1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <linux/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 static struct inode *ext4_get_journal_inode(struct super_block *sb, 82 unsigned int journal_inum); 83 84 /* 85 * Lock ordering 86 * 87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 88 * i_mmap_rwsem (inode->i_mmap_rwsem)! 89 * 90 * page fault path: 91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 92 * page lock -> i_data_sem (rw) 93 * 94 * buffered write path: 95 * sb_start_write -> i_mutex -> mmap_sem 96 * sb_start_write -> i_mutex -> transaction start -> page lock -> 97 * i_data_sem (rw) 98 * 99 * truncate: 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * i_mmap_rwsem (w) -> page lock 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * transaction start -> i_data_sem (rw) 104 * 105 * direct IO: 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 108 * transaction start -> i_data_sem (rw) 109 * 110 * writepages: 111 * transaction start -> page lock(s) -> i_data_sem (rw) 112 */ 113 114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 115 static struct file_system_type ext2_fs_type = { 116 .owner = THIS_MODULE, 117 .name = "ext2", 118 .mount = ext4_mount, 119 .kill_sb = kill_block_super, 120 .fs_flags = FS_REQUIRES_DEV, 121 }; 122 MODULE_ALIAS_FS("ext2"); 123 MODULE_ALIAS("ext2"); 124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 125 #else 126 #define IS_EXT2_SB(sb) (0) 127 #endif 128 129 130 static struct file_system_type ext3_fs_type = { 131 .owner = THIS_MODULE, 132 .name = "ext3", 133 .mount = ext4_mount, 134 .kill_sb = kill_block_super, 135 .fs_flags = FS_REQUIRES_DEV, 136 }; 137 MODULE_ALIAS_FS("ext3"); 138 MODULE_ALIAS("ext3"); 139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 140 141 static int ext4_verify_csum_type(struct super_block *sb, 142 struct ext4_super_block *es) 143 { 144 if (!ext4_has_feature_metadata_csum(sb)) 145 return 1; 146 147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 148 } 149 150 static __le32 ext4_superblock_csum(struct super_block *sb, 151 struct ext4_super_block *es) 152 { 153 struct ext4_sb_info *sbi = EXT4_SB(sb); 154 int offset = offsetof(struct ext4_super_block, s_checksum); 155 __u32 csum; 156 157 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 158 159 return cpu_to_le32(csum); 160 } 161 162 static int ext4_superblock_csum_verify(struct super_block *sb, 163 struct ext4_super_block *es) 164 { 165 if (!ext4_has_metadata_csum(sb)) 166 return 1; 167 168 return es->s_checksum == ext4_superblock_csum(sb, es); 169 } 170 171 void ext4_superblock_csum_set(struct super_block *sb) 172 { 173 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 174 175 if (!ext4_has_metadata_csum(sb)) 176 return; 177 178 es->s_checksum = ext4_superblock_csum(sb, es); 179 } 180 181 void *ext4_kvmalloc(size_t size, gfp_t flags) 182 { 183 void *ret; 184 185 ret = kmalloc(size, flags | __GFP_NOWARN); 186 if (!ret) 187 ret = __vmalloc(size, flags, PAGE_KERNEL); 188 return ret; 189 } 190 191 void *ext4_kvzalloc(size_t size, gfp_t flags) 192 { 193 void *ret; 194 195 ret = kzalloc(size, flags | __GFP_NOWARN); 196 if (!ret) 197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 198 return ret; 199 } 200 201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_block_bitmap_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 207 } 208 209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 215 } 216 217 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le32_to_cpu(bg->bg_inode_table_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 223 } 224 225 __u32 ext4_free_group_clusters(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_free_inodes_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 239 } 240 241 __u32 ext4_used_dirs_count(struct super_block *sb, 242 struct ext4_group_desc *bg) 243 { 244 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 247 } 248 249 __u32 ext4_itable_unused_count(struct super_block *sb, 250 struct ext4_group_desc *bg) 251 { 252 return le16_to_cpu(bg->bg_itable_unused_lo) | 253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 255 } 256 257 void ext4_block_bitmap_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_inode_bitmap_set(struct super_block *sb, 266 struct ext4_group_desc *bg, ext4_fsblk_t blk) 267 { 268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 271 } 272 273 void ext4_inode_table_set(struct super_block *sb, 274 struct ext4_group_desc *bg, ext4_fsblk_t blk) 275 { 276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 279 } 280 281 void ext4_free_group_clusters_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_free_inodes_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 295 } 296 297 void ext4_used_dirs_set(struct super_block *sb, 298 struct ext4_group_desc *bg, __u32 count) 299 { 300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 303 } 304 305 void ext4_itable_unused_set(struct super_block *sb, 306 struct ext4_group_desc *bg, __u32 count) 307 { 308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 311 } 312 313 314 static void __save_error_info(struct super_block *sb, const char *func, 315 unsigned int line) 316 { 317 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 318 319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 320 if (bdev_read_only(sb->s_bdev)) 321 return; 322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 323 es->s_last_error_time = cpu_to_le32(get_seconds()); 324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 325 es->s_last_error_line = cpu_to_le32(line); 326 if (!es->s_first_error_time) { 327 es->s_first_error_time = es->s_last_error_time; 328 strncpy(es->s_first_error_func, func, 329 sizeof(es->s_first_error_func)); 330 es->s_first_error_line = cpu_to_le32(line); 331 es->s_first_error_ino = es->s_last_error_ino; 332 es->s_first_error_block = es->s_last_error_block; 333 } 334 /* 335 * Start the daily error reporting function if it hasn't been 336 * started already 337 */ 338 if (!es->s_error_count) 339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 340 le32_add_cpu(&es->s_error_count, 1); 341 } 342 343 static void save_error_info(struct super_block *sb, const char *func, 344 unsigned int line) 345 { 346 __save_error_info(sb, func, line); 347 ext4_commit_super(sb, 1); 348 } 349 350 /* 351 * The del_gendisk() function uninitializes the disk-specific data 352 * structures, including the bdi structure, without telling anyone 353 * else. Once this happens, any attempt to call mark_buffer_dirty() 354 * (for example, by ext4_commit_super), will cause a kernel OOPS. 355 * This is a kludge to prevent these oops until we can put in a proper 356 * hook in del_gendisk() to inform the VFS and file system layers. 357 */ 358 static int block_device_ejected(struct super_block *sb) 359 { 360 struct inode *bd_inode = sb->s_bdev->bd_inode; 361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 362 363 return bdi->dev == NULL; 364 } 365 366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 367 { 368 struct super_block *sb = journal->j_private; 369 struct ext4_sb_info *sbi = EXT4_SB(sb); 370 int error = is_journal_aborted(journal); 371 struct ext4_journal_cb_entry *jce; 372 373 BUG_ON(txn->t_state == T_FINISHED); 374 spin_lock(&sbi->s_md_lock); 375 while (!list_empty(&txn->t_private_list)) { 376 jce = list_entry(txn->t_private_list.next, 377 struct ext4_journal_cb_entry, jce_list); 378 list_del_init(&jce->jce_list); 379 spin_unlock(&sbi->s_md_lock); 380 jce->jce_func(sb, jce, error); 381 spin_lock(&sbi->s_md_lock); 382 } 383 spin_unlock(&sbi->s_md_lock); 384 } 385 386 /* Deal with the reporting of failure conditions on a filesystem such as 387 * inconsistencies detected or read IO failures. 388 * 389 * On ext2, we can store the error state of the filesystem in the 390 * superblock. That is not possible on ext4, because we may have other 391 * write ordering constraints on the superblock which prevent us from 392 * writing it out straight away; and given that the journal is about to 393 * be aborted, we can't rely on the current, or future, transactions to 394 * write out the superblock safely. 395 * 396 * We'll just use the jbd2_journal_abort() error code to record an error in 397 * the journal instead. On recovery, the journal will complain about 398 * that error until we've noted it down and cleared it. 399 */ 400 401 static void ext4_handle_error(struct super_block *sb) 402 { 403 if (sb->s_flags & MS_RDONLY) 404 return; 405 406 if (!test_opt(sb, ERRORS_CONT)) { 407 journal_t *journal = EXT4_SB(sb)->s_journal; 408 409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 410 if (journal) 411 jbd2_journal_abort(journal, -EIO); 412 } 413 if (test_opt(sb, ERRORS_RO)) { 414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 415 /* 416 * Make sure updated value of ->s_mount_flags will be visible 417 * before ->s_flags update 418 */ 419 smp_wmb(); 420 sb->s_flags |= MS_RDONLY; 421 } 422 if (test_opt(sb, ERRORS_PANIC)) { 423 if (EXT4_SB(sb)->s_journal && 424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 425 return; 426 panic("EXT4-fs (device %s): panic forced after error\n", 427 sb->s_id); 428 } 429 } 430 431 #define ext4_error_ratelimit(sb) \ 432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 433 "EXT4-fs error") 434 435 void __ext4_error(struct super_block *sb, const char *function, 436 unsigned int line, const char *fmt, ...) 437 { 438 struct va_format vaf; 439 va_list args; 440 441 if (ext4_error_ratelimit(sb)) { 442 va_start(args, fmt); 443 vaf.fmt = fmt; 444 vaf.va = &args; 445 printk(KERN_CRIT 446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 447 sb->s_id, function, line, current->comm, &vaf); 448 va_end(args); 449 } 450 save_error_info(sb, function, line); 451 ext4_handle_error(sb); 452 } 453 454 void __ext4_error_inode(struct inode *inode, const char *function, 455 unsigned int line, ext4_fsblk_t block, 456 const char *fmt, ...) 457 { 458 va_list args; 459 struct va_format vaf; 460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 461 462 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 463 es->s_last_error_block = cpu_to_le64(block); 464 if (ext4_error_ratelimit(inode->i_sb)) { 465 va_start(args, fmt); 466 vaf.fmt = fmt; 467 vaf.va = &args; 468 if (block) 469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 470 "inode #%lu: block %llu: comm %s: %pV\n", 471 inode->i_sb->s_id, function, line, inode->i_ino, 472 block, current->comm, &vaf); 473 else 474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 475 "inode #%lu: comm %s: %pV\n", 476 inode->i_sb->s_id, function, line, inode->i_ino, 477 current->comm, &vaf); 478 va_end(args); 479 } 480 save_error_info(inode->i_sb, function, line); 481 ext4_handle_error(inode->i_sb); 482 } 483 484 void __ext4_error_file(struct file *file, const char *function, 485 unsigned int line, ext4_fsblk_t block, 486 const char *fmt, ...) 487 { 488 va_list args; 489 struct va_format vaf; 490 struct ext4_super_block *es; 491 struct inode *inode = file_inode(file); 492 char pathname[80], *path; 493 494 es = EXT4_SB(inode->i_sb)->s_es; 495 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 496 if (ext4_error_ratelimit(inode->i_sb)) { 497 path = file_path(file, pathname, sizeof(pathname)); 498 if (IS_ERR(path)) 499 path = "(unknown)"; 500 va_start(args, fmt); 501 vaf.fmt = fmt; 502 vaf.va = &args; 503 if (block) 504 printk(KERN_CRIT 505 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 506 "block %llu: comm %s: path %s: %pV\n", 507 inode->i_sb->s_id, function, line, inode->i_ino, 508 block, current->comm, path, &vaf); 509 else 510 printk(KERN_CRIT 511 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 512 "comm %s: path %s: %pV\n", 513 inode->i_sb->s_id, function, line, inode->i_ino, 514 current->comm, path, &vaf); 515 va_end(args); 516 } 517 save_error_info(inode->i_sb, function, line); 518 ext4_handle_error(inode->i_sb); 519 } 520 521 const char *ext4_decode_error(struct super_block *sb, int errno, 522 char nbuf[16]) 523 { 524 char *errstr = NULL; 525 526 switch (errno) { 527 case -EFSCORRUPTED: 528 errstr = "Corrupt filesystem"; 529 break; 530 case -EFSBADCRC: 531 errstr = "Filesystem failed CRC"; 532 break; 533 case -EIO: 534 errstr = "IO failure"; 535 break; 536 case -ENOMEM: 537 errstr = "Out of memory"; 538 break; 539 case -EROFS: 540 if (!sb || (EXT4_SB(sb)->s_journal && 541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 542 errstr = "Journal has aborted"; 543 else 544 errstr = "Readonly filesystem"; 545 break; 546 default: 547 /* If the caller passed in an extra buffer for unknown 548 * errors, textualise them now. Else we just return 549 * NULL. */ 550 if (nbuf) { 551 /* Check for truncated error codes... */ 552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 553 errstr = nbuf; 554 } 555 break; 556 } 557 558 return errstr; 559 } 560 561 /* __ext4_std_error decodes expected errors from journaling functions 562 * automatically and invokes the appropriate error response. */ 563 564 void __ext4_std_error(struct super_block *sb, const char *function, 565 unsigned int line, int errno) 566 { 567 char nbuf[16]; 568 const char *errstr; 569 570 /* Special case: if the error is EROFS, and we're not already 571 * inside a transaction, then there's really no point in logging 572 * an error. */ 573 if (errno == -EROFS && journal_current_handle() == NULL && 574 (sb->s_flags & MS_RDONLY)) 575 return; 576 577 if (ext4_error_ratelimit(sb)) { 578 errstr = ext4_decode_error(sb, errno, nbuf); 579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 580 sb->s_id, function, line, errstr); 581 } 582 583 save_error_info(sb, function, line); 584 ext4_handle_error(sb); 585 } 586 587 /* 588 * ext4_abort is a much stronger failure handler than ext4_error. The 589 * abort function may be used to deal with unrecoverable failures such 590 * as journal IO errors or ENOMEM at a critical moment in log management. 591 * 592 * We unconditionally force the filesystem into an ABORT|READONLY state, 593 * unless the error response on the fs has been set to panic in which 594 * case we take the easy way out and panic immediately. 595 */ 596 597 void __ext4_abort(struct super_block *sb, const char *function, 598 unsigned int line, const char *fmt, ...) 599 { 600 struct va_format vaf; 601 va_list args; 602 603 save_error_info(sb, function, line); 604 va_start(args, fmt); 605 vaf.fmt = fmt; 606 vaf.va = &args; 607 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 608 sb->s_id, function, line, &vaf); 609 va_end(args); 610 611 if ((sb->s_flags & MS_RDONLY) == 0) { 612 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 613 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 614 /* 615 * Make sure updated value of ->s_mount_flags will be visible 616 * before ->s_flags update 617 */ 618 smp_wmb(); 619 sb->s_flags |= MS_RDONLY; 620 if (EXT4_SB(sb)->s_journal) 621 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 622 save_error_info(sb, function, line); 623 } 624 if (test_opt(sb, ERRORS_PANIC)) { 625 if (EXT4_SB(sb)->s_journal && 626 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 627 return; 628 panic("EXT4-fs panic from previous error\n"); 629 } 630 } 631 632 void __ext4_msg(struct super_block *sb, 633 const char *prefix, const char *fmt, ...) 634 { 635 struct va_format vaf; 636 va_list args; 637 638 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 639 return; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 645 va_end(args); 646 } 647 648 #define ext4_warning_ratelimit(sb) \ 649 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 650 "EXT4-fs warning") 651 652 void __ext4_warning(struct super_block *sb, const char *function, 653 unsigned int line, const char *fmt, ...) 654 { 655 struct va_format vaf; 656 va_list args; 657 658 if (!ext4_warning_ratelimit(sb)) 659 return; 660 661 va_start(args, fmt); 662 vaf.fmt = fmt; 663 vaf.va = &args; 664 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 665 sb->s_id, function, line, &vaf); 666 va_end(args); 667 } 668 669 void __ext4_warning_inode(const struct inode *inode, const char *function, 670 unsigned int line, const char *fmt, ...) 671 { 672 struct va_format vaf; 673 va_list args; 674 675 if (!ext4_warning_ratelimit(inode->i_sb)) 676 return; 677 678 va_start(args, fmt); 679 vaf.fmt = fmt; 680 vaf.va = &args; 681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 682 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 683 function, line, inode->i_ino, current->comm, &vaf); 684 va_end(args); 685 } 686 687 void __ext4_grp_locked_error(const char *function, unsigned int line, 688 struct super_block *sb, ext4_group_t grp, 689 unsigned long ino, ext4_fsblk_t block, 690 const char *fmt, ...) 691 __releases(bitlock) 692 __acquires(bitlock) 693 { 694 struct va_format vaf; 695 va_list args; 696 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 697 698 es->s_last_error_ino = cpu_to_le32(ino); 699 es->s_last_error_block = cpu_to_le64(block); 700 __save_error_info(sb, function, line); 701 702 if (ext4_error_ratelimit(sb)) { 703 va_start(args, fmt); 704 vaf.fmt = fmt; 705 vaf.va = &args; 706 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 707 sb->s_id, function, line, grp); 708 if (ino) 709 printk(KERN_CONT "inode %lu: ", ino); 710 if (block) 711 printk(KERN_CONT "block %llu:", 712 (unsigned long long) block); 713 printk(KERN_CONT "%pV\n", &vaf); 714 va_end(args); 715 } 716 717 if (test_opt(sb, ERRORS_CONT)) { 718 ext4_commit_super(sb, 0); 719 return; 720 } 721 722 ext4_unlock_group(sb, grp); 723 ext4_handle_error(sb); 724 /* 725 * We only get here in the ERRORS_RO case; relocking the group 726 * may be dangerous, but nothing bad will happen since the 727 * filesystem will have already been marked read/only and the 728 * journal has been aborted. We return 1 as a hint to callers 729 * who might what to use the return value from 730 * ext4_grp_locked_error() to distinguish between the 731 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 732 * aggressively from the ext4 function in question, with a 733 * more appropriate error code. 734 */ 735 ext4_lock_group(sb, grp); 736 return; 737 } 738 739 void ext4_update_dynamic_rev(struct super_block *sb) 740 { 741 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 742 743 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 744 return; 745 746 ext4_warning(sb, 747 "updating to rev %d because of new feature flag, " 748 "running e2fsck is recommended", 749 EXT4_DYNAMIC_REV); 750 751 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 752 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 753 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 754 /* leave es->s_feature_*compat flags alone */ 755 /* es->s_uuid will be set by e2fsck if empty */ 756 757 /* 758 * The rest of the superblock fields should be zero, and if not it 759 * means they are likely already in use, so leave them alone. We 760 * can leave it up to e2fsck to clean up any inconsistencies there. 761 */ 762 } 763 764 /* 765 * Open the external journal device 766 */ 767 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 768 { 769 struct block_device *bdev; 770 char b[BDEVNAME_SIZE]; 771 772 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 773 if (IS_ERR(bdev)) 774 goto fail; 775 return bdev; 776 777 fail: 778 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 779 __bdevname(dev, b), PTR_ERR(bdev)); 780 return NULL; 781 } 782 783 /* 784 * Release the journal device 785 */ 786 static void ext4_blkdev_put(struct block_device *bdev) 787 { 788 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 789 } 790 791 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 792 { 793 struct block_device *bdev; 794 bdev = sbi->journal_bdev; 795 if (bdev) { 796 ext4_blkdev_put(bdev); 797 sbi->journal_bdev = NULL; 798 } 799 } 800 801 static inline struct inode *orphan_list_entry(struct list_head *l) 802 { 803 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 804 } 805 806 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 807 { 808 struct list_head *l; 809 810 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 811 le32_to_cpu(sbi->s_es->s_last_orphan)); 812 813 printk(KERN_ERR "sb_info orphan list:\n"); 814 list_for_each(l, &sbi->s_orphan) { 815 struct inode *inode = orphan_list_entry(l); 816 printk(KERN_ERR " " 817 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 818 inode->i_sb->s_id, inode->i_ino, inode, 819 inode->i_mode, inode->i_nlink, 820 NEXT_ORPHAN(inode)); 821 } 822 } 823 824 static void ext4_put_super(struct super_block *sb) 825 { 826 struct ext4_sb_info *sbi = EXT4_SB(sb); 827 struct ext4_super_block *es = sbi->s_es; 828 int i, err; 829 830 ext4_unregister_li_request(sb); 831 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 832 833 flush_workqueue(sbi->rsv_conversion_wq); 834 destroy_workqueue(sbi->rsv_conversion_wq); 835 836 if (sbi->s_journal) { 837 err = jbd2_journal_destroy(sbi->s_journal); 838 sbi->s_journal = NULL; 839 if (err < 0) 840 ext4_abort(sb, "Couldn't clean up the journal"); 841 } 842 843 ext4_unregister_sysfs(sb); 844 ext4_es_unregister_shrinker(sbi); 845 del_timer_sync(&sbi->s_err_report); 846 ext4_release_system_zone(sb); 847 ext4_mb_release(sb); 848 ext4_ext_release(sb); 849 850 if (!(sb->s_flags & MS_RDONLY)) { 851 ext4_clear_feature_journal_needs_recovery(sb); 852 es->s_state = cpu_to_le16(sbi->s_mount_state); 853 } 854 if (!