1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct proc_dir_entry *ext4_proc_root; 57 static struct kset *ext4_kset; 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ext4_features *ext4_feat; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static const char *ext4_decode_error(struct super_block *sb, int errno, 71 char nbuf[16]); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static void ext4_write_super(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 87 static struct file_system_type ext2_fs_type = { 88 .owner = THIS_MODULE, 89 .name = "ext2", 90 .mount = ext4_mount, 91 .kill_sb = kill_block_super, 92 .fs_flags = FS_REQUIRES_DEV, 93 }; 94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 95 #else 96 #define IS_EXT2_SB(sb) (0) 97 #endif 98 99 100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 101 static struct file_system_type ext3_fs_type = { 102 .owner = THIS_MODULE, 103 .name = "ext3", 104 .mount = ext4_mount, 105 .kill_sb = kill_block_super, 106 .fs_flags = FS_REQUIRES_DEV, 107 }; 108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 109 #else 110 #define IS_EXT3_SB(sb) (0) 111 #endif 112 113 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 114 struct ext4_group_desc *bg) 115 { 116 return le32_to_cpu(bg->bg_block_bitmap_lo) | 117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 118 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 119 } 120 121 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 122 struct ext4_group_desc *bg) 123 { 124 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 126 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 127 } 128 129 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 130 struct ext4_group_desc *bg) 131 { 132 return le32_to_cpu(bg->bg_inode_table_lo) | 133 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 134 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 135 } 136 137 __u32 ext4_free_blks_count(struct super_block *sb, 138 struct ext4_group_desc *bg) 139 { 140 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 141 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 142 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 143 } 144 145 __u32 ext4_free_inodes_count(struct super_block *sb, 146 struct ext4_group_desc *bg) 147 { 148 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 149 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 150 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 151 } 152 153 __u32 ext4_used_dirs_count(struct super_block *sb, 154 struct ext4_group_desc *bg) 155 { 156 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 157 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 158 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 159 } 160 161 __u32 ext4_itable_unused_count(struct super_block *sb, 162 struct ext4_group_desc *bg) 163 { 164 return le16_to_cpu(bg->bg_itable_unused_lo) | 165 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 166 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 167 } 168 169 void ext4_block_bitmap_set(struct super_block *sb, 170 struct ext4_group_desc *bg, ext4_fsblk_t blk) 171 { 172 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 174 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 175 } 176 177 void ext4_inode_bitmap_set(struct super_block *sb, 178 struct ext4_group_desc *bg, ext4_fsblk_t blk) 179 { 180 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 182 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 183 } 184 185 void ext4_inode_table_set(struct super_block *sb, 186 struct ext4_group_desc *bg, ext4_fsblk_t blk) 187 { 188 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 189 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 190 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 191 } 192 193 void ext4_free_blks_set(struct super_block *sb, 194 struct ext4_group_desc *bg, __u32 count) 195 { 196 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 197 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 198 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 199 } 200 201 void ext4_free_inodes_set(struct super_block *sb, 202 struct ext4_group_desc *bg, __u32 count) 203 { 204 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 205 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 206 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 207 } 208 209 void ext4_used_dirs_set(struct super_block *sb, 210 struct ext4_group_desc *bg, __u32 count) 211 { 212 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 213 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 214 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 215 } 216 217 void ext4_itable_unused_set(struct super_block *sb, 218 struct ext4_group_desc *bg, __u32 count) 219 { 220 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 221 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 222 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 223 } 224 225 226 /* Just increment the non-pointer handle value */ 227 static handle_t *ext4_get_nojournal(void) 228 { 229 handle_t *handle = current->journal_info; 230 unsigned long ref_cnt = (unsigned long)handle; 231 232 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); 233 234 ref_cnt++; 235 handle = (handle_t *)ref_cnt; 236 237 current->journal_info = handle; 238 return handle; 239 } 240 241 242 /* Decrement the non-pointer handle value */ 243 static void ext4_put_nojournal(handle_t *handle) 244 { 245 unsigned long ref_cnt = (unsigned long)handle; 246 247 BUG_ON(ref_cnt == 0); 248 249 ref_cnt--; 250 handle = (handle_t *)ref_cnt; 251 252 current->journal_info = handle; 253 } 254 255 /* 256 * Wrappers for jbd2_journal_start/end. 257 * 258 * The only special thing we need to do here is to make sure that all 259 * journal_end calls result in the superblock being marked dirty, so 260 * that sync() will call the filesystem's write_super callback if 261 * appropriate. 262 * 263 * To avoid j_barrier hold in userspace when a user calls freeze(), 264 * ext4 prevents a new handle from being started by s_frozen, which 265 * is in an upper layer. 266 */ 267 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 268 { 269 journal_t *journal; 270 handle_t *handle; 271 272 if (sb->s_flags & MS_RDONLY) 273 return ERR_PTR(-EROFS); 274 275 journal = EXT4_SB(sb)->s_journal; 276 handle = ext4_journal_current_handle(); 277 278 /* 279 * If a handle has been started, it should be allowed to 280 * finish, otherwise deadlock could happen between freeze 281 * and others(e.g. truncate) due to the restart of the 282 * journal handle if the filesystem is forzen and active 283 * handles are not stopped. 284 */ 285 if (!handle) 286 vfs_check_frozen(sb, SB_FREEZE_TRANS); 287 288 if (!journal) 289 return ext4_get_nojournal(); 290 /* 291 * Special case here: if the journal has aborted behind our 292 * backs (eg. EIO in the commit thread), then we still need to 293 * take the FS itself readonly cleanly. 294 */ 295 if (is_journal_aborted(journal)) { 296 ext4_abort(sb, "Detected aborted journal"); 297 return ERR_PTR(-EROFS); 298 } 299 return jbd2_journal_start(journal, nblocks); 300 } 301 302 /* 303 * The only special thing we need to do here is to make sure that all 304 * jbd2_journal_stop calls result in the superblock being marked dirty, so 305 * that sync() will call the filesystem's write_super callback if 306 * appropriate. 307 */ 308 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle) 309 { 310 struct super_block *sb; 311 int err; 312 int rc; 313 314 if (!ext4_handle_valid(handle)) { 315 ext4_put_nojournal(handle); 316 return 0; 317 } 318 sb = handle->h_transaction->t_journal->j_private; 319 err = handle->h_err; 320 rc = jbd2_journal_stop(handle); 321 322 if (!err) 323 err = rc; 324 if (err) 325 __ext4_std_error(sb, where, line, err); 326 return err; 327 } 328 329 void ext4_journal_abort_handle(const char *caller, unsigned int line, 330 const char *err_fn, struct buffer_head *bh, 331 handle_t *handle, int err) 332 { 333 char nbuf[16]; 334 const char *errstr = ext4_decode_error(NULL, err, nbuf); 335 336 BUG_ON(!ext4_handle_valid(handle)); 337 338 if (bh) 339 BUFFER_TRACE(bh, "abort"); 340 341 if (!handle->h_err) 342 handle->h_err = err; 343 344 if (is_handle_aborted(handle)) 345 return; 346 347 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n", 348 caller, line, errstr, err_fn); 349 350 jbd2_journal_abort_handle(handle); 351 } 352 353 static void __save_error_info(struct super_block *sb, const char *func, 354 unsigned int line) 355 { 356 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 357 358 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 359 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 360 es->s_last_error_time = cpu_to_le32(get_seconds()); 361 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 362 es->s_last_error_line = cpu_to_le32(line); 363 if (!es->s_first_error_time) { 364 es->s_first_error_time = es->s_last_error_time; 365 strncpy(es->s_first_error_func, func, 366 sizeof(es->s_first_error_func)); 367 es->s_first_error_line = cpu_to_le32(line); 368 es->s_first_error_ino = es->s_last_error_ino; 369 es->s_first_error_block = es->s_last_error_block; 370 } 371 /* 372 * Start the daily error reporting function if it hasn't been 373 * started already 374 */ 375 if (!es->s_error_count) 376 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 377 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1); 378 } 379 380 static void save_error_info(struct super_block *sb, const char *func, 381 unsigned int line) 382 { 383 __save_error_info(sb, func, line); 384 ext4_commit_super(sb, 1); 385 } 386 387 388 /* Deal with the reporting of failure conditions on a filesystem such as 389 * inconsistencies detected or read IO failures. 390 * 391 * On ext2, we can store the error state of the filesystem in the 392 * superblock. That is not possible on ext4, because we may have other 393 * write ordering constraints on the superblock which prevent us from 394 * writing it out straight away; and given that the journal is about to 395 * be aborted, we can't rely on the current, or future, transactions to 396 * write out the superblock safely. 397 * 398 * We'll just use the jbd2_journal_abort() error code to record an error in 399 * the journal instead. On recovery, the journal will complain about 400 * that error until we've noted it down and cleared it. 401 */ 402 403 static void ext4_handle_error(struct super_block *sb) 404 { 405 if (sb->s_flags & MS_RDONLY) 406 return; 407 408 if (!test_opt(sb, ERRORS_CONT)) { 409 journal_t *journal = EXT4_SB(sb)->s_journal; 410 411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 412 if (journal) 413 jbd2_journal_abort(journal, -EIO); 414 } 415 if (test_opt(sb, ERRORS_RO)) { 416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 417 sb->s_flags |= MS_RDONLY; 418 } 419 if (test_opt(sb, ERRORS_PANIC)) 420 panic("EXT4-fs (device %s): panic forced after error\n", 421 sb->s_id); 422 } 423 424 void __ext4_error(struct super_block *sb, const char *function, 425 unsigned int line, const char *fmt, ...) 426 { 427 struct va_format vaf; 428 va_list args; 429 430 va_start(args, fmt); 431 vaf.fmt = fmt; 432 vaf.va = &args; 433 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 434 sb->s_id, function, line, current->comm, &vaf); 435 va_end(args); 436 437 ext4_handle_error(sb); 438 } 439 440 void ext4_error_inode(struct inode *inode, const char *function, 441 unsigned int line, ext4_fsblk_t block, 442 const char *fmt, ...) 443 { 444 va_list args; 445 struct va_format vaf; 446 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 447 448 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 449 es->s_last_error_block = cpu_to_le64(block); 450 save_error_info(inode->i_sb, function, line); 451 va_start(args, fmt); 452 vaf.fmt = fmt; 453 vaf.va = &args; 454 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 455 inode->i_sb->s_id, function, line, inode->i_ino); 456 if (block) 457 printk(KERN_CONT "block %llu: ", block); 458 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf); 459 va_end(args); 460 461 ext4_handle_error(inode->i_sb); 462 } 463 464 void ext4_error_file(struct file *file, const char *function, 465 unsigned int line, ext4_fsblk_t block, 466 const char *fmt, ...) 467 { 468 va_list args; 469 struct va_format vaf; 470 struct ext4_super_block *es; 471 struct inode *inode = file->f_dentry->d_inode; 472 char pathname[80], *path; 473 474 es = EXT4_SB(inode->i_sb)->s_es; 475 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 476 save_error_info(inode->i_sb, function, line); 477 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 478 if (IS_ERR(path)) 479 path = "(unknown)"; 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: ", 482 inode->i_sb->s_id, function, line, inode->i_ino); 483 if (block) 484 printk(KERN_CONT "block %llu: ", block); 485 va_start(args, fmt); 486 vaf.fmt = fmt; 487 vaf.va = &args; 488 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf); 489 va_end(args); 490 491 ext4_handle_error(inode->i_sb); 492 } 493 494 static const char *ext4_decode_error(struct super_block *sb, int errno, 495 char nbuf[16]) 496 { 497 char *errstr = NULL; 498 499 switch (errno) { 500 case -EIO: 501 errstr = "IO failure"; 502 break; 503 case -ENOMEM: 504 errstr = "Out of memory"; 505 break; 506 case -EROFS: 507 if (!sb || (EXT4_SB(sb)->s_journal && 508 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 509 errstr = "Journal has aborted"; 510 else 511 errstr = "Readonly filesystem"; 512 break; 513 default: 514 /* If the caller passed in an extra buffer for unknown 515 * errors, textualise them now. Else we just return 516 * NULL. */ 517 if (nbuf) { 518 /* Check for truncated error codes... */ 519 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 520 errstr = nbuf; 521 } 522 break; 523 } 524 525 return errstr; 526 } 527 528 /* __ext4_std_error decodes expected errors from journaling functions 529 * automatically and invokes the appropriate error response. */ 530 531 void __ext4_std_error(struct super_block *sb, const char *function, 532 unsigned int line, int errno) 533 { 534 char nbuf[16]; 535 const char *errstr; 536 537 /* Special case: if the error is EROFS, and we're not already 538 * inside a transaction, then there's really no point in logging 539 * an error. */ 540 if (errno == -EROFS && journal_current_handle() == NULL && 541 (sb->s_flags & MS_RDONLY)) 542 return; 543 544 errstr = ext4_decode_error(sb, errno, nbuf); 545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 546 sb->s_id, function, line, errstr); 547 save_error_info(sb, function, line); 548 549 ext4_handle_error(sb); 550 } 551 552 /* 553 * ext4_abort is a much stronger failure handler than ext4_error. The 554 * abort function may be used to deal with unrecoverable failures such 555 * as journal IO errors or ENOMEM at a critical moment in log management. 556 * 557 * We unconditionally force the filesystem into an ABORT|READONLY state, 558 * unless the error response on the fs has been set to panic in which 559 * case we take the easy way out and panic immediately. 560 */ 561 562 void __ext4_abort(struct super_block *sb, const char *function, 563 unsigned int line, const char *fmt, ...) 564 { 565 va_list args; 566 567 save_error_info(sb, function, line); 568 va_start(args, fmt); 569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 570 function, line); 571 vprintk(fmt, args); 572 printk("\n"); 573 va_end(args); 574 575 if ((sb->s_flags & MS_RDONLY) == 0) { 576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 577 sb->s_flags |= MS_RDONLY; 578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 579 if (EXT4_SB(sb)->s_journal) 580 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 581 save_error_info(sb, function, line); 582 } 583 if (test_opt(sb, ERRORS_PANIC)) 584 panic("EXT4-fs panic from previous error\n"); 585 } 586 587 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 588 { 589 struct va_format vaf; 590 va_list args; 591 592 va_start(args, fmt); 593 vaf.fmt = fmt; 594 vaf.va = &args; 595 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 596 va_end(args); 597 } 598 599 void __ext4_warning(struct super_block *sb, const char *function, 600 unsigned int line, const char *fmt, ...) 601 { 602 struct va_format vaf; 603 va_list args; 604 605 va_start(args, fmt); 606 vaf.fmt = fmt; 607 vaf.va = &args; 608 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 609 sb->s_id, function, line, &vaf); 610 va_end(args); 611 } 612 613 void __ext4_grp_locked_error(const char *function, unsigned int line, 614 struct super_block *sb, ext4_group_t grp, 615 unsigned long ino, ext4_fsblk_t block, 616 const char *fmt, ...) 617 __releases(bitlock) 618 __acquires(bitlock) 619 { 620 struct va_format vaf; 621 va_list args; 622 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 623 624 es->s_last_error_ino = cpu_to_le32(ino); 625 es->s_last_error_block = cpu_to_le64(block); 626 __save_error_info(sb, function, line); 627 628 va_start(args, fmt); 629 630 vaf.fmt = fmt; 631 vaf.va = &args; 632 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 633 sb->s_id, function, line, grp); 634 if (ino) 635 printk(KERN_CONT "inode %lu: ", ino); 636 if (block) 637 printk(KERN_CONT "block %llu:", (unsigned long long) block); 638 printk(KERN_CONT "%pV\n", &vaf); 639 va_end(args); 640 641 if (test_opt(sb, ERRORS_CONT)) { 642 ext4_commit_super(sb, 0); 643 return; 644 } 645 646 ext4_unlock_group(sb, grp); 647 ext4_handle_error(sb); 648 /* 649 * We only get here in the ERRORS_RO case; relocking the group 650 * may be dangerous, but nothing bad will happen since the 651 * filesystem will have already been marked read/only and the 652 * journal has been aborted. We return 1 as a hint to callers 653 * who might what to use the return value from 654 * ext4_grp_locked_error() to distinguish between the 655 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 656 * aggressively from the ext4 function in question, with a 657 * more appropriate error code. 658 */ 659 ext4_lock_group(sb, grp); 660 return; 661 } 662 663 void ext4_update_dynamic_rev(struct super_block *sb) 664 { 665 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 666 667 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 668 return; 669 670 ext4_warning(sb, 671 "updating to rev %d because of new feature flag, " 672 "running e2fsck is recommended", 673 EXT4_DYNAMIC_REV); 674 675 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 676 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 677 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 678 /* leave es->s_feature_*compat flags alone */ 679 /* es->s_uuid will be set by e2fsck if empty */ 680 681 /* 682 * The rest of the superblock fields should be zero, and if not it 683 * means they are likely already in use, so leave them alone. We 684 * can leave it up to e2fsck to clean up any inconsistencies there. 