1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/marker.h> 41 #include <linux/log2.h> 42 #include <linux/crc16.h> 43 #include <asm/uaccess.h> 44 45 #include "ext4.h" 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 50 static int default_mb_history_length = 1000; 51 52 module_param_named(default_mb_history_length, default_mb_history_length, 53 int, 0644); 54 MODULE_PARM_DESC(default_mb_history_length, 55 "Default number of entries saved for mb_history"); 56 57 struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_commit_super(struct super_block *sb, int sync); 63 static void ext4_mark_recovery_complete(struct super_block *sb, 64 struct ext4_super_block *es); 65 static void ext4_clear_journal_err(struct super_block *sb, 66 struct ext4_super_block *es); 67 static int ext4_sync_fs(struct super_block *sb, int wait); 68 static const char *ext4_decode_error(struct super_block *sb, int errno, 69 char nbuf[16]); 70 static int ext4_remount(struct super_block *sb, int *flags, char *data); 71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 72 static int ext4_unfreeze(struct super_block *sb); 73 static void ext4_write_super(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 76 77 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 78 struct ext4_group_desc *bg) 79 { 80 return le32_to_cpu(bg->bg_block_bitmap_lo) | 81 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 82 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 83 } 84 85 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 86 struct ext4_group_desc *bg) 87 { 88 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 89 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 90 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 91 } 92 93 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 94 struct ext4_group_desc *bg) 95 { 96 return le32_to_cpu(bg->bg_inode_table_lo) | 97 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 98 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 99 } 100 101 __u32 ext4_free_blks_count(struct super_block *sb, 102 struct ext4_group_desc *bg) 103 { 104 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 105 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 106 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 107 } 108 109 __u32 ext4_free_inodes_count(struct super_block *sb, 110 struct ext4_group_desc *bg) 111 { 112 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 113 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 114 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 115 } 116 117 __u32 ext4_used_dirs_count(struct super_block *sb, 118 struct ext4_group_desc *bg) 119 { 120 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 121 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 122 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 123 } 124 125 __u32 ext4_itable_unused_count(struct super_block *sb, 126 struct ext4_group_desc *bg) 127 { 128 return le16_to_cpu(bg->bg_itable_unused_lo) | 129 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 130 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 131 } 132 133 void ext4_block_bitmap_set(struct super_block *sb, 134 struct ext4_group_desc *bg, ext4_fsblk_t blk) 135 { 136 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 137 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 138 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 139 } 140 141 void ext4_inode_bitmap_set(struct super_block *sb, 142 struct ext4_group_desc *bg, ext4_fsblk_t blk) 143 { 144 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 145 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 146 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 147 } 148 149 void ext4_inode_table_set(struct super_block *sb, 150 struct ext4_group_desc *bg, ext4_fsblk_t blk) 151 { 152 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 153 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 154 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 155 } 156 157 void ext4_free_blks_set(struct super_block *sb, 158 struct ext4_group_desc *bg, __u32 count) 159 { 160 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 161 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 162 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 163 } 164 165 void ext4_free_inodes_set(struct super_block *sb, 166 struct ext4_group_desc *bg, __u32 count) 167 { 168 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 169 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 170 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 171 } 172 173 void ext4_used_dirs_set(struct super_block *sb, 174 struct ext4_group_desc *bg, __u32 count) 175 { 176 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 177 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 178 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 179 } 180 181 void ext4_itable_unused_set(struct super_block *sb, 182 struct ext4_group_desc *bg, __u32 count) 183 { 184 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 185 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 186 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 187 } 188 189 /* 190 * Wrappers for jbd2_journal_start/end. 191 * 192 * The only special thing we need to do here is to make sure that all 193 * journal_end calls result in the superblock being marked dirty, so 194 * that sync() will call the filesystem's write_super callback if 195 * appropriate. 196 */ 197 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 198 { 199 journal_t *journal; 200 201 if (sb->s_flags & MS_RDONLY) 202 return ERR_PTR(-EROFS); 203 204 /* Special case here: if the journal has aborted behind our 205 * backs (eg. EIO in the commit thread), then we still need to 206 * take the FS itself readonly cleanly. */ 207 journal = EXT4_SB(sb)->s_journal; 208 if (journal) { 209 if (is_journal_aborted(journal)) { 210 ext4_abort(sb, __func__, "Detected aborted journal"); 211 return ERR_PTR(-EROFS); 212 } 213 return jbd2_journal_start(journal, nblocks); 214 } 215 /* 216 * We're not journaling, return the appropriate indication. 217 */ 218 current->journal_info = EXT4_NOJOURNAL_HANDLE; 219 return current->journal_info; 220 } 221 222 /* 223 * The only special thing we need to do here is to make sure that all 224 * jbd2_journal_stop calls result in the superblock being marked dirty, so 225 * that sync() will call the filesystem's write_super callback if 226 * appropriate. 227 */ 228 int __ext4_journal_stop(const char *where, handle_t *handle) 229 { 230 struct super_block *sb; 231 int err; 232 int rc; 233 234 if (!ext4_handle_valid(handle)) { 235 /* 236 * Do this here since we don't call jbd2_journal_stop() in 237 * no-journal mode. 238 */ 239 current->journal_info = NULL; 240 return 0; 241 } 242 sb = handle->h_transaction->t_journal->j_private; 243 err = handle->h_err; 244 rc = jbd2_journal_stop(handle); 245 246 if (!err) 247 err = rc; 248 if (err) 249 __ext4_std_error(sb, where, err); 250 return err; 251 } 252 253 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 254 struct buffer_head *bh, handle_t *handle, int err) 255 { 256 char nbuf[16]; 257 const char *errstr = ext4_decode_error(NULL, err, nbuf); 258 259 BUG_ON(!ext4_handle_valid(handle)); 260 261 if (bh) 262 BUFFER_TRACE(bh, "abort"); 263 264 if (!handle->h_err) 265 handle->h_err = err; 266 267 if (is_handle_aborted(handle)) 268 return; 269 270 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 271 caller, errstr, err_fn); 272 273 jbd2_journal_abort_handle(handle); 274 } 275 276 /* Deal with the reporting of failure conditions on a filesystem such as 277 * inconsistencies detected or read IO failures. 278 * 279 * On ext2, we can store the error state of the filesystem in the 280 * superblock. That is not possible on ext4, because we may have other 281 * write ordering constraints on the superblock which prevent us from 282 * writing it out straight away; and given that the journal is about to 283 * be aborted, we can't rely on the current, or future, transactions to 284 * write out the superblock safely. 285 * 286 * We'll just use the jbd2_journal_abort() error code to record an error in 287 * the journal instead. On recovery, the journal will compain about 288 * that error until we've noted it down and cleared it. 289 */ 290 291 static void ext4_handle_error(struct super_block *sb) 292 { 293 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 294 295 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 296 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 297 298 if (sb->s_flags & MS_RDONLY) 299 return; 300 301 if (!test_opt(sb, ERRORS_CONT)) { 302 journal_t *journal = EXT4_SB(sb)->s_journal; 303 304 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 305 if (journal) 306 jbd2_journal_abort(journal, -EIO); 307 } 308 if (test_opt(sb, ERRORS_RO)) { 309 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 310 sb->s_flags |= MS_RDONLY; 311 } 312 ext4_commit_super(sb, 1); 313 if (test_opt(sb, ERRORS_PANIC)) 314 panic("EXT4-fs (device %s): panic forced after error\n", 315 sb->s_id); 316 } 317 318 void ext4_error(struct super_block *sb, const char *function, 319 const char *fmt, ...) 320 { 321 va_list args; 322 323 va_start(args, fmt); 324 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 325 vprintk(fmt, args); 326 printk("\n"); 327 va_end(args); 328 329 ext4_handle_error(sb); 330 } 331 332 static const char *ext4_decode_error(struct super_block *sb, int errno, 333 char nbuf[16]) 334 { 335 char *errstr = NULL; 336 337 switch (errno) { 338 case -EIO: 339 errstr = "IO failure"; 340 break; 341 case -ENOMEM: 342 errstr = "Out of memory"; 343 break; 344 case -EROFS: 345 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT) 346 errstr = "Journal has aborted"; 347 else 348 errstr = "Readonly filesystem"; 349 break; 350 default: 351 /* If the caller passed in an extra buffer for unknown 352 * errors, textualise them now. Else we just return 353 * NULL. */ 354 if (nbuf) { 355 /* Check for truncated error codes... */ 356 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 357 errstr = nbuf; 358 } 359 break; 360 } 361 362 return errstr; 363 } 364 365 /* __ext4_std_error decodes expected errors from journaling functions 366 * automatically and invokes the appropriate error response. */ 367 368 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 369 { 370 char nbuf[16]; 371 const char *errstr; 372 373 /* Special case: if the error is EROFS, and we're not already 374 * inside a transaction, then there's really no point in logging 375 * an error. */ 376 if (errno == -EROFS && journal_current_handle() == NULL && 377 (sb->s_flags & MS_RDONLY)) 378 return; 379 380 errstr = ext4_decode_error(sb, errno, nbuf); 381 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 382 sb->s_id, function, errstr); 383 384 ext4_handle_error(sb); 385 } 386 387 /* 388 * ext4_abort is a much stronger failure handler than ext4_error. The 389 * abort function may be used to deal with unrecoverable failures such 390 * as journal IO errors or ENOMEM at a critical moment in log management. 391 * 392 * We unconditionally force the filesystem into an ABORT|READONLY state, 393 * unless the error response on the fs has been set to panic in which 394 * case we take the easy way out and panic immediately. 395 */ 396 397 void ext4_abort(struct super_block *sb, const char *function, 398 const char *fmt, ...) 399 { 400 va_list args; 401 402 va_start(args, fmt); 403 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 404 vprintk(fmt, args); 405 printk("\n"); 406 va_end(args); 407 408 if (test_opt(sb, ERRORS_PANIC)) 409 panic("EXT4-fs panic from previous error\n"); 410 411 if (sb->s_flags & MS_RDONLY) 412 return; 413 414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 415 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 416 sb->s_flags |= MS_RDONLY; 417 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT; 418 if (EXT4_SB(sb)->s_journal) 419 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 420 } 421 422 void ext4_msg (struct super_block * sb, const char *prefix, 423 const char *fmt, ...) 424 { 425 va_list args; 426 427 va_start(args, fmt); 428 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 429 vprintk(fmt, args); 430 printk("\n"); 431 va_end(args); 432 } 433 434 void ext4_warning(struct super_block *sb, const char *function, 435 const char *fmt, ...) 436 { 437 va_list args; 438 439 va_start(args, fmt); 440 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 441 sb->s_id, function); 442 vprintk(fmt, args); 443 printk("\n"); 444 va_end(args); 445 } 446 447 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 448 const char *function, const char *fmt, ...) 449 __releases(bitlock) 450 __acquires(bitlock) 451 { 452 va_list args; 453 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 454 455 va_start(args, fmt); 456 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 457 vprintk(fmt, args); 458 printk("\n"); 459 va_end(args); 460 461 if (test_opt(sb, ERRORS_CONT)) { 462 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 463 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 464 ext4_commit_super(sb, 0); 465 return; 466 } 467 ext4_unlock_group(sb, grp); 468 ext4_handle_error(sb); 469 /* 470 * We only get here in the ERRORS_RO case; relocking the group 471 * may be dangerous, but nothing bad will happen since the 472 * filesystem will have already been marked read/only and the 473 * journal has been aborted. We return 1 as a hint to callers 474 * who might what to use the return value from 475 * ext4_grp_locked_error() to distinguish beween the 476 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 477 * aggressively from the ext4 function in question, with a 478 * more appropriate error code. 479 */ 480 ext4_lock_group(sb, grp); 481 return; 482 } 483 484 void ext4_update_dynamic_rev(struct super_block *sb) 485 { 486 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 487 488 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 489 return; 490 491 ext4_warning(sb, __func__, 492 "updating to rev %d because of new feature flag, " 493 "running e2fsck is recommended", 494 EXT4_DYNAMIC_REV); 495 496 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 497 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 498 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 499 /* leave es->s_feature_*compat flags alone */ 500 /* es->s_uuid will be set by e2fsck if empty */ 501 502 /* 503 * The rest of the superblock fields should be zero, and if not it 504 * means they are likely already in use, so leave them alone. We 505 * can leave it up to e2fsck to clean up any inconsistencies there. 