1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * page fault path: 93 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 94 * -> page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_lock 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 103 * page lock 104 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 105 * i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> mmap_lock 109 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 110 * 111 * writepages: 112 * transaction start -> page lock(s) -> i_data_sem (rw) 113 */ 114 115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 116 static struct file_system_type ext2_fs_type = { 117 .owner = THIS_MODULE, 118 .name = "ext2", 119 .mount = ext4_mount, 120 .kill_sb = kill_block_super, 121 .fs_flags = FS_REQUIRES_DEV, 122 }; 123 MODULE_ALIAS_FS("ext2"); 124 MODULE_ALIAS("ext2"); 125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 126 #else 127 #define IS_EXT2_SB(sb) (0) 128 #endif 129 130 131 static struct file_system_type ext3_fs_type = { 132 .owner = THIS_MODULE, 133 .name = "ext3", 134 .mount = ext4_mount, 135 .kill_sb = kill_block_super, 136 .fs_flags = FS_REQUIRES_DEV, 137 }; 138 MODULE_ALIAS_FS("ext3"); 139 MODULE_ALIAS("ext3"); 140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 141 142 143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 144 bh_end_io_t *end_io) 145 { 146 /* 147 * buffer's verified bit is no longer valid after reading from 148 * disk again due to write out error, clear it to make sure we 149 * recheck the buffer contents. 150 */ 151 clear_buffer_verified(bh); 152 153 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 154 get_bh(bh); 155 submit_bh(REQ_OP_READ, op_flags, bh); 156 } 157 158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 159 bh_end_io_t *end_io) 160 { 161 BUG_ON(!buffer_locked(bh)); 162 163 if (ext4_buffer_uptodate(bh)) { 164 unlock_buffer(bh); 165 return; 166 } 167 __ext4_read_bh(bh, op_flags, end_io); 168 } 169 170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 171 { 172 BUG_ON(!buffer_locked(bh)); 173 174 if (ext4_buffer_uptodate(bh)) { 175 unlock_buffer(bh); 176 return 0; 177 } 178 179 __ext4_read_bh(bh, op_flags, end_io); 180 181 wait_on_buffer(bh); 182 if (buffer_uptodate(bh)) 183 return 0; 184 return -EIO; 185 } 186 187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 188 { 189 if (trylock_buffer(bh)) { 190 if (wait) 191 return ext4_read_bh(bh, op_flags, NULL); 192 ext4_read_bh_nowait(bh, op_flags, NULL); 193 return 0; 194 } 195 if (wait) { 196 wait_on_buffer(bh); 197 if (buffer_uptodate(bh)) 198 return 0; 199 return -EIO; 200 } 201 return 0; 202 } 203 204 /* 205 * This works like __bread_gfp() except it uses ERR_PTR for error 206 * returns. Currently with sb_bread it's impossible to distinguish 207 * between ENOMEM and EIO situations (since both result in a NULL 208 * return. 209 */ 210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 211 sector_t block, int op_flags, 212 gfp_t gfp) 213 { 214 struct buffer_head *bh; 215 int ret; 216 217 bh = sb_getblk_gfp(sb, block, gfp); 218 if (bh == NULL) 219 return ERR_PTR(-ENOMEM); 220 if (ext4_buffer_uptodate(bh)) 221 return bh; 222 223 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 224 if (ret) { 225 put_bh(bh); 226 return ERR_PTR(ret); 227 } 228 return bh; 229 } 230 231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 232 int op_flags) 233 { 234 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 235 } 236 237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 238 sector_t block) 239 { 240 return __ext4_sb_bread_gfp(sb, block, 0, 0); 241 } 242 243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 244 { 245 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 246 247 if (likely(bh)) { 248 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 249 brelse(bh); 250 } 251 } 252 253 static int ext4_verify_csum_type(struct super_block *sb, 254 struct ext4_super_block *es) 255 { 256 if (!ext4_has_feature_metadata_csum(sb)) 257 return 1; 258 259 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 260 } 261 262 static __le32 ext4_superblock_csum(struct super_block *sb, 263 struct ext4_super_block *es) 264 { 265 struct ext4_sb_info *sbi = EXT4_SB(sb); 266 int offset = offsetof(struct ext4_super_block, s_checksum); 267 __u32 csum; 268 269 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 270 271 return cpu_to_le32(csum); 272 } 273 274 static int ext4_superblock_csum_verify(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum == ext4_superblock_csum(sb, es); 281 } 282 283 void ext4_superblock_csum_set(struct super_block *sb) 284 { 285 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 286 287 if (!ext4_has_metadata_csum(sb)) 288 return; 289 290 es->s_checksum = ext4_superblock_csum(sb, es); 291 } 292 293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 294 struct ext4_group_desc *bg) 295 { 296 return le32_to_cpu(bg->bg_block_bitmap_lo) | 297 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 298 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 299 } 300 301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 302 struct ext4_group_desc *bg) 303 { 304 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 305 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 306 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 307 } 308 309 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 310 struct ext4_group_desc *bg) 311 { 312 return le32_to_cpu(bg->bg_inode_table_lo) | 313 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 314 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 315 } 316 317 __u32 ext4_free_group_clusters(struct super_block *sb, 318 struct ext4_group_desc *bg) 319 { 320 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 321 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 322 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 323 } 324 325 __u32 ext4_free_inodes_count(struct super_block *sb, 326 struct ext4_group_desc *bg) 327 { 328 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 329 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 330 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 331 } 332 333 __u32 ext4_used_dirs_count(struct super_block *sb, 334 struct ext4_group_desc *bg) 335 { 336 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 337 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 338 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 339 } 340 341 __u32 ext4_itable_unused_count(struct super_block *sb, 342 struct ext4_group_desc *bg) 343 { 344 return le16_to_cpu(bg->bg_itable_unused_lo) | 345 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 346 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 347 } 348 349 void ext4_block_bitmap_set(struct super_block *sb, 350 struct ext4_group_desc *bg, ext4_fsblk_t blk) 351 { 352 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 353 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 354 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 355 } 356 357 void ext4_inode_bitmap_set(struct super_block *sb, 358 struct ext4_group_desc *bg, ext4_fsblk_t blk) 359 { 360 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 361 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 362 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 363 } 364 365 void ext4_inode_table_set(struct super_block *sb, 366 struct ext4_group_desc *bg, ext4_fsblk_t blk) 367 { 368 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 369 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 370 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 371 } 372 373 void ext4_free_group_clusters_set(struct super_block *sb, 374 struct ext4_group_desc *bg, __u32 count) 375 { 376 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 377 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 378 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 379 } 380 381 void ext4_free_inodes_set(struct super_block *sb, 382 struct ext4_group_desc *bg, __u32 count) 383 { 384 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 385 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 386 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 387 } 388 389 void ext4_used_dirs_set(struct super_block *sb, 390 struct ext4_group_desc *bg, __u32 count) 391 { 392 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 393 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 394 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 395 } 396 397 void ext4_itable_unused_set(struct super_block *sb, 398 struct ext4_group_desc *bg, __u32 count) 399 { 400 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 401 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 402 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 403 } 404 405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 406 { 407 now = clamp_val(now, 0, (1ull << 40) - 1); 408 409 *lo = cpu_to_le32(lower_32_bits(now)); 410 *hi = upper_32_bits(now); 411 } 412 413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 414 { 415 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 416 } 417 #define ext4_update_tstamp(es, tstamp) \ 418 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 419 ktime_get_real_seconds()) 420 #define ext4_get_tstamp(es, tstamp) \ 421 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 422 423 /* 424 * The del_gendisk() function uninitializes the disk-specific data 425 * structures, including the bdi structure, without telling anyone 426 * else. Once this happens, any attempt to call mark_buffer_dirty() 427 * (for example, by ext4_commit_super), will cause a kernel OOPS. 428 * This is a kludge to prevent these oops until we can put in a proper 429 * hook in del_gendisk() to inform the VFS and file system layers. 430 */ 431 static int block_device_ejected(struct super_block *sb) 432 { 433 struct inode *bd_inode = sb->s_bdev->bd_inode; 434 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 435 436 return bdi->dev == NULL; 437 } 438 439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 440 { 441 struct super_block *sb = journal->j_private; 442 struct ext4_sb_info *sbi = EXT4_SB(sb); 443 int error = is_journal_aborted(journal); 444 struct ext4_journal_cb_entry *jce; 445 446 BUG_ON(txn->t_state == T_FINISHED); 447 448 ext4_process_freed_data(sb, txn->t_tid); 449 450 spin_lock(&sbi->s_md_lock); 451 while (!list_empty(&txn->t_private_list)) { 452 jce = list_entry(txn->t_private_list.next, 453 struct ext4_journal_cb_entry, jce_list); 454 list_del_init(&jce->jce_list); 455 spin_unlock(&sbi->s_md_lock); 456 jce->jce_func(sb, jce, error); 457 spin_lock(&sbi->s_md_lock); 458 } 459 spin_unlock(&sbi->s_md_lock); 460 } 461 462 /* 463 * This writepage callback for write_cache_pages() 464 * takes care of a few cases after page cleaning. 465 * 466 * write_cache_pages() already checks for dirty pages 467 * and calls clear_page_dirty_for_io(), which we want, 468 * to write protect the pages. 469 * 470 * However, we may have to redirty a page (see below.) 471 */ 472 static int ext4_journalled_writepage_callback(struct page *page, 473 struct writeback_control *wbc, 474 void *data) 475 { 476 transaction_t *transaction = (transaction_t *) data; 477 struct buffer_head *bh, *head; 478 struct journal_head *jh; 479 480 bh = head = page_buffers(page); 481 do { 482 /* 483 * We have to redirty a page in these cases: 484 * 1) If buffer is dirty, it means the page was dirty because it 485 * contains a buffer that needs checkpointing. So the dirty bit 486 * needs to be preserved so that checkpointing writes the buffer 487 * properly. 488 * 2) If buffer is not part of the committing transaction 489 * (we may have just accidentally come across this buffer because 490 * inode range tracking is not exact) or if the currently running 491 * transaction already contains this buffer as well, dirty bit 492 * needs to be preserved so that the buffer gets writeprotected 493 * properly on running transaction's commit. 494 */ 495 jh = bh2jh(bh); 496 if (buffer_dirty(bh) || 497 (jh && (jh->b_transaction != transaction || 498 jh->b_next_transaction))) { 499 redirty_page_for_writepage(wbc, page); 500 goto out; 501 } 502 } while ((bh = bh->b_this_page) != head); 503 504 out: 505 return AOP_WRITEPAGE_ACTIVATE; 506 } 507 508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 509 { 510 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 511 struct writeback_control wbc = { 512 .sync_mode = WB_SYNC_ALL, 513 .nr_to_write = LONG_MAX, 514 .range_start = jinode->i_dirty_start, 515 .range_end = jinode->i_dirty_end, 516 }; 517 518 return write_cache_pages(mapping, &wbc, 519 ext4_journalled_writepage_callback, 520 jinode->i_transaction); 521 } 522 523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 524 { 525 int ret; 526 527 if (ext4_should_journal_data(jinode->i_vfs_inode)) 528 ret = ext4_journalled_submit_inode_data_buffers(jinode); 529 else 530 ret = jbd2_journal_submit_inode_data_buffers(jinode); 531 532 return ret; 533 } 534 535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 536 { 537 int ret = 0; 538 539 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 540 ret = jbd2_journal_finish_inode_data_buffers(jinode); 541 542 return ret; 543 } 544 545 static bool system_going_down(void) 546 { 547 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 548 || system_state == SYSTEM_RESTART; 549 } 550 551 struct ext4_err_translation { 552 int code; 553 int errno; 554 }; 555 556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 557 558 static struct ext4_err_translation err_translation[] = { 559 EXT4_ERR_TRANSLATE(EIO), 560 EXT4_ERR_TRANSLATE(ENOMEM), 561 EXT4_ERR_TRANSLATE(EFSBADCRC), 562 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 563 EXT4_ERR_TRANSLATE(ENOSPC), 564 EXT4_ERR_TRANSLATE(ENOKEY), 565 EXT4_ERR_TRANSLATE(EROFS), 566 EXT4_ERR_TRANSLATE(EFBIG), 567 EXT4_ERR_TRANSLATE(EEXIST), 568 EXT4_ERR_TRANSLATE(ERANGE), 569 EXT4_ERR_TRANSLATE(EOVERFLOW), 570 EXT4_ERR_TRANSLATE(EBUSY), 571 EXT4_ERR_TRANSLATE(ENOTDIR), 572 EXT4_ERR_TRANSLATE(ENOTEMPTY), 573 EXT4_ERR_TRANSLATE(ESHUTDOWN), 574 EXT4_ERR_TRANSLATE(EFAULT), 575 }; 576 577 static int ext4_errno_to_code(int errno) 578 { 579 int i; 580 581 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 582 if (err_translation[i].errno == errno) 583 return err_translation[i].code; 584 return EXT4_ERR_UNKNOWN; 585 } 586 587 static void save_error_info(struct super_block *sb, int error, 588 __u32 ino, __u64 block, 589 const char *func, unsigned int line) 590 { 591 struct ext4_sb_info *sbi = EXT4_SB(sb); 592 593 /* We default to EFSCORRUPTED error... */ 594 if (error == 0) 595 error = EFSCORRUPTED; 596 597 spin_lock(&sbi->s_error_lock); 598 sbi->s_add_error_count++; 599 sbi->s_last_error_code = error; 600 sbi->s_last_error_line = line; 601 sbi->s_last_error_ino = ino; 602 sbi->s_last_error_block = block; 603 sbi->s_last_error_func = func; 604 sbi->s_last_error_time = ktime_get_real_seconds(); 605 if (!sbi->s_first_error_time) { 606 sbi->s_first_error_code = error; 607 sbi->s_first_error_line = line; 608 sbi->s_first_error_ino = ino; 609 sbi->s_first_error_block = block; 610 sbi->s_first_error_func = func; 611 sbi->s_first_error_time = sbi->s_last_error_time; 612 } 613 spin_unlock(&sbi->s_error_lock); 614 } 615 616 /* Deal with the reporting of failure conditions on a filesystem such as 617 * inconsistencies detected or read IO failures. 618 * 619 * On ext2, we can store the error state of the filesystem in the 620 * superblock. That is not possible on ext4, because we may have other 621 * write ordering constraints on the superblock which prevent us from 622 * writing it out straight away; and given that the journal is about to 623 * be aborted, we can't rely on the current, or future, transactions to 624 * write out the superblock safely. 625 * 626 * We'll just use the jbd2_journal_abort() error code to record an error in 627 * the journal instead. On recovery, the journal will complain about 628 * that error until we've noted it down and cleared it. 629 * 630 * If force_ro is set, we unconditionally force the filesystem into an 631 * ABORT|READONLY state, unless the error response on the fs has been set to 632 * panic in which case we take the easy way out and panic immediately. This is 633 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 634 * at a critical moment in log management. 635 */ 636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 637 __u32 ino, __u64 block, 638 const char *func, unsigned int line) 639 { 640 journal_t *journal = EXT4_SB(sb)->s_journal; 641 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 642 643 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 644 if (test_opt(sb, WARN_ON_ERROR)) 645 WARN_ON_ONCE(1); 646 647 if (!continue_fs && !sb_rdonly(sb)) { 648 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 649 if (journal) 650 jbd2_journal_abort(journal, -EIO); 651 } 652 653 if (!bdev_read_only(sb->s_bdev)) { 654 save_error_info(sb, error, ino, block, func, line); 655 /* 656 * In case the fs should keep running, we need to writeout 657 * superblock through the journal. Due to lock ordering 658 * constraints, it may not be safe to do it right here so we 659 * defer superblock flushing to a workqueue. 660 */ 661 if (continue_fs && journal) 662 schedule_work(&EXT4_SB(sb)->s_error_work); 663 else 664 ext4_commit_super(sb); 665 } 666 667 /* 668 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 669 * could panic during 'reboot -f' as the underlying device got already 670 * disabled. 671 */ 672 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 673 panic("EXT4-fs (device %s): panic forced after error\n", 674 sb->s_id); 675 } 676 677 if (sb_rdonly(sb) || continue_fs) 678 return; 679 680 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 681 /* 682 * Make sure updated value of ->s_mount_flags will be visible before 683 * ->s_flags update 684 */ 685 smp_wmb(); 686 sb->s_flags |= SB_RDONLY; 687 } 688 689 static void flush_stashed_error_work(struct work_struct *work) 690 { 691 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 692 s_error_work); 693 journal_t *journal = sbi->s_journal; 694 handle_t *handle; 695 696 /* 697 * If the journal is still running, we have to write out superblock 698 * through the journal to avoid collisions of other journalled sb 699 * updates. 700 * 701 * We use directly jbd2 functions here to avoid recursing back into 702 * ext4 error handling code during handling of previous errors. 703 */ 704 if (!sb_rdonly(sbi->s_sb) && journal) { 705 struct buffer_head *sbh = sbi->s_sbh; 706 handle = jbd2_journal_start(journal, 1); 707 if (IS_ERR(handle)) 708 goto write_directly; 709 if (jbd2_journal_get_write_access(handle, sbh)) { 710 jbd2_journal_stop(handle); 711 goto write_directly; 712 } 713 ext4_update_super(sbi->s_sb); 714 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 715 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 716 "superblock detected"); 717 clear_buffer_write_io_error(sbh); 718 set_buffer_uptodate(sbh); 719 } 720 721 if (jbd2_journal_dirty_metadata(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 jbd2_journal_stop(handle); 726 ext4_notify_error_sysfs(sbi); 727 return; 728 } 729 write_directly: 730 /* 731 * Write through journal failed. Write sb directly to get error info 732 * out and hope for the best. 733 */ 734 ext4_commit_super(sbi->s_sb); 735 ext4_notify_error_sysfs(sbi); 736 } 737 738 #define ext4_error_ratelimit(sb) \ 739 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 740 "EXT4-fs error") 741 742 void __ext4_error(struct super_block *sb, const char *function, 743 unsigned int line, bool force_ro, int error, __u64 block, 744 const char *fmt, ...) 745 { 746 struct va_format vaf; 747 va_list args; 748 749 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 750 return; 751 752 trace_ext4_error(sb, function, line); 753 if (ext4_error_ratelimit(sb)) { 754 va_start(args, fmt); 755 vaf.fmt = fmt; 756 vaf.va = &args; 757 printk(KERN_CRIT 758 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 759 sb->s_id, function, line, current->comm, &vaf); 760 va_end(args); 761 } 762 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 763 } 764 765 void __ext4_error_inode(struct inode *inode, const char *function, 766 unsigned int line, ext4_fsblk_t block, int error, 767 const char *fmt, ...) 768 { 769 va_list args; 770 struct va_format vaf; 771 772 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 773 return; 774 775 trace_ext4_error(inode->i_sb, function, line); 776 if (ext4_error_ratelimit(inode->i_sb)) { 777 va_start(args, fmt); 778 vaf.fmt = fmt; 779 vaf.va = &args; 780 if (block) 781 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 782 "inode #%lu: block %llu: comm %s: %pV\n", 783 inode->i_sb->s_id, function, line, inode->i_ino, 784 block, current->comm, &vaf); 785 else 786 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 787 "inode #%lu: comm %s: %pV\n", 788 inode->i_sb->s_id, function, line, inode->i_ino, 789 current->comm, &vaf); 790 va_end(args); 791 } 792 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 793 function, line); 794 } 795 796 void __ext4_error_file(struct file *file, const char *function, 797 unsigned int line, ext4_fsblk_t block, 798 const char *fmt, ...) 799 { 800 va_list args; 801 struct va_format vaf; 802 struct inode *inode = file_inode(file); 803 char pathname[80], *path; 804 805 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 806 return; 807 808 trace_ext4_error(inode->i_sb, function, line); 809 if (ext4_error_ratelimit(inode->i_sb)) { 810 path = file_path(file, pathname, sizeof(pathname)); 811 if (IS_ERR(path)) 812 path = "(unknown)"; 813 va_start(args, fmt); 814 vaf.fmt = fmt; 815 vaf.va = &args; 816 if (block) 817 printk(KERN_CRIT 818 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 819 "block %llu: comm %s: path %s: %pV\n", 820 inode->i_sb->s_id, function, line, inode->i_ino, 821 block, current->comm, path, &vaf); 822 else 823 printk(KERN_CRIT 824 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 825 "comm %s: path %s: %pV\n", 826 inode->i_sb->s_id, function, line, inode->i_ino, 827 current->comm, path, &vaf); 828 va_end(args); 829 } 830 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 831 function, line); 832 } 833 834 const char *ext4_decode_error(struct super_block *sb, int errno, 835 char nbuf[16]) 836 { 837 char *errstr = NULL; 838 839 switch (errno) { 840 case -EFSCORRUPTED: 841 errstr = "Corrupt filesystem"; 842 break; 843 case -EFSBADCRC: 844 errstr = "Filesystem failed CRC"; 845 break; 846 case -EIO: 847 errstr = "IO failure"; 848 break; 849 case -ENOMEM: 850 errstr = "Out of memory"; 851 break; 852 case -EROFS: 853 if (!sb || (EXT4_SB(sb)->s_journal && 854 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 855 errstr = "Journal has aborted"; 856 else 857 errstr = "Readonly filesystem"; 858 break; 859 default: 860 /* If the caller passed in an extra buffer for unknown 861 * errors, textualise them now. Else we just return 862 * NULL. */ 863 if (nbuf) { 864 /* Check for truncated error codes... */ 865 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 866 errstr = nbuf; 867 } 868 break; 869 } 870 871 return errstr; 872 } 873 874 /* __ext4_std_error decodes expected errors from journaling functions 875 * automatically and invokes the appropriate error response. */ 876 877 void __ext4_std_error(struct super_block *sb, const char *function, 878 unsigned int line, int errno) 879 { 880 char nbuf[16]; 881 const char *errstr; 882 883 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 884 return; 885 886 /* Special case: if the error is EROFS, and we're not already 887 * inside a transaction, then there's really no point in logging 888 * an error. */ 889 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 890 return; 891 892 if (ext4_error_ratelimit(sb)) { 893 errstr = ext4_decode_error(sb, errno, nbuf); 894 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 895 sb->s_id, function, line, errstr); 896 } 897 898 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 899 } 900 901 void __ext4_msg(struct super_block *sb, 902 const char *prefix, const char *fmt, ...) 903 { 904 struct va_format vaf; 905 va_list args; 906 907 atomic_inc(&EXT4_SB(sb)->s_msg_count); 908 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 909 return; 910 911 va_start(args, fmt); 912 vaf.fmt = fmt; 913 vaf.va = &args; 914 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 915 va_end(args); 916 } 917 918 static int ext4_warning_ratelimit(struct super_block *sb) 919 { 920 atomic_inc(&EXT4_SB(sb)->s_warning_count); 921 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 922 "EXT4-fs warning"); 923 } 924 925 void __ext4_warning(struct super_block *sb, const char *function, 926 unsigned int line, const char *fmt, ...) 927 { 928 struct va_format vaf; 929 va_list args; 930 931 if (!ext4_warning_ratelimit(sb)) 932 return; 933 934 va_start(args, fmt); 935 vaf.fmt = fmt; 936 vaf.va = &args; 937 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 938 sb->s_id, function, line, &vaf); 939 va_end(args); 940 } 941 942 void __ext4_warning_inode(const struct inode *inode, const char *function, 943 unsigned int line, const char *fmt, ...) 944 { 945 struct va_format vaf; 946 va_list args; 947 948 if (!ext4_warning_ratelimit(inode->i_sb)) 949 return; 950 951 va_start(args, fmt); 952 vaf.fmt = fmt; 953 vaf.va = &args; 954 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 955 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 956 function, line, inode->i_ino, current->comm, &vaf); 957 va_end(args); 958 } 959 960 void __ext4_grp_locked_error(const char *function, unsigned int line, 961 struct super_block *sb, ext4_group_t grp, 962 unsigned long ino, ext4_fsblk_t block, 963 const char *fmt, ...) 