685 */ 686 } 687 688 /* 689 * Open the external journal device 690 */ 691 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 692 { 693 struct block_device *bdev; 694 char b[BDEVNAME_SIZE]; 695 696 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 697 if (IS_ERR(bdev)) 698 goto fail; 699 return bdev; 700 701 fail: 702 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 703 __bdevname(dev, b), PTR_ERR(bdev)); 704 return NULL; 705 } 706 707 /* 708 * Release the journal device 709 */ 710 static int ext4_blkdev_put(struct block_device *bdev) 711 { 712 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 713 } 714 715 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 716 { 717 struct block_device *bdev; 718 int ret = -ENODEV; 719 720 bdev = sbi->journal_bdev; 721 if (bdev) { 722 ret = ext4_blkdev_put(bdev); 723 sbi->journal_bdev = NULL; 724 } 725 return ret; 726 } 727 728 static inline struct inode *orphan_list_entry(struct list_head *l) 729 { 730 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 731 } 732 733 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 734 { 735 struct list_head *l; 736 737 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 738 le32_to_cpu(sbi->s_es->s_last_orphan)); 739 740 printk(KERN_ERR "sb_info orphan list:\n"); 741 list_for_each(l, &sbi->s_orphan) { 742 struct inode *inode = orphan_list_entry(l); 743 printk(KERN_ERR " " 744 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 745 inode->i_sb->s_id, inode->i_ino, inode, 746 inode->i_mode, inode->i_nlink, 747 NEXT_ORPHAN(inode)); 748 } 749 } 750 751 static void ext4_put_super(struct super_block *sb) 752 { 753 struct ext4_sb_info *sbi = EXT4_SB(sb); 754 struct ext4_super_block *es = sbi->s_es; 755 int i, err; 756 757 ext4_unregister_li_request(sb); 758 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 759 760 flush_workqueue(sbi->dio_unwritten_wq); 761 destroy_workqueue(sbi->dio_unwritten_wq); 762 763 lock_super(sb); 764 if (sb->s_dirt) 765 ext4_commit_super(sb, 1); 766 767 if (sbi->s_journal) { 768 err = jbd2_journal_destroy(sbi->s_journal); 769 sbi->s_journal = NULL; 770 if (err < 0) 771 ext4_abort(sb, "Couldn't clean up the journal"); 772 } 773 774 del_timer(&sbi->s_err_report); 775 ext4_release_system_zone(sb); 776 ext4_mb_release(sb); 777 ext4_ext_release(sb); 778 ext4_xattr_put_super(sb); 779 780 if (!(sb->s_flags & MS_RDONLY)) { 781 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 782 es->s_state = cpu_to_le16(sbi->s_mount_state); 783 ext4_commit_super(sb, 1); 784 } 785 if (sbi->s_proc) { 786 remove_proc_entry(sb->s_id, ext4_proc_root); 787 } 788 kobject_del(&sbi->s_kobj); 789 790 for (i = 0; i < sbi->s_gdb_count; i++) 791 brelse(sbi->s_group_desc[i]); 792 kfree(sbi->s_group_desc); 793 if (is_vmalloc_addr(sbi->s_flex_groups)) 794 vfree(sbi->s_flex_groups); 795 else 796 kfree(sbi->s_flex_groups); 797 percpu_counter_destroy(&sbi->s_freeblocks_counter); 798 percpu_counter_destroy(&sbi->s_freeinodes_counter); 799 percpu_counter_destroy(&sbi->s_dirs_counter); 800 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 801 brelse(sbi->s_sbh); 802 #ifdef CONFIG_QUOTA 803 for (i = 0; i < MAXQUOTAS; i++) 804 kfree(sbi->s_qf_names[i]); 805 #endif 806 807 /* Debugging code just in case the in-memory inode orphan list 808 * isn't empty. The on-disk one can be non-empty if we've 809 * detected an error and taken the fs readonly, but the 810 * in-memory list had better be clean by this point. */ 811 if (!list_empty(&sbi->s_orphan)) 812 dump_orphan_list(sb, sbi); 813 J_ASSERT(list_empty(&sbi->s_orphan)); 814 815 invalidate_bdev(sb->s_bdev); 816 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 817 /* 818 * Invalidate the journal device's buffers. We don't want them 819 * floating about in memory - the physical journal device may 820 * hotswapped, and it breaks the `ro-after' testing code. 821 */ 822 sync_blockdev(sbi->journal_bdev); 823 invalidate_bdev(sbi->journal_bdev); 824 ext4_blkdev_remove(sbi); 825 } 826 if (sbi->s_mmp_tsk) 827 kthread_stop(sbi->s_mmp_tsk); 828 sb->s_fs_info = NULL; 829 /* 830 * Now that we are completely done shutting down the 831 * superblock, we need to actually destroy the kobject. 832 */ 833 unlock_super(sb); 834 kobject_put(&sbi->s_kobj); 835 wait_for_completion(&sbi->s_kobj_unregister); 836 kfree(sbi->s_blockgroup_lock); 837 kfree(sbi); 838 } 839 840 static struct kmem_cache *ext4_inode_cachep; 841 842 /* 843 * Called inside transaction, so use GFP_NOFS 844 */ 845 static struct inode *ext4_alloc_inode(struct super_block *sb) 846 { 847 struct ext4_inode_info *ei; 848 849 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 850 if (!ei) 851 return NULL; 852 853 ei->vfs_inode.i_version = 1; 854 ei->vfs_inode.i_data.writeback_index = 0; 855 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 856 INIT_LIST_HEAD(&ei->i_prealloc_list); 857 spin_lock_init(&ei->i_prealloc_lock); 858 ei->i_reserved_data_blocks = 0; 859 ei->i_reserved_meta_blocks = 0; 860 ei->i_allocated_meta_blocks = 0; 861 ei->i_da_metadata_calc_len = 0; 862 spin_lock_init(&(ei->i_block_reservation_lock)); 863 #ifdef CONFIG_QUOTA 864 ei->i_reserved_quota = 0; 865 #endif 866 ei->jinode = NULL; 867 INIT_LIST_HEAD(&ei->i_completed_io_list); 868 spin_lock_init(&ei->i_completed_io_lock); 869 ei->cur_aio_dio = NULL; 870 ei->i_sync_tid = 0; 871 ei->i_datasync_tid = 0; 872 atomic_set(&ei->i_ioend_count, 0); 873 atomic_set(&ei->i_aiodio_unwritten, 0); 874 875 return &ei->vfs_inode; 876 } 877 878 static int ext4_drop_inode(struct inode *inode) 879 { 880 int drop = generic_drop_inode(inode); 881 882 trace_ext4_drop_inode(inode, drop); 883 return drop; 884 } 885 886 static void ext4_i_callback(struct rcu_head *head) 887 { 888 struct inode *inode = container_of(head, struct inode, i_rcu); 889 INIT_LIST_HEAD(&inode->i_dentry); 890 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 891 } 892 893 static void ext4_destroy_inode(struct inode *inode) 894 { 895 ext4_ioend_wait(inode); 896 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 897 ext4_msg(inode->i_sb, KERN_ERR, 898 "Inode %lu (%p): orphan list check failed!", 899 inode->i_ino, EXT4_I(inode)); 900 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 901 EXT4_I(inode), sizeof(struct ext4_inode_info), 902 true); 903 dump_stack(); 904 } 905 call_rcu(&inode->i_rcu, ext4_i_callback); 906 } 907 908 static void init_once(void *foo) 909 { 910 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 911 912 INIT_LIST_HEAD(&ei->i_orphan); 913 #ifdef CONFIG_EXT4_FS_XATTR 914 init_rwsem(&ei->xattr_sem); 915 #endif 916 init_rwsem(&ei->i_data_sem); 917 inode_init_once(&ei->vfs_inode); 918 } 919 920 static int init_inodecache(void) 921 { 922 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 923 sizeof(struct ext4_inode_info), 924 0, (SLAB_RECLAIM_ACCOUNT| 925 SLAB_MEM_SPREAD), 926 init_once); 927 if (ext4_inode_cachep == NULL) 928 return -ENOMEM; 929 return 0; 930 } 931 932 static void destroy_inodecache(void) 933 { 934 kmem_cache_destroy(ext4_inode_cachep); 935 } 936 937 void ext4_clear_inode(struct inode *inode) 938 { 939 invalidate_inode_buffers(inode); 940 end_writeback(inode); 941 dquot_drop(inode); 942 ext4_discard_preallocations(inode); 943 if (EXT4_I(inode)->jinode) { 944 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 945 EXT4_I(inode)->jinode); 946 jbd2_free_inode(EXT4_I(inode)->jinode); 947 EXT4_I(inode)->jinode = NULL; 948 } 949 } 950 951 static inline void ext4_show_quota_options(struct seq_file *seq, 952 struct super_block *sb) 953 { 954 #if defined(CONFIG_QUOTA) 955 struct ext4_sb_info *sbi = EXT4_SB(sb); 956 957 if (sbi->s_jquota_fmt) { 958 char *fmtname = ""; 959 960 switch (sbi->s_jquota_fmt) { 961 case QFMT_VFS_OLD: 962 fmtname = "vfsold"; 963 break; 964 case QFMT_VFS_V0: 965 fmtname = "vfsv0"; 966 break; 967 case QFMT_VFS_V1: 968 fmtname = "vfsv1"; 969 break; 970 } 971 seq_printf(seq, ",jqfmt=%s", fmtname); 972 } 973 974 if (sbi->s_qf_names[USRQUOTA]) 975 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 976 977 if (sbi->s_qf_names[GRPQUOTA]) 978 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 979 980 if (test_opt(sb, USRQUOTA)) 981 seq_puts(seq, ",usrquota"); 982 983 if (test_opt(sb, GRPQUOTA)) 984 seq_puts(seq, ",grpquota"); 985 #endif 986 } 987 988 /* 989 * Show an option if 990 * - it's set to a non-default value OR 991 * - if the per-sb default is different from the global default 992 */ 993 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 994 { 995 int def_errors; 996 unsigned long def_mount_opts; 997 struct super_block *sb = vfs->mnt_sb; 998 struct ext4_sb_info *sbi = EXT4_SB(sb); 999 struct ext4_super_block *es = sbi->s_es; 1000 1001 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 1002 def_errors = le16_to_cpu(es->s_errors); 1003 1004 if (sbi->s_sb_block != 1) 1005 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 1006 if (test_opt(sb, MINIX_DF)) 1007 seq_puts(seq, ",minixdf"); 1008 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 1009 seq_puts(seq, ",grpid"); 1010 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 1011 seq_puts(seq, ",nogrpid"); 1012 if (sbi->s_resuid != EXT4_DEF_RESUID || 1013 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 1014 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 1015 } 1016 if (sbi->s_resgid != EXT4_DEF_RESGID || 1017 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 1018 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 1019 } 1020 if (test_opt(sb, ERRORS_RO)) { 1021 if (def_errors == EXT4_ERRORS_PANIC || 1022 def_errors == EXT4_ERRORS_CONTINUE) { 1023 seq_puts(seq, ",errors=remount-ro"); 1024 } 1025 } 1026 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1027 seq_puts(seq, ",errors=continue"); 1028 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1029 seq_puts(seq, ",errors=panic"); 1030 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 1031 seq_puts(seq, ",nouid32"); 1032 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 1033 seq_puts(seq, ",debug"); 1034 if (test_opt(sb, OLDALLOC)) 1035 seq_puts(seq, ",oldalloc"); 1036 #ifdef CONFIG_EXT4_FS_XATTR 1037 if (test_opt(sb, XATTR_USER)) 1038 seq_puts(seq, ",user_xattr"); 1039 if (!test_opt(sb, XATTR_USER)) 1040 seq_puts(seq, ",nouser_xattr"); 1041 #endif 1042 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1043 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 1044 seq_puts(seq, ",acl"); 1045 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 1046 seq_puts(seq, ",noacl"); 1047 #endif 1048 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 1049 seq_printf(seq, ",commit=%u", 1050 (unsigned) (sbi->s_commit_interval / HZ)); 1051 } 1052 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 1053 seq_printf(seq, ",min_batch_time=%u", 1054 (unsigned) sbi->s_min_batch_time); 1055 } 1056 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 1057 seq_printf(seq, ",max_batch_time=%u", 1058 (unsigned) sbi->s_min_batch_time); 1059 } 1060 1061 /* 1062 * We're changing the default of barrier mount option, so 1063 * let's always display its mount state so it's clear what its 1064 * status is. 1065 */ 1066 seq_puts(seq, ",barrier="); 1067 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 1068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 1069 seq_puts(seq, ",journal_async_commit"); 1070 else if (test_opt(sb, JOURNAL_CHECKSUM)) 1071 seq_puts(seq, ",journal_checksum"); 1072 if (test_opt(sb, I_VERSION)) 1073 seq_puts(seq, ",i_version"); 1074 if (!test_opt(sb, DELALLOC) && 1075 !(def_mount_opts & EXT4_DEFM_NODELALLOC)) 1076 seq_puts(seq, ",nodelalloc"); 1077 1078 if (!test_opt(sb, MBLK_IO_SUBMIT)) 1079 seq_puts(seq, ",nomblk_io_submit"); 1080 if (sbi->s_stripe) 1081 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 1082 /* 1083 * journal mode get enabled in different ways 1084 * So just print the value even if we didn't specify it 1085 */ 1086 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1087 seq_puts(seq, ",data=journal"); 1088 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1089 seq_puts(seq, ",data=ordered"); 1090 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1091 seq_puts(seq, ",data=writeback"); 1092 1093 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1094 seq_printf(seq, ",inode_readahead_blks=%u", 1095 sbi->s_inode_readahead_blks); 1096 1097 if (test_opt(sb, DATA_ERR_ABORT)) 1098 seq_puts(seq, ",data_err=abort"); 1099 1100 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 1101 seq_puts(seq, ",noauto_da_alloc"); 1102 1103 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD)) 1104 seq_puts(seq, ",discard"); 1105 1106 if (test_opt(sb, NOLOAD)) 1107 seq_puts(seq, ",norecovery"); 1108 1109 if (test_opt(sb, DIOREAD_NOLOCK)) 1110 seq_puts(seq, ",dioread_nolock"); 1111 1112 if (test_opt(sb, BLOCK_VALIDITY) && 1113 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)) 1114 seq_puts(seq, ",block_validity"); 1115 1116 if (!test_opt(sb, INIT_INODE_TABLE)) 1117 seq_puts(seq, ",noinit_inode_table"); 1118 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT) 1119 seq_printf(seq, ",init_inode_table=%u", 1120 (unsigned) sbi->s_li_wait_mult); 1121 1122 ext4_show_quota_options(seq, sb); 1123 1124 return 0; 1125 } 1126 1127 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1128 u64 ino, u32 generation) 1129 { 1130 struct inode *inode; 1131 1132 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1133 return ERR_PTR(-ESTALE); 1134 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1135 return ERR_PTR(-ESTALE); 1136 1137 /* iget isn't really right if the inode is currently unallocated!! 1138 * 1139 * ext4_read_inode will return a bad_inode if the inode had been 1140 * deleted, so we should be safe. 1141 * 1142 * Currently we don't know the generation for parent directory, so 1143 * a generation of 0 means "accept any" 1144 */ 1145 inode = ext4_iget(sb, ino); 1146 if (IS_ERR(inode)) 1147 return ERR_CAST(inode); 1148 if (generation && inode->i_generation != generation) { 1149 iput(inode); 1150 return ERR_PTR(-ESTALE); 1151 } 1152 1153 return inode; 1154 } 1155 1156 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1157 int fh_len, int fh_type) 1158 { 1159 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1160 ext4_nfs_get_inode); 1161 } 1162 1163 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1164 int fh_len, int fh_type) 1165 { 1166 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1167 ext4_nfs_get_inode); 1168 } 1169 1170 /* 1171 * Try to release metadata pages (indirect blocks, directories) which are 1172 * mapped via the block device. Since these pages could have journal heads 1173 * which would prevent try_to_free_buffers() from freeing them, we must use 1174 * jbd2 layer's try_to_free_buffers() function to release them. 1175 */ 1176 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1177 gfp_t wait) 1178 { 1179 journal_t *journal = EXT4_SB(sb)->s_journal; 1180 1181 WARN_ON(PageChecked(page)); 1182 if (!page_has_buffers(page)) 1183 return 0; 1184 if (journal) 1185 return jbd2_journal_try_to_free_buffers(journal, page, 1186 wait & ~__GFP_WAIT); 1187 return try_to_free_buffers(page); 1188 } 1189 1190 #ifdef CONFIG_QUOTA 1191 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1192 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1193 1194 static int ext4_write_dquot(struct dquot *dquot); 1195 static int ext4_acquire_dquot(struct dquot *dquot); 1196 static int ext4_release_dquot(struct dquot *dquot); 1197 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1198 static int ext4_write_info(struct super_block *sb, int type); 1199 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1200 struct path *path); 1201 static int ext4_quota_off(struct super_block *sb, int type); 1202 static int ext4_quota_on_mount(struct super_block *sb, int type); 1203 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1204 size_t len, loff_t off); 1205 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1206 const char *data, size_t len, loff_t off); 1207 1208 static const struct dquot_operations ext4_quota_operations = { 1209 .get_reserved_space = ext4_get_reserved_space, 1210 .write_dquot = ext4_write_dquot, 1211 .acquire_dquot = ext4_acquire_dquot, 1212 .release_dquot = ext4_release_dquot, 1213 .mark_dirty = ext4_mark_dquot_dirty, 1214 .write_info = ext4_write_info, 1215 .alloc_dquot = dquot_alloc, 1216 .destroy_dquot = dquot_destroy, 1217 }; 1218 1219 static const struct quotactl_ops ext4_qctl_operations = { 1220 .quota_on = ext4_quota_on, 1221 .quota_off = ext4_quota_off, 1222 .quota_sync = dquot_quota_sync, 1223 .get_info = dquot_get_dqinfo, 1224 .set_info = dquot_set_dqinfo, 1225 .get_dqblk = dquot_get_dqblk, 1226 .set_dqblk = dquot_set_dqblk 1227 }; 1228 #endif 1229 1230 static const struct super_operations ext4_sops = { 1231 .alloc_inode = ext4_alloc_inode, 1232 .destroy_inode = ext4_destroy_inode, 1233 .write_inode = ext4_write_inode, 1234 .dirty_inode = ext4_dirty_inode, 1235 .drop_inode = ext4_drop_inode, 1236 .evict_inode = ext4_evict_inode, 1237 .put_super = ext4_put_super, 1238 .sync_fs = ext4_sync_fs, 1239 .freeze_fs = ext4_freeze, 1240 .unfreeze_fs = ext4_unfreeze, 1241 .statfs = ext4_statfs, 1242 .remount_fs = ext4_remount, 1243 .show_options = ext4_show_options, 1244 #ifdef CONFIG_QUOTA 1245 .quota_read = ext4_quota_read, 1246 .quota_write = ext4_quota_write, 1247 #endif 1248 .bdev_try_to_free_page = bdev_try_to_free_page, 1249 }; 1250 1251 static const struct super_operations ext4_nojournal_sops = { 1252 .alloc_inode = ext4_alloc_inode, 1253 .destroy_inode = ext4_destroy_inode, 1254 .write_inode = ext4_write_inode, 1255 .dirty_inode = ext4_dirty_inode, 1256 .drop_inode = ext4_drop_inode, 1257 .evict_inode = ext4_evict_inode, 1258 .write_super = ext4_write_super, 1259 .put_super = ext4_put_super, 1260 .statfs = ext4_statfs, 1261 .remount_fs = ext4_remount, 1262 .show_options = ext4_show_options, 1263 #ifdef CONFIG_QUOTA 1264 .quota_read = ext4_quota_read, 1265 .quota_write = ext4_quota_write, 1266 #endif 1267 .bdev_try_to_free_page = bdev_try_to_free_page, 1268 }; 1269 1270 static const struct export_operations ext4_export_ops = { 1271 .fh_to_dentry = ext4_fh_to_dentry, 1272 .fh_to_parent = ext4_fh_to_parent, 1273 .get_parent = ext4_get_parent, 1274 }; 1275 1276 enum { 1277 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1278 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1279 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1280 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1281 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1282 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1283 Opt_journal_update, Opt_journal_dev, 1284 Opt_journal_checksum, Opt_journal_async_commit, 1285 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1286 Opt_data_err_abort, Opt_data_err_ignore, 1287 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1288 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1289 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, 1290 