(sb->s_flags & MS_RDONLY)) 855 ext4_commit_super(sb, 1); 856 857 for (i = 0; i < sbi->s_gdb_count; i++) 858 brelse(sbi->s_group_desc[i]); 859 kvfree(sbi->s_group_desc); 860 kvfree(sbi->s_flex_groups); 861 percpu_counter_destroy(&sbi->s_freeclusters_counter); 862 percpu_counter_destroy(&sbi->s_freeinodes_counter); 863 percpu_counter_destroy(&sbi->s_dirs_counter); 864 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 865 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 866 #ifdef CONFIG_QUOTA 867 for (i = 0; i < EXT4_MAXQUOTAS; i++) 868 kfree(sbi->s_qf_names[i]); 869 #endif 870 871 /* Debugging code just in case the in-memory inode orphan list 872 * isn't empty. The on-disk one can be non-empty if we've 873 * detected an error and taken the fs readonly, but the 874 * in-memory list had better be clean by this point. */ 875 if (!list_empty(&sbi->s_orphan)) 876 dump_orphan_list(sb, sbi); 877 J_ASSERT(list_empty(&sbi->s_orphan)); 878 879 sync_blockdev(sb->s_bdev); 880 invalidate_bdev(sb->s_bdev); 881 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 882 /* 883 * Invalidate the journal device's buffers. We don't want them 884 * floating about in memory - the physical journal device may 885 * hotswapped, and it breaks the `ro-after' testing code. 886 */ 887 sync_blockdev(sbi->journal_bdev); 888 invalidate_bdev(sbi->journal_bdev); 889 ext4_blkdev_remove(sbi); 890 } 891 if (sbi->s_mb_cache) { 892 ext4_xattr_destroy_cache(sbi->s_mb_cache); 893 sbi->s_mb_cache = NULL; 894 } 895 if (sbi->s_mmp_tsk) 896 kthread_stop(sbi->s_mmp_tsk); 897 brelse(sbi->s_sbh); 898 sb->s_fs_info = NULL; 899 /* 900 * Now that we are completely done shutting down the 901 * superblock, we need to actually destroy the kobject. 902 */ 903 kobject_put(&sbi->s_kobj); 904 wait_for_completion(&sbi->s_kobj_unregister); 905 if (sbi->s_chksum_driver) 906 crypto_free_shash(sbi->s_chksum_driver); 907 kfree(sbi->s_blockgroup_lock); 908 kfree(sbi); 909 } 910 911 static struct kmem_cache *ext4_inode_cachep; 912 913 /* 914 * Called inside transaction, so use GFP_NOFS 915 */ 916 static struct inode *ext4_alloc_inode(struct super_block *sb) 917 { 918 struct ext4_inode_info *ei; 919 920 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 921 if (!ei) 922 return NULL; 923 924 ei->vfs_inode.i_version = 1; 925 spin_lock_init(&ei->i_raw_lock); 926 INIT_LIST_HEAD(&ei->i_prealloc_list); 927 spin_lock_init(&ei->i_prealloc_lock); 928 ext4_es_init_tree(&ei->i_es_tree); 929 rwlock_init(&ei->i_es_lock); 930 INIT_LIST_HEAD(&ei->i_es_list); 931 ei->i_es_all_nr = 0; 932 ei->i_es_shk_nr = 0; 933 ei->i_es_shrink_lblk = 0; 934 ei->i_reserved_data_blocks = 0; 935 ei->i_reserved_meta_blocks = 0; 936 ei->i_allocated_meta_blocks = 0; 937 ei->i_da_metadata_calc_len = 0; 938 ei->i_da_metadata_calc_last_lblock = 0; 939 spin_lock_init(&(ei->i_block_reservation_lock)); 940 #ifdef CONFIG_QUOTA 941 ei->i_reserved_quota = 0; 942 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 943 #endif 944 ei->jinode = NULL; 945 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 946 spin_lock_init(&ei->i_completed_io_lock); 947 ei->i_sync_tid = 0; 948 ei->i_datasync_tid = 0; 949 atomic_set(&ei->i_unwritten, 0); 950 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 951 return &ei->vfs_inode; 952 } 953 954 static int ext4_drop_inode(struct inode *inode) 955 { 956 int drop = generic_drop_inode(inode); 957 958 trace_ext4_drop_inode(inode, drop); 959 return drop; 960 } 961 962 static void ext4_i_callback(struct rcu_head *head) 963 { 964 struct inode *inode = container_of(head, struct inode, i_rcu); 965 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 966 } 967 968 static void ext4_destroy_inode(struct inode *inode) 969 { 970 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 971 ext4_msg(inode->i_sb, KERN_ERR, 972 "Inode %lu (%p): orphan list check failed!", 973 inode->i_ino, EXT4_I(inode)); 974 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 975 EXT4_I(inode), sizeof(struct ext4_inode_info), 976 true); 977 dump_stack(); 978 } 979 call_rcu(&inode->i_rcu, ext4_i_callback); 980 } 981 982 static void init_once(void *foo) 983 { 984 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 985 986 INIT_LIST_HEAD(&ei->i_orphan); 987 init_rwsem(&ei->xattr_sem); 988 init_rwsem(&ei->i_data_sem); 989 init_rwsem(&ei->i_mmap_sem); 990 inode_init_once(&ei->vfs_inode); 991 } 992 993 static int __init init_inodecache(void) 994 { 995 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 996 sizeof(struct ext4_inode_info), 997 0, (SLAB_RECLAIM_ACCOUNT| 998 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 999 init_once); 1000 if (ext4_inode_cachep == NULL) 1001 return -ENOMEM; 1002 return 0; 1003 } 1004 1005 static void destroy_inodecache(void) 1006 { 1007 /* 1008 * Make sure all delayed rcu free inodes are flushed before we 1009 * destroy cache. 1010 */ 1011 rcu_barrier(); 1012 kmem_cache_destroy(ext4_inode_cachep); 1013 } 1014 1015 void ext4_clear_inode(struct inode *inode) 1016 { 1017 invalidate_inode_buffers(inode); 1018 clear_inode(inode); 1019 dquot_drop(inode); 1020 ext4_discard_preallocations(inode); 1021 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1022 if (EXT4_I(inode)->jinode) { 1023 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1024 EXT4_I(inode)->jinode); 1025 jbd2_free_inode(EXT4_I(inode)->jinode); 1026 EXT4_I(inode)->jinode = NULL; 1027 } 1028 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1029 fscrypt_put_encryption_info(inode, NULL); 1030 #endif 1031 } 1032 1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1034 u64 ino, u32 generation) 1035 { 1036 struct inode *inode; 1037 1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1039 return ERR_PTR(-ESTALE); 1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1041 return ERR_PTR(-ESTALE); 1042 1043 /* iget isn't really right if the inode is currently unallocated!! 1044 * 1045 * ext4_read_inode will return a bad_inode if the inode had been 1046 * deleted, so we should be safe. 1047 * 1048 * Currently we don't know the generation for parent directory, so 1049 * a generation of 0 means "accept any" 1050 */ 1051 inode = ext4_iget_normal(sb, ino); 1052 if (IS_ERR(inode)) 1053 return ERR_CAST(inode); 1054 if (generation && inode->i_generation != generation) { 1055 iput(inode); 1056 return ERR_PTR(-ESTALE); 1057 } 1058 1059 return inode; 1060 } 1061 1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1063 int fh_len, int fh_type) 1064 { 1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1066 ext4_nfs_get_inode); 1067 } 1068 1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1070 int fh_len, int fh_type) 1071 { 1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1073 ext4_nfs_get_inode); 1074 } 1075 1076 /* 1077 * Try to release metadata pages (indirect blocks, directories) which are 1078 * mapped via the block device. Since these pages could have journal heads 1079 * which would prevent try_to_free_buffers() from freeing them, we must use 1080 * jbd2 layer's try_to_free_buffers() function to release them. 1081 */ 1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1083 gfp_t wait) 1084 { 1085 journal_t *journal = EXT4_SB(sb)->s_journal; 1086 1087 WARN_ON(PageChecked(page)); 1088 if (!page_has_buffers(page)) 1089 return 0; 1090 if (journal) 1091 return jbd2_journal_try_to_free_buffers(journal, page, 1092 wait & ~__GFP_DIRECT_RECLAIM); 1093 return try_to_free_buffers(page); 1094 } 1095 1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1097 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1098 { 1099 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1100 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1101 } 1102 1103 static int ext4_key_prefix(struct inode *inode, u8 **key) 1104 { 1105 *key = EXT4_SB(inode->i_sb)->key_prefix; 1106 return EXT4_SB(inode->i_sb)->key_prefix_size; 1107 } 1108 1109 static int ext4_prepare_context(struct inode *inode) 1110 { 1111 return ext4_convert_inline_data(inode); 1112 } 1113 1114 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1115 void *fs_data) 1116 { 1117 handle_t *handle = fs_data; 1118 int res, res2, retries = 0; 1119 1120 /* 1121 * If a journal handle was specified, then the encryption context is 1122 * being set on a new inode via inheritance and is part of a larger 1123 * transaction to create the inode. Otherwise the encryption context is 1124 * being set on an existing inode in its own transaction. Only in the 1125 * latter case should the "retry on ENOSPC" logic be used. 1126 */ 1127 1128 if (handle) { 1129 res = ext4_xattr_set_handle(handle, inode, 1130 EXT4_XATTR_INDEX_ENCRYPTION, 1131 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1132 ctx, len, 0); 1133 if (!res) { 1134 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1135 ext4_clear_inode_state(inode, 1136 EXT4_STATE_MAY_INLINE_DATA); 1137 /* 1138 * Update inode->i_flags - e.g. S_DAX may get disabled 1139 */ 1140 ext4_set_inode_flags(inode); 1141 } 1142 return res; 1143 } 1144 1145 retry: 1146 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1147 ext4_jbd2_credits_xattr(inode)); 1148 if (IS_ERR(handle)) 1149 return PTR_ERR(handle); 1150 1151 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1152 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1153 ctx, len, 0); 1154 if (!res) { 1155 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1156 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1157 ext4_set_inode_flags(inode); 1158 res = ext4_mark_inode_dirty(handle, inode); 1159 if (res) 1160 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1161 } 1162 res2 = ext4_journal_stop(handle); 1163 1164 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1165 goto retry; 1166 if (!res) 1167 res = res2; 1168 return res; 1169 } 1170 1171 static int ext4_dummy_context(struct inode *inode) 1172 { 1173 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1174 } 1175 1176 static unsigned ext4_max_namelen(struct inode *inode) 1177 { 1178 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1179 EXT4_NAME_LEN; 1180 } 1181 1182 static struct fscrypt_operations ext4_cryptops = { 1183 .get_context = ext4_get_context, 1184 .key_prefix = ext4_key_prefix, 1185 .prepare_context = ext4_prepare_context, 1186 .set_context = ext4_set_context, 1187 .dummy_context = ext4_dummy_context, 1188 .is_encrypted = ext4_encrypted_inode, 1189 .empty_dir = ext4_empty_dir, 1190 .max_namelen = ext4_max_namelen, 1191 }; 1192 #else 1193 static struct fscrypt_operations ext4_cryptops = { 1194 .is_encrypted = ext4_encrypted_inode, 1195 }; 1196 #endif 1197 1198 #ifdef CONFIG_QUOTA 1199 static char *quotatypes[] = INITQFNAMES; 1200 #define QTYPE2NAME(t) (quotatypes[t]) 1201 1202 static int ext4_write_dquot(struct dquot *dquot); 1203 static int ext4_acquire_dquot(struct dquot *dquot); 1204 static int ext4_release_dquot(struct dquot *dquot); 1205 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1206 static int ext4_write_info(struct super_block *sb, int type); 1207 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1208 const struct path *path); 1209 static int ext4_quota_off(struct super_block *sb, int type); 1210 static int ext4_quota_on_mount(struct super_block *sb, int type); 1211 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1212 size_t len, loff_t off); 1213 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1214 const char *data, size_t len, loff_t off); 1215 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1216 unsigned int flags); 1217 static int ext4_enable_quotas(struct super_block *sb); 1218 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1219 1220 static struct dquot **ext4_get_dquots(struct inode *inode) 1221 { 1222 return EXT4_I(inode)->i_dquot; 1223 } 1224 1225 static const struct dquot_operations ext4_quota_operations = { 1226 .get_reserved_space = ext4_get_reserved_space, 1227 .write_dquot = ext4_write_dquot, 1228 .acquire_dquot = ext4_acquire_dquot, 1229 .release_dquot = ext4_release_dquot, 1230 .mark_dirty = ext4_mark_dquot_dirty, 1231 .write_info = ext4_write_info, 1232 .alloc_dquot = dquot_alloc, 1233 .destroy_dquot = dquot_destroy, 1234 .get_projid = ext4_get_projid, 1235 .get_next_id = ext4_get_next_id, 1236 }; 1237 1238 static const struct quotactl_ops ext4_qctl_operations = { 1239 .quota_on = ext4_quota_on, 1240 .quota_off = ext4_quota_off, 1241 .quota_sync = dquot_quota_sync, 1242 .get_state = dquot_get_state, 1243 .set_info = dquot_set_dqinfo, 1244 .get_dqblk = dquot_get_dqblk, 1245 .set_dqblk = dquot_set_dqblk, 1246 .get_nextdqblk = dquot_get_next_dqblk, 1247 }; 1248 #endif 1249 1250 static const struct super_operations ext4_sops = { 1251 .alloc_inode = ext4_alloc_inode, 1252 .destroy_inode = ext4_destroy_inode, 1253 .write_inode = ext4_write_inode, 1254 .dirty_inode = ext4_dirty_inode, 1255 .drop_inode = ext4_drop_inode, 1256 .evict_inode = ext4_evict_inode, 1257 .put_super = ext4_put_super, 1258 .sync_fs = ext4_sync_fs, 1259 .freeze_fs = ext4_freeze, 1260 .unfreeze_fs = ext4_unfreeze, 1261 .statfs = ext4_statfs, 1262 .remount_fs = ext4_remount, 1263 .show_options = ext4_show_options, 1264 #ifdef CONFIG_QUOTA 1265 .quota_read = ext4_quota_read, 1266 .quota_write = ext4_quota_write, 1267 .get_dquots = ext4_get_dquots, 1268 #endif 1269 .bdev_try_to_free_page = bdev_try_to_free_page, 1270 }; 1271 1272 static const struct export_operations ext4_export_ops = { 1273 .fh_to_dentry = ext4_fh_to_dentry, 1274 .fh_to_parent = ext4_fh_to_parent, 1275 .get_parent = ext4_get_parent, 1276 }; 1277 1278 enum { 1279 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1280 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1281 Opt_nouid32, Opt_debug, Opt_removed, 1282 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1283 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1284 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1285 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1286 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1287 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1288 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1289 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1290 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1291 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1292 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1293 Opt_lazytime, Opt_nolazytime, 1294 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1295 Opt_inode_readahead_blks, Opt_journal_ioprio, 1296 Opt_dioread_nolock, Opt_dioread_lock, 1297 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1298 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1299 }; 1300 1301 static const match_table_t tokens = { 1302 {Opt_bsd_df, "bsddf"}, 1303 {Opt_minix_df, "minixdf"}, 1304 {Opt_grpid, "grpid"}, 1305 {Opt_grpid, "bsdgroups"}, 1306 {Opt_nogrpid, "nogrpid"}, 1307 {Opt_nogrpid, "sysvgroups"}, 1308 {Opt_resgid, "resgid=%u"}, 1309 {Opt_resuid, "resuid=%u"}, 1310 {Opt_sb, "sb=%u"}, 1311 {Opt_err_cont, "errors=continue"}, 1312 {Opt_err_panic, "errors=panic"}, 1313 {Opt_err_ro, "errors=remount-ro"}, 1314 {Opt_nouid32, "nouid32"}, 1315 {Opt_debug, "debug"}, 1316 {Opt_removed, "oldalloc"}, 1317 {Opt_removed, "orlov"}, 1318 {Opt_user_xattr, "user_xattr"}, 1319 {Opt_nouser_xattr, "nouser_xattr"}, 1320 {Opt_acl, "acl"}, 1321 {Opt_noacl, "noacl"}, 1322 {Opt_noload, "norecovery"}, 1323 {Opt_noload, "noload"}, 1324 {Opt_removed, "nobh"}, 1325 {Opt_removed, "bh"}, 1326 {Opt_commit, "commit=%u"}, 1327 {Opt_min_batch_time, "min_batch_time=%u"}, 1328 {Opt_max_batch_time, "max_batch_time=%u"}, 1329 {Opt_journal_dev, "journal_dev=%u"}, 1330 {Opt_journal_path, "journal_path=%s"}, 1331 {Opt_journal_checksum, "journal_checksum"}, 1332 {Opt_nojournal_checksum, "nojournal_checksum"}, 1333 {Opt_journal_async_commit, "journal_async_commit"}, 1334 {Opt_abort, "abort"}, 1335 {Opt_data_journal, "data=journal"}, 1336 {Opt_data_ordered, "data=ordered"}, 1337 {Opt_data_writeback, "data=writeback"}, 1338 {Opt_data_err_abort, "data_err=abort"}, 1339 {Opt_data_err_ignore, "data_err=ignore"}, 1340 {Opt_offusrjquota, "usrjquota="}, 1341 {Opt_usrjquota, "usrjquota=%s"}, 1342 {Opt_offgrpjquota, "grpjquota="}, 1343 {Opt_grpjquota, "grpjquota=%s"}, 1344 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1345 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1346 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1347 {Opt_grpquota, "grpquota"}, 1348 {Opt_noquota, "noquota"}, 1349 {Opt_quota, "quota"}, 1350 {Opt_usrquota, "usrquota"}, 1351 {Opt_prjquota, "prjquota"}, 1352 {Opt_barrier, "barrier=%u"}, 1353 {Opt_barrier, "barrier"}, 1354 {Opt_nobarrier, "nobarrier"}, 1355 {Opt_i_version, "i_version"}, 1356 {Opt_dax, "dax"}, 1357 {Opt_stripe, "stripe=%u"}, 1358 {Opt_delalloc, "delalloc"}, 1359 {Opt_lazytime, "lazytime"}, 1360 {Opt_nolazytime, "nolazytime"}, 1361 {Opt_nodelalloc, "nodelalloc"}, 1362 {Opt_removed, "mblk_io_submit"}, 1363 {Opt_removed, "nomblk_io_submit"}, 1364 {Opt_block_validity, "block_validity"}, 1365 {Opt_noblock_validity, "noblock_validity"}, 1366 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1367 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1368 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1369 {Opt_auto_da_alloc, "auto_da_alloc"}, 1370 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1371 {Opt_dioread_nolock, "dioread_nolock"}, 1372 {Opt_dioread_lock, "dioread_lock"}, 1373 {Opt_discard, "discard"}, 1374 {Opt_nodiscard, "nodiscard"}, 1375 {Opt_init_itable, "init_itable=%u"}, 1376 {Opt_init_itable, "init_itable"}, 1377 {Opt_noinit_itable, "noinit_itable"}, 1378 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1379 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1380 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1381 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1382 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1383 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1384 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1385 {Opt_err, NULL}, 1386 }; 1387 1388 static ext4_fsblk_t get_sb_block(void **data) 1389 { 1390 ext4_fsblk_t sb_block; 1391 char *options = (char *) *data; 1392 1393 if (!options || strncmp(options, "sb=", 3) != 0) 1394 return 1; /* Default location */ 1395 1396 options += 3; 1397 /* TODO: use simple_strtoll with >32bit ext4 */ 1398 sb_block = simple_strtoul(options, &options, 0); 1399 if (*options && *options != ',') { 1400 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1401 (char *) *data); 1402 return 1; 1403 } 1404 if (*options == ',') 1405 options++; 1406 *data = (void *) options; 1407 1408 return sb_block; 1409 } 1410 1411 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1412 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1413 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1414 1415 #ifdef CONFIG_QUOTA 1416 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1417 { 1418 struct ext4_sb_info *sbi = EXT4_SB(sb); 1419 char *qname; 1420 int ret = -1; 1421 1422 if (sb_any_quota_loaded(sb) && 1423 !sbi->s_qf_names[qtype]) { 1424 ext4_msg(sb, KERN_ERR, 1425 "Cannot change journaled " 1426 "quota options when quota turned on"); 1427 return -1; 1428 } 1429 if (ext4_has_feature_quota(sb)) { 1430 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1431 "ignored when QUOTA feature is enabled"); 1432 return 1; 1433 } 1434 qname = match_strdup(args); 1435 if (!qname) { 1436 ext4_msg(sb, KERN_ERR, 1437 "Not enough memory for storing quotafile name"); 1438 return -1; 1439 } 1440 if (sbi->s_qf_names[qtype]) { 1441 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1442 ret = 1; 1443 else 1444 ext4_msg(sb, KERN_ERR, 1445 "%s quota file already specified", 1446 QTYPE2NAME(qtype)); 1447 goto errout; 1448 } 1449 if (strchr(qname, '/')) { 1450 ext4_msg(sb, KERN_ERR, 1451 "quotafile must be on filesystem root"); 1452 goto errout; 1453 } 1454 sbi->s_qf_names[qtype] = qname; 1455 set_opt(sb, QUOTA); 1456 return 1; 1457 errout: 1458 kfree(qname); 1459 return ret; 1460 } 1461 1462 static int clear_qf_name(struct super_block *sb, int qtype) 1463 { 1464 1465 struct ext4_sb_info *sbi = EXT4_SB(sb); 1466 1467 if (sb_any_quota_loaded(sb) && 1468 sbi->s_qf_names[qtype]) { 1469 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1470 " when quota turned on"); 1471 return -1; 1472 } 1473 kfree(sbi->s_qf_names[qtype]); 1474 sbi->s_qf_names[qtype] = NULL; 1475 return 1; 1476 } 1477 #endif 1478 1479 #define MOPT_SET 0x0001 1480 #define MOPT_CLEAR 0x0002 1481 #define MOPT_NOSUPPORT 0x0004 1482 #define MOPT_EXPLICIT 0x0008 1483 #define MOPT_CLEAR_ERR 0x0010 1484 #define MOPT_GTE0 0x0020 1485 #ifdef CONFIG_QUOTA 1486 #define MOPT_Q 0 1487 #define MOPT_QFMT 0x0040 1488 #else 1489 #define MOPT_Q MOPT_NOSUPPORT 1490 #define MOPT_QFMT MOPT_NOSUPPORT 1491 #endif 1492 #define MOPT_DATAJ 0x0080 1493 #define MOPT_NO_EXT2 0x0100 1494 #define MOPT_NO_EXT3 0x0200 1495 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1496 #define MOPT_STRING 0x0400 1497 1498 static const struct mount_opts { 1499 int token; 1500 int mount_opt; 1501 int flags; 1502 } ext4_mount_opts[] = { 1503 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1504 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1505 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1506 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1507 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1508 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1509 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1510 MOPT_EXT4_ONLY | MOPT_SET}, 1511 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1512 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1513 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1514 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1515 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1516 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1517 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1518 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1519 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1520 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1521 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1522 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1523 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1524 EXT4_MOUNT_JOURNAL_CHECKSUM), 1525 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1526 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1527 