964 __releases(bitlock) 965 __acquires(bitlock) 966 { 967 struct va_format vaf; 968 va_list args; 969 970 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 971 return; 972 973 trace_ext4_error(sb, function, line); 974 if (ext4_error_ratelimit(sb)) { 975 va_start(args, fmt); 976 vaf.fmt = fmt; 977 vaf.va = &args; 978 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 979 sb->s_id, function, line, grp); 980 if (ino) 981 printk(KERN_CONT "inode %lu: ", ino); 982 if (block) 983 printk(KERN_CONT "block %llu:", 984 (unsigned long long) block); 985 printk(KERN_CONT "%pV\n", &vaf); 986 va_end(args); 987 } 988 989 if (test_opt(sb, ERRORS_CONT)) { 990 if (test_opt(sb, WARN_ON_ERROR)) 991 WARN_ON_ONCE(1); 992 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 993 if (!bdev_read_only(sb->s_bdev)) { 994 save_error_info(sb, EFSCORRUPTED, ino, block, function, 995 line); 996 schedule_work(&EXT4_SB(sb)->s_error_work); 997 } 998 return; 999 } 1000 ext4_unlock_group(sb, grp); 1001 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1002 /* 1003 * We only get here in the ERRORS_RO case; relocking the group 1004 * may be dangerous, but nothing bad will happen since the 1005 * filesystem will have already been marked read/only and the 1006 * journal has been aborted. We return 1 as a hint to callers 1007 * who might what to use the return value from 1008 * ext4_grp_locked_error() to distinguish between the 1009 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1010 * aggressively from the ext4 function in question, with a 1011 * more appropriate error code. 1012 */ 1013 ext4_lock_group(sb, grp); 1014 return; 1015 } 1016 1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1018 ext4_group_t group, 1019 unsigned int flags) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(sb); 1022 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1023 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1024 int ret; 1025 1026 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1027 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1028 &grp->bb_state); 1029 if (!ret) 1030 percpu_counter_sub(&sbi->s_freeclusters_counter, 1031 grp->bb_free); 1032 } 1033 1034 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1035 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1036 &grp->bb_state); 1037 if (!ret && gdp) { 1038 int count; 1039 1040 count = ext4_free_inodes_count(sb, gdp); 1041 percpu_counter_sub(&sbi->s_freeinodes_counter, 1042 count); 1043 } 1044 } 1045 } 1046 1047 void ext4_update_dynamic_rev(struct super_block *sb) 1048 { 1049 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1050 1051 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1052 return; 1053 1054 ext4_warning(sb, 1055 "updating to rev %d because of new feature flag, " 1056 "running e2fsck is recommended", 1057 EXT4_DYNAMIC_REV); 1058 1059 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1060 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1061 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1062 /* leave es->s_feature_*compat flags alone */ 1063 /* es->s_uuid will be set by e2fsck if empty */ 1064 1065 /* 1066 * The rest of the superblock fields should be zero, and if not it 1067 * means they are likely already in use, so leave them alone. We 1068 * can leave it up to e2fsck to clean up any inconsistencies there. 1069 */ 1070 } 1071 1072 /* 1073 * Open the external journal device 1074 */ 1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1076 { 1077 struct block_device *bdev; 1078 1079 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1080 if (IS_ERR(bdev)) 1081 goto fail; 1082 return bdev; 1083 1084 fail: 1085 ext4_msg(sb, KERN_ERR, 1086 "failed to open journal device unknown-block(%u,%u) %ld", 1087 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1088 return NULL; 1089 } 1090 1091 /* 1092 * Release the journal device 1093 */ 1094 static void ext4_blkdev_put(struct block_device *bdev) 1095 { 1096 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1097 } 1098 1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1100 { 1101 struct block_device *bdev; 1102 bdev = sbi->s_journal_bdev; 1103 if (bdev) { 1104 ext4_blkdev_put(bdev); 1105 sbi->s_journal_bdev = NULL; 1106 } 1107 } 1108 1109 static inline struct inode *orphan_list_entry(struct list_head *l) 1110 { 1111 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1112 } 1113 1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1115 { 1116 struct list_head *l; 1117 1118 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1119 le32_to_cpu(sbi->s_es->s_last_orphan)); 1120 1121 printk(KERN_ERR "sb_info orphan list:\n"); 1122 list_for_each(l, &sbi->s_orphan) { 1123 struct inode *inode = orphan_list_entry(l); 1124 printk(KERN_ERR " " 1125 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1126 inode->i_sb->s_id, inode->i_ino, inode, 1127 inode->i_mode, inode->i_nlink, 1128 NEXT_ORPHAN(inode)); 1129 } 1130 } 1131 1132 #ifdef CONFIG_QUOTA 1133 static int ext4_quota_off(struct super_block *sb, int type); 1134 1135 static inline void ext4_quota_off_umount(struct super_block *sb) 1136 { 1137 int type; 1138 1139 /* Use our quota_off function to clear inode flags etc. */ 1140 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1141 ext4_quota_off(sb, type); 1142 } 1143 1144 /* 1145 * This is a helper function which is used in the mount/remount 1146 * codepaths (which holds s_umount) to fetch the quota file name. 1147 */ 1148 static inline char *get_qf_name(struct super_block *sb, 1149 struct ext4_sb_info *sbi, 1150 int type) 1151 { 1152 return rcu_dereference_protected(sbi->s_qf_names[type], 1153 lockdep_is_held(&sb->s_umount)); 1154 } 1155 #else 1156 static inline void ext4_quota_off_umount(struct super_block *sb) 1157 { 1158 } 1159 #endif 1160 1161 static void ext4_put_super(struct super_block *sb) 1162 { 1163 struct ext4_sb_info *sbi = EXT4_SB(sb); 1164 struct ext4_super_block *es = sbi->s_es; 1165 struct buffer_head **group_desc; 1166 struct flex_groups **flex_groups; 1167 int aborted = 0; 1168 int i, err; 1169 1170 ext4_unregister_li_request(sb); 1171 ext4_quota_off_umount(sb); 1172 1173 flush_work(&sbi->s_error_work); 1174 destroy_workqueue(sbi->rsv_conversion_wq); 1175 ext4_release_orphan_info(sb); 1176 1177 /* 1178 * Unregister sysfs before destroying jbd2 journal. 1179 * Since we could still access attr_journal_task attribute via sysfs 1180 * path which could have sbi->s_journal->j_task as NULL 1181 */ 1182 ext4_unregister_sysfs(sb); 1183 1184 if (sbi->s_journal) { 1185 aborted = is_journal_aborted(sbi->s_journal); 1186 err = jbd2_journal_destroy(sbi->s_journal); 1187 sbi->s_journal = NULL; 1188 if ((err < 0) && !aborted) { 1189 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1190 } 1191 } 1192 1193 ext4_es_unregister_shrinker(sbi); 1194 del_timer_sync(&sbi->s_err_report); 1195 ext4_release_system_zone(sb); 1196 ext4_mb_release(sb); 1197 ext4_ext_release(sb); 1198 1199 if (!sb_rdonly(sb) && !aborted) { 1200 ext4_clear_feature_journal_needs_recovery(sb); 1201 ext4_clear_feature_orphan_present(sb); 1202 es->s_state = cpu_to_le16(sbi->s_mount_state); 1203 } 1204 if (!sb_rdonly(sb)) 1205 ext4_commit_super(sb); 1206 1207 rcu_read_lock(); 1208 group_desc = rcu_dereference(sbi->s_group_desc); 1209 for (i = 0; i < sbi->s_gdb_count; i++) 1210 brelse(group_desc[i]); 1211 kvfree(group_desc); 1212 flex_groups = rcu_dereference(sbi->s_flex_groups); 1213 if (flex_groups) { 1214 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1215 kvfree(flex_groups[i]); 1216 kvfree(flex_groups); 1217 } 1218 rcu_read_unlock(); 1219 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1220 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1221 percpu_counter_destroy(&sbi->s_dirs_counter); 1222 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1223 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1224 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1225 #ifdef CONFIG_QUOTA 1226 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1227 kfree(get_qf_name(sb, sbi, i)); 1228 #endif 1229 1230 /* Debugging code just in case the in-memory inode orphan list 1231 * isn't empty. The on-disk one can be non-empty if we've 1232 * detected an error and taken the fs readonly, but the 1233 * in-memory list had better be clean by this point. */ 1234 if (!list_empty(&sbi->s_orphan)) 1235 dump_orphan_list(sb, sbi); 1236 ASSERT(list_empty(&sbi->s_orphan)); 1237 1238 sync_blockdev(sb->s_bdev); 1239 invalidate_bdev(sb->s_bdev); 1240 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1241 /* 1242 * Invalidate the journal device's buffers. We don't want them 1243 * floating about in memory - the physical journal device may 1244 * hotswapped, and it breaks the `ro-after' testing code. 1245 */ 1246 sync_blockdev(sbi->s_journal_bdev); 1247 invalidate_bdev(sbi->s_journal_bdev); 1248 ext4_blkdev_remove(sbi); 1249 } 1250 1251 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1252 sbi->s_ea_inode_cache = NULL; 1253 1254 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1255 sbi->s_ea_block_cache = NULL; 1256 1257 ext4_stop_mmpd(sbi); 1258 1259 brelse(sbi->s_sbh); 1260 sb->s_fs_info = NULL; 1261 /* 1262 * Now that we are completely done shutting down the 1263 * superblock, we need to actually destroy the kobject. 1264 */ 1265 kobject_put(&sbi->s_kobj); 1266 wait_for_completion(&sbi->s_kobj_unregister); 1267 if (sbi->s_chksum_driver) 1268 crypto_free_shash(sbi->s_chksum_driver); 1269 kfree(sbi->s_blockgroup_lock); 1270 fs_put_dax(sbi->s_daxdev); 1271 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1272 #ifdef CONFIG_UNICODE 1273 utf8_unload(sb->s_encoding); 1274 #endif 1275 kfree(sbi); 1276 } 1277 1278 static struct kmem_cache *ext4_inode_cachep; 1279 1280 /* 1281 * Called inside transaction, so use GFP_NOFS 1282 */ 1283 static struct inode *ext4_alloc_inode(struct super_block *sb) 1284 { 1285 struct ext4_inode_info *ei; 1286 1287 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1288 if (!ei) 1289 return NULL; 1290 1291 inode_set_iversion(&ei->vfs_inode, 1); 1292 spin_lock_init(&ei->i_raw_lock); 1293 INIT_LIST_HEAD(&ei->i_prealloc_list); 1294 atomic_set(&ei->i_prealloc_active, 0); 1295 spin_lock_init(&ei->i_prealloc_lock); 1296 ext4_es_init_tree(&ei->i_es_tree); 1297 rwlock_init(&ei->i_es_lock); 1298 INIT_LIST_HEAD(&ei->i_es_list); 1299 ei->i_es_all_nr = 0; 1300 ei->i_es_shk_nr = 0; 1301 ei->i_es_shrink_lblk = 0; 1302 ei->i_reserved_data_blocks = 0; 1303 spin_lock_init(&(ei->i_block_reservation_lock)); 1304 ext4_init_pending_tree(&ei->i_pending_tree); 1305 #ifdef CONFIG_QUOTA 1306 ei->i_reserved_quota = 0; 1307 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1308 #endif 1309 ei->jinode = NULL; 1310 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1311 spin_lock_init(&ei->i_completed_io_lock); 1312 ei->i_sync_tid = 0; 1313 ei->i_datasync_tid = 0; 1314 atomic_set(&ei->i_unwritten, 0); 1315 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1316 ext4_fc_init_inode(&ei->vfs_inode); 1317 mutex_init(&ei->i_fc_lock); 1318 return &ei->vfs_inode; 1319 } 1320 1321 static int ext4_drop_inode(struct inode *inode) 1322 { 1323 int drop = generic_drop_inode(inode); 1324 1325 if (!drop) 1326 drop = fscrypt_drop_inode(inode); 1327 1328 trace_ext4_drop_inode(inode, drop); 1329 return drop; 1330 } 1331 1332 static void ext4_free_in_core_inode(struct inode *inode) 1333 { 1334 fscrypt_free_inode(inode); 1335 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1336 pr_warn("%s: inode %ld still in fc list", 1337 __func__, inode->i_ino); 1338 } 1339 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1340 } 1341 1342 static void ext4_destroy_inode(struct inode *inode) 1343 { 1344 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1345 ext4_msg(inode->i_sb, KERN_ERR, 1346 "Inode %lu (%p): orphan list check failed!", 1347 inode->i_ino, EXT4_I(inode)); 1348 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1349 EXT4_I(inode), sizeof(struct ext4_inode_info), 1350 true); 1351 dump_stack(); 1352 } 1353 1354 if (EXT4_I(inode)->i_reserved_data_blocks) 1355 ext4_msg(inode->i_sb, KERN_ERR, 1356 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1357 inode->i_ino, EXT4_I(inode), 1358 EXT4_I(inode)->i_reserved_data_blocks); 1359 } 1360 1361 static void init_once(void *foo) 1362 { 1363 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1364 1365 INIT_LIST_HEAD(&ei->i_orphan); 1366 init_rwsem(&ei->xattr_sem); 1367 init_rwsem(&ei->i_data_sem); 1368 inode_init_once(&ei->vfs_inode); 1369 ext4_fc_init_inode(&ei->vfs_inode); 1370 } 1371 1372 static int __init init_inodecache(void) 1373 { 1374 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1375 sizeof(struct ext4_inode_info), 0, 1376 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1377 SLAB_ACCOUNT), 1378 offsetof(struct ext4_inode_info, i_data), 1379 sizeof_field(struct ext4_inode_info, i_data), 1380 init_once); 1381 if (ext4_inode_cachep == NULL) 1382 return -ENOMEM; 1383 return 0; 1384 } 1385 1386 static void destroy_inodecache(void) 1387 { 1388 /* 1389 * Make sure all delayed rcu free inodes are flushed before we 1390 * destroy cache. 1391 */ 1392 rcu_barrier(); 1393 kmem_cache_destroy(ext4_inode_cachep); 1394 } 1395 1396 void ext4_clear_inode(struct inode *inode) 1397 { 1398 ext4_fc_del(inode); 1399 invalidate_inode_buffers(inode); 1400 clear_inode(inode); 1401 ext4_discard_preallocations(inode, 0); 1402 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1403 dquot_drop(inode); 1404 if (EXT4_I(inode)->jinode) { 1405 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1406 EXT4_I(inode)->jinode); 1407 jbd2_free_inode(EXT4_I(inode)->jinode); 1408 EXT4_I(inode)->jinode = NULL; 1409 } 1410 fscrypt_put_encryption_info(inode); 1411 fsverity_cleanup_inode(inode); 1412 } 1413 1414 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1415 u64 ino, u32 generation) 1416 { 1417 struct inode *inode; 1418 1419 /* 1420 * Currently we don't know the generation for parent directory, so 1421 * a generation of 0 means "accept any" 1422 */ 1423 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1424 if (IS_ERR(inode)) 1425 return ERR_CAST(inode); 1426 if (generation && inode->i_generation != generation) { 1427 iput(inode); 1428 return ERR_PTR(-ESTALE); 1429 } 1430 1431 return inode; 1432 } 1433 1434 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1435 int fh_len, int fh_type) 1436 { 1437 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1438 ext4_nfs_get_inode); 1439 } 1440 1441 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1442 int fh_len, int fh_type) 1443 { 1444 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1445 ext4_nfs_get_inode); 1446 } 1447 1448 static int ext4_nfs_commit_metadata(struct inode *inode) 1449 { 1450 struct writeback_control wbc = { 1451 .sync_mode = WB_SYNC_ALL 1452 }; 1453 1454 trace_ext4_nfs_commit_metadata(inode); 1455 return ext4_write_inode(inode, &wbc); 1456 } 1457 1458 #ifdef CONFIG_FS_ENCRYPTION 1459 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1460 { 1461 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1462 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1463 } 1464 1465 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1466 void *fs_data) 1467 { 1468 handle_t *handle = fs_data; 1469 int res, res2, credits, retries = 0; 1470 1471 /* 1472 * Encrypting the root directory is not allowed because e2fsck expects 1473 * lost+found to exist and be unencrypted, and encrypting the root 1474 * directory would imply encrypting the lost+found directory as well as 1475 * the filename "lost+found" itself. 1476 */ 1477 if (inode->i_ino == EXT4_ROOT_INO) 1478 return -EPERM; 1479 1480 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1481 return -EINVAL; 1482 1483 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1484 return -EOPNOTSUPP; 1485 1486 res = ext4_convert_inline_data(inode); 1487 if (res) 1488 return res; 1489 1490 /* 1491 * If a journal handle was specified, then the encryption context is 1492 * being set on a new inode via inheritance and is part of a larger 1493 * transaction to create the inode. Otherwise the encryption context is 1494 * being set on an existing inode in its own transaction. Only in the 1495 * latter case should the "retry on ENOSPC" logic be used. 1496 */ 1497 1498 if (handle) { 1499 res = ext4_xattr_set_handle(handle, inode, 1500 EXT4_XATTR_INDEX_ENCRYPTION, 1501 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1502 ctx, len, 0); 1503 if (!res) { 1504 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1505 ext4_clear_inode_state(inode, 1506 EXT4_STATE_MAY_INLINE_DATA); 1507 /* 1508 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1509 * S_DAX may be disabled 1510 */ 1511 ext4_set_inode_flags(inode, false); 1512 } 1513 return res; 1514 } 1515 1516 res = dquot_initialize(inode); 1517 if (res) 1518 return res; 1519 retry: 1520 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1521 &credits); 1522 if (res) 1523 return res; 1524 1525 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1526 if (IS_ERR(handle)) 1527 return PTR_ERR(handle); 1528 1529 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1530 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1531 ctx, len, 0); 1532 if (!res) { 1533 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1534 /* 1535 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1536 * S_DAX may be disabled 1537 */ 1538 ext4_set_inode_flags(inode, false); 1539 res = ext4_mark_inode_dirty(handle, inode); 1540 if (res) 1541 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1542 } 1543 res2 = ext4_journal_stop(handle); 1544 1545 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1546 goto retry; 1547 if (!res) 1548 res = res2; 1549 return res; 1550 } 1551 1552 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1553 { 1554 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1555 } 1556 1557 static bool ext4_has_stable_inodes(struct super_block *sb) 1558 { 1559 return ext4_has_feature_stable_inodes(sb); 1560 } 1561 1562 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1563 int *ino_bits_ret, int *lblk_bits_ret) 1564 { 1565 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1566 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1567 } 1568 1569 static const struct fscrypt_operations ext4_cryptops = { 1570 .key_prefix = "ext4:", 1571 .get_context = ext4_get_context, 1572 .set_context = ext4_set_context, 1573 .get_dummy_policy = ext4_get_dummy_policy, 1574 .empty_dir = ext4_empty_dir, 1575 .has_stable_inodes = ext4_has_stable_inodes, 1576 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1577 }; 1578 #endif 1579 1580 #ifdef CONFIG_QUOTA 1581 static const char * const quotatypes[] = INITQFNAMES; 1582 #define QTYPE2NAME(t) (quotatypes[t]) 1583 1584 static int ext4_write_dquot(struct dquot *dquot); 1585 static int ext4_acquire_dquot(struct dquot *dquot); 1586 static int ext4_release_dquot(struct dquot *dquot); 1587 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1588 static int ext4_write_info(struct super_block *sb, int type); 1589 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1590 const struct path *path); 1591 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1592 size_t len, loff_t off); 1593 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1594 const char *data, size_t len, loff_t off); 1595 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1596 unsigned int flags); 1597 1598 static struct dquot **ext4_get_dquots(struct inode *inode) 1599 { 1600 return EXT4_I(inode)->i_dquot; 1601 } 1602 1603 static const struct dquot_operations ext4_quota_operations = { 1604 .get_reserved_space = ext4_get_reserved_space, 1605 .write_dquot = ext4_write_dquot, 1606 .acquire_dquot = ext4_acquire_dquot, 1607 .release_dquot = ext4_release_dquot, 1608 .mark_dirty = ext4_mark_dquot_dirty, 1609 .write_info = ext4_write_info, 1610 .alloc_dquot = dquot_alloc, 1611 .destroy_dquot = dquot_destroy, 1612 .get_projid = ext4_get_projid, 1613 .get_inode_usage = ext4_get_inode_usage, 1614 .get_next_id = dquot_get_next_id, 1615 }; 1616 1617 static const struct quotactl_ops ext4_qctl_operations = { 1618 .quota_on = ext4_quota_on, 1619 .quota_off = ext4_quota_off, 1620 .quota_sync = dquot_quota_sync, 1621 .get_state = dquot_get_state, 1622 .set_info = dquot_set_dqinfo, 1623 .get_dqblk = dquot_get_dqblk, 1624 .set_dqblk = dquot_set_dqblk, 1625 .get_nextdqblk = dquot_get_next_dqblk, 1626 }; 1627 #endif 1628 1629 static const struct super_operations ext4_sops = { 1630 .alloc_inode = ext4_alloc_inode, 1631 .free_inode = ext4_free_in_core_inode, 1632 .destroy_inode = ext4_destroy_inode, 1633 .write_inode = ext4_write_inode, 1634 .dirty_inode = ext4_dirty_inode, 1635 .drop_inode = ext4_drop_inode, 1636 .evict_inode = ext4_evict_inode, 1637 .put_super = ext4_put_super, 1638 .sync_fs = ext4_sync_fs, 1639 .freeze_fs = ext4_freeze, 1640 .unfreeze_fs = ext4_unfreeze, 1641 .statfs = ext4_statfs, 1642 .remount_fs = ext4_remount, 1643 .show_options = ext4_show_options, 1644 #ifdef CONFIG_QUOTA 1645 .quota_read = ext4_quota_read, 1646 .quota_write = ext4_quota_write, 1647 .get_dquots = ext4_get_dquots, 1648 #endif 1649 }; 1650 1651 static const struct export_operations ext4_export_ops = { 1652 .fh_to_dentry = ext4_fh_to_dentry, 1653 .fh_to_parent = ext4_fh_to_parent, 1654 .get_parent = ext4_get_parent, 1655 .commit_metadata = ext4_nfs_commit_metadata, 1656 }; 1657 1658 enum { 1659 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1660 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1661 Opt_nouid32, Opt_debug, Opt_removed, 1662 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1663 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1664 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1665 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1666 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1667 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1668 Opt_inlinecrypt, 1669 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1670 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1671 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1672 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1673 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1674 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1675 Opt_nowarn_on_error, Opt_mblk_io_submit, 1676 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1677 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1678 Opt_inode_readahead_blks, Opt_journal_ioprio, 1679 Opt_dioread_nolock, Opt_dioread_lock, 1680 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1681 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1682 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1683 #ifdef CONFIG_EXT4_DEBUG 1684 Opt_fc_debug_max_replay, Opt_fc_debug_force 1685 #endif 1686 }; 1687 1688 static const match_table_t tokens = { 1689 {Opt_bsd_df, "bsddf"}, 1690 {Opt_minix_df, "minixdf"}, 1691 {Opt_grpid, "grpid"}, 1692 {Opt_grpid, "bsdgroups"}, 1693 {Opt_nogrpid, "nogrpid"}, 1694 {Opt_nogrpid, "sysvgroups"}, 1695 {Opt_resgid, "resgid=%u"}, 1696 {Opt_resuid, "resuid=%u"}, 1697 {Opt_sb, "sb=%u"}, 1698 {Opt_err_cont, "errors=continue"}, 1699 {Opt_err_panic, "errors=panic"}, 1700 {Opt_err_ro, "errors=remount-ro"}, 1701 {Opt_nouid32, "nouid32"}, 1702 {Opt_debug, "debug"}, 1703 {Opt_removed, "oldalloc"}, 1704 {Opt_removed, "orlov"}, 1705 {Opt_user_xattr, "user_xattr"}, 1706 {Opt_nouser_xattr, "nouser_xattr"}, 1707 {Opt_acl, "acl"}, 1708 {Opt_noacl, "noacl"}, 1709 {Opt_noload, "norecovery"}, 1710 {Opt_noload, "noload"}, 1711 {Opt_removed, "nobh"}, 1712 {Opt_removed, "bh"}, 1713 {Opt_commit, "commit=%u"}, 1714 {Opt_min_batch_time, "min_batch_time=%u"}, 1715 {Opt_max_batch_time, "max_batch_time=%u"}, 1716 {Opt_journal_dev, "journal_dev=%u"}, 1717 {Opt_journal_path, "journal_path=%s"}, 1718 {Opt_journal_checksum, "journal_checksum"}, 1719 {Opt_nojournal_checksum, "nojournal_checksum"}, 1720 {Opt_journal_async_commit, "journal_async_commit"}, 1721 {Opt_abort, "abort"}, 1722 {Opt_data_journal, "data=journal"}, 1723 {Opt_data_ordered, "data=ordered"}, 1724 {Opt_data_writeback, "data=writeback"}, 1725 {Opt_data_err_abort, "data_err=abort"}, 1726 {Opt_data_err_ignore, "data_err=ignore"}, 1727 {Opt_offusrjquota, "usrjquota="}, 1728 {Opt_usrjquota, "usrjquota=%s"}, 1729 {Opt_offgrpjquota, "grpjquota="}, 1730 {Opt_grpjquota, "grpjquota=%s"}, 1731 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1732 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1733 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1734 {Opt_grpquota, "grpquota"}, 1735 {Opt_noquota, "noquota"}, 1736 {Opt_quota, "quota"}, 1737 {Opt_usrquota, "usrquota"}, 1738 {Opt_prjquota, "prjquota"}, 1739 {Opt_barrier, "barrier=%u"}, 1740 {Opt_barrier, "barrier"}, 1741 {Opt_nobarrier, "nobarrier"}, 1742 {Opt_i_version, "i_version"}, 1743 {Opt_dax, "dax"}, 1744 {Opt_dax_always, "dax=always"}, 1745 {Opt_dax_inode, "dax=inode"}, 1746 {Opt_dax_never, "dax=never"}, 1747 {Opt_stripe, "stripe=%u"}, 1748 {Opt_delalloc, "delalloc"}, 1749 {Opt_warn_on_error, "warn_on_error"}, 1750 {Opt_nowarn_on_error, "nowarn_on_error"}, 1751 {Opt_lazytime, "lazytime"}, 1752 {Opt_nolazytime, "nolazytime"}, 1753 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1754 {Opt_nodelalloc, "nodelalloc"}, 1755 {Opt_removed, "mblk_io_submit"}, 1756 {Opt_removed, "nomblk_io_submit"}, 1757 {Opt_block_validity, "block_validity"}, 1758 {Opt_noblock_validity, "noblock_validity"}, 1759 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1760 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1761 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1762 {Opt_auto_da_alloc, "auto_da_alloc"}, 1763 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1764 {Opt_dioread_nolock, "dioread_nolock"}, 1765 {Opt_dioread_lock, "nodioread_nolock"}, 1766 {Opt_dioread_lock, "dioread_lock"}, 1767 {Opt_discard, "discard"}, 1768 {Opt_nodiscard, "nodiscard"}, 1769 {Opt_init_itable, "init_itable=%u"}, 1770 {Opt_init_itable, "init_itable"}, 1771 {Opt_noinit_itable, "noinit_itable"}, 1772 #ifdef CONFIG_EXT4_DEBUG 