_features(sb) || 4715 ext4_has_incompat_features(sb))) 4716 ext4_msg(sb, KERN_WARNING, 4717 "feature flags set on rev 0 fs, " 4718 "running e2fsck is recommended"); 4719 4720 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4721 set_opt2(sb, HURD_COMPAT); 4722 if (ext4_has_feature_64bit(sb)) { 4723 ext4_msg(sb, KERN_ERR, 4724 "The Hurd can't support 64-bit file systems"); 4725 goto failed_mount; 4726 } 4727 4728 /* 4729 * ea_inode feature uses l_i_version field which is not 4730 * available in HURD_COMPAT mode. 4731 */ 4732 if (ext4_has_feature_ea_inode(sb)) { 4733 ext4_msg(sb, KERN_ERR, 4734 "ea_inode feature is not supported for Hurd"); 4735 goto failed_mount; 4736 } 4737 } 4738 4739 if (IS_EXT2_SB(sb)) { 4740 if (ext2_feature_set_ok(sb)) 4741 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4742 "using the ext4 subsystem"); 4743 else { 4744 /* 4745 * If we're probing be silent, if this looks like 4746 * it's actually an ext[34] filesystem. 4747 */ 4748 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4749 goto failed_mount; 4750 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4751 "to feature incompatibilities"); 4752 goto failed_mount; 4753 } 4754 } 4755 4756 if (IS_EXT3_SB(sb)) { 4757 if (ext3_feature_set_ok(sb)) 4758 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4759 "using the ext4 subsystem"); 4760 else { 4761 /* 4762 * If we're probing be silent, if this looks like 4763 * it's actually an ext4 filesystem. 4764 */ 4765 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4766 goto failed_mount; 4767 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4768 "to feature incompatibilities"); 4769 goto failed_mount; 4770 } 4771 } 4772 4773 /* 4774 * Check feature flags regardless of the revision level, since we 4775 * previously didn't change the revision level when setting the flags, 4776 * so there is a chance incompat flags are set on a rev 0 filesystem. 4777 */ 4778 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4779 goto failed_mount; 4780 4781 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4782 ext4_msg(sb, KERN_ERR, 4783 "Number of reserved GDT blocks insanely large: %d", 4784 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4785 goto failed_mount; 4786 } 4787 4788 if (sbi->s_daxdev) { 4789 if (blocksize == PAGE_SIZE) 4790 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4791 else 4792 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4793 } 4794 4795 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4796 if (ext4_has_feature_inline_data(sb)) { 4797 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4798 " that may contain inline data"); 4799 goto failed_mount; 4800 } 4801 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4802 ext4_msg(sb, KERN_ERR, 4803 "DAX unsupported by block device."); 4804 goto failed_mount; 4805 } 4806 } 4807 4808 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4809 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4810 es->s_encryption_level); 4811 goto failed_mount; 4812 } 4813 4814 if (sb->s_blocksize != blocksize) { 4815 /* 4816 * bh must be released before kill_bdev(), otherwise 4817 * it won't be freed and its page also. kill_bdev() 4818 * is called by sb_set_blocksize(). 4819 */ 4820 brelse(bh); 4821 /* Validate the filesystem blocksize */ 4822 if (!sb_set_blocksize(sb, blocksize)) { 4823 ext4_msg(sb, KERN_ERR, "bad block size %d", 4824 blocksize); 4825 bh = NULL; 4826 goto failed_mount; 4827 } 4828 4829 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4830 offset = do_div(logical_sb_block, blocksize); 4831 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4832 if (IS_ERR(bh)) { 4833 ext4_msg(sb, KERN_ERR, 4834 "Can't read superblock on 2nd try"); 4835 ret = PTR_ERR(bh); 4836 bh = NULL; 4837 goto failed_mount; 4838 } 4839 es = (struct ext4_super_block *)(bh->b_data + offset); 4840 sbi->s_es = es; 4841 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4842 ext4_msg(sb, KERN_ERR, 4843 "Magic mismatch, very weird!"); 4844 goto failed_mount; 4845 } 4846 } 4847 4848 has_huge_files = ext4_has_feature_huge_file(sb); 4849 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4850 has_huge_files); 4851 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4852 4853 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4854 if (ext4_has_feature_64bit(sb)) { 4855 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4856 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4857 !is_power_of_2(sbi->s_desc_size)) { 4858 ext4_msg(sb, KERN_ERR, 4859 "unsupported descriptor size %lu", 4860 sbi->s_desc_size); 4861 goto failed_mount; 4862 } 4863 } else 4864 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4865 4866 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4867 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4868 4869 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4870 if (sbi->s_inodes_per_block == 0) 4871 goto cantfind_ext4; 4872 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4873 sbi->s_inodes_per_group > blocksize * 8) { 4874 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4875 sbi->s_inodes_per_group); 4876 goto failed_mount; 4877 } 4878 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4879 sbi->s_inodes_per_block; 4880 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4881 sbi->s_sbh = bh; 4882 sbi->s_mount_state = le16_to_cpu(es->s_state); 4883 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4884 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4885 4886 for (i = 0; i < 4; i++) 4887 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4888 sbi->s_def_hash_version = es->s_def_hash_version; 4889 if (ext4_has_feature_dir_index(sb)) { 4890 i = le32_to_cpu(es->s_flags); 4891 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4892 sbi->s_hash_unsigned = 3; 4893 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4894 #ifdef __CHAR_UNSIGNED__ 4895 if (!sb_rdonly(sb)) 4896 es->s_flags |= 4897 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4898 sbi->s_hash_unsigned = 3; 4899 #else 4900 if (!sb_rdonly(sb)) 4901 es->s_flags |= 4902 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4903 #endif 4904 } 4905 } 4906 4907 /* Handle clustersize */ 4908 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4909 if (ext4_has_feature_bigalloc(sb)) { 4910 if (clustersize < blocksize) { 4911 ext4_msg(sb, KERN_ERR, 4912 "cluster size (%d) smaller than " 4913 "block size (%d)", clustersize, blocksize); 4914 goto failed_mount; 4915 } 4916 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4917 le32_to_cpu(es->s_log_block_size); 4918 sbi->s_clusters_per_group = 4919 le32_to_cpu(es->s_clusters_per_group); 4920 if (sbi->s_clusters_per_group > blocksize * 8) { 4921 ext4_msg(sb, KERN_ERR, 4922 "#clusters per group too big: %lu", 4923 sbi->s_clusters_per_group); 4924 goto failed_mount; 4925 } 4926 if (sbi->s_blocks_per_group != 4927 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4928 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4929 "clusters per group (%lu) inconsistent", 4930 sbi->s_blocks_per_group, 4931 sbi->s_clusters_per_group); 4932 goto failed_mount; 4933 } 4934 } else { 4935 if (clustersize != blocksize) { 4936 ext4_msg(sb, KERN_ERR, 4937 "fragment/cluster size (%d) != " 4938 "block size (%d)", clustersize, blocksize); 4939 goto failed_mount; 4940 } 4941 if (sbi->s_blocks_per_group > blocksize * 8) { 4942 ext4_msg(sb, KERN_ERR, 4943 "#blocks per group too big: %lu", 4944 sbi->s_blocks_per_group); 4945 goto failed_mount; 4946 } 4947 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4948 sbi->s_cluster_bits = 0; 4949 } 4950 sbi->s_cluster_ratio = clustersize / blocksize; 4951 4952 /* Do we have standard group size of clustersize * 8 blocks ? */ 4953 if (sbi->s_blocks_per_group == clustersize << 3) 4954 set_opt2(sb, STD_GROUP_SIZE); 4955 4956 /* 4957 * Test whether we have more sectors than will fit in sector_t, 4958 * and whether the max offset is addressable by the page cache. 4959 */ 4960 err = generic_check_addressable(sb->s_blocksize_bits, 4961 ext4_blocks_count(es)); 4962 if (err) { 4963 ext4_msg(sb, KERN_ERR, "filesystem" 4964 " too large to mount safely on this system"); 4965 goto failed_mount; 4966 } 4967 4968 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4969 goto cantfind_ext4; 4970 4971 /* check blocks count against device size */ 4972 blocks_count = sb_bdev_nr_blocks(sb); 4973 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4974 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4975 "exceeds size of device (%llu blocks)", 4976 ext4_blocks_count(es), blocks_count); 4977 goto failed_mount; 4978 } 4979 4980 /* 4981 * It makes no sense for the first data block to be beyond the end 4982 * of the filesystem. 