1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static int ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 146 bh_end_io_t *end_io) 147 { 148 /* 149 * buffer's verified bit is no longer valid after reading from 150 * disk again due to write out error, clear it to make sure we 151 * recheck the buffer contents. 152 */ 153 clear_buffer_verified(bh); 154 155 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 156 get_bh(bh); 157 submit_bh(REQ_OP_READ, op_flags, bh); 158 } 159 160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 161 bh_end_io_t *end_io) 162 { 163 BUG_ON(!buffer_locked(bh)); 164 165 if (ext4_buffer_uptodate(bh)) { 166 unlock_buffer(bh); 167 return; 168 } 169 __ext4_read_bh(bh, op_flags, end_io); 170 } 171 172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 173 { 174 BUG_ON(!buffer_locked(bh)); 175 176 if (ext4_buffer_uptodate(bh)) { 177 unlock_buffer(bh); 178 return 0; 179 } 180 181 __ext4_read_bh(bh, op_flags, end_io); 182 183 wait_on_buffer(bh); 184 if (buffer_uptodate(bh)) 185 return 0; 186 return -EIO; 187 } 188 189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 190 { 191 if (trylock_buffer(bh)) { 192 if (wait) 193 return ext4_read_bh(bh, op_flags, NULL); 194 ext4_read_bh_nowait(bh, op_flags, NULL); 195 return 0; 196 } 197 if (wait) { 198 wait_on_buffer(bh); 199 if (buffer_uptodate(bh)) 200 return 0; 201 return -EIO; 202 } 203 return 0; 204 } 205 206 /* 207 * This works like __bread_gfp() except it uses ERR_PTR for error 208 * returns. Currently with sb_bread it's impossible to distinguish 209 * between ENOMEM and EIO situations (since both result in a NULL 210 * return. 211 */ 212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 213 sector_t block, int op_flags, 214 gfp_t gfp) 215 { 216 struct buffer_head *bh; 217 int ret; 218 219 bh = sb_getblk_gfp(sb, block, gfp); 220 if (bh == NULL) 221 return ERR_PTR(-ENOMEM); 222 if (ext4_buffer_uptodate(bh)) 223 return bh; 224 225 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 226 if (ret) { 227 put_bh(bh); 228 return ERR_PTR(ret); 229 } 230 return bh; 231 } 232 233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 234 int op_flags) 235 { 236 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 237 } 238 239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 240 sector_t block) 241 { 242 return __ext4_sb_bread_gfp(sb, block, 0, 0); 243 } 244 245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 246 { 247 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 248 249 if (likely(bh)) { 250 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 251 brelse(bh); 252 } 253 } 254 255 static int ext4_verify_csum_type(struct super_block *sb, 256 struct ext4_super_block *es) 257 { 258 if (!ext4_has_feature_metadata_csum(sb)) 259 return 1; 260 261 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 262 } 263 264 static __le32 ext4_superblock_csum(struct super_block *sb, 265 struct ext4_super_block *es) 266 { 267 struct ext4_sb_info *sbi = EXT4_SB(sb); 268 int offset = offsetof(struct ext4_super_block, s_checksum); 269 __u32 csum; 270 271 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 272 273 return cpu_to_le32(csum); 274 } 275 276 static int ext4_superblock_csum_verify(struct super_block *sb, 277 struct ext4_super_block *es) 278 { 279 if (!ext4_has_metadata_csum(sb)) 280 return 1; 281 282 return es->s_checksum == ext4_superblock_csum(sb, es); 283 } 284 285 void ext4_superblock_csum_set(struct super_block *sb) 286 { 287 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 288 289 if (!ext4_has_metadata_csum(sb)) 290 return; 291 292 es->s_checksum = ext4_superblock_csum(sb, es); 293 } 294 295 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 296 struct ext4_group_desc *bg) 297 { 298 return le32_to_cpu(bg->bg_block_bitmap_lo) | 299 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 300 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 301 } 302 303 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 304 struct ext4_group_desc *bg) 305 { 306 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 307 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 308 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 309 } 310 311 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 312 struct ext4_group_desc *bg) 313 { 314 return le32_to_cpu(bg->bg_inode_table_lo) | 315 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 316 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 317 } 318 319 __u32 ext4_free_group_clusters(struct super_block *sb, 320 struct ext4_group_desc *bg) 321 { 322 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 323 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 324 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 325 } 326 327 __u32 ext4_free_inodes_count(struct super_block *sb, 328 struct ext4_group_desc *bg) 329 { 330 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 332 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 333 } 334 335 __u32 ext4_used_dirs_count(struct super_block *sb, 336 struct ext4_group_desc *bg) 337 { 338 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 340 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 341 } 342 343 __u32 ext4_itable_unused_count(struct super_block *sb, 344 struct ext4_group_desc *bg) 345 { 346 return le16_to_cpu(bg->bg_itable_unused_lo) | 347 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 348 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 349 } 350 351 void ext4_block_bitmap_set(struct super_block *sb, 352 struct ext4_group_desc *bg, ext4_fsblk_t blk) 353 { 354 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 355 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 356 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 357 } 358 359 void ext4_inode_bitmap_set(struct super_block *sb, 360 struct ext4_group_desc *bg, ext4_fsblk_t blk) 361 { 362 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 363 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 364 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 365 } 366 367 void ext4_inode_table_set(struct super_block *sb, 368 struct ext4_group_desc *bg, ext4_fsblk_t blk) 369 { 370 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 371 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 372 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 373 } 374 375 void ext4_free_group_clusters_set(struct super_block *sb, 376 struct ext4_group_desc *bg, __u32 count) 377 { 378 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 379 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 380 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 381 } 382 383 void ext4_free_inodes_set(struct super_block *sb, 384 struct ext4_group_desc *bg, __u32 count) 385 { 386 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 388 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 389 } 390 391 void ext4_used_dirs_set(struct super_block *sb, 392 struct ext4_group_desc *bg, __u32 count) 393 { 394 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 396 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 397 } 398 399 void ext4_itable_unused_set(struct super_block *sb, 400 struct ext4_group_desc *bg, __u32 count) 401 { 402 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 403 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 404 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 405 } 406 407 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 408 { 409 now = clamp_val(now, 0, (1ull << 40) - 1); 410 411 *lo = cpu_to_le32(lower_32_bits(now)); 412 *hi = upper_32_bits(now); 413 } 414 415 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 416 { 417 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 418 } 419 #define ext4_update_tstamp(es, tstamp) \ 420 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 421 ktime_get_real_seconds()) 422 #define ext4_get_tstamp(es, tstamp) \ 423 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 424 425 /* 426 * The del_gendisk() function uninitializes the disk-specific data 427 * structures, including the bdi structure, without telling anyone 428 * else. Once this happens, any attempt to call mark_buffer_dirty() 429 * (for example, by ext4_commit_super), will cause a kernel OOPS. 430 * This is a kludge to prevent these oops until we can put in a proper 431 * hook in del_gendisk() to inform the VFS and file system layers. 432 */ 433 static int block_device_ejected(struct super_block *sb) 434 { 435 struct inode *bd_inode = sb->s_bdev->bd_inode; 436 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 437 438 return bdi->dev == NULL; 439 } 440 441 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 442 { 443 struct super_block *sb = journal->j_private; 444 struct ext4_sb_info *sbi = EXT4_SB(sb); 445 int error = is_journal_aborted(journal); 446 struct ext4_journal_cb_entry *jce; 447 448 BUG_ON(txn->t_state == T_FINISHED); 449 450 ext4_process_freed_data(sb, txn->t_tid); 451 452 spin_lock(&sbi->s_md_lock); 453 while (!list_empty(&txn->t_private_list)) { 454 jce = list_entry(txn->t_private_list.next, 455 struct ext4_journal_cb_entry, jce_list); 456 list_del_init(&jce->jce_list); 457 spin_unlock(&sbi->s_md_lock); 458 jce->jce_func(sb, jce, error); 459 spin_lock(&sbi->s_md_lock); 460 } 461 spin_unlock(&sbi->s_md_lock); 462 } 463 464 /* 465 * This writepage callback for write_cache_pages() 466 * takes care of a few cases after page cleaning. 467 * 468 * write_cache_pages() already checks for dirty pages 469 * and calls clear_page_dirty_for_io(), which we want, 470 * to write protect the pages. 471 * 472 * However, we may have to redirty a page (see below.) 473 */ 474 static int ext4_journalled_writepage_callback(struct page *page, 475 struct writeback_control *wbc, 476 void *data) 477 { 478 transaction_t *transaction = (transaction_t *) data; 479 struct buffer_head *bh, *head; 480 struct journal_head *jh; 481 482 bh = head = page_buffers(page); 483 do { 484 /* 485 * We have to redirty a page in these cases: 486 * 1) If buffer is dirty, it means the page was dirty because it 487 * contains a buffer that needs checkpointing. So the dirty bit 488 * needs to be preserved so that checkpointing writes the buffer 489 * properly. 490 * 2) If buffer is not part of the committing transaction 491 * (we may have just accidentally come across this buffer because 492 * inode range tracking is not exact) or if the currently running 493 * transaction already contains this buffer as well, dirty bit 494 * needs to be preserved so that the buffer gets writeprotected 495 * properly on running transaction's commit. 496 */ 497 jh = bh2jh(bh); 498 if (buffer_dirty(bh) || 499 (jh && (jh->b_transaction != transaction || 500 jh->b_next_transaction))) { 501 redirty_page_for_writepage(wbc, page); 502 goto out; 503 } 504 } while ((bh = bh->b_this_page) != head); 505 506 out: 507 return AOP_WRITEPAGE_ACTIVATE; 508 } 509 510 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 511 { 512 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 513 struct writeback_control wbc = { 514 .sync_mode = WB_SYNC_ALL, 515 .nr_to_write = LONG_MAX, 516 .range_start = jinode->i_dirty_start, 517 .range_end = jinode->i_dirty_end, 518 }; 519 520 return write_cache_pages(mapping, &wbc, 521 ext4_journalled_writepage_callback, 522 jinode->i_transaction); 523 } 524 525 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 526 { 527 int ret; 528 529 if (ext4_should_journal_data(jinode->i_vfs_inode)) 530 ret = ext4_journalled_submit_inode_data_buffers(jinode); 531 else 532 ret = jbd2_journal_submit_inode_data_buffers(jinode); 533 534 return ret; 535 } 536 537 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 538 { 539 int ret = 0; 540 541 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 542 ret = jbd2_journal_finish_inode_data_buffers(jinode); 543 544 return ret; 545 } 546 547 static bool system_going_down(void) 548 { 549 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 550 || system_state == SYSTEM_RESTART; 551 } 552 553 struct ext4_err_translation { 554 int code; 555 int errno; 556 }; 557 558 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 559 560 static struct ext4_err_translation err_translation[] = { 561 EXT4_ERR_TRANSLATE(EIO), 562 EXT4_ERR_TRANSLATE(ENOMEM), 563 EXT4_ERR_TRANSLATE(EFSBADCRC), 564 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 565 EXT4_ERR_TRANSLATE(ENOSPC), 566 EXT4_ERR_TRANSLATE(ENOKEY), 567 EXT4_ERR_TRANSLATE(EROFS), 568 EXT4_ERR_TRANSLATE(EFBIG), 569 EXT4_ERR_TRANSLATE(EEXIST), 570 EXT4_ERR_TRANSLATE(ERANGE), 571 EXT4_ERR_TRANSLATE(EOVERFLOW), 572 EXT4_ERR_TRANSLATE(EBUSY), 573 EXT4_ERR_TRANSLATE(ENOTDIR), 574 EXT4_ERR_TRANSLATE(ENOTEMPTY), 575 EXT4_ERR_TRANSLATE(ESHUTDOWN), 576 EXT4_ERR_TRANSLATE(EFAULT), 577 }; 578 579 static int ext4_errno_to_code(int errno) 580 { 581 int i; 582 583 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 584 if (err_translation[i].errno == errno) 585 return err_translation[i].code; 586 return EXT4_ERR_UNKNOWN; 587 } 588 589 static void __save_error_info(struct super_block *sb, int error, 590 __u32 ino, __u64 block, 591 const char *func, unsigned int line) 592 { 593 struct ext4_sb_info *sbi = EXT4_SB(sb); 594 595 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 596 if (bdev_read_only(sb->s_bdev)) 597 return; 598 /* We default to EFSCORRUPTED error... */ 599 if (error == 0) 600 error = EFSCORRUPTED; 601 602 spin_lock(&sbi->s_error_lock); 603 sbi->s_add_error_count++; 604 sbi->s_last_error_code = error; 605 sbi->s_last_error_line = line; 606 sbi->s_last_error_ino = ino; 607 sbi->s_last_error_block = block; 608 sbi->s_last_error_func = func; 609 sbi->s_last_error_time = ktime_get_real_seconds(); 610 if (!sbi->s_first_error_time) { 611 sbi->s_first_error_code = error; 612 sbi->s_first_error_line = line; 613 sbi->s_first_error_ino = ino; 614 sbi->s_first_error_block = block; 615 sbi->s_first_error_func = func; 616 sbi->s_first_error_time = sbi->s_last_error_time; 617 } 618 spin_unlock(&sbi->s_error_lock); 619 } 620 621 static void save_error_info(struct super_block *sb, int error, 622 __u32 ino, __u64 block, 623 const char *func, unsigned int line) 624 { 625 __save_error_info(sb, error, ino, block, func, line); 626 if (!bdev_read_only(sb->s_bdev)) 627 ext4_commit_super(sb, 1); 628 } 629 630 /* Deal with the reporting of failure conditions on a filesystem such as 631 * inconsistencies detected or read IO failures. 632 * 633 * On ext2, we can store the error state of the filesystem in the 634 * superblock. That is not possible on ext4, because we may have other 635 * write ordering constraints on the superblock which prevent us from 636 * writing it out straight away; and given that the journal is about to 637 * be aborted, we can't rely on the current, or future, transactions to 638 * write out the superblock safely. 639 * 640 * We'll just use the jbd2_journal_abort() error code to record an error in 641 * the journal instead. On recovery, the journal will complain about 642 * that error until we've noted it down and cleared it. 643 * 644 * If force_ro is set, we unconditionally force the filesystem into an 645 * ABORT|READONLY state, unless the error response on the fs has been set to 646 * panic in which case we take the easy way out and panic immediately. This is 647 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 648 * at a critical moment in log management. 649 */ 650 static void ext4_handle_error(struct super_block *sb, bool force_ro) 651 { 652 journal_t *journal = EXT4_SB(sb)->s_journal; 653 654 if (test_opt(sb, WARN_ON_ERROR)) 655 WARN_ON_ONCE(1); 656 657 if (sb_rdonly(sb) || (!force_ro && test_opt(sb, ERRORS_CONT))) 658 return; 659 660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 661 if (journal) 662 jbd2_journal_abort(journal, -EIO); 663 /* 664 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 665 * could panic during 'reboot -f' as the underlying device got already 666 * disabled. 667 */ 668 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 669 panic("EXT4-fs (device %s): panic forced after error\n", 670 sb->s_id); 671 } 672 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 673 /* 674 * Make sure updated value of ->s_mount_flags will be visible before 675 * ->s_flags update 676 */ 677 smp_wmb(); 678 sb->s_flags |= SB_RDONLY; 679 } 680 681 static void flush_stashed_error_work(struct work_struct *work) 682 { 683 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 684 s_error_work); 685 686 ext4_commit_super(sbi->s_sb, 1); 687 } 688 689 #define ext4_error_ratelimit(sb) \ 690 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 691 "EXT4-fs error") 692 693 void __ext4_error(struct super_block *sb, const char *function, 694 unsigned int line, bool force_ro, int error, __u64 block, 695 const char *fmt, ...) 696 { 697 struct va_format vaf; 698 va_list args; 699 700 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 701 return; 702 703 trace_ext4_error(sb, function, line); 704 if (ext4_error_ratelimit(sb)) { 705 va_start(args, fmt); 706 vaf.fmt = fmt; 707 vaf.va = &args; 708 printk(KERN_CRIT 709 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 710 sb->s_id, function, line, current->comm, &vaf); 711 va_end(args); 712 } 713 save_error_info(sb, error, 0, block, function, line); 714 ext4_handle_error(sb, force_ro); 715 } 716 717 void __ext4_error_inode(struct inode *inode, const char *function, 718 unsigned int line, ext4_fsblk_t block, int error, 719 const char *fmt, ...) 720 { 721 va_list args; 722 struct va_format vaf; 723 724 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 725 return; 726 727 trace_ext4_error(inode->i_sb, function, line); 728 if (ext4_error_ratelimit(inode->i_sb)) { 729 va_start(args, fmt); 730 vaf.fmt = fmt; 731 vaf.va = &args; 732 if (block) 733 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 734 "inode #%lu: block %llu: comm %s: %pV\n", 735 inode->i_sb->s_id, function, line, inode->i_ino, 736 block, current->comm, &vaf); 737 else 738 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 739 "inode #%lu: comm %s: %pV\n", 740 inode->i_sb->s_id, function, line, inode->i_ino, 741 current->comm, &vaf); 742 va_end(args); 743 } 744 save_error_info(inode->i_sb, error, inode->i_ino, block, 745 function, line); 746 ext4_handle_error(inode->i_sb, false); 747 } 748 749 void __ext4_error_file(struct file *file, const char *function, 750 unsigned int line, ext4_fsblk_t block, 751 const char *fmt, ...) 752 { 753 va_list args; 754 struct va_format vaf; 755 struct inode *inode = file_inode(file); 756 char pathname[80], *path; 757 758 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 759 return; 760 761 trace_ext4_error(inode->i_sb, function, line); 762 if (ext4_error_ratelimit(inode->i_sb)) { 763 path = file_path(file, pathname, sizeof(pathname)); 764 if (IS_ERR(path)) 765 path = "(unknown)"; 766 va_start(args, fmt); 767 vaf.fmt = fmt; 768 vaf.va = &args; 769 if (block) 770 printk(KERN_CRIT 771 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 772 "block %llu: comm %s: path %s: %pV\n", 773 inode->i_sb->s_id, function, line, inode->i_ino, 774 block, current->comm, path, &vaf); 775 else 776 printk(KERN_CRIT 777 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 778 "comm %s: path %s: %pV\n", 779 inode->i_sb->s_id, function, line, inode->i_ino, 780 current->comm, path, &vaf); 781 va_end(args); 782 } 783 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 784 function, line); 785 ext4_handle_error(inode->i_sb, false); 786 } 787 788 const char *ext4_decode_error(struct super_block *sb, int errno, 789 char nbuf[16]) 790 { 791 char *errstr = NULL; 792 793 switch (errno) { 794 case -EFSCORRUPTED: 795 errstr = "Corrupt filesystem"; 796 break; 797 case -EFSBADCRC: 798 errstr = "Filesystem failed CRC"; 799 break; 800 case -EIO: 801 errstr = "IO failure"; 802 break; 803 case -ENOMEM: 804 errstr = "Out of memory"; 805 break; 806 case -EROFS: 807 if (!sb || (EXT4_SB(sb)->s_journal && 808 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 809 errstr = "Journal has aborted"; 810 else 811 errstr = "Readonly filesystem"; 812 break; 813 default: 814 /* If the caller passed in an extra buffer for unknown 815 * errors, textualise them now. Else we just return 816 * NULL. */ 817 if (nbuf) { 818 /* Check for truncated error codes... */ 819 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 820 errstr = nbuf; 821 } 822 break; 823 } 824 825 return errstr; 826 } 827 828 /* __ext4_std_error decodes expected errors from journaling functions 829 * automatically and invokes the appropriate error response. */ 830 831 void __ext4_std_error(struct super_block *sb, const char *function, 832 unsigned int line, int errno) 833 { 834 char nbuf[16]; 835 const char *errstr; 836 837 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 838 return; 839 840 /* Special case: if the error is EROFS, and we're not already 841 * inside a transaction, then there's really no point in logging 842 * an error. */ 843 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 844 return; 845 846 if (ext4_error_ratelimit(sb)) { 847 errstr = ext4_decode_error(sb, errno, nbuf); 848 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 849 sb->s_id, function, line, errstr); 850 } 851 852 save_error_info(sb, -errno, 0, 0, function, line); 853 ext4_handle_error(sb, false); 854 } 855 856 void __ext4_msg(struct super_block *sb, 857 const char *prefix, const char *fmt, ...) 858 { 859 struct va_format vaf; 860 va_list args; 861 862 atomic_inc(&EXT4_SB(sb)->s_msg_count); 863 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 864 return; 865 866 va_start(args, fmt); 867 vaf.fmt = fmt; 868 vaf.va = &args; 869 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 870 va_end(args); 871 } 872 873 static int ext4_warning_ratelimit(struct super_block *sb) 874 { 875 atomic_inc(&EXT4_SB(sb)->s_warning_count); 876 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 877 "EXT4-fs warning"); 878 } 879 880 void __ext4_warning(struct super_block *sb, const char *function, 881 unsigned int line, const char *fmt, ...) 882 { 883 struct va_format vaf; 884 va_list args; 885 886 if (!ext4_warning_ratelimit(sb)) 887 return; 888 889 va_start(args, fmt); 890 vaf.fmt = fmt; 891 vaf.va = &args; 892 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 893 sb->s_id, function, line, &vaf); 894 va_end(args); 895 } 896 897 void __ext4_warning_inode(const struct inode *inode, const char *function, 898 unsigned int line, const char *fmt, ...) 899 { 900 struct va_format vaf; 901 va_list args; 902 903 if (!ext4_warning_ratelimit(inode->i_sb)) 904 return; 905 906 va_start(args, fmt); 907 vaf.fmt = fmt; 908 vaf.va = &args; 909 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 910 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 911 function, line, inode->i_ino, current->comm, &vaf); 912 va_end(args); 913 } 914 915 void __ext4_grp_locked_error(const char *function, unsigned int line, 916 struct super_block *sb, ext4_group_t grp, 917 unsigned long ino, ext4_fsblk_t block, 918 const char *fmt, ...) 919 __releases(bitlock) 920 __acquires(bitlock) 921 { 922 struct va_format vaf; 923 va_list args; 924 925 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 926 return; 927 928 trace_ext4_error(sb, function, line); 929 if (ext4_error_ratelimit(sb)) { 930 va_start(args, fmt); 931 vaf.fmt = fmt; 932 vaf.va = &args; 933 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 934 sb->s_id, function, line, grp); 935 if (ino) 936 printk(KERN_CONT "inode %lu: ", ino); 937 if (block) 938 printk(KERN_CONT "block %llu:", 939 (unsigned long long) block); 940 printk(KERN_CONT "%pV\n", &vaf); 941 va_end(args); 942 } 943 944 if (test_opt(sb, ERRORS_CONT)) { 945 if (test_opt(sb, WARN_ON_ERROR)) 946 WARN_ON_ONCE(1); 947 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 948 schedule_work(&EXT4_SB(sb)->s_error_work); 949 return; 950 } 951 ext4_unlock_group(sb, grp); 952 save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 953 ext4_handle_error(sb, false); 954 /* 955 * We only get here in the ERRORS_RO case; relocking the group 956 * may be dangerous, but nothing bad will happen since the 957 * filesystem will have already been marked read/only and the 958 * journal has been aborted. We return 1 as a hint to callers 959 * who might what to use the return value from 960 * ext4_grp_locked_error() to distinguish between the 961 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 962 * aggressively from the ext4 function in question, with a 963 * more appropriate error code. 964 */ 965 ext4_lock_group(sb, grp); 966 return; 967 } 968 969 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 970 ext4_group_t group, 971 unsigned int flags) 972 { 973 struct ext4_sb_info *sbi = EXT4_SB(sb); 974 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 975 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 976 int ret; 977 978 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 979 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 980 &grp->bb_state); 981 if (!ret) 982 percpu_counter_sub(&sbi->s_freeclusters_counter, 983 grp->bb_free); 984 } 985 986 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 987 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 988 &grp->bb_state); 989 if (!ret && gdp) { 990 int count; 991 992 count = ext4_free_inodes_count(sb, gdp); 993 percpu_counter_sub(&sbi->s_freeinodes_counter, 994 count); 995 } 996 } 997 } 998 999 void ext4_update_dynamic_rev(struct super_block *sb) 1000 { 1001 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1002 1003 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1004 return; 1005 1006 ext4_warning(sb, 1007 "updating to rev %d because of new feature flag, " 1008 "running e2fsck is recommended", 1009 EXT4_DYNAMIC_REV); 1010 1011 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1012 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1013 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1014 /* leave es->s_feature_*compat flags alone */ 1015 /* es->s_uuid will be set by e2fsck if empty */ 1016 1017 /* 1018 * The rest of the superblock fields should be zero, and if not it 1019 * means they are likely already in use, so leave them alone. We 1020 * can leave it up to e2fsck to clean up any inconsistencies there. 