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, 1291 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1292 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1293 Opt_inode_readahead_blks, Opt_journal_ioprio, 1294 Opt_dioread_nolock, Opt_dioread_lock, 1295 Opt_discard, Opt_nodiscard, 1296 Opt_init_inode_table, Opt_noinit_inode_table, 1297 }; 1298 1299 static const match_table_t tokens = { 1300 {Opt_bsd_df, "bsddf"}, 1301 {Opt_minix_df, "minixdf"}, 1302 {Opt_grpid, "grpid"}, 1303 {Opt_grpid, "bsdgroups"}, 1304 {Opt_nogrpid, "nogrpid"}, 1305 {Opt_nogrpid, "sysvgroups"}, 1306 {Opt_resgid, "resgid=%u"}, 1307 {Opt_resuid, "resuid=%u"}, 1308 {Opt_sb, "sb=%u"}, 1309 {Opt_err_cont, "errors=continue"}, 1310 {Opt_err_panic, "errors=panic"}, 1311 {Opt_err_ro, "errors=remount-ro"}, 1312 {Opt_nouid32, "nouid32"}, 1313 {Opt_debug, "debug"}, 1314 {Opt_oldalloc, "oldalloc"}, 1315 {Opt_orlov, "orlov"}, 1316 {Opt_user_xattr, "user_xattr"}, 1317 {Opt_nouser_xattr, "nouser_xattr"}, 1318 {Opt_acl, "acl"}, 1319 {Opt_noacl, "noacl"}, 1320 {Opt_noload, "noload"}, 1321 {Opt_noload, "norecovery"}, 1322 {Opt_nobh, "nobh"}, 1323 {Opt_bh, "bh"}, 1324 {Opt_commit, "commit=%u"}, 1325 {Opt_min_batch_time, "min_batch_time=%u"}, 1326 {Opt_max_batch_time, "max_batch_time=%u"}, 1327 {Opt_journal_update, "journal=update"}, 1328 {Opt_journal_dev, "journal_dev=%u"}, 1329 {Opt_journal_checksum, "journal_checksum"}, 1330 {Opt_journal_async_commit, "journal_async_commit"}, 1331 {Opt_abort, "abort"}, 1332 {Opt_data_journal, "data=journal"}, 1333 {Opt_data_ordered, "data=ordered"}, 1334 {Opt_data_writeback, "data=writeback"}, 1335 {Opt_data_err_abort, "data_err=abort"}, 1336 {Opt_data_err_ignore, "data_err=ignore"}, 1337 {Opt_offusrjquota, "usrjquota="}, 1338 {Opt_usrjquota, "usrjquota=%s"}, 1339 {Opt_offgrpjquota, "grpjquota="}, 1340 {Opt_grpjquota, "grpjquota=%s"}, 1341 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1342 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1343 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1344 {Opt_grpquota, "grpquota"}, 1345 {Opt_noquota, "noquota"}, 1346 {Opt_quota, "quota"}, 1347 {Opt_usrquota, "usrquota"}, 1348 {Opt_barrier, "barrier=%u"}, 1349 {Opt_barrier, "barrier"}, 1350 {Opt_nobarrier, "nobarrier"}, 1351 {Opt_i_version, "i_version"}, 1352 {Opt_stripe, "stripe=%u"}, 1353 {Opt_resize, "resize"}, 1354 {Opt_delalloc, "delalloc"}, 1355 {Opt_nodelalloc, "nodelalloc"}, 1356 {Opt_mblk_io_submit, "mblk_io_submit"}, 1357 {Opt_nomblk_io_submit, "nomblk_io_submit"}, 1358 {Opt_block_validity, "block_validity"}, 1359 {Opt_noblock_validity, "noblock_validity"}, 1360 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1361 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1362 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1363 {Opt_auto_da_alloc, "auto_da_alloc"}, 1364 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1365 {Opt_dioread_nolock, "dioread_nolock"}, 1366 {Opt_dioread_lock, "dioread_lock"}, 1367 {Opt_discard, "discard"}, 1368 {Opt_nodiscard, "nodiscard"}, 1369 {Opt_init_inode_table, "init_itable=%u"}, 1370 {Opt_init_inode_table, "init_itable"}, 1371 {Opt_noinit_inode_table, "noinit_itable"}, 1372 {Opt_err, NULL}, 1373 }; 1374 1375 static ext4_fsblk_t get_sb_block(void **data) 1376 { 1377 ext4_fsblk_t sb_block; 1378 char *options = (char *) *data; 1379 1380 if (!options || strncmp(options, "sb=", 3) != 0) 1381 return 1; /* Default location */ 1382 1383 options += 3; 1384 /* TODO: use simple_strtoll with >32bit ext4 */ 1385 sb_block = simple_strtoul(options, &options, 0); 1386 if (*options && *options != ',') { 1387 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1388 (char *) *data); 1389 return 1; 1390 } 1391 if (*options == ',') 1392 options++; 1393 *data = (void *) options; 1394 1395 return sb_block; 1396 } 1397 1398 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1399 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1400 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1401 1402 #ifdef CONFIG_QUOTA 1403 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1404 { 1405 struct ext4_sb_info *sbi = EXT4_SB(sb); 1406 char *qname; 1407 1408 if (sb_any_quota_loaded(sb) && 1409 !sbi->s_qf_names[qtype]) { 1410 ext4_msg(sb, KERN_ERR, 1411 "Cannot change journaled " 1412 "quota options when quota turned on"); 1413 return 0; 1414 } 1415 qname = match_strdup(args); 1416 if (!qname) { 1417 ext4_msg(sb, KERN_ERR, 1418 "Not enough memory for storing quotafile name"); 1419 return 0; 1420 } 1421 if (sbi->s_qf_names[qtype] && 1422 strcmp(sbi->s_qf_names[qtype], qname)) { 1423 ext4_msg(sb, KERN_ERR, 1424 "%s quota file already specified", QTYPE2NAME(qtype)); 1425 kfree(qname); 1426 return 0; 1427 } 1428 sbi->s_qf_names[qtype] = qname; 1429 if (strchr(sbi->s_qf_names[qtype], '/')) { 1430 ext4_msg(sb, KERN_ERR, 1431 "quotafile must be on filesystem root"); 1432 kfree(sbi->s_qf_names[qtype]); 1433 sbi->s_qf_names[qtype] = NULL; 1434 return 0; 1435 } 1436 set_opt(sb, QUOTA); 1437 return 1; 1438 } 1439 1440 static int clear_qf_name(struct super_block *sb, int qtype) 1441 { 1442 1443 struct ext4_sb_info *sbi = EXT4_SB(sb); 1444 1445 if (sb_any_quota_loaded(sb) && 1446 sbi->s_qf_names[qtype]) { 1447 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1448 " when quota turned on"); 1449 return 0; 1450 } 1451 /* 1452 * The space will be released later when all options are confirmed 1453 * to be correct 1454 */ 1455 sbi->s_qf_names[qtype] = NULL; 1456 return 1; 1457 } 1458 #endif 1459 1460 static int parse_options(char *options, struct super_block *sb, 1461 unsigned long *journal_devnum, 1462 unsigned int *journal_ioprio, 1463 ext4_fsblk_t *n_blocks_count, int is_remount) 1464 { 1465 struct ext4_sb_info *sbi = EXT4_SB(sb); 1466 char *p; 1467 substring_t args[MAX_OPT_ARGS]; 1468 int data_opt = 0; 1469 int option; 1470 #ifdef CONFIG_QUOTA 1471 int qfmt; 1472 #endif 1473 1474 if (!options) 1475 return 1; 1476 1477 while ((p = strsep(&options, ",")) != NULL) { 1478 int token; 1479 if (!*p) 1480 continue; 1481 1482 /* 1483 * Initialize args struct so we know whether arg was 1484 * found; some options take optional arguments. 1485 */ 1486 args[0].to = args[0].from = NULL; 1487 token = match_token(p, tokens, args); 1488 switch (token) { 1489 case Opt_bsd_df: 1490 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1491 clear_opt(sb, MINIX_DF); 1492 break; 1493 case Opt_minix_df: 1494 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1495 set_opt(sb, MINIX_DF); 1496 1497 break; 1498 case Opt_grpid: 1499 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1500 set_opt(sb, GRPID); 1501 1502 break; 1503 case Opt_nogrpid: 1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38"); 1505 clear_opt(sb, GRPID); 1506 1507 break; 1508 case Opt_resuid: 1509 if (match_int(&args[0], &option)) 1510 return 0; 1511 sbi->s_resuid = option; 1512 break; 1513 case Opt_resgid: 1514 if (match_int(&args[0], &option)) 1515 return 0; 1516 sbi->s_resgid = option; 1517 break; 1518 case Opt_sb: 1519 /* handled by get_sb_block() instead of here */ 1520 /* *sb_block = match_int(&args[0]); */ 1521 break; 1522 case Opt_err_panic: 1523 clear_opt(sb, ERRORS_CONT); 1524 clear_opt(sb, ERRORS_RO); 1525 set_opt(sb, ERRORS_PANIC); 1526 break; 1527 case Opt_err_ro: 1528 clear_opt(sb, ERRORS_CONT); 1529 clear_opt(sb, ERRORS_PANIC); 1530 set_opt(sb, ERRORS_RO); 1531 break; 1532 case Opt_err_cont: 1533 clear_opt(sb, ERRORS_RO); 1534 clear_opt(sb, ERRORS_PANIC); 1535 set_opt(sb, ERRORS_CONT); 1536 break; 1537 case Opt_nouid32: 1538 set_opt(sb, NO_UID32); 1539 break; 1540 case Opt_debug: 1541 set_opt(sb, DEBUG); 1542 break; 1543 case Opt_oldalloc: 1544 set_opt(sb, OLDALLOC); 1545 break; 1546 case Opt_orlov: 1547 clear_opt(sb, OLDALLOC); 1548 break; 1549 #ifdef CONFIG_EXT4_FS_XATTR 1550 case Opt_user_xattr: 1551 set_opt(sb, XATTR_USER); 1552 break; 1553 case Opt_nouser_xattr: 1554 clear_opt(sb, XATTR_USER); 1555 break; 1556 #else 1557 case Opt_user_xattr: 1558 case Opt_nouser_xattr: 1559 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1560 break; 1561 #endif 1562 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1563 case Opt_acl: 1564 set_opt(sb, POSIX_ACL); 1565 break; 1566 case Opt_noacl: 1567 clear_opt(sb, POSIX_ACL); 1568 break; 1569 #else 1570 case Opt_acl: 1571 case Opt_noacl: 1572 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1573 break; 1574 #endif 1575 case Opt_journal_update: 1576 /* @@@ FIXME */ 1577 /* Eventually we will want to be able to create 1578 a journal file here. For now, only allow the 1579 user to specify an existing inode to be the 1580 journal file. */ 1581 if (is_remount) { 1582 ext4_msg(sb, KERN_ERR, 1583 "Cannot specify journal on remount"); 1584 return 0; 1585 } 1586 set_opt(sb, UPDATE_JOURNAL); 1587 break; 1588 case Opt_journal_dev: 1589 if (is_remount) { 1590 ext4_msg(sb, KERN_ERR, 1591 "Cannot specify journal on remount"); 1592 return 0; 1593 } 1594 if (match_int(&args[0], &option)) 1595 return 0; 1596 *journal_devnum = option; 1597 break; 1598 case Opt_journal_checksum: 1599 set_opt(sb, JOURNAL_CHECKSUM); 1600 break; 1601 case Opt_journal_async_commit: 1602 set_opt(sb, JOURNAL_ASYNC_COMMIT); 1603 set_opt(sb, JOURNAL_CHECKSUM); 1604 break; 1605 case Opt_noload: 1606 set_opt(sb, NOLOAD); 1607 break; 1608 case Opt_commit: 1609 if (match_int(&args[0], &option)) 1610 return 0; 1611 if (option < 0) 1612 return 0; 1613 if (option == 0) 1614 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1615 sbi->s_commit_interval = HZ * option; 1616 break; 1617 case Opt_max_batch_time: 1618 if (match_int(&args[0], &option)) 1619 return 0; 1620 if (option < 0) 1621 return 0; 1622 if (option == 0) 1623 option = EXT4_DEF_MAX_BATCH_TIME; 1624 sbi->s_max_batch_time = option; 1625 break; 1626 case Opt_min_batch_time: 1627 if (match_int(&args[0], &option)) 1628 return 0; 1629 if (option < 0) 1630 return 0; 1631 sbi->s_min_batch_time = option; 1632 break; 1633 case Opt_data_journal: 1634 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1635 goto datacheck; 1636 case Opt_data_ordered: 1637 data_opt = EXT4_MOUNT_ORDERED_DATA; 1638 goto datacheck; 1639 case Opt_data_writeback: 1640 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1641 datacheck: 1642 if (is_remount) { 1643 if (test_opt(sb, DATA_FLAGS) != data_opt) { 1644 ext4_msg(sb, KERN_ERR, 1645 "Cannot change data mode on remount"); 1646 return 0; 1647 } 1648 } else { 1649 clear_opt(sb, DATA_FLAGS); 1650 sbi->s_mount_opt |= data_opt; 1651 } 1652 break; 1653 case Opt_data_err_abort: 1654 set_opt(sb, DATA_ERR_ABORT); 1655 break; 1656 case Opt_data_err_ignore: 1657 clear_opt(sb, DATA_ERR_ABORT); 1658 break; 1659 #ifdef CONFIG_QUOTA 1660 case Opt_usrjquota: 1661 if (!set_qf_name(sb, USRQUOTA, &args[0])) 1662 return 0; 1663 break; 1664 case Opt_grpjquota: 1665 if (!set_qf_name(sb, GRPQUOTA, &args[0])) 1666 return 0; 1667 break; 1668 case Opt_offusrjquota: 1669 if (!clear_qf_name(sb, USRQUOTA)) 1670 return 0; 1671 break; 1672 case Opt_offgrpjquota: 1673 if (!clear_qf_name(sb, GRPQUOTA)) 1674 return 0; 1675 break; 1676 1677 case Opt_jqfmt_vfsold: 1678 qfmt = QFMT_VFS_OLD; 1679 goto set_qf_format; 1680 case Opt_jqfmt_vfsv0: 1681 qfmt = QFMT_VFS_V0; 1682 goto set_qf_format; 1683 case Opt_jqfmt_vfsv1: 1684 qfmt = QFMT_VFS_V1; 1685 set_qf_format: 1686 if (sb_any_quota_loaded(sb) && 1687 sbi->s_jquota_fmt != qfmt) { 1688 ext4_msg(sb, KERN_ERR, "Cannot change " 1689 "journaled quota options when " 1690 "quota turned on"); 1691 return 0; 1692 } 1693 sbi->s_jquota_fmt = qfmt; 1694 break; 1695 case Opt_quota: 1696 case Opt_usrquota: 1697 set_opt(sb, QUOTA); 1698 set_opt(sb, USRQUOTA); 1699 break; 1700 case Opt_grpquota: 1701 set_opt(sb, QUOTA); 1702 set_opt(sb, GRPQUOTA); 1703 break; 1704 case Opt_noquota: 1705 if (sb_any_quota_loaded(sb)) { 1706 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1707 "options when quota turned on"); 1708 return 0; 1709 } 1710 clear_opt(sb, QUOTA); 1711 clear_opt(sb, USRQUOTA); 1712 clear_opt(sb, GRPQUOTA); 1713 break; 1714 #else 1715 case Opt_quota: 1716 case Opt_usrquota: 1717 case Opt_grpquota: 1718 ext4_msg(sb, KERN_ERR, 1719 "quota options not supported"); 1720 break; 1721 case Opt_usrjquota: 1722 case Opt_grpjquota: 1723 case Opt_offusrjquota: 1724 case Opt_offgrpjquota: 1725 case Opt_jqfmt_vfsold: 1726 case Opt_jqfmt_vfsv0: 1727 case Opt_jqfmt_vfsv1: 1728 ext4_msg(sb, KERN_ERR, 1729 "journaled quota options not supported"); 1730 break; 1731 case Opt_noquota: 1732 break; 1733 #endif 1734 case Opt_abort: 1735 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1736 break; 1737 case Opt_nobarrier: 1738 clear_opt(sb, BARRIER); 1739 break; 1740 case Opt_barrier: 1741 if (args[0].from) { 1742 if (match_int(&args[0], &option)) 1743 return 0; 1744 } else 1745 option = 1; /* No argument, default to 1 */ 1746 if (option) 1747 set_opt(sb, BARRIER); 1748 else 1749 clear_opt(sb, BARRIER); 1750 break; 1751 case Opt_ignore: 1752 break; 1753 case Opt_resize: 1754 if (!is_remount) { 1755 ext4_msg(sb, KERN_ERR, 1756 "resize option only available " 1757 "for remount"); 1758 return 0; 1759 } 1760 if (match_int(&args[0], &option) != 0) 1761 return 0; 1762 *n_blocks_count = option; 1763 break; 1764 case Opt_nobh: 1765 ext4_msg(sb, KERN_WARNING, 1766 "Ignoring deprecated nobh option"); 1767 break; 1768 case Opt_bh: 1769 ext4_msg(sb, KERN_WARNING, 1770 "Ignoring deprecated bh option"); 1771 break; 1772 case Opt_i_version: 1773 set_opt(sb, I_VERSION); 1774 sb->s_flags |= MS_I_VERSION; 1775 break; 1776 case Opt_nodelalloc: 1777 clear_opt(sb, DELALLOC); 1778 break; 1779 case Opt_mblk_io_submit: 1780 set_opt(sb, MBLK_IO_SUBMIT); 1781 break; 1782 case Opt_nomblk_io_submit: 1783 clear_opt(sb, MBLK_IO_SUBMIT); 1784 break; 1785 case Opt_stripe: 1786 if (match_int(&args[0], &option)) 1787 return 0; 1788 if (option < 0) 1789 return 0; 1790 sbi->s_stripe = option; 1791 break; 1792 case Opt_delalloc: 1793 set_opt(sb, DELALLOC); 1794 break; 1795 case Opt_block_validity: 1796 set_opt(sb, BLOCK_VALIDITY); 1797 break; 1798 case Opt_noblock_validity: 1799 clear_opt(sb, BLOCK_VALIDITY); 1800 break; 1801 case Opt_inode_readahead_blks: 1802 if (match_int(&args[0], &option)) 1803 return 0; 1804 if (option < 0 || option > (1 << 30)) 1805 return 0; 1806 if (option && !is_power_of_2(option)) { 1807 ext4_msg(sb, KERN_ERR, 1808 "EXT4-fs: inode_readahead_blks" 1809 " must be a power of 2"); 1810 return 0; 1811 } 1812 sbi->s_inode_readahead_blks = option; 1813 break; 1814 case Opt_journal_ioprio: 1815 if (match_int(&args[0], &option)) 1816 return 0; 1817 if (option < 0 || option > 7) 1818 break; 1819 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1820 option); 1821 break; 1822 case Opt_noauto_da_alloc: 1823 set_opt(sb, NO_AUTO_DA_ALLOC); 1824 break; 1825 case Opt_auto_da_alloc: 1826 if (args[0].from) { 1827 if (match_int(&args[0], &option)) 1828 return 0; 1829 } else 1830 option = 1; /* No argument, default to 1 */ 1831 if (option) 1832 clear_opt(sb, NO_AUTO_DA_ALLOC); 1833 else 1834 set_opt(sb,NO_AUTO_DA_ALLOC); 1835 break; 1836 case Opt_discard: 1837 set_opt(sb, DISCARD); 1838 break; 1839 case Opt_nodiscard: 1840 clear_opt(sb, DISCARD); 1841 break; 1842 case Opt_dioread_nolock: 1843 set_opt(sb, DIOREAD_NOLOCK); 1844 break; 1845 case Opt_dioread_lock: 1846 clear_opt(sb, DIOREAD_NOLOCK); 1847 break; 1848 case Opt_init_inode_table: 1849 set_opt(sb, INIT_INODE_TABLE); 1850 if (args[0].from) { 1851 if (match_int(&args[0], &option)) 1852 return 0; 1853 } else 1854 option = EXT4_DEF_LI_WAIT_MULT; 1855 if (option < 0) 1856 return 0; 1857 sbi->s_li_wait_mult = option; 1858 break; 1859 case Opt_noinit_inode_table: 1860 clear_opt(sb, INIT_INODE_TABLE); 1861 break; 1862 default: 1863 ext4_msg(sb, KERN_ERR, 1864 "Unrecognized mount option \"%s\" " 1865 "or missing value", p); 1866 return 0; 1867 } 1868 } 1869 #ifdef CONFIG_QUOTA 1870 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1871 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1872 clear_opt(sb, USRQUOTA); 1873 1874 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1875 clear_opt(sb, GRPQUOTA); 1876 1877 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1878 ext4_msg(sb, KERN_ERR, "old and new quota " 1879 "format mixing"); 1880 return 0; 1881 } 1882 1883 if (!sbi->s_jquota_fmt) { 1884 ext4_msg(sb, KERN_ERR, "journaled quota format " 1885 "not specified"); 1886 return 0; 1887 } 1888 } else { 1889 if (sbi->s_jquota_fmt) { 1890 ext4_msg(sb, KERN_ERR, "journaled quota format " 1891 "specified with no journaling " 1892 "enabled"); 1893 return 0; 1894 } 1895 } 1896 #endif 1897 return 1; 1898 } 1899 1900 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1901 int read_only) 1902 { 1903 struct ext4_sb_info *sbi = EXT4_SB(sb); 1904 int res = 0; 1905 1906 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1907 ext4_msg(sb, KERN_ERR, "revision level too high, " 1908 "forcing read-only mode"); 1909 res = MS_RDONLY; 1910 } 1911 if (read_only) 1912 return res; 1913 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1914 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1915 "running e2fsck is recommended"); 1916 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1917 ext4_msg(sb, KERN_WARNING, 1918 "warning: mounting fs with errors, " 1919 "running e2fsck is recommended"); 1920 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1921 le16_to_cpu(es->s_mnt_count) >= 1922 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1923 ext4_msg(sb, KERN_WARNING, 1924 "warning: maximal mount count reached, " 1925 "running e2fsck is recommended"); 1926 else if (le32_to_cpu(es->s_checkinterval) && 1927 (le32_to_cpu(es->s_lastcheck) + 1928 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1929 ext4_msg(sb, KERN_WARNING, 1930 "warning: checktime reached, " 1931 "running e2fsck is recommended"); 1932 if (!sbi->s_journal) 1933 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1934 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1935 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1936 le16_add_cpu(&es->s_mnt_count, 1); 1937 es->s_mtime = cpu_to_le32(get_seconds()); 1938 ext4_update_dynamic_rev(sb); 1939 if (sbi->s_journal) 1940 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1941 1942 ext4_commit_super(sb, 1); 1943 if (test_opt(sb, DEBUG)) 1944 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1945 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1946 sb->s_blocksize, 1947 sbi->s_groups_count, 1948 EXT4_BLOCKS_PER_GROUP(sb), 1949 EXT4_INODES_PER_GROUP(sb), 1950 sbi->s_mount_opt, sbi->s_mount_opt2); 1951 1952 cleancache_init_fs(sb); 1953 return res; 1954 } 1955 1956 static int ext4_fill_flex_info(struct super_block *sb) 1957 { 1958 struct ext4_sb_info *sbi = EXT4_SB(sb); 1959 struct ext4_group_desc *gdp = NULL; 1960 ext4_group_t flex_group_count; 1961 ext4_group_t flex_group; 1962 int groups_per_flex = 0; 1963 size_t size; 1964 int i; 1965 1966 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1967 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1968 1969 if (groups_per_flex < 2) { 1970 sbi->s_log_groups_per_flex = 0; 1971 return 1; 1972 } 1973 1974 /* We allocate both existing and potentially added groups */ 1975 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1976 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1977 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1978 size = flex_group_count * sizeof(struct flex_groups); 1979 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1980 if (sbi->s_flex_groups == NULL) { 1981 sbi->s_flex_groups = vzalloc(size); 1982 if (sbi->s_flex_groups == NULL) { 1983 ext4_msg(sb, KERN_ERR, 1984 "not enough memory for %u flex groups", 1985 flex_group_count); 1986 goto failed; 1987 } 1988 } 1989 1990 for (i = 0; i < sbi->s_groups_count; i++) { 1991 gdp = ext4_get_group_desc(sb, i, NULL); 1992 1993 flex_group = ext4_flex_group(sbi, i); 1994 atomic_add(ext4_free_inodes_count(sb, gdp), 1995 &sbi->s_flex_groups[flex_group].free_inodes); 1996 atomic_add(ext4_free_blks_count(sb, gdp), 1997 &sbi->s_flex_groups[flex_group].free_blocks); 1998 atomic_add(ext4_used_dirs_count(sb, gdp), 1999 &sbi->s_flex_groups[flex_group].used_dirs); 2000 } 2001 2002 return 1; 2003 failed: 2004 return 0; 2005 } 2006 2007 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2008 struct ext4_group_desc *gdp) 2009 { 2010 __u16 crc = 0; 2011 2012 if (sbi->s_es->s_feature_ro_compat & 2013 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 2014 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2015 __le32 le_group = cpu_to_le32(block_group); 2016 2017 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2018 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2019 crc = crc16(crc, (__u8 *)gdp, offset); 2020 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2021 /* for checksum of struct ext4_group_desc do the rest...