1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 145 return 1; 146 147 return es->s_checksum == ext4_superblock_csum(sb, es); 148 } 149 150 void ext4_superblock_csum_set(struct super_block *sb) 151 { 152 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 153 154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 156 return; 157 158 es->s_checksum = ext4_superblock_csum(sb, es); 159 } 160 161 void *ext4_kvmalloc(size_t size, gfp_t flags) 162 { 163 void *ret; 164 165 ret = kmalloc(size, flags); 166 if (!ret) 167 ret = __vmalloc(size, flags, PAGE_KERNEL); 168 return ret; 169 } 170 171 void *ext4_kvzalloc(size_t size, gfp_t flags) 172 { 173 void *ret; 174 175 ret = kzalloc(size, flags); 176 if (!ret) 177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 178 return ret; 179 } 180 181 void ext4_kvfree(void *ptr) 182 { 183 if (is_vmalloc_addr(ptr)) 184 vfree(ptr); 185 else 186 kfree(ptr); 187 188 } 189 190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 191 struct ext4_group_desc *bg) 192 { 193 return le32_to_cpu(bg->bg_block_bitmap_lo) | 194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 196 } 197 198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 199 struct ext4_group_desc *bg) 200 { 201 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 204 } 205 206 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 207 struct ext4_group_desc *bg) 208 { 209 return le32_to_cpu(bg->bg_inode_table_lo) | 210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 212 } 213 214 __u32 ext4_free_group_clusters(struct super_block *sb, 215 struct ext4_group_desc *bg) 216 { 217 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 220 } 221 222 __u32 ext4_free_inodes_count(struct super_block *sb, 223 struct ext4_group_desc *bg) 224 { 225 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 228 } 229 230 __u32 ext4_used_dirs_count(struct super_block *sb, 231 struct ext4_group_desc *bg) 232 { 233 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 236 } 237 238 __u32 ext4_itable_unused_count(struct super_block *sb, 239 struct ext4_group_desc *bg) 240 { 241 return le16_to_cpu(bg->bg_itable_unused_lo) | 242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 244 } 245 246 void ext4_block_bitmap_set(struct super_block *sb, 247 struct ext4_group_desc *bg, ext4_fsblk_t blk) 248 { 249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 252 } 253 254 void ext4_inode_bitmap_set(struct super_block *sb, 255 struct ext4_group_desc *bg, ext4_fsblk_t blk) 256 { 257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 260 } 261 262 void ext4_inode_table_set(struct super_block *sb, 263 struct ext4_group_desc *bg, ext4_fsblk_t blk) 264 { 265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 268 } 269 270 void ext4_free_group_clusters_set(struct super_block *sb, 271 struct ext4_group_desc *bg, __u32 count) 272 { 273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 276 } 277 278 void ext4_free_inodes_set(struct super_block *sb, 279 struct ext4_group_desc *bg, __u32 count) 280 { 281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 284 } 285 286 void ext4_used_dirs_set(struct super_block *sb, 287 struct ext4_group_desc *bg, __u32 count) 288 { 289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 292 } 293 294 void ext4_itable_unused_set(struct super_block *sb, 295 struct ext4_group_desc *bg, __u32 count) 296 { 297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 300 } 301 302 303 static void __save_error_info(struct super_block *sb, const char *func, 304 unsigned int line) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 310 es->s_last_error_time = cpu_to_le32(get_seconds()); 311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 312 es->s_last_error_line = cpu_to_le32(line); 313 if (!es->s_first_error_time) { 314 es->s_first_error_time = es->s_last_error_time; 315 strncpy(es->s_first_error_func, func, 316 sizeof(es->s_first_error_func)); 317 es->s_first_error_line = cpu_to_le32(line); 318 es->s_first_error_ino = es->s_last_error_ino; 319 es->s_first_error_block = es->s_last_error_block; 320 } 321 /* 322 * Start the daily error reporting function if it hasn't been 323 * started already 324 */ 325 if (!es->s_error_count) 326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 327 le32_add_cpu(&es->s_error_count, 1); 328 } 329 330 static void save_error_info(struct super_block *sb, const char *func, 331 unsigned int line) 332 { 333 __save_error_info(sb, func, line); 334 ext4_commit_super(sb, 1); 335 } 336 337 /* 338 * The del_gendisk() function uninitializes the disk-specific data 339 * structures, including the bdi structure, without telling anyone 340 * else. Once this happens, any attempt to call mark_buffer_dirty() 341 * (for example, by ext4_commit_super), will cause a kernel OOPS. 342 * This is a kludge to prevent these oops until we can put in a proper 343 * hook in del_gendisk() to inform the VFS and file system layers. 344 */ 345 static int block_device_ejected(struct super_block *sb) 346 { 347 struct inode *bd_inode = sb->s_bdev->bd_inode; 348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 349 350 return bdi->dev == NULL; 351 } 352 353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 354 { 355 struct super_block *sb = journal->j_private; 356 struct ext4_sb_info *sbi = EXT4_SB(sb); 357 int error = is_journal_aborted(journal); 358 struct ext4_journal_cb_entry *jce; 359 360 BUG_ON(txn->t_state == T_FINISHED); 361 spin_lock(&sbi->s_md_lock); 362 while (!list_empty(&txn->t_private_list)) { 363 jce = list_entry(txn->t_private_list.next, 364 struct ext4_journal_cb_entry, jce_list); 365 list_del_init(&jce->jce_list); 366 spin_unlock(&sbi->s_md_lock); 367 jce->jce_func(sb, jce, error); 368 spin_lock(&sbi->s_md_lock); 369 } 370 spin_unlock(&sbi->s_md_lock); 371 } 372 373 /* Deal with the reporting of failure conditions on a filesystem such as 374 * inconsistencies detected or read IO failures. 375 * 376 * On ext2, we can store the error state of the filesystem in the 377 * superblock. That is not possible on ext4, because we may have other 378 * write ordering constraints on the superblock which prevent us from 379 * writing it out straight away; and given that the journal is about to 380 * be aborted, we can't rely on the current, or future, transactions to 381 * write out the superblock safely. 382 * 383 * We'll just use the jbd2_journal_abort() error code to record an error in 384 * the journal instead. On recovery, the journal will complain about 385 * that error until we've noted it down and cleared it. 386 */ 387 388 static void ext4_handle_error(struct super_block *sb) 389 { 390 if (sb->s_flags & MS_RDONLY) 391 return; 392 393 if (!test_opt(sb, ERRORS_CONT)) { 394 journal_t *journal = EXT4_SB(sb)->s_journal; 395 396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 397 if (journal) 398 jbd2_journal_abort(journal, -EIO); 399 } 400 if (test_opt(sb, ERRORS_RO)) { 401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 402 /* 403 * Make sure updated value of ->s_mount_flags will be visible 404 * before ->s_flags update 405 */ 406 smp_wmb(); 407 sb->s_flags |= MS_RDONLY; 408 } 409 if (test_opt(sb, ERRORS_PANIC)) 410 panic("EXT4-fs (device %s): panic forced after error\n", 411 sb->s_id); 412 } 413 414 void __ext4_error(struct super_block *sb, const char *function, 415 unsigned int line, const char *fmt, ...) 416 { 417 struct va_format vaf; 418 va_list args; 419 420 va_start(args, fmt); 421 vaf.fmt = fmt; 422 vaf.va = &args; 423 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 424 sb->s_id, function, line, current->comm, &vaf); 425 va_end(args); 426 save_error_info(sb, function, line); 427 428 ext4_handle_error(sb); 429 } 430 431 void __ext4_error_inode(struct inode *inode, const char *function, 432 unsigned int line, ext4_fsblk_t block, 433 const char *fmt, ...) 434 { 435 va_list args; 436 struct va_format vaf; 437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 438 439 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 440 es->s_last_error_block = cpu_to_le64(block); 441 save_error_info(inode->i_sb, function, line); 442 va_start(args, fmt); 443 vaf.fmt = fmt; 444 vaf.va = &args; 445 if (block) 446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 447 "inode #%lu: block %llu: comm %s: %pV\n", 448 inode->i_sb->s_id, function, line, inode->i_ino, 449 block, current->comm, &vaf); 450 else 451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 452 "inode #%lu: comm %s: %pV\n", 453 inode->i_sb->s_id, function, line, inode->i_ino, 454 current->comm, &vaf); 455 va_end(args); 456 457 ext4_handle_error(inode->i_sb); 458 } 459 460 void __ext4_error_file(struct file *file, const char *function, 461 unsigned int line, ext4_fsblk_t block, 462 const char *fmt, ...) 463 { 464 va_list args; 465 struct va_format vaf; 466 struct ext4_super_block *es; 467 struct inode *inode = file_inode(file); 468 char pathname[80], *path; 469 470 es = EXT4_SB(inode->i_sb)->s_es; 471 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 472 save_error_info(inode->i_sb, function, line); 473 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 474 if (IS_ERR(path)) 475 path = "(unknown)"; 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 482 "block %llu: comm %s: path %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 block, current->comm, path, &vaf); 485 else 486 printk(KERN_CRIT 487 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 488 "comm %s: path %s: %pV\n", 489 inode->i_sb->s_id, function, line, inode->i_ino, 490 current->comm, path, &vaf); 491 va_end(args); 492 493 ext4_handle_error(inode->i_sb); 494 } 495 496 const char *ext4_decode_error(struct super_block *sb, int errno, 497 char nbuf[16]) 498 { 499 char *errstr = NULL; 500 501 switch (errno) { 502 case -EIO: 503 errstr = "IO failure"; 504 break; 505 case -ENOMEM: 506 errstr = "Out of memory"; 507 break; 508 case -EROFS: 509 if (!sb || (EXT4_SB(sb)->s_journal && 510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 511 errstr = "Journal has aborted"; 512 else 513 errstr = "Readonly filesystem"; 514 break; 515 default: 516 /* If the caller passed in an extra buffer for unknown 517 * errors, textualise them now. Else we just return 518 * NULL. */ 519 if (nbuf) { 520 /* Check for truncated error codes... */ 521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 522 errstr = nbuf; 523 } 524 break; 525 } 526 527 return errstr; 528 } 529 530 /* __ext4_std_error decodes expected errors from journaling functions 531 * automatically and invokes the appropriate error response. */ 532 533 void __ext4_std_error(struct super_block *sb, const char *function, 534 unsigned int line, int errno) 535 { 536 char nbuf[16]; 537 const char *errstr; 538 539 /* Special case: if the error is EROFS, and we're not already 540 * inside a transaction, then there's really no point in logging 541 * an error. */ 542 if (errno == -EROFS && journal_current_handle() == NULL && 543 (sb->s_flags & MS_RDONLY)) 544 return; 545 546 errstr = ext4_decode_error(sb, errno, nbuf); 547 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 548 sb->s_id, function, line, errstr); 549 save_error_info(sb, function, line); 550 551 ext4_handle_error(sb); 552 } 553 554 /* 555 * ext4_abort is a much stronger failure handler than ext4_error. The 556 * abort function may be used to deal with unrecoverable failures such 557 * as journal IO errors or ENOMEM at a critical moment in log management. 558 * 559 * We unconditionally force the filesystem into an ABORT|READONLY state, 560 * unless the error response on the fs has been set to panic in which 561 * case we take the easy way out and panic immediately. 562 */ 563 564 void __ext4_abort(struct super_block *sb, const char *function, 565 unsigned int line, const char *fmt, ...) 566 { 567 va_list args; 568 569 save_error_info(sb, function, line); 570 va_start(args, fmt); 571 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 572 function, line); 573 vprintk(fmt, args); 574 printk("\n"); 575 va_end(args); 576 577 if ((sb->s_flags & MS_RDONLY) == 0) { 578 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 579 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 580 /* 581 * Make sure updated value of ->s_mount_flags will be visible 582 * before ->s_flags update 583 */ 584 smp_wmb(); 585 sb->s_flags |= MS_RDONLY; 586 if (EXT4_SB(sb)->s_journal) 587 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 588 save_error_info(sb, function, line); 589 } 590 if (test_opt(sb, ERRORS_PANIC)) 591 panic("EXT4-fs panic from previous error\n"); 592 } 593 594 void __ext4_msg(struct super_block *sb, 595 const char *prefix, const char *fmt, ...) 596 { 597 struct va_format vaf; 598 va_list args; 599 600 va_start(args, fmt); 601 vaf.fmt = fmt; 602 vaf.va = &args; 603 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 604 va_end(args); 605 } 606 607 void __ext4_warning(struct super_block *sb, const char *function, 608 unsigned int line, const char *fmt, ...) 609 { 610 struct va_format vaf; 611 va_list args; 612 613 va_start(args, fmt); 614 vaf.fmt = fmt; 615 vaf.va = &args; 616 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 617 sb->s_id, function, line, &vaf); 618 va_end(args); 619 } 620 621 void __ext4_grp_locked_error(const char *function, unsigned int line, 622 struct super_block *sb, ext4_group_t grp, 623 unsigned long ino, ext4_fsblk_t block, 624 const char *fmt, ...) 625 __releases(bitlock) 626 __acquires(bitlock) 627 { 628 struct va_format vaf; 629 va_list args; 630 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 631 632 es->s_last_error_ino = cpu_to_le32(ino); 633 es->s_last_error_block = cpu_to_le64(block); 634 __save_error_info(sb, function, line); 635 636 va_start(args, fmt); 637 638 vaf.fmt = fmt; 639 vaf.va = &args; 640 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 641 sb->s_id, function, line, grp); 642 if (ino) 643 printk(KERN_CONT "inode %lu: ", ino); 644 if (block) 645 printk(KERN_CONT "block %llu:", (unsigned long long) block); 646 printk(KERN_CONT "%pV\n", &vaf); 647 va_end(args); 648 649 if (test_opt(sb, ERRORS_CONT)) { 650 ext4_commit_super(sb, 0); 651 return; 652 } 653 654 ext4_unlock_group(sb, grp); 655 ext4_handle_error(sb); 656 /* 657 * We only get here in the ERRORS_RO case; relocking the group 658 * may be dangerous, but nothing bad will happen since the 659 * filesystem will have already been marked read/only and the 660 * journal has been aborted. We return 1 as a hint to callers 661 * who might what to use the return value from 662 * ext4_grp_locked_error() to distinguish between the 663 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 664 * aggressively from the ext4 function in question, with a 665 * more appropriate error code. 666 */ 667 ext4_lock_group(sb, grp); 668 return; 669 } 670 671 void ext4_update_dynamic_rev(struct super_block *sb) 672 { 673 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 674 675 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 676 return; 677 678 ext4_warning(sb, 679 "updating to rev %d because of new feature flag, " 680 "running e2fsck is recommended", 681 EXT4_DYNAMIC_REV); 682 683 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 684 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 685 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 686 /* leave es->s_feature_*compat flags alone */ 687 /* es->s_uuid will be set by e2fsck if empty */ 688 689 /* 690 * The rest of the superblock fields should be zero, and if not it 691 * means they are likely already in use, so leave them alone. We 692 * can leave it up to e2fsck to clean up any inconsistencies there. 693 */ 694 } 695 696 /* 697 * Open the external journal device 698 */ 699 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 700 { 701 struct block_device *bdev; 702 char b[BDEVNAME_SIZE]; 703 704 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 705 if (IS_ERR(bdev)) 706 goto fail; 707 return bdev; 708 709 fail: 710 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 711 __bdevname(dev, b), PTR_ERR(bdev)); 712 return NULL; 713 } 714 715 /* 716 * Release the journal device 717 */ 718 static void ext4_blkdev_put(struct block_device *bdev) 719 { 720 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 721 } 722 723 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 724 { 725 struct block_device *bdev; 726 bdev = sbi->journal_bdev; 727 if (bdev) { 728 ext4_blkdev_put(bdev); 729 sbi->journal_bdev = NULL; 730 } 731 } 732 733 static inline struct inode *orphan_list_entry(struct list_head *l) 734 { 735 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 736 } 737 738 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 739 { 740 struct list_head *l; 741 742 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 743 le32_to_cpu(sbi->s_es->s_last_orphan)); 744 745 printk(KERN_ERR "sb_info orphan list:\n"); 746 list_for_each(l, &sbi->s_orphan) { 747 struct inode *inode = orphan_list_entry(l); 748 printk(KERN_ERR " " 749 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 750 inode->i_sb->s_id, inode->i_ino, inode, 751 inode->i_mode, inode->i_nlink, 752 NEXT_ORPHAN(inode)); 753 } 754 } 755 756 static void ext4_put_super(struct super_block *sb) 757 { 758 struct ext4_sb_info *sbi = EXT4_SB(sb); 759 struct ext4_super_block *es = sbi->s_es; 760 int i, err; 761 762 ext4_unregister_li_request(sb); 763 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 764 765 flush_workqueue(sbi->unrsv_conversion_wq); 766 flush_workqueue(sbi->rsv_conversion_wq); 767 destroy_workqueue(sbi->unrsv_conversion_wq); 768 destroy_workqueue(sbi->rsv_conversion_wq); 769 770 if (sbi->s_journal) { 771 err = jbd2_journal_destroy(sbi->s_journal); 772 sbi->s_journal = NULL; 773 if (err < 0) 774 ext4_abort(sb, "Couldn't clean up the journal"); 775 } 776 777 ext4_es_unregister_shrinker(sbi); 778 del_timer(&sbi->s_err_report); 779 ext4_release_system_zone(sb); 780 ext4_mb_release(sb); 781 ext4_ext_release(sb); 782 ext4_xattr_put_super(sb); 783 784 if (!(sb->s_flags & MS_RDONLY)) { 785 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 786 es->s_state = cpu_to_le16(sbi->s_mount_state); 787 } 788 if (!(sb->s_flags & MS_RDONLY)) 789 ext4_commit_super(sb, 1); 790 791 if (sbi->s_proc) { 792 remove_proc_entry("options", sbi->s_proc); 793 remove_proc_entry(sb->s_id, ext4_proc_root); 794 } 795 kobject_del(&sbi->s_kobj); 796 797 for (i = 0; i < sbi->s_gdb_count; i++) 798 brelse(sbi->s_group_desc[i]); 799 ext4_kvfree(sbi->s_group_desc); 800 ext4_kvfree(sbi->s_flex_groups); 801 percpu_counter_destroy(&sbi->s_freeclusters_counter); 802 percpu_counter_destroy(&sbi->s_freeinodes_counter); 803 percpu_counter_destroy(&sbi->s_dirs_counter); 804 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 805 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 806 brelse(sbi->s_sbh); 807 #ifdef CONFIG_QUOTA 808 for (i = 0; i < MAXQUOTAS; i++) 809 kfree(sbi->s_qf_names[i]); 810 #endif 811 812 /* Debugging code just in case the in-memory inode orphan list 813 * isn't empty. The on-disk one can be non-empty if we've 814 * detected an error and taken the fs readonly, but the 815 * in-memory list had better be clean by this point. */ 816 if (!list_empty(&sbi->s_orphan)) 817 dump_orphan_list(sb, sbi); 818 J_ASSERT(list_empty(&sbi->s_orphan)); 819 820 invalidate_bdev(sb->s_bdev); 821 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 822 /* 823 * Invalidate the journal device's buffers. We don't want them 824 * floating about in memory - the physical journal device may 825 * hotswapped, and it breaks the `ro-after' testing code. 826 */ 827 sync_blockdev(sbi->journal_bdev); 828 invalidate_bdev(sbi->journal_bdev); 829 ext4_blkdev_remove(sbi); 830 } 831 if (sbi->s_mmp_tsk) 832 kthread_stop(sbi->s_mmp_tsk); 833 sb->s_fs_info = NULL; 834 /* 835 * Now that we are completely done shutting down the 836 * superblock, we need to actually destroy the kobject. 