4983 */ 4984 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4985 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4986 "block %u is beyond end of filesystem (%llu)", 4987 le32_to_cpu(es->s_first_data_block), 4988 ext4_blocks_count(es)); 4989 goto failed_mount; 4990 } 4991 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4992 (sbi->s_cluster_ratio == 1)) { 4993 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4994 "block is 0 with a 1k block and cluster size"); 4995 goto failed_mount; 4996 } 4997 4998 blocks_count = (ext4_blocks_count(es) - 4999 le32_to_cpu(es->s_first_data_block) + 5000 EXT4_BLOCKS_PER_GROUP(sb) - 1); 5001 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 5002 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 5003 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 5004 "(block count %llu, first data block %u, " 5005 "blocks per group %lu)", blocks_count, 5006 ext4_blocks_count(es), 5007 le32_to_cpu(es->s_first_data_block), 5008 EXT4_BLOCKS_PER_GROUP(sb)); 5009 goto failed_mount; 5010 } 5011 sbi->s_groups_count = blocks_count; 5012 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 5013 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 5014 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 5015 le32_to_cpu(es->s_inodes_count)) { 5016 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 5017 le32_to_cpu(es->s_inodes_count), 5018 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 5019 ret = -EINVAL; 5020 goto failed_mount; 5021 } 5022 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 5023 EXT4_DESC_PER_BLOCK(sb); 5024 if (ext4_has_feature_meta_bg(sb)) { 5025 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 5026 ext4_msg(sb, KERN_WARNING, 5027 "first meta block group too large: %u " 5028 "(group descriptor block count %u)", 5029 le32_to_cpu(es->s_first_meta_bg), db_count); 5030 goto failed_mount; 5031 } 5032 } 5033 rcu_assign_pointer(sbi->s_group_desc, 5034 kvmalloc_array(db_count, 5035 sizeof(struct buffer_head *), 5036 GFP_KERNEL)); 5037 if (sbi->s_group_desc == NULL) { 5038 ext4_msg(sb, KERN_ERR, "not enough memory"); 5039 ret = -ENOMEM; 5040 goto failed_mount; 5041 } 5042 5043 bgl_lock_init(sbi->s_blockgroup_lock); 5044 5045 /* Pre-read the descriptors into the buffer cache */ 5046 for (i = 0; i < db_count; i++) { 5047 block = descriptor_loc(sb, logical_sb_block, i); 5048 ext4_sb_breadahead_unmovable(sb, block); 5049 } 5050 5051 for (i = 0; i < db_count; i++) { 5052 struct buffer_head *bh; 5053 5054 block = descriptor_loc(sb, logical_sb_block, i); 5055 bh = ext4_sb_bread_unmovable(sb, block); 5056 if (IS_ERR(bh)) { 5057 ext4_msg(sb, KERN_ERR, 5058 "can't read group descriptor %d", i); 5059 db_count = i; 5060 ret = PTR_ERR(bh); 5061 goto failed_mount2; 5062 } 5063 rcu_read_lock(); 5064 rcu_dereference(sbi->s_group_desc)[i] = bh; 5065 rcu_read_unlock(); 5066 } 5067 sbi->s_gdb_count = db_count; 5068 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 5069 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 5070 ret = -EFSCORRUPTED; 5071 goto failed_mount2; 5072 } 5073 5074 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5075 spin_lock_init(&sbi->s_error_lock); 5076 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5077 5078 /* Register extent status tree shrinker */ 5079 if (ext4_es_register_shrinker(sbi)) 5080 goto failed_mount3; 5081 5082 sbi->s_stripe = ext4_get_stripe_size(sbi); 5083 sbi->s_extent_max_zeroout_kb = 32; 5084 5085 /* 5086 * set up enough so that it can read an inode 5087 */ 5088 sb->s_op = &ext4_sops; 5089 sb->s_export_op = &ext4_export_ops; 5090 sb->s_xattr = ext4_xattr_handlers; 5091 #ifdef CONFIG_FS_ENCRYPTION 5092 sb->s_cop = &ext4_cryptops; 5093 #endif 5094 #ifdef CONFIG_FS_VERITY 5095 sb->s_vop = &ext4_verityops; 5096 #endif 5097 #ifdef CONFIG_QUOTA 5098 sb->dq_op = &ext4_quota_operations; 5099 if (ext4_has_feature_quota(sb)) 5100 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5101 else 5102 sb->s_qcop = &ext4_qctl_operations; 5103 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5104 #endif 5105 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5106 5107 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5108 mutex_init(&sbi->s_orphan_lock); 5109 5110 /* Initialize fast commit stuff */ 5111 atomic_set(&sbi->s_fc_subtid, 0); 5112 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 5113 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 5114 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 5115 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 5116 sbi->s_fc_bytes = 0; 5117 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 5118 sbi->s_fc_ineligible_tid = 0; 5119 spin_lock_init(&sbi->s_fc_lock); 5120 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 5121 sbi->s_fc_replay_state.fc_regions = NULL; 5122 sbi->s_fc_replay_state.fc_regions_size = 0; 5123 sbi->s_fc_replay_state.fc_regions_used = 0; 5124 sbi->s_fc_replay_state.fc_regions_valid = 0; 5125 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 5126 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 5127 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 5128 5129 sb->s_root = NULL; 5130 5131 needs_recovery = (es->s_last_orphan != 0 || 5132 ext4_has_feature_orphan_present(sb) || 5133 ext4_has_feature_journal_needs_recovery(sb)); 5134 5135 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 5136 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 5137 goto failed_mount3a; 5138 5139 /* 5140 * The first inode we look at is the journal inode. Don't try 5141 * root first: it may be modified in the journal! 5142 */ 5143 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5144 err = ext4_load_journal(sb, es, ctx->journal_devnum); 5145 if (err) 5146 goto failed_mount3a; 5147 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5148 ext4_has_feature_journal_needs_recovery(sb)) { 5149 ext4_msg(sb, KERN_ERR, "required journal recovery " 5150 "suppressed and not mounted read-only"); 5151 goto failed_mount_wq; 5152 } else { 5153 /* Nojournal mode, all journal mount options are illegal */ 5154 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5155 ext4_msg(sb, KERN_ERR, "can't mount with " 5156 "journal_checksum, fs mounted w/o journal"); 5157 goto failed_mount_wq; 5158 } 5159 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5160 ext4_msg(sb, KERN_ERR, "can't mount with " 5161 "journal_async_commit, fs mounted w/o journal"); 5162 goto failed_mount_wq; 5163 } 5164 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5165 ext4_msg(sb, KERN_ERR, "can't mount with " 5166 "commit=%lu, fs mounted w/o journal", 5167 sbi->s_commit_interval / HZ); 5168 goto failed_mount_wq; 5169 } 5170 if (EXT4_MOUNT_DATA_FLAGS & 5171 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5172 ext4_msg(sb, KERN_ERR, "can't mount with " 5173 "data=, fs mounted w/o journal"); 5174 goto failed_mount_wq; 5175 } 5176 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5177 clear_opt(sb, JOURNAL_CHECKSUM); 5178 clear_opt(sb, DATA_FLAGS); 5179 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5180 sbi->s_journal = NULL; 5181 needs_recovery = 0; 5182 goto no_journal; 5183 } 5184 5185 if (ext4_has_feature_64bit(sb) && 5186 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 5187 JBD2_FEATURE_INCOMPAT_64BIT)) { 5188 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 5189 goto failed_mount_wq; 5190 } 5191 5192 if (!set_journal_csum_feature_set(sb)) { 5193 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 5194 "feature set"); 5195 goto failed_mount_wq; 5196 } 5197 5198 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 5199 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 5200 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 5201 ext4_msg(sb, KERN_ERR, 5202 "Failed to set fast commit journal feature"); 5203 goto failed_mount_wq; 5204 } 5205 5206 /* We have now updated the journal if required, so we can 5207 * validate the data journaling mode. */ 5208 switch (test_opt(sb, DATA_FLAGS)) { 5209 case 0: 5210 /* No mode set, assume a default based on the journal 5211 * capabilities: ORDERED_DATA if the journal can 5212 * cope, else JOURNAL_DATA 5213 */ 5214 if (jbd2_journal_check_available_features 5215 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 5216 set_opt(sb, ORDERED_DATA); 5217 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 5218 } else { 5219 set_opt(sb, JOURNAL_DATA); 5220 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 5221 } 5222 break; 5223 5224 case EXT4_MOUNT_ORDERED_DATA: 5225 case EXT4_MOUNT_WRITEBACK_DATA: 5226 if (!jbd2_journal_check_available_features 5227 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 5228 ext4_msg(sb, KERN_ERR, "Journal does not support " 5229 "requested data journaling mode"); 5230 goto failed_mount_wq; 5231 } 5232 break; 5233 default: 5234 break; 5235 } 5236 5237 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 5238 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5239 ext4_msg(sb, KERN_ERR, "can't mount with " 5240 "journal_async_commit in data=ordered mode"); 5241 goto failed_mount_wq; 5242 } 5243 5244 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 5245 5246 sbi->s_journal->j_submit_inode_data_buffers = 5247 ext4_journal_submit_inode_data_buffers; 5248 sbi->s_journal->j_finish_inode_data_buffers = 5249 ext4_journal_finish_inode_data_buffers; 5250 5251 no_journal: 5252 if (!test_opt(sb, NO_MBCACHE)) { 5253 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5254 if (!sbi->s_ea_block_cache) { 5255 ext4_msg(sb, KERN_ERR, 5256 "Failed to create ea_block_cache"); 5257 goto failed_mount_wq; 5258 } 5259 5260 if (ext4_has_feature_ea_inode(sb)) { 5261 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5262 if (!sbi->s_ea_inode_cache) { 5263 ext4_msg(sb, KERN_ERR, 5264 "Failed to create ea_inode_cache"); 5265 goto failed_mount_wq; 5266 } 5267 } 5268 } 5269 5270 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 5271 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 5272 goto failed_mount_wq; 5273 } 5274 5275 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 5276 !ext4_has_feature_encrypt(sb)) { 5277 ext4_set_feature_encrypt(sb); 5278 ext4_commit_super(sb); 5279 } 5280 5281 /* 5282 * Get the # of file system overhead blocks from the 5283 * superblock if present. 