1021 */ 1022 } 1023 1024 /* 1025 * Open the external journal device 1026 */ 1027 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1028 { 1029 struct block_device *bdev; 1030 1031 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1032 if (IS_ERR(bdev)) 1033 goto fail; 1034 return bdev; 1035 1036 fail: 1037 ext4_msg(sb, KERN_ERR, 1038 "failed to open journal device unknown-block(%u,%u) %ld", 1039 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1040 return NULL; 1041 } 1042 1043 /* 1044 * Release the journal device 1045 */ 1046 static void ext4_blkdev_put(struct block_device *bdev) 1047 { 1048 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1049 } 1050 1051 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1052 { 1053 struct block_device *bdev; 1054 bdev = sbi->s_journal_bdev; 1055 if (bdev) { 1056 ext4_blkdev_put(bdev); 1057 sbi->s_journal_bdev = NULL; 1058 } 1059 } 1060 1061 static inline struct inode *orphan_list_entry(struct list_head *l) 1062 { 1063 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1064 } 1065 1066 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1067 { 1068 struct list_head *l; 1069 1070 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1071 le32_to_cpu(sbi->s_es->s_last_orphan)); 1072 1073 printk(KERN_ERR "sb_info orphan list:\n"); 1074 list_for_each(l, &sbi->s_orphan) { 1075 struct inode *inode = orphan_list_entry(l); 1076 printk(KERN_ERR " " 1077 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1078 inode->i_sb->s_id, inode->i_ino, inode, 1079 inode->i_mode, inode->i_nlink, 1080 NEXT_ORPHAN(inode)); 1081 } 1082 } 1083 1084 #ifdef CONFIG_QUOTA 1085 static int ext4_quota_off(struct super_block *sb, int type); 1086 1087 static inline void ext4_quota_off_umount(struct super_block *sb) 1088 { 1089 int type; 1090 1091 /* Use our quota_off function to clear inode flags etc. */ 1092 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1093 ext4_quota_off(sb, type); 1094 } 1095 1096 /* 1097 * This is a helper function which is used in the mount/remount 1098 * codepaths (which holds s_umount) to fetch the quota file name. 1099 */ 1100 static inline char *get_qf_name(struct super_block *sb, 1101 struct ext4_sb_info *sbi, 1102 int type) 1103 { 1104 return rcu_dereference_protected(sbi->s_qf_names[type], 1105 lockdep_is_held(&sb->s_umount)); 1106 } 1107 #else 1108 static inline void ext4_quota_off_umount(struct super_block *sb) 1109 { 1110 } 1111 #endif 1112 1113 static void ext4_put_super(struct super_block *sb) 1114 { 1115 struct ext4_sb_info *sbi = EXT4_SB(sb); 1116 struct ext4_super_block *es = sbi->s_es; 1117 struct buffer_head **group_desc; 1118 struct flex_groups **flex_groups; 1119 int aborted = 0; 1120 int i, err; 1121 1122 ext4_unregister_li_request(sb); 1123 ext4_quota_off_umount(sb); 1124 1125 flush_work(&sbi->s_error_work); 1126 destroy_workqueue(sbi->rsv_conversion_wq); 1127 1128 /* 1129 * Unregister sysfs before destroying jbd2 journal. 1130 * Since we could still access attr_journal_task attribute via sysfs 1131 * path which could have sbi->s_journal->j_task as NULL 1132 */ 1133 ext4_unregister_sysfs(sb); 1134 1135 if (sbi->s_journal) { 1136 aborted = is_journal_aborted(sbi->s_journal); 1137 err = jbd2_journal_destroy(sbi->s_journal); 1138 sbi->s_journal = NULL; 1139 if ((err < 0) && !aborted) { 1140 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1141 } 1142 } 1143 1144 ext4_es_unregister_shrinker(sbi); 1145 del_timer_sync(&sbi->s_err_report); 1146 ext4_release_system_zone(sb); 1147 ext4_mb_release(sb); 1148 ext4_ext_release(sb); 1149 1150 if (!sb_rdonly(sb) && !aborted) { 1151 ext4_clear_feature_journal_needs_recovery(sb); 1152 es->s_state = cpu_to_le16(sbi->s_mount_state); 1153 } 1154 if (!sb_rdonly(sb)) 1155 ext4_commit_super(sb, 1); 1156 1157 rcu_read_lock(); 1158 group_desc = rcu_dereference(sbi->s_group_desc); 1159 for (i = 0; i < sbi->s_gdb_count; i++) 1160 brelse(group_desc[i]); 1161 kvfree(group_desc); 1162 flex_groups = rcu_dereference(sbi->s_flex_groups); 1163 if (flex_groups) { 1164 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1165 kvfree(flex_groups[i]); 1166 kvfree(flex_groups); 1167 } 1168 rcu_read_unlock(); 1169 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1170 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1171 percpu_counter_destroy(&sbi->s_dirs_counter); 1172 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1173 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1174 #ifdef CONFIG_QUOTA 1175 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1176 kfree(get_qf_name(sb, sbi, i)); 1177 #endif 1178 1179 /* Debugging code just in case the in-memory inode orphan list 1180 * isn't empty. The on-disk one can be non-empty if we've 1181 * detected an error and taken the fs readonly, but the 1182 * in-memory list had better be clean by this point. */ 1183 if (!list_empty(&sbi->s_orphan)) 1184 dump_orphan_list(sb, sbi); 1185 ASSERT(list_empty(&sbi->s_orphan)); 1186 1187 sync_blockdev(sb->s_bdev); 1188 invalidate_bdev(sb->s_bdev); 1189 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1190 /* 1191 * Invalidate the journal device's buffers. We don't want them 1192 * floating about in memory - the physical journal device may 1193 * hotswapped, and it breaks the `ro-after' testing code. 1194 */ 1195 sync_blockdev(sbi->s_journal_bdev); 1196 invalidate_bdev(sbi->s_journal_bdev); 1197 ext4_blkdev_remove(sbi); 1198 } 1199 1200 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1201 sbi->s_ea_inode_cache = NULL; 1202 1203 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1204 sbi->s_ea_block_cache = NULL; 1205 1206 if (sbi->s_mmp_tsk) 1207 kthread_stop(sbi->s_mmp_tsk); 1208 brelse(sbi->s_sbh); 1209 sb->s_fs_info = NULL; 1210 /* 1211 * Now that we are completely done shutting down the 1212 * superblock, we need to actually destroy the kobject. 1213 */ 1214 kobject_put(&sbi->s_kobj); 1215 wait_for_completion(&sbi->s_kobj_unregister); 1216 if (sbi->s_chksum_driver) 1217 crypto_free_shash(sbi->s_chksum_driver); 1218 kfree(sbi->s_blockgroup_lock); 1219 fs_put_dax(sbi->s_daxdev); 1220 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1221 #ifdef CONFIG_UNICODE 1222 utf8_unload(sb->s_encoding); 1223 #endif 1224 kfree(sbi); 1225 } 1226 1227 static struct kmem_cache *ext4_inode_cachep; 1228 1229 /* 1230 * Called inside transaction, so use GFP_NOFS 1231 */ 1232 static struct inode *ext4_alloc_inode(struct super_block *sb) 1233 { 1234 struct ext4_inode_info *ei; 1235 1236 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1237 if (!ei) 1238 return NULL; 1239 1240 inode_set_iversion(&ei->vfs_inode, 1); 1241 spin_lock_init(&ei->i_raw_lock); 1242 INIT_LIST_HEAD(&ei->i_prealloc_list); 1243 atomic_set(&ei->i_prealloc_active, 0); 1244 spin_lock_init(&ei->i_prealloc_lock); 1245 ext4_es_init_tree(&ei->i_es_tree); 1246 rwlock_init(&ei->i_es_lock); 1247 INIT_LIST_HEAD(&ei->i_es_list); 1248 ei->i_es_all_nr = 0; 1249 ei->i_es_shk_nr = 0; 1250 ei->i_es_shrink_lblk = 0; 1251 ei->i_reserved_data_blocks = 0; 1252 spin_lock_init(&(ei->i_block_reservation_lock)); 1253 ext4_init_pending_tree(&ei->i_pending_tree); 1254 #ifdef CONFIG_QUOTA 1255 ei->i_reserved_quota = 0; 1256 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1257 #endif 1258 ei->jinode = NULL; 1259 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1260 spin_lock_init(&ei->i_completed_io_lock); 1261 ei->i_sync_tid = 0; 1262 ei->i_datasync_tid = 0; 1263 atomic_set(&ei->i_unwritten, 0); 1264 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1265 ext4_fc_init_inode(&ei->vfs_inode); 1266 mutex_init(&ei->i_fc_lock); 1267 return &ei->vfs_inode; 1268 } 1269 1270 static int ext4_drop_inode(struct inode *inode) 1271 { 1272 int drop = generic_drop_inode(inode); 1273 1274 if (!drop) 1275 drop = fscrypt_drop_inode(inode); 1276 1277 trace_ext4_drop_inode(inode, drop); 1278 return drop; 1279 } 1280 1281 static void ext4_free_in_core_inode(struct inode *inode) 1282 { 1283 fscrypt_free_inode(inode); 1284 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1285 pr_warn("%s: inode %ld still in fc list", 1286 __func__, inode->i_ino); 1287 } 1288 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1289 } 1290 1291 static void ext4_destroy_inode(struct inode *inode) 1292 { 1293 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1294 ext4_msg(inode->i_sb, KERN_ERR, 1295 "Inode %lu (%p): orphan list check failed!", 1296 inode->i_ino, EXT4_I(inode)); 1297 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1298 EXT4_I(inode), sizeof(struct ext4_inode_info), 1299 true); 1300 dump_stack(); 1301 } 1302 } 1303 1304 static void init_once(void *foo) 1305 { 1306 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1307 1308 INIT_LIST_HEAD(&ei->i_orphan); 1309 init_rwsem(&ei->xattr_sem); 1310 init_rwsem(&ei->i_data_sem); 1311 init_rwsem(&ei->i_mmap_sem); 1312 inode_init_once(&ei->vfs_inode); 1313 ext4_fc_init_inode(&ei->vfs_inode); 1314 } 1315 1316 static int __init init_inodecache(void) 1317 { 1318 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1319 sizeof(struct ext4_inode_info), 0, 1320 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1321 SLAB_ACCOUNT), 1322 offsetof(struct ext4_inode_info, i_data), 1323 sizeof_field(struct ext4_inode_info, i_data), 1324 init_once); 1325 if (ext4_inode_cachep == NULL) 1326 return -ENOMEM; 1327 return 0; 1328 } 1329 1330 static void destroy_inodecache(void) 1331 { 1332 /* 1333 * Make sure all delayed rcu free inodes are flushed before we 1334 * destroy cache. 1335 */ 1336 rcu_barrier(); 1337 kmem_cache_destroy(ext4_inode_cachep); 1338 } 1339 1340 void ext4_clear_inode(struct inode *inode) 1341 { 1342 ext4_fc_del(inode); 1343 invalidate_inode_buffers(inode); 1344 clear_inode(inode); 1345 ext4_discard_preallocations(inode, 0); 1346 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1347 dquot_drop(inode); 1348 if (EXT4_I(inode)->jinode) { 1349 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1350 EXT4_I(inode)->jinode); 1351 jbd2_free_inode(EXT4_I(inode)->jinode); 1352 EXT4_I(inode)->jinode = NULL; 1353 } 1354 fscrypt_put_encryption_info(inode); 1355 fsverity_cleanup_inode(inode); 1356 } 1357 1358 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1359 u64 ino, u32 generation) 1360 { 1361 struct inode *inode; 1362 1363 /* 1364 * Currently we don't know the generation for parent directory, so 1365 * a generation of 0 means "accept any" 1366 */ 1367 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1368 if (IS_ERR(inode)) 1369 return ERR_CAST(inode); 1370 if (generation && inode->i_generation != generation) { 1371 iput(inode); 1372 return ERR_PTR(-ESTALE); 1373 } 1374 1375 return inode; 1376 } 1377 1378 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1379 int fh_len, int fh_type) 1380 { 1381 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1382 ext4_nfs_get_inode); 1383 } 1384 1385 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1386 int fh_len, int fh_type) 1387 { 1388 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1389 ext4_nfs_get_inode); 1390 } 1391 1392 static int ext4_nfs_commit_metadata(struct inode *inode) 1393 { 1394 struct writeback_control wbc = { 1395 .sync_mode = WB_SYNC_ALL 1396 }; 1397 1398 trace_ext4_nfs_commit_metadata(inode); 1399 return ext4_write_inode(inode, &wbc); 1400 } 1401 1402 /* 1403 * Try to release metadata pages (indirect blocks, directories) which are 1404 * mapped via the block device. Since these pages could have journal heads 1405 * which would prevent try_to_free_buffers() from freeing them, we must use 1406 * jbd2 layer's try_to_free_buffers() function to release them. 1407 */ 1408 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1409 gfp_t wait) 1410 { 1411 journal_t *journal = EXT4_SB(sb)->s_journal; 1412 1413 WARN_ON(PageChecked(page)); 1414 if (!page_has_buffers(page)) 1415 return 0; 1416 if (journal) 1417 return jbd2_journal_try_to_free_buffers(journal, page); 1418 1419 return try_to_free_buffers(page); 1420 } 1421 1422 #ifdef CONFIG_FS_ENCRYPTION 1423 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1424 { 1425 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1426 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1427 } 1428 1429 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1430 void *fs_data) 1431 { 1432 handle_t *handle = fs_data; 1433 int res, res2, credits, retries = 0; 1434 1435 /* 1436 * Encrypting the root directory is not allowed because e2fsck expects 1437 * lost+found to exist and be unencrypted, and encrypting the root 1438 * directory would imply encrypting the lost+found directory as well as 1439 * the filename "lost+found" itself. 1440 */ 1441 if (inode->i_ino == EXT4_ROOT_INO) 1442 return -EPERM; 1443 1444 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1445 return -EINVAL; 1446 1447 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1448 return -EOPNOTSUPP; 1449 1450 res = ext4_convert_inline_data(inode); 1451 if (res) 1452 return res; 1453 1454 /* 1455 * If a journal handle was specified, then the encryption context is 1456 * being set on a new inode via inheritance and is part of a larger 1457 * transaction to create the inode. Otherwise the encryption context is 1458 * being set on an existing inode in its own transaction. Only in the 1459 * latter case should the "retry on ENOSPC" logic be used. 1460 */ 1461 1462 if (handle) { 1463 res = ext4_xattr_set_handle(handle, inode, 1464 EXT4_XATTR_INDEX_ENCRYPTION, 1465 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1466 ctx, len, 0); 1467 if (!res) { 1468 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1469 ext4_clear_inode_state(inode, 1470 EXT4_STATE_MAY_INLINE_DATA); 1471 /* 1472 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1473 * S_DAX may be disabled 1474 */ 1475 ext4_set_inode_flags(inode, false); 1476 } 1477 return res; 1478 } 1479 1480 res = dquot_initialize(inode); 1481 if (res) 1482 return res; 1483 retry: 1484 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1485 &credits); 1486 if (res) 1487 return res; 1488 1489 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1490 if (IS_ERR(handle)) 1491 return PTR_ERR(handle); 1492 1493 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1494 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1495 ctx, len, 0); 1496 if (!res) { 1497 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1498 /* 1499 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1500 * S_DAX may be disabled 1501 */ 1502 ext4_set_inode_flags(inode, false); 1503 res = ext4_mark_inode_dirty(handle, inode); 1504 if (res) 1505 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1506 } 1507 res2 = ext4_journal_stop(handle); 1508 1509 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1510 goto retry; 1511 if (!res) 1512 res = res2; 1513 return res; 1514 } 1515 1516 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1517 { 1518 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1519 } 1520 1521 static bool ext4_has_stable_inodes(struct super_block *sb) 1522 { 1523 return ext4_has_feature_stable_inodes(sb); 1524 } 1525 1526 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1527 int *ino_bits_ret, int *lblk_bits_ret) 1528 { 1529 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1530 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1531 } 1532 1533 static const struct fscrypt_operations ext4_cryptops = { 1534 .key_prefix = "ext4:", 1535 .get_context = ext4_get_context, 1536 .set_context = ext4_set_context, 1537 .get_dummy_policy = ext4_get_dummy_policy, 1538 .empty_dir = ext4_empty_dir, 1539 .max_namelen = EXT4_NAME_LEN, 1540 .has_stable_inodes = ext4_has_stable_inodes, 1541 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1542 }; 1543 #endif 1544 1545 #ifdef CONFIG_QUOTA 1546 static const char * const quotatypes[] = INITQFNAMES; 1547 #define QTYPE2NAME(t) (quotatypes[t]) 1548 1549 static int ext4_write_dquot(struct dquot *dquot); 1550 static int ext4_acquire_dquot(struct dquot *dquot); 1551 static int ext4_release_dquot(struct dquot *dquot); 1552 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1553 static int ext4_write_info(struct super_block *sb, int type); 1554 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1555 const struct path *path); 1556 static int ext4_quota_on_mount(struct super_block *sb, int type); 1557 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1558 size_t len, loff_t off); 1559 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1560 const char *data, size_t len, loff_t off); 1561 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1562 unsigned int flags); 1563 static int ext4_enable_quotas(struct super_block *sb); 1564 1565 static struct dquot **ext4_get_dquots(struct inode *inode) 1566 { 1567 return EXT4_I(inode)->i_dquot; 1568 } 1569 1570 static const struct dquot_operations ext4_quota_operations = { 1571 .get_reserved_space = ext4_get_reserved_space, 1572 .write_dquot = ext4_write_dquot, 1573 .acquire_dquot = ext4_acquire_dquot, 1574 .release_dquot = ext4_release_dquot, 1575 .mark_dirty = ext4_mark_dquot_dirty, 1576 .write_info = ext4_write_info, 1577 .alloc_dquot = dquot_alloc, 1578 .destroy_dquot = dquot_destroy, 1579 .get_projid = ext4_get_projid, 1580 .get_inode_usage = ext4_get_inode_usage, 1581 .get_next_id = dquot_get_next_id, 1582 }; 1583 1584 static const struct quotactl_ops ext4_qctl_operations = { 1585 .quota_on = ext4_quota_on, 1586 .quota_off = ext4_quota_off, 1587 .quota_sync = dquot_quota_sync, 1588 .get_state = dquot_get_state, 1589 .set_info = dquot_set_dqinfo, 1590 .get_dqblk = dquot_get_dqblk, 1591 .set_dqblk = dquot_set_dqblk, 1592 .get_nextdqblk = dquot_get_next_dqblk, 1593 }; 1594 #endif 1595 1596 static const struct super_operations ext4_sops = { 1597 .alloc_inode = ext4_alloc_inode, 1598 .free_inode = ext4_free_in_core_inode, 1599 .destroy_inode = ext4_destroy_inode, 1600 .write_inode = ext4_write_inode, 1601 .dirty_inode = ext4_dirty_inode, 1602 .drop_inode = ext4_drop_inode, 1603 .evict_inode = ext4_evict_inode, 1604 .put_super = ext4_put_super, 1605 .sync_fs = ext4_sync_fs, 1606 .freeze_fs = ext4_freeze, 1607 .unfreeze_fs = ext4_unfreeze, 1608 .statfs = ext4_statfs, 1609 .remount_fs = ext4_remount, 1610 .show_options = ext4_show_options, 1611 #ifdef CONFIG_QUOTA 1612 .quota_read = ext4_quota_read, 1613 .quota_write = ext4_quota_write, 1614 .get_dquots = ext4_get_dquots, 1615 #endif 1616 .bdev_try_to_free_page = bdev_try_to_free_page, 1617 }; 1618 1619 static const struct export_operations ext4_export_ops = { 1620 .fh_to_dentry = ext4_fh_to_dentry, 1621 .fh_to_parent = ext4_fh_to_parent, 1622 .get_parent = ext4_get_parent, 1623 .commit_metadata = ext4_nfs_commit_metadata, 1624 }; 1625 1626 enum { 1627 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1628 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1629 Opt_nouid32, Opt_debug, Opt_removed, 1630 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1631 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1632 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1633 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1634 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1635 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1636 Opt_inlinecrypt, 1637 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1638 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1639 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1640 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1641 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1642 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1643 Opt_nowarn_on_error, Opt_mblk_io_submit, 1644 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1645 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1646 Opt_inode_readahead_blks, Opt_journal_ioprio, 1647 Opt_dioread_nolock, Opt_dioread_lock, 1648 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1649 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1650 Opt_prefetch_block_bitmaps, 1651 #ifdef CONFIG_EXT4_DEBUG 1652 Opt_fc_debug_max_replay, Opt_fc_debug_force 1653 #endif 1654 }; 1655 1656 static const match_table_t tokens = { 1657 {Opt_bsd_df, "bsddf"}, 1658 {Opt_minix_df, "minixdf"}, 1659 {Opt_grpid, "grpid"}, 1660 {Opt_grpid, "bsdgroups"}, 1661 {Opt_nogrpid, "nogrpid"}, 1662 {Opt_nogrpid, "sysvgroups"}, 1663 {Opt_resgid, "resgid=%u"}, 1664 {Opt_resuid, "resuid=%u"}, 1665 {Opt_sb, "sb=%u"}, 1666 {Opt_err_cont, "errors=continue"}, 1667 {Opt_err_panic, "errors=panic"}, 1668 {Opt_err_ro, "errors=remount-ro"}, 1669 {Opt_nouid32, "nouid32"}, 1670 {Opt_debug, "debug"}, 1671 {Opt_removed, "oldalloc"}, 1672 {Opt_removed, "orlov"}, 1673 {Opt_user_xattr, "user_xattr"}, 1674 {Opt_nouser_xattr, "nouser_xattr"}, 1675 {Opt_acl, "acl"}, 1676 {Opt_noacl, "noacl"}, 1677 {Opt_noload, "norecovery"}, 1678 {Opt_noload, "noload"}, 1679 {Opt_removed, "nobh"}, 1680 {Opt_removed, "bh"}, 1681 {Opt_commit, "commit=%u"}, 1682 {Opt_min_batch_time, "min_batch_time=%u"}, 1683 {Opt_max_batch_time, "max_batch_time=%u"}, 1684 {Opt_journal_dev, "journal_dev=%u"}, 1685 {Opt_journal_path, "journal_path=%s"}, 1686 {Opt_journal_checksum, "journal_checksum"}, 1687 {Opt_nojournal_checksum, "nojournal_checksum"}, 1688 {Opt_journal_async_commit, "journal_async_commit"}, 1689 {Opt_abort, "abort"}, 1690 {Opt_data_journal, "data=journal"}, 1691 {Opt_data_ordered, "data=ordered"}, 1692 {Opt_data_writeback, "data=writeback"}, 1693 {Opt_data_err_abort, "data_err=abort"}, 1694 {Opt_data_err_ignore, "data_err=ignore"}, 1695 {Opt_offusrjquota, "usrjquota="}, 1696 {Opt_usrjquota, "usrjquota=%s"}, 1697 {Opt_offgrpjquota, "grpjquota="}, 1698 {Opt_grpjquota, "grpjquota=%s"}, 1699 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1700 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1701 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1702 {Opt_grpquota, "grpquota"}, 1703 {Opt_noquota, "noquota"}, 1704 {Opt_quota, "quota"}, 1705 {Opt_usrquota, "usrquota"}, 1706 {Opt_prjquota, "prjquota"}, 1707 {Opt_barrier, "barrier=%u"}, 1708 {Opt_barrier, "barrier"}, 1709 {Opt_nobarrier, "nobarrier"}, 1710 {Opt_i_version, "i_version"}, 1711 {Opt_dax, "dax"}, 1712 {Opt_dax_always, "dax=always"}, 1713 {Opt_dax_inode, "dax=inode"}, 1714 {Opt_dax_never, "dax=never"}, 1715 {Opt_stripe, "stripe=%u"}, 1716 {Opt_delalloc, "delalloc"}, 1717 {Opt_warn_on_error, "warn_on_error"}, 1718 {Opt_nowarn_on_error, "nowarn_on_error"}, 1719 {Opt_lazytime, "lazytime"}, 1720 {Opt_nolazytime, "nolazytime"}, 1721 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1722 {Opt_nodelalloc, "nodelalloc"}, 1723 {Opt_removed, "mblk_io_submit"}, 1724 {Opt_removed, "nomblk_io_submit"}, 1725 {Opt_block_validity, "block_validity"}, 1726 {Opt_noblock_validity, "noblock_validity"}, 1727 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1728 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1729 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1730 {Opt_auto_da_alloc, "auto_da_alloc"}, 1731 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1732 {Opt_dioread_nolock, "dioread_nolock"}, 1733 {Opt_dioread_lock, "nodioread_nolock"}, 1734 {Opt_dioread_lock, "dioread_lock"}, 1735 {Opt_discard, "discard"}, 1736 {Opt_nodiscard, "nodiscard"}, 1737 {Opt_init_itable, "init_itable=%u"}, 1738 {Opt_init_itable, "init_itable"}, 1739 {Opt_noinit_itable, "noinit_itable"}, 1740 #ifdef CONFIG_EXT4_DEBUG 1741 {Opt_fc_debug_force, "fc_debug_force"}, 1742 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1743 #endif 1744 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1745 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1746 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1747 {Opt_inlinecrypt, "inlinecrypt"}, 1748 {Opt_nombcache, "nombcache"}, 1749 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1750 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, 1751 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1752 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1753 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1754 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1755 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1756 {Opt_err, NULL}, 1757 }; 1758 1759 static ext4_fsblk_t get_sb_block(void **data) 1760 { 1761 ext4_fsblk_t sb_block; 1762 char *options = (char *) *data; 1763 1764 if (!options || strncmp(options, "sb=", 3) != 0) 1765 return 1; /* Default location */ 1766 1767 options += 3; 1768 /* TODO: use simple_strtoll with >32bit ext4 */ 1769 sb_block = simple_strtoul(options, &options, 0); 1770 if (*options && *options != ',') { 1771 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1772 (char *) *data); 1773 return 1; 1774 } 1775 if (*options == ',') 1776 options++; 1777 *data = (void *) options; 1778 1779 return sb_block; 1780 } 1781 1782 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1783 static const char deprecated_msg[] = 1784 "Mount option \"%s\" will be removed by %s\n" 1785 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1786 1787 #ifdef CONFIG_QUOTA 1788 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1789 { 1790 struct ext4_sb_info *sbi = EXT4_SB(sb); 1791 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1792 int ret = -1; 1793 1794 if (sb_any_quota_loaded(sb) && !old_qname) { 1795 ext4_msg(sb, KERN_ERR, 1796 "Cannot change journaled " 1797 "quota options when quota turned on"); 1798 return -1; 1799 } 1800 if (ext4_has_feature_quota(sb)) { 1801 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1802 "ignored when QUOTA feature is enabled"); 1803 return 1; 1804 } 1805 qname = match_strdup(args); 