1773 {Opt_fc_debug_force, "fc_debug_force"}, 1774 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1775 #endif 1776 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1777 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1778 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1779 {Opt_inlinecrypt, "inlinecrypt"}, 1780 {Opt_nombcache, "nombcache"}, 1781 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1782 {Opt_removed, "prefetch_block_bitmaps"}, 1783 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1784 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1785 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1786 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1787 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1788 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1789 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1790 {Opt_err, NULL}, 1791 }; 1792 1793 static ext4_fsblk_t get_sb_block(void **data) 1794 { 1795 ext4_fsblk_t sb_block; 1796 char *options = (char *) *data; 1797 1798 if (!options || strncmp(options, "sb=", 3) != 0) 1799 return 1; /* Default location */ 1800 1801 options += 3; 1802 /* TODO: use simple_strtoll with >32bit ext4 */ 1803 sb_block = simple_strtoul(options, &options, 0); 1804 if (*options && *options != ',') { 1805 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1806 (char *) *data); 1807 return 1; 1808 } 1809 if (*options == ',') 1810 options++; 1811 *data = (void *) options; 1812 1813 return sb_block; 1814 } 1815 1816 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1817 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1818 1819 static const char deprecated_msg[] = 1820 "Mount option \"%s\" will be removed by %s\n" 1821 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1822 1823 #ifdef CONFIG_QUOTA 1824 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1825 { 1826 struct ext4_sb_info *sbi = EXT4_SB(sb); 1827 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1828 int ret = -1; 1829 1830 if (sb_any_quota_loaded(sb) && !old_qname) { 1831 ext4_msg(sb, KERN_ERR, 1832 "Cannot change journaled " 1833 "quota options when quota turned on"); 1834 return -1; 1835 } 1836 if (ext4_has_feature_quota(sb)) { 1837 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1838 "ignored when QUOTA feature is enabled"); 1839 return 1; 1840 } 1841 qname = match_strdup(args); 1842 if (!qname) { 1843 ext4_msg(sb, KERN_ERR, 1844 "Not enough memory for storing quotafile name"); 1845 return -1; 1846 } 1847 if (old_qname) { 1848 if (strcmp(old_qname, qname) == 0) 1849 ret = 1; 1850 else 1851 ext4_msg(sb, KERN_ERR, 1852 "%s quota file already specified", 1853 QTYPE2NAME(qtype)); 1854 goto errout; 1855 } 1856 if (strchr(qname, '/')) { 1857 ext4_msg(sb, KERN_ERR, 1858 "quotafile must be on filesystem root"); 1859 goto errout; 1860 } 1861 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1862 set_opt(sb, QUOTA); 1863 return 1; 1864 errout: 1865 kfree(qname); 1866 return ret; 1867 } 1868 1869 static int clear_qf_name(struct super_block *sb, int qtype) 1870 { 1871 1872 struct ext4_sb_info *sbi = EXT4_SB(sb); 1873 char *old_qname = get_qf_name(sb, sbi, qtype); 1874 1875 if (sb_any_quota_loaded(sb) && old_qname) { 1876 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1877 " when quota turned on"); 1878 return -1; 1879 } 1880 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1881 synchronize_rcu(); 1882 kfree(old_qname); 1883 return 1; 1884 } 1885 #endif 1886 1887 #define MOPT_SET 0x0001 1888 #define MOPT_CLEAR 0x0002 1889 #define MOPT_NOSUPPORT 0x0004 1890 #define MOPT_EXPLICIT 0x0008 1891 #define MOPT_CLEAR_ERR 0x0010 1892 #define MOPT_GTE0 0x0020 1893 #ifdef CONFIG_QUOTA 1894 #define MOPT_Q 0 1895 #define MOPT_QFMT 0x0040 1896 #else 1897 #define MOPT_Q MOPT_NOSUPPORT 1898 #define MOPT_QFMT MOPT_NOSUPPORT 1899 #endif 1900 #define MOPT_DATAJ 0x0080 1901 #define MOPT_NO_EXT2 0x0100 1902 #define MOPT_NO_EXT3 0x0200 1903 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1904 #define MOPT_STRING 0x0400 1905 #define MOPT_SKIP 0x0800 1906 #define MOPT_2 0x1000 1907 1908 static const struct mount_opts { 1909 int token; 1910 int mount_opt; 1911 int flags; 1912 } ext4_mount_opts[] = { 1913 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1914 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1915 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1916 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1917 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1918 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1919 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1920 MOPT_EXT4_ONLY | MOPT_SET}, 1921 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1922 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1923 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1924 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1925 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1926 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1927 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1928 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1929 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1930 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1931 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1932 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1933 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1934 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1935 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1936 EXT4_MOUNT_JOURNAL_CHECKSUM), 1937 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1938 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1939 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1940 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1941 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1942 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1943 MOPT_NO_EXT2}, 1944 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1945 MOPT_NO_EXT2}, 1946 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1947 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1948 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1949 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1950 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1951 {Opt_commit, 0, MOPT_GTE0}, 1952 {Opt_max_batch_time, 0, MOPT_GTE0}, 1953 {Opt_min_batch_time, 0, MOPT_GTE0}, 1954 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1955 {Opt_init_itable, 0, MOPT_GTE0}, 1956 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1957 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1958 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1959 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1960 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1961 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1962 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1963 {Opt_stripe, 0, MOPT_GTE0}, 1964 {Opt_resuid, 0, MOPT_GTE0}, 1965 {Opt_resgid, 0, MOPT_GTE0}, 1966 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1967 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1968 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1969 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1970 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1971 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1972 MOPT_NO_EXT2 | MOPT_DATAJ}, 1973 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1974 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1975 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1976 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1977 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1978 #else 1979 {Opt_acl, 0, MOPT_NOSUPPORT}, 1980 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1981 #endif 1982 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1983 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1984 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1985 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1986 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1987 MOPT_SET | MOPT_Q}, 1988 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1989 MOPT_SET | MOPT_Q}, 1990 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1991 MOPT_SET | MOPT_Q}, 1992 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1993 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1994 MOPT_CLEAR | MOPT_Q}, 1995 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1996 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1997 {Opt_offusrjquota, 0, MOPT_Q}, 1998 {Opt_offgrpjquota, 0, MOPT_Q}, 1999 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 2000 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 2001 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2002 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2003 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2004 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2005 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2006 MOPT_SET}, 2007 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2008 #ifdef CONFIG_EXT4_DEBUG 2009 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2010 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2011 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2012 #endif 2013 {Opt_err, 0, 0} 2014 }; 2015 2016 #ifdef CONFIG_UNICODE 2017 static const struct ext4_sb_encodings { 2018 __u16 magic; 2019 char *name; 2020 char *version; 2021 } ext4_sb_encoding_map[] = { 2022 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2023 }; 2024 2025 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2026 const struct ext4_sb_encodings **encoding, 2027 __u16 *flags) 2028 { 2029 __u16 magic = le16_to_cpu(es->s_encoding); 2030 int i; 2031 2032 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2033 if (magic == ext4_sb_encoding_map[i].magic) 2034 break; 2035 2036 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2037 return -EINVAL; 2038 2039 *encoding = &ext4_sb_encoding_map[i]; 2040 *flags = le16_to_cpu(es->s_encoding_flags); 2041 2042 return 0; 2043 } 2044 #endif 2045 2046 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2047 const char *opt, 2048 const substring_t *arg, 2049 bool is_remount) 2050 { 2051 #ifdef CONFIG_FS_ENCRYPTION 2052 struct ext4_sb_info *sbi = EXT4_SB(sb); 2053 int err; 2054 2055 /* 2056 * This mount option is just for testing, and it's not worthwhile to 2057 * implement the extra complexity (e.g. RCU protection) that would be 2058 * needed to allow it to be set or changed during remount. We do allow 2059 * it to be specified during remount, but only if there is no change. 2060 */ 2061 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2062 ext4_msg(sb, KERN_WARNING, 2063 "Can't set test_dummy_encryption on remount"); 2064 return -1; 2065 } 2066 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2067 &sbi->s_dummy_enc_policy); 2068 if (err) { 2069 if (err == -EEXIST) 2070 ext4_msg(sb, KERN_WARNING, 2071 "Can't change test_dummy_encryption on remount"); 2072 else if (err == -EINVAL) 2073 ext4_msg(sb, KERN_WARNING, 2074 "Value of option \"%s\" is unrecognized", opt); 2075 else 2076 ext4_msg(sb, KERN_WARNING, 2077 "Error processing option \"%s\" [%d]", 2078 opt, err); 2079 return -1; 2080 } 2081 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2082 #else 2083 ext4_msg(sb, KERN_WARNING, 2084 "Test dummy encryption mount option ignored"); 2085 #endif 2086 return 1; 2087 } 2088 2089 struct ext4_parsed_options { 2090 unsigned long journal_devnum; 2091 unsigned int journal_ioprio; 2092 int mb_optimize_scan; 2093 }; 2094 2095 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2096 substring_t *args, struct ext4_parsed_options *parsed_opts, 2097 int is_remount) 2098 { 2099 struct ext4_sb_info *sbi = EXT4_SB(sb); 2100 const struct mount_opts *m; 2101 kuid_t uid; 2102 kgid_t gid; 2103 int arg = 0; 2104 2105 #ifdef CONFIG_QUOTA 2106 if (token == Opt_usrjquota) 2107 return set_qf_name(sb, USRQUOTA, &args[0]); 2108 else if (token == Opt_grpjquota) 2109 return set_qf_name(sb, GRPQUOTA, &args[0]); 2110 else if (token == Opt_offusrjquota) 2111 return clear_qf_name(sb, USRQUOTA); 2112 else if (token == Opt_offgrpjquota) 2113 return clear_qf_name(sb, GRPQUOTA); 2114 #endif 2115 switch (token) { 2116 case Opt_noacl: 2117 case Opt_nouser_xattr: 2118 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2119 break; 2120 case Opt_sb: 2121 return 1; /* handled by get_sb_block() */ 2122 case Opt_removed: 2123 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2124 return 1; 2125 case Opt_abort: 2126 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2127 return 1; 2128 case Opt_i_version: 2129 sb->s_flags |= SB_I_VERSION; 2130 return 1; 2131 case Opt_lazytime: 2132 sb->s_flags |= SB_LAZYTIME; 2133 return 1; 2134 case Opt_nolazytime: 2135 sb->s_flags &= ~SB_LAZYTIME; 2136 return 1; 2137 case Opt_inlinecrypt: 2138 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2139 sb->s_flags |= SB_INLINECRYPT; 2140 #else 2141 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2142 #endif 2143 return 1; 2144 } 2145 2146 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2147 if (token == m->token) 2148 break; 2149 2150 if (m->token == Opt_err) { 2151 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2152 "or missing value", opt); 2153 return -1; 2154 } 2155 2156 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2157 ext4_msg(sb, KERN_ERR, 2158 "Mount option \"%s\" incompatible with ext2", opt); 2159 return -1; 2160 } 2161 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2162 ext4_msg(sb, KERN_ERR, 2163 "Mount option \"%s\" incompatible with ext3", opt); 2164 return -1; 2165 } 2166 2167 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2168 return -1; 2169 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2170 return -1; 2171 if (m->flags & MOPT_EXPLICIT) { 2172 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2173 set_opt2(sb, EXPLICIT_DELALLOC); 2174 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2175 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2176 } else 2177 return -1; 2178 } 2179 if (m->flags & MOPT_CLEAR_ERR) 2180 clear_opt(sb, ERRORS_MASK); 2181 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2182 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2183 "options when quota turned on"); 2184 return -1; 2185 } 2186 2187 if (m->flags & MOPT_NOSUPPORT) { 2188 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2189 } else if (token == Opt_commit) { 2190 if (arg == 0) 2191 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2192 else if (arg > INT_MAX / HZ) { 2193 ext4_msg(sb, KERN_ERR, 2194 "Invalid commit interval %d, " 2195 "must be smaller than %d", 2196 arg, INT_MAX / HZ); 2197 return -1; 2198 } 2199 sbi->s_commit_interval = HZ * arg; 2200 } else if (token == Opt_debug_want_extra_isize) { 2201 if ((arg & 1) || 2202 (arg < 4) || 2203 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2204 ext4_msg(sb, KERN_ERR, 2205 "Invalid want_extra_isize %d", arg); 2206 return -1; 2207 } 2208 sbi->s_want_extra_isize = arg; 2209 } else if (token == Opt_max_batch_time) { 2210 sbi->s_max_batch_time = arg; 2211 } else if (token == Opt_min_batch_time) { 2212 sbi->s_min_batch_time = arg; 2213 } else if (token == Opt_inode_readahead_blks) { 2214 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2215 ext4_msg(sb, KERN_ERR, 2216 "EXT4-fs: inode_readahead_blks must be " 2217 "0 or a power of 2 smaller than 2^31"); 2218 return -1; 2219 } 2220 sbi->s_inode_readahead_blks = arg; 2221 } else if (token == Opt_init_itable) { 2222 set_opt(sb, INIT_INODE_TABLE); 2223 if (!args->from) 2224 arg = EXT4_DEF_LI_WAIT_MULT; 2225 sbi->s_li_wait_mult = arg; 2226 } else if (token == Opt_max_dir_size_kb) { 2227 sbi->s_max_dir_size_kb = arg; 2228 #ifdef CONFIG_EXT4_DEBUG 2229 } else if (token == Opt_fc_debug_max_replay) { 2230 sbi->s_fc_debug_max_replay = arg; 2231 #endif 2232 } else if (token == Opt_stripe) { 2233 sbi->s_stripe = arg; 2234 } else if (token == Opt_resuid) { 2235 uid = make_kuid(current_user_ns(), arg); 2236 if (!uid_valid(uid)) { 2237 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2238 return -1; 2239 } 2240 sbi->s_resuid = uid; 2241 } else if (token == Opt_resgid) { 2242 gid = make_kgid(current_user_ns(), arg); 2243 if (!gid_valid(gid)) { 2244 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2245 return -1; 2246 } 2247 sbi->s_resgid = gid; 2248 } else if (token == Opt_journal_dev) { 2249 if (is_remount) { 2250 ext4_msg(sb, KERN_ERR, 2251 "Cannot specify journal on remount"); 2252 return -1; 2253 } 2254 parsed_opts->journal_devnum = arg; 2255 } else if (token == Opt_journal_path) { 2256 char *journal_path; 2257 struct inode *journal_inode; 2258 struct path path; 2259 int error; 2260 2261 if (is_remount) { 2262 ext4_msg(sb, KERN_ERR, 2263 "Cannot specify journal on remount"); 2264 return -1; 2265 } 2266 journal_path = match_strdup(&args[0]); 2267 if (!journal_path) { 2268 ext4_msg(sb, KERN_ERR, "error: could not dup " 2269 "journal device string"); 2270 return -1; 2271 } 2272 2273 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2274 if (error) { 2275 ext4_msg(sb, KERN_ERR, "error: could not find " 2276 "journal device path: error %d", error); 2277 kfree(journal_path); 2278 return -1; 2279 } 2280 2281 journal_inode = d_inode(path.dentry); 2282 if (!S_ISBLK(journal_inode->i_mode)) { 2283 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2284 "is not a block device", journal_path); 2285 path_put(&path); 2286 kfree(journal_path); 2287 return -1; 2288 } 2289 2290 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2291 path_put(&path); 2292 kfree(journal_path); 2293 } else if (token == Opt_journal_ioprio) { 2294 if (arg > 7) { 2295 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2296 " (must be 0-7)"); 2297 return -1; 2298 } 2299 parsed_opts->journal_ioprio = 2300 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2301 } else if (token == Opt_test_dummy_encryption) { 2302 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2303 is_remount); 2304 } else if (m->flags & MOPT_DATAJ) { 2305 if (is_remount) { 2306 if (!sbi->s_journal) 2307 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2308 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2309 ext4_msg(sb, KERN_ERR, 2310 "Cannot change data mode on remount"); 2311 return -1; 2312 } 2313 } else { 2314 clear_opt(sb, DATA_FLAGS); 2315 sbi->s_mount_opt |= m->mount_opt; 2316 } 2317 #ifdef CONFIG_QUOTA 2318 } else if (m->flags & MOPT_QFMT) { 2319 if (sb_any_quota_loaded(sb) && 2320 sbi->s_jquota_fmt != m->mount_opt) { 2321 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2322 "quota options when quota turned on"); 2323 return -1; 2324 } 2325 if (ext4_has_feature_quota(sb)) { 2326 ext4_msg(sb, KERN_INFO, 2327 "Quota format mount options ignored " 2328 "when QUOTA feature is enabled"); 2329 return 1; 2330 } 2331 sbi->s_jquota_fmt = m->mount_opt; 2332 #endif 2333 } else if (token == Opt_dax || token == Opt_dax_always || 2334 token == Opt_dax_inode || token == Opt_dax_never) { 2335 #ifdef CONFIG_FS_DAX 2336 switch (token) { 2337 case Opt_dax: 2338 case Opt_dax_always: 2339 if (is_remount && 2340 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2341 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2342 fail_dax_change_remount: 2343 ext4_msg(sb, KERN_ERR, "can't change " 2344 "dax mount option while remounting"); 2345 return -1; 2346 } 2347 if (is_remount && 2348 (test_opt(sb, DATA_FLAGS) == 2349 EXT4_MOUNT_JOURNAL_DATA)) { 2350 ext4_msg(sb, KERN_ERR, "can't mount with " 2351 "both data=journal and dax"); 2352 return -1; 2353 } 2354 ext4_msg(sb, KERN_WARNING, 2355 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2356 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2357 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2358 break; 2359 case Opt_dax_never: 2360 if (is_remount && 2361 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2362 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2363 goto fail_dax_change_remount; 2364 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2365 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2366 break; 2367 case Opt_dax_inode: 2368 if (is_remount && 2369 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2370 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2371 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2372 goto fail_dax_change_remount; 2373 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2374 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2375 /* Strictly for printing options */ 2376 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2377 break; 2378 } 2379 #else 2380 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2381 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2382 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2383 return -1; 2384 #endif 2385 } else if (token == Opt_data_err_abort) { 2386 sbi->s_mount_opt |= m->mount_opt; 2387 } else if (token == Opt_data_err_ignore) { 2388 sbi->s_mount_opt &= ~m->mount_opt; 2389 } else if (token == Opt_mb_optimize_scan) { 2390 if (arg != 0 && arg != 1) { 2391 ext4_msg(sb, KERN_WARNING, 2392 "mb_optimize_scan should be set to 0 or 1."); 2393 return -1; 2394 } 2395 parsed_opts->mb_optimize_scan = arg; 2396 } else { 2397 if (!args->from) 2398 arg = 1; 2399 if (m->flags & MOPT_CLEAR) 2400 arg = !arg; 2401 else if (unlikely(!(m->flags & MOPT_SET))) { 2402 ext4_msg(sb, KERN_WARNING, 2403 "buggy handling of option %s", opt); 2404 WARN_ON(1); 2405 return -1; 2406 } 2407 if (m->flags & MOPT_2) { 2408 if (arg != 0) 2409 sbi->s_mount_opt2 |= m->mount_opt; 2410 else 2411 sbi->s_mount_opt2 &= ~m->mount_opt; 2412 } else { 2413 if (arg != 0) 2414 sbi->s_mount_opt |= m->mount_opt; 2415 else 2416 sbi->s_mount_opt &= ~m->mount_opt; 2417 } 2418 } 2419 return 1; 2420 } 2421 2422 static int parse_options(char *options, struct super_block *sb, 2423 struct ext4_parsed_options *ret_opts, 2424 int is_remount) 2425 { 2426 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2427 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2428 substring_t args[MAX_OPT_ARGS]; 2429 int token; 2430 2431 if (!options) 2432 return 1; 2433 2434 while ((p = strsep(&options, ",")) != NULL) { 2435 if (!*p) 2436 continue; 2437 /* 2438 * Initialize args struct so we know whether arg was 2439 * found; some options take optional arguments. 2440 */ 2441 args[0].to = args[0].from = NULL; 2442 token = match_token(p, tokens, args); 2443 if (handle_mount_opt(sb, p, token, args, ret_opts, 2444 is_remount) < 0) 2445 return 0; 2446 } 2447 #ifdef CONFIG_QUOTA 2448 /* 2449 * We do the test below only for project quotas. 'usrquota' and 2450 * 'grpquota' mount options are allowed even without quota feature 2451 * to support legacy quotas in quota files. 