5284 */ 5285 if (es->s_overhead_clusters) 5286 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5287 else { 5288 err = ext4_calculate_overhead(sb); 5289 if (err) 5290 goto failed_mount_wq; 5291 } 5292 5293 /* 5294 * The maximum number of concurrent works can be high and 5295 * concurrency isn't really necessary. Limit it to 1. 5296 */ 5297 EXT4_SB(sb)->rsv_conversion_wq = 5298 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5299 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5300 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5301 ret = -ENOMEM; 5302 goto failed_mount4; 5303 } 5304 5305 /* 5306 * The jbd2_journal_load will have done any necessary log recovery, 5307 * so we can safely mount the rest of the filesystem now. 5308 */ 5309 5310 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5311 if (IS_ERR(root)) { 5312 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5313 ret = PTR_ERR(root); 5314 root = NULL; 5315 goto failed_mount4; 5316 } 5317 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5318 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5319 iput(root); 5320 goto failed_mount4; 5321 } 5322 5323 sb->s_root = d_make_root(root); 5324 if (!sb->s_root) { 5325 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5326 ret = -ENOMEM; 5327 goto failed_mount4; 5328 } 5329 5330 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 5331 if (ret == -EROFS) { 5332 sb->s_flags |= SB_RDONLY; 5333 ret = 0; 5334 } else if (ret) 5335 goto failed_mount4a; 5336 5337 ext4_set_resv_clusters(sb); 5338 5339 if (test_opt(sb, BLOCK_VALIDITY)) { 5340 err = ext4_setup_system_zone(sb); 5341 if (err) { 5342 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5343 "zone (%d)", err); 5344 goto failed_mount4a; 5345 } 5346 } 5347 ext4_fc_replay_cleanup(sb); 5348 5349 ext4_ext_init(sb); 5350 5351 /* 5352 * Enable optimize_scan if number of groups is > threshold. This can be 5353 * turned off by passing "mb_optimize_scan=0". This can also be 5354 * turned on forcefully by passing "mb_optimize_scan=1". 5355 */ 5356 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5357 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5358 set_opt2(sb, MB_OPTIMIZE_SCAN); 5359 else 5360 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5361 } 5362 5363 err = ext4_mb_init(sb); 5364 if (err) { 5365 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5366 err); 5367 goto failed_mount5; 5368 } 5369 5370 /* 5371 * We can only set up the journal commit callback once 5372 * mballoc is initialized 5373 */ 5374 if (sbi->s_journal) 5375 sbi->s_journal->j_commit_callback = 5376 ext4_journal_commit_callback; 5377 5378 block = ext4_count_free_clusters(sb); 5379 ext4_free_blocks_count_set(sbi->s_es, 5380 EXT4_C2B(sbi, block)); 5381 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5382 GFP_KERNEL); 5383 if (!err) { 5384 unsigned long freei = ext4_count_free_inodes(sb); 5385 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5386 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5387 GFP_KERNEL); 5388 } 5389 /* 5390 * Update the checksum after updating free space/inode 5391 * counters. Otherwise the superblock can have an incorrect 5392 * checksum in the buffer cache until it is written out and 5393 * e2fsprogs programs trying to open a file system immediately 5394 * after it is mounted can fail. 5395 */ 5396 ext4_superblock_csum_set(sb); 5397 if (!err) 5398 err = percpu_counter_init(&sbi->s_dirs_counter, 5399 ext4_count_dirs(sb), GFP_KERNEL); 5400 if (!err) 5401 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5402 GFP_KERNEL); 5403 if (!err) 5404 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5405 GFP_KERNEL); 5406 if (!err) 5407 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5408 5409 if (err) { 5410 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5411 goto failed_mount6; 5412 } 5413 5414 if (ext4_has_feature_flex_bg(sb)) 5415 if (!ext4_fill_flex_info(sb)) { 5416 ext4_msg(sb, KERN_ERR, 5417 "unable to initialize " 5418 "flex_bg meta info!"); 5419 ret = -ENOMEM; 5420 goto failed_mount6; 5421 } 5422 5423 err = ext4_register_li_request(sb, first_not_zeroed); 5424 if (err) 5425 goto failed_mount6; 5426 5427 err = ext4_register_sysfs(sb); 5428 if (err) 5429 goto failed_mount7; 5430 5431 err = ext4_init_orphan_info(sb); 5432 if (err) 5433 goto failed_mount8; 5434 #ifdef CONFIG_QUOTA 5435 /* Enable quota usage during mount. */ 5436 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5437 err = ext4_enable_quotas(sb); 5438 if (err) 5439 goto failed_mount9; 5440 } 5441 #endif /* CONFIG_QUOTA */ 5442 5443 /* 5444 * Save the original bdev mapping's wb_err value which could be 5445 * used to detect the metadata async write error. 5446 */ 5447 spin_lock_init(&sbi->s_bdev_wb_lock); 5448 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5449 &sbi->s_bdev_wb_err); 5450 sb->s_bdev->bd_super = sb; 5451 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5452 ext4_orphan_cleanup(sb, es); 5453 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5454 if (needs_recovery) { 5455 ext4_msg(sb, KERN_INFO, "recovery complete"); 5456 err = ext4_mark_recovery_complete(sb, es); 5457 if (err) 5458 goto failed_mount9; 5459 } 5460 5461 if (test_opt(sb, DISCARD)) { 5462 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5463 if (!blk_queue_discard(q)) 5464 ext4_msg(sb, KERN_WARNING, 5465 "mounting with \"discard\" option, but " 5466 "the device does not support discard"); 5467 } 5468 5469 if (es->s_error_count) 5470 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5471 5472 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5473 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5474 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5475 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5476 atomic_set(&sbi->s_warning_count, 0); 5477 atomic_set(&sbi->s_msg_count, 0); 5478 5479 return 0; 5480 5481 cantfind_ext4: 5482 if (!silent) 5483 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5484 goto failed_mount; 5485 5486 failed_mount9: 5487 ext4_release_orphan_info(sb); 5488 failed_mount8: 5489 ext4_unregister_sysfs(sb); 5490 kobject_put(&sbi->s_kobj); 5491 failed_mount7: 5492 ext4_unregister_li_request(sb); 5493 failed_mount6: 5494 ext4_mb_release(sb); 5495 rcu_read_lock(); 5496 flex_groups = rcu_dereference(sbi->s_flex_groups); 5497 if (flex_groups) { 5498 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5499 kvfree(flex_groups[i]); 5500 kvfree(flex_groups); 5501 } 5502 rcu_read_unlock(); 5503 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5504 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5505 percpu_counter_destroy(&sbi->s_dirs_counter); 5506 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5507 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5508 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5509 failed_mount5: 5510 ext4_ext_release(sb); 5511 ext4_release_system_zone(sb); 5512 failed_mount4a: 5513 dput(sb->s_root); 5514 sb->s_root = NULL; 5515 failed_mount4: 5516 ext4_msg(sb, KERN_ERR, "mount failed"); 5517 if (EXT4_SB(sb)->rsv_conversion_wq) 5518 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5519 failed_mount_wq: 5520 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5521 sbi->s_ea_inode_cache = NULL; 5522 5523 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5524 sbi->s_ea_block_cache = NULL; 5525 5526 if (sbi->s_journal) { 5527 /* flush s_error_work before journal destroy. */ 5528 flush_work(&sbi->s_error_work); 5529 jbd2_journal_destroy(sbi->s_journal); 5530 sbi->s_journal = NULL; 5531 } 5532 failed_mount3a: 5533 ext4_es_unregister_shrinker(sbi); 5534 failed_mount3: 5535 /* flush s_error_work before sbi destroy */ 5536 flush_work(&sbi->s_error_work); 5537 del_timer_sync(&sbi->s_err_report); 5538 ext4_stop_mmpd(sbi); 5539 failed_mount2: 5540 rcu_read_lock(); 5541 group_desc = rcu_dereference(sbi->s_group_desc); 5542 for (i = 0; i < db_count; i++) 5543 brelse(group_desc[i]); 5544 kvfree(group_desc); 5545 rcu_read_unlock(); 5546 failed_mount: 5547 if (sbi->s_chksum_driver) 5548 crypto_free_shash(sbi->s_chksum_driver); 5549 5550 #if IS_ENABLED(CONFIG_UNICODE) 5551 utf8_unload(sb->s_encoding); 5552 #endif 5553 5554 #ifdef CONFIG_QUOTA 5555 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5556 kfree(get_qf_name(sb, sbi, i)); 5557 #endif 5558 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5559 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5560 brelse(bh); 5561 ext4_blkdev_remove(sbi); 5562 out_fail: 5563 sb->s_fs_info = NULL; 5564 return err ? err : ret; 5565 } 5566 5567 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5568 { 5569 struct ext4_fs_context *ctx = fc->fs_private; 5570 struct ext4_sb_info *sbi; 5571 const char *descr; 5572 int ret; 5573 5574 sbi = ext4_alloc_sbi(sb); 5575 if (!sbi) 5576 return -ENOMEM; 5577 5578 fc->s_fs_info = sbi; 5579 5580 /* Cleanup superblock name */ 5581 strreplace(sb->s_id, '/', '!'); 5582 5583 sbi->s_sb_block = 1; /* Default super block location */ 5584 if (ctx->spec & EXT4_SPEC_s_sb_block) 5585 sbi->s_sb_block = ctx->s_sb_block; 5586 5587 ret = __ext4_fill_super(fc, sb); 5588 if (ret < 0) 5589 goto free_sbi; 5590 5591 if (sbi->s_journal) { 5592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5593 descr = " journalled data mode"; 5594 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5595 descr = " ordered data mode"; 5596 else 5597 descr = " writeback data mode"; 5598 } else 5599 descr = "out journal"; 5600 5601 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5602 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5603 "Quota mode: %s.", descr, ext4_quota_mode(sb)); 5604 5605 return 0; 5606 5607 free_sbi: 5608 ext4_free_sbi(sbi); 5609 fc->s_fs_info = NULL; 5610 return ret; 5611 } 5612 5613 static int ext4_get_tree(struct fs_context *fc) 5614 { 5615 return get_tree_bdev(fc, ext4_fill_super); 5616 } 5617 5618 /* 5619 * Setup any per-fs journal parameters now. We'll do this both on 5620 * initial mount, once the journal has been initialised but before we've 5621 * done any recovery; and again on any subsequent remount. 