*/ 2022 if ((sbi->s_es->s_feature_incompat & 2023 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2024 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2025 crc = crc16(crc, (__u8 *)gdp + offset, 2026 le16_to_cpu(sbi->s_es->s_desc_size) - 2027 offset); 2028 } 2029 2030 return cpu_to_le16(crc); 2031 } 2032 2033 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 2034 struct ext4_group_desc *gdp) 2035 { 2036 if ((sbi->s_es->s_feature_ro_compat & 2037 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 2038 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 2039 return 0; 2040 2041 return 1; 2042 } 2043 2044 /* Called at mount-time, super-block is locked */ 2045 static int ext4_check_descriptors(struct super_block *sb, 2046 ext4_group_t *first_not_zeroed) 2047 { 2048 struct ext4_sb_info *sbi = EXT4_SB(sb); 2049 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2050 ext4_fsblk_t last_block; 2051 ext4_fsblk_t block_bitmap; 2052 ext4_fsblk_t inode_bitmap; 2053 ext4_fsblk_t inode_table; 2054 int flexbg_flag = 0; 2055 ext4_group_t i, grp = sbi->s_groups_count; 2056 2057 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2058 flexbg_flag = 1; 2059 2060 ext4_debug("Checking group descriptors"); 2061 2062 for (i = 0; i < sbi->s_groups_count; i++) { 2063 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2064 2065 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2066 last_block = ext4_blocks_count(sbi->s_es) - 1; 2067 else 2068 last_block = first_block + 2069 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2070 2071 if ((grp == sbi->s_groups_count) && 2072 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2073 grp = i; 2074 2075 block_bitmap = ext4_block_bitmap(sb, gdp); 2076 if (block_bitmap < first_block || block_bitmap > last_block) { 2077 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2078 "Block bitmap for group %u not in group " 2079 "(block %llu)!", i, block_bitmap); 2080 return 0; 2081 } 2082 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2083 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2084 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2085 "Inode bitmap for group %u not in group " 2086 "(block %llu)!", i, inode_bitmap); 2087 return 0; 2088 } 2089 inode_table = ext4_inode_table(sb, gdp); 2090 if (inode_table < first_block || 2091 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2092 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2093 "Inode table for group %u not in group " 2094 "(block %llu)!", i, inode_table); 2095 return 0; 2096 } 2097 ext4_lock_group(sb, i); 2098 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 2099 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2100 "Checksum for group %u failed (%u!=%u)", 2101 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2102 gdp)), le16_to_cpu(gdp->bg_checksum)); 2103 if (!(sb->s_flags & MS_RDONLY)) { 2104 ext4_unlock_group(sb, i); 2105 return 0; 2106 } 2107 } 2108 ext4_unlock_group(sb, i); 2109 if (!flexbg_flag) 2110 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2111 } 2112 if (NULL != first_not_zeroed) 2113 *first_not_zeroed = grp; 2114 2115 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 2116 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2117 return 1; 2118 } 2119 2120 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2121 * the superblock) which were deleted from all directories, but held open by 2122 * a process at the time of a crash. We walk the list and try to delete these 2123 * inodes at recovery time (only with a read-write filesystem). 2124 * 2125 * In order to keep the orphan inode chain consistent during traversal (in 2126 * case of crash during recovery), we link each inode into the superblock 2127 * orphan list_head and handle it the same way as an inode deletion during 2128 * normal operation (which journals the operations for us). 2129 * 2130 * We only do an iget() and an iput() on each inode, which is very safe if we 2131 * accidentally point at an in-use or already deleted inode. The worst that 2132 * can happen in this case is that we get a "bit already cleared" message from 2133 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2134 * e2fsck was run on this filesystem, and it must have already done the orphan 2135 * inode cleanup for us, so we can safely abort without any further action. 2136 */ 2137 static void ext4_orphan_cleanup(struct super_block *sb, 2138 struct ext4_super_block *es) 2139 { 2140 unsigned int s_flags = sb->s_flags; 2141 int nr_orphans = 0, nr_truncates = 0; 2142 #ifdef CONFIG_QUOTA 2143 int i; 2144 #endif 2145 if (!es->s_last_orphan) { 2146 jbd_debug(4, "no orphan inodes to clean up\n"); 2147 return; 2148 } 2149 2150 if (bdev_read_only(sb->s_bdev)) { 2151 ext4_msg(sb, KERN_ERR, "write access " 2152 "unavailable, skipping orphan cleanup"); 2153 return; 2154 } 2155 2156 /* Check if feature set would not allow a r/w mount */ 2157 if (!ext4_feature_set_ok(sb, 0)) { 2158 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2159 "unknown ROCOMPAT features"); 2160 return; 2161 } 2162 2163 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2164 if (es->s_last_orphan) 2165 jbd_debug(1, "Errors on filesystem, " 2166 "clearing orphan list.\n"); 2167 es->s_last_orphan = 0; 2168 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2169 return; 2170 } 2171 2172 if (s_flags & MS_RDONLY) { 2173 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2174 sb->s_flags &= ~MS_RDONLY; 2175 } 2176 #ifdef CONFIG_QUOTA 2177 /* Needed for iput() to work correctly and not trash data */ 2178 sb->s_flags |= MS_ACTIVE; 2179 /* Turn on quotas so that they are updated correctly */ 2180 for (i = 0; i < MAXQUOTAS; i++) { 2181 if (EXT4_SB(sb)->s_qf_names[i]) { 2182 int ret = ext4_quota_on_mount(sb, i); 2183 if (ret < 0) 2184 ext4_msg(sb, KERN_ERR, 2185 "Cannot turn on journaled " 2186 "quota: error %d", ret); 2187 } 2188 } 2189 #endif 2190 2191 while (es->s_last_orphan) { 2192 struct inode *inode; 2193 2194 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2195 if (IS_ERR(inode)) { 2196 es->s_last_orphan = 0; 2197 break; 2198 } 2199 2200 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2201 dquot_initialize(inode); 2202 if (inode->i_nlink) { 2203 ext4_msg(sb, KERN_DEBUG, 2204 "%s: truncating inode %lu to %lld bytes", 2205 __func__, inode->i_ino, inode->i_size); 2206 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2207 inode->i_ino, inode->i_size); 2208 ext4_truncate(inode); 2209 nr_truncates++; 2210 } else { 2211 ext4_msg(sb, KERN_DEBUG, 2212 "%s: deleting unreferenced inode %lu", 2213 __func__, inode->i_ino); 2214 jbd_debug(2, "deleting unreferenced inode %lu\n", 2215 inode->i_ino); 2216 nr_orphans++; 2217 } 2218 iput(inode); /* The delete magic happens here! */ 2219 } 2220 2221 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2222 2223 if (nr_orphans) 2224 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2225 PLURAL(nr_orphans)); 2226 if (nr_truncates) 2227 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2228 PLURAL(nr_truncates)); 2229 #ifdef CONFIG_QUOTA 2230 /* Turn quotas off */ 2231 for (i = 0; i < MAXQUOTAS; i++) { 2232 if (sb_dqopt(sb)->files[i]) 2233 dquot_quota_off(sb, i); 2234 } 2235 #endif 2236 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2237 } 2238 2239 /* 2240 * Maximal extent format file size. 2241 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2242 * extent format containers, within a sector_t, and within i_blocks 2243 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2244 * so that won't be a limiting factor. 2245 * 2246 * However there is other limiting factor. We do store extents in the form 2247 * of starting block and length, hence the resulting length of the extent 2248 * covering maximum file size must fit into on-disk format containers as 2249 * well. Given that length is always by 1 unit bigger than max unit (because 2250 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2251 * 2252 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2253 */ 2254 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2255 { 2256 loff_t res; 2257 loff_t upper_limit = MAX_LFS_FILESIZE; 2258 2259 /* small i_blocks in vfs inode? */ 2260 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2261 /* 2262 * CONFIG_LBDAF is not enabled implies the inode 2263 * i_block represent total blocks in 512 bytes 2264 * 32 == size of vfs inode i_blocks * 8 2265 */ 2266 upper_limit = (1LL << 32) - 1; 2267 2268 /* total blocks in file system block size */ 2269 upper_limit >>= (blkbits - 9); 2270 upper_limit <<= blkbits; 2271 } 2272 2273 /* 2274 * 32-bit extent-start container, ee_block. We lower the maxbytes 2275 * by one fs block, so ee_len can cover the extent of maximum file 2276 * size 2277 */ 2278 res = (1LL << 32) - 1; 2279 res <<= blkbits; 2280 2281 /* Sanity check against vm- & vfs- imposed limits */ 2282 if (res > upper_limit) 2283 res = upper_limit; 2284 2285 return res; 2286 } 2287 2288 /* 2289 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2290 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2291 * We need to be 1 filesystem block less than the 2^48 sector limit. 2292 */ 2293 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2294 { 2295 loff_t res = EXT4_NDIR_BLOCKS; 2296 int meta_blocks; 2297 loff_t upper_limit; 2298 /* This is calculated to be the largest file size for a dense, block 2299 * mapped file such that the file's total number of 512-byte sectors, 2300 * including data and all indirect blocks, does not exceed (2^48 - 1). 2301 * 2302 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2303 * number of 512-byte sectors of the file. 2304 */ 2305 2306 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2307 /* 2308 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2309 * the inode i_block field represents total file blocks in 2310 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2311 */ 2312 upper_limit = (1LL << 32) - 1; 2313 2314 /* total blocks in file system block size */ 2315 upper_limit >>= (bits - 9); 2316 2317 } else { 2318 /* 2319 * We use 48 bit ext4_inode i_blocks 2320 * With EXT4_HUGE_FILE_FL set the i_blocks 2321 * represent total number of blocks in 2322 * file system block size 2323 */ 2324 upper_limit = (1LL << 48) - 1; 2325 2326 } 2327 2328 /* indirect blocks */ 2329 meta_blocks = 1; 2330 /* double indirect blocks */ 2331 meta_blocks += 1 + (1LL << (bits-2)); 2332 /* tripple indirect blocks */ 2333 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2334 2335 upper_limit -= meta_blocks; 2336 upper_limit <<= bits; 2337 2338 res += 1LL << (bits-2); 2339 res += 1LL << (2*(bits-2)); 2340 res += 1LL << (3*(bits-2)); 2341 res <<= bits; 2342 if (res > upper_limit) 2343 res = upper_limit; 2344 2345 if (res > MAX_LFS_FILESIZE) 2346 res = MAX_LFS_FILESIZE; 2347 2348 return res; 2349 } 2350 2351 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2352 ext4_fsblk_t logical_sb_block, int nr) 2353 { 2354 struct ext4_sb_info *sbi = EXT4_SB(sb); 2355 ext4_group_t bg, first_meta_bg; 2356 int has_super = 0; 2357 2358 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2359 2360 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2361 nr < first_meta_bg) 2362 return logical_sb_block + nr + 1; 2363 bg = sbi->s_desc_per_block * nr; 2364 if (ext4_bg_has_super(sb, bg)) 2365 has_super = 1; 2366 2367 return (has_super + ext4_group_first_block_no(sb, bg)); 2368 } 2369 2370 /** 2371 * ext4_get_stripe_size: Get the stripe size. 2372 * @sbi: In memory super block info 2373 * 2374 * If we have specified it via mount option, then 2375 * use the mount option value. If the value specified at mount time is 2376 * greater than the blocks per group use the super block value. 2377 * If the super block value is greater than blocks per group return 0. 2378 * Allocator needs it be less than blocks per group. 2379 * 2380 */ 2381 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2382 { 2383 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2384 unsigned long stripe_width = 2385 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2386 2387 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2388 return sbi->s_stripe; 2389 2390 if (stripe_width <= sbi->s_blocks_per_group) 2391 return stripe_width; 2392 2393 if (stride <= sbi->s_blocks_per_group) 2394 return stride; 2395 2396 return 0; 2397 } 2398 2399 /* sysfs supprt */ 2400 2401 struct ext4_attr { 2402 struct attribute attr; 2403 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2404 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2405 const char *, size_t); 2406 int offset; 2407 }; 2408 2409 static int parse_strtoul(const char *buf, 2410 unsigned long max, unsigned long *value) 2411 { 2412 char *endp; 2413 2414 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2415 endp = skip_spaces(endp); 2416 if (*endp || *value > max) 2417 return -EINVAL; 2418 2419 return 0; 2420 } 2421 2422 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2423 struct ext4_sb_info *sbi, 2424 char *buf) 2425 { 2426 return snprintf(buf, PAGE_SIZE, "%llu\n", 2427 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2428 } 2429 2430 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2431 struct ext4_sb_info *sbi, char *buf) 2432 { 2433 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2434 2435 if (!sb->s_bdev->bd_part) 2436 return snprintf(buf, PAGE_SIZE, "0\n"); 2437 return snprintf(buf, PAGE_SIZE, "%lu\n", 2438 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2439 sbi->s_sectors_written_start) >> 1); 2440 } 2441 2442 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2443 struct ext4_sb_info *sbi, char *buf) 2444 { 2445 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2446 2447 if (!sb->s_bdev->bd_part) 2448 return snprintf(buf, PAGE_SIZE, "0\n"); 2449 return snprintf(buf, PAGE_SIZE, "%llu\n", 2450 (unsigned long long)(sbi->s_kbytes_written + 2451 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2452 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2453 } 2454 2455 static ssize_t extent_cache_hits_show(struct ext4_attr *a, 2456 struct ext4_sb_info *sbi, char *buf) 2457 { 2458 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits); 2459 } 2460 2461 static ssize_t extent_cache_misses_show(struct ext4_attr *a, 2462 struct ext4_sb_info *sbi, char *buf) 2463 { 2464 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses); 2465 } 2466 2467 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2468 struct ext4_sb_info *sbi, 2469 const char *buf, size_t count) 2470 { 2471 unsigned long t; 2472 2473 if (parse_strtoul(buf, 0x40000000, &t)) 2474 return -EINVAL; 2475 2476 if (t && !is_power_of_2(t)) 2477 return -EINVAL; 2478 2479 sbi->s_inode_readahead_blks = t; 2480 return count; 2481 } 2482 2483 static ssize_t sbi_ui_show(struct ext4_attr *a, 2484 struct ext4_sb_info *sbi, char *buf) 2485 { 2486 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2487 2488 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2489 } 2490 2491 static ssize_t sbi_ui_store(struct ext4_attr *a, 2492 struct ext4_sb_info *sbi, 2493 const char *buf, size_t count) 2494 { 2495 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2496 unsigned long t; 2497 2498 if (parse_strtoul(buf, 0xffffffff, &t)) 2499 return -EINVAL; 2500 *ui = t; 2501 return count; 2502 } 2503 2504 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2505 static struct ext4_attr ext4_attr_##_name = { \ 2506 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2507 .show = _show, \ 2508 .store = _store, \ 2509 .offset = offsetof(struct ext4_sb_info, _elname), \ 2510 } 2511 #define EXT4_ATTR(name, mode, show, store) \ 2512 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2513 2514 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2515 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2516 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2517 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2518 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2519 #define ATTR_LIST(name) &ext4_attr_##name.attr 2520 2521 EXT4_RO_ATTR(delayed_allocation_blocks); 2522 EXT4_RO_ATTR(session_write_kbytes); 2523 EXT4_RO_ATTR(lifetime_write_kbytes); 2524 EXT4_RO_ATTR(extent_cache_hits); 2525 EXT4_RO_ATTR(extent_cache_misses); 2526 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2527 inode_readahead_blks_store, s_inode_readahead_blks); 2528 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2529 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2530 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2531 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2532 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2533 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2534 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2535 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2536 2537 static struct attribute *ext4_attrs[] = { 2538 ATTR_LIST(delayed_allocation_blocks), 2539 ATTR_LIST(session_write_kbytes), 2540 ATTR_LIST(lifetime_write_kbytes), 2541 ATTR_LIST(extent_cache_hits), 2542 ATTR_LIST(extent_cache_misses), 2543 ATTR_LIST(inode_readahead_blks), 2544 ATTR_LIST(inode_goal), 2545 ATTR_LIST(mb_stats), 2546 ATTR_LIST(mb_max_to_scan), 2547 ATTR_LIST(mb_min_to_scan), 2548 ATTR_LIST(mb_order2_req), 2549 ATTR_LIST(mb_stream_req), 2550 ATTR_LIST(mb_group_prealloc), 2551 ATTR_LIST(max_writeback_mb_bump), 2552 NULL, 2553 }; 2554 2555 /* Features this copy of ext4 supports */ 2556 EXT4_INFO_ATTR(lazy_itable_init); 2557 EXT4_INFO_ATTR(batched_discard); 2558 2559 static struct attribute *ext4_feat_attrs[] = { 2560 ATTR_LIST(lazy_itable_init), 2561 ATTR_LIST(batched_discard), 2562 NULL, 2563 }; 2564 2565 static ssize_t ext4_attr_show(struct kobject *kobj, 2566 struct attribute *attr, char *buf) 2567 { 2568 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2569 s_kobj); 2570 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2571 2572 return a->show ? a->show(a, sbi, buf) : 0; 2573 } 2574 2575 static ssize_t ext4_attr_store(struct kobject *kobj, 2576 struct attribute *attr, 2577 const char *buf, size_t len) 2578 { 2579 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2580 s_kobj); 2581 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2582 2583 return a->store ? a->store(a, sbi, buf, len) : 0; 2584 } 2585 2586 static void ext4_sb_release(struct kobject *kobj) 2587 { 2588 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2589 s_kobj); 2590 complete(&sbi->s_kobj_unregister); 2591 } 2592 2593 static const struct sysfs_ops ext4_attr_ops = { 2594 .show = ext4_attr_show, 2595 .store = ext4_attr_store, 2596 }; 2597 2598 static struct kobj_type ext4_ktype = { 2599 .default_attrs = ext4_attrs, 2600 .sysfs_ops = &ext4_attr_ops, 2601 .release = ext4_sb_release, 2602 }; 2603 2604 static void ext4_feat_release(struct kobject *kobj) 2605 { 2606 complete(&ext4_feat->f_kobj_unregister); 2607 } 2608 2609 static struct kobj_type ext4_feat_ktype = { 2610 .default_attrs = ext4_feat_attrs, 2611 .sysfs_ops = &ext4_attr_ops, 2612 .release = ext4_feat_release, 2613 }; 2614 2615 /* 2616 * Check whether this filesystem can be mounted based on 2617 * the features present and the RDONLY/RDWR mount requested. 