2452 */ 2453 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2454 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2455 "Cannot enable project quota enforcement."); 2456 return 0; 2457 } 2458 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2459 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2460 if (usr_qf_name || grp_qf_name) { 2461 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2462 clear_opt(sb, USRQUOTA); 2463 2464 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2465 clear_opt(sb, GRPQUOTA); 2466 2467 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2468 ext4_msg(sb, KERN_ERR, "old and new quota " 2469 "format mixing"); 2470 return 0; 2471 } 2472 2473 if (!sbi->s_jquota_fmt) { 2474 ext4_msg(sb, KERN_ERR, "journaled quota format " 2475 "not specified"); 2476 return 0; 2477 } 2478 } 2479 #endif 2480 if (test_opt(sb, DIOREAD_NOLOCK)) { 2481 int blocksize = 2482 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2483 if (blocksize < PAGE_SIZE) 2484 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2485 "experimental mount option 'dioread_nolock' " 2486 "for blocksize < PAGE_SIZE"); 2487 } 2488 return 1; 2489 } 2490 2491 static inline void ext4_show_quota_options(struct seq_file *seq, 2492 struct super_block *sb) 2493 { 2494 #if defined(CONFIG_QUOTA) 2495 struct ext4_sb_info *sbi = EXT4_SB(sb); 2496 char *usr_qf_name, *grp_qf_name; 2497 2498 if (sbi->s_jquota_fmt) { 2499 char *fmtname = ""; 2500 2501 switch (sbi->s_jquota_fmt) { 2502 case QFMT_VFS_OLD: 2503 fmtname = "vfsold"; 2504 break; 2505 case QFMT_VFS_V0: 2506 fmtname = "vfsv0"; 2507 break; 2508 case QFMT_VFS_V1: 2509 fmtname = "vfsv1"; 2510 break; 2511 } 2512 seq_printf(seq, ",jqfmt=%s", fmtname); 2513 } 2514 2515 rcu_read_lock(); 2516 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2517 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2518 if (usr_qf_name) 2519 seq_show_option(seq, "usrjquota", usr_qf_name); 2520 if (grp_qf_name) 2521 seq_show_option(seq, "grpjquota", grp_qf_name); 2522 rcu_read_unlock(); 2523 #endif 2524 } 2525 2526 static const char *token2str(int token) 2527 { 2528 const struct match_token *t; 2529 2530 for (t = tokens; t->token != Opt_err; t++) 2531 if (t->token == token && !strchr(t->pattern, '=')) 2532 break; 2533 return t->pattern; 2534 } 2535 2536 /* 2537 * Show an option if 2538 * - it's set to a non-default value OR 2539 * - if the per-sb default is different from the global default 2540 */ 2541 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2542 int nodefs) 2543 { 2544 struct ext4_sb_info *sbi = EXT4_SB(sb); 2545 struct ext4_super_block *es = sbi->s_es; 2546 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2547 const struct mount_opts *m; 2548 char sep = nodefs ? '\n' : ','; 2549 2550 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2551 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2552 2553 if (sbi->s_sb_block != 1) 2554 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2555 2556 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2557 int want_set = m->flags & MOPT_SET; 2558 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2559 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2560 continue; 2561 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2562 continue; /* skip if same as the default */ 2563 if ((want_set && 2564 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2565 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2566 continue; /* select Opt_noFoo vs Opt_Foo */ 2567 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2568 } 2569 2570 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2571 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2572 SEQ_OPTS_PRINT("resuid=%u", 2573 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2574 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2575 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2576 SEQ_OPTS_PRINT("resgid=%u", 2577 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2578 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2579 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2580 SEQ_OPTS_PUTS("errors=remount-ro"); 2581 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2582 SEQ_OPTS_PUTS("errors=continue"); 2583 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2584 SEQ_OPTS_PUTS("errors=panic"); 2585 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2586 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2587 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2588 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2589 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2590 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2591 if (sb->s_flags & SB_I_VERSION) 2592 SEQ_OPTS_PUTS("i_version"); 2593 if (nodefs || sbi->s_stripe) 2594 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2595 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2596 (sbi->s_mount_opt ^ def_mount_opt)) { 2597 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2598 SEQ_OPTS_PUTS("data=journal"); 2599 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2600 SEQ_OPTS_PUTS("data=ordered"); 2601 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2602 SEQ_OPTS_PUTS("data=writeback"); 2603 } 2604 if (nodefs || 2605 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2606 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2607 sbi->s_inode_readahead_blks); 2608 2609 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2610 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2611 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2612 if (nodefs || sbi->s_max_dir_size_kb) 2613 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2614 if (test_opt(sb, DATA_ERR_ABORT)) 2615 SEQ_OPTS_PUTS("data_err=abort"); 2616 2617 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2618 2619 if (sb->s_flags & SB_INLINECRYPT) 2620 SEQ_OPTS_PUTS("inlinecrypt"); 2621 2622 if (test_opt(sb, DAX_ALWAYS)) { 2623 if (IS_EXT2_SB(sb)) 2624 SEQ_OPTS_PUTS("dax"); 2625 else 2626 SEQ_OPTS_PUTS("dax=always"); 2627 } else if (test_opt2(sb, DAX_NEVER)) { 2628 SEQ_OPTS_PUTS("dax=never"); 2629 } else if (test_opt2(sb, DAX_INODE)) { 2630 SEQ_OPTS_PUTS("dax=inode"); 2631 } 2632 ext4_show_quota_options(seq, sb); 2633 return 0; 2634 } 2635 2636 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2637 { 2638 return _ext4_show_options(seq, root->d_sb, 0); 2639 } 2640 2641 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2642 { 2643 struct super_block *sb = seq->private; 2644 int rc; 2645 2646 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2647 rc = _ext4_show_options(seq, sb, 1); 2648 seq_puts(seq, "\n"); 2649 return rc; 2650 } 2651 2652 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2653 int read_only) 2654 { 2655 struct ext4_sb_info *sbi = EXT4_SB(sb); 2656 int err = 0; 2657 2658 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2659 ext4_msg(sb, KERN_ERR, "revision level too high, " 2660 "forcing read-only mode"); 2661 err = -EROFS; 2662 goto done; 2663 } 2664 if (read_only) 2665 goto done; 2666 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2667 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2668 "running e2fsck is recommended"); 2669 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2670 ext4_msg(sb, KERN_WARNING, 2671 "warning: mounting fs with errors, " 2672 "running e2fsck is recommended"); 2673 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2674 le16_to_cpu(es->s_mnt_count) >= 2675 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2676 ext4_msg(sb, KERN_WARNING, 2677 "warning: maximal mount count reached, " 2678 "running e2fsck is recommended"); 2679 else if (le32_to_cpu(es->s_checkinterval) && 2680 (ext4_get_tstamp(es, s_lastcheck) + 2681 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2682 ext4_msg(sb, KERN_WARNING, 2683 "warning: checktime reached, " 2684 "running e2fsck is recommended"); 2685 if (!sbi->s_journal) 2686 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2687 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2688 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2689 le16_add_cpu(&es->s_mnt_count, 1); 2690 ext4_update_tstamp(es, s_mtime); 2691 if (sbi->s_journal) { 2692 ext4_set_feature_journal_needs_recovery(sb); 2693 if (ext4_has_feature_orphan_file(sb)) 2694 ext4_set_feature_orphan_present(sb); 2695 } 2696 2697 err = ext4_commit_super(sb); 2698 done: 2699 if (test_opt(sb, DEBUG)) 2700 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2701 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2702 sb->s_blocksize, 2703 sbi->s_groups_count, 2704 EXT4_BLOCKS_PER_GROUP(sb), 2705 EXT4_INODES_PER_GROUP(sb), 2706 sbi->s_mount_opt, sbi->s_mount_opt2); 2707 2708 cleancache_init_fs(sb); 2709 return err; 2710 } 2711 2712 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2713 { 2714 struct ext4_sb_info *sbi = EXT4_SB(sb); 2715 struct flex_groups **old_groups, **new_groups; 2716 int size, i, j; 2717 2718 if (!sbi->s_log_groups_per_flex) 2719 return 0; 2720 2721 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2722 if (size <= sbi->s_flex_groups_allocated) 2723 return 0; 2724 2725 new_groups = kvzalloc(roundup_pow_of_two(size * 2726 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2727 if (!new_groups) { 2728 ext4_msg(sb, KERN_ERR, 2729 "not enough memory for %d flex group pointers", size); 2730 return -ENOMEM; 2731 } 2732 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2733 new_groups[i] = kvzalloc(roundup_pow_of_two( 2734 sizeof(struct flex_groups)), 2735 GFP_KERNEL); 2736 if (!new_groups[i]) { 2737 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2738 kvfree(new_groups[j]); 2739 kvfree(new_groups); 2740 ext4_msg(sb, KERN_ERR, 2741 "not enough memory for %d flex groups", size); 2742 return -ENOMEM; 2743 } 2744 } 2745 rcu_read_lock(); 2746 old_groups = rcu_dereference(sbi->s_flex_groups); 2747 if (old_groups) 2748 memcpy(new_groups, old_groups, 2749 (sbi->s_flex_groups_allocated * 2750 sizeof(struct flex_groups *))); 2751 rcu_read_unlock(); 2752 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2753 sbi->s_flex_groups_allocated = size; 2754 if (old_groups) 2755 ext4_kvfree_array_rcu(old_groups); 2756 return 0; 2757 } 2758 2759 static int ext4_fill_flex_info(struct super_block *sb) 2760 { 2761 struct ext4_sb_info *sbi = EXT4_SB(sb); 2762 struct ext4_group_desc *gdp = NULL; 2763 struct flex_groups *fg; 2764 ext4_group_t flex_group; 2765 int i, err; 2766 2767 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2768 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2769 sbi->s_log_groups_per_flex = 0; 2770 return 1; 2771 } 2772 2773 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2774 if (err) 2775 goto failed; 2776 2777 for (i = 0; i < sbi->s_groups_count; i++) { 2778 gdp = ext4_get_group_desc(sb, i, NULL); 2779 2780 flex_group = ext4_flex_group(sbi, i); 2781 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2782 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2783 atomic64_add(ext4_free_group_clusters(sb, gdp), 2784 &fg->free_clusters); 2785 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2786 } 2787 2788 return 1; 2789 failed: 2790 return 0; 2791 } 2792 2793 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2794 struct ext4_group_desc *gdp) 2795 { 2796 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2797 __u16 crc = 0; 2798 __le32 le_group = cpu_to_le32(block_group); 2799 struct ext4_sb_info *sbi = EXT4_SB(sb); 2800 2801 if (ext4_has_metadata_csum(sbi->s_sb)) { 2802 /* Use new metadata_csum algorithm */ 2803 __u32 csum32; 2804 __u16 dummy_csum = 0; 2805 2806 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2807 sizeof(le_group)); 2808 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2809 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2810 sizeof(dummy_csum)); 2811 offset += sizeof(dummy_csum); 2812 if (offset < sbi->s_desc_size) 2813 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2814 sbi->s_desc_size - offset); 2815 2816 crc = csum32 & 0xFFFF; 2817 goto out; 2818 } 2819 2820 /* old crc16 code */ 2821 if (!ext4_has_feature_gdt_csum(sb)) 2822 return 0; 2823 2824 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2825 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2826 crc = crc16(crc, (__u8 *)gdp, offset); 2827 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2828 /* for checksum of struct ext4_group_desc do the rest...*/ 2829 if (ext4_has_feature_64bit(sb) && 2830 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2831 crc = crc16(crc, (__u8 *)gdp + offset, 2832 le16_to_cpu(sbi->s_es->s_desc_size) - 2833 offset); 2834 2835 out: 2836 return cpu_to_le16(crc); 2837 } 2838 2839 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2840 struct ext4_group_desc *gdp) 2841 { 2842 if (ext4_has_group_desc_csum(sb) && 2843 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2844 return 0; 2845 2846 return 1; 2847 } 2848 2849 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2850 struct ext4_group_desc *gdp) 2851 { 2852 if (!ext4_has_group_desc_csum(sb)) 2853 return; 2854 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2855 } 2856 2857 /* Called at mount-time, super-block is locked */ 2858 static int ext4_check_descriptors(struct super_block *sb, 2859 ext4_fsblk_t sb_block, 2860 ext4_group_t *first_not_zeroed) 2861 { 2862 struct ext4_sb_info *sbi = EXT4_SB(sb); 2863 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2864 ext4_fsblk_t last_block; 2865 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2866 ext4_fsblk_t block_bitmap; 2867 ext4_fsblk_t inode_bitmap; 2868 ext4_fsblk_t inode_table; 2869 int flexbg_flag = 0; 2870 ext4_group_t i, grp = sbi->s_groups_count; 2871 2872 if (ext4_has_feature_flex_bg(sb)) 2873 flexbg_flag = 1; 2874 2875 ext4_debug("Checking group descriptors"); 2876 2877 for (i = 0; i < sbi->s_groups_count; i++) { 2878 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2879 2880 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2881 last_block = ext4_blocks_count(sbi->s_es) - 1; 2882 else 2883 last_block = first_block + 2884 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2885 2886 if ((grp == sbi->s_groups_count) && 2887 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2888 grp = i; 2889 2890 block_bitmap = ext4_block_bitmap(sb, gdp); 2891 if (block_bitmap == sb_block) { 2892 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2893 "Block bitmap for group %u overlaps " 2894 "superblock", i); 2895 if (!sb_rdonly(sb)) 2896 return 0; 2897 } 2898 if (block_bitmap >= sb_block + 1 && 2899 block_bitmap <= last_bg_block) { 2900 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2901 "Block bitmap for group %u overlaps " 2902 "block group descriptors", i); 2903 if (!sb_rdonly(sb)) 2904 return 0; 2905 } 2906 if (block_bitmap < first_block || block_bitmap > last_block) { 2907 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2908 "Block bitmap for group %u not in group " 2909 "(block %llu)!", i, block_bitmap); 2910 return 0; 2911 } 2912 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2913 if (inode_bitmap == sb_block) { 2914 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2915 "Inode bitmap for group %u overlaps " 2916 "superblock", i); 2917 if (!sb_rdonly(sb)) 2918 return 0; 2919 } 2920 if (inode_bitmap >= sb_block + 1 && 2921 inode_bitmap <= last_bg_block) { 2922 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2923 "Inode bitmap for group %u overlaps " 2924 "block group descriptors", i); 2925 if (!sb_rdonly(sb)) 2926 return 0; 2927 } 2928 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2929 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2930 "Inode bitmap for group %u not in group " 2931 "(block %llu)!", i, inode_bitmap); 2932 return 0; 2933 } 2934 inode_table = ext4_inode_table(sb, gdp); 2935 if (inode_table == sb_block) { 2936 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2937 "Inode table for group %u overlaps " 2938 "superblock", i); 2939 if (!sb_rdonly(sb)) 2940 return 0; 2941 } 2942 if (inode_table >= sb_block + 1 && 2943 inode_table <= last_bg_block) { 2944 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2945 "Inode table for group %u overlaps " 2946 "block group descriptors", i); 2947 if (!sb_rdonly(sb)) 2948 return 0; 2949 } 2950 if (inode_table < first_block || 2951 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2952 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2953 "Inode table for group %u not in group " 2954 "(block %llu)!", i, inode_table); 2955 return 0; 2956 } 2957 ext4_lock_group(sb, i); 2958 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2959 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2960 "Checksum for group %u failed (%u!=%u)", 2961 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2962 gdp)), le16_to_cpu(gdp->bg_checksum)); 2963 if (!sb_rdonly(sb)) { 2964 ext4_unlock_group(sb, i); 2965 return 0; 2966 } 2967 } 2968 ext4_unlock_group(sb, i); 2969 if (!flexbg_flag) 2970 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2971 } 2972 if (NULL != first_not_zeroed) 2973 *first_not_zeroed = grp; 2974 return 1; 2975 } 2976 2977 /* 2978 * Maximal extent format file size. 2979 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2980 * extent format containers, within a sector_t, and within i_blocks 2981 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2982 * so that won't be a limiting factor. 2983 * 2984 * However there is other limiting factor. We do store extents in the form 2985 * of starting block and length, hence the resulting length of the extent 2986 * covering maximum file size must fit into on-disk format containers as 2987 * well. Given that length is always by 1 unit bigger than max unit (because 2988 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2989 * 2990 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2991 */ 2992 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2993 { 2994 loff_t res; 2995 loff_t upper_limit = MAX_LFS_FILESIZE; 2996 2997 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2998 2999 if (!has_huge_files) { 3000 upper_limit = (1LL << 32) - 1; 3001 3002 /* total blocks in file system block size */ 3003 upper_limit >>= (blkbits - 9); 3004 upper_limit <<= blkbits; 3005 } 3006 3007 /* 3008 * 32-bit extent-start container, ee_block. We lower the maxbytes 3009 * by one fs block, so ee_len can cover the extent of maximum file 3010 * size 3011 */ 3012 res = (1LL << 32) - 1; 3013 res <<= blkbits; 3014 3015 /* Sanity check against vm- & vfs- imposed limits */ 3016 if (res > upper_limit) 3017 res = upper_limit; 3018 3019 return res; 3020 } 3021 3022 /* 3023 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3024 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3025 * We need to be 1 filesystem block less than the 2^48 sector limit. 3026 */ 3027 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3028 { 3029 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS; 3030 int meta_blocks; 3031 3032 /* 3033 * This is calculated to be the largest file size for a dense, block 3034 * mapped file such that the file's total number of 512-byte sectors, 3035 * including data and all indirect blocks, does not exceed (2^48 - 1). 3036 * 3037 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3038 * number of 512-byte sectors of the file. 3039 */ 3040 if (!has_huge_files) { 3041 /* 3042 * !has_huge_files or implies that the inode i_block field 3043 * represents total file blocks in 2^32 512-byte sectors == 3044 * size of vfs inode i_blocks * 8 3045 */ 3046 upper_limit = (1LL << 32) - 1; 3047 3048 /* total blocks in file system block size */ 3049 upper_limit >>= (bits - 9); 3050 3051 } else { 3052 /* 3053 * We use 48 bit ext4_inode i_blocks 3054 * With EXT4_HUGE_FILE_FL set the i_blocks 3055 * represent total number of blocks in 3056 * file system block size 3057 */ 3058 upper_limit = (1LL << 48) - 1; 3059 3060 } 3061 3062 /* indirect blocks */ 3063 meta_blocks = 1; 3064 /* double indirect blocks */ 3065 meta_blocks += 1 + (1LL << (bits-2)); 3066 /* tripple indirect blocks */ 3067 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3068 3069 upper_limit -= meta_blocks; 3070 upper_limit <<= bits; 3071 3072 res += 1LL << (bits-2); 3073 res += 1LL << (2*(bits-2)); 3074 res += 1LL << (3*(bits-2)); 3075 res <<= bits; 3076 if (res > upper_limit) 3077 res = upper_limit; 3078 3079 if (res > MAX_LFS_FILESIZE) 3080 res = MAX_LFS_FILESIZE; 3081 3082 return (loff_t)res; 3083 } 3084 3085 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3086 ext4_fsblk_t logical_sb_block, int nr) 3087 { 3088 struct ext4_sb_info *sbi = EXT4_SB(sb); 3089 ext4_group_t bg, first_meta_bg; 3090 int has_super = 0; 3091 3092 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3093 3094 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3095 return logical_sb_block + nr + 1; 3096 bg = sbi->s_desc_per_block * nr; 3097 if (ext4_bg_has_super(sb, bg)) 3098 has_super = 1; 3099 3100 /* 3101 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3102 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3103 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3104 * compensate. 3105 */ 3106 if (sb->s_blocksize == 1024 && nr == 0 && 3107 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3108 has_super++; 3109 3110 return (has_super + ext4_group_first_block_no(sb, bg)); 3111 } 3112 3113 /** 3114 * ext4_get_stripe_size: Get the stripe size. 3115 * @sbi: In memory super block info 3116 * 3117 * If we have specified it via mount option, then 3118 * use the mount option value. If the value specified at mount time is 3119 * greater than the blocks per group use the super block value. 3120 * If the super block value is greater than blocks per group return 0. 3121 * Allocator needs it be less than blocks per group. 3122 * 3123 */ 3124 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3125 { 3126 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3127 unsigned long stripe_width = 3128 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3129 int ret; 3130 3131 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3132 ret = sbi->s_stripe; 3133 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3134 ret = stripe_width; 3135 else if (stride && stride <= sbi->s_blocks_per_group) 3136 ret = stride; 3137 else 3138 ret = 0; 3139 3140 /* 3141 * If the stripe width is 1, this makes no sense and 3142 * we set it to 0 to turn off stripe handling code. 3143 */ 3144 if (ret <= 1) 3145 ret = 0; 3146 3147 return ret; 3148 } 3149 3150 /* 3151 * Check whether this filesystem can be mounted based on 3152 * the features present and the RDONLY/RDWR mount requested. 3153 * Returns 1 if this filesystem can be mounted as requested, 3154 * 0 if it cannot be. 3155 */ 3156 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3157 { 3158 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3159 ext4_msg(sb, KERN_ERR, 3160 "Couldn't mount because of " 3161 "unsupported optional features (%x)", 3162 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3163 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3164 return 0; 3165 } 3166 3167 #ifndef CONFIG_UNICODE 3168 if (ext4_has_feature_casefold(sb)) { 3169 ext4_msg(sb, KERN_ERR, 3170 "Filesystem with casefold feature cannot be " 3171 "mounted without CONFIG_UNICODE"); 3172 return 0; 3173 } 3174 #endif 3175 3176 if (readonly) 3177 return 1; 3178 3179 if (ext4_has_feature_readonly(sb)) { 3180 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3181 sb->s_flags |= SB_RDONLY; 3182 return 1; 3183 } 3184 3185 /* Check that feature set is OK for a read-write mount */ 3186 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3187 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3188 "unsupported optional features (%x)", 3189 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3190 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3191 return 0; 3192 } 3193 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3194 ext4_msg(sb, KERN_ERR, 3195 "Can't support bigalloc feature without " 3196 "extents feature\n"); 3197 return 0; 3198 } 3199 3200 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3201 if (!readonly && (ext4_has_feature_quota(sb) || 3202 ext4_has_feature_project(sb))) { 3203 ext4_msg(sb, KERN_ERR, 3204 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3205 return 0; 3206 } 3207 #endif /* CONFIG_QUOTA */ 3208 return 1; 3209 } 3210 3211 /* 3212 * This function is called once a day if we have errors logged 3213 * on the file system 3214 */ 3215 static void print_daily_error_info(struct timer_list *t) 3216 { 3217 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3218 struct super_block *sb = sbi->s_sb; 3219 struct ext4_super_block *es = sbi->s_es; 3220 3221 if (es->s_error_count) 3222 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3223 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3224 le32_to_cpu(es->s_error_count)); 3225 if (es->s_first_error_time) { 3226 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3227 sb->s_id, 3228 ext4_get_tstamp(es, s_first_error_time), 3229 (int) sizeof(es->s_first_error_func), 3230 es->s_first_error_func, 3231 le32_to_cpu(es->s_first_error_line)); 3232 if (es->s_first_error_ino) 3233 printk(KERN_CONT ": inode %u", 3234 le32_to_cpu(es->s_first_error_ino)); 3235 if (es->s_first_error_block) 3236 printk(KERN_CONT ": block %llu", (unsigned long long) 3237 le64_to_cpu(es->s_first_error_block)); 3238 printk(KERN_CONT "\n"); 3239 } 3240 if (es->s_last_error_time) { 3241 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3242 sb->s_id, 3243 ext4_get_tstamp(es, s_last_error_time), 3244 (int) sizeof(es->s_last_error_func), 3245 es->s_last_error_func, 3246 le32_to_cpu(es->s_last_error_line)); 3247 if (es->s_last_error_ino) 3248 printk(KERN_CONT ": inode %u", 3249 le32_to_cpu(es->s_last_error_ino)); 3250 if (es->s_last_error_block) 3251 printk(KERN_CONT ": block %llu", (unsigned long long) 3252 le64_to_cpu(es->s_last_error_block)); 3253 printk(KERN_CONT "\n"); 3254 } 3255 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3256 } 3257 3258 /* Find next suitable group and run ext4_init_inode_table */ 3259 static int ext4_run_li_request(struct ext4_li_request *elr) 3260 { 3261 struct ext4_group_desc *gdp = NULL; 3262 struct super_block *sb = elr->lr_super; 3263 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3264 ext4_group_t group = elr->lr_next_group; 3265 unsigned long timeout = 0; 3266 unsigned int prefetch_ios = 0; 3267 int ret = 0; 3268 3269 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3270 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3271 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3272 if (prefetch_ios) 3273 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3274 prefetch_ios); 3275 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3276 prefetch_ios); 3277 if (group >= elr->lr_next_group) { 3278 ret = 1; 3279 if (elr->lr_first_not_zeroed != ngroups && 3280 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3281 elr->lr_next_group = elr->lr_first_not_zeroed; 3282 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3283 ret = 0; 3284 } 3285 } 3286 return ret; 3287 } 3288 3289 for (; group < ngroups; group++) { 3290 gdp = ext4_get_group_desc(sb, group, NULL); 3291 if (!gdp) { 3292 ret = 1; 3293 break; 3294 } 3295 3296 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3297 break; 3298 } 3299 3300 if (group >= ngroups) 3301 ret = 1; 3302 3303 if (!ret) { 3304 timeout = jiffies; 3305 ret = ext4_init_inode_table(sb, group, 3306 elr->lr_timeout ? 0 : 1); 3307 trace_ext4_lazy_itable_init(sb, group); 3308 if (elr->lr_timeout == 0) { 3309 timeout = (jiffies - timeout) * 3310 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3311 elr->lr_timeout = timeout; 3312 } 3313 elr->lr_next_sched = jiffies + elr->lr_timeout; 3314 elr->lr_next_group = group + 1; 3315 } 3316 return ret; 3317 } 3318 3319 /* 3320 * Remove lr_request from the list_request and free the 3321 * request structure. Should be called with li_list_mtx held 3322 */ 3323 static void ext4_remove_li_request(struct ext4_li_request *elr) 3324 { 3325 if (!elr) 3326 return; 3327 3328 list_del(&elr->lr_request); 3329 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3330 kfree(elr); 3331 } 3332 3333 static void ext4_unregister_li_request(struct super_block *sb) 3334 { 3335 mutex_lock(&ext4_li_mtx); 3336 if (!ext4_li_info) { 3337 mutex_unlock(&ext4_li_mtx); 3338 return; 3339 } 3340 3341 mutex_lock(&ext4_li_info->li_list_mtx); 3342 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3343 mutex_unlock(&ext4_li_info->li_list_mtx); 3344 mutex_unlock(&ext4_li_mtx); 3345 } 3346 3347 static struct task_struct *ext4_lazyinit_task; 3348 3349 /* 3350 * This is the function where ext4lazyinit thread lives. It walks 3351 * through the request list searching for next scheduled filesystem. 3352 * When such a fs is found, run the lazy initialization request 3353 * (ext4_rn_li_request) and keep track of the time spend in this 3354 * function. Based on that time we compute next schedule time of 3355 * the request. When walking through the list is complete, compute 3356 * next waking time and put itself into sleep. 