506 */ 507 } 508 509 /* 510 * Open the external journal device 511 */ 512 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 513 { 514 struct block_device *bdev; 515 char b[BDEVNAME_SIZE]; 516 517 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 518 if (IS_ERR(bdev)) 519 goto fail; 520 return bdev; 521 522 fail: 523 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 524 __bdevname(dev, b), PTR_ERR(bdev)); 525 return NULL; 526 } 527 528 /* 529 * Release the journal device 530 */ 531 static int ext4_blkdev_put(struct block_device *bdev) 532 { 533 bd_release(bdev); 534 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 535 } 536 537 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 538 { 539 struct block_device *bdev; 540 int ret = -ENODEV; 541 542 bdev = sbi->journal_bdev; 543 if (bdev) { 544 ret = ext4_blkdev_put(bdev); 545 sbi->journal_bdev = NULL; 546 } 547 return ret; 548 } 549 550 static inline struct inode *orphan_list_entry(struct list_head *l) 551 { 552 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 553 } 554 555 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 556 { 557 struct list_head *l; 558 559 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 560 le32_to_cpu(sbi->s_es->s_last_orphan)); 561 562 printk(KERN_ERR "sb_info orphan list:\n"); 563 list_for_each(l, &sbi->s_orphan) { 564 struct inode *inode = orphan_list_entry(l); 565 printk(KERN_ERR " " 566 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 567 inode->i_sb->s_id, inode->i_ino, inode, 568 inode->i_mode, inode->i_nlink, 569 NEXT_ORPHAN(inode)); 570 } 571 } 572 573 static void ext4_put_super(struct super_block *sb) 574 { 575 struct ext4_sb_info *sbi = EXT4_SB(sb); 576 struct ext4_super_block *es = sbi->s_es; 577 int i, err; 578 579 ext4_release_system_zone(sb); 580 ext4_mb_release(sb); 581 ext4_ext_release(sb); 582 ext4_xattr_put_super(sb); 583 if (sbi->s_journal) { 584 err = jbd2_journal_destroy(sbi->s_journal); 585 sbi->s_journal = NULL; 586 if (err < 0) 587 ext4_abort(sb, __func__, 588 "Couldn't clean up the journal"); 589 } 590 if (!(sb->s_flags & MS_RDONLY)) { 591 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 592 es->s_state = cpu_to_le16(sbi->s_mount_state); 593 ext4_commit_super(sb, 1); 594 } 595 if (sbi->s_proc) { 596 remove_proc_entry(sb->s_id, ext4_proc_root); 597 } 598 kobject_del(&sbi->s_kobj); 599 600 for (i = 0; i < sbi->s_gdb_count; i++) 601 brelse(sbi->s_group_desc[i]); 602 kfree(sbi->s_group_desc); 603 if (is_vmalloc_addr(sbi->s_flex_groups)) 604 vfree(sbi->s_flex_groups); 605 else 606 kfree(sbi->s_flex_groups); 607 percpu_counter_destroy(&sbi->s_freeblocks_counter); 608 percpu_counter_destroy(&sbi->s_freeinodes_counter); 609 percpu_counter_destroy(&sbi->s_dirs_counter); 610 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 611 brelse(sbi->s_sbh); 612 #ifdef CONFIG_QUOTA 613 for (i = 0; i < MAXQUOTAS; i++) 614 kfree(sbi->s_qf_names[i]); 615 #endif 616 617 /* Debugging code just in case the in-memory inode orphan list 618 * isn't empty. The on-disk one can be non-empty if we've 619 * detected an error and taken the fs readonly, but the 620 * in-memory list had better be clean by this point. */ 621 if (!list_empty(&sbi->s_orphan)) 622 dump_orphan_list(sb, sbi); 623 J_ASSERT(list_empty(&sbi->s_orphan)); 624 625 invalidate_bdev(sb->s_bdev); 626 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 627 /* 628 * Invalidate the journal device's buffers. We don't want them 629 * floating about in memory - the physical journal device may 630 * hotswapped, and it breaks the `ro-after' testing code. 631 */ 632 sync_blockdev(sbi->journal_bdev); 633 invalidate_bdev(sbi->journal_bdev); 634 ext4_blkdev_remove(sbi); 635 } 636 sb->s_fs_info = NULL; 637 /* 638 * Now that we are completely done shutting down the 639 * superblock, we need to actually destroy the kobject. 640 */ 641 unlock_kernel(); 642 unlock_super(sb); 643 kobject_put(&sbi->s_kobj); 644 wait_for_completion(&sbi->s_kobj_unregister); 645 lock_super(sb); 646 lock_kernel(); 647 kfree(sbi->s_blockgroup_lock); 648 kfree(sbi); 649 } 650 651 static struct kmem_cache *ext4_inode_cachep; 652 653 /* 654 * Called inside transaction, so use GFP_NOFS 655 */ 656 static struct inode *ext4_alloc_inode(struct super_block *sb) 657 { 658 struct ext4_inode_info *ei; 659 660 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 661 if (!ei) 662 return NULL; 663 664 #ifdef CONFIG_EXT4_FS_POSIX_ACL 665 ei->i_acl = EXT4_ACL_NOT_CACHED; 666 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 667 #endif 668 ei->vfs_inode.i_version = 1; 669 ei->vfs_inode.i_data.writeback_index = 0; 670 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 671 INIT_LIST_HEAD(&ei->i_prealloc_list); 672 spin_lock_init(&ei->i_prealloc_lock); 673 /* 674 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 675 * therefore it can be null here. Don't check it, just initialize 676 * jinode. 677 */ 678 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 679 ei->i_reserved_data_blocks = 0; 680 ei->i_reserved_meta_blocks = 0; 681 ei->i_allocated_meta_blocks = 0; 682 ei->i_delalloc_reserved_flag = 0; 683 spin_lock_init(&(ei->i_block_reservation_lock)); 684 685 return &ei->vfs_inode; 686 } 687 688 static void ext4_destroy_inode(struct inode *inode) 689 { 690 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 691 ext4_msg(inode->i_sb, KERN_ERR, 692 "Inode %lu (%p): orphan list check failed!", 693 inode->i_ino, EXT4_I(inode)); 694 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 695 EXT4_I(inode), sizeof(struct ext4_inode_info), 696 true); 697 dump_stack(); 698 } 699 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 700 } 701 702 static void init_once(void *foo) 703 { 704 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 705 706 INIT_LIST_HEAD(&ei->i_orphan); 707 #ifdef CONFIG_EXT4_FS_XATTR 708 init_rwsem(&ei->xattr_sem); 709 #endif 710 init_rwsem(&ei->i_data_sem); 711 inode_init_once(&ei->vfs_inode); 712 } 713 714 static int init_inodecache(void) 715 { 716 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 717 sizeof(struct ext4_inode_info), 718 0, (SLAB_RECLAIM_ACCOUNT| 719 SLAB_MEM_SPREAD), 720 init_once); 721 if (ext4_inode_cachep == NULL) 722 return -ENOMEM; 723 return 0; 724 } 725 726 static void destroy_inodecache(void) 727 { 728 kmem_cache_destroy(ext4_inode_cachep); 729 } 730 731 static void ext4_clear_inode(struct inode *inode) 732 { 733 #ifdef CONFIG_EXT4_FS_POSIX_ACL 734 if (EXT4_I(inode)->i_acl && 735 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) { 736 posix_acl_release(EXT4_I(inode)->i_acl); 737 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED; 738 } 739 if (EXT4_I(inode)->i_default_acl && 740 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) { 741 posix_acl_release(EXT4_I(inode)->i_default_acl); 742 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED; 743 } 744 #endif 745 ext4_discard_preallocations(inode); 746 if (EXT4_JOURNAL(inode)) 747 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 748 &EXT4_I(inode)->jinode); 749 } 750 751 static inline void ext4_show_quota_options(struct seq_file *seq, 752 struct super_block *sb) 753 { 754 #if defined(CONFIG_QUOTA) 755 struct ext4_sb_info *sbi = EXT4_SB(sb); 756 757 if (sbi->s_jquota_fmt) 758 seq_printf(seq, ",jqfmt=%s", 759 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 760 761 if (sbi->s_qf_names[USRQUOTA]) 762 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 763 764 if (sbi->s_qf_names[GRPQUOTA]) 765 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 766 767 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 768 seq_puts(seq, ",usrquota"); 769 770 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 771 seq_puts(seq, ",grpquota"); 772 #endif 773 } 774 775 /* 776 * Show an option if 777 * - it's set to a non-default value OR 778 * - if the per-sb default is different from the global default 779 */ 780 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 781 { 782 int def_errors; 783 unsigned long def_mount_opts; 784 struct super_block *sb = vfs->mnt_sb; 785 struct ext4_sb_info *sbi = EXT4_SB(sb); 786 struct ext4_super_block *es = sbi->s_es; 787 788 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 789 def_errors = le16_to_cpu(es->s_errors); 790 791 if (sbi->s_sb_block != 1) 792 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 793 if (test_opt(sb, MINIX_DF)) 794 seq_puts(seq, ",minixdf"); 795 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 796 seq_puts(seq, ",grpid"); 797 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 798 seq_puts(seq, ",nogrpid"); 799 if (sbi->s_resuid != EXT4_DEF_RESUID || 800 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 801 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 802 } 803 if (sbi->s_resgid != EXT4_DEF_RESGID || 804 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 805 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 806 } 807 if (test_opt(sb, ERRORS_RO)) { 808 if (def_errors == EXT4_ERRORS_PANIC || 809 def_errors == EXT4_ERRORS_CONTINUE) { 810 seq_puts(seq, ",errors=remount-ro"); 811 } 812 } 813 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 814 seq_puts(seq, ",errors=continue"); 815 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 816 seq_puts(seq, ",errors=panic"); 817 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 818 seq_puts(seq, ",nouid32"); 819 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 820 seq_puts(seq, ",debug"); 821 if (test_opt(sb, OLDALLOC)) 822 seq_puts(seq, ",oldalloc"); 823 #ifdef CONFIG_EXT4_FS_XATTR 824 if (test_opt(sb, XATTR_USER) && 825 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 826 seq_puts(seq, ",user_xattr"); 827 if (!test_opt(sb, XATTR_USER) && 828 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 829 seq_puts(seq, ",nouser_xattr"); 830 } 831 #endif 832 #ifdef CONFIG_EXT4_FS_POSIX_ACL 833 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 834 seq_puts(seq, ",acl"); 835 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 836 seq_puts(seq, ",noacl"); 837 #endif 838 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 839 seq_printf(seq, ",commit=%u", 840 (unsigned) (sbi->s_commit_interval / HZ)); 841 } 842 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 843 seq_printf(seq, ",min_batch_time=%u", 844 (unsigned) sbi->s_min_batch_time); 845 } 846 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 847 seq_printf(seq, ",max_batch_time=%u", 848 (unsigned) sbi->s_min_batch_time); 849 } 850 851 /* 852 * We're changing the default of barrier mount option, so 853 * let's always display its mount state so it's clear what its 854 * status is. 855 */ 856 seq_puts(seq, ",barrier="); 857 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 858 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 859 seq_puts(seq, ",journal_async_commit"); 860 if (test_opt(sb, NOBH)) 861 seq_puts(seq, ",nobh"); 862 if (test_opt(sb, I_VERSION)) 863 seq_puts(seq, ",i_version"); 864 if (!test_opt(sb, DELALLOC)) 865 seq_puts(seq, ",nodelalloc"); 866 867 868 if (sbi->s_stripe) 869 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 870 /* 871 * journal mode get enabled in different ways 872 * So just print the value even if we didn't specify it 873 */ 874 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 875 seq_puts(seq, ",data=journal"); 876 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 877 seq_puts(seq, ",data=ordered"); 878 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 879 seq_puts(seq, ",data=writeback"); 880 881 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 882 seq_printf(seq, ",inode_readahead_blks=%u", 883 sbi->s_inode_readahead_blks); 884 885 if (test_opt(sb, DATA_ERR_ABORT)) 886 seq_puts(seq, ",data_err=abort"); 887 888 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 889 seq_puts(seq, ",noauto_da_alloc"); 890 891 ext4_show_quota_options(seq, sb); 892 893 return 0; 894 } 895 896 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 897 u64 ino, u32 generation) 898 { 899 struct inode *inode; 900 901 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 902 return ERR_PTR(-ESTALE); 903 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 904 return ERR_PTR(-ESTALE); 905 906 /* iget isn't really right if the inode is currently unallocated!! 907 * 908 * ext4_read_inode will return a bad_inode if the inode had been 909 * deleted, so we should be safe. 910 * 911 * Currently we don't know the generation for parent directory, so 912 * a generation of 0 means "accept any" 913 */ 914 inode = ext4_iget(sb, ino); 915 if (IS_ERR(inode)) 916 return ERR_CAST(inode); 917 if (generation && inode->i_generation != generation) { 918 iput(inode); 919 return ERR_PTR(-ESTALE); 920 } 921 922 return inode; 923 } 924 925 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 926 int fh_len, int fh_type) 927 { 928 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 929 ext4_nfs_get_inode); 930 } 931 932 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 933 int fh_len, int fh_type) 934 { 935 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 936 ext4_nfs_get_inode); 937 } 938 939 /* 940 * Try to release metadata pages (indirect blocks, directories) which are 941 * mapped via the block device. Since these pages could have journal heads 942 * which would prevent try_to_free_buffers() from freeing them, we must use 943 * jbd2 layer's try_to_free_buffers() function to release them. 944 */ 945 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 946 gfp_t wait) 947 { 948 journal_t *journal = EXT4_SB(sb)->s_journal; 949 950 WARN_ON(PageChecked(page)); 951 if (!page_has_buffers(page)) 952 return 0; 953 if (journal) 954 return jbd2_journal_try_to_free_buffers(journal, page, 955 wait & ~__GFP_WAIT); 956 return try_to_free_buffers(page); 957 } 958 959 #ifdef CONFIG_QUOTA 960 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 961 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 962 963 static int ext4_write_dquot(struct dquot *dquot); 964 static int ext4_acquire_dquot(struct dquot *dquot); 965 static int ext4_release_dquot(struct dquot *dquot); 966 static int ext4_mark_dquot_dirty(struct dquot *dquot); 967 static int ext4_write_info(struct super_block *sb, int type); 968 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 969 char *path, int remount); 970 static int ext4_quota_on_mount(struct super_block *sb, int type); 971 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 972 size_t len, loff_t off); 973 static ssize_t ext4_quota_write(struct super_block *sb, int type, 974 const char *data, size_t len, loff_t off); 975 976 static struct dquot_operations ext4_quota_operations = { 977 .initialize = dquot_initialize, 978 .drop = dquot_drop, 979 .alloc_space = dquot_alloc_space, 980 .reserve_space = dquot_reserve_space, 981 .claim_space = dquot_claim_space, 982 .release_rsv = dquot_release_reserved_space, 983 .get_reserved_space = ext4_get_reserved_space, 984 .alloc_inode = dquot_alloc_inode, 985 .free_space = dquot_free_space, 986 .free_inode = dquot_free_inode, 987 .transfer = dquot_transfer, 988 .write_dquot = ext4_write_dquot, 989 .acquire_dquot = ext4_acquire_dquot, 990 .release_dquot = ext4_release_dquot, 991 .mark_dirty = ext4_mark_dquot_dirty, 992 .write_info = ext4_write_info, 993 .alloc_dquot = dquot_alloc, 994 .destroy_dquot = dquot_destroy, 995 }; 996 997 static struct quotactl_ops ext4_qctl_operations = { 998 .quota_on = ext4_quota_on, 999 .quota_off = vfs_quota_off, 1000 .quota_sync = vfs_quota_sync, 1001 .get_info = vfs_get_dqinfo, 1002 .set_info = vfs_set_dqinfo, 1003 .get_dqblk = vfs_get_dqblk, 1004 .set_dqblk = vfs_set_dqblk 1005 }; 1006 #endif 1007 1008 static const struct super_operations ext4_sops = { 1009 .alloc_inode = ext4_alloc_inode, 1010 .destroy_inode = ext4_destroy_inode, 1011 .write_inode = ext4_write_inode, 1012 .dirty_inode = ext4_dirty_inode, 1013 .delete_inode = ext4_delete_inode, 1014 .put_super = ext4_put_super, 1015 .sync_fs = ext4_sync_fs, 1016 .freeze_fs = ext4_freeze, 1017 .unfreeze_fs = ext4_unfreeze, 1018 .statfs = ext4_statfs, 1019 .remount_fs = ext4_remount, 1020 .clear_inode = ext4_clear_inode, 1021 .show_options = ext4_show_options, 1022 #ifdef CONFIG_QUOTA 1023 .quota_read = ext4_quota_read, 1024 .quota_write = ext4_quota_write, 1025 #endif 1026 .bdev_try_to_free_page = bdev_try_to_free_page, 1027 }; 1028 1029 static const struct super_operations ext4_nojournal_sops = { 1030 .alloc_inode = ext4_alloc_inode, 1031 .destroy_inode = ext4_destroy_inode, 1032 .write_inode = ext4_write_inode, 1033 .dirty_inode = ext4_dirty_inode, 1034 .delete_inode = ext4_delete_inode, 1035 .write_super = ext4_write_super, 1036 .put_super = ext4_put_super, 1037 .statfs = ext4_statfs, 1038 .remount_fs = ext4_remount, 1039 .clear_inode = ext4_clear_inode, 1040 .show_options = ext4_show_options, 1041 #ifdef CONFIG_QUOTA 1042 .quota_read = ext4_quota_read, 1043 .quota_write = ext4_quota_write, 1044 #endif 1045 .bdev_try_to_free_page = bdev_try_to_free_page, 1046 }; 1047 1048 static const struct export_operations ext4_export_ops = { 1049 .fh_to_dentry = ext4_fh_to_dentry, 1050 .fh_to_parent = ext4_fh_to_parent, 1051 .get_parent = ext4_get_parent, 1052 }; 1053 1054 enum { 1055 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1056 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1057 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1058 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1059 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1060 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1061 Opt_journal_update, Opt_journal_dev, 1062 Opt_journal_checksum, Opt_journal_async_commit, 1063 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1064 Opt_data_err_abort, Opt_data_err_ignore, Opt_mb_history_length, 1065 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1066 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1067 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, 1068 Opt_usrquota, Opt_grpquota, Opt_i_version, 1069 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1070 Opt_block_validity, Opt_noblock_validity, 1071 Opt_inode_readahead_blks, Opt_journal_ioprio 1072 }; 1073 1074 static const match_table_t tokens = { 1075 {Opt_bsd_df, "bsddf"}, 1076 {Opt_minix_df, "minixdf"}, 1077 {Opt_grpid, "grpid"}, 1078 {Opt_grpid, "bsdgroups"}, 1079 {Opt_nogrpid, "nogrpid"}, 1080 {Opt_nogrpid, "sysvgroups"}, 1081 {Opt_resgid, "resgid=%u"}, 1082 {Opt_resuid, "resuid=%u"}, 1083 {Opt_sb, "sb=%u"}, 1084 {Opt_err_cont, "errors=continue"}, 1085 {Opt_err_panic, "errors=panic"}, 1086 {Opt_err_ro, "errors=remount-ro"}, 1087 {Opt_nouid32, "nouid32"}, 1088 {Opt_debug, "debug"}, 1089 {Opt_oldalloc, "oldalloc"}, 1090 {Opt_orlov, "orlov"}, 1091 {Opt_user_xattr, "user_xattr"}, 1092 {Opt_nouser_xattr, "nouser_xattr"}, 1093 {Opt_acl, "acl"}, 1094 {Opt_noacl, "noacl"}, 1095 {Opt_noload, "noload"}, 1096 {Opt_nobh, "nobh"}, 1097 {Opt_bh, "bh"}, 1098 {Opt_commit, "commit=%u"}, 1099 {Opt_min_batch_time, "min_batch_time=%u"}, 1100 {Opt_max_batch_time, "max_batch_time=%u"}, 1101 {Opt_journal_update, "journal=update"}, 1102 {Opt_journal_dev, "journal_dev=%u"}, 1103 {Opt_journal_checksum, "journal_checksum"}, 1104 {Opt_journal_async_commit, "journal_async_commit"}, 1105 {Opt_abort, "abort"}, 1106 {Opt_data_journal, "data=journal"}, 1107 {Opt_data_ordered, "data=ordered"}, 1108 {Opt_data_writeback, "data=writeback"}, 1109 {Opt_data_err_abort, "data_err=abort"}, 1110 {Opt_data_err_ignore, "data_err=ignore"}, 1111 {Opt_mb_history_length, "mb_history_length=%u"}, 1112 {Opt_offusrjquota, "usrjquota="}, 1113 {Opt_usrjquota, "usrjquota=%s"}, 1114 {Opt_offgrpjquota, "grpjquota="}, 1115 {Opt_grpjquota, "grpjquota=%s"}, 1116 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1117 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1118 {Opt_grpquota, "grpquota"}, 1119 {Opt_noquota, "noquota"}, 1120 {Opt_quota, "quota"}, 1121 {Opt_usrquota, "usrquota"}, 1122 {Opt_barrier, "barrier=%u"}, 1123 {Opt_barrier, "barrier"}, 1124 {Opt_nobarrier, "nobarrier"}, 1125 {Opt_i_version, "i_version"}, 1126 {Opt_stripe, "stripe=%u"}, 1127 {Opt_resize, "resize"}, 1128 {Opt_delalloc, "delalloc"}, 1129 {Opt_nodelalloc, "nodelalloc"}, 1130 {Opt_block_validity, "block_validity"}, 1131 {Opt_noblock_validity, "noblock_validity"}, 1132 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1133 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1134 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1135 {Opt_auto_da_alloc, "auto_da_alloc"}, 1136 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1137 {Opt_err, NULL}, 1138 }; 1139 1140 static ext4_fsblk_t get_sb_block(void **data) 1141 { 1142 ext4_fsblk_t sb_block; 1143 char *options = (char *) *data; 1144 1145 if (!options || strncmp(options, "sb=", 3) != 0) 1146 return 1; /* Default location */ 1147 1148 options += 3; 1149 /* TODO: use simple_strtoll with >32bit ext4 */ 1150 sb_block = simple_strtoul(options, &options, 0); 1151 if (*options && *options != ',') { 1152 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1153 (char *) *data); 1154 return 1; 1155 } 1156 if (*options == ',') 1157 options++; 1158 *data = (void *) options; 1159 1160 return sb_block; 1161 } 1162 1163 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1164 1165 static int parse_options(char *options, struct super_block *sb, 1166 unsigned long *journal_devnum, 1167 unsigned int *journal_ioprio, 1168 ext4_fsblk_t *n_blocks_count, int is_remount) 1169 { 1170 struct ext4_sb_info *sbi = EXT4_SB(sb); 1171 char *p; 1172 substring_t args[MAX_OPT_ARGS]; 1173 int data_opt = 0; 1174 int option; 1175 #ifdef CONFIG_QUOTA 1176 int qtype, qfmt; 1177 char *qname; 1178 #endif 1179 1180 if (!options) 1181 return 1; 1182 1183 while ((p = strsep(&options, ",")) != NULL) { 1184 int token; 1185 if (!*p) 1186 continue; 1187 1188 token = match_token(p, tokens, args); 1189 switch (token) { 1190 case Opt_bsd_df: 1191 clear_opt(sbi->s_mount_opt, MINIX_DF); 1192 break; 1193 case Opt_minix_df: 1194 set_opt(sbi->s_mount_opt, MINIX_DF); 1195 break; 1196 case Opt_grpid: 1197 set_opt(sbi->s_mount_opt, GRPID); 1198 break; 1199 case Opt_nogrpid: 1200 clear_opt(sbi->s_mount_opt, GRPID); 1201 break; 1202 case Opt_resuid: 1203 if (match_int(&args[0], &option)) 1204 return 0; 1205 sbi->s_resuid = option; 1206 break; 1207 case Opt_resgid: 1208 if (match_int(&args[0], &option)) 1209 return 0; 1210 sbi->s_resgid = option; 1211 break; 1212 case Opt_sb: 1213 /* handled by get_sb_block() instead of here */ 1214 /* *sb_block = match_int(&args[0]); */ 1215 break; 1216 case Opt_err_panic: 1217 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1218 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1219 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1220 break; 1221 case Opt_err_ro: 1222 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1223 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1224 set_opt(sbi->s_mount_opt, ERRORS_RO); 1225 break; 1226 case Opt_err_cont: 1227 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1228 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1229 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1230 break; 1231 case Opt_nouid32: 1232 set_opt(sbi->s_mount_opt, NO_UID32); 1233 break; 1234 case Opt_debug: 1235 set_opt(sbi->s_mount_opt, DEBUG); 1236 break; 1237 case Opt_oldalloc: 1238 set_opt(sbi->s_mount_opt, OLDALLOC); 1239 break; 1240 case Opt_orlov: 1241 clear_opt(sbi->s_mount_opt, OLDALLOC); 1242 break; 1243 #ifdef CONFIG_EXT4_FS_XATTR 1244 case Opt_user_xattr: 1245 set_opt(sbi->s_mount_opt, XATTR_USER); 1246 break; 1247 case Opt_nouser_xattr: 1248 clear_opt(sbi->s_mount_opt, XATTR_USER); 1249 break; 1250 #else 1251 case Opt_user_xattr: 1252 case Opt_nouser_xattr: 1253 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1254 break; 1255 #endif 1256 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1257 case Opt_acl: 1258 set_opt(sbi->s_mount_opt, POSIX_ACL); 1259 break; 1260 case Opt_noacl: 1261 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1262 break; 1263 #else 1264 case Opt_acl: 1265 case Opt_noacl: 1266 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1267 break; 1268 #endif 1269 case Opt_journal_update: 1270 /* @@@ FIXME */ 1271 /* Eventually we will want to be able to create 1272 a journal file here. For now, only allow the 1273 user to specify an existing inode to be the 1274 journal file. */ 1275 if (is_remount) { 1276 ext4_msg(sb, KERN_ERR, 1277 "Cannot specify journal on remount"); 1278 return 0; 1279 } 1280 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1281 break; 1282 case Opt_journal_dev: 1283 if (is_remount) { 1284 ext4_msg(sb, KERN_ERR, 1285 "Cannot specify journal on remount"); 1286 return 0; 1287 } 1288 if (match_int(&args[0], &option)) 1289 return 0; 1290 *journal_devnum = option; 1291 break; 1292 case Opt_journal_checksum: 1293 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1294 break; 1295 case Opt_journal_async_commit: 1296 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1297 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); 1298 break; 1299 case Opt_noload: 1300 set_opt(sbi->s_mount_opt, NOLOAD); 1301 break; 1302 case Opt_commit: 1303 if (match_int(&args[0], &option)) 1304 return 0; 1305 if (option < 0) 1306 return 0; 1307 if (option == 0) 1308 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1309 sbi->s_commit_interval = HZ * option; 1310 break; 1311 case Opt_max_batch_time: 1312 if (match_int(&args[0], &option)) 1313 return 0; 1314 if (option < 0) 1315 return 0; 1316 if (option == 0) 1317 option = EXT4_DEF_MAX_BATCH_TIME; 1318 sbi->s_max_batch_time = option; 1319 break; 1320 case Opt_min_batch_time: 1321 if (match_int(&args[0], &option)) 1322 return 0; 1323 if (option < 0) 1324 return 0; 1325 sbi->s_min_batch_time = option; 1326 break; 1327 case Opt_data_journal: 1328 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1329 goto datacheck; 1330 case Opt_data_ordered: 1331 data_opt = EXT4_MOUNT_ORDERED_DATA; 1332 goto datacheck; 1333 case Opt_data_writeback: 1334 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1335 datacheck: 1336 if (is_remount) { 1337 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1338 != data_opt) { 1339 ext4_msg(sb, KERN_ERR, 1340 "Cannot change data mode on remount"); 1341 return 0; 1342 } 1343 } else { 1344 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1345 sbi->s_mount_opt |= data_opt; 1346 } 1347 break; 1348 case Opt_data_err_abort: 1349 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1350 break; 1351 case Opt_data_err_ignore: 1352 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1353 break; 1354 case Opt_mb_history_length: 1355 if (match_int(&args[0], &option)) 1356 return 0; 1357 if (option < 0) 1358 return 0; 1359 sbi->s_mb_history_max = option; 1360 break; 1361 #ifdef CONFIG_QUOTA 1362 case Opt_usrjquota: 1363 qtype = USRQUOTA; 1364 goto set_qf_name; 1365 case Opt_grpjquota: 1366 qtype = GRPQUOTA; 1367 set_qf_name: 1368 if (sb_any_quota_loaded(sb) && 1369 !sbi->s_qf_names[qtype]) { 1370 ext4_msg(sb, KERN_ERR, 1371 "Cannot change journaled " 1372 "quota options when quota turned on"); 1373 return 0; 1374 } 1375 qname = match_strdup(&args[0]); 1376 if (!qname) { 1377 ext4_msg(sb, KERN_ERR, 1378 "Not enough memory for " 1379 "storing quotafile name"); 1380 return 0; 1381 } 1382 if (sbi->s_qf_names[qtype] && 1383 strcmp(sbi->s_qf_names[qtype], qname)) { 1384 ext4_msg(sb, KERN_ERR, 1385 "%s quota file already " 1386 "specified", QTYPE2NAME(qtype)); 1387 kfree(qname); 1388 return 0; 1389 } 1390 sbi->s_qf_names[qtype] = qname; 1391 if (strchr(sbi->s_qf_names[qtype], '/')) { 1392 ext4_msg(sb, KERN_ERR, 1393 "quotafile must be on " 1394 "filesystem root"); 1395 kfree(sbi->s_qf_names[qtype]); 1396 sbi->s_qf_names[qtype] = NULL; 1397 return 0; 1398 } 1399 set_opt(sbi->s_mount_opt, QUOTA); 1400 break; 1401 case Opt_offusrjquota: 1402 qtype = USRQUOTA; 1403 goto clear_qf_name; 1404 case Opt_offgrpjquota: 1405 qtype = GRPQUOTA; 1406 clear_qf_name: 1407 if (sb_any_quota_loaded(sb) && 1408 sbi->s_qf_names[qtype]) { 1409 ext4_msg(sb, KERN_ERR, "Cannot change " 1410 "journaled quota options when " 1411 "quota turned on"); 1412 return 0; 1413 } 1414 /* 1415 * The space will be released later when all options 1416 * are confirmed to be correct 1417 */ 1418 sbi->s_qf_names[qtype] = NULL; 1419 break; 1420 case Opt_jqfmt_vfsold: 1421 qfmt = QFMT_VFS_OLD; 1422 goto set_qf_format; 1423 case Opt_jqfmt_vfsv0: 1424 qfmt = QFMT_VFS_V0; 1425 set_qf_format: 1426 if (sb_any_quota_loaded(sb) && 1427 sbi->s_jquota_fmt != qfmt) { 1428 ext4_msg(sb, KERN_ERR, "Cannot change " 1429 "journaled quota options when " 1430 "quota turned on"); 1431 return 0; 1432 } 1433 sbi->s_jquota_fmt = qfmt; 1434 break; 1435 case Opt_quota: 1436 case Opt_usrquota: 1437 set_opt(sbi->s_mount_opt, QUOTA); 1438 set_opt(sbi->s_mount_opt, USRQUOTA); 1439 break; 1440 case Opt_grpquota: 1441 set_opt(sbi->s_mount_opt, QUOTA); 1442 set_opt(sbi->s_mount_opt, GRPQUOTA); 1443 break; 1444 case Opt_noquota: 1445 if (sb_any_quota_loaded(sb)) { 1446 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1447 "options when quota turned on"); 1448 return 0; 1449 } 1450 clear_opt(sbi->s_mount_opt, QUOTA); 1451 clear_opt(sbi->s_mount_opt, USRQUOTA); 1452 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1453 break; 1454 #else 1455 case Opt_quota: 1456 case Opt_usrquota: 1457 case Opt_grpquota: 1458 ext4_msg(sb, KERN_ERR, 1459 "quota options not supported"); 1460 break; 1461 case Opt_usrjquota: 1462 case Opt_grpjquota: 1463 case Opt_offusrjquota: 1464 case Opt_offgrpjquota: 1465 case Opt_jqfmt_vfsold: 1466 case Opt_jqfmt_vfsv0: 1467 ext4_msg(sb, KERN_ERR, 1468 "journaled quota options not supported"); 1469 break; 1470 case Opt_noquota: 1471 break; 1472 #endif 1473 case Opt_abort: 1474 set_opt(sbi->s_mount_opt, ABORT); 1475 break; 1476 case Opt_nobarrier: 1477 clear_opt(sbi->s_mount_opt, BARRIER); 1478 break; 1479 case Opt_barrier: 1480 if (match_int(&args[0], &option)) { 1481 set_opt(sbi->s_mount_opt, BARRIER); 1482 break; 1483 } 1484 if (option) 1485 set_opt(sbi->s_mount_opt, BARRIER); 1486 else 1487 clear_opt(sbi->s_mount_opt, BARRIER); 1488 break; 1489 case Opt_ignore: 1490 break; 1491 case Opt_resize: 1492 if (!is_remount) { 1493 ext4_msg(sb, KERN_ERR, 1494 "resize option only available " 1495 "for remount"); 1496 return 0; 1497 } 1498 if (match_int(&args[0], &option) != 0) 1499 return 0; 1500 *n_blocks_count = option; 1501 break; 1502 case Opt_nobh: 1503 set_opt(sbi->s_mount_opt, NOBH); 1504 break; 1505 case Opt_bh: 1506 clear_opt(sbi->s_mount_opt, NOBH); 1507 break; 1508 case Opt_i_version: 1509 set_opt(sbi->s_mount_opt, I_VERSION); 