1806 if (!qname) { 1807 ext4_msg(sb, KERN_ERR, 1808 "Not enough memory for storing quotafile name"); 1809 return -1; 1810 } 1811 if (old_qname) { 1812 if (strcmp(old_qname, qname) == 0) 1813 ret = 1; 1814 else 1815 ext4_msg(sb, KERN_ERR, 1816 "%s quota file already specified", 1817 QTYPE2NAME(qtype)); 1818 goto errout; 1819 } 1820 if (strchr(qname, '/')) { 1821 ext4_msg(sb, KERN_ERR, 1822 "quotafile must be on filesystem root"); 1823 goto errout; 1824 } 1825 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1826 set_opt(sb, QUOTA); 1827 return 1; 1828 errout: 1829 kfree(qname); 1830 return ret; 1831 } 1832 1833 static int clear_qf_name(struct super_block *sb, int qtype) 1834 { 1835 1836 struct ext4_sb_info *sbi = EXT4_SB(sb); 1837 char *old_qname = get_qf_name(sb, sbi, qtype); 1838 1839 if (sb_any_quota_loaded(sb) && old_qname) { 1840 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1841 " when quota turned on"); 1842 return -1; 1843 } 1844 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1845 synchronize_rcu(); 1846 kfree(old_qname); 1847 return 1; 1848 } 1849 #endif 1850 1851 #define MOPT_SET 0x0001 1852 #define MOPT_CLEAR 0x0002 1853 #define MOPT_NOSUPPORT 0x0004 1854 #define MOPT_EXPLICIT 0x0008 1855 #define MOPT_CLEAR_ERR 0x0010 1856 #define MOPT_GTE0 0x0020 1857 #ifdef CONFIG_QUOTA 1858 #define MOPT_Q 0 1859 #define MOPT_QFMT 0x0040 1860 #else 1861 #define MOPT_Q MOPT_NOSUPPORT 1862 #define MOPT_QFMT MOPT_NOSUPPORT 1863 #endif 1864 #define MOPT_DATAJ 0x0080 1865 #define MOPT_NO_EXT2 0x0100 1866 #define MOPT_NO_EXT3 0x0200 1867 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1868 #define MOPT_STRING 0x0400 1869 #define MOPT_SKIP 0x0800 1870 #define MOPT_2 0x1000 1871 1872 static const struct mount_opts { 1873 int token; 1874 int mount_opt; 1875 int flags; 1876 } ext4_mount_opts[] = { 1877 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1878 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1879 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1880 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1881 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1882 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1883 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1884 MOPT_EXT4_ONLY | MOPT_SET}, 1885 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1886 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1887 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1888 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1889 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1890 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1891 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1892 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1893 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1894 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1895 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1896 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1897 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1898 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1899 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1900 EXT4_MOUNT_JOURNAL_CHECKSUM), 1901 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1902 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1903 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1904 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1905 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1906 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1907 MOPT_NO_EXT2}, 1908 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1909 MOPT_NO_EXT2}, 1910 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1911 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1912 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1913 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1914 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1915 {Opt_commit, 0, MOPT_GTE0}, 1916 {Opt_max_batch_time, 0, MOPT_GTE0}, 1917 {Opt_min_batch_time, 0, MOPT_GTE0}, 1918 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1919 {Opt_init_itable, 0, MOPT_GTE0}, 1920 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1921 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1922 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1923 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1924 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1925 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1926 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1927 {Opt_stripe, 0, MOPT_GTE0}, 1928 {Opt_resuid, 0, MOPT_GTE0}, 1929 {Opt_resgid, 0, MOPT_GTE0}, 1930 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1931 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1932 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1933 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1934 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1935 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1936 MOPT_NO_EXT2 | MOPT_DATAJ}, 1937 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1938 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1939 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1940 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1941 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1942 #else 1943 {Opt_acl, 0, MOPT_NOSUPPORT}, 1944 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1945 #endif 1946 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1947 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1948 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1949 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1950 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1951 MOPT_SET | MOPT_Q}, 1952 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1953 MOPT_SET | MOPT_Q}, 1954 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1955 MOPT_SET | MOPT_Q}, 1956 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1957 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1958 MOPT_CLEAR | MOPT_Q}, 1959 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1960 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1961 {Opt_offusrjquota, 0, MOPT_Q}, 1962 {Opt_offgrpjquota, 0, MOPT_Q}, 1963 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1964 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1965 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1966 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1967 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1968 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1969 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, 1970 MOPT_SET}, 1971 #ifdef CONFIG_EXT4_DEBUG 1972 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1973 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1974 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 1975 #endif 1976 {Opt_err, 0, 0} 1977 }; 1978 1979 #ifdef CONFIG_UNICODE 1980 static const struct ext4_sb_encodings { 1981 __u16 magic; 1982 char *name; 1983 char *version; 1984 } ext4_sb_encoding_map[] = { 1985 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1986 }; 1987 1988 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1989 const struct ext4_sb_encodings **encoding, 1990 __u16 *flags) 1991 { 1992 __u16 magic = le16_to_cpu(es->s_encoding); 1993 int i; 1994 1995 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1996 if (magic == ext4_sb_encoding_map[i].magic) 1997 break; 1998 1999 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2000 return -EINVAL; 2001 2002 *encoding = &ext4_sb_encoding_map[i]; 2003 *flags = le16_to_cpu(es->s_encoding_flags); 2004 2005 return 0; 2006 } 2007 #endif 2008 2009 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2010 const char *opt, 2011 const substring_t *arg, 2012 bool is_remount) 2013 { 2014 #ifdef CONFIG_FS_ENCRYPTION 2015 struct ext4_sb_info *sbi = EXT4_SB(sb); 2016 int err; 2017 2018 /* 2019 * This mount option is just for testing, and it's not worthwhile to 2020 * implement the extra complexity (e.g. RCU protection) that would be 2021 * needed to allow it to be set or changed during remount. We do allow 2022 * it to be specified during remount, but only if there is no change. 2023 */ 2024 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2025 ext4_msg(sb, KERN_WARNING, 2026 "Can't set test_dummy_encryption on remount"); 2027 return -1; 2028 } 2029 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2030 &sbi->s_dummy_enc_policy); 2031 if (err) { 2032 if (err == -EEXIST) 2033 ext4_msg(sb, KERN_WARNING, 2034 "Can't change test_dummy_encryption on remount"); 2035 else if (err == -EINVAL) 2036 ext4_msg(sb, KERN_WARNING, 2037 "Value of option \"%s\" is unrecognized", opt); 2038 else 2039 ext4_msg(sb, KERN_WARNING, 2040 "Error processing option \"%s\" [%d]", 2041 opt, err); 2042 return -1; 2043 } 2044 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2045 #else 2046 ext4_msg(sb, KERN_WARNING, 2047 "Test dummy encryption mount option ignored"); 2048 #endif 2049 return 1; 2050 } 2051 2052 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2053 substring_t *args, unsigned long *journal_devnum, 2054 unsigned int *journal_ioprio, int is_remount) 2055 { 2056 struct ext4_sb_info *sbi = EXT4_SB(sb); 2057 const struct mount_opts *m; 2058 kuid_t uid; 2059 kgid_t gid; 2060 int arg = 0; 2061 2062 #ifdef CONFIG_QUOTA 2063 if (token == Opt_usrjquota) 2064 return set_qf_name(sb, USRQUOTA, &args[0]); 2065 else if (token == Opt_grpjquota) 2066 return set_qf_name(sb, GRPQUOTA, &args[0]); 2067 else if (token == Opt_offusrjquota) 2068 return clear_qf_name(sb, USRQUOTA); 2069 else if (token == Opt_offgrpjquota) 2070 return clear_qf_name(sb, GRPQUOTA); 2071 #endif 2072 switch (token) { 2073 case Opt_noacl: 2074 case Opt_nouser_xattr: 2075 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2076 break; 2077 case Opt_sb: 2078 return 1; /* handled by get_sb_block() */ 2079 case Opt_removed: 2080 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2081 return 1; 2082 case Opt_abort: 2083 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2084 return 1; 2085 case Opt_i_version: 2086 sb->s_flags |= SB_I_VERSION; 2087 return 1; 2088 case Opt_lazytime: 2089 sb->s_flags |= SB_LAZYTIME; 2090 return 1; 2091 case Opt_nolazytime: 2092 sb->s_flags &= ~SB_LAZYTIME; 2093 return 1; 2094 case Opt_inlinecrypt: 2095 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2096 sb->s_flags |= SB_INLINECRYPT; 2097 #else 2098 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2099 #endif 2100 return 1; 2101 } 2102 2103 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2104 if (token == m->token) 2105 break; 2106 2107 if (m->token == Opt_err) { 2108 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2109 "or missing value", opt); 2110 return -1; 2111 } 2112 2113 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2114 ext4_msg(sb, KERN_ERR, 2115 "Mount option \"%s\" incompatible with ext2", opt); 2116 return -1; 2117 } 2118 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2119 ext4_msg(sb, KERN_ERR, 2120 "Mount option \"%s\" incompatible with ext3", opt); 2121 return -1; 2122 } 2123 2124 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2125 return -1; 2126 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2127 return -1; 2128 if (m->flags & MOPT_EXPLICIT) { 2129 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2130 set_opt2(sb, EXPLICIT_DELALLOC); 2131 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2132 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2133 } else 2134 return -1; 2135 } 2136 if (m->flags & MOPT_CLEAR_ERR) 2137 clear_opt(sb, ERRORS_MASK); 2138 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2139 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2140 "options when quota turned on"); 2141 return -1; 2142 } 2143 2144 if (m->flags & MOPT_NOSUPPORT) { 2145 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2146 } else if (token == Opt_commit) { 2147 if (arg == 0) 2148 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2149 else if (arg > INT_MAX / HZ) { 2150 ext4_msg(sb, KERN_ERR, 2151 "Invalid commit interval %d, " 2152 "must be smaller than %d", 2153 arg, INT_MAX / HZ); 2154 return -1; 2155 } 2156 sbi->s_commit_interval = HZ * arg; 2157 } else if (token == Opt_debug_want_extra_isize) { 2158 if ((arg & 1) || 2159 (arg < 4) || 2160 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2161 ext4_msg(sb, KERN_ERR, 2162 "Invalid want_extra_isize %d", arg); 2163 return -1; 2164 } 2165 sbi->s_want_extra_isize = arg; 2166 } else if (token == Opt_max_batch_time) { 2167 sbi->s_max_batch_time = arg; 2168 } else if (token == Opt_min_batch_time) { 2169 sbi->s_min_batch_time = arg; 2170 } else if (token == Opt_inode_readahead_blks) { 2171 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2172 ext4_msg(sb, KERN_ERR, 2173 "EXT4-fs: inode_readahead_blks must be " 2174 "0 or a power of 2 smaller than 2^31"); 2175 return -1; 2176 } 2177 sbi->s_inode_readahead_blks = arg; 2178 } else if (token == Opt_init_itable) { 2179 set_opt(sb, INIT_INODE_TABLE); 2180 if (!args->from) 2181 arg = EXT4_DEF_LI_WAIT_MULT; 2182 sbi->s_li_wait_mult = arg; 2183 } else if (token == Opt_max_dir_size_kb) { 2184 sbi->s_max_dir_size_kb = arg; 2185 #ifdef CONFIG_EXT4_DEBUG 2186 } else if (token == Opt_fc_debug_max_replay) { 2187 sbi->s_fc_debug_max_replay = arg; 2188 #endif 2189 } else if (token == Opt_stripe) { 2190 sbi->s_stripe = arg; 2191 } else if (token == Opt_resuid) { 2192 uid = make_kuid(current_user_ns(), arg); 2193 if (!uid_valid(uid)) { 2194 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2195 return -1; 2196 } 2197 sbi->s_resuid = uid; 2198 } else if (token == Opt_resgid) { 2199 gid = make_kgid(current_user_ns(), arg); 2200 if (!gid_valid(gid)) { 2201 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2202 return -1; 2203 } 2204 sbi->s_resgid = gid; 2205 } else if (token == Opt_journal_dev) { 2206 if (is_remount) { 2207 ext4_msg(sb, KERN_ERR, 2208 "Cannot specify journal on remount"); 2209 return -1; 2210 } 2211 *journal_devnum = arg; 2212 } else if (token == Opt_journal_path) { 2213 char *journal_path; 2214 struct inode *journal_inode; 2215 struct path path; 2216 int error; 2217 2218 if (is_remount) { 2219 ext4_msg(sb, KERN_ERR, 2220 "Cannot specify journal on remount"); 2221 return -1; 2222 } 2223 journal_path = match_strdup(&args[0]); 2224 if (!journal_path) { 2225 ext4_msg(sb, KERN_ERR, "error: could not dup " 2226 "journal device string"); 2227 return -1; 2228 } 2229 2230 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2231 if (error) { 2232 ext4_msg(sb, KERN_ERR, "error: could not find " 2233 "journal device path: error %d", error); 2234 kfree(journal_path); 2235 return -1; 2236 } 2237 2238 journal_inode = d_inode(path.dentry); 2239 if (!S_ISBLK(journal_inode->i_mode)) { 2240 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2241 "is not a block device", journal_path); 2242 path_put(&path); 2243 kfree(journal_path); 2244 return -1; 2245 } 2246 2247 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2248 path_put(&path); 2249 kfree(journal_path); 2250 } else if (token == Opt_journal_ioprio) { 2251 if (arg > 7) { 2252 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2253 " (must be 0-7)"); 2254 return -1; 2255 } 2256 *journal_ioprio = 2257 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2258 } else if (token == Opt_test_dummy_encryption) { 2259 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2260 is_remount); 2261 } else if (m->flags & MOPT_DATAJ) { 2262 if (is_remount) { 2263 if (!sbi->s_journal) 2264 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2265 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2266 ext4_msg(sb, KERN_ERR, 2267 "Cannot change data mode on remount"); 2268 return -1; 2269 } 2270 } else { 2271 clear_opt(sb, DATA_FLAGS); 2272 sbi->s_mount_opt |= m->mount_opt; 2273 } 2274 #ifdef CONFIG_QUOTA 2275 } else if (m->flags & MOPT_QFMT) { 2276 if (sb_any_quota_loaded(sb) && 2277 sbi->s_jquota_fmt != m->mount_opt) { 2278 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2279 "quota options when quota turned on"); 2280 return -1; 2281 } 2282 if (ext4_has_feature_quota(sb)) { 2283 ext4_msg(sb, KERN_INFO, 2284 "Quota format mount options ignored " 2285 "when QUOTA feature is enabled"); 2286 return 1; 2287 } 2288 sbi->s_jquota_fmt = m->mount_opt; 2289 #endif 2290 } else if (token == Opt_dax || token == Opt_dax_always || 2291 token == Opt_dax_inode || token == Opt_dax_never) { 2292 #ifdef CONFIG_FS_DAX 2293 switch (token) { 2294 case Opt_dax: 2295 case Opt_dax_always: 2296 if (is_remount && 2297 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2298 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2299 fail_dax_change_remount: 2300 ext4_msg(sb, KERN_ERR, "can't change " 2301 "dax mount option while remounting"); 2302 return -1; 2303 } 2304 if (is_remount && 2305 (test_opt(sb, DATA_FLAGS) == 2306 EXT4_MOUNT_JOURNAL_DATA)) { 2307 ext4_msg(sb, KERN_ERR, "can't mount with " 2308 "both data=journal and dax"); 2309 return -1; 2310 } 2311 ext4_msg(sb, KERN_WARNING, 2312 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2313 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2314 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2315 break; 2316 case Opt_dax_never: 2317 if (is_remount && 2318 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2319 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2320 goto fail_dax_change_remount; 2321 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2322 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2323 break; 2324 case Opt_dax_inode: 2325 if (is_remount && 2326 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2327 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2328 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2329 goto fail_dax_change_remount; 2330 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2331 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2332 /* Strictly for printing options */ 2333 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2334 break; 2335 } 2336 #else 2337 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2338 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2339 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2340 return -1; 2341 #endif 2342 } else if (token == Opt_data_err_abort) { 2343 sbi->s_mount_opt |= m->mount_opt; 2344 } else if (token == Opt_data_err_ignore) { 2345 sbi->s_mount_opt &= ~m->mount_opt; 2346 } else { 2347 if (!args->from) 2348 arg = 1; 2349 if (m->flags & MOPT_CLEAR) 2350 arg = !arg; 2351 else if (unlikely(!(m->flags & MOPT_SET))) { 2352 ext4_msg(sb, KERN_WARNING, 2353 "buggy handling of option %s", opt); 2354 WARN_ON(1); 2355 return -1; 2356 } 2357 if (m->flags & MOPT_2) { 2358 if (arg != 0) 2359 sbi->s_mount_opt2 |= m->mount_opt; 2360 else 2361 sbi->s_mount_opt2 &= ~m->mount_opt; 2362 } else { 2363 if (arg != 0) 2364 sbi->s_mount_opt |= m->mount_opt; 2365 else 2366 sbi->s_mount_opt &= ~m->mount_opt; 2367 } 2368 } 2369 return 1; 2370 } 2371 2372 static int parse_options(char *options, struct super_block *sb, 2373 unsigned long *journal_devnum, 2374 unsigned int *journal_ioprio, 2375 int is_remount) 2376 { 2377 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2378 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2379 substring_t args[MAX_OPT_ARGS]; 2380 int token; 2381 2382 if (!options) 2383 return 1; 2384 2385 while ((p = strsep(&options, ",")) != NULL) { 2386 if (!*p) 2387 continue; 2388 /* 2389 * Initialize args struct so we know whether arg was 2390 * found; some options take optional arguments. 2391 */ 2392 args[0].to = args[0].from = NULL; 2393 token = match_token(p, tokens, args); 2394 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2395 journal_ioprio, is_remount) < 0) 2396 return 0; 2397 } 2398 #ifdef CONFIG_QUOTA 2399 /* 2400 * We do the test below only for project quotas. 'usrquota' and 2401 * 'grpquota' mount options are allowed even without quota feature 2402 * to support legacy quotas in quota files. 2403 */ 2404 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2405 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2406 "Cannot enable project quota enforcement."); 2407 return 0; 2408 } 2409 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2410 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2411 if (usr_qf_name || grp_qf_name) { 2412 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2413 clear_opt(sb, USRQUOTA); 2414 2415 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2416 clear_opt(sb, GRPQUOTA); 2417 2418 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2419 ext4_msg(sb, KERN_ERR, "old and new quota " 2420 "format mixing"); 2421 return 0; 2422 } 2423 2424 if (!sbi->s_jquota_fmt) { 2425 ext4_msg(sb, KERN_ERR, "journaled quota format " 2426 "not specified"); 2427 return 0; 2428 } 2429 } 2430 #endif 2431 if (test_opt(sb, DIOREAD_NOLOCK)) { 2432 int blocksize = 2433 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2434 if (blocksize < PAGE_SIZE) 2435 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2436 "experimental mount option 'dioread_nolock' " 2437 "for blocksize < PAGE_SIZE"); 2438 } 2439 return 1; 2440 } 2441 2442 static inline void ext4_show_quota_options(struct seq_file *seq, 2443 struct super_block *sb) 2444 { 2445 #if defined(CONFIG_QUOTA) 2446 struct ext4_sb_info *sbi = EXT4_SB(sb); 2447 char *usr_qf_name, *grp_qf_name; 2448 2449 if (sbi->s_jquota_fmt) { 2450 char *fmtname = ""; 2451 2452 switch (sbi->s_jquota_fmt) { 2453 case QFMT_VFS_OLD: 2454 fmtname = "vfsold"; 2455 break; 2456 case QFMT_VFS_V0: 2457 fmtname = "vfsv0"; 2458 break; 2459 case QFMT_VFS_V1: 2460 fmtname = "vfsv1"; 2461 break; 2462 } 2463 seq_printf(seq, ",jqfmt=%s", fmtname); 2464 } 2465 2466 rcu_read_lock(); 2467 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2468 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2469 if (usr_qf_name) 2470 seq_show_option(seq, "usrjquota", usr_qf_name); 2471 if (grp_qf_name) 2472 seq_show_option(seq, "grpjquota", grp_qf_name); 2473 rcu_read_unlock(); 2474 #endif 2475 } 2476 2477 static const char *token2str(int token) 2478 { 2479 const struct match_token *t; 2480 2481 for (t = tokens; t->token != Opt_err; t++) 2482 if (t->token == token && !strchr(t->pattern, '=')) 2483 break; 2484 return t->pattern; 2485 } 2486 2487 /* 2488 * Show an option if 2489 * - it's set to a non-default value OR 2490 * - if the per-sb default is different from the global default 2491 */ 2492 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2493 int nodefs) 2494 { 2495 struct ext4_sb_info *sbi = EXT4_SB(sb); 2496 struct ext4_super_block *es = sbi->s_es; 2497 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2498 const struct mount_opts *m; 2499 char sep = nodefs ? '\n' : ','; 2500 2501 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2502 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2503 2504 if (sbi->s_sb_block != 1) 2505 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2506 2507 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2508 int want_set = m->flags & MOPT_SET; 2509 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2510 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2511 continue; 2512 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2513 continue; /* skip if same as the default */ 2514 if ((want_set && 2515 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2516 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2517 continue; /* select Opt_noFoo vs Opt_Foo */ 2518 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2519 } 2520 2521 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2522 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2523 SEQ_OPTS_PRINT("resuid=%u", 2524 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2525 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2526 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2527 SEQ_OPTS_PRINT("resgid=%u", 2528 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2529 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2530 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2531 SEQ_OPTS_PUTS("errors=remount-ro"); 2532 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2533 SEQ_OPTS_PUTS("errors=continue"); 2534 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2535 SEQ_OPTS_PUTS("errors=panic"); 2536 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2537 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2538 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2539 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2540 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2541 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2542 if (sb->s_flags & SB_I_VERSION) 2543 SEQ_OPTS_PUTS("i_version"); 2544 if (nodefs || sbi->s_stripe) 2545 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2546 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2547 (sbi->s_mount_opt ^ def_mount_opt)) { 2548 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2549 SEQ_OPTS_PUTS("data=journal"); 2550 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2551 SEQ_OPTS_PUTS("data=ordered"); 2552 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2553 SEQ_OPTS_PUTS("data=writeback"); 2554 } 2555 if (nodefs || 2556 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2557 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2558 sbi->s_inode_readahead_blks); 2559 2560 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2561 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2562 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2563 if (nodefs || sbi->s_max_dir_size_kb) 2564 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2565 if (test_opt(sb, DATA_ERR_ABORT)) 2566 SEQ_OPTS_PUTS("data_err=abort"); 2567 2568 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2569 2570 if (sb->s_flags & SB_INLINECRYPT) 2571 SEQ_OPTS_PUTS("inlinecrypt"); 2572 2573 if (test_opt(sb, DAX_ALWAYS)) { 2574 if (IS_EXT2_SB(sb)) 2575 SEQ_OPTS_PUTS("dax"); 2576 else 2577 SEQ_OPTS_PUTS("dax=always"); 2578 } else if (test_opt2(sb, DAX_NEVER)) { 2579 SEQ_OPTS_PUTS("dax=never"); 2580 } else if (test_opt2(sb, DAX_INODE)) { 2581 SEQ_OPTS_PUTS("dax=inode"); 2582 } 2583 ext4_show_quota_options(seq, sb); 2584 return 0; 2585 } 2586 2587 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2588 { 2589 return _ext4_show_options(seq, root->d_sb, 0); 2590 } 2591 2592 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2593 { 2594 struct super_block *sb = seq->private; 2595 int rc; 2596 2597 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2598 rc = _ext4_show_options(seq, sb, 1); 2599 seq_puts(seq, "\n"); 2600 return rc; 2601 } 2602 2603 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2604 int read_only) 2605 { 2606 struct ext4_sb_info *sbi = EXT4_SB(sb); 2607 int err = 0; 2608 2609 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2610 ext4_msg(sb, KERN_ERR, "revision level too high, " 2611 "forcing read-only mode"); 2612 err = -EROFS; 2613 goto done; 2614 } 2615 if (read_only) 2616 goto done; 2617 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2618 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2619 "running e2fsck is recommended"); 2620 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2621 ext4_msg(sb, KERN_WARNING, 2622 "warning: mounting fs with errors, " 2623 "running e2fsck is recommended"); 2624 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2625 le16_to_cpu(es->s_mnt_count) >= 2626 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2627 ext4_msg(sb, KERN_WARNING, 2628 "warning: maximal mount count reached, " 2629 "running e2fsck is recommended"); 2630 else if (le32_to_cpu(es->s_checkinterval) && 2631 (ext4_get_tstamp(es, s_lastcheck) + 2632 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2633 ext4_msg(sb, KERN_WARNING, 2634 "warning: checktime reached, " 2635 "running e2fsck is recommended"); 2636 if (!sbi->s_journal) 2637 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2638 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2639 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2640 le16_add_cpu(&es->s_mnt_count, 1); 2641 ext4_update_tstamp(es, s_mtime); 2642 if (sbi->s_journal) 2643 ext4_set_feature_journal_needs_recovery(sb); 2644 2645 err = ext4_commit_super(sb, 1); 2646 done: 2647 if (test_opt(sb, DEBUG)) 2648 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2649 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2650 sb->s_blocksize, 2651 sbi->s_groups_count, 2652 EXT4_BLOCKS_PER_GROUP(sb), 2653 EXT4_INODES_PER_GROUP(sb), 2654 sbi->s_mount_opt, sbi->s_mount_opt2); 2655 2656 cleancache_init_fs(sb); 2657 return err; 2658 } 2659 2660 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2661 { 2662 struct ext4_sb_info *sbi = EXT4_SB(sb); 2663 struct flex_groups **old_groups, **new_groups; 2664 int size, i, j; 2665 2666 if (!sbi->s_log_groups_per_flex) 2667 return 0; 2668 2669 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2670 if (size <= sbi->s_flex_groups_allocated) 2671 return 0; 2672 2673 new_groups = kvzalloc(roundup_pow_of_two(size * 2674 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2675 if (!new_groups) { 2676 ext4_msg(sb, KERN_ERR, 2677 "not enough memory for %d flex group pointers", size); 2678 return -ENOMEM; 2679 } 2680 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2681 new_groups[i] = kvzalloc(roundup_pow_of_two( 2682 sizeof(struct flex_groups)), 2683 GFP_KERNEL); 2684 if (!new_groups[i]) { 2685 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2686 kvfree(new_groups[j]); 2687 kvfree(new_groups); 2688 ext4_msg(sb, KERN_ERR, 2689 "not enough memory for %d flex groups", size); 2690 return -ENOMEM; 2691 } 2692 } 2693 rcu_read_lock(); 2694 old_groups = rcu_dereference(sbi->s_flex_groups); 2695 if (old_groups) 2696 memcpy(new_groups, old_groups, 2697 (sbi->s_flex_groups_allocated * 2698 sizeof(struct flex_groups *))); 2699 rcu_read_unlock(); 2700 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2701 sbi->s_flex_groups_allocated = size; 2702 if (old_groups) 2703 ext4_kvfree_array_rcu(old_groups); 2704 return 0; 2705 } 2706 2707 static int ext4_fill_flex_info(struct super_block *sb) 2708 { 2709 struct ext4_sb_info *sbi = EXT4_SB(sb); 2710 struct ext4_group_desc *gdp = NULL; 2711 struct flex_groups *fg; 2712 ext4_group_t flex_group; 2713 int i, err; 2714 2715 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2716 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2717 sbi->s_log_groups_per_flex = 0; 2718 return 1; 2719 } 2720 2721 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2722 if (err) 2723 goto failed; 2724 2725 for (i = 0; i < sbi->s_groups_count; i++) { 2726 gdp = ext4_get_group_desc(sb, i, NULL); 2727 2728 flex_group = ext4_flex_group(sbi, i); 2729 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2730 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2731 atomic64_add(ext4_free_group_clusters(sb, gdp), 2732 &fg->free_clusters); 2733 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2734 } 2735 2736 return 1; 2737 failed: 2738 return 0; 2739 } 2740 2741 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2742 struct ext4_group_desc *gdp) 2743 { 2744 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2745 __u16 crc = 0; 2746 __le32 le_group = cpu_to_le32(block_group); 2747 struct ext4_sb_info *sbi = EXT4_SB(sb); 2748 2749 if (ext4_has_metadata_csum(sbi->s_sb)) { 2750 /* Use new metadata_csum algorithm */ 2751 __u32 csum32; 2752 __u16 dummy_csum = 0; 2753 2754 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2755 sizeof(le_group)); 2756 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2757 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2758 sizeof(dummy_csum)); 2759 offset += sizeof(dummy_csum); 2760 if (offset < sbi->s_desc_size) 2761 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2762 sbi->s_desc_size - offset); 2763 2764 crc = csum32 & 0xFFFF; 2765 goto out; 2766 } 2767 2768 /* old crc16 code */ 2769 if (!ext4_has_feature_gdt_csum(sb)) 2770 return 0; 2771 2772 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2773 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2774 crc = crc16(crc, (__u8 *)gdp, offset); 2775 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2776 /* for checksum of struct ext4_group_desc do the rest...*/ 2777 if (ext4_has_feature_64bit(sb) && 2778 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2779 crc = crc16(crc, (__u8 *)gdp + offset, 2780 le16_to_cpu(sbi->s_es->s_desc_size) - 2781 offset); 2782 2783 out: 2784 return cpu_to_le16(crc); 2785 } 2786 2787 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2788 struct ext4_group_desc *gdp) 2789 { 2790 if (ext4_has_group_desc_csum(sb) && 2791 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2792 return 0; 2793 2794 return 1; 2795 } 2796 2797 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2798 struct ext4_group_desc *gdp) 2799 { 2800 if (!ext4_has_group_desc_csum(sb)) 2801 return; 2802 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2803 } 2804 2805 /* Called at mount-time, super-block is locked */ 2806 static int ext4_check_descriptors(struct super_block *sb, 2807 ext4_fsblk_t sb_block, 2808 ext4_group_t *first_not_zeroed) 2809 { 2810 struct ext4_sb_info *sbi = EXT4_SB(sb); 2811 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2812 ext4_fsblk_t last_block; 2813 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2814 ext4_fsblk_t block_bitmap; 2815 ext4_fsblk_t inode_bitmap; 2816 ext4_fsblk_t inode_table; 2817 int flexbg_flag = 0; 2818 ext4_group_t i, grp = sbi->s_groups_count; 2819 2820 if (ext4_has_feature_flex_bg(sb)) 2821 flexbg_flag = 1; 2822 2823 ext4_debug("Checking group descriptors"); 2824 2825 for (i = 0; i < sbi->s_groups_count; i++) { 2826 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2827 2828 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2829 last_block = ext4_blocks_count(sbi->s_es) - 1; 2830 else 2831 last_block = first_block + 2832 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2833 2834 if ((grp == sbi->s_groups_count) && 2835 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2836 grp = i; 2837 2838 block_bitmap = ext4_block_bitmap(sb, gdp); 2839 if (block_bitmap == sb_block) { 2840 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2841 "Block bitmap for group %u overlaps " 2842 "superblock", i); 2843 if (!sb_rdonly(sb)) 2844 return 0; 2845 } 2846 if (block_bitmap >= sb_block + 1 && 2847 block_bitmap <= last_bg_block) { 2848 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2849 "Block bitmap for group %u overlaps " 2850 "block group descriptors", i); 2851 if (!sb_rdonly(sb)) 2852 return 0; 2853 } 2854 if (block_bitmap < first_block || block_bitmap > last_block) { 2855 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2856 "Block bitmap for group %u not in group " 2857 "(block %llu)!", i, block_bitmap); 2858 return 0; 2859 } 2860 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2861 if (inode_bitmap == sb_block) { 2862 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2863 "Inode bitmap for group %u overlaps " 2864 "superblock", i); 2865 if (!sb_rdonly(sb)) 2866 return 0; 2867 } 2868 if (inode_bitmap >= sb_block + 1 && 2869 inode_bitmap <= last_bg_block) { 2870 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2871 "Inode bitmap for group %u overlaps " 2872 "block group descriptors", i); 2873 if (!sb_rdonly(sb)) 2874 return 0; 2875 } 2876 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2877 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2878 "Inode bitmap for group %u not in group " 2879 "(block %llu)!", i, inode_bitmap); 2880 return 0; 2881 } 2882 inode_table = ext4_inode_table(sb, gdp); 2883 if (inode_table == sb_block) { 2884 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2885 "Inode table for group %u overlaps " 2886 "superblock", i); 2887 if (!sb_rdonly(sb)) 2888 return 0; 2889 } 2890 if (inode_table >= sb_block + 1 && 2891 inode_table <= last_bg_block) { 2892 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2893 "Inode table for group %u overlaps " 2894 "block group descriptors", i); 2895 if (!sb_rdonly(sb)) 2896 return 0; 2897 } 2898 if (inode_table < first_block || 2899 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2900 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2901 "Inode table for group %u not in group " 2902 "(block %llu)!", i, inode_table); 2903 return 0; 2904 } 2905 ext4_lock_group(sb, i); 2906 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2907 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2908 "Checksum for group %u failed (%u!=%u)", 2909 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2910 gdp)), le16_to_cpu(gdp->bg_checksum)); 2911 if (!sb_rdonly(sb)) { 2912 ext4_unlock_group(sb, i); 2913 return 0; 2914 } 2915 } 2916 ext4_unlock_group(sb, i); 2917 if (!flexbg_flag) 2918 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2919 } 2920 if (NULL != first_not_zeroed) 2921 *first_not_zeroed = grp; 2922 return 1; 2923 } 2924 2925 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2926 * the superblock) which were deleted from all directories, but held open by 2927 * a process at the time of a crash. We walk the list and try to delete these 2928 * inodes at recovery time (only with a read-write filesystem). 2929 * 2930 * In order to keep the orphan inode chain consistent during traversal (in 2931 * case of crash during recovery), we link each inode into the superblock 2932 * orphan list_head and handle it the same way as an inode deletion during 2933 * normal operation (which journals the operations for us). 2934 * 2935 * We only do an iget() and an iput() on each inode, which is very safe if we 2936 * accidentally point at an in-use or already deleted inode. The worst that 2937 * can happen in this case is that we get a "bit already cleared" message from 2938 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2939 * e2fsck was run on this filesystem, and it must have already done the orphan 2940 * inode cleanup for us, so we can safely abort without any further action. 2941 */ 2942 static void ext4_orphan_cleanup(struct super_block *sb, 2943 struct ext4_super_block *es) 2944 { 2945 unsigned int s_flags = sb->s_flags; 2946 int ret, nr_orphans = 0, nr_truncates = 0; 2947 #ifdef CONFIG_QUOTA 2948 int quota_update = 0; 2949 int i; 2950 #endif 2951 if (!es->s_last_orphan) { 2952 jbd_debug(4, "no orphan inodes to clean up\n"); 2953 return; 2954 } 2955 2956 if (bdev_read_only(sb->s_bdev)) { 2957 ext4_msg(sb, KERN_ERR, "write access " 2958 "unavailable, skipping orphan cleanup"); 2959 return; 2960 } 2961 2962 /* Check if feature set would not allow a r/w mount */ 2963 if (!ext4_feature_set_ok(sb, 0)) { 2964 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2965 "unknown ROCOMPAT features"); 2966 return; 2967 } 2968 2969 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2970 /* don't clear list on RO mount w/ errors */ 2971 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2972 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2973 "clearing orphan list.\n"); 2974 es->s_last_orphan = 0; 2975 } 2976 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2977 return; 2978 } 2979 2980 if (s_flags & SB_RDONLY) { 2981 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2982 sb->s_flags &= ~SB_RDONLY; 2983 } 2984 #ifdef CONFIG_QUOTA 2985 /* Needed for iput() to work correctly and not trash data */ 2986 sb->s_flags |= SB_ACTIVE; 2987 2988 /* 2989 * Turn on quotas which were not enabled for read-only mounts if 2990 * filesystem has quota feature, so that they are updated correctly. 2991 */ 2992 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2993 int ret = ext4_enable_quotas(sb); 2994 2995 if (!ret) 2996 quota_update = 1; 2997 else 2998 ext4_msg(sb, KERN_ERR, 2999 "Cannot turn on quotas: error %d", ret); 3000 } 3001 3002 /* Turn on journaled quotas used for old sytle */ 3003 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3004 if (EXT4_SB(sb)->s_qf_names[i]) { 3005 int ret = ext4_quota_on_mount(sb, i); 3006 3007 if (!ret) 3008 quota_update = 1; 3009 else 3010 ext4_msg(sb, KERN_ERR, 3011 "Cannot turn on journaled " 3012 "quota: type %d: error %d", i, ret); 3013 } 3014 } 3015 #endif 3016 3017 while (es->s_last_orphan) { 3018 struct inode *inode; 3019 3020 /* 3021 * We may have encountered an error during cleanup; if 3022 * so, skip the rest. 3023 */ 3024 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3025 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3026 es->s_last_orphan = 0; 3027 break; 3028 } 3029 3030 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 3031 if (IS_ERR(inode)) { 3032 es->s_last_orphan = 0; 3033 break; 3034 } 3035 3036 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 3037 dquot_initialize(inode); 3038 if (inode->i_nlink) { 3039 if (test_opt(sb, DEBUG)) 3040 ext4_msg(sb, KERN_DEBUG, 3041 "%s: truncating inode %lu to %lld bytes", 3042 __func__, inode->i_ino, inode->i_size); 3043 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 3044 inode->i_ino, inode->i_size); 3045 inode_lock(inode); 3046 truncate_inode_pages(inode->i_mapping, inode->i_size); 3047 ret = ext4_truncate(inode); 3048 if (ret) 3049 ext4_std_error(inode->i_sb, ret); 3050 inode_unlock(inode); 3051 nr_truncates++; 3052 } else { 3053 if (test_opt(sb, DEBUG)) 3054 ext4_msg(sb, KERN_DEBUG, 3055 "%s: deleting unreferenced inode %lu", 3056 __func__, inode->i_ino); 3057 jbd_debug(2, "deleting unreferenced inode %lu\n", 3058 inode->i_ino); 3059 nr_orphans++; 3060 } 3061 iput(inode); /* The delete magic happens here! */ 3062 } 3063 3064 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 3065 3066 if (nr_orphans) 3067 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 3068 PLURAL(nr_orphans)); 3069 if (nr_truncates) 3070 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 3071 PLURAL(nr_truncates)); 3072 #ifdef CONFIG_QUOTA 3073 /* Turn off quotas if they were enabled for orphan cleanup */ 3074 if (quota_update) { 3075 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3076 if (sb_dqopt(sb)->files[i]) 3077 dquot_quota_off(sb, i); 3078 } 3079 } 3080 #endif 3081 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 3082 } 3083 3084 /* 3085 * Maximal extent format file size. 3086 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3087 * extent format containers, within a sector_t, and within i_blocks 3088 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3089 * so that won't be a limiting factor. 3090 * 3091 * However there is other limiting factor. We do store extents in the form 3092 * of starting block and length, hence the resulting length of the extent 3093 * covering maximum file size must fit into on-disk format containers as 3094 * well. Given that length is always by 1 unit bigger than max unit (because 3095 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3096 * 3097 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3098 */ 3099 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3100 { 3101 loff_t res; 3102 loff_t upper_limit = MAX_LFS_FILESIZE; 3103 3104 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3105 3106 if (!has_huge_files) { 3107 upper_limit = (1LL << 32) - 1; 3108 3109 /* total blocks in file system block size */ 3110 upper_limit >>= (blkbits - 9); 3111 upper_limit <<= blkbits; 3112 } 3113 3114 /* 3115 * 32-bit extent-start container, ee_block. We lower the maxbytes 3116 * by one fs block, so ee_len can cover the extent of maximum file 3117 * size 3118 */ 3119 res = (1LL << 32) - 1; 3120 res <<= blkbits; 3121 3122 /* Sanity check against vm- & vfs- imposed limits */ 3123 if (res > upper_limit) 3124 res = upper_limit; 3125 3126 return res; 3127 } 3128 3129 /* 3130 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3131 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3132 * We need to be 1 filesystem block less than the 2^48 sector limit. 3133 */ 3134 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3135 { 3136 loff_t res = EXT4_NDIR_BLOCKS; 3137 int meta_blocks; 3138 loff_t upper_limit; 3139 /* This is calculated to be the largest file size for a dense, block 3140 * mapped file such that the file's total number of 512-byte sectors, 3141 * including data and all indirect blocks, does not exceed (2^48 - 1). 3142 * 3143 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3144 * number of 512-byte sectors of the file. 3145 */ 3146 3147 if (!has_huge_files) { 3148 /* 3149 * !has_huge_files or implies that the inode i_block field 3150 * represents total file blocks in 2^32 512-byte sectors == 3151 * size of vfs inode i_blocks * 8 3152 */ 3153 upper_limit = (1LL << 32) - 1; 3154 3155 /* total blocks in file system block size */ 3156 upper_limit >>= (bits - 9); 3157 3158 } else { 3159 /* 3160 * We use 48 bit ext4_inode i_blocks 3161 * With EXT4_HUGE_FILE_FL set the i_blocks 3162 * represent total number of blocks in 3163 * file system block size 3164 */ 3165 upper_limit = (1LL << 48) - 1; 3166 3167 } 3168 3169 /* indirect blocks */ 3170 meta_blocks = 1; 3171 /* double indirect blocks */ 3172 meta_blocks += 1 + (1LL << (bits-2)); 3173 /* tripple indirect blocks */ 3174 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3175 3176 upper_limit -= meta_blocks; 3177 upper_limit <<= bits; 3178 3179 res += 1LL << (bits-2); 3180 res += 1LL << (2*(bits-2)); 3181 res += 1LL << (3*(bits-2)); 3182 res <<= bits; 3183 if (res > upper_limit) 3184 res = upper_limit; 3185 3186 if (res > MAX_LFS_FILESIZE) 3187 res = MAX_LFS_FILESIZE; 3188 3189 return res; 3190 } 3191 3192 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3193 ext4_fsblk_t logical_sb_block, int nr) 3194 { 3195 struct ext4_sb_info *sbi = EXT4_SB(sb); 3196 ext4_group_t bg, first_meta_bg; 3197 int has_super = 0; 3198 3199 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3200 3201 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3202 return logical_sb_block + nr + 1; 3203 bg = sbi->s_desc_per_block * nr; 3204 if (ext4_bg_has_super(sb, bg)) 3205 has_super = 1; 3206 3207 /* 3208 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3209 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3210 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3211 * compensate. 3212 */ 3213 if (sb->s_blocksize == 1024 && nr == 0 && 3214 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3215 has_super++; 3216 3217 return (has_super + ext4_group_first_block_no(sb, bg)); 3218 } 3219 3220 /** 3221 * ext4_get_stripe_size: Get the stripe size. 3222 * @sbi: In memory super block info 3223 * 3224 * If we have specified it via mount option, then 3225 * use the mount option value. If the value specified at mount time is 3226 * greater than the blocks per group use the super block value. 3227 * If the super block value is greater than blocks per group return 0. 3228 * Allocator needs it be less than blocks per group. 3229 * 3230 */ 3231 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3232 { 3233 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3234 unsigned long stripe_width = 3235 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3236 int ret; 3237 3238 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3239 ret = sbi->s_stripe; 3240 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3241 ret = stripe_width; 3242 else if (stride && stride <= sbi->s_blocks_per_group) 3243 ret = stride; 3244 else 3245 ret = 0; 3246 3247 /* 3248 * If the stripe width is 1, this makes no sense and 3249 * we set it to 0 to turn off stripe handling code. 3250 */ 3251 if (ret <= 1) 3252 ret = 0; 3253 3254 return ret; 3255 } 3256 3257 /* 3258 * Check whether this filesystem can be mounted based on 3259 * the features present and the RDONLY/RDWR mount requested. 3260 * Returns 1 if this filesystem can be mounted as requested, 3261 * 0 if it cannot be. 3262 */ 3263 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3264 { 3265 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3266 ext4_msg(sb, KERN_ERR, 3267 "Couldn't mount because of " 3268 "unsupported optional features (%x)", 3269 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3270 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3271 return 0; 3272 } 3273 3274 #ifndef CONFIG_UNICODE 3275 if (ext4_has_feature_casefold(sb)) { 3276 ext4_msg(sb, KERN_ERR, 3277 "Filesystem with casefold feature cannot be " 3278 "mounted without CONFIG_UNICODE"); 3279 return 0; 3280 } 3281 #endif 3282 3283 if (readonly) 3284 return 1; 3285 3286 if (ext4_has_feature_readonly(sb)) { 3287 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3288 sb->s_flags |= SB_RDONLY; 3289 return 1; 3290 } 3291 3292 /* Check that feature set is OK for a read-write mount */ 3293 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3294 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3295 "unsupported optional features (%x)", 3296 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3297 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3298 return 0; 3299 } 3300 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3301 ext4_msg(sb, KERN_ERR, 3302 "Can't support bigalloc feature without " 3303 "extents feature\n"); 3304 return 0; 3305 } 3306 3307 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3308 if (!readonly && (ext4_has_feature_quota(sb) || 3309 ext4_has_feature_project(sb))) { 3310 ext4_msg(sb, KERN_ERR, 3311 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3312 return 0; 3313 } 3314 #endif /* CONFIG_QUOTA */ 3315 return 1; 3316 } 3317 3318 /* 3319 * This function is called once a day if we have errors logged 3320 * on the file system 3321 */ 3322 static void print_daily_error_info(struct timer_list *t) 3323 { 3324 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3325 struct super_block *sb = sbi->s_sb; 3326 struct ext4_super_block *es = sbi->s_es; 3327 3328 if (es->s_error_count) 3329 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3330 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3331 le32_to_cpu(es->s_error_count)); 3332 if (es->s_first_error_time) { 3333 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3334 sb->s_id, 3335 ext4_get_tstamp(es, s_first_error_time), 3336 (int) sizeof(es->s_first_error_func), 3337 es->s_first_error_func, 3338 le32_to_cpu(es->s_first_error_line)); 3339 if (es->s_first_error_ino) 3340 printk(KERN_CONT ": inode %u", 3341 le32_to_cpu(es->s_first_error_ino)); 3342 if (es->s_first_error_block) 3343 printk(KERN_CONT ": block %llu", (unsigned long long) 3344 le64_to_cpu(es->s_first_error_block)); 3345 printk(KERN_CONT "\n"); 3346 } 3347 if (es->s_last_error_time) { 3348 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3349 sb->s_id, 3350 ext4_get_tstamp(es, s_last_error_time), 3351 (int) sizeof(es->s_last_error_func), 3352 es->s_last_error_func, 3353 le32_to_cpu(es->s_last_error_line)); 3354 if (es->s_last_error_ino) 3355 printk(KERN_CONT ": inode %u", 3356 le32_to_cpu(es->s_last_error_ino)); 3357 if (es->s_last_error_block) 3358 printk(KERN_CONT ": block %llu", (unsigned long long) 3359 le64_to_cpu(es->s_last_error_block)); 3360 printk(KERN_CONT "\n"); 3361 } 3362 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3363 } 3364 3365 /* Find next suitable group and run ext4_init_inode_table */ 3366 static int ext4_run_li_request(struct ext4_li_request *elr) 3367 { 3368 struct ext4_group_desc *gdp = NULL; 3369 struct super_block *sb = elr->lr_super; 3370 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3371 ext4_group_t group = elr->lr_next_group; 3372 unsigned long timeout = 0; 3373 unsigned int prefetch_ios = 0; 3374 int ret = 0; 3375 3376 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3377 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3378 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3379 if (prefetch_ios) 3380 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3381 prefetch_ios); 3382 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3383 prefetch_ios); 3384 if (group >= elr->lr_next_group) { 3385 ret = 1; 3386 if (elr->lr_first_not_zeroed != ngroups && 3387 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3388 elr->lr_next_group = elr->lr_first_not_zeroed; 3389 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3390 ret = 0; 3391 } 3392 } 3393 return ret; 3394 } 3395 3396 for (; group < ngroups; group++) { 3397 gdp = ext4_get_group_desc(sb, group, NULL); 3398 if (!gdp) { 3399 ret = 1; 3400 break; 3401 } 3402 3403 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3404 break; 3405 } 3406 3407 if (group >= ngroups) 3408 ret = 1; 3409 3410 if (!ret) { 3411 timeout = jiffies; 3412 ret = ext4_init_inode_table(sb, group, 3413 elr->lr_timeout ? 