3357 */ 3358 static int ext4_lazyinit_thread(void *arg) 3359 { 3360 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3361 struct list_head *pos, *n; 3362 struct ext4_li_request *elr; 3363 unsigned long next_wakeup, cur; 3364 3365 BUG_ON(NULL == eli); 3366 3367 cont_thread: 3368 while (true) { 3369 next_wakeup = MAX_JIFFY_OFFSET; 3370 3371 mutex_lock(&eli->li_list_mtx); 3372 if (list_empty(&eli->li_request_list)) { 3373 mutex_unlock(&eli->li_list_mtx); 3374 goto exit_thread; 3375 } 3376 list_for_each_safe(pos, n, &eli->li_request_list) { 3377 int err = 0; 3378 int progress = 0; 3379 elr = list_entry(pos, struct ext4_li_request, 3380 lr_request); 3381 3382 if (time_before(jiffies, elr->lr_next_sched)) { 3383 if (time_before(elr->lr_next_sched, next_wakeup)) 3384 next_wakeup = elr->lr_next_sched; 3385 continue; 3386 } 3387 if (down_read_trylock(&elr->lr_super->s_umount)) { 3388 if (sb_start_write_trylock(elr->lr_super)) { 3389 progress = 1; 3390 /* 3391 * We hold sb->s_umount, sb can not 3392 * be removed from the list, it is 3393 * now safe to drop li_list_mtx 3394 */ 3395 mutex_unlock(&eli->li_list_mtx); 3396 err = ext4_run_li_request(elr); 3397 sb_end_write(elr->lr_super); 3398 mutex_lock(&eli->li_list_mtx); 3399 n = pos->next; 3400 } 3401 up_read((&elr->lr_super->s_umount)); 3402 } 3403 /* error, remove the lazy_init job */ 3404 if (err) { 3405 ext4_remove_li_request(elr); 3406 continue; 3407 } 3408 if (!progress) { 3409 elr->lr_next_sched = jiffies + 3410 (prandom_u32() 3411 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3412 } 3413 if (time_before(elr->lr_next_sched, next_wakeup)) 3414 next_wakeup = elr->lr_next_sched; 3415 } 3416 mutex_unlock(&eli->li_list_mtx); 3417 3418 try_to_freeze(); 3419 3420 cur = jiffies; 3421 if ((time_after_eq(cur, next_wakeup)) || 3422 (MAX_JIFFY_OFFSET == next_wakeup)) { 3423 cond_resched(); 3424 continue; 3425 } 3426 3427 schedule_timeout_interruptible(next_wakeup - cur); 3428 3429 if (kthread_should_stop()) { 3430 ext4_clear_request_list(); 3431 goto exit_thread; 3432 } 3433 } 3434 3435 exit_thread: 3436 /* 3437 * It looks like the request list is empty, but we need 3438 * to check it under the li_list_mtx lock, to prevent any 3439 * additions into it, and of course we should lock ext4_li_mtx 3440 * to atomically free the list and ext4_li_info, because at 3441 * this point another ext4 filesystem could be registering 3442 * new one. 3443 */ 3444 mutex_lock(&ext4_li_mtx); 3445 mutex_lock(&eli->li_list_mtx); 3446 if (!list_empty(&eli->li_request_list)) { 3447 mutex_unlock(&eli->li_list_mtx); 3448 mutex_unlock(&ext4_li_mtx); 3449 goto cont_thread; 3450 } 3451 mutex_unlock(&eli->li_list_mtx); 3452 kfree(ext4_li_info); 3453 ext4_li_info = NULL; 3454 mutex_unlock(&ext4_li_mtx); 3455 3456 return 0; 3457 } 3458 3459 static void ext4_clear_request_list(void) 3460 { 3461 struct list_head *pos, *n; 3462 struct ext4_li_request *elr; 3463 3464 mutex_lock(&ext4_li_info->li_list_mtx); 3465 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3466 elr = list_entry(pos, struct ext4_li_request, 3467 lr_request); 3468 ext4_remove_li_request(elr); 3469 } 3470 mutex_unlock(&ext4_li_info->li_list_mtx); 3471 } 3472 3473 static int ext4_run_lazyinit_thread(void) 3474 { 3475 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3476 ext4_li_info, "ext4lazyinit"); 3477 if (IS_ERR(ext4_lazyinit_task)) { 3478 int err = PTR_ERR(ext4_lazyinit_task); 3479 ext4_clear_request_list(); 3480 kfree(ext4_li_info); 3481 ext4_li_info = NULL; 3482 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3483 "initialization thread\n", 3484 err); 3485 return err; 3486 } 3487 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3488 return 0; 3489 } 3490 3491 /* 3492 * Check whether it make sense to run itable init. thread or not. 3493 * If there is at least one uninitialized inode table, return 3494 * corresponding group number, else the loop goes through all 3495 * groups and return total number of groups. 3496 */ 3497 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3498 { 3499 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3500 struct ext4_group_desc *gdp = NULL; 3501 3502 if (!ext4_has_group_desc_csum(sb)) 3503 return ngroups; 3504 3505 for (group = 0; group < ngroups; group++) { 3506 gdp = ext4_get_group_desc(sb, group, NULL); 3507 if (!gdp) 3508 continue; 3509 3510 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3511 break; 3512 } 3513 3514 return group; 3515 } 3516 3517 static int ext4_li_info_new(void) 3518 { 3519 struct ext4_lazy_init *eli = NULL; 3520 3521 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3522 if (!eli) 3523 return -ENOMEM; 3524 3525 INIT_LIST_HEAD(&eli->li_request_list); 3526 mutex_init(&eli->li_list_mtx); 3527 3528 eli->li_state |= EXT4_LAZYINIT_QUIT; 3529 3530 ext4_li_info = eli; 3531 3532 return 0; 3533 } 3534 3535 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3536 ext4_group_t start) 3537 { 3538 struct ext4_li_request *elr; 3539 3540 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3541 if (!elr) 3542 return NULL; 3543 3544 elr->lr_super = sb; 3545 elr->lr_first_not_zeroed = start; 3546 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3547 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3548 elr->lr_next_group = start; 3549 } else { 3550 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3551 } 3552 3553 /* 3554 * Randomize first schedule time of the request to 3555 * spread the inode table initialization requests 3556 * better. 3557 */ 3558 elr->lr_next_sched = jiffies + (prandom_u32() % 3559 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3560 return elr; 3561 } 3562 3563 int ext4_register_li_request(struct super_block *sb, 3564 ext4_group_t first_not_zeroed) 3565 { 3566 struct ext4_sb_info *sbi = EXT4_SB(sb); 3567 struct ext4_li_request *elr = NULL; 3568 ext4_group_t ngroups = sbi->s_groups_count; 3569 int ret = 0; 3570 3571 mutex_lock(&ext4_li_mtx); 3572 if (sbi->s_li_request != NULL) { 3573 /* 3574 * Reset timeout so it can be computed again, because 3575 * s_li_wait_mult might have changed. 3576 */ 3577 sbi->s_li_request->lr_timeout = 0; 3578 goto out; 3579 } 3580 3581 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3582 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3583 !test_opt(sb, INIT_INODE_TABLE))) 3584 goto out; 3585 3586 elr = ext4_li_request_new(sb, first_not_zeroed); 3587 if (!elr) { 3588 ret = -ENOMEM; 3589 goto out; 3590 } 3591 3592 if (NULL == ext4_li_info) { 3593 ret = ext4_li_info_new(); 3594 if (ret) 3595 goto out; 3596 } 3597 3598 mutex_lock(&ext4_li_info->li_list_mtx); 3599 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3600 mutex_unlock(&ext4_li_info->li_list_mtx); 3601 3602 sbi->s_li_request = elr; 3603 /* 3604 * set elr to NULL here since it has been inserted to 3605 * the request_list and the removal and free of it is 3606 * handled by ext4_clear_request_list from now on. 3607 */ 3608 elr = NULL; 3609 3610 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3611 ret = ext4_run_lazyinit_thread(); 3612 if (ret) 3613 goto out; 3614 } 3615 out: 3616 mutex_unlock(&ext4_li_mtx); 3617 if (ret) 3618 kfree(elr); 3619 return ret; 3620 } 3621 3622 /* 3623 * We do not need to lock anything since this is called on 3624 * module unload. 3625 */ 3626 static void ext4_destroy_lazyinit_thread(void) 3627 { 3628 /* 3629 * If thread exited earlier 3630 * there's nothing to be done. 3631 */ 3632 if (!ext4_li_info || !ext4_lazyinit_task) 3633 return; 3634 3635 kthread_stop(ext4_lazyinit_task); 3636 } 3637 3638 static int set_journal_csum_feature_set(struct super_block *sb) 3639 { 3640 int ret = 1; 3641 int compat, incompat; 3642 struct ext4_sb_info *sbi = EXT4_SB(sb); 3643 3644 if (ext4_has_metadata_csum(sb)) { 3645 /* journal checksum v3 */ 3646 compat = 0; 3647 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3648 } else { 3649 /* journal checksum v1 */ 3650 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3651 incompat = 0; 3652 } 3653 3654 jbd2_journal_clear_features(sbi->s_journal, 3655 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3656 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3657 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3658 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3659 ret = jbd2_journal_set_features(sbi->s_journal, 3660 compat, 0, 3661 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3662 incompat); 3663 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3664 ret = jbd2_journal_set_features(sbi->s_journal, 3665 compat, 0, 3666 incompat); 3667 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3668 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3669 } else { 3670 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3671 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3672 } 3673 3674 return ret; 3675 } 3676 3677 /* 3678 * Note: calculating the overhead so we can be compatible with 3679 * historical BSD practice is quite difficult in the face of 3680 * clusters/bigalloc. This is because multiple metadata blocks from 3681 * different block group can end up in the same allocation cluster. 3682 * Calculating the exact overhead in the face of clustered allocation 3683 * requires either O(all block bitmaps) in memory or O(number of block 3684 * groups**2) in time. We will still calculate the superblock for 3685 * older file systems --- and if we come across with a bigalloc file 3686 * system with zero in s_overhead_clusters the estimate will be close to 3687 * correct especially for very large cluster sizes --- but for newer 3688 * file systems, it's better to calculate this figure once at mkfs 3689 * time, and store it in the superblock. If the superblock value is 3690 * present (even for non-bigalloc file systems), we will use it. 3691 */ 3692 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3693 char *buf) 3694 { 3695 struct ext4_sb_info *sbi = EXT4_SB(sb); 3696 struct ext4_group_desc *gdp; 3697 ext4_fsblk_t first_block, last_block, b; 3698 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3699 int s, j, count = 0; 3700 3701 if (!ext4_has_feature_bigalloc(sb)) 3702 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3703 sbi->s_itb_per_group + 2); 3704 3705 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3706 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3707 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3708 for (i = 0; i < ngroups; i++) { 3709 gdp = ext4_get_group_desc(sb, i, NULL); 3710 b = ext4_block_bitmap(sb, gdp); 3711 if (b >= first_block && b <= last_block) { 3712 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3713 count++; 3714 } 3715 b = ext4_inode_bitmap(sb, gdp); 3716 if (b >= first_block && b <= last_block) { 3717 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3718 count++; 3719 } 3720 b = ext4_inode_table(sb, gdp); 3721 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3722 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3723 int c = EXT4_B2C(sbi, b - first_block); 3724 ext4_set_bit(c, buf); 3725 count++; 3726 } 3727 if (i != grp) 3728 continue; 3729 s = 0; 3730 if (ext4_bg_has_super(sb, grp)) { 3731 ext4_set_bit(s++, buf); 3732 count++; 3733 } 3734 j = ext4_bg_num_gdb(sb, grp); 3735 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3736 ext4_error(sb, "Invalid number of block group " 3737 "descriptor blocks: %d", j); 3738 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3739 } 3740 count += j; 3741 for (; j > 0; j--) 3742 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3743 } 3744 if (!count) 3745 return 0; 3746 return EXT4_CLUSTERS_PER_GROUP(sb) - 3747 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3748 } 3749 3750 /* 3751 * Compute the overhead and stash it in sbi->s_overhead 3752 */ 3753 int ext4_calculate_overhead(struct super_block *sb) 3754 { 3755 struct ext4_sb_info *sbi = EXT4_SB(sb); 3756 struct ext4_super_block *es = sbi->s_es; 3757 struct inode *j_inode; 3758 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3759 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3760 ext4_fsblk_t overhead = 0; 3761 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3762 3763 if (!buf) 3764 return -ENOMEM; 3765 3766 /* 3767 * Compute the overhead (FS structures). This is constant 3768 * for a given filesystem unless the number of block groups 3769 * changes so we cache the previous value until it does. 3770 */ 3771 3772 /* 3773 * All of the blocks before first_data_block are overhead 3774 */ 3775 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3776 3777 /* 3778 * Add the overhead found in each block group 3779 */ 3780 for (i = 0; i < ngroups; i++) { 3781 int blks; 3782 3783 blks = count_overhead(sb, i, buf); 3784 overhead += blks; 3785 if (blks) 3786 memset(buf, 0, PAGE_SIZE); 3787 cond_resched(); 3788 } 3789 3790 /* 3791 * Add the internal journal blocks whether the journal has been 3792 * loaded or not 3793 */ 3794 if (sbi->s_journal && !sbi->s_journal_bdev) 3795 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3796 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3797 /* j_inum for internal journal is non-zero */ 3798 j_inode = ext4_get_journal_inode(sb, j_inum); 3799 if (j_inode) { 3800 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3801 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3802 iput(j_inode); 3803 } else { 3804 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3805 } 3806 } 3807 sbi->s_overhead = overhead; 3808 smp_wmb(); 3809 free_page((unsigned long) buf); 3810 return 0; 3811 } 3812 3813 static void ext4_set_resv_clusters(struct super_block *sb) 3814 { 3815 ext4_fsblk_t resv_clusters; 3816 struct ext4_sb_info *sbi = EXT4_SB(sb); 3817 3818 /* 3819 * There's no need to reserve anything when we aren't using extents. 3820 * The space estimates are exact, there are no unwritten extents, 3821 * hole punching doesn't need new metadata... This is needed especially 3822 * to keep ext2/3 backward compatibility. 3823 */ 3824 if (!ext4_has_feature_extents(sb)) 3825 return; 3826 /* 3827 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3828 * This should cover the situations where we can not afford to run 3829 * out of space like for example punch hole, or converting 3830 * unwritten extents in delalloc path. In most cases such 3831 * allocation would require 1, or 2 blocks, higher numbers are 3832 * very rare. 3833 */ 3834 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3835 sbi->s_cluster_bits); 3836 3837 do_div(resv_clusters, 50); 3838 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3839 3840 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3841 } 3842 3843 static const char *ext4_quota_mode(struct super_block *sb) 3844 { 3845 #ifdef CONFIG_QUOTA 3846 if (!ext4_quota_capable(sb)) 3847 return "none"; 3848 3849 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3850 return "journalled"; 3851 else 3852 return "writeback"; 3853 #else 3854 return "disabled"; 3855 #endif 3856 } 3857 3858 static void ext4_setup_csum_trigger(struct super_block *sb, 3859 enum ext4_journal_trigger_type type, 3860 void (*trigger)( 3861 struct jbd2_buffer_trigger_type *type, 3862 struct buffer_head *bh, 3863 void *mapped_data, 3864 size_t size)) 3865 { 3866 struct ext4_sb_info *sbi = EXT4_SB(sb); 3867 3868 sbi->s_journal_triggers[type].sb = sb; 3869 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 3870 } 3871 3872 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3873 { 3874 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3875 char *orig_data = kstrdup(data, GFP_KERNEL); 3876 struct buffer_head *bh, **group_desc; 3877 struct ext4_super_block *es = NULL; 3878 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3879 struct flex_groups **flex_groups; 3880 ext4_fsblk_t block; 3881 ext4_fsblk_t sb_block = get_sb_block(&data); 3882 ext4_fsblk_t logical_sb_block; 3883 unsigned long offset = 0; 3884 unsigned long def_mount_opts; 3885 struct inode *root; 3886 const char *descr; 3887 int ret = -ENOMEM; 3888 int blocksize, clustersize; 3889 unsigned int db_count; 3890 unsigned int i; 3891 int needs_recovery, has_huge_files; 3892 __u64 blocks_count; 3893 int err = 0; 3894 ext4_group_t first_not_zeroed; 3895 struct ext4_parsed_options parsed_opts; 3896 3897 /* Set defaults for the variables that will be set during parsing */ 3898 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3899 parsed_opts.journal_devnum = 0; 3900 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 3901 3902 if ((data && !orig_data) || !sbi) 3903 goto out_free_base; 3904 3905 sbi->s_daxdev = dax_dev; 3906 sbi->s_blockgroup_lock = 3907 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3908 if (!sbi->s_blockgroup_lock) 3909 goto out_free_base; 3910 3911 sb->s_fs_info = sbi; 3912 sbi->s_sb = sb; 3913 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3914 sbi->s_sb_block = sb_block; 3915 sbi->s_sectors_written_start = 3916 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 3917 3918 /* Cleanup superblock name */ 3919 strreplace(sb->s_id, '/', '!'); 3920 3921 /* -EINVAL is default */ 3922 ret = -EINVAL; 3923 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3924 if (!blocksize) { 3925 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3926 goto out_fail; 3927 } 3928 3929 /* 3930 * The ext4 superblock will not be buffer aligned for other than 1kB 3931 * block sizes. We need to calculate the offset from buffer start. 3932 */ 3933 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3934 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3935 offset = do_div(logical_sb_block, blocksize); 3936 } else { 3937 logical_sb_block = sb_block; 3938 } 3939 3940 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 3941 if (IS_ERR(bh)) { 3942 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3943 ret = PTR_ERR(bh); 3944 goto out_fail; 3945 } 3946 /* 3947 * Note: s_es must be initialized as soon as possible because 3948 * some ext4 macro-instructions depend on its value 3949 */ 3950 es = (struct ext4_super_block *) (bh->b_data + offset); 3951 sbi->s_es = es; 3952 sb->s_magic = le16_to_cpu(es->s_magic); 3953 if (sb->s_magic != EXT4_SUPER_MAGIC) 3954 goto cantfind_ext4; 3955 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3956 3957 /* Warn if metadata_csum and gdt_csum are both set. */ 3958 if (ext4_has_feature_metadata_csum(sb) && 3959 ext4_has_feature_gdt_csum(sb)) 3960 ext4_warning(sb, "metadata_csum and uninit_bg are " 3961 "redundant flags; please run fsck."); 3962 3963 /* Check for a known checksum algorithm */ 3964 if (!ext4_verify_csum_type(sb, es)) { 3965 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3966 "unknown checksum algorithm."); 3967 silent = 1; 3968 goto cantfind_ext4; 3969 } 3970 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 3971 ext4_orphan_file_block_trigger); 3972 3973 /* Load the checksum driver */ 3974 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3975 if (IS_ERR(sbi->s_chksum_driver)) { 3976 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3977 ret = PTR_ERR(sbi->s_chksum_driver); 3978 sbi->s_chksum_driver = NULL; 3979 goto failed_mount; 3980 } 3981 3982 /* Check superblock checksum */ 3983 if (!ext4_superblock_csum_verify(sb, es)) { 3984 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3985 "invalid superblock checksum. Run e2fsck?"); 3986 silent = 1; 3987 ret = -EFSBADCRC; 3988 goto cantfind_ext4; 3989 } 3990 3991 /* Precompute checksum seed for all metadata */ 3992 if (ext4_has_feature_csum_seed(sb)) 3993 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3994 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3995 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3996 sizeof(es->s_uuid)); 3997 3998 /* Set defaults before we parse the mount options */ 3999 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4000 set_opt(sb, INIT_INODE_TABLE); 4001 if (def_mount_opts & EXT4_DEFM_DEBUG) 4002 set_opt(sb, DEBUG); 4003 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4004 set_opt(sb, GRPID); 4005 if (def_mount_opts & EXT4_DEFM_UID16) 4006 set_opt(sb, NO_UID32); 4007 /* xattr user namespace & acls are now defaulted on */ 4008 set_opt(sb, XATTR_USER); 4009 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4010 set_opt(sb, POSIX_ACL); 4011 #endif 4012 if (ext4_has_feature_fast_commit(sb)) 4013 set_opt2(sb, JOURNAL_FAST_COMMIT); 4014 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4015 if (ext4_has_metadata_csum(sb)) 4016 set_opt(sb, JOURNAL_CHECKSUM); 4017 4018 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4019 set_opt(sb, JOURNAL_DATA); 4020 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4021 set_opt(sb, ORDERED_DATA); 4022 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4023 set_opt(sb, WRITEBACK_DATA); 4024 4025 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4026 set_opt(sb, ERRORS_PANIC); 4027 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4028 set_opt(sb, ERRORS_CONT); 4029 else 4030 set_opt(sb, ERRORS_RO); 4031 /* block_validity enabled by default; disable with noblock_validity */ 4032 set_opt(sb, BLOCK_VALIDITY); 4033 if (def_mount_opts & EXT4_DEFM_DISCARD) 4034 set_opt(sb, DISCARD); 4035 4036 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4037 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4038 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4039 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4040 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4041 4042 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4043 set_opt(sb, BARRIER); 4044 4045 /* 4046 * enable delayed allocation by default 4047 * Use -o nodelalloc to turn it off 4048 */ 4049 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4050 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4051 set_opt(sb, DELALLOC); 4052 4053 /* 4054 * set default s_li_wait_mult for lazyinit, for the case there is 4055 * no mount option specified. 4056 */ 4057 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4058 4059 if (le32_to_cpu(es->s_log_block_size) > 4060 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4061 ext4_msg(sb, KERN_ERR, 4062 "Invalid log block size: %u", 4063 le32_to_cpu(es->s_log_block_size)); 4064 goto failed_mount; 4065 } 4066 if (le32_to_cpu(es->s_log_cluster_size) > 4067 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4068 ext4_msg(sb, KERN_ERR, 4069 "Invalid log cluster size: %u", 4070 le32_to_cpu(es->s_log_cluster_size)); 4071 goto failed_mount; 4072 } 4073 4074 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4075 4076 if (blocksize == PAGE_SIZE) 4077 set_opt(sb, DIOREAD_NOLOCK); 4078 4079 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4080 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4081 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4082 } else { 4083 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4084 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4085 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4086 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4087 sbi->s_first_ino); 4088 goto failed_mount; 4089 } 4090 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4091 (!is_power_of_2(sbi->s_inode_size)) || 4092 (sbi->s_inode_size > blocksize)) { 4093 ext4_msg(sb, KERN_ERR, 4094 "unsupported inode size: %d", 4095 sbi->s_inode_size); 4096 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4097 goto failed_mount; 4098 } 4099 /* 4100 * i_atime_extra is the last extra field available for 4101 * [acm]times in struct ext4_inode. Checking for that 4102 * field should suffice to ensure we have extra space 4103 * for all three. 