5622 */ 5623 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5624 { 5625 struct ext4_sb_info *sbi = EXT4_SB(sb); 5626 5627 journal->j_commit_interval = sbi->s_commit_interval; 5628 journal->j_min_batch_time = sbi->s_min_batch_time; 5629 journal->j_max_batch_time = sbi->s_max_batch_time; 5630 ext4_fc_init(sb, journal); 5631 5632 write_lock(&journal->j_state_lock); 5633 if (test_opt(sb, BARRIER)) 5634 journal->j_flags |= JBD2_BARRIER; 5635 else 5636 journal->j_flags &= ~JBD2_BARRIER; 5637 if (test_opt(sb, DATA_ERR_ABORT)) 5638 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5639 else 5640 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5641 write_unlock(&journal->j_state_lock); 5642 } 5643 5644 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5645 unsigned int journal_inum) 5646 { 5647 struct inode *journal_inode; 5648 5649 /* 5650 * Test for the existence of a valid inode on disk. Bad things 5651 * happen if we iget() an unused inode, as the subsequent iput() 5652 * will try to delete it. 5653 */ 5654 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5655 if (IS_ERR(journal_inode)) { 5656 ext4_msg(sb, KERN_ERR, "no journal found"); 5657 return NULL; 5658 } 5659 if (!journal_inode->i_nlink) { 5660 make_bad_inode(journal_inode); 5661 iput(journal_inode); 5662 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5663 return NULL; 5664 } 5665 5666 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5667 journal_inode, journal_inode->i_size); 5668 if (!S_ISREG(journal_inode->i_mode)) { 5669 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5670 iput(journal_inode); 5671 return NULL; 5672 } 5673 return journal_inode; 5674 } 5675 5676 static journal_t *ext4_get_journal(struct super_block *sb, 5677 unsigned int journal_inum) 5678 { 5679 struct inode *journal_inode; 5680 journal_t *journal; 5681 5682 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5683 return NULL; 5684 5685 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5686 if (!journal_inode) 5687 return NULL; 5688 5689 journal = jbd2_journal_init_inode(journal_inode); 5690 if (!journal) { 5691 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5692 iput(journal_inode); 5693 return NULL; 5694 } 5695 journal->j_private = sb; 5696 ext4_init_journal_params(sb, journal); 5697 return journal; 5698 } 5699 5700 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5701 dev_t j_dev) 5702 { 5703 struct buffer_head *bh; 5704 journal_t *journal; 5705 ext4_fsblk_t start; 5706 ext4_fsblk_t len; 5707 int hblock, blocksize; 5708 ext4_fsblk_t sb_block; 5709 unsigned long offset; 5710 struct ext4_super_block *es; 5711 struct block_device *bdev; 5712 5713 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5714 return NULL; 5715 5716 bdev = ext4_blkdev_get(j_dev, sb); 5717 if (bdev == NULL) 5718 return NULL; 5719 5720 blocksize = sb->s_blocksize; 5721 hblock = bdev_logical_block_size(bdev); 5722 if (blocksize < hblock) { 5723 ext4_msg(sb, KERN_ERR, 5724 "blocksize too small for journal device"); 5725 goto out_bdev; 5726 } 5727 5728 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5729 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5730 set_blocksize(bdev, blocksize); 5731 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5732 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5733 "external journal"); 5734 goto out_bdev; 5735 } 5736 5737 es = (struct ext4_super_block *) (bh->b_data + offset); 5738 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5739 !(le32_to_cpu(es->s_feature_incompat) & 5740 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5741 ext4_msg(sb, KERN_ERR, "external journal has " 5742 "bad superblock"); 5743 brelse(bh); 5744 goto out_bdev; 5745 } 5746 5747 if ((le32_to_cpu(es->s_feature_ro_compat) & 5748 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5749 es->s_checksum != ext4_superblock_csum(sb, es)) { 5750 ext4_msg(sb, KERN_ERR, "external journal has " 5751 "corrupt superblock"); 5752 brelse(bh); 5753 goto out_bdev; 5754 } 5755 5756 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5757 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5758 brelse(bh); 5759 goto out_bdev; 5760 } 5761 5762 len = ext4_blocks_count(es); 5763 start = sb_block + 1; 5764 brelse(bh); /* we're done with the superblock */ 5765 5766 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5767 start, len, blocksize); 5768 if (!journal) { 5769 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5770 goto out_bdev; 5771 } 5772 journal->j_private = sb; 5773 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5774 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5775 goto out_journal; 5776 } 5777 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5778 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5779 "user (unsupported) - %d", 5780 be32_to_cpu(journal->j_superblock->s_nr_users)); 5781 goto out_journal; 5782 } 5783 EXT4_SB(sb)->s_journal_bdev = bdev; 5784 ext4_init_journal_params(sb, journal); 5785 return journal; 5786 5787 out_journal: 5788 jbd2_journal_destroy(journal); 5789 out_bdev: 5790 ext4_blkdev_put(bdev); 5791 return NULL; 5792 } 5793 5794 static int ext4_load_journal(struct super_block *sb, 5795 struct ext4_super_block *es, 5796 unsigned long journal_devnum) 5797 { 5798 journal_t *journal; 5799 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5800 dev_t journal_dev; 5801 int err = 0; 5802 int really_read_only; 5803 int journal_dev_ro; 5804 5805 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5806 return -EFSCORRUPTED; 5807 5808 if (journal_devnum && 5809 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5810 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5811 "numbers have changed"); 5812 journal_dev = new_decode_dev(journal_devnum); 5813 } else 5814 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5815 5816 if (journal_inum && journal_dev) { 5817 ext4_msg(sb, KERN_ERR, 5818 "filesystem has both journal inode and journal device!"); 5819 return -EINVAL; 5820 } 5821 5822 if (journal_inum) { 5823 journal = ext4_get_journal(sb, journal_inum); 5824 if (!journal) 5825 return -EINVAL; 5826 } else { 5827 journal = ext4_get_dev_journal(sb, journal_dev); 5828 if (!journal) 5829 return -EINVAL; 5830 } 5831 5832 journal_dev_ro = bdev_read_only(journal->j_dev); 5833 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5834 5835 if (journal_dev_ro && !sb_rdonly(sb)) { 5836 ext4_msg(sb, KERN_ERR, 5837 "journal device read-only, try mounting with '-o ro'"); 5838 err = -EROFS; 5839 goto err_out; 5840 } 5841 5842 /* 5843 * Are we loading a blank journal or performing recovery after a 5844 * crash? For recovery, we need to check in advance whether we 5845 * can get read-write access to the device. 5846 */ 5847 if (ext4_has_feature_journal_needs_recovery(sb)) { 5848 if (sb_rdonly(sb)) { 5849 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5850 "required on readonly filesystem"); 5851 if (really_read_only) { 5852 ext4_msg(sb, KERN_ERR, "write access " 5853 "unavailable, cannot proceed " 5854 "(try mounting with noload)"); 5855 err = -EROFS; 5856 goto err_out; 5857 } 5858 ext4_msg(sb, KERN_INFO, "write access will " 5859 "be enabled during recovery"); 5860 } 5861 } 5862 5863 if (!(journal->j_flags & JBD2_BARRIER)) 5864 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5865 5866 if (!ext4_has_feature_journal_needs_recovery(sb)) 5867 err = jbd2_journal_wipe(journal, !really_read_only); 5868 if (!err) { 5869 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5870 if (save) 5871 memcpy(save, ((char *) es) + 5872 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5873 err = jbd2_journal_load(journal); 5874 if (save) 5875 memcpy(((char *) es) + EXT4_S_ERR_START, 5876 save, EXT4_S_ERR_LEN); 5877 kfree(save); 5878 } 5879 5880 if (err) { 5881 ext4_msg(sb, KERN_ERR, "error loading journal"); 5882 goto err_out; 5883 } 5884 5885 EXT4_SB(sb)->s_journal = journal; 5886 err = ext4_clear_journal_err(sb, es); 5887 if (err) { 5888 EXT4_SB(sb)->s_journal = NULL; 5889 jbd2_journal_destroy(journal); 5890 return err; 5891 } 5892 5893 if (!really_read_only && journal_devnum && 5894 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5895 es->s_journal_dev = cpu_to_le32(journal_devnum); 5896 5897 /* Make sure we flush the recovery flag to disk. */ 5898 ext4_commit_super(sb); 5899 } 5900 5901 return 0; 5902 5903 err_out: 5904 jbd2_journal_destroy(journal); 5905 return err; 5906 } 5907 5908 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5909 static void ext4_update_super(struct super_block *sb) 5910 { 5911 struct ext4_sb_info *sbi = EXT4_SB(sb); 5912 struct ext4_super_block *es = sbi->s_es; 5913 struct buffer_head *sbh = sbi->s_sbh; 5914 5915 lock_buffer(sbh); 5916 /* 5917 * If the file system is mounted read-only, don't update the 5918 * superblock write time. This avoids updating the superblock 5919 * write time when we are mounting the root file system 5920 * read/only but we need to replay the journal; at that point, 5921 * for people who are east of GMT and who make their clock 5922 * tick in localtime for Windows bug-for-bug compatibility, 5923 * the clock is set in the future, and this will cause e2fsck 5924 * to complain and force a full file system check. 