0 : 1); 3414 trace_ext4_lazy_itable_init(sb, group); 3415 if (elr->lr_timeout == 0) { 3416 timeout = (jiffies - timeout) * 3417 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3418 elr->lr_timeout = timeout; 3419 } 3420 elr->lr_next_sched = jiffies + elr->lr_timeout; 3421 elr->lr_next_group = group + 1; 3422 } 3423 return ret; 3424 } 3425 3426 /* 3427 * Remove lr_request from the list_request and free the 3428 * request structure. Should be called with li_list_mtx held 3429 */ 3430 static void ext4_remove_li_request(struct ext4_li_request *elr) 3431 { 3432 if (!elr) 3433 return; 3434 3435 list_del(&elr->lr_request); 3436 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3437 kfree(elr); 3438 } 3439 3440 static void ext4_unregister_li_request(struct super_block *sb) 3441 { 3442 mutex_lock(&ext4_li_mtx); 3443 if (!ext4_li_info) { 3444 mutex_unlock(&ext4_li_mtx); 3445 return; 3446 } 3447 3448 mutex_lock(&ext4_li_info->li_list_mtx); 3449 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3450 mutex_unlock(&ext4_li_info->li_list_mtx); 3451 mutex_unlock(&ext4_li_mtx); 3452 } 3453 3454 static struct task_struct *ext4_lazyinit_task; 3455 3456 /* 3457 * This is the function where ext4lazyinit thread lives. It walks 3458 * through the request list searching for next scheduled filesystem. 3459 * When such a fs is found, run the lazy initialization request 3460 * (ext4_rn_li_request) and keep track of the time spend in this 3461 * function. Based on that time we compute next schedule time of 3462 * the request. When walking through the list is complete, compute 3463 * next waking time and put itself into sleep. 3464 */ 3465 static int ext4_lazyinit_thread(void *arg) 3466 { 3467 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3468 struct list_head *pos, *n; 3469 struct ext4_li_request *elr; 3470 unsigned long next_wakeup, cur; 3471 3472 BUG_ON(NULL == eli); 3473 3474 cont_thread: 3475 while (true) { 3476 next_wakeup = MAX_JIFFY_OFFSET; 3477 3478 mutex_lock(&eli->li_list_mtx); 3479 if (list_empty(&eli->li_request_list)) { 3480 mutex_unlock(&eli->li_list_mtx); 3481 goto exit_thread; 3482 } 3483 list_for_each_safe(pos, n, &eli->li_request_list) { 3484 int err = 0; 3485 int progress = 0; 3486 elr = list_entry(pos, struct ext4_li_request, 3487 lr_request); 3488 3489 if (time_before(jiffies, elr->lr_next_sched)) { 3490 if (time_before(elr->lr_next_sched, next_wakeup)) 3491 next_wakeup = elr->lr_next_sched; 3492 continue; 3493 } 3494 if (down_read_trylock(&elr->lr_super->s_umount)) { 3495 if (sb_start_write_trylock(elr->lr_super)) { 3496 progress = 1; 3497 /* 3498 * We hold sb->s_umount, sb can not 3499 * be removed from the list, it is 3500 * now safe to drop li_list_mtx 3501 */ 3502 mutex_unlock(&eli->li_list_mtx); 3503 err = ext4_run_li_request(elr); 3504 sb_end_write(elr->lr_super); 3505 mutex_lock(&eli->li_list_mtx); 3506 n = pos->next; 3507 } 3508 up_read((&elr->lr_super->s_umount)); 3509 } 3510 /* error, remove the lazy_init job */ 3511 if (err) { 3512 ext4_remove_li_request(elr); 3513 continue; 3514 } 3515 if (!progress) { 3516 elr->lr_next_sched = jiffies + 3517 (prandom_u32() 3518 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3519 } 3520 if (time_before(elr->lr_next_sched, next_wakeup)) 3521 next_wakeup = elr->lr_next_sched; 3522 } 3523 mutex_unlock(&eli->li_list_mtx); 3524 3525 try_to_freeze(); 3526 3527 cur = jiffies; 3528 if ((time_after_eq(cur, next_wakeup)) || 3529 (MAX_JIFFY_OFFSET == next_wakeup)) { 3530 cond_resched(); 3531 continue; 3532 } 3533 3534 schedule_timeout_interruptible(next_wakeup - cur); 3535 3536 if (kthread_should_stop()) { 3537 ext4_clear_request_list(); 3538 goto exit_thread; 3539 } 3540 } 3541 3542 exit_thread: 3543 /* 3544 * It looks like the request list is empty, but we need 3545 * to check it under the li_list_mtx lock, to prevent any 3546 * additions into it, and of course we should lock ext4_li_mtx 3547 * to atomically free the list and ext4_li_info, because at 3548 * this point another ext4 filesystem could be registering 3549 * new one. 3550 */ 3551 mutex_lock(&ext4_li_mtx); 3552 mutex_lock(&eli->li_list_mtx); 3553 if (!list_empty(&eli->li_request_list)) { 3554 mutex_unlock(&eli->li_list_mtx); 3555 mutex_unlock(&ext4_li_mtx); 3556 goto cont_thread; 3557 } 3558 mutex_unlock(&eli->li_list_mtx); 3559 kfree(ext4_li_info); 3560 ext4_li_info = NULL; 3561 mutex_unlock(&ext4_li_mtx); 3562 3563 return 0; 3564 } 3565 3566 static void ext4_clear_request_list(void) 3567 { 3568 struct list_head *pos, *n; 3569 struct ext4_li_request *elr; 3570 3571 mutex_lock(&ext4_li_info->li_list_mtx); 3572 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3573 elr = list_entry(pos, struct ext4_li_request, 3574 lr_request); 3575 ext4_remove_li_request(elr); 3576 } 3577 mutex_unlock(&ext4_li_info->li_list_mtx); 3578 } 3579 3580 static int ext4_run_lazyinit_thread(void) 3581 { 3582 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3583 ext4_li_info, "ext4lazyinit"); 3584 if (IS_ERR(ext4_lazyinit_task)) { 3585 int err = PTR_ERR(ext4_lazyinit_task); 3586 ext4_clear_request_list(); 3587 kfree(ext4_li_info); 3588 ext4_li_info = NULL; 3589 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3590 "initialization thread\n", 3591 err); 3592 return err; 3593 } 3594 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3595 return 0; 3596 } 3597 3598 /* 3599 * Check whether it make sense to run itable init. thread or not. 3600 * If there is at least one uninitialized inode table, return 3601 * corresponding group number, else the loop goes through all 3602 * groups and return total number of groups. 3603 */ 3604 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3605 { 3606 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3607 struct ext4_group_desc *gdp = NULL; 3608 3609 if (!ext4_has_group_desc_csum(sb)) 3610 return ngroups; 3611 3612 for (group = 0; group < ngroups; group++) { 3613 gdp = ext4_get_group_desc(sb, group, NULL); 3614 if (!gdp) 3615 continue; 3616 3617 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3618 break; 3619 } 3620 3621 return group; 3622 } 3623 3624 static int ext4_li_info_new(void) 3625 { 3626 struct ext4_lazy_init *eli = NULL; 3627 3628 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3629 if (!eli) 3630 return -ENOMEM; 3631 3632 INIT_LIST_HEAD(&eli->li_request_list); 3633 mutex_init(&eli->li_list_mtx); 3634 3635 eli->li_state |= EXT4_LAZYINIT_QUIT; 3636 3637 ext4_li_info = eli; 3638 3639 return 0; 3640 } 3641 3642 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3643 ext4_group_t start) 3644 { 3645 struct ext4_li_request *elr; 3646 3647 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3648 if (!elr) 3649 return NULL; 3650 3651 elr->lr_super = sb; 3652 elr->lr_first_not_zeroed = start; 3653 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS)) 3654 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3655 else { 3656 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3657 elr->lr_next_group = start; 3658 } 3659 3660 /* 3661 * Randomize first schedule time of the request to 3662 * spread the inode table initialization requests 3663 * better. 3664 */ 3665 elr->lr_next_sched = jiffies + (prandom_u32() % 3666 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3667 return elr; 3668 } 3669 3670 int ext4_register_li_request(struct super_block *sb, 3671 ext4_group_t first_not_zeroed) 3672 { 3673 struct ext4_sb_info *sbi = EXT4_SB(sb); 3674 struct ext4_li_request *elr = NULL; 3675 ext4_group_t ngroups = sbi->s_groups_count; 3676 int ret = 0; 3677 3678 mutex_lock(&ext4_li_mtx); 3679 if (sbi->s_li_request != NULL) { 3680 /* 3681 * Reset timeout so it can be computed again, because 3682 * s_li_wait_mult might have changed. 3683 */ 3684 sbi->s_li_request->lr_timeout = 0; 3685 goto out; 3686 } 3687 3688 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) && 3689 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3690 !test_opt(sb, INIT_INODE_TABLE))) 3691 goto out; 3692 3693 elr = ext4_li_request_new(sb, first_not_zeroed); 3694 if (!elr) { 3695 ret = -ENOMEM; 3696 goto out; 3697 } 3698 3699 if (NULL == ext4_li_info) { 3700 ret = ext4_li_info_new(); 3701 if (ret) 3702 goto out; 3703 } 3704 3705 mutex_lock(&ext4_li_info->li_list_mtx); 3706 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3707 mutex_unlock(&ext4_li_info->li_list_mtx); 3708 3709 sbi->s_li_request = elr; 3710 /* 3711 * set elr to NULL here since it has been inserted to 3712 * the request_list and the removal and free of it is 3713 * handled by ext4_clear_request_list from now on. 3714 */ 3715 elr = NULL; 3716 3717 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3718 ret = ext4_run_lazyinit_thread(); 3719 if (ret) 3720 goto out; 3721 } 3722 out: 3723 mutex_unlock(&ext4_li_mtx); 3724 if (ret) 3725 kfree(elr); 3726 return ret; 3727 } 3728 3729 /* 3730 * We do not need to lock anything since this is called on 3731 * module unload. 3732 */ 3733 static void ext4_destroy_lazyinit_thread(void) 3734 { 3735 /* 3736 * If thread exited earlier 3737 * there's nothing to be done. 3738 */ 3739 if (!ext4_li_info || !ext4_lazyinit_task) 3740 return; 3741 3742 kthread_stop(ext4_lazyinit_task); 3743 } 3744 3745 static int set_journal_csum_feature_set(struct super_block *sb) 3746 { 3747 int ret = 1; 3748 int compat, incompat; 3749 struct ext4_sb_info *sbi = EXT4_SB(sb); 3750 3751 if (ext4_has_metadata_csum(sb)) { 3752 /* journal checksum v3 */ 3753 compat = 0; 3754 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3755 } else { 3756 /* journal checksum v1 */ 3757 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3758 incompat = 0; 3759 } 3760 3761 jbd2_journal_clear_features(sbi->s_journal, 3762 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3763 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3764 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3765 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3766 ret = jbd2_journal_set_features(sbi->s_journal, 3767 compat, 0, 3768 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3769 incompat); 3770 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3771 ret = jbd2_journal_set_features(sbi->s_journal, 3772 compat, 0, 3773 incompat); 3774 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3775 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3776 } else { 3777 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3778 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3779 } 3780 3781 return ret; 3782 } 3783 3784 /* 3785 * Note: calculating the overhead so we can be compatible with 3786 * historical BSD practice is quite difficult in the face of 3787 * clusters/bigalloc. This is because multiple metadata blocks from 3788 * different block group can end up in the same allocation cluster. 3789 * Calculating the exact overhead in the face of clustered allocation 3790 * requires either O(all block bitmaps) in memory or O(number of block 3791 * groups**2) in time. We will still calculate the superblock for 3792 * older file systems --- and if we come across with a bigalloc file 3793 * system with zero in s_overhead_clusters the estimate will be close to 3794 * correct especially for very large cluster sizes --- but for newer 3795 * file systems, it's better to calculate this figure once at mkfs 3796 * time, and store it in the superblock. If the superblock value is 3797 * present (even for non-bigalloc file systems), we will use it. 3798 */ 3799 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3800 char *buf) 3801 { 3802 struct ext4_sb_info *sbi = EXT4_SB(sb); 3803 struct ext4_group_desc *gdp; 3804 ext4_fsblk_t first_block, last_block, b; 3805 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3806 int s, j, count = 0; 3807 3808 if (!ext4_has_feature_bigalloc(sb)) 3809 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3810 sbi->s_itb_per_group + 2); 3811 3812 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3813 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3814 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3815 for (i = 0; i < ngroups; i++) { 3816 gdp = ext4_get_group_desc(sb, i, NULL); 3817 b = ext4_block_bitmap(sb, gdp); 3818 if (b >= first_block && b <= last_block) { 3819 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3820 count++; 3821 } 3822 b = ext4_inode_bitmap(sb, gdp); 3823 if (b >= first_block && b <= last_block) { 3824 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3825 count++; 3826 } 3827 b = ext4_inode_table(sb, gdp); 3828 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3829 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3830 int c = EXT4_B2C(sbi, b - first_block); 3831 ext4_set_bit(c, buf); 3832 count++; 3833 } 3834 if (i != grp) 3835 continue; 3836 s = 0; 3837 if (ext4_bg_has_super(sb, grp)) { 3838 ext4_set_bit(s++, buf); 3839 count++; 3840 } 3841 j = ext4_bg_num_gdb(sb, grp); 3842 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3843 ext4_error(sb, "Invalid number of block group " 3844 "descriptor blocks: %d", j); 3845 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3846 } 3847 count += j; 3848 for (; j > 0; j--) 3849 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3850 } 3851 if (!count) 3852 return 0; 3853 return EXT4_CLUSTERS_PER_GROUP(sb) - 3854 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3855 } 3856 3857 /* 3858 * Compute the overhead and stash it in sbi->s_overhead 3859 */ 3860 int ext4_calculate_overhead(struct super_block *sb) 3861 { 3862 struct ext4_sb_info *sbi = EXT4_SB(sb); 3863 struct ext4_super_block *es = sbi->s_es; 3864 struct inode *j_inode; 3865 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3866 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3867 ext4_fsblk_t overhead = 0; 3868 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3869 3870 if (!buf) 3871 return -ENOMEM; 3872 3873 /* 3874 * Compute the overhead (FS structures). This is constant 3875 * for a given filesystem unless the number of block groups 3876 * changes so we cache the previous value until it does. 3877 */ 3878 3879 /* 3880 * All of the blocks before first_data_block are overhead 3881 */ 3882 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3883 3884 /* 3885 * Add the overhead found in each block group 3886 */ 3887 for (i = 0; i < ngroups; i++) { 3888 int blks; 3889 3890 blks = count_overhead(sb, i, buf); 3891 overhead += blks; 3892 if (blks) 3893 memset(buf, 0, PAGE_SIZE); 3894 cond_resched(); 3895 } 3896 3897 /* 3898 * Add the internal journal blocks whether the journal has been 3899 * loaded or not 3900 */ 3901 if (sbi->s_journal && !sbi->s_journal_bdev) 3902 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3903 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3904 /* j_inum for internal journal is non-zero */ 3905 j_inode = ext4_get_journal_inode(sb, j_inum); 3906 if (j_inode) { 3907 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3908 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3909 iput(j_inode); 3910 } else { 3911 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3912 } 3913 } 3914 sbi->s_overhead = overhead; 3915 smp_wmb(); 3916 free_page((unsigned long) buf); 3917 return 0; 3918 } 3919 3920 static void ext4_set_resv_clusters(struct super_block *sb) 3921 { 3922 ext4_fsblk_t resv_clusters; 3923 struct ext4_sb_info *sbi = EXT4_SB(sb); 3924 3925 /* 3926 * There's no need to reserve anything when we aren't using extents. 3927 * The space estimates are exact, there are no unwritten extents, 3928 * hole punching doesn't need new metadata... This is needed especially 3929 * to keep ext2/3 backward compatibility. 3930 */ 3931 if (!ext4_has_feature_extents(sb)) 3932 return; 3933 /* 3934 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3935 * This should cover the situations where we can not afford to run 3936 * out of space like for example punch hole, or converting 3937 * unwritten extents in delalloc path. In most cases such 3938 * allocation would require 1, or 2 blocks, higher numbers are 3939 * very rare. 3940 */ 3941 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3942 sbi->s_cluster_bits); 3943 3944 do_div(resv_clusters, 50); 3945 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3946 3947 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3948 } 3949 3950 static const char *ext4_quota_mode(struct super_block *sb) 3951 { 3952 #ifdef CONFIG_QUOTA 3953 if (!ext4_quota_capable(sb)) 3954 return "none"; 3955 3956 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3957 return "journalled"; 3958 else 3959 return "writeback"; 3960 #else 3961 return "disabled"; 3962 #endif 3963 } 3964 3965 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3966 { 3967 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3968 char *orig_data = kstrdup(data, GFP_KERNEL); 3969 struct buffer_head *bh, **group_desc; 3970 struct ext4_super_block *es = NULL; 3971 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3972 struct flex_groups **flex_groups; 3973 ext4_fsblk_t block; 3974 ext4_fsblk_t sb_block = get_sb_block(&data); 3975 ext4_fsblk_t logical_sb_block; 3976 unsigned long offset = 0; 3977 unsigned long journal_devnum = 0; 3978 unsigned long def_mount_opts; 3979 struct inode *root; 3980 const char *descr; 3981 int ret = -ENOMEM; 3982 int blocksize, clustersize; 3983 unsigned int db_count; 3984 unsigned int i; 3985 int needs_recovery, has_huge_files; 3986 __u64 blocks_count; 3987 int err = 0; 3988 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3989 ext4_group_t first_not_zeroed; 3990 3991 if ((data && !orig_data) || !sbi) 3992 goto out_free_base; 3993 3994 sbi->s_daxdev = dax_dev; 3995 sbi->s_blockgroup_lock = 3996 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3997 if (!sbi->s_blockgroup_lock) 3998 goto out_free_base; 3999 4000 sb->s_fs_info = sbi; 4001 sbi->s_sb = sb; 4002 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4003 sbi->s_sb_block = sb_block; 4004 sbi->s_sectors_written_start = 4005 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4006 4007 /* Cleanup superblock name */ 4008 strreplace(sb->s_id, '/', '!'); 4009 4010 /* -EINVAL is default */ 4011 ret = -EINVAL; 4012 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4013 if (!blocksize) { 4014 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4015 goto out_fail; 4016 } 4017 4018 /* 4019 * The ext4 superblock will not be buffer aligned for other than 1kB 4020 * block sizes. We need to calculate the offset from buffer start. 4021 */ 4022 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4023 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4024 offset = do_div(logical_sb_block, blocksize); 4025 } else { 4026 logical_sb_block = sb_block; 4027 } 4028 4029 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4030 if (IS_ERR(bh)) { 4031 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4032 ret = PTR_ERR(bh); 4033 goto out_fail; 4034 } 4035 /* 4036 * Note: s_es must be initialized as soon as possible because 4037 * some ext4 macro-instructions depend on its value 4038 */ 4039 es = (struct ext4_super_block *) (bh->b_data + offset); 4040 sbi->s_es = es; 4041 sb->s_magic = le16_to_cpu(es->s_magic); 4042 if (sb->s_magic != EXT4_SUPER_MAGIC) 4043 goto cantfind_ext4; 4044 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4045 4046 /* Warn if metadata_csum and gdt_csum are both set. */ 4047 if (ext4_has_feature_metadata_csum(sb) && 4048 ext4_has_feature_gdt_csum(sb)) 4049 ext4_warning(sb, "metadata_csum and uninit_bg are " 4050 "redundant flags; please run fsck."); 4051 4052 /* Check for a known checksum algorithm */ 4053 if (!ext4_verify_csum_type(sb, es)) { 4054 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4055 "unknown checksum algorithm."); 4056 silent = 1; 4057 goto cantfind_ext4; 4058 } 4059 4060 /* Load the checksum driver */ 4061 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4062 if (IS_ERR(sbi->s_chksum_driver)) { 4063 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4064 ret = PTR_ERR(sbi->s_chksum_driver); 4065 sbi->s_chksum_driver = NULL; 4066 goto failed_mount; 4067 } 4068 4069 /* Check superblock checksum */ 4070 if (!ext4_superblock_csum_verify(sb, es)) { 4071 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4072 "invalid superblock checksum. Run e2fsck?"); 4073 silent = 1; 4074 ret = -EFSBADCRC; 4075 goto cantfind_ext4; 4076 } 4077 4078 /* Precompute checksum seed for all metadata */ 4079 if (ext4_has_feature_csum_seed(sb)) 4080 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4081 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4082 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4083 sizeof(es->s_uuid)); 4084 4085 /* Set defaults before we parse the mount options */ 4086 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4087 set_opt(sb, INIT_INODE_TABLE); 4088 if (def_mount_opts & EXT4_DEFM_DEBUG) 4089 set_opt(sb, DEBUG); 4090 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4091 set_opt(sb, GRPID); 4092 if (def_mount_opts & EXT4_DEFM_UID16) 4093 set_opt(sb, NO_UID32); 4094 /* xattr user namespace & acls are now defaulted on */ 4095 set_opt(sb, XATTR_USER); 4096 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4097 set_opt(sb, POSIX_ACL); 4098 #endif 4099 if (ext4_has_feature_fast_commit(sb)) 4100 set_opt2(sb, JOURNAL_FAST_COMMIT); 4101 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4102 if (ext4_has_metadata_csum(sb)) 4103 set_opt(sb, JOURNAL_CHECKSUM); 4104 4105 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4106 set_opt(sb, JOURNAL_DATA); 4107 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4108 set_opt(sb, ORDERED_DATA); 4109 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4110 set_opt(sb, WRITEBACK_DATA); 4111 4112 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4113 set_opt(sb, ERRORS_PANIC); 4114 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4115 set_opt(sb, ERRORS_CONT); 4116 else 4117 set_opt(sb, ERRORS_RO); 4118 /* block_validity enabled by default; disable with noblock_validity */ 4119 set_opt(sb, BLOCK_VALIDITY); 4120 if (def_mount_opts & EXT4_DEFM_DISCARD) 4121 set_opt(sb, DISCARD); 4122 4123 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4124 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4125 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4126 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4127 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4128 4129 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4130 set_opt(sb, BARRIER); 4131 4132 /* 4133 * enable delayed allocation by default 4134 * Use -o nodelalloc to turn it off 4135 */ 4136 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4137 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4138 set_opt(sb, DELALLOC); 4139 4140 /* 4141 * set default s_li_wait_mult for lazyinit, for the case there is 4142 * no mount option specified. 4143 */ 4144 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4145 4146 if (le32_to_cpu(es->s_log_block_size) > 4147 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4148 ext4_msg(sb, KERN_ERR, 4149 "Invalid log block size: %u", 4150 le32_to_cpu(es->s_log_block_size)); 4151 goto failed_mount; 4152 } 4153 if (le32_to_cpu(es->s_log_cluster_size) > 4154 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4155 ext4_msg(sb, KERN_ERR, 4156 "Invalid log cluster size: %u", 4157 le32_to_cpu(es->s_log_cluster_size)); 4158 goto failed_mount; 4159 } 4160 4161 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4162 4163 if (blocksize == PAGE_SIZE) 4164 set_opt(sb, DIOREAD_NOLOCK); 4165 4166 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4167 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4168 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4169 } else { 4170 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4171 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4172 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4173 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4174 sbi->s_first_ino); 4175 goto failed_mount; 4176 } 4177 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4178 (!is_power_of_2(sbi->s_inode_size)) || 4179 (sbi->s_inode_size > blocksize)) { 4180 ext4_msg(sb, KERN_ERR, 4181 "unsupported inode size: %d", 4182 sbi->s_inode_size); 4183 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4184 goto failed_mount; 4185 } 4186 /* 4187 * i_atime_extra is the last extra field available for 4188 * [acm]times in struct ext4_inode. Checking for that 4189 * field should suffice to ensure we have extra space 4190 * for all three. 