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1528 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1529 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1530 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1531 MOPT_NO_EXT2}, 1532 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1533 MOPT_NO_EXT2}, 1534 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1535 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1536 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1537 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1538 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1539 {Opt_commit, 0, MOPT_GTE0}, 1540 {Opt_max_batch_time, 0, MOPT_GTE0}, 1541 {Opt_min_batch_time, 0, MOPT_GTE0}, 1542 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1543 {Opt_init_itable, 0, MOPT_GTE0}, 1544 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1545 {Opt_stripe, 0, MOPT_GTE0}, 1546 {Opt_resuid, 0, MOPT_GTE0}, 1547 {Opt_resgid, 0, MOPT_GTE0}, 1548 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1549 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1550 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1551 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1552 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1553 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1554 MOPT_NO_EXT2 | MOPT_DATAJ}, 1555 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1556 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1557 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1558 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1559 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1560 #else 1561 {Opt_acl, 0, MOPT_NOSUPPORT}, 1562 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1563 #endif 1564 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1565 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1566 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1567 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1568 MOPT_SET | MOPT_Q}, 1569 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1570 MOPT_SET | MOPT_Q}, 1571 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1572 MOPT_SET | MOPT_Q}, 1573 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1574 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1575 MOPT_CLEAR | MOPT_Q}, 1576 {Opt_usrjquota, 0, MOPT_Q}, 1577 {Opt_grpjquota, 0, MOPT_Q}, 1578 {Opt_offusrjquota, 0, MOPT_Q}, 1579 {Opt_offgrpjquota, 0, MOPT_Q}, 1580 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1581 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1582 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1583 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1584 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1585 {Opt_err, 0, 0} 1586 }; 1587 1588 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1589 substring_t *args, unsigned long *journal_devnum, 1590 unsigned int *journal_ioprio, int is_remount) 1591 { 1592 struct ext4_sb_info *sbi = EXT4_SB(sb); 1593 const struct mount_opts *m; 1594 kuid_t uid; 1595 kgid_t gid; 1596 int arg = 0; 1597 1598 #ifdef CONFIG_QUOTA 1599 if (token == Opt_usrjquota) 1600 return set_qf_name(sb, USRQUOTA, &args[0]); 1601 else if (token == Opt_grpjquota) 1602 return set_qf_name(sb, GRPQUOTA, &args[0]); 1603 else if (token == Opt_offusrjquota) 1604 return clear_qf_name(sb, USRQUOTA); 1605 else if (token == Opt_offgrpjquota) 1606 return clear_qf_name(sb, GRPQUOTA); 1607 #endif 1608 switch (token) { 1609 case Opt_noacl: 1610 case Opt_nouser_xattr: 1611 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1612 break; 1613 case Opt_sb: 1614 return 1; /* handled by get_sb_block() */ 1615 case Opt_removed: 1616 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1617 return 1; 1618 case Opt_abort: 1619 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1620 return 1; 1621 case Opt_i_version: 1622 sb->s_flags |= MS_I_VERSION; 1623 return 1; 1624 case Opt_lazytime: 1625 sb->s_flags |= MS_LAZYTIME; 1626 return 1; 1627 case Opt_nolazytime: 1628 sb->s_flags &= ~MS_LAZYTIME; 1629 return 1; 1630 } 1631 1632 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1633 if (token == m->token) 1634 break; 1635 1636 if (m->token == Opt_err) { 1637 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1638 "or missing value", opt); 1639 return -1; 1640 } 1641 1642 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1643 ext4_msg(sb, KERN_ERR, 1644 "Mount option \"%s\" incompatible with ext2", opt); 1645 return -1; 1646 } 1647 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1648 ext4_msg(sb, KERN_ERR, 1649 "Mount option \"%s\" incompatible with ext3", opt); 1650 return -1; 1651 } 1652 1653 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1654 return -1; 1655 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1656 return -1; 1657 if (m->flags & MOPT_EXPLICIT) { 1658 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1659 set_opt2(sb, EXPLICIT_DELALLOC); 1660 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1661 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1662 } else 1663 return -1; 1664 } 1665 if (m->flags & MOPT_CLEAR_ERR) 1666 clear_opt(sb, ERRORS_MASK); 1667 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1668 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1669 "options when quota turned on"); 1670 return -1; 1671 } 1672 1673 if (m->flags & MOPT_NOSUPPORT) { 1674 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1675 } else if (token == Opt_commit) { 1676 if (arg == 0) 1677 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1678 sbi->s_commit_interval = HZ * arg; 1679 } else if (token == Opt_max_batch_time) { 1680 sbi->s_max_batch_time = arg; 1681 } else if (token == Opt_min_batch_time) { 1682 sbi->s_min_batch_time = arg; 1683 } else if (token == Opt_inode_readahead_blks) { 1684 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1685 ext4_msg(sb, KERN_ERR, 1686 "EXT4-fs: inode_readahead_blks must be " 1687 "0 or a power of 2 smaller than 2^31"); 1688 return -1; 1689 } 1690 sbi->s_inode_readahead_blks = arg; 1691 } else if (token == Opt_init_itable) { 1692 set_opt(sb, INIT_INODE_TABLE); 1693 if (!args->from) 1694 arg = EXT4_DEF_LI_WAIT_MULT; 1695 sbi->s_li_wait_mult = arg; 1696 } else if (token == Opt_max_dir_size_kb) { 1697 sbi->s_max_dir_size_kb = arg; 1698 } else if (token == Opt_stripe) { 1699 sbi->s_stripe = arg; 1700 } else if (token == Opt_resuid) { 1701 uid = make_kuid(current_user_ns(), arg); 1702 if (!uid_valid(uid)) { 1703 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1704 return -1; 1705 } 1706 sbi->s_resuid = uid; 1707 } else if (token == Opt_resgid) { 1708 gid = make_kgid(current_user_ns(), arg); 1709 if (!gid_valid(gid)) { 1710 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1711 return -1; 1712 } 1713 sbi->s_resgid = gid; 1714 } else if (token == Opt_journal_dev) { 1715 if (is_remount) { 1716 ext4_msg(sb, KERN_ERR, 1717 "Cannot specify journal on remount"); 1718 return -1; 1719 } 1720 *journal_devnum = arg; 1721 } else if (token == Opt_journal_path) { 1722 char *journal_path; 1723 struct inode *journal_inode; 1724 struct path path; 1725 int error; 1726 1727 if (is_remount) { 1728 ext4_msg(sb, KERN_ERR, 1729 "Cannot specify journal on remount"); 1730 return -1; 1731 } 1732 journal_path = match_strdup(&args[0]); 1733 if (!journal_path) { 1734 ext4_msg(sb, KERN_ERR, "error: could not dup " 1735 "journal device string"); 1736 return -1; 1737 } 1738 1739 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1740 if (error) { 1741 ext4_msg(sb, KERN_ERR, "error: could not find " 1742 "journal device path: error %d", error); 1743 kfree(journal_path); 1744 return -1; 1745 } 1746 1747 journal_inode = d_inode(path.dentry); 1748 if (!S_ISBLK(journal_inode->i_mode)) { 1749 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1750 "is not a block device", journal_path); 1751 path_put(&path); 1752 kfree(journal_path); 1753 return -1; 1754 } 1755 1756 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1757 path_put(&path); 1758 kfree(journal_path); 1759 } else if (token == Opt_journal_ioprio) { 1760 if (arg > 7) { 1761 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1762 " (must be 0-7)"); 1763 return -1; 1764 } 1765 *journal_ioprio = 1766 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1767 } else if (token == Opt_test_dummy_encryption) { 1768 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1769 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1770 ext4_msg(sb, KERN_WARNING, 1771 "Test dummy encryption mode enabled"); 1772 #else 1773 ext4_msg(sb, KERN_WARNING, 1774 "Test dummy encryption mount option ignored"); 1775 #endif 1776 } else if (m->flags & MOPT_DATAJ) { 1777 if (is_remount) { 1778 if (!sbi->s_journal) 1779 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1780 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1781 ext4_msg(sb, KERN_ERR, 1782 "Cannot change data mode on remount"); 1783 return -1; 1784 } 1785 } else { 1786 clear_opt(sb, DATA_FLAGS); 1787 sbi->s_mount_opt |= m->mount_opt; 1788 } 1789 #ifdef CONFIG_QUOTA 1790 } else if (m->flags & MOPT_QFMT) { 1791 if (sb_any_quota_loaded(sb) && 1792 sbi->s_jquota_fmt != m->mount_opt) { 1793 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1794 "quota options when quota turned on"); 1795 return -1; 1796 } 1797 if (ext4_has_feature_quota(sb)) { 1798 ext4_msg(sb, KERN_INFO, 1799 "Quota format mount options ignored " 1800 "when QUOTA feature is enabled"); 1801 return 1; 1802 } 1803 sbi->s_jquota_fmt = m->mount_opt; 1804 #endif 1805 } else if (token == Opt_dax) { 1806 #ifdef CONFIG_FS_DAX 1807 ext4_msg(sb, KERN_WARNING, 1808 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1809 sbi->s_mount_opt |= m->mount_opt; 1810 #else 1811 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1812 return -1; 1813 #endif 1814 } else if (token == Opt_data_err_abort) { 1815 sbi->s_mount_opt |= m->mount_opt; 1816 } else if (token == Opt_data_err_ignore) { 1817 sbi->s_mount_opt &= ~m->mount_opt; 1818 } else { 1819 if (!args->from) 1820 arg = 1; 1821 if (m->flags & MOPT_CLEAR) 1822 arg = !arg; 1823 else if (unlikely(!(m->flags & MOPT_SET))) { 1824 ext4_msg(sb, KERN_WARNING, 1825 "buggy handling of option %s", opt); 1826 WARN_ON(1); 1827 return -1; 1828 } 1829 if (arg != 0) 1830 sbi->s_mount_opt |= m->mount_opt; 1831 else 1832 sbi->s_mount_opt &= ~m->mount_opt; 1833 } 1834 return 1; 1835 } 1836 1837 static int parse_options(char *options, struct super_block *sb, 1838 unsigned long *journal_devnum, 1839 unsigned int *journal_ioprio, 1840 int is_remount) 1841 { 1842 struct ext4_sb_info *sbi = EXT4_SB(sb); 1843 char *p; 1844 substring_t args[MAX_OPT_ARGS]; 1845 int token; 1846 1847 if (!options) 1848 return 1; 1849 1850 while ((p = strsep(&options, ",")) != NULL) { 1851 if (!*p) 1852 continue; 1853 /* 1854 * Initialize args struct so we know whether arg was 1855 * found; some options take optional arguments. 1856 */ 1857 args[0].to = args[0].from = NULL; 1858 token = match_token(p, tokens, args); 1859 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1860 journal_ioprio, is_remount) < 0) 1861 return 0; 1862 } 1863 #ifdef CONFIG_QUOTA 1864 /* 1865 * We do the test below only for project quotas. 'usrquota' and 1866 * 'grpquota' mount options are allowed even without quota feature 1867 * to support legacy quotas in quota files. 1868 */ 1869 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1870 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1871 "Cannot enable project quota enforcement."); 1872 return 0; 1873 } 1874 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1875 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1876 clear_opt(sb, USRQUOTA); 1877 1878 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1879 clear_opt(sb, GRPQUOTA); 1880 1881 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1882 ext4_msg(sb, KERN_ERR, "old and new quota " 1883 "format mixing"); 1884 return 0; 1885 } 1886 1887 if (!sbi->s_jquota_fmt) { 1888 ext4_msg(sb, KERN_ERR, "journaled quota format " 1889 "not specified"); 1890 return 0; 1891 } 1892 } 1893 #endif 1894 if (test_opt(sb, DIOREAD_NOLOCK)) { 1895 int blocksize = 1896 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1897 1898 if (blocksize < PAGE_SIZE) { 1899 ext4_msg(sb, KERN_ERR, "can't mount with " 1900 "dioread_nolock if block size != PAGE_SIZE"); 1901 return 0; 1902 } 1903 } 1904 return 1; 1905 } 1906 1907 static inline void ext4_show_quota_options(struct seq_file *seq, 1908 struct super_block *sb) 1909 { 1910 #if defined(CONFIG_QUOTA) 1911 struct ext4_sb_info *sbi = EXT4_SB(sb); 1912 1913 if (sbi->s_jquota_fmt) { 1914 char *fmtname = ""; 1915 1916 switch (sbi->s_jquota_fmt) { 1917 case QFMT_VFS_OLD: 1918 fmtname = "vfsold"; 1919 break; 1920 case QFMT_VFS_V0: 1921 fmtname = "vfsv0"; 1922 break; 1923 case QFMT_VFS_V1: 1924 fmtname = "vfsv1"; 1925 break; 1926 } 1927 seq_printf(seq, ",jqfmt=%s", fmtname); 1928 } 1929 1930 if (sbi->s_qf_names[USRQUOTA]) 1931 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1932 1933 if (sbi->s_qf_names[GRPQUOTA]) 1934 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1935 #endif 1936 } 1937 1938 static const char *token2str(int token) 1939 { 1940 const struct match_token *t; 1941 1942 for (t = tokens; t->token != Opt_err; t++) 1943 if (t->token == token && !strchr(t->pattern, '=')) 1944 break; 1945 return t->pattern; 1946 } 1947 1948 /* 1949 * Show an option if 1950 * - it's set to a non-default value OR 1951 * - if the per-sb default is different from the global default 1952 */ 1953 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1954 int nodefs) 1955 { 1956 struct ext4_sb_info *sbi = EXT4_SB(sb); 1957 struct ext4_super_block *es = sbi->s_es; 1958 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1959 const struct mount_opts *m; 1960 char sep = nodefs ? '\n' : ','; 1961 1962 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1963 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1964 1965 if (sbi->s_sb_block != 1) 1966 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1967 1968 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1969 int want_set = m->flags & MOPT_SET; 1970 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1971 (m->flags & MOPT_CLEAR_ERR)) 1972 continue; 1973 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1974 continue; /* skip if same as the default */ 1975 if ((want_set && 1976 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1977 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1978 continue; /* select Opt_noFoo vs Opt_Foo */ 1979 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1980 } 1981 1982 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1983 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1984 SEQ_OPTS_PRINT("resuid=%u", 1985 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1986 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1987 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1988 SEQ_OPTS_PRINT("resgid=%u", 1989 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1990 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1991 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1992 SEQ_OPTS_PUTS("errors=remount-ro"); 1993 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1994 SEQ_OPTS_PUTS("errors=continue"); 1995 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1996 SEQ_OPTS_PUTS("errors=panic"); 1997 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1998 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1999 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2000 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2001 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2002 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2003 if (sb->s_flags & MS_I_VERSION) 2004 SEQ_OPTS_PUTS("i_version"); 2005 if (nodefs || sbi->s_stripe) 2006 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2007 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2008 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2009 SEQ_OPTS_PUTS("data=journal"); 2010 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2011 SEQ_OPTS_PUTS("data=ordered"); 2012 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2013 SEQ_OPTS_PUTS("data=writeback"); 2014 } 2015 if (nodefs || 2016 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2017 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2018 sbi->s_inode_readahead_blks); 2019 2020 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2021 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2022 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2023 if (nodefs || sbi->s_max_dir_size_kb) 2024 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2025 if (test_opt(sb, DATA_ERR_ABORT)) 2026 SEQ_OPTS_PUTS("data_err=abort"); 2027 2028 ext4_show_quota_options(seq, sb); 2029 return 0; 2030 } 2031 2032 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2033 { 2034 return _ext4_show_options(seq, root->d_sb, 0); 2035 } 2036 2037 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2038 { 2039 struct super_block *sb = seq->private; 2040 int rc; 2041 2042 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2043 rc = _ext4_show_options(seq, sb, 1); 2044 seq_puts(seq, "\n"); 2045 return rc; 2046 } 2047 2048 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2049 int read_only) 2050 { 2051 struct ext4_sb_info *sbi = EXT4_SB(sb); 2052 int res = 0; 2053 2054 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2055 ext4_msg(sb, KERN_ERR, "revision level too high, " 2056 "forcing read-only mode"); 2057 res = MS_RDONLY; 2058 } 2059 if (read_only) 2060 goto done; 2061 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2062 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2063 "running e2fsck is recommended"); 2064 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2065 ext4_msg(sb, KERN_WARNING, 2066 "warning: mounting fs with errors, " 2067 "running e2fsck is recommended"); 2068 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2069 le16_to_cpu(es->s_mnt_count) >= 2070 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2071 ext4_msg(sb, KERN_WARNING, 2072 "warning: maximal mount count reached, " 2073 "running e2fsck is recommended"); 2074 else if (le32_to_cpu(es->s_checkinterval) && 2075 (le32_to_cpu(es->s_lastcheck) + 2076 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2077 ext4_msg(sb, KERN_WARNING, 2078 "warning: checktime reached, " 2079 "running e2fsck is recommended"); 2080 if (!sbi->s_journal) 2081 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2082 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2083 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2084 le16_add_cpu(&es->s_mnt_count, 1); 2085 es->s_mtime = cpu_to_le32(get_seconds()); 2086 ext4_update_dynamic_rev(sb); 2087 if (sbi->s_journal) 2088 ext4_set_feature_journal_needs_recovery(sb); 2089 2090 ext4_commit_super(sb, 1); 2091 done: 2092 if (test_opt(sb, DEBUG)) 2093 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2094 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2095 sb->s_blocksize, 2096 sbi->s_groups_count, 2097 EXT4_BLOCKS_PER_GROUP(sb), 2098 EXT4_INODES_PER_GROUP(sb), 2099 sbi->s_mount_opt, sbi->s_mount_opt2); 2100 2101 cleancache_init_fs(sb); 2102 return res; 2103 } 2104 2105 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2106 { 2107 struct ext4_sb_info *sbi = EXT4_SB(sb); 2108 struct flex_groups *new_groups; 2109 int size; 2110 2111 if (!sbi->s_log_groups_per_flex) 2112 return 0; 2113 2114 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2115 if (size <= sbi->s_flex_groups_allocated) 2116 return 0; 2117 2118 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2119 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2120 if (!new_groups) { 2121 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2122 size / (int) sizeof(struct flex_groups)); 2123 return -ENOMEM; 2124 } 2125 2126 if (sbi->s_flex_groups) { 2127 memcpy(new_groups, sbi->s_flex_groups, 2128 (sbi->s_flex_groups_allocated * 2129 sizeof(struct flex_groups))); 2130 kvfree(sbi->s_flex_groups); 2131 } 2132 sbi->s_flex_groups = new_groups; 2133 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2134 return 0; 2135 } 2136 2137 static int ext4_fill_flex_info(struct super_block *sb) 2138 { 2139 struct ext4_sb_info *sbi = EXT4_SB(sb); 2140 struct ext4_group_desc *gdp = NULL; 2141 ext4_group_t flex_group; 2142 int i, err; 2143 2144 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2145 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2146 sbi->s_log_groups_per_flex = 0; 2147 return 1; 2148 } 2149 2150 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2151 if (err) 2152 goto failed; 2153 2154 for (i = 0; i < sbi->s_groups_count; i++) { 2155 gdp = ext4_get_group_desc(sb, i, NULL); 2156 2157 flex_group = ext4_flex_group(sbi, i); 2158 atomic_add(ext4_free_inodes_count(sb, gdp), 2159 &sbi->s_flex_groups[flex_group].free_inodes); 2160 atomic64_add(ext4_free_group_clusters(sb, gdp), 2161 &sbi->s_flex_groups[flex_group].free_clusters); 2162 atomic_add(ext4_used_dirs_count(sb, gdp), 2163 &sbi->s_flex_groups[flex_group].used_dirs); 2164 } 2165 2166 return 1; 2167 failed: 2168 return 0; 2169 } 2170 2171 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2172 struct ext4_group_desc *gdp) 2173 { 2174 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2175 __u16 crc = 0; 2176 __le32 le_group = cpu_to_le32(block_group); 2177 struct ext4_sb_info *sbi = EXT4_SB(sb); 2178 2179 if (ext4_has_metadata_csum(sbi->s_sb)) { 2180 /* Use new metadata_csum algorithm */ 2181 __u32 csum32; 2182 __u16 dummy_csum = 0; 2183 2184 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2185 sizeof(le_group)); 2186 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2187 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2188 sizeof(dummy_csum)); 2189 offset += sizeof(dummy_csum); 2190 if (offset < sbi->s_desc_size) 2191 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2192 sbi->s_desc_size - offset); 2193 2194 crc = csum32 & 0xFFFF; 2195 goto out; 2196 } 2197 2198 /* old crc16 code */ 2199 if (!ext4_has_feature_gdt_csum(sb)) 2200 return 0; 2201 2202 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2203 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2204 crc = crc16(crc, (__u8 *)gdp, offset); 2205 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2206 /* for checksum of struct ext4_group_desc do the rest...