2618 * Returns 1 if this filesystem can be mounted as requested, 2619 * 0 if it cannot be. 2620 */ 2621 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2622 { 2623 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2624 ext4_msg(sb, KERN_ERR, 2625 "Couldn't mount because of " 2626 "unsupported optional features (%x)", 2627 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2628 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2629 return 0; 2630 } 2631 2632 if (readonly) 2633 return 1; 2634 2635 /* Check that feature set is OK for a read-write mount */ 2636 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2637 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2638 "unsupported optional features (%x)", 2639 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2640 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2641 return 0; 2642 } 2643 /* 2644 * Large file size enabled file system can only be mounted 2645 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2646 */ 2647 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2648 if (sizeof(blkcnt_t) < sizeof(u64)) { 2649 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2650 "cannot be mounted RDWR without " 2651 "CONFIG_LBDAF"); 2652 return 0; 2653 } 2654 } 2655 return 1; 2656 } 2657 2658 /* 2659 * This function is called once a day if we have errors logged 2660 * on the file system 2661 */ 2662 static void print_daily_error_info(unsigned long arg) 2663 { 2664 struct super_block *sb = (struct super_block *) arg; 2665 struct ext4_sb_info *sbi; 2666 struct ext4_super_block *es; 2667 2668 sbi = EXT4_SB(sb); 2669 es = sbi->s_es; 2670 2671 if (es->s_error_count) 2672 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2673 le32_to_cpu(es->s_error_count)); 2674 if (es->s_first_error_time) { 2675 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2676 sb->s_id, le32_to_cpu(es->s_first_error_time), 2677 (int) sizeof(es->s_first_error_func), 2678 es->s_first_error_func, 2679 le32_to_cpu(es->s_first_error_line)); 2680 if (es->s_first_error_ino) 2681 printk(": inode %u", 2682 le32_to_cpu(es->s_first_error_ino)); 2683 if (es->s_first_error_block) 2684 printk(": block %llu", (unsigned long long) 2685 le64_to_cpu(es->s_first_error_block)); 2686 printk("\n"); 2687 } 2688 if (es->s_last_error_time) { 2689 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2690 sb->s_id, le32_to_cpu(es->s_last_error_time), 2691 (int) sizeof(es->s_last_error_func), 2692 es->s_last_error_func, 2693 le32_to_cpu(es->s_last_error_line)); 2694 if (es->s_last_error_ino) 2695 printk(": inode %u", 2696 le32_to_cpu(es->s_last_error_ino)); 2697 if (es->s_last_error_block) 2698 printk(": block %llu", (unsigned long long) 2699 le64_to_cpu(es->s_last_error_block)); 2700 printk("\n"); 2701 } 2702 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2703 } 2704 2705 /* Find next suitable group and run ext4_init_inode_table */ 2706 static int ext4_run_li_request(struct ext4_li_request *elr) 2707 { 2708 struct ext4_group_desc *gdp = NULL; 2709 ext4_group_t group, ngroups; 2710 struct super_block *sb; 2711 unsigned long timeout = 0; 2712 int ret = 0; 2713 2714 sb = elr->lr_super; 2715 ngroups = EXT4_SB(sb)->s_groups_count; 2716 2717 for (group = elr->lr_next_group; group < ngroups; group++) { 2718 gdp = ext4_get_group_desc(sb, group, NULL); 2719 if (!gdp) { 2720 ret = 1; 2721 break; 2722 } 2723 2724 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2725 break; 2726 } 2727 2728 if (group == ngroups) 2729 ret = 1; 2730 2731 if (!ret) { 2732 timeout = jiffies; 2733 ret = ext4_init_inode_table(sb, group, 2734 elr->lr_timeout ? 0 : 1); 2735 if (elr->lr_timeout == 0) { 2736 timeout = (jiffies - timeout) * 2737 elr->lr_sbi->s_li_wait_mult; 2738 elr->lr_timeout = timeout; 2739 } 2740 elr->lr_next_sched = jiffies + elr->lr_timeout; 2741 elr->lr_next_group = group + 1; 2742 } 2743 2744 return ret; 2745 } 2746 2747 /* 2748 * Remove lr_request from the list_request and free the 2749 * request structure. Should be called with li_list_mtx held 2750 */ 2751 static void ext4_remove_li_request(struct ext4_li_request *elr) 2752 { 2753 struct ext4_sb_info *sbi; 2754 2755 if (!elr) 2756 return; 2757 2758 sbi = elr->lr_sbi; 2759 2760 list_del(&elr->lr_request); 2761 sbi->s_li_request = NULL; 2762 kfree(elr); 2763 } 2764 2765 static void ext4_unregister_li_request(struct super_block *sb) 2766 { 2767 mutex_lock(&ext4_li_mtx); 2768 if (!ext4_li_info) { 2769 mutex_unlock(&ext4_li_mtx); 2770 return; 2771 } 2772 2773 mutex_lock(&ext4_li_info->li_list_mtx); 2774 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2775 mutex_unlock(&ext4_li_info->li_list_mtx); 2776 mutex_unlock(&ext4_li_mtx); 2777 } 2778 2779 static struct task_struct *ext4_lazyinit_task; 2780 2781 /* 2782 * This is the function where ext4lazyinit thread lives. It walks 2783 * through the request list searching for next scheduled filesystem. 2784 * When such a fs is found, run the lazy initialization request 2785 * (ext4_rn_li_request) and keep track of the time spend in this 2786 * function. Based on that time we compute next schedule time of 2787 * the request. When walking through the list is complete, compute 2788 * next waking time and put itself into sleep. 2789 */ 2790 static int ext4_lazyinit_thread(void *arg) 2791 { 2792 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2793 struct list_head *pos, *n; 2794 struct ext4_li_request *elr; 2795 unsigned long next_wakeup, cur; 2796 2797 BUG_ON(NULL == eli); 2798 2799 cont_thread: 2800 while (true) { 2801 next_wakeup = MAX_JIFFY_OFFSET; 2802 2803 mutex_lock(&eli->li_list_mtx); 2804 if (list_empty(&eli->li_request_list)) { 2805 mutex_unlock(&eli->li_list_mtx); 2806 goto exit_thread; 2807 } 2808 2809 list_for_each_safe(pos, n, &eli->li_request_list) { 2810 elr = list_entry(pos, struct ext4_li_request, 2811 lr_request); 2812 2813 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2814 if (ext4_run_li_request(elr) != 0) { 2815 /* error, remove the lazy_init job */ 2816 ext4_remove_li_request(elr); 2817 continue; 2818 } 2819 } 2820 2821 if (time_before(elr->lr_next_sched, next_wakeup)) 2822 next_wakeup = elr->lr_next_sched; 2823 } 2824 mutex_unlock(&eli->li_list_mtx); 2825 2826 if (freezing(current)) 2827 refrigerator(); 2828 2829 cur = jiffies; 2830 if ((time_after_eq(cur, next_wakeup)) || 2831 (MAX_JIFFY_OFFSET == next_wakeup)) { 2832 cond_resched(); 2833 continue; 2834 } 2835 2836 schedule_timeout_interruptible(next_wakeup - cur); 2837 2838 if (kthread_should_stop()) { 2839 ext4_clear_request_list(); 2840 goto exit_thread; 2841 } 2842 } 2843 2844 exit_thread: 2845 /* 2846 * It looks like the request list is empty, but we need 2847 * to check it under the li_list_mtx lock, to prevent any 2848 * additions into it, and of course we should lock ext4_li_mtx 2849 * to atomically free the list and ext4_li_info, because at 2850 * this point another ext4 filesystem could be registering 2851 * new one. 2852 */ 2853 mutex_lock(&ext4_li_mtx); 2854 mutex_lock(&eli->li_list_mtx); 2855 if (!list_empty(&eli->li_request_list)) { 2856 mutex_unlock(&eli->li_list_mtx); 2857 mutex_unlock(&ext4_li_mtx); 2858 goto cont_thread; 2859 } 2860 mutex_unlock(&eli->li_list_mtx); 2861 kfree(ext4_li_info); 2862 ext4_li_info = NULL; 2863 mutex_unlock(&ext4_li_mtx); 2864 2865 return 0; 2866 } 2867 2868 static void ext4_clear_request_list(void) 2869 { 2870 struct list_head *pos, *n; 2871 struct ext4_li_request *elr; 2872 2873 mutex_lock(&ext4_li_info->li_list_mtx); 2874 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2875 elr = list_entry(pos, struct ext4_li_request, 2876 lr_request); 2877 ext4_remove_li_request(elr); 2878 } 2879 mutex_unlock(&ext4_li_info->li_list_mtx); 2880 } 2881 2882 static int ext4_run_lazyinit_thread(void) 2883 { 2884 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2885 ext4_li_info, "ext4lazyinit"); 2886 if (IS_ERR(ext4_lazyinit_task)) { 2887 int err = PTR_ERR(ext4_lazyinit_task); 2888 ext4_clear_request_list(); 2889 kfree(ext4_li_info); 2890 ext4_li_info = NULL; 2891 printk(KERN_CRIT "EXT4: error %d creating inode table " 2892 "initialization thread\n", 2893 err); 2894 return err; 2895 } 2896 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2897 return 0; 2898 } 2899 2900 /* 2901 * Check whether it make sense to run itable init. thread or not. 2902 * If there is at least one uninitialized inode table, return 2903 * corresponding group number, else the loop goes through all 2904 * groups and return total number of groups. 2905 */ 2906 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2907 { 2908 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2909 struct ext4_group_desc *gdp = NULL; 2910 2911 for (group = 0; group < ngroups; group++) { 2912 gdp = ext4_get_group_desc(sb, group, NULL); 2913 if (!gdp) 2914 continue; 2915 2916 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2917 break; 2918 } 2919 2920 return group; 2921 } 2922 2923 static int ext4_li_info_new(void) 2924 { 2925 struct ext4_lazy_init *eli = NULL; 2926 2927 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2928 if (!eli) 2929 return -ENOMEM; 2930 2931 INIT_LIST_HEAD(&eli->li_request_list); 2932 mutex_init(&eli->li_list_mtx); 2933 2934 eli->li_state |= EXT4_LAZYINIT_QUIT; 2935 2936 ext4_li_info = eli; 2937 2938 return 0; 2939 } 2940 2941 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2942 ext4_group_t start) 2943 { 2944 struct ext4_sb_info *sbi = EXT4_SB(sb); 2945 struct ext4_li_request *elr; 2946 unsigned long rnd; 2947 2948 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2949 if (!elr) 2950 return NULL; 2951 2952 elr->lr_super = sb; 2953 elr->lr_sbi = sbi; 2954 elr->lr_next_group = start; 2955 2956 /* 2957 * Randomize first schedule time of the request to 2958 * spread the inode table initialization requests 2959 * better. 2960 */ 2961 get_random_bytes(&rnd, sizeof(rnd)); 2962 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2963 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2964 2965 return elr; 2966 } 2967 2968 static int ext4_register_li_request(struct super_block *sb, 2969 ext4_group_t first_not_zeroed) 2970 { 2971 struct ext4_sb_info *sbi = EXT4_SB(sb); 2972 struct ext4_li_request *elr; 2973 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2974 int ret = 0; 2975 2976 if (sbi->s_li_request != NULL) { 2977 /* 2978 * Reset timeout so it can be computed again, because 2979 * s_li_wait_mult might have changed. 2980 */ 2981 sbi->s_li_request->lr_timeout = 0; 2982 return 0; 2983 } 2984 2985 if (first_not_zeroed == ngroups || 2986 (sb->s_flags & MS_RDONLY) || 2987 !test_opt(sb, INIT_INODE_TABLE)) 2988 return 0; 2989 2990 elr = ext4_li_request_new(sb, first_not_zeroed); 2991 if (!elr) 2992 return -ENOMEM; 2993 2994 mutex_lock(&ext4_li_mtx); 2995 2996 if (NULL == ext4_li_info) { 2997 ret = ext4_li_info_new(); 2998 if (ret) 2999 goto out; 3000 } 3001 3002 mutex_lock(&ext4_li_info->li_list_mtx); 3003 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3004 mutex_unlock(&ext4_li_info->li_list_mtx); 3005 3006 sbi->s_li_request = elr; 3007 /* 3008 * set elr to NULL here since it has been inserted to 3009 * the request_list and the removal and free of it is 3010 * handled by ext4_clear_request_list from now on. 3011 */ 3012 elr = NULL; 3013 3014 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3015 ret = ext4_run_lazyinit_thread(); 3016 if (ret) 3017 goto out; 3018 } 3019 out: 3020 mutex_unlock(&ext4_li_mtx); 3021 if (ret) 3022 kfree(elr); 3023 return ret; 3024 } 3025 3026 /* 3027 * We do not need to lock anything since this is called on 3028 * module unload. 3029 */ 3030 static void ext4_destroy_lazyinit_thread(void) 3031 { 3032 /* 3033 * If thread exited earlier 3034 * there's nothing to be done. 3035 */ 3036 if (!ext4_li_info || !ext4_lazyinit_task) 3037 return; 3038 3039 kthread_stop(ext4_lazyinit_task); 3040 } 3041 3042 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3043 __releases(kernel_lock) 3044 __acquires(kernel_lock) 3045 { 3046 char *orig_data = kstrdup(data, GFP_KERNEL); 3047 struct buffer_head *bh; 3048 struct ext4_super_block *es = NULL; 3049 struct ext4_sb_info *sbi; 3050 ext4_fsblk_t block; 3051 ext4_fsblk_t sb_block = get_sb_block(&data); 3052 ext4_fsblk_t logical_sb_block; 3053 unsigned long offset = 0; 3054 unsigned long journal_devnum = 0; 3055 unsigned long def_mount_opts; 3056 struct inode *root; 3057 char *cp; 3058 const char *descr; 3059 int ret = -ENOMEM; 3060 int blocksize; 3061 unsigned int db_count; 3062 unsigned int i; 3063 int needs_recovery, has_huge_files; 3064 __u64 blocks_count; 3065 int err; 3066 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3067 ext4_group_t first_not_zeroed; 3068 3069 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3070 if (!sbi) 3071 goto out_free_orig; 3072 3073 sbi->s_blockgroup_lock = 3074 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3075 if (!sbi->s_blockgroup_lock) { 3076 kfree(sbi); 3077 goto out_free_orig; 3078 } 3079 sb->s_fs_info = sbi; 3080 sbi->s_mount_opt = 0; 3081 sbi->s_resuid = EXT4_DEF_RESUID; 3082 sbi->s_resgid = EXT4_DEF_RESGID; 3083 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3084 sbi->s_sb_block = sb_block; 3085 if (sb->s_bdev->bd_part) 3086 sbi->s_sectors_written_start = 3087 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3088 3089 /* Cleanup superblock name */ 3090 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3091 *cp = '!'; 3092 3093 ret = -EINVAL; 3094 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3095 if (!blocksize) { 3096 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3097 goto out_fail; 3098 } 3099 3100 /* 3101 * The ext4 superblock will not be buffer aligned for other than 1kB 3102 * block sizes. We need to calculate the offset from buffer start. 3103 */ 3104 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3105 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3106 offset = do_div(logical_sb_block, blocksize); 3107 } else { 3108 logical_sb_block = sb_block; 3109 } 3110 3111 if (!(bh = sb_bread(sb, logical_sb_block))) { 3112 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3113 goto out_fail; 3114 } 3115 /* 3116 * Note: s_es must be initialized as soon as possible because 3117 * some ext4 macro-instructions depend on its value 3118 */ 3119 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3120 sbi->s_es = es; 3121 sb->s_magic = le16_to_cpu(es->s_magic); 3122 if (sb->s_magic != EXT4_SUPER_MAGIC) 3123 goto cantfind_ext4; 3124 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3125 3126 /* Set defaults before we parse the mount options */ 3127 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3128 set_opt(sb, INIT_INODE_TABLE); 3129 if (def_mount_opts & EXT4_DEFM_DEBUG) 3130 set_opt(sb, DEBUG); 3131 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) { 3132 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups", 3133 "2.6.38"); 3134 set_opt(sb, GRPID); 3135 } 3136 if (def_mount_opts & EXT4_DEFM_UID16) 3137 set_opt(sb, NO_UID32); 3138 /* xattr user namespace & acls are now defaulted on */ 3139 #ifdef CONFIG_EXT4_FS_XATTR 3140 set_opt(sb, XATTR_USER); 3141 #endif 3142 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3143 set_opt(sb, POSIX_ACL); 3144 #endif 3145 set_opt(sb, MBLK_IO_SUBMIT); 3146 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3147 set_opt(sb, JOURNAL_DATA); 3148 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3149 set_opt(sb, ORDERED_DATA); 3150 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3151 set_opt(sb, WRITEBACK_DATA); 3152 3153 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3154 set_opt(sb, ERRORS_PANIC); 3155 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3156 set_opt(sb, ERRORS_CONT); 3157 else 3158 set_opt(sb, ERRORS_RO); 3159 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3160 set_opt(sb, BLOCK_VALIDITY); 3161 if (def_mount_opts & EXT4_DEFM_DISCARD) 3162 set_opt(sb, DISCARD); 3163 3164 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 3165 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 3166 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3167 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3168 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3169 3170 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3171 set_opt(sb, BARRIER); 3172 3173 /* 3174 * enable delayed allocation by default 3175 * Use -o nodelalloc to turn it off 3176 */ 3177 if (!IS_EXT3_SB(sb) && 3178 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3179 set_opt(sb, DELALLOC); 3180 3181 /* 3182 * set default s_li_wait_mult for lazyinit, for the case there is 3183 * no mount option specified. 