1510 sb->s_flags |= MS_I_VERSION; 1511 break; 1512 case Opt_nodelalloc: 1513 clear_opt(sbi->s_mount_opt, DELALLOC); 1514 break; 1515 case Opt_stripe: 1516 if (match_int(&args[0], &option)) 1517 return 0; 1518 if (option < 0) 1519 return 0; 1520 sbi->s_stripe = option; 1521 break; 1522 case Opt_delalloc: 1523 set_opt(sbi->s_mount_opt, DELALLOC); 1524 break; 1525 case Opt_block_validity: 1526 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1527 break; 1528 case Opt_noblock_validity: 1529 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1530 break; 1531 case Opt_inode_readahead_blks: 1532 if (match_int(&args[0], &option)) 1533 return 0; 1534 if (option < 0 || option > (1 << 30)) 1535 return 0; 1536 if (!is_power_of_2(option)) { 1537 ext4_msg(sb, KERN_ERR, 1538 "EXT4-fs: inode_readahead_blks" 1539 " must be a power of 2"); 1540 return 0; 1541 } 1542 sbi->s_inode_readahead_blks = option; 1543 break; 1544 case Opt_journal_ioprio: 1545 if (match_int(&args[0], &option)) 1546 return 0; 1547 if (option < 0 || option > 7) 1548 break; 1549 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1550 option); 1551 break; 1552 case Opt_noauto_da_alloc: 1553 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1554 break; 1555 case Opt_auto_da_alloc: 1556 if (match_int(&args[0], &option)) { 1557 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1558 break; 1559 } 1560 if (option) 1561 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1562 else 1563 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1564 break; 1565 default: 1566 ext4_msg(sb, KERN_ERR, 1567 "Unrecognized mount option \"%s\" " 1568 "or missing value", p); 1569 return 0; 1570 } 1571 } 1572 #ifdef CONFIG_QUOTA 1573 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1574 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1575 sbi->s_qf_names[USRQUOTA]) 1576 clear_opt(sbi->s_mount_opt, USRQUOTA); 1577 1578 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1579 sbi->s_qf_names[GRPQUOTA]) 1580 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1581 1582 if ((sbi->s_qf_names[USRQUOTA] && 1583 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1584 (sbi->s_qf_names[GRPQUOTA] && 1585 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1586 ext4_msg(sb, KERN_ERR, "old and new quota " 1587 "format mixing"); 1588 return 0; 1589 } 1590 1591 if (!sbi->s_jquota_fmt) { 1592 ext4_msg(sb, KERN_ERR, "journaled quota format " 1593 "not specified"); 1594 return 0; 1595 } 1596 } else { 1597 if (sbi->s_jquota_fmt) { 1598 ext4_msg(sb, KERN_ERR, "journaled quota format " 1599 "specified with no journaling " 1600 "enabled"); 1601 return 0; 1602 } 1603 } 1604 #endif 1605 return 1; 1606 } 1607 1608 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1609 int read_only) 1610 { 1611 struct ext4_sb_info *sbi = EXT4_SB(sb); 1612 int res = 0; 1613 1614 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1615 ext4_msg(sb, KERN_ERR, "revision level too high, " 1616 "forcing read-only mode"); 1617 res = MS_RDONLY; 1618 } 1619 if (read_only) 1620 return res; 1621 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1622 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1623 "running e2fsck is recommended"); 1624 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1625 ext4_msg(sb, KERN_WARNING, 1626 "warning: mounting fs with errors, " 1627 "running e2fsck is recommended"); 1628 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1629 le16_to_cpu(es->s_mnt_count) >= 1630 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1631 ext4_msg(sb, KERN_WARNING, 1632 "warning: maximal mount count reached, " 1633 "running e2fsck is recommended"); 1634 else if (le32_to_cpu(es->s_checkinterval) && 1635 (le32_to_cpu(es->s_lastcheck) + 1636 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1637 ext4_msg(sb, KERN_WARNING, 1638 "warning: checktime reached, " 1639 "running e2fsck is recommended"); 1640 if (!sbi->s_journal) 1641 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1642 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1643 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1644 le16_add_cpu(&es->s_mnt_count, 1); 1645 es->s_mtime = cpu_to_le32(get_seconds()); 1646 ext4_update_dynamic_rev(sb); 1647 if (sbi->s_journal) 1648 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1649 1650 ext4_commit_super(sb, 1); 1651 if (test_opt(sb, DEBUG)) 1652 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1653 "bpg=%lu, ipg=%lu, mo=%04lx]\n", 1654 sb->s_blocksize, 1655 sbi->s_groups_count, 1656 EXT4_BLOCKS_PER_GROUP(sb), 1657 EXT4_INODES_PER_GROUP(sb), 1658 sbi->s_mount_opt); 1659 1660 if (EXT4_SB(sb)->s_journal) { 1661 ext4_msg(sb, KERN_INFO, "%s journal on %s", 1662 EXT4_SB(sb)->s_journal->j_inode ? "internal" : 1663 "external", EXT4_SB(sb)->s_journal->j_devname); 1664 } else { 1665 ext4_msg(sb, KERN_INFO, "no journal"); 1666 } 1667 return res; 1668 } 1669 1670 static int ext4_fill_flex_info(struct super_block *sb) 1671 { 1672 struct ext4_sb_info *sbi = EXT4_SB(sb); 1673 struct ext4_group_desc *gdp = NULL; 1674 ext4_group_t flex_group_count; 1675 ext4_group_t flex_group; 1676 int groups_per_flex = 0; 1677 size_t size; 1678 int i; 1679 1680 if (!sbi->s_es->s_log_groups_per_flex) { 1681 sbi->s_log_groups_per_flex = 0; 1682 return 1; 1683 } 1684 1685 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1686 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1687 1688 /* We allocate both existing and potentially added groups */ 1689 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1690 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1691 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1692 size = flex_group_count * sizeof(struct flex_groups); 1693 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1694 if (sbi->s_flex_groups == NULL) { 1695 sbi->s_flex_groups = vmalloc(size); 1696 if (sbi->s_flex_groups) 1697 memset(sbi->s_flex_groups, 0, size); 1698 } 1699 if (sbi->s_flex_groups == NULL) { 1700 ext4_msg(sb, KERN_ERR, "not enough memory for " 1701 "%u flex groups", flex_group_count); 1702 goto failed; 1703 } 1704 1705 for (i = 0; i < sbi->s_groups_count; i++) { 1706 gdp = ext4_get_group_desc(sb, i, NULL); 1707 1708 flex_group = ext4_flex_group(sbi, i); 1709 atomic_set(&sbi->s_flex_groups[flex_group].free_inodes, 1710 ext4_free_inodes_count(sb, gdp)); 1711 atomic_set(&sbi->s_flex_groups[flex_group].free_blocks, 1712 ext4_free_blks_count(sb, gdp)); 1713 atomic_set(&sbi->s_flex_groups[flex_group].used_dirs, 1714 ext4_used_dirs_count(sb, gdp)); 1715 } 1716 1717 return 1; 1718 failed: 1719 return 0; 1720 } 1721 1722 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1723 struct ext4_group_desc *gdp) 1724 { 1725 __u16 crc = 0; 1726 1727 if (sbi->s_es->s_feature_ro_compat & 1728 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1729 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1730 __le32 le_group = cpu_to_le32(block_group); 1731 1732 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1733 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1734 crc = crc16(crc, (__u8 *)gdp, offset); 1735 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1736 /* for checksum of struct ext4_group_desc do the rest...*/ 1737 if ((sbi->s_es->s_feature_incompat & 1738 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1739 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1740 crc = crc16(crc, (__u8 *)gdp + offset, 1741 le16_to_cpu(sbi->s_es->s_desc_size) - 1742 offset); 1743 } 1744 1745 return cpu_to_le16(crc); 1746 } 1747 1748 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1749 struct ext4_group_desc *gdp) 1750 { 1751 if ((sbi->s_es->s_feature_ro_compat & 1752 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1753 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1754 return 0; 1755 1756 return 1; 1757 } 1758 1759 /* Called at mount-time, super-block is locked */ 1760 static int ext4_check_descriptors(struct super_block *sb) 1761 { 1762 struct ext4_sb_info *sbi = EXT4_SB(sb); 1763 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1764 ext4_fsblk_t last_block; 1765 ext4_fsblk_t block_bitmap; 1766 ext4_fsblk_t inode_bitmap; 1767 ext4_fsblk_t inode_table; 1768 int flexbg_flag = 0; 1769 ext4_group_t i; 1770 1771 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1772 flexbg_flag = 1; 1773 1774 ext4_debug("Checking group descriptors"); 1775 1776 for (i = 0; i < sbi->s_groups_count; i++) { 1777 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1778 1779 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1780 last_block = ext4_blocks_count(sbi->s_es) - 1; 1781 else 1782 last_block = first_block + 1783 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1784 1785 block_bitmap = ext4_block_bitmap(sb, gdp); 1786 if (block_bitmap < first_block || block_bitmap > last_block) { 1787 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1788 "Block bitmap for group %u not in group " 1789 "(block %llu)!", i, block_bitmap); 1790 return 0; 1791 } 1792 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1793 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1794 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1795 "Inode bitmap for group %u not in group " 1796 "(block %llu)!", i, inode_bitmap); 1797 return 0; 1798 } 1799 inode_table = ext4_inode_table(sb, gdp); 1800 if (inode_table < first_block || 1801 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1802 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1803 "Inode table for group %u not in group " 1804 "(block %llu)!", i, inode_table); 1805 return 0; 1806 } 1807 ext4_lock_group(sb, i); 1808 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1809 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1810 "Checksum for group %u failed (%u!=%u)", 1811 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1812 gdp)), le16_to_cpu(gdp->bg_checksum)); 1813 if (!(sb->s_flags & MS_RDONLY)) { 1814 ext4_unlock_group(sb, i); 1815 return 0; 1816 } 1817 } 1818 ext4_unlock_group(sb, i); 1819 if (!flexbg_flag) 1820 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1821 } 1822 1823 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1824 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1825 return 1; 1826 } 1827 1828 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1829 * the superblock) which were deleted from all directories, but held open by 1830 * a process at the time of a crash. We walk the list and try to delete these 1831 * inodes at recovery time (only with a read-write filesystem). 1832 * 1833 * In order to keep the orphan inode chain consistent during traversal (in 1834 * case of crash during recovery), we link each inode into the superblock 1835 * orphan list_head and handle it the same way as an inode deletion during 1836 * normal operation (which journals the operations for us). 1837 * 1838 * We only do an iget() and an iput() on each inode, which is very safe if we 1839 * accidentally point at an in-use or already deleted inode. The worst that 1840 * can happen in this case is that we get a "bit already cleared" message from 1841 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1842 * e2fsck was run on this filesystem, and it must have already done the orphan 1843 * inode cleanup for us, so we can safely abort without any further action. 1844 */ 1845 static void ext4_orphan_cleanup(struct super_block *sb, 1846 struct ext4_super_block *es) 1847 { 1848 unsigned int s_flags = sb->s_flags; 1849 int nr_orphans = 0, nr_truncates = 0; 1850 #ifdef CONFIG_QUOTA 1851 int i; 1852 #endif 1853 if (!es->s_last_orphan) { 1854 jbd_debug(4, "no orphan inodes to clean up\n"); 1855 return; 1856 } 1857 1858 if (bdev_read_only(sb->s_bdev)) { 1859 ext4_msg(sb, KERN_ERR, "write access " 1860 "unavailable, skipping orphan cleanup"); 1861 return; 1862 } 1863 1864 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1865 if (es->s_last_orphan) 1866 jbd_debug(1, "Errors on filesystem, " 1867 "clearing orphan list.\n"); 1868 es->s_last_orphan = 0; 1869 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1870 return; 1871 } 1872 1873 if (s_flags & MS_RDONLY) { 1874 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1875 sb->s_flags &= ~MS_RDONLY; 1876 } 1877 #ifdef CONFIG_QUOTA 1878 /* Needed for iput() to work correctly and not trash data */ 1879 sb->s_flags |= MS_ACTIVE; 1880 /* Turn on quotas so that they are updated correctly */ 1881 for (i = 0; i < MAXQUOTAS; i++) { 1882 if (EXT4_SB(sb)->s_qf_names[i]) { 1883 int ret = ext4_quota_on_mount(sb, i); 1884 if (ret < 0) 1885 ext4_msg(sb, KERN_ERR, 1886 "Cannot turn on journaled " 1887 "quota: error %d", ret); 1888 } 1889 } 1890 #endif 1891 1892 while (es->s_last_orphan) { 1893 struct inode *inode; 1894 1895 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1896 if (IS_ERR(inode)) { 1897 es->s_last_orphan = 0; 1898 break; 1899 } 1900 1901 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1902 vfs_dq_init(inode); 1903 if (inode->i_nlink) { 1904 ext4_msg(sb, KERN_DEBUG, 1905 "%s: truncating inode %lu to %lld bytes", 1906 __func__, inode->i_ino, inode->i_size); 1907 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1908 inode->i_ino, inode->i_size); 1909 ext4_truncate(inode); 1910 nr_truncates++; 1911 } else { 1912 ext4_msg(sb, KERN_DEBUG, 1913 "%s: deleting unreferenced inode %lu", 1914 __func__, inode->i_ino); 1915 jbd_debug(2, "deleting unreferenced inode %lu\n", 1916 inode->i_ino); 1917 nr_orphans++; 1918 } 1919 iput(inode); /* The delete magic happens here! */ 1920 } 1921 1922 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1923 1924 if (nr_orphans) 1925 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1926 PLURAL(nr_orphans)); 1927 if (nr_truncates) 1928 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1929 PLURAL(nr_truncates)); 1930 #ifdef CONFIG_QUOTA 1931 /* Turn quotas off */ 1932 for (i = 0; i < MAXQUOTAS; i++) { 1933 if (sb_dqopt(sb)->files[i]) 1934 vfs_quota_off(sb, i, 0); 1935 } 1936 #endif 1937 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1938 } 1939 1940 /* 1941 * Maximal extent format file size. 1942 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1943 * extent format containers, within a sector_t, and within i_blocks 1944 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1945 * so that won't be a limiting factor. 1946 * 1947 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1948 */ 1949 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1950 { 1951 loff_t res; 1952 loff_t upper_limit = MAX_LFS_FILESIZE; 1953 1954 /* small i_blocks in vfs inode? */ 1955 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1956 /* 1957 * CONFIG_LBD is not enabled implies the inode 1958 * i_block represent total blocks in 512 bytes 1959 * 32 == size of vfs inode i_blocks * 8 1960 */ 1961 upper_limit = (1LL << 32) - 1; 1962 1963 /* total blocks in file system block size */ 1964 upper_limit >>= (blkbits - 9); 1965 upper_limit <<= blkbits; 1966 } 1967 1968 /* 32-bit extent-start container, ee_block */ 1969 res = 1LL << 32; 1970 res <<= blkbits; 1971 res -= 1; 1972 1973 /* Sanity check against vm- & vfs- imposed limits */ 1974 if (res > upper_limit) 1975 res = upper_limit; 1976 1977 return res; 1978 } 1979 1980 /* 1981 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1982 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1983 * We need to be 1 filesystem block less than the 2^48 sector limit. 