xref: /openbmc/linux/fs/ext4/super.c (revision 7994a4849c8b1501c2e5c21edd1085b16efb98fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io)
165 {
166 	/*
167 	 * buffer's verified bit is no longer valid after reading from
168 	 * disk again due to write out error, clear it to make sure we
169 	 * recheck the buffer contents.
170 	 */
171 	clear_buffer_verified(bh);
172 
173 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 	get_bh(bh);
175 	submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 			 bh_end_io_t *end_io)
180 {
181 	BUG_ON(!buffer_locked(bh));
182 
183 	if (ext4_buffer_uptodate(bh)) {
184 		unlock_buffer(bh);
185 		return;
186 	}
187 	__ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 	BUG_ON(!buffer_locked(bh));
193 
194 	if (ext4_buffer_uptodate(bh)) {
195 		unlock_buffer(bh);
196 		return 0;
197 	}
198 
199 	__ext4_read_bh(bh, op_flags, end_io);
200 
201 	wait_on_buffer(bh);
202 	if (buffer_uptodate(bh))
203 		return 0;
204 	return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 	lock_buffer(bh);
210 	if (!wait) {
211 		ext4_read_bh_nowait(bh, op_flags, NULL);
212 		return 0;
213 	}
214 	return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 					       sector_t block,
225 					       blk_opf_t op_flags, gfp_t gfp)
226 {
227 	struct buffer_head *bh;
228 	int ret;
229 
230 	bh = sb_getblk_gfp(sb, block, gfp);
231 	if (bh == NULL)
232 		return ERR_PTR(-ENOMEM);
233 	if (ext4_buffer_uptodate(bh))
234 		return bh;
235 
236 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 	if (ret) {
238 		put_bh(bh);
239 		return ERR_PTR(ret);
240 	}
241 	return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 				   blk_opf_t op_flags)
246 {
247 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
248 }
249 
250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
251 					    sector_t block)
252 {
253 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
254 }
255 
256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
257 {
258 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
259 
260 	if (likely(bh)) {
261 		if (trylock_buffer(bh))
262 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
263 		brelse(bh);
264 	}
265 }
266 
267 static int ext4_verify_csum_type(struct super_block *sb,
268 				 struct ext4_super_block *es)
269 {
270 	if (!ext4_has_feature_metadata_csum(sb))
271 		return 1;
272 
273 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
274 }
275 
276 __le32 ext4_superblock_csum(struct super_block *sb,
277 			    struct ext4_super_block *es)
278 {
279 	struct ext4_sb_info *sbi = EXT4_SB(sb);
280 	int offset = offsetof(struct ext4_super_block, s_checksum);
281 	__u32 csum;
282 
283 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
284 
285 	return cpu_to_le32(csum);
286 }
287 
288 static int ext4_superblock_csum_verify(struct super_block *sb,
289 				       struct ext4_super_block *es)
290 {
291 	if (!ext4_has_metadata_csum(sb))
292 		return 1;
293 
294 	return es->s_checksum == ext4_superblock_csum(sb, es);
295 }
296 
297 void ext4_superblock_csum_set(struct super_block *sb)
298 {
299 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
300 
301 	if (!ext4_has_metadata_csum(sb))
302 		return;
303 
304 	es->s_checksum = ext4_superblock_csum(sb, es);
305 }
306 
307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
308 			       struct ext4_group_desc *bg)
309 {
310 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
311 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
312 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
313 }
314 
315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
316 			       struct ext4_group_desc *bg)
317 {
318 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
319 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
320 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
321 }
322 
323 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
324 			      struct ext4_group_desc *bg)
325 {
326 	return le32_to_cpu(bg->bg_inode_table_lo) |
327 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
328 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
329 }
330 
331 __u32 ext4_free_group_clusters(struct super_block *sb,
332 			       struct ext4_group_desc *bg)
333 {
334 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
335 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
336 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
337 }
338 
339 __u32 ext4_free_inodes_count(struct super_block *sb,
340 			      struct ext4_group_desc *bg)
341 {
342 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
343 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
344 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
345 }
346 
347 __u32 ext4_used_dirs_count(struct super_block *sb,
348 			      struct ext4_group_desc *bg)
349 {
350 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
351 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
352 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
353 }
354 
355 __u32 ext4_itable_unused_count(struct super_block *sb,
356 			      struct ext4_group_desc *bg)
357 {
358 	return le16_to_cpu(bg->bg_itable_unused_lo) |
359 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
360 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
361 }
362 
363 void ext4_block_bitmap_set(struct super_block *sb,
364 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
365 {
366 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
367 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
368 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
369 }
370 
371 void ext4_inode_bitmap_set(struct super_block *sb,
372 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 {
374 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
375 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
376 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
377 }
378 
379 void ext4_inode_table_set(struct super_block *sb,
380 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 {
382 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
383 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
384 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
385 }
386 
387 void ext4_free_group_clusters_set(struct super_block *sb,
388 				  struct ext4_group_desc *bg, __u32 count)
389 {
390 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
391 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
392 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
393 }
394 
395 void ext4_free_inodes_set(struct super_block *sb,
396 			  struct ext4_group_desc *bg, __u32 count)
397 {
398 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
399 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
400 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
401 }
402 
403 void ext4_used_dirs_set(struct super_block *sb,
404 			  struct ext4_group_desc *bg, __u32 count)
405 {
406 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
407 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
408 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
409 }
410 
411 void ext4_itable_unused_set(struct super_block *sb,
412 			  struct ext4_group_desc *bg, __u32 count)
413 {
414 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
415 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
416 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
417 }
418 
419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
420 {
421 	now = clamp_val(now, 0, (1ull << 40) - 1);
422 
423 	*lo = cpu_to_le32(lower_32_bits(now));
424 	*hi = upper_32_bits(now);
425 }
426 
427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
428 {
429 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
430 }
431 #define ext4_update_tstamp(es, tstamp) \
432 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
433 			     ktime_get_real_seconds())
434 #define ext4_get_tstamp(es, tstamp) \
435 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436 
437 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
438 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
439 
440 /*
441  * The ext4_maybe_update_superblock() function checks and updates the
442  * superblock if needed.
443  *
444  * This function is designed to update the on-disk superblock only under
445  * certain conditions to prevent excessive disk writes and unnecessary
446  * waking of the disk from sleep. The superblock will be updated if:
447  * 1. More than an hour has passed since the last superblock update, and
448  * 2. More than 16MB have been written since the last superblock update.
449  *
450  * @sb: The superblock
451  */
452 static void ext4_maybe_update_superblock(struct super_block *sb)
453 {
454 	struct ext4_sb_info *sbi = EXT4_SB(sb);
455 	struct ext4_super_block *es = sbi->s_es;
456 	journal_t *journal = sbi->s_journal;
457 	time64_t now;
458 	__u64 last_update;
459 	__u64 lifetime_write_kbytes;
460 	__u64 diff_size;
461 
462 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
463 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
464 		return;
465 
466 	now = ktime_get_real_seconds();
467 	last_update = ext4_get_tstamp(es, s_wtime);
468 
469 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
470 		return;
471 
472 	lifetime_write_kbytes = sbi->s_kbytes_written +
473 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
474 		  sbi->s_sectors_written_start) >> 1);
475 
476 	/* Get the number of kilobytes not written to disk to account
477 	 * for statistics and compare with a multiple of 16 MB. This
478 	 * is used to determine when the next superblock commit should
479 	 * occur (i.e. not more often than once per 16MB if there was
480 	 * less written in an hour).
481 	 */
482 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
483 
484 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
485 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
486 }
487 
488 /*
489  * The del_gendisk() function uninitializes the disk-specific data
490  * structures, including the bdi structure, without telling anyone
491  * else.  Once this happens, any attempt to call mark_buffer_dirty()
492  * (for example, by ext4_commit_super), will cause a kernel OOPS.
493  * This is a kludge to prevent these oops until we can put in a proper
494  * hook in del_gendisk() to inform the VFS and file system layers.
495  */
496 static int block_device_ejected(struct super_block *sb)
497 {
498 	struct inode *bd_inode = sb->s_bdev->bd_inode;
499 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
500 
501 	return bdi->dev == NULL;
502 }
503 
504 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
505 {
506 	struct super_block		*sb = journal->j_private;
507 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
508 	int				error = is_journal_aborted(journal);
509 	struct ext4_journal_cb_entry	*jce;
510 
511 	BUG_ON(txn->t_state == T_FINISHED);
512 
513 	ext4_process_freed_data(sb, txn->t_tid);
514 	ext4_maybe_update_superblock(sb);
515 
516 	spin_lock(&sbi->s_md_lock);
517 	while (!list_empty(&txn->t_private_list)) {
518 		jce = list_entry(txn->t_private_list.next,
519 				 struct ext4_journal_cb_entry, jce_list);
520 		list_del_init(&jce->jce_list);
521 		spin_unlock(&sbi->s_md_lock);
522 		jce->jce_func(sb, jce, error);
523 		spin_lock(&sbi->s_md_lock);
524 	}
525 	spin_unlock(&sbi->s_md_lock);
526 }
527 
528 /*
529  * This writepage callback for write_cache_pages()
530  * takes care of a few cases after page cleaning.
531  *
532  * write_cache_pages() already checks for dirty pages
533  * and calls clear_page_dirty_for_io(), which we want,
534  * to write protect the pages.
535  *
536  * However, we may have to redirty a page (see below.)
537  */
538 static int ext4_journalled_writepage_callback(struct folio *folio,
539 					      struct writeback_control *wbc,
540 					      void *data)
541 {
542 	transaction_t *transaction = (transaction_t *) data;
543 	struct buffer_head *bh, *head;
544 	struct journal_head *jh;
545 
546 	bh = head = folio_buffers(folio);
547 	do {
548 		/*
549 		 * We have to redirty a page in these cases:
550 		 * 1) If buffer is dirty, it means the page was dirty because it
551 		 * contains a buffer that needs checkpointing. So the dirty bit
552 		 * needs to be preserved so that checkpointing writes the buffer
553 		 * properly.
554 		 * 2) If buffer is not part of the committing transaction
555 		 * (we may have just accidentally come across this buffer because
556 		 * inode range tracking is not exact) or if the currently running
557 		 * transaction already contains this buffer as well, dirty bit
558 		 * needs to be preserved so that the buffer gets writeprotected
559 		 * properly on running transaction's commit.
560 		 */
561 		jh = bh2jh(bh);
562 		if (buffer_dirty(bh) ||
563 		    (jh && (jh->b_transaction != transaction ||
564 			    jh->b_next_transaction))) {
565 			folio_redirty_for_writepage(wbc, folio);
566 			goto out;
567 		}
568 	} while ((bh = bh->b_this_page) != head);
569 
570 out:
571 	return AOP_WRITEPAGE_ACTIVATE;
572 }
573 
574 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
575 {
576 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
577 	struct writeback_control wbc = {
578 		.sync_mode =  WB_SYNC_ALL,
579 		.nr_to_write = LONG_MAX,
580 		.range_start = jinode->i_dirty_start,
581 		.range_end = jinode->i_dirty_end,
582         };
583 
584 	return write_cache_pages(mapping, &wbc,
585 				 ext4_journalled_writepage_callback,
586 				 jinode->i_transaction);
587 }
588 
589 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
590 {
591 	int ret;
592 
593 	if (ext4_should_journal_data(jinode->i_vfs_inode))
594 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
595 	else
596 		ret = ext4_normal_submit_inode_data_buffers(jinode);
597 	return ret;
598 }
599 
600 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
601 {
602 	int ret = 0;
603 
604 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
605 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
606 
607 	return ret;
608 }
609 
610 static bool system_going_down(void)
611 {
612 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
613 		|| system_state == SYSTEM_RESTART;
614 }
615 
616 struct ext4_err_translation {
617 	int code;
618 	int errno;
619 };
620 
621 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
622 
623 static struct ext4_err_translation err_translation[] = {
624 	EXT4_ERR_TRANSLATE(EIO),
625 	EXT4_ERR_TRANSLATE(ENOMEM),
626 	EXT4_ERR_TRANSLATE(EFSBADCRC),
627 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
628 	EXT4_ERR_TRANSLATE(ENOSPC),
629 	EXT4_ERR_TRANSLATE(ENOKEY),
630 	EXT4_ERR_TRANSLATE(EROFS),
631 	EXT4_ERR_TRANSLATE(EFBIG),
632 	EXT4_ERR_TRANSLATE(EEXIST),
633 	EXT4_ERR_TRANSLATE(ERANGE),
634 	EXT4_ERR_TRANSLATE(EOVERFLOW),
635 	EXT4_ERR_TRANSLATE(EBUSY),
636 	EXT4_ERR_TRANSLATE(ENOTDIR),
637 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
638 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
639 	EXT4_ERR_TRANSLATE(EFAULT),
640 };
641 
642 static int ext4_errno_to_code(int errno)
643 {
644 	int i;
645 
646 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
647 		if (err_translation[i].errno == errno)
648 			return err_translation[i].code;
649 	return EXT4_ERR_UNKNOWN;
650 }
651 
652 static void save_error_info(struct super_block *sb, int error,
653 			    __u32 ino, __u64 block,
654 			    const char *func, unsigned int line)
655 {
656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
657 
658 	/* We default to EFSCORRUPTED error... */
659 	if (error == 0)
660 		error = EFSCORRUPTED;
661 
662 	spin_lock(&sbi->s_error_lock);
663 	sbi->s_add_error_count++;
664 	sbi->s_last_error_code = error;
665 	sbi->s_last_error_line = line;
666 	sbi->s_last_error_ino = ino;
667 	sbi->s_last_error_block = block;
668 	sbi->s_last_error_func = func;
669 	sbi->s_last_error_time = ktime_get_real_seconds();
670 	if (!sbi->s_first_error_time) {
671 		sbi->s_first_error_code = error;
672 		sbi->s_first_error_line = line;
673 		sbi->s_first_error_ino = ino;
674 		sbi->s_first_error_block = block;
675 		sbi->s_first_error_func = func;
676 		sbi->s_first_error_time = sbi->s_last_error_time;
677 	}
678 	spin_unlock(&sbi->s_error_lock);
679 }
680 
681 /* Deal with the reporting of failure conditions on a filesystem such as
682  * inconsistencies detected or read IO failures.
683  *
684  * On ext2, we can store the error state of the filesystem in the
685  * superblock.  That is not possible on ext4, because we may have other
686  * write ordering constraints on the superblock which prevent us from
687  * writing it out straight away; and given that the journal is about to
688  * be aborted, we can't rely on the current, or future, transactions to
689  * write out the superblock safely.
690  *
691  * We'll just use the jbd2_journal_abort() error code to record an error in
692  * the journal instead.  On recovery, the journal will complain about
693  * that error until we've noted it down and cleared it.
694  *
695  * If force_ro is set, we unconditionally force the filesystem into an
696  * ABORT|READONLY state, unless the error response on the fs has been set to
697  * panic in which case we take the easy way out and panic immediately. This is
698  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
699  * at a critical moment in log management.
700  */
701 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
702 			      __u32 ino, __u64 block,
703 			      const char *func, unsigned int line)
704 {
705 	journal_t *journal = EXT4_SB(sb)->s_journal;
706 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
707 
708 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
709 	if (test_opt(sb, WARN_ON_ERROR))
710 		WARN_ON_ONCE(1);
711 
712 	if (!continue_fs && !sb_rdonly(sb)) {
713 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
714 		if (journal)
715 			jbd2_journal_abort(journal, -EIO);
716 	}
717 
718 	if (!bdev_read_only(sb->s_bdev)) {
719 		save_error_info(sb, error, ino, block, func, line);
720 		/*
721 		 * In case the fs should keep running, we need to writeout
722 		 * superblock through the journal. Due to lock ordering
723 		 * constraints, it may not be safe to do it right here so we
724 		 * defer superblock flushing to a workqueue.
725 		 */
726 		if (continue_fs && journal)
727 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
728 		else
729 			ext4_commit_super(sb);
730 	}
731 
732 	/*
733 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
734 	 * could panic during 'reboot -f' as the underlying device got already
735 	 * disabled.
736 	 */
737 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
738 		panic("EXT4-fs (device %s): panic forced after error\n",
739 			sb->s_id);
740 	}
741 
742 	if (sb_rdonly(sb) || continue_fs)
743 		return;
744 
745 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
746 	/*
747 	 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
748 	 * modifications. We don't set SB_RDONLY because that requires
749 	 * sb->s_umount semaphore and setting it without proper remount
750 	 * procedure is confusing code such as freeze_super() leading to
751 	 * deadlocks and other problems.
752 	 */
753 }
754 
755 static void update_super_work(struct work_struct *work)
756 {
757 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
758 						s_sb_upd_work);
759 	journal_t *journal = sbi->s_journal;
760 	handle_t *handle;
761 
762 	/*
763 	 * If the journal is still running, we have to write out superblock
764 	 * through the journal to avoid collisions of other journalled sb
765 	 * updates.
766 	 *
767 	 * We use directly jbd2 functions here to avoid recursing back into
768 	 * ext4 error handling code during handling of previous errors.
769 	 */
770 	if (!sb_rdonly(sbi->s_sb) && journal) {
771 		struct buffer_head *sbh = sbi->s_sbh;
772 		bool call_notify_err = false;
773 
774 		handle = jbd2_journal_start(journal, 1);
775 		if (IS_ERR(handle))
776 			goto write_directly;
777 		if (jbd2_journal_get_write_access(handle, sbh)) {
778 			jbd2_journal_stop(handle);
779 			goto write_directly;
780 		}
781 
782 		if (sbi->s_add_error_count > 0)
783 			call_notify_err = true;
784 
785 		ext4_update_super(sbi->s_sb);
786 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
787 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
788 				 "superblock detected");
789 			clear_buffer_write_io_error(sbh);
790 			set_buffer_uptodate(sbh);
791 		}
792 
793 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
794 			jbd2_journal_stop(handle);
795 			goto write_directly;
796 		}
797 		jbd2_journal_stop(handle);
798 
799 		if (call_notify_err)
800 			ext4_notify_error_sysfs(sbi);
801 
802 		return;
803 	}
804 write_directly:
805 	/*
806 	 * Write through journal failed. Write sb directly to get error info
807 	 * out and hope for the best.
808 	 */
809 	ext4_commit_super(sbi->s_sb);
810 	ext4_notify_error_sysfs(sbi);
811 }
812 
813 #define ext4_error_ratelimit(sb)					\
814 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
815 			     "EXT4-fs error")
816 
817 void __ext4_error(struct super_block *sb, const char *function,
818 		  unsigned int line, bool force_ro, int error, __u64 block,
819 		  const char *fmt, ...)
820 {
821 	struct va_format vaf;
822 	va_list args;
823 
824 	if (unlikely(ext4_forced_shutdown(sb)))
825 		return;
826 
827 	trace_ext4_error(sb, function, line);
828 	if (ext4_error_ratelimit(sb)) {
829 		va_start(args, fmt);
830 		vaf.fmt = fmt;
831 		vaf.va = &args;
832 		printk(KERN_CRIT
833 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
834 		       sb->s_id, function, line, current->comm, &vaf);
835 		va_end(args);
836 	}
837 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
838 
839 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
840 }
841 
842 void __ext4_error_inode(struct inode *inode, const char *function,
843 			unsigned int line, ext4_fsblk_t block, int error,
844 			const char *fmt, ...)
845 {
846 	va_list args;
847 	struct va_format vaf;
848 
849 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
850 		return;
851 
852 	trace_ext4_error(inode->i_sb, function, line);
853 	if (ext4_error_ratelimit(inode->i_sb)) {
854 		va_start(args, fmt);
855 		vaf.fmt = fmt;
856 		vaf.va = &args;
857 		if (block)
858 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
859 			       "inode #%lu: block %llu: comm %s: %pV\n",
860 			       inode->i_sb->s_id, function, line, inode->i_ino,
861 			       block, current->comm, &vaf);
862 		else
863 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
864 			       "inode #%lu: comm %s: %pV\n",
865 			       inode->i_sb->s_id, function, line, inode->i_ino,
866 			       current->comm, &vaf);
867 		va_end(args);
868 	}
869 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
870 
871 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
872 			  function, line);
873 }
874 
875 void __ext4_error_file(struct file *file, const char *function,
876 		       unsigned int line, ext4_fsblk_t block,
877 		       const char *fmt, ...)
878 {
879 	va_list args;
880 	struct va_format vaf;
881 	struct inode *inode = file_inode(file);
882 	char pathname[80], *path;
883 
884 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
885 		return;
886 
887 	trace_ext4_error(inode->i_sb, function, line);
888 	if (ext4_error_ratelimit(inode->i_sb)) {
889 		path = file_path(file, pathname, sizeof(pathname));
890 		if (IS_ERR(path))
891 			path = "(unknown)";
892 		va_start(args, fmt);
893 		vaf.fmt = fmt;
894 		vaf.va = &args;
895 		if (block)
896 			printk(KERN_CRIT
897 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
898 			       "block %llu: comm %s: path %s: %pV\n",
899 			       inode->i_sb->s_id, function, line, inode->i_ino,
900 			       block, current->comm, path, &vaf);
901 		else
902 			printk(KERN_CRIT
903 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
904 			       "comm %s: path %s: %pV\n",
905 			       inode->i_sb->s_id, function, line, inode->i_ino,
906 			       current->comm, path, &vaf);
907 		va_end(args);
908 	}
909 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
910 
911 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
912 			  function, line);
913 }
914 
915 const char *ext4_decode_error(struct super_block *sb, int errno,
916 			      char nbuf[16])
917 {
918 	char *errstr = NULL;
919 
920 	switch (errno) {
921 	case -EFSCORRUPTED:
922 		errstr = "Corrupt filesystem";
923 		break;
924 	case -EFSBADCRC:
925 		errstr = "Filesystem failed CRC";
926 		break;
927 	case -EIO:
928 		errstr = "IO failure";
929 		break;
930 	case -ENOMEM:
931 		errstr = "Out of memory";
932 		break;
933 	case -EROFS:
934 		if (!sb || (EXT4_SB(sb)->s_journal &&
935 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
936 			errstr = "Journal has aborted";
937 		else
938 			errstr = "Readonly filesystem";
939 		break;
940 	default:
941 		/* If the caller passed in an extra buffer for unknown
942 		 * errors, textualise them now.  Else we just return
943 		 * NULL. */
944 		if (nbuf) {
945 			/* Check for truncated error codes... */
946 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
947 				errstr = nbuf;
948 		}
949 		break;
950 	}
951 
952 	return errstr;
953 }
954 
955 /* __ext4_std_error decodes expected errors from journaling functions
956  * automatically and invokes the appropriate error response.  */
957 
958 void __ext4_std_error(struct super_block *sb, const char *function,
959 		      unsigned int line, int errno)
960 {
961 	char nbuf[16];
962 	const char *errstr;
963 
964 	if (unlikely(ext4_forced_shutdown(sb)))
965 		return;
966 
967 	/* Special case: if the error is EROFS, and we're not already
968 	 * inside a transaction, then there's really no point in logging
969 	 * an error. */
970 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
971 		return;
972 
973 	if (ext4_error_ratelimit(sb)) {
974 		errstr = ext4_decode_error(sb, errno, nbuf);
975 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
976 		       sb->s_id, function, line, errstr);
977 	}
978 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
979 
980 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
981 }
982 
983 void __ext4_msg(struct super_block *sb,
984 		const char *prefix, const char *fmt, ...)
985 {
986 	struct va_format vaf;
987 	va_list args;
988 
989 	if (sb) {
990 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
991 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
992 				  "EXT4-fs"))
993 			return;
994 	}
995 
996 	va_start(args, fmt);
997 	vaf.fmt = fmt;
998 	vaf.va = &args;
999 	if (sb)
1000 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1001 	else
1002 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1003 	va_end(args);
1004 }
1005 
1006 static int ext4_warning_ratelimit(struct super_block *sb)
1007 {
1008 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1009 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1010 			    "EXT4-fs warning");
1011 }
1012 
1013 void __ext4_warning(struct super_block *sb, const char *function,
1014 		    unsigned int line, const char *fmt, ...)
1015 {
1016 	struct va_format vaf;
1017 	va_list args;
1018 
1019 	if (!ext4_warning_ratelimit(sb))
1020 		return;
1021 
1022 	va_start(args, fmt);
1023 	vaf.fmt = fmt;
1024 	vaf.va = &args;
1025 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1026 	       sb->s_id, function, line, &vaf);
1027 	va_end(args);
1028 }
1029 
1030 void __ext4_warning_inode(const struct inode *inode, const char *function,
1031 			  unsigned int line, const char *fmt, ...)
1032 {
1033 	struct va_format vaf;
1034 	va_list args;
1035 
1036 	if (!ext4_warning_ratelimit(inode->i_sb))
1037 		return;
1038 
1039 	va_start(args, fmt);
1040 	vaf.fmt = fmt;
1041 	vaf.va = &args;
1042 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1043 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1044 	       function, line, inode->i_ino, current->comm, &vaf);
1045 	va_end(args);
1046 }
1047 
1048 void __ext4_grp_locked_error(const char *function, unsigned int line,
1049 			     struct super_block *sb, ext4_group_t grp,
1050 			     unsigned long ino, ext4_fsblk_t block,
1051 			     const char *fmt, ...)
1052 __releases(bitlock)
1053 __acquires(bitlock)
1054 {
1055 	struct va_format vaf;
1056 	va_list args;
1057 
1058 	if (unlikely(ext4_forced_shutdown(sb)))
1059 		return;
1060 
1061 	trace_ext4_error(sb, function, line);
1062 	if (ext4_error_ratelimit(sb)) {
1063 		va_start(args, fmt);
1064 		vaf.fmt = fmt;
1065 		vaf.va = &args;
1066 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1067 		       sb->s_id, function, line, grp);
1068 		if (ino)
1069 			printk(KERN_CONT "inode %lu: ", ino);
1070 		if (block)
1071 			printk(KERN_CONT "block %llu:",
1072 			       (unsigned long long) block);
1073 		printk(KERN_CONT "%pV\n", &vaf);
1074 		va_end(args);
1075 	}
1076 
1077 	if (test_opt(sb, ERRORS_CONT)) {
1078 		if (test_opt(sb, WARN_ON_ERROR))
1079 			WARN_ON_ONCE(1);
1080 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1081 		if (!bdev_read_only(sb->s_bdev)) {
1082 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1083 					line);
1084 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1085 		}
1086 		return;
1087 	}
1088 	ext4_unlock_group(sb, grp);
1089 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1090 	/*
1091 	 * We only get here in the ERRORS_RO case; relocking the group
1092 	 * may be dangerous, but nothing bad will happen since the
1093 	 * filesystem will have already been marked read/only and the
1094 	 * journal has been aborted.  We return 1 as a hint to callers
1095 	 * who might what to use the return value from
1096 	 * ext4_grp_locked_error() to distinguish between the
1097 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1098 	 * aggressively from the ext4 function in question, with a
1099 	 * more appropriate error code.