*/ 2207 if (ext4_has_feature_64bit(sb) && 2208 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2209 crc = crc16(crc, (__u8 *)gdp + offset, 2210 le16_to_cpu(sbi->s_es->s_desc_size) - 2211 offset); 2212 2213 out: 2214 return cpu_to_le16(crc); 2215 } 2216 2217 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2218 struct ext4_group_desc *gdp) 2219 { 2220 if (ext4_has_group_desc_csum(sb) && 2221 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2222 return 0; 2223 2224 return 1; 2225 } 2226 2227 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2228 struct ext4_group_desc *gdp) 2229 { 2230 if (!ext4_has_group_desc_csum(sb)) 2231 return; 2232 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2233 } 2234 2235 /* Called at mount-time, super-block is locked */ 2236 static int ext4_check_descriptors(struct super_block *sb, 2237 ext4_fsblk_t sb_block, 2238 ext4_group_t *first_not_zeroed) 2239 { 2240 struct ext4_sb_info *sbi = EXT4_SB(sb); 2241 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2242 ext4_fsblk_t last_block; 2243 ext4_fsblk_t block_bitmap; 2244 ext4_fsblk_t inode_bitmap; 2245 ext4_fsblk_t inode_table; 2246 int flexbg_flag = 0; 2247 ext4_group_t i, grp = sbi->s_groups_count; 2248 2249 if (ext4_has_feature_flex_bg(sb)) 2250 flexbg_flag = 1; 2251 2252 ext4_debug("Checking group descriptors"); 2253 2254 for (i = 0; i < sbi->s_groups_count; i++) { 2255 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2256 2257 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2258 last_block = ext4_blocks_count(sbi->s_es) - 1; 2259 else 2260 last_block = first_block + 2261 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2262 2263 if ((grp == sbi->s_groups_count) && 2264 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2265 grp = i; 2266 2267 block_bitmap = ext4_block_bitmap(sb, gdp); 2268 if (block_bitmap == sb_block) { 2269 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2270 "Block bitmap for group %u overlaps " 2271 "superblock", i); 2272 } 2273 if (block_bitmap < first_block || block_bitmap > last_block) { 2274 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2275 "Block bitmap for group %u not in group " 2276 "(block %llu)!", i, block_bitmap); 2277 return 0; 2278 } 2279 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2280 if (inode_bitmap == sb_block) { 2281 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2282 "Inode bitmap for group %u overlaps " 2283 "superblock", i); 2284 } 2285 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2286 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2287 "Inode bitmap for group %u not in group " 2288 "(block %llu)!", i, inode_bitmap); 2289 return 0; 2290 } 2291 inode_table = ext4_inode_table(sb, gdp); 2292 if (inode_table == sb_block) { 2293 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2294 "Inode table for group %u overlaps " 2295 "superblock", i); 2296 } 2297 if (inode_table < first_block || 2298 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2299 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2300 "Inode table for group %u not in group " 2301 "(block %llu)!", i, inode_table); 2302 return 0; 2303 } 2304 ext4_lock_group(sb, i); 2305 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2306 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2307 "Checksum for group %u failed (%u!=%u)", 2308 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2309 gdp)), le16_to_cpu(gdp->bg_checksum)); 2310 if (!(sb->s_flags & MS_RDONLY)) { 2311 ext4_unlock_group(sb, i); 2312 return 0; 2313 } 2314 } 2315 ext4_unlock_group(sb, i); 2316 if (!flexbg_flag) 2317 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2318 } 2319 if (NULL != first_not_zeroed) 2320 *first_not_zeroed = grp; 2321 return 1; 2322 } 2323 2324 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2325 * the superblock) which were deleted from all directories, but held open by 2326 * a process at the time of a crash. We walk the list and try to delete these 2327 * inodes at recovery time (only with a read-write filesystem). 2328 * 2329 * In order to keep the orphan inode chain consistent during traversal (in 2330 * case of crash during recovery), we link each inode into the superblock 2331 * orphan list_head and handle it the same way as an inode deletion during 2332 * normal operation (which journals the operations for us). 2333 * 2334 * We only do an iget() and an iput() on each inode, which is very safe if we 2335 * accidentally point at an in-use or already deleted inode. The worst that 2336 * can happen in this case is that we get a "bit already cleared" message from 2337 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2338 * e2fsck was run on this filesystem, and it must have already done the orphan 2339 * inode cleanup for us, so we can safely abort without any further action. 2340 */ 2341 static void ext4_orphan_cleanup(struct super_block *sb, 2342 struct ext4_super_block *es) 2343 { 2344 unsigned int s_flags = sb->s_flags; 2345 int ret, nr_orphans = 0, nr_truncates = 0; 2346 #ifdef CONFIG_QUOTA 2347 int i; 2348 #endif 2349 if (!es->s_last_orphan) { 2350 jbd_debug(4, "no orphan inodes to clean up\n"); 2351 return; 2352 } 2353 2354 if (bdev_read_only(sb->s_bdev)) { 2355 ext4_msg(sb, KERN_ERR, "write access " 2356 "unavailable, skipping orphan cleanup"); 2357 return; 2358 } 2359 2360 /* Check if feature set would not allow a r/w mount */ 2361 if (!ext4_feature_set_ok(sb, 0)) { 2362 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2363 "unknown ROCOMPAT features"); 2364 return; 2365 } 2366 2367 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2368 /* don't clear list on RO mount w/ errors */ 2369 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2370 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2371 "clearing orphan list.\n"); 2372 es->s_last_orphan = 0; 2373 } 2374 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2375 return; 2376 } 2377 2378 if (s_flags & MS_RDONLY) { 2379 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2380 sb->s_flags &= ~MS_RDONLY; 2381 } 2382 #ifdef CONFIG_QUOTA 2383 /* Needed for iput() to work correctly and not trash data */ 2384 sb->s_flags |= MS_ACTIVE; 2385 /* Turn on quotas so that they are updated correctly */ 2386 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2387 if (EXT4_SB(sb)->s_qf_names[i]) { 2388 int ret = ext4_quota_on_mount(sb, i); 2389 if (ret < 0) 2390 ext4_msg(sb, KERN_ERR, 2391 "Cannot turn on journaled " 2392 "quota: error %d", ret); 2393 } 2394 } 2395 #endif 2396 2397 while (es->s_last_orphan) { 2398 struct inode *inode; 2399 2400 /* 2401 * We may have encountered an error during cleanup; if 2402 * so, skip the rest. 2403 */ 2404 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2405 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2406 es->s_last_orphan = 0; 2407 break; 2408 } 2409 2410 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2411 if (IS_ERR(inode)) { 2412 es->s_last_orphan = 0; 2413 break; 2414 } 2415 2416 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2417 dquot_initialize(inode); 2418 if (inode->i_nlink) { 2419 if (test_opt(sb, DEBUG)) 2420 ext4_msg(sb, KERN_DEBUG, 2421 "%s: truncating inode %lu to %lld bytes", 2422 __func__, inode->i_ino, inode->i_size); 2423 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2424 inode->i_ino, inode->i_size); 2425 inode_lock(inode); 2426 truncate_inode_pages(inode->i_mapping, inode->i_size); 2427 ret = ext4_truncate(inode); 2428 if (ret) 2429 ext4_std_error(inode->i_sb, ret); 2430 inode_unlock(inode); 2431 nr_truncates++; 2432 } else { 2433 if (test_opt(sb, DEBUG)) 2434 ext4_msg(sb, KERN_DEBUG, 2435 "%s: deleting unreferenced inode %lu", 2436 __func__, inode->i_ino); 2437 jbd_debug(2, "deleting unreferenced inode %lu\n", 2438 inode->i_ino); 2439 nr_orphans++; 2440 } 2441 iput(inode); /* The delete magic happens here! */ 2442 } 2443 2444 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2445 2446 if (nr_orphans) 2447 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2448 PLURAL(nr_orphans)); 2449 if (nr_truncates) 2450 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2451 PLURAL(nr_truncates)); 2452 #ifdef CONFIG_QUOTA 2453 /* Turn quotas off */ 2454 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2455 if (sb_dqopt(sb)->files[i]) 2456 dquot_quota_off(sb, i); 2457 } 2458 #endif 2459 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2460 } 2461 2462 /* 2463 * Maximal extent format file size. 2464 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2465 * extent format containers, within a sector_t, and within i_blocks 2466 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2467 * so that won't be a limiting factor. 2468 * 2469 * However there is other limiting factor. We do store extents in the form 2470 * of starting block and length, hence the resulting length of the extent 2471 * covering maximum file size must fit into on-disk format containers as 2472 * well. Given that length is always by 1 unit bigger than max unit (because 2473 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2474 * 2475 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2476 */ 2477 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2478 { 2479 loff_t res; 2480 loff_t upper_limit = MAX_LFS_FILESIZE; 2481 2482 /* small i_blocks in vfs inode? */ 2483 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2484 /* 2485 * CONFIG_LBDAF is not enabled implies the inode 2486 * i_block represent total blocks in 512 bytes 2487 * 32 == size of vfs inode i_blocks * 8 2488 */ 2489 upper_limit = (1LL << 32) - 1; 2490 2491 /* total blocks in file system block size */ 2492 upper_limit >>= (blkbits - 9); 2493 upper_limit <<= blkbits; 2494 } 2495 2496 /* 2497 * 32-bit extent-start container, ee_block. We lower the maxbytes 2498 * by one fs block, so ee_len can cover the extent of maximum file 2499 * size 2500 */ 2501 res = (1LL << 32) - 1; 2502 res <<= blkbits; 2503 2504 /* Sanity check against vm- & vfs- imposed limits */ 2505 if (res > upper_limit) 2506 res = upper_limit; 2507 2508 return res; 2509 } 2510 2511 /* 2512 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2513 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2514 * We need to be 1 filesystem block less than the 2^48 sector limit. 2515 */ 2516 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2517 { 2518 loff_t res = EXT4_NDIR_BLOCKS; 2519 int meta_blocks; 2520 loff_t upper_limit; 2521 /* This is calculated to be the largest file size for a dense, block 2522 * mapped file such that the file's total number of 512-byte sectors, 2523 * including data and all indirect blocks, does not exceed (2^48 - 1). 2524 * 2525 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2526 * number of 512-byte sectors of the file. 2527 */ 2528 2529 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2530 /* 2531 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2532 * the inode i_block field represents total file blocks in 2533 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2534 */ 2535 upper_limit = (1LL << 32) - 1; 2536 2537 /* total blocks in file system block size */ 2538 upper_limit >>= (bits - 9); 2539 2540 } else { 2541 /* 2542 * We use 48 bit ext4_inode i_blocks 2543 * With EXT4_HUGE_FILE_FL set the i_blocks 2544 * represent total number of blocks in 2545 * file system block size 2546 */ 2547 upper_limit = (1LL << 48) - 1; 2548 2549 } 2550 2551 /* indirect blocks */ 2552 meta_blocks = 1; 2553 /* double indirect blocks */ 2554 meta_blocks += 1 + (1LL << (bits-2)); 2555 /* tripple indirect blocks */ 2556 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2557 2558 upper_limit -= meta_blocks; 2559 upper_limit <<= bits; 2560 2561 res += 1LL << (bits-2); 2562 res += 1LL << (2*(bits-2)); 2563 res += 1LL << (3*(bits-2)); 2564 res <<= bits; 2565 if (res > upper_limit) 2566 res = upper_limit; 2567 2568 if (res > MAX_LFS_FILESIZE) 2569 res = MAX_LFS_FILESIZE; 2570 2571 return res; 2572 } 2573 2574 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2575 ext4_fsblk_t logical_sb_block, int nr) 2576 { 2577 struct ext4_sb_info *sbi = EXT4_SB(sb); 2578 ext4_group_t bg, first_meta_bg; 2579 int has_super = 0; 2580 2581 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2582 2583 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2584 return logical_sb_block + nr + 1; 2585 bg = sbi->s_desc_per_block * nr; 2586 if (ext4_bg_has_super(sb, bg)) 2587 has_super = 1; 2588 2589 /* 2590 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2591 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2592 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2593 * compensate. 2594 */ 2595 if (sb->s_blocksize == 1024 && nr == 0 && 2596 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2597 has_super++; 2598 2599 return (has_super + ext4_group_first_block_no(sb, bg)); 2600 } 2601 2602 /** 2603 * ext4_get_stripe_size: Get the stripe size. 2604 * @sbi: In memory super block info 2605 * 2606 * If we have specified it via mount option, then 2607 * use the mount option value. If the value specified at mount time is 2608 * greater than the blocks per group use the super block value. 2609 * If the super block value is greater than blocks per group return 0. 2610 * Allocator needs it be less than blocks per group. 2611 * 2612 */ 2613 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2614 { 2615 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2616 unsigned long stripe_width = 2617 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2618 int ret; 2619 2620 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2621 ret = sbi->s_stripe; 2622 else if (stripe_width <= sbi->s_blocks_per_group) 2623 ret = stripe_width; 2624 else if (stride <= sbi->s_blocks_per_group) 2625 ret = stride; 2626 else 2627 ret = 0; 2628 2629 /* 2630 * If the stripe width is 1, this makes no sense and 2631 * we set it to 0 to turn off stripe handling code. 2632 */ 2633 if (ret <= 1) 2634 ret = 0; 2635 2636 return ret; 2637 } 2638 2639 /* 2640 * Check whether this filesystem can be mounted based on 2641 * the features present and the RDONLY/RDWR mount requested. 2642 * Returns 1 if this filesystem can be mounted as requested, 2643 * 0 if it cannot be. 2644 */ 2645 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2646 { 2647 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2648 ext4_msg(sb, KERN_ERR, 2649 "Couldn't mount because of " 2650 "unsupported optional features (%x)", 2651 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2652 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2653 return 0; 2654 } 2655 2656 if (readonly) 2657 return 1; 2658 2659 if (ext4_has_feature_readonly(sb)) { 2660 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2661 sb->s_flags |= MS_RDONLY; 2662 return 1; 2663 } 2664 2665 /* Check that feature set is OK for a read-write mount */ 2666 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2667 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2668 "unsupported optional features (%x)", 2669 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2670 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2671 return 0; 2672 } 2673 /* 2674 * Large file size enabled file system can only be mounted 2675 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2676 */ 2677 if (ext4_has_feature_huge_file(sb)) { 2678 if (sizeof(blkcnt_t) < sizeof(u64)) { 2679 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2680 "cannot be mounted RDWR without " 2681 "CONFIG_LBDAF"); 2682 return 0; 2683 } 2684 } 2685 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2686 ext4_msg(sb, KERN_ERR, 2687 "Can't support bigalloc feature without " 2688 "extents feature\n"); 2689 return 0; 2690 } 2691 2692 #ifndef CONFIG_QUOTA 2693 if (ext4_has_feature_quota(sb) && !readonly) { 2694 ext4_msg(sb, KERN_ERR, 2695 "Filesystem with quota feature cannot be mounted RDWR " 2696 "without CONFIG_QUOTA"); 2697 return 0; 2698 } 2699 if (ext4_has_feature_project(sb) && !readonly) { 2700 ext4_msg(sb, KERN_ERR, 2701 "Filesystem with project quota feature cannot be mounted RDWR " 2702 "without CONFIG_QUOTA"); 2703 return 0; 2704 } 2705 #endif /* CONFIG_QUOTA */ 2706 return 1; 2707 } 2708 2709 /* 2710 * This function is called once a day if we have errors logged 2711 * on the file system 2712 */ 2713 static void print_daily_error_info(unsigned long arg) 2714 { 2715 struct super_block *sb = (struct super_block *) arg; 2716 struct ext4_sb_info *sbi; 2717 struct ext4_super_block *es; 2718 2719 sbi = EXT4_SB(sb); 2720 es = sbi->s_es; 2721 2722 if (es->s_error_count) 2723 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2724 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2725 le32_to_cpu(es->s_error_count)); 2726 if (es->s_first_error_time) { 2727 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2728 sb->s_id, le32_to_cpu(es->s_first_error_time), 2729 (int) sizeof(es->s_first_error_func), 2730 es->s_first_error_func, 2731 le32_to_cpu(es->s_first_error_line)); 2732 if (es->s_first_error_ino) 2733 printk(KERN_CONT ": inode %u", 2734 le32_to_cpu(es->s_first_error_ino)); 2735 if (es->s_first_error_block) 2736 printk(KERN_CONT ": block %llu", (unsigned long long) 2737 le64_to_cpu(es->s_first_error_block)); 2738 printk(KERN_CONT "\n"); 2739 } 2740 if (es->s_last_error_time) { 2741 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2742 sb->s_id, le32_to_cpu(es->s_last_error_time), 2743 (int) sizeof(es->s_last_error_func), 2744 es->s_last_error_func, 2745 le32_to_cpu(es->s_last_error_line)); 2746 if (es->s_last_error_ino) 2747 printk(KERN_CONT ": inode %u", 2748 le32_to_cpu(es->s_last_error_ino)); 2749 if (es->s_last_error_block) 2750 printk(KERN_CONT ": block %llu", (unsigned long long) 2751 le64_to_cpu(es->s_last_error_block)); 2752 printk(KERN_CONT "\n"); 2753 } 2754 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2755 } 2756 2757 /* Find next suitable group and run ext4_init_inode_table */ 2758 static int ext4_run_li_request(struct ext4_li_request *elr) 2759 { 2760 struct ext4_group_desc *gdp = NULL; 2761 ext4_group_t group, ngroups; 2762 struct super_block *sb; 2763 unsigned long timeout = 0; 2764 int ret = 0; 2765 2766 sb = elr->lr_super; 2767 ngroups = EXT4_SB(sb)->s_groups_count; 2768 2769 for (group = elr->lr_next_group; group < ngroups; group++) { 2770 gdp = ext4_get_group_desc(sb, group, NULL); 2771 if (!gdp) { 2772 ret = 1; 2773 break; 2774 } 2775 2776 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2777 break; 2778 } 2779 2780 if (group >= ngroups) 2781 ret = 1; 2782 2783 if (!ret) { 2784 timeout = jiffies; 2785 ret = ext4_init_inode_table(sb, group, 2786 elr->lr_timeout ? 0 : 1); 2787 if (elr->lr_timeout == 0) { 2788 timeout = (jiffies - timeout) * 2789 elr->lr_sbi->s_li_wait_mult; 2790 elr->lr_timeout = timeout; 2791 } 2792 elr->lr_next_sched = jiffies + elr->lr_timeout; 2793 elr->lr_next_group = group + 1; 2794 } 2795 return ret; 2796 } 2797 2798 /* 2799 * Remove lr_request from the list_request and free the 2800 * request structure. Should be called with li_list_mtx held 2801 */ 2802 static void ext4_remove_li_request(struct ext4_li_request *elr) 2803 { 2804 struct ext4_sb_info *sbi; 2805 2806 if (!elr) 2807 return; 2808 2809 sbi = elr->lr_sbi; 2810 2811 list_del(&elr->lr_request); 2812 sbi->s_li_request = NULL; 2813 kfree(elr); 2814 } 2815 2816 static void ext4_unregister_li_request(struct super_block *sb) 2817 { 2818 mutex_lock(&ext4_li_mtx); 2819 if (!ext4_li_info) { 2820 mutex_unlock(&ext4_li_mtx); 2821 return; 2822 } 2823 2824 mutex_lock(&ext4_li_info->li_list_mtx); 2825 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2826 mutex_unlock(&ext4_li_info->li_list_mtx); 2827 mutex_unlock(&ext4_li_mtx); 2828 } 2829 2830 static struct task_struct *ext4_lazyinit_task; 2831 2832 /* 2833 * This is the function where ext4lazyinit thread lives. It walks 2834 * through the request list searching for next scheduled filesystem. 2835 * When such a fs is found, run the lazy initialization request 2836 * (ext4_rn_li_request) and keep track of the time spend in this 2837 * function. Based on that time we compute next schedule time of 2838 * the request. When walking through the list is complete, compute 2839 * next waking time and put itself into sleep. 