837 */ 838 kobject_put(&sbi->s_kobj); 839 wait_for_completion(&sbi->s_kobj_unregister); 840 if (sbi->s_chksum_driver) 841 crypto_free_shash(sbi->s_chksum_driver); 842 kfree(sbi->s_blockgroup_lock); 843 kfree(sbi); 844 } 845 846 static struct kmem_cache *ext4_inode_cachep; 847 848 /* 849 * Called inside transaction, so use GFP_NOFS 850 */ 851 static struct inode *ext4_alloc_inode(struct super_block *sb) 852 { 853 struct ext4_inode_info *ei; 854 855 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 856 if (!ei) 857 return NULL; 858 859 ei->vfs_inode.i_version = 1; 860 INIT_LIST_HEAD(&ei->i_prealloc_list); 861 spin_lock_init(&ei->i_prealloc_lock); 862 ext4_es_init_tree(&ei->i_es_tree); 863 rwlock_init(&ei->i_es_lock); 864 INIT_LIST_HEAD(&ei->i_es_lru); 865 ei->i_es_lru_nr = 0; 866 ei->i_touch_when = 0; 867 ei->i_reserved_data_blocks = 0; 868 ei->i_reserved_meta_blocks = 0; 869 ei->i_allocated_meta_blocks = 0; 870 ei->i_da_metadata_calc_len = 0; 871 ei->i_da_metadata_calc_last_lblock = 0; 872 spin_lock_init(&(ei->i_block_reservation_lock)); 873 #ifdef CONFIG_QUOTA 874 ei->i_reserved_quota = 0; 875 #endif 876 ei->jinode = NULL; 877 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 878 INIT_LIST_HEAD(&ei->i_unrsv_conversion_list); 879 spin_lock_init(&ei->i_completed_io_lock); 880 ei->i_sync_tid = 0; 881 ei->i_datasync_tid = 0; 882 atomic_set(&ei->i_ioend_count, 0); 883 atomic_set(&ei->i_unwritten, 0); 884 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 885 INIT_WORK(&ei->i_unrsv_conversion_work, ext4_end_io_unrsv_work); 886 887 return &ei->vfs_inode; 888 } 889 890 static int ext4_drop_inode(struct inode *inode) 891 { 892 int drop = generic_drop_inode(inode); 893 894 trace_ext4_drop_inode(inode, drop); 895 return drop; 896 } 897 898 static void ext4_i_callback(struct rcu_head *head) 899 { 900 struct inode *inode = container_of(head, struct inode, i_rcu); 901 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 902 } 903 904 static void ext4_destroy_inode(struct inode *inode) 905 { 906 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 907 ext4_msg(inode->i_sb, KERN_ERR, 908 "Inode %lu (%p): orphan list check failed!", 909 inode->i_ino, EXT4_I(inode)); 910 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 911 EXT4_I(inode), sizeof(struct ext4_inode_info), 912 true); 913 dump_stack(); 914 } 915 call_rcu(&inode->i_rcu, ext4_i_callback); 916 } 917 918 static void init_once(void *foo) 919 { 920 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 921 922 INIT_LIST_HEAD(&ei->i_orphan); 923 init_rwsem(&ei->xattr_sem); 924 init_rwsem(&ei->i_data_sem); 925 inode_init_once(&ei->vfs_inode); 926 } 927 928 static int init_inodecache(void) 929 { 930 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 931 sizeof(struct ext4_inode_info), 932 0, (SLAB_RECLAIM_ACCOUNT| 933 SLAB_MEM_SPREAD), 934 init_once); 935 if (ext4_inode_cachep == NULL) 936 return -ENOMEM; 937 return 0; 938 } 939 940 static void destroy_inodecache(void) 941 { 942 /* 943 * Make sure all delayed rcu free inodes are flushed before we 944 * destroy cache. 945 */ 946 rcu_barrier(); 947 kmem_cache_destroy(ext4_inode_cachep); 948 } 949 950 void ext4_clear_inode(struct inode *inode) 951 { 952 invalidate_inode_buffers(inode); 953 clear_inode(inode); 954 dquot_drop(inode); 955 ext4_discard_preallocations(inode); 956 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 957 ext4_es_lru_del(inode); 958 if (EXT4_I(inode)->jinode) { 959 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 960 EXT4_I(inode)->jinode); 961 jbd2_free_inode(EXT4_I(inode)->jinode); 962 EXT4_I(inode)->jinode = NULL; 963 } 964 } 965 966 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 967 u64 ino, u32 generation) 968 { 969 struct inode *inode; 970 971 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 972 return ERR_PTR(-ESTALE); 973 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 974 return ERR_PTR(-ESTALE); 975 976 /* iget isn't really right if the inode is currently unallocated!! 977 * 978 * ext4_read_inode will return a bad_inode if the inode had been 979 * deleted, so we should be safe. 980 * 981 * Currently we don't know the generation for parent directory, so 982 * a generation of 0 means "accept any" 983 */ 984 inode = ext4_iget(sb, ino); 985 if (IS_ERR(inode)) 986 return ERR_CAST(inode); 987 if (generation && inode->i_generation != generation) { 988 iput(inode); 989 return ERR_PTR(-ESTALE); 990 } 991 992 return inode; 993 } 994 995 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 996 int fh_len, int fh_type) 997 { 998 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 999 ext4_nfs_get_inode); 1000 } 1001 1002 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1003 int fh_len, int fh_type) 1004 { 1005 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1006 ext4_nfs_get_inode); 1007 } 1008 1009 /* 1010 * Try to release metadata pages (indirect blocks, directories) which are 1011 * mapped via the block device. Since these pages could have journal heads 1012 * which would prevent try_to_free_buffers() from freeing them, we must use 1013 * jbd2 layer's try_to_free_buffers() function to release them. 1014 */ 1015 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1016 gfp_t wait) 1017 { 1018 journal_t *journal = EXT4_SB(sb)->s_journal; 1019 1020 WARN_ON(PageChecked(page)); 1021 if (!page_has_buffers(page)) 1022 return 0; 1023 if (journal) 1024 return jbd2_journal_try_to_free_buffers(journal, page, 1025 wait & ~__GFP_WAIT); 1026 return try_to_free_buffers(page); 1027 } 1028 1029 #ifdef CONFIG_QUOTA 1030 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1031 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1032 1033 static int ext4_write_dquot(struct dquot *dquot); 1034 static int ext4_acquire_dquot(struct dquot *dquot); 1035 static int ext4_release_dquot(struct dquot *dquot); 1036 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1037 static int ext4_write_info(struct super_block *sb, int type); 1038 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1039 struct path *path); 1040 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1041 int format_id); 1042 static int ext4_quota_off(struct super_block *sb, int type); 1043 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1044 static int ext4_quota_on_mount(struct super_block *sb, int type); 1045 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1046 size_t len, loff_t off); 1047 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1048 const char *data, size_t len, loff_t off); 1049 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1050 unsigned int flags); 1051 static int ext4_enable_quotas(struct super_block *sb); 1052 1053 static const struct dquot_operations ext4_quota_operations = { 1054 .get_reserved_space = ext4_get_reserved_space, 1055 .write_dquot = ext4_write_dquot, 1056 .acquire_dquot = ext4_acquire_dquot, 1057 .release_dquot = ext4_release_dquot, 1058 .mark_dirty = ext4_mark_dquot_dirty, 1059 .write_info = ext4_write_info, 1060 .alloc_dquot = dquot_alloc, 1061 .destroy_dquot = dquot_destroy, 1062 }; 1063 1064 static const struct quotactl_ops ext4_qctl_operations = { 1065 .quota_on = ext4_quota_on, 1066 .quota_off = ext4_quota_off, 1067 .quota_sync = dquot_quota_sync, 1068 .get_info = dquot_get_dqinfo, 1069 .set_info = dquot_set_dqinfo, 1070 .get_dqblk = dquot_get_dqblk, 1071 .set_dqblk = dquot_set_dqblk 1072 }; 1073 1074 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1075 .quota_on_meta = ext4_quota_on_sysfile, 1076 .quota_off = ext4_quota_off_sysfile, 1077 .quota_sync = dquot_quota_sync, 1078 .get_info = dquot_get_dqinfo, 1079 .set_info = dquot_set_dqinfo, 1080 .get_dqblk = dquot_get_dqblk, 1081 .set_dqblk = dquot_set_dqblk 1082 }; 1083 #endif 1084 1085 static const struct super_operations ext4_sops = { 1086 .alloc_inode = ext4_alloc_inode, 1087 .destroy_inode = ext4_destroy_inode, 1088 .write_inode = ext4_write_inode, 1089 .dirty_inode = ext4_dirty_inode, 1090 .drop_inode = ext4_drop_inode, 1091 .evict_inode = ext4_evict_inode, 1092 .put_super = ext4_put_super, 1093 .sync_fs = ext4_sync_fs, 1094 .freeze_fs = ext4_freeze, 1095 .unfreeze_fs = ext4_unfreeze, 1096 .statfs = ext4_statfs, 1097 .remount_fs = ext4_remount, 1098 .show_options = ext4_show_options, 1099 #ifdef CONFIG_QUOTA 1100 .quota_read = ext4_quota_read, 1101 .quota_write = ext4_quota_write, 1102 #endif 1103 .bdev_try_to_free_page = bdev_try_to_free_page, 1104 }; 1105 1106 static const struct super_operations ext4_nojournal_sops = { 1107 .alloc_inode = ext4_alloc_inode, 1108 .destroy_inode = ext4_destroy_inode, 1109 .write_inode = ext4_write_inode, 1110 .dirty_inode = ext4_dirty_inode, 1111 .drop_inode = ext4_drop_inode, 1112 .evict_inode = ext4_evict_inode, 1113 .sync_fs = ext4_sync_fs_nojournal, 1114 .put_super = ext4_put_super, 1115 .statfs = ext4_statfs, 1116 .remount_fs = ext4_remount, 1117 .show_options = ext4_show_options, 1118 #ifdef CONFIG_QUOTA 1119 .quota_read = ext4_quota_read, 1120 .quota_write = ext4_quota_write, 1121 #endif 1122 .bdev_try_to_free_page = bdev_try_to_free_page, 1123 }; 1124 1125 static const struct export_operations ext4_export_ops = { 1126 .fh_to_dentry = ext4_fh_to_dentry, 1127 .fh_to_parent = ext4_fh_to_parent, 1128 .get_parent = ext4_get_parent, 1129 }; 1130 1131 enum { 1132 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1133 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1134 Opt_nouid32, Opt_debug, Opt_removed, 1135 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1136 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1137 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1138 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1139 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1140 Opt_data_err_abort, Opt_data_err_ignore, 1141 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1142 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1143 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1144 Opt_usrquota, Opt_grpquota, Opt_i_version, 1145 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1146 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1147 Opt_inode_readahead_blks, Opt_journal_ioprio, 1148 Opt_dioread_nolock, Opt_dioread_lock, 1149 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1150 Opt_max_dir_size_kb, 1151 }; 1152 1153 static const match_table_t tokens = { 1154 {Opt_bsd_df, "bsddf"}, 1155 {Opt_minix_df, "minixdf"}, 1156 {Opt_grpid, "grpid"}, 1157 {Opt_grpid, "bsdgroups"}, 1158 {Opt_nogrpid, "nogrpid"}, 1159 {Opt_nogrpid, "sysvgroups"}, 1160 {Opt_resgid, "resgid=%u"}, 1161 {Opt_resuid, "resuid=%u"}, 1162 {Opt_sb, "sb=%u"}, 1163 {Opt_err_cont, "errors=continue"}, 1164 {Opt_err_panic, "errors=panic"}, 1165 {Opt_err_ro, "errors=remount-ro"}, 1166 {Opt_nouid32, "nouid32"}, 1167 {Opt_debug, "debug"}, 1168 {Opt_removed, "oldalloc"}, 1169 {Opt_removed, "orlov"}, 1170 {Opt_user_xattr, "user_xattr"}, 1171 {Opt_nouser_xattr, "nouser_xattr"}, 1172 {Opt_acl, "acl"}, 1173 {Opt_noacl, "noacl"}, 1174 {Opt_noload, "norecovery"}, 1175 {Opt_noload, "noload"}, 1176 {Opt_removed, "nobh"}, 1177 {Opt_removed, "bh"}, 1178 {Opt_commit, "commit=%u"}, 1179 {Opt_min_batch_time, "min_batch_time=%u"}, 1180 {Opt_max_batch_time, "max_batch_time=%u"}, 1181 {Opt_journal_dev, "journal_dev=%u"}, 1182 {Opt_journal_checksum, "journal_checksum"}, 1183 {Opt_journal_async_commit, "journal_async_commit"}, 1184 {Opt_abort, "abort"}, 1185 {Opt_data_journal, "data=journal"}, 1186 {Opt_data_ordered, "data=ordered"}, 1187 {Opt_data_writeback, "data=writeback"}, 1188 {Opt_data_err_abort, "data_err=abort"}, 1189 {Opt_data_err_ignore, "data_err=ignore"}, 1190 {Opt_offusrjquota, "usrjquota="}, 1191 {Opt_usrjquota, "usrjquota=%s"}, 1192 {Opt_offgrpjquota, "grpjquota="}, 1193 {Opt_grpjquota, "grpjquota=%s"}, 1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1197 {Opt_grpquota, "grpquota"}, 1198 {Opt_noquota, "noquota"}, 1199 {Opt_quota, "quota"}, 1200 {Opt_usrquota, "usrquota"}, 1201 {Opt_barrier, "barrier=%u"}, 1202 {Opt_barrier, "barrier"}, 1203 {Opt_nobarrier, "nobarrier"}, 1204 {Opt_i_version, "i_version"}, 1205 {Opt_stripe, "stripe=%u"}, 1206 {Opt_delalloc, "delalloc"}, 1207 {Opt_nodelalloc, "nodelalloc"}, 1208 {Opt_removed, "mblk_io_submit"}, 1209 {Opt_removed, "nomblk_io_submit"}, 1210 {Opt_block_validity, "block_validity"}, 1211 {Opt_noblock_validity, "noblock_validity"}, 1212 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1213 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1214 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1215 {Opt_auto_da_alloc, "auto_da_alloc"}, 1216 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1217 {Opt_dioread_nolock, "dioread_nolock"}, 1218 {Opt_dioread_lock, "dioread_lock"}, 1219 {Opt_discard, "discard"}, 1220 {Opt_nodiscard, "nodiscard"}, 1221 {Opt_init_itable, "init_itable=%u"}, 1222 {Opt_init_itable, "init_itable"}, 1223 {Opt_noinit_itable, "noinit_itable"}, 1224 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1225 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1226 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1227 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1228 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1229 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1230 {Opt_err, NULL}, 1231 }; 1232 1233 static ext4_fsblk_t get_sb_block(void **data) 1234 { 1235 ext4_fsblk_t sb_block; 1236 char *options = (char *) *data; 1237 1238 if (!options || strncmp(options, "sb=", 3) != 0) 1239 return 1; /* Default location */ 1240 1241 options += 3; 1242 /* TODO: use simple_strtoll with >32bit ext4 */ 1243 sb_block = simple_strtoul(options, &options, 0); 1244 if (*options && *options != ',') { 1245 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1246 (char *) *data); 1247 return 1; 1248 } 1249 if (*options == ',') 1250 options++; 1251 *data = (void *) options; 1252 1253 return sb_block; 1254 } 1255 1256 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1257 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1258 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1259 1260 #ifdef CONFIG_QUOTA 1261 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1262 { 1263 struct ext4_sb_info *sbi = EXT4_SB(sb); 1264 char *qname; 1265 int ret = -1; 1266 1267 if (sb_any_quota_loaded(sb) && 1268 !sbi->s_qf_names[qtype]) { 1269 ext4_msg(sb, KERN_ERR, 1270 "Cannot change journaled " 1271 "quota options when quota turned on"); 1272 return -1; 1273 } 1274 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1275 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1276 "when QUOTA feature is enabled"); 1277 return -1; 1278 } 1279 qname = match_strdup(args); 1280 if (!qname) { 1281 ext4_msg(sb, KERN_ERR, 1282 "Not enough memory for storing quotafile name"); 1283 return -1; 1284 } 1285 if (sbi->s_qf_names[qtype]) { 1286 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1287 ret = 1; 1288 else 1289 ext4_msg(sb, KERN_ERR, 1290 "%s quota file already specified", 1291 QTYPE2NAME(qtype)); 1292 goto errout; 1293 } 1294 if (strchr(qname, '/')) { 1295 ext4_msg(sb, KERN_ERR, 1296 "quotafile must be on filesystem root"); 1297 goto errout; 1298 } 1299 sbi->s_qf_names[qtype] = qname; 1300 set_opt(sb, QUOTA); 1301 return 1; 1302 errout: 1303 kfree(qname); 1304 return ret; 1305 } 1306 1307 static int clear_qf_name(struct super_block *sb, int qtype) 1308 { 1309 1310 struct ext4_sb_info *sbi = EXT4_SB(sb); 1311 1312 if (sb_any_quota_loaded(sb) && 1313 sbi->s_qf_names[qtype]) { 1314 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1315 " when quota turned on"); 1316 return -1; 1317 } 1318 kfree(sbi->s_qf_names[qtype]); 1319 sbi->s_qf_names[qtype] = NULL; 1320 return 1; 1321 } 1322 #endif 1323 1324 #define MOPT_SET 0x0001 1325 #define MOPT_CLEAR 0x0002 1326 #define MOPT_NOSUPPORT 0x0004 1327 #define MOPT_EXPLICIT 0x0008 1328 #define MOPT_CLEAR_ERR 0x0010 1329 #define MOPT_GTE0 0x0020 1330 #ifdef CONFIG_QUOTA 1331 #define MOPT_Q 0 1332 #define MOPT_QFMT 0x0040 1333 #else 1334 #define MOPT_Q MOPT_NOSUPPORT 1335 #define MOPT_QFMT MOPT_NOSUPPORT 1336 #endif 1337 #define MOPT_DATAJ 0x0080 1338 #define MOPT_NO_EXT2 0x0100 1339 #define MOPT_NO_EXT3 0x0200 1340 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1341 1342 static const struct mount_opts { 1343 int token; 1344 int mount_opt; 1345 int flags; 1346 } ext4_mount_opts[] = { 1347 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1348 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1349 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1350 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1351 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1352 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1353 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1354 MOPT_EXT4_ONLY | MOPT_SET}, 1355 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1356 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1357 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1358 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1359 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1360 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1361 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1362 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1363 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1364 MOPT_EXT4_ONLY | MOPT_SET}, 1365 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1366 EXT4_MOUNT_JOURNAL_CHECKSUM), 1367 MOPT_EXT4_ONLY | MOPT_SET}, 1368 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1369 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1370 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1371 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1372 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1373 MOPT_NO_EXT2 | MOPT_SET}, 1374 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1375 MOPT_NO_EXT2 | MOPT_CLEAR}, 1376 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1377 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1378 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1379 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1380 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1381 {Opt_commit, 0, MOPT_GTE0}, 1382 {Opt_max_batch_time, 0, MOPT_GTE0}, 1383 {Opt_min_batch_time, 0, MOPT_GTE0}, 1384 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1385 {Opt_init_itable, 0, MOPT_GTE0}, 1386 {Opt_stripe, 0, MOPT_GTE0}, 1387 {Opt_resuid, 0, MOPT_GTE0}, 1388 {Opt_resgid, 0, MOPT_GTE0}, 1389 {Opt_journal_dev, 0, MOPT_GTE0}, 1390 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1391 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1392 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1393 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1394 MOPT_NO_EXT2 | MOPT_DATAJ}, 1395 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1396 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1397 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1398 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1399 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1400 #else 1401 {Opt_acl, 0, MOPT_NOSUPPORT}, 1402 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1403 #endif 1404 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1405 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1406 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1407 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1408 MOPT_SET | MOPT_Q}, 1409 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1410 MOPT_SET | MOPT_Q}, 1411 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1412 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1413 {Opt_usrjquota, 0, MOPT_Q}, 1414 {Opt_grpjquota, 0, MOPT_Q}, 1415 {Opt_offusrjquota, 0, MOPT_Q}, 1416 {Opt_offgrpjquota, 0, MOPT_Q}, 1417 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1418 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1419 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1420 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1421 {Opt_err, 0, 0} 1422 }; 1423 1424 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1425 substring_t *args, unsigned long *journal_devnum, 1426 unsigned int *journal_ioprio, int is_remount) 1427 { 1428 struct ext4_sb_info *sbi = EXT4_SB(sb); 1429 const struct mount_opts *m; 1430 kuid_t uid; 1431 kgid_t gid; 1432 int arg = 0; 1433 1434 #ifdef CONFIG_QUOTA 1435 if (token == Opt_usrjquota) 1436 return set_qf_name(sb, USRQUOTA, &args[0]); 1437 else if (token == Opt_grpjquota) 1438 return set_qf_name(sb, GRPQUOTA, &args[0]); 1439 else if (token == Opt_offusrjquota) 1440 return clear_qf_name(sb, USRQUOTA); 1441 else if (token == Opt_offgrpjquota) 1442 return clear_qf_name(sb, GRPQUOTA); 1443 #endif 1444 switch (token) { 1445 case Opt_noacl: 1446 case Opt_nouser_xattr: 1447 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1448 break; 1449 case Opt_sb: 1450 return 1; /* handled by get_sb_block() */ 1451 case Opt_removed: 1452 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1453 return 1; 1454 case Opt_abort: 1455 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1456 return 1; 1457 case Opt_i_version: 1458 sb->s_flags |= MS_I_VERSION; 1459 return 1; 1460 } 1461 1462 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1463 if (token == m->token) 1464 break; 1465 1466 if (m->token == Opt_err) { 1467 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1468 "or missing value", opt); 1469 return -1; 1470 } 1471 1472 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1473 ext4_msg(sb, KERN_ERR, 1474 "Mount option \"%s\" incompatible with ext2", opt); 1475 return -1; 1476 } 1477 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1478 ext4_msg(sb, KERN_ERR, 1479 "Mount option \"%s\" incompatible with ext3", opt); 1480 return -1; 1481 } 1482 1483 if (args->from && match_int(args, &arg)) 1484 return -1; 1485 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1486 return -1; 1487 if (m->flags & MOPT_EXPLICIT) 1488 set_opt2(sb, EXPLICIT_DELALLOC); 1489 if (m->flags & MOPT_CLEAR_ERR) 1490 clear_opt(sb, ERRORS_MASK); 1491 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1492 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1493 "options when quota turned on"); 1494 return -1; 1495 } 1496 1497 if (m->flags & MOPT_NOSUPPORT) { 1498 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1499 } else if (token == Opt_commit) { 1500 if (arg == 0) 1501 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1502 sbi->s_commit_interval = HZ * arg; 1503 } else if (token == Opt_max_batch_time) { 1504 if (arg == 0) 1505 arg = EXT4_DEF_MAX_BATCH_TIME; 1506 sbi->s_max_batch_time = arg; 1507 } else if (token == Opt_min_batch_time) { 1508 sbi->s_min_batch_time = arg; 1509 } else if (token == Opt_inode_readahead_blks) { 1510 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1511 ext4_msg(sb, KERN_ERR, 1512 "EXT4-fs: inode_readahead_blks must be " 1513 "0 or a power of 2 smaller than 2^31"); 1514 return -1; 1515 } 1516 sbi->s_inode_readahead_blks = arg; 1517 } else if (token == Opt_init_itable) { 1518 set_opt(sb, INIT_INODE_TABLE); 1519 if (!args->from) 1520 arg = EXT4_DEF_LI_WAIT_MULT; 1521 sbi->s_li_wait_mult = arg; 1522 } else if (token == Opt_max_dir_size_kb) { 1523 sbi->s_max_dir_size_kb = arg; 1524 } else if (token == Opt_stripe) { 1525 sbi->s_stripe = arg; 1526 } else if (token == Opt_resuid) { 1527 uid = make_kuid(current_user_ns(), arg); 1528 if (!uid_valid(uid)) { 1529 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1530 return -1; 1531 } 1532 sbi->s_resuid = uid; 1533 } else if (token == Opt_resgid) { 1534 gid = make_kgid(current_user_ns(), arg); 1535 if (!gid_valid(gid)) { 1536 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1537 return -1; 1538 } 1539 sbi->s_resgid = gid; 1540 } else if (token == Opt_journal_dev) { 1541 if (is_remount) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Cannot specify journal on remount"); 1544 return -1; 1545 } 1546 *journal_devnum = arg; 1547 } else if (token == Opt_journal_ioprio) { 1548 if (arg > 7) { 1549 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1550 " (must be 0-7)"); 1551 return -1; 1552 } 1553 *journal_ioprio = 1554 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1555 } else if (m->flags & MOPT_DATAJ) { 1556 if (is_remount) { 1557 if (!sbi->s_journal) 1558 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1559 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1560 ext4_msg(sb, KERN_ERR, 1561 "Cannot change data mode on remount"); 1562 return -1; 1563 } 1564 } else { 1565 clear_opt(sb, DATA_FLAGS); 1566 sbi->s_mount_opt |= m->mount_opt; 1567 } 1568 #ifdef CONFIG_QUOTA 1569 } else if (m->flags & MOPT_QFMT) { 1570 if (sb_any_quota_loaded(sb) && 1571 sbi->s_jquota_fmt != m->mount_opt) { 1572 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1573 "quota options when quota turned on"); 1574 return -1; 1575 } 1576 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1577 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1578 ext4_msg(sb, KERN_ERR, 1579 "Cannot set journaled quota options " 1580 "when QUOTA feature is enabled"); 1581 return -1; 1582 } 1583 sbi->s_jquota_fmt = m->mount_opt; 1584 #endif 1585 } else { 1586 if (!args->from) 1587 arg = 1; 1588 if (m->flags & MOPT_CLEAR) 1589 arg = !arg; 1590 else if (unlikely(!(m->flags & MOPT_SET))) { 1591 ext4_msg(sb, KERN_WARNING, 1592 "buggy handling of option %s", opt); 1593 WARN_ON(1); 1594 return -1; 1595 } 1596 if (arg != 0) 1597 sbi->s_mount_opt |= m->mount_opt; 1598 else 1599 sbi->s_mount_opt &= ~m->mount_opt; 1600 } 1601 return 1; 1602 } 1603 1604 static int parse_options(char *options, struct super_block *sb, 1605 unsigned long *journal_devnum, 1606 unsigned int *journal_ioprio, 1607 int is_remount) 1608 { 1609 struct ext4_sb_info *sbi = EXT4_SB(sb); 1610 char *p; 1611 substring_t args[MAX_OPT_ARGS]; 1612 int token; 1613 1614 if (!options) 1615 return 1; 1616 1617 while ((p = strsep(&options, ",")) != NULL) { 1618 if (!*p) 1619 continue; 1620 /* 1621 * Initialize args struct so we know whether arg was 1622 * found; some options take optional arguments. 1623 */ 1624 args[0].to = args[0].from = NULL; 1625 token = match_token(p, tokens, args); 1626 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1627 journal_ioprio, is_remount) < 0) 1628 return 0; 1629 } 1630 #ifdef CONFIG_QUOTA 1631 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1632 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1633 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1634 "feature is enabled"); 1635 return 0; 1636 } 1637 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1638 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1639 clear_opt(sb, USRQUOTA); 1640 1641 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1642 clear_opt(sb, GRPQUOTA); 1643 1644 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1645 ext4_msg(sb, KERN_ERR, "old and new quota " 1646 "format mixing"); 1647 return 0; 1648 } 1649 1650 if (!sbi->s_jquota_fmt) { 1651 ext4_msg(sb, KERN_ERR, "journaled quota format " 1652 "not specified"); 1653 return 0; 1654 } 1655 } else { 1656 if (sbi->s_jquota_fmt) { 1657 ext4_msg(sb, KERN_ERR, "journaled quota format " 1658 "specified with no journaling " 1659 "enabled"); 1660 return 0; 1661 } 1662 } 1663 #endif 1664 if (test_opt(sb, DIOREAD_NOLOCK)) { 1665 int blocksize = 1666 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1667 1668 if (blocksize < PAGE_CACHE_SIZE) { 1669 ext4_msg(sb, KERN_ERR, "can't mount with " 1670 "dioread_nolock if block size != PAGE_SIZE"); 1671 return 0; 1672 } 1673 } 1674 return 1; 1675 } 1676 1677 static inline void ext4_show_quota_options(struct seq_file *seq, 1678 struct super_block *sb) 1679 { 1680 #if defined(CONFIG_QUOTA) 1681 struct ext4_sb_info *sbi = EXT4_SB(sb); 1682 1683 if (sbi->s_jquota_fmt) { 1684 char *fmtname = ""; 1685 1686 switch (sbi->s_jquota_fmt) { 1687 case QFMT_VFS_OLD: 1688 fmtname = "vfsold"; 1689 break; 1690 case QFMT_VFS_V0: 1691 fmtname = "vfsv0"; 1692 break; 1693 case QFMT_VFS_V1: 1694 fmtname = "vfsv1"; 1695 break; 1696 } 1697 seq_printf(seq, ",jqfmt=%s", fmtname); 1698 } 1699 1700 if (sbi->s_qf_names[USRQUOTA]) 1701 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1702 1703 if (sbi->s_qf_names[GRPQUOTA]) 1704 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1705 #endif 1706 } 1707 1708 static const char *token2str(int token) 1709 { 1710 const struct match_token *t; 1711 1712 for (t = tokens; t->token != Opt_err; t++) 1713 if (t->token == token && !strchr(t->pattern, '=')) 1714 break; 1715 return t->pattern; 1716 } 1717 1718 /* 1719 * Show an option if 1720 * - it's set to a non-default value OR 1721 * - if the per-sb default is different from the global default 1722 */ 1723 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1724 int nodefs) 1725 { 1726 struct ext4_sb_info *sbi = EXT4_SB(sb); 1727 struct ext4_super_block *es = sbi->s_es; 1728 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1729 const struct mount_opts *m; 1730 char sep = nodefs ? '\n' : ','; 1731 1732 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1733 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1734 1735 if (sbi->s_sb_block != 1) 1736 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1737 1738 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1739 int want_set = m->flags & MOPT_SET; 1740 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1741 (m->flags & MOPT_CLEAR_ERR)) 1742 continue; 1743 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1744 continue; /* skip if same as the default */ 1745 if ((want_set && 1746 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1747 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1748 continue; /* select Opt_noFoo vs Opt_Foo */ 1749 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1750 } 1751 1752 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1753 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1754 SEQ_OPTS_PRINT("resuid=%u", 1755 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1756 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1757 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1758 SEQ_OPTS_PRINT("resgid=%u", 1759 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1760 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1761 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1762 SEQ_OPTS_PUTS("errors=remount-ro"); 1763 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1764 SEQ_OPTS_PUTS("errors=continue"); 1765 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1766 SEQ_OPTS_PUTS("errors=panic"); 1767 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1768 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1769 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1770 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1771 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1772 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1773 if (sb->s_flags & MS_I_VERSION) 1774 SEQ_OPTS_PUTS("i_version"); 1775 if (nodefs || sbi->s_stripe) 1776 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1777 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1778 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1779 SEQ_OPTS_PUTS("data=journal"); 1780 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1781 SEQ_OPTS_PUTS("data=ordered"); 1782 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1783 SEQ_OPTS_PUTS("data=writeback"); 1784 } 1785 if (nodefs || 1786 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1787 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1788 sbi->s_inode_readahead_blks); 1789 1790 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1791 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1792 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1793 if (nodefs || sbi->s_max_dir_size_kb) 1794 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1795 1796 ext4_show_quota_options(seq, sb); 1797 return 0; 1798 } 1799 1800 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1801 { 1802 return _ext4_show_options(seq, root->d_sb, 0); 1803 } 1804 1805 static int options_seq_show(struct seq_file *seq, void *offset) 1806 { 1807 struct super_block *sb = seq->private; 1808 int rc; 1809 1810 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1811 rc = _ext4_show_options(seq, sb, 1); 1812 seq_puts(seq, "\n"); 1813 return rc; 1814 } 1815 1816 static int options_open_fs(struct inode *inode, struct file *file) 1817 { 1818 return single_open(file, options_seq_show, PDE_DATA(inode)); 1819 } 1820 1821 static const struct file_operations ext4_seq_options_fops = { 1822 .owner = THIS_MODULE, 1823 .open = options_open_fs, 1824 .read = seq_read, 1825 .llseek = seq_lseek, 1826 .release = single_release, 1827 }; 1828 1829 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1830 int read_only) 1831 { 1832 struct ext4_sb_info *sbi = EXT4_SB(sb); 1833 int res = 0; 1834 1835 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1836 ext4_msg(sb, KERN_ERR, "revision level too high, " 1837 "forcing read-only mode"); 1838 res = MS_RDONLY; 1839 } 1840 if (read_only) 1841 goto done; 1842 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1843 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1844 "running e2fsck is recommended"); 1845 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1846 ext4_msg(sb, KERN_WARNING, 1847 "warning: mounting fs with errors, " 1848 "running e2fsck is recommended"); 1849 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1850 le16_to_cpu(es->s_mnt_count) >= 1851 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1852 ext4_msg(sb, KERN_WARNING, 1853 "warning: maximal mount count reached, " 1854 "running e2fsck is recommended"); 1855 else if (le32_to_cpu(es->s_checkinterval) && 1856 (le32_to_cpu(es->s_lastcheck) + 1857 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1858 ext4_msg(sb, KERN_WARNING, 1859 "warning: checktime reached, " 1860 "running e2fsck is recommended"); 1861 if (!sbi->s_journal) 1862 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1863 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1864 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1865 le16_add_cpu(&es->s_mnt_count, 1); 1866 es->s_mtime = cpu_to_le32(get_seconds()); 1867 ext4_update_dynamic_rev(sb); 1868 if (sbi->s_journal) 1869 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1870 1871 ext4_commit_super(sb, 1); 1872 done: 1873 if (test_opt(sb, DEBUG)) 1874 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1875 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1876 sb->s_blocksize, 1877 sbi->s_groups_count, 1878 EXT4_BLOCKS_PER_GROUP(sb), 1879 EXT4_INODES_PER_GROUP(sb), 1880 sbi->s_mount_opt, sbi->s_mount_opt2); 1881 1882 cleancache_init_fs(sb); 1883 return res; 1884 } 1885 1886 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1887 { 1888 struct ext4_sb_info *sbi = EXT4_SB(sb); 1889 struct flex_groups *new_groups; 1890 int size; 1891 1892 if (!sbi->s_log_groups_per_flex) 1893 return 0; 1894 1895 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1896 if (size <= sbi->s_flex_groups_allocated) 1897 return 0; 1898 1899 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1900 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1901 if (!new_groups) { 1902 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1903 size / (int) sizeof(struct flex_groups)); 1904 return -ENOMEM; 1905 } 1906 1907 if (sbi->s_flex_groups) { 1908 memcpy(new_groups, sbi->s_flex_groups, 1909 (sbi->s_flex_groups_allocated * 1910 sizeof(struct flex_groups))); 1911 ext4_kvfree(sbi->s_flex_groups); 1912 } 1913 sbi->s_flex_groups = new_groups; 1914 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1915 return 0; 1916 } 1917 1918 static int ext4_fill_flex_info(struct super_block *sb) 1919 { 1920 struct ext4_sb_info *sbi = EXT4_SB(sb); 1921 struct ext4_group_desc *gdp = NULL; 1922 ext4_group_t flex_group; 1923 int i, err; 1924 1925 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1926 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1927 sbi->s_log_groups_per_flex = 0; 1928 return 1; 1929 } 1930 1931 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1932 if (err) 1933 goto failed; 1934 1935 for (i = 0; i < sbi->s_groups_count; i++) { 1936 gdp = ext4_get_group_desc(sb, i, NULL); 1937 1938 flex_group = ext4_flex_group(sbi, i); 1939 atomic_add(ext4_free_inodes_count(sb, gdp), 1940 &sbi->s_flex_groups[flex_group].free_inodes); 1941 atomic64_add(ext4_free_group_clusters(sb, gdp), 1942 &sbi->s_flex_groups[flex_group].free_clusters); 1943 atomic_add(ext4_used_dirs_count(sb, gdp), 1944 &sbi->s_flex_groups[flex_group].used_dirs); 1945 } 1946 1947 return 1; 1948 failed: 1949 return 0; 1950 } 1951 1952 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1953 struct ext4_group_desc *gdp) 1954 { 1955 int offset; 1956 __u16 crc = 0; 1957 __le32 le_group = cpu_to_le32(block_group); 1958 1959 if ((sbi->s_es->s_feature_ro_compat & 1960 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1961 /* Use new metadata_csum algorithm */ 1962 __le16 save_csum; 1963 __u32 csum32; 1964 1965 save_csum = gdp->bg_checksum; 1966 gdp->bg_checksum = 0; 1967 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1968 sizeof(le_group)); 1969 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1970 sbi->s_desc_size); 1971 gdp->bg_checksum = save_csum; 1972 1973 crc = csum32 & 0xFFFF; 1974 goto out; 1975 } 1976 1977 /* old crc16 code */ 1978 offset = offsetof(struct ext4_group_desc, bg_checksum); 1979 1980 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1981 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1982 crc = crc16(crc, (__u8 *)gdp, offset); 1983 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1984 /* for checksum of struct ext4_group_desc do the rest...*/ 1985 if ((sbi->s_es->s_feature_incompat & 1986 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1987 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1988 crc = crc16(crc, (__u8 *)gdp + offset, 1989 le16_to_cpu(sbi->s_es->s_desc_size) - 1990 offset); 1991 1992 out: 1993 return cpu_to_le16(crc); 1994 } 1995 1996 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 1997 struct ext4_group_desc *gdp) 1998 { 1999 if (ext4_has_group_desc_csum(sb) && 2000 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2001 block_group, gdp))) 2002 return 0; 2003 2004 return 1; 2005 } 2006 2007 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2008 struct ext4_group_desc *gdp) 2009 { 2010 if (!ext4_has_group_desc_csum(sb)) 2011 return; 2012 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2013 } 2014 2015 /* Called at mount-time, super-block is locked */ 2016 static int ext4_check_descriptors(struct super_block *sb, 2017 ext4_group_t *first_not_zeroed) 2018 { 2019 struct ext4_sb_info *sbi = EXT4_SB(sb); 2020 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2021 ext4_fsblk_t last_block; 2022 ext4_fsblk_t block_bitmap; 2023 ext4_fsblk_t inode_bitmap; 2024 ext4_fsblk_t inode_table; 2025 int flexbg_flag = 0; 2026 ext4_group_t i, grp = sbi->s_groups_count; 2027 2028 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2029 flexbg_flag = 1; 2030 2031 ext4_debug("Checking group descriptors"); 2032 2033 for (i = 0; i < sbi->s_groups_count; i++) { 2034 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2035 2036 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2037 last_block = ext4_blocks_count(sbi->s_es) - 1; 2038 else 2039 last_block = first_block + 2040 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2041 2042 if ((grp == sbi->s_groups_count) && 2043 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2044 grp = i; 2045 2046 block_bitmap = ext4_block_bitmap(sb, gdp); 2047 if (block_bitmap < first_block || block_bitmap > last_block) { 2048 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2049 "Block bitmap for group %u not in group " 2050 "(block %llu)!", i, block_bitmap); 2051 return 0; 2052 } 2053 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2054 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2055 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2056 "Inode bitmap for group %u not in group " 2057 "(block %llu)!", i, inode_bitmap); 2058 return 0; 2059 } 2060 inode_table = ext4_inode_table(sb, gdp); 2061 if (inode_table < first_block || 2062 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2063 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2064 "Inode table for group %u not in group " 2065 "(block %llu)!", i, inode_table); 2066 return 0; 2067 } 2068 ext4_lock_group(sb, i); 2069 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2070 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2071 "Checksum for group %u failed (%u!=%u)", 2072 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2073 gdp)), le16_to_cpu(gdp->bg_checksum)); 2074 if (!(sb->s_flags & MS_RDONLY)) { 2075 ext4_unlock_group(sb, i); 2076 return 0; 2077 } 2078 } 2079 ext4_unlock_group(sb, i); 2080 if (!flexbg_flag) 2081 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2082 } 2083 if (NULL != first_not_zeroed) 2084 *first_not_zeroed = grp; 2085 2086 ext4_free_blocks_count_set(sbi->s_es, 2087 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2088 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2089 return 1; 2090 } 2091 2092 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2093 * the superblock) which were deleted from all directories, but held open by 2094 * a process at the time of a crash. We walk the list and try to delete these 2095 * inodes at recovery time (only with a read-write filesystem). 2096 * 2097 * In order to keep the orphan inode chain consistent during traversal (in 2098 * case of crash during recovery), we link each inode into the superblock 2099 * orphan list_head and handle it the same way as an inode deletion during 2100 * normal operation (which journals the operations for us). 2101 * 2102 * We only do an iget() and an iput() on each inode, which is very safe if we 2103 * accidentally point at an in-use or already deleted inode. The worst that 2104 * can happen in this case is that we get a "bit already cleared" message from 2105 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2106 * e2fsck was run on this filesystem, and it must have already done the orphan 2107 * inode cleanup for us, so we can safely abort without any further action. 