5925 */ 5926 if (!(sb->s_flags & SB_RDONLY)) 5927 ext4_update_tstamp(es, s_wtime); 5928 es->s_kbytes_written = 5929 cpu_to_le64(sbi->s_kbytes_written + 5930 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5931 sbi->s_sectors_written_start) >> 1)); 5932 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5933 ext4_free_blocks_count_set(es, 5934 EXT4_C2B(sbi, percpu_counter_sum_positive( 5935 &sbi->s_freeclusters_counter))); 5936 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5937 es->s_free_inodes_count = 5938 cpu_to_le32(percpu_counter_sum_positive( 5939 &sbi->s_freeinodes_counter)); 5940 /* Copy error information to the on-disk superblock */ 5941 spin_lock(&sbi->s_error_lock); 5942 if (sbi->s_add_error_count > 0) { 5943 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5944 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5945 __ext4_update_tstamp(&es->s_first_error_time, 5946 &es->s_first_error_time_hi, 5947 sbi->s_first_error_time); 5948 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5949 sizeof(es->s_first_error_func)); 5950 es->s_first_error_line = 5951 cpu_to_le32(sbi->s_first_error_line); 5952 es->s_first_error_ino = 5953 cpu_to_le32(sbi->s_first_error_ino); 5954 es->s_first_error_block = 5955 cpu_to_le64(sbi->s_first_error_block); 5956 es->s_first_error_errcode = 5957 ext4_errno_to_code(sbi->s_first_error_code); 5958 } 5959 __ext4_update_tstamp(&es->s_last_error_time, 5960 &es->s_last_error_time_hi, 5961 sbi->s_last_error_time); 5962 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5963 sizeof(es->s_last_error_func)); 5964 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5965 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5966 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5967 es->s_last_error_errcode = 5968 ext4_errno_to_code(sbi->s_last_error_code); 5969 /* 5970 * Start the daily error reporting function if it hasn't been 5971 * started already 5972 */ 5973 if (!es->s_error_count) 5974 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5975 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5976 sbi->s_add_error_count = 0; 5977 } 5978 spin_unlock(&sbi->s_error_lock); 5979 5980 ext4_superblock_csum_set(sb); 5981 unlock_buffer(sbh); 5982 } 5983 5984 static int ext4_commit_super(struct super_block *sb) 5985 { 5986 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5987 int error = 0; 5988 5989 if (!sbh) 5990 return -EINVAL; 5991 if (block_device_ejected(sb)) 5992 return -ENODEV; 5993 5994 ext4_update_super(sb); 5995 5996 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5997 /* 5998 * Oh, dear. A previous attempt to write the 5999 * superblock failed. This could happen because the 6000 * USB device was yanked out. Or it could happen to 6001 * be a transient write error and maybe the block will 6002 * be remapped. Nothing we can do but to retry the 6003 * write and hope for the best. 6004 */ 6005 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6006 "superblock detected"); 6007 clear_buffer_write_io_error(sbh); 6008 set_buffer_uptodate(sbh); 6009 } 6010 BUFFER_TRACE(sbh, "marking dirty"); 6011 mark_buffer_dirty(sbh); 6012 error = __sync_dirty_buffer(sbh, 6013 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 6014 if (buffer_write_io_error(sbh)) { 6015 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6016 "superblock"); 6017 clear_buffer_write_io_error(sbh); 6018 set_buffer_uptodate(sbh); 6019 } 6020 return error; 6021 } 6022 6023 /* 6024 * Have we just finished recovery? If so, and if we are mounting (or 6025 * remounting) the filesystem readonly, then we will end up with a 6026 * consistent fs on disk. Record that fact. 6027 */ 6028 static int ext4_mark_recovery_complete(struct super_block *sb, 6029 struct ext4_super_block *es) 6030 { 6031 int err; 6032 journal_t *journal = EXT4_SB(sb)->s_journal; 6033 6034 if (!ext4_has_feature_journal(sb)) { 6035 if (journal != NULL) { 6036 ext4_error(sb, "Journal got removed while the fs was " 6037 "mounted!"); 6038 return -EFSCORRUPTED; 6039 } 6040 return 0; 6041 } 6042 jbd2_journal_lock_updates(journal); 6043 err = jbd2_journal_flush(journal, 0); 6044 if (err < 0) 6045 goto out; 6046 6047 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6048 ext4_has_feature_orphan_present(sb))) { 6049 if (!ext4_orphan_file_empty(sb)) { 6050 ext4_error(sb, "Orphan file not empty on read-only fs."); 6051 err = -EFSCORRUPTED; 6052 goto out; 6053 } 6054 ext4_clear_feature_journal_needs_recovery(sb); 6055 ext4_clear_feature_orphan_present(sb); 6056 ext4_commit_super(sb); 6057 } 6058 out: 6059 jbd2_journal_unlock_updates(journal); 6060 return err; 6061 } 6062 6063 /* 6064 * If we are mounting (or read-write remounting) a filesystem whose journal 6065 * has recorded an error from a previous lifetime, move that error to the 6066 * main filesystem now. 6067 */ 6068 static int ext4_clear_journal_err(struct super_block *sb, 6069 struct ext4_super_block *es) 6070 { 6071 journal_t *journal; 6072 int j_errno; 6073 const char *errstr; 6074 6075 if (!ext4_has_feature_journal(sb)) { 6076 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6077 return -EFSCORRUPTED; 6078 } 6079 6080 journal = EXT4_SB(sb)->s_journal; 6081 6082 /* 6083 * Now check for any error status which may have been recorded in the 6084 * journal by a prior ext4_error() or ext4_abort() 6085 */ 6086 6087 j_errno = jbd2_journal_errno(journal); 6088 if (j_errno) { 6089 char nbuf[16]; 6090 6091 errstr = ext4_decode_error(sb, j_errno, nbuf); 6092 ext4_warning(sb, "Filesystem error recorded " 6093 "from previous mount: %s", errstr); 6094 ext4_warning(sb, "Marking fs in need of filesystem check."); 6095 6096 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6097 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6098 ext4_commit_super(sb); 6099 6100 jbd2_journal_clear_err(journal); 6101 jbd2_journal_update_sb_errno(journal); 6102 } 6103 return 0; 6104 } 6105 6106 /* 6107 * Force the running and committing transactions to commit, 6108 * and wait on the commit. 6109 */ 6110 int ext4_force_commit(struct super_block *sb) 6111 { 6112 journal_t *journal; 6113 6114 if (sb_rdonly(sb)) 6115 return 0; 6116 6117 journal = EXT4_SB(sb)->s_journal; 6118 return ext4_journal_force_commit(journal); 6119 } 6120 6121 static int ext4_sync_fs(struct super_block *sb, int wait) 6122 { 6123 int ret = 0; 6124 tid_t target; 6125 bool needs_barrier = false; 6126 struct ext4_sb_info *sbi = EXT4_SB(sb); 6127 6128 if (unlikely(ext4_forced_shutdown(sbi))) 6129 return 0; 6130 6131 trace_ext4_sync_fs(sb, wait); 6132 flush_workqueue(sbi->rsv_conversion_wq); 6133 /* 6134 * Writeback quota in non-journalled quota case - journalled quota has 6135 * no dirty dquots 6136 */ 6137 dquot_writeback_dquots(sb, -1); 6138 /* 6139 * Data writeback is possible w/o journal transaction, so barrier must 6140 * being sent at the end of the function. But we can skip it if 6141 * transaction_commit will do it for us. 6142 */ 6143 if (sbi->s_journal) { 6144 target = jbd2_get_latest_transaction(sbi->s_journal); 6145 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6146 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6147 needs_barrier = true; 6148 6149 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6150 if (wait) 6151 ret = jbd2_log_wait_commit(sbi->s_journal, 6152 target); 6153 } 6154 } else if (wait && test_opt(sb, BARRIER)) 6155 needs_barrier = true; 6156 if (needs_barrier) { 6157 int err; 6158 err = blkdev_issue_flush(sb->s_bdev); 6159 if (!ret) 6160 ret = err; 6161 } 6162 6163 return ret; 6164 } 6165 6166 /* 6167 * LVM calls this function before a (read-only) snapshot is created. This 6168 * gives us a chance to flush the journal completely and mark the fs clean. 6169 * 6170 * Note that only this function cannot bring a filesystem to be in a clean 6171 * state independently. It relies on upper layer to stop all data & metadata 6172 * modifications. 6173 */ 6174 static int ext4_freeze(struct super_block *sb) 6175 { 6176 int error = 0; 6177 journal_t *journal; 6178 6179 if (sb_rdonly(sb)) 6180 return 0; 6181 6182 journal = EXT4_SB(sb)->s_journal; 6183 6184 if (journal) { 6185 /* Now we set up the journal barrier. */ 6186 jbd2_journal_lock_updates(journal); 6187 6188 /* 6189 * Don't clear the needs_recovery flag if we failed to 6190 * flush the journal. 