2840 */ 2841 static int ext4_lazyinit_thread(void *arg) 2842 { 2843 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2844 struct list_head *pos, *n; 2845 struct ext4_li_request *elr; 2846 unsigned long next_wakeup, cur; 2847 2848 BUG_ON(NULL == eli); 2849 2850 cont_thread: 2851 while (true) { 2852 next_wakeup = MAX_JIFFY_OFFSET; 2853 2854 mutex_lock(&eli->li_list_mtx); 2855 if (list_empty(&eli->li_request_list)) { 2856 mutex_unlock(&eli->li_list_mtx); 2857 goto exit_thread; 2858 } 2859 list_for_each_safe(pos, n, &eli->li_request_list) { 2860 int err = 0; 2861 int progress = 0; 2862 elr = list_entry(pos, struct ext4_li_request, 2863 lr_request); 2864 2865 if (time_before(jiffies, elr->lr_next_sched)) { 2866 if (time_before(elr->lr_next_sched, next_wakeup)) 2867 next_wakeup = elr->lr_next_sched; 2868 continue; 2869 } 2870 if (down_read_trylock(&elr->lr_super->s_umount)) { 2871 if (sb_start_write_trylock(elr->lr_super)) { 2872 progress = 1; 2873 /* 2874 * We hold sb->s_umount, sb can not 2875 * be removed from the list, it is 2876 * now safe to drop li_list_mtx 2877 */ 2878 mutex_unlock(&eli->li_list_mtx); 2879 err = ext4_run_li_request(elr); 2880 sb_end_write(elr->lr_super); 2881 mutex_lock(&eli->li_list_mtx); 2882 n = pos->next; 2883 } 2884 up_read((&elr->lr_super->s_umount)); 2885 } 2886 /* error, remove the lazy_init job */ 2887 if (err) { 2888 ext4_remove_li_request(elr); 2889 continue; 2890 } 2891 if (!progress) { 2892 elr->lr_next_sched = jiffies + 2893 (prandom_u32() 2894 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2895 } 2896 if (time_before(elr->lr_next_sched, next_wakeup)) 2897 next_wakeup = elr->lr_next_sched; 2898 } 2899 mutex_unlock(&eli->li_list_mtx); 2900 2901 try_to_freeze(); 2902 2903 cur = jiffies; 2904 if ((time_after_eq(cur, next_wakeup)) || 2905 (MAX_JIFFY_OFFSET == next_wakeup)) { 2906 cond_resched(); 2907 continue; 2908 } 2909 2910 schedule_timeout_interruptible(next_wakeup - cur); 2911 2912 if (kthread_should_stop()) { 2913 ext4_clear_request_list(); 2914 goto exit_thread; 2915 } 2916 } 2917 2918 exit_thread: 2919 /* 2920 * It looks like the request list is empty, but we need 2921 * to check it under the li_list_mtx lock, to prevent any 2922 * additions into it, and of course we should lock ext4_li_mtx 2923 * to atomically free the list and ext4_li_info, because at 2924 * this point another ext4 filesystem could be registering 2925 * new one. 2926 */ 2927 mutex_lock(&ext4_li_mtx); 2928 mutex_lock(&eli->li_list_mtx); 2929 if (!list_empty(&eli->li_request_list)) { 2930 mutex_unlock(&eli->li_list_mtx); 2931 mutex_unlock(&ext4_li_mtx); 2932 goto cont_thread; 2933 } 2934 mutex_unlock(&eli->li_list_mtx); 2935 kfree(ext4_li_info); 2936 ext4_li_info = NULL; 2937 mutex_unlock(&ext4_li_mtx); 2938 2939 return 0; 2940 } 2941 2942 static void ext4_clear_request_list(void) 2943 { 2944 struct list_head *pos, *n; 2945 struct ext4_li_request *elr; 2946 2947 mutex_lock(&ext4_li_info->li_list_mtx); 2948 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2949 elr = list_entry(pos, struct ext4_li_request, 2950 lr_request); 2951 ext4_remove_li_request(elr); 2952 } 2953 mutex_unlock(&ext4_li_info->li_list_mtx); 2954 } 2955 2956 static int ext4_run_lazyinit_thread(void) 2957 { 2958 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2959 ext4_li_info, "ext4lazyinit"); 2960 if (IS_ERR(ext4_lazyinit_task)) { 2961 int err = PTR_ERR(ext4_lazyinit_task); 2962 ext4_clear_request_list(); 2963 kfree(ext4_li_info); 2964 ext4_li_info = NULL; 2965 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2966 "initialization thread\n", 2967 err); 2968 return err; 2969 } 2970 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2971 return 0; 2972 } 2973 2974 /* 2975 * Check whether it make sense to run itable init. thread or not. 2976 * If there is at least one uninitialized inode table, return 2977 * corresponding group number, else the loop goes through all 2978 * groups and return total number of groups. 2979 */ 2980 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2981 { 2982 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2983 struct ext4_group_desc *gdp = NULL; 2984 2985 for (group = 0; group < ngroups; group++) { 2986 gdp = ext4_get_group_desc(sb, group, NULL); 2987 if (!gdp) 2988 continue; 2989 2990 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2991 break; 2992 } 2993 2994 return group; 2995 } 2996 2997 static int ext4_li_info_new(void) 2998 { 2999 struct ext4_lazy_init *eli = NULL; 3000 3001 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3002 if (!eli) 3003 return -ENOMEM; 3004 3005 INIT_LIST_HEAD(&eli->li_request_list); 3006 mutex_init(&eli->li_list_mtx); 3007 3008 eli->li_state |= EXT4_LAZYINIT_QUIT; 3009 3010 ext4_li_info = eli; 3011 3012 return 0; 3013 } 3014 3015 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3016 ext4_group_t start) 3017 { 3018 struct ext4_sb_info *sbi = EXT4_SB(sb); 3019 struct ext4_li_request *elr; 3020 3021 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3022 if (!elr) 3023 return NULL; 3024 3025 elr->lr_super = sb; 3026 elr->lr_sbi = sbi; 3027 elr->lr_next_group = start; 3028 3029 /* 3030 * Randomize first schedule time of the request to 3031 * spread the inode table initialization requests 3032 * better. 3033 */ 3034 elr->lr_next_sched = jiffies + (prandom_u32() % 3035 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3036 return elr; 3037 } 3038 3039 int ext4_register_li_request(struct super_block *sb, 3040 ext4_group_t first_not_zeroed) 3041 { 3042 struct ext4_sb_info *sbi = EXT4_SB(sb); 3043 struct ext4_li_request *elr = NULL; 3044 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3045 int ret = 0; 3046 3047 mutex_lock(&ext4_li_mtx); 3048 if (sbi->s_li_request != NULL) { 3049 /* 3050 * Reset timeout so it can be computed again, because 3051 * s_li_wait_mult might have changed. 3052 */ 3053 sbi->s_li_request->lr_timeout = 0; 3054 goto out; 3055 } 3056 3057 if (first_not_zeroed == ngroups || 3058 (sb->s_flags & MS_RDONLY) || 3059 !test_opt(sb, INIT_INODE_TABLE)) 3060 goto out; 3061 3062 elr = ext4_li_request_new(sb, first_not_zeroed); 3063 if (!elr) { 3064 ret = -ENOMEM; 3065 goto out; 3066 } 3067 3068 if (NULL == ext4_li_info) { 3069 ret = ext4_li_info_new(); 3070 if (ret) 3071 goto out; 3072 } 3073 3074 mutex_lock(&ext4_li_info->li_list_mtx); 3075 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3076 mutex_unlock(&ext4_li_info->li_list_mtx); 3077 3078 sbi->s_li_request = elr; 3079 /* 3080 * set elr to NULL here since it has been inserted to 3081 * the request_list and the removal and free of it is 3082 * handled by ext4_clear_request_list from now on. 3083 */ 3084 elr = NULL; 3085 3086 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3087 ret = ext4_run_lazyinit_thread(); 3088 if (ret) 3089 goto out; 3090 } 3091 out: 3092 mutex_unlock(&ext4_li_mtx); 3093 if (ret) 3094 kfree(elr); 3095 return ret; 3096 } 3097 3098 /* 3099 * We do not need to lock anything since this is called on 3100 * module unload. 3101 */ 3102 static void ext4_destroy_lazyinit_thread(void) 3103 { 3104 /* 3105 * If thread exited earlier 3106 * there's nothing to be done. 3107 */ 3108 if (!ext4_li_info || !ext4_lazyinit_task) 3109 return; 3110 3111 kthread_stop(ext4_lazyinit_task); 3112 } 3113 3114 static int set_journal_csum_feature_set(struct super_block *sb) 3115 { 3116 int ret = 1; 3117 int compat, incompat; 3118 struct ext4_sb_info *sbi = EXT4_SB(sb); 3119 3120 if (ext4_has_metadata_csum(sb)) { 3121 /* journal checksum v3 */ 3122 compat = 0; 3123 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3124 } else { 3125 /* journal checksum v1 */ 3126 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3127 incompat = 0; 3128 } 3129 3130 jbd2_journal_clear_features(sbi->s_journal, 3131 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3132 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3133 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3134 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3135 ret = jbd2_journal_set_features(sbi->s_journal, 3136 compat, 0, 3137 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3138 incompat); 3139 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3140 ret = jbd2_journal_set_features(sbi->s_journal, 3141 compat, 0, 3142 incompat); 3143 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3144 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3145 } else { 3146 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3147 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3148 } 3149 3150 return ret; 3151 } 3152 3153 /* 3154 * Note: calculating the overhead so we can be compatible with 3155 * historical BSD practice is quite difficult in the face of 3156 * clusters/bigalloc. This is because multiple metadata blocks from 3157 * different block group can end up in the same allocation cluster. 3158 * Calculating the exact overhead in the face of clustered allocation 3159 * requires either O(all block bitmaps) in memory or O(number of block 3160 * groups**2) in time. We will still calculate the superblock for 3161 * older file systems --- and if we come across with a bigalloc file 3162 * system with zero in s_overhead_clusters the estimate will be close to 3163 * correct especially for very large cluster sizes --- but for newer 3164 * file systems, it's better to calculate this figure once at mkfs 3165 * time, and store it in the superblock. If the superblock value is 3166 * present (even for non-bigalloc file systems), we will use it. 3167 */ 3168 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3169 char *buf) 3170 { 3171 struct ext4_sb_info *sbi = EXT4_SB(sb); 3172 struct ext4_group_desc *gdp; 3173 ext4_fsblk_t first_block, last_block, b; 3174 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3175 int s, j, count = 0; 3176 3177 if (!ext4_has_feature_bigalloc(sb)) 3178 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3179 sbi->s_itb_per_group + 2); 3180 3181 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3182 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3183 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3184 for (i = 0; i < ngroups; i++) { 3185 gdp = ext4_get_group_desc(sb, i, NULL); 3186 b = ext4_block_bitmap(sb, gdp); 3187 if (b >= first_block && b <= last_block) { 3188 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3189 count++; 3190 } 3191 b = ext4_inode_bitmap(sb, gdp); 3192 if (b >= first_block && b <= last_block) { 3193 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3194 count++; 3195 } 3196 b = ext4_inode_table(sb, gdp); 3197 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3198 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3199 int c = EXT4_B2C(sbi, b - first_block); 3200 ext4_set_bit(c, buf); 3201 count++; 3202 } 3203 if (i != grp) 3204 continue; 3205 s = 0; 3206 if (ext4_bg_has_super(sb, grp)) { 3207 ext4_set_bit(s++, buf); 3208 count++; 3209 } 3210 j = ext4_bg_num_gdb(sb, grp); 3211 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3212 ext4_error(sb, "Invalid number of block group " 3213 "descriptor blocks: %d", j); 3214 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3215 } 3216 count += j; 3217 for (; j > 0; j--) 3218 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3219 } 3220 if (!count) 3221 return 0; 3222 return EXT4_CLUSTERS_PER_GROUP(sb) - 3223 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3224 } 3225 3226 /* 3227 * Compute the overhead and stash it in sbi->s_overhead 3228 */ 3229 int ext4_calculate_overhead(struct super_block *sb) 3230 { 3231 struct ext4_sb_info *sbi = EXT4_SB(sb); 3232 struct ext4_super_block *es = sbi->s_es; 3233 struct inode *j_inode; 3234 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3235 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3236 ext4_fsblk_t overhead = 0; 3237 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3238 3239 if (!buf) 3240 return -ENOMEM; 3241 3242 /* 3243 * Compute the overhead (FS structures). This is constant 3244 * for a given filesystem unless the number of block groups 3245 * changes so we cache the previous value until it does. 3246 */ 3247 3248 /* 3249 * All of the blocks before first_data_block are overhead 3250 */ 3251 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3252 3253 /* 3254 * Add the overhead found in each block group 3255 */ 3256 for (i = 0; i < ngroups; i++) { 3257 int blks; 3258 3259 blks = count_overhead(sb, i, buf); 3260 overhead += blks; 3261 if (blks) 3262 memset(buf, 0, PAGE_SIZE); 3263 cond_resched(); 3264 } 3265 3266 /* 3267 * Add the internal journal blocks whether the journal has been 3268 * loaded or not 3269 */ 3270 if (sbi->s_journal && !sbi->journal_bdev) 3271 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3272 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3273 j_inode = ext4_get_journal_inode(sb, j_inum); 3274 if (j_inode) { 3275 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3276 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3277 iput(j_inode); 3278 } else { 3279 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3280 } 3281 } 3282 sbi->s_overhead = overhead; 3283 smp_wmb(); 3284 free_page((unsigned long) buf); 3285 return 0; 3286 } 3287 3288 static void ext4_set_resv_clusters(struct super_block *sb) 3289 { 3290 ext4_fsblk_t resv_clusters; 3291 struct ext4_sb_info *sbi = EXT4_SB(sb); 3292 3293 /* 3294 * There's no need to reserve anything when we aren't using extents. 3295 * The space estimates are exact, there are no unwritten extents, 3296 * hole punching doesn't need new metadata... This is needed especially 3297 * to keep ext2/3 backward compatibility. 3298 */ 3299 if (!ext4_has_feature_extents(sb)) 3300 return; 3301 /* 3302 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3303 * This should cover the situations where we can not afford to run 3304 * out of space like for example punch hole, or converting 3305 * unwritten extents in delalloc path. In most cases such 3306 * allocation would require 1, or 2 blocks, higher numbers are 3307 * very rare. 3308 */ 3309 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3310 sbi->s_cluster_bits); 3311 3312 do_div(resv_clusters, 50); 3313 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3314 3315 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3316 } 3317 3318 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3319 { 3320 char *orig_data = kstrdup(data, GFP_KERNEL); 3321 struct buffer_head *bh; 3322 struct ext4_super_block *es = NULL; 3323 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3324 ext4_fsblk_t block; 3325 ext4_fsblk_t sb_block = get_sb_block(&data); 3326 ext4_fsblk_t logical_sb_block; 3327 unsigned long offset = 0; 3328 unsigned long journal_devnum = 0; 3329 unsigned long def_mount_opts; 3330 struct inode *root; 3331 const char *descr; 3332 int ret = -ENOMEM; 3333 int blocksize, clustersize; 3334 unsigned int db_count; 3335 unsigned int i; 3336 int needs_recovery, has_huge_files, has_bigalloc; 3337 __u64 blocks_count; 3338 int err = 0; 3339 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3340 ext4_group_t first_not_zeroed; 3341 3342 if ((data && !orig_data) || !sbi) 3343 goto out_free_base; 3344 3345 sbi->s_blockgroup_lock = 3346 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3347 if (!sbi->s_blockgroup_lock) 3348 goto out_free_base; 3349 3350 sb->s_fs_info = sbi; 3351 sbi->s_sb = sb; 3352 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3353 sbi->s_sb_block = sb_block; 3354 if (sb->s_bdev->bd_part) 3355 sbi->s_sectors_written_start = 3356 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3357 3358 /* Cleanup superblock name */ 3359 strreplace(sb->s_id, '/', '!'); 3360 3361 /* -EINVAL is default */ 3362 ret = -EINVAL; 3363 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3364 if (!blocksize) { 3365 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3366 goto out_fail; 3367 } 3368 3369 /* 3370 * The ext4 superblock will not be buffer aligned for other than 1kB 3371 * block sizes. We need to calculate the offset from buffer start. 3372 */ 3373 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3374 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3375 offset = do_div(logical_sb_block, blocksize); 3376 } else { 3377 logical_sb_block = sb_block; 3378 } 3379 3380 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3381 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3382 goto out_fail; 3383 } 3384 /* 3385 * Note: s_es must be initialized as soon as possible because 3386 * some ext4 macro-instructions depend on its value 3387 */ 3388 es = (struct ext4_super_block *) (bh->b_data + offset); 3389 sbi->s_es = es; 3390 sb->s_magic = le16_to_cpu(es->s_magic); 3391 if (sb->s_magic != EXT4_SUPER_MAGIC) 3392 goto cantfind_ext4; 3393 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3394 3395 /* Warn if metadata_csum and gdt_csum are both set. */ 3396 if (ext4_has_feature_metadata_csum(sb) && 3397 ext4_has_feature_gdt_csum(sb)) 3398 ext4_warning(sb, "metadata_csum and uninit_bg are " 3399 "redundant flags; please run fsck."); 3400 3401 /* Check for a known checksum algorithm */ 3402 if (!ext4_verify_csum_type(sb, es)) { 3403 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3404 "unknown checksum algorithm."); 3405 silent = 1; 3406 goto cantfind_ext4; 3407 } 3408 3409 /* Load the checksum driver */ 3410 if (ext4_has_feature_metadata_csum(sb)) { 3411 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3412 if (IS_ERR(sbi->s_chksum_driver)) { 3413 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3414 ret = PTR_ERR(sbi->s_chksum_driver); 3415 sbi->s_chksum_driver = NULL; 3416 goto failed_mount; 3417 } 3418 } 3419 3420 /* Check superblock checksum */ 3421 if (!ext4_superblock_csum_verify(sb, es)) { 3422 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3423 "invalid superblock checksum. Run e2fsck?"); 3424 silent = 1; 3425 ret = -EFSBADCRC; 3426 goto cantfind_ext4; 3427 } 3428 3429 /* Precompute checksum seed for all metadata */ 3430 if (ext4_has_feature_csum_seed(sb)) 3431 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3432 else if (ext4_has_metadata_csum(sb)) 3433 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3434 sizeof(es->s_uuid)); 3435 3436 /* Set defaults before we parse the mount options */ 3437 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3438 set_opt(sb, INIT_INODE_TABLE); 3439 if (def_mount_opts & EXT4_DEFM_DEBUG) 3440 set_opt(sb, DEBUG); 3441 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3442 set_opt(sb, GRPID); 3443 if (def_mount_opts & EXT4_DEFM_UID16) 3444 set_opt(sb, NO_UID32); 3445 /* xattr user namespace & acls are now defaulted on */ 3446 set_opt(sb, XATTR_USER); 3447 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3448 set_opt(sb, POSIX_ACL); 3449 #endif 3450 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3451 if (ext4_has_metadata_csum(sb)) 3452 set_opt(sb, JOURNAL_CHECKSUM); 3453 3454 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3455 set_opt(sb, JOURNAL_DATA); 3456 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3457 set_opt(sb, ORDERED_DATA); 3458 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3459 set_opt(sb, WRITEBACK_DATA); 3460 3461 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3462 set_opt(sb, ERRORS_PANIC); 3463 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3464 set_opt(sb, ERRORS_CONT); 3465 else 3466 set_opt(sb, ERRORS_RO); 3467 /* block_validity enabled by default; disable with noblock_validity */ 3468 set_opt(sb, BLOCK_VALIDITY); 3469 if (def_mount_opts & EXT4_DEFM_DISCARD) 3470 set_opt(sb, DISCARD); 3471 3472 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3473 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3474 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3475 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3476 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3477 3478 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3479 set_opt(sb, BARRIER); 3480 3481 /* 3482 * enable delayed allocation by default 3483 * Use -o nodelalloc to turn it off 3484 */ 3485 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3486 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3487 set_opt(sb, DELALLOC); 3488 3489 /* 3490 * set default s_li_wait_mult for lazyinit, for the case there is 3491 * no mount option specified. 3492 */ 3493 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3494 3495 if (sbi->s_es->s_mount_opts[0]) { 3496 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3497 sizeof(sbi->s_es->s_mount_opts), 3498 GFP_KERNEL); 3499 if (!s_mount_opts) 3500 goto failed_mount; 3501 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3502 &journal_ioprio, 0)) { 3503 ext4_msg(sb, KERN_WARNING, 3504 "failed to parse options in superblock: %s", 3505 s_mount_opts); 3506 } 3507 kfree(s_mount_opts); 3508 } 3509 sbi->s_def_mount_opt = sbi->s_mount_opt; 3510 if (!parse_options((char *) data, sb, &journal_devnum, 3511 &journal_ioprio, 0)) 3512 goto failed_mount; 3513 3514 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3515 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3516 "with data=journal disables delayed " 3517 "allocation and O_DIRECT support!\n"); 3518 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3519 ext4_msg(sb, KERN_ERR, "can't mount with " 3520 "both data=journal and delalloc"); 3521 goto failed_mount; 3522 } 3523 if (test_opt(sb, DIOREAD_NOLOCK)) { 3524 ext4_msg(sb, KERN_ERR, "can't mount with " 3525 "both data=journal and dioread_nolock"); 3526 goto failed_mount; 3527 } 3528 if (test_opt(sb, DAX)) { 3529 ext4_msg(sb, KERN_ERR, "can't mount with " 3530 "both data=journal and dax"); 3531 goto failed_mount; 3532 } 3533 if (ext4_has_feature_encrypt(sb)) { 3534 ext4_msg(sb, KERN_WARNING, 3535 "encrypted files will use data=ordered " 3536 "instead of data journaling mode"); 3537 } 3538 if (test_opt(sb, DELALLOC)) 3539 clear_opt(sb, DELALLOC); 3540 } else { 3541 sb->s_iflags |= SB_I_CGROUPWB; 3542 } 3543 3544 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3545 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3546 3547 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3548 (ext4_has_compat_features(sb) || 3549 ext4_has_ro_compat_features(sb) || 3550 ext4_has_incompat_features(sb))) 3551 ext4_msg(sb, KERN_WARNING, 3552 "feature flags set on rev 0 fs, " 3553 "running e2fsck is recommended"); 3554 3555 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3556 set_opt2(sb, HURD_COMPAT); 3557 if (ext4_has_feature_64bit(sb)) { 3558 ext4_msg(sb, KERN_ERR, 3559 "The Hurd can't support 64-bit file systems"); 3560 goto failed_mount; 3561 } 3562 } 3563 3564 if (IS_EXT2_SB(sb)) { 3565 if (ext2_feature_set_ok(sb)) 3566 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3567 "using the ext4 subsystem"); 3568 else { 3569 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3570 "to feature incompatibilities"); 3571 goto failed_mount; 3572 } 3573 } 3574 3575 if (IS_EXT3_SB(sb)) { 3576 if (ext3_feature_set_ok(sb)) 3577 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3578 "using the ext4 subsystem"); 3579 else { 3580 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3581 "to feature incompatibilities"); 3582 goto failed_mount; 3583 } 3584 } 3585 3586 /* 3587 * Check feature flags regardless of the revision level, since we 3588 * previously didn't change the revision level when setting the flags, 3589 * so there is a chance incompat flags are set on a rev 0 filesystem. 