4104 */ 4105 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4106 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4107 sb->s_time_gran = 1; 4108 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4109 } else { 4110 sb->s_time_gran = NSEC_PER_SEC; 4111 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4112 } 4113 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4114 } 4115 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4116 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4117 EXT4_GOOD_OLD_INODE_SIZE; 4118 if (ext4_has_feature_extra_isize(sb)) { 4119 unsigned v, max = (sbi->s_inode_size - 4120 EXT4_GOOD_OLD_INODE_SIZE); 4121 4122 v = le16_to_cpu(es->s_want_extra_isize); 4123 if (v > max) { 4124 ext4_msg(sb, KERN_ERR, 4125 "bad s_want_extra_isize: %d", v); 4126 goto failed_mount; 4127 } 4128 if (sbi->s_want_extra_isize < v) 4129 sbi->s_want_extra_isize = v; 4130 4131 v = le16_to_cpu(es->s_min_extra_isize); 4132 if (v > max) { 4133 ext4_msg(sb, KERN_ERR, 4134 "bad s_min_extra_isize: %d", v); 4135 goto failed_mount; 4136 } 4137 if (sbi->s_want_extra_isize < v) 4138 sbi->s_want_extra_isize = v; 4139 } 4140 } 4141 4142 if (sbi->s_es->s_mount_opts[0]) { 4143 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4144 sizeof(sbi->s_es->s_mount_opts), 4145 GFP_KERNEL); 4146 if (!s_mount_opts) 4147 goto failed_mount; 4148 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4149 ext4_msg(sb, KERN_WARNING, 4150 "failed to parse options in superblock: %s", 4151 s_mount_opts); 4152 } 4153 kfree(s_mount_opts); 4154 } 4155 sbi->s_def_mount_opt = sbi->s_mount_opt; 4156 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4157 goto failed_mount; 4158 4159 #ifdef CONFIG_UNICODE 4160 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4161 const struct ext4_sb_encodings *encoding_info; 4162 struct unicode_map *encoding; 4163 __u16 encoding_flags; 4164 4165 if (ext4_sb_read_encoding(es, &encoding_info, 4166 &encoding_flags)) { 4167 ext4_msg(sb, KERN_ERR, 4168 "Encoding requested by superblock is unknown"); 4169 goto failed_mount; 4170 } 4171 4172 encoding = utf8_load(encoding_info->version); 4173 if (IS_ERR(encoding)) { 4174 ext4_msg(sb, KERN_ERR, 4175 "can't mount with superblock charset: %s-%s " 4176 "not supported by the kernel. flags: 0x%x.", 4177 encoding_info->name, encoding_info->version, 4178 encoding_flags); 4179 goto failed_mount; 4180 } 4181 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4182 "%s-%s with flags 0x%hx", encoding_info->name, 4183 encoding_info->version?:"\b", encoding_flags); 4184 4185 sb->s_encoding = encoding; 4186 sb->s_encoding_flags = encoding_flags; 4187 } 4188 #endif 4189 4190 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4191 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4192 /* can't mount with both data=journal and dioread_nolock. */ 4193 clear_opt(sb, DIOREAD_NOLOCK); 4194 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4195 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4196 ext4_msg(sb, KERN_ERR, "can't mount with " 4197 "both data=journal and delalloc"); 4198 goto failed_mount; 4199 } 4200 if (test_opt(sb, DAX_ALWAYS)) { 4201 ext4_msg(sb, KERN_ERR, "can't mount with " 4202 "both data=journal and dax"); 4203 goto failed_mount; 4204 } 4205 if (ext4_has_feature_encrypt(sb)) { 4206 ext4_msg(sb, KERN_WARNING, 4207 "encrypted files will use data=ordered " 4208 "instead of data journaling mode"); 4209 } 4210 if (test_opt(sb, DELALLOC)) 4211 clear_opt(sb, DELALLOC); 4212 } else { 4213 sb->s_iflags |= SB_I_CGROUPWB; 4214 } 4215 4216 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4217 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4218 4219 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4220 (ext4_has_compat_features(sb) || 4221 ext4_has_ro_compat_features(sb) || 4222 ext4_has_incompat_features(sb))) 4223 ext4_msg(sb, KERN_WARNING, 4224 "feature flags set on rev 0 fs, " 4225 "running e2fsck is recommended"); 4226 4227 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4228 set_opt2(sb, HURD_COMPAT); 4229 if (ext4_has_feature_64bit(sb)) { 4230 ext4_msg(sb, KERN_ERR, 4231 "The Hurd can't support 64-bit file systems"); 4232 goto failed_mount; 4233 } 4234 4235 /* 4236 * ea_inode feature uses l_i_version field which is not 4237 * available in HURD_COMPAT mode. 4238 */ 4239 if (ext4_has_feature_ea_inode(sb)) { 4240 ext4_msg(sb, KERN_ERR, 4241 "ea_inode feature is not supported for Hurd"); 4242 goto failed_mount; 4243 } 4244 } 4245 4246 if (IS_EXT2_SB(sb)) { 4247 if (ext2_feature_set_ok(sb)) 4248 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4249 "using the ext4 subsystem"); 4250 else { 4251 /* 4252 * If we're probing be silent, if this looks like 4253 * it's actually an ext[34] filesystem. 4254 */ 4255 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4256 goto failed_mount; 4257 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4258 "to feature incompatibilities"); 4259 goto failed_mount; 4260 } 4261 } 4262 4263 if (IS_EXT3_SB(sb)) { 4264 if (ext3_feature_set_ok(sb)) 4265 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4266 "using the ext4 subsystem"); 4267 else { 4268 /* 4269 * If we're probing be silent, if this looks like 4270 * it's actually an ext4 filesystem. 4271 */ 4272 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4273 goto failed_mount; 4274 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4275 "to feature incompatibilities"); 4276 goto failed_mount; 4277 } 4278 } 4279 4280 /* 4281 * Check feature flags regardless of the revision level, since we 4282 * previously didn't change the revision level when setting the flags, 4283 * so there is a chance incompat flags are set on a rev 0 filesystem. 4284 */ 4285 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4286 goto failed_mount; 4287 4288 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4289 ext4_msg(sb, KERN_ERR, 4290 "Number of reserved GDT blocks insanely large: %d", 4291 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4292 goto failed_mount; 4293 } 4294 4295 if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0, 4296 bdev_nr_sectors(sb->s_bdev))) 4297 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4298 4299 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4300 if (ext4_has_feature_inline_data(sb)) { 4301 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4302 " that may contain inline data"); 4303 goto failed_mount; 4304 } 4305 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4306 ext4_msg(sb, KERN_ERR, 4307 "DAX unsupported by block device."); 4308 goto failed_mount; 4309 } 4310 } 4311 4312 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4313 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4314 es->s_encryption_level); 4315 goto failed_mount; 4316 } 4317 4318 if (sb->s_blocksize != blocksize) { 4319 /* 4320 * bh must be released before kill_bdev(), otherwise 4321 * it won't be freed and its page also. kill_bdev() 4322 * is called by sb_set_blocksize(). 4323 */ 4324 brelse(bh); 4325 /* Validate the filesystem blocksize */ 4326 if (!sb_set_blocksize(sb, blocksize)) { 4327 ext4_msg(sb, KERN_ERR, "bad block size %d", 4328 blocksize); 4329 bh = NULL; 4330 goto failed_mount; 4331 } 4332 4333 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4334 offset = do_div(logical_sb_block, blocksize); 4335 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4336 if (IS_ERR(bh)) { 4337 ext4_msg(sb, KERN_ERR, 4338 "Can't read superblock on 2nd try"); 4339 ret = PTR_ERR(bh); 4340 bh = NULL; 4341 goto failed_mount; 4342 } 4343 es = (struct ext4_super_block *)(bh->b_data + offset); 4344 sbi->s_es = es; 4345 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4346 ext4_msg(sb, KERN_ERR, 4347 "Magic mismatch, very weird!"); 4348 goto failed_mount; 4349 } 4350 } 4351 4352 has_huge_files = ext4_has_feature_huge_file(sb); 4353 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4354 has_huge_files); 4355 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4356 4357 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4358 if (ext4_has_feature_64bit(sb)) { 4359 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4360 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4361 !is_power_of_2(sbi->s_desc_size)) { 4362 ext4_msg(sb, KERN_ERR, 4363 "unsupported descriptor size %lu", 4364 sbi->s_desc_size); 4365 goto failed_mount; 4366 } 4367 } else 4368 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4369 4370 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4371 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4372 4373 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4374 if (sbi->s_inodes_per_block == 0) 4375 goto cantfind_ext4; 4376 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4377 sbi->s_inodes_per_group > blocksize * 8) { 4378 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4379 sbi->s_inodes_per_group); 4380 goto failed_mount; 4381 } 4382 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4383 sbi->s_inodes_per_block; 4384 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4385 sbi->s_sbh = bh; 4386 sbi->s_mount_state = le16_to_cpu(es->s_state); 4387 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4388 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4389 4390 for (i = 0; i < 4; i++) 4391 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4392 sbi->s_def_hash_version = es->s_def_hash_version; 4393 if (ext4_has_feature_dir_index(sb)) { 4394 i = le32_to_cpu(es->s_flags); 4395 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4396 sbi->s_hash_unsigned = 3; 4397 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4398 #ifdef __CHAR_UNSIGNED__ 4399 if (!sb_rdonly(sb)) 4400 es->s_flags |= 4401 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4402 sbi->s_hash_unsigned = 3; 4403 #else 4404 if (!sb_rdonly(sb)) 4405 es->s_flags |= 4406 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4407 #endif 4408 } 4409 } 4410 4411 /* Handle clustersize */ 4412 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4413 if (ext4_has_feature_bigalloc(sb)) { 4414 if (clustersize < blocksize) { 4415 ext4_msg(sb, KERN_ERR, 4416 "cluster size (%d) smaller than " 4417 "block size (%d)", clustersize, blocksize); 4418 goto failed_mount; 4419 } 4420 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4421 le32_to_cpu(es->s_log_block_size); 4422 sbi->s_clusters_per_group = 4423 le32_to_cpu(es->s_clusters_per_group); 4424 if (sbi->s_clusters_per_group > blocksize * 8) { 4425 ext4_msg(sb, KERN_ERR, 4426 "#clusters per group too big: %lu", 4427 sbi->s_clusters_per_group); 4428 goto failed_mount; 4429 } 4430 if (sbi->s_blocks_per_group != 4431 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4432 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4433 "clusters per group (%lu) inconsistent", 4434 sbi->s_blocks_per_group, 4435 sbi->s_clusters_per_group); 4436 goto failed_mount; 4437 } 4438 } else { 4439 if (clustersize != blocksize) { 4440 ext4_msg(sb, KERN_ERR, 4441 "fragment/cluster size (%d) != " 4442 "block size (%d)", clustersize, blocksize); 4443 goto failed_mount; 4444 } 4445 if (sbi->s_blocks_per_group > blocksize * 8) { 4446 ext4_msg(sb, KERN_ERR, 4447 "#blocks per group too big: %lu", 4448 sbi->s_blocks_per_group); 4449 goto failed_mount; 4450 } 4451 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4452 sbi->s_cluster_bits = 0; 4453 } 4454 sbi->s_cluster_ratio = clustersize / blocksize; 4455 4456 /* Do we have standard group size of clustersize * 8 blocks ? */ 4457 if (sbi->s_blocks_per_group == clustersize << 3) 4458 set_opt2(sb, STD_GROUP_SIZE); 4459 4460 /* 4461 * Test whether we have more sectors than will fit in sector_t, 4462 * and whether the max offset is addressable by the page cache. 4463 */ 4464 err = generic_check_addressable(sb->s_blocksize_bits, 4465 ext4_blocks_count(es)); 4466 if (err) { 4467 ext4_msg(sb, KERN_ERR, "filesystem" 4468 " too large to mount safely on this system"); 4469 goto failed_mount; 4470 } 4471 4472 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4473 goto cantfind_ext4; 4474 4475 /* check blocks count against device size */ 4476 blocks_count = sb_bdev_nr_blocks(sb); 4477 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4478 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4479 "exceeds size of device (%llu blocks)", 4480 ext4_blocks_count(es), blocks_count); 4481 goto failed_mount; 4482 } 4483 4484 /* 4485 * It makes no sense for the first data block to be beyond the end 4486 * of the filesystem. 4487 */ 4488 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4489 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4490 "block %u is beyond end of filesystem (%llu)", 4491 le32_to_cpu(es->s_first_data_block), 4492 ext4_blocks_count(es)); 4493 goto failed_mount; 4494 } 4495 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4496 (sbi->s_cluster_ratio == 1)) { 4497 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4498 "block is 0 with a 1k block and cluster size"); 4499 goto failed_mount; 4500 } 4501 4502 blocks_count = (ext4_blocks_count(es) - 4503 le32_to_cpu(es->s_first_data_block) + 4504 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4505 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4506 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4507 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4508 "(block count %llu, first data block %u, " 4509 "blocks per group %lu)", blocks_count, 4510 ext4_blocks_count(es), 4511 le32_to_cpu(es->s_first_data_block), 4512 EXT4_BLOCKS_PER_GROUP(sb)); 4513 goto failed_mount; 4514 } 4515 sbi->s_groups_count = blocks_count; 4516 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4517 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4518 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4519 le32_to_cpu(es->s_inodes_count)) { 4520 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4521 le32_to_cpu(es->s_inodes_count), 4522 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4523 ret = -EINVAL; 4524 goto failed_mount; 4525 } 4526 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4527 EXT4_DESC_PER_BLOCK(sb); 4528 if (ext4_has_feature_meta_bg(sb)) { 4529 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4530 ext4_msg(sb, KERN_WARNING, 4531 "first meta block group too large: %u " 4532 "(group descriptor block count %u)", 4533 le32_to_cpu(es->s_first_meta_bg), db_count); 4534 goto failed_mount; 4535 } 4536 } 4537 rcu_assign_pointer(sbi->s_group_desc, 4538 kvmalloc_array(db_count, 4539 sizeof(struct buffer_head *), 4540 GFP_KERNEL)); 4541 if (sbi->s_group_desc == NULL) { 4542 ext4_msg(sb, KERN_ERR, "not enough memory"); 4543 ret = -ENOMEM; 4544 goto failed_mount; 4545 } 4546 4547 bgl_lock_init(sbi->s_blockgroup_lock); 4548 4549 /* Pre-read the descriptors into the buffer cache */ 4550 for (i = 0; i < db_count; i++) { 4551 block = descriptor_loc(sb, logical_sb_block, i); 4552 ext4_sb_breadahead_unmovable(sb, block); 4553 } 4554 4555 for (i = 0; i < db_count; i++) { 4556 struct buffer_head *bh; 4557 4558 block = descriptor_loc(sb, logical_sb_block, i); 4559 bh = ext4_sb_bread_unmovable(sb, block); 4560 if (IS_ERR(bh)) { 4561 ext4_msg(sb, KERN_ERR, 4562 "can't read group descriptor %d", i); 4563 db_count = i; 4564 ret = PTR_ERR(bh); 4565 goto failed_mount2; 4566 } 4567 rcu_read_lock(); 4568 rcu_dereference(sbi->s_group_desc)[i] = bh; 4569 rcu_read_unlock(); 4570 } 4571 sbi->s_gdb_count = db_count; 4572 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4573 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4574 ret = -EFSCORRUPTED; 4575 goto failed_mount2; 4576 } 4577 4578 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4579 spin_lock_init(&sbi->s_error_lock); 4580 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4581 4582 /* Register extent status tree shrinker */ 4583 if (ext4_es_register_shrinker(sbi)) 4584 goto failed_mount3; 4585 4586 sbi->s_stripe = ext4_get_stripe_size(sbi); 4587 sbi->s_extent_max_zeroout_kb = 32; 4588 4589 /* 4590 * set up enough so that it can read an inode 4591 */ 4592 sb->s_op = &ext4_sops; 4593 sb->s_export_op = &ext4_export_ops; 4594 sb->s_xattr = ext4_xattr_handlers; 4595 #ifdef CONFIG_FS_ENCRYPTION 4596 sb->s_cop = &ext4_cryptops; 4597 #endif 4598 #ifdef CONFIG_FS_VERITY 4599 sb->s_vop = &ext4_verityops; 4600 #endif 4601 #ifdef CONFIG_QUOTA 4602 sb->dq_op = &ext4_quota_operations; 4603 if (ext4_has_feature_quota(sb)) 4604 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4605 else 4606 sb->s_qcop = &ext4_qctl_operations; 4607 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4608 #endif 4609 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4610 4611 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4612 mutex_init(&sbi->s_orphan_lock); 4613 4614 /* Initialize fast commit stuff */ 4615 atomic_set(&sbi->s_fc_subtid, 0); 4616 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4617 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4618 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4619 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4620 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4621 sbi->s_fc_bytes = 0; 4622 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4623 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4624 spin_lock_init(&sbi->s_fc_lock); 4625 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4626 sbi->s_fc_replay_state.fc_regions = NULL; 4627 sbi->s_fc_replay_state.fc_regions_size = 0; 4628 sbi->s_fc_replay_state.fc_regions_used = 0; 4629 sbi->s_fc_replay_state.fc_regions_valid = 0; 4630 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4631 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4632 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4633 4634 sb->s_root = NULL; 4635 4636 needs_recovery = (es->s_last_orphan != 0 || 4637 ext4_has_feature_orphan_present(sb) || 4638 ext4_has_feature_journal_needs_recovery(sb)); 4639 4640 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4641 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4642 goto failed_mount3a; 4643 4644 /* 4645 * The first inode we look at is the journal inode. Don't try 4646 * root first: it may be modified in the journal! 4647 */ 4648 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4649 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4650 if (err) 4651 goto failed_mount3a; 4652 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4653 ext4_has_feature_journal_needs_recovery(sb)) { 4654 ext4_msg(sb, KERN_ERR, "required journal recovery " 4655 "suppressed and not mounted read-only"); 4656 goto failed_mount_wq; 4657 } else { 4658 /* Nojournal mode, all journal mount options are illegal */ 4659 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4660 ext4_msg(sb, KERN_ERR, "can't mount with " 4661 "journal_checksum, fs mounted w/o journal"); 4662 goto failed_mount_wq; 4663 } 4664 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4665 ext4_msg(sb, KERN_ERR, "can't mount with " 4666 "journal_async_commit, fs mounted w/o journal"); 4667 goto failed_mount_wq; 4668 } 4669 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4670 ext4_msg(sb, KERN_ERR, "can't mount with " 4671 "commit=%lu, fs mounted w/o journal", 4672 sbi->s_commit_interval / HZ); 4673 goto failed_mount_wq; 4674 } 4675 if (EXT4_MOUNT_DATA_FLAGS & 4676 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4677 ext4_msg(sb, KERN_ERR, "can't mount with " 4678 "data=, fs mounted w/o journal"); 4679 goto failed_mount_wq; 4680 } 4681 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4682 clear_opt(sb, JOURNAL_CHECKSUM); 4683 clear_opt(sb, DATA_FLAGS); 4684 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4685 sbi->s_journal = NULL; 4686 needs_recovery = 0; 4687 goto no_journal; 4688 } 4689 4690 if (ext4_has_feature_64bit(sb) && 4691 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4692 JBD2_FEATURE_INCOMPAT_64BIT)) { 4693 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4694 goto failed_mount_wq; 4695 } 4696 4697 if (!set_journal_csum_feature_set(sb)) { 4698 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4699 "feature set"); 4700 goto failed_mount_wq; 4701 } 4702 4703 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4704 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4705 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4706 ext4_msg(sb, KERN_ERR, 4707 "Failed to set fast commit journal feature"); 4708 goto failed_mount_wq; 4709 } 4710 4711 /* We have now updated the journal if required, so we can 4712 * validate the data journaling mode. */ 4713 switch (test_opt(sb, DATA_FLAGS)) { 4714 case 0: 4715 /* No mode set, assume a default based on the journal 4716 * capabilities: ORDERED_DATA if the journal can 4717 * cope, else JOURNAL_DATA 4718 */ 4719 if (jbd2_journal_check_available_features 4720 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4721 set_opt(sb, ORDERED_DATA); 4722 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4723 } else { 4724 set_opt(sb, JOURNAL_DATA); 4725 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4726 } 4727 break; 4728 4729 case EXT4_MOUNT_ORDERED_DATA: 4730 case EXT4_MOUNT_WRITEBACK_DATA: 4731 if (!jbd2_journal_check_available_features 4732 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4733 ext4_msg(sb, KERN_ERR, "Journal does not support " 4734 "requested data journaling mode"); 4735 goto failed_mount_wq; 4736 } 4737 break; 4738 default: 4739 break; 4740 } 4741 4742 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4743 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4744 ext4_msg(sb, KERN_ERR, "can't mount with " 4745 "journal_async_commit in data=ordered mode"); 4746 goto failed_mount_wq; 4747 } 4748 4749 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4750 4751 sbi->s_journal->j_submit_inode_data_buffers = 4752 ext4_journal_submit_inode_data_buffers; 4753 sbi->s_journal->j_finish_inode_data_buffers = 4754 ext4_journal_finish_inode_data_buffers; 4755 4756 no_journal: 4757 if (!test_opt(sb, NO_MBCACHE)) { 4758 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4759 if (!sbi->s_ea_block_cache) { 4760 ext4_msg(sb, KERN_ERR, 4761 "Failed to create ea_block_cache"); 4762 goto failed_mount_wq; 4763 } 4764 4765 if (ext4_has_feature_ea_inode(sb)) { 4766 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4767 if (!sbi->s_ea_inode_cache) { 4768 ext4_msg(sb, KERN_ERR, 4769 "Failed to create ea_inode_cache"); 4770 goto failed_mount_wq; 4771 } 4772 } 4773 } 4774 4775 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4776 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4777 goto failed_mount_wq; 4778 } 4779 4780 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4781 !ext4_has_feature_encrypt(sb)) { 4782 ext4_set_feature_encrypt(sb); 4783 ext4_commit_super(sb); 4784 } 4785 4786 /* 4787 * Get the # of file system overhead blocks from the 4788 * superblock if present. 4789 */ 4790 if (es->s_overhead_clusters) 4791 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4792 else { 4793 err = ext4_calculate_overhead(sb); 4794 if (err) 4795 goto failed_mount_wq; 4796 } 4797 4798 /* 4799 * The maximum number of concurrent works can be high and 4800 * concurrency isn't really necessary. Limit it to 1. 4801 */ 4802 EXT4_SB(sb)->rsv_conversion_wq = 4803 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4804 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4805 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4806 ret = -ENOMEM; 4807 goto failed_mount4; 4808 } 4809 4810 /* 4811 * The jbd2_journal_load will have done any necessary log recovery, 4812 * so we can safely mount the rest of the filesystem now. 4813 */ 4814 4815 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4816 if (IS_ERR(root)) { 4817 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4818 ret = PTR_ERR(root); 4819 root = NULL; 4820 goto failed_mount4; 4821 } 4822 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4823 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4824 iput(root); 4825 goto failed_mount4; 4826 } 4827 4828 sb->s_root = d_make_root(root); 4829 if (!sb->s_root) { 4830 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4831 ret = -ENOMEM; 4832 goto failed_mount4; 4833 } 4834 4835 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4836 if (ret == -EROFS) { 4837 sb->s_flags |= SB_RDONLY; 4838 ret = 0; 4839 } else if (ret) 4840 goto failed_mount4a; 4841 4842 ext4_set_resv_clusters(sb); 4843 4844 if (test_opt(sb, BLOCK_VALIDITY)) { 4845 err = ext4_setup_system_zone(sb); 4846 if (err) { 4847 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4848 "zone (%d)", err); 4849 goto failed_mount4a; 4850 } 4851 } 4852 ext4_fc_replay_cleanup(sb); 4853 4854 ext4_ext_init(sb); 4855 4856 /* 4857 * Enable optimize_scan if number of groups is > threshold. This can be 4858 * turned off by passing "mb_optimize_scan=0". This can also be 4859 * turned on forcefully by passing "mb_optimize_scan=1". 4860 */ 4861 if (parsed_opts.mb_optimize_scan == 1) 4862 set_opt2(sb, MB_OPTIMIZE_SCAN); 4863 else if (parsed_opts.mb_optimize_scan == 0) 4864 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4865 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 4866 set_opt2(sb, MB_OPTIMIZE_SCAN); 4867 4868 err = ext4_mb_init(sb); 4869 if (err) { 4870 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4871 err); 4872 goto failed_mount5; 4873 } 4874 4875 /* 4876 * We can only set up the journal commit callback once 4877 * mballoc is initialized 4878 */ 4879 if (sbi->s_journal) 4880 sbi->s_journal->j_commit_callback = 4881 ext4_journal_commit_callback; 4882 4883 block = ext4_count_free_clusters(sb); 4884 ext4_free_blocks_count_set(sbi->s_es, 4885 EXT4_C2B(sbi, block)); 4886 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4887 GFP_KERNEL); 4888 if (!err) { 4889 unsigned long freei = ext4_count_free_inodes(sb); 4890 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4891 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4892 GFP_KERNEL); 4893 } 4894 /* 4895 * Update the checksum after updating free space/inode 4896 * counters. Otherwise the superblock can have an incorrect 4897 * checksum in the buffer cache until it is written out and 4898 * e2fsprogs programs trying to open a file system immediately 4899 * after it is mounted can fail. 4900 */ 4901 ext4_superblock_csum_set(sb); 4902 if (!err) 4903 err = percpu_counter_init(&sbi->s_dirs_counter, 4904 ext4_count_dirs(sb), GFP_KERNEL); 4905 if (!err) 4906 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4907 GFP_KERNEL); 4908 if (!err) 4909 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 4910 GFP_KERNEL); 4911 if (!err) 4912 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4913 4914 if (err) { 4915 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4916 goto failed_mount6; 4917 } 4918 4919 if (ext4_has_feature_flex_bg(sb)) 4920 if (!ext4_fill_flex_info(sb)) { 4921 ext4_msg(sb, KERN_ERR, 4922 "unable to initialize " 4923 "flex_bg meta info!"); 4924 ret = -ENOMEM; 4925 goto failed_mount6; 4926 } 4927 4928 err = ext4_register_li_request(sb, first_not_zeroed); 4929 if (err) 4930 goto failed_mount6; 4931 4932 err = ext4_register_sysfs(sb); 4933 if (err) 4934 goto failed_mount7; 4935 4936 err = ext4_init_orphan_info(sb); 4937 if (err) 4938 goto failed_mount8; 4939 #ifdef CONFIG_QUOTA 4940 /* Enable quota usage during mount. */ 4941 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4942 err = ext4_enable_quotas(sb); 4943 if (err) 4944 goto failed_mount9; 4945 } 4946 #endif /* CONFIG_QUOTA */ 4947 4948 /* 4949 * Save the original bdev mapping's wb_err value which could be 4950 * used to detect the metadata async write error. 