6191 */ 6192 error = jbd2_journal_flush(journal, 0); 6193 if (error < 0) 6194 goto out; 6195 6196 /* Journal blocked and flushed, clear needs_recovery flag. */ 6197 ext4_clear_feature_journal_needs_recovery(sb); 6198 if (ext4_orphan_file_empty(sb)) 6199 ext4_clear_feature_orphan_present(sb); 6200 } 6201 6202 error = ext4_commit_super(sb); 6203 out: 6204 if (journal) 6205 /* we rely on upper layer to stop further updates */ 6206 jbd2_journal_unlock_updates(journal); 6207 return error; 6208 } 6209 6210 /* 6211 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6212 * flag here, even though the filesystem is not technically dirty yet. 6213 */ 6214 static int ext4_unfreeze(struct super_block *sb) 6215 { 6216 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6217 return 0; 6218 6219 if (EXT4_SB(sb)->s_journal) { 6220 /* Reset the needs_recovery flag before the fs is unlocked. */ 6221 ext4_set_feature_journal_needs_recovery(sb); 6222 if (ext4_has_feature_orphan_file(sb)) 6223 ext4_set_feature_orphan_present(sb); 6224 } 6225 6226 ext4_commit_super(sb); 6227 return 0; 6228 } 6229 6230 /* 6231 * Structure to save mount options for ext4_remount's benefit 6232 */ 6233 struct ext4_mount_options { 6234 unsigned long s_mount_opt; 6235 unsigned long s_mount_opt2; 6236 kuid_t s_resuid; 6237 kgid_t s_resgid; 6238 unsigned long s_commit_interval; 6239 u32 s_min_batch_time, s_max_batch_time; 6240 #ifdef CONFIG_QUOTA 6241 int s_jquota_fmt; 6242 char *s_qf_names[EXT4_MAXQUOTAS]; 6243 #endif 6244 }; 6245 6246 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6247 { 6248 struct ext4_fs_context *ctx = fc->fs_private; 6249 struct ext4_super_block *es; 6250 struct ext4_sb_info *sbi = EXT4_SB(sb); 6251 unsigned long old_sb_flags; 6252 struct ext4_mount_options old_opts; 6253 ext4_group_t g; 6254 int err = 0; 6255 #ifdef CONFIG_QUOTA 6256 int enable_quota = 0; 6257 int i, j; 6258 char *to_free[EXT4_MAXQUOTAS]; 6259 #endif 6260 6261 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6262 6263 /* Store the original options */ 6264 old_sb_flags = sb->s_flags; 6265 old_opts.s_mount_opt = sbi->s_mount_opt; 6266 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6267 old_opts.s_resuid = sbi->s_resuid; 6268 old_opts.s_resgid = sbi->s_resgid; 6269 old_opts.s_commit_interval = sbi->s_commit_interval; 6270 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6271 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6272 #ifdef CONFIG_QUOTA 6273 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6274 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6275 if (sbi->s_qf_names[i]) { 6276 char *qf_name = get_qf_name(sb, sbi, i); 6277 6278 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6279 if (!old_opts.s_qf_names[i]) { 6280 for (j = 0; j < i; j++) 6281 kfree(old_opts.s_qf_names[j]); 6282 return -ENOMEM; 6283 } 6284 } else 6285 old_opts.s_qf_names[i] = NULL; 6286 #endif 6287 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6288 ctx->journal_ioprio = 6289 sbi->s_journal->j_task->io_context->ioprio; 6290 6291 ext4_apply_options(fc, sb); 6292 6293 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6294 test_opt(sb, JOURNAL_CHECKSUM)) { 6295 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6296 "during remount not supported; ignoring"); 6297 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6298 } 6299 6300 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6301 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6302 ext4_msg(sb, KERN_ERR, "can't mount with " 6303 "both data=journal and delalloc"); 6304 err = -EINVAL; 6305 goto restore_opts; 6306 } 6307 if (test_opt(sb, DIOREAD_NOLOCK)) { 6308 ext4_msg(sb, KERN_ERR, "can't mount with " 6309 "both data=journal and dioread_nolock"); 6310 err = -EINVAL; 6311 goto restore_opts; 6312 } 6313 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6314 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6315 ext4_msg(sb, KERN_ERR, "can't mount with " 6316 "journal_async_commit in data=ordered mode"); 6317 err = -EINVAL; 6318 goto restore_opts; 6319 } 6320 } 6321 6322 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6323 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6324 err = -EINVAL; 6325 goto restore_opts; 6326 } 6327 6328 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6329 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6330 6331 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6332 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6333 6334 es = sbi->s_es; 6335 6336 if (sbi->s_journal) { 6337 ext4_init_journal_params(sb, sbi->s_journal); 6338 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6339 } 6340 6341 /* Flush outstanding errors before changing fs state */ 6342 flush_work(&sbi->s_error_work); 6343 6344 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6345 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6346 err = -EROFS; 6347 goto restore_opts; 6348 } 6349 6350 if (fc->sb_flags & SB_RDONLY) { 6351 err = sync_filesystem(sb); 6352 if (err < 0) 6353 goto restore_opts; 6354 err = dquot_suspend(sb, -1); 6355 if (err < 0) 6356 goto restore_opts; 6357 6358 /* 6359 * First of all, the unconditional stuff we have to do 6360 * to disable replay of the journal when we next remount 6361 */ 6362 sb->s_flags |= SB_RDONLY; 6363 6364 /* 6365 * OK, test if we are remounting a valid rw partition 6366 * readonly, and if so set the rdonly flag and then 6367 * mark the partition as valid again. 6368 */ 6369 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6370 (sbi->s_mount_state & EXT4_VALID_FS)) 6371 es->s_state = cpu_to_le16(sbi->s_mount_state); 6372 6373 if (sbi->s_journal) { 6374 /* 6375 * We let remount-ro finish even if marking fs 6376 * as clean failed... 6377 */ 6378 ext4_mark_recovery_complete(sb, es); 6379 } 6380 } else { 6381 /* Make sure we can mount this feature set readwrite */ 6382 if (ext4_has_feature_readonly(sb) || 6383 !ext4_feature_set_ok(sb, 0)) { 6384 err = -EROFS; 6385 goto restore_opts; 6386 } 6387 /* 6388 * Make sure the group descriptor checksums 6389 * are sane. If they aren't, refuse to remount r/w. 6390 */ 6391 for (g = 0; g < sbi->s_groups_count; g++) { 6392 struct ext4_group_desc *gdp = 6393 ext4_get_group_desc(sb, g, NULL); 6394 6395 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6396 ext4_msg(sb, KERN_ERR, 6397 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6398 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6399 le16_to_cpu(gdp->bg_checksum)); 6400 err = -EFSBADCRC; 6401 goto restore_opts; 6402 } 6403 } 6404 6405 /* 6406 * If we have an unprocessed orphan list hanging 6407 * around from a previously readonly bdev mount, 6408 * require a full umount/remount for now. 6409 */ 6410 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6411 ext4_msg(sb, KERN_WARNING, "Couldn't " 6412 "remount RDWR because of unprocessed " 6413 "orphan inode list. Please " 6414 "umount/remount instead"); 6415 err = -EINVAL; 6416 goto restore_opts; 6417 } 6418 6419 /* 6420 * Mounting a RDONLY partition read-write, so reread 6421 * and store the current valid flag. (It may have 6422 * been changed by e2fsck since we originally mounted 6423 * the partition.) 6424 */ 6425 if (sbi->s_journal) { 6426 err = ext4_clear_journal_err(sb, es); 6427 if (err) 6428 goto restore_opts; 6429 } 6430 sbi->s_mount_state = le16_to_cpu(es->s_state); 6431 6432 err = ext4_setup_super(sb, es, 0); 6433 if (err) 6434 goto restore_opts; 6435 6436 sb->s_flags &= ~SB_RDONLY; 6437 if (ext4_has_feature_mmp(sb)) 6438 if (ext4_multi_mount_protect(sb, 6439 le64_to_cpu(es->s_mmp_block))) { 6440 err = -EROFS; 6441 goto restore_opts; 6442 } 6443 #ifdef CONFIG_QUOTA 6444 enable_quota = 1; 6445 #endif 6446 } 6447 } 6448 6449 /* 6450 * Reinitialize lazy itable initialization thread based on 6451 * current settings 6452 */ 6453 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6454 ext4_unregister_li_request(sb); 6455 else { 6456 ext4_group_t first_not_zeroed; 6457 first_not_zeroed = ext4_has_uninit_itable(sb); 6458 ext4_register_li_request(sb, first_not_zeroed); 6459 } 6460 6461 /* 6462 * Handle creation of system zone data early because it can fail. 6463 * Releasing of existing data is done when we are sure remount will 6464 * succeed. 6465 */ 6466 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6467 err = ext4_setup_system_zone(sb); 6468 if (err) 6469 goto restore_opts; 6470 } 6471 6472 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6473 err = ext4_commit_super(sb); 6474 if (err) 6475 goto restore_opts; 6476 } 6477 6478 #ifdef CONFIG_QUOTA 6479 /* Release old quota file names */ 6480 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6481 kfree(old_opts.s_qf_names[i]); 6482 if (enable_quota) { 6483 if (sb_any_quota_suspended(sb)) 6484 dquot_resume(sb, -1); 6485 else if (ext4_has_feature_quota(sb)) { 6486 err = ext4_enable_quotas(sb); 6487 if (err) 6488 goto restore_opts; 6489 } 6490 } 6491 #endif 6492 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6493 ext4_release_system_zone(sb); 6494 6495 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6496 ext4_stop_mmpd(sbi); 6497 6498 return 0; 6499 6500 restore_opts: 6501 sb->s_flags = old_sb_flags; 6502 sbi->s_mount_opt = old_opts.s_mount_opt; 6503 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6504 sbi->s_resuid = old_opts.s_resuid; 6505 sbi->s_resgid = old_opts.s_resgid; 6506 sbi->s_commit_interval = old_opts.s_commit_interval; 6507 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6508 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6509 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6510 ext4_release_system_zone(sb); 6511 #ifdef CONFIG_QUOTA 6512 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6513 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6514 to_free[i] = get_qf_name(sb, sbi, i); 6515 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6516 } 6517 synchronize_rcu(); 6518 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6519 kfree(to_free[i]); 6520 #endif 6521 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6522 ext4_stop_mmpd(sbi); 6523 return err; 6524 } 6525 6526 static int ext4_reconfigure(struct fs_context *fc) 6527 { 6528 struct super_block *sb = fc->root->d_sb; 6529 int ret; 6530 6531 fc->s_fs_info = EXT4_SB(sb); 6532 6533 ret = ext4_check_opt_consistency(fc, sb); 6534 if (ret < 0) 6535 return ret; 6536 6537 ret = __ext4_remount(fc, sb); 6538 if (ret < 0) 6539 return ret; 6540 6541 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.", 6542 ext4_quota_mode(sb)); 6543 6544 return 0; 6545 } 6546 6547 #ifdef CONFIG_QUOTA 6548 static int ext4_statfs_project(struct super_block *sb, 6549 kprojid_t projid, struct kstatfs *buf) 6550 { 6551 struct kqid qid; 6552 struct dquot *dquot; 6553 u64 limit; 6554 u64 curblock; 6555 6556 qid = make_kqid_projid(projid); 6557 dquot = dqget(sb, qid); 6558 if (IS_ERR(dquot)) 6559 return PTR_ERR(dquot); 6560 spin_lock(&dquot->dq_dqb_lock); 6561 6562 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6563 dquot->dq_dqb.dqb_bhardlimit); 6564 limit >>= sb->s_blocksize_bits; 6565 6566 if (limit && buf->f_blocks > limit) { 6567 curblock = (dquot->dq_dqb.dqb_curspace + 6568 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6569 buf->f_blocks = limit; 6570 buf->f_bfree = buf->f_bavail = 6571 (buf->f_blocks > curblock) ? 