3590 */ 3591 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3592 goto failed_mount; 3593 3594 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3595 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3596 blocksize > EXT4_MAX_BLOCK_SIZE) { 3597 ext4_msg(sb, KERN_ERR, 3598 "Unsupported filesystem blocksize %d (%d log_block_size)", 3599 blocksize, le32_to_cpu(es->s_log_block_size)); 3600 goto failed_mount; 3601 } 3602 if (le32_to_cpu(es->s_log_block_size) > 3603 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3604 ext4_msg(sb, KERN_ERR, 3605 "Invalid log block size: %u", 3606 le32_to_cpu(es->s_log_block_size)); 3607 goto failed_mount; 3608 } 3609 3610 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3611 ext4_msg(sb, KERN_ERR, 3612 "Number of reserved GDT blocks insanely large: %d", 3613 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3614 goto failed_mount; 3615 } 3616 3617 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3618 err = bdev_dax_supported(sb, blocksize); 3619 if (err) 3620 goto failed_mount; 3621 } 3622 3623 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3624 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3625 es->s_encryption_level); 3626 goto failed_mount; 3627 } 3628 3629 if (sb->s_blocksize != blocksize) { 3630 /* Validate the filesystem blocksize */ 3631 if (!sb_set_blocksize(sb, blocksize)) { 3632 ext4_msg(sb, KERN_ERR, "bad block size %d", 3633 blocksize); 3634 goto failed_mount; 3635 } 3636 3637 brelse(bh); 3638 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3639 offset = do_div(logical_sb_block, blocksize); 3640 bh = sb_bread_unmovable(sb, logical_sb_block); 3641 if (!bh) { 3642 ext4_msg(sb, KERN_ERR, 3643 "Can't read superblock on 2nd try"); 3644 goto failed_mount; 3645 } 3646 es = (struct ext4_super_block *)(bh->b_data + offset); 3647 sbi->s_es = es; 3648 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3649 ext4_msg(sb, KERN_ERR, 3650 "Magic mismatch, very weird!"); 3651 goto failed_mount; 3652 } 3653 } 3654 3655 has_huge_files = ext4_has_feature_huge_file(sb); 3656 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3657 has_huge_files); 3658 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3659 3660 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3661 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3662 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3663 } else { 3664 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3665 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3666 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3667 (!is_power_of_2(sbi->s_inode_size)) || 3668 (sbi->s_inode_size > blocksize)) { 3669 ext4_msg(sb, KERN_ERR, 3670 "unsupported inode size: %d", 3671 sbi->s_inode_size); 3672 goto failed_mount; 3673 } 3674 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3675 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3676 } 3677 3678 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3679 if (ext4_has_feature_64bit(sb)) { 3680 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3681 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3682 !is_power_of_2(sbi->s_desc_size)) { 3683 ext4_msg(sb, KERN_ERR, 3684 "unsupported descriptor size %lu", 3685 sbi->s_desc_size); 3686 goto failed_mount; 3687 } 3688 } else 3689 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3690 3691 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3692 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3693 3694 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3695 if (sbi->s_inodes_per_block == 0) 3696 goto cantfind_ext4; 3697 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3698 sbi->s_inodes_per_group > blocksize * 8) { 3699 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3700 sbi->s_blocks_per_group); 3701 goto failed_mount; 3702 } 3703 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3704 sbi->s_inodes_per_block; 3705 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3706 sbi->s_sbh = bh; 3707 sbi->s_mount_state = le16_to_cpu(es->s_state); 3708 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3709 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3710 3711 for (i = 0; i < 4; i++) 3712 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3713 sbi->s_def_hash_version = es->s_def_hash_version; 3714 if (ext4_has_feature_dir_index(sb)) { 3715 i = le32_to_cpu(es->s_flags); 3716 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3717 sbi->s_hash_unsigned = 3; 3718 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3719 #ifdef __CHAR_UNSIGNED__ 3720 if (!(sb->s_flags & MS_RDONLY)) 3721 es->s_flags |= 3722 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3723 sbi->s_hash_unsigned = 3; 3724 #else 3725 if (!(sb->s_flags & MS_RDONLY)) 3726 es->s_flags |= 3727 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3728 #endif 3729 } 3730 } 3731 3732 /* Handle clustersize */ 3733 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3734 has_bigalloc = ext4_has_feature_bigalloc(sb); 3735 if (has_bigalloc) { 3736 if (clustersize < blocksize) { 3737 ext4_msg(sb, KERN_ERR, 3738 "cluster size (%d) smaller than " 3739 "block size (%d)", clustersize, blocksize); 3740 goto failed_mount; 3741 } 3742 if (le32_to_cpu(es->s_log_cluster_size) > 3743 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3744 ext4_msg(sb, KERN_ERR, 3745 "Invalid log cluster size: %u", 3746 le32_to_cpu(es->s_log_cluster_size)); 3747 goto failed_mount; 3748 } 3749 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3750 le32_to_cpu(es->s_log_block_size); 3751 sbi->s_clusters_per_group = 3752 le32_to_cpu(es->s_clusters_per_group); 3753 if (sbi->s_clusters_per_group > blocksize * 8) { 3754 ext4_msg(sb, KERN_ERR, 3755 "#clusters per group too big: %lu", 3756 sbi->s_clusters_per_group); 3757 goto failed_mount; 3758 } 3759 if (sbi->s_blocks_per_group != 3760 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3761 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3762 "clusters per group (%lu) inconsistent", 3763 sbi->s_blocks_per_group, 3764 sbi->s_clusters_per_group); 3765 goto failed_mount; 3766 } 3767 } else { 3768 if (clustersize != blocksize) { 3769 ext4_warning(sb, "fragment/cluster size (%d) != " 3770 "block size (%d)", clustersize, 3771 blocksize); 3772 clustersize = blocksize; 3773 } 3774 if (sbi->s_blocks_per_group > blocksize * 8) { 3775 ext4_msg(sb, KERN_ERR, 3776 "#blocks per group too big: %lu", 3777 sbi->s_blocks_per_group); 3778 goto failed_mount; 3779 } 3780 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3781 sbi->s_cluster_bits = 0; 3782 } 3783 sbi->s_cluster_ratio = clustersize / blocksize; 3784 3785 /* Do we have standard group size of clustersize * 8 blocks ? */ 3786 if (sbi->s_blocks_per_group == clustersize << 3) 3787 set_opt2(sb, STD_GROUP_SIZE); 3788 3789 /* 3790 * Test whether we have more sectors than will fit in sector_t, 3791 * and whether the max offset is addressable by the page cache. 3792 */ 3793 err = generic_check_addressable(sb->s_blocksize_bits, 3794 ext4_blocks_count(es)); 3795 if (err) { 3796 ext4_msg(sb, KERN_ERR, "filesystem" 3797 " too large to mount safely on this system"); 3798 if (sizeof(sector_t) < 8) 3799 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3800 goto failed_mount; 3801 } 3802 3803 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3804 goto cantfind_ext4; 3805 3806 /* check blocks count against device size */ 3807 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3808 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3809 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3810 "exceeds size of device (%llu blocks)", 3811 ext4_blocks_count(es), blocks_count); 3812 goto failed_mount; 3813 } 3814 3815 /* 3816 * It makes no sense for the first data block to be beyond the end 3817 * of the filesystem. 3818 */ 3819 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3820 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3821 "block %u is beyond end of filesystem (%llu)", 3822 le32_to_cpu(es->s_first_data_block), 3823 ext4_blocks_count(es)); 3824 goto failed_mount; 3825 } 3826 blocks_count = (ext4_blocks_count(es) - 3827 le32_to_cpu(es->s_first_data_block) + 3828 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3829 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3830 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3831 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3832 "(block count %llu, first data block %u, " 3833 "blocks per group %lu)", sbi->s_groups_count, 3834 ext4_blocks_count(es), 3835 le32_to_cpu(es->s_first_data_block), 3836 EXT4_BLOCKS_PER_GROUP(sb)); 3837 goto failed_mount; 3838 } 3839 sbi->s_groups_count = blocks_count; 3840 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3841 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3842 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3843 EXT4_DESC_PER_BLOCK(sb); 3844 if (ext4_has_feature_meta_bg(sb)) { 3845 if (le32_to_cpu(es->s_first_meta_bg) >= db_count) { 3846 ext4_msg(sb, KERN_WARNING, 3847 "first meta block group too large: %u " 3848 "(group descriptor block count %u)", 3849 le32_to_cpu(es->s_first_meta_bg), db_count); 3850 goto failed_mount; 3851 } 3852 } 3853 sbi->s_group_desc = ext4_kvmalloc(db_count * 3854 sizeof(struct buffer_head *), 3855 GFP_KERNEL); 3856 if (sbi->s_group_desc == NULL) { 3857 ext4_msg(sb, KERN_ERR, "not enough memory"); 3858 ret = -ENOMEM; 3859 goto failed_mount; 3860 } 3861 3862 bgl_lock_init(sbi->s_blockgroup_lock); 3863 3864 for (i = 0; i < db_count; i++) { 3865 block = descriptor_loc(sb, logical_sb_block, i); 3866 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3867 if (!sbi->s_group_desc[i]) { 3868 ext4_msg(sb, KERN_ERR, 3869 "can't read group descriptor %d", i); 3870 db_count = i; 3871 goto failed_mount2; 3872 } 3873 } 3874 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3875 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3876 ret = -EFSCORRUPTED; 3877 goto failed_mount2; 3878 } 3879 3880 sbi->s_gdb_count = db_count; 3881 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3882 spin_lock_init(&sbi->s_next_gen_lock); 3883 3884 setup_timer(&sbi->s_err_report, print_daily_error_info, 3885 (unsigned long) sb); 3886 3887 /* Register extent status tree shrinker */ 3888 if (ext4_es_register_shrinker(sbi)) 3889 goto failed_mount3; 3890 3891 sbi->s_stripe = ext4_get_stripe_size(sbi); 3892 sbi->s_extent_max_zeroout_kb = 32; 3893 3894 /* 3895 * set up enough so that it can read an inode 3896 */ 3897 sb->s_op = &ext4_sops; 3898 sb->s_export_op = &ext4_export_ops; 3899 sb->s_xattr = ext4_xattr_handlers; 3900 sb->s_cop = &ext4_cryptops; 3901 #ifdef CONFIG_QUOTA 3902 sb->dq_op = &ext4_quota_operations; 3903 if (ext4_has_feature_quota(sb)) 3904 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3905 else 3906 sb->s_qcop = &ext4_qctl_operations; 3907 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3908 #endif 3909 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3910 3911 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3912 mutex_init(&sbi->s_orphan_lock); 3913 3914 sb->s_root = NULL; 3915 3916 needs_recovery = (es->s_last_orphan != 0 || 3917 ext4_has_feature_journal_needs_recovery(sb)); 3918 3919 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3920 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3921 goto failed_mount3a; 3922 3923 /* 3924 * The first inode we look at is the journal inode. Don't try 3925 * root first: it may be modified in the journal! 3926 */ 3927 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3928 if (ext4_load_journal(sb, es, journal_devnum)) 3929 goto failed_mount3a; 3930 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3931 ext4_has_feature_journal_needs_recovery(sb)) { 3932 ext4_msg(sb, KERN_ERR, "required journal recovery " 3933 "suppressed and not mounted read-only"); 3934 goto failed_mount_wq; 3935 } else { 3936 /* Nojournal mode, all journal mount options are illegal */ 3937 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3938 ext4_msg(sb, KERN_ERR, "can't mount with " 3939 "journal_checksum, fs mounted w/o journal"); 3940 goto failed_mount_wq; 3941 } 3942 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3943 ext4_msg(sb, KERN_ERR, "can't mount with " 3944 "journal_async_commit, fs mounted w/o journal"); 3945 goto failed_mount_wq; 3946 } 3947 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3948 ext4_msg(sb, KERN_ERR, "can't mount with " 3949 "commit=%lu, fs mounted w/o journal", 3950 sbi->s_commit_interval / HZ); 3951 goto failed_mount_wq; 3952 } 3953 if (EXT4_MOUNT_DATA_FLAGS & 3954 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3955 ext4_msg(sb, KERN_ERR, "can't mount with " 3956 "data=, fs mounted w/o journal"); 3957 goto failed_mount_wq; 3958 } 3959 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3960 clear_opt(sb, JOURNAL_CHECKSUM); 3961 clear_opt(sb, DATA_FLAGS); 3962 sbi->s_journal = NULL; 3963 needs_recovery = 0; 3964 goto no_journal; 3965 } 3966 3967 if (ext4_has_feature_64bit(sb) && 3968 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3969 JBD2_FEATURE_INCOMPAT_64BIT)) { 3970 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3971 goto failed_mount_wq; 3972 } 3973 3974 if (!set_journal_csum_feature_set(sb)) { 3975 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3976 "feature set"); 3977 goto failed_mount_wq; 3978 } 3979 3980 /* We have now updated the journal if required, so we can 3981 * validate the data journaling mode. */ 3982 switch (test_opt(sb, DATA_FLAGS)) { 3983 case 0: 3984 /* No mode set, assume a default based on the journal 3985 * capabilities: ORDERED_DATA if the journal can 3986 * cope, else JOURNAL_DATA 3987 */ 3988 if (jbd2_journal_check_available_features 3989 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3990 set_opt(sb, ORDERED_DATA); 3991 else 3992 set_opt(sb, JOURNAL_DATA); 3993 break; 3994 3995 case EXT4_MOUNT_ORDERED_DATA: 3996 case EXT4_MOUNT_WRITEBACK_DATA: 3997 if (!jbd2_journal_check_available_features 3998 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3999 ext4_msg(sb, KERN_ERR, "Journal does not support " 4000 "requested data journaling mode"); 4001 goto failed_mount_wq; 4002 } 4003 default: 4004 break; 4005 } 4006 4007 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4008 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4009 ext4_msg(sb, KERN_ERR, "can't mount with " 4010 "journal_async_commit in data=ordered mode"); 4011 goto failed_mount_wq; 4012 } 4013 4014 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4015 4016 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4017 4018 no_journal: 4019 sbi->s_mb_cache = ext4_xattr_create_cache(); 4020 if (!sbi->s_mb_cache) { 4021 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4022 goto failed_mount_wq; 4023 } 4024 4025 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4026 (blocksize != PAGE_SIZE)) { 4027 ext4_msg(sb, KERN_ERR, 4028 "Unsupported blocksize for fs encryption"); 4029 goto failed_mount_wq; 4030 } 4031 4032 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4033 !ext4_has_feature_encrypt(sb)) { 4034 ext4_set_feature_encrypt(sb); 4035 ext4_commit_super(sb, 1); 4036 } 4037 4038 /* 4039 * Get the # of file system overhead blocks from the 4040 * superblock if present. 4041 */ 4042 if (es->s_overhead_clusters) 4043 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4044 else { 4045 err = ext4_calculate_overhead(sb); 4046 if (err) 4047 goto failed_mount_wq; 4048 } 4049 4050 /* 4051 * The maximum number of concurrent works can be high and 4052 * concurrency isn't really necessary. Limit it to 1. 4053 */ 4054 EXT4_SB(sb)->rsv_conversion_wq = 4055 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4056 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4057 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4058 ret = -ENOMEM; 4059 goto failed_mount4; 4060 } 4061 4062 /* 4063 * The jbd2_journal_load will have done any necessary log recovery, 4064 * so we can safely mount the rest of the filesystem now. 4065 */ 4066 4067 root = ext4_iget(sb, EXT4_ROOT_INO); 4068 if (IS_ERR(root)) { 4069 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4070 ret = PTR_ERR(root); 4071 root = NULL; 4072 goto failed_mount4; 4073 } 4074 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4075 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4076 iput(root); 4077 goto failed_mount4; 4078 } 4079 sb->s_root = d_make_root(root); 4080 if (!sb->s_root) { 4081 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4082 ret = -ENOMEM; 4083 goto failed_mount4; 4084 } 4085 4086 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4087 sb->s_flags |= MS_RDONLY; 4088 4089 /* determine the minimum size of new large inodes, if present */ 4090 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4091 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4092 EXT4_GOOD_OLD_INODE_SIZE; 4093 if (ext4_has_feature_extra_isize(sb)) { 4094 if (sbi->s_want_extra_isize < 4095 le16_to_cpu(es->s_want_extra_isize)) 4096 sbi->s_want_extra_isize = 4097 le16_to_cpu(es->s_want_extra_isize); 4098 if (sbi->s_want_extra_isize < 4099 le16_to_cpu(es->s_min_extra_isize)) 4100 sbi->s_want_extra_isize = 4101 le16_to_cpu(es->s_min_extra_isize); 4102 } 4103 } 4104 /* Check if enough inode space is available */ 4105 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4106 sbi->s_inode_size) { 4107 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4108 EXT4_GOOD_OLD_INODE_SIZE; 4109 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4110 "available"); 4111 } 4112 4113 ext4_set_resv_clusters(sb); 4114 4115 err = ext4_setup_system_zone(sb); 4116 if (err) { 4117 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4118 "zone (%d)", err); 4119 goto failed_mount4a; 4120 } 4121 4122 ext4_ext_init(sb); 4123 err = ext4_mb_init(sb); 4124 if (err) { 4125 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4126 err); 4127 goto failed_mount5; 4128 } 4129 4130 block = ext4_count_free_clusters(sb); 4131 ext4_free_blocks_count_set(sbi->s_es, 4132 EXT4_C2B(sbi, block)); 4133 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4134 GFP_KERNEL); 4135 if (!err) { 4136 unsigned long freei = ext4_count_free_inodes(sb); 4137 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4138 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4139 GFP_KERNEL); 4140 } 4141 if (!err) 4142 err = percpu_counter_init(&sbi->s_dirs_counter, 4143 ext4_count_dirs(sb), GFP_KERNEL); 4144 if (!err) 4145 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4146 GFP_KERNEL); 4147 if (!err) 4148 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4149 4150 if (err) { 4151 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4152 goto failed_mount6; 4153 } 4154 4155 if (ext4_has_feature_flex_bg(sb)) 4156 if (!ext4_fill_flex_info(sb)) { 4157 ext4_msg(sb, KERN_ERR, 4158 "unable to initialize " 4159 "flex_bg meta info!"); 4160 goto failed_mount6; 4161 } 4162 4163 err = ext4_register_li_request(sb, first_not_zeroed); 4164 if (err) 4165 goto failed_mount6; 4166 4167 err = ext4_register_sysfs(sb); 4168 if (err) 4169 goto failed_mount7; 4170 4171 #ifdef CONFIG_QUOTA 4172 /* Enable quota usage during mount. */ 4173 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4174 err = ext4_enable_quotas(sb); 4175 if (err) 4176 goto failed_mount8; 4177 } 4178 #endif /* CONFIG_QUOTA */ 4179 4180 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4181 ext4_orphan_cleanup(sb, es); 4182 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4183 if (needs_recovery) { 4184 ext4_msg(sb, KERN_INFO, "recovery complete"); 4185 ext4_mark_recovery_complete(sb, es); 4186 } 4187 if (EXT4_SB(sb)->s_journal) { 4188 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4189 descr = " journalled data mode"; 4190 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4191 descr = " ordered data mode"; 4192 else 4193 descr = " writeback data mode"; 4194 } else 4195 descr = "out journal"; 4196 4197 if (test_opt(sb, DISCARD)) { 4198 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4199 if (!blk_queue_discard(q)) 4200 ext4_msg(sb, KERN_WARNING, 4201 "mounting with \"discard\" option, but " 4202 "the device does not support discard"); 4203 } 4204 4205 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4206 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4207 "Opts: %.