4191 */ 4192 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4193 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4194 sb->s_time_gran = 1; 4195 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4196 } else { 4197 sb->s_time_gran = NSEC_PER_SEC; 4198 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4199 } 4200 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4201 } 4202 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4203 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4204 EXT4_GOOD_OLD_INODE_SIZE; 4205 if (ext4_has_feature_extra_isize(sb)) { 4206 unsigned v, max = (sbi->s_inode_size - 4207 EXT4_GOOD_OLD_INODE_SIZE); 4208 4209 v = le16_to_cpu(es->s_want_extra_isize); 4210 if (v > max) { 4211 ext4_msg(sb, KERN_ERR, 4212 "bad s_want_extra_isize: %d", v); 4213 goto failed_mount; 4214 } 4215 if (sbi->s_want_extra_isize < v) 4216 sbi->s_want_extra_isize = v; 4217 4218 v = le16_to_cpu(es->s_min_extra_isize); 4219 if (v > max) { 4220 ext4_msg(sb, KERN_ERR, 4221 "bad s_min_extra_isize: %d", v); 4222 goto failed_mount; 4223 } 4224 if (sbi->s_want_extra_isize < v) 4225 sbi->s_want_extra_isize = v; 4226 } 4227 } 4228 4229 if (sbi->s_es->s_mount_opts[0]) { 4230 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4231 sizeof(sbi->s_es->s_mount_opts), 4232 GFP_KERNEL); 4233 if (!s_mount_opts) 4234 goto failed_mount; 4235 if (!parse_options(s_mount_opts, sb, &journal_devnum, 4236 &journal_ioprio, 0)) { 4237 ext4_msg(sb, KERN_WARNING, 4238 "failed to parse options in superblock: %s", 4239 s_mount_opts); 4240 } 4241 kfree(s_mount_opts); 4242 } 4243 sbi->s_def_mount_opt = sbi->s_mount_opt; 4244 if (!parse_options((char *) data, sb, &journal_devnum, 4245 &journal_ioprio, 0)) 4246 goto failed_mount; 4247 4248 #ifdef CONFIG_UNICODE 4249 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4250 const struct ext4_sb_encodings *encoding_info; 4251 struct unicode_map *encoding; 4252 __u16 encoding_flags; 4253 4254 if (ext4_has_feature_encrypt(sb)) { 4255 ext4_msg(sb, KERN_ERR, 4256 "Can't mount with encoding and encryption"); 4257 goto failed_mount; 4258 } 4259 4260 if (ext4_sb_read_encoding(es, &encoding_info, 4261 &encoding_flags)) { 4262 ext4_msg(sb, KERN_ERR, 4263 "Encoding requested by superblock is unknown"); 4264 goto failed_mount; 4265 } 4266 4267 encoding = utf8_load(encoding_info->version); 4268 if (IS_ERR(encoding)) { 4269 ext4_msg(sb, KERN_ERR, 4270 "can't mount with superblock charset: %s-%s " 4271 "not supported by the kernel. flags: 0x%x.", 4272 encoding_info->name, encoding_info->version, 4273 encoding_flags); 4274 goto failed_mount; 4275 } 4276 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4277 "%s-%s with flags 0x%hx", encoding_info->name, 4278 encoding_info->version?:"\b", encoding_flags); 4279 4280 sb->s_encoding = encoding; 4281 sb->s_encoding_flags = encoding_flags; 4282 } 4283 #endif 4284 4285 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4286 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4287 /* can't mount with both data=journal and dioread_nolock. */ 4288 clear_opt(sb, DIOREAD_NOLOCK); 4289 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4290 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4291 ext4_msg(sb, KERN_ERR, "can't mount with " 4292 "both data=journal and delalloc"); 4293 goto failed_mount; 4294 } 4295 if (test_opt(sb, DAX_ALWAYS)) { 4296 ext4_msg(sb, KERN_ERR, "can't mount with " 4297 "both data=journal and dax"); 4298 goto failed_mount; 4299 } 4300 if (ext4_has_feature_encrypt(sb)) { 4301 ext4_msg(sb, KERN_WARNING, 4302 "encrypted files will use data=ordered " 4303 "instead of data journaling mode"); 4304 } 4305 if (test_opt(sb, DELALLOC)) 4306 clear_opt(sb, DELALLOC); 4307 } else { 4308 sb->s_iflags |= SB_I_CGROUPWB; 4309 } 4310 4311 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4312 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4313 4314 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4315 (ext4_has_compat_features(sb) || 4316 ext4_has_ro_compat_features(sb) || 4317 ext4_has_incompat_features(sb))) 4318 ext4_msg(sb, KERN_WARNING, 4319 "feature flags set on rev 0 fs, " 4320 "running e2fsck is recommended"); 4321 4322 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4323 set_opt2(sb, HURD_COMPAT); 4324 if (ext4_has_feature_64bit(sb)) { 4325 ext4_msg(sb, KERN_ERR, 4326 "The Hurd can't support 64-bit file systems"); 4327 goto failed_mount; 4328 } 4329 4330 /* 4331 * ea_inode feature uses l_i_version field which is not 4332 * available in HURD_COMPAT mode. 4333 */ 4334 if (ext4_has_feature_ea_inode(sb)) { 4335 ext4_msg(sb, KERN_ERR, 4336 "ea_inode feature is not supported for Hurd"); 4337 goto failed_mount; 4338 } 4339 } 4340 4341 if (IS_EXT2_SB(sb)) { 4342 if (ext2_feature_set_ok(sb)) 4343 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4344 "using the ext4 subsystem"); 4345 else { 4346 /* 4347 * If we're probing be silent, if this looks like 4348 * it's actually an ext[34] filesystem. 4349 */ 4350 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4351 goto failed_mount; 4352 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4353 "to feature incompatibilities"); 4354 goto failed_mount; 4355 } 4356 } 4357 4358 if (IS_EXT3_SB(sb)) { 4359 if (ext3_feature_set_ok(sb)) 4360 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4361 "using the ext4 subsystem"); 4362 else { 4363 /* 4364 * If we're probing be silent, if this looks like 4365 * it's actually an ext4 filesystem. 4366 */ 4367 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4368 goto failed_mount; 4369 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4370 "to feature incompatibilities"); 4371 goto failed_mount; 4372 } 4373 } 4374 4375 /* 4376 * Check feature flags regardless of the revision level, since we 4377 * previously didn't change the revision level when setting the flags, 4378 * so there is a chance incompat flags are set on a rev 0 filesystem. 4379 */ 4380 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4381 goto failed_mount; 4382 4383 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4384 ext4_msg(sb, KERN_ERR, 4385 "Number of reserved GDT blocks insanely large: %d", 4386 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4387 goto failed_mount; 4388 } 4389 4390 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4391 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4392 4393 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4394 if (ext4_has_feature_inline_data(sb)) { 4395 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4396 " that may contain inline data"); 4397 goto failed_mount; 4398 } 4399 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4400 ext4_msg(sb, KERN_ERR, 4401 "DAX unsupported by block device."); 4402 goto failed_mount; 4403 } 4404 } 4405 4406 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4407 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4408 es->s_encryption_level); 4409 goto failed_mount; 4410 } 4411 4412 if (sb->s_blocksize != blocksize) { 4413 /* Validate the filesystem blocksize */ 4414 if (!sb_set_blocksize(sb, blocksize)) { 4415 ext4_msg(sb, KERN_ERR, "bad block size %d", 4416 blocksize); 4417 goto failed_mount; 4418 } 4419 4420 brelse(bh); 4421 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4422 offset = do_div(logical_sb_block, blocksize); 4423 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4424 if (IS_ERR(bh)) { 4425 ext4_msg(sb, KERN_ERR, 4426 "Can't read superblock on 2nd try"); 4427 ret = PTR_ERR(bh); 4428 bh = NULL; 4429 goto failed_mount; 4430 } 4431 es = (struct ext4_super_block *)(bh->b_data + offset); 4432 sbi->s_es = es; 4433 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4434 ext4_msg(sb, KERN_ERR, 4435 "Magic mismatch, very weird!"); 4436 goto failed_mount; 4437 } 4438 } 4439 4440 has_huge_files = ext4_has_feature_huge_file(sb); 4441 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4442 has_huge_files); 4443 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4444 4445 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4446 if (ext4_has_feature_64bit(sb)) { 4447 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4448 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4449 !is_power_of_2(sbi->s_desc_size)) { 4450 ext4_msg(sb, KERN_ERR, 4451 "unsupported descriptor size %lu", 4452 sbi->s_desc_size); 4453 goto failed_mount; 4454 } 4455 } else 4456 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4457 4458 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4459 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4460 4461 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4462 if (sbi->s_inodes_per_block == 0) 4463 goto cantfind_ext4; 4464 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4465 sbi->s_inodes_per_group > blocksize * 8) { 4466 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4467 sbi->s_inodes_per_group); 4468 goto failed_mount; 4469 } 4470 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4471 sbi->s_inodes_per_block; 4472 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4473 sbi->s_sbh = bh; 4474 sbi->s_mount_state = le16_to_cpu(es->s_state); 4475 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4476 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4477 4478 for (i = 0; i < 4; i++) 4479 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4480 sbi->s_def_hash_version = es->s_def_hash_version; 4481 if (ext4_has_feature_dir_index(sb)) { 4482 i = le32_to_cpu(es->s_flags); 4483 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4484 sbi->s_hash_unsigned = 3; 4485 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4486 #ifdef __CHAR_UNSIGNED__ 4487 if (!sb_rdonly(sb)) 4488 es->s_flags |= 4489 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4490 sbi->s_hash_unsigned = 3; 4491 #else 4492 if (!sb_rdonly(sb)) 4493 es->s_flags |= 4494 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4495 #endif 4496 } 4497 } 4498 4499 /* Handle clustersize */ 4500 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4501 if (ext4_has_feature_bigalloc(sb)) { 4502 if (clustersize < blocksize) { 4503 ext4_msg(sb, KERN_ERR, 4504 "cluster size (%d) smaller than " 4505 "block size (%d)", clustersize, blocksize); 4506 goto failed_mount; 4507 } 4508 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4509 le32_to_cpu(es->s_log_block_size); 4510 sbi->s_clusters_per_group = 4511 le32_to_cpu(es->s_clusters_per_group); 4512 if (sbi->s_clusters_per_group > blocksize * 8) { 4513 ext4_msg(sb, KERN_ERR, 4514 "#clusters per group too big: %lu", 4515 sbi->s_clusters_per_group); 4516 goto failed_mount; 4517 } 4518 if (sbi->s_blocks_per_group != 4519 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4520 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4521 "clusters per group (%lu) inconsistent", 4522 sbi->s_blocks_per_group, 4523 sbi->s_clusters_per_group); 4524 goto failed_mount; 4525 } 4526 } else { 4527 if (clustersize != blocksize) { 4528 ext4_msg(sb, KERN_ERR, 4529 "fragment/cluster size (%d) != " 4530 "block size (%d)", clustersize, blocksize); 4531 goto failed_mount; 4532 } 4533 if (sbi->s_blocks_per_group > blocksize * 8) { 4534 ext4_msg(sb, KERN_ERR, 4535 "#blocks per group too big: %lu", 4536 sbi->s_blocks_per_group); 4537 goto failed_mount; 4538 } 4539 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4540 sbi->s_cluster_bits = 0; 4541 } 4542 sbi->s_cluster_ratio = clustersize / blocksize; 4543 4544 /* Do we have standard group size of clustersize * 8 blocks ? */ 4545 if (sbi->s_blocks_per_group == clustersize << 3) 4546 set_opt2(sb, STD_GROUP_SIZE); 4547 4548 /* 4549 * Test whether we have more sectors than will fit in sector_t, 4550 * and whether the max offset is addressable by the page cache. 4551 */ 4552 err = generic_check_addressable(sb->s_blocksize_bits, 4553 ext4_blocks_count(es)); 4554 if (err) { 4555 ext4_msg(sb, KERN_ERR, "filesystem" 4556 " too large to mount safely on this system"); 4557 goto failed_mount; 4558 } 4559 4560 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4561 goto cantfind_ext4; 4562 4563 /* check blocks count against device size */ 4564 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4565 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4566 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4567 "exceeds size of device (%llu blocks)", 4568 ext4_blocks_count(es), blocks_count); 4569 goto failed_mount; 4570 } 4571 4572 /* 4573 * It makes no sense for the first data block to be beyond the end 4574 * of the filesystem. 4575 */ 4576 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4577 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4578 "block %u is beyond end of filesystem (%llu)", 4579 le32_to_cpu(es->s_first_data_block), 4580 ext4_blocks_count(es)); 4581 goto failed_mount; 4582 } 4583 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4584 (sbi->s_cluster_ratio == 1)) { 4585 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4586 "block is 0 with a 1k block and cluster size"); 4587 goto failed_mount; 4588 } 4589 4590 blocks_count = (ext4_blocks_count(es) - 4591 le32_to_cpu(es->s_first_data_block) + 4592 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4593 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4594 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4595 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4596 "(block count %llu, first data block %u, " 4597 "blocks per group %lu)", blocks_count, 4598 ext4_blocks_count(es), 4599 le32_to_cpu(es->s_first_data_block), 4600 EXT4_BLOCKS_PER_GROUP(sb)); 4601 goto failed_mount; 4602 } 4603 sbi->s_groups_count = blocks_count; 4604 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4605 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4606 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4607 le32_to_cpu(es->s_inodes_count)) { 4608 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4609 le32_to_cpu(es->s_inodes_count), 4610 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4611 ret = -EINVAL; 4612 goto failed_mount; 4613 } 4614 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4615 EXT4_DESC_PER_BLOCK(sb); 4616 if (ext4_has_feature_meta_bg(sb)) { 4617 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4618 ext4_msg(sb, KERN_WARNING, 4619 "first meta block group too large: %u " 4620 "(group descriptor block count %u)", 4621 le32_to_cpu(es->s_first_meta_bg), db_count); 4622 goto failed_mount; 4623 } 4624 } 4625 rcu_assign_pointer(sbi->s_group_desc, 4626 kvmalloc_array(db_count, 4627 sizeof(struct buffer_head *), 4628 GFP_KERNEL)); 4629 if (sbi->s_group_desc == NULL) { 4630 ext4_msg(sb, KERN_ERR, "not enough memory"); 4631 ret = -ENOMEM; 4632 goto failed_mount; 4633 } 4634 4635 bgl_lock_init(sbi->s_blockgroup_lock); 4636 4637 /* Pre-read the descriptors into the buffer cache */ 4638 for (i = 0; i < db_count; i++) { 4639 block = descriptor_loc(sb, logical_sb_block, i); 4640 ext4_sb_breadahead_unmovable(sb, block); 4641 } 4642 4643 for (i = 0; i < db_count; i++) { 4644 struct buffer_head *bh; 4645 4646 block = descriptor_loc(sb, logical_sb_block, i); 4647 bh = ext4_sb_bread_unmovable(sb, block); 4648 if (IS_ERR(bh)) { 4649 ext4_msg(sb, KERN_ERR, 4650 "can't read group descriptor %d", i); 4651 db_count = i; 4652 ret = PTR_ERR(bh); 4653 goto failed_mount2; 4654 } 4655 rcu_read_lock(); 4656 rcu_dereference(sbi->s_group_desc)[i] = bh; 4657 rcu_read_unlock(); 4658 } 4659 sbi->s_gdb_count = db_count; 4660 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4661 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4662 ret = -EFSCORRUPTED; 4663 goto failed_mount2; 4664 } 4665 4666 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4667 spin_lock_init(&sbi->s_error_lock); 4668 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4669 4670 /* Register extent status tree shrinker */ 4671 if (ext4_es_register_shrinker(sbi)) 4672 goto failed_mount3; 4673 4674 sbi->s_stripe = ext4_get_stripe_size(sbi); 4675 sbi->s_extent_max_zeroout_kb = 32; 4676 4677 /* 4678 * set up enough so that it can read an inode 4679 */ 4680 sb->s_op = &ext4_sops; 4681 sb->s_export_op = &ext4_export_ops; 4682 sb->s_xattr = ext4_xattr_handlers; 4683 #ifdef CONFIG_FS_ENCRYPTION 4684 sb->s_cop = &ext4_cryptops; 4685 #endif 4686 #ifdef CONFIG_FS_VERITY 4687 sb->s_vop = &ext4_verityops; 4688 #endif 4689 #ifdef CONFIG_QUOTA 4690 sb->dq_op = &ext4_quota_operations; 4691 if (ext4_has_feature_quota(sb)) 4692 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4693 else 4694 sb->s_qcop = &ext4_qctl_operations; 4695 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4696 #endif 4697 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4698 4699 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4700 mutex_init(&sbi->s_orphan_lock); 4701 4702 /* Initialize fast commit stuff */ 4703 atomic_set(&sbi->s_fc_subtid, 0); 4704 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4705 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4706 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4707 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4708 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4709 sbi->s_fc_bytes = 0; 4710 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4711 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4712 spin_lock_init(&sbi->s_fc_lock); 4713 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4714 sbi->s_fc_replay_state.fc_regions = NULL; 4715 sbi->s_fc_replay_state.fc_regions_size = 0; 4716 sbi->s_fc_replay_state.fc_regions_used = 0; 4717 sbi->s_fc_replay_state.fc_regions_valid = 0; 4718 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4719 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4720 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4721 4722 sb->s_root = NULL; 4723 4724 needs_recovery = (es->s_last_orphan != 0 || 4725 ext4_has_feature_journal_needs_recovery(sb)); 4726 4727 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4728 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4729 goto failed_mount3a; 4730 4731 /* 4732 * The first inode we look at is the journal inode. Don't try 4733 * root first: it may be modified in the journal! 4734 */ 4735 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4736 err = ext4_load_journal(sb, es, journal_devnum); 4737 if (err) 4738 goto failed_mount3a; 4739 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4740 ext4_has_feature_journal_needs_recovery(sb)) { 4741 ext4_msg(sb, KERN_ERR, "required journal recovery " 4742 "suppressed and not mounted read-only"); 4743 goto failed_mount_wq; 4744 } else { 4745 /* Nojournal mode, all journal mount options are illegal */ 4746 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4747 ext4_msg(sb, KERN_ERR, "can't mount with " 4748 "journal_checksum, fs mounted w/o journal"); 4749 goto failed_mount_wq; 4750 } 4751 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4752 ext4_msg(sb, KERN_ERR, "can't mount with " 4753 "journal_async_commit, fs mounted w/o journal"); 4754 goto failed_mount_wq; 4755 } 4756 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4757 ext4_msg(sb, KERN_ERR, "can't mount with " 4758 "commit=%lu, fs mounted w/o journal", 4759 sbi->s_commit_interval / HZ); 4760 goto failed_mount_wq; 4761 } 4762 if (EXT4_MOUNT_DATA_FLAGS & 4763 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4764 ext4_msg(sb, KERN_ERR, "can't mount with " 4765 "data=, fs mounted w/o journal"); 4766 goto failed_mount_wq; 4767 } 4768 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4769 clear_opt(sb, JOURNAL_CHECKSUM); 4770 clear_opt(sb, DATA_FLAGS); 4771 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4772 sbi->s_journal = NULL; 4773 needs_recovery = 0; 4774 goto no_journal; 4775 } 4776 4777 if (ext4_has_feature_64bit(sb) && 4778 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4779 JBD2_FEATURE_INCOMPAT_64BIT)) { 4780 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4781 goto failed_mount_wq; 4782 } 4783 4784 if (!set_journal_csum_feature_set(sb)) { 4785 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4786 "feature set"); 4787 goto failed_mount_wq; 4788 } 4789 4790 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4791 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4792 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4793 ext4_msg(sb, KERN_ERR, 4794 "Failed to set fast commit journal feature"); 4795 goto failed_mount_wq; 4796 } 4797 4798 /* We have now updated the journal if required, so we can 4799 * validate the data journaling mode. */ 4800 switch (test_opt(sb, DATA_FLAGS)) { 4801 case 0: 4802 /* No mode set, assume a default based on the journal 4803 * capabilities: ORDERED_DATA if the journal can 4804 * cope, else JOURNAL_DATA 4805 */ 4806 if (jbd2_journal_check_available_features 4807 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4808 set_opt(sb, ORDERED_DATA); 4809 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4810 } else { 4811 set_opt(sb, JOURNAL_DATA); 4812 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4813 } 4814 break; 4815 4816 case EXT4_MOUNT_ORDERED_DATA: 4817 case EXT4_MOUNT_WRITEBACK_DATA: 4818 if (!jbd2_journal_check_available_features 4819 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4820 ext4_msg(sb, KERN_ERR, "Journal does not support " 4821 "requested data journaling mode"); 4822 goto failed_mount_wq; 4823 } 4824 break; 4825 default: 4826 break; 4827 } 4828 4829 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4830 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4831 ext4_msg(sb, KERN_ERR, "can't mount with " 4832 "journal_async_commit in data=ordered mode"); 4833 goto failed_mount_wq; 4834 } 4835 4836 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4837 4838 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4839 sbi->s_journal->j_submit_inode_data_buffers = 4840 ext4_journal_submit_inode_data_buffers; 4841 sbi->s_journal->j_finish_inode_data_buffers = 4842 ext4_journal_finish_inode_data_buffers; 4843 4844 no_journal: 4845 if (!test_opt(sb, NO_MBCACHE)) { 4846 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4847 if (!sbi->s_ea_block_cache) { 4848 ext4_msg(sb, KERN_ERR, 4849 "Failed to create ea_block_cache"); 4850 goto failed_mount_wq; 4851 } 4852 4853 if (ext4_has_feature_ea_inode(sb)) { 4854 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4855 if (!sbi->s_ea_inode_cache) { 4856 ext4_msg(sb, KERN_ERR, 4857 "Failed to create ea_inode_cache"); 4858 goto failed_mount_wq; 4859 } 4860 } 4861 } 4862 4863 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4864 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4865 goto failed_mount_wq; 4866 } 4867 4868 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4869 !ext4_has_feature_encrypt(sb)) { 4870 ext4_set_feature_encrypt(sb); 4871 ext4_commit_super(sb, 1); 4872 } 4873 4874 /* 4875 * Get the # of file system overhead blocks from the 4876 * superblock if present. 4877 */ 4878 if (es->s_overhead_clusters) 4879 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4880 else { 4881 err = ext4_calculate_overhead(sb); 4882 if (err) 4883 goto failed_mount_wq; 4884 } 4885 4886 /* 4887 * The maximum number of concurrent works can be high and 4888 * concurrency isn't really necessary. Limit it to 1. 4889 */ 4890 EXT4_SB(sb)->rsv_conversion_wq = 4891 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4892 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4893 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4894 ret = -ENOMEM; 4895 goto failed_mount4; 4896 } 4897 4898 /* 4899 * The jbd2_journal_load will have done any necessary log recovery, 4900 * so we can safely mount the rest of the filesystem now. 4901 */ 4902 4903 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4904 if (IS_ERR(root)) { 4905 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4906 ret = PTR_ERR(root); 4907 root = NULL; 4908 goto failed_mount4; 4909 } 4910 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4911 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4912 iput(root); 4913 goto failed_mount4; 4914 } 4915 4916 sb->s_root = d_make_root(root); 4917 if (!sb->s_root) { 4918 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4919 ret = -ENOMEM; 4920 goto failed_mount4; 4921 } 4922 4923 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4924 if (ret == -EROFS) { 4925 sb->s_flags |= SB_RDONLY; 4926 ret = 0; 4927 } else if (ret) 4928 goto failed_mount4a; 4929 4930 ext4_set_resv_clusters(sb); 4931 4932 if (test_opt(sb, BLOCK_VALIDITY)) { 4933 err = ext4_setup_system_zone(sb); 4934 if (err) { 4935 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4936 "zone (%d)", err); 4937 goto failed_mount4a; 4938 } 4939 } 4940 ext4_fc_replay_cleanup(sb); 4941 4942 ext4_ext_init(sb); 4943 err = ext4_mb_init(sb); 4944 if (err) { 4945 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4946 err); 4947 goto failed_mount5; 4948 } 4949 4950 block = ext4_count_free_clusters(sb); 4951 ext4_free_blocks_count_set(sbi->s_es, 4952 EXT4_C2B(sbi, block)); 4953 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4954 GFP_KERNEL); 4955 if (!err) { 4956 unsigned long freei = ext4_count_free_inodes(sb); 4957 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4958 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4959 GFP_KERNEL); 4960 } 4961 if (!err) 4962 err = percpu_counter_init(&sbi->s_dirs_counter, 4963 ext4_count_dirs(sb), GFP_KERNEL); 4964 if (!err) 4965 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4966 GFP_KERNEL); 4967 if (!err) 4968 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4969 4970 if (err) { 4971 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4972 goto failed_mount6; 4973 } 4974 4975 if (ext4_has_feature_flex_bg(sb)) 4976 if (!ext4_fill_flex_info(sb)) { 4977 ext4_msg(sb, KERN_ERR, 4978 "unable to initialize " 4979 "flex_bg meta info!"); 4980 goto failed_mount6; 4981 } 4982 4983 err = ext4_register_li_request(sb, first_not_zeroed); 4984 if (err) 4985 goto failed_mount6; 4986 4987 err = ext4_register_sysfs(sb); 4988 if (err) 4989 goto failed_mount7; 4990 4991 #ifdef CONFIG_QUOTA 4992 /* Enable quota usage during mount. */ 4993 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4994 err = ext4_enable_quotas(sb); 4995 if (err) 4996 goto failed_mount8; 4997 } 4998 #endif /* CONFIG_QUOTA */ 4999 5000 /* 5001 * Save the original bdev mapping's wb_err value which could be 5002 * used to detect the metadata async write error. 