6572 (buf->f_blocks - curblock) : 0; 6573 } 6574 6575 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6576 dquot->dq_dqb.dqb_ihardlimit); 6577 if (limit && buf->f_files > limit) { 6578 buf->f_files = limit; 6579 buf->f_ffree = 6580 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6581 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6582 } 6583 6584 spin_unlock(&dquot->dq_dqb_lock); 6585 dqput(dquot); 6586 return 0; 6587 } 6588 #endif 6589 6590 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6591 { 6592 struct super_block *sb = dentry->d_sb; 6593 struct ext4_sb_info *sbi = EXT4_SB(sb); 6594 struct ext4_super_block *es = sbi->s_es; 6595 ext4_fsblk_t overhead = 0, resv_blocks; 6596 s64 bfree; 6597 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6598 6599 if (!test_opt(sb, MINIX_DF)) 6600 overhead = sbi->s_overhead; 6601 6602 buf->f_type = EXT4_SUPER_MAGIC; 6603 buf->f_bsize = sb->s_blocksize; 6604 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6605 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6606 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6607 /* prevent underflow in case that few free space is available */ 6608 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6609 buf->f_bavail = buf->f_bfree - 6610 (ext4_r_blocks_count(es) + resv_blocks); 6611 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6612 buf->f_bavail = 0; 6613 buf->f_files = le32_to_cpu(es->s_inodes_count); 6614 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6615 buf->f_namelen = EXT4_NAME_LEN; 6616 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6617 6618 #ifdef CONFIG_QUOTA 6619 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6620 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6621 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6622 #endif 6623 return 0; 6624 } 6625 6626 6627 #ifdef CONFIG_QUOTA 6628 6629 /* 6630 * Helper functions so that transaction is started before we acquire dqio_sem 6631 * to keep correct lock ordering of transaction > dqio_sem 6632 */ 6633 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6634 { 6635 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6636 } 6637 6638 static int ext4_write_dquot(struct dquot *dquot) 6639 { 6640 int ret, err; 6641 handle_t *handle; 6642 struct inode *inode; 6643 6644 inode = dquot_to_inode(dquot); 6645 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6646 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6647 if (IS_ERR(handle)) 6648 return PTR_ERR(handle); 6649 ret = dquot_commit(dquot); 6650 err = ext4_journal_stop(handle); 6651 if (!ret) 6652 ret = err; 6653 return ret; 6654 } 6655 6656 static int ext4_acquire_dquot(struct dquot *dquot) 6657 { 6658 int ret, err; 6659 handle_t *handle; 6660 6661 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6662 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6663 if (IS_ERR(handle)) 6664 return PTR_ERR(handle); 6665 ret = dquot_acquire(dquot); 6666 err = ext4_journal_stop(handle); 6667 if (!ret) 6668 ret = err; 6669 return ret; 6670 } 6671 6672 static int ext4_release_dquot(struct dquot *dquot) 6673 { 6674 int ret, err; 6675 handle_t *handle; 6676 6677 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6678 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6679 if (IS_ERR(handle)) { 6680 /* Release dquot anyway to avoid endless cycle in dqput() */ 6681 dquot_release(dquot); 6682 return PTR_ERR(handle); 6683 } 6684 ret = dquot_release(dquot); 6685 err = ext4_journal_stop(handle); 6686 if (!ret) 6687 ret = err; 6688 return ret; 6689 } 6690 6691 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6692 { 6693 struct super_block *sb = dquot->dq_sb; 6694 6695 if (ext4_is_quota_journalled(sb)) { 6696 dquot_mark_dquot_dirty(dquot); 6697 return ext4_write_dquot(dquot); 6698 } else { 6699 return dquot_mark_dquot_dirty(dquot); 6700 } 6701 } 6702 6703 static int ext4_write_info(struct super_block *sb, int type) 6704 { 6705 int ret, err; 6706 handle_t *handle; 6707 6708 /* Data block + inode block */ 6709 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6710 if (IS_ERR(handle)) 6711 return PTR_ERR(handle); 6712 ret = dquot_commit_info(sb, type); 6713 err = ext4_journal_stop(handle); 6714 if (!ret) 6715 ret = err; 6716 return ret; 6717 } 6718 6719 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6720 { 6721 struct ext4_inode_info *ei = EXT4_I(inode); 6722 6723 /* The first argument of lockdep_set_subclass has to be 6724 * *exactly* the same as the argument to init_rwsem() --- in 6725 * this case, in init_once() --- or lockdep gets unhappy 6726 * because the name of the lock is set using the 6727 * stringification of the argument to init_rwsem(). 6728 */ 6729 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6730 lockdep_set_subclass(&ei->i_data_sem, subclass); 6731 } 6732 6733 /* 6734 * Standard function to be called on quota_on 6735 */ 6736 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6737 const struct path *path) 6738 { 6739 int err; 6740 6741 if (!test_opt(sb, QUOTA)) 6742 return -EINVAL; 6743 6744 /* Quotafile not on the same filesystem? */ 6745 if (path->dentry->d_sb != sb) 6746 return -EXDEV; 6747 6748 /* Quota already enabled for this file? */ 6749 if (IS_NOQUOTA(d_inode(path->dentry))) 6750 return -EBUSY; 6751 6752 /* Journaling quota? */ 6753 if (EXT4_SB(sb)->s_qf_names[type]) { 6754 /* Quotafile not in fs root? */ 6755 if (path->dentry->d_parent != sb->s_root) 6756 ext4_msg(sb, KERN_WARNING, 6757 "Quota file not on filesystem root. " 6758 "Journaled quota will not work"); 6759 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6760 } else { 6761 /* 6762 * Clear the flag just in case mount options changed since 6763 * last time. 6764 */ 6765 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6766 } 6767 6768 /* 6769 * When we journal data on quota file, we have to flush journal to see 6770 * all updates to the file when we bypass pagecache... 6771 */ 6772 if (EXT4_SB(sb)->s_journal && 6773 ext4_should_journal_data(d_inode(path->dentry))) { 6774 /* 6775 * We don't need to lock updates but journal_flush() could 6776 * otherwise be livelocked... 6777 */ 6778 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6779 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6780 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6781 if (err) 6782 return err; 6783 } 6784 6785 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6786 err = dquot_quota_on(sb, type, format_id, path); 6787 if (!err) { 6788 struct inode *inode = d_inode(path->dentry); 6789 handle_t *handle; 6790 6791 /* 6792 * Set inode flags to prevent userspace from messing with quota 6793 * files. If this fails, we return success anyway since quotas 6794 * are already enabled and this is not a hard failure. 6795 */ 6796 inode_lock(inode); 6797 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6798 if (IS_ERR(handle)) 6799 goto unlock_inode; 6800 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6801 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6802 S_NOATIME | S_IMMUTABLE); 6803 err = ext4_mark_inode_dirty(handle, inode); 6804 ext4_journal_stop(handle); 6805 unlock_inode: 6806 inode_unlock(inode); 6807 if (err) 6808 dquot_quota_off(sb, type); 6809 } 6810 if (err) 6811 lockdep_set_quota_inode(path->dentry->d_inode, 6812 I_DATA_SEM_NORMAL); 6813 return err; 6814 } 6815 6816 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6817 unsigned int flags) 6818 { 6819 int err; 6820 struct inode *qf_inode; 6821 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6822 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6823 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6824 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6825 }; 6826 6827 BUG_ON(!ext4_has_feature_quota(sb)); 6828 6829 if (!qf_inums[type]) 6830 return -EPERM; 6831 6832 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6833 if (IS_ERR(qf_inode)) { 6834 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6835 return PTR_ERR(qf_inode); 6836 } 6837 6838 /* Don't account quota for quota files to avoid recursion */ 6839 qf_inode->i_flags |= S_NOQUOTA; 6840 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6841 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6842 if (err) 6843 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6844 iput(qf_inode); 6845 6846 return err; 6847 } 6848 6849 /* Enable usage tracking for all quota types. */ 6850 int ext4_enable_quotas(struct super_block *sb) 6851 { 6852 int type, err = 0; 6853 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6854 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6855 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6856 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6857 }; 6858 bool quota_mopt[EXT4_MAXQUOTAS] = { 6859 test_opt(sb, USRQUOTA), 6860 test_opt(sb, GRPQUOTA), 6861 test_opt(sb, PRJQUOTA), 6862 }; 6863 6864 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6865 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6866 if (qf_inums[type]) { 6867 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6868 DQUOT_USAGE_ENABLED | 6869 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6870 if (err) { 6871 ext4_warning(sb, 6872 "Failed to enable quota tracking " 6873 "(type=%d, err=%d). Please run " 6874 "e2fsck to fix.", type, err); 6875 for (type--; type >= 0; type--) { 6876 struct inode *inode; 6877 6878 inode = sb_dqopt(sb)->files[type]; 6879 if (inode) 6880 inode = igrab(inode); 6881 dquot_quota_off(sb, type); 6882 if (inode) { 6883 lockdep_set_quota_inode(inode, 6884 I_DATA_SEM_NORMAL); 6885 iput(inode); 6886 } 6887 } 6888 6889 return err; 6890 } 6891 } 6892 } 6893 return 0; 6894 } 6895 6896 static int ext4_quota_off(struct super_block *sb, int type) 6897 { 6898 struct inode *inode = sb_dqopt(sb)->files[type]; 6899 handle_t *handle; 6900 int err; 6901 6902 /* Force all delayed allocation blocks to be allocated. 