1984 */ 1985 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1986 { 1987 loff_t res = EXT4_NDIR_BLOCKS; 1988 int meta_blocks; 1989 loff_t upper_limit; 1990 /* This is calculated to be the largest file size for a dense, block 1991 * mapped file such that the file's total number of 512-byte sectors, 1992 * including data and all indirect blocks, does not exceed (2^48 - 1). 1993 * 1994 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 1995 * number of 512-byte sectors of the file. 1996 */ 1997 1998 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1999 /* 2000 * !has_huge_files or CONFIG_LBD not enabled implies that 2001 * the inode i_block field represents total file blocks in 2002 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2003 */ 2004 upper_limit = (1LL << 32) - 1; 2005 2006 /* total blocks in file system block size */ 2007 upper_limit >>= (bits - 9); 2008 2009 } else { 2010 /* 2011 * We use 48 bit ext4_inode i_blocks 2012 * With EXT4_HUGE_FILE_FL set the i_blocks 2013 * represent total number of blocks in 2014 * file system block size 2015 */ 2016 upper_limit = (1LL << 48) - 1; 2017 2018 } 2019 2020 /* indirect blocks */ 2021 meta_blocks = 1; 2022 /* double indirect blocks */ 2023 meta_blocks += 1 + (1LL << (bits-2)); 2024 /* tripple indirect blocks */ 2025 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2026 2027 upper_limit -= meta_blocks; 2028 upper_limit <<= bits; 2029 2030 res += 1LL << (bits-2); 2031 res += 1LL << (2*(bits-2)); 2032 res += 1LL << (3*(bits-2)); 2033 res <<= bits; 2034 if (res > upper_limit) 2035 res = upper_limit; 2036 2037 if (res > MAX_LFS_FILESIZE) 2038 res = MAX_LFS_FILESIZE; 2039 2040 return res; 2041 } 2042 2043 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2044 ext4_fsblk_t logical_sb_block, int nr) 2045 { 2046 struct ext4_sb_info *sbi = EXT4_SB(sb); 2047 ext4_group_t bg, first_meta_bg; 2048 int has_super = 0; 2049 2050 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2051 2052 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2053 nr < first_meta_bg) 2054 return logical_sb_block + nr + 1; 2055 bg = sbi->s_desc_per_block * nr; 2056 if (ext4_bg_has_super(sb, bg)) 2057 has_super = 1; 2058 2059 return (has_super + ext4_group_first_block_no(sb, bg)); 2060 } 2061 2062 /** 2063 * ext4_get_stripe_size: Get the stripe size. 2064 * @sbi: In memory super block info 2065 * 2066 * If we have specified it via mount option, then 2067 * use the mount option value. If the value specified at mount time is 2068 * greater than the blocks per group use the super block value. 2069 * If the super block value is greater than blocks per group return 0. 2070 * Allocator needs it be less than blocks per group. 2071 * 2072 */ 2073 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2074 { 2075 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2076 unsigned long stripe_width = 2077 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2078 2079 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2080 return sbi->s_stripe; 2081 2082 if (stripe_width <= sbi->s_blocks_per_group) 2083 return stripe_width; 2084 2085 if (stride <= sbi->s_blocks_per_group) 2086 return stride; 2087 2088 return 0; 2089 } 2090 2091 /* sysfs supprt */ 2092 2093 struct ext4_attr { 2094 struct attribute attr; 2095 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2096 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2097 const char *, size_t); 2098 int offset; 2099 }; 2100 2101 static int parse_strtoul(const char *buf, 2102 unsigned long max, unsigned long *value) 2103 { 2104 char *endp; 2105 2106 while (*buf && isspace(*buf)) 2107 buf++; 2108 *value = simple_strtoul(buf, &endp, 0); 2109 while (*endp && isspace(*endp)) 2110 endp++; 2111 if (*endp || *value > max) 2112 return -EINVAL; 2113 2114 return 0; 2115 } 2116 2117 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2118 struct ext4_sb_info *sbi, 2119 char *buf) 2120 { 2121 return snprintf(buf, PAGE_SIZE, "%llu\n", 2122 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2123 } 2124 2125 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2126 struct ext4_sb_info *sbi, char *buf) 2127 { 2128 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2129 2130 return snprintf(buf, PAGE_SIZE, "%lu\n", 2131 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2132 sbi->s_sectors_written_start) >> 1); 2133 } 2134 2135 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2136 struct ext4_sb_info *sbi, char *buf) 2137 { 2138 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2139 2140 return snprintf(buf, PAGE_SIZE, "%llu\n", 2141 sbi->s_kbytes_written + 2142 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2143 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2144 } 2145 2146 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2147 struct ext4_sb_info *sbi, 2148 const char *buf, size_t count) 2149 { 2150 unsigned long t; 2151 2152 if (parse_strtoul(buf, 0x40000000, &t)) 2153 return -EINVAL; 2154 2155 if (!is_power_of_2(t)) 2156 return -EINVAL; 2157 2158 sbi->s_inode_readahead_blks = t; 2159 return count; 2160 } 2161 2162 static ssize_t sbi_ui_show(struct ext4_attr *a, 2163 struct ext4_sb_info *sbi, char *buf) 2164 { 2165 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2166 2167 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2168 } 2169 2170 static ssize_t sbi_ui_store(struct ext4_attr *a, 2171 struct ext4_sb_info *sbi, 2172 const char *buf, size_t count) 2173 { 2174 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2175 unsigned long t; 2176 2177 if (parse_strtoul(buf, 0xffffffff, &t)) 2178 return -EINVAL; 2179 *ui = t; 2180 return count; 2181 } 2182 2183 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2184 static struct ext4_attr ext4_attr_##_name = { \ 2185 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2186 .show = _show, \ 2187 .store = _store, \ 2188 .offset = offsetof(struct ext4_sb_info, _elname), \ 2189 } 2190 #define EXT4_ATTR(name, mode, show, store) \ 2191 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2192 2193 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2194 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2195 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2196 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2197 #define ATTR_LIST(name) &ext4_attr_##name.attr 2198 2199 EXT4_RO_ATTR(delayed_allocation_blocks); 2200 EXT4_RO_ATTR(session_write_kbytes); 2201 EXT4_RO_ATTR(lifetime_write_kbytes); 2202 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2203 inode_readahead_blks_store, s_inode_readahead_blks); 2204 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2205 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2206 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2207 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2208 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2209 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2210 2211 static struct attribute *ext4_attrs[] = { 2212 ATTR_LIST(delayed_allocation_blocks), 2213 ATTR_LIST(session_write_kbytes), 2214 ATTR_LIST(lifetime_write_kbytes), 2215 ATTR_LIST(inode_readahead_blks), 2216 ATTR_LIST(mb_stats), 2217 ATTR_LIST(mb_max_to_scan), 2218 ATTR_LIST(mb_min_to_scan), 2219 ATTR_LIST(mb_order2_req), 2220 ATTR_LIST(mb_stream_req), 2221 ATTR_LIST(mb_group_prealloc), 2222 NULL, 2223 }; 2224 2225 static ssize_t ext4_attr_show(struct kobject *kobj, 2226 struct attribute *attr, char *buf) 2227 { 2228 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2229 s_kobj); 2230 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2231 2232 return a->show ? a->show(a, sbi, buf) : 0; 2233 } 2234 2235 static ssize_t ext4_attr_store(struct kobject *kobj, 2236 struct attribute *attr, 2237 const char *buf, size_t len) 2238 { 2239 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2240 s_kobj); 2241 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2242 2243 return a->store ? a->store(a, sbi, buf, len) : 0; 2244 } 2245 2246 static void ext4_sb_release(struct kobject *kobj) 2247 { 2248 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2249 s_kobj); 2250 complete(&sbi->s_kobj_unregister); 2251 } 2252 2253 2254 static struct sysfs_ops ext4_attr_ops = { 2255 .show = ext4_attr_show, 2256 .store = ext4_attr_store, 2257 }; 2258 2259 static struct kobj_type ext4_ktype = { 2260 .default_attrs = ext4_attrs, 2261 .sysfs_ops = &ext4_attr_ops, 2262 .release = ext4_sb_release, 2263 }; 2264 2265 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2266 __releases(kernel_lock) 2267 __acquires(kernel_lock) 2268 { 2269 struct buffer_head *bh; 2270 struct ext4_super_block *es = NULL; 2271 struct ext4_sb_info *sbi; 2272 ext4_fsblk_t block; 2273 ext4_fsblk_t sb_block = get_sb_block(&data); 2274 ext4_fsblk_t logical_sb_block; 2275 unsigned long offset = 0; 2276 unsigned long journal_devnum = 0; 2277 unsigned long def_mount_opts; 2278 struct inode *root; 2279 char *cp; 2280 const char *descr; 2281 int ret = -EINVAL; 2282 int blocksize; 2283 unsigned int db_count; 2284 unsigned int i; 2285 int needs_recovery, has_huge_files; 2286 int features; 2287 __u64 blocks_count; 2288 int err; 2289 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2290 2291 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2292 if (!sbi) 2293 return -ENOMEM; 2294 2295 sbi->s_blockgroup_lock = 2296 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2297 if (!sbi->s_blockgroup_lock) { 2298 kfree(sbi); 2299 return -ENOMEM; 2300 } 2301 sb->s_fs_info = sbi; 2302 sbi->s_mount_opt = 0; 2303 sbi->s_resuid = EXT4_DEF_RESUID; 2304 sbi->s_resgid = EXT4_DEF_RESGID; 2305 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2306 sbi->s_sb_block = sb_block; 2307 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2308 sectors[1]); 2309 2310 unlock_kernel(); 2311 2312 /* Cleanup superblock name */ 2313 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2314 *cp = '!'; 2315 2316 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2317 if (!blocksize) { 2318 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2319 goto out_fail; 2320 } 2321 2322 /* 2323 * The ext4 superblock will not be buffer aligned for other than 1kB 2324 * block sizes. We need to calculate the offset from buffer start. 2325 */ 2326 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2327 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2328 offset = do_div(logical_sb_block, blocksize); 2329 } else { 2330 logical_sb_block = sb_block; 2331 } 2332 2333 if (!(bh = sb_bread(sb, logical_sb_block))) { 2334 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2335 goto out_fail; 2336 } 2337 /* 2338 * Note: s_es must be initialized as soon as possible because 2339 * some ext4 macro-instructions depend on its value 2340 */ 2341 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2342 sbi->s_es = es; 2343 sb->s_magic = le16_to_cpu(es->s_magic); 2344 if (sb->s_magic != EXT4_SUPER_MAGIC) 2345 goto cantfind_ext4; 2346 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2347 2348 /* Set defaults before we parse the mount options */ 2349 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2350 if (def_mount_opts & EXT4_DEFM_DEBUG) 2351 set_opt(sbi->s_mount_opt, DEBUG); 2352 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2353 set_opt(sbi->s_mount_opt, GRPID); 2354 if (def_mount_opts & EXT4_DEFM_UID16) 2355 set_opt(sbi->s_mount_opt, NO_UID32); 2356 #ifdef CONFIG_EXT4_FS_XATTR 2357 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2358 set_opt(sbi->s_mount_opt, XATTR_USER); 2359 #endif 2360 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2361 if (def_mount_opts & EXT4_DEFM_ACL) 2362 set_opt(sbi->s_mount_opt, POSIX_ACL); 2363 #endif 2364 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2365 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2366 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2367 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2368 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2369 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2370 2371 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2372 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2373 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2374 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2375 else 2376 set_opt(sbi->s_mount_opt, ERRORS_RO); 2377 2378 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2379 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2380 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2381 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2382 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2383 sbi->s_mb_history_max = default_mb_history_length; 2384 2385 set_opt(sbi->s_mount_opt, BARRIER); 2386 2387 /* 2388 * enable delayed allocation by default 2389 * Use -o nodelalloc to turn it off 2390 */ 2391 set_opt(sbi->s_mount_opt, DELALLOC); 2392 2393 if (!parse_options((char *) data, sb, &journal_devnum, 2394 &journal_ioprio, NULL, 0)) 2395 goto failed_mount; 2396 2397 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2398 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2399 2400 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2401 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2402 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2403 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2404 ext4_msg(sb, KERN_WARNING, 2405 "feature flags set on rev 0 fs, " 2406 "running e2fsck is recommended"); 2407 2408 /* 2409 * Check feature flags regardless of the revision level, since we 2410 * previously didn't change the revision level when setting the flags, 2411 * so there is a chance incompat flags are set on a rev 0 filesystem. 2412 */ 2413 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP); 2414 if (features) { 2415 ext4_msg(sb, KERN_ERR, 2416 "Couldn't mount because of " 2417 "unsupported optional features (%x)", 2418 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2419 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2420 goto failed_mount; 2421 } 2422 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP); 2423 if (!(sb->s_flags & MS_RDONLY) && features) { 2424 ext4_msg(sb, KERN_ERR, 2425 "Couldn't mount RDWR because of " 2426 "unsupported optional features (%x)", 2427 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2428 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2429 goto failed_mount; 2430 } 2431 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2432 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2433 if (has_huge_files) { 2434 /* 2435 * Large file size enabled file system can only be 2436 * mount if kernel is build with CONFIG_LBD 2437 */ 2438 if (sizeof(root->i_blocks) < sizeof(u64) && 2439 !