4951 */ 4952 spin_lock_init(&sbi->s_bdev_wb_lock); 4953 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4954 &sbi->s_bdev_wb_err); 4955 sb->s_bdev->bd_super = sb; 4956 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4957 ext4_orphan_cleanup(sb, es); 4958 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4959 if (needs_recovery) { 4960 ext4_msg(sb, KERN_INFO, "recovery complete"); 4961 err = ext4_mark_recovery_complete(sb, es); 4962 if (err) 4963 goto failed_mount9; 4964 } 4965 if (EXT4_SB(sb)->s_journal) { 4966 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4967 descr = " journalled data mode"; 4968 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4969 descr = " ordered data mode"; 4970 else 4971 descr = " writeback data mode"; 4972 } else 4973 descr = "out journal"; 4974 4975 if (test_opt(sb, DISCARD)) { 4976 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4977 if (!blk_queue_discard(q)) 4978 ext4_msg(sb, KERN_WARNING, 4979 "mounting with \"discard\" option, but " 4980 "the device does not support discard"); 4981 } 4982 4983 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4984 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4985 "Opts: %.*s%s%s. Quota mode: %s.", descr, 4986 (int) sizeof(sbi->s_es->s_mount_opts), 4987 sbi->s_es->s_mount_opts, 4988 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 4989 ext4_quota_mode(sb)); 4990 4991 if (es->s_error_count) 4992 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4993 4994 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4995 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4996 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4997 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4998 atomic_set(&sbi->s_warning_count, 0); 4999 atomic_set(&sbi->s_msg_count, 0); 5000 5001 kfree(orig_data); 5002 return 0; 5003 5004 cantfind_ext4: 5005 if (!silent) 5006 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5007 goto failed_mount; 5008 5009 failed_mount9: 5010 ext4_release_orphan_info(sb); 5011 failed_mount8: 5012 ext4_unregister_sysfs(sb); 5013 kobject_put(&sbi->s_kobj); 5014 failed_mount7: 5015 ext4_unregister_li_request(sb); 5016 failed_mount6: 5017 ext4_mb_release(sb); 5018 rcu_read_lock(); 5019 flex_groups = rcu_dereference(sbi->s_flex_groups); 5020 if (flex_groups) { 5021 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5022 kvfree(flex_groups[i]); 5023 kvfree(flex_groups); 5024 } 5025 rcu_read_unlock(); 5026 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5027 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5028 percpu_counter_destroy(&sbi->s_dirs_counter); 5029 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5030 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5031 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5032 failed_mount5: 5033 ext4_ext_release(sb); 5034 ext4_release_system_zone(sb); 5035 failed_mount4a: 5036 dput(sb->s_root); 5037 sb->s_root = NULL; 5038 failed_mount4: 5039 ext4_msg(sb, KERN_ERR, "mount failed"); 5040 if (EXT4_SB(sb)->rsv_conversion_wq) 5041 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5042 failed_mount_wq: 5043 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5044 sbi->s_ea_inode_cache = NULL; 5045 5046 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5047 sbi->s_ea_block_cache = NULL; 5048 5049 if (sbi->s_journal) { 5050 /* flush s_error_work before journal destroy. */ 5051 flush_work(&sbi->s_error_work); 5052 jbd2_journal_destroy(sbi->s_journal); 5053 sbi->s_journal = NULL; 5054 } 5055 failed_mount3a: 5056 ext4_es_unregister_shrinker(sbi); 5057 failed_mount3: 5058 /* flush s_error_work before sbi destroy */ 5059 flush_work(&sbi->s_error_work); 5060 del_timer_sync(&sbi->s_err_report); 5061 ext4_stop_mmpd(sbi); 5062 failed_mount2: 5063 rcu_read_lock(); 5064 group_desc = rcu_dereference(sbi->s_group_desc); 5065 for (i = 0; i < db_count; i++) 5066 brelse(group_desc[i]); 5067 kvfree(group_desc); 5068 rcu_read_unlock(); 5069 failed_mount: 5070 if (sbi->s_chksum_driver) 5071 crypto_free_shash(sbi->s_chksum_driver); 5072 5073 #ifdef CONFIG_UNICODE 5074 utf8_unload(sb->s_encoding); 5075 #endif 5076 5077 #ifdef CONFIG_QUOTA 5078 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5079 kfree(get_qf_name(sb, sbi, i)); 5080 #endif 5081 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5082 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5083 brelse(bh); 5084 ext4_blkdev_remove(sbi); 5085 out_fail: 5086 sb->s_fs_info = NULL; 5087 kfree(sbi->s_blockgroup_lock); 5088 out_free_base: 5089 kfree(sbi); 5090 kfree(orig_data); 5091 fs_put_dax(dax_dev); 5092 return err ? err : ret; 5093 } 5094 5095 /* 5096 * Setup any per-fs journal parameters now. We'll do this both on 5097 * initial mount, once the journal has been initialised but before we've 5098 * done any recovery; and again on any subsequent remount. 5099 */ 5100 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5101 { 5102 struct ext4_sb_info *sbi = EXT4_SB(sb); 5103 5104 journal->j_commit_interval = sbi->s_commit_interval; 5105 journal->j_min_batch_time = sbi->s_min_batch_time; 5106 journal->j_max_batch_time = sbi->s_max_batch_time; 5107 ext4_fc_init(sb, journal); 5108 5109 write_lock(&journal->j_state_lock); 5110 if (test_opt(sb, BARRIER)) 5111 journal->j_flags |= JBD2_BARRIER; 5112 else 5113 journal->j_flags &= ~JBD2_BARRIER; 5114 if (test_opt(sb, DATA_ERR_ABORT)) 5115 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5116 else 5117 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5118 write_unlock(&journal->j_state_lock); 5119 } 5120 5121 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5122 unsigned int journal_inum) 5123 { 5124 struct inode *journal_inode; 5125 5126 /* 5127 * Test for the existence of a valid inode on disk. Bad things 5128 * happen if we iget() an unused inode, as the subsequent iput() 5129 * will try to delete it. 5130 */ 5131 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5132 if (IS_ERR(journal_inode)) { 5133 ext4_msg(sb, KERN_ERR, "no journal found"); 5134 return NULL; 5135 } 5136 if (!journal_inode->i_nlink) { 5137 make_bad_inode(journal_inode); 5138 iput(journal_inode); 5139 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5140 return NULL; 5141 } 5142 5143 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5144 journal_inode, journal_inode->i_size); 5145 if (!S_ISREG(journal_inode->i_mode)) { 5146 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5147 iput(journal_inode); 5148 return NULL; 5149 } 5150 return journal_inode; 5151 } 5152 5153 static journal_t *ext4_get_journal(struct super_block *sb, 5154 unsigned int journal_inum) 5155 { 5156 struct inode *journal_inode; 5157 journal_t *journal; 5158 5159 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5160 return NULL; 5161 5162 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5163 if (!journal_inode) 5164 return NULL; 5165 5166 journal = jbd2_journal_init_inode(journal_inode); 5167 if (!journal) { 5168 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5169 iput(journal_inode); 5170 return NULL; 5171 } 5172 journal->j_private = sb; 5173 ext4_init_journal_params(sb, journal); 5174 return journal; 5175 } 5176 5177 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5178 dev_t j_dev) 5179 { 5180 struct buffer_head *bh; 5181 journal_t *journal; 5182 ext4_fsblk_t start; 5183 ext4_fsblk_t len; 5184 int hblock, blocksize; 5185 ext4_fsblk_t sb_block; 5186 unsigned long offset; 5187 struct ext4_super_block *es; 5188 struct block_device *bdev; 5189 5190 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5191 return NULL; 5192 5193 bdev = ext4_blkdev_get(j_dev, sb); 5194 if (bdev == NULL) 5195 return NULL; 5196 5197 blocksize = sb->s_blocksize; 5198 hblock = bdev_logical_block_size(bdev); 5199 if (blocksize < hblock) { 5200 ext4_msg(sb, KERN_ERR, 5201 "blocksize too small for journal device"); 5202 goto out_bdev; 5203 } 5204 5205 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5206 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5207 set_blocksize(bdev, blocksize); 5208 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5209 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5210 "external journal"); 5211 goto out_bdev; 5212 } 5213 5214 es = (struct ext4_super_block *) (bh->b_data + offset); 5215 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5216 !(le32_to_cpu(es->s_feature_incompat) & 5217 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5218 ext4_msg(sb, KERN_ERR, "external journal has " 5219 "bad superblock"); 5220 brelse(bh); 5221 goto out_bdev; 5222 } 5223 5224 if ((le32_to_cpu(es->s_feature_ro_compat) & 5225 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5226 es->s_checksum != ext4_superblock_csum(sb, es)) { 5227 ext4_msg(sb, KERN_ERR, "external journal has " 5228 "corrupt superblock"); 5229 brelse(bh); 5230 goto out_bdev; 5231 } 5232 5233 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5234 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5235 brelse(bh); 5236 goto out_bdev; 5237 } 5238 5239 len = ext4_blocks_count(es); 5240 start = sb_block + 1; 5241 brelse(bh); /* we're done with the superblock */ 5242 5243 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5244 start, len, blocksize); 5245 if (!journal) { 5246 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5247 goto out_bdev; 5248 } 5249 journal->j_private = sb; 5250 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5251 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5252 goto out_journal; 5253 } 5254 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5255 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5256 "user (unsupported) - %d", 5257 be32_to_cpu(journal->j_superblock->s_nr_users)); 5258 goto out_journal; 5259 } 5260 EXT4_SB(sb)->s_journal_bdev = bdev; 5261 ext4_init_journal_params(sb, journal); 5262 return journal; 5263 5264 out_journal: 5265 jbd2_journal_destroy(journal); 5266 out_bdev: 5267 ext4_blkdev_put(bdev); 5268 return NULL; 5269 } 5270 5271 static int ext4_load_journal(struct super_block *sb, 5272 struct ext4_super_block *es, 5273 unsigned long journal_devnum) 5274 { 5275 journal_t *journal; 5276 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5277 dev_t journal_dev; 5278 int err = 0; 5279 int really_read_only; 5280 int journal_dev_ro; 5281 5282 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5283 return -EFSCORRUPTED; 5284 5285 if (journal_devnum && 5286 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5287 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5288 "numbers have changed"); 5289 journal_dev = new_decode_dev(journal_devnum); 5290 } else 5291 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5292 5293 if (journal_inum && journal_dev) { 5294 ext4_msg(sb, KERN_ERR, 5295 "filesystem has both journal inode and journal device!"); 5296 return -EINVAL; 5297 } 5298 5299 if (journal_inum) { 5300 journal = ext4_get_journal(sb, journal_inum); 5301 if (!journal) 5302 return -EINVAL; 5303 } else { 5304 journal = ext4_get_dev_journal(sb, journal_dev); 5305 if (!journal) 5306 return -EINVAL; 5307 } 5308 5309 journal_dev_ro = bdev_read_only(journal->j_dev); 5310 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5311 5312 if (journal_dev_ro && !sb_rdonly(sb)) { 5313 ext4_msg(sb, KERN_ERR, 5314 "journal device read-only, try mounting with '-o ro'"); 5315 err = -EROFS; 5316 goto err_out; 5317 } 5318 5319 /* 5320 * Are we loading a blank journal or performing recovery after a 5321 * crash? For recovery, we need to check in advance whether we 5322 * can get read-write access to the device. 5323 */ 5324 if (ext4_has_feature_journal_needs_recovery(sb)) { 5325 if (sb_rdonly(sb)) { 5326 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5327 "required on readonly filesystem"); 5328 if (really_read_only) { 5329 ext4_msg(sb, KERN_ERR, "write access " 5330 "unavailable, cannot proceed " 5331 "(try mounting with noload)"); 5332 err = -EROFS; 5333 goto err_out; 5334 } 5335 ext4_msg(sb, KERN_INFO, "write access will " 5336 "be enabled during recovery"); 5337 } 5338 } 5339 5340 if (!(journal->j_flags & JBD2_BARRIER)) 5341 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5342 5343 if (!ext4_has_feature_journal_needs_recovery(sb)) 5344 err = jbd2_journal_wipe(journal, !really_read_only); 5345 if (!err) { 5346 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5347 if (save) 5348 memcpy(save, ((char *) es) + 5349 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5350 err = jbd2_journal_load(journal); 5351 if (save) 5352 memcpy(((char *) es) + EXT4_S_ERR_START, 5353 save, EXT4_S_ERR_LEN); 5354 kfree(save); 5355 } 5356 5357 if (err) { 5358 ext4_msg(sb, KERN_ERR, "error loading journal"); 5359 goto err_out; 5360 } 5361 5362 EXT4_SB(sb)->s_journal = journal; 5363 err = ext4_clear_journal_err(sb, es); 5364 if (err) { 5365 EXT4_SB(sb)->s_journal = NULL; 5366 jbd2_journal_destroy(journal); 5367 return err; 5368 } 5369 5370 if (!really_read_only && journal_devnum && 5371 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5372 es->s_journal_dev = cpu_to_le32(journal_devnum); 5373 5374 /* Make sure we flush the recovery flag to disk. */ 5375 ext4_commit_super(sb); 5376 } 5377 5378 return 0; 5379 5380 err_out: 5381 jbd2_journal_destroy(journal); 5382 return err; 5383 } 5384 5385 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5386 static void ext4_update_super(struct super_block *sb) 5387 { 5388 struct ext4_sb_info *sbi = EXT4_SB(sb); 5389 struct ext4_super_block *es = sbi->s_es; 5390 struct buffer_head *sbh = sbi->s_sbh; 5391 5392 lock_buffer(sbh); 5393 /* 5394 * If the file system is mounted read-only, don't update the 5395 * superblock write time. This avoids updating the superblock 5396 * write time when we are mounting the root file system 5397 * read/only but we need to replay the journal; at that point, 5398 * for people who are east of GMT and who make their clock 5399 * tick in localtime for Windows bug-for-bug compatibility, 5400 * the clock is set in the future, and this will cause e2fsck 5401 * to complain and force a full file system check. 5402 */ 5403 if (!(sb->s_flags & SB_RDONLY)) 5404 ext4_update_tstamp(es, s_wtime); 5405 es->s_kbytes_written = 5406 cpu_to_le64(sbi->s_kbytes_written + 5407 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5408 sbi->s_sectors_written_start) >> 1)); 5409 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5410 ext4_free_blocks_count_set(es, 5411 EXT4_C2B(sbi, percpu_counter_sum_positive( 5412 &sbi->s_freeclusters_counter))); 5413 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5414 es->s_free_inodes_count = 5415 cpu_to_le32(percpu_counter_sum_positive( 5416 &sbi->s_freeinodes_counter)); 5417 /* Copy error information to the on-disk superblock */ 5418 spin_lock(&sbi->s_error_lock); 5419 if (sbi->s_add_error_count > 0) { 5420 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5421 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5422 __ext4_update_tstamp(&es->s_first_error_time, 5423 &es->s_first_error_time_hi, 5424 sbi->s_first_error_time); 5425 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5426 sizeof(es->s_first_error_func)); 5427 es->s_first_error_line = 5428 cpu_to_le32(sbi->s_first_error_line); 5429 es->s_first_error_ino = 5430 cpu_to_le32(sbi->s_first_error_ino); 5431 es->s_first_error_block = 5432 cpu_to_le64(sbi->s_first_error_block); 5433 es->s_first_error_errcode = 5434 ext4_errno_to_code(sbi->s_first_error_code); 5435 } 5436 __ext4_update_tstamp(&es->s_last_error_time, 5437 &es->s_last_error_time_hi, 5438 sbi->s_last_error_time); 5439 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5440 sizeof(es->s_last_error_func)); 5441 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5442 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5443 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5444 es->s_last_error_errcode = 5445 ext4_errno_to_code(sbi->s_last_error_code); 5446 /* 5447 * Start the daily error reporting function if it hasn't been 5448 * started already 5449 */ 5450 if (!es->s_error_count) 5451 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5452 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5453 sbi->s_add_error_count = 0; 5454 } 5455 spin_unlock(&sbi->s_error_lock); 5456 5457 ext4_superblock_csum_set(sb); 5458 unlock_buffer(sbh); 5459 } 5460 5461 static int ext4_commit_super(struct super_block *sb) 5462 { 5463 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5464 int error = 0; 5465 5466 if (!sbh) 5467 return -EINVAL; 5468 if (block_device_ejected(sb)) 5469 return -ENODEV; 5470 5471 ext4_update_super(sb); 5472 5473 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5474 /* 5475 * Oh, dear. A previous attempt to write the 5476 * superblock failed. This could happen because the 5477 * USB device was yanked out. Or it could happen to 5478 * be a transient write error and maybe the block will 5479 * be remapped. Nothing we can do but to retry the 5480 * write and hope for the best. 5481 */ 5482 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5483 "superblock detected"); 5484 clear_buffer_write_io_error(sbh); 5485 set_buffer_uptodate(sbh); 5486 } 5487 BUFFER_TRACE(sbh, "marking dirty"); 5488 mark_buffer_dirty(sbh); 5489 error = __sync_dirty_buffer(sbh, 5490 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5491 if (buffer_write_io_error(sbh)) { 5492 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5493 "superblock"); 5494 clear_buffer_write_io_error(sbh); 5495 set_buffer_uptodate(sbh); 5496 } 5497 return error; 5498 } 5499 5500 /* 5501 * Have we just finished recovery? If so, and if we are mounting (or 5502 * remounting) the filesystem readonly, then we will end up with a 5503 * consistent fs on disk. Record that fact. 5504 */ 5505 static int ext4_mark_recovery_complete(struct super_block *sb, 5506 struct ext4_super_block *es) 5507 { 5508 int err; 5509 journal_t *journal = EXT4_SB(sb)->s_journal; 5510 5511 if (!ext4_has_feature_journal(sb)) { 5512 if (journal != NULL) { 5513 ext4_error(sb, "Journal got removed while the fs was " 5514 "mounted!"); 5515 return -EFSCORRUPTED; 5516 } 5517 return 0; 5518 } 5519 jbd2_journal_lock_updates(journal); 5520 err = jbd2_journal_flush(journal, 0); 5521 if (err < 0) 5522 goto out; 5523 5524 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5525 ext4_has_feature_orphan_present(sb))) { 5526 if (!ext4_orphan_file_empty(sb)) { 5527 ext4_error(sb, "Orphan file not empty on read-only fs."); 5528 err = -EFSCORRUPTED; 5529 goto out; 5530 } 5531 ext4_clear_feature_journal_needs_recovery(sb); 5532 ext4_clear_feature_orphan_present(sb); 5533 ext4_commit_super(sb); 5534 } 5535 out: 5536 jbd2_journal_unlock_updates(journal); 5537 return err; 5538 } 5539 5540 /* 5541 * If we are mounting (or read-write remounting) a filesystem whose journal 5542 * has recorded an error from a previous lifetime, move that error to the 5543 * main filesystem now. 5544 */ 5545 static int ext4_clear_journal_err(struct super_block *sb, 5546 struct ext4_super_block *es) 5547 { 5548 journal_t *journal; 5549 int j_errno; 5550 const char *errstr; 5551 5552 if (!ext4_has_feature_journal(sb)) { 5553 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5554 return -EFSCORRUPTED; 5555 } 5556 5557 journal = EXT4_SB(sb)->s_journal; 5558 5559 /* 5560 * Now check for any error status which may have been recorded in the 5561 * journal by a prior ext4_error() or ext4_abort() 5562 */ 5563 5564 j_errno = jbd2_journal_errno(journal); 5565 if (j_errno) { 5566 char nbuf[16]; 5567 5568 errstr = ext4_decode_error(sb, j_errno, nbuf); 5569 ext4_warning(sb, "Filesystem error recorded " 5570 "from previous mount: %s", errstr); 5571 ext4_warning(sb, "Marking fs in need of filesystem check."); 5572 5573 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5574 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5575 ext4_commit_super(sb); 5576 5577 jbd2_journal_clear_err(journal); 5578 jbd2_journal_update_sb_errno(journal); 5579 } 5580 return 0; 5581 } 5582 5583 /* 5584 * Force the running and committing transactions to commit, 5585 * and wait on the commit. 5586 */ 5587 int ext4_force_commit(struct super_block *sb) 5588 { 5589 journal_t *journal; 5590 5591 if (sb_rdonly(sb)) 5592 return 0; 5593 5594 journal = EXT4_SB(sb)->s_journal; 5595 return ext4_journal_force_commit(journal); 5596 } 5597 5598 static int ext4_sync_fs(struct super_block *sb, int wait) 5599 { 5600 int ret = 0; 5601 tid_t target; 5602 bool needs_barrier = false; 5603 struct ext4_sb_info *sbi = EXT4_SB(sb); 5604 5605 if (unlikely(ext4_forced_shutdown(sbi))) 5606 return 0; 5607 5608 trace_ext4_sync_fs(sb, wait); 5609 flush_workqueue(sbi->rsv_conversion_wq); 5610 /* 5611 * Writeback quota in non-journalled quota case - journalled quota has 5612 * no dirty dquots 5613 */ 5614 dquot_writeback_dquots(sb, -1); 5615 /* 5616 * Data writeback is possible w/o journal transaction, so barrier must 5617 * being sent at the end of the function. But we can skip it if 5618 * transaction_commit will do it for us. 5619 */ 5620 if (sbi->s_journal) { 5621 target = jbd2_get_latest_transaction(sbi->s_journal); 5622 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5623 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5624 needs_barrier = true; 5625 5626 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5627 if (wait) 5628 ret = jbd2_log_wait_commit(sbi->s_journal, 5629 target); 5630 } 5631 } else if (wait && test_opt(sb, BARRIER)) 5632 needs_barrier = true; 5633 if (needs_barrier) { 5634 int err; 5635 err = blkdev_issue_flush(sb->s_bdev); 5636 if (!ret) 5637 ret = err; 5638 } 5639 5640 return ret; 5641 } 5642 5643 /* 5644 * LVM calls this function before a (read-only) snapshot is created. This 5645 * gives us a chance to flush the journal completely and mark the fs clean. 5646 * 5647 * Note that only this function cannot bring a filesystem to be in a clean 5648 * state independently. It relies on upper layer to stop all data & metadata 5649 * modifications. 5650 */ 5651 static int ext4_freeze(struct super_block *sb) 5652 { 5653 int error = 0; 5654 journal_t *journal; 5655 5656 if (sb_rdonly(sb)) 5657 return 0; 5658 5659 journal = EXT4_SB(sb)->s_journal; 5660 5661 if (journal) { 5662 /* Now we set up the journal barrier. */ 5663 jbd2_journal_lock_updates(journal); 5664 5665 /* 5666 * Don't clear the needs_recovery flag if we failed to 5667 * flush the journal. 5668 */ 5669 error = jbd2_journal_flush(journal, 0); 5670 if (error < 0) 5671 goto out; 5672 5673 /* Journal blocked and flushed, clear needs_recovery flag. */ 5674 ext4_clear_feature_journal_needs_recovery(sb); 5675 if (ext4_orphan_file_empty(sb)) 5676 ext4_clear_feature_orphan_present(sb); 5677 } 5678 5679 error = ext4_commit_super(sb); 5680 out: 5681 if (journal) 5682 /* we rely on upper layer to stop further updates */ 5683 jbd2_journal_unlock_updates(journal); 5684 return error; 5685 } 5686 5687 /* 5688 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5689 * flag here, even though the filesystem is not technically dirty yet. 5690 */ 5691 static int ext4_unfreeze(struct super_block *sb) 5692 { 5693 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5694 return 0; 5695 5696 if (EXT4_SB(sb)->s_journal) { 5697 /* Reset the needs_recovery flag before the fs is unlocked. */ 5698 ext4_set_feature_journal_needs_recovery(sb); 5699 if (ext4_has_feature_orphan_file(sb)) 5700 ext4_set_feature_orphan_present(sb); 5701 } 5702 5703 ext4_commit_super(sb); 5704 return 0; 5705 } 5706 5707 /* 5708 * Structure to save mount options for ext4_remount's benefit 5709 */ 5710 struct ext4_mount_options { 5711 unsigned long s_mount_opt; 5712 unsigned long s_mount_opt2; 5713 kuid_t s_resuid; 5714 kgid_t s_resgid; 5715 unsigned long s_commit_interval; 5716 u32 s_min_batch_time, s_max_batch_time; 5717 #ifdef CONFIG_QUOTA 5718 int s_jquota_fmt; 5719 char *s_qf_names[EXT4_MAXQUOTAS]; 5720 #endif 5721 }; 5722 5723 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5724 { 5725 struct ext4_super_block *es; 5726 struct ext4_sb_info *sbi = EXT4_SB(sb); 5727 unsigned long old_sb_flags, vfs_flags; 5728 struct ext4_mount_options old_opts; 5729 int enable_quota = 0; 5730 ext4_group_t g; 5731 int err = 0; 5732 #ifdef CONFIG_QUOTA 5733 int i, j; 5734 char *to_free[EXT4_MAXQUOTAS]; 5735 #endif 5736 char *orig_data = kstrdup(data, GFP_KERNEL); 5737 struct ext4_parsed_options parsed_opts; 5738 5739 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5740 parsed_opts.journal_devnum = 0; 5741 5742 if (data && !orig_data) 5743 return -ENOMEM; 5744 5745 /* Store the original options */ 5746 old_sb_flags = sb->s_flags; 5747 old_opts.s_mount_opt = sbi->s_mount_opt; 5748 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5749 old_opts.s_resuid = sbi->s_resuid; 5750 old_opts.s_resgid = sbi->s_resgid; 5751 old_opts.s_commit_interval = sbi->s_commit_interval; 5752 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5753 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5754 #ifdef CONFIG_QUOTA 5755 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5756 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5757 if (sbi->s_qf_names[i]) { 5758 char *qf_name = get_qf_name(sb, sbi, i); 5759 5760 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5761 if (!old_opts.s_qf_names[i]) { 5762 for (j = 0; j < i; j++) 5763 kfree(old_opts.s_qf_names[j]); 5764 kfree(orig_data); 5765 return -ENOMEM; 5766 } 5767 } else 5768 old_opts.s_qf_names[i] = NULL; 5769 #endif 5770 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5771 parsed_opts.journal_ioprio = 5772 sbi->s_journal->j_task->io_context->ioprio; 5773 5774 /* 5775 * Some options can be enabled by ext4 and/or by VFS mount flag 5776 * either way we need to make sure it matches in both *flags and 5777 * s_flags. Copy those selected flags from *flags to s_flags 5778 */ 5779 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5780 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5781 5782 if (!parse_options(data, sb, &parsed_opts, 1)) { 5783 err = -EINVAL; 5784 goto restore_opts; 5785 } 5786 5787 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5788 test_opt(sb, JOURNAL_CHECKSUM)) { 5789 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5790 "during remount not supported; ignoring"); 5791 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5792 } 5793 5794 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5795 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5796 ext4_msg(sb, KERN_ERR, "can't mount with " 5797 "both data=journal and delalloc"); 5798 err = -EINVAL; 5799 goto restore_opts; 5800 } 5801 if (test_opt(sb, DIOREAD_NOLOCK)) { 5802 ext4_msg(sb, KERN_ERR, "can't mount with " 5803 "both data=journal and dioread_nolock"); 5804 err = -EINVAL; 5805 goto restore_opts; 5806 } 5807 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5808 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5809 ext4_msg(sb, KERN_ERR, "can't mount with " 5810 "journal_async_commit in data=ordered mode"); 5811 err = -EINVAL; 5812 goto restore_opts; 5813 } 5814 } 5815 5816 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5817 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5818 err = -EINVAL; 5819 goto restore_opts; 5820 } 5821 5822 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5823 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5824 5825 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5826 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5827 5828 es = sbi->s_es; 5829 5830 if (sbi->s_journal) { 5831 ext4_init_journal_params(sb, sbi->s_journal); 5832 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5833 } 5834 5835 /* Flush outstanding errors before changing fs state */ 5836 flush_work(&sbi->s_error_work); 5837 5838 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5839 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5840 err = -EROFS; 5841 goto restore_opts; 5842 } 5843 5844 if (*flags & SB_RDONLY) { 5845 err = sync_filesystem(sb); 5846 if (err < 0) 5847 goto restore_opts; 5848 err = dquot_suspend(sb, -1); 5849 if (err < 0) 5850 goto restore_opts; 5851 5852 /* 5853 * First of all, the unconditional stuff we have to do 5854 * to disable replay of the journal when we next remount 5855 */ 5856 sb->s_flags |= SB_RDONLY; 5857 5858 /* 5859 * OK, test if we are remounting a valid rw partition 5860 * readonly, and if so set the rdonly flag and then 5861 * mark the partition as valid again. 