6903 * Caller already holds s_umount sem */ 6904 if (test_opt(sb, DELALLOC)) 6905 sync_filesystem(sb); 6906 6907 if (!inode || !igrab(inode)) 6908 goto out; 6909 6910 err = dquot_quota_off(sb, type); 6911 if (err || ext4_has_feature_quota(sb)) 6912 goto out_put; 6913 6914 inode_lock(inode); 6915 /* 6916 * Update modification times of quota files when userspace can 6917 * start looking at them. If we fail, we return success anyway since 6918 * this is not a hard failure and quotas are already disabled. 6919 */ 6920 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6921 if (IS_ERR(handle)) { 6922 err = PTR_ERR(handle); 6923 goto out_unlock; 6924 } 6925 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6926 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6927 inode->i_mtime = inode->i_ctime = current_time(inode); 6928 err = ext4_mark_inode_dirty(handle, inode); 6929 ext4_journal_stop(handle); 6930 out_unlock: 6931 inode_unlock(inode); 6932 out_put: 6933 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6934 iput(inode); 6935 return err; 6936 out: 6937 return dquot_quota_off(sb, type); 6938 } 6939 6940 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6941 * acquiring the locks... As quota files are never truncated and quota code 6942 * itself serializes the operations (and no one else should touch the files) 6943 * we don't have to be afraid of races */ 6944 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6945 size_t len, loff_t off) 6946 { 6947 struct inode *inode = sb_dqopt(sb)->files[type]; 6948 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6949 int offset = off & (sb->s_blocksize - 1); 6950 int tocopy; 6951 size_t toread; 6952 struct buffer_head *bh; 6953 loff_t i_size = i_size_read(inode); 6954 6955 if (off > i_size) 6956 return 0; 6957 if (off+len > i_size) 6958 len = i_size-off; 6959 toread = len; 6960 while (toread > 0) { 6961 tocopy = sb->s_blocksize - offset < toread ? 6962 sb->s_blocksize - offset : toread; 6963 bh = ext4_bread(NULL, inode, blk, 0); 6964 if (IS_ERR(bh)) 6965 return PTR_ERR(bh); 6966 if (!bh) /* A hole? */ 6967 memset(data, 0, tocopy); 6968 else 6969 memcpy(data, bh->b_data+offset, tocopy); 6970 brelse(bh); 6971 offset = 0; 6972 toread -= tocopy; 6973 data += tocopy; 6974 blk++; 6975 } 6976 return len; 6977 } 6978 6979 /* Write to quotafile (we know the transaction is already started and has 6980 * enough credits) */ 6981 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6982 const char *data, size_t len, loff_t off) 6983 { 6984 struct inode *inode = sb_dqopt(sb)->files[type]; 6985 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6986 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6987 int retries = 0; 6988 struct buffer_head *bh; 6989 handle_t *handle = journal_current_handle(); 6990 6991 if (!handle) { 6992 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6993 " cancelled because transaction is not started", 6994 (unsigned long long)off, (unsigned long long)len); 6995 return -EIO; 6996 } 6997 /* 6998 * Since we account only one data block in transaction credits, 6999 * then it is impossible to cross a block boundary. 7000 */ 7001 if (sb->s_blocksize - offset < len) { 7002 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7003 " cancelled because not block aligned", 7004 (unsigned long long)off, (unsigned long long)len); 7005 return -EIO; 7006 } 7007 7008 do { 7009 bh = ext4_bread(handle, inode, blk, 7010 EXT4_GET_BLOCKS_CREATE | 7011 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7012 } while (PTR_ERR(bh) == -ENOSPC && 7013 ext4_should_retry_alloc(inode->i_sb, &retries)); 7014 if (IS_ERR(bh)) 7015 return PTR_ERR(bh); 7016 if (!bh) 7017 goto out; 7018 BUFFER_TRACE(bh, "get write access"); 7019 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7020 if (err) { 7021 brelse(bh); 7022 return err; 7023 } 7024 lock_buffer(bh); 7025 memcpy(bh->b_data+offset, data, len); 7026 flush_dcache_page(bh->b_page); 7027 unlock_buffer(bh); 7028 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7029 brelse(bh); 7030 out: 7031 if (inode->i_size < off + len) { 7032 i_size_write(inode, off + len); 7033 EXT4_I(inode)->i_disksize = inode->i_size; 7034 err2 = ext4_mark_inode_dirty(handle, inode); 7035 if (unlikely(err2 && !err)) 7036 err = err2; 7037 } 7038 return err ? err : len; 7039 } 7040 #endif 7041 7042 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7043 static inline void register_as_ext2(void) 7044 { 7045 int err = register_filesystem(&ext2_fs_type); 7046 if (err) 7047 printk(KERN_WARNING 7048 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7049 } 7050 7051 static inline void unregister_as_ext2(void) 7052 { 7053 unregister_filesystem(&ext2_fs_type); 7054 } 7055 7056 static inline int ext2_feature_set_ok(struct super_block *sb) 7057 { 7058 if (ext4_has_unknown_ext2_incompat_features(sb)) 7059 return 0; 7060 if (sb_rdonly(sb)) 7061 return 1; 7062 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7063 return 0; 7064 return 1; 7065 } 7066 #else 7067 static inline void register_as_ext2(void) { } 7068 static inline void unregister_as_ext2(void) { } 7069 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7070 #endif 7071 7072 static inline void register_as_ext3(void) 7073 { 7074 int err = register_filesystem(&ext3_fs_type); 7075 if (err) 7076 printk(KERN_WARNING 7077 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7078 } 7079 7080 static inline void unregister_as_ext3(void) 7081 { 7082 unregister_filesystem(&ext3_fs_type); 7083 } 7084 7085 static inline int ext3_feature_set_ok(struct super_block *sb) 7086 { 7087 if (ext4_has_unknown_ext3_incompat_features(sb)) 7088 return 0; 7089 if (!ext4_has_feature_journal(sb)) 7090 return 0; 7091 if (sb_rdonly(sb)) 7092 return 1; 7093 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7094 return 0; 7095 return 1; 7096 } 7097 7098 static struct file_system_type ext4_fs_type = { 7099 .owner = THIS_MODULE, 7100 .name = "ext4", 7101 .init_fs_context = ext4_init_fs_context, 7102 .parameters = ext4_param_specs, 7103 .kill_sb = kill_block_super, 7104 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7105 }; 7106 MODULE_ALIAS_FS("ext4"); 7107 7108 /* Shared across all ext4 file systems */ 7109 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7110 7111 static int __init ext4_init_fs(void) 7112 { 7113 int i, err; 7114 7115 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7116 ext4_li_info = NULL; 7117 7118 /* Build-time check for flags consistency */ 7119 ext4_check_flag_values(); 7120 7121 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7122 init_waitqueue_head(&ext4__ioend_wq[i]); 7123 7124 err = ext4_init_es(); 7125 if (err) 7126 return err; 7127 7128 err = ext4_init_pending(); 7129 if (err) 7130 goto out7; 7131 7132 err = ext4_init_post_read_processing(); 7133 if (err) 7134 goto out6; 7135 7136 err = ext4_init_pageio(); 7137 if (err) 7138 goto out5; 7139 7140 err = ext4_init_system_zone(); 7141 if (err) 7142 goto out4; 7143 7144 err = ext4_init_sysfs(); 7145 if (err) 7146 goto out3; 7147 7148 err = ext4_init_mballoc(); 7149 if (err) 7150 goto out2; 7151 err = init_inodecache(); 7152 if (err) 7153 goto out1; 7154 7155 err = ext4_fc_init_dentry_cache(); 7156 if (err) 7157 goto out05; 7158 7159 register_as_ext3(); 7160 register_as_ext2(); 7161 err = register_filesystem(&ext4_fs_type); 7162 if (err) 7163 goto out; 7164 7165 return 0; 7166 out: 7167 unregister_as_ext2(); 7168 unregister_as_ext3(); 7169 ext4_fc_destroy_dentry_cache(); 7170 out05: 7171 destroy_inodecache(); 7172 out1: 7173 ext4_exit_mballoc(); 7174 out2: 7175 ext4_exit_sysfs(); 7176 out3: 7177 ext4_exit_system_zone(); 7178 out4: 7179 ext4_exit_pageio(); 7180 out5: 7181 ext4_exit_post_read_processing(); 7182 out6: 7183 ext4_exit_pending(); 7184 out7: 7185 ext4_exit_es(); 7186 7187 return err; 7188 } 7189 7190 static void __exit ext4_exit_fs(void) 7191 { 7192 ext4_destroy_lazyinit_thread(); 7193 unregister_as_ext2(); 7194 unregister_as_ext3(); 7195 unregister_filesystem(&ext4_fs_type); 7196 ext4_fc_destroy_dentry_cache(); 7197 destroy_inodecache(); 7198 ext4_exit_mballoc(); 7199 ext4_exit_sysfs(); 7200 ext4_exit_system_zone(); 7201 ext4_exit_pageio(); 7202 ext4_exit_post_read_processing(); 7203 ext4_exit_es(); 7204 ext4_exit_pending(); 7205 } 7206 7207 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7208 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7209 MODULE_LICENSE("GPL"); 7210 MODULE_SOFTDEP("pre: crc32c"); 7211 module_init(ext4_init_fs) 7212 module_exit(ext4_exit_fs) 7213