1100 	 */
1101 	ext4_lock_group(sb, grp);
1102 	return;
1103 }
1104 
1105 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1106 				     ext4_group_t group,
1107 				     unsigned int flags)
1108 {
1109 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1111 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1112 	int ret;
1113 
1114 	if (!grp || !gdp)
1115 		return;
1116 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1117 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1118 					    &grp->bb_state);
1119 		if (!ret)
1120 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1121 					   grp->bb_free);
1122 	}
1123 
1124 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1125 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1126 					    &grp->bb_state);
1127 		if (!ret && gdp) {
1128 			int count;
1129 
1130 			count = ext4_free_inodes_count(sb, gdp);
1131 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1132 					   count);
1133 		}
1134 	}
1135 }
1136 
1137 void ext4_update_dynamic_rev(struct super_block *sb)
1138 {
1139 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1140 
1141 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1142 		return;
1143 
1144 	ext4_warning(sb,
1145 		     "updating to rev %d because of new feature flag, "
1146 		     "running e2fsck is recommended",
1147 		     EXT4_DYNAMIC_REV);
1148 
1149 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1150 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1151 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1152 	/* leave es->s_feature_*compat flags alone */
1153 	/* es->s_uuid will be set by e2fsck if empty */
1154 
1155 	/*
1156 	 * The rest of the superblock fields should be zero, and if not it
1157 	 * means they are likely already in use, so leave them alone.  We
1158 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1159 	 */
1160 }
1161 
1162 static inline struct inode *orphan_list_entry(struct list_head *l)
1163 {
1164 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1165 }
1166 
1167 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1168 {
1169 	struct list_head *l;
1170 
1171 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1172 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1173 
1174 	printk(KERN_ERR "sb_info orphan list:\n");
1175 	list_for_each(l, &sbi->s_orphan) {
1176 		struct inode *inode = orphan_list_entry(l);
1177 		printk(KERN_ERR "  "
1178 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1179 		       inode->i_sb->s_id, inode->i_ino, inode,
1180 		       inode->i_mode, inode->i_nlink,
1181 		       NEXT_ORPHAN(inode));
1182 	}
1183 }
1184 
1185 #ifdef CONFIG_QUOTA
1186 static int ext4_quota_off(struct super_block *sb, int type);
1187 
1188 static inline void ext4_quotas_off(struct super_block *sb, int type)
1189 {
1190 	BUG_ON(type > EXT4_MAXQUOTAS);
1191 
1192 	/* Use our quota_off function to clear inode flags etc. */
1193 	for (type--; type >= 0; type--)
1194 		ext4_quota_off(sb, type);
1195 }
1196 
1197 /*
1198  * This is a helper function which is used in the mount/remount
1199  * codepaths (which holds s_umount) to fetch the quota file name.
1200  */
1201 static inline char *get_qf_name(struct super_block *sb,
1202 				struct ext4_sb_info *sbi,
1203 				int type)
1204 {
1205 	return rcu_dereference_protected(sbi->s_qf_names[type],
1206 					 lockdep_is_held(&sb->s_umount));
1207 }
1208 #else
1209 static inline void ext4_quotas_off(struct super_block *sb, int type)
1210 {
1211 }
1212 #endif
1213 
1214 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1215 {
1216 	ext4_fsblk_t block;
1217 	int err;
1218 
1219 	block = ext4_count_free_clusters(sbi->s_sb);
1220 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1221 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1222 				  GFP_KERNEL);
1223 	if (!err) {
1224 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1225 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1226 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1227 					  GFP_KERNEL);
1228 	}
1229 	if (!err)
1230 		err = percpu_counter_init(&sbi->s_dirs_counter,
1231 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1232 	if (!err)
1233 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1234 					  GFP_KERNEL);
1235 	if (!err)
1236 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1237 					  GFP_KERNEL);
1238 	if (!err)
1239 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1240 
1241 	if (err)
1242 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1243 
1244 	return err;
1245 }
1246 
1247 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1248 {
1249 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1250 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1251 	percpu_counter_destroy(&sbi->s_dirs_counter);
1252 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1253 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1254 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1255 }
1256 
1257 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1258 {
1259 	struct buffer_head **group_desc;
1260 	int i;
1261 
1262 	rcu_read_lock();
1263 	group_desc = rcu_dereference(sbi->s_group_desc);
1264 	for (i = 0; i < sbi->s_gdb_count; i++)
1265 		brelse(group_desc[i]);
1266 	kvfree(group_desc);
1267 	rcu_read_unlock();
1268 }
1269 
1270 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1271 {
1272 	struct flex_groups **flex_groups;
1273 	int i;
1274 
1275 	rcu_read_lock();
1276 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1277 	if (flex_groups) {
1278 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1279 			kvfree(flex_groups[i]);
1280 		kvfree(flex_groups);
1281 	}
1282 	rcu_read_unlock();
1283 }
1284 
1285 static void ext4_put_super(struct super_block *sb)
1286 {
1287 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1288 	struct ext4_super_block *es = sbi->s_es;
1289 	int aborted = 0;
1290 	int err;
1291 
1292 	/*
1293 	 * Unregister sysfs before destroying jbd2 journal.
1294 	 * Since we could still access attr_journal_task attribute via sysfs
1295 	 * path which could have sbi->s_journal->j_task as NULL
1296 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1297 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1298 	 * read metadata verify failed then will queue error work.
1299 	 * update_super_work will call start_this_handle may trigger
1300 	 * BUG_ON.
1301 	 */
1302 	ext4_unregister_sysfs(sb);
1303 
1304 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1305 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1306 			 &sb->s_uuid);
1307 
1308 	ext4_unregister_li_request(sb);
1309 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1310 
1311 	flush_work(&sbi->s_sb_upd_work);
1312 	destroy_workqueue(sbi->rsv_conversion_wq);
1313 	ext4_release_orphan_info(sb);
1314 
1315 	if (sbi->s_journal) {
1316 		aborted = is_journal_aborted(sbi->s_journal);
1317 		err = jbd2_journal_destroy(sbi->s_journal);
1318 		sbi->s_journal = NULL;
1319 		if ((err < 0) && !aborted) {
1320 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1321 		}
1322 	}
1323 
1324 	ext4_es_unregister_shrinker(sbi);
1325 	timer_shutdown_sync(&sbi->s_err_report);
1326 	ext4_release_system_zone(sb);
1327 	ext4_mb_release(sb);
1328 	ext4_ext_release(sb);
1329 
1330 	if (!sb_rdonly(sb) && !aborted) {
1331 		ext4_clear_feature_journal_needs_recovery(sb);
1332 		ext4_clear_feature_orphan_present(sb);
1333 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1334 	}
1335 	if (!sb_rdonly(sb))
1336 		ext4_commit_super(sb);
1337 
1338 	ext4_group_desc_free(sbi);
1339 	ext4_flex_groups_free(sbi);
1340 	ext4_percpu_param_destroy(sbi);
1341 #ifdef CONFIG_QUOTA
1342 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1343 		kfree(get_qf_name(sb, sbi, i));
1344 #endif
1345 
1346 	/* Debugging code just in case the in-memory inode orphan list
1347 	 * isn't empty.  The on-disk one can be non-empty if we've
1348 	 * detected an error and taken the fs readonly, but the
1349 	 * in-memory list had better be clean by this point. */
1350 	if (!list_empty(&sbi->s_orphan))
1351 		dump_orphan_list(sb, sbi);
1352 	ASSERT(list_empty(&sbi->s_orphan));
1353 
1354 	sync_blockdev(sb->s_bdev);
1355 	invalidate_bdev(sb->s_bdev);
1356 	if (sbi->s_journal_bdev) {
1357 		/*
1358 		 * Invalidate the journal device's buffers.  We don't want them
1359 		 * floating about in memory - the physical journal device may
1360 		 * hotswapped, and it breaks the `ro-after' testing code.
1361 		 */
1362 		sync_blockdev(sbi->s_journal_bdev);
1363 		invalidate_bdev(sbi->s_journal_bdev);
1364 	}
1365 
1366 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1367 	sbi->s_ea_inode_cache = NULL;
1368 
1369 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1370 	sbi->s_ea_block_cache = NULL;
1371 
1372 	ext4_stop_mmpd(sbi);
1373 
1374 	brelse(sbi->s_sbh);
1375 	sb->s_fs_info = NULL;
1376 	/*
1377 	 * Now that we are completely done shutting down the
1378 	 * superblock, we need to actually destroy the kobject.
1379 	 */
1380 	kobject_put(&sbi->s_kobj);
1381 	wait_for_completion(&sbi->s_kobj_unregister);
1382 	if (sbi->s_chksum_driver)
1383 		crypto_free_shash(sbi->s_chksum_driver);
1384 	kfree(sbi->s_blockgroup_lock);
1385 	fs_put_dax(sbi->s_daxdev, NULL);
1386 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1387 #if IS_ENABLED(CONFIG_UNICODE)
1388 	utf8_unload(sb->s_encoding);
1389 #endif
1390 	kfree(sbi);
1391 }
1392 
1393 static struct kmem_cache *ext4_inode_cachep;
1394 
1395 /*
1396  * Called inside transaction, so use GFP_NOFS
1397  */
1398 static struct inode *ext4_alloc_inode(struct super_block *sb)
1399 {
1400 	struct ext4_inode_info *ei;
1401 
1402 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1403 	if (!ei)
1404 		return NULL;
1405 
1406 	inode_set_iversion(&ei->vfs_inode, 1);
1407 	ei->i_flags = 0;
1408 	spin_lock_init(&ei->i_raw_lock);
1409 	ei->i_prealloc_node = RB_ROOT;
1410 	atomic_set(&ei->i_prealloc_active, 0);
1411 	rwlock_init(&ei->i_prealloc_lock);
1412 	ext4_es_init_tree(&ei->i_es_tree);
1413 	rwlock_init(&ei->i_es_lock);
1414 	INIT_LIST_HEAD(&ei->i_es_list);
1415 	ei->i_es_all_nr = 0;
1416 	ei->i_es_shk_nr = 0;
1417 	ei->i_es_shrink_lblk = 0;
1418 	ei->i_reserved_data_blocks = 0;
1419 	spin_lock_init(&(ei->i_block_reservation_lock));
1420 	ext4_init_pending_tree(&ei->i_pending_tree);
1421 #ifdef CONFIG_QUOTA
1422 	ei->i_reserved_quota = 0;
1423 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1424 #endif
1425 	ei->jinode = NULL;
1426 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1427 	spin_lock_init(&ei->i_completed_io_lock);
1428 	ei->i_sync_tid = 0;
1429 	ei->i_datasync_tid = 0;
1430 	atomic_set(&ei->i_unwritten, 0);
1431 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1432 	ext4_fc_init_inode(&ei->vfs_inode);
1433 	mutex_init(&ei->i_fc_lock);
1434 	return &ei->vfs_inode;
1435 }
1436 
1437 static int ext4_drop_inode(struct inode *inode)
1438 {
1439 	int drop = generic_drop_inode(inode);
1440 
1441 	if (!drop)
1442 		drop = fscrypt_drop_inode(inode);
1443 
1444 	trace_ext4_drop_inode(inode, drop);
1445 	return drop;
1446 }
1447 
1448 static void ext4_free_in_core_inode(struct inode *inode)
1449 {
1450 	fscrypt_free_inode(inode);
1451 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1452 		pr_warn("%s: inode %ld still in fc list",
1453 			__func__, inode->i_ino);
1454 	}
1455 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1456 }
1457 
1458 static void ext4_destroy_inode(struct inode *inode)
1459 {
1460 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1461 		ext4_msg(inode->i_sb, KERN_ERR,
1462 			 "Inode %lu (%p): orphan list check failed!",
1463 			 inode->i_ino, EXT4_I(inode));
1464 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1465 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1466 				true);
1467 		dump_stack();
1468 	}
1469 
1470 	if (EXT4_I(inode)->i_reserved_data_blocks)
1471 		ext4_msg(inode->i_sb, KERN_ERR,
1472 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1473 			 inode->i_ino, EXT4_I(inode),
1474 			 EXT4_I(inode)->i_reserved_data_blocks);
1475 }
1476 
1477 static void ext4_shutdown(struct super_block *sb)
1478 {
1479        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1480 }
1481 
1482 static void init_once(void *foo)
1483 {
1484 	struct ext4_inode_info *ei = foo;
1485 
1486 	INIT_LIST_HEAD(&ei->i_orphan);
1487 	init_rwsem(&ei->xattr_sem);
1488 	init_rwsem(&ei->i_data_sem);
1489 	inode_init_once(&ei->vfs_inode);
1490 	ext4_fc_init_inode(&ei->vfs_inode);
1491 }
1492 
1493 static int __init init_inodecache(void)
1494 {
1495 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1496 				sizeof(struct ext4_inode_info), 0,
1497 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1498 					SLAB_ACCOUNT),
1499 				offsetof(struct ext4_inode_info, i_data),
1500 				sizeof_field(struct ext4_inode_info, i_data),
1501 				init_once);
1502 	if (ext4_inode_cachep == NULL)
1503 		return -ENOMEM;
1504 	return 0;
1505 }
1506 
1507 static void destroy_inodecache(void)
1508 {
1509 	/*
1510 	 * Make sure all delayed rcu free inodes are flushed before we
1511 	 * destroy cache.
1512 	 */
1513 	rcu_barrier();
1514 	kmem_cache_destroy(ext4_inode_cachep);
1515 }
1516 
1517 void ext4_clear_inode(struct inode *inode)
1518 {
1519 	ext4_fc_del(inode);
1520 	invalidate_inode_buffers(inode);
1521 	clear_inode(inode);
1522 	ext4_discard_preallocations(inode, 0);
1523 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1524 	dquot_drop(inode);
1525 	if (EXT4_I(inode)->jinode) {
1526 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1527 					       EXT4_I(inode)->jinode);
1528 		jbd2_free_inode(EXT4_I(inode)->jinode);
1529 		EXT4_I(inode)->jinode = NULL;
1530 	}
1531 	fscrypt_put_encryption_info(inode);
1532 	fsverity_cleanup_inode(inode);
1533 }
1534 
1535 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1536 					u64 ino, u32 generation)
1537 {
1538 	struct inode *inode;
1539 
1540 	/*
1541 	 * Currently we don't know the generation for parent directory, so
1542 	 * a generation of 0 means "accept any"
1543 	 */
1544 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1545 	if (IS_ERR(inode))
1546 		return ERR_CAST(inode);
1547 	if (generation && inode->i_generation != generation) {
1548 		iput(inode);
1549 		return ERR_PTR(-ESTALE);
1550 	}
1551 
1552 	return inode;
1553 }
1554 
1555 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1556 					int fh_len, int fh_type)
1557 {
1558 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1559 				    ext4_nfs_get_inode);
1560 }
1561 
1562 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1563 					int fh_len, int fh_type)
1564 {
1565 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1566 				    ext4_nfs_get_inode);
1567 }
1568 
1569 static int ext4_nfs_commit_metadata(struct inode *inode)
1570 {
1571 	struct writeback_control wbc = {
1572 		.sync_mode = WB_SYNC_ALL
1573 	};
1574 
1575 	trace_ext4_nfs_commit_metadata(inode);
1576 	return ext4_write_inode(inode, &wbc);
1577 }
1578 
1579 #ifdef CONFIG_QUOTA
1580 static const char * const quotatypes[] = INITQFNAMES;
1581 #define QTYPE2NAME(t) (quotatypes[t])
1582 
1583 static int ext4_write_dquot(struct dquot *dquot);
1584 static int ext4_acquire_dquot(struct dquot *dquot);
1585 static int ext4_release_dquot(struct dquot *dquot);
1586 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1587 static int ext4_write_info(struct super_block *sb, int type);
1588 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1589 			 const struct path *path);
1590 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1591 			       size_t len, loff_t off);
1592 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1593 				const char *data, size_t len, loff_t off);
1594 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1595 			     unsigned int flags);
1596 
1597 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1598 {
1599 	return EXT4_I(inode)->i_dquot;
1600 }
1601 
1602 static const struct dquot_operations ext4_quota_operations = {
1603 	.get_reserved_space	= ext4_get_reserved_space,
1604 	.write_dquot		= ext4_write_dquot,
1605 	.acquire_dquot		= ext4_acquire_dquot,
1606 	.release_dquot		= ext4_release_dquot,
1607 	.mark_dirty		= ext4_mark_dquot_dirty,
1608 	.write_info		= ext4_write_info,
1609 	.alloc_dquot		= dquot_alloc,
1610 	.destroy_dquot		= dquot_destroy,
1611 	.get_projid		= ext4_get_projid,
1612 	.get_inode_usage	= ext4_get_inode_usage,
1613 	.get_next_id		= dquot_get_next_id,
1614 };
1615 
1616 static const struct quotactl_ops ext4_qctl_operations = {
1617 	.quota_on	= ext4_quota_on,
1618 	.quota_off	= ext4_quota_off,
1619 	.quota_sync	= dquot_quota_sync,
1620 	.get_state	= dquot_get_state,
1621 	.set_info	= dquot_set_dqinfo,
1622 	.get_dqblk	= dquot_get_dqblk,
1623 	.set_dqblk	= dquot_set_dqblk,
1624 	.get_nextdqblk	= dquot_get_next_dqblk,
1625 };
1626 #endif
1627 
1628 static const struct super_operations ext4_sops = {
1629 	.alloc_inode	= ext4_alloc_inode,
1630 	.free_inode	= ext4_free_in_core_inode,
1631 	.destroy_inode	= ext4_destroy_inode,
1632 	.write_inode	= ext4_write_inode,
1633 	.dirty_inode	= ext4_dirty_inode,
1634 	.drop_inode	= ext4_drop_inode,
1635 	.evict_inode	= ext4_evict_inode,
1636 	.put_super	= ext4_put_super,
1637 	.sync_fs	= ext4_sync_fs,
1638 	.freeze_fs	= ext4_freeze,
1639 	.unfreeze_fs	= ext4_unfreeze,
1640 	.statfs		= ext4_statfs,
1641 	.show_options	= ext4_show_options,
1642 	.shutdown	= ext4_shutdown,
1643 #ifdef CONFIG_QUOTA
1644 	.quota_read	= ext4_quota_read,
1645 	.quota_write	= ext4_quota_write,
1646 	.get_dquots	= ext4_get_dquots,
1647 #endif
1648 };
1649 
1650 static const struct export_operations ext4_export_ops = {
1651 	.fh_to_dentry = ext4_fh_to_dentry,
1652 	.fh_to_parent = ext4_fh_to_parent,
1653 	.get_parent = ext4_get_parent,
1654 	.commit_metadata = ext4_nfs_commit_metadata,
1655 };
1656 
1657 enum {
1658 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1659 	Opt_resgid, Opt_resuid, Opt_sb,
1660 	Opt_nouid32, Opt_debug, Opt_removed,
1661 	Opt_user_xattr, Opt_acl,
1662 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1663 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1664 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1665 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1666 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1667 	Opt_inlinecrypt,
1668 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1669 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1670 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1671 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1672 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1673 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1674 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1675 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1676 	Opt_dioread_nolock, Opt_dioread_lock,
1677 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1678 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1679 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1680 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1681 #ifdef CONFIG_EXT4_DEBUG
1682 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1683 #endif
1684 };
1685 
1686 static const struct constant_table ext4_param_errors[] = {
1687 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1688 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1689 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1690 	{}
1691 };
1692 
1693 static const struct constant_table ext4_param_data[] = {
1694 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1695 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1696 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1697 	{}
1698 };
1699 
1700 static const struct constant_table ext4_param_data_err[] = {
1701 	{"abort",	Opt_data_err_abort},
1702 	{"ignore",	Opt_data_err_ignore},
1703 	{}
1704 };
1705 
1706 static const struct constant_table ext4_param_jqfmt[] = {
1707 	{"vfsold",	QFMT_VFS_OLD},
1708 	{"vfsv0",	QFMT_VFS_V0},
1709 	{"vfsv1",	QFMT_VFS_V1},
1710 	{}
1711 };
1712 
1713 static const struct constant_table ext4_param_dax[] = {
1714 	{"always",	Opt_dax_always},
1715 	{"inode",	Opt_dax_inode},
1716 	{"never",	Opt_dax_never},
1717 	{}
1718 };
1719 
1720 /* String parameter that allows empty argument */
1721 #define fsparam_string_empty(NAME, OPT) \
1722 	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1723 
1724 /*
1725  * Mount option specification
1726  * We don't use fsparam_flag_no because of the way we set the
1727  * options and the way we show them in _ext4_show_options(). To
1728  * keep the changes to a minimum, let's keep the negative options
1729  * separate for now.
1730  */
1731 static const struct fs_parameter_spec ext4_param_specs[] = {
1732 	fsparam_flag	("bsddf",		Opt_bsd_df),
1733 	fsparam_flag	("minixdf",		Opt_minix_df),
1734 	fsparam_flag	("grpid",		Opt_grpid),
1735 	fsparam_flag	("bsdgroups",		Opt_grpid),
1736 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1737 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1738 	fsparam_u32	("resgid",		Opt_resgid),
1739 	fsparam_u32	("resuid",		Opt_resuid),
1740 	fsparam_u32	("sb",			Opt_sb),
1741 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1742 	fsparam_flag	("nouid32",		Opt_nouid32),
1743 	fsparam_flag	("debug",		Opt_debug),
1744 	fsparam_flag	("oldalloc",		Opt_removed),
1745 	fsparam_flag	("orlov",		Opt_removed),
1746 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1747 	fsparam_flag	("acl",			Opt_acl),
1748 	fsparam_flag	("norecovery",		Opt_noload),
1749 	fsparam_flag	("noload",		Opt_noload),
1750 	fsparam_flag	("bh",			Opt_removed),
1751 	fsparam_flag	("nobh",		Opt_removed),
1752 	fsparam_u32	("commit",		Opt_commit),
1753 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1754 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1755 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1756 	fsparam_bdev	("journal_path",	Opt_journal_path),
1757 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1758 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1759 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1760 	fsparam_flag	("abort",		Opt_abort),
1761 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1762 	fsparam_enum	("data_err",		Opt_data_err,
1763 						ext4_param_data_err),
1764 	fsparam_string_empty
1765 			("usrjquota",		Opt_usrjquota),
1766 	fsparam_string_empty
1767 			("grpjquota",		Opt_grpjquota),
1768 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1769 	fsparam_flag	("grpquota",		Opt_grpquota),
1770 	fsparam_flag	("quota",		Opt_quota),
1771 	fsparam_flag	("noquota",		Opt_noquota),
1772 	fsparam_flag	("usrquota",		Opt_usrquota),
1773 	fsparam_flag	("prjquota",		Opt_prjquota),
1774 	fsparam_flag	("barrier",		Opt_barrier),
1775 	fsparam_u32	("barrier",		Opt_barrier),
1776 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1777 	fsparam_flag	("i_version",		Opt_removed),
1778 	fsparam_flag	("dax",			Opt_dax),
1779 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1780 	fsparam_u32	("stripe",		Opt_stripe),
1781 	fsparam_flag	("delalloc",		Opt_delalloc),
1782 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1783 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1784 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1785 	fsparam_u32	("debug_want_extra_isize",
1786 						Opt_debug_want_extra_isize),
1787 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1788 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1789 	fsparam_flag	("block_validity",	Opt_block_validity),
1790 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1791 	fsparam_u32	("inode_readahead_blks",
1792 						Opt_inode_readahead_blks),
1793 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1794 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1795 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1796 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1797 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1798 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1799 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1800 	fsparam_flag	("discard",		Opt_discard),
1801 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1802 	fsparam_u32	("init_itable",		Opt_init_itable),
1803 	fsparam_flag	("init_itable",		Opt_init_itable),
1804 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1805 #ifdef CONFIG_EXT4_DEBUG
1806 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1807 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1808 #endif
1809 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1810 	fsparam_flag	("test_dummy_encryption",
1811 						Opt_test_dummy_encryption),
1812 	fsparam_string	("test_dummy_encryption",
1813 						Opt_test_dummy_encryption),
1814 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1815 	fsparam_flag	("nombcache",		Opt_nombcache),
1816 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1817 	fsparam_flag	("prefetch_block_bitmaps",
1818 						Opt_removed),
1819 	fsparam_flag	("no_prefetch_block_bitmaps",
1820 						Opt_no_prefetch_block_bitmaps),
1821 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1822 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1823 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1824 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1825 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1826 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1827 	{}
1828 };
1829 
1830 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1831 
1832 #define MOPT_SET	0x0001
1833 #define MOPT_CLEAR	0x0002
1834 #define MOPT_NOSUPPORT	0x0004
1835 #define MOPT_EXPLICIT	0x0008
1836 #ifdef CONFIG_QUOTA
1837 #define MOPT_Q		0
1838 #define MOPT_QFMT	0x0010
1839 #else
1840 #define MOPT_Q		MOPT_NOSUPPORT
1841 #define MOPT_QFMT	MOPT_NOSUPPORT
1842 #endif
1843 #define MOPT_NO_EXT2	0x0020
1844 #define MOPT_NO_EXT3	0x0040
1845 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1846 #define MOPT_SKIP	0x0080
1847 #define	MOPT_2		0x0100
1848 
1849 static const struct mount_opts {
1850 	int	token;
1851 	int	mount_opt;
1852 	int	flags;
1853 } ext4_mount_opts[] = {
1854 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1855 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1856 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1857 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1858 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1859 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1860 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1861 	 MOPT_EXT4_ONLY | MOPT_SET},
1862 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1863 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1864 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1865 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1866 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1867 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1868 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1869 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1870 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1871 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1872 	{Opt_commit, 0, MOPT_NO_EXT2},
1873 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1874 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1875 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1876 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1877 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1878 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1879 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1880 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1881 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1882 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1883 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1884 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1885 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1886 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1887 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1888 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1889 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1890 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1891 	{Opt_data, 0, MOPT_NO_EXT2},
1892 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1893 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1894 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1895 #else
1896 	{Opt_acl, 0, MOPT_NOSUPPORT},
1897 #endif
1898 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1899 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1900 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1901 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1902 							MOPT_SET | MOPT_Q},
1903 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1904 							MOPT_SET | MOPT_Q},
1905 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1906 							MOPT_SET | MOPT_Q},
1907 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1908 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1909 							MOPT_CLEAR | MOPT_Q},
1910 	{Opt_usrjquota, 0, MOPT_Q},
1911 	{Opt_grpjquota, 0, MOPT_Q},
1912 	{Opt_jqfmt, 0, MOPT_QFMT},
1913 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1914 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1915 	 MOPT_SET},
1916 #ifdef CONFIG_EXT4_DEBUG
1917 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1918 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1919 #endif
1920 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1921 	{Opt_err, 0, 0}
1922 };
1923 
1924 #if IS_ENABLED(CONFIG_UNICODE)
1925 static const struct ext4_sb_encodings {
1926 	__u16 magic;
1927 	char *name;
1928 	unsigned int version;
1929 } ext4_sb_encoding_map[] = {
1930 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1931 };
1932 
1933 static const struct ext4_sb_encodings *
1934 ext4_sb_read_encoding(const struct ext4_super_block *es)
1935 {
1936 	__u16 magic = le16_to_cpu(es->s_encoding);
1937 	int i;
1938 
1939 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1940 		if (magic == ext4_sb_encoding_map[i].magic)
1941 			return &ext4_sb_encoding_map[i];
1942 
1943 	return NULL;
1944 }
1945 #endif
1946 
1947 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1948 #define EXT4_SPEC_JQFMT				(1 <<  1)
1949 #define EXT4_SPEC_DATAJ				(1 <<  2)
1950 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1951 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1952 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1953 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1954 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1955 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1956 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1957 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1958 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1959 #define EXT4_SPEC_s_stripe			(1 << 13)
1960 #define EXT4_SPEC_s_resuid			(1 << 14)
1961 #define EXT4_SPEC_s_resgid			(1 << 15)
1962 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1963 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1964 #define EXT4_SPEC_s_sb_block			(1 << 18)
1965 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1966 
1967 struct ext4_fs_context {
1968 	char		*s_qf_names[EXT4_MAXQUOTAS];
1969 	struct fscrypt_dummy_policy dummy_enc_policy;
1970 	int		s_jquota_fmt;	/* Format of quota to use */
1971 #ifdef CONFIG_EXT4_DEBUG
1972 	int s_fc_debug_max_replay;
1973 #endif
1974 	unsigned short	qname_spec;
1975 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1976 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1977 	unsigned long	journal_devnum;
1978 	unsigned long	s_commit_interval;
1979 	unsigned long	s_stripe;
1980 	unsigned int	s_inode_readahead_blks;
1981 	unsigned int	s_want_extra_isize;
1982 	unsigned int	s_li_wait_mult;
1983 	unsigned int	s_max_dir_size_kb;
1984 	unsigned int	journal_ioprio;
1985 	unsigned int	vals_s_mount_opt;
1986 	unsigned int	mask_s_mount_opt;
1987 	unsigned int	vals_s_mount_opt2;
1988 	unsigned int	mask_s_mount_opt2;
1989 	unsigned int	opt_flags;	/* MOPT flags */
1990 	unsigned int	spec;
1991 	u32		s_max_batch_time;
1992 	u32		s_min_batch_time;
1993 	kuid_t		s_resuid;
1994 	kgid_t		s_resgid;
1995 	ext4_fsblk_t	s_sb_block;
1996 };
1997 
1998 static void ext4_fc_free(struct fs_context *fc)
1999 {
2000 	struct ext4_fs_context *ctx = fc->fs_private;
2001 	int i;
2002 
2003 	if (!ctx)
2004 		return;
2005 
2006 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2007 		kfree(ctx->s_qf_names[i]);
2008 
2009 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2010 	kfree(ctx);
2011 }
2012 
2013 int ext4_init_fs_context(struct fs_context *fc)
2014 {
2015 	struct ext4_fs_context *ctx;
2016 
2017 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2018 	if (!ctx)
2019 		return -ENOMEM;
2020 
2021 	fc->fs_private = ctx;
2022 	fc->ops = &ext4_context_ops;
2023 
2024 	return 0;
2025 }
2026 
2027 #ifdef CONFIG_QUOTA
2028 /*
2029  * Note the name of the specified quota file.