*s%s%s", descr, 4208 (int) sizeof(sbi->s_es->s_mount_opts), 4209 sbi->s_es->s_mount_opts, 4210 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4211 4212 if (es->s_error_count) 4213 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4214 4215 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4216 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4217 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4218 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4219 4220 kfree(orig_data); 4221 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4222 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX, 4223 EXT4_KEY_DESC_PREFIX_SIZE); 4224 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE; 4225 #endif 4226 return 0; 4227 4228 cantfind_ext4: 4229 if (!silent) 4230 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4231 goto failed_mount; 4232 4233 #ifdef CONFIG_QUOTA 4234 failed_mount8: 4235 ext4_unregister_sysfs(sb); 4236 #endif 4237 failed_mount7: 4238 ext4_unregister_li_request(sb); 4239 failed_mount6: 4240 ext4_mb_release(sb); 4241 if (sbi->s_flex_groups) 4242 kvfree(sbi->s_flex_groups); 4243 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4244 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4245 percpu_counter_destroy(&sbi->s_dirs_counter); 4246 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4247 failed_mount5: 4248 ext4_ext_release(sb); 4249 ext4_release_system_zone(sb); 4250 failed_mount4a: 4251 dput(sb->s_root); 4252 sb->s_root = NULL; 4253 failed_mount4: 4254 ext4_msg(sb, KERN_ERR, "mount failed"); 4255 if (EXT4_SB(sb)->rsv_conversion_wq) 4256 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4257 failed_mount_wq: 4258 if (sbi->s_mb_cache) { 4259 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4260 sbi->s_mb_cache = NULL; 4261 } 4262 if (sbi->s_journal) { 4263 jbd2_journal_destroy(sbi->s_journal); 4264 sbi->s_journal = NULL; 4265 } 4266 failed_mount3a: 4267 ext4_es_unregister_shrinker(sbi); 4268 failed_mount3: 4269 del_timer_sync(&sbi->s_err_report); 4270 if (sbi->s_mmp_tsk) 4271 kthread_stop(sbi->s_mmp_tsk); 4272 failed_mount2: 4273 for (i = 0; i < db_count; i++) 4274 brelse(sbi->s_group_desc[i]); 4275 kvfree(sbi->s_group_desc); 4276 failed_mount: 4277 if (sbi->s_chksum_driver) 4278 crypto_free_shash(sbi->s_chksum_driver); 4279 #ifdef CONFIG_QUOTA 4280 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4281 kfree(sbi->s_qf_names[i]); 4282 #endif 4283 ext4_blkdev_remove(sbi); 4284 brelse(bh); 4285 out_fail: 4286 sb->s_fs_info = NULL; 4287 kfree(sbi->s_blockgroup_lock); 4288 out_free_base: 4289 kfree(sbi); 4290 kfree(orig_data); 4291 return err ? err : ret; 4292 } 4293 4294 /* 4295 * Setup any per-fs journal parameters now. We'll do this both on 4296 * initial mount, once the journal has been initialised but before we've 4297 * done any recovery; and again on any subsequent remount. 4298 */ 4299 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4300 { 4301 struct ext4_sb_info *sbi = EXT4_SB(sb); 4302 4303 journal->j_commit_interval = sbi->s_commit_interval; 4304 journal->j_min_batch_time = sbi->s_min_batch_time; 4305 journal->j_max_batch_time = sbi->s_max_batch_time; 4306 4307 write_lock(&journal->j_state_lock); 4308 if (test_opt(sb, BARRIER)) 4309 journal->j_flags |= JBD2_BARRIER; 4310 else 4311 journal->j_flags &= ~JBD2_BARRIER; 4312 if (test_opt(sb, DATA_ERR_ABORT)) 4313 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4314 else 4315 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4316 write_unlock(&journal->j_state_lock); 4317 } 4318 4319 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4320 unsigned int journal_inum) 4321 { 4322 struct inode *journal_inode; 4323 4324 /* 4325 * Test for the existence of a valid inode on disk. Bad things 4326 * happen if we iget() an unused inode, as the subsequent iput() 4327 * will try to delete it. 4328 */ 4329 journal_inode = ext4_iget(sb, journal_inum); 4330 if (IS_ERR(journal_inode)) { 4331 ext4_msg(sb, KERN_ERR, "no journal found"); 4332 return NULL; 4333 } 4334 if (!journal_inode->i_nlink) { 4335 make_bad_inode(journal_inode); 4336 iput(journal_inode); 4337 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4338 return NULL; 4339 } 4340 4341 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4342 journal_inode, journal_inode->i_size); 4343 if (!S_ISREG(journal_inode->i_mode)) { 4344 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4345 iput(journal_inode); 4346 return NULL; 4347 } 4348 return journal_inode; 4349 } 4350 4351 static journal_t *ext4_get_journal(struct super_block *sb, 4352 unsigned int journal_inum) 4353 { 4354 struct inode *journal_inode; 4355 journal_t *journal; 4356 4357 BUG_ON(!ext4_has_feature_journal(sb)); 4358 4359 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4360 if (!journal_inode) 4361 return NULL; 4362 4363 journal = jbd2_journal_init_inode(journal_inode); 4364 if (!journal) { 4365 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4366 iput(journal_inode); 4367 return NULL; 4368 } 4369 journal->j_private = sb; 4370 ext4_init_journal_params(sb, journal); 4371 return journal; 4372 } 4373 4374 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4375 dev_t j_dev) 4376 { 4377 struct buffer_head *bh; 4378 journal_t *journal; 4379 ext4_fsblk_t start; 4380 ext4_fsblk_t len; 4381 int hblock, blocksize; 4382 ext4_fsblk_t sb_block; 4383 unsigned long offset; 4384 struct ext4_super_block *es; 4385 struct block_device *bdev; 4386 4387 BUG_ON(!ext4_has_feature_journal(sb)); 4388 4389 bdev = ext4_blkdev_get(j_dev, sb); 4390 if (bdev == NULL) 4391 return NULL; 4392 4393 blocksize = sb->s_blocksize; 4394 hblock = bdev_logical_block_size(bdev); 4395 if (blocksize < hblock) { 4396 ext4_msg(sb, KERN_ERR, 4397 "blocksize too small for journal device"); 4398 goto out_bdev; 4399 } 4400 4401 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4402 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4403 set_blocksize(bdev, blocksize); 4404 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4405 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4406 "external journal"); 4407 goto out_bdev; 4408 } 4409 4410 es = (struct ext4_super_block *) (bh->b_data + offset); 4411 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4412 !(le32_to_cpu(es->s_feature_incompat) & 4413 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4414 ext4_msg(sb, KERN_ERR, "external journal has " 4415 "bad superblock"); 4416 brelse(bh); 4417 goto out_bdev; 4418 } 4419 4420 if ((le32_to_cpu(es->s_feature_ro_compat) & 4421 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4422 es->s_checksum != ext4_superblock_csum(sb, es)) { 4423 ext4_msg(sb, KERN_ERR, "external journal has " 4424 "corrupt superblock"); 4425 brelse(bh); 4426 goto out_bdev; 4427 } 4428 4429 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4430 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4431 brelse(bh); 4432 goto out_bdev; 4433 } 4434 4435 len = ext4_blocks_count(es); 4436 start = sb_block + 1; 4437 brelse(bh); /* we're done with the superblock */ 4438 4439 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4440 start, len, blocksize); 4441 if (!journal) { 4442 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4443 goto out_bdev; 4444 } 4445 journal->j_private = sb; 4446 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4447 wait_on_buffer(journal->j_sb_buffer); 4448 if (!buffer_uptodate(journal->j_sb_buffer)) { 4449 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4450 goto out_journal; 4451 } 4452 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4453 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4454 "user (unsupported) - %d", 4455 be32_to_cpu(journal->j_superblock->s_nr_users)); 4456 goto out_journal; 4457 } 4458 EXT4_SB(sb)->journal_bdev = bdev; 4459 ext4_init_journal_params(sb, journal); 4460 return journal; 4461 4462 out_journal: 4463 jbd2_journal_destroy(journal); 4464 out_bdev: 4465 ext4_blkdev_put(bdev); 4466 return NULL; 4467 } 4468 4469 static int ext4_load_journal(struct super_block *sb, 4470 struct ext4_super_block *es, 4471 unsigned long journal_devnum) 4472 { 4473 journal_t *journal; 4474 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4475 dev_t journal_dev; 4476 int err = 0; 4477 int really_read_only; 4478 4479 BUG_ON(!ext4_has_feature_journal(sb)); 4480 4481 if (journal_devnum && 4482 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4483 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4484 "numbers have changed"); 4485 journal_dev = new_decode_dev(journal_devnum); 4486 } else 4487 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4488 4489 really_read_only = bdev_read_only(sb->s_bdev); 4490 4491 /* 4492 * Are we loading a blank journal or performing recovery after a 4493 * crash? For recovery, we need to check in advance whether we 4494 * can get read-write access to the device. 4495 */ 4496 if (ext4_has_feature_journal_needs_recovery(sb)) { 4497 if (sb->s_flags & MS_RDONLY) { 4498 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4499 "required on readonly filesystem"); 4500 if (really_read_only) { 4501 ext4_msg(sb, KERN_ERR, "write access " 4502 "unavailable, cannot proceed"); 4503 return -EROFS; 4504 } 4505 ext4_msg(sb, KERN_INFO, "write access will " 4506 "be enabled during recovery"); 4507 } 4508 } 4509 4510 if (journal_inum && journal_dev) { 4511 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4512 "and inode journals!"); 4513 return -EINVAL; 4514 } 4515 4516 if (journal_inum) { 4517 if (!(journal = ext4_get_journal(sb, journal_inum))) 4518 return -EINVAL; 4519 } else { 4520 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4521 return -EINVAL; 4522 } 4523 4524 if (!(journal->j_flags & JBD2_BARRIER)) 4525 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4526 4527 if (!ext4_has_feature_journal_needs_recovery(sb)) 4528 err = jbd2_journal_wipe(journal, !really_read_only); 4529 if (!err) { 4530 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4531 if (save) 4532 memcpy(save, ((char *) es) + 4533 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4534 err = jbd2_journal_load(journal); 4535 if (save) 4536 memcpy(((char *) es) + EXT4_S_ERR_START, 4537 save, EXT4_S_ERR_LEN); 4538 kfree(save); 4539 } 4540 4541 if (err) { 4542 ext4_msg(sb, KERN_ERR, "error loading journal"); 4543 jbd2_journal_destroy(journal); 4544 return err; 4545 } 4546 4547 EXT4_SB(sb)->s_journal = journal; 4548 ext4_clear_journal_err(sb, es); 4549 4550 if (!really_read_only && journal_devnum && 4551 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4552 es->s_journal_dev = cpu_to_le32(journal_devnum); 4553 4554 /* Make sure we flush the recovery flag to disk. */ 4555 ext4_commit_super(sb, 1); 4556 } 4557 4558 return 0; 4559 } 4560 4561 static int ext4_commit_super(struct super_block *sb, int sync) 4562 { 4563 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4564 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4565 int error = 0; 4566 4567 if (!sbh || block_device_ejected(sb)) 4568 return error; 4569 /* 4570 * If the file system is mounted read-only, don't update the 4571 * superblock write time. This avoids updating the superblock 4572 * write time when we are mounting the root file system 4573 * read/only but we need to replay the journal; at that point, 4574 * for people who are east of GMT and who make their clock 4575 * tick in localtime for Windows bug-for-bug compatibility, 4576 * the clock is set in the future, and this will cause e2fsck 4577 * to complain and force a full file system check. 4578 */ 4579 if (!(sb->s_flags & MS_RDONLY)) 4580 es->s_wtime = cpu_to_le32(get_seconds()); 4581 if (sb->s_bdev->bd_part) 4582 es->s_kbytes_written = 4583 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4584 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4585 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4586 else 4587 es->s_kbytes_written = 4588 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4589 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4590 ext4_free_blocks_count_set(es, 4591 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4592 &EXT4_SB(sb)->s_freeclusters_counter))); 4593 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4594 es->s_free_inodes_count = 4595 cpu_to_le32(percpu_counter_sum_positive( 4596 &EXT4_SB(sb)->s_freeinodes_counter)); 4597 BUFFER_TRACE(sbh, "marking dirty"); 4598 ext4_superblock_csum_set(sb); 4599 if (sync) 4600 lock_buffer(sbh); 4601 if (buffer_write_io_error(sbh)) { 4602 /* 4603 * Oh, dear. A previous attempt to write the 4604 * superblock failed. This could happen because the 4605 * USB device was yanked out. Or it could happen to 4606 * be a transient write error and maybe the block will 4607 * be remapped. Nothing we can do but to retry the 4608 * write and hope for the best. 4609 */ 4610 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4611 "superblock detected"); 4612 clear_buffer_write_io_error(sbh); 4613 set_buffer_uptodate(sbh); 4614 } 4615 mark_buffer_dirty(sbh); 4616 if (sync) { 4617 unlock_buffer(sbh); 4618 error = __sync_dirty_buffer(sbh, 4619 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC); 4620 if (error) 4621 return error; 4622 4623 error = buffer_write_io_error(sbh); 4624 if (error) { 4625 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4626 "superblock"); 4627 clear_buffer_write_io_error(sbh); 4628 set_buffer_uptodate(sbh); 4629 } 4630 } 4631 return error; 4632 } 4633 4634 /* 4635 * Have we just finished recovery? If so, and if we are mounting (or 4636 * remounting) the filesystem readonly, then we will end up with a 4637 * consistent fs on disk. Record that fact. 4638 */ 4639 static void ext4_mark_recovery_complete(struct super_block *sb, 4640 struct ext4_super_block *es) 4641 { 4642 journal_t *journal = EXT4_SB(sb)->s_journal; 4643 4644 if (!ext4_has_feature_journal(sb)) { 4645 BUG_ON(journal != NULL); 4646 return; 4647 } 4648 jbd2_journal_lock_updates(journal); 4649 if (jbd2_journal_flush(journal) < 0) 4650 goto out; 4651 4652 if (ext4_has_feature_journal_needs_recovery(sb) && 4653 sb->s_flags & MS_RDONLY) { 4654 ext4_clear_feature_journal_needs_recovery(sb); 4655 ext4_commit_super(sb, 1); 4656 } 4657 4658 out: 4659 jbd2_journal_unlock_updates(journal); 4660 } 4661 4662 /* 4663 * If we are mounting (or read-write remounting) a filesystem whose journal 4664 * has recorded an error from a previous lifetime, move that error to the 4665 * main filesystem now. 4666 */ 4667 static void ext4_clear_journal_err(struct super_block *sb, 4668 struct ext4_super_block *es) 4669 { 4670 journal_t *journal; 4671 int j_errno; 4672 const char *errstr; 4673 4674 BUG_ON(!ext4_has_feature_journal(sb)); 4675 4676 journal = EXT4_SB(sb)->s_journal; 4677 4678 /* 4679 * Now check for any error status which may have been recorded in the 4680 * journal by a prior ext4_error() or ext4_abort() 4681 */ 4682 4683 j_errno = jbd2_journal_errno(journal); 4684 if (j_errno) { 4685 char nbuf[16]; 4686 4687 errstr = ext4_decode_error(sb, j_errno, nbuf); 4688 ext4_warning(sb, "Filesystem error recorded " 4689 "from previous mount: %s", errstr); 4690 ext4_warning(sb, "Marking fs in need of filesystem check."); 4691 4692 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4693 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4694 ext4_commit_super(sb, 1); 4695 4696 jbd2_journal_clear_err(journal); 4697 jbd2_journal_update_sb_errno(journal); 4698 } 4699 } 4700 4701 /* 4702 * Force the running and committing transactions to commit, 4703 * and wait on the commit. 4704 */ 4705 int ext4_force_commit(struct super_block *sb) 4706 { 4707 journal_t *journal; 4708 4709 if (sb->s_flags & MS_RDONLY) 4710 return 0; 4711 4712 journal = EXT4_SB(sb)->s_journal; 4713 return ext4_journal_force_commit(journal); 4714 } 4715 4716 static int ext4_sync_fs(struct super_block *sb, int wait) 4717 { 4718 int ret = 0; 4719 tid_t target; 4720 bool needs_barrier = false; 4721 struct ext4_sb_info *sbi = EXT4_SB(sb); 4722 4723 trace_ext4_sync_fs(sb, wait); 4724 flush_workqueue(sbi->rsv_conversion_wq); 4725 /* 4726 * Writeback quota in non-journalled quota case - journalled quota has 4727 * no dirty dquots 4728 */ 4729 dquot_writeback_dquots(sb, -1); 4730 /* 4731 * Data writeback is possible w/o journal transaction, so barrier must 4732 * being sent at the end of the function. But we can skip it if 4733 * transaction_commit will do it for us. 4734 */ 4735 if (sbi->s_journal) { 4736 target = jbd2_get_latest_transaction(sbi->s_journal); 4737 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4738 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4739 needs_barrier = true; 4740 4741 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4742 if (wait) 4743 ret = jbd2_log_wait_commit(sbi->s_journal, 4744 target); 4745 } 4746 } else if (wait && test_opt(sb, BARRIER)) 4747 needs_barrier = true; 4748 if (needs_barrier) { 4749 int err; 4750 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4751 if (!ret) 4752 ret = err; 4753 } 4754 4755 return ret; 4756 } 4757 4758 /* 4759 * LVM calls this function before a (read-only) snapshot is created. This 4760 * gives us a chance to flush the journal completely and mark the fs clean. 4761 * 4762 * Note that only this function cannot bring a filesystem to be in a clean 4763 * state independently. It relies on upper layer to stop all data & metadata 4764 * modifications. 4765 */ 4766 static int ext4_freeze(struct super_block *sb) 4767 { 4768 int error = 0; 4769 journal_t *journal; 4770 4771 if (sb->s_flags & MS_RDONLY) 4772 return 0; 4773 4774 journal = EXT4_SB(sb)->s_journal; 4775 4776 if (journal) { 4777 /* Now we set up the journal barrier. */ 4778 jbd2_journal_lock_updates(journal); 4779 4780 /* 4781 * Don't clear the needs_recovery flag if we failed to 4782 * flush the journal. 4783 */ 4784 error = jbd2_journal_flush(journal); 4785 if (error < 0) 4786 goto out; 4787 4788 /* Journal blocked and flushed, clear needs_recovery flag. */ 4789 ext4_clear_feature_journal_needs_recovery(sb); 4790 } 4791 4792 error = ext4_commit_super(sb, 1); 4793 out: 4794 if (journal) 4795 /* we rely on upper layer to stop further updates */ 4796 jbd2_journal_unlock_updates(journal); 4797 return error; 4798 } 4799 4800 /* 4801 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4802 * flag here, even though the filesystem is not technically dirty yet. 4803 */ 4804 static int ext4_unfreeze(struct super_block *sb) 4805 { 4806 if (sb->s_flags & MS_RDONLY) 4807 return 0; 4808 4809 if (EXT4_SB(sb)->s_journal) { 4810 /* Reset the needs_recovery flag before the fs is unlocked. */ 4811 ext4_set_feature_journal_needs_recovery(sb); 4812 } 4813 4814 ext4_commit_super(sb, 1); 4815 return 0; 4816 } 4817 4818 /* 4819 * Structure to save mount options for ext4_remount's benefit 4820 */ 4821 struct ext4_mount_options { 4822 unsigned long s_mount_opt; 4823 unsigned long s_mount_opt2; 4824 kuid_t s_resuid; 4825 kgid_t s_resgid; 4826 unsigned long s_commit_interval; 4827 u32 s_min_batch_time, s_max_batch_time; 4828 #ifdef CONFIG_QUOTA 4829 int s_jquota_fmt; 4830 char *s_qf_names[EXT4_MAXQUOTAS]; 4831 #endif 4832 }; 4833 4834 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4835 { 4836 struct ext4_super_block *es; 4837 struct ext4_sb_info *sbi = EXT4_SB(sb); 4838 unsigned long old_sb_flags; 4839 struct ext4_mount_options old_opts; 4840 int enable_quota = 0; 4841 ext4_group_t g; 4842 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4843 int err = 0; 4844 #ifdef CONFIG_QUOTA 4845 int i, j; 4846 #endif 4847 char *orig_data = kstrdup(data, GFP_KERNEL); 4848 4849 /* Store the original options */ 4850 old_sb_flags = sb->s_flags; 4851 old_opts.s_mount_opt = sbi->s_mount_opt; 4852 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4853 old_opts.s_resuid = sbi->s_resuid; 4854 old_opts.s_resgid = sbi->s_resgid; 4855 old_opts.s_commit_interval = sbi->s_commit_interval; 4856 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4857 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4858 #ifdef CONFIG_QUOTA 4859 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4860 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4861 if (sbi->s_qf_names[i]) { 4862 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4863 GFP_KERNEL); 4864 if (!old_opts.s_qf_names[i]) { 4865 for (j = 0; j < i; j++) 4866 kfree(old_opts.s_qf_names[j]); 4867 kfree(orig_data); 4868 return -ENOMEM; 4869 } 4870 } else 4871 old_opts.s_qf_names[i] = NULL; 4872 #endif 4873 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4874 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4875 4876 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4877 err = -EINVAL; 4878 goto restore_opts; 4879 } 4880 4881 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4882 test_opt(sb, JOURNAL_CHECKSUM)) { 4883 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4884 "during remount not supported; ignoring"); 4885 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4886 } 4887 4888 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4889 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4890 ext4_msg(sb, KERN_ERR, "can't mount with " 4891 "both data=journal and delalloc"); 4892 err = -EINVAL; 4893 goto restore_opts; 4894 } 4895 if (test_opt(sb, DIOREAD_NOLOCK)) { 4896 ext4_msg(sb, KERN_ERR, "can't mount with " 4897 "both data=journal and dioread_nolock"); 4898 err = -EINVAL; 4899 goto restore_opts; 4900 } 4901 if (test_opt(sb, DAX)) { 4902 ext4_msg(sb, KERN_ERR, "can't mount with " 4903 "both data=journal and dax"); 4904 err = -EINVAL; 4905 goto restore_opts; 4906 } 4907 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 4908 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4909 ext4_msg(sb, KERN_ERR, "can't mount with " 4910 "journal_async_commit in data=ordered mode"); 4911 err = -EINVAL; 4912 goto restore_opts; 4913 } 4914 } 4915 4916 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4917 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4918 "dax flag with busy inodes while remounting"); 4919 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4920 } 4921 4922 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4923 ext4_abort(sb, "Abort forced by user"); 4924 4925 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4926 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4927 4928 es = sbi->s_es; 4929 4930 if (sbi->s_journal) { 4931 ext4_init_journal_params(sb, sbi->s_journal); 4932 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4933 } 4934 4935 if (*flags & MS_LAZYTIME) 4936 sb->s_flags |= MS_LAZYTIME; 4937 4938 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4939 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4940 err = -EROFS; 4941 goto restore_opts; 4942 } 4943 4944 if (*flags & MS_RDONLY) { 4945 err = sync_filesystem(sb); 4946 if (err < 0) 4947 goto restore_opts; 4948 err = dquot_suspend(sb, -1); 4949 if (err < 0) 4950 goto restore_opts; 4951 4952 /* 4953 * First of all, the unconditional stuff we have to do 4954 * to disable replay of the journal when we next remount 4955 */ 4956 sb->s_flags |= MS_RDONLY; 4957 4958 /* 4959 * OK, test if we are remounting a valid rw partition 4960 * readonly, and if so set the rdonly flag and then 4961 * mark the partition as valid again. 