2108 */ 2109 static void ext4_orphan_cleanup(struct super_block *sb, 2110 struct ext4_super_block *es) 2111 { 2112 unsigned int s_flags = sb->s_flags; 2113 int nr_orphans = 0, nr_truncates = 0; 2114 #ifdef CONFIG_QUOTA 2115 int i; 2116 #endif 2117 if (!es->s_last_orphan) { 2118 jbd_debug(4, "no orphan inodes to clean up\n"); 2119 return; 2120 } 2121 2122 if (bdev_read_only(sb->s_bdev)) { 2123 ext4_msg(sb, KERN_ERR, "write access " 2124 "unavailable, skipping orphan cleanup"); 2125 return; 2126 } 2127 2128 /* Check if feature set would not allow a r/w mount */ 2129 if (!ext4_feature_set_ok(sb, 0)) { 2130 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2131 "unknown ROCOMPAT features"); 2132 return; 2133 } 2134 2135 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2136 /* don't clear list on RO mount w/ errors */ 2137 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2138 jbd_debug(1, "Errors on filesystem, " 2139 "clearing orphan list.\n"); 2140 es->s_last_orphan = 0; 2141 } 2142 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2143 return; 2144 } 2145 2146 if (s_flags & MS_RDONLY) { 2147 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2148 sb->s_flags &= ~MS_RDONLY; 2149 } 2150 #ifdef CONFIG_QUOTA 2151 /* Needed for iput() to work correctly and not trash data */ 2152 sb->s_flags |= MS_ACTIVE; 2153 /* Turn on quotas so that they are updated correctly */ 2154 for (i = 0; i < MAXQUOTAS; i++) { 2155 if (EXT4_SB(sb)->s_qf_names[i]) { 2156 int ret = ext4_quota_on_mount(sb, i); 2157 if (ret < 0) 2158 ext4_msg(sb, KERN_ERR, 2159 "Cannot turn on journaled " 2160 "quota: error %d", ret); 2161 } 2162 } 2163 #endif 2164 2165 while (es->s_last_orphan) { 2166 struct inode *inode; 2167 2168 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2169 if (IS_ERR(inode)) { 2170 es->s_last_orphan = 0; 2171 break; 2172 } 2173 2174 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2175 dquot_initialize(inode); 2176 if (inode->i_nlink) { 2177 if (test_opt(sb, DEBUG)) 2178 ext4_msg(sb, KERN_DEBUG, 2179 "%s: truncating inode %lu to %lld bytes", 2180 __func__, inode->i_ino, inode->i_size); 2181 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2182 inode->i_ino, inode->i_size); 2183 mutex_lock(&inode->i_mutex); 2184 truncate_inode_pages(inode->i_mapping, inode->i_size); 2185 ext4_truncate(inode); 2186 mutex_unlock(&inode->i_mutex); 2187 nr_truncates++; 2188 } else { 2189 if (test_opt(sb, DEBUG)) 2190 ext4_msg(sb, KERN_DEBUG, 2191 "%s: deleting unreferenced inode %lu", 2192 __func__, inode->i_ino); 2193 jbd_debug(2, "deleting unreferenced inode %lu\n", 2194 inode->i_ino); 2195 nr_orphans++; 2196 } 2197 iput(inode); /* The delete magic happens here! */ 2198 } 2199 2200 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2201 2202 if (nr_orphans) 2203 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2204 PLURAL(nr_orphans)); 2205 if (nr_truncates) 2206 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2207 PLURAL(nr_truncates)); 2208 #ifdef CONFIG_QUOTA 2209 /* Turn quotas off */ 2210 for (i = 0; i < MAXQUOTAS; i++) { 2211 if (sb_dqopt(sb)->files[i]) 2212 dquot_quota_off(sb, i); 2213 } 2214 #endif 2215 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2216 } 2217 2218 /* 2219 * Maximal extent format file size. 2220 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2221 * extent format containers, within a sector_t, and within i_blocks 2222 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2223 * so that won't be a limiting factor. 2224 * 2225 * However there is other limiting factor. We do store extents in the form 2226 * of starting block and length, hence the resulting length of the extent 2227 * covering maximum file size must fit into on-disk format containers as 2228 * well. Given that length is always by 1 unit bigger than max unit (because 2229 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2230 * 2231 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2232 */ 2233 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2234 { 2235 loff_t res; 2236 loff_t upper_limit = MAX_LFS_FILESIZE; 2237 2238 /* small i_blocks in vfs inode? */ 2239 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2240 /* 2241 * CONFIG_LBDAF is not enabled implies the inode 2242 * i_block represent total blocks in 512 bytes 2243 * 32 == size of vfs inode i_blocks * 8 2244 */ 2245 upper_limit = (1LL << 32) - 1; 2246 2247 /* total blocks in file system block size */ 2248 upper_limit >>= (blkbits - 9); 2249 upper_limit <<= blkbits; 2250 } 2251 2252 /* 2253 * 32-bit extent-start container, ee_block. We lower the maxbytes 2254 * by one fs block, so ee_len can cover the extent of maximum file 2255 * size 2256 */ 2257 res = (1LL << 32) - 1; 2258 res <<= blkbits; 2259 2260 /* Sanity check against vm- & vfs- imposed limits */ 2261 if (res > upper_limit) 2262 res = upper_limit; 2263 2264 return res; 2265 } 2266 2267 /* 2268 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2269 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2270 * We need to be 1 filesystem block less than the 2^48 sector limit. 2271 */ 2272 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2273 { 2274 loff_t res = EXT4_NDIR_BLOCKS; 2275 int meta_blocks; 2276 loff_t upper_limit; 2277 /* This is calculated to be the largest file size for a dense, block 2278 * mapped file such that the file's total number of 512-byte sectors, 2279 * including data and all indirect blocks, does not exceed (2^48 - 1). 2280 * 2281 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2282 * number of 512-byte sectors of the file. 2283 */ 2284 2285 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2286 /* 2287 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2288 * the inode i_block field represents total file blocks in 2289 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2290 */ 2291 upper_limit = (1LL << 32) - 1; 2292 2293 /* total blocks in file system block size */ 2294 upper_limit >>= (bits - 9); 2295 2296 } else { 2297 /* 2298 * We use 48 bit ext4_inode i_blocks 2299 * With EXT4_HUGE_FILE_FL set the i_blocks 2300 * represent total number of blocks in 2301 * file system block size 2302 */ 2303 upper_limit = (1LL << 48) - 1; 2304 2305 } 2306 2307 /* indirect blocks */ 2308 meta_blocks = 1; 2309 /* double indirect blocks */ 2310 meta_blocks += 1 + (1LL << (bits-2)); 2311 /* tripple indirect blocks */ 2312 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2313 2314 upper_limit -= meta_blocks; 2315 upper_limit <<= bits; 2316 2317 res += 1LL << (bits-2); 2318 res += 1LL << (2*(bits-2)); 2319 res += 1LL << (3*(bits-2)); 2320 res <<= bits; 2321 if (res > upper_limit) 2322 res = upper_limit; 2323 2324 if (res > MAX_LFS_FILESIZE) 2325 res = MAX_LFS_FILESIZE; 2326 2327 return res; 2328 } 2329 2330 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2331 ext4_fsblk_t logical_sb_block, int nr) 2332 { 2333 struct ext4_sb_info *sbi = EXT4_SB(sb); 2334 ext4_group_t bg, first_meta_bg; 2335 int has_super = 0; 2336 2337 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2338 2339 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2340 nr < first_meta_bg) 2341 return logical_sb_block + nr + 1; 2342 bg = sbi->s_desc_per_block * nr; 2343 if (ext4_bg_has_super(sb, bg)) 2344 has_super = 1; 2345 2346 return (has_super + ext4_group_first_block_no(sb, bg)); 2347 } 2348 2349 /** 2350 * ext4_get_stripe_size: Get the stripe size. 2351 * @sbi: In memory super block info 2352 * 2353 * If we have specified it via mount option, then 2354 * use the mount option value. If the value specified at mount time is 2355 * greater than the blocks per group use the super block value. 2356 * If the super block value is greater than blocks per group return 0. 2357 * Allocator needs it be less than blocks per group. 2358 * 2359 */ 2360 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2361 { 2362 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2363 unsigned long stripe_width = 2364 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2365 int ret; 2366 2367 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2368 ret = sbi->s_stripe; 2369 else if (stripe_width <= sbi->s_blocks_per_group) 2370 ret = stripe_width; 2371 else if (stride <= sbi->s_blocks_per_group) 2372 ret = stride; 2373 else 2374 ret = 0; 2375 2376 /* 2377 * If the stripe width is 1, this makes no sense and 2378 * we set it to 0 to turn off stripe handling code. 2379 */ 2380 if (ret <= 1) 2381 ret = 0; 2382 2383 return ret; 2384 } 2385 2386 /* sysfs supprt */ 2387 2388 struct ext4_attr { 2389 struct attribute attr; 2390 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2391 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2392 const char *, size_t); 2393 union { 2394 int offset; 2395 int deprecated_val; 2396 } u; 2397 }; 2398 2399 static int parse_strtoull(const char *buf, 2400 unsigned long long max, unsigned long long *value) 2401 { 2402 int ret; 2403 2404 ret = kstrtoull(skip_spaces(buf), 0, value); 2405 if (!ret && *value > max) 2406 ret = -EINVAL; 2407 return ret; 2408 } 2409 2410 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2411 struct ext4_sb_info *sbi, 2412 char *buf) 2413 { 2414 return snprintf(buf, PAGE_SIZE, "%llu\n", 2415 (s64) EXT4_C2B(sbi, 2416 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2417 } 2418 2419 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2420 struct ext4_sb_info *sbi, char *buf) 2421 { 2422 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2423 2424 if (!sb->s_bdev->bd_part) 2425 return snprintf(buf, PAGE_SIZE, "0\n"); 2426 return snprintf(buf, PAGE_SIZE, "%lu\n", 2427 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2428 sbi->s_sectors_written_start) >> 1); 2429 } 2430 2431 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2432 struct ext4_sb_info *sbi, char *buf) 2433 { 2434 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2435 2436 if (!sb->s_bdev->bd_part) 2437 return snprintf(buf, PAGE_SIZE, "0\n"); 2438 return snprintf(buf, PAGE_SIZE, "%llu\n", 2439 (unsigned long long)(sbi->s_kbytes_written + 2440 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2441 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2442 } 2443 2444 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2445 struct ext4_sb_info *sbi, 2446 const char *buf, size_t count) 2447 { 2448 unsigned long t; 2449 int ret; 2450 2451 ret = kstrtoul(skip_spaces(buf), 0, &t); 2452 if (ret) 2453 return ret; 2454 2455 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2456 return -EINVAL; 2457 2458 sbi->s_inode_readahead_blks = t; 2459 return count; 2460 } 2461 2462 static ssize_t sbi_ui_show(struct ext4_attr *a, 2463 struct ext4_sb_info *sbi, char *buf) 2464 { 2465 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2466 2467 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2468 } 2469 2470 static ssize_t sbi_ui_store(struct ext4_attr *a, 2471 struct ext4_sb_info *sbi, 2472 const char *buf, size_t count) 2473 { 2474 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2475 unsigned long t; 2476 int ret; 2477 2478 ret = kstrtoul(skip_spaces(buf), 0, &t); 2479 if (ret) 2480 return ret; 2481 *ui = t; 2482 return count; 2483 } 2484 2485 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2486 struct ext4_sb_info *sbi, char *buf) 2487 { 2488 return snprintf(buf, PAGE_SIZE, "%llu\n", 2489 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2490 } 2491 2492 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2493 struct ext4_sb_info *sbi, 2494 const char *buf, size_t count) 2495 { 2496 unsigned long long val; 2497 int ret; 2498 2499 if (parse_strtoull(buf, -1ULL, &val)) 2500 return -EINVAL; 2501 ret = ext4_reserve_clusters(sbi, val); 2502 2503 return ret ? ret : count; 2504 } 2505 2506 static ssize_t trigger_test_error(struct ext4_attr *a, 2507 struct ext4_sb_info *sbi, 2508 const char *buf, size_t count) 2509 { 2510 int len = count; 2511 2512 if (!capable(CAP_SYS_ADMIN)) 2513 return -EPERM; 2514 2515 if (len && buf[len-1] == '\n') 2516 len--; 2517 2518 if (len) 2519 ext4_error(sbi->s_sb, "%.*s", len, buf); 2520 return count; 2521 } 2522 2523 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2524 struct ext4_sb_info *sbi, char *buf) 2525 { 2526 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2527 } 2528 2529 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2530 static struct ext4_attr ext4_attr_##_name = { \ 2531 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2532 .show = _show, \ 2533 .store = _store, \ 2534 .u = { \ 2535 .offset = offsetof(struct ext4_sb_info, _elname),\ 2536 }, \ 2537 } 2538 #define EXT4_ATTR(name, mode, show, store) \ 2539 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2540 2541 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2542 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2543 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2544 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2545 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2546 #define ATTR_LIST(name) &ext4_attr_##name.attr 2547 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2548 static struct ext4_attr ext4_attr_##_name = { \ 2549 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2550 .show = sbi_deprecated_show, \ 2551 .u = { \ 2552 .deprecated_val = _val, \ 2553 }, \ 2554 } 2555 2556 EXT4_RO_ATTR(delayed_allocation_blocks); 2557 EXT4_RO_ATTR(session_write_kbytes); 2558 EXT4_RO_ATTR(lifetime_write_kbytes); 2559 EXT4_RW_ATTR(reserved_clusters); 2560 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2561 inode_readahead_blks_store, s_inode_readahead_blks); 2562 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2563 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2564 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2565 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2566 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2567 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2568 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2569 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2570 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2571 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2572 2573 static struct attribute *ext4_attrs[] = { 2574 ATTR_LIST(delayed_allocation_blocks), 2575 ATTR_LIST(session_write_kbytes), 2576 ATTR_LIST(lifetime_write_kbytes), 2577 ATTR_LIST(reserved_clusters), 2578 ATTR_LIST(inode_readahead_blks), 2579 ATTR_LIST(inode_goal), 2580 ATTR_LIST(mb_stats), 2581 ATTR_LIST(mb_max_to_scan), 2582 ATTR_LIST(mb_min_to_scan), 2583 ATTR_LIST(mb_order2_req), 2584 ATTR_LIST(mb_stream_req), 2585 ATTR_LIST(mb_group_prealloc), 2586 ATTR_LIST(max_writeback_mb_bump), 2587 ATTR_LIST(extent_max_zeroout_kb), 2588 ATTR_LIST(trigger_fs_error), 2589 NULL, 2590 }; 2591 2592 /* Features this copy of ext4 supports */ 2593 EXT4_INFO_ATTR(lazy_itable_init); 2594 EXT4_INFO_ATTR(batched_discard); 2595 EXT4_INFO_ATTR(meta_bg_resize); 2596 2597 static struct attribute *ext4_feat_attrs[] = { 2598 ATTR_LIST(lazy_itable_init), 2599 ATTR_LIST(batched_discard), 2600 ATTR_LIST(meta_bg_resize), 2601 NULL, 2602 }; 2603 2604 static ssize_t ext4_attr_show(struct kobject *kobj, 2605 struct attribute *attr, char *buf) 2606 { 2607 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2608 s_kobj); 2609 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2610 2611 return a->show ? a->show(a, sbi, buf) : 0; 2612 } 2613 2614 static ssize_t ext4_attr_store(struct kobject *kobj, 2615 struct attribute *attr, 2616 const char *buf, size_t len) 2617 { 2618 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2619 s_kobj); 2620 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2621 2622 return a->store ? a->store(a, sbi, buf, len) : 0; 2623 } 2624 2625 static void ext4_sb_release(struct kobject *kobj) 2626 { 2627 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2628 s_kobj); 2629 complete(&sbi->s_kobj_unregister); 2630 } 2631 2632 static const struct sysfs_ops ext4_attr_ops = { 2633 .show = ext4_attr_show, 2634 .store = ext4_attr_store, 2635 }; 2636 2637 static struct kobj_type ext4_ktype = { 2638 .default_attrs = ext4_attrs, 2639 .sysfs_ops = &ext4_attr_ops, 2640 .release = ext4_sb_release, 2641 }; 2642 2643 static void ext4_feat_release(struct kobject *kobj) 2644 { 2645 complete(&ext4_feat->f_kobj_unregister); 2646 } 2647 2648 static struct kobj_type ext4_feat_ktype = { 2649 .default_attrs = ext4_feat_attrs, 2650 .sysfs_ops = &ext4_attr_ops, 2651 .release = ext4_feat_release, 2652 }; 2653 2654 /* 2655 * Check whether this filesystem can be mounted based on 2656 * the features present and the RDONLY/RDWR mount requested. 2657 * Returns 1 if this filesystem can be mounted as requested, 2658 * 0 if it cannot be. 2659 */ 2660 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2661 { 2662 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2663 ext4_msg(sb, KERN_ERR, 2664 "Couldn't mount because of " 2665 "unsupported optional features (%x)", 2666 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2667 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2668 return 0; 2669 } 2670 2671 if (readonly) 2672 return 1; 2673 2674 /* Check that feature set is OK for a read-write mount */ 2675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2676 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2677 "unsupported optional features (%x)", 2678 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2679 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2680 return 0; 2681 } 2682 /* 2683 * Large file size enabled file system can only be mounted 2684 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2685 */ 2686 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2687 if (sizeof(blkcnt_t) < sizeof(u64)) { 2688 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2689 "cannot be mounted RDWR without " 2690 "CONFIG_LBDAF"); 2691 return 0; 2692 } 2693 } 2694 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2695 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2696 ext4_msg(sb, KERN_ERR, 2697 "Can't support bigalloc feature without " 2698 "extents feature\n"); 2699 return 0; 2700 } 2701 2702 #ifndef CONFIG_QUOTA 2703 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2704 !readonly) { 2705 ext4_msg(sb, KERN_ERR, 2706 "Filesystem with quota feature cannot be mounted RDWR " 2707 "without CONFIG_QUOTA"); 2708 return 0; 2709 } 2710 #endif /* CONFIG_QUOTA */ 2711 return 1; 2712 } 2713 2714 /* 2715 * This function is called once a day if we have errors logged 2716 * on the file system 2717 */ 2718 static void print_daily_error_info(unsigned long arg) 2719 { 2720 struct super_block *sb = (struct super_block *) arg; 2721 struct ext4_sb_info *sbi; 2722 struct ext4_super_block *es; 2723 2724 sbi = EXT4_SB(sb); 2725 es = sbi->s_es; 2726 2727 if (es->s_error_count) 2728 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2729 le32_to_cpu(es->s_error_count)); 2730 if (es->s_first_error_time) { 2731 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2732 sb->s_id, le32_to_cpu(es->s_first_error_time), 2733 (int) sizeof(es->s_first_error_func), 2734 es->s_first_error_func, 2735 le32_to_cpu(es->s_first_error_line)); 2736 if (es->s_first_error_ino) 2737 printk(": inode %u", 2738 le32_to_cpu(es->s_first_error_ino)); 2739 if (es->s_first_error_block) 2740 printk(": block %llu", (unsigned long long) 2741 le64_to_cpu(es->s_first_error_block)); 2742 printk("\n"); 2743 } 2744 if (es->s_last_error_time) { 2745 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2746 sb->s_id, le32_to_cpu(es->s_last_error_time), 2747 (int) sizeof(es->s_last_error_func), 2748 es->s_last_error_func, 2749 le32_to_cpu(es->s_last_error_line)); 2750 if (es->s_last_error_ino) 2751 printk(": inode %u", 2752 le32_to_cpu(es->s_last_error_ino)); 2753 if (es->s_last_error_block) 2754 printk(": block %llu", (unsigned long long) 2755 le64_to_cpu(es->s_last_error_block)); 2756 printk("\n"); 2757 } 2758 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2759 } 2760 2761 /* Find next suitable group and run ext4_init_inode_table */ 2762 static int ext4_run_li_request(struct ext4_li_request *elr) 2763 { 2764 struct ext4_group_desc *gdp = NULL; 2765 ext4_group_t group, ngroups; 2766 struct super_block *sb; 2767 unsigned long timeout = 0; 2768 int ret = 0; 2769 2770 sb = elr->lr_super; 2771 ngroups = EXT4_SB(sb)->s_groups_count; 2772 2773 sb_start_write(sb); 2774 for (group = elr->lr_next_group; group < ngroups; group++) { 2775 gdp = ext4_get_group_desc(sb, group, NULL); 2776 if (!gdp) { 2777 ret = 1; 2778 break; 2779 } 2780 2781 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2782 break; 2783 } 2784 2785 if (group >= ngroups) 2786 ret = 1; 2787 2788 if (!ret) { 2789 timeout = jiffies; 2790 ret = ext4_init_inode_table(sb, group, 2791 elr->lr_timeout ? 