2030  */
2031 static int note_qf_name(struct fs_context *fc, int qtype,
2032 		       struct fs_parameter *param)
2033 {
2034 	struct ext4_fs_context *ctx = fc->fs_private;
2035 	char *qname;
2036 
2037 	if (param->size < 1) {
2038 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2039 		return -EINVAL;
2040 	}
2041 	if (strchr(param->string, '/')) {
2042 		ext4_msg(NULL, KERN_ERR,
2043 			 "quotafile must be on filesystem root");
2044 		return -EINVAL;
2045 	}
2046 	if (ctx->s_qf_names[qtype]) {
2047 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2048 			ext4_msg(NULL, KERN_ERR,
2049 				 "%s quota file already specified",
2050 				 QTYPE2NAME(qtype));
2051 			return -EINVAL;
2052 		}
2053 		return 0;
2054 	}
2055 
2056 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2057 	if (!qname) {
2058 		ext4_msg(NULL, KERN_ERR,
2059 			 "Not enough memory for storing quotafile name");
2060 		return -ENOMEM;
2061 	}
2062 	ctx->s_qf_names[qtype] = qname;
2063 	ctx->qname_spec |= 1 << qtype;
2064 	ctx->spec |= EXT4_SPEC_JQUOTA;
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Clear the name of the specified quota file.
2070  */
2071 static int unnote_qf_name(struct fs_context *fc, int qtype)
2072 {
2073 	struct ext4_fs_context *ctx = fc->fs_private;
2074 
2075 	if (ctx->s_qf_names[qtype])
2076 		kfree(ctx->s_qf_names[qtype]);
2077 
2078 	ctx->s_qf_names[qtype] = NULL;
2079 	ctx->qname_spec |= 1 << qtype;
2080 	ctx->spec |= EXT4_SPEC_JQUOTA;
2081 	return 0;
2082 }
2083 #endif
2084 
2085 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2086 					    struct ext4_fs_context *ctx)
2087 {
2088 	int err;
2089 
2090 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2091 		ext4_msg(NULL, KERN_WARNING,
2092 			 "test_dummy_encryption option not supported");
2093 		return -EINVAL;
2094 	}
2095 	err = fscrypt_parse_test_dummy_encryption(param,
2096 						  &ctx->dummy_enc_policy);
2097 	if (err == -EINVAL) {
2098 		ext4_msg(NULL, KERN_WARNING,
2099 			 "Value of option \"%s\" is unrecognized", param->key);
2100 	} else if (err == -EEXIST) {
2101 		ext4_msg(NULL, KERN_WARNING,
2102 			 "Conflicting test_dummy_encryption options");
2103 		return -EINVAL;
2104 	}
2105 	return err;
2106 }
2107 
2108 #define EXT4_SET_CTX(name)						\
2109 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2110 				  unsigned long flag)			\
2111 {									\
2112 	ctx->mask_s_##name |= flag;					\
2113 	ctx->vals_s_##name |= flag;					\
2114 }
2115 
2116 #define EXT4_CLEAR_CTX(name)						\
2117 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2118 				    unsigned long flag)			\
2119 {									\
2120 	ctx->mask_s_##name |= flag;					\
2121 	ctx->vals_s_##name &= ~flag;					\
2122 }
2123 
2124 #define EXT4_TEST_CTX(name)						\
2125 static inline unsigned long						\
2126 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2127 {									\
2128 	return (ctx->vals_s_##name & flag);				\
2129 }
2130 
2131 EXT4_SET_CTX(flags); /* set only */
2132 EXT4_SET_CTX(mount_opt);
2133 EXT4_CLEAR_CTX(mount_opt);
2134 EXT4_TEST_CTX(mount_opt);
2135 EXT4_SET_CTX(mount_opt2);
2136 EXT4_CLEAR_CTX(mount_opt2);
2137 EXT4_TEST_CTX(mount_opt2);
2138 
2139 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2140 {
2141 	struct ext4_fs_context *ctx = fc->fs_private;
2142 	struct fs_parse_result result;
2143 	const struct mount_opts *m;
2144 	int is_remount;
2145 	kuid_t uid;
2146 	kgid_t gid;
2147 	int token;
2148 
2149 	token = fs_parse(fc, ext4_param_specs, param, &result);
2150 	if (token < 0)
2151 		return token;
2152 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2153 
2154 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2155 		if (token == m->token)
2156 			break;
2157 
2158 	ctx->opt_flags |= m->flags;
2159 
2160 	if (m->flags & MOPT_EXPLICIT) {
2161 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2162 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2163 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2164 			ctx_set_mount_opt2(ctx,
2165 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2166 		} else
2167 			return -EINVAL;
2168 	}
2169 
2170 	if (m->flags & MOPT_NOSUPPORT) {
2171 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2172 			 param->key);
2173 		return 0;
2174 	}
2175 
2176 	switch (token) {
2177 #ifdef CONFIG_QUOTA
2178 	case Opt_usrjquota:
2179 		if (!*param->string)
2180 			return unnote_qf_name(fc, USRQUOTA);
2181 		else
2182 			return note_qf_name(fc, USRQUOTA, param);
2183 	case Opt_grpjquota:
2184 		if (!*param->string)
2185 			return unnote_qf_name(fc, GRPQUOTA);
2186 		else
2187 			return note_qf_name(fc, GRPQUOTA, param);
2188 #endif
2189 	case Opt_sb:
2190 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2191 			ext4_msg(NULL, KERN_WARNING,
2192 				 "Ignoring %s option on remount", param->key);
2193 		} else {
2194 			ctx->s_sb_block = result.uint_32;
2195 			ctx->spec |= EXT4_SPEC_s_sb_block;
2196 		}
2197 		return 0;
2198 	case Opt_removed:
2199 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2200 			 param->key);
2201 		return 0;
2202 	case Opt_inlinecrypt:
2203 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2204 		ctx_set_flags(ctx, SB_INLINECRYPT);
2205 #else
2206 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2207 #endif
2208 		return 0;
2209 	case Opt_errors:
2210 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2211 		ctx_set_mount_opt(ctx, result.uint_32);
2212 		return 0;
2213 #ifdef CONFIG_QUOTA
2214 	case Opt_jqfmt:
2215 		ctx->s_jquota_fmt = result.uint_32;
2216 		ctx->spec |= EXT4_SPEC_JQFMT;
2217 		return 0;
2218 #endif
2219 	case Opt_data:
2220 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2221 		ctx_set_mount_opt(ctx, result.uint_32);
2222 		ctx->spec |= EXT4_SPEC_DATAJ;
2223 		return 0;
2224 	case Opt_commit:
2225 		if (result.uint_32 == 0)
2226 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2227 		else if (result.uint_32 > INT_MAX / HZ) {
2228 			ext4_msg(NULL, KERN_ERR,
2229 				 "Invalid commit interval %d, "
2230 				 "must be smaller than %d",
2231 				 result.uint_32, INT_MAX / HZ);
2232 			return -EINVAL;
2233 		}
2234 		ctx->s_commit_interval = HZ * result.uint_32;
2235 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2236 		return 0;
2237 	case Opt_debug_want_extra_isize:
2238 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2239 			ext4_msg(NULL, KERN_ERR,
2240 				 "Invalid want_extra_isize %d", result.uint_32);
2241 			return -EINVAL;
2242 		}
2243 		ctx->s_want_extra_isize = result.uint_32;
2244 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2245 		return 0;
2246 	case Opt_max_batch_time:
2247 		ctx->s_max_batch_time = result.uint_32;
2248 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2249 		return 0;
2250 	case Opt_min_batch_time:
2251 		ctx->s_min_batch_time = result.uint_32;
2252 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2253 		return 0;
2254 	case Opt_inode_readahead_blks:
2255 		if (result.uint_32 &&
2256 		    (result.uint_32 > (1 << 30) ||
2257 		     !is_power_of_2(result.uint_32))) {
2258 			ext4_msg(NULL, KERN_ERR,
2259 				 "EXT4-fs: inode_readahead_blks must be "
2260 				 "0 or a power of 2 smaller than 2^31");
2261 			return -EINVAL;
2262 		}
2263 		ctx->s_inode_readahead_blks = result.uint_32;
2264 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2265 		return 0;
2266 	case Opt_init_itable:
2267 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2268 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2269 		if (param->type == fs_value_is_string)
2270 			ctx->s_li_wait_mult = result.uint_32;
2271 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2272 		return 0;
2273 	case Opt_max_dir_size_kb:
2274 		ctx->s_max_dir_size_kb = result.uint_32;
2275 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2276 		return 0;
2277 #ifdef CONFIG_EXT4_DEBUG
2278 	case Opt_fc_debug_max_replay:
2279 		ctx->s_fc_debug_max_replay = result.uint_32;
2280 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2281 		return 0;
2282 #endif
2283 	case Opt_stripe:
2284 		ctx->s_stripe = result.uint_32;
2285 		ctx->spec |= EXT4_SPEC_s_stripe;
2286 		return 0;
2287 	case Opt_resuid:
2288 		uid = make_kuid(current_user_ns(), result.uint_32);
2289 		if (!uid_valid(uid)) {
2290 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2291 				 result.uint_32);
2292 			return -EINVAL;
2293 		}
2294 		ctx->s_resuid = uid;
2295 		ctx->spec |= EXT4_SPEC_s_resuid;
2296 		return 0;
2297 	case Opt_resgid:
2298 		gid = make_kgid(current_user_ns(), result.uint_32);
2299 		if (!gid_valid(gid)) {
2300 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2301 				 result.uint_32);
2302 			return -EINVAL;
2303 		}
2304 		ctx->s_resgid = gid;
2305 		ctx->spec |= EXT4_SPEC_s_resgid;
2306 		return 0;
2307 	case Opt_journal_dev:
2308 		if (is_remount) {
2309 			ext4_msg(NULL, KERN_ERR,
2310 				 "Cannot specify journal on remount");
2311 			return -EINVAL;
2312 		}
2313 		ctx->journal_devnum = result.uint_32;
2314 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2315 		return 0;
2316 	case Opt_journal_path:
2317 	{
2318 		struct inode *journal_inode;
2319 		struct path path;
2320 		int error;
2321 
2322 		if (is_remount) {
2323 			ext4_msg(NULL, KERN_ERR,
2324 				 "Cannot specify journal on remount");
2325 			return -EINVAL;
2326 		}
2327 
2328 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2329 		if (error) {
2330 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2331 				 "journal device path");
2332 			return -EINVAL;
2333 		}
2334 
2335 		journal_inode = d_inode(path.dentry);
2336 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2337 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2338 		path_put(&path);
2339 		return 0;
2340 	}
2341 	case Opt_journal_ioprio:
2342 		if (result.uint_32 > 7) {
2343 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2344 				 " (must be 0-7)");
2345 			return -EINVAL;
2346 		}
2347 		ctx->journal_ioprio =
2348 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2349 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2350 		return 0;
2351 	case Opt_test_dummy_encryption:
2352 		return ext4_parse_test_dummy_encryption(param, ctx);
2353 	case Opt_dax:
2354 	case Opt_dax_type:
2355 #ifdef CONFIG_FS_DAX
2356 	{
2357 		int type = (token == Opt_dax) ?
2358 			   Opt_dax : result.uint_32;
2359 
2360 		switch (type) {
2361 		case Opt_dax:
2362 		case Opt_dax_always:
2363 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2364 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2365 			break;
2366 		case Opt_dax_never:
2367 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2368 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2369 			break;
2370 		case Opt_dax_inode:
2371 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2372 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2373 			/* Strictly for printing options */
2374 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2375 			break;
2376 		}
2377 		return 0;
2378 	}
2379 #else
2380 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2381 		return -EINVAL;
2382 #endif
2383 	case Opt_data_err:
2384 		if (result.uint_32 == Opt_data_err_abort)
2385 			ctx_set_mount_opt(ctx, m->mount_opt);
2386 		else if (result.uint_32 == Opt_data_err_ignore)
2387 			ctx_clear_mount_opt(ctx, m->mount_opt);
2388 		return 0;
2389 	case Opt_mb_optimize_scan:
2390 		if (result.int_32 == 1) {
2391 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2392 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2393 		} else if (result.int_32 == 0) {
2394 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2395 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2396 		} else {
2397 			ext4_msg(NULL, KERN_WARNING,
2398 				 "mb_optimize_scan should be set to 0 or 1.");
2399 			return -EINVAL;
2400 		}
2401 		return 0;
2402 	}
2403 
2404 	/*
2405 	 * At this point we should only be getting options requiring MOPT_SET,
2406 	 * or MOPT_CLEAR. Anything else is a bug
2407 	 */
2408 	if (m->token == Opt_err) {
2409 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2410 			 param->key);
2411 		WARN_ON(1);
2412 		return -EINVAL;
2413 	}
2414 
2415 	else {
2416 		unsigned int set = 0;
2417 
2418 		if ((param->type == fs_value_is_flag) ||
2419 		    result.uint_32 > 0)
2420 			set = 1;
2421 
2422 		if (m->flags & MOPT_CLEAR)
2423 			set = !set;
2424 		else if (unlikely(!(m->flags & MOPT_SET))) {
2425 			ext4_msg(NULL, KERN_WARNING,
2426 				 "buggy handling of option %s",
2427 				 param->key);
2428 			WARN_ON(1);
2429 			return -EINVAL;
2430 		}
2431 		if (m->flags & MOPT_2) {
2432 			if (set != 0)
2433 				ctx_set_mount_opt2(ctx, m->mount_opt);
2434 			else
2435 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2436 		} else {
2437 			if (set != 0)
2438 				ctx_set_mount_opt(ctx, m->mount_opt);
2439 			else
2440 				ctx_clear_mount_opt(ctx, m->mount_opt);
2441 		}
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static int parse_options(struct fs_context *fc, char *options)
2448 {
2449 	struct fs_parameter param;
2450 	int ret;
2451 	char *key;
2452 
2453 	if (!options)
2454 		return 0;
2455 
2456 	while ((key = strsep(&options, ",")) != NULL) {
2457 		if (*key) {
2458 			size_t v_len = 0;
2459 			char *value = strchr(key, '=');
2460 
2461 			param.type = fs_value_is_flag;
2462 			param.string = NULL;
2463 
2464 			if (value) {
2465 				if (value == key)
2466 					continue;
2467 
2468 				*value++ = 0;
2469 				v_len = strlen(value);
2470 				param.string = kmemdup_nul(value, v_len,
2471 							   GFP_KERNEL);
2472 				if (!param.string)
2473 					return -ENOMEM;
2474 				param.type = fs_value_is_string;
2475 			}
2476 
2477 			param.key = key;
2478 			param.size = v_len;
2479 
2480 			ret = ext4_parse_param(fc, &param);
2481 			if (param.string)
2482 				kfree(param.string);
2483 			if (ret < 0)
2484 				return ret;
2485 		}
2486 	}
2487 
2488 	ret = ext4_validate_options(fc);
2489 	if (ret < 0)
2490 		return ret;
2491 
2492 	return 0;
2493 }
2494 
2495 static int parse_apply_sb_mount_options(struct super_block *sb,
2496 					struct ext4_fs_context *m_ctx)
2497 {
2498 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2499 	char *s_mount_opts = NULL;
2500 	struct ext4_fs_context *s_ctx = NULL;
2501 	struct fs_context *fc = NULL;
2502 	int ret = -ENOMEM;
2503 
2504 	if (!sbi->s_es->s_mount_opts[0])
2505 		return 0;
2506 
2507 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2508 				sizeof(sbi->s_es->s_mount_opts),
2509 				GFP_KERNEL);
2510 	if (!s_mount_opts)
2511 		return ret;
2512 
2513 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2514 	if (!fc)
2515 		goto out_free;
2516 
2517 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2518 	if (!s_ctx)
2519 		goto out_free;
2520 
2521 	fc->fs_private = s_ctx;
2522 	fc->s_fs_info = sbi;
2523 
2524 	ret = parse_options(fc, s_mount_opts);
2525 	if (ret < 0)
2526 		goto parse_failed;
2527 
2528 	ret = ext4_check_opt_consistency(fc, sb);
2529 	if (ret < 0) {
2530 parse_failed:
2531 		ext4_msg(sb, KERN_WARNING,
2532 			 "failed to parse options in superblock: %s",
2533 			 s_mount_opts);
2534 		ret = 0;
2535 		goto out_free;
2536 	}
2537 
2538 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2539 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2540 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2541 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2542 
2543 	ext4_apply_options(fc, sb);
2544 	ret = 0;
2545 
2546 out_free:
2547 	if (fc) {
2548 		ext4_fc_free(fc);
2549 		kfree(fc);
2550 	}
2551 	kfree(s_mount_opts);
2552 	return ret;
2553 }
2554 
2555 static void ext4_apply_quota_options(struct fs_context *fc,
2556 				     struct super_block *sb)
2557 {
2558 #ifdef CONFIG_QUOTA
2559 	bool quota_feature = ext4_has_feature_quota(sb);
2560 	struct ext4_fs_context *ctx = fc->fs_private;
2561 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2562 	char *qname;
2563 	int i;
2564 
2565 	if (quota_feature)
2566 		return;
2567 
2568 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2569 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2570 			if (!(ctx->qname_spec & (1 << i)))
2571 				continue;
2572 
2573 			qname = ctx->s_qf_names[i]; /* May be NULL */
2574 			if (qname)
2575 				set_opt(sb, QUOTA);
2576 			ctx->s_qf_names[i] = NULL;
2577 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2578 						lockdep_is_held(&sb->s_umount));
2579 			if (qname)
2580 				kfree_rcu_mightsleep(qname);
2581 		}
2582 	}
2583 
2584 	if (ctx->spec & EXT4_SPEC_JQFMT)
2585 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2586 #endif
2587 }
2588 
2589 /*
2590  * Check quota settings consistency.
2591  */
2592 static int ext4_check_quota_consistency(struct fs_context *fc,
2593 					struct super_block *sb)
2594 {
2595 #ifdef CONFIG_QUOTA
2596 	struct ext4_fs_context *ctx = fc->fs_private;
2597 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2598 	bool quota_feature = ext4_has_feature_quota(sb);
2599 	bool quota_loaded = sb_any_quota_loaded(sb);
2600 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2601 	int quota_flags, i;
2602 
2603 	/*
2604 	 * We do the test below only for project quotas. 'usrquota' and
2605 	 * 'grpquota' mount options are allowed even without quota feature
2606 	 * to support legacy quotas in quota files.
2607 	 */
2608 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2609 	    !ext4_has_feature_project(sb)) {
2610 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2611 			 "Cannot enable project quota enforcement.");
2612 		return -EINVAL;
2613 	}
2614 
2615 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2616 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2617 	if (quota_loaded &&
2618 	    ctx->mask_s_mount_opt & quota_flags &&
2619 	    !ctx_test_mount_opt(ctx, quota_flags))
2620 		goto err_quota_change;
2621 
2622 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2623 
2624 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2625 			if (!(ctx->qname_spec & (1 << i)))
2626 				continue;
2627 
2628 			if (quota_loaded &&
2629 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2630 				goto err_jquota_change;
2631 
2632 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2633 			    strcmp(get_qf_name(sb, sbi, i),
2634 				   ctx->s_qf_names[i]) != 0)
2635 				goto err_jquota_specified;
2636 		}
2637 
2638 		if (quota_feature) {
2639 			ext4_msg(NULL, KERN_INFO,
2640 				 "Journaled quota options ignored when "
2641 				 "QUOTA feature is enabled");
2642 			return 0;
2643 		}
2644 	}
2645 
2646 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2647 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2648 			goto err_jquota_change;
2649 		if (quota_feature) {
2650 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2651 				 "ignored when QUOTA feature is enabled");
2652 			return 0;
2653 		}
2654 	}
2655 
2656 	/* Make sure we don't mix old and new quota format */
2657 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2658 		       ctx->s_qf_names[USRQUOTA]);
2659 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2660 		       ctx->s_qf_names[GRPQUOTA]);
2661 
2662 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2663 		    test_opt(sb, USRQUOTA));
2664 
2665 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2666 		    test_opt(sb, GRPQUOTA));
2667 
2668 	if (usr_qf_name) {
2669 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2670 		usrquota = false;
2671 	}
2672 	if (grp_qf_name) {
2673 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2674 		grpquota = false;
2675 	}
2676 
2677 	if (usr_qf_name || grp_qf_name) {
2678 		if (usrquota || grpquota) {
2679 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2680 				 "format mixing");
2681 			return -EINVAL;
2682 		}
2683 
2684 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2685 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2686 				 "not specified");
2687 			return -EINVAL;
2688 		}
2689 	}
2690 
2691 	return 0;
2692 
2693 err_quota_change:
2694 	ext4_msg(NULL, KERN_ERR,
2695 		 "Cannot change quota options when quota turned on");
2696 	return -EINVAL;
2697 err_jquota_change:
2698 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2699 		 "options when quota turned on");
2700 	return -EINVAL;
2701 err_jquota_specified:
2702 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2703 		 QTYPE2NAME(i));
2704 	return -EINVAL;
2705 #else
2706 	return 0;
2707 #endif
2708 }
2709 
2710 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2711 					    struct super_block *sb)
2712 {
2713 	const struct ext4_fs_context *ctx = fc->fs_private;
2714 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2715 
2716 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2717 		return 0;
2718 
2719 	if (!ext4_has_feature_encrypt(sb)) {
2720 		ext4_msg(NULL, KERN_WARNING,
2721 			 "test_dummy_encryption requires encrypt feature");
2722 		return -EINVAL;
2723 	}
2724 	/*
2725 	 * This mount option is just for testing, and it's not worthwhile to
2726 	 * implement the extra complexity (e.g. RCU protection) that would be
2727 	 * needed to allow it to be set or changed during remount.  We do allow
2728 	 * it to be specified during remount, but only if there is no change.