3184 */ 3185 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3186 3187 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3188 &journal_devnum, &journal_ioprio, NULL, 0)) { 3189 ext4_msg(sb, KERN_WARNING, 3190 "failed to parse options in superblock: %s", 3191 sbi->s_es->s_mount_opts); 3192 } 3193 if (!parse_options((char *) data, sb, &journal_devnum, 3194 &journal_ioprio, NULL, 0)) 3195 goto failed_mount; 3196 3197 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3198 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3199 3200 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3201 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3202 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3203 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3204 ext4_msg(sb, KERN_WARNING, 3205 "feature flags set on rev 0 fs, " 3206 "running e2fsck is recommended"); 3207 3208 if (IS_EXT2_SB(sb)) { 3209 if (ext2_feature_set_ok(sb)) 3210 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3211 "using the ext4 subsystem"); 3212 else { 3213 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3214 "to feature incompatibilities"); 3215 goto failed_mount; 3216 } 3217 } 3218 3219 if (IS_EXT3_SB(sb)) { 3220 if (ext3_feature_set_ok(sb)) 3221 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3222 "using the ext4 subsystem"); 3223 else { 3224 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3225 "to feature incompatibilities"); 3226 goto failed_mount; 3227 } 3228 } 3229 3230 /* 3231 * Check feature flags regardless of the revision level, since we 3232 * previously didn't change the revision level when setting the flags, 3233 * so there is a chance incompat flags are set on a rev 0 filesystem. 3234 */ 3235 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3236 goto failed_mount; 3237 3238 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3239 3240 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3241 blocksize > EXT4_MAX_BLOCK_SIZE) { 3242 ext4_msg(sb, KERN_ERR, 3243 "Unsupported filesystem blocksize %d", blocksize); 3244 goto failed_mount; 3245 } 3246 3247 if (sb->s_blocksize != blocksize) { 3248 /* Validate the filesystem blocksize */ 3249 if (!sb_set_blocksize(sb, blocksize)) { 3250 ext4_msg(sb, KERN_ERR, "bad block size %d", 3251 blocksize); 3252 goto failed_mount; 3253 } 3254 3255 brelse(bh); 3256 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3257 offset = do_div(logical_sb_block, blocksize); 3258 bh = sb_bread(sb, logical_sb_block); 3259 if (!bh) { 3260 ext4_msg(sb, KERN_ERR, 3261 "Can't read superblock on 2nd try"); 3262 goto failed_mount; 3263 } 3264 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 3265 sbi->s_es = es; 3266 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3267 ext4_msg(sb, KERN_ERR, 3268 "Magic mismatch, very weird!"); 3269 goto failed_mount; 3270 } 3271 } 3272 3273 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3274 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3275 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3276 has_huge_files); 3277 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3278 3279 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3280 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3281 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3282 } else { 3283 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3284 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3285 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3286 (!is_power_of_2(sbi->s_inode_size)) || 3287 (sbi->s_inode_size > blocksize)) { 3288 ext4_msg(sb, KERN_ERR, 3289 "unsupported inode size: %d", 3290 sbi->s_inode_size); 3291 goto failed_mount; 3292 } 3293 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3294 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3295 } 3296 3297 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3298 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3299 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3300 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3301 !is_power_of_2(sbi->s_desc_size)) { 3302 ext4_msg(sb, KERN_ERR, 3303 "unsupported descriptor size %lu", 3304 sbi->s_desc_size); 3305 goto failed_mount; 3306 } 3307 } else 3308 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3309 3310 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3311 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3312 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3313 goto cantfind_ext4; 3314 3315 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3316 if (sbi->s_inodes_per_block == 0) 3317 goto cantfind_ext4; 3318 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3319 sbi->s_inodes_per_block; 3320 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3321 sbi->s_sbh = bh; 3322 sbi->s_mount_state = le16_to_cpu(es->s_state); 3323 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3324 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3325 3326 for (i = 0; i < 4; i++) 3327 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3328 sbi->s_def_hash_version = es->s_def_hash_version; 3329 i = le32_to_cpu(es->s_flags); 3330 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3331 sbi->s_hash_unsigned = 3; 3332 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3333 #ifdef __CHAR_UNSIGNED__ 3334 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3335 sbi->s_hash_unsigned = 3; 3336 #else 3337 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3338 #endif 3339 sb->s_dirt = 1; 3340 } 3341 3342 if (sbi->s_blocks_per_group > blocksize * 8) { 3343 ext4_msg(sb, KERN_ERR, 3344 "#blocks per group too big: %lu", 3345 sbi->s_blocks_per_group); 3346 goto failed_mount; 3347 } 3348 if (sbi->s_inodes_per_group > blocksize * 8) { 3349 ext4_msg(sb, KERN_ERR, 3350 "#inodes per group too big: %lu", 3351 sbi->s_inodes_per_group); 3352 goto failed_mount; 3353 } 3354 3355 /* 3356 * Test whether we have more sectors than will fit in sector_t, 3357 * and whether the max offset is addressable by the page cache. 3358 */ 3359 err = generic_check_addressable(sb->s_blocksize_bits, 3360 ext4_blocks_count(es)); 3361 if (err) { 3362 ext4_msg(sb, KERN_ERR, "filesystem" 3363 " too large to mount safely on this system"); 3364 if (sizeof(sector_t) < 8) 3365 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3366 ret = err; 3367 goto failed_mount; 3368 } 3369 3370 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3371 goto cantfind_ext4; 3372 3373 /* check blocks count against device size */ 3374 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3375 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3376 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3377 "exceeds size of device (%llu blocks)", 3378 ext4_blocks_count(es), blocks_count); 3379 goto failed_mount; 3380 } 3381 3382 /* 3383 * It makes no sense for the first data block to be beyond the end 3384 * of the filesystem. 3385 */ 3386 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3387 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 3388 "block %u is beyond end of filesystem (%llu)", 3389 le32_to_cpu(es->s_first_data_block), 3390 ext4_blocks_count(es)); 3391 goto failed_mount; 3392 } 3393 blocks_count = (ext4_blocks_count(es) - 3394 le32_to_cpu(es->s_first_data_block) + 3395 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3396 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3397 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3398 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3399 "(block count %llu, first data block %u, " 3400 "blocks per group %lu)", sbi->s_groups_count, 3401 ext4_blocks_count(es), 3402 le32_to_cpu(es->s_first_data_block), 3403 EXT4_BLOCKS_PER_GROUP(sb)); 3404 goto failed_mount; 3405 } 3406 sbi->s_groups_count = blocks_count; 3407 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3408 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3409 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3410 EXT4_DESC_PER_BLOCK(sb); 3411 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 3412 GFP_KERNEL); 3413 if (sbi->s_group_desc == NULL) { 3414 ext4_msg(sb, KERN_ERR, "not enough memory"); 3415 goto failed_mount; 3416 } 3417 3418 #ifdef CONFIG_PROC_FS 3419 if (ext4_proc_root) 3420 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3421 #endif 3422 3423 bgl_lock_init(sbi->s_blockgroup_lock); 3424 3425 for (i = 0; i < db_count; i++) { 3426 block = descriptor_loc(sb, logical_sb_block, i); 3427 sbi->s_group_desc[i] = sb_bread(sb, block); 3428 if (!sbi->s_group_desc[i]) { 3429 ext4_msg(sb, KERN_ERR, 3430 "can't read group descriptor %d", i); 3431 db_count = i; 3432 goto failed_mount2; 3433 } 3434 } 3435 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3436 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3437 goto failed_mount2; 3438 } 3439 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3440 if (!ext4_fill_flex_info(sb)) { 3441 ext4_msg(sb, KERN_ERR, 3442 "unable to initialize " 3443 "flex_bg meta info!"); 3444 goto failed_mount2; 3445 } 3446 3447 sbi->s_gdb_count = db_count; 3448 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3449 spin_lock_init(&sbi->s_next_gen_lock); 3450 3451 init_timer(&sbi->s_err_report); 3452 sbi->s_err_report.function = print_daily_error_info; 3453 sbi->s_err_report.data = (unsigned long) sb; 3454 3455 err = percpu_counter_init(&sbi->s_freeblocks_counter, 3456 ext4_count_free_blocks(sb)); 3457 if (!err) { 3458 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3459 ext4_count_free_inodes(sb)); 3460 } 3461 if (!err) { 3462 err = percpu_counter_init(&sbi->s_dirs_counter, 3463 ext4_count_dirs(sb)); 3464 } 3465 if (!err) { 3466 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 3467 } 3468 if (err) { 3469 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3470 goto failed_mount3; 3471 } 3472 3473 sbi->s_stripe = ext4_get_stripe_size(sbi); 3474 sbi->s_max_writeback_mb_bump = 128; 3475 3476 /* 3477 * set up enough so that it can read an inode 3478 */ 3479 if (!test_opt(sb, NOLOAD) && 3480 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3481 sb->s_op = &ext4_sops; 3482 else 3483 sb->s_op = &ext4_nojournal_sops; 3484 sb->s_export_op = &ext4_export_ops; 3485 sb->s_xattr = ext4_xattr_handlers; 3486 #ifdef CONFIG_QUOTA 3487 sb->s_qcop = &ext4_qctl_operations; 3488 sb->dq_op = &ext4_quota_operations; 3489 #endif 3490 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3491 3492 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3493 mutex_init(&sbi->s_orphan_lock); 3494 mutex_init(&sbi->s_resize_lock); 3495 3496 sb->s_root = NULL; 3497 3498 needs_recovery = (es->s_last_orphan != 0 || 3499 EXT4_HAS_INCOMPAT_FEATURE(sb, 3500 EXT4_FEATURE_INCOMPAT_RECOVER)); 3501 3502 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3503 !(sb->s_flags & MS_RDONLY)) 3504 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3505 goto failed_mount3; 3506 3507 /* 3508 * The first inode we look at is the journal inode. Don't try 3509 * root first: it may be modified in the journal! 3510 */ 3511 if (!test_opt(sb, NOLOAD) && 3512 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3513 if (ext4_load_journal(sb, es, journal_devnum)) 3514 goto failed_mount3; 3515 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3516 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3517 ext4_msg(sb, KERN_ERR, "required journal recovery " 3518 "suppressed and not mounted read-only"); 3519 goto failed_mount_wq; 3520 } else { 3521 clear_opt(sb, DATA_FLAGS); 3522 sbi->s_journal = NULL; 3523 needs_recovery = 0; 3524 goto no_journal; 3525 } 3526 3527 if (ext4_blocks_count(es) > 0xffffffffULL && 3528 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3529 JBD2_FEATURE_INCOMPAT_64BIT)) { 3530 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3531 goto failed_mount_wq; 3532 } 3533 3534 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3535 jbd2_journal_set_features(sbi->s_journal, 3536 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3537 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3538 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3539 jbd2_journal_set_features(sbi->s_journal, 3540 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 3541 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3542 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3543 } else { 3544 jbd2_journal_clear_features(sbi->s_journal, 3545 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3546 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3547 } 3548 3549 /* We have now updated the journal if required, so we can 3550 * validate the data journaling mode. */ 3551 switch (test_opt(sb, DATA_FLAGS)) { 3552 case 0: 3553 /* No mode set, assume a default based on the journal 3554 * capabilities: ORDERED_DATA if the journal can 3555 * cope, else JOURNAL_DATA 3556 */ 3557 if (jbd2_journal_check_available_features 3558 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3559 set_opt(sb, ORDERED_DATA); 3560 else 3561 set_opt(sb, JOURNAL_DATA); 3562 break; 3563 3564 case EXT4_MOUNT_ORDERED_DATA: 3565 case EXT4_MOUNT_WRITEBACK_DATA: 3566 if (!jbd2_journal_check_available_features 3567 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3568 ext4_msg(sb, KERN_ERR, "Journal does not support " 3569 "requested data journaling mode"); 3570 goto failed_mount_wq; 3571 } 3572 default: 3573 break; 3574 } 3575 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3576 3577 /* 3578 * The journal may have updated the bg summary counts, so we 3579 * need to update the global counters. 3580 */ 3581 percpu_counter_set(&sbi->s_freeblocks_counter, 3582 ext4_count_free_blocks(sb)); 3583 percpu_counter_set(&sbi->s_freeinodes_counter, 3584 ext4_count_free_inodes(sb)); 3585 percpu_counter_set(&sbi->s_dirs_counter, 3586 ext4_count_dirs(sb)); 3587 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0); 3588 3589 no_journal: 3590 /* 3591 * The maximum number of concurrent works can be high and 3592 * concurrency isn't really necessary. Limit it to 1. 3593 */ 3594 EXT4_SB(sb)->dio_unwritten_wq = 3595 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3596 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3597 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3598 goto failed_mount_wq; 3599 } 3600 3601 /* 3602 * The jbd2_journal_load will have done any necessary log recovery, 3603 * so we can safely mount the rest of the filesystem now. 3604 */ 3605 3606 root = ext4_iget(sb, EXT4_ROOT_INO); 3607 if (IS_ERR(root)) { 3608 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3609 ret = PTR_ERR(root); 3610 root = NULL; 3611 goto failed_mount4; 3612 } 3613 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3614 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3615 goto failed_mount4; 3616 } 3617 sb->s_root = d_alloc_root(root); 3618 if (!sb->s_root) { 3619 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3620 ret = -ENOMEM; 3621 goto failed_mount4; 3622 } 3623 3624 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 3625 3626 /* determine the minimum size of new large inodes, if present */ 3627 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3628 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3629 EXT4_GOOD_OLD_INODE_SIZE; 3630 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3631 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3632 if (sbi->s_want_extra_isize < 3633 le16_to_cpu(es->s_want_extra_isize)) 3634 sbi->s_want_extra_isize = 3635 le16_to_cpu(es->s_want_extra_isize); 3636 if (sbi->s_want_extra_isize < 3637 le16_to_cpu(es->s_min_extra_isize)) 3638 sbi->s_want_extra_isize = 3639 le16_to_cpu(es->s_min_extra_isize); 3640 } 3641 } 3642 /* Check if enough inode space is available */ 3643 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3644 sbi->s_inode_size) { 3645 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3646 EXT4_GOOD_OLD_INODE_SIZE; 3647 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3648 "available"); 3649 } 3650 3651 if (test_opt(sb, DELALLOC) && 3652 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 3653 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 3654 "requested data journaling mode"); 3655 clear_opt(sb, DELALLOC); 3656 } 3657 if (test_opt(sb, DIOREAD_NOLOCK)) { 3658 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3659 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3660 "option - requested data journaling mode"); 3661 clear_opt(sb, DIOREAD_NOLOCK); 3662 } 3663 if (sb->s_blocksize < PAGE_SIZE) { 3664 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock " 3665 "option - block size is too small"); 3666 clear_opt(sb, DIOREAD_NOLOCK); 3667 } 3668 } 3669 3670 err = ext4_setup_system_zone(sb); 3671 if (err) { 3672 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3673 "zone (%d)", err); 3674 goto failed_mount4; 3675 } 3676 3677 ext4_ext_init(sb); 3678 err = ext4_mb_init(sb, needs_recovery); 3679 if (err) { 3680 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3681 err); 3682 goto failed_mount4; 3683 } 3684 3685 err = ext4_register_li_request(sb, first_not_zeroed); 3686 if (err) 3687 goto failed_mount4; 3688 3689 sbi->s_kobj.kset = ext4_kset; 3690 init_completion(&sbi->s_kobj_unregister); 3691 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3692 "%s", sb->s_id); 3693 if (err) { 3694 ext4_mb_release(sb); 3695 ext4_ext_release(sb); 3696 goto failed_mount4; 3697 }; 3698 3699 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3700 ext4_orphan_cleanup(sb, es); 3701 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3702 if (needs_recovery) { 3703 ext4_msg(sb, KERN_INFO, "recovery complete"); 3704 ext4_mark_recovery_complete(sb, es); 3705 } 3706 if (EXT4_SB(sb)->s_journal) { 3707 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3708 descr = " journalled data mode"; 3709 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3710 descr = " ordered data mode"; 3711 else 3712 descr = " writeback data mode"; 3713 } else 3714 descr = "out journal"; 3715 3716 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3717 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3718 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3719 3720 if (es->s_error_count) 3721 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3722 3723 kfree(orig_data); 3724 return 0; 3725 3726 cantfind_ext4: 3727 if (!silent) 3728 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3729 goto failed_mount; 3730 3731 failed_mount4: 3732 iput(root); 3733 sb->s_root = NULL; 3734 ext4_msg(sb, KERN_ERR, "mount failed"); 3735 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 3736 failed_mount_wq: 3737 ext4_release_system_zone(sb); 3738 if (sbi->s_journal) { 3739 jbd2_journal_destroy(sbi->s_journal); 3740 sbi->s_journal = NULL; 3741 } 3742 failed_mount3: 3743 del_timer(&sbi->s_err_report); 3744 if (sbi->s_flex_groups) { 3745 if (is_vmalloc_addr(sbi->s_flex_groups)) 3746 vfree(sbi->s_flex_groups); 3747 else 3748 kfree(sbi->s_flex_groups); 3749 } 3750 percpu_counter_destroy(&sbi->s_freeblocks_counter); 3751 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3752 percpu_counter_destroy(&sbi->s_dirs_counter); 3753 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 3754 if (sbi->s_mmp_tsk) 3755 kthread_stop(sbi->s_mmp_tsk); 3756 failed_mount2: 3757 for (i = 0; i < db_count; i++) 3758 brelse(sbi->s_group_desc[i]); 3759 kfree(sbi->s_group_desc); 3760 failed_mount: 3761 if (sbi->s_proc) { 3762 remove_proc_entry(sb->s_id, ext4_proc_root); 3763 } 3764 #ifdef CONFIG_QUOTA 3765 for (i = 0; i < MAXQUOTAS; i++) 3766 kfree(sbi->s_qf_names[i]); 3767 #endif 3768 ext4_blkdev_remove(sbi); 3769 brelse(bh); 3770 out_fail: 3771 sb->s_fs_info = NULL; 3772 kfree(sbi->s_blockgroup_lock); 3773 kfree(sbi); 3774 out_free_orig: 3775 kfree(orig_data); 3776 return ret; 3777 } 3778 3779 /* 3780 * Setup any per-fs journal parameters now. We'll do this both on 3781 * initial mount, once the journal has been initialised but before we've 3782 * done any recovery; and again on any subsequent remount. 