0 : 1); 2792 if (elr->lr_timeout == 0) { 2793 timeout = (jiffies - timeout) * 2794 elr->lr_sbi->s_li_wait_mult; 2795 elr->lr_timeout = timeout; 2796 } 2797 elr->lr_next_sched = jiffies + elr->lr_timeout; 2798 elr->lr_next_group = group + 1; 2799 } 2800 sb_end_write(sb); 2801 2802 return ret; 2803 } 2804 2805 /* 2806 * Remove lr_request from the list_request and free the 2807 * request structure. Should be called with li_list_mtx held 2808 */ 2809 static void ext4_remove_li_request(struct ext4_li_request *elr) 2810 { 2811 struct ext4_sb_info *sbi; 2812 2813 if (!elr) 2814 return; 2815 2816 sbi = elr->lr_sbi; 2817 2818 list_del(&elr->lr_request); 2819 sbi->s_li_request = NULL; 2820 kfree(elr); 2821 } 2822 2823 static void ext4_unregister_li_request(struct super_block *sb) 2824 { 2825 mutex_lock(&ext4_li_mtx); 2826 if (!ext4_li_info) { 2827 mutex_unlock(&ext4_li_mtx); 2828 return; 2829 } 2830 2831 mutex_lock(&ext4_li_info->li_list_mtx); 2832 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2833 mutex_unlock(&ext4_li_info->li_list_mtx); 2834 mutex_unlock(&ext4_li_mtx); 2835 } 2836 2837 static struct task_struct *ext4_lazyinit_task; 2838 2839 /* 2840 * This is the function where ext4lazyinit thread lives. It walks 2841 * through the request list searching for next scheduled filesystem. 2842 * When such a fs is found, run the lazy initialization request 2843 * (ext4_rn_li_request) and keep track of the time spend in this 2844 * function. Based on that time we compute next schedule time of 2845 * the request. When walking through the list is complete, compute 2846 * next waking time and put itself into sleep. 2847 */ 2848 static int ext4_lazyinit_thread(void *arg) 2849 { 2850 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2851 struct list_head *pos, *n; 2852 struct ext4_li_request *elr; 2853 unsigned long next_wakeup, cur; 2854 2855 BUG_ON(NULL == eli); 2856 2857 cont_thread: 2858 while (true) { 2859 next_wakeup = MAX_JIFFY_OFFSET; 2860 2861 mutex_lock(&eli->li_list_mtx); 2862 if (list_empty(&eli->li_request_list)) { 2863 mutex_unlock(&eli->li_list_mtx); 2864 goto exit_thread; 2865 } 2866 2867 list_for_each_safe(pos, n, &eli->li_request_list) { 2868 elr = list_entry(pos, struct ext4_li_request, 2869 lr_request); 2870 2871 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2872 if (ext4_run_li_request(elr) != 0) { 2873 /* error, remove the lazy_init job */ 2874 ext4_remove_li_request(elr); 2875 continue; 2876 } 2877 } 2878 2879 if (time_before(elr->lr_next_sched, next_wakeup)) 2880 next_wakeup = elr->lr_next_sched; 2881 } 2882 mutex_unlock(&eli->li_list_mtx); 2883 2884 try_to_freeze(); 2885 2886 cur = jiffies; 2887 if ((time_after_eq(cur, next_wakeup)) || 2888 (MAX_JIFFY_OFFSET == next_wakeup)) { 2889 cond_resched(); 2890 continue; 2891 } 2892 2893 schedule_timeout_interruptible(next_wakeup - cur); 2894 2895 if (kthread_should_stop()) { 2896 ext4_clear_request_list(); 2897 goto exit_thread; 2898 } 2899 } 2900 2901 exit_thread: 2902 /* 2903 * It looks like the request list is empty, but we need 2904 * to check it under the li_list_mtx lock, to prevent any 2905 * additions into it, and of course we should lock ext4_li_mtx 2906 * to atomically free the list and ext4_li_info, because at 2907 * this point another ext4 filesystem could be registering 2908 * new one. 2909 */ 2910 mutex_lock(&ext4_li_mtx); 2911 mutex_lock(&eli->li_list_mtx); 2912 if (!list_empty(&eli->li_request_list)) { 2913 mutex_unlock(&eli->li_list_mtx); 2914 mutex_unlock(&ext4_li_mtx); 2915 goto cont_thread; 2916 } 2917 mutex_unlock(&eli->li_list_mtx); 2918 kfree(ext4_li_info); 2919 ext4_li_info = NULL; 2920 mutex_unlock(&ext4_li_mtx); 2921 2922 return 0; 2923 } 2924 2925 static void ext4_clear_request_list(void) 2926 { 2927 struct list_head *pos, *n; 2928 struct ext4_li_request *elr; 2929 2930 mutex_lock(&ext4_li_info->li_list_mtx); 2931 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2932 elr = list_entry(pos, struct ext4_li_request, 2933 lr_request); 2934 ext4_remove_li_request(elr); 2935 } 2936 mutex_unlock(&ext4_li_info->li_list_mtx); 2937 } 2938 2939 static int ext4_run_lazyinit_thread(void) 2940 { 2941 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2942 ext4_li_info, "ext4lazyinit"); 2943 if (IS_ERR(ext4_lazyinit_task)) { 2944 int err = PTR_ERR(ext4_lazyinit_task); 2945 ext4_clear_request_list(); 2946 kfree(ext4_li_info); 2947 ext4_li_info = NULL; 2948 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2949 "initialization thread\n", 2950 err); 2951 return err; 2952 } 2953 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2954 return 0; 2955 } 2956 2957 /* 2958 * Check whether it make sense to run itable init. thread or not. 2959 * If there is at least one uninitialized inode table, return 2960 * corresponding group number, else the loop goes through all 2961 * groups and return total number of groups. 2962 */ 2963 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2964 { 2965 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2966 struct ext4_group_desc *gdp = NULL; 2967 2968 for (group = 0; group < ngroups; group++) { 2969 gdp = ext4_get_group_desc(sb, group, NULL); 2970 if (!gdp) 2971 continue; 2972 2973 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2974 break; 2975 } 2976 2977 return group; 2978 } 2979 2980 static int ext4_li_info_new(void) 2981 { 2982 struct ext4_lazy_init *eli = NULL; 2983 2984 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2985 if (!eli) 2986 return -ENOMEM; 2987 2988 INIT_LIST_HEAD(&eli->li_request_list); 2989 mutex_init(&eli->li_list_mtx); 2990 2991 eli->li_state |= EXT4_LAZYINIT_QUIT; 2992 2993 ext4_li_info = eli; 2994 2995 return 0; 2996 } 2997 2998 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2999 ext4_group_t start) 3000 { 3001 struct ext4_sb_info *sbi = EXT4_SB(sb); 3002 struct ext4_li_request *elr; 3003 unsigned long rnd; 3004 3005 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3006 if (!elr) 3007 return NULL; 3008 3009 elr->lr_super = sb; 3010 elr->lr_sbi = sbi; 3011 elr->lr_next_group = start; 3012 3013 /* 3014 * Randomize first schedule time of the request to 3015 * spread the inode table initialization requests 3016 * better. 3017 */ 3018 get_random_bytes(&rnd, sizeof(rnd)); 3019 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3020 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3021 3022 return elr; 3023 } 3024 3025 int ext4_register_li_request(struct super_block *sb, 3026 ext4_group_t first_not_zeroed) 3027 { 3028 struct ext4_sb_info *sbi = EXT4_SB(sb); 3029 struct ext4_li_request *elr = NULL; 3030 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3031 int ret = 0; 3032 3033 mutex_lock(&ext4_li_mtx); 3034 if (sbi->s_li_request != NULL) { 3035 /* 3036 * Reset timeout so it can be computed again, because 3037 * s_li_wait_mult might have changed. 3038 */ 3039 sbi->s_li_request->lr_timeout = 0; 3040 goto out; 3041 } 3042 3043 if (first_not_zeroed == ngroups || 3044 (sb->s_flags & MS_RDONLY) || 3045 !test_opt(sb, INIT_INODE_TABLE)) 3046 goto out; 3047 3048 elr = ext4_li_request_new(sb, first_not_zeroed); 3049 if (!elr) { 3050 ret = -ENOMEM; 3051 goto out; 3052 } 3053 3054 if (NULL == ext4_li_info) { 3055 ret = ext4_li_info_new(); 3056 if (ret) 3057 goto out; 3058 } 3059 3060 mutex_lock(&ext4_li_info->li_list_mtx); 3061 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3062 mutex_unlock(&ext4_li_info->li_list_mtx); 3063 3064 sbi->s_li_request = elr; 3065 /* 3066 * set elr to NULL here since it has been inserted to 3067 * the request_list and the removal and free of it is 3068 * handled by ext4_clear_request_list from now on. 3069 */ 3070 elr = NULL; 3071 3072 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3073 ret = ext4_run_lazyinit_thread(); 3074 if (ret) 3075 goto out; 3076 } 3077 out: 3078 mutex_unlock(&ext4_li_mtx); 3079 if (ret) 3080 kfree(elr); 3081 return ret; 3082 } 3083 3084 /* 3085 * We do not need to lock anything since this is called on 3086 * module unload. 3087 */ 3088 static void ext4_destroy_lazyinit_thread(void) 3089 { 3090 /* 3091 * If thread exited earlier 3092 * there's nothing to be done. 3093 */ 3094 if (!ext4_li_info || !ext4_lazyinit_task) 3095 return; 3096 3097 kthread_stop(ext4_lazyinit_task); 3098 } 3099 3100 static int set_journal_csum_feature_set(struct super_block *sb) 3101 { 3102 int ret = 1; 3103 int compat, incompat; 3104 struct ext4_sb_info *sbi = EXT4_SB(sb); 3105 3106 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3108 /* journal checksum v2 */ 3109 compat = 0; 3110 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3111 } else { 3112 /* journal checksum v1 */ 3113 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3114 incompat = 0; 3115 } 3116 3117 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3118 ret = jbd2_journal_set_features(sbi->s_journal, 3119 compat, 0, 3120 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3121 incompat); 3122 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3123 ret = jbd2_journal_set_features(sbi->s_journal, 3124 compat, 0, 3125 incompat); 3126 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3127 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3128 } else { 3129 jbd2_journal_clear_features(sbi->s_journal, 3130 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3131 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3132 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3133 } 3134 3135 return ret; 3136 } 3137 3138 /* 3139 * Note: calculating the overhead so we can be compatible with 3140 * historical BSD practice is quite difficult in the face of 3141 * clusters/bigalloc. This is because multiple metadata blocks from 3142 * different block group can end up in the same allocation cluster. 3143 * Calculating the exact overhead in the face of clustered allocation 3144 * requires either O(all block bitmaps) in memory or O(number of block 3145 * groups**2) in time. We will still calculate the superblock for 3146 * older file systems --- and if we come across with a bigalloc file 3147 * system with zero in s_overhead_clusters the estimate will be close to 3148 * correct especially for very large cluster sizes --- but for newer 3149 * file systems, it's better to calculate this figure once at mkfs 3150 * time, and store it in the superblock. If the superblock value is 3151 * present (even for non-bigalloc file systems), we will use it. 3152 */ 3153 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3154 char *buf) 3155 { 3156 struct ext4_sb_info *sbi = EXT4_SB(sb); 3157 struct ext4_group_desc *gdp; 3158 ext4_fsblk_t first_block, last_block, b; 3159 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3160 int s, j, count = 0; 3161 3162 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3163 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3164 sbi->s_itb_per_group + 2); 3165 3166 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3167 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3168 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3169 for (i = 0; i < ngroups; i++) { 3170 gdp = ext4_get_group_desc(sb, i, NULL); 3171 b = ext4_block_bitmap(sb, gdp); 3172 if (b >= first_block && b <= last_block) { 3173 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3174 count++; 3175 } 3176 b = ext4_inode_bitmap(sb, gdp); 3177 if (b >= first_block && b <= last_block) { 3178 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3179 count++; 3180 } 3181 b = ext4_inode_table(sb, gdp); 3182 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3183 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3184 int c = EXT4_B2C(sbi, b - first_block); 3185 ext4_set_bit(c, buf); 3186 count++; 3187 } 3188 if (i != grp) 3189 continue; 3190 s = 0; 3191 if (ext4_bg_has_super(sb, grp)) { 3192 ext4_set_bit(s++, buf); 3193 count++; 3194 } 3195 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3196 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3197 count++; 3198 } 3199 } 3200 if (!count) 3201 return 0; 3202 return EXT4_CLUSTERS_PER_GROUP(sb) - 3203 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3204 } 3205 3206 /* 3207 * Compute the overhead and stash it in sbi->s_overhead 3208 */ 3209 int ext4_calculate_overhead(struct super_block *sb) 3210 { 3211 struct ext4_sb_info *sbi = EXT4_SB(sb); 3212 struct ext4_super_block *es = sbi->s_es; 3213 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3214 ext4_fsblk_t overhead = 0; 3215 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3216 3217 if (!buf) 3218 return -ENOMEM; 3219 3220 /* 3221 * Compute the overhead (FS structures). This is constant 3222 * for a given filesystem unless the number of block groups 3223 * changes so we cache the previous value until it does. 3224 */ 3225 3226 /* 3227 * All of the blocks before first_data_block are overhead 3228 */ 3229 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3230 3231 /* 3232 * Add the overhead found in each block group 3233 */ 3234 for (i = 0; i < ngroups; i++) { 3235 int blks; 3236 3237 blks = count_overhead(sb, i, buf); 3238 overhead += blks; 3239 if (blks) 3240 memset(buf, 0, PAGE_SIZE); 3241 cond_resched(); 3242 } 3243 /* Add the journal blocks as well */ 3244 if (sbi->s_journal) 3245 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3246 3247 sbi->s_overhead = overhead; 3248 smp_wmb(); 3249 free_page((unsigned long) buf); 3250 return 0; 3251 } 3252 3253 3254 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi) 3255 { 3256 ext4_fsblk_t resv_clusters; 3257 3258 /* 3259 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3260 * This should cover the situations where we can not afford to run 3261 * out of space like for example punch hole, or converting 3262 * uninitialized extents in delalloc path. In most cases such 3263 * allocation would require 1, or 2 blocks, higher numbers are 3264 * very rare. 3265 */ 3266 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits; 3267 3268 do_div(resv_clusters, 50); 3269 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3270 3271 return resv_clusters; 3272 } 3273 3274 3275 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3276 { 3277 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3278 sbi->s_cluster_bits; 3279 3280 if (count >= clusters) 3281 return -EINVAL; 3282 3283 atomic64_set(&sbi->s_resv_clusters, count); 3284 return 0; 3285 } 3286 3287 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3288 { 3289 char *orig_data = kstrdup(data, GFP_KERNEL); 3290 struct buffer_head *bh; 3291 struct ext4_super_block *es = NULL; 3292 struct ext4_sb_info *sbi; 3293 ext4_fsblk_t block; 3294 ext4_fsblk_t sb_block = get_sb_block(&data); 3295 ext4_fsblk_t logical_sb_block; 3296 unsigned long offset = 0; 3297 unsigned long journal_devnum = 0; 3298 unsigned long def_mount_opts; 3299 struct inode *root; 3300 char *cp; 3301 const char *descr; 3302 int ret = -ENOMEM; 3303 int blocksize, clustersize; 3304 unsigned int db_count; 3305 unsigned int i; 3306 int needs_recovery, has_huge_files, has_bigalloc; 3307 __u64 blocks_count; 3308 int err = 0; 3309 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3310 ext4_group_t first_not_zeroed; 3311 3312 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3313 if (!sbi) 3314 goto out_free_orig; 3315 3316 sbi->s_blockgroup_lock = 3317 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3318 if (!sbi->s_blockgroup_lock) { 3319 kfree(sbi); 3320 goto out_free_orig; 3321 } 3322 sb->s_fs_info = sbi; 3323 sbi->s_sb = sb; 3324 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3325 sbi->s_sb_block = sb_block; 3326 if (sb->s_bdev->bd_part) 3327 sbi->s_sectors_written_start = 3328 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3329 3330 /* Cleanup superblock name */ 3331 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3332 *cp = '!'; 3333 3334 /* -EINVAL is default */ 3335 ret = -EINVAL; 3336 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3337 if (!blocksize) { 3338 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3339 goto out_fail; 3340 } 3341 3342 /* 3343 * The ext4 superblock will not be buffer aligned for other than 1kB 3344 * block sizes. We need to calculate the offset from buffer start. 3345 */ 3346 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3347 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3348 offset = do_div(logical_sb_block, blocksize); 3349 } else { 3350 logical_sb_block = sb_block; 3351 } 3352 3353 if (!(bh = sb_bread(sb, logical_sb_block))) { 3354 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3355 goto out_fail; 3356 } 3357 /* 3358 * Note: s_es must be initialized as soon as possible because 3359 * some ext4 macro-instructions depend on its value 3360 */ 3361 es = (struct ext4_super_block *) (bh->b_data + offset); 3362 sbi->s_es = es; 3363 sb->s_magic = le16_to_cpu(es->s_magic); 3364 if (sb->s_magic != EXT4_SUPER_MAGIC) 3365 goto cantfind_ext4; 3366 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3367 3368 /* Warn if metadata_csum and gdt_csum are both set. */ 3369 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3370 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3371 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3372 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3373 "redundant flags; please run fsck."); 3374 3375 /* Check for a known checksum algorithm */ 3376 if (!ext4_verify_csum_type(sb, es)) { 3377 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3378 "unknown checksum algorithm."); 3379 silent = 1; 3380 goto cantfind_ext4; 3381 } 3382 3383 /* Load the checksum driver */ 3384 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3385 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3386 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3387 if (IS_ERR(sbi->s_chksum_driver)) { 3388 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3389 ret = PTR_ERR(sbi->s_chksum_driver); 3390 sbi->s_chksum_driver = NULL; 3391 goto failed_mount; 3392 } 3393 } 3394 3395 /* Check superblock checksum */ 3396 if (!ext4_superblock_csum_verify(sb, es)) { 3397 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3398 "invalid superblock checksum. Run e2fsck?"); 3399 silent = 1; 3400 goto cantfind_ext4; 3401 } 3402 3403 /* Precompute checksum seed for all metadata */ 3404 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3405 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3406 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3407 sizeof(es->s_uuid)); 3408 3409 /* Set defaults before we parse the mount options */ 3410 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3411 set_opt(sb, INIT_INODE_TABLE); 3412 if (def_mount_opts & EXT4_DEFM_DEBUG) 3413 set_opt(sb, DEBUG); 3414 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3415 set_opt(sb, GRPID); 3416 if (def_mount_opts & EXT4_DEFM_UID16) 3417 set_opt(sb, NO_UID32); 3418 /* xattr user namespace & acls are now defaulted on */ 3419 set_opt(sb, XATTR_USER); 3420 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3421 set_opt(sb, POSIX_ACL); 3422 #endif 3423 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3424 set_opt(sb, JOURNAL_DATA); 3425 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3426 set_opt(sb, ORDERED_DATA); 3427 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3428 set_opt(sb, WRITEBACK_DATA); 3429 3430 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3431 set_opt(sb, ERRORS_PANIC); 3432 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3433 set_opt(sb, ERRORS_CONT); 3434 else 3435 set_opt(sb, ERRORS_RO); 3436 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3437 set_opt(sb, BLOCK_VALIDITY); 3438 if (def_mount_opts & EXT4_DEFM_DISCARD) 3439 set_opt(sb, DISCARD); 3440 3441 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3442 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3443 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3444 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3445 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3446 3447 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3448 set_opt(sb, BARRIER); 3449 3450 /* 3451 * enable delayed allocation by default 3452 * Use -o nodelalloc to turn it off 3453 */ 3454 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3455 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3456 set_opt(sb, DELALLOC); 3457 3458 /* 3459 * set default s_li_wait_mult for lazyinit, for the case there is 3460 * no mount option specified. 3461 */ 3462 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3463 3464 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3465 &journal_devnum, &journal_ioprio, 0)) { 3466 ext4_msg(sb, KERN_WARNING, 3467 "failed to parse options in superblock: %s", 3468 sbi->s_es->s_mount_opts); 3469 } 3470 sbi->s_def_mount_opt = sbi->s_mount_opt; 3471 if (!parse_options((char *) data, sb, &journal_devnum, 3472 &journal_ioprio, 0)) 3473 goto failed_mount; 3474 3475 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3476 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3477 "with data=journal disables delayed " 3478 "allocation and O_DIRECT support!