4962 */ 4963 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4964 (sbi->s_mount_state & EXT4_VALID_FS)) 4965 es->s_state = cpu_to_le16(sbi->s_mount_state); 4966 4967 if (sbi->s_journal) 4968 ext4_mark_recovery_complete(sb, es); 4969 } else { 4970 /* Make sure we can mount this feature set readwrite */ 4971 if (ext4_has_feature_readonly(sb) || 4972 !ext4_feature_set_ok(sb, 0)) { 4973 err = -EROFS; 4974 goto restore_opts; 4975 } 4976 /* 4977 * Make sure the group descriptor checksums 4978 * are sane. If they aren't, refuse to remount r/w. 4979 */ 4980 for (g = 0; g < sbi->s_groups_count; g++) { 4981 struct ext4_group_desc *gdp = 4982 ext4_get_group_desc(sb, g, NULL); 4983 4984 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4985 ext4_msg(sb, KERN_ERR, 4986 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4987 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4988 le16_to_cpu(gdp->bg_checksum)); 4989 err = -EFSBADCRC; 4990 goto restore_opts; 4991 } 4992 } 4993 4994 /* 4995 * If we have an unprocessed orphan list hanging 4996 * around from a previously readonly bdev mount, 4997 * require a full umount/remount for now. 4998 */ 4999 if (es->s_last_orphan) { 5000 ext4_msg(sb, KERN_WARNING, "Couldn't " 5001 "remount RDWR because of unprocessed " 5002 "orphan inode list. Please " 5003 "umount/remount instead"); 5004 err = -EINVAL; 5005 goto restore_opts; 5006 } 5007 5008 /* 5009 * Mounting a RDONLY partition read-write, so reread 5010 * and store the current valid flag. (It may have 5011 * been changed by e2fsck since we originally mounted 5012 * the partition.) 5013 */ 5014 if (sbi->s_journal) 5015 ext4_clear_journal_err(sb, es); 5016 sbi->s_mount_state = le16_to_cpu(es->s_state); 5017 if (!ext4_setup_super(sb, es, 0)) 5018 sb->s_flags &= ~MS_RDONLY; 5019 if (ext4_has_feature_mmp(sb)) 5020 if (ext4_multi_mount_protect(sb, 5021 le64_to_cpu(es->s_mmp_block))) { 5022 err = -EROFS; 5023 goto restore_opts; 5024 } 5025 enable_quota = 1; 5026 } 5027 } 5028 5029 /* 5030 * Reinitialize lazy itable initialization thread based on 5031 * current settings 5032 */ 5033 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5034 ext4_unregister_li_request(sb); 5035 else { 5036 ext4_group_t first_not_zeroed; 5037 first_not_zeroed = ext4_has_uninit_itable(sb); 5038 ext4_register_li_request(sb, first_not_zeroed); 5039 } 5040 5041 ext4_setup_system_zone(sb); 5042 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5043 ext4_commit_super(sb, 1); 5044 5045 #ifdef CONFIG_QUOTA 5046 /* Release old quota file names */ 5047 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5048 kfree(old_opts.s_qf_names[i]); 5049 if (enable_quota) { 5050 if (sb_any_quota_suspended(sb)) 5051 dquot_resume(sb, -1); 5052 else if (ext4_has_feature_quota(sb)) { 5053 err = ext4_enable_quotas(sb); 5054 if (err) 5055 goto restore_opts; 5056 } 5057 } 5058 #endif 5059 5060 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5061 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5062 kfree(orig_data); 5063 return 0; 5064 5065 restore_opts: 5066 sb->s_flags = old_sb_flags; 5067 sbi->s_mount_opt = old_opts.s_mount_opt; 5068 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5069 sbi->s_resuid = old_opts.s_resuid; 5070 sbi->s_resgid = old_opts.s_resgid; 5071 sbi->s_commit_interval = old_opts.s_commit_interval; 5072 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5073 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5074 #ifdef CONFIG_QUOTA 5075 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5076 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5077 kfree(sbi->s_qf_names[i]); 5078 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5079 } 5080 #endif 5081 kfree(orig_data); 5082 return err; 5083 } 5084 5085 #ifdef CONFIG_QUOTA 5086 static int ext4_statfs_project(struct super_block *sb, 5087 kprojid_t projid, struct kstatfs *buf) 5088 { 5089 struct kqid qid; 5090 struct dquot *dquot; 5091 u64 limit; 5092 u64 curblock; 5093 5094 qid = make_kqid_projid(projid); 5095 dquot = dqget(sb, qid); 5096 if (IS_ERR(dquot)) 5097 return PTR_ERR(dquot); 5098 spin_lock(&dq_data_lock); 5099 5100 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5101 dquot->dq_dqb.dqb_bsoftlimit : 5102 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5103 if (limit && buf->f_blocks > limit) { 5104 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5105 buf->f_blocks = limit; 5106 buf->f_bfree = buf->f_bavail = 5107 (buf->f_blocks > curblock) ? 5108 (buf->f_blocks - curblock) : 0; 5109 } 5110 5111 limit = dquot->dq_dqb.dqb_isoftlimit ? 5112 dquot->dq_dqb.dqb_isoftlimit : 5113 dquot->dq_dqb.dqb_ihardlimit; 5114 if (limit && buf->f_files > limit) { 5115 buf->f_files = limit; 5116 buf->f_ffree = 5117 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5118 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5119 } 5120 5121 spin_unlock(&dq_data_lock); 5122 dqput(dquot); 5123 return 0; 5124 } 5125 #endif 5126 5127 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5128 { 5129 struct super_block *sb = dentry->d_sb; 5130 struct ext4_sb_info *sbi = EXT4_SB(sb); 5131 struct ext4_super_block *es = sbi->s_es; 5132 ext4_fsblk_t overhead = 0, resv_blocks; 5133 u64 fsid; 5134 s64 bfree; 5135 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5136 5137 if (!test_opt(sb, MINIX_DF)) 5138 overhead = sbi->s_overhead; 5139 5140 buf->f_type = EXT4_SUPER_MAGIC; 5141 buf->f_bsize = sb->s_blocksize; 5142 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5143 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5144 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5145 /* prevent underflow in case that few free space is available */ 5146 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5147 buf->f_bavail = buf->f_bfree - 5148 (ext4_r_blocks_count(es) + resv_blocks); 5149 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5150 buf->f_bavail = 0; 5151 buf->f_files = le32_to_cpu(es->s_inodes_count); 5152 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5153 buf->f_namelen = EXT4_NAME_LEN; 5154 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5155 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5156 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5157 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5158 5159 #ifdef CONFIG_QUOTA 5160 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5161 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5162 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5163 #endif 5164 return 0; 5165 } 5166 5167 /* Helper function for writing quotas on sync - we need to start transaction 5168 * before quota file is locked for write. Otherwise the are possible deadlocks: 5169 * Process 1 Process 2 5170 * ext4_create() quota_sync() 5171 * jbd2_journal_start() write_dquot() 5172 * dquot_initialize() down(dqio_mutex) 5173 * down(dqio_mutex) jbd2_journal_start() 5174 * 5175 */ 5176 5177 #ifdef CONFIG_QUOTA 5178 5179 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5180 { 5181 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5182 } 5183 5184 static int ext4_write_dquot(struct dquot *dquot) 5185 { 5186 int ret, err; 5187 handle_t *handle; 5188 struct inode *inode; 5189 5190 inode = dquot_to_inode(dquot); 5191 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5192 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5193 if (IS_ERR(handle)) 5194 return PTR_ERR(handle); 5195 ret = dquot_commit(dquot); 5196 err = ext4_journal_stop(handle); 5197 if (!ret) 5198 ret = err; 5199 return ret; 5200 } 5201 5202 static int ext4_acquire_dquot(struct dquot *dquot) 5203 { 5204 int ret, err; 5205 handle_t *handle; 5206 5207 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5208 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5209 if (IS_ERR(handle)) 5210 return PTR_ERR(handle); 5211 ret = dquot_acquire(dquot); 5212 err = ext4_journal_stop(handle); 5213 if (!ret) 5214 ret = err; 5215 return ret; 5216 } 5217 5218 static int ext4_release_dquot(struct dquot *dquot) 5219 { 5220 int ret, err; 5221 handle_t *handle; 5222 5223 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5224 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5225 if (IS_ERR(handle)) { 5226 /* Release dquot anyway to avoid endless cycle in dqput() */ 5227 dquot_release(dquot); 5228 return PTR_ERR(handle); 5229 } 5230 ret = dquot_release(dquot); 5231 err = ext4_journal_stop(handle); 5232 if (!ret) 5233 ret = err; 5234 return ret; 5235 } 5236 5237 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5238 { 5239 struct super_block *sb = dquot->dq_sb; 5240 struct ext4_sb_info *sbi = EXT4_SB(sb); 5241 5242 /* Are we journaling quotas? */ 5243 if (ext4_has_feature_quota(sb) || 5244 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5245 dquot_mark_dquot_dirty(dquot); 5246 return ext4_write_dquot(dquot); 5247 } else { 5248 return dquot_mark_dquot_dirty(dquot); 5249 } 5250 } 5251 5252 static int ext4_write_info(struct super_block *sb, int type) 5253 { 5254 int ret, err; 5255 handle_t *handle; 5256 5257 /* Data block + inode block */ 5258 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5259 if (IS_ERR(handle)) 5260 return PTR_ERR(handle); 5261 ret = dquot_commit_info(sb, type); 5262 err = ext4_journal_stop(handle); 5263 if (!ret) 5264 ret = err; 5265 return ret; 5266 } 5267 5268 /* 5269 * Turn on quotas during mount time - we need to find 5270 * the quota file and such... 5271 */ 5272 static int ext4_quota_on_mount(struct super_block *sb, int type) 5273 { 5274 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5275 EXT4_SB(sb)->s_jquota_fmt, type); 5276 } 5277 5278 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5279 { 5280 struct ext4_inode_info *ei = EXT4_I(inode); 5281 5282 /* The first argument of lockdep_set_subclass has to be 5283 * *exactly* the same as the argument to init_rwsem() --- in 5284 * this case, in init_once() --- or lockdep gets unhappy 5285 * because the name of the lock is set using the 5286 * stringification of the argument to init_rwsem(). 5287 */ 5288 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5289 lockdep_set_subclass(&ei->i_data_sem, subclass); 5290 } 5291 5292 /* 5293 * Standard function to be called on quota_on 5294 */ 5295 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5296 const struct path *path) 5297 { 5298 int err; 5299 5300 if (!test_opt(sb, QUOTA)) 5301 return -EINVAL; 5302 5303 /* Quotafile not on the same filesystem? */ 5304 if (path->dentry->d_sb != sb) 5305 return -EXDEV; 5306 /* Journaling quota? */ 5307 if (EXT4_SB(sb)->s_qf_names[type]) { 5308 /* Quotafile not in fs root? */ 5309 if (path->dentry->d_parent != sb->s_root) 5310 ext4_msg(sb, KERN_WARNING, 5311 "Quota file not on filesystem root. " 5312 "Journaled quota will not work"); 5313 } 5314 5315 /* 5316 * When we journal data on quota file, we have to flush journal to see 5317 * all updates to the file when we bypass pagecache... 5318 */ 5319 if (EXT4_SB(sb)->s_journal && 5320 ext4_should_journal_data(d_inode(path->dentry))) { 5321 /* 5322 * We don't need to lock updates but journal_flush() could 5323 * otherwise be livelocked... 5324 */ 5325 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5326 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5327 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5328 if (err) 5329 return err; 5330 } 5331 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5332 err = dquot_quota_on(sb, type, format_id, path); 5333 if (err) 5334 lockdep_set_quota_inode(path->dentry->d_inode, 5335 I_DATA_SEM_NORMAL); 5336 return err; 5337 } 5338 5339 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5340 unsigned int flags) 5341 { 5342 int err; 5343 struct inode *qf_inode; 5344 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5345 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5346 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5347 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5348 }; 5349 5350 BUG_ON(!ext4_has_feature_quota(sb)); 5351 5352 if (!qf_inums[type]) 5353 return -EPERM; 5354 5355 qf_inode = ext4_iget(sb, qf_inums[type]); 5356 if (IS_ERR(qf_inode)) { 5357 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5358 return PTR_ERR(qf_inode); 5359 } 5360 5361 /* Don't account quota for quota files to avoid recursion */ 5362 qf_inode->i_flags |= S_NOQUOTA; 5363 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5364 err = dquot_enable(qf_inode, type, format_id, flags); 5365 iput(qf_inode); 5366 if (err) 5367 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5368 5369 return err; 5370 } 5371 5372 /* Enable usage tracking for all quota types. */ 5373 static int ext4_enable_quotas(struct super_block *sb) 5374 { 5375 int type, err = 0; 5376 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5377 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5378 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5379 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5380 }; 5381 bool quota_mopt[EXT4_MAXQUOTAS] = { 5382 test_opt(sb, USRQUOTA), 5383 test_opt(sb, GRPQUOTA), 5384 test_opt(sb, PRJQUOTA), 5385 }; 5386 5387 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5388 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5389 if (qf_inums[type]) { 5390 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5391 DQUOT_USAGE_ENABLED | 5392 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5393 if (err) { 5394 ext4_warning(sb, 5395 "Failed to enable quota tracking " 5396 "(type=%d, err=%d). Please run " 5397 "e2fsck to fix.", type, err); 5398 return err; 5399 } 5400 } 5401 } 5402 return 0; 5403 } 5404 5405 static int ext4_quota_off(struct super_block *sb, int type) 5406 { 5407 struct inode *inode = sb_dqopt(sb)->files[type]; 5408 handle_t *handle; 5409 5410 /* Force all delayed allocation blocks to be allocated. 5411 * Caller already holds s_umount sem */ 5412 if (test_opt(sb, DELALLOC)) 5413 sync_filesystem(sb); 5414 5415 if (!inode) 5416 goto out; 5417 5418 /* Update modification times of quota files when userspace can 5419 * start looking at them */ 5420 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5421 if (IS_ERR(handle)) 5422 goto out; 5423 inode->i_mtime = inode->i_ctime = current_time(inode); 5424 ext4_mark_inode_dirty(handle, inode); 5425 ext4_journal_stop(handle); 5426 5427 out: 5428 return dquot_quota_off(sb, type); 5429 } 5430 5431 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5432 * acquiring the locks... As quota files are never truncated and quota code 5433 * itself serializes the operations (and no one else should touch the files) 5434 * we don't have to be afraid of races */ 5435 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5436 size_t len, loff_t off) 5437 { 5438 struct inode *inode = sb_dqopt(sb)->files[type]; 5439 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5440 int offset = off & (sb->s_blocksize - 1); 5441 int tocopy; 5442 size_t toread; 5443 struct buffer_head *bh; 5444 loff_t i_size = i_size_read(inode); 5445 5446 if (off > i_size) 5447 return 0; 5448 if (off+len > i_size) 5449 len = i_size-off; 5450 toread = len; 5451 while (toread > 0) { 5452 tocopy = sb->s_blocksize - offset < toread ? 5453 sb->s_blocksize - offset : toread; 5454 bh = ext4_bread(NULL, inode, blk, 0); 5455 if (IS_ERR(bh)) 5456 return PTR_ERR(bh); 5457 if (!bh) /* A hole? */ 5458 memset(data, 0, tocopy); 5459 else 5460 memcpy(data, bh->b_data+offset, tocopy); 5461 brelse(bh); 5462 offset = 0; 5463 toread -= tocopy; 5464 data += tocopy; 5465 blk++; 5466 } 5467 return len; 5468 } 5469 5470 /* Write to quotafile (we know the transaction is already started and has 5471 * enough credits) */ 5472 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5473 const char *data, size_t len, loff_t off) 5474 { 5475 struct inode *inode = sb_dqopt(sb)->files[type]; 5476 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5477 int err, offset = off & (sb->s_blocksize - 1); 5478 int retries = 0; 5479 struct buffer_head *bh; 5480 handle_t *handle = journal_current_handle(); 5481 5482 if (EXT4_SB(sb)->s_journal && !handle) { 5483 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5484 " cancelled because transaction is not started", 5485 (unsigned long long)off, (unsigned long long)len); 5486 return -EIO; 5487 } 5488 /* 5489 * Since we account only one data block in transaction credits, 5490 * then it is impossible to cross a block boundary. 5491 */ 5492 if (sb->s_blocksize - offset < len) { 5493 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5494 " cancelled because not block aligned", 5495 (unsigned long long)off, (unsigned long long)len); 5496 return -EIO; 5497 } 5498 5499 do { 5500 bh = ext4_bread(handle, inode, blk, 5501 EXT4_GET_BLOCKS_CREATE | 5502 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5503 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5504 ext4_should_retry_alloc(inode->i_sb, &retries)); 5505 if (IS_ERR(bh)) 5506 return PTR_ERR(bh); 5507 if (!bh) 5508 goto out; 5509 BUFFER_TRACE(bh, "get write access"); 5510 err = ext4_journal_get_write_access(handle, bh); 5511 if (err) { 5512 brelse(bh); 5513 return err; 5514 } 5515 lock_buffer(bh); 5516 memcpy(bh->b_data+offset, data, len); 5517 flush_dcache_page(bh->b_page); 5518 unlock_buffer(bh); 5519 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5520 brelse(bh); 5521 out: 5522 if (inode->i_size < off + len) { 5523 i_size_write(inode, off + len); 5524 EXT4_I(inode)->i_disksize = inode->i_size; 5525 ext4_mark_inode_dirty(handle, inode); 5526 } 5527 return len; 5528 } 5529 5530 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5531 { 5532 const struct quota_format_ops *ops; 5533 5534 if (!sb_has_quota_loaded(sb, qid->type)) 5535 return -ESRCH; 5536 ops = sb_dqopt(sb)->ops[qid->type]; 5537 if (!ops || !ops->get_next_id) 5538 return -ENOSYS; 5539 return dquot_get_next_id(sb, qid); 5540 } 5541 #endif 5542 5543 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5544 const char *dev_name, void *data) 5545 { 5546 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5547 } 5548 5549 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5550 static inline void register_as_ext2(void) 5551 { 5552 int err = register_filesystem(&ext2_fs_type); 5553 if (err) 5554 printk(KERN_WARNING 5555 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5556 } 5557 5558 static inline void unregister_as_ext2(void) 5559 { 5560 unregister_filesystem(&ext2_fs_type); 5561 } 5562 5563 static inline int ext2_feature_set_ok(struct super_block *sb) 5564 { 5565 if (ext4_has_unknown_ext2_incompat_features(sb)) 5566 return 0; 5567 if (sb->s_flags & MS_RDONLY) 5568 return 1; 5569 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5570 return 0; 5571 return 1; 5572 } 5573 #else 5574 static inline void register_as_ext2(void) { } 5575 static inline void unregister_as_ext2(void) { } 5576 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5577 #endif 5578 5579 static inline void register_as_ext3(void) 5580 { 5581 int err = register_filesystem(&ext3_fs_type); 5582 if (err) 5583 printk(KERN_WARNING 5584 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5585 } 5586 5587 static inline void unregister_as_ext3(void) 5588 { 5589 unregister_filesystem(&ext3_fs_type); 5590 } 5591 5592 static inline int ext3_feature_set_ok(struct super_block *sb) 5593 { 5594 if (ext4_has_unknown_ext3_incompat_features(sb)) 5595 return 0; 5596 if (!ext4_has_feature_journal(sb)) 5597 return 0; 5598 if (sb->s_flags & MS_RDONLY) 5599 return 1; 5600 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5601 return 0; 5602 return 1; 5603 } 5604 5605 static struct file_system_type ext4_fs_type = { 5606 .owner = THIS_MODULE, 5607 .name = "ext4", 5608 .mount = ext4_mount, 5609 .kill_sb = kill_block_super, 5610 .fs_flags = FS_REQUIRES_DEV, 5611 }; 5612 MODULE_ALIAS_FS("ext4"); 5613 5614 /* Shared across all ext4 file systems */ 5615 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5616 5617 static int __init ext4_init_fs(void) 5618 { 5619 int i, err; 5620 5621 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5622 ext4_li_info = NULL; 5623 mutex_init(&ext4_li_mtx); 5624 5625 /* Build-time check for flags consistency */ 5626 ext4_check_flag_values(); 5627 5628 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5629 init_waitqueue_head(&ext4__ioend_wq[i]); 5630 5631 err = ext4_init_es(); 5632 if (err) 5633 return err; 5634 5635 err = ext4_init_pageio(); 5636 if (err) 5637 goto out5; 5638 5639 err = ext4_init_system_zone(); 5640 if (err) 5641 goto out4; 5642 5643 err = ext4_init_sysfs(); 5644 if (err) 5645 goto out3; 5646 5647 err = ext4_init_mballoc(); 5648 if (err) 5649 goto out2; 5650 err = init_inodecache(); 5651 if (err) 5652 goto out1; 5653 register_as_ext3(); 5654 register_as_ext2(); 5655 err = register_filesystem(&ext4_fs_type); 5656 if (err) 5657 goto out; 5658 5659 return 0; 5660 out: 5661 unregister_as_ext2(); 5662 unregister_as_ext3(); 5663 destroy_inodecache(); 5664 out1: 5665 ext4_exit_mballoc(); 5666 out2: 5667 ext4_exit_sysfs(); 5668 out3: 5669 ext4_exit_system_zone(); 5670 out4: 5671 ext4_exit_pageio(); 5672 out5: 5673 ext4_exit_es(); 5674 5675 return err; 5676 } 5677 5678 static void __exit ext4_exit_fs(void) 5679 { 5680 ext4_destroy_lazyinit_thread(); 5681 unregister_as_ext2(); 5682 unregister_as_ext3(); 5683 unregister_filesystem(&ext4_fs_type); 5684 destroy_inodecache(); 5685 ext4_exit_mballoc(); 5686 ext4_exit_sysfs(); 5687 ext4_exit_system_zone(); 5688 ext4_exit_pageio(); 5689 ext4_exit_es(); 5690 } 5691 5692 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5693 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5694 MODULE_LICENSE("GPL"); 5695 module_init(ext4_init_fs) 5696 module_exit(ext4_exit_fs) 5697