(sb->s_flags & MS_RDONLY)) { 2440 ext4_msg(sb, KERN_ERR, "Filesystem with huge " 2441 "files cannot be mounted read-write " 2442 "without CONFIG_LBD"); 2443 goto failed_mount; 2444 } 2445 } 2446 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2447 2448 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2449 blocksize > EXT4_MAX_BLOCK_SIZE) { 2450 ext4_msg(sb, KERN_ERR, 2451 "Unsupported filesystem blocksize %d", blocksize); 2452 goto failed_mount; 2453 } 2454 2455 if (sb->s_blocksize != blocksize) { 2456 /* Validate the filesystem blocksize */ 2457 if (!sb_set_blocksize(sb, blocksize)) { 2458 ext4_msg(sb, KERN_ERR, "bad block size %d", 2459 blocksize); 2460 goto failed_mount; 2461 } 2462 2463 brelse(bh); 2464 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2465 offset = do_div(logical_sb_block, blocksize); 2466 bh = sb_bread(sb, logical_sb_block); 2467 if (!bh) { 2468 ext4_msg(sb, KERN_ERR, 2469 "Can't read superblock on 2nd try"); 2470 goto failed_mount; 2471 } 2472 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2473 sbi->s_es = es; 2474 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2475 ext4_msg(sb, KERN_ERR, 2476 "Magic mismatch, very weird!"); 2477 goto failed_mount; 2478 } 2479 } 2480 2481 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2482 has_huge_files); 2483 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2484 2485 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2486 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2487 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2488 } else { 2489 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2490 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2491 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2492 (!is_power_of_2(sbi->s_inode_size)) || 2493 (sbi->s_inode_size > blocksize)) { 2494 ext4_msg(sb, KERN_ERR, 2495 "unsupported inode size: %d", 2496 sbi->s_inode_size); 2497 goto failed_mount; 2498 } 2499 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2500 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2501 } 2502 2503 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2504 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2505 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2506 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2507 !is_power_of_2(sbi->s_desc_size)) { 2508 ext4_msg(sb, KERN_ERR, 2509 "unsupported descriptor size %lu", 2510 sbi->s_desc_size); 2511 goto failed_mount; 2512 } 2513 } else 2514 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2515 2516 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2517 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2518 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2519 goto cantfind_ext4; 2520 2521 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2522 if (sbi->s_inodes_per_block == 0) 2523 goto cantfind_ext4; 2524 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2525 sbi->s_inodes_per_block; 2526 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2527 sbi->s_sbh = bh; 2528 sbi->s_mount_state = le16_to_cpu(es->s_state); 2529 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2530 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2531 2532 for (i = 0; i < 4; i++) 2533 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2534 sbi->s_def_hash_version = es->s_def_hash_version; 2535 i = le32_to_cpu(es->s_flags); 2536 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2537 sbi->s_hash_unsigned = 3; 2538 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2539 #ifdef __CHAR_UNSIGNED__ 2540 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2541 sbi->s_hash_unsigned = 3; 2542 #else 2543 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2544 #endif 2545 sb->s_dirt = 1; 2546 } 2547 2548 if (sbi->s_blocks_per_group > blocksize * 8) { 2549 ext4_msg(sb, KERN_ERR, 2550 "#blocks per group too big: %lu", 2551 sbi->s_blocks_per_group); 2552 goto failed_mount; 2553 } 2554 if (sbi->s_inodes_per_group > blocksize * 8) { 2555 ext4_msg(sb, KERN_ERR, 2556 "#inodes per group too big: %lu", 2557 sbi->s_inodes_per_group); 2558 goto failed_mount; 2559 } 2560 2561 if (ext4_blocks_count(es) > 2562 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) { 2563 ext4_msg(sb, KERN_ERR, "filesystem" 2564 " too large to mount safely"); 2565 if (sizeof(sector_t) < 8) 2566 ext4_msg(sb, KERN_WARNING, "CONFIG_LBD not enabled"); 2567 goto failed_mount; 2568 } 2569 2570 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2571 goto cantfind_ext4; 2572 2573 /* check blocks count against device size */ 2574 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2575 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2576 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2577 "exceeds size of device (%llu blocks)", 2578 ext4_blocks_count(es), blocks_count); 2579 goto failed_mount; 2580 } 2581 2582 /* 2583 * It makes no sense for the first data block to be beyond the end 2584 * of the filesystem. 2585 */ 2586 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2587 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2588 "block %u is beyond end of filesystem (%llu)", 2589 le32_to_cpu(es->s_first_data_block), 2590 ext4_blocks_count(es)); 2591 goto failed_mount; 2592 } 2593 blocks_count = (ext4_blocks_count(es) - 2594 le32_to_cpu(es->s_first_data_block) + 2595 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2596 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2597 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2598 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2599 "(block count %llu, first data block %u, " 2600 "blocks per group %lu)", sbi->s_groups_count, 2601 ext4_blocks_count(es), 2602 le32_to_cpu(es->s_first_data_block), 2603 EXT4_BLOCKS_PER_GROUP(sb)); 2604 goto failed_mount; 2605 } 2606 sbi->s_groups_count = blocks_count; 2607 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2608 EXT4_DESC_PER_BLOCK(sb); 2609 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2610 GFP_KERNEL); 2611 if (sbi->s_group_desc == NULL) { 2612 ext4_msg(sb, KERN_ERR, "not enough memory"); 2613 goto failed_mount; 2614 } 2615 2616 #ifdef CONFIG_PROC_FS 2617 if (ext4_proc_root) 2618 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2619 #endif 2620 2621 bgl_lock_init(sbi->s_blockgroup_lock); 2622 2623 for (i = 0; i < db_count; i++) { 2624 block = descriptor_loc(sb, logical_sb_block, i); 2625 sbi->s_group_desc[i] = sb_bread(sb, block); 2626 if (!sbi->s_group_desc[i]) { 2627 ext4_msg(sb, KERN_ERR, 2628 "can't read group descriptor %d", i); 2629 db_count = i; 2630 goto failed_mount2; 2631 } 2632 } 2633 if (!ext4_check_descriptors(sb)) { 2634 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2635 goto failed_mount2; 2636 } 2637 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2638 if (!ext4_fill_flex_info(sb)) { 2639 ext4_msg(sb, KERN_ERR, 2640 "unable to initialize " 2641 "flex_bg meta info!"); 2642 goto failed_mount2; 2643 } 2644 2645 sbi->s_gdb_count = db_count; 2646 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2647 spin_lock_init(&sbi->s_next_gen_lock); 2648 2649 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2650 ext4_count_free_blocks(sb)); 2651 if (!err) { 2652 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2653 ext4_count_free_inodes(sb)); 2654 } 2655 if (!err) { 2656 err = percpu_counter_init(&sbi->s_dirs_counter, 2657 ext4_count_dirs(sb)); 2658 } 2659 if (!err) { 2660 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2661 } 2662 if (err) { 2663 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2664 goto failed_mount3; 2665 } 2666 2667 sbi->s_stripe = ext4_get_stripe_size(sbi); 2668 2669 /* 2670 * set up enough so that it can read an inode 2671 */ 2672 if (!test_opt(sb, NOLOAD) && 2673 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2674 sb->s_op = &ext4_sops; 2675 else 2676 sb->s_op = &ext4_nojournal_sops; 2677 sb->s_export_op = &ext4_export_ops; 2678 sb->s_xattr = ext4_xattr_handlers; 2679 #ifdef CONFIG_QUOTA 2680 sb->s_qcop = &ext4_qctl_operations; 2681 sb->dq_op = &ext4_quota_operations; 2682 #endif 2683 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2684 mutex_init(&sbi->s_orphan_lock); 2685 mutex_init(&sbi->s_resize_lock); 2686 2687 sb->s_root = NULL; 2688 2689 needs_recovery = (es->s_last_orphan != 0 || 2690 EXT4_HAS_INCOMPAT_FEATURE(sb, 2691 EXT4_FEATURE_INCOMPAT_RECOVER)); 2692 2693 /* 2694 * The first inode we look at is the journal inode. Don't try 2695 * root first: it may be modified in the journal! 2696 */ 2697 if (!test_opt(sb, NOLOAD) && 2698 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2699 if (ext4_load_journal(sb, es, journal_devnum)) 2700 goto failed_mount3; 2701 if (!(sb->s_flags & MS_RDONLY) && 2702 EXT4_SB(sb)->s_journal->j_failed_commit) { 2703 ext4_msg(sb, KERN_CRIT, "error: " 2704 "ext4_fill_super: Journal transaction " 2705 "%u is corrupt", 2706 EXT4_SB(sb)->s_journal->j_failed_commit); 2707 if (test_opt(sb, ERRORS_RO)) { 2708 ext4_msg(sb, KERN_CRIT, 2709 "Mounting filesystem read-only"); 2710 sb->s_flags |= MS_RDONLY; 2711 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2712 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2713 } 2714 if (test_opt(sb, ERRORS_PANIC)) { 2715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2716 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2717 ext4_commit_super(sb, 1); 2718 goto failed_mount4; 2719 } 2720 } 2721 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2722 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2723 ext4_msg(sb, KERN_ERR, "required journal recovery " 2724 "suppressed and not mounted read-only"); 2725 goto failed_mount4; 2726 } else { 2727 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2728 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2729 sbi->s_journal = NULL; 2730 needs_recovery = 0; 2731 goto no_journal; 2732 } 2733 2734 if (ext4_blocks_count(es) > 0xffffffffULL && 2735 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2736 JBD2_FEATURE_INCOMPAT_64BIT)) { 2737 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2738 goto failed_mount4; 2739 } 2740 2741 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2742 jbd2_journal_set_features(sbi->s_journal, 2743 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2744 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2745 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2746 jbd2_journal_set_features(sbi->s_journal, 2747 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2748 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2749 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2750 } else { 2751 jbd2_journal_clear_features(sbi->s_journal, 2752 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2753 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2754 } 2755 2756 /* We have now updated the journal if required, so we can 2757 * validate the data journaling mode. */ 2758 switch (test_opt(sb, DATA_FLAGS)) { 2759 case 0: 2760 /* No mode set, assume a default based on the journal 2761 * capabilities: ORDERED_DATA if the journal can 2762 * cope, else JOURNAL_DATA 2763 */ 2764 if (jbd2_journal_check_available_features 2765 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2766 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2767 else 2768 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2769 break; 2770 2771 case EXT4_MOUNT_ORDERED_DATA: 2772 case EXT4_MOUNT_WRITEBACK_DATA: 2773 if (!jbd2_journal_check_available_features 2774 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2775 ext4_msg(sb, KERN_ERR, "Journal does not support " 2776 "requested data journaling mode"); 2777 goto failed_mount4; 2778 } 2779 default: 2780 break; 2781 } 2782 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2783 2784 no_journal: 2785 2786 if (test_opt(sb, NOBH)) { 2787 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2788 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2789 "its supported only with writeback mode"); 2790 clear_opt(sbi->s_mount_opt, NOBH); 2791 } 2792 } 2793 /* 2794 * The jbd2_journal_load will have done any necessary log recovery, 2795 * so we can safely mount the rest of the filesystem now. 2796 */ 2797 2798 root = ext4_iget(sb, EXT4_ROOT_INO); 2799 if (IS_ERR(root)) { 2800 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2801 ret = PTR_ERR(root); 2802 goto failed_mount4; 2803 } 2804 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2805 iput(root); 2806 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2807 goto failed_mount4; 2808 } 2809 sb->s_root = d_alloc_root(root); 2810 if (!sb->s_root) { 2811 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2812 iput(root); 2813 ret = -ENOMEM; 2814 goto failed_mount4; 2815 } 2816 2817 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2818 2819 /* determine the minimum size of new large inodes, if present */ 2820 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2821 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2822 EXT4_GOOD_OLD_INODE_SIZE; 2823 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2824 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2825 if (sbi->s_want_extra_isize < 2826 le16_to_cpu(es->s_want_extra_isize)) 2827 sbi->s_want_extra_isize = 2828 le16_to_cpu(es->s_want_extra_isize); 2829 if (sbi->s_want_extra_isize < 2830 le16_to_cpu(es->s_min_extra_isize)) 2831 sbi->s_want_extra_isize = 2832 le16_to_cpu(es->s_min_extra_isize); 2833 } 2834 } 2835 /* Check if enough inode space is available */ 2836 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2837 sbi->s_inode_size) { 2838 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2839 EXT4_GOOD_OLD_INODE_SIZE; 2840 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2841 "available"); 2842 } 2843 2844 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 2845 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2846 "requested data journaling mode"); 2847 clear_opt(sbi->s_mount_opt, DELALLOC); 2848 } else if (test_opt(sb, DELALLOC)) 2849 ext4_msg(sb, KERN_INFO, "delayed allocation enabled"); 2850 2851 err = ext4_setup_system_zone(sb); 2852 if (err) { 2853 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2854 "zone (%d)\n", err); 2855 goto failed_mount4; 2856 } 2857 2858 ext4_ext_init(sb); 2859 err = ext4_mb_init(sb, needs_recovery); 2860 if (err) { 2861 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2862 err); 2863 goto failed_mount4; 2864 } 2865 2866 sbi->s_kobj.kset = ext4_kset; 2867 init_completion(&sbi->s_kobj_unregister); 2868 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2869 "%s", sb->s_id); 2870 if (err) { 2871 ext4_mb_release(sb); 2872 ext4_ext_release(sb); 2873 goto failed_mount4; 2874 }; 2875 2876 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2877 ext4_orphan_cleanup(sb, es); 2878 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2879 if (needs_recovery) { 2880 ext4_msg(sb, KERN_INFO, "recovery complete"); 2881 ext4_mark_recovery_complete(sb, es); 2882 } 2883 if (EXT4_SB(sb)->s_journal) { 2884 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2885 descr = " journalled data mode"; 2886 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2887 descr = " ordered data mode"; 2888 else 2889 descr = " writeback data mode"; 2890 } else 2891 descr = "out journal"; 2892 2893 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2894 2895 lock_kernel(); 2896 return 0; 2897 2898 cantfind_ext4: 2899 if (!silent) 2900 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2901 goto failed_mount; 2902 2903 failed_mount4: 2904 ext4_msg(sb, KERN_ERR, "mount failed"); 2905 ext4_release_system_zone(sb); 2906 if (sbi->s_journal) { 2907 jbd2_journal_destroy(sbi->s_journal); 2908 sbi->s_journal = NULL; 2909 } 2910 failed_mount3: 2911 if (sbi->s_flex_groups) { 2912 if (is_vmalloc_addr(sbi->s_flex_groups)) 2913 vfree(sbi->s_flex_groups); 2914 else 2915 kfree(sbi->s_flex_groups); 2916 } 2917 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2918 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2919 percpu_counter_destroy(&sbi->s_dirs_counter); 2920 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2921 failed_mount2: 2922 for (i = 0; i < db_count; i++) 2923 brelse(sbi->s_group_desc[i]); 2924 kfree(sbi->s_group_desc); 2925 failed_mount: 2926 if (sbi->s_proc) { 2927 remove_proc_entry(sb->s_id, ext4_proc_root); 2928 } 2929 #ifdef CONFIG_QUOTA 2930 for (i = 0; i < MAXQUOTAS; i++) 2931 kfree(sbi->s_qf_names[i]); 2932 #endif 2933 ext4_blkdev_remove(sbi); 2934 brelse(bh); 2935 out_fail: 2936 sb->s_fs_info = NULL; 2937 kfree(sbi->s_blockgroup_lock); 2938 kfree(sbi); 2939 lock_kernel(); 2940 return ret; 2941 } 2942 2943 /* 2944 * Setup any per-fs journal parameters now. We'll do this both on 2945 * initial mount, once the journal has been initialised but before we've 2946 * done any recovery; and again on any subsequent remount. 