\n"); 3479 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3480 ext4_msg(sb, KERN_ERR, "can't mount with " 3481 "both data=journal and delalloc"); 3482 goto failed_mount; 3483 } 3484 if (test_opt(sb, DIOREAD_NOLOCK)) { 3485 ext4_msg(sb, KERN_ERR, "can't mount with " 3486 "both data=journal and dioread_nolock"); 3487 goto failed_mount; 3488 } 3489 if (test_opt(sb, DELALLOC)) 3490 clear_opt(sb, DELALLOC); 3491 } 3492 3493 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3494 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3495 3496 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3497 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3498 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3499 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3500 ext4_msg(sb, KERN_WARNING, 3501 "feature flags set on rev 0 fs, " 3502 "running e2fsck is recommended"); 3503 3504 if (IS_EXT2_SB(sb)) { 3505 if (ext2_feature_set_ok(sb)) 3506 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3507 "using the ext4 subsystem"); 3508 else { 3509 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3510 "to feature incompatibilities"); 3511 goto failed_mount; 3512 } 3513 } 3514 3515 if (IS_EXT3_SB(sb)) { 3516 if (ext3_feature_set_ok(sb)) 3517 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3518 "using the ext4 subsystem"); 3519 else { 3520 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3521 "to feature incompatibilities"); 3522 goto failed_mount; 3523 } 3524 } 3525 3526 /* 3527 * Check feature flags regardless of the revision level, since we 3528 * previously didn't change the revision level when setting the flags, 3529 * so there is a chance incompat flags are set on a rev 0 filesystem. 3530 */ 3531 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3532 goto failed_mount; 3533 3534 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3535 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3536 blocksize > EXT4_MAX_BLOCK_SIZE) { 3537 ext4_msg(sb, KERN_ERR, 3538 "Unsupported filesystem blocksize %d", blocksize); 3539 goto failed_mount; 3540 } 3541 3542 if (sb->s_blocksize != blocksize) { 3543 /* Validate the filesystem blocksize */ 3544 if (!sb_set_blocksize(sb, blocksize)) { 3545 ext4_msg(sb, KERN_ERR, "bad block size %d", 3546 blocksize); 3547 goto failed_mount; 3548 } 3549 3550 brelse(bh); 3551 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3552 offset = do_div(logical_sb_block, blocksize); 3553 bh = sb_bread(sb, logical_sb_block); 3554 if (!bh) { 3555 ext4_msg(sb, KERN_ERR, 3556 "Can't read superblock on 2nd try"); 3557 goto failed_mount; 3558 } 3559 es = (struct ext4_super_block *)(bh->b_data + offset); 3560 sbi->s_es = es; 3561 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3562 ext4_msg(sb, KERN_ERR, 3563 "Magic mismatch, very weird!"); 3564 goto failed_mount; 3565 } 3566 } 3567 3568 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3569 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3570 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3571 has_huge_files); 3572 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3573 3574 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3575 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3576 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3577 } else { 3578 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3579 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3580 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3581 (!is_power_of_2(sbi->s_inode_size)) || 3582 (sbi->s_inode_size > blocksize)) { 3583 ext4_msg(sb, KERN_ERR, 3584 "unsupported inode size: %d", 3585 sbi->s_inode_size); 3586 goto failed_mount; 3587 } 3588 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3589 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3590 } 3591 3592 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3593 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3594 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3595 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3596 !is_power_of_2(sbi->s_desc_size)) { 3597 ext4_msg(sb, KERN_ERR, 3598 "unsupported descriptor size %lu", 3599 sbi->s_desc_size); 3600 goto failed_mount; 3601 } 3602 } else 3603 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3604 3605 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3606 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3607 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3608 goto cantfind_ext4; 3609 3610 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3611 if (sbi->s_inodes_per_block == 0) 3612 goto cantfind_ext4; 3613 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3614 sbi->s_inodes_per_block; 3615 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3616 sbi->s_sbh = bh; 3617 sbi->s_mount_state = le16_to_cpu(es->s_state); 3618 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3619 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3620 3621 for (i = 0; i < 4; i++) 3622 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3623 sbi->s_def_hash_version = es->s_def_hash_version; 3624 i = le32_to_cpu(es->s_flags); 3625 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3626 sbi->s_hash_unsigned = 3; 3627 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3628 #ifdef __CHAR_UNSIGNED__ 3629 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3630 sbi->s_hash_unsigned = 3; 3631 #else 3632 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3633 #endif 3634 } 3635 3636 /* Handle clustersize */ 3637 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3638 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3639 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3640 if (has_bigalloc) { 3641 if (clustersize < blocksize) { 3642 ext4_msg(sb, KERN_ERR, 3643 "cluster size (%d) smaller than " 3644 "block size (%d)", clustersize, blocksize); 3645 goto failed_mount; 3646 } 3647 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3648 le32_to_cpu(es->s_log_block_size); 3649 sbi->s_clusters_per_group = 3650 le32_to_cpu(es->s_clusters_per_group); 3651 if (sbi->s_clusters_per_group > blocksize * 8) { 3652 ext4_msg(sb, KERN_ERR, 3653 "#clusters per group too big: %lu", 3654 sbi->s_clusters_per_group); 3655 goto failed_mount; 3656 } 3657 if (sbi->s_blocks_per_group != 3658 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3659 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3660 "clusters per group (%lu) inconsistent", 3661 sbi->s_blocks_per_group, 3662 sbi->s_clusters_per_group); 3663 goto failed_mount; 3664 } 3665 } else { 3666 if (clustersize != blocksize) { 3667 ext4_warning(sb, "fragment/cluster size (%d) != " 3668 "block size (%d)", clustersize, 3669 blocksize); 3670 clustersize = blocksize; 3671 } 3672 if (sbi->s_blocks_per_group > blocksize * 8) { 3673 ext4_msg(sb, KERN_ERR, 3674 "#blocks per group too big: %lu", 3675 sbi->s_blocks_per_group); 3676 goto failed_mount; 3677 } 3678 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3679 sbi->s_cluster_bits = 0; 3680 } 3681 sbi->s_cluster_ratio = clustersize / blocksize; 3682 3683 if (sbi->s_inodes_per_group > blocksize * 8) { 3684 ext4_msg(sb, KERN_ERR, 3685 "#inodes per group too big: %lu", 3686 sbi->s_inodes_per_group); 3687 goto failed_mount; 3688 } 3689 3690 /* Do we have standard group size of clustersize * 8 blocks ? */ 3691 if (sbi->s_blocks_per_group == clustersize << 3) 3692 set_opt2(sb, STD_GROUP_SIZE); 3693 3694 /* 3695 * Test whether we have more sectors than will fit in sector_t, 3696 * and whether the max offset is addressable by the page cache. 3697 */ 3698 err = generic_check_addressable(sb->s_blocksize_bits, 3699 ext4_blocks_count(es)); 3700 if (err) { 3701 ext4_msg(sb, KERN_ERR, "filesystem" 3702 " too large to mount safely on this system"); 3703 if (sizeof(sector_t) < 8) 3704 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3705 goto failed_mount; 3706 } 3707 3708 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3709 goto cantfind_ext4; 3710 3711 /* check blocks count against device size */ 3712 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3713 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3714 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3715 "exceeds size of device (%llu blocks)", 3716 ext4_blocks_count(es), blocks_count); 3717 goto failed_mount; 3718 } 3719 3720 /* 3721 * It makes no sense for the first data block to be beyond the end 3722 * of the filesystem. 3723 */ 3724 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3725 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3726 "block %u is beyond end of filesystem (%llu)", 3727 le32_to_cpu(es->s_first_data_block), 3728 ext4_blocks_count(es)); 3729 goto failed_mount; 3730 } 3731 blocks_count = (ext4_blocks_count(es) - 3732 le32_to_cpu(es->s_first_data_block) + 3733 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3734 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3735 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3736 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3737 "(block count %llu, first data block %u, " 3738 "blocks per group %lu)", sbi->s_groups_count, 3739 ext4_blocks_count(es), 3740 le32_to_cpu(es->s_first_data_block), 3741 EXT4_BLOCKS_PER_GROUP(sb)); 3742 goto failed_mount; 3743 } 3744 sbi->s_groups_count = blocks_count; 3745 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3746 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3747 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3748 EXT4_DESC_PER_BLOCK(sb); 3749 sbi->s_group_desc = ext4_kvmalloc(db_count * 3750 sizeof(struct buffer_head *), 3751 GFP_KERNEL); 3752 if (sbi->s_group_desc == NULL) { 3753 ext4_msg(sb, KERN_ERR, "not enough memory"); 3754 ret = -ENOMEM; 3755 goto failed_mount; 3756 } 3757 3758 if (ext4_proc_root) 3759 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3760 3761 if (sbi->s_proc) 3762 proc_create_data("options", S_IRUGO, sbi->s_proc, 3763 &ext4_seq_options_fops, sb); 3764 3765 bgl_lock_init(sbi->s_blockgroup_lock); 3766 3767 for (i = 0; i < db_count; i++) { 3768 block = descriptor_loc(sb, logical_sb_block, i); 3769 sbi->s_group_desc[i] = sb_bread(sb, block); 3770 if (!sbi->s_group_desc[i]) { 3771 ext4_msg(sb, KERN_ERR, 3772 "can't read group descriptor %d", i); 3773 db_count = i; 3774 goto failed_mount2; 3775 } 3776 } 3777 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3778 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3779 goto failed_mount2; 3780 } 3781 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3782 if (!ext4_fill_flex_info(sb)) { 3783 ext4_msg(sb, KERN_ERR, 3784 "unable to initialize " 3785 "flex_bg meta info!"); 3786 goto failed_mount2; 3787 } 3788 3789 sbi->s_gdb_count = db_count; 3790 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3791 spin_lock_init(&sbi->s_next_gen_lock); 3792 3793 init_timer(&sbi->s_err_report); 3794 sbi->s_err_report.function = print_daily_error_info; 3795 sbi->s_err_report.data = (unsigned long) sb; 3796 3797 /* Register extent status tree shrinker */ 3798 ext4_es_register_shrinker(sbi); 3799 3800 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3801 ext4_count_free_clusters(sb)); 3802 if (!err) { 3803 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3804 ext4_count_free_inodes(sb)); 3805 } 3806 if (!err) { 3807 err = percpu_counter_init(&sbi->s_dirs_counter, 3808 ext4_count_dirs(sb)); 3809 } 3810 if (!err) { 3811 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3812 } 3813 if (!err) { 3814 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3815 } 3816 if (err) { 3817 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3818 goto failed_mount3; 3819 } 3820 3821 sbi->s_stripe = ext4_get_stripe_size(sbi); 3822 sbi->s_extent_max_zeroout_kb = 32; 3823 3824 /* 3825 * set up enough so that it can read an inode 3826 */ 3827 if (!test_opt(sb, NOLOAD) && 3828 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3829 sb->s_op = &ext4_sops; 3830 else 3831 sb->s_op = &ext4_nojournal_sops; 3832 sb->s_export_op = &ext4_export_ops; 3833 sb->s_xattr = ext4_xattr_handlers; 3834 #ifdef CONFIG_QUOTA 3835 sb->dq_op = &ext4_quota_operations; 3836 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3837 sb->s_qcop = &ext4_qctl_sysfile_operations; 3838 else 3839 sb->s_qcop = &ext4_qctl_operations; 3840 #endif 3841 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3842 3843 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3844 mutex_init(&sbi->s_orphan_lock); 3845 3846 sb->s_root = NULL; 3847 3848 needs_recovery = (es->s_last_orphan != 0 || 3849 EXT4_HAS_INCOMPAT_FEATURE(sb, 3850 EXT4_FEATURE_INCOMPAT_RECOVER)); 3851 3852 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3853 !(sb->s_flags & MS_RDONLY)) 3854 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3855 goto failed_mount3; 3856 3857 /* 3858 * The first inode we look at is the journal inode. Don't try 3859 * root first: it may be modified in the journal! 3860 */ 3861 if (!test_opt(sb, NOLOAD) && 3862 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3863 if (ext4_load_journal(sb, es, journal_devnum)) 3864 goto failed_mount3; 3865 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3866 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3867 ext4_msg(sb, KERN_ERR, "required journal recovery " 3868 "suppressed and not mounted read-only"); 3869 goto failed_mount_wq; 3870 } else { 3871 clear_opt(sb, DATA_FLAGS); 3872 sbi->s_journal = NULL; 3873 needs_recovery = 0; 3874 goto no_journal; 3875 } 3876 3877 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3878 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3879 JBD2_FEATURE_INCOMPAT_64BIT)) { 3880 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3881 goto failed_mount_wq; 3882 } 3883 3884 if (!set_journal_csum_feature_set(sb)) { 3885 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3886 "feature set"); 3887 goto failed_mount_wq; 3888 } 3889 3890 /* We have now updated the journal if required, so we can 3891 * validate the data journaling mode. */ 3892 switch (test_opt(sb, DATA_FLAGS)) { 3893 case 0: 3894 /* No mode set, assume a default based on the journal 3895 * capabilities: ORDERED_DATA if the journal can 3896 * cope, else JOURNAL_DATA 3897 */ 3898 if (jbd2_journal_check_available_features 3899 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3900 set_opt(sb, ORDERED_DATA); 3901 else 3902 set_opt(sb, JOURNAL_DATA); 3903 break; 3904 3905 case EXT4_MOUNT_ORDERED_DATA: 3906 case EXT4_MOUNT_WRITEBACK_DATA: 3907 if (!jbd2_journal_check_available_features 3908 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3909 ext4_msg(sb, KERN_ERR, "Journal does not support " 3910 "requested data journaling mode"); 3911 goto failed_mount_wq; 3912 } 3913 default: 3914 break; 3915 } 3916 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3917 3918 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3919 3920 /* 3921 * The journal may have updated the bg summary counts, so we 3922 * need to update the global counters. 3923 */ 3924 percpu_counter_set(&sbi->s_freeclusters_counter, 3925 ext4_count_free_clusters(sb)); 3926 percpu_counter_set(&sbi->s_freeinodes_counter, 3927 ext4_count_free_inodes(sb)); 3928 percpu_counter_set(&sbi->s_dirs_counter, 3929 ext4_count_dirs(sb)); 3930 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3931 3932 no_journal: 3933 /* 3934 * Get the # of file system overhead blocks from the 3935 * superblock if present. 3936 */ 3937 if (es->s_overhead_clusters) 3938 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3939 else { 3940 err = ext4_calculate_overhead(sb); 3941 if (err) 3942 goto failed_mount_wq; 3943 } 3944 3945 /* 3946 * The maximum number of concurrent works can be high and 3947 * concurrency isn't really necessary. Limit it to 1. 3948 */ 3949 EXT4_SB(sb)->rsv_conversion_wq = 3950 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3951 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3952 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3953 ret = -ENOMEM; 3954 goto failed_mount4; 3955 } 3956 3957 EXT4_SB(sb)->unrsv_conversion_wq = 3958 alloc_workqueue("ext4-unrsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3959 if (!EXT4_SB(sb)->unrsv_conversion_wq) { 3960 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3961 ret = -ENOMEM; 3962 goto failed_mount4; 3963 } 3964 3965 /* 3966 * The jbd2_journal_load will have done any necessary log recovery, 3967 * so we can safely mount the rest of the filesystem now. 3968 */ 3969 3970 root = ext4_iget(sb, EXT4_ROOT_INO); 3971 if (IS_ERR(root)) { 3972 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3973 ret = PTR_ERR(root); 3974 root = NULL; 3975 goto failed_mount4; 3976 } 3977 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3978 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3979 iput(root); 3980 goto failed_mount4; 3981 } 3982 sb->s_root = d_make_root(root); 3983 if (!sb->s_root) { 3984 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3985 ret = -ENOMEM; 3986 goto failed_mount4; 3987 } 3988 3989 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3990 sb->s_flags |= MS_RDONLY; 3991 3992 /* determine the minimum size of new large inodes, if present */ 3993 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3994 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3995 EXT4_GOOD_OLD_INODE_SIZE; 3996 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3997 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3998 if (sbi->s_want_extra_isize < 3999 le16_to_cpu(es->s_want_extra_isize)) 4000 sbi->s_want_extra_isize = 4001 le16_to_cpu(es->s_want_extra_isize); 4002 if (sbi->s_want_extra_isize < 4003 le16_to_cpu(es->s_min_extra_isize)) 4004 sbi->s_want_extra_isize = 4005 le16_to_cpu(es->s_min_extra_isize); 4006 } 4007 } 4008 /* Check if enough inode space is available */ 4009 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4010 sbi->s_inode_size) { 4011 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4012 EXT4_GOOD_OLD_INODE_SIZE; 4013 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4014 "available"); 4015 } 4016 4017 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi)); 4018 if (err) { 4019 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4020 "reserved pool", ext4_calculate_resv_clusters(sbi)); 4021 goto failed_mount4a; 4022 } 4023 4024 err = ext4_setup_system_zone(sb); 4025 if (err) { 4026 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4027 "zone (%d)", err); 4028 goto failed_mount4a; 4029 } 4030 4031 ext4_ext_init(sb); 4032 err = ext4_mb_init(sb); 4033 if (err) { 4034 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4035 err); 4036 goto failed_mount5; 4037 } 4038 4039 err = ext4_register_li_request(sb, first_not_zeroed); 4040 if (err) 4041 goto failed_mount6; 4042 4043 sbi->s_kobj.kset = ext4_kset; 4044 init_completion(&sbi->s_kobj_unregister); 4045 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4046 "%s", sb->s_id); 4047 if (err) 4048 goto failed_mount7; 4049 4050 #ifdef CONFIG_QUOTA 4051 /* Enable quota usage during mount. */ 4052 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4053 !