2729 	 */
2730 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2731 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2732 						 &ctx->dummy_enc_policy))
2733 			return 0;
2734 		ext4_msg(NULL, KERN_WARNING,
2735 			 "Can't set or change test_dummy_encryption on remount");
2736 		return -EINVAL;
2737 	}
2738 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2739 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2740 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2741 						 &ctx->dummy_enc_policy))
2742 			return 0;
2743 		ext4_msg(NULL, KERN_WARNING,
2744 			 "Conflicting test_dummy_encryption options");
2745 		return -EINVAL;
2746 	}
2747 	return 0;
2748 }
2749 
2750 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2751 					     struct super_block *sb)
2752 {
2753 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2754 	    /* if already set, it was already verified to be the same */
2755 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2756 		return;
2757 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2758 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2759 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2760 }
2761 
2762 static int ext4_check_opt_consistency(struct fs_context *fc,
2763 				      struct super_block *sb)
2764 {
2765 	struct ext4_fs_context *ctx = fc->fs_private;
2766 	struct ext4_sb_info *sbi = fc->s_fs_info;
2767 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2768 	int err;
2769 
2770 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2771 		ext4_msg(NULL, KERN_ERR,
2772 			 "Mount option(s) incompatible with ext2");
2773 		return -EINVAL;
2774 	}
2775 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2776 		ext4_msg(NULL, KERN_ERR,
2777 			 "Mount option(s) incompatible with ext3");
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (ctx->s_want_extra_isize >
2782 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2783 		ext4_msg(NULL, KERN_ERR,
2784 			 "Invalid want_extra_isize %d",
2785 			 ctx->s_want_extra_isize);
2786 		return -EINVAL;
2787 	}
2788 
2789 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2790 		int blocksize =
2791 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2792 		if (blocksize < PAGE_SIZE)
2793 			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2794 				 "experimental mount option 'dioread_nolock' "
2795 				 "for blocksize < PAGE_SIZE");
2796 	}
2797 
2798 	err = ext4_check_test_dummy_encryption(fc, sb);
2799 	if (err)
2800 		return err;
2801 
2802 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2803 		if (!sbi->s_journal) {
2804 			ext4_msg(NULL, KERN_WARNING,
2805 				 "Remounting file system with no journal "
2806 				 "so ignoring journalled data option");
2807 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2808 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2809 			   test_opt(sb, DATA_FLAGS)) {
2810 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2811 				 "on remount");
2812 			return -EINVAL;
2813 		}
2814 	}
2815 
2816 	if (is_remount) {
2817 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2818 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2819 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2820 				 "both data=journal and dax");
2821 			return -EINVAL;
2822 		}
2823 
2824 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2825 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2826 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2827 fail_dax_change_remount:
2828 			ext4_msg(NULL, KERN_ERR, "can't change "
2829 				 "dax mount option while remounting");
2830 			return -EINVAL;
2831 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2832 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2833 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2834 			goto fail_dax_change_remount;
2835 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2836 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2837 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2838 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2839 			goto fail_dax_change_remount;
2840 		}
2841 	}
2842 
2843 	return ext4_check_quota_consistency(fc, sb);
2844 }
2845 
2846 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2847 {
2848 	struct ext4_fs_context *ctx = fc->fs_private;
2849 	struct ext4_sb_info *sbi = fc->s_fs_info;
2850 
2851 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2852 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2853 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2854 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2855 	sb->s_flags &= ~ctx->mask_s_flags;
2856 	sb->s_flags |= ctx->vals_s_flags;
2857 
2858 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2859 	APPLY(s_commit_interval);
2860 	APPLY(s_stripe);
2861 	APPLY(s_max_batch_time);
2862 	APPLY(s_min_batch_time);
2863 	APPLY(s_want_extra_isize);
2864 	APPLY(s_inode_readahead_blks);
2865 	APPLY(s_max_dir_size_kb);
2866 	APPLY(s_li_wait_mult);
2867 	APPLY(s_resgid);
2868 	APPLY(s_resuid);
2869 
2870 #ifdef CONFIG_EXT4_DEBUG
2871 	APPLY(s_fc_debug_max_replay);
2872 #endif
2873 
2874 	ext4_apply_quota_options(fc, sb);
2875 	ext4_apply_test_dummy_encryption(ctx, sb);
2876 }
2877 
2878 
2879 static int ext4_validate_options(struct fs_context *fc)
2880 {
2881 #ifdef CONFIG_QUOTA
2882 	struct ext4_fs_context *ctx = fc->fs_private;
2883 	char *usr_qf_name, *grp_qf_name;
2884 
2885 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2886 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2887 
2888 	if (usr_qf_name || grp_qf_name) {
2889 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2890 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2891 
2892 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2893 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2894 
2895 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2896 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2897 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2898 				 "format mixing");
2899 			return -EINVAL;
2900 		}
2901 	}
2902 #endif
2903 	return 1;
2904 }
2905 
2906 static inline void ext4_show_quota_options(struct seq_file *seq,
2907 					   struct super_block *sb)
2908 {
2909 #if defined(CONFIG_QUOTA)
2910 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2911 	char *usr_qf_name, *grp_qf_name;
2912 
2913 	if (sbi->s_jquota_fmt) {
2914 		char *fmtname = "";
2915 
2916 		switch (sbi->s_jquota_fmt) {
2917 		case QFMT_VFS_OLD:
2918 			fmtname = "vfsold";
2919 			break;
2920 		case QFMT_VFS_V0:
2921 			fmtname = "vfsv0";
2922 			break;
2923 		case QFMT_VFS_V1:
2924 			fmtname = "vfsv1";
2925 			break;
2926 		}
2927 		seq_printf(seq, ",jqfmt=%s", fmtname);
2928 	}
2929 
2930 	rcu_read_lock();
2931 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2932 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2933 	if (usr_qf_name)
2934 		seq_show_option(seq, "usrjquota", usr_qf_name);
2935 	if (grp_qf_name)
2936 		seq_show_option(seq, "grpjquota", grp_qf_name);
2937 	rcu_read_unlock();
2938 #endif
2939 }
2940 
2941 static const char *token2str(int token)
2942 {
2943 	const struct fs_parameter_spec *spec;
2944 
2945 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2946 		if (spec->opt == token && !spec->type)
2947 			break;
2948 	return spec->name;
2949 }
2950 
2951 /*
2952  * Show an option if
2953  *  - it's set to a non-default value OR
2954  *  - if the per-sb default is different from the global default
2955  */
2956 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2957 			      int nodefs)
2958 {
2959 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2960 	struct ext4_super_block *es = sbi->s_es;
2961 	int def_errors;
2962 	const struct mount_opts *m;
2963 	char sep = nodefs ? '\n' : ',';
2964 
2965 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2966 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2967 
2968 	if (sbi->s_sb_block != 1)
2969 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2970 
2971 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2972 		int want_set = m->flags & MOPT_SET;
2973 		int opt_2 = m->flags & MOPT_2;
2974 		unsigned int mount_opt, def_mount_opt;
2975 
2976 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2977 		    m->flags & MOPT_SKIP)
2978 			continue;
2979 
2980 		if (opt_2) {
2981 			mount_opt = sbi->s_mount_opt2;
2982 			def_mount_opt = sbi->s_def_mount_opt2;
2983 		} else {
2984 			mount_opt = sbi->s_mount_opt;
2985 			def_mount_opt = sbi->s_def_mount_opt;
2986 		}
2987 		/* skip if same as the default */
2988 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2989 			continue;
2990 		/* select Opt_noFoo vs Opt_Foo */
2991 		if ((want_set &&
2992 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2993 		    (!want_set && (mount_opt & m->mount_opt)))
2994 			continue;
2995 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2996 	}
2997 
2998 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2999 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3000 		SEQ_OPTS_PRINT("resuid=%u",
3001 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
3002 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3003 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3004 		SEQ_OPTS_PRINT("resgid=%u",
3005 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3006 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3007 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3008 		SEQ_OPTS_PUTS("errors=remount-ro");
3009 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3010 		SEQ_OPTS_PUTS("errors=continue");
3011 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3012 		SEQ_OPTS_PUTS("errors=panic");
3013 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3014 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3015 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3016 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3017 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3018 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3019 	if (nodefs || sbi->s_stripe)
3020 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3021 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3022 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3023 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3024 			SEQ_OPTS_PUTS("data=journal");
3025 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3026 			SEQ_OPTS_PUTS("data=ordered");
3027 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3028 			SEQ_OPTS_PUTS("data=writeback");
3029 	}
3030 	if (nodefs ||
3031 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3032 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3033 			       sbi->s_inode_readahead_blks);
3034 
3035 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3036 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3037 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3038 	if (nodefs || sbi->s_max_dir_size_kb)
3039 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3040 	if (test_opt(sb, DATA_ERR_ABORT))
3041 		SEQ_OPTS_PUTS("data_err=abort");
3042 
3043 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3044 
3045 	if (sb->s_flags & SB_INLINECRYPT)
3046 		SEQ_OPTS_PUTS("inlinecrypt");
3047 
3048 	if (test_opt(sb, DAX_ALWAYS)) {
3049 		if (IS_EXT2_SB(sb))
3050 			SEQ_OPTS_PUTS("dax");
3051 		else
3052 			SEQ_OPTS_PUTS("dax=always");
3053 	} else if (test_opt2(sb, DAX_NEVER)) {
3054 		SEQ_OPTS_PUTS("dax=never");
3055 	} else if (test_opt2(sb, DAX_INODE)) {
3056 		SEQ_OPTS_PUTS("dax=inode");
3057 	}
3058 
3059 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3060 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3061 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3062 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3063 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3064 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3065 	}
3066 
3067 	ext4_show_quota_options(seq, sb);
3068 	return 0;
3069 }
3070 
3071 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3072 {
3073 	return _ext4_show_options(seq, root->d_sb, 0);
3074 }
3075 
3076 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3077 {
3078 	struct super_block *sb = seq->private;
3079 	int rc;
3080 
3081 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3082 	rc = _ext4_show_options(seq, sb, 1);
3083 	seq_puts(seq, "\n");
3084 	return rc;
3085 }
3086 
3087 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3088 			    int read_only)
3089 {
3090 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3091 	int err = 0;
3092 
3093 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3094 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3095 			 "forcing read-only mode");
3096 		err = -EROFS;
3097 		goto done;
3098 	}
3099 	if (read_only)
3100 		goto done;
3101 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3102 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3103 			 "running e2fsck is recommended");
3104 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3105 		ext4_msg(sb, KERN_WARNING,
3106 			 "warning: mounting fs with errors, "
3107 			 "running e2fsck is recommended");
3108 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3109 		 le16_to_cpu(es->s_mnt_count) >=
3110 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3111 		ext4_msg(sb, KERN_WARNING,
3112 			 "warning: maximal mount count reached, "
3113 			 "running e2fsck is recommended");
3114 	else if (le32_to_cpu(es->s_checkinterval) &&
3115 		 (ext4_get_tstamp(es, s_lastcheck) +
3116 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3117 		ext4_msg(sb, KERN_WARNING,
3118 			 "warning: checktime reached, "
3119 			 "running e2fsck is recommended");
3120 	if (!sbi->s_journal)
3121 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3122 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3123 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3124 	le16_add_cpu(&es->s_mnt_count, 1);
3125 	ext4_update_tstamp(es, s_mtime);
3126 	if (sbi->s_journal) {
3127 		ext4_set_feature_journal_needs_recovery(sb);
3128 		if (ext4_has_feature_orphan_file(sb))
3129 			ext4_set_feature_orphan_present(sb);
3130 	}
3131 
3132 	err = ext4_commit_super(sb);
3133 done:
3134 	if (test_opt(sb, DEBUG))
3135 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3136 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3137 			sb->s_blocksize,
3138 			sbi->s_groups_count,
3139 			EXT4_BLOCKS_PER_GROUP(sb),
3140 			EXT4_INODES_PER_GROUP(sb),
3141 			sbi->s_mount_opt, sbi->s_mount_opt2);
3142 	return err;
3143 }
3144 
3145 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3146 {
3147 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3148 	struct flex_groups **old_groups, **new_groups;
3149 	int size, i, j;
3150 
3151 	if (!sbi->s_log_groups_per_flex)
3152 		return 0;
3153 
3154 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3155 	if (size <= sbi->s_flex_groups_allocated)
3156 		return 0;
3157 
3158 	new_groups = kvzalloc(roundup_pow_of_two(size *
3159 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3160 	if (!new_groups) {
3161 		ext4_msg(sb, KERN_ERR,
3162 			 "not enough memory for %d flex group pointers", size);
3163 		return -ENOMEM;
3164 	}
3165 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3166 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3167 					 sizeof(struct flex_groups)),
3168 					 GFP_KERNEL);
3169 		if (!new_groups[i]) {
3170 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3171 				kvfree(new_groups[j]);
3172 			kvfree(new_groups);
3173 			ext4_msg(sb, KERN_ERR,
3174 				 "not enough memory for %d flex groups", size);
3175 			return -ENOMEM;
3176 		}
3177 	}
3178 	rcu_read_lock();
3179 	old_groups = rcu_dereference(sbi->s_flex_groups);
3180 	if (old_groups)
3181 		memcpy(new_groups, old_groups,
3182 		       (sbi->s_flex_groups_allocated *
3183 			sizeof(struct flex_groups *)));
3184 	rcu_read_unlock();
3185 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3186 	sbi->s_flex_groups_allocated = size;
3187 	if (old_groups)
3188 		ext4_kvfree_array_rcu(old_groups);
3189 	return 0;
3190 }
3191 
3192 static int ext4_fill_flex_info(struct super_block *sb)
3193 {
3194 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3195 	struct ext4_group_desc *gdp = NULL;
3196 	struct flex_groups *fg;
3197 	ext4_group_t flex_group;
3198 	int i, err;
3199 
3200 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3201 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3202 		sbi->s_log_groups_per_flex = 0;
3203 		return 1;
3204 	}
3205 
3206 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3207 	if (err)
3208 		goto failed;
3209 
3210 	for (i = 0; i < sbi->s_groups_count; i++) {
3211 		gdp = ext4_get_group_desc(sb, i, NULL);
3212 
3213 		flex_group = ext4_flex_group(sbi, i);
3214 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3215 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3216 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3217 			     &fg->free_clusters);
3218 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3219 	}
3220 
3221 	return 1;
3222 failed:
3223 	return 0;
3224 }
3225 
3226 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3227 				   struct ext4_group_desc *gdp)
3228 {
3229 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3230 	__u16 crc = 0;
3231 	__le32 le_group = cpu_to_le32(block_group);
3232 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3233 
3234 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3235 		/* Use new metadata_csum algorithm */
3236 		__u32 csum32;
3237 		__u16 dummy_csum = 0;
3238 
3239 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3240 				     sizeof(le_group));
3241 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3242 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3243 				     sizeof(dummy_csum));
3244 		offset += sizeof(dummy_csum);
3245 		if (offset < sbi->s_desc_size)
3246 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3247 					     sbi->s_desc_size - offset);
3248 
3249 		crc = csum32 & 0xFFFF;
3250 		goto out;
3251 	}
3252 
3253 	/* old crc16 code */
3254 	if (!ext4_has_feature_gdt_csum(sb))
3255 		return 0;
3256 
3257 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3258 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3259 	crc = crc16(crc, (__u8 *)gdp, offset);
3260 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3261 	/* for checksum of struct ext4_group_desc do the rest...*/
3262 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3263 		crc = crc16(crc, (__u8 *)gdp + offset,
3264 			    sbi->s_desc_size - offset);
3265 
3266 out:
3267 	return cpu_to_le16(crc);
3268 }
3269 
3270 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3271 				struct ext4_group_desc *gdp)
3272 {
3273 	if (ext4_has_group_desc_csum(sb) &&
3274 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3275 		return 0;
3276 
3277 	return 1;
3278 }
3279 
3280 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3281 			      struct ext4_group_desc *gdp)
3282 {
3283 	if (!ext4_has_group_desc_csum(sb))
3284 		return;
3285 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3286 }
3287 
3288 /* Called at mount-time, super-block is locked */
3289 static int ext4_check_descriptors(struct super_block *sb,
3290 				  ext4_fsblk_t sb_block,
3291 				  ext4_group_t *first_not_zeroed)
3292 {
3293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3294 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3295 	ext4_fsblk_t last_block;
3296 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3297 	ext4_fsblk_t block_bitmap;
3298 	ext4_fsblk_t inode_bitmap;
3299 	ext4_fsblk_t inode_table;
3300 	int flexbg_flag = 0;
3301 	ext4_group_t i, grp = sbi->s_groups_count;
3302 
3303 	if (ext4_has_feature_flex_bg(sb))
3304 		flexbg_flag = 1;
3305 
3306 	ext4_debug("Checking group descriptors");
3307 
3308 	for (i = 0; i < sbi->s_groups_count; i++) {
3309 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3310 
3311 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3312 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3313 		else
3314 			last_block = first_block +
3315 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3316 
3317 		if ((grp == sbi->s_groups_count) &&
3318 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3319 			grp = i;
3320 
3321 		block_bitmap = ext4_block_bitmap(sb, gdp);
3322 		if (block_bitmap == sb_block) {
3323 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3324 				 "Block bitmap for group %u overlaps "
3325 				 "superblock", i);
3326 			if (!sb_rdonly(sb))
3327 				return 0;
3328 		}
3329 		if (block_bitmap >= sb_block + 1 &&
3330 		    block_bitmap <= last_bg_block) {
3331 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3332 				 "Block bitmap for group %u overlaps "
3333 				 "block group descriptors", i);
3334 			if (!sb_rdonly(sb))
3335 				return 0;
3336 		}
3337 		if (block_bitmap < first_block || block_bitmap > last_block) {
3338 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3339 			       "Block bitmap for group %u not in group "
3340 			       "(block %llu)!", i, block_bitmap);
3341 			return 0;
3342 		}
3343 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3344 		if (inode_bitmap == sb_block) {
3345 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3346 				 "Inode bitmap for group %u overlaps "
3347 				 "superblock", i);
3348 			if (!sb_rdonly(sb))
3349 				return 0;
3350 		}
3351 		if (inode_bitmap >= sb_block + 1 &&
3352 		    inode_bitmap <= last_bg_block) {
3353 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3354 				 "Inode bitmap for group %u overlaps "
3355 				 "block group descriptors", i);
3356 			if (!sb_rdonly(sb))
3357 				return 0;
3358 		}
3359 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3360 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 			       "Inode bitmap for group %u not in group "
3362 			       "(block %llu)!", i, inode_bitmap);
3363 			return 0;
3364 		}
3365 		inode_table = ext4_inode_table(sb, gdp);
3366 		if (inode_table == sb_block) {
3367 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 				 "Inode table for group %u overlaps "
3369 				 "superblock", i);
3370 			if (!sb_rdonly(sb))
3371 				return 0;
3372 		}
3373 		if (inode_table >= sb_block + 1 &&
3374 		    inode_table <= last_bg_block) {
3375 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3376 				 "Inode table for group %u overlaps "
3377 				 "block group descriptors", i);
3378 			if (!sb_rdonly(sb))
3379 				return 0;
3380 		}
3381 		if (inode_table < first_block ||
3382 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3383 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3384 			       "Inode table for group %u not in group "
3385 			       "(block %llu)!", i, inode_table);
3386 			return 0;
3387 		}
3388 		ext4_lock_group(sb, i);
3389 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3390 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3391 				 "Checksum for group %u failed (%u!=%u)",
3392 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3393 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3394 			if (!sb_rdonly(sb)) {
3395 				ext4_unlock_group(sb, i);
3396 				return 0;
3397 			}
3398 		}
3399 		ext4_unlock_group(sb, i);
3400 		if (!flexbg_flag)
3401 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3402 	}
3403 	if (NULL != first_not_zeroed)
3404 		*first_not_zeroed = grp;
3405 	return 1;
3406 }
3407 
3408 /*
3409  * Maximal extent format file size.
3410  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3411  * extent format containers, within a sector_t, and within i_blocks
3412  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3413  * so that won't be a limiting factor.
3414  *
3415  * However there is other limiting factor. We do store extents in the form
3416  * of starting block and length, hence the resulting length of the extent
3417  * covering maximum file size must fit into on-disk format containers as
3418  * well. Given that length is always by 1 unit bigger than max unit (because
3419  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3420  *
3421  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3422  */
3423 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3424 {
3425 	loff_t res;
3426 	loff_t upper_limit = MAX_LFS_FILESIZE;
3427 
3428 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3429 
3430 	if (!has_huge_files) {
3431 		upper_limit = (1LL << 32) - 1;
3432 
3433 		/* total blocks in file system block size */
3434 		upper_limit >>= (blkbits - 9);
3435 		upper_limit <<= blkbits;
3436 	}
3437 
3438 	/*
3439 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3440 	 * by one fs block, so ee_len can cover the extent of maximum file
3441 	 * size
3442 	 */
3443 	res = (1LL << 32) - 1;
3444 	res <<= blkbits;
3445 
3446 	/* Sanity check against vm- & vfs- imposed limits */
3447 	if (res > upper_limit)
3448 		res = upper_limit;
3449 
3450 	return res;
3451 }
3452 
3453 /*
3454  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3455  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3456  * We need to be 1 filesystem block less than the 2^48 sector limit.
3457  */
3458 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3459 {
3460 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3461 	int meta_blocks;
3462 	unsigned int ppb = 1 << (bits - 2);
3463 
3464 	/*
3465 	 * This is calculated to be the largest file size for a dense, block
3466 	 * mapped file such that the file's total number of 512-byte sectors,
3467 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3468 	 *
3469 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3470 	 * number of 512-byte sectors of the file.
3471 	 */
3472 	if (!has_huge_files) {
3473 		/*
3474 		 * !has_huge_files or implies that the inode i_block field
3475 		 * represents total file blocks in 2^32 512-byte sectors ==
3476 		 * size of vfs inode i_blocks * 8
3477 		 */
3478 		upper_limit = (1LL << 32) - 1;
3479 
3480 		/* total blocks in file system block size */
3481 		upper_limit >>= (bits - 9);
3482 
3483 	} else {
3484 		/*
3485 		 * We use 48 bit ext4_inode i_blocks
3486 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3487 		 * represent total number of blocks in
3488 		 * file system block size
3489 		 */
3490 		upper_limit = (1LL << 48) - 1;
3491 
3492 	}
3493 
3494 	/* Compute how many blocks we can address by block tree */
3495 	res += ppb;
3496 	res += ppb * ppb;
3497 	res += ((loff_t)ppb) * ppb * ppb;
3498 	/* Compute how many metadata blocks are needed */
3499 	meta_blocks = 1;
3500 	meta_blocks += 1 + ppb;
3501 	meta_blocks += 1 + ppb + ppb * ppb;
3502 	/* Does block tree limit file size? */
3503 	if (res + meta_blocks <= upper_limit)
3504 		goto check_lfs;
3505 
3506 	res = upper_limit;
3507 	/* How many metadata blocks are needed for addressing upper_limit? */
3508 	upper_limit -= EXT4_NDIR_BLOCKS;
3509 	/* indirect blocks */
3510 	meta_blocks = 1;
3511 	upper_limit -= ppb;
3512 	/* double indirect blocks */
3513 	if (upper_limit < ppb * ppb) {
3514 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3515 		res -= meta_blocks;
3516 		goto check_lfs;
3517 	}
3518 	meta_blocks += 1 + ppb;
3519 	upper_limit -= ppb * ppb;
3520 	/* tripple indirect blocks for the rest */
3521 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3522 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3523 	res -= meta_blocks;
3524 check_lfs:
3525 	res <<= bits;
3526 	if (res > MAX_LFS_FILESIZE)
3527 		res = MAX_LFS_FILESIZE;
3528 
3529 	return res;
3530 }
3531 
3532 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3533 				   ext4_fsblk_t logical_sb_block, int nr)
3534 {
3535 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3536 	ext4_group_t bg, first_meta_bg;
3537 	int has_super = 0;
3538 
3539 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3540 
3541 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3542 		return logical_sb_block + nr + 1;
3543 	bg = sbi->s_desc_per_block * nr;
3544 	if (ext4_bg_has_super(sb, bg))
3545 		has_super = 1;
3546 
3547 	/*
3548 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3549 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3550 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3551 	 * compensate.
3552 	 */
3553 	if (sb->s_blocksize == 1024 && nr == 0 &&
3554 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3555 		has_super++;
3556 
3557 	return (has_super + ext4_group_first_block_no(sb, bg));
3558 }
3559 
3560 /**
3561  * ext4_get_stripe_size: Get the stripe size.
3562  * @sbi: In memory super block info
3563  *
3564  * If we have specified it via mount option, then
3565  * use the mount option value. If the value specified at mount time is
3566  * greater than the blocks per group use the super block value.
3567  * If the super block value is greater than blocks per group return 0.
3568  * Allocator needs it be less than blocks per group.
3569  *
3570  */
3571 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3572 {
3573 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3574 	unsigned long stripe_width =
3575 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3576 	int ret;
3577 
3578 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3579 		ret = sbi->s_stripe;
3580 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3581 		ret = stripe_width;
3582 	else if (stride && stride <= sbi->s_blocks_per_group)
3583 		ret = stride;
3584 	else
3585 		ret = 0;
3586 
3587 	/*
3588 	 * If the stripe width is 1, this makes no sense and
3589 	 * we set it to 0 to turn off stripe handling code.
3590 	 */
3591 	if (ret <= 1)
3592 		ret = 0;
3593 
3594 	return ret;
3595 }
3596 
3597 /*
3598  * Check whether this filesystem can be mounted based on
3599  * the features present and the RDONLY/RDWR mount requested.
3600  * Returns 1 if this filesystem can be mounted as requested,
3601  * 0 if it cannot be.
3602  */
3603 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3604 {
3605 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3606 		ext4_msg(sb, KERN_ERR,
3607 			"Couldn't mount because of "
3608 			"unsupported optional features (%x)",
3609 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3610 			~EXT4_FEATURE_INCOMPAT_SUPP));
3611 		return 0;
3612 	}
3613 
3614 #if !IS_ENABLED(CONFIG_UNICODE)
3615 	if (ext4_has_feature_casefold(sb)) {
3616 		ext4_msg(sb, KERN_ERR,
3617 			 "Filesystem with casefold feature cannot be "
3618 			 "mounted without CONFIG_UNICODE");
3619 		return 0;
3620 	}
3621 #endif
3622 
3623 	if (readonly)
3624 		return 1;
3625 
3626 	if (ext4_has_feature_readonly(sb)) {
3627 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3628 		sb->s_flags |= SB_RDONLY;
3629 		return 1;
3630 	}
3631 
3632 	/* Check that feature set is OK for a read-write mount */
3633 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3634 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3635 			 "unsupported optional features (%x)",
3636 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3637 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3638 		return 0;
3639 	}
3640 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3641 		ext4_msg(sb, KERN_ERR,
3642 			 "Can't support bigalloc feature without "
3643 			 "extents feature\n");
3644 		return 0;
3645 	}
3646 
3647 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3648 	if (!readonly && (ext4_has_feature_quota(sb) ||
3649 			  ext4_has_feature_project(sb))) {
3650 		ext4_msg(sb, KERN_ERR,
3651 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3652 		return 0;
3653 	}
3654 #endif  /* CONFIG_QUOTA */
3655 	return 1;
3656 }
3657 
3658 /*
3659  * This function is called once a day if we have errors logged
3660  * on the file system
3661  */
3662 static void print_daily_error_info(struct timer_list *t)
3663 {
3664 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3665 	struct super_block *sb = sbi->s_sb;
3666 	struct ext4_super_block *es = sbi->s_es;
3667 
3668 	if (es->s_error_count)
3669 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3670 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3671 			 le32_to_cpu(es->s_error_count));
3672 	if (es->s_first_error_time) {
3673 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3674 		       sb->s_id,
3675 		       ext4_get_tstamp(es, s_first_error_time),
3676 		       (int) sizeof(es->s_first_error_func),
3677 		       es->s_first_error_func,
3678 		       le32_to_cpu(es->s_first_error_line));
3679 		if (es->s_first_error_ino)
3680 			printk(KERN_CONT ": inode %u",
3681 			       le32_to_cpu(es->s_first_error_ino));
3682 		if (es->s_first_error_block)
3683 			printk(KERN_CONT ": block %llu", (unsigned long long)
3684 			       le64_to_cpu(es->s_first_error_block));
3685 		printk(KERN_CONT "\n");
3686 	}
3687 	if (es->s_last_error_time) {
3688 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3689 		       sb->s_id,
3690 		       ext4_get_tstamp(es, s_last_error_time),
3691 		       (int) sizeof(es->s_last_error_func),
3692 		       es->s_last_error_func,
3693 		       le32_to_cpu(es->s_last_error_line));
3694 		if (es->s_last_error_ino)
3695 			printk(KERN_CONT ": inode %u",
3696 			       le32_to_cpu(es->s_last_error_ino));
3697 		if (es->s_last_error_block)
3698 			printk(KERN_CONT ": block %llu", (unsigned long long)
3699 			       le64_to_cpu(es->s_last_error_block));
3700 		printk(KERN_CONT "\n");
3701 	}
3702 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3703 }
3704 
3705 /* Find next suitable group and run ext4_init_inode_table */
3706 static int ext4_run_li_request(struct ext4_li_request *elr)
3707 {
3708 	struct ext4_group_desc *gdp = NULL;
3709 	struct super_block *sb = elr->lr_super;
3710 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3711 	ext4_group_t group = elr->lr_next_group;
3712 	unsigned int prefetch_ios = 0;
3713 	int ret = 0;
3714 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3715 	u64 start_time;
3716 
3717 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3718 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3719 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3720 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3721 		if (group >= elr->lr_next_group) {
3722 			ret = 1;
3723 			if (elr->lr_first_not_zeroed != ngroups &&
3724 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3725 				elr->lr_next_group = elr->lr_first_not_zeroed;
3726 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3727 				ret = 0;
3728 			}
3729 		}
3730 		return ret;
3731 	}
3732 
3733 	for (; group < ngroups; group++) {
3734 		gdp = ext4_get_group_desc(sb, group, NULL);
3735 		if (!gdp) {
3736 			ret = 1;
3737 			break;
3738 		}
3739 
3740 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3741 			break;
3742 	}
3743 
3744 	if (group >= ngroups)
3745 		ret = 1;
3746 
3747 	if (!ret) {
3748 		start_time = ktime_get_real_ns();
3749 		ret = ext4_init_inode_table(sb, group,
3750 					    elr->lr_timeout ? 0 : 1);
3751 		trace_ext4_lazy_itable_init(sb, group);
3752 		if (elr->lr_timeout == 0) {
3753 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3754 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3755 		}
3756 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3757 		elr->lr_next_group = group + 1;
3758 	}
3759 	return ret;
3760 }
3761 
3762 /*
3763  * Remove lr_request from the list_request and free the
3764  * request structure. Should be called with li_list_mtx held
3765  */
3766 static void ext4_remove_li_request(struct ext4_li_request *elr)
3767 {
3768 	if (!elr)
3769 		return;
3770 
3771 	list_del(&elr->lr_request);
3772 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3773 	kfree(elr);
3774 }
3775 
3776 static void ext4_unregister_li_request(struct super_block *sb)
3777 {
3778 	mutex_lock(&ext4_li_mtx);
3779 	if (!ext4_li_info) {
3780 		mutex_unlock(&ext4_li_mtx);
3781 		return;
3782 	}
3783 
3784 	mutex_lock(&ext4_li_info->li_list_mtx);
3785 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3786 	mutex_unlock(&ext4_li_info->li_list_mtx);
3787 	mutex_unlock(&ext4_li_mtx);
3788 }
3789 
3790 static struct task_struct *ext4_lazyinit_task;
3791 
3792 /*
3793  * This is the function where ext4lazyinit thread lives. It walks
3794  * through the request list searching for next scheduled filesystem.
3795  * When such a fs is found, run the lazy initialization request
3796  * (ext4_rn_li_request) and keep track of the time spend in this
3797  * function. Based on that time we compute next schedule time of
3798  * the request. When walking through the list is complete, compute
3799  * next waking time and put itself into sleep.
3800  */
3801 static int ext4_lazyinit_thread(void *arg)
3802 {
3803 	struct ext4_lazy_init *eli = arg;
3804 	struct list_head *pos, *n;
3805 	struct ext4_li_request *elr;
3806 	unsigned long next_wakeup, cur;
3807 
3808 	BUG_ON(NULL == eli);
3809 	set_freezable();
3810 
3811 cont_thread:
3812 	while (true) {
3813 		next_wakeup = MAX_JIFFY_OFFSET;
3814 
3815 		mutex_lock(&eli->li_list_mtx);
3816 		if (list_empty(&eli->li_request_list)) {
3817 			mutex_unlock(&eli->li_list_mtx);
3818 			goto exit_thread;
3819 		}
3820 		list_for_each_safe(pos, n, &eli->li_request_list) {
3821 			int err = 0;
3822 			int progress = 0;
3823 			elr = list_entry(pos, struct ext4_li_request,
3824 					 lr_request);
3825 
3826 			if (time_before(jiffies, elr->lr_next_sched)) {
3827 				if (time_before(elr->lr_next_sched, next_wakeup))
3828 					next_wakeup = elr->lr_next_sched;
3829 				continue;
3830 			}
3831 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3832 				if (sb_start_write_trylock(elr->lr_super)) {
3833 					progress = 1;
3834 					/*
3835 					 * We hold sb->s_umount, sb can not
3836 					 * be removed from the list, it is
3837 					 * now safe to drop li_list_mtx
3838 					 */
3839 					mutex_unlock(&eli->li_list_mtx);
3840 					err = ext4_run_li_request(elr);
3841 					sb_end_write(elr->lr_super);
3842 					mutex_lock(&eli->li_list_mtx);
3843 					n = pos->next;
3844 				}
3845 				up_read((&elr->lr_super->s_umount));
3846 			}
3847 			/* error, remove the lazy_init job */
3848 			if (err) {
3849 				ext4_remove_li_request(elr);
3850 				continue;
3851 			}
3852 			if (!progress) {
3853 				elr->lr_next_sched = jiffies +
3854 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3855 			}
3856 			if (time_before(elr->lr_next_sched, next_wakeup))
3857 				next_wakeup = elr->lr_next_sched;
3858 		}
3859 		mutex_unlock(&eli->li_list_mtx);
3860 
3861 		try_to_freeze();
3862 
3863 		cur = jiffies;
3864 		if ((time_after_eq(cur, next_wakeup)) ||
3865 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3866 			cond_resched();
3867 			continue;
3868 		}
3869 
3870 		schedule_timeout_interruptible(next_wakeup - cur);
3871 
3872 		if (kthread_should_stop()) {
3873 			ext4_clear_request_list();
3874 			goto exit_thread;
3875 		}
3876 	}
3877 
3878 exit_thread:
3879 	/*
3880 	 * It looks like the request list is empty, but we need
3881 	 * to check it under the li_list_mtx lock, to prevent any
3882 	 * additions into it, and of course we should lock ext4_li_mtx
3883 	 * to atomically free the list and ext4_li_info, because at
3884 	 * this point another ext4 filesystem could be registering
3885 	 * new one.