2947 */ 2948 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2949 { 2950 struct ext4_sb_info *sbi = EXT4_SB(sb); 2951 2952 journal->j_commit_interval = sbi->s_commit_interval; 2953 journal->j_min_batch_time = sbi->s_min_batch_time; 2954 journal->j_max_batch_time = sbi->s_max_batch_time; 2955 2956 spin_lock(&journal->j_state_lock); 2957 if (test_opt(sb, BARRIER)) 2958 journal->j_flags |= JBD2_BARRIER; 2959 else 2960 journal->j_flags &= ~JBD2_BARRIER; 2961 if (test_opt(sb, DATA_ERR_ABORT)) 2962 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2963 else 2964 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2965 spin_unlock(&journal->j_state_lock); 2966 } 2967 2968 static journal_t *ext4_get_journal(struct super_block *sb, 2969 unsigned int journal_inum) 2970 { 2971 struct inode *journal_inode; 2972 journal_t *journal; 2973 2974 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2975 2976 /* First, test for the existence of a valid inode on disk. Bad 2977 * things happen if we iget() an unused inode, as the subsequent 2978 * iput() will try to delete it. */ 2979 2980 journal_inode = ext4_iget(sb, journal_inum); 2981 if (IS_ERR(journal_inode)) { 2982 ext4_msg(sb, KERN_ERR, "no journal found"); 2983 return NULL; 2984 } 2985 if (!journal_inode->i_nlink) { 2986 make_bad_inode(journal_inode); 2987 iput(journal_inode); 2988 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 2989 return NULL; 2990 } 2991 2992 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 2993 journal_inode, journal_inode->i_size); 2994 if (!S_ISREG(journal_inode->i_mode)) { 2995 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 2996 iput(journal_inode); 2997 return NULL; 2998 } 2999 3000 journal = jbd2_journal_init_inode(journal_inode); 3001 if (!journal) { 3002 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3003 iput(journal_inode); 3004 return NULL; 3005 } 3006 journal->j_private = sb; 3007 ext4_init_journal_params(sb, journal); 3008 return journal; 3009 } 3010 3011 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3012 dev_t j_dev) 3013 { 3014 struct buffer_head *bh; 3015 journal_t *journal; 3016 ext4_fsblk_t start; 3017 ext4_fsblk_t len; 3018 int hblock, blocksize; 3019 ext4_fsblk_t sb_block; 3020 unsigned long offset; 3021 struct ext4_super_block *es; 3022 struct block_device *bdev; 3023 3024 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3025 3026 bdev = ext4_blkdev_get(j_dev, sb); 3027 if (bdev == NULL) 3028 return NULL; 3029 3030 if (bd_claim(bdev, sb)) { 3031 ext4_msg(sb, KERN_ERR, 3032 "failed to claim external journal device"); 3033 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3034 return NULL; 3035 } 3036 3037 blocksize = sb->s_blocksize; 3038 hblock = bdev_logical_block_size(bdev); 3039 if (blocksize < hblock) { 3040 ext4_msg(sb, KERN_ERR, 3041 "blocksize too small for journal device"); 3042 goto out_bdev; 3043 } 3044 3045 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3046 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3047 set_blocksize(bdev, blocksize); 3048 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3049 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3050 "external journal"); 3051 goto out_bdev; 3052 } 3053 3054 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3055 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3056 !(le32_to_cpu(es->s_feature_incompat) & 3057 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3058 ext4_msg(sb, KERN_ERR, "external journal has " 3059 "bad superblock"); 3060 brelse(bh); 3061 goto out_bdev; 3062 } 3063 3064 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3065 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3066 brelse(bh); 3067 goto out_bdev; 3068 } 3069 3070 len = ext4_blocks_count(es); 3071 start = sb_block + 1; 3072 brelse(bh); /* we're done with the superblock */ 3073 3074 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3075 start, len, blocksize); 3076 if (!journal) { 3077 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3078 goto out_bdev; 3079 } 3080 journal->j_private = sb; 3081 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3082 wait_on_buffer(journal->j_sb_buffer); 3083 if (!buffer_uptodate(journal->j_sb_buffer)) { 3084 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3085 goto out_journal; 3086 } 3087 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3088 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3089 "user (unsupported) - %d", 3090 be32_to_cpu(journal->j_superblock->s_nr_users)); 3091 goto out_journal; 3092 } 3093 EXT4_SB(sb)->journal_bdev = bdev; 3094 ext4_init_journal_params(sb, journal); 3095 return journal; 3096 3097 out_journal: 3098 jbd2_journal_destroy(journal); 3099 out_bdev: 3100 ext4_blkdev_put(bdev); 3101 return NULL; 3102 } 3103 3104 static int ext4_load_journal(struct super_block *sb, 3105 struct ext4_super_block *es, 3106 unsigned long journal_devnum) 3107 { 3108 journal_t *journal; 3109 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3110 dev_t journal_dev; 3111 int err = 0; 3112 int really_read_only; 3113 3114 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3115 3116 if (journal_devnum && 3117 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3118 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3119 "numbers have changed"); 3120 journal_dev = new_decode_dev(journal_devnum); 3121 } else 3122 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3123 3124 really_read_only = bdev_read_only(sb->s_bdev); 3125 3126 /* 3127 * Are we loading a blank journal or performing recovery after a 3128 * crash? For recovery, we need to check in advance whether we 3129 * can get read-write access to the device. 3130 */ 3131 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3132 if (sb->s_flags & MS_RDONLY) { 3133 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3134 "required on readonly filesystem"); 3135 if (really_read_only) { 3136 ext4_msg(sb, KERN_ERR, "write access " 3137 "unavailable, cannot proceed"); 3138 return -EROFS; 3139 } 3140 ext4_msg(sb, KERN_INFO, "write access will " 3141 "be enabled during recovery"); 3142 } 3143 } 3144 3145 if (journal_inum && journal_dev) { 3146 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3147 "and inode journals!"); 3148 return -EINVAL; 3149 } 3150 3151 if (journal_inum) { 3152 if (!(journal = ext4_get_journal(sb, journal_inum))) 3153 return -EINVAL; 3154 } else { 3155 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3156 return -EINVAL; 3157 } 3158 3159 if (journal->j_flags & JBD2_BARRIER) 3160 ext4_msg(sb, KERN_INFO, "barriers enabled"); 3161 else 3162 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3163 3164 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3165 err = jbd2_journal_update_format(journal); 3166 if (err) { 3167 ext4_msg(sb, KERN_ERR, "error updating journal"); 3168 jbd2_journal_destroy(journal); 3169 return err; 3170 } 3171 } 3172 3173 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3174 err = jbd2_journal_wipe(journal, !really_read_only); 3175 if (!err) 3176 err = jbd2_journal_load(journal); 3177 3178 if (err) { 3179 ext4_msg(sb, KERN_ERR, "error loading journal"); 3180 jbd2_journal_destroy(journal); 3181 return err; 3182 } 3183 3184 EXT4_SB(sb)->s_journal = journal; 3185 ext4_clear_journal_err(sb, es); 3186 3187 if (journal_devnum && 3188 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3189 es->s_journal_dev = cpu_to_le32(journal_devnum); 3190 3191 /* Make sure we flush the recovery flag to disk. */ 3192 ext4_commit_super(sb, 1); 3193 } 3194 3195 return 0; 3196 } 3197 3198 static int ext4_commit_super(struct super_block *sb, int sync) 3199 { 3200 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3201 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3202 int error = 0; 3203 3204 if (!sbh) 3205 return error; 3206 if (buffer_write_io_error(sbh)) { 3207 /* 3208 * Oh, dear. A previous attempt to write the 3209 * superblock failed. This could happen because the 3210 * USB device was yanked out. Or it could happen to 3211 * be a transient write error and maybe the block will 3212 * be remapped. Nothing we can do but to retry the 3213 * write and hope for the best. 3214 */ 3215 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3216 "superblock detected"); 3217 clear_buffer_write_io_error(sbh); 3218 set_buffer_uptodate(sbh); 3219 } 3220 es->s_wtime = cpu_to_le32(get_seconds()); 3221 es->s_kbytes_written = 3222 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3223 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3224 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3225 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3226 &EXT4_SB(sb)->s_freeblocks_counter)); 3227 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3228 &EXT4_SB(sb)->s_freeinodes_counter)); 3229 sb->s_dirt = 0; 3230 BUFFER_TRACE(sbh, "marking dirty"); 3231 mark_buffer_dirty(sbh); 3232 if (sync) { 3233 error = sync_dirty_buffer(sbh); 3234 if (error) 3235 return error; 3236 3237 error = buffer_write_io_error(sbh); 3238 if (error) { 3239 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3240 "superblock"); 3241 clear_buffer_write_io_error(sbh); 3242 set_buffer_uptodate(sbh); 3243 } 3244 } 3245 return error; 3246 } 3247 3248 /* 3249 * Have we just finished recovery? If so, and if we are mounting (or 3250 * remounting) the filesystem readonly, then we will end up with a 3251 * consistent fs on disk. Record that fact. 3252 */ 3253 static void ext4_mark_recovery_complete(struct super_block *sb, 3254 struct ext4_super_block *es) 3255 { 3256 journal_t *journal = EXT4_SB(sb)->s_journal; 3257 3258 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3259 BUG_ON(journal != NULL); 3260 return; 3261 } 3262 jbd2_journal_lock_updates(journal); 3263 if (jbd2_journal_flush(journal) < 0) 3264 goto out; 3265 3266 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3267 sb->s_flags & MS_RDONLY) { 3268 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3269 ext4_commit_super(sb, 1); 3270 } 3271 3272 out: 3273 jbd2_journal_unlock_updates(journal); 3274 } 3275 3276 /* 3277 * If we are mounting (or read-write remounting) a filesystem whose journal 3278 * has recorded an error from a previous lifetime, move that error to the 3279 * main filesystem now. 3280 */ 3281 static void ext4_clear_journal_err(struct super_block *sb, 3282 struct ext4_super_block *es) 3283 { 3284 journal_t *journal; 3285 int j_errno; 3286 const char *errstr; 3287 3288 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3289 3290 journal = EXT4_SB(sb)->s_journal; 3291 3292 /* 3293 * Now check for any error status which may have been recorded in the 3294 * journal by a prior ext4_error() or ext4_abort() 3295 */ 3296 3297 j_errno = jbd2_journal_errno(journal); 3298 if (j_errno) { 3299 char nbuf[16]; 3300 3301 errstr = ext4_decode_error(sb, j_errno, nbuf); 3302 ext4_warning(sb, __func__, "Filesystem error recorded " 3303 "from previous mount: %s", errstr); 3304 ext4_warning(sb, __func__, "Marking fs in need of " 3305 "filesystem check."); 3306 3307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3309 ext4_commit_super(sb, 1); 3310 3311 jbd2_journal_clear_err(journal); 3312 } 3313 } 3314 3315 /* 3316 * Force the running and committing transactions to commit, 3317 * and wait on the commit. 3318 */ 3319 int ext4_force_commit(struct super_block *sb) 3320 { 3321 journal_t *journal; 3322 int ret = 0; 3323 3324 if (sb->s_flags & MS_RDONLY) 3325 return 0; 3326 3327 journal = EXT4_SB(sb)->s_journal; 3328 if (journal) 3329 ret = ext4_journal_force_commit(journal); 3330 3331 return ret; 3332 } 3333 3334 static void ext4_write_super(struct super_block *sb) 3335 { 3336 ext4_commit_super(sb, 1); 3337 } 3338 3339 static int ext4_sync_fs(struct super_block *sb, int wait) 3340 { 3341 int ret = 0; 3342 tid_t target; 3343 3344 trace_mark(ext4_sync_fs, "dev %s wait %d", sb->s_id, wait); 3345 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) { 3346 if (wait) 3347 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target); 3348 } 3349 return ret; 3350 } 3351 3352 /* 3353 * LVM calls this function before a (read-only) snapshot is created. This 3354 * gives us a chance to flush the journal completely and mark the fs clean. 3355 */ 3356 static int ext4_freeze(struct super_block *sb) 3357 { 3358 int error = 0; 3359 journal_t *journal; 3360 3361 if (sb->s_flags & MS_RDONLY) 3362 return 0; 3363 3364 journal = EXT4_SB(sb)->s_journal; 3365 3366 /* Now we set up the journal barrier. */ 3367 jbd2_journal_lock_updates(journal); 3368 3369 /* 3370 * Don't clear the needs_recovery flag if we failed to flush 3371 * the journal. 