(sb->s_flags & MS_RDONLY)) { 4054 err = ext4_enable_quotas(sb); 4055 if (err) 4056 goto failed_mount8; 4057 } 4058 #endif /* CONFIG_QUOTA */ 4059 4060 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4061 ext4_orphan_cleanup(sb, es); 4062 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4063 if (needs_recovery) { 4064 ext4_msg(sb, KERN_INFO, "recovery complete"); 4065 ext4_mark_recovery_complete(sb, es); 4066 } 4067 if (EXT4_SB(sb)->s_journal) { 4068 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4069 descr = " journalled data mode"; 4070 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4071 descr = " ordered data mode"; 4072 else 4073 descr = " writeback data mode"; 4074 } else 4075 descr = "out journal"; 4076 4077 if (test_opt(sb, DISCARD)) { 4078 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4079 if (!blk_queue_discard(q)) 4080 ext4_msg(sb, KERN_WARNING, 4081 "mounting with \"discard\" option, but " 4082 "the device does not support discard"); 4083 } 4084 4085 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4086 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4087 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4088 4089 if (es->s_error_count) 4090 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4091 4092 kfree(orig_data); 4093 return 0; 4094 4095 cantfind_ext4: 4096 if (!silent) 4097 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4098 goto failed_mount; 4099 4100 #ifdef CONFIG_QUOTA 4101 failed_mount8: 4102 kobject_del(&sbi->s_kobj); 4103 #endif 4104 failed_mount7: 4105 ext4_unregister_li_request(sb); 4106 failed_mount6: 4107 ext4_mb_release(sb); 4108 failed_mount5: 4109 ext4_ext_release(sb); 4110 ext4_release_system_zone(sb); 4111 failed_mount4a: 4112 dput(sb->s_root); 4113 sb->s_root = NULL; 4114 failed_mount4: 4115 ext4_msg(sb, KERN_ERR, "mount failed"); 4116 if (EXT4_SB(sb)->rsv_conversion_wq) 4117 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4118 if (EXT4_SB(sb)->unrsv_conversion_wq) 4119 destroy_workqueue(EXT4_SB(sb)->unrsv_conversion_wq); 4120 failed_mount_wq: 4121 if (sbi->s_journal) { 4122 jbd2_journal_destroy(sbi->s_journal); 4123 sbi->s_journal = NULL; 4124 } 4125 failed_mount3: 4126 ext4_es_unregister_shrinker(sbi); 4127 del_timer(&sbi->s_err_report); 4128 if (sbi->s_flex_groups) 4129 ext4_kvfree(sbi->s_flex_groups); 4130 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4131 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4132 percpu_counter_destroy(&sbi->s_dirs_counter); 4133 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4134 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4135 if (sbi->s_mmp_tsk) 4136 kthread_stop(sbi->s_mmp_tsk); 4137 failed_mount2: 4138 for (i = 0; i < db_count; i++) 4139 brelse(sbi->s_group_desc[i]); 4140 ext4_kvfree(sbi->s_group_desc); 4141 failed_mount: 4142 if (sbi->s_chksum_driver) 4143 crypto_free_shash(sbi->s_chksum_driver); 4144 if (sbi->s_proc) { 4145 remove_proc_entry("options", sbi->s_proc); 4146 remove_proc_entry(sb->s_id, ext4_proc_root); 4147 } 4148 #ifdef CONFIG_QUOTA 4149 for (i = 0; i < MAXQUOTAS; i++) 4150 kfree(sbi->s_qf_names[i]); 4151 #endif 4152 ext4_blkdev_remove(sbi); 4153 brelse(bh); 4154 out_fail: 4155 sb->s_fs_info = NULL; 4156 kfree(sbi->s_blockgroup_lock); 4157 kfree(sbi); 4158 out_free_orig: 4159 kfree(orig_data); 4160 return err ? err : ret; 4161 } 4162 4163 /* 4164 * Setup any per-fs journal parameters now. We'll do this both on 4165 * initial mount, once the journal has been initialised but before we've 4166 * done any recovery; and again on any subsequent remount. 4167 */ 4168 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4169 { 4170 struct ext4_sb_info *sbi = EXT4_SB(sb); 4171 4172 journal->j_commit_interval = sbi->s_commit_interval; 4173 journal->j_min_batch_time = sbi->s_min_batch_time; 4174 journal->j_max_batch_time = sbi->s_max_batch_time; 4175 4176 write_lock(&journal->j_state_lock); 4177 if (test_opt(sb, BARRIER)) 4178 journal->j_flags |= JBD2_BARRIER; 4179 else 4180 journal->j_flags &= ~JBD2_BARRIER; 4181 if (test_opt(sb, DATA_ERR_ABORT)) 4182 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4183 else 4184 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4185 write_unlock(&journal->j_state_lock); 4186 } 4187 4188 static journal_t *ext4_get_journal(struct super_block *sb, 4189 unsigned int journal_inum) 4190 { 4191 struct inode *journal_inode; 4192 journal_t *journal; 4193 4194 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4195 4196 /* First, test for the existence of a valid inode on disk. Bad 4197 * things happen if we iget() an unused inode, as the subsequent 4198 * iput() will try to delete it. */ 4199 4200 journal_inode = ext4_iget(sb, journal_inum); 4201 if (IS_ERR(journal_inode)) { 4202 ext4_msg(sb, KERN_ERR, "no journal found"); 4203 return NULL; 4204 } 4205 if (!journal_inode->i_nlink) { 4206 make_bad_inode(journal_inode); 4207 iput(journal_inode); 4208 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4209 return NULL; 4210 } 4211 4212 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4213 journal_inode, journal_inode->i_size); 4214 if (!S_ISREG(journal_inode->i_mode)) { 4215 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4216 iput(journal_inode); 4217 return NULL; 4218 } 4219 4220 journal = jbd2_journal_init_inode(journal_inode); 4221 if (!journal) { 4222 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4223 iput(journal_inode); 4224 return NULL; 4225 } 4226 journal->j_private = sb; 4227 ext4_init_journal_params(sb, journal); 4228 return journal; 4229 } 4230 4231 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4232 dev_t j_dev) 4233 { 4234 struct buffer_head *bh; 4235 journal_t *journal; 4236 ext4_fsblk_t start; 4237 ext4_fsblk_t len; 4238 int hblock, blocksize; 4239 ext4_fsblk_t sb_block; 4240 unsigned long offset; 4241 struct ext4_super_block *es; 4242 struct block_device *bdev; 4243 4244 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4245 4246 bdev = ext4_blkdev_get(j_dev, sb); 4247 if (bdev == NULL) 4248 return NULL; 4249 4250 blocksize = sb->s_blocksize; 4251 hblock = bdev_logical_block_size(bdev); 4252 if (blocksize < hblock) { 4253 ext4_msg(sb, KERN_ERR, 4254 "blocksize too small for journal device"); 4255 goto out_bdev; 4256 } 4257 4258 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4259 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4260 set_blocksize(bdev, blocksize); 4261 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4262 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4263 "external journal"); 4264 goto out_bdev; 4265 } 4266 4267 es = (struct ext4_super_block *) (bh->b_data + offset); 4268 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4269 !(le32_to_cpu(es->s_feature_incompat) & 4270 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4271 ext4_msg(sb, KERN_ERR, "external journal has " 4272 "bad superblock"); 4273 brelse(bh); 4274 goto out_bdev; 4275 } 4276 4277 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4278 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4279 brelse(bh); 4280 goto out_bdev; 4281 } 4282 4283 len = ext4_blocks_count(es); 4284 start = sb_block + 1; 4285 brelse(bh); /* we're done with the superblock */ 4286 4287 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4288 start, len, blocksize); 4289 if (!journal) { 4290 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4291 goto out_bdev; 4292 } 4293 journal->j_private = sb; 4294 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4295 wait_on_buffer(journal->j_sb_buffer); 4296 if (!buffer_uptodate(journal->j_sb_buffer)) { 4297 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4298 goto out_journal; 4299 } 4300 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4301 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4302 "user (unsupported) - %d", 4303 be32_to_cpu(journal->j_superblock->s_nr_users)); 4304 goto out_journal; 4305 } 4306 EXT4_SB(sb)->journal_bdev = bdev; 4307 ext4_init_journal_params(sb, journal); 4308 return journal; 4309 4310 out_journal: 4311 jbd2_journal_destroy(journal); 4312 out_bdev: 4313 ext4_blkdev_put(bdev); 4314 return NULL; 4315 } 4316 4317 static int ext4_load_journal(struct super_block *sb, 4318 struct ext4_super_block *es, 4319 unsigned long journal_devnum) 4320 { 4321 journal_t *journal; 4322 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4323 dev_t journal_dev; 4324 int err = 0; 4325 int really_read_only; 4326 4327 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4328 4329 if (journal_devnum && 4330 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4331 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4332 "numbers have changed"); 4333 journal_dev = new_decode_dev(journal_devnum); 4334 } else 4335 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4336 4337 really_read_only = bdev_read_only(sb->s_bdev); 4338 4339 /* 4340 * Are we loading a blank journal or performing recovery after a 4341 * crash? For recovery, we need to check in advance whether we 4342 * can get read-write access to the device. 4343 */ 4344 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4345 if (sb->s_flags & MS_RDONLY) { 4346 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4347 "required on readonly filesystem"); 4348 if (really_read_only) { 4349 ext4_msg(sb, KERN_ERR, "write access " 4350 "unavailable, cannot proceed"); 4351 return -EROFS; 4352 } 4353 ext4_msg(sb, KERN_INFO, "write access will " 4354 "be enabled during recovery"); 4355 } 4356 } 4357 4358 if (journal_inum && journal_dev) { 4359 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4360 "and inode journals!"); 4361 return -EINVAL; 4362 } 4363 4364 if (journal_inum) { 4365 if (!(journal = ext4_get_journal(sb, journal_inum))) 4366 return -EINVAL; 4367 } else { 4368 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4369 return -EINVAL; 4370 } 4371 4372 if (!(journal->j_flags & JBD2_BARRIER)) 4373 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4374 4375 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4376 err = jbd2_journal_wipe(journal, !really_read_only); 4377 if (!err) { 4378 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4379 if (save) 4380 memcpy(save, ((char *) es) + 4381 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4382 err = jbd2_journal_load(journal); 4383 if (save) 4384 memcpy(((char *) es) + EXT4_S_ERR_START, 4385 save, EXT4_S_ERR_LEN); 4386 kfree(save); 4387 } 4388 4389 if (err) { 4390 ext4_msg(sb, KERN_ERR, "error loading journal"); 4391 jbd2_journal_destroy(journal); 4392 return err; 4393 } 4394 4395 EXT4_SB(sb)->s_journal = journal; 4396 ext4_clear_journal_err(sb, es); 4397 4398 if (!really_read_only && journal_devnum && 4399 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4400 es->s_journal_dev = cpu_to_le32(journal_devnum); 4401 4402 /* Make sure we flush the recovery flag to disk. */ 4403 ext4_commit_super(sb, 1); 4404 } 4405 4406 return 0; 4407 } 4408 4409 static int ext4_commit_super(struct super_block *sb, int sync) 4410 { 4411 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4412 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4413 int error = 0; 4414 4415 if (!sbh || block_device_ejected(sb)) 4416 return error; 4417 if (buffer_write_io_error(sbh)) { 4418 /* 4419 * Oh, dear. A previous attempt to write the 4420 * superblock failed. This could happen because the 4421 * USB device was yanked out. Or it could happen to 4422 * be a transient write error and maybe the block will 4423 * be remapped. Nothing we can do but to retry the 4424 * write and hope for the best. 4425 */ 4426 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4427 "superblock detected"); 4428 clear_buffer_write_io_error(sbh); 4429 set_buffer_uptodate(sbh); 4430 } 4431 /* 4432 * If the file system is mounted read-only, don't update the 4433 * superblock write time. This avoids updating the superblock 4434 * write time when we are mounting the root file system 4435 * read/only but we need to replay the journal; at that point, 4436 * for people who are east of GMT and who make their clock 4437 * tick in localtime for Windows bug-for-bug compatibility, 4438 * the clock is set in the future, and this will cause e2fsck 4439 * to complain and force a full file system check. 4440 */ 4441 if (!(sb->s_flags & MS_RDONLY)) 4442 es->s_wtime = cpu_to_le32(get_seconds()); 4443 if (sb->s_bdev->bd_part) 4444 es->s_kbytes_written = 4445 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4446 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4447 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4448 else 4449 es->s_kbytes_written = 4450 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4451 ext4_free_blocks_count_set(es, 4452 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4453 &EXT4_SB(sb)->s_freeclusters_counter))); 4454 es->s_free_inodes_count = 4455 cpu_to_le32(percpu_counter_sum_positive( 4456 &EXT4_SB(sb)->s_freeinodes_counter)); 4457 BUFFER_TRACE(sbh, "marking dirty"); 4458 ext4_superblock_csum_set(sb); 4459 mark_buffer_dirty(sbh); 4460 if (sync) { 4461 error = sync_dirty_buffer(sbh); 4462 if (error) 4463 return error; 4464 4465 error = buffer_write_io_error(sbh); 4466 if (error) { 4467 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4468 "superblock"); 4469 clear_buffer_write_io_error(sbh); 4470 set_buffer_uptodate(sbh); 4471 } 4472 } 4473 return error; 4474 } 4475 4476 /* 4477 * Have we just finished recovery? If so, and if we are mounting (or 4478 * remounting) the filesystem readonly, then we will end up with a 4479 * consistent fs on disk. Record that fact. 4480 */ 4481 static void ext4_mark_recovery_complete(struct super_block *sb, 4482 struct ext4_super_block *es) 4483 { 4484 journal_t *journal = EXT4_SB(sb)->s_journal; 4485 4486 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4487 BUG_ON(journal != NULL); 4488 return; 4489 } 4490 jbd2_journal_lock_updates(journal); 4491 if (jbd2_journal_flush(journal) < 0) 4492 goto out; 4493 4494 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4495 sb->s_flags & MS_RDONLY) { 4496 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4497 ext4_commit_super(sb, 1); 4498 } 4499 4500 out: 4501 jbd2_journal_unlock_updates(journal); 4502 } 4503 4504 /* 4505 * If we are mounting (or read-write remounting) a filesystem whose journal 4506 * has recorded an error from a previous lifetime, move that error to the 4507 * main filesystem now. 4508 */ 4509 static void ext4_clear_journal_err(struct super_block *sb, 4510 struct ext4_super_block *es) 4511 { 4512 journal_t *journal; 4513 int j_errno; 4514 const char *errstr; 4515 4516 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4517 4518 journal = EXT4_SB(sb)->s_journal; 4519 4520 /* 4521 * Now check for any error status which may have been recorded in the 4522 * journal by a prior ext4_error() or ext4_abort() 4523 */ 4524 4525 j_errno = jbd2_journal_errno(journal); 4526 if (j_errno) { 4527 char nbuf[16]; 4528 4529 errstr = ext4_decode_error(sb, j_errno, nbuf); 4530 ext4_warning(sb, "Filesystem error recorded " 4531 "from previous mount: %s", errstr); 4532 ext4_warning(sb, "Marking fs in need of filesystem check."); 4533 4534 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4535 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4536 ext4_commit_super(sb, 1); 4537 4538 jbd2_journal_clear_err(journal); 4539 jbd2_journal_update_sb_errno(journal); 4540 } 4541 } 4542 4543 /* 4544 * Force the running and committing transactions to commit, 4545 * and wait on the commit. 4546 */ 4547 int ext4_force_commit(struct super_block *sb) 4548 { 4549 journal_t *journal; 4550 4551 if (sb->s_flags & MS_RDONLY) 4552 return 0; 4553 4554 journal = EXT4_SB(sb)->s_journal; 4555 return ext4_journal_force_commit(journal); 4556 } 4557 4558 static int ext4_sync_fs(struct super_block *sb, int wait) 4559 { 4560 int ret = 0; 4561 tid_t target; 4562 bool needs_barrier = false; 4563 struct ext4_sb_info *sbi = EXT4_SB(sb); 4564 4565 trace_ext4_sync_fs(sb, wait); 4566 flush_workqueue(sbi->rsv_conversion_wq); 4567 flush_workqueue(sbi->unrsv_conversion_wq); 4568 /* 4569 * Writeback quota in non-journalled quota case - journalled quota has 4570 * no dirty dquots 4571 */ 4572 dquot_writeback_dquots(sb, -1); 4573 /* 4574 * Data writeback is possible w/o journal transaction, so barrier must 4575 * being sent at the end of the function. But we can skip it if 4576 * transaction_commit will do it for us. 4577 */ 4578 target = jbd2_get_latest_transaction(sbi->s_journal); 4579 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4580 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4581 needs_barrier = true; 4582 4583 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4584 if (wait) 4585 ret = jbd2_log_wait_commit(sbi->s_journal, target); 4586 } 4587 if (needs_barrier) { 4588 int err; 4589 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4590 if (!ret) 4591 ret = err; 4592 } 4593 4594 return ret; 4595 } 4596 4597 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait) 4598 { 4599 int ret = 0; 4600 4601 trace_ext4_sync_fs(sb, wait); 4602 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4603 flush_workqueue(EXT4_SB(sb)->unrsv_conversion_wq); 4604 dquot_writeback_dquots(sb, -1); 4605 if (wait && test_opt(sb, BARRIER)) 4606 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4607 4608 return ret; 4609 } 4610 4611 /* 4612 * LVM calls this function before a (read-only) snapshot is created. This 4613 * gives us a chance to flush the journal completely and mark the fs clean. 4614 * 4615 * Note that only this function cannot bring a filesystem to be in a clean 4616 * state independently. It relies on upper layer to stop all data & metadata 4617 * modifications. 4618 */ 4619 static int ext4_freeze(struct super_block *sb) 4620 { 4621 int error = 0; 4622 journal_t *journal; 4623 4624 if (sb->s_flags & MS_RDONLY) 4625 return 0; 4626 4627 journal = EXT4_SB(sb)->s_journal; 4628 4629 /* Now we set up the journal barrier. */ 4630 jbd2_journal_lock_updates(journal); 4631 4632 /* 4633 * Don't clear the needs_recovery flag if we failed to flush 4634 * the journal. 4635 */ 4636 error = jbd2_journal_flush(journal); 4637 if (error < 0) 4638 goto out; 4639 4640 /* Journal blocked and flushed, clear needs_recovery flag. */ 4641 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4642 error = ext4_commit_super(sb, 1); 4643 out: 4644 /* we rely on upper layer to stop further updates */ 4645 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4646 return error; 4647 } 4648 4649 /* 4650 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4651 * flag here, even though the filesystem is not technically dirty yet. 4652 */ 4653 static int ext4_unfreeze(struct super_block *sb) 4654 { 4655 if (sb->s_flags & MS_RDONLY) 4656 return 0; 4657 4658 /* Reset the needs_recovery flag before the fs is unlocked. */ 4659 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4660 ext4_commit_super(sb, 1); 4661 return 0; 4662 } 4663 4664 /* 4665 * Structure to save mount options for ext4_remount's benefit 4666 */ 4667 struct ext4_mount_options { 4668 unsigned long s_mount_opt; 4669 unsigned long s_mount_opt2; 4670 kuid_t s_resuid; 4671 kgid_t s_resgid; 4672 unsigned long s_commit_interval; 4673 u32 s_min_batch_time, s_max_batch_time; 4674 #ifdef CONFIG_QUOTA 4675 int s_jquota_fmt; 4676 char *s_qf_names[MAXQUOTAS]; 4677 #endif 4678 }; 4679 4680 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4681 { 4682 struct ext4_super_block *es; 4683 struct ext4_sb_info *sbi = EXT4_SB(sb); 4684 unsigned long old_sb_flags; 4685 struct ext4_mount_options old_opts; 4686 int enable_quota = 0; 4687 ext4_group_t g; 4688 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4689 int err = 0; 4690 #ifdef CONFIG_QUOTA 4691 int i, j; 4692 #endif 4693 char *orig_data = kstrdup(data, GFP_KERNEL); 4694 4695 /* Store the original options */ 4696 old_sb_flags = sb->s_flags; 4697 old_opts.s_mount_opt = sbi->s_mount_opt; 4698 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4699 old_opts.s_resuid = sbi->s_resuid; 4700 old_opts.s_resgid = sbi->s_resgid; 4701 old_opts.s_commit_interval = sbi->s_commit_interval; 4702 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4703 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4704 #ifdef CONFIG_QUOTA 4705 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4706 for (i = 0; i < MAXQUOTAS; i++) 4707 if (sbi->s_qf_names[i]) { 4708 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4709 GFP_KERNEL); 4710 if (!old_opts.s_qf_names[i]) { 4711 for (j = 0; j < i; j++) 4712 kfree(old_opts.s_qf_names[j]); 4713 kfree(orig_data); 4714 return -ENOMEM; 4715 } 4716 } else 4717 old_opts.s_qf_names[i] = NULL; 4718 #endif 4719 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4720 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4721 4722 /* 4723 * Allow the "check" option to be passed as a remount option. 4724 */ 4725 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4726 err = -EINVAL; 4727 goto restore_opts; 4728 } 4729 4730 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4731 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4732 ext4_msg(sb, KERN_ERR, "can't mount with " 4733 "both data=journal and delalloc"); 4734 err = -EINVAL; 4735 goto restore_opts; 4736 } 4737 if (test_opt(sb, DIOREAD_NOLOCK)) { 4738 ext4_msg(sb, KERN_ERR, "can't mount with " 4739 "both data=journal and dioread_nolock"); 4740 err = -EINVAL; 4741 goto restore_opts; 4742 } 4743 } 4744 4745 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4746 ext4_abort(sb, "Abort forced by user"); 4747 4748 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4749 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4750 4751 es = sbi->s_es; 4752 4753 if (sbi->s_journal) { 4754 ext4_init_journal_params(sb, sbi->s_journal); 4755 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4756 } 4757 4758 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4759 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4760 err = -EROFS; 4761 goto restore_opts; 4762 } 4763 4764 if (*flags & MS_RDONLY) { 4765 err = dquot_suspend(sb, -1); 4766 if (err < 0) 4767 goto restore_opts; 4768 4769 /* 4770 * First of all, the unconditional stuff we have to do 4771 * to disable replay of the journal when we next remount 4772 */ 4773 sb->s_flags |= MS_RDONLY; 4774 4775 /* 4776 * OK, test if we are remounting a valid rw partition 4777 * readonly, and if so set the rdonly flag and then 4778 * mark the partition as valid again. 