3886 	 */
3887 	mutex_lock(&ext4_li_mtx);
3888 	mutex_lock(&eli->li_list_mtx);
3889 	if (!list_empty(&eli->li_request_list)) {
3890 		mutex_unlock(&eli->li_list_mtx);
3891 		mutex_unlock(&ext4_li_mtx);
3892 		goto cont_thread;
3893 	}
3894 	mutex_unlock(&eli->li_list_mtx);
3895 	kfree(ext4_li_info);
3896 	ext4_li_info = NULL;
3897 	mutex_unlock(&ext4_li_mtx);
3898 
3899 	return 0;
3900 }
3901 
3902 static void ext4_clear_request_list(void)
3903 {
3904 	struct list_head *pos, *n;
3905 	struct ext4_li_request *elr;
3906 
3907 	mutex_lock(&ext4_li_info->li_list_mtx);
3908 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3909 		elr = list_entry(pos, struct ext4_li_request,
3910 				 lr_request);
3911 		ext4_remove_li_request(elr);
3912 	}
3913 	mutex_unlock(&ext4_li_info->li_list_mtx);
3914 }
3915 
3916 static int ext4_run_lazyinit_thread(void)
3917 {
3918 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3919 					 ext4_li_info, "ext4lazyinit");
3920 	if (IS_ERR(ext4_lazyinit_task)) {
3921 		int err = PTR_ERR(ext4_lazyinit_task);
3922 		ext4_clear_request_list();
3923 		kfree(ext4_li_info);
3924 		ext4_li_info = NULL;
3925 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3926 				 "initialization thread\n",
3927 				 err);
3928 		return err;
3929 	}
3930 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3931 	return 0;
3932 }
3933 
3934 /*
3935  * Check whether it make sense to run itable init. thread or not.
3936  * If there is at least one uninitialized inode table, return
3937  * corresponding group number, else the loop goes through all
3938  * groups and return total number of groups.
3939  */
3940 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3941 {
3942 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3943 	struct ext4_group_desc *gdp = NULL;
3944 
3945 	if (!ext4_has_group_desc_csum(sb))
3946 		return ngroups;
3947 
3948 	for (group = 0; group < ngroups; group++) {
3949 		gdp = ext4_get_group_desc(sb, group, NULL);
3950 		if (!gdp)
3951 			continue;
3952 
3953 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3954 			break;
3955 	}
3956 
3957 	return group;
3958 }
3959 
3960 static int ext4_li_info_new(void)
3961 {
3962 	struct ext4_lazy_init *eli = NULL;
3963 
3964 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3965 	if (!eli)
3966 		return -ENOMEM;
3967 
3968 	INIT_LIST_HEAD(&eli->li_request_list);
3969 	mutex_init(&eli->li_list_mtx);
3970 
3971 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3972 
3973 	ext4_li_info = eli;
3974 
3975 	return 0;
3976 }
3977 
3978 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3979 					    ext4_group_t start)
3980 {
3981 	struct ext4_li_request *elr;
3982 
3983 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3984 	if (!elr)
3985 		return NULL;
3986 
3987 	elr->lr_super = sb;
3988 	elr->lr_first_not_zeroed = start;
3989 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3990 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3991 		elr->lr_next_group = start;
3992 	} else {
3993 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3994 	}
3995 
3996 	/*
3997 	 * Randomize first schedule time of the request to
3998 	 * spread the inode table initialization requests
3999 	 * better.
4000 	 */
4001 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4002 	return elr;
4003 }
4004 
4005 int ext4_register_li_request(struct super_block *sb,
4006 			     ext4_group_t first_not_zeroed)
4007 {
4008 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4009 	struct ext4_li_request *elr = NULL;
4010 	ext4_group_t ngroups = sbi->s_groups_count;
4011 	int ret = 0;
4012 
4013 	mutex_lock(&ext4_li_mtx);
4014 	if (sbi->s_li_request != NULL) {
4015 		/*
4016 		 * Reset timeout so it can be computed again, because
4017 		 * s_li_wait_mult might have changed.
4018 		 */
4019 		sbi->s_li_request->lr_timeout = 0;
4020 		goto out;
4021 	}
4022 
4023 	if (sb_rdonly(sb) ||
4024 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4025 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4026 		goto out;
4027 
4028 	elr = ext4_li_request_new(sb, first_not_zeroed);
4029 	if (!elr) {
4030 		ret = -ENOMEM;
4031 		goto out;
4032 	}
4033 
4034 	if (NULL == ext4_li_info) {
4035 		ret = ext4_li_info_new();
4036 		if (ret)
4037 			goto out;
4038 	}
4039 
4040 	mutex_lock(&ext4_li_info->li_list_mtx);
4041 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4042 	mutex_unlock(&ext4_li_info->li_list_mtx);
4043 
4044 	sbi->s_li_request = elr;
4045 	/*
4046 	 * set elr to NULL here since it has been inserted to
4047 	 * the request_list and the removal and free of it is
4048 	 * handled by ext4_clear_request_list from now on.
4049 	 */
4050 	elr = NULL;
4051 
4052 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4053 		ret = ext4_run_lazyinit_thread();
4054 		if (ret)
4055 			goto out;
4056 	}
4057 out:
4058 	mutex_unlock(&ext4_li_mtx);
4059 	if (ret)
4060 		kfree(elr);
4061 	return ret;
4062 }
4063 
4064 /*
4065  * We do not need to lock anything since this is called on
4066  * module unload.
4067  */
4068 static void ext4_destroy_lazyinit_thread(void)
4069 {
4070 	/*
4071 	 * If thread exited earlier
4072 	 * there's nothing to be done.
4073 	 */
4074 	if (!ext4_li_info || !ext4_lazyinit_task)
4075 		return;
4076 
4077 	kthread_stop(ext4_lazyinit_task);
4078 }
4079 
4080 static int set_journal_csum_feature_set(struct super_block *sb)
4081 {
4082 	int ret = 1;
4083 	int compat, incompat;
4084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4085 
4086 	if (ext4_has_metadata_csum(sb)) {
4087 		/* journal checksum v3 */
4088 		compat = 0;
4089 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4090 	} else {
4091 		/* journal checksum v1 */
4092 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4093 		incompat = 0;
4094 	}
4095 
4096 	jbd2_journal_clear_features(sbi->s_journal,
4097 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4098 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4099 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4100 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4101 		ret = jbd2_journal_set_features(sbi->s_journal,
4102 				compat, 0,
4103 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4104 				incompat);
4105 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4106 		ret = jbd2_journal_set_features(sbi->s_journal,
4107 				compat, 0,
4108 				incompat);
4109 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4110 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4111 	} else {
4112 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4113 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4114 	}
4115 
4116 	return ret;
4117 }
4118 
4119 /*
4120  * Note: calculating the overhead so we can be compatible with
4121  * historical BSD practice is quite difficult in the face of
4122  * clusters/bigalloc.  This is because multiple metadata blocks from
4123  * different block group can end up in the same allocation cluster.
4124  * Calculating the exact overhead in the face of clustered allocation
4125  * requires either O(all block bitmaps) in memory or O(number of block
4126  * groups**2) in time.  We will still calculate the superblock for
4127  * older file systems --- and if we come across with a bigalloc file
4128  * system with zero in s_overhead_clusters the estimate will be close to
4129  * correct especially for very large cluster sizes --- but for newer
4130  * file systems, it's better to calculate this figure once at mkfs
4131  * time, and store it in the superblock.  If the superblock value is
4132  * present (even for non-bigalloc file systems), we will use it.
4133  */
4134 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4135 			  char *buf)
4136 {
4137 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4138 	struct ext4_group_desc	*gdp;
4139 	ext4_fsblk_t		first_block, last_block, b;
4140 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4141 	int			s, j, count = 0;
4142 	int			has_super = ext4_bg_has_super(sb, grp);
4143 
4144 	if (!ext4_has_feature_bigalloc(sb))
4145 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4146 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4147 			sbi->s_itb_per_group + 2);
4148 
4149 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4150 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4151 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4152 	for (i = 0; i < ngroups; i++) {
4153 		gdp = ext4_get_group_desc(sb, i, NULL);
4154 		b = ext4_block_bitmap(sb, gdp);
4155 		if (b >= first_block && b <= last_block) {
4156 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4157 			count++;
4158 		}
4159 		b = ext4_inode_bitmap(sb, gdp);
4160 		if (b >= first_block && b <= last_block) {
4161 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4162 			count++;
4163 		}
4164 		b = ext4_inode_table(sb, gdp);
4165 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4166 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4167 				int c = EXT4_B2C(sbi, b - first_block);
4168 				ext4_set_bit(c, buf);
4169 				count++;
4170 			}
4171 		if (i != grp)
4172 			continue;
4173 		s = 0;
4174 		if (ext4_bg_has_super(sb, grp)) {
4175 			ext4_set_bit(s++, buf);
4176 			count++;
4177 		}
4178 		j = ext4_bg_num_gdb(sb, grp);
4179 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4180 			ext4_error(sb, "Invalid number of block group "
4181 				   "descriptor blocks: %d", j);
4182 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4183 		}
4184 		count += j;
4185 		for (; j > 0; j--)
4186 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4187 	}
4188 	if (!count)
4189 		return 0;
4190 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4191 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4192 }
4193 
4194 /*
4195  * Compute the overhead and stash it in sbi->s_overhead
4196  */
4197 int ext4_calculate_overhead(struct super_block *sb)
4198 {
4199 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4200 	struct ext4_super_block *es = sbi->s_es;
4201 	struct inode *j_inode;
4202 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4203 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4204 	ext4_fsblk_t overhead = 0;
4205 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4206 
4207 	if (!buf)
4208 		return -ENOMEM;
4209 
4210 	/*
4211 	 * Compute the overhead (FS structures).  This is constant
4212 	 * for a given filesystem unless the number of block groups
4213 	 * changes so we cache the previous value until it does.
4214 	 */
4215 
4216 	/*
4217 	 * All of the blocks before first_data_block are overhead
4218 	 */
4219 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4220 
4221 	/*
4222 	 * Add the overhead found in each block group
4223 	 */
4224 	for (i = 0; i < ngroups; i++) {
4225 		int blks;
4226 
4227 		blks = count_overhead(sb, i, buf);
4228 		overhead += blks;
4229 		if (blks)
4230 			memset(buf, 0, PAGE_SIZE);
4231 		cond_resched();
4232 	}
4233 
4234 	/*
4235 	 * Add the internal journal blocks whether the journal has been
4236 	 * loaded or not
4237 	 */
4238 	if (sbi->s_journal && !sbi->s_journal_bdev)
4239 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4240 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4241 		/* j_inum for internal journal is non-zero */
4242 		j_inode = ext4_get_journal_inode(sb, j_inum);
4243 		if (!IS_ERR(j_inode)) {
4244 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4245 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4246 			iput(j_inode);
4247 		} else {
4248 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4249 		}
4250 	}
4251 	sbi->s_overhead = overhead;
4252 	smp_wmb();
4253 	free_page((unsigned long) buf);
4254 	return 0;
4255 }
4256 
4257 static void ext4_set_resv_clusters(struct super_block *sb)
4258 {
4259 	ext4_fsblk_t resv_clusters;
4260 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4261 
4262 	/*
4263 	 * There's no need to reserve anything when we aren't using extents.
4264 	 * The space estimates are exact, there are no unwritten extents,
4265 	 * hole punching doesn't need new metadata... This is needed especially
4266 	 * to keep ext2/3 backward compatibility.
4267 	 */
4268 	if (!ext4_has_feature_extents(sb))
4269 		return;
4270 	/*
4271 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4272 	 * This should cover the situations where we can not afford to run
4273 	 * out of space like for example punch hole, or converting
4274 	 * unwritten extents in delalloc path. In most cases such
4275 	 * allocation would require 1, or 2 blocks, higher numbers are
4276 	 * very rare.
4277 	 */
4278 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4279 			 sbi->s_cluster_bits);
4280 
4281 	do_div(resv_clusters, 50);
4282 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4283 
4284 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4285 }
4286 
4287 static const char *ext4_quota_mode(struct super_block *sb)
4288 {
4289 #ifdef CONFIG_QUOTA
4290 	if (!ext4_quota_capable(sb))
4291 		return "none";
4292 
4293 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4294 		return "journalled";
4295 	else
4296 		return "writeback";
4297 #else
4298 	return "disabled";
4299 #endif
4300 }
4301 
4302 static void ext4_setup_csum_trigger(struct super_block *sb,
4303 				    enum ext4_journal_trigger_type type,
4304 				    void (*trigger)(
4305 					struct jbd2_buffer_trigger_type *type,
4306 					struct buffer_head *bh,
4307 					void *mapped_data,
4308 					size_t size))
4309 {
4310 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4311 
4312 	sbi->s_journal_triggers[type].sb = sb;
4313 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4314 }
4315 
4316 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4317 {
4318 	if (!sbi)
4319 		return;
4320 
4321 	kfree(sbi->s_blockgroup_lock);
4322 	fs_put_dax(sbi->s_daxdev, NULL);
4323 	kfree(sbi);
4324 }
4325 
4326 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4327 {
4328 	struct ext4_sb_info *sbi;
4329 
4330 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4331 	if (!sbi)
4332 		return NULL;
4333 
4334 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4335 					   NULL, NULL);
4336 
4337 	sbi->s_blockgroup_lock =
4338 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4339 
4340 	if (!sbi->s_blockgroup_lock)
4341 		goto err_out;
4342 
4343 	sb->s_fs_info = sbi;
4344 	sbi->s_sb = sb;
4345 	return sbi;
4346 err_out:
4347 	fs_put_dax(sbi->s_daxdev, NULL);
4348 	kfree(sbi);
4349 	return NULL;
4350 }
4351 
4352 static void ext4_set_def_opts(struct super_block *sb,
4353 			      struct ext4_super_block *es)
4354 {
4355 	unsigned long def_mount_opts;
4356 
4357 	/* Set defaults before we parse the mount options */
4358 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4359 	set_opt(sb, INIT_INODE_TABLE);
4360 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4361 		set_opt(sb, DEBUG);
4362 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4363 		set_opt(sb, GRPID);
4364 	if (def_mount_opts & EXT4_DEFM_UID16)
4365 		set_opt(sb, NO_UID32);
4366 	/* xattr user namespace & acls are now defaulted on */
4367 	set_opt(sb, XATTR_USER);
4368 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4369 	set_opt(sb, POSIX_ACL);
4370 #endif
4371 	if (ext4_has_feature_fast_commit(sb))
4372 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4373 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4374 	if (ext4_has_metadata_csum(sb))
4375 		set_opt(sb, JOURNAL_CHECKSUM);
4376 
4377 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4378 		set_opt(sb, JOURNAL_DATA);
4379 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4380 		set_opt(sb, ORDERED_DATA);
4381 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4382 		set_opt(sb, WRITEBACK_DATA);
4383 
4384 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4385 		set_opt(sb, ERRORS_PANIC);
4386 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4387 		set_opt(sb, ERRORS_CONT);
4388 	else
4389 		set_opt(sb, ERRORS_RO);
4390 	/* block_validity enabled by default; disable with noblock_validity */
4391 	set_opt(sb, BLOCK_VALIDITY);
4392 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4393 		set_opt(sb, DISCARD);
4394 
4395 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4396 		set_opt(sb, BARRIER);
4397 
4398 	/*
4399 	 * enable delayed allocation by default
4400 	 * Use -o nodelalloc to turn it off
4401 	 */
4402 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4403 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4404 		set_opt(sb, DELALLOC);
4405 
4406 	if (sb->s_blocksize == PAGE_SIZE)
4407 		set_opt(sb, DIOREAD_NOLOCK);
4408 }
4409 
4410 static int ext4_handle_clustersize(struct super_block *sb)
4411 {
4412 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4413 	struct ext4_super_block *es = sbi->s_es;
4414 	int clustersize;
4415 
4416 	/* Handle clustersize */
4417 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4418 	if (ext4_has_feature_bigalloc(sb)) {
4419 		if (clustersize < sb->s_blocksize) {
4420 			ext4_msg(sb, KERN_ERR,
4421 				 "cluster size (%d) smaller than "
4422 				 "block size (%lu)", clustersize, sb->s_blocksize);
4423 			return -EINVAL;
4424 		}
4425 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4426 			le32_to_cpu(es->s_log_block_size);
4427 		sbi->s_clusters_per_group =
4428 			le32_to_cpu(es->s_clusters_per_group);
4429 		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4430 			ext4_msg(sb, KERN_ERR,
4431 				 "#clusters per group too big: %lu",
4432 				 sbi->s_clusters_per_group);
4433 			return -EINVAL;
4434 		}
4435 		if (sbi->s_blocks_per_group !=
4436 		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4437 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4438 				 "clusters per group (%lu) inconsistent",
4439 				 sbi->s_blocks_per_group,
4440 				 sbi->s_clusters_per_group);
4441 			return -EINVAL;
4442 		}
4443 	} else {
4444 		if (clustersize != sb->s_blocksize) {
4445 			ext4_msg(sb, KERN_ERR,
4446 				 "fragment/cluster size (%d) != "
4447 				 "block size (%lu)", clustersize, sb->s_blocksize);
4448 			return -EINVAL;
4449 		}
4450 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4451 			ext4_msg(sb, KERN_ERR,
4452 				 "#blocks per group too big: %lu",
4453 				 sbi->s_blocks_per_group);
4454 			return -EINVAL;
4455 		}
4456 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4457 		sbi->s_cluster_bits = 0;
4458 	}
4459 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4460 
4461 	/* Do we have standard group size of clustersize * 8 blocks ? */
4462 	if (sbi->s_blocks_per_group == clustersize << 3)
4463 		set_opt2(sb, STD_GROUP_SIZE);
4464 
4465 	return 0;
4466 }
4467 
4468 static void ext4_fast_commit_init(struct super_block *sb)
4469 {
4470 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4471 
4472 	/* Initialize fast commit stuff */
4473 	atomic_set(&sbi->s_fc_subtid, 0);
4474 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4475 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4476 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4477 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4478 	sbi->s_fc_bytes = 0;
4479 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4480 	sbi->s_fc_ineligible_tid = 0;
4481 	spin_lock_init(&sbi->s_fc_lock);
4482 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4483 	sbi->s_fc_replay_state.fc_regions = NULL;
4484 	sbi->s_fc_replay_state.fc_regions_size = 0;
4485 	sbi->s_fc_replay_state.fc_regions_used = 0;
4486 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4487 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4488 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4489 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4490 }
4491 
4492 static int ext4_inode_info_init(struct super_block *sb,
4493 				struct ext4_super_block *es)
4494 {
4495 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4496 
4497 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4498 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4499 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4500 	} else {
4501 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4502 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4503 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4504 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4505 				 sbi->s_first_ino);
4506 			return -EINVAL;
4507 		}
4508 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4509 		    (!is_power_of_2(sbi->s_inode_size)) ||
4510 		    (sbi->s_inode_size > sb->s_blocksize)) {
4511 			ext4_msg(sb, KERN_ERR,
4512 			       "unsupported inode size: %d",
4513 			       sbi->s_inode_size);
4514 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4515 			return -EINVAL;
4516 		}
4517 		/*
4518 		 * i_atime_extra is the last extra field available for
4519 		 * [acm]times in struct ext4_inode. Checking for that
4520 		 * field should suffice to ensure we have extra space
4521 		 * for all three.
4522 		 */
4523 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4524 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4525 			sb->s_time_gran = 1;
4526 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4527 		} else {
4528 			sb->s_time_gran = NSEC_PER_SEC;
4529 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4530 		}
4531 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4532 	}
4533 
4534 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4535 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4536 			EXT4_GOOD_OLD_INODE_SIZE;
4537 		if (ext4_has_feature_extra_isize(sb)) {
4538 			unsigned v, max = (sbi->s_inode_size -
4539 					   EXT4_GOOD_OLD_INODE_SIZE);
4540 
4541 			v = le16_to_cpu(es->s_want_extra_isize);
4542 			if (v > max) {
4543 				ext4_msg(sb, KERN_ERR,
4544 					 "bad s_want_extra_isize: %d", v);
4545 				return -EINVAL;
4546 			}
4547 			if (sbi->s_want_extra_isize < v)
4548 				sbi->s_want_extra_isize = v;
4549 
4550 			v = le16_to_cpu(es->s_min_extra_isize);
4551 			if (v > max) {
4552 				ext4_msg(sb, KERN_ERR,
4553 					 "bad s_min_extra_isize: %d", v);
4554 				return -EINVAL;
4555 			}
4556 			if (sbi->s_want_extra_isize < v)
4557 				sbi->s_want_extra_isize = v;
4558 		}
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 #if IS_ENABLED(CONFIG_UNICODE)
4565 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4566 {
4567 	const struct ext4_sb_encodings *encoding_info;
4568 	struct unicode_map *encoding;
4569 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4570 
4571 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4572 		return 0;
4573 
4574 	encoding_info = ext4_sb_read_encoding(es);
4575 	if (!encoding_info) {
4576 		ext4_msg(sb, KERN_ERR,
4577 			"Encoding requested by superblock is unknown");
4578 		return -EINVAL;
4579 	}
4580 
4581 	encoding = utf8_load(encoding_info->version);
4582 	if (IS_ERR(encoding)) {
4583 		ext4_msg(sb, KERN_ERR,
4584 			"can't mount with superblock charset: %s-%u.%u.%u "
4585 			"not supported by the kernel. flags: 0x%x.",
4586 			encoding_info->name,
4587 			unicode_major(encoding_info->version),
4588 			unicode_minor(encoding_info->version),
4589 			unicode_rev(encoding_info->version),
4590 			encoding_flags);
4591 		return -EINVAL;
4592 	}
4593 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4594 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4595 		unicode_major(encoding_info->version),
4596 		unicode_minor(encoding_info->version),
4597 		unicode_rev(encoding_info->version),
4598 		encoding_flags);
4599 
4600 	sb->s_encoding = encoding;
4601 	sb->s_encoding_flags = encoding_flags;
4602 
4603 	return 0;
4604 }
4605 #else
4606 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4607 {
4608 	return 0;
4609 }
4610 #endif
4611 
4612 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4613 {
4614 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4615 
4616 	/* Warn if metadata_csum and gdt_csum are both set. */
4617 	if (ext4_has_feature_metadata_csum(sb) &&
4618 	    ext4_has_feature_gdt_csum(sb))
4619 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4620 			     "redundant flags; please run fsck.");
4621 
4622 	/* Check for a known checksum algorithm */
4623 	if (!ext4_verify_csum_type(sb, es)) {
4624 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4625 			 "unknown checksum algorithm.");
4626 		return -EINVAL;
4627 	}
4628 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4629 				ext4_orphan_file_block_trigger);
4630 
4631 	/* Load the checksum driver */
4632 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4633 	if (IS_ERR(sbi->s_chksum_driver)) {
4634 		int ret = PTR_ERR(sbi->s_chksum_driver);
4635 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4636 		sbi->s_chksum_driver = NULL;
4637 		return ret;
4638 	}
4639 
4640 	/* Check superblock checksum */
4641 	if (!ext4_superblock_csum_verify(sb, es)) {
4642 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4643 			 "invalid superblock checksum.  Run e2fsck?");
4644 		return -EFSBADCRC;
4645 	}
4646 
4647 	/* Precompute checksum seed for all metadata */
4648 	if (ext4_has_feature_csum_seed(sb))
4649 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4650 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4651 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4652 					       sizeof(es->s_uuid));
4653 	return 0;
4654 }
4655 
4656 static int ext4_check_feature_compatibility(struct super_block *sb,
4657 					    struct ext4_super_block *es,
4658 					    int silent)
4659 {
4660 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4661 
4662 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4663 	    (ext4_has_compat_features(sb) ||
4664 	     ext4_has_ro_compat_features(sb) ||
4665 	     ext4_has_incompat_features(sb)))
4666 		ext4_msg(sb, KERN_WARNING,
4667 		       "feature flags set on rev 0 fs, "
4668 		       "running e2fsck is recommended");
4669 
4670 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4671 		set_opt2(sb, HURD_COMPAT);
4672 		if (ext4_has_feature_64bit(sb)) {
4673 			ext4_msg(sb, KERN_ERR,
4674 				 "The Hurd can't support 64-bit file systems");
4675 			return -EINVAL;
4676 		}
4677 
4678 		/*
4679 		 * ea_inode feature uses l_i_version field which is not
4680 		 * available in HURD_COMPAT mode.
4681 		 */
4682 		if (ext4_has_feature_ea_inode(sb)) {
4683 			ext4_msg(sb, KERN_ERR,
4684 				 "ea_inode feature is not supported for Hurd");
4685 			return -EINVAL;
4686 		}
4687 	}
4688 
4689 	if (IS_EXT2_SB(sb)) {
4690 		if (ext2_feature_set_ok(sb))
4691 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4692 				 "using the ext4 subsystem");
4693 		else {
4694 			/*
4695 			 * If we're probing be silent, if this looks like
4696 			 * it's actually an ext[34] filesystem.
4697 			 */
4698 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4699 				return -EINVAL;
4700 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4701 				 "to feature incompatibilities");
4702 			return -EINVAL;
4703 		}
4704 	}
4705 
4706 	if (IS_EXT3_SB(sb)) {
4707 		if (ext3_feature_set_ok(sb))
4708 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4709 				 "using the ext4 subsystem");
4710 		else {
4711 			/*
4712 			 * If we're probing be silent, if this looks like
4713 			 * it's actually an ext4 filesystem.
4714 			 */
4715 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4716 				return -EINVAL;
4717 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4718 				 "to feature incompatibilities");
4719 			return -EINVAL;
4720 		}
4721 	}
4722 
4723 	/*
4724 	 * Check feature flags regardless of the revision level, since we
4725 	 * previously didn't change the revision level when setting the flags,
4726 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4727 	 */
4728 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4729 		return -EINVAL;
4730 
4731 	if (sbi->s_daxdev) {
4732 		if (sb->s_blocksize == PAGE_SIZE)
4733 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4734 		else
4735 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4736 	}
4737 
4738 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4739 		if (ext4_has_feature_inline_data(sb)) {
4740 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4741 					" that may contain inline data");
4742 			return -EINVAL;
4743 		}
4744 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4745 			ext4_msg(sb, KERN_ERR,
4746 				"DAX unsupported by block device.");
4747 			return -EINVAL;
4748 		}
4749 	}
4750 
4751 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4752 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4753 			 es->s_encryption_level);
4754 		return -EINVAL;
4755 	}
4756 
4757 	return 0;
4758 }
4759 
4760 static int ext4_check_geometry(struct super_block *sb,
4761 			       struct ext4_super_block *es)
4762 {
4763 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4764 	__u64 blocks_count;
4765 	int err;
4766 
4767 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4768 		ext4_msg(sb, KERN_ERR,
4769 			 "Number of reserved GDT blocks insanely large: %d",
4770 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4771 		return -EINVAL;
4772 	}
4773 	/*
4774 	 * Test whether we have more sectors than will fit in sector_t,
4775 	 * and whether the max offset is addressable by the page cache.