5003 */ 5004 spin_lock_init(&sbi->s_bdev_wb_lock); 5005 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5006 &sbi->s_bdev_wb_err); 5007 sb->s_bdev->bd_super = sb; 5008 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5009 ext4_orphan_cleanup(sb, es); 5010 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5011 if (needs_recovery) { 5012 ext4_msg(sb, KERN_INFO, "recovery complete"); 5013 err = ext4_mark_recovery_complete(sb, es); 5014 if (err) 5015 goto failed_mount8; 5016 } 5017 if (EXT4_SB(sb)->s_journal) { 5018 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5019 descr = " journalled data mode"; 5020 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5021 descr = " ordered data mode"; 5022 else 5023 descr = " writeback data mode"; 5024 } else 5025 descr = "out journal"; 5026 5027 if (test_opt(sb, DISCARD)) { 5028 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5029 if (!blk_queue_discard(q)) 5030 ext4_msg(sb, KERN_WARNING, 5031 "mounting with \"discard\" option, but " 5032 "the device does not support discard"); 5033 } 5034 5035 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5036 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5037 "Opts: %.*s%s%s. Quota mode: %s.", descr, 5038 (int) sizeof(sbi->s_es->s_mount_opts), 5039 sbi->s_es->s_mount_opts, 5040 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 5041 ext4_quota_mode(sb)); 5042 5043 if (es->s_error_count) 5044 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5045 5046 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5047 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5048 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5049 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5050 atomic_set(&sbi->s_warning_count, 0); 5051 atomic_set(&sbi->s_msg_count, 0); 5052 5053 kfree(orig_data); 5054 return 0; 5055 5056 cantfind_ext4: 5057 if (!silent) 5058 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5059 goto failed_mount; 5060 5061 failed_mount8: 5062 ext4_unregister_sysfs(sb); 5063 kobject_put(&sbi->s_kobj); 5064 failed_mount7: 5065 ext4_unregister_li_request(sb); 5066 failed_mount6: 5067 ext4_mb_release(sb); 5068 rcu_read_lock(); 5069 flex_groups = rcu_dereference(sbi->s_flex_groups); 5070 if (flex_groups) { 5071 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5072 kvfree(flex_groups[i]); 5073 kvfree(flex_groups); 5074 } 5075 rcu_read_unlock(); 5076 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5077 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5078 percpu_counter_destroy(&sbi->s_dirs_counter); 5079 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5080 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5081 failed_mount5: 5082 ext4_ext_release(sb); 5083 ext4_release_system_zone(sb); 5084 failed_mount4a: 5085 dput(sb->s_root); 5086 sb->s_root = NULL; 5087 failed_mount4: 5088 ext4_msg(sb, KERN_ERR, "mount failed"); 5089 if (EXT4_SB(sb)->rsv_conversion_wq) 5090 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5091 failed_mount_wq: 5092 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5093 sbi->s_ea_inode_cache = NULL; 5094 5095 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5096 sbi->s_ea_block_cache = NULL; 5097 5098 if (sbi->s_journal) { 5099 jbd2_journal_destroy(sbi->s_journal); 5100 sbi->s_journal = NULL; 5101 } 5102 failed_mount3a: 5103 ext4_es_unregister_shrinker(sbi); 5104 failed_mount3: 5105 del_timer_sync(&sbi->s_err_report); 5106 flush_work(&sbi->s_error_work); 5107 if (sbi->s_mmp_tsk) 5108 kthread_stop(sbi->s_mmp_tsk); 5109 failed_mount2: 5110 rcu_read_lock(); 5111 group_desc = rcu_dereference(sbi->s_group_desc); 5112 for (i = 0; i < db_count; i++) 5113 brelse(group_desc[i]); 5114 kvfree(group_desc); 5115 rcu_read_unlock(); 5116 failed_mount: 5117 if (sbi->s_chksum_driver) 5118 crypto_free_shash(sbi->s_chksum_driver); 5119 5120 #ifdef CONFIG_UNICODE 5121 utf8_unload(sb->s_encoding); 5122 #endif 5123 5124 #ifdef CONFIG_QUOTA 5125 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5126 kfree(get_qf_name(sb, sbi, i)); 5127 #endif 5128 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5129 ext4_blkdev_remove(sbi); 5130 brelse(bh); 5131 out_fail: 5132 sb->s_fs_info = NULL; 5133 kfree(sbi->s_blockgroup_lock); 5134 out_free_base: 5135 kfree(sbi); 5136 kfree(orig_data); 5137 fs_put_dax(dax_dev); 5138 return err ? err : ret; 5139 } 5140 5141 /* 5142 * Setup any per-fs journal parameters now. We'll do this both on 5143 * initial mount, once the journal has been initialised but before we've 5144 * done any recovery; and again on any subsequent remount. 5145 */ 5146 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5147 { 5148 struct ext4_sb_info *sbi = EXT4_SB(sb); 5149 5150 journal->j_commit_interval = sbi->s_commit_interval; 5151 journal->j_min_batch_time = sbi->s_min_batch_time; 5152 journal->j_max_batch_time = sbi->s_max_batch_time; 5153 ext4_fc_init(sb, journal); 5154 5155 write_lock(&journal->j_state_lock); 5156 if (test_opt(sb, BARRIER)) 5157 journal->j_flags |= JBD2_BARRIER; 5158 else 5159 journal->j_flags &= ~JBD2_BARRIER; 5160 if (test_opt(sb, DATA_ERR_ABORT)) 5161 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5162 else 5163 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5164 write_unlock(&journal->j_state_lock); 5165 } 5166 5167 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5168 unsigned int journal_inum) 5169 { 5170 struct inode *journal_inode; 5171 5172 /* 5173 * Test for the existence of a valid inode on disk. Bad things 5174 * happen if we iget() an unused inode, as the subsequent iput() 5175 * will try to delete it. 5176 */ 5177 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5178 if (IS_ERR(journal_inode)) { 5179 ext4_msg(sb, KERN_ERR, "no journal found"); 5180 return NULL; 5181 } 5182 if (!journal_inode->i_nlink) { 5183 make_bad_inode(journal_inode); 5184 iput(journal_inode); 5185 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5186 return NULL; 5187 } 5188 5189 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5190 journal_inode, journal_inode->i_size); 5191 if (!S_ISREG(journal_inode->i_mode)) { 5192 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5193 iput(journal_inode); 5194 return NULL; 5195 } 5196 return journal_inode; 5197 } 5198 5199 static journal_t *ext4_get_journal(struct super_block *sb, 5200 unsigned int journal_inum) 5201 { 5202 struct inode *journal_inode; 5203 journal_t *journal; 5204 5205 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5206 return NULL; 5207 5208 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5209 if (!journal_inode) 5210 return NULL; 5211 5212 journal = jbd2_journal_init_inode(journal_inode); 5213 if (!journal) { 5214 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5215 iput(journal_inode); 5216 return NULL; 5217 } 5218 journal->j_private = sb; 5219 ext4_init_journal_params(sb, journal); 5220 return journal; 5221 } 5222 5223 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5224 dev_t j_dev) 5225 { 5226 struct buffer_head *bh; 5227 journal_t *journal; 5228 ext4_fsblk_t start; 5229 ext4_fsblk_t len; 5230 int hblock, blocksize; 5231 ext4_fsblk_t sb_block; 5232 unsigned long offset; 5233 struct ext4_super_block *es; 5234 struct block_device *bdev; 5235 5236 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5237 return NULL; 5238 5239 bdev = ext4_blkdev_get(j_dev, sb); 5240 if (bdev == NULL) 5241 return NULL; 5242 5243 blocksize = sb->s_blocksize; 5244 hblock = bdev_logical_block_size(bdev); 5245 if (blocksize < hblock) { 5246 ext4_msg(sb, KERN_ERR, 5247 "blocksize too small for journal device"); 5248 goto out_bdev; 5249 } 5250 5251 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5252 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5253 set_blocksize(bdev, blocksize); 5254 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5255 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5256 "external journal"); 5257 goto out_bdev; 5258 } 5259 5260 es = (struct ext4_super_block *) (bh->b_data + offset); 5261 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5262 !(le32_to_cpu(es->s_feature_incompat) & 5263 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5264 ext4_msg(sb, KERN_ERR, "external journal has " 5265 "bad superblock"); 5266 brelse(bh); 5267 goto out_bdev; 5268 } 5269 5270 if ((le32_to_cpu(es->s_feature_ro_compat) & 5271 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5272 es->s_checksum != ext4_superblock_csum(sb, es)) { 5273 ext4_msg(sb, KERN_ERR, "external journal has " 5274 "corrupt superblock"); 5275 brelse(bh); 5276 goto out_bdev; 5277 } 5278 5279 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5280 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5281 brelse(bh); 5282 goto out_bdev; 5283 } 5284 5285 len = ext4_blocks_count(es); 5286 start = sb_block + 1; 5287 brelse(bh); /* we're done with the superblock */ 5288 5289 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5290 start, len, blocksize); 5291 if (!journal) { 5292 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5293 goto out_bdev; 5294 } 5295 journal->j_private = sb; 5296 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5297 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5298 goto out_journal; 5299 } 5300 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5301 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5302 "user (unsupported) - %d", 5303 be32_to_cpu(journal->j_superblock->s_nr_users)); 5304 goto out_journal; 5305 } 5306 EXT4_SB(sb)->s_journal_bdev = bdev; 5307 ext4_init_journal_params(sb, journal); 5308 return journal; 5309 5310 out_journal: 5311 jbd2_journal_destroy(journal); 5312 out_bdev: 5313 ext4_blkdev_put(bdev); 5314 return NULL; 5315 } 5316 5317 static int ext4_load_journal(struct super_block *sb, 5318 struct ext4_super_block *es, 5319 unsigned long journal_devnum) 5320 { 5321 journal_t *journal; 5322 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5323 dev_t journal_dev; 5324 int err = 0; 5325 int really_read_only; 5326 int journal_dev_ro; 5327 5328 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5329 return -EFSCORRUPTED; 5330 5331 if (journal_devnum && 5332 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5333 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5334 "numbers have changed"); 5335 journal_dev = new_decode_dev(journal_devnum); 5336 } else 5337 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5338 5339 if (journal_inum && journal_dev) { 5340 ext4_msg(sb, KERN_ERR, 5341 "filesystem has both journal inode and journal device!"); 5342 return -EINVAL; 5343 } 5344 5345 if (journal_inum) { 5346 journal = ext4_get_journal(sb, journal_inum); 5347 if (!journal) 5348 return -EINVAL; 5349 } else { 5350 journal = ext4_get_dev_journal(sb, journal_dev); 5351 if (!journal) 5352 return -EINVAL; 5353 } 5354 5355 journal_dev_ro = bdev_read_only(journal->j_dev); 5356 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5357 5358 if (journal_dev_ro && !sb_rdonly(sb)) { 5359 ext4_msg(sb, KERN_ERR, 5360 "journal device read-only, try mounting with '-o ro'"); 5361 err = -EROFS; 5362 goto err_out; 5363 } 5364 5365 /* 5366 * Are we loading a blank journal or performing recovery after a 5367 * crash? For recovery, we need to check in advance whether we 5368 * can get read-write access to the device. 5369 */ 5370 if (ext4_has_feature_journal_needs_recovery(sb)) { 5371 if (sb_rdonly(sb)) { 5372 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5373 "required on readonly filesystem"); 5374 if (really_read_only) { 5375 ext4_msg(sb, KERN_ERR, "write access " 5376 "unavailable, cannot proceed " 5377 "(try mounting with noload)"); 5378 err = -EROFS; 5379 goto err_out; 5380 } 5381 ext4_msg(sb, KERN_INFO, "write access will " 5382 "be enabled during recovery"); 5383 } 5384 } 5385 5386 if (!(journal->j_flags & JBD2_BARRIER)) 5387 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5388 5389 if (!ext4_has_feature_journal_needs_recovery(sb)) 5390 err = jbd2_journal_wipe(journal, !really_read_only); 5391 if (!err) { 5392 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5393 if (save) 5394 memcpy(save, ((char *) es) + 5395 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5396 err = jbd2_journal_load(journal); 5397 if (save) 5398 memcpy(((char *) es) + EXT4_S_ERR_START, 5399 save, EXT4_S_ERR_LEN); 5400 kfree(save); 5401 } 5402 5403 if (err) { 5404 ext4_msg(sb, KERN_ERR, "error loading journal"); 5405 goto err_out; 5406 } 5407 5408 EXT4_SB(sb)->s_journal = journal; 5409 err = ext4_clear_journal_err(sb, es); 5410 if (err) { 5411 EXT4_SB(sb)->s_journal = NULL; 5412 jbd2_journal_destroy(journal); 5413 return err; 5414 } 5415 5416 if (!really_read_only && journal_devnum && 5417 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5418 es->s_journal_dev = cpu_to_le32(journal_devnum); 5419 5420 /* Make sure we flush the recovery flag to disk. */ 5421 ext4_commit_super(sb, 1); 5422 } 5423 5424 return 0; 5425 5426 err_out: 5427 jbd2_journal_destroy(journal); 5428 return err; 5429 } 5430 5431 static int ext4_commit_super(struct super_block *sb, int sync) 5432 { 5433 struct ext4_sb_info *sbi = EXT4_SB(sb); 5434 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5435 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5436 int error = 0; 5437 5438 if (!sbh || block_device_ejected(sb)) 5439 return error; 5440 5441 /* 5442 * If the file system is mounted read-only, don't update the 5443 * superblock write time. This avoids updating the superblock 5444 * write time when we are mounting the root file system 5445 * read/only but we need to replay the journal; at that point, 5446 * for people who are east of GMT and who make their clock 5447 * tick in localtime for Windows bug-for-bug compatibility, 5448 * the clock is set in the future, and this will cause e2fsck 5449 * to complain and force a full file system check. 5450 */ 5451 if (!(sb->s_flags & SB_RDONLY)) 5452 ext4_update_tstamp(es, s_wtime); 5453 es->s_kbytes_written = 5454 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5455 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5456 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5457 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5458 ext4_free_blocks_count_set(es, 5459 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5460 &EXT4_SB(sb)->s_freeclusters_counter))); 5461 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5462 es->s_free_inodes_count = 5463 cpu_to_le32(percpu_counter_sum_positive( 5464 &EXT4_SB(sb)->s_freeinodes_counter)); 5465 /* Copy error information to the on-disk superblock */ 5466 spin_lock(&sbi->s_error_lock); 5467 if (sbi->s_add_error_count > 0) { 5468 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5469 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5470 __ext4_update_tstamp(&es->s_first_error_time, 5471 &es->s_first_error_time_hi, 5472 sbi->s_first_error_time); 5473 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5474 sizeof(es->s_first_error_func)); 5475 es->s_first_error_line = 5476 cpu_to_le32(sbi->s_first_error_line); 5477 es->s_first_error_ino = 5478 cpu_to_le32(sbi->s_first_error_ino); 5479 es->s_first_error_block = 5480 cpu_to_le64(sbi->s_first_error_block); 5481 es->s_first_error_errcode = 5482 ext4_errno_to_code(sbi->s_first_error_code); 5483 } 5484 __ext4_update_tstamp(&es->s_last_error_time, 5485 &es->s_last_error_time_hi, 5486 sbi->s_last_error_time); 5487 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5488 sizeof(es->s_last_error_func)); 5489 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5490 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5491 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5492 es->s_last_error_errcode = 5493 ext4_errno_to_code(sbi->s_last_error_code); 5494 /* 5495 * Start the daily error reporting function if it hasn't been 5496 * started already 5497 */ 5498 if (!es->s_error_count) 5499 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5500 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5501 sbi->s_add_error_count = 0; 5502 } 5503 spin_unlock(&sbi->s_error_lock); 5504 5505 BUFFER_TRACE(sbh, "marking dirty"); 5506 ext4_superblock_csum_set(sb); 5507 if (sync) 5508 lock_buffer(sbh); 5509 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5510 /* 5511 * Oh, dear. A previous attempt to write the 5512 * superblock failed. This could happen because the 5513 * USB device was yanked out. Or it could happen to 5514 * be a transient write error and maybe the block will 5515 * be remapped. Nothing we can do but to retry the 5516 * write and hope for the best. 5517 */ 5518 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5519 "superblock detected"); 5520 clear_buffer_write_io_error(sbh); 5521 set_buffer_uptodate(sbh); 5522 } 5523 mark_buffer_dirty(sbh); 5524 if (sync) { 5525 unlock_buffer(sbh); 5526 error = __sync_dirty_buffer(sbh, 5527 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5528 if (buffer_write_io_error(sbh)) { 5529 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5530 "superblock"); 5531 clear_buffer_write_io_error(sbh); 5532 set_buffer_uptodate(sbh); 5533 } 5534 } 5535 return error; 5536 } 5537 5538 /* 5539 * Have we just finished recovery? If so, and if we are mounting (or 5540 * remounting) the filesystem readonly, then we will end up with a 5541 * consistent fs on disk. Record that fact. 5542 */ 5543 static int ext4_mark_recovery_complete(struct super_block *sb, 5544 struct ext4_super_block *es) 5545 { 5546 int err; 5547 journal_t *journal = EXT4_SB(sb)->s_journal; 5548 5549 if (!ext4_has_feature_journal(sb)) { 5550 if (journal != NULL) { 5551 ext4_error(sb, "Journal got removed while the fs was " 5552 "mounted!"); 5553 return -EFSCORRUPTED; 5554 } 5555 return 0; 5556 } 5557 jbd2_journal_lock_updates(journal); 5558 err = jbd2_journal_flush(journal); 5559 if (err < 0) 5560 goto out; 5561 5562 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5563 ext4_clear_feature_journal_needs_recovery(sb); 5564 ext4_commit_super(sb, 1); 5565 } 5566 out: 5567 jbd2_journal_unlock_updates(journal); 5568 return err; 5569 } 5570 5571 /* 5572 * If we are mounting (or read-write remounting) a filesystem whose journal 5573 * has recorded an error from a previous lifetime, move that error to the 5574 * main filesystem now. 5575 */ 5576 static int ext4_clear_journal_err(struct super_block *sb, 5577 struct ext4_super_block *es) 5578 { 5579 journal_t *journal; 5580 int j_errno; 5581 const char *errstr; 5582 5583 if (!ext4_has_feature_journal(sb)) { 5584 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5585 return -EFSCORRUPTED; 5586 } 5587 5588 journal = EXT4_SB(sb)->s_journal; 5589 5590 /* 5591 * Now check for any error status which may have been recorded in the 5592 * journal by a prior ext4_error() or ext4_abort() 5593 */ 5594 5595 j_errno = jbd2_journal_errno(journal); 5596 if (j_errno) { 5597 char nbuf[16]; 5598 5599 errstr = ext4_decode_error(sb, j_errno, nbuf); 5600 ext4_warning(sb, "Filesystem error recorded " 5601 "from previous mount: %s", errstr); 5602 ext4_warning(sb, "Marking fs in need of filesystem check."); 5603 5604 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5605 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5606 ext4_commit_super(sb, 1); 5607 5608 jbd2_journal_clear_err(journal); 5609 jbd2_journal_update_sb_errno(journal); 5610 } 5611 return 0; 5612 } 5613 5614 /* 5615 * Force the running and committing transactions to commit, 5616 * and wait on the commit. 5617 */ 5618 int ext4_force_commit(struct super_block *sb) 5619 { 5620 journal_t *journal; 5621 5622 if (sb_rdonly(sb)) 5623 return 0; 5624 5625 journal = EXT4_SB(sb)->s_journal; 5626 return ext4_journal_force_commit(journal); 5627 } 5628 5629 static int ext4_sync_fs(struct super_block *sb, int wait) 5630 { 5631 int ret = 0; 5632 tid_t target; 5633 bool needs_barrier = false; 5634 struct ext4_sb_info *sbi = EXT4_SB(sb); 5635 5636 if (unlikely(ext4_forced_shutdown(sbi))) 5637 return 0; 5638 5639 trace_ext4_sync_fs(sb, wait); 5640 flush_workqueue(sbi->rsv_conversion_wq); 5641 /* 5642 * Writeback quota in non-journalled quota case - journalled quota has 5643 * no dirty dquots 5644 */ 5645 dquot_writeback_dquots(sb, -1); 5646 /* 5647 * Data writeback is possible w/o journal transaction, so barrier must 5648 * being sent at the end of the function. But we can skip it if 5649 * transaction_commit will do it for us. 5650 */ 5651 if (sbi->s_journal) { 5652 target = jbd2_get_latest_transaction(sbi->s_journal); 5653 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5654 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5655 needs_barrier = true; 5656 5657 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5658 if (wait) 5659 ret = jbd2_log_wait_commit(sbi->s_journal, 5660 target); 5661 } 5662 } else if (wait && test_opt(sb, BARRIER)) 5663 needs_barrier = true; 5664 if (needs_barrier) { 5665 int err; 5666 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 5667 if (!ret) 5668 ret = err; 5669 } 5670 5671 return ret; 5672 } 5673 5674 /* 5675 * LVM calls this function before a (read-only) snapshot is created. This 5676 * gives us a chance to flush the journal completely and mark the fs clean. 5677 * 5678 * Note that only this function cannot bring a filesystem to be in a clean 5679 * state independently. It relies on upper layer to stop all data & metadata 5680 * modifications. 5681 */ 5682 static int ext4_freeze(struct super_block *sb) 5683 { 5684 int error = 0; 5685 journal_t *journal; 5686 5687 if (sb_rdonly(sb)) 5688 return 0; 5689 5690 journal = EXT4_SB(sb)->s_journal; 5691 5692 if (journal) { 5693 /* Now we set up the journal barrier. */ 5694 jbd2_journal_lock_updates(journal); 5695 5696 /* 5697 * Don't clear the needs_recovery flag if we failed to 5698 * flush the journal. 5699 */ 5700 error = jbd2_journal_flush(journal); 5701 if (error < 0) 5702 goto out; 5703 5704 /* Journal blocked and flushed, clear needs_recovery flag. */ 5705 ext4_clear_feature_journal_needs_recovery(sb); 5706 } 5707 5708 error = ext4_commit_super(sb, 1); 5709 out: 5710 if (journal) 5711 /* we rely on upper layer to stop further updates */ 5712 jbd2_journal_unlock_updates(journal); 5713 return error; 5714 } 5715 5716 /* 5717 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5718 * flag here, even though the filesystem is not technically dirty yet. 5719 */ 5720 static int ext4_unfreeze(struct super_block *sb) 5721 { 5722 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5723 return 0; 5724 5725 if (EXT4_SB(sb)->s_journal) { 5726 /* Reset the needs_recovery flag before the fs is unlocked. */ 5727 ext4_set_feature_journal_needs_recovery(sb); 5728 } 5729 5730 ext4_commit_super(sb, 1); 5731 return 0; 5732 } 5733 5734 /* 5735 * Structure to save mount options for ext4_remount's benefit 5736 */ 5737 struct ext4_mount_options { 5738 unsigned long s_mount_opt; 5739 unsigned long s_mount_opt2; 5740 kuid_t s_resuid; 5741 kgid_t s_resgid; 5742 unsigned long s_commit_interval; 5743 u32 s_min_batch_time, s_max_batch_time; 5744 #ifdef CONFIG_QUOTA 5745 int s_jquota_fmt; 5746 char *s_qf_names[EXT4_MAXQUOTAS]; 5747 #endif 5748 }; 5749 5750 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5751 { 5752 struct ext4_super_block *es; 5753 struct ext4_sb_info *sbi = EXT4_SB(sb); 5754 unsigned long old_sb_flags, vfs_flags; 5755 struct ext4_mount_options old_opts; 5756 int enable_quota = 0; 5757 ext4_group_t g; 5758 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5759 int err = 0; 5760 #ifdef CONFIG_QUOTA 5761 int i, j; 5762 char *to_free[EXT4_MAXQUOTAS]; 5763 #endif 5764 char *orig_data = kstrdup(data, GFP_KERNEL); 5765 5766 if (data && !orig_data) 5767 return -ENOMEM; 5768 5769 /* Store the original options */ 5770 old_sb_flags = sb->s_flags; 5771 old_opts.s_mount_opt = sbi->s_mount_opt; 5772 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5773 old_opts.s_resuid = sbi->s_resuid; 5774 old_opts.s_resgid = sbi->s_resgid; 5775 old_opts.s_commit_interval = sbi->s_commit_interval; 5776 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5777 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5778 #ifdef CONFIG_QUOTA 5779 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5780 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5781 if (sbi->s_qf_names[i]) { 5782 char *qf_name = get_qf_name(sb, sbi, i); 5783 5784 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5785 if (!old_opts.s_qf_names[i]) { 5786 for (j = 0; j < i; j++) 5787 kfree(old_opts.s_qf_names[j]); 5788 kfree(orig_data); 5789 return -ENOMEM; 5790 } 5791 } else 5792 old_opts.s_qf_names[i] = NULL; 5793 #endif 5794 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5795 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5796 5797 /* 5798 * Some options can be enabled by ext4 and/or by VFS mount flag 5799 * either way we need to make sure it matches in both *flags and 5800 * s_flags. Copy those selected flags from *flags to s_flags 5801 */ 5802 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5803 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5804 5805 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5806 err = -EINVAL; 5807 goto restore_opts; 5808 } 5809 5810 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5811 test_opt(sb, JOURNAL_CHECKSUM)) { 5812 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5813 "during remount not supported; ignoring"); 5814 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5815 } 5816 5817 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5818 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5819 ext4_msg(sb, KERN_ERR, "can't mount with " 5820 "both data=journal and delalloc"); 5821 err = -EINVAL; 5822 goto restore_opts; 5823 } 5824 if (test_opt(sb, DIOREAD_NOLOCK)) { 5825 ext4_msg(sb, KERN_ERR, "can't mount with " 5826 "both data=journal and dioread_nolock"); 5827 err = -EINVAL; 5828 goto restore_opts; 5829 } 5830 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5831 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5832 ext4_msg(sb, KERN_ERR, "can't mount with " 5833 "journal_async_commit in data=ordered mode"); 5834 err = -EINVAL; 5835 goto restore_opts; 5836 } 5837 } 5838 5839 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5840 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5841 err = -EINVAL; 5842 goto restore_opts; 5843 } 5844 5845 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5846 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5847 5848 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5849 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5850 5851 es = sbi->s_es; 5852 5853 if (sbi->s_journal) { 5854 ext4_init_journal_params(sb, sbi->s_journal); 5855 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5856 } 5857 5858 /* Flush outstanding errors before changing fs state */ 5859 flush_work(&sbi->s_error_work); 5860 5861 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5862 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5863 err = -EROFS; 5864 goto restore_opts; 5865 } 5866 5867 if (*flags & SB_RDONLY) { 5868 err = sync_filesystem(sb); 5869 if (err < 0) 5870 goto restore_opts; 5871 err = dquot_suspend(sb, -1); 5872 if (err < 0) 5873 goto restore_opts; 5874 5875 /* 5876 * First of all, the unconditional stuff we have to do 5877 * to disable replay of the journal when we next remount 5878 */ 5879 sb->s_flags |= SB_RDONLY; 5880 5881 /* 5882 * OK, test if we are remounting a valid rw partition 5883 * readonly, and if so set the rdonly flag and then 5884 * mark the partition as valid again. 