3783 */ 3784 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 3785 { 3786 struct ext4_sb_info *sbi = EXT4_SB(sb); 3787 3788 journal->j_commit_interval = sbi->s_commit_interval; 3789 journal->j_min_batch_time = sbi->s_min_batch_time; 3790 journal->j_max_batch_time = sbi->s_max_batch_time; 3791 3792 write_lock(&journal->j_state_lock); 3793 if (test_opt(sb, BARRIER)) 3794 journal->j_flags |= JBD2_BARRIER; 3795 else 3796 journal->j_flags &= ~JBD2_BARRIER; 3797 if (test_opt(sb, DATA_ERR_ABORT)) 3798 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 3799 else 3800 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 3801 write_unlock(&journal->j_state_lock); 3802 } 3803 3804 static journal_t *ext4_get_journal(struct super_block *sb, 3805 unsigned int journal_inum) 3806 { 3807 struct inode *journal_inode; 3808 journal_t *journal; 3809 3810 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3811 3812 /* First, test for the existence of a valid inode on disk. Bad 3813 * things happen if we iget() an unused inode, as the subsequent 3814 * iput() will try to delete it. */ 3815 3816 journal_inode = ext4_iget(sb, journal_inum); 3817 if (IS_ERR(journal_inode)) { 3818 ext4_msg(sb, KERN_ERR, "no journal found"); 3819 return NULL; 3820 } 3821 if (!journal_inode->i_nlink) { 3822 make_bad_inode(journal_inode); 3823 iput(journal_inode); 3824 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 3825 return NULL; 3826 } 3827 3828 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3829 journal_inode, journal_inode->i_size); 3830 if (!S_ISREG(journal_inode->i_mode)) { 3831 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3832 iput(journal_inode); 3833 return NULL; 3834 } 3835 3836 journal = jbd2_journal_init_inode(journal_inode); 3837 if (!journal) { 3838 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3839 iput(journal_inode); 3840 return NULL; 3841 } 3842 journal->j_private = sb; 3843 ext4_init_journal_params(sb, journal); 3844 return journal; 3845 } 3846 3847 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3848 dev_t j_dev) 3849 { 3850 struct buffer_head *bh; 3851 journal_t *journal; 3852 ext4_fsblk_t start; 3853 ext4_fsblk_t len; 3854 int hblock, blocksize; 3855 ext4_fsblk_t sb_block; 3856 unsigned long offset; 3857 struct ext4_super_block *es; 3858 struct block_device *bdev; 3859 3860 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3861 3862 bdev = ext4_blkdev_get(j_dev, sb); 3863 if (bdev == NULL) 3864 return NULL; 3865 3866 blocksize = sb->s_blocksize; 3867 hblock = bdev_logical_block_size(bdev); 3868 if (blocksize < hblock) { 3869 ext4_msg(sb, KERN_ERR, 3870 "blocksize too small for journal device"); 3871 goto out_bdev; 3872 } 3873 3874 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3875 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3876 set_blocksize(bdev, blocksize); 3877 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3878 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3879 "external journal"); 3880 goto out_bdev; 3881 } 3882 3883 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3884 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3885 !(le32_to_cpu(es->s_feature_incompat) & 3886 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3887 ext4_msg(sb, KERN_ERR, "external journal has " 3888 "bad superblock"); 3889 brelse(bh); 3890 goto out_bdev; 3891 } 3892 3893 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3894 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3895 brelse(bh); 3896 goto out_bdev; 3897 } 3898 3899 len = ext4_blocks_count(es); 3900 start = sb_block + 1; 3901 brelse(bh); /* we're done with the superblock */ 3902 3903 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3904 start, len, blocksize); 3905 if (!journal) { 3906 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3907 goto out_bdev; 3908 } 3909 journal->j_private = sb; 3910 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3911 wait_on_buffer(journal->j_sb_buffer); 3912 if (!buffer_uptodate(journal->j_sb_buffer)) { 3913 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3914 goto out_journal; 3915 } 3916 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3917 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3918 "user (unsupported) - %d", 3919 be32_to_cpu(journal->j_superblock->s_nr_users)); 3920 goto out_journal; 3921 } 3922 EXT4_SB(sb)->journal_bdev = bdev; 3923 ext4_init_journal_params(sb, journal); 3924 return journal; 3925 3926 out_journal: 3927 jbd2_journal_destroy(journal); 3928 out_bdev: 3929 ext4_blkdev_put(bdev); 3930 return NULL; 3931 } 3932 3933 static int ext4_load_journal(struct super_block *sb, 3934 struct ext4_super_block *es, 3935 unsigned long journal_devnum) 3936 { 3937 journal_t *journal; 3938 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3939 dev_t journal_dev; 3940 int err = 0; 3941 int really_read_only; 3942 3943 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3944 3945 if (journal_devnum && 3946 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3947 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3948 "numbers have changed"); 3949 journal_dev = new_decode_dev(journal_devnum); 3950 } else 3951 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3952 3953 really_read_only = bdev_read_only(sb->s_bdev); 3954 3955 /* 3956 * Are we loading a blank journal or performing recovery after a 3957 * crash? For recovery, we need to check in advance whether we 3958 * can get read-write access to the device. 3959 */ 3960 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3961 if (sb->s_flags & MS_RDONLY) { 3962 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3963 "required on readonly filesystem"); 3964 if (really_read_only) { 3965 ext4_msg(sb, KERN_ERR, "write access " 3966 "unavailable, cannot proceed"); 3967 return -EROFS; 3968 } 3969 ext4_msg(sb, KERN_INFO, "write access will " 3970 "be enabled during recovery"); 3971 } 3972 } 3973 3974 if (journal_inum && journal_dev) { 3975 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3976 "and inode journals!"); 3977 return -EINVAL; 3978 } 3979 3980 if (journal_inum) { 3981 if (!(journal = ext4_get_journal(sb, journal_inum))) 3982 return -EINVAL; 3983 } else { 3984 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3985 return -EINVAL; 3986 } 3987 3988 if (!(journal->j_flags & JBD2_BARRIER)) 3989 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3990 3991 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3992 err = jbd2_journal_update_format(journal); 3993 if (err) { 3994 ext4_msg(sb, KERN_ERR, "error updating journal"); 3995 jbd2_journal_destroy(journal); 3996 return err; 3997 } 3998 } 3999 4000 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4001 err = jbd2_journal_wipe(journal, !really_read_only); 4002 if (!err) { 4003 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4004 if (save) 4005 memcpy(save, ((char *) es) + 4006 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4007 err = jbd2_journal_load(journal); 4008 if (save) 4009 memcpy(((char *) es) + EXT4_S_ERR_START, 4010 save, EXT4_S_ERR_LEN); 4011 kfree(save); 4012 } 4013 4014 if (err) { 4015 ext4_msg(sb, KERN_ERR, "error loading journal"); 4016 jbd2_journal_destroy(journal); 4017 return err; 4018 } 4019 4020 EXT4_SB(sb)->s_journal = journal; 4021 ext4_clear_journal_err(sb, es); 4022 4023 if (!really_read_only && journal_devnum && 4024 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4025 es->s_journal_dev = cpu_to_le32(journal_devnum); 4026 4027 /* Make sure we flush the recovery flag to disk. */ 4028 ext4_commit_super(sb, 1); 4029 } 4030 4031 return 0; 4032 } 4033 4034 static int ext4_commit_super(struct super_block *sb, int sync) 4035 { 4036 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4037 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4038 int error = 0; 4039 4040 if (!sbh) 4041 return error; 4042 if (buffer_write_io_error(sbh)) { 4043 /* 4044 * Oh, dear. A previous attempt to write the 4045 * superblock failed. This could happen because the 4046 * USB device was yanked out. Or it could happen to 4047 * be a transient write error and maybe the block will 4048 * be remapped. Nothing we can do but to retry the 4049 * write and hope for the best. 4050 */ 4051 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4052 "superblock detected"); 4053 clear_buffer_write_io_error(sbh); 4054 set_buffer_uptodate(sbh); 4055 } 4056 /* 4057 * If the file system is mounted read-only, don't update the 4058 * superblock write time. This avoids updating the superblock 4059 * write time when we are mounting the root file system 4060 * read/only but we need to replay the journal; at that point, 4061 * for people who are east of GMT and who make their clock 4062 * tick in localtime for Windows bug-for-bug compatibility, 4063 * the clock is set in the future, and this will cause e2fsck 4064 * to complain and force a full file system check. 4065 */ 4066 if (!(sb->s_flags & MS_RDONLY)) 4067 es->s_wtime = cpu_to_le32(get_seconds()); 4068 if (sb->s_bdev->bd_part) 4069 es->s_kbytes_written = 4070 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4071 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4072 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4073 else 4074 es->s_kbytes_written = 4075 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4076 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 4077 &EXT4_SB(sb)->s_freeblocks_counter)); 4078 es->s_free_inodes_count = 4079 cpu_to_le32(percpu_counter_sum_positive( 4080 &EXT4_SB(sb)->s_freeinodes_counter)); 4081 sb->s_dirt = 0; 4082 BUFFER_TRACE(sbh, "marking dirty"); 4083 mark_buffer_dirty(sbh); 4084 if (sync) { 4085 error = sync_dirty_buffer(sbh); 4086 if (error) 4087 return error; 4088 4089 error = buffer_write_io_error(sbh); 4090 if (error) { 4091 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4092 "superblock"); 4093 clear_buffer_write_io_error(sbh); 4094 set_buffer_uptodate(sbh); 4095 } 4096 } 4097 return error; 4098 } 4099 4100 /* 4101 * Have we just finished recovery? If so, and if we are mounting (or 4102 * remounting) the filesystem readonly, then we will end up with a 4103 * consistent fs on disk. Record that fact. 4104 */ 4105 static void ext4_mark_recovery_complete(struct super_block *sb, 4106 struct ext4_super_block *es) 4107 { 4108 journal_t *journal = EXT4_SB(sb)->s_journal; 4109 4110 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4111 BUG_ON(journal != NULL); 4112 return; 4113 } 4114 jbd2_journal_lock_updates(journal); 4115 if (jbd2_journal_flush(journal) < 0) 4116 goto out; 4117 4118 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4119 sb->s_flags & MS_RDONLY) { 4120 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4121 ext4_commit_super(sb, 1); 4122 } 4123 4124 out: 4125 jbd2_journal_unlock_updates(journal); 4126 } 4127 4128 /* 4129 * If we are mounting (or read-write remounting) a filesystem whose journal 4130 * has recorded an error from a previous lifetime, move that error to the 4131 * main filesystem now. 4132 */ 4133 static void ext4_clear_journal_err(struct super_block *sb, 4134 struct ext4_super_block *es) 4135 { 4136 journal_t *journal; 4137 int j_errno; 4138 const char *errstr; 4139 4140 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4141 4142 journal = EXT4_SB(sb)->s_journal; 4143 4144 /* 4145 * Now check for any error status which may have been recorded in the 4146 * journal by a prior ext4_error() or ext4_abort() 4147 */ 4148 4149 j_errno = jbd2_journal_errno(journal); 4150 if (j_errno) { 4151 char nbuf[16]; 4152 4153 errstr = ext4_decode_error(sb, j_errno, nbuf); 4154 ext4_warning(sb, "Filesystem error recorded " 4155 "from previous mount: %s", errstr); 4156 ext4_warning(sb, "Marking fs in need of filesystem check."); 4157 4158 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4159 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4160 ext4_commit_super(sb, 1); 4161 4162 jbd2_journal_clear_err(journal); 4163 } 4164 } 4165 4166 /* 4167 * Force the running and committing transactions to commit, 4168 * and wait on the commit. 4169 */ 4170 int ext4_force_commit(struct super_block *sb) 4171 { 4172 journal_t *journal; 4173 int ret = 0; 4174 4175 if (sb->s_flags & MS_RDONLY) 4176 return 0; 4177 4178 journal = EXT4_SB(sb)->s_journal; 4179 if (journal) { 4180 vfs_check_frozen(sb, SB_FREEZE_TRANS); 4181 ret = ext4_journal_force_commit(journal); 4182 } 4183 4184 return ret; 4185 } 4186 4187 static void ext4_write_super(struct super_block *sb) 4188 { 4189 lock_super(sb); 4190 ext4_commit_super(sb, 1); 4191 unlock_super(sb); 4192 } 4193 4194 static int ext4_sync_fs(struct super_block *sb, int wait) 4195 { 4196 int ret = 0; 4197 tid_t target; 4198 struct ext4_sb_info *sbi = EXT4_SB(sb); 4199 4200 trace_ext4_sync_fs(sb, wait); 4201 flush_workqueue(sbi->dio_unwritten_wq); 4202 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4203 if (wait) 4204 jbd2_log_wait_commit(sbi->s_journal, target); 4205 } 4206 return ret; 4207 } 4208 4209 /* 4210 * LVM calls this function before a (read-only) snapshot is created. This 4211 * gives us a chance to flush the journal completely and mark the fs clean. 4212 * 4213 * Note that only this function cannot bring a filesystem to be in a clean 4214 * state independently, because ext4 prevents a new handle from being started 4215 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from 4216 * the upper layer. 4217 */ 4218 static int ext4_freeze(struct super_block *sb) 4219 { 4220 int error = 0; 4221 journal_t *journal; 4222 4223 if (sb->s_flags & MS_RDONLY) 4224 return 0; 4225 4226 journal = EXT4_SB(sb)->s_journal; 4227 4228 /* Now we set up the journal barrier. */ 4229 jbd2_journal_lock_updates(journal); 4230 4231 /* 4232 * Don't clear the needs_recovery flag if we failed to flush 4233 * the journal. 4234 */ 4235 error = jbd2_journal_flush(journal); 4236 if (error < 0) 4237 goto out; 4238 4239 /* Journal blocked and flushed, clear needs_recovery flag. */ 4240 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4241 error = ext4_commit_super(sb, 1); 4242 out: 4243 /* we rely on s_frozen to stop further updates */ 4244 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4245 return error; 4246 } 4247 4248 /* 4249 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4250 * flag here, even though the filesystem is not technically dirty yet. 4251 */ 4252 static int ext4_unfreeze(struct super_block *sb) 4253 { 4254 if (sb->s_flags & MS_RDONLY) 4255 return 0; 4256 4257 lock_super(sb); 4258 /* Reset the needs_recovery flag before the fs is unlocked. */ 4259 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4260 ext4_commit_super(sb, 1); 4261 unlock_super(sb); 4262 return 0; 4263 } 4264 4265 /* 4266 * Structure to save mount options for ext4_remount's benefit 4267 */ 4268 struct ext4_mount_options { 4269 unsigned long s_mount_opt; 4270 unsigned long s_mount_opt2; 4271 uid_t s_resuid; 4272 gid_t s_resgid; 4273 unsigned long s_commit_interval; 4274 u32 s_min_batch_time, s_max_batch_time; 4275 #ifdef CONFIG_QUOTA 4276 int s_jquota_fmt; 4277 char *s_qf_names[MAXQUOTAS]; 4278 #endif 4279 }; 4280 4281 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4282 { 4283 struct ext4_super_block *es; 4284 struct ext4_sb_info *sbi = EXT4_SB(sb); 4285 ext4_fsblk_t n_blocks_count = 0; 4286 unsigned long old_sb_flags; 4287 struct ext4_mount_options old_opts; 4288 int enable_quota = 0; 4289 ext4_group_t g; 4290 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4291 int err = 0; 4292 #ifdef CONFIG_QUOTA 4293 int i; 4294 #endif 4295 char *orig_data = kstrdup(data, GFP_KERNEL); 4296 4297 /* Store the original options */ 4298 lock_super(sb); 4299 old_sb_flags = sb->s_flags; 4300 old_opts.s_mount_opt = sbi->s_mount_opt; 4301 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4302 old_opts.s_resuid = sbi->s_resuid; 4303 old_opts.s_resgid = sbi->s_resgid; 4304 old_opts.s_commit_interval = sbi->s_commit_interval; 4305 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4306 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4307 #ifdef CONFIG_QUOTA 4308 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4309 for (i = 0; i < MAXQUOTAS; i++) 4310 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 4311 #endif 4312 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4313 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4314 4315 /* 4316 * Allow the "check" option to be passed as a remount option. 4317 */ 4318 if (!parse_options(data, sb, NULL, &journal_ioprio, 4319 &n_blocks_count, 1)) { 4320 err = -EINVAL; 4321 goto restore_opts; 4322 } 4323 4324 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4325 ext4_abort(sb, "Abort forced by user"); 4326 4327 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4328 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4329 4330 es = sbi->s_es; 4331 4332 if (sbi->s_journal) { 4333 ext4_init_journal_params(sb, sbi->s_journal); 4334 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4335 } 4336 4337 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 4338 n_blocks_count > ext4_blocks_count(es)) { 4339 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4340 err = -EROFS; 4341 goto restore_opts; 4342 } 4343 4344 if (*flags & MS_RDONLY) { 4345 err = dquot_suspend(sb, -1); 4346 if (err < 0) 4347 goto restore_opts; 4348 4349 /* 4350 * First of all, the unconditional stuff we have to do 4351 * to disable replay of the journal when we next remount 4352 */ 4353 sb->s_flags |= MS_RDONLY; 4354 4355 /* 4356 * OK, test if we are remounting a valid rw partition 4357 * readonly, and if so set the rdonly flag and then 4358 * mark the partition as valid again. 