4776 	 */
4777 	err = generic_check_addressable(sb->s_blocksize_bits,
4778 					ext4_blocks_count(es));
4779 	if (err) {
4780 		ext4_msg(sb, KERN_ERR, "filesystem"
4781 			 " too large to mount safely on this system");
4782 		return err;
4783 	}
4784 
4785 	/* check blocks count against device size */
4786 	blocks_count = sb_bdev_nr_blocks(sb);
4787 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4788 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4789 		       "exceeds size of device (%llu blocks)",
4790 		       ext4_blocks_count(es), blocks_count);
4791 		return -EINVAL;
4792 	}
4793 
4794 	/*
4795 	 * It makes no sense for the first data block to be beyond the end
4796 	 * of the filesystem.
4797 	 */
4798 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4799 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4800 			 "block %u is beyond end of filesystem (%llu)",
4801 			 le32_to_cpu(es->s_first_data_block),
4802 			 ext4_blocks_count(es));
4803 		return -EINVAL;
4804 	}
4805 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4806 	    (sbi->s_cluster_ratio == 1)) {
4807 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4808 			 "block is 0 with a 1k block and cluster size");
4809 		return -EINVAL;
4810 	}
4811 
4812 	blocks_count = (ext4_blocks_count(es) -
4813 			le32_to_cpu(es->s_first_data_block) +
4814 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4815 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4816 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4817 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4818 		       "(block count %llu, first data block %u, "
4819 		       "blocks per group %lu)", blocks_count,
4820 		       ext4_blocks_count(es),
4821 		       le32_to_cpu(es->s_first_data_block),
4822 		       EXT4_BLOCKS_PER_GROUP(sb));
4823 		return -EINVAL;
4824 	}
4825 	sbi->s_groups_count = blocks_count;
4826 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4827 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4828 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4829 	    le32_to_cpu(es->s_inodes_count)) {
4830 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4831 			 le32_to_cpu(es->s_inodes_count),
4832 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4833 		return -EINVAL;
4834 	}
4835 
4836 	return 0;
4837 }
4838 
4839 static int ext4_group_desc_init(struct super_block *sb,
4840 				struct ext4_super_block *es,
4841 				ext4_fsblk_t logical_sb_block,
4842 				ext4_group_t *first_not_zeroed)
4843 {
4844 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4845 	unsigned int db_count;
4846 	ext4_fsblk_t block;
4847 	int i;
4848 
4849 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4850 		   EXT4_DESC_PER_BLOCK(sb);
4851 	if (ext4_has_feature_meta_bg(sb)) {
4852 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4853 			ext4_msg(sb, KERN_WARNING,
4854 				 "first meta block group too large: %u "
4855 				 "(group descriptor block count %u)",
4856 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4857 			return -EINVAL;
4858 		}
4859 	}
4860 	rcu_assign_pointer(sbi->s_group_desc,
4861 			   kvmalloc_array(db_count,
4862 					  sizeof(struct buffer_head *),
4863 					  GFP_KERNEL));
4864 	if (sbi->s_group_desc == NULL) {
4865 		ext4_msg(sb, KERN_ERR, "not enough memory");
4866 		return -ENOMEM;
4867 	}
4868 
4869 	bgl_lock_init(sbi->s_blockgroup_lock);
4870 
4871 	/* Pre-read the descriptors into the buffer cache */
4872 	for (i = 0; i < db_count; i++) {
4873 		block = descriptor_loc(sb, logical_sb_block, i);
4874 		ext4_sb_breadahead_unmovable(sb, block);
4875 	}
4876 
4877 	for (i = 0; i < db_count; i++) {
4878 		struct buffer_head *bh;
4879 
4880 		block = descriptor_loc(sb, logical_sb_block, i);
4881 		bh = ext4_sb_bread_unmovable(sb, block);
4882 		if (IS_ERR(bh)) {
4883 			ext4_msg(sb, KERN_ERR,
4884 			       "can't read group descriptor %d", i);
4885 			sbi->s_gdb_count = i;
4886 			return PTR_ERR(bh);
4887 		}
4888 		rcu_read_lock();
4889 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4890 		rcu_read_unlock();
4891 	}
4892 	sbi->s_gdb_count = db_count;
4893 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4894 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4895 		return -EFSCORRUPTED;
4896 	}
4897 
4898 	return 0;
4899 }
4900 
4901 static int ext4_load_and_init_journal(struct super_block *sb,
4902 				      struct ext4_super_block *es,
4903 				      struct ext4_fs_context *ctx)
4904 {
4905 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4906 	int err;
4907 
4908 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4909 	if (err)
4910 		return err;
4911 
4912 	if (ext4_has_feature_64bit(sb) &&
4913 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4914 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4915 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4916 		goto out;
4917 	}
4918 
4919 	if (!set_journal_csum_feature_set(sb)) {
4920 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4921 			 "feature set");
4922 		goto out;
4923 	}
4924 
4925 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4926 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4927 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4928 		ext4_msg(sb, KERN_ERR,
4929 			"Failed to set fast commit journal feature");
4930 		goto out;
4931 	}
4932 
4933 	/* We have now updated the journal if required, so we can
4934 	 * validate the data journaling mode. */
4935 	switch (test_opt(sb, DATA_FLAGS)) {
4936 	case 0:
4937 		/* No mode set, assume a default based on the journal
4938 		 * capabilities: ORDERED_DATA if the journal can
4939 		 * cope, else JOURNAL_DATA
4940 		 */
4941 		if (jbd2_journal_check_available_features
4942 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4943 			set_opt(sb, ORDERED_DATA);
4944 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4945 		} else {
4946 			set_opt(sb, JOURNAL_DATA);
4947 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4948 		}
4949 		break;
4950 
4951 	case EXT4_MOUNT_ORDERED_DATA:
4952 	case EXT4_MOUNT_WRITEBACK_DATA:
4953 		if (!jbd2_journal_check_available_features
4954 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4955 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4956 			       "requested data journaling mode");
4957 			goto out;
4958 		}
4959 		break;
4960 	default:
4961 		break;
4962 	}
4963 
4964 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4965 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4966 		ext4_msg(sb, KERN_ERR, "can't mount with "
4967 			"journal_async_commit in data=ordered mode");
4968 		goto out;
4969 	}
4970 
4971 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4972 
4973 	sbi->s_journal->j_submit_inode_data_buffers =
4974 		ext4_journal_submit_inode_data_buffers;
4975 	sbi->s_journal->j_finish_inode_data_buffers =
4976 		ext4_journal_finish_inode_data_buffers;
4977 
4978 	return 0;
4979 
4980 out:
4981 	/* flush s_sb_upd_work before destroying the journal. */
4982 	flush_work(&sbi->s_sb_upd_work);
4983 	jbd2_journal_destroy(sbi->s_journal);
4984 	sbi->s_journal = NULL;
4985 	return -EINVAL;
4986 }
4987 
4988 static int ext4_check_journal_data_mode(struct super_block *sb)
4989 {
4990 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4991 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4992 			    "data=journal disables delayed allocation, "
4993 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4994 		/* can't mount with both data=journal and dioread_nolock. */
4995 		clear_opt(sb, DIOREAD_NOLOCK);
4996 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4997 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4998 			ext4_msg(sb, KERN_ERR, "can't mount with "
4999 				 "both data=journal and delalloc");
5000 			return -EINVAL;
5001 		}
5002 		if (test_opt(sb, DAX_ALWAYS)) {
5003 			ext4_msg(sb, KERN_ERR, "can't mount with "
5004 				 "both data=journal and dax");
5005 			return -EINVAL;
5006 		}
5007 		if (ext4_has_feature_encrypt(sb)) {
5008 			ext4_msg(sb, KERN_WARNING,
5009 				 "encrypted files will use data=ordered "
5010 				 "instead of data journaling mode");
5011 		}
5012 		if (test_opt(sb, DELALLOC))
5013 			clear_opt(sb, DELALLOC);
5014 	} else {
5015 		sb->s_iflags |= SB_I_CGROUPWB;
5016 	}
5017 
5018 	return 0;
5019 }
5020 
5021 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5022 			   int silent)
5023 {
5024 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5025 	struct ext4_super_block *es;
5026 	ext4_fsblk_t logical_sb_block;
5027 	unsigned long offset = 0;
5028 	struct buffer_head *bh;
5029 	int ret = -EINVAL;
5030 	int blocksize;
5031 
5032 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5033 	if (!blocksize) {
5034 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5035 		return -EINVAL;
5036 	}
5037 
5038 	/*
5039 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5040 	 * block sizes.  We need to calculate the offset from buffer start.
5041 	 */
5042 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5043 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5044 		offset = do_div(logical_sb_block, blocksize);
5045 	} else {
5046 		logical_sb_block = sbi->s_sb_block;
5047 	}
5048 
5049 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5050 	if (IS_ERR(bh)) {
5051 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5052 		return PTR_ERR(bh);
5053 	}
5054 	/*
5055 	 * Note: s_es must be initialized as soon as possible because
5056 	 *       some ext4 macro-instructions depend on its value
5057 	 */
5058 	es = (struct ext4_super_block *) (bh->b_data + offset);
5059 	sbi->s_es = es;
5060 	sb->s_magic = le16_to_cpu(es->s_magic);
5061 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5062 		if (!silent)
5063 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5064 		goto out;
5065 	}
5066 
5067 	if (le32_to_cpu(es->s_log_block_size) >
5068 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5069 		ext4_msg(sb, KERN_ERR,
5070 			 "Invalid log block size: %u",
5071 			 le32_to_cpu(es->s_log_block_size));
5072 		goto out;
5073 	}
5074 	if (le32_to_cpu(es->s_log_cluster_size) >
5075 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5076 		ext4_msg(sb, KERN_ERR,
5077 			 "Invalid log cluster size: %u",
5078 			 le32_to_cpu(es->s_log_cluster_size));
5079 		goto out;
5080 	}
5081 
5082 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5083 
5084 	/*
5085 	 * If the default block size is not the same as the real block size,
5086 	 * we need to reload it.
5087 	 */
5088 	if (sb->s_blocksize == blocksize) {
5089 		*lsb = logical_sb_block;
5090 		sbi->s_sbh = bh;
5091 		return 0;
5092 	}
5093 
5094 	/*
5095 	 * bh must be released before kill_bdev(), otherwise
5096 	 * it won't be freed and its page also. kill_bdev()
5097 	 * is called by sb_set_blocksize().
5098 	 */
5099 	brelse(bh);
5100 	/* Validate the filesystem blocksize */
5101 	if (!sb_set_blocksize(sb, blocksize)) {
5102 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5103 				blocksize);
5104 		bh = NULL;
5105 		goto out;
5106 	}
5107 
5108 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5109 	offset = do_div(logical_sb_block, blocksize);
5110 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5111 	if (IS_ERR(bh)) {
5112 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5113 		ret = PTR_ERR(bh);
5114 		bh = NULL;
5115 		goto out;
5116 	}
5117 	es = (struct ext4_super_block *)(bh->b_data + offset);
5118 	sbi->s_es = es;
5119 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5120 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5121 		goto out;
5122 	}
5123 	*lsb = logical_sb_block;
5124 	sbi->s_sbh = bh;
5125 	return 0;
5126 out:
5127 	brelse(bh);
5128 	return ret;
5129 }
5130 
5131 static void ext4_hash_info_init(struct super_block *sb)
5132 {
5133 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5134 	struct ext4_super_block *es = sbi->s_es;
5135 	unsigned int i;
5136 
5137 	for (i = 0; i < 4; i++)
5138 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5139 
5140 	sbi->s_def_hash_version = es->s_def_hash_version;
5141 	if (ext4_has_feature_dir_index(sb)) {
5142 		i = le32_to_cpu(es->s_flags);
5143 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5144 			sbi->s_hash_unsigned = 3;
5145 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5146 #ifdef __CHAR_UNSIGNED__
5147 			if (!sb_rdonly(sb))
5148 				es->s_flags |=
5149 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5150 			sbi->s_hash_unsigned = 3;
5151 #else
5152 			if (!sb_rdonly(sb))
5153 				es->s_flags |=
5154 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5155 #endif
5156 		}
5157 	}
5158 }
5159 
5160 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5161 {
5162 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5163 	struct ext4_super_block *es = sbi->s_es;
5164 	int has_huge_files;
5165 
5166 	has_huge_files = ext4_has_feature_huge_file(sb);
5167 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5168 						      has_huge_files);
5169 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5170 
5171 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5172 	if (ext4_has_feature_64bit(sb)) {
5173 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5174 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5175 		    !is_power_of_2(sbi->s_desc_size)) {
5176 			ext4_msg(sb, KERN_ERR,
5177 			       "unsupported descriptor size %lu",
5178 			       sbi->s_desc_size);
5179 			return -EINVAL;
5180 		}
5181 	} else
5182 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5183 
5184 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5185 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5186 
5187 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5188 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5189 		if (!silent)
5190 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5191 		return -EINVAL;
5192 	}
5193 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5194 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5195 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5196 			 sbi->s_inodes_per_group);
5197 		return -EINVAL;
5198 	}
5199 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5200 					sbi->s_inodes_per_block;
5201 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5202 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5203 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5204 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5205 
5206 	return 0;
5207 }
5208 
5209 /*
5210  * It's hard to get stripe aligned blocks if stripe is not aligned with
5211  * cluster, just disable stripe and alert user to simplify code and avoid
5212  * stripe aligned allocation which will rarely succeed.
5213  */
5214 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5215 {
5216 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5217 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5218 		stripe % sbi->s_cluster_ratio != 0);
5219 }
5220 
5221 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5222 {
5223 	struct ext4_super_block *es = NULL;
5224 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5225 	ext4_fsblk_t logical_sb_block;
5226 	struct inode *root;
5227 	int needs_recovery;
5228 	int err;
5229 	ext4_group_t first_not_zeroed;
5230 	struct ext4_fs_context *ctx = fc->fs_private;
5231 	int silent = fc->sb_flags & SB_SILENT;
5232 
5233 	/* Set defaults for the variables that will be set during parsing */
5234 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5235 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5236 
5237 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5238 	sbi->s_sectors_written_start =
5239 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5240 
5241 	err = ext4_load_super(sb, &logical_sb_block, silent);
5242 	if (err)
5243 		goto out_fail;
5244 
5245 	es = sbi->s_es;
5246 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5247 
5248 	err = ext4_init_metadata_csum(sb, es);
5249 	if (err)
5250 		goto failed_mount;
5251 
5252 	ext4_set_def_opts(sb, es);
5253 
5254 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5255 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5256 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5257 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5258 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5259 
5260 	/*
5261 	 * set default s_li_wait_mult for lazyinit, for the case there is
5262 	 * no mount option specified.
5263 	 */
5264 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5265 
5266 	err = ext4_inode_info_init(sb, es);
5267 	if (err)
5268 		goto failed_mount;
5269 
5270 	err = parse_apply_sb_mount_options(sb, ctx);
5271 	if (err < 0)
5272 		goto failed_mount;
5273 
5274 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5275 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5276 
5277 	err = ext4_check_opt_consistency(fc, sb);
5278 	if (err < 0)
5279 		goto failed_mount;
5280 
5281 	ext4_apply_options(fc, sb);
5282 
5283 	err = ext4_encoding_init(sb, es);
5284 	if (err)
5285 		goto failed_mount;
5286 
5287 	err = ext4_check_journal_data_mode(sb);
5288 	if (err)
5289 		goto failed_mount;
5290 
5291 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5292 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5293 
5294 	/* i_version is always enabled now */
5295 	sb->s_flags |= SB_I_VERSION;
5296 
5297 	err = ext4_check_feature_compatibility(sb, es, silent);
5298 	if (err)
5299 		goto failed_mount;
5300 
5301 	err = ext4_block_group_meta_init(sb, silent);
5302 	if (err)
5303 		goto failed_mount;
5304 
5305 	ext4_hash_info_init(sb);
5306 
5307 	err = ext4_handle_clustersize(sb);
5308 	if (err)
5309 		goto failed_mount;
5310 
5311 	err = ext4_check_geometry(sb, es);
5312 	if (err)
5313 		goto failed_mount;
5314 
5315 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5316 	spin_lock_init(&sbi->s_error_lock);
5317 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5318 
5319 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5320 	if (err)
5321 		goto failed_mount3;
5322 
5323 	err = ext4_es_register_shrinker(sbi);
5324 	if (err)
5325 		goto failed_mount3;
5326 
5327 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5328 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5329 		ext4_msg(sb, KERN_WARNING,
5330 			 "stripe (%lu) is not aligned with cluster size (%u), "
5331 			 "stripe is disabled",
5332 			 sbi->s_stripe, sbi->s_cluster_ratio);
5333 		sbi->s_stripe = 0;
5334 	}
5335 	sbi->s_extent_max_zeroout_kb = 32;
5336 
5337 	/*
5338 	 * set up enough so that it can read an inode
5339 	 */
5340 	sb->s_op = &ext4_sops;
5341 	sb->s_export_op = &ext4_export_ops;
5342 	sb->s_xattr = ext4_xattr_handlers;
5343 #ifdef CONFIG_FS_ENCRYPTION
5344 	sb->s_cop = &ext4_cryptops;
5345 #endif
5346 #ifdef CONFIG_FS_VERITY
5347 	sb->s_vop = &ext4_verityops;
5348 #endif
5349 #ifdef CONFIG_QUOTA
5350 	sb->dq_op = &ext4_quota_operations;
5351 	if (ext4_has_feature_quota(sb))
5352 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5353 	else
5354 		sb->s_qcop = &ext4_qctl_operations;
5355 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5356 #endif
5357 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5358 
5359 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5360 	mutex_init(&sbi->s_orphan_lock);
5361 
5362 	ext4_fast_commit_init(sb);
5363 
5364 	sb->s_root = NULL;
5365 
5366 	needs_recovery = (es->s_last_orphan != 0 ||
5367 			  ext4_has_feature_orphan_present(sb) ||
5368 			  ext4_has_feature_journal_needs_recovery(sb));
5369 
5370 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5371 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5372 		if (err)
5373 			goto failed_mount3a;
5374 	}
5375 
5376 	err = -EINVAL;
5377 	/*
5378 	 * The first inode we look at is the journal inode.  Don't try
5379 	 * root first: it may be modified in the journal!
5380 	 */
5381 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5382 		err = ext4_load_and_init_journal(sb, es, ctx);
5383 		if (err)
5384 			goto failed_mount3a;
5385 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5386 		   ext4_has_feature_journal_needs_recovery(sb)) {
5387 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5388 		       "suppressed and not mounted read-only");
5389 		goto failed_mount3a;
5390 	} else {
5391 		/* Nojournal mode, all journal mount options are illegal */
5392 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5393 			ext4_msg(sb, KERN_ERR, "can't mount with "
5394 				 "journal_async_commit, fs mounted w/o journal");
5395 			goto failed_mount3a;
5396 		}
5397 
5398 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5399 			ext4_msg(sb, KERN_ERR, "can't mount with "
5400 				 "journal_checksum, fs mounted w/o journal");
5401 			goto failed_mount3a;
5402 		}
5403 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5404 			ext4_msg(sb, KERN_ERR, "can't mount with "
5405 				 "commit=%lu, fs mounted w/o journal",
5406 				 sbi->s_commit_interval / HZ);
5407 			goto failed_mount3a;
5408 		}
5409 		if (EXT4_MOUNT_DATA_FLAGS &
5410 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5411 			ext4_msg(sb, KERN_ERR, "can't mount with "
5412 				 "data=, fs mounted w/o journal");
5413 			goto failed_mount3a;
5414 		}
5415 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5416 		clear_opt(sb, JOURNAL_CHECKSUM);
5417 		clear_opt(sb, DATA_FLAGS);
5418 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5419 		sbi->s_journal = NULL;
5420 		needs_recovery = 0;
5421 	}
5422 
5423 	if (!test_opt(sb, NO_MBCACHE)) {
5424 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5425 		if (!sbi->s_ea_block_cache) {
5426 			ext4_msg(sb, KERN_ERR,
5427 				 "Failed to create ea_block_cache");
5428 			err = -EINVAL;
5429 			goto failed_mount_wq;
5430 		}
5431 
5432 		if (ext4_has_feature_ea_inode(sb)) {
5433 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5434 			if (!sbi->s_ea_inode_cache) {
5435 				ext4_msg(sb, KERN_ERR,
5436 					 "Failed to create ea_inode_cache");
5437 				err = -EINVAL;
5438 				goto failed_mount_wq;
5439 			}
5440 		}
5441 	}
5442 
5443 	/*
5444 	 * Get the # of file system overhead blocks from the
5445 	 * superblock if present.
5446 	 */
5447 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5448 	/* ignore the precalculated value if it is ridiculous */
5449 	if (sbi->s_overhead > ext4_blocks_count(es))
5450 		sbi->s_overhead = 0;
5451 	/*
5452 	 * If the bigalloc feature is not enabled recalculating the
5453 	 * overhead doesn't take long, so we might as well just redo
5454 	 * it to make sure we are using the correct value.
5455 	 */
5456 	if (!ext4_has_feature_bigalloc(sb))
5457 		sbi->s_overhead = 0;
5458 	if (sbi->s_overhead == 0) {
5459 		err = ext4_calculate_overhead(sb);
5460 		if (err)
5461 			goto failed_mount_wq;
5462 	}
5463 
5464 	/*
5465 	 * The maximum number of concurrent works can be high and
5466 	 * concurrency isn't really necessary.  Limit it to 1.
5467 	 */
5468 	EXT4_SB(sb)->rsv_conversion_wq =
5469 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5470 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5471 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5472 		err = -ENOMEM;
5473 		goto failed_mount4;
5474 	}
5475 
5476 	/*
5477 	 * The jbd2_journal_load will have done any necessary log recovery,
5478 	 * so we can safely mount the rest of the filesystem now.
5479 	 */
5480 
5481 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5482 	if (IS_ERR(root)) {
5483 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5484 		err = PTR_ERR(root);
5485 		root = NULL;
5486 		goto failed_mount4;
5487 	}
5488 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5489 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5490 		iput(root);
5491 		err = -EFSCORRUPTED;
5492 		goto failed_mount4;
5493 	}
5494 
5495 	sb->s_root = d_make_root(root);
5496 	if (!sb->s_root) {
5497 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5498 		err = -ENOMEM;
5499 		goto failed_mount4;
5500 	}
5501 
5502 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5503 	if (err == -EROFS) {
5504 		sb->s_flags |= SB_RDONLY;
5505 	} else if (err)
5506 		goto failed_mount4a;
5507 
5508 	ext4_set_resv_clusters(sb);
5509 
5510 	if (test_opt(sb, BLOCK_VALIDITY)) {
5511 		err = ext4_setup_system_zone(sb);
5512 		if (err) {
5513 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5514 				 "zone (%d)", err);
5515 			goto failed_mount4a;
5516 		}
5517 	}
5518 	ext4_fc_replay_cleanup(sb);
5519 
5520 	ext4_ext_init(sb);
5521 
5522 	/*
5523 	 * Enable optimize_scan if number of groups is > threshold. This can be
5524 	 * turned off by passing "mb_optimize_scan=0". This can also be
5525 	 * turned on forcefully by passing "mb_optimize_scan=1".
5526 	 */
5527 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5528 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5529 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5530 		else
5531 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5532 	}
5533 
5534 	err = ext4_mb_init(sb);
5535 	if (err) {
5536 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5537 			 err);
5538 		goto failed_mount5;
5539 	}
5540 
5541 	/*
5542 	 * We can only set up the journal commit callback once
5543 	 * mballoc is initialized
5544 	 */
5545 	if (sbi->s_journal)
5546 		sbi->s_journal->j_commit_callback =
5547 			ext4_journal_commit_callback;
5548 
5549 	err = ext4_percpu_param_init(sbi);
5550 	if (err)
5551 		goto failed_mount6;
5552 
5553 	if (ext4_has_feature_flex_bg(sb))
5554 		if (!ext4_fill_flex_info(sb)) {
5555 			ext4_msg(sb, KERN_ERR,
5556 			       "unable to initialize "
5557 			       "flex_bg meta info!");
5558 			err = -ENOMEM;
5559 			goto failed_mount6;
5560 		}
5561 
5562 	err = ext4_register_li_request(sb, first_not_zeroed);
5563 	if (err)
5564 		goto failed_mount6;
5565 
5566 	err = ext4_init_orphan_info(sb);
5567 	if (err)
5568 		goto failed_mount7;
5569 #ifdef CONFIG_QUOTA
5570 	/* Enable quota usage during mount. */
5571 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5572 		err = ext4_enable_quotas(sb);
5573 		if (err)
5574 			goto failed_mount8;
5575 	}
5576 #endif  /* CONFIG_QUOTA */
5577 
5578 	/*
5579 	 * Save the original bdev mapping's wb_err value which could be
5580 	 * used to detect the metadata async write error.
5581 	 */
5582 	spin_lock_init(&sbi->s_bdev_wb_lock);
5583 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5584 				 &sbi->s_bdev_wb_err);
5585 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5586 	ext4_orphan_cleanup(sb, es);
5587 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5588 	/*
5589 	 * Update the checksum after updating free space/inode counters and
5590 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5591 	 * checksum in the buffer cache until it is written out and
5592 	 * e2fsprogs programs trying to open a file system immediately
5593 	 * after it is mounted can fail.
5594 	 */
5595 	ext4_superblock_csum_set(sb);
5596 	if (needs_recovery) {
5597 		ext4_msg(sb, KERN_INFO, "recovery complete");
5598 		err = ext4_mark_recovery_complete(sb, es);
5599 		if (err)
5600 			goto failed_mount9;
5601 	}
5602 
5603 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5604 		ext4_msg(sb, KERN_WARNING,
5605 			 "mounting with \"discard\" option, but the device does not support discard");
5606 
5607 	if (es->s_error_count)
5608 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5609 
5610 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5611 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5612 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5613 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5614 	atomic_set(&sbi->s_warning_count, 0);
5615 	atomic_set(&sbi->s_msg_count, 0);
5616 
5617 	/* Register sysfs after all initializations are complete. */
5618 	err = ext4_register_sysfs(sb);
5619 	if (err)
5620 		goto failed_mount9;
5621 
5622 	return 0;
5623 
5624 failed_mount9:
5625 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5626 failed_mount8: __maybe_unused
5627 	ext4_release_orphan_info(sb);
5628 failed_mount7:
5629 	ext4_unregister_li_request(sb);
5630 failed_mount6:
5631 	ext4_mb_release(sb);
5632 	ext4_flex_groups_free(sbi);
5633 	ext4_percpu_param_destroy(sbi);
5634 failed_mount5:
5635 	ext4_ext_release(sb);
5636 	ext4_release_system_zone(sb);
5637 failed_mount4a:
5638 	dput(sb->s_root);
5639 	sb->s_root = NULL;
5640 failed_mount4:
5641 	ext4_msg(sb, KERN_ERR, "mount failed");
5642 	if (EXT4_SB(sb)->rsv_conversion_wq)
5643 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5644 failed_mount_wq:
5645 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5646 	sbi->s_ea_inode_cache = NULL;
5647 
5648 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5649 	sbi->s_ea_block_cache = NULL;
5650 
5651 	if (sbi->s_journal) {
5652 		/* flush s_sb_upd_work before journal destroy. */
5653 		flush_work(&sbi->s_sb_upd_work);
5654 		jbd2_journal_destroy(sbi->s_journal);
5655 		sbi->s_journal = NULL;
5656 	}
5657 failed_mount3a:
5658 	ext4_es_unregister_shrinker(sbi);
5659 failed_mount3:
5660 	/* flush s_sb_upd_work before sbi destroy */
5661 	flush_work(&sbi->s_sb_upd_work);
5662 	ext4_stop_mmpd(sbi);
5663 	del_timer_sync(&sbi->s_err_report);
5664 	ext4_group_desc_free(sbi);
5665 failed_mount:
5666 	if (sbi->s_chksum_driver)
5667 		crypto_free_shash(sbi->s_chksum_driver);
5668 
5669 #if IS_ENABLED(CONFIG_UNICODE)
5670 	utf8_unload(sb->s_encoding);
5671 #endif
5672 
5673 #ifdef CONFIG_QUOTA
5674 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5675 		kfree(get_qf_name(sb, sbi, i));
5676 #endif
5677 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5678 	brelse(sbi->s_sbh);
5679 	if (sbi->s_journal_bdev) {
5680 		invalidate_bdev(sbi->s_journal_bdev);
5681 		blkdev_put(sbi->s_journal_bdev, sb);
5682 	}
5683 out_fail:
5684 	invalidate_bdev(sb->s_bdev);
5685 	sb->s_fs_info = NULL;
5686 	return err;
5687 }
5688 
5689 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5690 {
5691 	struct ext4_fs_context *ctx = fc->fs_private;
5692 	struct ext4_sb_info *sbi;
5693 	const char *descr;
5694 	int ret;
5695 
5696 	sbi = ext4_alloc_sbi(sb);
5697 	if (!sbi)
5698 		return -ENOMEM;
5699 
5700 	fc->s_fs_info = sbi;
5701 
5702 	/* Cleanup superblock name */
5703 	strreplace(sb->s_id, '/', '!');
5704 
5705 	sbi->s_sb_block = 1;	/* Default super block location */
5706 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5707 		sbi->s_sb_block = ctx->s_sb_block;
5708 
5709 	ret = __ext4_fill_super(fc, sb);
5710 	if (ret < 0)
5711 		goto free_sbi;
5712 
5713 	if (sbi->s_journal) {
5714 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5715 			descr = " journalled data mode";
5716 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5717 			descr = " ordered data mode";
5718 		else
5719 			descr = " writeback data mode";
5720 	} else
5721 		descr = "out journal";
5722 
5723 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5724 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5725 			 "Quota mode: %s.", &sb->s_uuid,
5726 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5727 			 ext4_quota_mode(sb));
5728 
5729 	/* Update the s_overhead_clusters if necessary */
5730 	ext4_update_overhead(sb, false);
5731 	return 0;
5732 
5733 free_sbi:
5734 	ext4_free_sbi(sbi);
5735 	fc->s_fs_info = NULL;
5736 	return ret;
5737 }
5738 
5739 static int ext4_get_tree(struct fs_context *fc)
5740 {
5741 	return get_tree_bdev(fc, ext4_fill_super);
5742 }
5743 
5744 /*
5745  * Setup any per-fs journal parameters now.  We'll do this both on
5746  * initial mount, once the journal has been initialised but before we've
5747  * done any recovery; and again on any subsequent remount.