5885 */ 5886 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5887 (sbi->s_mount_state & EXT4_VALID_FS)) 5888 es->s_state = cpu_to_le16(sbi->s_mount_state); 5889 5890 if (sbi->s_journal) { 5891 /* 5892 * We let remount-ro finish even if marking fs 5893 * as clean failed... 5894 */ 5895 ext4_mark_recovery_complete(sb, es); 5896 } 5897 if (sbi->s_mmp_tsk) 5898 kthread_stop(sbi->s_mmp_tsk); 5899 } else { 5900 /* Make sure we can mount this feature set readwrite */ 5901 if (ext4_has_feature_readonly(sb) || 5902 !ext4_feature_set_ok(sb, 0)) { 5903 err = -EROFS; 5904 goto restore_opts; 5905 } 5906 /* 5907 * Make sure the group descriptor checksums 5908 * are sane. If they aren't, refuse to remount r/w. 5909 */ 5910 for (g = 0; g < sbi->s_groups_count; g++) { 5911 struct ext4_group_desc *gdp = 5912 ext4_get_group_desc(sb, g, NULL); 5913 5914 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5915 ext4_msg(sb, KERN_ERR, 5916 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5917 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5918 le16_to_cpu(gdp->bg_checksum)); 5919 err = -EFSBADCRC; 5920 goto restore_opts; 5921 } 5922 } 5923 5924 /* 5925 * If we have an unprocessed orphan list hanging 5926 * around from a previously readonly bdev mount, 5927 * require a full umount/remount for now. 5928 */ 5929 if (es->s_last_orphan) { 5930 ext4_msg(sb, KERN_WARNING, "Couldn't " 5931 "remount RDWR because of unprocessed " 5932 "orphan inode list. Please " 5933 "umount/remount instead"); 5934 err = -EINVAL; 5935 goto restore_opts; 5936 } 5937 5938 /* 5939 * Mounting a RDONLY partition read-write, so reread 5940 * and store the current valid flag. (It may have 5941 * been changed by e2fsck since we originally mounted 5942 * the partition.) 5943 */ 5944 if (sbi->s_journal) { 5945 err = ext4_clear_journal_err(sb, es); 5946 if (err) 5947 goto restore_opts; 5948 } 5949 sbi->s_mount_state = le16_to_cpu(es->s_state); 5950 5951 err = ext4_setup_super(sb, es, 0); 5952 if (err) 5953 goto restore_opts; 5954 5955 sb->s_flags &= ~SB_RDONLY; 5956 if (ext4_has_feature_mmp(sb)) 5957 if (ext4_multi_mount_protect(sb, 5958 le64_to_cpu(es->s_mmp_block))) { 5959 err = -EROFS; 5960 goto restore_opts; 5961 } 5962 enable_quota = 1; 5963 } 5964 } 5965 5966 /* 5967 * Reinitialize lazy itable initialization thread based on 5968 * current settings 5969 */ 5970 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5971 ext4_unregister_li_request(sb); 5972 else { 5973 ext4_group_t first_not_zeroed; 5974 first_not_zeroed = ext4_has_uninit_itable(sb); 5975 ext4_register_li_request(sb, first_not_zeroed); 5976 } 5977 5978 /* 5979 * Handle creation of system zone data early because it can fail. 5980 * Releasing of existing data is done when we are sure remount will 5981 * succeed. 5982 */ 5983 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5984 err = ext4_setup_system_zone(sb); 5985 if (err) 5986 goto restore_opts; 5987 } 5988 5989 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5990 err = ext4_commit_super(sb, 1); 5991 if (err) 5992 goto restore_opts; 5993 } 5994 5995 #ifdef CONFIG_QUOTA 5996 /* Release old quota file names */ 5997 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5998 kfree(old_opts.s_qf_names[i]); 5999 if (enable_quota) { 6000 if (sb_any_quota_suspended(sb)) 6001 dquot_resume(sb, -1); 6002 else if (ext4_has_feature_quota(sb)) { 6003 err = ext4_enable_quotas(sb); 6004 if (err) 6005 goto restore_opts; 6006 } 6007 } 6008 #endif 6009 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6010 ext4_release_system_zone(sb); 6011 6012 /* 6013 * Some options can be enabled by ext4 and/or by VFS mount flag 6014 * either way we need to make sure it matches in both *flags and 6015 * s_flags. Copy those selected flags from s_flags to *flags 6016 */ 6017 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 6018 6019 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 6020 orig_data, ext4_quota_mode(sb)); 6021 kfree(orig_data); 6022 return 0; 6023 6024 restore_opts: 6025 sb->s_flags = old_sb_flags; 6026 sbi->s_mount_opt = old_opts.s_mount_opt; 6027 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6028 sbi->s_resuid = old_opts.s_resuid; 6029 sbi->s_resgid = old_opts.s_resgid; 6030 sbi->s_commit_interval = old_opts.s_commit_interval; 6031 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6032 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6033 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6034 ext4_release_system_zone(sb); 6035 #ifdef CONFIG_QUOTA 6036 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6037 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6038 to_free[i] = get_qf_name(sb, sbi, i); 6039 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6040 } 6041 synchronize_rcu(); 6042 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6043 kfree(to_free[i]); 6044 #endif 6045 kfree(orig_data); 6046 return err; 6047 } 6048 6049 #ifdef CONFIG_QUOTA 6050 static int ext4_statfs_project(struct super_block *sb, 6051 kprojid_t projid, struct kstatfs *buf) 6052 { 6053 struct kqid qid; 6054 struct dquot *dquot; 6055 u64 limit; 6056 u64 curblock; 6057 6058 qid = make_kqid_projid(projid); 6059 dquot = dqget(sb, qid); 6060 if (IS_ERR(dquot)) 6061 return PTR_ERR(dquot); 6062 spin_lock(&dquot->dq_dqb_lock); 6063 6064 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6065 dquot->dq_dqb.dqb_bhardlimit); 6066 limit >>= sb->s_blocksize_bits; 6067 6068 if (limit && buf->f_blocks > limit) { 6069 curblock = (dquot->dq_dqb.dqb_curspace + 6070 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6071 buf->f_blocks = limit; 6072 buf->f_bfree = buf->f_bavail = 6073 (buf->f_blocks > curblock) ? 6074 (buf->f_blocks - curblock) : 0; 6075 } 6076 6077 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6078 dquot->dq_dqb.dqb_ihardlimit); 6079 if (limit && buf->f_files > limit) { 6080 buf->f_files = limit; 6081 buf->f_ffree = 6082 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6083 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6084 } 6085 6086 spin_unlock(&dquot->dq_dqb_lock); 6087 dqput(dquot); 6088 return 0; 6089 } 6090 #endif 6091 6092 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6093 { 6094 struct super_block *sb = dentry->d_sb; 6095 struct ext4_sb_info *sbi = EXT4_SB(sb); 6096 struct ext4_super_block *es = sbi->s_es; 6097 ext4_fsblk_t overhead = 0, resv_blocks; 6098 u64 fsid; 6099 s64 bfree; 6100 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6101 6102 if (!test_opt(sb, MINIX_DF)) 6103 overhead = sbi->s_overhead; 6104 6105 buf->f_type = EXT4_SUPER_MAGIC; 6106 buf->f_bsize = sb->s_blocksize; 6107 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6108 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6109 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6110 /* prevent underflow in case that few free space is available */ 6111 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6112 buf->f_bavail = buf->f_bfree - 6113 (ext4_r_blocks_count(es) + resv_blocks); 6114 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6115 buf->f_bavail = 0; 6116 buf->f_files = le32_to_cpu(es->s_inodes_count); 6117 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6118 buf->f_namelen = EXT4_NAME_LEN; 6119 fsid = le64_to_cpup((void *)es->s_uuid) ^ 6120 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 6121 buf->f_fsid = u64_to_fsid(fsid); 6122 6123 #ifdef CONFIG_QUOTA 6124 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6125 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6126 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6127 #endif 6128 return 0; 6129 } 6130 6131 6132 #ifdef CONFIG_QUOTA 6133 6134 /* 6135 * Helper functions so that transaction is started before we acquire dqio_sem 6136 * to keep correct lock ordering of transaction > dqio_sem 6137 */ 6138 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6139 { 6140 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6141 } 6142 6143 static int ext4_write_dquot(struct dquot *dquot) 6144 { 6145 int ret, err; 6146 handle_t *handle; 6147 struct inode *inode; 6148 6149 inode = dquot_to_inode(dquot); 6150 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6151 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6152 if (IS_ERR(handle)) 6153 return PTR_ERR(handle); 6154 ret = dquot_commit(dquot); 6155 err = ext4_journal_stop(handle); 6156 if (!ret) 6157 ret = err; 6158 return ret; 6159 } 6160 6161 static int ext4_acquire_dquot(struct dquot *dquot) 6162 { 6163 int ret, err; 6164 handle_t *handle; 6165 6166 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6167 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6168 if (IS_ERR(handle)) 6169 return PTR_ERR(handle); 6170 ret = dquot_acquire(dquot); 6171 err = ext4_journal_stop(handle); 6172 if (!ret) 6173 ret = err; 6174 return ret; 6175 } 6176 6177 static int ext4_release_dquot(struct dquot *dquot) 6178 { 6179 int ret, err; 6180 handle_t *handle; 6181 6182 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6183 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6184 if (IS_ERR(handle)) { 6185 /* Release dquot anyway to avoid endless cycle in dqput() */ 6186 dquot_release(dquot); 6187 return PTR_ERR(handle); 6188 } 6189 ret = dquot_release(dquot); 6190 err = ext4_journal_stop(handle); 6191 if (!ret) 6192 ret = err; 6193 return ret; 6194 } 6195 6196 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6197 { 6198 struct super_block *sb = dquot->dq_sb; 6199 6200 if (ext4_is_quota_journalled(sb)) { 6201 dquot_mark_dquot_dirty(dquot); 6202 return ext4_write_dquot(dquot); 6203 } else { 6204 return dquot_mark_dquot_dirty(dquot); 6205 } 6206 } 6207 6208 static int ext4_write_info(struct super_block *sb, int type) 6209 { 6210 int ret, err; 6211 handle_t *handle; 6212 6213 /* Data block + inode block */ 6214 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6215 if (IS_ERR(handle)) 6216 return PTR_ERR(handle); 6217 ret = dquot_commit_info(sb, type); 6218 err = ext4_journal_stop(handle); 6219 if (!ret) 6220 ret = err; 6221 return ret; 6222 } 6223 6224 /* 6225 * Turn on quotas during mount time - we need to find 6226 * the quota file and such... 6227 */ 6228 static int ext4_quota_on_mount(struct super_block *sb, int type) 6229 { 6230 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 6231 EXT4_SB(sb)->s_jquota_fmt, type); 6232 } 6233 6234 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6235 { 6236 struct ext4_inode_info *ei = EXT4_I(inode); 6237 6238 /* The first argument of lockdep_set_subclass has to be 6239 * *exactly* the same as the argument to init_rwsem() --- in 6240 * this case, in init_once() --- or lockdep gets unhappy 6241 * because the name of the lock is set using the 6242 * stringification of the argument to init_rwsem(). 6243 */ 6244 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6245 lockdep_set_subclass(&ei->i_data_sem, subclass); 6246 } 6247 6248 /* 6249 * Standard function to be called on quota_on 6250 */ 6251 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6252 const struct path *path) 6253 { 6254 int err; 6255 6256 if (!test_opt(sb, QUOTA)) 6257 return -EINVAL; 6258 6259 /* Quotafile not on the same filesystem? */ 6260 if (path->dentry->d_sb != sb) 6261 return -EXDEV; 6262 6263 /* Quota already enabled for this file? */ 6264 if (IS_NOQUOTA(d_inode(path->dentry))) 6265 return -EBUSY; 6266 6267 /* Journaling quota? */ 6268 if (EXT4_SB(sb)->s_qf_names[type]) { 6269 /* Quotafile not in fs root? */ 6270 if (path->dentry->d_parent != sb->s_root) 6271 ext4_msg(sb, KERN_WARNING, 6272 "Quota file not on filesystem root. " 6273 "Journaled quota will not work"); 6274 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6275 } else { 6276 /* 6277 * Clear the flag just in case mount options changed since 6278 * last time. 6279 */ 6280 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6281 } 6282 6283 /* 6284 * When we journal data on quota file, we have to flush journal to see 6285 * all updates to the file when we bypass pagecache... 6286 */ 6287 if (EXT4_SB(sb)->s_journal && 6288 ext4_should_journal_data(d_inode(path->dentry))) { 6289 /* 6290 * We don't need to lock updates but journal_flush() could 6291 * otherwise be livelocked... 6292 */ 6293 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6294 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 6295 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6296 if (err) 6297 return err; 6298 } 6299 6300 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6301 err = dquot_quota_on(sb, type, format_id, path); 6302 if (err) { 6303 lockdep_set_quota_inode(path->dentry->d_inode, 6304 I_DATA_SEM_NORMAL); 6305 } else { 6306 struct inode *inode = d_inode(path->dentry); 6307 handle_t *handle; 6308 6309 /* 6310 * Set inode flags to prevent userspace from messing with quota 6311 * files. If this fails, we return success anyway since quotas 6312 * are already enabled and this is not a hard failure. 6313 */ 6314 inode_lock(inode); 6315 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6316 if (IS_ERR(handle)) 6317 goto unlock_inode; 6318 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6319 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6320 S_NOATIME | S_IMMUTABLE); 6321 err = ext4_mark_inode_dirty(handle, inode); 6322 ext4_journal_stop(handle); 6323 unlock_inode: 6324 inode_unlock(inode); 6325 } 6326 return err; 6327 } 6328 6329 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6330 unsigned int flags) 6331 { 6332 int err; 6333 struct inode *qf_inode; 6334 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6335 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6336 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6337 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6338 }; 6339 6340 BUG_ON(!ext4_has_feature_quota(sb)); 6341 6342 if (!qf_inums[type]) 6343 return -EPERM; 6344 6345 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6346 if (IS_ERR(qf_inode)) { 6347 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6348 return PTR_ERR(qf_inode); 6349 } 6350 6351 /* Don't account quota for quota files to avoid recursion */ 6352 qf_inode->i_flags |= S_NOQUOTA; 6353 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6354 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6355 if (err) 6356 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6357 iput(qf_inode); 6358 6359 return err; 6360 } 6361 6362 /* Enable usage tracking for all quota types. */ 6363 static int ext4_enable_quotas(struct super_block *sb) 6364 { 6365 int type, err = 0; 6366 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6367 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6368 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6369 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6370 }; 6371 bool quota_mopt[EXT4_MAXQUOTAS] = { 6372 test_opt(sb, USRQUOTA), 6373 test_opt(sb, GRPQUOTA), 6374 test_opt(sb, PRJQUOTA), 6375 }; 6376 6377 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6378 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6379 if (qf_inums[type]) { 6380 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6381 DQUOT_USAGE_ENABLED | 6382 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6383 if (err) { 6384 ext4_warning(sb, 6385 "Failed to enable quota tracking " 6386 "(type=%d, err=%d). Please run " 6387 "e2fsck to fix.", type, err); 6388 for (type--; type >= 0; type--) 6389 dquot_quota_off(sb, type); 6390 6391 return err; 6392 } 6393 } 6394 } 6395 return 0; 6396 } 6397 6398 static int ext4_quota_off(struct super_block *sb, int type) 6399 { 6400 struct inode *inode = sb_dqopt(sb)->files[type]; 6401 handle_t *handle; 6402 int err; 6403 6404 /* Force all delayed allocation blocks to be allocated. 6405 * Caller already holds s_umount sem */ 6406 if (test_opt(sb, DELALLOC)) 6407 sync_filesystem(sb); 6408 6409 if (!inode || !igrab(inode)) 6410 goto out; 6411 6412 err = dquot_quota_off(sb, type); 6413 if (err || ext4_has_feature_quota(sb)) 6414 goto out_put; 6415 6416 inode_lock(inode); 6417 /* 6418 * Update modification times of quota files when userspace can 6419 * start looking at them. If we fail, we return success anyway since 6420 * this is not a hard failure and quotas are already disabled. 6421 */ 6422 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6423 if (IS_ERR(handle)) { 6424 err = PTR_ERR(handle); 6425 goto out_unlock; 6426 } 6427 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6428 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6429 inode->i_mtime = inode->i_ctime = current_time(inode); 6430 err = ext4_mark_inode_dirty(handle, inode); 6431 ext4_journal_stop(handle); 6432 out_unlock: 6433 inode_unlock(inode); 6434 out_put: 6435 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6436 iput(inode); 6437 return err; 6438 out: 6439 return dquot_quota_off(sb, type); 6440 } 6441 6442 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6443 * acquiring the locks... As quota files are never truncated and quota code 6444 * itself serializes the operations (and no one else should touch the files) 6445 * we don't have to be afraid of races */ 6446 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6447 size_t len, loff_t off) 6448 { 6449 struct inode *inode = sb_dqopt(sb)->files[type]; 6450 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6451 int offset = off & (sb->s_blocksize - 1); 6452 int tocopy; 6453 size_t toread; 6454 struct buffer_head *bh; 6455 loff_t i_size = i_size_read(inode); 6456 6457 if (off > i_size) 6458 return 0; 6459 if (off+len > i_size) 6460 len = i_size-off; 6461 toread = len; 6462 while (toread > 0) { 6463 tocopy = sb->s_blocksize - offset < toread ? 6464 sb->s_blocksize - offset : toread; 6465 bh = ext4_bread(NULL, inode, blk, 0); 6466 if (IS_ERR(bh)) 6467 return PTR_ERR(bh); 6468 if (!bh) /* A hole? */ 6469 memset(data, 0, tocopy); 6470 else 6471 memcpy(data, bh->b_data+offset, tocopy); 6472 brelse(bh); 6473 offset = 0; 6474 toread -= tocopy; 6475 data += tocopy; 6476 blk++; 6477 } 6478 return len; 6479 } 6480 6481 /* Write to quotafile (we know the transaction is already started and has 6482 * enough credits) */ 6483 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6484 const char *data, size_t len, loff_t off) 6485 { 6486 struct inode *inode = sb_dqopt(sb)->files[type]; 6487 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6488 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6489 int retries = 0; 6490 struct buffer_head *bh; 6491 handle_t *handle = journal_current_handle(); 6492 6493 if (EXT4_SB(sb)->s_journal && !handle) { 6494 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6495 " cancelled because transaction is not started", 6496 (unsigned long long)off, (unsigned long long)len); 6497 return -EIO; 6498 } 6499 /* 6500 * Since we account only one data block in transaction credits, 6501 * then it is impossible to cross a block boundary. 6502 */ 6503 if (sb->s_blocksize - offset < len) { 6504 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6505 " cancelled because not block aligned", 6506 (unsigned long long)off, (unsigned long long)len); 6507 return -EIO; 6508 } 6509 6510 do { 6511 bh = ext4_bread(handle, inode, blk, 6512 EXT4_GET_BLOCKS_CREATE | 6513 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6514 } while (PTR_ERR(bh) == -ENOSPC && 6515 ext4_should_retry_alloc(inode->i_sb, &retries)); 6516 if (IS_ERR(bh)) 6517 return PTR_ERR(bh); 6518 if (!bh) 6519 goto out; 6520 BUFFER_TRACE(bh, "get write access"); 6521 err = ext4_journal_get_write_access(handle, bh); 6522 if (err) { 6523 brelse(bh); 6524 return err; 6525 } 6526 lock_buffer(bh); 6527 memcpy(bh->b_data+offset, data, len); 6528 flush_dcache_page(bh->b_page); 6529 unlock_buffer(bh); 6530 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6531 brelse(bh); 6532 out: 6533 if (inode->i_size < off + len) { 6534 i_size_write(inode, off + len); 6535 EXT4_I(inode)->i_disksize = inode->i_size; 6536 err2 = ext4_mark_inode_dirty(handle, inode); 6537 if (unlikely(err2 && !err)) 6538 err = err2; 6539 } 6540 return err ? err : len; 6541 } 6542 #endif 6543 6544 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6545 const char *dev_name, void *data) 6546 { 6547 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6548 } 6549 6550 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6551 static inline void register_as_ext2(void) 6552 { 6553 int err = register_filesystem(&ext2_fs_type); 6554 if (err) 6555 printk(KERN_WARNING 6556 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6557 } 6558 6559 static inline void unregister_as_ext2(void) 6560 { 6561 unregister_filesystem(&ext2_fs_type); 6562 } 6563 6564 static inline int ext2_feature_set_ok(struct super_block *sb) 6565 { 6566 if (ext4_has_unknown_ext2_incompat_features(sb)) 6567 return 0; 6568 if (sb_rdonly(sb)) 6569 return 1; 6570 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6571 return 0; 6572 return 1; 6573 } 6574 #else 6575 static inline void register_as_ext2(void) { } 6576 static inline void unregister_as_ext2(void) { } 6577 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6578 #endif 6579 6580 static inline void register_as_ext3(void) 6581 { 6582 int err = register_filesystem(&ext3_fs_type); 6583 if (err) 6584 printk(KERN_WARNING 6585 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6586 } 6587 6588 static inline void unregister_as_ext3(void) 6589 { 6590 unregister_filesystem(&ext3_fs_type); 6591 } 6592 6593 static inline int ext3_feature_set_ok(struct super_block *sb) 6594 { 6595 if (ext4_has_unknown_ext3_incompat_features(sb)) 6596 return 0; 6597 if (!ext4_has_feature_journal(sb)) 6598 return 0; 6599 if (sb_rdonly(sb)) 6600 return 1; 6601 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6602 return 0; 6603 return 1; 6604 } 6605 6606 static struct file_system_type ext4_fs_type = { 6607 .owner = THIS_MODULE, 6608 .name = "ext4", 6609 .mount = ext4_mount, 6610 .kill_sb = kill_block_super, 6611 .fs_flags = FS_REQUIRES_DEV, 6612 }; 6613 MODULE_ALIAS_FS("ext4"); 6614 6615 /* Shared across all ext4 file systems */ 6616 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6617 6618 static int __init ext4_init_fs(void) 6619 { 6620 int i, err; 6621 6622 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6623 ext4_li_info = NULL; 6624 mutex_init(&ext4_li_mtx); 6625 6626 /* Build-time check for flags consistency */ 6627 ext4_check_flag_values(); 6628 6629 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6630 init_waitqueue_head(&ext4__ioend_wq[i]); 6631 6632 err = ext4_init_es(); 6633 if (err) 6634 return err; 6635 6636 err = ext4_init_pending(); 6637 if (err) 6638 goto out7; 6639 6640 err = ext4_init_post_read_processing(); 6641 if (err) 6642 goto out6; 6643 6644 err = ext4_init_pageio(); 6645 if (err) 6646 goto out5; 6647 6648 err = ext4_init_system_zone(); 6649 if (err) 6650 goto out4; 6651 6652 err = ext4_init_sysfs(); 6653 if (err) 6654 goto out3; 6655 6656 err = ext4_init_mballoc(); 6657 if (err) 6658 goto out2; 6659 err = init_inodecache(); 6660 if (err) 6661 goto out1; 6662 6663 err = ext4_fc_init_dentry_cache(); 6664 if (err) 6665 goto out05; 6666 6667 register_as_ext3(); 6668 register_as_ext2(); 6669 err = register_filesystem(&ext4_fs_type); 6670 if (err) 6671 goto out; 6672 6673 return 0; 6674 out: 6675 unregister_as_ext2(); 6676 unregister_as_ext3(); 6677 out05: 6678 destroy_inodecache(); 6679 out1: 6680 ext4_exit_mballoc(); 6681 out2: 6682 ext4_exit_sysfs(); 6683 out3: 6684 ext4_exit_system_zone(); 6685 out4: 6686 ext4_exit_pageio(); 6687 out5: 6688 ext4_exit_post_read_processing(); 6689 out6: 6690 ext4_exit_pending(); 6691 out7: 6692 ext4_exit_es(); 6693 6694 return err; 6695 } 6696 6697 static void __exit ext4_exit_fs(void) 6698 { 6699 ext4_destroy_lazyinit_thread(); 6700 unregister_as_ext2(); 6701 unregister_as_ext3(); 6702 unregister_filesystem(&ext4_fs_type); 6703 destroy_inodecache(); 6704 ext4_exit_mballoc(); 6705 ext4_exit_sysfs(); 6706 ext4_exit_system_zone(); 6707 ext4_exit_pageio(); 6708 ext4_exit_post_read_processing(); 6709 ext4_exit_es(); 6710 ext4_exit_pending(); 6711 } 6712 6713 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6714 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6715 MODULE_LICENSE("GPL"); 6716 MODULE_SOFTDEP("pre: crc32c"); 6717 module_init(ext4_init_fs) 6718 module_exit(ext4_exit_fs) 6719