4779 */ 4780 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4781 (sbi->s_mount_state & EXT4_VALID_FS)) 4782 es->s_state = cpu_to_le16(sbi->s_mount_state); 4783 4784 if (sbi->s_journal) 4785 ext4_mark_recovery_complete(sb, es); 4786 } else { 4787 /* Make sure we can mount this feature set readwrite */ 4788 if (!ext4_feature_set_ok(sb, 0)) { 4789 err = -EROFS; 4790 goto restore_opts; 4791 } 4792 /* 4793 * Make sure the group descriptor checksums 4794 * are sane. If they aren't, refuse to remount r/w. 4795 */ 4796 for (g = 0; g < sbi->s_groups_count; g++) { 4797 struct ext4_group_desc *gdp = 4798 ext4_get_group_desc(sb, g, NULL); 4799 4800 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4801 ext4_msg(sb, KERN_ERR, 4802 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4803 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4804 le16_to_cpu(gdp->bg_checksum)); 4805 err = -EINVAL; 4806 goto restore_opts; 4807 } 4808 } 4809 4810 /* 4811 * If we have an unprocessed orphan list hanging 4812 * around from a previously readonly bdev mount, 4813 * require a full umount/remount for now. 4814 */ 4815 if (es->s_last_orphan) { 4816 ext4_msg(sb, KERN_WARNING, "Couldn't " 4817 "remount RDWR because of unprocessed " 4818 "orphan inode list. Please " 4819 "umount/remount instead"); 4820 err = -EINVAL; 4821 goto restore_opts; 4822 } 4823 4824 /* 4825 * Mounting a RDONLY partition read-write, so reread 4826 * and store the current valid flag. (It may have 4827 * been changed by e2fsck since we originally mounted 4828 * the partition.) 4829 */ 4830 if (sbi->s_journal) 4831 ext4_clear_journal_err(sb, es); 4832 sbi->s_mount_state = le16_to_cpu(es->s_state); 4833 if (!ext4_setup_super(sb, es, 0)) 4834 sb->s_flags &= ~MS_RDONLY; 4835 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4836 EXT4_FEATURE_INCOMPAT_MMP)) 4837 if (ext4_multi_mount_protect(sb, 4838 le64_to_cpu(es->s_mmp_block))) { 4839 err = -EROFS; 4840 goto restore_opts; 4841 } 4842 enable_quota = 1; 4843 } 4844 } 4845 4846 /* 4847 * Reinitialize lazy itable initialization thread based on 4848 * current settings 4849 */ 4850 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4851 ext4_unregister_li_request(sb); 4852 else { 4853 ext4_group_t first_not_zeroed; 4854 first_not_zeroed = ext4_has_uninit_itable(sb); 4855 ext4_register_li_request(sb, first_not_zeroed); 4856 } 4857 4858 ext4_setup_system_zone(sb); 4859 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4860 ext4_commit_super(sb, 1); 4861 4862 #ifdef CONFIG_QUOTA 4863 /* Release old quota file names */ 4864 for (i = 0; i < MAXQUOTAS; i++) 4865 kfree(old_opts.s_qf_names[i]); 4866 if (enable_quota) { 4867 if (sb_any_quota_suspended(sb)) 4868 dquot_resume(sb, -1); 4869 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4870 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4871 err = ext4_enable_quotas(sb); 4872 if (err) 4873 goto restore_opts; 4874 } 4875 } 4876 #endif 4877 4878 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4879 kfree(orig_data); 4880 return 0; 4881 4882 restore_opts: 4883 sb->s_flags = old_sb_flags; 4884 sbi->s_mount_opt = old_opts.s_mount_opt; 4885 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4886 sbi->s_resuid = old_opts.s_resuid; 4887 sbi->s_resgid = old_opts.s_resgid; 4888 sbi->s_commit_interval = old_opts.s_commit_interval; 4889 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4890 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4891 #ifdef CONFIG_QUOTA 4892 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4893 for (i = 0; i < MAXQUOTAS; i++) { 4894 kfree(sbi->s_qf_names[i]); 4895 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4896 } 4897 #endif 4898 kfree(orig_data); 4899 return err; 4900 } 4901 4902 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4903 { 4904 struct super_block *sb = dentry->d_sb; 4905 struct ext4_sb_info *sbi = EXT4_SB(sb); 4906 struct ext4_super_block *es = sbi->s_es; 4907 ext4_fsblk_t overhead = 0, resv_blocks; 4908 u64 fsid; 4909 s64 bfree; 4910 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4911 4912 if (!test_opt(sb, MINIX_DF)) 4913 overhead = sbi->s_overhead; 4914 4915 buf->f_type = EXT4_SUPER_MAGIC; 4916 buf->f_bsize = sb->s_blocksize; 4917 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4918 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4919 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4920 /* prevent underflow in case that few free space is available */ 4921 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4922 buf->f_bavail = buf->f_bfree - 4923 (ext4_r_blocks_count(es) + resv_blocks); 4924 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4925 buf->f_bavail = 0; 4926 buf->f_files = le32_to_cpu(es->s_inodes_count); 4927 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4928 buf->f_namelen = EXT4_NAME_LEN; 4929 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4930 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4931 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4932 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4933 4934 return 0; 4935 } 4936 4937 /* Helper function for writing quotas on sync - we need to start transaction 4938 * before quota file is locked for write. Otherwise the are possible deadlocks: 4939 * Process 1 Process 2 4940 * ext4_create() quota_sync() 4941 * jbd2_journal_start() write_dquot() 4942 * dquot_initialize() down(dqio_mutex) 4943 * down(dqio_mutex) jbd2_journal_start() 4944 * 4945 */ 4946 4947 #ifdef CONFIG_QUOTA 4948 4949 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4950 { 4951 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4952 } 4953 4954 static int ext4_write_dquot(struct dquot *dquot) 4955 { 4956 int ret, err; 4957 handle_t *handle; 4958 struct inode *inode; 4959 4960 inode = dquot_to_inode(dquot); 4961 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4962 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4963 if (IS_ERR(handle)) 4964 return PTR_ERR(handle); 4965 ret = dquot_commit(dquot); 4966 err = ext4_journal_stop(handle); 4967 if (!ret) 4968 ret = err; 4969 return ret; 4970 } 4971 4972 static int ext4_acquire_dquot(struct dquot *dquot) 4973 { 4974 int ret, err; 4975 handle_t *handle; 4976 4977 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4978 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4979 if (IS_ERR(handle)) 4980 return PTR_ERR(handle); 4981 ret = dquot_acquire(dquot); 4982 err = ext4_journal_stop(handle); 4983 if (!ret) 4984 ret = err; 4985 return ret; 4986 } 4987 4988 static int ext4_release_dquot(struct dquot *dquot) 4989 { 4990 int ret, err; 4991 handle_t *handle; 4992 4993 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4994 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4995 if (IS_ERR(handle)) { 4996 /* Release dquot anyway to avoid endless cycle in dqput() */ 4997 dquot_release(dquot); 4998 return PTR_ERR(handle); 4999 } 5000 ret = dquot_release(dquot); 5001 err = ext4_journal_stop(handle); 5002 if (!ret) 5003 ret = err; 5004 return ret; 5005 } 5006 5007 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5008 { 5009 struct super_block *sb = dquot->dq_sb; 5010 struct ext4_sb_info *sbi = EXT4_SB(sb); 5011 5012 /* Are we journaling quotas? */ 5013 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5014 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5015 dquot_mark_dquot_dirty(dquot); 5016 return ext4_write_dquot(dquot); 5017 } else { 5018 return dquot_mark_dquot_dirty(dquot); 5019 } 5020 } 5021 5022 static int ext4_write_info(struct super_block *sb, int type) 5023 { 5024 int ret, err; 5025 handle_t *handle; 5026 5027 /* Data block + inode block */ 5028 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5029 if (IS_ERR(handle)) 5030 return PTR_ERR(handle); 5031 ret = dquot_commit_info(sb, type); 5032 err = ext4_journal_stop(handle); 5033 if (!ret) 5034 ret = err; 5035 return ret; 5036 } 5037 5038 /* 5039 * Turn on quotas during mount time - we need to find 5040 * the quota file and such... 5041 */ 5042 static int ext4_quota_on_mount(struct super_block *sb, int type) 5043 { 5044 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5045 EXT4_SB(sb)->s_jquota_fmt, type); 5046 } 5047 5048 /* 5049 * Standard function to be called on quota_on 5050 */ 5051 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5052 struct path *path) 5053 { 5054 int err; 5055 5056 if (!test_opt(sb, QUOTA)) 5057 return -EINVAL; 5058 5059 /* Quotafile not on the same filesystem? */ 5060 if (path->dentry->d_sb != sb) 5061 return -EXDEV; 5062 /* Journaling quota? */ 5063 if (EXT4_SB(sb)->s_qf_names[type]) { 5064 /* Quotafile not in fs root? */ 5065 if (path->dentry->d_parent != sb->s_root) 5066 ext4_msg(sb, KERN_WARNING, 5067 "Quota file not on filesystem root. " 5068 "Journaled quota will not work"); 5069 } 5070 5071 /* 5072 * When we journal data on quota file, we have to flush journal to see 5073 * all updates to the file when we bypass pagecache... 5074 */ 5075 if (EXT4_SB(sb)->s_journal && 5076 ext4_should_journal_data(path->dentry->d_inode)) { 5077 /* 5078 * We don't need to lock updates but journal_flush() could 5079 * otherwise be livelocked... 5080 */ 5081 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5082 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5083 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5084 if (err) 5085 return err; 5086 } 5087 5088 return dquot_quota_on(sb, type, format_id, path); 5089 } 5090 5091 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5092 unsigned int flags) 5093 { 5094 int err; 5095 struct inode *qf_inode; 5096 unsigned long qf_inums[MAXQUOTAS] = { 5097 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5098 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5099 }; 5100 5101 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5102 5103 if (!qf_inums[type]) 5104 return -EPERM; 5105 5106 qf_inode = ext4_iget(sb, qf_inums[type]); 5107 if (IS_ERR(qf_inode)) { 5108 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5109 return PTR_ERR(qf_inode); 5110 } 5111 5112 /* Don't account quota for quota files to avoid recursion */ 5113 qf_inode->i_flags |= S_NOQUOTA; 5114 err = dquot_enable(qf_inode, type, format_id, flags); 5115 iput(qf_inode); 5116 5117 return err; 5118 } 5119 5120 /* Enable usage tracking for all quota types. */ 5121 static int ext4_enable_quotas(struct super_block *sb) 5122 { 5123 int type, err = 0; 5124 unsigned long qf_inums[MAXQUOTAS] = { 5125 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5126 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5127 }; 5128 5129 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5130 for (type = 0; type < MAXQUOTAS; type++) { 5131 if (qf_inums[type]) { 5132 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5133 DQUOT_USAGE_ENABLED); 5134 if (err) { 5135 ext4_warning(sb, 5136 "Failed to enable quota tracking " 5137 "(type=%d, err=%d). Please run " 5138 "e2fsck to fix.", type, err); 5139 return err; 5140 } 5141 } 5142 } 5143 return 0; 5144 } 5145 5146 /* 5147 * quota_on function that is used when QUOTA feature is set. 5148 */ 5149 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5150 int format_id) 5151 { 5152 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5153 return -EINVAL; 5154 5155 /* 5156 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5157 */ 5158 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5159 } 5160 5161 static int ext4_quota_off(struct super_block *sb, int type) 5162 { 5163 struct inode *inode = sb_dqopt(sb)->files[type]; 5164 handle_t *handle; 5165 5166 /* Force all delayed allocation blocks to be allocated. 5167 * Caller already holds s_umount sem */ 5168 if (test_opt(sb, DELALLOC)) 5169 sync_filesystem(sb); 5170 5171 if (!inode) 5172 goto out; 5173 5174 /* Update modification times of quota files when userspace can 5175 * start looking at them */ 5176 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5177 if (IS_ERR(handle)) 5178 goto out; 5179 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5180 ext4_mark_inode_dirty(handle, inode); 5181 ext4_journal_stop(handle); 5182 5183 out: 5184 return dquot_quota_off(sb, type); 5185 } 5186 5187 /* 5188 * quota_off function that is used when QUOTA feature is set. 5189 */ 5190 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5191 { 5192 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5193 return -EINVAL; 5194 5195 /* Disable only the limits. */ 5196 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5197 } 5198 5199 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5200 * acquiring the locks... As quota files are never truncated and quota code 5201 * itself serializes the operations (and no one else should touch the files) 5202 * we don't have to be afraid of races */ 5203 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5204 size_t len, loff_t off) 5205 { 5206 struct inode *inode = sb_dqopt(sb)->files[type]; 5207 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5208 int err = 0; 5209 int offset = off & (sb->s_blocksize - 1); 5210 int tocopy; 5211 size_t toread; 5212 struct buffer_head *bh; 5213 loff_t i_size = i_size_read(inode); 5214 5215 if (off > i_size) 5216 return 0; 5217 if (off+len > i_size) 5218 len = i_size-off; 5219 toread = len; 5220 while (toread > 0) { 5221 tocopy = sb->s_blocksize - offset < toread ? 5222 sb->s_blocksize - offset : toread; 5223 bh = ext4_bread(NULL, inode, blk, 0, &err); 5224 if (err) 5225 return err; 5226 if (!bh) /* A hole? */ 5227 memset(data, 0, tocopy); 5228 else 5229 memcpy(data, bh->b_data+offset, tocopy); 5230 brelse(bh); 5231 offset = 0; 5232 toread -= tocopy; 5233 data += tocopy; 5234 blk++; 5235 } 5236 return len; 5237 } 5238 5239 /* Write to quotafile (we know the transaction is already started and has 5240 * enough credits) */ 5241 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5242 const char *data, size_t len, loff_t off) 5243 { 5244 struct inode *inode = sb_dqopt(sb)->files[type]; 5245 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5246 int err = 0; 5247 int offset = off & (sb->s_blocksize - 1); 5248 struct buffer_head *bh; 5249 handle_t *handle = journal_current_handle(); 5250 5251 if (EXT4_SB(sb)->s_journal && !handle) { 5252 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5253 " cancelled because transaction is not started", 5254 (unsigned long long)off, (unsigned long long)len); 5255 return -EIO; 5256 } 5257 /* 5258 * Since we account only one data block in transaction credits, 5259 * then it is impossible to cross a block boundary. 5260 */ 5261 if (sb->s_blocksize - offset < len) { 5262 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5263 " cancelled because not block aligned", 5264 (unsigned long long)off, (unsigned long long)len); 5265 return -EIO; 5266 } 5267 5268 bh = ext4_bread(handle, inode, blk, 1, &err); 5269 if (!bh) 5270 goto out; 5271 err = ext4_journal_get_write_access(handle, bh); 5272 if (err) { 5273 brelse(bh); 5274 goto out; 5275 } 5276 lock_buffer(bh); 5277 memcpy(bh->b_data+offset, data, len); 5278 flush_dcache_page(bh->b_page); 5279 unlock_buffer(bh); 5280 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5281 brelse(bh); 5282 out: 5283 if (err) 5284 return err; 5285 if (inode->i_size < off + len) { 5286 i_size_write(inode, off + len); 5287 EXT4_I(inode)->i_disksize = inode->i_size; 5288 ext4_mark_inode_dirty(handle, inode); 5289 } 5290 return len; 5291 } 5292 5293 #endif 5294 5295 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5296 const char *dev_name, void *data) 5297 { 5298 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5299 } 5300 5301 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5302 static inline void register_as_ext2(void) 5303 { 5304 int err = register_filesystem(&ext2_fs_type); 5305 if (err) 5306 printk(KERN_WARNING 5307 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5308 } 5309 5310 static inline void unregister_as_ext2(void) 5311 { 5312 unregister_filesystem(&ext2_fs_type); 5313 } 5314 5315 static inline int ext2_feature_set_ok(struct super_block *sb) 5316 { 5317 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5318 return 0; 5319 if (sb->s_flags & MS_RDONLY) 5320 return 1; 5321 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5322 return 0; 5323 return 1; 5324 } 5325 #else 5326 static inline void register_as_ext2(void) { } 5327 static inline void unregister_as_ext2(void) { } 5328 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5329 #endif 5330 5331 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5332 static inline void register_as_ext3(void) 5333 { 5334 int err = register_filesystem(&ext3_fs_type); 5335 if (err) 5336 printk(KERN_WARNING 5337 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5338 } 5339 5340 static inline void unregister_as_ext3(void) 5341 { 5342 unregister_filesystem(&ext3_fs_type); 5343 } 5344 5345 static inline int ext3_feature_set_ok(struct super_block *sb) 5346 { 5347 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5348 return 0; 5349 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5350 return 0; 5351 if (sb->s_flags & MS_RDONLY) 5352 return 1; 5353 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5354 return 0; 5355 return 1; 5356 } 5357 #else 5358 static inline void register_as_ext3(void) { } 5359 static inline void unregister_as_ext3(void) { } 5360 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5361 #endif 5362 5363 static struct file_system_type ext4_fs_type = { 5364 .owner = THIS_MODULE, 5365 .name = "ext4", 5366 .mount = ext4_mount, 5367 .kill_sb = kill_block_super, 5368 .fs_flags = FS_REQUIRES_DEV, 5369 }; 5370 MODULE_ALIAS_FS("ext4"); 5371 5372 static int __init ext4_init_feat_adverts(void) 5373 { 5374 struct ext4_features *ef; 5375 int ret = -ENOMEM; 5376 5377 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5378 if (!ef) 5379 goto out; 5380 5381 ef->f_kobj.kset = ext4_kset; 5382 init_completion(&ef->f_kobj_unregister); 5383 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5384 "features"); 5385 if (ret) { 5386 kfree(ef); 5387 goto out; 5388 } 5389 5390 ext4_feat = ef; 5391 ret = 0; 5392 out: 5393 return ret; 5394 } 5395 5396 static void ext4_exit_feat_adverts(void) 5397 { 5398 kobject_put(&ext4_feat->f_kobj); 5399 wait_for_completion(&ext4_feat->f_kobj_unregister); 5400 kfree(ext4_feat); 5401 } 5402 5403 /* Shared across all ext4 file systems */ 5404 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5405 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5406 5407 static int __init ext4_init_fs(void) 5408 { 5409 int i, err; 5410 5411 ext4_li_info = NULL; 5412 mutex_init(&ext4_li_mtx); 5413 5414 /* Build-time check for flags consistency */ 5415 ext4_check_flag_values(); 5416 5417 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5418 mutex_init(&ext4__aio_mutex[i]); 5419 init_waitqueue_head(&ext4__ioend_wq[i]); 5420 } 5421 5422 err = ext4_init_es(); 5423 if (err) 5424 return err; 5425 5426 err = ext4_init_pageio(); 5427 if (err) 5428 goto out7; 5429 5430 err = ext4_init_system_zone(); 5431 if (err) 5432 goto out6; 5433 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5434 if (!ext4_kset) { 5435 err = -ENOMEM; 5436 goto out5; 5437 } 5438 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5439 5440 err = ext4_init_feat_adverts(); 5441 if (err) 5442 goto out4; 5443 5444 err = ext4_init_mballoc(); 5445 if (err) 5446 goto out3; 5447 5448 err = ext4_init_xattr(); 5449 if (err) 5450 goto out2; 5451 err = init_inodecache(); 5452 if (err) 5453 goto out1; 5454 register_as_ext3(); 5455 register_as_ext2(); 5456 err = register_filesystem(&ext4_fs_type); 5457 if (err) 5458 goto out; 5459 5460 return 0; 5461 out: 5462 unregister_as_ext2(); 5463 unregister_as_ext3(); 5464 destroy_inodecache(); 5465 out1: 5466 ext4_exit_xattr(); 5467 out2: 5468 ext4_exit_mballoc(); 5469 out3: 5470 ext4_exit_feat_adverts(); 5471 out4: 5472 if (ext4_proc_root) 5473 remove_proc_entry("fs/ext4", NULL); 5474 kset_unregister(ext4_kset); 5475 out5: 5476 ext4_exit_system_zone(); 5477 out6: 5478 ext4_exit_pageio(); 5479 out7: 5480 ext4_exit_es(); 5481 5482 return err; 5483 } 5484 5485 static void __exit ext4_exit_fs(void) 5486 { 5487 ext4_destroy_lazyinit_thread(); 5488 unregister_as_ext2(); 5489 unregister_as_ext3(); 5490 unregister_filesystem(&ext4_fs_type); 5491 destroy_inodecache(); 5492 ext4_exit_xattr(); 5493 ext4_exit_mballoc(); 5494 ext4_exit_feat_adverts(); 5495 remove_proc_entry("fs/ext4", NULL); 5496 kset_unregister(ext4_kset); 5497 ext4_exit_system_zone(); 5498 ext4_exit_pageio(); 5499 ext4_exit_es(); 5500 } 5501 5502 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5503 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5504 MODULE_LICENSE("GPL"); 5505 module_init(ext4_init_fs) 5506 module_exit(ext4_exit_fs) 5507