5748  */
5749 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5750 {
5751 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5752 
5753 	journal->j_commit_interval = sbi->s_commit_interval;
5754 	journal->j_min_batch_time = sbi->s_min_batch_time;
5755 	journal->j_max_batch_time = sbi->s_max_batch_time;
5756 	ext4_fc_init(sb, journal);
5757 
5758 	write_lock(&journal->j_state_lock);
5759 	if (test_opt(sb, BARRIER))
5760 		journal->j_flags |= JBD2_BARRIER;
5761 	else
5762 		journal->j_flags &= ~JBD2_BARRIER;
5763 	if (test_opt(sb, DATA_ERR_ABORT))
5764 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5765 	else
5766 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5767 	/*
5768 	 * Always enable journal cycle record option, letting the journal
5769 	 * records log transactions continuously between each mount.
5770 	 */
5771 	journal->j_flags |= JBD2_CYCLE_RECORD;
5772 	write_unlock(&journal->j_state_lock);
5773 }
5774 
5775 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5776 					     unsigned int journal_inum)
5777 {
5778 	struct inode *journal_inode;
5779 
5780 	/*
5781 	 * Test for the existence of a valid inode on disk.  Bad things
5782 	 * happen if we iget() an unused inode, as the subsequent iput()
5783 	 * will try to delete it.
5784 	 */
5785 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5786 	if (IS_ERR(journal_inode)) {
5787 		ext4_msg(sb, KERN_ERR, "no journal found");
5788 		return ERR_CAST(journal_inode);
5789 	}
5790 	if (!journal_inode->i_nlink) {
5791 		make_bad_inode(journal_inode);
5792 		iput(journal_inode);
5793 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5794 		return ERR_PTR(-EFSCORRUPTED);
5795 	}
5796 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5797 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5798 		iput(journal_inode);
5799 		return ERR_PTR(-EFSCORRUPTED);
5800 	}
5801 
5802 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5803 		  journal_inode, journal_inode->i_size);
5804 	return journal_inode;
5805 }
5806 
5807 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5808 {
5809 	struct ext4_map_blocks map;
5810 	int ret;
5811 
5812 	if (journal->j_inode == NULL)
5813 		return 0;
5814 
5815 	map.m_lblk = *block;
5816 	map.m_len = 1;
5817 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5818 	if (ret <= 0) {
5819 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5820 			 "journal bmap failed: block %llu ret %d\n",
5821 			 *block, ret);
5822 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5823 		return ret;
5824 	}
5825 	*block = map.m_pblk;
5826 	return 0;
5827 }
5828 
5829 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5830 					  unsigned int journal_inum)
5831 {
5832 	struct inode *journal_inode;
5833 	journal_t *journal;
5834 
5835 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5836 	if (IS_ERR(journal_inode))
5837 		return ERR_CAST(journal_inode);
5838 
5839 	journal = jbd2_journal_init_inode(journal_inode);
5840 	if (IS_ERR(journal)) {
5841 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5842 		iput(journal_inode);
5843 		return ERR_CAST(journal);
5844 	}
5845 	journal->j_private = sb;
5846 	journal->j_bmap = ext4_journal_bmap;
5847 	ext4_init_journal_params(sb, journal);
5848 	return journal;
5849 }
5850 
5851 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5852 					dev_t j_dev, ext4_fsblk_t *j_start,
5853 					ext4_fsblk_t *j_len)
5854 {
5855 	struct buffer_head *bh;
5856 	struct block_device *bdev;
5857 	int hblock, blocksize;
5858 	ext4_fsblk_t sb_block;
5859 	unsigned long offset;
5860 	struct ext4_super_block *es;
5861 	int errno;
5862 
5863 	/* see get_tree_bdev why this is needed and safe */
5864 	up_write(&sb->s_umount);
5865 	bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5866 				 &fs_holder_ops);
5867 	down_write(&sb->s_umount);
5868 	if (IS_ERR(bdev)) {
5869 		ext4_msg(sb, KERN_ERR,
5870 			 "failed to open journal device unknown-block(%u,%u) %ld",
5871 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5872 		return ERR_CAST(bdev);
5873 	}
5874 
5875 	blocksize = sb->s_blocksize;
5876 	hblock = bdev_logical_block_size(bdev);
5877 	if (blocksize < hblock) {
5878 		ext4_msg(sb, KERN_ERR,
5879 			"blocksize too small for journal device");
5880 		errno = -EINVAL;
5881 		goto out_bdev;
5882 	}
5883 
5884 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5885 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5886 	set_blocksize(bdev, blocksize);
5887 	bh = __bread(bdev, sb_block, blocksize);
5888 	if (!bh) {
5889 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5890 		       "external journal");
5891 		errno = -EINVAL;
5892 		goto out_bdev;
5893 	}
5894 
5895 	es = (struct ext4_super_block *) (bh->b_data + offset);
5896 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5897 	    !(le32_to_cpu(es->s_feature_incompat) &
5898 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5899 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5900 		errno = -EFSCORRUPTED;
5901 		goto out_bh;
5902 	}
5903 
5904 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5905 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5906 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5907 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5908 		errno = -EFSCORRUPTED;
5909 		goto out_bh;
5910 	}
5911 
5912 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5913 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5914 		errno = -EFSCORRUPTED;
5915 		goto out_bh;
5916 	}
5917 
5918 	*j_start = sb_block + 1;
5919 	*j_len = ext4_blocks_count(es);
5920 	brelse(bh);
5921 	return bdev;
5922 
5923 out_bh:
5924 	brelse(bh);
5925 out_bdev:
5926 	blkdev_put(bdev, sb);
5927 	return ERR_PTR(errno);
5928 }
5929 
5930 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5931 					dev_t j_dev)
5932 {
5933 	journal_t *journal;
5934 	ext4_fsblk_t j_start;
5935 	ext4_fsblk_t j_len;
5936 	struct block_device *journal_bdev;
5937 	int errno = 0;
5938 
5939 	journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5940 	if (IS_ERR(journal_bdev))
5941 		return ERR_CAST(journal_bdev);
5942 
5943 	journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5944 					j_len, sb->s_blocksize);
5945 	if (IS_ERR(journal)) {
5946 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5947 		errno = PTR_ERR(journal);
5948 		goto out_bdev;
5949 	}
5950 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5951 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5952 					"user (unsupported) - %d",
5953 			be32_to_cpu(journal->j_superblock->s_nr_users));
5954 		errno = -EINVAL;
5955 		goto out_journal;
5956 	}
5957 	journal->j_private = sb;
5958 	EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5959 	ext4_init_journal_params(sb, journal);
5960 	return journal;
5961 
5962 out_journal:
5963 	jbd2_journal_destroy(journal);
5964 out_bdev:
5965 	blkdev_put(journal_bdev, sb);
5966 	return ERR_PTR(errno);
5967 }
5968 
5969 static int ext4_load_journal(struct super_block *sb,
5970 			     struct ext4_super_block *es,
5971 			     unsigned long journal_devnum)
5972 {
5973 	journal_t *journal;
5974 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5975 	dev_t journal_dev;
5976 	int err = 0;
5977 	int really_read_only;
5978 	int journal_dev_ro;
5979 
5980 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5981 		return -EFSCORRUPTED;
5982 
5983 	if (journal_devnum &&
5984 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5985 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5986 			"numbers have changed");
5987 		journal_dev = new_decode_dev(journal_devnum);
5988 	} else
5989 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5990 
5991 	if (journal_inum && journal_dev) {
5992 		ext4_msg(sb, KERN_ERR,
5993 			 "filesystem has both journal inode and journal device!");
5994 		return -EINVAL;
5995 	}
5996 
5997 	if (journal_inum) {
5998 		journal = ext4_open_inode_journal(sb, journal_inum);
5999 		if (IS_ERR(journal))
6000 			return PTR_ERR(journal);
6001 	} else {
6002 		journal = ext4_open_dev_journal(sb, journal_dev);
6003 		if (IS_ERR(journal))
6004 			return PTR_ERR(journal);
6005 	}
6006 
6007 	journal_dev_ro = bdev_read_only(journal->j_dev);
6008 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6009 
6010 	if (journal_dev_ro && !sb_rdonly(sb)) {
6011 		ext4_msg(sb, KERN_ERR,
6012 			 "journal device read-only, try mounting with '-o ro'");
6013 		err = -EROFS;
6014 		goto err_out;
6015 	}
6016 
6017 	/*
6018 	 * Are we loading a blank journal or performing recovery after a
6019 	 * crash?  For recovery, we need to check in advance whether we
6020 	 * can get read-write access to the device.
6021 	 */
6022 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6023 		if (sb_rdonly(sb)) {
6024 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6025 					"required on readonly filesystem");
6026 			if (really_read_only) {
6027 				ext4_msg(sb, KERN_ERR, "write access "
6028 					"unavailable, cannot proceed "
6029 					"(try mounting with noload)");
6030 				err = -EROFS;
6031 				goto err_out;
6032 			}
6033 			ext4_msg(sb, KERN_INFO, "write access will "
6034 			       "be enabled during recovery");
6035 		}
6036 	}
6037 
6038 	if (!(journal->j_flags & JBD2_BARRIER))
6039 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6040 
6041 	if (!ext4_has_feature_journal_needs_recovery(sb))
6042 		err = jbd2_journal_wipe(journal, !really_read_only);
6043 	if (!err) {
6044 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6045 		__le16 orig_state;
6046 		bool changed = false;
6047 
6048 		if (save)
6049 			memcpy(save, ((char *) es) +
6050 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6051 		err = jbd2_journal_load(journal);
6052 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6053 				   save, EXT4_S_ERR_LEN)) {
6054 			memcpy(((char *) es) + EXT4_S_ERR_START,
6055 			       save, EXT4_S_ERR_LEN);
6056 			changed = true;
6057 		}
6058 		kfree(save);
6059 		orig_state = es->s_state;
6060 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6061 					   EXT4_ERROR_FS);
6062 		if (orig_state != es->s_state)
6063 			changed = true;
6064 		/* Write out restored error information to the superblock */
6065 		if (changed && !really_read_only) {
6066 			int err2;
6067 			err2 = ext4_commit_super(sb);
6068 			err = err ? : err2;
6069 		}
6070 	}
6071 
6072 	if (err) {
6073 		ext4_msg(sb, KERN_ERR, "error loading journal");
6074 		goto err_out;
6075 	}
6076 
6077 	EXT4_SB(sb)->s_journal = journal;
6078 	err = ext4_clear_journal_err(sb, es);
6079 	if (err) {
6080 		EXT4_SB(sb)->s_journal = NULL;
6081 		jbd2_journal_destroy(journal);
6082 		return err;
6083 	}
6084 
6085 	if (!really_read_only && journal_devnum &&
6086 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6087 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6088 		ext4_commit_super(sb);
6089 	}
6090 	if (!really_read_only && journal_inum &&
6091 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6092 		es->s_journal_inum = cpu_to_le32(journal_inum);
6093 		ext4_commit_super(sb);
6094 	}
6095 
6096 	return 0;
6097 
6098 err_out:
6099 	jbd2_journal_destroy(journal);
6100 	return err;
6101 }
6102 
6103 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6104 static void ext4_update_super(struct super_block *sb)
6105 {
6106 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6107 	struct ext4_super_block *es = sbi->s_es;
6108 	struct buffer_head *sbh = sbi->s_sbh;
6109 
6110 	lock_buffer(sbh);
6111 	/*
6112 	 * If the file system is mounted read-only, don't update the
6113 	 * superblock write time.  This avoids updating the superblock
6114 	 * write time when we are mounting the root file system
6115 	 * read/only but we need to replay the journal; at that point,
6116 	 * for people who are east of GMT and who make their clock
6117 	 * tick in localtime for Windows bug-for-bug compatibility,
6118 	 * the clock is set in the future, and this will cause e2fsck
6119 	 * to complain and force a full file system check.
6120 	 */
6121 	if (!sb_rdonly(sb))
6122 		ext4_update_tstamp(es, s_wtime);
6123 	es->s_kbytes_written =
6124 		cpu_to_le64(sbi->s_kbytes_written +
6125 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6126 		      sbi->s_sectors_written_start) >> 1));
6127 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6128 		ext4_free_blocks_count_set(es,
6129 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6130 				&sbi->s_freeclusters_counter)));
6131 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6132 		es->s_free_inodes_count =
6133 			cpu_to_le32(percpu_counter_sum_positive(
6134 				&sbi->s_freeinodes_counter));
6135 	/* Copy error information to the on-disk superblock */
6136 	spin_lock(&sbi->s_error_lock);
6137 	if (sbi->s_add_error_count > 0) {
6138 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6139 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6140 			__ext4_update_tstamp(&es->s_first_error_time,
6141 					     &es->s_first_error_time_hi,
6142 					     sbi->s_first_error_time);
6143 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6144 				sizeof(es->s_first_error_func));
6145 			es->s_first_error_line =
6146 				cpu_to_le32(sbi->s_first_error_line);
6147 			es->s_first_error_ino =
6148 				cpu_to_le32(sbi->s_first_error_ino);
6149 			es->s_first_error_block =
6150 				cpu_to_le64(sbi->s_first_error_block);
6151 			es->s_first_error_errcode =
6152 				ext4_errno_to_code(sbi->s_first_error_code);
6153 		}
6154 		__ext4_update_tstamp(&es->s_last_error_time,
6155 				     &es->s_last_error_time_hi,
6156 				     sbi->s_last_error_time);
6157 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6158 			sizeof(es->s_last_error_func));
6159 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6160 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6161 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6162 		es->s_last_error_errcode =
6163 				ext4_errno_to_code(sbi->s_last_error_code);
6164 		/*
6165 		 * Start the daily error reporting function if it hasn't been
6166 		 * started already
6167 		 */
6168 		if (!es->s_error_count)
6169 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6170 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6171 		sbi->s_add_error_count = 0;
6172 	}
6173 	spin_unlock(&sbi->s_error_lock);
6174 
6175 	ext4_superblock_csum_set(sb);
6176 	unlock_buffer(sbh);
6177 }
6178 
6179 static int ext4_commit_super(struct super_block *sb)
6180 {
6181 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6182 
6183 	if (!sbh)
6184 		return -EINVAL;
6185 	if (block_device_ejected(sb))
6186 		return -ENODEV;
6187 
6188 	ext4_update_super(sb);
6189 
6190 	lock_buffer(sbh);
6191 	/* Buffer got discarded which means block device got invalidated */
6192 	if (!buffer_mapped(sbh)) {
6193 		unlock_buffer(sbh);
6194 		return -EIO;
6195 	}
6196 
6197 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6198 		/*
6199 		 * Oh, dear.  A previous attempt to write the
6200 		 * superblock failed.  This could happen because the
6201 		 * USB device was yanked out.  Or it could happen to
6202 		 * be a transient write error and maybe the block will
6203 		 * be remapped.  Nothing we can do but to retry the
6204 		 * write and hope for the best.
6205 		 */
6206 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6207 		       "superblock detected");
6208 		clear_buffer_write_io_error(sbh);
6209 		set_buffer_uptodate(sbh);
6210 	}
6211 	get_bh(sbh);
6212 	/* Clear potential dirty bit if it was journalled update */
6213 	clear_buffer_dirty(sbh);
6214 	sbh->b_end_io = end_buffer_write_sync;
6215 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6216 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6217 	wait_on_buffer(sbh);
6218 	if (buffer_write_io_error(sbh)) {
6219 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6220 		       "superblock");
6221 		clear_buffer_write_io_error(sbh);
6222 		set_buffer_uptodate(sbh);
6223 		return -EIO;
6224 	}
6225 	return 0;
6226 }
6227 
6228 /*
6229  * Have we just finished recovery?  If so, and if we are mounting (or
6230  * remounting) the filesystem readonly, then we will end up with a
6231  * consistent fs on disk.  Record that fact.
6232  */
6233 static int ext4_mark_recovery_complete(struct super_block *sb,
6234 				       struct ext4_super_block *es)
6235 {
6236 	int err;
6237 	journal_t *journal = EXT4_SB(sb)->s_journal;
6238 
6239 	if (!ext4_has_feature_journal(sb)) {
6240 		if (journal != NULL) {
6241 			ext4_error(sb, "Journal got removed while the fs was "
6242 				   "mounted!");
6243 			return -EFSCORRUPTED;
6244 		}
6245 		return 0;
6246 	}
6247 	jbd2_journal_lock_updates(journal);
6248 	err = jbd2_journal_flush(journal, 0);
6249 	if (err < 0)
6250 		goto out;
6251 
6252 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6253 	    ext4_has_feature_orphan_present(sb))) {
6254 		if (!ext4_orphan_file_empty(sb)) {
6255 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6256 			err = -EFSCORRUPTED;
6257 			goto out;
6258 		}
6259 		ext4_clear_feature_journal_needs_recovery(sb);
6260 		ext4_clear_feature_orphan_present(sb);
6261 		ext4_commit_super(sb);
6262 	}
6263 out:
6264 	jbd2_journal_unlock_updates(journal);
6265 	return err;
6266 }
6267 
6268 /*
6269  * If we are mounting (or read-write remounting) a filesystem whose journal
6270  * has recorded an error from a previous lifetime, move that error to the
6271  * main filesystem now.
6272  */
6273 static int ext4_clear_journal_err(struct super_block *sb,
6274 				   struct ext4_super_block *es)
6275 {
6276 	journal_t *journal;
6277 	int j_errno;
6278 	const char *errstr;
6279 
6280 	if (!ext4_has_feature_journal(sb)) {
6281 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6282 		return -EFSCORRUPTED;
6283 	}
6284 
6285 	journal = EXT4_SB(sb)->s_journal;
6286 
6287 	/*
6288 	 * Now check for any error status which may have been recorded in the
6289 	 * journal by a prior ext4_error() or ext4_abort()
6290 	 */
6291 
6292 	j_errno = jbd2_journal_errno(journal);
6293 	if (j_errno) {
6294 		char nbuf[16];
6295 
6296 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6297 		ext4_warning(sb, "Filesystem error recorded "
6298 			     "from previous mount: %s", errstr);
6299 
6300 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6301 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6302 		j_errno = ext4_commit_super(sb);
6303 		if (j_errno)
6304 			return j_errno;
6305 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6306 
6307 		jbd2_journal_clear_err(journal);
6308 		jbd2_journal_update_sb_errno(journal);
6309 	}
6310 	return 0;
6311 }
6312 
6313 /*
6314  * Force the running and committing transactions to commit,
6315  * and wait on the commit.
6316  */
6317 int ext4_force_commit(struct super_block *sb)
6318 {
6319 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6320 }
6321 
6322 static int ext4_sync_fs(struct super_block *sb, int wait)
6323 {
6324 	int ret = 0;
6325 	tid_t target;
6326 	bool needs_barrier = false;
6327 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6328 
6329 	if (unlikely(ext4_forced_shutdown(sb)))
6330 		return 0;
6331 
6332 	trace_ext4_sync_fs(sb, wait);
6333 	flush_workqueue(sbi->rsv_conversion_wq);
6334 	/*
6335 	 * Writeback quota in non-journalled quota case - journalled quota has
6336 	 * no dirty dquots
6337 	 */
6338 	dquot_writeback_dquots(sb, -1);
6339 	/*
6340 	 * Data writeback is possible w/o journal transaction, so barrier must
6341 	 * being sent at the end of the function. But we can skip it if
6342 	 * transaction_commit will do it for us.
6343 	 */
6344 	if (sbi->s_journal) {
6345 		target = jbd2_get_latest_transaction(sbi->s_journal);
6346 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6347 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6348 			needs_barrier = true;
6349 
6350 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6351 			if (wait)
6352 				ret = jbd2_log_wait_commit(sbi->s_journal,
6353 							   target);
6354 		}
6355 	} else if (wait && test_opt(sb, BARRIER))
6356 		needs_barrier = true;
6357 	if (needs_barrier) {
6358 		int err;
6359 		err = blkdev_issue_flush(sb->s_bdev);
6360 		if (!ret)
6361 			ret = err;
6362 	}
6363 
6364 	return ret;
6365 }
6366 
6367 /*
6368  * LVM calls this function before a (read-only) snapshot is created.  This
6369  * gives us a chance to flush the journal completely and mark the fs clean.
6370  *
6371  * Note that only this function cannot bring a filesystem to be in a clean
6372  * state independently. It relies on upper layer to stop all data & metadata
6373  * modifications.
6374  */
6375 static int ext4_freeze(struct super_block *sb)
6376 {
6377 	int error = 0;
6378 	journal_t *journal = EXT4_SB(sb)->s_journal;
6379 
6380 	if (journal) {
6381 		/* Now we set up the journal barrier. */
6382 		jbd2_journal_lock_updates(journal);
6383 
6384 		/*
6385 		 * Don't clear the needs_recovery flag if we failed to
6386 		 * flush the journal.
6387 		 */
6388 		error = jbd2_journal_flush(journal, 0);
6389 		if (error < 0)
6390 			goto out;
6391 
6392 		/* Journal blocked and flushed, clear needs_recovery flag. */
6393 		ext4_clear_feature_journal_needs_recovery(sb);
6394 		if (ext4_orphan_file_empty(sb))
6395 			ext4_clear_feature_orphan_present(sb);
6396 	}
6397 
6398 	error = ext4_commit_super(sb);
6399 out:
6400 	if (journal)
6401 		/* we rely on upper layer to stop further updates */
6402 		jbd2_journal_unlock_updates(journal);
6403 	return error;
6404 }
6405 
6406 /*
6407  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6408  * flag here, even though the filesystem is not technically dirty yet.
6409  */
6410 static int ext4_unfreeze(struct super_block *sb)
6411 {
6412 	if (ext4_forced_shutdown(sb))
6413 		return 0;
6414 
6415 	if (EXT4_SB(sb)->s_journal) {
6416 		/* Reset the needs_recovery flag before the fs is unlocked. */
6417 		ext4_set_feature_journal_needs_recovery(sb);
6418 		if (ext4_has_feature_orphan_file(sb))
6419 			ext4_set_feature_orphan_present(sb);
6420 	}
6421 
6422 	ext4_commit_super(sb);
6423 	return 0;
6424 }
6425 
6426 /*
6427  * Structure to save mount options for ext4_remount's benefit
6428  */
6429 struct ext4_mount_options {
6430 	unsigned long s_mount_opt;
6431 	unsigned long s_mount_opt2;
6432 	kuid_t s_resuid;
6433 	kgid_t s_resgid;
6434 	unsigned long s_commit_interval;
6435 	u32 s_min_batch_time, s_max_batch_time;
6436 #ifdef CONFIG_QUOTA
6437 	int s_jquota_fmt;
6438 	char *s_qf_names[EXT4_MAXQUOTAS];
6439 #endif
6440 };
6441 
6442 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6443 {
6444 	struct ext4_fs_context *ctx = fc->fs_private;
6445 	struct ext4_super_block *es;
6446 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6447 	unsigned long old_sb_flags;
6448 	struct ext4_mount_options old_opts;
6449 	ext4_group_t g;
6450 	int err = 0;
6451 	int alloc_ctx;
6452 #ifdef CONFIG_QUOTA
6453 	int enable_quota = 0;
6454 	int i, j;
6455 	char *to_free[EXT4_MAXQUOTAS];
6456 #endif
6457 
6458 
6459 	/* Store the original options */
6460 	old_sb_flags = sb->s_flags;
6461 	old_opts.s_mount_opt = sbi->s_mount_opt;
6462 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6463 	old_opts.s_resuid = sbi->s_resuid;
6464 	old_opts.s_resgid = sbi->s_resgid;
6465 	old_opts.s_commit_interval = sbi->s_commit_interval;
6466 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6467 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6468 #ifdef CONFIG_QUOTA
6469 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6470 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6471 		if (sbi->s_qf_names[i]) {
6472 			char *qf_name = get_qf_name(sb, sbi, i);
6473 
6474 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6475 			if (!old_opts.s_qf_names[i]) {
6476 				for (j = 0; j < i; j++)
6477 					kfree(old_opts.s_qf_names[j]);
6478 				return -ENOMEM;
6479 			}
6480 		} else
6481 			old_opts.s_qf_names[i] = NULL;
6482 #endif
6483 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6484 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6485 			ctx->journal_ioprio =
6486 				sbi->s_journal->j_task->io_context->ioprio;
6487 		else
6488 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6489 
6490 	}
6491 
6492 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6493 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6494 		ext4_msg(sb, KERN_WARNING,
6495 			 "stripe (%lu) is not aligned with cluster size (%u), "
6496 			 "stripe is disabled",
6497 			 ctx->s_stripe, sbi->s_cluster_ratio);
6498 		ctx->s_stripe = 0;
6499 	}
6500 
6501 	/*
6502 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6503 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6504 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6505 	 * here s_writepages_rwsem to avoid race between writepages ops and
6506 	 * remount.