4359 */ 4360 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4361 (sbi->s_mount_state & EXT4_VALID_FS)) 4362 es->s_state = cpu_to_le16(sbi->s_mount_state); 4363 4364 if (sbi->s_journal) 4365 ext4_mark_recovery_complete(sb, es); 4366 } else { 4367 /* Make sure we can mount this feature set readwrite */ 4368 if (!ext4_feature_set_ok(sb, 0)) { 4369 err = -EROFS; 4370 goto restore_opts; 4371 } 4372 /* 4373 * Make sure the group descriptor checksums 4374 * are sane. If they aren't, refuse to remount r/w. 4375 */ 4376 for (g = 0; g < sbi->s_groups_count; g++) { 4377 struct ext4_group_desc *gdp = 4378 ext4_get_group_desc(sb, g, NULL); 4379 4380 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 4381 ext4_msg(sb, KERN_ERR, 4382 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4383 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4384 le16_to_cpu(gdp->bg_checksum)); 4385 err = -EINVAL; 4386 goto restore_opts; 4387 } 4388 } 4389 4390 /* 4391 * If we have an unprocessed orphan list hanging 4392 * around from a previously readonly bdev mount, 4393 * require a full umount/remount for now. 4394 */ 4395 if (es->s_last_orphan) { 4396 ext4_msg(sb, KERN_WARNING, "Couldn't " 4397 "remount RDWR because of unprocessed " 4398 "orphan inode list. Please " 4399 "umount/remount instead"); 4400 err = -EINVAL; 4401 goto restore_opts; 4402 } 4403 4404 /* 4405 * Mounting a RDONLY partition read-write, so reread 4406 * and store the current valid flag. (It may have 4407 * been changed by e2fsck since we originally mounted 4408 * the partition.) 4409 */ 4410 if (sbi->s_journal) 4411 ext4_clear_journal_err(sb, es); 4412 sbi->s_mount_state = le16_to_cpu(es->s_state); 4413 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 4414 goto restore_opts; 4415 if (!ext4_setup_super(sb, es, 0)) 4416 sb->s_flags &= ~MS_RDONLY; 4417 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4418 EXT4_FEATURE_INCOMPAT_MMP)) 4419 if (ext4_multi_mount_protect(sb, 4420 le64_to_cpu(es->s_mmp_block))) { 4421 err = -EROFS; 4422 goto restore_opts; 4423 } 4424 enable_quota = 1; 4425 } 4426 } 4427 4428 /* 4429 * Reinitialize lazy itable initialization thread based on 4430 * current settings 4431 */ 4432 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4433 ext4_unregister_li_request(sb); 4434 else { 4435 ext4_group_t first_not_zeroed; 4436 first_not_zeroed = ext4_has_uninit_itable(sb); 4437 ext4_register_li_request(sb, first_not_zeroed); 4438 } 4439 4440 ext4_setup_system_zone(sb); 4441 if (sbi->s_journal == NULL) 4442 ext4_commit_super(sb, 1); 4443 4444 #ifdef CONFIG_QUOTA 4445 /* Release old quota file names */ 4446 for (i = 0; i < MAXQUOTAS; i++) 4447 if (old_opts.s_qf_names[i] && 4448 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4449 kfree(old_opts.s_qf_names[i]); 4450 #endif 4451 unlock_super(sb); 4452 if (enable_quota) 4453 dquot_resume(sb, -1); 4454 4455 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4456 kfree(orig_data); 4457 return 0; 4458 4459 restore_opts: 4460 sb->s_flags = old_sb_flags; 4461 sbi->s_mount_opt = old_opts.s_mount_opt; 4462 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4463 sbi->s_resuid = old_opts.s_resuid; 4464 sbi->s_resgid = old_opts.s_resgid; 4465 sbi->s_commit_interval = old_opts.s_commit_interval; 4466 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4467 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4468 #ifdef CONFIG_QUOTA 4469 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4470 for (i = 0; i < MAXQUOTAS; i++) { 4471 if (sbi->s_qf_names[i] && 4472 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 4473 kfree(sbi->s_qf_names[i]); 4474 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4475 } 4476 #endif 4477 unlock_super(sb); 4478 kfree(orig_data); 4479 return err; 4480 } 4481 4482 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4483 { 4484 struct super_block *sb = dentry->d_sb; 4485 struct ext4_sb_info *sbi = EXT4_SB(sb); 4486 struct ext4_super_block *es = sbi->s_es; 4487 u64 fsid; 4488 s64 bfree; 4489 4490 if (test_opt(sb, MINIX_DF)) { 4491 sbi->s_overhead_last = 0; 4492 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 4493 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4494 ext4_fsblk_t overhead = 0; 4495 4496 /* 4497 * Compute the overhead (FS structures). This is constant 4498 * for a given filesystem unless the number of block groups 4499 * changes so we cache the previous value until it does. 4500 */ 4501 4502 /* 4503 * All of the blocks before first_data_block are 4504 * overhead 4505 */ 4506 overhead = le32_to_cpu(es->s_first_data_block); 4507 4508 /* 4509 * Add the overhead attributed to the superblock and 4510 * block group descriptors. If the sparse superblocks 4511 * feature is turned on, then not all groups have this. 4512 */ 4513 for (i = 0; i < ngroups; i++) { 4514 overhead += ext4_bg_has_super(sb, i) + 4515 ext4_bg_num_gdb(sb, i); 4516 cond_resched(); 4517 } 4518 4519 /* 4520 * Every block group has an inode bitmap, a block 4521 * bitmap, and an inode table. 4522 */ 4523 overhead += ngroups * (2 + sbi->s_itb_per_group); 4524 sbi->s_overhead_last = overhead; 4525 smp_wmb(); 4526 sbi->s_blocks_last = ext4_blocks_count(es); 4527 } 4528 4529 buf->f_type = EXT4_SUPER_MAGIC; 4530 buf->f_bsize = sb->s_blocksize; 4531 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 4532 bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 4533 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 4534 /* prevent underflow in case that few free space is available */ 4535 buf->f_bfree = max_t(s64, bfree, 0); 4536 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4537 if (buf->f_bfree < ext4_r_blocks_count(es)) 4538 buf->f_bavail = 0; 4539 buf->f_files = le32_to_cpu(es->s_inodes_count); 4540 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4541 buf->f_namelen = EXT4_NAME_LEN; 4542 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4543 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4544 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4545 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4546 4547 return 0; 4548 } 4549 4550 /* Helper function for writing quotas on sync - we need to start transaction 4551 * before quota file is locked for write. Otherwise the are possible deadlocks: 4552 * Process 1 Process 2 4553 * ext4_create() quota_sync() 4554 * jbd2_journal_start() write_dquot() 4555 * dquot_initialize() down(dqio_mutex) 4556 * down(dqio_mutex) jbd2_journal_start() 4557 * 4558 */ 4559 4560 #ifdef CONFIG_QUOTA 4561 4562 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4563 { 4564 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 4565 } 4566 4567 static int ext4_write_dquot(struct dquot *dquot) 4568 { 4569 int ret, err; 4570 handle_t *handle; 4571 struct inode *inode; 4572 4573 inode = dquot_to_inode(dquot); 4574 handle = ext4_journal_start(inode, 4575 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4576 if (IS_ERR(handle)) 4577 return PTR_ERR(handle); 4578 ret = dquot_commit(dquot); 4579 err = ext4_journal_stop(handle); 4580 if (!ret) 4581 ret = err; 4582 return ret; 4583 } 4584 4585 static int ext4_acquire_dquot(struct dquot *dquot) 4586 { 4587 int ret, err; 4588 handle_t *handle; 4589 4590 handle = ext4_journal_start(dquot_to_inode(dquot), 4591 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4592 if (IS_ERR(handle)) 4593 return PTR_ERR(handle); 4594 ret = dquot_acquire(dquot); 4595 err = ext4_journal_stop(handle); 4596 if (!ret) 4597 ret = err; 4598 return ret; 4599 } 4600 4601 static int ext4_release_dquot(struct dquot *dquot) 4602 { 4603 int ret, err; 4604 handle_t *handle; 4605 4606 handle = ext4_journal_start(dquot_to_inode(dquot), 4607 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4608 if (IS_ERR(handle)) { 4609 /* Release dquot anyway to avoid endless cycle in dqput() */ 4610 dquot_release(dquot); 4611 return PTR_ERR(handle); 4612 } 4613 ret = dquot_release(dquot); 4614 err = ext4_journal_stop(handle); 4615 if (!ret) 4616 ret = err; 4617 return ret; 4618 } 4619 4620 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4621 { 4622 /* Are we journaling quotas? */ 4623 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 4624 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 4625 dquot_mark_dquot_dirty(dquot); 4626 return ext4_write_dquot(dquot); 4627 } else { 4628 return dquot_mark_dquot_dirty(dquot); 4629 } 4630 } 4631 4632 static int ext4_write_info(struct super_block *sb, int type) 4633 { 4634 int ret, err; 4635 handle_t *handle; 4636 4637 /* Data block + inode block */ 4638 handle = ext4_journal_start(sb->s_root->d_inode, 2); 4639 if (IS_ERR(handle)) 4640 return PTR_ERR(handle); 4641 ret = dquot_commit_info(sb, type); 4642 err = ext4_journal_stop(handle); 4643 if (!ret) 4644 ret = err; 4645 return ret; 4646 } 4647 4648 /* 4649 * Turn on quotas during mount time - we need to find 4650 * the quota file and such... 4651 */ 4652 static int ext4_quota_on_mount(struct super_block *sb, int type) 4653 { 4654 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4655 EXT4_SB(sb)->s_jquota_fmt, type); 4656 } 4657 4658 /* 4659 * Standard function to be called on quota_on 4660 */ 4661 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4662 struct path *path) 4663 { 4664 int err; 4665 4666 if (!test_opt(sb, QUOTA)) 4667 return -EINVAL; 4668 4669 /* Quotafile not on the same filesystem? */ 4670 if (path->mnt->mnt_sb != sb) 4671 return -EXDEV; 4672 /* Journaling quota? */ 4673 if (EXT4_SB(sb)->s_qf_names[type]) { 4674 /* Quotafile not in fs root? */ 4675 if (path->dentry->d_parent != sb->s_root) 4676 ext4_msg(sb, KERN_WARNING, 4677 "Quota file not on filesystem root. " 4678 "Journaled quota will not work"); 4679 } 4680 4681 /* 4682 * When we journal data on quota file, we have to flush journal to see 4683 * all updates to the file when we bypass pagecache... 4684 */ 4685 if (EXT4_SB(sb)->s_journal && 4686 ext4_should_journal_data(path->dentry->d_inode)) { 4687 /* 4688 * We don't need to lock updates but journal_flush() could 4689 * otherwise be livelocked... 4690 */ 4691 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4692 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4693 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4694 if (err) 4695 return err; 4696 } 4697 4698 return dquot_quota_on(sb, type, format_id, path); 4699 } 4700 4701 static int ext4_quota_off(struct super_block *sb, int type) 4702 { 4703 struct inode *inode = sb_dqopt(sb)->files[type]; 4704 handle_t *handle; 4705 4706 /* Force all delayed allocation blocks to be allocated. 4707 * Caller already holds s_umount sem */ 4708 if (test_opt(sb, DELALLOC)) 4709 sync_filesystem(sb); 4710 4711 if (!inode) 4712 goto out; 4713 4714 /* Update modification times of quota files when userspace can 4715 * start looking at them */ 4716 handle = ext4_journal_start(inode, 1); 4717 if (IS_ERR(handle)) 4718 goto out; 4719 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 4720 ext4_mark_inode_dirty(handle, inode); 4721 ext4_journal_stop(handle); 4722 4723 out: 4724 return dquot_quota_off(sb, type); 4725 } 4726 4727 /* Read data from quotafile - avoid pagecache and such because we cannot afford 4728 * acquiring the locks... As quota files are never truncated and quota code 4729 * itself serializes the operations (and no one else should touch the files) 4730 * we don't have to be afraid of races */ 4731 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 4732 size_t len, loff_t off) 4733 { 4734 struct inode *inode = sb_dqopt(sb)->files[type]; 4735 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4736 int err = 0; 4737 int offset = off & (sb->s_blocksize - 1); 4738 int tocopy; 4739 size_t toread; 4740 struct buffer_head *bh; 4741 loff_t i_size = i_size_read(inode); 4742 4743 if (off > i_size) 4744 return 0; 4745 if (off+len > i_size) 4746 len = i_size-off; 4747 toread = len; 4748 while (toread > 0) { 4749 tocopy = sb->s_blocksize - offset < toread ? 4750 sb->s_blocksize - offset : toread; 4751 bh = ext4_bread(NULL, inode, blk, 0, &err); 4752 if (err) 4753 return err; 4754 if (!bh) /* A hole? */ 4755 memset(data, 0, tocopy); 4756 else 4757 memcpy(data, bh->b_data+offset, tocopy); 4758 brelse(bh); 4759 offset = 0; 4760 toread -= tocopy; 4761 data += tocopy; 4762 blk++; 4763 } 4764 return len; 4765 } 4766 4767 /* Write to quotafile (we know the transaction is already started and has 4768 * enough credits) */ 4769 static ssize_t ext4_quota_write(struct super_block *sb, int type, 4770 const char *data, size_t len, loff_t off) 4771 { 4772 struct inode *inode = sb_dqopt(sb)->files[type]; 4773 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 4774 int err = 0; 4775 int offset = off & (sb->s_blocksize - 1); 4776 struct buffer_head *bh; 4777 handle_t *handle = journal_current_handle(); 4778 4779 if (EXT4_SB(sb)->s_journal && !handle) { 4780 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4781 " cancelled because transaction is not started", 4782 (unsigned long long)off, (unsigned long long)len); 4783 return -EIO; 4784 } 4785 /* 4786 * Since we account only one data block in transaction credits, 4787 * then it is impossible to cross a block boundary. 4788 */ 4789 if (sb->s_blocksize - offset < len) { 4790 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 4791 " cancelled because not block aligned", 4792 (unsigned long long)off, (unsigned long long)len); 4793 return -EIO; 4794 } 4795 4796 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 4797 bh = ext4_bread(handle, inode, blk, 1, &err); 4798 if (!bh) 4799 goto out; 4800 err = ext4_journal_get_write_access(handle, bh); 4801 if (err) { 4802 brelse(bh); 4803 goto out; 4804 } 4805 lock_buffer(bh); 4806 memcpy(bh->b_data+offset, data, len); 4807 flush_dcache_page(bh->b_page); 4808 unlock_buffer(bh); 4809 err = ext4_handle_dirty_metadata(handle, NULL, bh); 4810 brelse(bh); 4811 out: 4812 if (err) { 4813 mutex_unlock(&inode->i_mutex); 4814 return err; 4815 } 4816 if (inode->i_size < off + len) { 4817 i_size_write(inode, off + len); 4818 EXT4_I(inode)->i_disksize = inode->i_size; 4819 ext4_mark_inode_dirty(handle, inode); 4820 } 4821 mutex_unlock(&inode->i_mutex); 4822 return len; 4823 } 4824 4825 #endif 4826 4827 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 4828 const char *dev_name, void *data) 4829 { 4830 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 4831 } 4832 4833 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4834 static inline void register_as_ext2(void) 4835 { 4836 int err = register_filesystem(&ext2_fs_type); 4837 if (err) 4838 printk(KERN_WARNING 4839 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 4840 } 4841 4842 static inline void unregister_as_ext2(void) 4843 { 4844 unregister_filesystem(&ext2_fs_type); 4845 } 4846 4847 static inline int ext2_feature_set_ok(struct super_block *sb) 4848 { 4849 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 4850 return 0; 4851 if (sb->s_flags & MS_RDONLY) 4852 return 1; 4853 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 4854 return 0; 4855 return 1; 4856 } 4857 MODULE_ALIAS("ext2"); 4858 #else 4859 static inline void register_as_ext2(void) { } 4860 static inline void unregister_as_ext2(void) { } 4861 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 4862 #endif 4863 4864 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 4865 static inline void register_as_ext3(void) 4866 { 4867 int err = register_filesystem(&ext3_fs_type); 4868 if (err) 4869 printk(KERN_WARNING 4870 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 4871 } 4872 4873 static inline void unregister_as_ext3(void) 4874 { 4875 unregister_filesystem(&ext3_fs_type); 4876 } 4877 4878 static inline int ext3_feature_set_ok(struct super_block *sb) 4879 { 4880 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 4881 return 0; 4882 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 4883 return 0; 4884 if (sb->s_flags & MS_RDONLY) 4885 return 1; 4886 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 4887 return 0; 4888 return 1; 4889 } 4890 MODULE_ALIAS("ext3"); 4891 #else 4892 static inline void register_as_ext3(void) { } 4893 static inline void unregister_as_ext3(void) { } 4894 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 4895 #endif 4896 4897 static struct file_system_type ext4_fs_type = { 4898 .owner = THIS_MODULE, 4899 .name = "ext4", 4900 .mount = ext4_mount, 4901 .kill_sb = kill_block_super, 4902 .fs_flags = FS_REQUIRES_DEV, 4903 }; 4904 4905 static int __init ext4_init_feat_adverts(void) 4906 { 4907 struct ext4_features *ef; 4908 int ret = -ENOMEM; 4909 4910 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 4911 if (!ef) 4912 goto out; 4913 4914 ef->f_kobj.kset = ext4_kset; 4915 init_completion(&ef->f_kobj_unregister); 4916 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 4917 "features"); 4918 if (ret) { 4919 kfree(ef); 4920 goto out; 4921 } 4922 4923 ext4_feat = ef; 4924 ret = 0; 4925 out: 4926 return ret; 4927 } 4928 4929 static void ext4_exit_feat_adverts(void) 4930 { 4931 kobject_put(&ext4_feat->f_kobj); 4932 wait_for_completion(&ext4_feat->f_kobj_unregister); 4933 kfree(ext4_feat); 4934 } 4935 4936 /* Shared across all ext4 file systems */ 4937 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 4938 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 4939 4940 static int __init ext4_init_fs(void) 4941 { 4942 int i, err; 4943 4944 ext4_check_flag_values(); 4945 4946 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 4947 mutex_init(&ext4__aio_mutex[i]); 4948 init_waitqueue_head(&ext4__ioend_wq[i]); 4949 } 4950 4951 err = ext4_init_pageio(); 4952 if (err) 4953 return err; 4954 err = ext4_init_system_zone(); 4955 if (err) 4956 goto out7; 4957 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 4958 if (!ext4_kset) 4959 goto out6; 4960 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 4961 if (!ext4_proc_root) 4962 goto out5; 4963 4964 err = ext4_init_feat_adverts(); 4965 if (err) 4966 goto out4; 4967 4968 err = ext4_init_mballoc(); 4969 if (err) 4970 goto out3; 4971 4972 err = ext4_init_xattr(); 4973 if (err) 4974 goto out2; 4975 err = init_inodecache(); 4976 if (err) 4977 goto out1; 4978 register_as_ext3(); 4979 register_as_ext2(); 4980 err = register_filesystem(&ext4_fs_type); 4981 if (err) 4982 goto out; 4983 4984 ext4_li_info = NULL; 4985 mutex_init(&ext4_li_mtx); 4986 return 0; 4987 out: 4988 unregister_as_ext2(); 4989 unregister_as_ext3(); 4990 destroy_inodecache(); 4991 out1: 4992 ext4_exit_xattr(); 4993 out2: 4994 ext4_exit_mballoc(); 4995 out3: 4996 ext4_exit_feat_adverts(); 4997 out4: 4998 remove_proc_entry("fs/ext4", NULL); 4999 out5: 5000 kset_unregister(ext4_kset); 5001 out6: 5002 ext4_exit_system_zone(); 5003 out7: 5004 ext4_exit_pageio(); 5005 return err; 5006 } 5007 5008 static void __exit ext4_exit_fs(void) 5009 { 5010 ext4_destroy_lazyinit_thread(); 5011 unregister_as_ext2(); 5012 unregister_as_ext3(); 5013 unregister_filesystem(&ext4_fs_type); 5014 destroy_inodecache(); 5015 ext4_exit_xattr(); 5016 ext4_exit_mballoc(); 5017 ext4_exit_feat_adverts(); 5018 remove_proc_entry("fs/ext4", NULL); 5019 kset_unregister(ext4_kset); 5020 ext4_exit_system_zone(); 5021 ext4_exit_pageio(); 5022 } 5023 5024 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5025 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5026 MODULE_LICENSE("GPL"); 5027 module_init(ext4_init_fs) 5028 module_exit(ext4_exit_fs) 5029