5862 */ 5863 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5864 (sbi->s_mount_state & EXT4_VALID_FS)) 5865 es->s_state = cpu_to_le16(sbi->s_mount_state); 5866 5867 if (sbi->s_journal) { 5868 /* 5869 * We let remount-ro finish even if marking fs 5870 * as clean failed... 5871 */ 5872 ext4_mark_recovery_complete(sb, es); 5873 } 5874 } else { 5875 /* Make sure we can mount this feature set readwrite */ 5876 if (ext4_has_feature_readonly(sb) || 5877 !ext4_feature_set_ok(sb, 0)) { 5878 err = -EROFS; 5879 goto restore_opts; 5880 } 5881 /* 5882 * Make sure the group descriptor checksums 5883 * are sane. If they aren't, refuse to remount r/w. 5884 */ 5885 for (g = 0; g < sbi->s_groups_count; g++) { 5886 struct ext4_group_desc *gdp = 5887 ext4_get_group_desc(sb, g, NULL); 5888 5889 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5890 ext4_msg(sb, KERN_ERR, 5891 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5892 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5893 le16_to_cpu(gdp->bg_checksum)); 5894 err = -EFSBADCRC; 5895 goto restore_opts; 5896 } 5897 } 5898 5899 /* 5900 * If we have an unprocessed orphan list hanging 5901 * around from a previously readonly bdev mount, 5902 * require a full umount/remount for now. 5903 */ 5904 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 5905 ext4_msg(sb, KERN_WARNING, "Couldn't " 5906 "remount RDWR because of unprocessed " 5907 "orphan inode list. Please " 5908 "umount/remount instead"); 5909 err = -EINVAL; 5910 goto restore_opts; 5911 } 5912 5913 /* 5914 * Mounting a RDONLY partition read-write, so reread 5915 * and store the current valid flag. (It may have 5916 * been changed by e2fsck since we originally mounted 5917 * the partition.) 5918 */ 5919 if (sbi->s_journal) { 5920 err = ext4_clear_journal_err(sb, es); 5921 if (err) 5922 goto restore_opts; 5923 } 5924 sbi->s_mount_state = le16_to_cpu(es->s_state); 5925 5926 err = ext4_setup_super(sb, es, 0); 5927 if (err) 5928 goto restore_opts; 5929 5930 sb->s_flags &= ~SB_RDONLY; 5931 if (ext4_has_feature_mmp(sb)) 5932 if (ext4_multi_mount_protect(sb, 5933 le64_to_cpu(es->s_mmp_block))) { 5934 err = -EROFS; 5935 goto restore_opts; 5936 } 5937 enable_quota = 1; 5938 } 5939 } 5940 5941 /* 5942 * Reinitialize lazy itable initialization thread based on 5943 * current settings 5944 */ 5945 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5946 ext4_unregister_li_request(sb); 5947 else { 5948 ext4_group_t first_not_zeroed; 5949 first_not_zeroed = ext4_has_uninit_itable(sb); 5950 ext4_register_li_request(sb, first_not_zeroed); 5951 } 5952 5953 /* 5954 * Handle creation of system zone data early because it can fail. 5955 * Releasing of existing data is done when we are sure remount will 5956 * succeed. 5957 */ 5958 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5959 err = ext4_setup_system_zone(sb); 5960 if (err) 5961 goto restore_opts; 5962 } 5963 5964 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5965 err = ext4_commit_super(sb); 5966 if (err) 5967 goto restore_opts; 5968 } 5969 5970 #ifdef CONFIG_QUOTA 5971 /* Release old quota file names */ 5972 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5973 kfree(old_opts.s_qf_names[i]); 5974 if (enable_quota) { 5975 if (sb_any_quota_suspended(sb)) 5976 dquot_resume(sb, -1); 5977 else if (ext4_has_feature_quota(sb)) { 5978 err = ext4_enable_quotas(sb); 5979 if (err) 5980 goto restore_opts; 5981 } 5982 } 5983 #endif 5984 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 5985 ext4_release_system_zone(sb); 5986 5987 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 5988 ext4_stop_mmpd(sbi); 5989 5990 /* 5991 * Some options can be enabled by ext4 and/or by VFS mount flag 5992 * either way we need to make sure it matches in both *flags and 5993 * s_flags. Copy those selected flags from s_flags to *flags 5994 */ 5995 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 5996 5997 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 5998 orig_data, ext4_quota_mode(sb)); 5999 kfree(orig_data); 6000 return 0; 6001 6002 restore_opts: 6003 sb->s_flags = old_sb_flags; 6004 sbi->s_mount_opt = old_opts.s_mount_opt; 6005 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6006 sbi->s_resuid = old_opts.s_resuid; 6007 sbi->s_resgid = old_opts.s_resgid; 6008 sbi->s_commit_interval = old_opts.s_commit_interval; 6009 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6010 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6011 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6012 ext4_release_system_zone(sb); 6013 #ifdef CONFIG_QUOTA 6014 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6015 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6016 to_free[i] = get_qf_name(sb, sbi, i); 6017 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6018 } 6019 synchronize_rcu(); 6020 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6021 kfree(to_free[i]); 6022 #endif 6023 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6024 ext4_stop_mmpd(sbi); 6025 kfree(orig_data); 6026 return err; 6027 } 6028 6029 #ifdef CONFIG_QUOTA 6030 static int ext4_statfs_project(struct super_block *sb, 6031 kprojid_t projid, struct kstatfs *buf) 6032 { 6033 struct kqid qid; 6034 struct dquot *dquot; 6035 u64 limit; 6036 u64 curblock; 6037 6038 qid = make_kqid_projid(projid); 6039 dquot = dqget(sb, qid); 6040 if (IS_ERR(dquot)) 6041 return PTR_ERR(dquot); 6042 spin_lock(&dquot->dq_dqb_lock); 6043 6044 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6045 dquot->dq_dqb.dqb_bhardlimit); 6046 limit >>= sb->s_blocksize_bits; 6047 6048 if (limit && buf->f_blocks > limit) { 6049 curblock = (dquot->dq_dqb.dqb_curspace + 6050 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6051 buf->f_blocks = limit; 6052 buf->f_bfree = buf->f_bavail = 6053 (buf->f_blocks > curblock) ? 6054 (buf->f_blocks - curblock) : 0; 6055 } 6056 6057 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6058 dquot->dq_dqb.dqb_ihardlimit); 6059 if (limit && buf->f_files > limit) { 6060 buf->f_files = limit; 6061 buf->f_ffree = 6062 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6063 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6064 } 6065 6066 spin_unlock(&dquot->dq_dqb_lock); 6067 dqput(dquot); 6068 return 0; 6069 } 6070 #endif 6071 6072 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6073 { 6074 struct super_block *sb = dentry->d_sb; 6075 struct ext4_sb_info *sbi = EXT4_SB(sb); 6076 struct ext4_super_block *es = sbi->s_es; 6077 ext4_fsblk_t overhead = 0, resv_blocks; 6078 s64 bfree; 6079 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6080 6081 if (!test_opt(sb, MINIX_DF)) 6082 overhead = sbi->s_overhead; 6083 6084 buf->f_type = EXT4_SUPER_MAGIC; 6085 buf->f_bsize = sb->s_blocksize; 6086 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6087 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6088 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6089 /* prevent underflow in case that few free space is available */ 6090 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6091 buf->f_bavail = buf->f_bfree - 6092 (ext4_r_blocks_count(es) + resv_blocks); 6093 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6094 buf->f_bavail = 0; 6095 buf->f_files = le32_to_cpu(es->s_inodes_count); 6096 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6097 buf->f_namelen = EXT4_NAME_LEN; 6098 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6099 6100 #ifdef CONFIG_QUOTA 6101 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6102 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6103 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6104 #endif 6105 return 0; 6106 } 6107 6108 6109 #ifdef CONFIG_QUOTA 6110 6111 /* 6112 * Helper functions so that transaction is started before we acquire dqio_sem 6113 * to keep correct lock ordering of transaction > dqio_sem 6114 */ 6115 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6116 { 6117 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6118 } 6119 6120 static int ext4_write_dquot(struct dquot *dquot) 6121 { 6122 int ret, err; 6123 handle_t *handle; 6124 struct inode *inode; 6125 6126 inode = dquot_to_inode(dquot); 6127 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6128 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6129 if (IS_ERR(handle)) 6130 return PTR_ERR(handle); 6131 ret = dquot_commit(dquot); 6132 err = ext4_journal_stop(handle); 6133 if (!ret) 6134 ret = err; 6135 return ret; 6136 } 6137 6138 static int ext4_acquire_dquot(struct dquot *dquot) 6139 { 6140 int ret, err; 6141 handle_t *handle; 6142 6143 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6144 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6145 if (IS_ERR(handle)) 6146 return PTR_ERR(handle); 6147 ret = dquot_acquire(dquot); 6148 err = ext4_journal_stop(handle); 6149 if (!ret) 6150 ret = err; 6151 return ret; 6152 } 6153 6154 static int ext4_release_dquot(struct dquot *dquot) 6155 { 6156 int ret, err; 6157 handle_t *handle; 6158 6159 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6160 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6161 if (IS_ERR(handle)) { 6162 /* Release dquot anyway to avoid endless cycle in dqput() */ 6163 dquot_release(dquot); 6164 return PTR_ERR(handle); 6165 } 6166 ret = dquot_release(dquot); 6167 err = ext4_journal_stop(handle); 6168 if (!ret) 6169 ret = err; 6170 return ret; 6171 } 6172 6173 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6174 { 6175 struct super_block *sb = dquot->dq_sb; 6176 6177 if (ext4_is_quota_journalled(sb)) { 6178 dquot_mark_dquot_dirty(dquot); 6179 return ext4_write_dquot(dquot); 6180 } else { 6181 return dquot_mark_dquot_dirty(dquot); 6182 } 6183 } 6184 6185 static int ext4_write_info(struct super_block *sb, int type) 6186 { 6187 int ret, err; 6188 handle_t *handle; 6189 6190 /* Data block + inode block */ 6191 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6192 if (IS_ERR(handle)) 6193 return PTR_ERR(handle); 6194 ret = dquot_commit_info(sb, type); 6195 err = ext4_journal_stop(handle); 6196 if (!ret) 6197 ret = err; 6198 return ret; 6199 } 6200 6201 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6202 { 6203 struct ext4_inode_info *ei = EXT4_I(inode); 6204 6205 /* The first argument of lockdep_set_subclass has to be 6206 * *exactly* the same as the argument to init_rwsem() --- in 6207 * this case, in init_once() --- or lockdep gets unhappy 6208 * because the name of the lock is set using the 6209 * stringification of the argument to init_rwsem(). 6210 */ 6211 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6212 lockdep_set_subclass(&ei->i_data_sem, subclass); 6213 } 6214 6215 /* 6216 * Standard function to be called on quota_on 6217 */ 6218 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6219 const struct path *path) 6220 { 6221 int err; 6222 6223 if (!test_opt(sb, QUOTA)) 6224 return -EINVAL; 6225 6226 /* Quotafile not on the same filesystem? */ 6227 if (path->dentry->d_sb != sb) 6228 return -EXDEV; 6229 6230 /* Quota already enabled for this file? */ 6231 if (IS_NOQUOTA(d_inode(path->dentry))) 6232 return -EBUSY; 6233 6234 /* Journaling quota? */ 6235 if (EXT4_SB(sb)->s_qf_names[type]) { 6236 /* Quotafile not in fs root? */ 6237 if (path->dentry->d_parent != sb->s_root) 6238 ext4_msg(sb, KERN_WARNING, 6239 "Quota file not on filesystem root. " 6240 "Journaled quota will not work"); 6241 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6242 } else { 6243 /* 6244 * Clear the flag just in case mount options changed since 6245 * last time. 6246 */ 6247 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6248 } 6249 6250 /* 6251 * When we journal data on quota file, we have to flush journal to see 6252 * all updates to the file when we bypass pagecache... 6253 */ 6254 if (EXT4_SB(sb)->s_journal && 6255 ext4_should_journal_data(d_inode(path->dentry))) { 6256 /* 6257 * We don't need to lock updates but journal_flush() could 6258 * otherwise be livelocked... 6259 */ 6260 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6261 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6262 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6263 if (err) 6264 return err; 6265 } 6266 6267 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6268 err = dquot_quota_on(sb, type, format_id, path); 6269 if (err) { 6270 lockdep_set_quota_inode(path->dentry->d_inode, 6271 I_DATA_SEM_NORMAL); 6272 } else { 6273 struct inode *inode = d_inode(path->dentry); 6274 handle_t *handle; 6275 6276 /* 6277 * Set inode flags to prevent userspace from messing with quota 6278 * files. If this fails, we return success anyway since quotas 6279 * are already enabled and this is not a hard failure. 6280 */ 6281 inode_lock(inode); 6282 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6283 if (IS_ERR(handle)) 6284 goto unlock_inode; 6285 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6286 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6287 S_NOATIME | S_IMMUTABLE); 6288 err = ext4_mark_inode_dirty(handle, inode); 6289 ext4_journal_stop(handle); 6290 unlock_inode: 6291 inode_unlock(inode); 6292 } 6293 return err; 6294 } 6295 6296 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6297 unsigned int flags) 6298 { 6299 int err; 6300 struct inode *qf_inode; 6301 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6302 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6303 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6304 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6305 }; 6306 6307 BUG_ON(!ext4_has_feature_quota(sb)); 6308 6309 if (!qf_inums[type]) 6310 return -EPERM; 6311 6312 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6313 if (IS_ERR(qf_inode)) { 6314 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6315 return PTR_ERR(qf_inode); 6316 } 6317 6318 /* Don't account quota for quota files to avoid recursion */ 6319 qf_inode->i_flags |= S_NOQUOTA; 6320 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6321 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6322 if (err) 6323 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6324 iput(qf_inode); 6325 6326 return err; 6327 } 6328 6329 /* Enable usage tracking for all quota types. */ 6330 int ext4_enable_quotas(struct super_block *sb) 6331 { 6332 int type, err = 0; 6333 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6334 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6335 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6336 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6337 }; 6338 bool quota_mopt[EXT4_MAXQUOTAS] = { 6339 test_opt(sb, USRQUOTA), 6340 test_opt(sb, GRPQUOTA), 6341 test_opt(sb, PRJQUOTA), 6342 }; 6343 6344 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6345 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6346 if (qf_inums[type]) { 6347 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6348 DQUOT_USAGE_ENABLED | 6349 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6350 if (err) { 6351 ext4_warning(sb, 6352 "Failed to enable quota tracking " 6353 "(type=%d, err=%d). Please run " 6354 "e2fsck to fix.", type, err); 6355 for (type--; type >= 0; type--) 6356 dquot_quota_off(sb, type); 6357 6358 return err; 6359 } 6360 } 6361 } 6362 return 0; 6363 } 6364 6365 static int ext4_quota_off(struct super_block *sb, int type) 6366 { 6367 struct inode *inode = sb_dqopt(sb)->files[type]; 6368 handle_t *handle; 6369 int err; 6370 6371 /* Force all delayed allocation blocks to be allocated. 6372 * Caller already holds s_umount sem */ 6373 if (test_opt(sb, DELALLOC)) 6374 sync_filesystem(sb); 6375 6376 if (!inode || !igrab(inode)) 6377 goto out; 6378 6379 err = dquot_quota_off(sb, type); 6380 if (err || ext4_has_feature_quota(sb)) 6381 goto out_put; 6382 6383 inode_lock(inode); 6384 /* 6385 * Update modification times of quota files when userspace can 6386 * start looking at them. If we fail, we return success anyway since 6387 * this is not a hard failure and quotas are already disabled. 6388 */ 6389 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6390 if (IS_ERR(handle)) { 6391 err = PTR_ERR(handle); 6392 goto out_unlock; 6393 } 6394 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6395 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6396 inode->i_mtime = inode->i_ctime = current_time(inode); 6397 err = ext4_mark_inode_dirty(handle, inode); 6398 ext4_journal_stop(handle); 6399 out_unlock: 6400 inode_unlock(inode); 6401 out_put: 6402 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6403 iput(inode); 6404 return err; 6405 out: 6406 return dquot_quota_off(sb, type); 6407 } 6408 6409 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6410 * acquiring the locks... As quota files are never truncated and quota code 6411 * itself serializes the operations (and no one else should touch the files) 6412 * we don't have to be afraid of races */ 6413 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6414 size_t len, loff_t off) 6415 { 6416 struct inode *inode = sb_dqopt(sb)->files[type]; 6417 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6418 int offset = off & (sb->s_blocksize - 1); 6419 int tocopy; 6420 size_t toread; 6421 struct buffer_head *bh; 6422 loff_t i_size = i_size_read(inode); 6423 6424 if (off > i_size) 6425 return 0; 6426 if (off+len > i_size) 6427 len = i_size-off; 6428 toread = len; 6429 while (toread > 0) { 6430 tocopy = sb->s_blocksize - offset < toread ? 6431 sb->s_blocksize - offset : toread; 6432 bh = ext4_bread(NULL, inode, blk, 0); 6433 if (IS_ERR(bh)) 6434 return PTR_ERR(bh); 6435 if (!bh) /* A hole? */ 6436 memset(data, 0, tocopy); 6437 else 6438 memcpy(data, bh->b_data+offset, tocopy); 6439 brelse(bh); 6440 offset = 0; 6441 toread -= tocopy; 6442 data += tocopy; 6443 blk++; 6444 } 6445 return len; 6446 } 6447 6448 /* Write to quotafile (we know the transaction is already started and has 6449 * enough credits) */ 6450 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6451 const char *data, size_t len, loff_t off) 6452 { 6453 struct inode *inode = sb_dqopt(sb)->files[type]; 6454 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6455 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6456 int retries = 0; 6457 struct buffer_head *bh; 6458 handle_t *handle = journal_current_handle(); 6459 6460 if (EXT4_SB(sb)->s_journal && !handle) { 6461 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6462 " cancelled because transaction is not started", 6463 (unsigned long long)off, (unsigned long long)len); 6464 return -EIO; 6465 } 6466 /* 6467 * Since we account only one data block in transaction credits, 6468 * then it is impossible to cross a block boundary. 6469 */ 6470 if (sb->s_blocksize - offset < len) { 6471 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6472 " cancelled because not block aligned", 6473 (unsigned long long)off, (unsigned long long)len); 6474 return -EIO; 6475 } 6476 6477 do { 6478 bh = ext4_bread(handle, inode, blk, 6479 EXT4_GET_BLOCKS_CREATE | 6480 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6481 } while (PTR_ERR(bh) == -ENOSPC && 6482 ext4_should_retry_alloc(inode->i_sb, &retries)); 6483 if (IS_ERR(bh)) 6484 return PTR_ERR(bh); 6485 if (!bh) 6486 goto out; 6487 BUFFER_TRACE(bh, "get write access"); 6488 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6489 if (err) { 6490 brelse(bh); 6491 return err; 6492 } 6493 lock_buffer(bh); 6494 memcpy(bh->b_data+offset, data, len); 6495 flush_dcache_page(bh->b_page); 6496 unlock_buffer(bh); 6497 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6498 brelse(bh); 6499 out: 6500 if (inode->i_size < off + len) { 6501 i_size_write(inode, off + len); 6502 EXT4_I(inode)->i_disksize = inode->i_size; 6503 err2 = ext4_mark_inode_dirty(handle, inode); 6504 if (unlikely(err2 && !err)) 6505 err = err2; 6506 } 6507 return err ? err : len; 6508 } 6509 #endif 6510 6511 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6512 const char *dev_name, void *data) 6513 { 6514 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6515 } 6516 6517 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6518 static inline void register_as_ext2(void) 6519 { 6520 int err = register_filesystem(&ext2_fs_type); 6521 if (err) 6522 printk(KERN_WARNING 6523 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6524 } 6525 6526 static inline void unregister_as_ext2(void) 6527 { 6528 unregister_filesystem(&ext2_fs_type); 6529 } 6530 6531 static inline int ext2_feature_set_ok(struct super_block *sb) 6532 { 6533 if (ext4_has_unknown_ext2_incompat_features(sb)) 6534 return 0; 6535 if (sb_rdonly(sb)) 6536 return 1; 6537 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6538 return 0; 6539 return 1; 6540 } 6541 #else 6542 static inline void register_as_ext2(void) { } 6543 static inline void unregister_as_ext2(void) { } 6544 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6545 #endif 6546 6547 static inline void register_as_ext3(void) 6548 { 6549 int err = register_filesystem(&ext3_fs_type); 6550 if (err) 6551 printk(KERN_WARNING 6552 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6553 } 6554 6555 static inline void unregister_as_ext3(void) 6556 { 6557 unregister_filesystem(&ext3_fs_type); 6558 } 6559 6560 static inline int ext3_feature_set_ok(struct super_block *sb) 6561 { 6562 if (ext4_has_unknown_ext3_incompat_features(sb)) 6563 return 0; 6564 if (!ext4_has_feature_journal(sb)) 6565 return 0; 6566 if (sb_rdonly(sb)) 6567 return 1; 6568 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6569 return 0; 6570 return 1; 6571 } 6572 6573 static struct file_system_type ext4_fs_type = { 6574 .owner = THIS_MODULE, 6575 .name = "ext4", 6576 .mount = ext4_mount, 6577 .kill_sb = kill_block_super, 6578 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6579 }; 6580 MODULE_ALIAS_FS("ext4"); 6581 6582 /* Shared across all ext4 file systems */ 6583 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6584 6585 static int __init ext4_init_fs(void) 6586 { 6587 int i, err; 6588 6589 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6590 ext4_li_info = NULL; 6591 6592 /* Build-time check for flags consistency */ 6593 ext4_check_flag_values(); 6594 6595 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6596 init_waitqueue_head(&ext4__ioend_wq[i]); 6597 6598 err = ext4_init_es(); 6599 if (err) 6600 return err; 6601 6602 err = ext4_init_pending(); 6603 if (err) 6604 goto out7; 6605 6606 err = ext4_init_post_read_processing(); 6607 if (err) 6608 goto out6; 6609 6610 err = ext4_init_pageio(); 6611 if (err) 6612 goto out5; 6613 6614 err = ext4_init_system_zone(); 6615 if (err) 6616 goto out4; 6617 6618 err = ext4_init_sysfs(); 6619 if (err) 6620 goto out3; 6621 6622 err = ext4_init_mballoc(); 6623 if (err) 6624 goto out2; 6625 err = init_inodecache(); 6626 if (err) 6627 goto out1; 6628 6629 err = ext4_fc_init_dentry_cache(); 6630 if (err) 6631 goto out05; 6632 6633 register_as_ext3(); 6634 register_as_ext2(); 6635 err = register_filesystem(&ext4_fs_type); 6636 if (err) 6637 goto out; 6638 6639 return 0; 6640 out: 6641 unregister_as_ext2(); 6642 unregister_as_ext3(); 6643 out05: 6644 destroy_inodecache(); 6645 out1: 6646 ext4_exit_mballoc(); 6647 out2: 6648 ext4_exit_sysfs(); 6649 out3: 6650 ext4_exit_system_zone(); 6651 out4: 6652 ext4_exit_pageio(); 6653 out5: 6654 ext4_exit_post_read_processing(); 6655 out6: 6656 ext4_exit_pending(); 6657 out7: 6658 ext4_exit_es(); 6659 6660 return err; 6661 } 6662 6663 static void __exit ext4_exit_fs(void) 6664 { 6665 ext4_destroy_lazyinit_thread(); 6666 unregister_as_ext2(); 6667 unregister_as_ext3(); 6668 unregister_filesystem(&ext4_fs_type); 6669 destroy_inodecache(); 6670 ext4_exit_mballoc(); 6671 ext4_exit_sysfs(); 6672 ext4_exit_system_zone(); 6673 ext4_exit_pageio(); 6674 ext4_exit_post_read_processing(); 6675 ext4_exit_es(); 6676 ext4_exit_pending(); 6677 } 6678 6679 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6680 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6681 MODULE_LICENSE("GPL"); 6682 MODULE_SOFTDEP("pre: crc32c"); 6683 module_init(ext4_init_fs) 6684 module_exit(ext4_exit_fs) 6685