6507 	 */
6508 	alloc_ctx = ext4_writepages_down_write(sb);
6509 	ext4_apply_options(fc, sb);
6510 	ext4_writepages_up_write(sb, alloc_ctx);
6511 
6512 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6513 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6514 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6515 			 "during remount not supported; ignoring");
6516 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6517 	}
6518 
6519 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6520 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6521 			ext4_msg(sb, KERN_ERR, "can't mount with "
6522 				 "both data=journal and delalloc");
6523 			err = -EINVAL;
6524 			goto restore_opts;
6525 		}
6526 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6527 			ext4_msg(sb, KERN_ERR, "can't mount with "
6528 				 "both data=journal and dioread_nolock");
6529 			err = -EINVAL;
6530 			goto restore_opts;
6531 		}
6532 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6533 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6534 			ext4_msg(sb, KERN_ERR, "can't mount with "
6535 				"journal_async_commit in data=ordered mode");
6536 			err = -EINVAL;
6537 			goto restore_opts;
6538 		}
6539 	}
6540 
6541 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6542 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6543 		err = -EINVAL;
6544 		goto restore_opts;
6545 	}
6546 
6547 	if (test_opt2(sb, ABORT))
6548 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6549 
6550 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6551 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6552 
6553 	es = sbi->s_es;
6554 
6555 	if (sbi->s_journal) {
6556 		ext4_init_journal_params(sb, sbi->s_journal);
6557 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6558 	}
6559 
6560 	/* Flush outstanding errors before changing fs state */
6561 	flush_work(&sbi->s_sb_upd_work);
6562 
6563 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6564 		if (ext4_forced_shutdown(sb)) {
6565 			err = -EROFS;
6566 			goto restore_opts;
6567 		}
6568 
6569 		if (fc->sb_flags & SB_RDONLY) {
6570 			err = sync_filesystem(sb);
6571 			if (err < 0)
6572 				goto restore_opts;
6573 			err = dquot_suspend(sb, -1);
6574 			if (err < 0)
6575 				goto restore_opts;
6576 
6577 			/*
6578 			 * First of all, the unconditional stuff we have to do
6579 			 * to disable replay of the journal when we next remount
6580 			 */
6581 			sb->s_flags |= SB_RDONLY;
6582 
6583 			/*
6584 			 * OK, test if we are remounting a valid rw partition
6585 			 * readonly, and if so set the rdonly flag and then
6586 			 * mark the partition as valid again.
6587 			 */
6588 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6589 			    (sbi->s_mount_state & EXT4_VALID_FS))
6590 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6591 
6592 			if (sbi->s_journal) {
6593 				/*
6594 				 * We let remount-ro finish even if marking fs
6595 				 * as clean failed...
6596 				 */
6597 				ext4_mark_recovery_complete(sb, es);
6598 			}
6599 		} else {
6600 			/* Make sure we can mount this feature set readwrite */
6601 			if (ext4_has_feature_readonly(sb) ||
6602 			    !ext4_feature_set_ok(sb, 0)) {
6603 				err = -EROFS;
6604 				goto restore_opts;
6605 			}
6606 			/*
6607 			 * Make sure the group descriptor checksums
6608 			 * are sane.  If they aren't, refuse to remount r/w.
6609 			 */
6610 			for (g = 0; g < sbi->s_groups_count; g++) {
6611 				struct ext4_group_desc *gdp =
6612 					ext4_get_group_desc(sb, g, NULL);
6613 
6614 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6615 					ext4_msg(sb, KERN_ERR,
6616 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6617 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6618 					       le16_to_cpu(gdp->bg_checksum));
6619 					err = -EFSBADCRC;
6620 					goto restore_opts;
6621 				}
6622 			}
6623 
6624 			/*
6625 			 * If we have an unprocessed orphan list hanging
6626 			 * around from a previously readonly bdev mount,
6627 			 * require a full umount/remount for now.
6628 			 */
6629 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6630 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6631 				       "remount RDWR because of unprocessed "
6632 				       "orphan inode list.  Please "
6633 				       "umount/remount instead");
6634 				err = -EINVAL;
6635 				goto restore_opts;
6636 			}
6637 
6638 			/*
6639 			 * Mounting a RDONLY partition read-write, so reread
6640 			 * and store the current valid flag.  (It may have
6641 			 * been changed by e2fsck since we originally mounted
6642 			 * the partition.)
6643 			 */
6644 			if (sbi->s_journal) {
6645 				err = ext4_clear_journal_err(sb, es);
6646 				if (err)
6647 					goto restore_opts;
6648 			}
6649 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6650 					      ~EXT4_FC_REPLAY);
6651 
6652 			err = ext4_setup_super(sb, es, 0);
6653 			if (err)
6654 				goto restore_opts;
6655 
6656 			sb->s_flags &= ~SB_RDONLY;
6657 			if (ext4_has_feature_mmp(sb)) {
6658 				err = ext4_multi_mount_protect(sb,
6659 						le64_to_cpu(es->s_mmp_block));
6660 				if (err)
6661 					goto restore_opts;
6662 			}
6663 #ifdef CONFIG_QUOTA
6664 			enable_quota = 1;
6665 #endif
6666 		}
6667 	}
6668 
6669 	/*
6670 	 * Handle creation of system zone data early because it can fail.
6671 	 * Releasing of existing data is done when we are sure remount will
6672 	 * succeed.
6673 	 */
6674 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6675 		err = ext4_setup_system_zone(sb);
6676 		if (err)
6677 			goto restore_opts;
6678 	}
6679 
6680 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6681 		err = ext4_commit_super(sb);
6682 		if (err)
6683 			goto restore_opts;
6684 	}
6685 
6686 #ifdef CONFIG_QUOTA
6687 	if (enable_quota) {
6688 		if (sb_any_quota_suspended(sb))
6689 			dquot_resume(sb, -1);
6690 		else if (ext4_has_feature_quota(sb)) {
6691 			err = ext4_enable_quotas(sb);
6692 			if (err)
6693 				goto restore_opts;
6694 		}
6695 	}
6696 	/* Release old quota file names */
6697 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6698 		kfree(old_opts.s_qf_names[i]);
6699 #endif
6700 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6701 		ext4_release_system_zone(sb);
6702 
6703 	/*
6704 	 * Reinitialize lazy itable initialization thread based on
6705 	 * current settings
6706 	 */
6707 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6708 		ext4_unregister_li_request(sb);
6709 	else {
6710 		ext4_group_t first_not_zeroed;
6711 		first_not_zeroed = ext4_has_uninit_itable(sb);
6712 		ext4_register_li_request(sb, first_not_zeroed);
6713 	}
6714 
6715 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6716 		ext4_stop_mmpd(sbi);
6717 
6718 	return 0;
6719 
6720 restore_opts:
6721 	/*
6722 	 * If there was a failing r/w to ro transition, we may need to
6723 	 * re-enable quota
6724 	 */
6725 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6726 	    sb_any_quota_suspended(sb))
6727 		dquot_resume(sb, -1);
6728 
6729 	alloc_ctx = ext4_writepages_down_write(sb);
6730 	sb->s_flags = old_sb_flags;
6731 	sbi->s_mount_opt = old_opts.s_mount_opt;
6732 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6733 	sbi->s_resuid = old_opts.s_resuid;
6734 	sbi->s_resgid = old_opts.s_resgid;
6735 	sbi->s_commit_interval = old_opts.s_commit_interval;
6736 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6737 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6738 	ext4_writepages_up_write(sb, alloc_ctx);
6739 
6740 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6741 		ext4_release_system_zone(sb);
6742 #ifdef CONFIG_QUOTA
6743 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6744 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6745 		to_free[i] = get_qf_name(sb, sbi, i);
6746 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6747 	}
6748 	synchronize_rcu();
6749 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6750 		kfree(to_free[i]);
6751 #endif
6752 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6753 		ext4_stop_mmpd(sbi);
6754 	return err;
6755 }
6756 
6757 static int ext4_reconfigure(struct fs_context *fc)
6758 {
6759 	struct super_block *sb = fc->root->d_sb;
6760 	int ret;
6761 
6762 	fc->s_fs_info = EXT4_SB(sb);
6763 
6764 	ret = ext4_check_opt_consistency(fc, sb);
6765 	if (ret < 0)
6766 		return ret;
6767 
6768 	ret = __ext4_remount(fc, sb);
6769 	if (ret < 0)
6770 		return ret;
6771 
6772 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6773 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6774 		 ext4_quota_mode(sb));
6775 
6776 	return 0;
6777 }
6778 
6779 #ifdef CONFIG_QUOTA
6780 static int ext4_statfs_project(struct super_block *sb,
6781 			       kprojid_t projid, struct kstatfs *buf)
6782 {
6783 	struct kqid qid;
6784 	struct dquot *dquot;
6785 	u64 limit;
6786 	u64 curblock;
6787 
6788 	qid = make_kqid_projid(projid);
6789 	dquot = dqget(sb, qid);
6790 	if (IS_ERR(dquot))
6791 		return PTR_ERR(dquot);
6792 	spin_lock(&dquot->dq_dqb_lock);
6793 
6794 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6795 			     dquot->dq_dqb.dqb_bhardlimit);
6796 	limit >>= sb->s_blocksize_bits;
6797 
6798 	if (limit && buf->f_blocks > limit) {
6799 		curblock = (dquot->dq_dqb.dqb_curspace +
6800 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6801 		buf->f_blocks = limit;
6802 		buf->f_bfree = buf->f_bavail =
6803 			(buf->f_blocks > curblock) ?
6804 			 (buf->f_blocks - curblock) : 0;
6805 	}
6806 
6807 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6808 			     dquot->dq_dqb.dqb_ihardlimit);
6809 	if (limit && buf->f_files > limit) {
6810 		buf->f_files = limit;
6811 		buf->f_ffree =
6812 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6813 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6814 	}
6815 
6816 	spin_unlock(&dquot->dq_dqb_lock);
6817 	dqput(dquot);
6818 	return 0;
6819 }
6820 #endif
6821 
6822 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6823 {
6824 	struct super_block *sb = dentry->d_sb;
6825 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6826 	struct ext4_super_block *es = sbi->s_es;
6827 	ext4_fsblk_t overhead = 0, resv_blocks;
6828 	s64 bfree;
6829 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6830 
6831 	if (!test_opt(sb, MINIX_DF))
6832 		overhead = sbi->s_overhead;
6833 
6834 	buf->f_type = EXT4_SUPER_MAGIC;
6835 	buf->f_bsize = sb->s_blocksize;
6836 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6837 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6838 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6839 	/* prevent underflow in case that few free space is available */
6840 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6841 	buf->f_bavail = buf->f_bfree -
6842 			(ext4_r_blocks_count(es) + resv_blocks);
6843 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6844 		buf->f_bavail = 0;
6845 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6846 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6847 	buf->f_namelen = EXT4_NAME_LEN;
6848 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6849 
6850 #ifdef CONFIG_QUOTA
6851 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6852 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6853 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6854 #endif
6855 	return 0;
6856 }
6857 
6858 
6859 #ifdef CONFIG_QUOTA
6860 
6861 /*
6862  * Helper functions so that transaction is started before we acquire dqio_sem
6863  * to keep correct lock ordering of transaction > dqio_sem
6864  */
6865 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6866 {
6867 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6868 }
6869 
6870 static int ext4_write_dquot(struct dquot *dquot)
6871 {
6872 	int ret, err;
6873 	handle_t *handle;
6874 	struct inode *inode;
6875 
6876 	inode = dquot_to_inode(dquot);
6877 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6878 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6879 	if (IS_ERR(handle))
6880 		return PTR_ERR(handle);
6881 	ret = dquot_commit(dquot);
6882 	if (ret < 0)
6883 		ext4_error_err(dquot->dq_sb, -ret,
6884 			       "Failed to commit dquot type %d",
6885 			       dquot->dq_id.type);
6886 	err = ext4_journal_stop(handle);
6887 	if (!ret)
6888 		ret = err;
6889 	return ret;
6890 }
6891 
6892 static int ext4_acquire_dquot(struct dquot *dquot)
6893 {
6894 	int ret, err;
6895 	handle_t *handle;
6896 
6897 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6898 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6899 	if (IS_ERR(handle))
6900 		return PTR_ERR(handle);
6901 	ret = dquot_acquire(dquot);
6902 	if (ret < 0)
6903 		ext4_error_err(dquot->dq_sb, -ret,
6904 			      "Failed to acquire dquot type %d",
6905 			      dquot->dq_id.type);
6906 	err = ext4_journal_stop(handle);
6907 	if (!ret)
6908 		ret = err;
6909 	return ret;
6910 }
6911 
6912 static int ext4_release_dquot(struct dquot *dquot)
6913 {
6914 	int ret, err;
6915 	handle_t *handle;
6916 
6917 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6918 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6919 	if (IS_ERR(handle)) {
6920 		/* Release dquot anyway to avoid endless cycle in dqput() */
6921 		dquot_release(dquot);
6922 		return PTR_ERR(handle);
6923 	}
6924 	ret = dquot_release(dquot);
6925 	if (ret < 0)
6926 		ext4_error_err(dquot->dq_sb, -ret,
6927 			       "Failed to release dquot type %d",
6928 			       dquot->dq_id.type);
6929 	err = ext4_journal_stop(handle);
6930 	if (!ret)
6931 		ret = err;
6932 	return ret;
6933 }
6934 
6935 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6936 {
6937 	struct super_block *sb = dquot->dq_sb;
6938 
6939 	if (ext4_is_quota_journalled(sb)) {
6940 		dquot_mark_dquot_dirty(dquot);
6941 		return ext4_write_dquot(dquot);
6942 	} else {
6943 		return dquot_mark_dquot_dirty(dquot);
6944 	}
6945 }
6946 
6947 static int ext4_write_info(struct super_block *sb, int type)
6948 {
6949 	int ret, err;
6950 	handle_t *handle;
6951 
6952 	/* Data block + inode block */
6953 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6954 	if (IS_ERR(handle))
6955 		return PTR_ERR(handle);
6956 	ret = dquot_commit_info(sb, type);
6957 	err = ext4_journal_stop(handle);
6958 	if (!ret)
6959 		ret = err;
6960 	return ret;
6961 }
6962 
6963 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6964 {
6965 	struct ext4_inode_info *ei = EXT4_I(inode);
6966 
6967 	/* The first argument of lockdep_set_subclass has to be
6968 	 * *exactly* the same as the argument to init_rwsem() --- in
6969 	 * this case, in init_once() --- or lockdep gets unhappy
6970 	 * because the name of the lock is set using the
6971 	 * stringification of the argument to init_rwsem().
6972 	 */
6973 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6974 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6975 }
6976 
6977 /*
6978  * Standard function to be called on quota_on
6979  */
6980 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6981 			 const struct path *path)
6982 {
6983 	int err;
6984 
6985 	if (!test_opt(sb, QUOTA))
6986 		return -EINVAL;
6987 
6988 	/* Quotafile not on the same filesystem? */
6989 	if (path->dentry->d_sb != sb)
6990 		return -EXDEV;
6991 
6992 	/* Quota already enabled for this file? */
6993 	if (IS_NOQUOTA(d_inode(path->dentry)))
6994 		return -EBUSY;
6995 
6996 	/* Journaling quota? */
6997 	if (EXT4_SB(sb)->s_qf_names[type]) {
6998 		/* Quotafile not in fs root? */
6999 		if (path->dentry->d_parent != sb->s_root)
7000 			ext4_msg(sb, KERN_WARNING,
7001 				"Quota file not on filesystem root. "
7002 				"Journaled quota will not work");
7003 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7004 	} else {
7005 		/*
7006 		 * Clear the flag just in case mount options changed since
7007 		 * last time.
7008 		 */
7009 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7010 	}
7011 
7012 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7013 	err = dquot_quota_on(sb, type, format_id, path);
7014 	if (!err) {
7015 		struct inode *inode = d_inode(path->dentry);
7016 		handle_t *handle;
7017 
7018 		/*
7019 		 * Set inode flags to prevent userspace from messing with quota
7020 		 * files. If this fails, we return success anyway since quotas
7021 		 * are already enabled and this is not a hard failure.
7022 		 */
7023 		inode_lock(inode);
7024 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7025 		if (IS_ERR(handle))
7026 			goto unlock_inode;
7027 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7028 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7029 				S_NOATIME | S_IMMUTABLE);
7030 		err = ext4_mark_inode_dirty(handle, inode);
7031 		ext4_journal_stop(handle);
7032 	unlock_inode:
7033 		inode_unlock(inode);
7034 		if (err)
7035 			dquot_quota_off(sb, type);
7036 	}
7037 	if (err)
7038 		lockdep_set_quota_inode(path->dentry->d_inode,
7039 					     I_DATA_SEM_NORMAL);
7040 	return err;
7041 }
7042 
7043 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7044 {
7045 	switch (type) {
7046 	case USRQUOTA:
7047 		return qf_inum == EXT4_USR_QUOTA_INO;
7048 	case GRPQUOTA:
7049 		return qf_inum == EXT4_GRP_QUOTA_INO;
7050 	case PRJQUOTA:
7051 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7052 	default:
7053 		BUG();
7054 	}
7055 }
7056 
7057 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7058 			     unsigned int flags)
7059 {
7060 	int err;
7061 	struct inode *qf_inode;
7062 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7063 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7064 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7065 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7066 	};
7067 
7068 	BUG_ON(!ext4_has_feature_quota(sb));
7069 
7070 	if (!qf_inums[type])
7071 		return -EPERM;
7072 
7073 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7074 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7075 				qf_inums[type], type);
7076 		return -EUCLEAN;
7077 	}
7078 
7079 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7080 	if (IS_ERR(qf_inode)) {
7081 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7082 				qf_inums[type], type);
7083 		return PTR_ERR(qf_inode);
7084 	}
7085 
7086 	/* Don't account quota for quota files to avoid recursion */
7087 	qf_inode->i_flags |= S_NOQUOTA;
7088 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7089 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7090 	if (err)
7091 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7092 	iput(qf_inode);
7093 
7094 	return err;
7095 }
7096 
7097 /* Enable usage tracking for all quota types. */
7098 int ext4_enable_quotas(struct super_block *sb)
7099 {
7100 	int type, err = 0;
7101 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7102 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7103 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7104 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7105 	};
7106 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7107 		test_opt(sb, USRQUOTA),
7108 		test_opt(sb, GRPQUOTA),
7109 		test_opt(sb, PRJQUOTA),
7110 	};
7111 
7112 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7113 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7114 		if (qf_inums[type]) {
7115 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7116 				DQUOT_USAGE_ENABLED |
7117 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7118 			if (err) {
7119 				ext4_warning(sb,
7120 					"Failed to enable quota tracking "
7121 					"(type=%d, err=%d, ino=%lu). "
7122 					"Please run e2fsck to fix.", type,
7123 					err, qf_inums[type]);
7124 
7125 				ext4_quotas_off(sb, type);
7126 				return err;
7127 			}
7128 		}
7129 	}
7130 	return 0;
7131 }
7132 
7133 static int ext4_quota_off(struct super_block *sb, int type)
7134 {
7135 	struct inode *inode = sb_dqopt(sb)->files[type];
7136 	handle_t *handle;
7137 	int err;
7138 
7139 	/* Force all delayed allocation blocks to be allocated.
7140 	 * Caller already holds s_umount sem */
7141 	if (test_opt(sb, DELALLOC))
7142 		sync_filesystem(sb);
7143 
7144 	if (!inode || !igrab(inode))
7145 		goto out;
7146 
7147 	err = dquot_quota_off(sb, type);
7148 	if (err || ext4_has_feature_quota(sb))
7149 		goto out_put;
7150 	/*
7151 	 * When the filesystem was remounted read-only first, we cannot cleanup
7152 	 * inode flags here. Bad luck but people should be using QUOTA feature
7153 	 * these days anyway.
7154 	 */
7155 	if (sb_rdonly(sb))
7156 		goto out_put;
7157 
7158 	inode_lock(inode);
7159 	/*
7160 	 * Update modification times of quota files when userspace can
7161 	 * start looking at them. If we fail, we return success anyway since
7162 	 * this is not a hard failure and quotas are already disabled.
7163 	 */
7164 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7165 	if (IS_ERR(handle)) {
7166 		err = PTR_ERR(handle);
7167 		goto out_unlock;
7168 	}
7169 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7170 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7171 	inode->i_mtime = inode_set_ctime_current(inode);
7172 	err = ext4_mark_inode_dirty(handle, inode);
7173 	ext4_journal_stop(handle);
7174 out_unlock:
7175 	inode_unlock(inode);
7176 out_put:
7177 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7178 	iput(inode);
7179 	return err;
7180 out:
7181 	return dquot_quota_off(sb, type);
7182 }
7183 
7184 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7185  * acquiring the locks... As quota files are never truncated and quota code
7186  * itself serializes the operations (and no one else should touch the files)
7187  * we don't have to be afraid of races */
7188 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7189 			       size_t len, loff_t off)
7190 {
7191 	struct inode *inode = sb_dqopt(sb)->files[type];
7192 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7193 	int offset = off & (sb->s_blocksize - 1);
7194 	int tocopy;
7195 	size_t toread;
7196 	struct buffer_head *bh;
7197 	loff_t i_size = i_size_read(inode);
7198 
7199 	if (off > i_size)
7200 		return 0;
7201 	if (off+len > i_size)
7202 		len = i_size-off;
7203 	toread = len;
7204 	while (toread > 0) {
7205 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7206 		bh = ext4_bread(NULL, inode, blk, 0);
7207 		if (IS_ERR(bh))
7208 			return PTR_ERR(bh);
7209 		if (!bh)	/* A hole? */
7210 			memset(data, 0, tocopy);
7211 		else
7212 			memcpy(data, bh->b_data+offset, tocopy);
7213 		brelse(bh);
7214 		offset = 0;
7215 		toread -= tocopy;
7216 		data += tocopy;
7217 		blk++;
7218 	}
7219 	return len;
7220 }
7221 
7222 /* Write to quotafile (we know the transaction is already started and has
7223  * enough credits) */
7224 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7225 				const char *data, size_t len, loff_t off)
7226 {
7227 	struct inode *inode = sb_dqopt(sb)->files[type];
7228 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7229 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7230 	int retries = 0;
7231 	struct buffer_head *bh;
7232 	handle_t *handle = journal_current_handle();
7233 
7234 	if (!handle) {
7235 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7236 			" cancelled because transaction is not started",
7237 			(unsigned long long)off, (unsigned long long)len);
7238 		return -EIO;
7239 	}
7240 	/*
7241 	 * Since we account only one data block in transaction credits,
7242 	 * then it is impossible to cross a block boundary.
7243 	 */
7244 	if (sb->s_blocksize - offset < len) {
7245 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7246 			" cancelled because not block aligned",
7247 			(unsigned long long)off, (unsigned long long)len);
7248 		return -EIO;
7249 	}
7250 
7251 	do {
7252 		bh = ext4_bread(handle, inode, blk,
7253 				EXT4_GET_BLOCKS_CREATE |
7254 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7255 	} while (PTR_ERR(bh) == -ENOSPC &&
7256 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7257 	if (IS_ERR(bh))
7258 		return PTR_ERR(bh);
7259 	if (!bh)
7260 		goto out;
7261 	BUFFER_TRACE(bh, "get write access");
7262 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7263 	if (err) {
7264 		brelse(bh);
7265 		return err;
7266 	}
7267 	lock_buffer(bh);
7268 	memcpy(bh->b_data+offset, data, len);
7269 	flush_dcache_page(bh->b_page);
7270 	unlock_buffer(bh);
7271 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7272 	brelse(bh);
7273 out:
7274 	if (inode->i_size < off + len) {
7275 		i_size_write(inode, off + len);
7276 		EXT4_I(inode)->i_disksize = inode->i_size;
7277 		err2 = ext4_mark_inode_dirty(handle, inode);
7278 		if (unlikely(err2 && !err))
7279 			err = err2;
7280 	}
7281 	return err ? err : len;
7282 }
7283 #endif
7284 
7285 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7286 static inline void register_as_ext2(void)
7287 {
7288 	int err = register_filesystem(&ext2_fs_type);
7289 	if (err)
7290 		printk(KERN_WARNING
7291 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7292 }
7293 
7294 static inline void unregister_as_ext2(void)
7295 {
7296 	unregister_filesystem(&ext2_fs_type);
7297 }
7298 
7299 static inline int ext2_feature_set_ok(struct super_block *sb)
7300 {
7301 	if (ext4_has_unknown_ext2_incompat_features(sb))
7302 		return 0;
7303 	if (sb_rdonly(sb))
7304 		return 1;
7305 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7306 		return 0;
7307 	return 1;
7308 }
7309 #else
7310 static inline void register_as_ext2(void) { }
7311 static inline void unregister_as_ext2(void) { }
7312 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7313 #endif
7314 
7315 static inline void register_as_ext3(void)
7316 {
7317 	int err = register_filesystem(&ext3_fs_type);
7318 	if (err)
7319 		printk(KERN_WARNING
7320 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7321 }
7322 
7323 static inline void unregister_as_ext3(void)
7324 {
7325 	unregister_filesystem(&ext3_fs_type);
7326 }
7327 
7328 static inline int ext3_feature_set_ok(struct super_block *sb)
7329 {
7330 	if (ext4_has_unknown_ext3_incompat_features(sb))
7331 		return 0;
7332 	if (!ext4_has_feature_journal(sb))
7333 		return 0;
7334 	if (sb_rdonly(sb))
7335 		return 1;
7336 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7337 		return 0;
7338 	return 1;
7339 }
7340 
7341 static void ext4_kill_sb(struct super_block *sb)
7342 {
7343 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7344 	struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7345 
7346 	kill_block_super(sb);
7347 
7348 	if (journal_bdev)
7349 		blkdev_put(journal_bdev, sb);
7350 }
7351 
7352 static struct file_system_type ext4_fs_type = {
7353 	.owner			= THIS_MODULE,
7354 	.name			= "ext4",
7355 	.init_fs_context	= ext4_init_fs_context,
7356 	.parameters		= ext4_param_specs,
7357 	.kill_sb		= ext4_kill_sb,
7358 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7359 };
7360 MODULE_ALIAS_FS("ext4");
7361 
7362 /* Shared across all ext4 file systems */
7363 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7364 
7365 static int __init ext4_init_fs(void)
7366 {
7367 	int i, err;
7368 
7369 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7370 	ext4_li_info = NULL;
7371 
7372 	/* Build-time check for flags consistency */
7373 	ext4_check_flag_values();
7374 
7375 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7376 		init_waitqueue_head(&ext4__ioend_wq[i]);
7377 
7378 	err = ext4_init_es();
7379 	if (err)
7380 		return err;
7381 
7382 	err = ext4_init_pending();
7383 	if (err)
7384 		goto out7;
7385 
7386 	err = ext4_init_post_read_processing();
7387 	if (err)
7388 		goto out6;
7389 
7390 	err = ext4_init_pageio();
7391 	if (err)
7392 		goto out5;
7393 
7394 	err = ext4_init_system_zone();
7395 	if (err)
7396 		goto out4;
7397 
7398 	err = ext4_init_sysfs();
7399 	if (err)
7400 		goto out3;
7401 
7402 	err = ext4_init_mballoc();
7403 	if (err)
7404 		goto out2;
7405 	err = init_inodecache();
7406 	if (err)
7407 		goto out1;
7408 
7409 	err = ext4_fc_init_dentry_cache();
7410 	if (err)
7411 		goto out05;
7412 
7413 	register_as_ext3();
7414 	register_as_ext2();
7415 	err = register_filesystem(&ext4_fs_type);
7416 	if (err)
7417 		goto out;
7418 
7419 	return 0;
7420 out:
7421 	unregister_as_ext2();
7422 	unregister_as_ext3();
7423 	ext4_fc_destroy_dentry_cache();
7424 out05:
7425 	destroy_inodecache();
7426 out1:
7427 	ext4_exit_mballoc();
7428 out2:
7429 	ext4_exit_sysfs();
7430 out3:
7431 	ext4_exit_system_zone();
7432 out4:
7433 	ext4_exit_pageio();
7434 out5:
7435 	ext4_exit_post_read_processing();
7436 out6:
7437 	ext4_exit_pending();
7438 out7:
7439 	ext4_exit_es();
7440 
7441 	return err;
7442 }
7443 
7444 static void __exit ext4_exit_fs(void)
7445 {
7446 	ext4_destroy_lazyinit_thread();
7447 	unregister_as_ext2();
7448 	unregister_as_ext3();
7449 	unregister_filesystem(&ext4_fs_type);
7450 	ext4_fc_destroy_dentry_cache();
7451 	destroy_inodecache();
7452 	ext4_exit_mballoc();
7453 	ext4_exit_sysfs();
7454 	ext4_exit_system_zone();
7455 	ext4_exit_pageio();
7456 	ext4_exit_post_read_processing();
7457 	ext4_exit_es();
7458 	ext4_exit_pending();
7459 }
7460 
7461 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7462 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7463 MODULE_LICENSE("GPL");
7464 MODULE_SOFTDEP("pre: crc32c");
7465 module_init(ext4_init_fs)
7466 module_exit(ext4_exit_fs)
7467