3372 */ 3373 error = jbd2_journal_flush(journal); 3374 if (error < 0) { 3375 out: 3376 jbd2_journal_unlock_updates(journal); 3377 return error; 3378 } 3379 3380 /* Journal blocked and flushed, clear needs_recovery flag. */ 3381 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3382 error = ext4_commit_super(sb, 1); 3383 if (error) 3384 goto out; 3385 return 0; 3386 } 3387 3388 /* 3389 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3390 * flag here, even though the filesystem is not technically dirty yet. 3391 */ 3392 static int ext4_unfreeze(struct super_block *sb) 3393 { 3394 if (sb->s_flags & MS_RDONLY) 3395 return 0; 3396 3397 lock_super(sb); 3398 /* Reset the needs_recovery flag before the fs is unlocked. */ 3399 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3400 ext4_commit_super(sb, 1); 3401 unlock_super(sb); 3402 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3403 return 0; 3404 } 3405 3406 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3407 { 3408 struct ext4_super_block *es; 3409 struct ext4_sb_info *sbi = EXT4_SB(sb); 3410 ext4_fsblk_t n_blocks_count = 0; 3411 unsigned long old_sb_flags; 3412 struct ext4_mount_options old_opts; 3413 ext4_group_t g; 3414 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3415 int err; 3416 #ifdef CONFIG_QUOTA 3417 int i; 3418 #endif 3419 3420 /* Store the original options */ 3421 old_sb_flags = sb->s_flags; 3422 old_opts.s_mount_opt = sbi->s_mount_opt; 3423 old_opts.s_resuid = sbi->s_resuid; 3424 old_opts.s_resgid = sbi->s_resgid; 3425 old_opts.s_commit_interval = sbi->s_commit_interval; 3426 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3427 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3428 #ifdef CONFIG_QUOTA 3429 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3430 for (i = 0; i < MAXQUOTAS; i++) 3431 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3432 #endif 3433 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3434 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3435 3436 /* 3437 * Allow the "check" option to be passed as a remount option. 3438 */ 3439 if (!parse_options(data, sb, NULL, &journal_ioprio, 3440 &n_blocks_count, 1)) { 3441 err = -EINVAL; 3442 goto restore_opts; 3443 } 3444 3445 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) 3446 ext4_abort(sb, __func__, "Abort forced by user"); 3447 3448 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3449 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3450 3451 es = sbi->s_es; 3452 3453 if (sbi->s_journal) { 3454 ext4_init_journal_params(sb, sbi->s_journal); 3455 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3456 } 3457 3458 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3459 n_blocks_count > ext4_blocks_count(es)) { 3460 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) { 3461 err = -EROFS; 3462 goto restore_opts; 3463 } 3464 3465 if (*flags & MS_RDONLY) { 3466 /* 3467 * First of all, the unconditional stuff we have to do 3468 * to disable replay of the journal when we next remount 3469 */ 3470 sb->s_flags |= MS_RDONLY; 3471 3472 /* 3473 * OK, test if we are remounting a valid rw partition 3474 * readonly, and if so set the rdonly flag and then 3475 * mark the partition as valid again. 3476 */ 3477 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3478 (sbi->s_mount_state & EXT4_VALID_FS)) 3479 es->s_state = cpu_to_le16(sbi->s_mount_state); 3480 3481 if (sbi->s_journal) 3482 ext4_mark_recovery_complete(sb, es); 3483 } else { 3484 int ret; 3485 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3486 ~EXT4_FEATURE_RO_COMPAT_SUPP))) { 3487 ext4_msg(sb, KERN_WARNING, "couldn't " 3488 "remount RDWR because of unsupported " 3489 "optional features (%x)", 3490 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) & 3491 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3492 err = -EROFS; 3493 goto restore_opts; 3494 } 3495 3496 /* 3497 * Make sure the group descriptor checksums 3498 * are sane. If they aren't, refuse to remount r/w. 3499 */ 3500 for (g = 0; g < sbi->s_groups_count; g++) { 3501 struct ext4_group_desc *gdp = 3502 ext4_get_group_desc(sb, g, NULL); 3503 3504 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3505 ext4_msg(sb, KERN_ERR, 3506 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3507 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3508 le16_to_cpu(gdp->bg_checksum)); 3509 err = -EINVAL; 3510 goto restore_opts; 3511 } 3512 } 3513 3514 /* 3515 * If we have an unprocessed orphan list hanging 3516 * around from a previously readonly bdev mount, 3517 * require a full umount/remount for now. 3518 */ 3519 if (es->s_last_orphan) { 3520 ext4_msg(sb, KERN_WARNING, "Couldn't " 3521 "remount RDWR because of unprocessed " 3522 "orphan inode list. Please " 3523 "umount/remount instead"); 3524 err = -EINVAL; 3525 goto restore_opts; 3526 } 3527 3528 /* 3529 * Mounting a RDONLY partition read-write, so reread 3530 * and store the current valid flag. (It may have 3531 * been changed by e2fsck since we originally mounted 3532 * the partition.) 3533 */ 3534 if (sbi->s_journal) 3535 ext4_clear_journal_err(sb, es); 3536 sbi->s_mount_state = le16_to_cpu(es->s_state); 3537 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3538 goto restore_opts; 3539 if (!ext4_setup_super(sb, es, 0)) 3540 sb->s_flags &= ~MS_RDONLY; 3541 } 3542 } 3543 ext4_setup_system_zone(sb); 3544 if (sbi->s_journal == NULL) 3545 ext4_commit_super(sb, 1); 3546 3547 #ifdef CONFIG_QUOTA 3548 /* Release old quota file names */ 3549 for (i = 0; i < MAXQUOTAS; i++) 3550 if (old_opts.s_qf_names[i] && 3551 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3552 kfree(old_opts.s_qf_names[i]); 3553 #endif 3554 return 0; 3555 3556 restore_opts: 3557 sb->s_flags = old_sb_flags; 3558 sbi->s_mount_opt = old_opts.s_mount_opt; 3559 sbi->s_resuid = old_opts.s_resuid; 3560 sbi->s_resgid = old_opts.s_resgid; 3561 sbi->s_commit_interval = old_opts.s_commit_interval; 3562 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3563 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3564 #ifdef CONFIG_QUOTA 3565 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3566 for (i = 0; i < MAXQUOTAS; i++) { 3567 if (sbi->s_qf_names[i] && 3568 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3569 kfree(sbi->s_qf_names[i]); 3570 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3571 } 3572 #endif 3573 return err; 3574 } 3575 3576 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3577 { 3578 struct super_block *sb = dentry->d_sb; 3579 struct ext4_sb_info *sbi = EXT4_SB(sb); 3580 struct ext4_super_block *es = sbi->s_es; 3581 u64 fsid; 3582 3583 if (test_opt(sb, MINIX_DF)) { 3584 sbi->s_overhead_last = 0; 3585 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3586 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3587 ext4_fsblk_t overhead = 0; 3588 3589 /* 3590 * Compute the overhead (FS structures). This is constant 3591 * for a given filesystem unless the number of block groups 3592 * changes so we cache the previous value until it does. 3593 */ 3594 3595 /* 3596 * All of the blocks before first_data_block are 3597 * overhead 3598 */ 3599 overhead = le32_to_cpu(es->s_first_data_block); 3600 3601 /* 3602 * Add the overhead attributed to the superblock and 3603 * block group descriptors. If the sparse superblocks 3604 * feature is turned on, then not all groups have this. 3605 */ 3606 for (i = 0; i < ngroups; i++) { 3607 overhead += ext4_bg_has_super(sb, i) + 3608 ext4_bg_num_gdb(sb, i); 3609 cond_resched(); 3610 } 3611 3612 /* 3613 * Every block group has an inode bitmap, a block 3614 * bitmap, and an inode table. 3615 */ 3616 overhead += ngroups * (2 + sbi->s_itb_per_group); 3617 sbi->s_overhead_last = overhead; 3618 smp_wmb(); 3619 sbi->s_blocks_last = ext4_blocks_count(es); 3620 } 3621 3622 buf->f_type = EXT4_SUPER_MAGIC; 3623 buf->f_bsize = sb->s_blocksize; 3624 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3625 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3626 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3627 ext4_free_blocks_count_set(es, buf->f_bfree); 3628 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3629 if (buf->f_bfree < ext4_r_blocks_count(es)) 3630 buf->f_bavail = 0; 3631 buf->f_files = le32_to_cpu(es->s_inodes_count); 3632 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3633 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3634 buf->f_namelen = EXT4_NAME_LEN; 3635 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3636 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3637 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3638 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3639 3640 return 0; 3641 } 3642 3643 /* Helper function for writing quotas on sync - we need to start transaction 3644 * before quota file is locked for write. Otherwise the are possible deadlocks: 3645 * Process 1 Process 2 3646 * ext4_create() quota_sync() 3647 * jbd2_journal_start() write_dquot() 3648 * vfs_dq_init() down(dqio_mutex) 3649 * down(dqio_mutex) jbd2_journal_start() 3650 * 3651 */ 3652 3653 #ifdef CONFIG_QUOTA 3654 3655 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3656 { 3657 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3658 } 3659 3660 static int ext4_write_dquot(struct dquot *dquot) 3661 { 3662 int ret, err; 3663 handle_t *handle; 3664 struct inode *inode; 3665 3666 inode = dquot_to_inode(dquot); 3667 handle = ext4_journal_start(inode, 3668 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3669 if (IS_ERR(handle)) 3670 return PTR_ERR(handle); 3671 ret = dquot_commit(dquot); 3672 err = ext4_journal_stop(handle); 3673 if (!ret) 3674 ret = err; 3675 return ret; 3676 } 3677 3678 static int ext4_acquire_dquot(struct dquot *dquot) 3679 { 3680 int ret, err; 3681 handle_t *handle; 3682 3683 handle = ext4_journal_start(dquot_to_inode(dquot), 3684 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3685 if (IS_ERR(handle)) 3686 return PTR_ERR(handle); 3687 ret = dquot_acquire(dquot); 3688 err = ext4_journal_stop(handle); 3689 if (!ret) 3690 ret = err; 3691 return ret; 3692 } 3693 3694 static int ext4_release_dquot(struct dquot *dquot) 3695 { 3696 int ret, err; 3697 handle_t *handle; 3698 3699 handle = ext4_journal_start(dquot_to_inode(dquot), 3700 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3701 if (IS_ERR(handle)) { 3702 /* Release dquot anyway to avoid endless cycle in dqput() */ 3703 dquot_release(dquot); 3704 return PTR_ERR(handle); 3705 } 3706 ret = dquot_release(dquot); 3707 err = ext4_journal_stop(handle); 3708 if (!ret) 3709 ret = err; 3710 return ret; 3711 } 3712 3713 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3714 { 3715 /* Are we journaling quotas? */ 3716 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3717 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3718 dquot_mark_dquot_dirty(dquot); 3719 return ext4_write_dquot(dquot); 3720 } else { 3721 return dquot_mark_dquot_dirty(dquot); 3722 } 3723 } 3724 3725 static int ext4_write_info(struct super_block *sb, int type) 3726 { 3727 int ret, err; 3728 handle_t *handle; 3729 3730 /* Data block + inode block */ 3731 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3732 if (IS_ERR(handle)) 3733 return PTR_ERR(handle); 3734 ret = dquot_commit_info(sb, type); 3735 err = ext4_journal_stop(handle); 3736 if (!ret) 3737 ret = err; 3738 return ret; 3739 } 3740 3741 /* 3742 * Turn on quotas during mount time - we need to find 3743 * the quota file and such... 3744 */ 3745 static int ext4_quota_on_mount(struct super_block *sb, int type) 3746 { 3747 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3748 EXT4_SB(sb)->s_jquota_fmt, type); 3749 } 3750 3751 /* 3752 * Standard function to be called on quota_on 3753 */ 3754 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3755 char *name, int remount) 3756 { 3757 int err; 3758 struct path path; 3759 3760 if (!test_opt(sb, QUOTA)) 3761 return -EINVAL; 3762 /* When remounting, no checks are needed and in fact, name is NULL */ 3763 if (remount) 3764 return vfs_quota_on(sb, type, format_id, name, remount); 3765 3766 err = kern_path(name, LOOKUP_FOLLOW, &path); 3767 if (err) 3768 return err; 3769 3770 /* Quotafile not on the same filesystem? */ 3771 if (path.mnt->mnt_sb != sb) { 3772 path_put(&path); 3773 return -EXDEV; 3774 } 3775 /* Journaling quota? */ 3776 if (EXT4_SB(sb)->s_qf_names[type]) { 3777 /* Quotafile not in fs root? */ 3778 if (path.dentry->d_parent != sb->s_root) 3779 ext4_msg(sb, KERN_WARNING, 3780 "Quota file not on filesystem root. " 3781 "Journaled quota will not work"); 3782 } 3783 3784 /* 3785 * When we journal data on quota file, we have to flush journal to see 3786 * all updates to the file when we bypass pagecache... 3787 */ 3788 if (EXT4_SB(sb)->s_journal && 3789 ext4_should_journal_data(path.dentry->d_inode)) { 3790 /* 3791 * We don't need to lock updates but journal_flush() could 3792 * otherwise be livelocked... 3793 */ 3794 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3795 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3796 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3797 if (err) { 3798 path_put(&path); 3799 return err; 3800 } 3801 } 3802 3803 err = vfs_quota_on_path(sb, type, format_id, &path); 3804 path_put(&path); 3805 return err; 3806 } 3807 3808 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3809 * acquiring the locks... As quota files are never truncated and quota code 3810 * itself serializes the operations (and noone else should touch the files) 3811 * we don't have to be afraid of races */ 3812 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3813 size_t len, loff_t off) 3814 { 3815 struct inode *inode = sb_dqopt(sb)->files[type]; 3816 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3817 int err = 0; 3818 int offset = off & (sb->s_blocksize - 1); 3819 int tocopy; 3820 size_t toread; 3821 struct buffer_head *bh; 3822 loff_t i_size = i_size_read(inode); 3823 3824 if (off > i_size) 3825 return 0; 3826 if (off+len > i_size) 3827 len = i_size-off; 3828 toread = len; 3829 while (toread > 0) { 3830 tocopy = sb->s_blocksize - offset < toread ? 3831 sb->s_blocksize - offset : toread; 3832 bh = ext4_bread(NULL, inode, blk, 0, &err); 3833 if (err) 3834 return err; 3835 if (!bh) /* A hole? */ 3836 memset(data, 0, tocopy); 3837 else 3838 memcpy(data, bh->b_data+offset, tocopy); 3839 brelse(bh); 3840 offset = 0; 3841 toread -= tocopy; 3842 data += tocopy; 3843 blk++; 3844 } 3845 return len; 3846 } 3847 3848 /* Write to quotafile (we know the transaction is already started and has 3849 * enough credits) */ 3850 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3851 const char *data, size_t len, loff_t off) 3852 { 3853 struct inode *inode = sb_dqopt(sb)->files[type]; 3854 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3855 int err = 0; 3856 int offset = off & (sb->s_blocksize - 1); 3857 int tocopy; 3858 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3859 size_t towrite = len; 3860 struct buffer_head *bh; 3861 handle_t *handle = journal_current_handle(); 3862 3863 if (EXT4_SB(sb)->s_journal && !handle) { 3864 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3865 " cancelled because transaction is not started", 3866 (unsigned long long)off, (unsigned long long)len); 3867 return -EIO; 3868 } 3869 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3870 while (towrite > 0) { 3871 tocopy = sb->s_blocksize - offset < towrite ? 3872 sb->s_blocksize - offset : towrite; 3873 bh = ext4_bread(handle, inode, blk, 1, &err); 3874 if (!bh) 3875 goto out; 3876 if (journal_quota) { 3877 err = ext4_journal_get_write_access(handle, bh); 3878 if (err) { 3879 brelse(bh); 3880 goto out; 3881 } 3882 } 3883 lock_buffer(bh); 3884 memcpy(bh->b_data+offset, data, tocopy); 3885 flush_dcache_page(bh->b_page); 3886 unlock_buffer(bh); 3887 if (journal_quota) 3888 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3889 else { 3890 /* Always do at least ordered writes for quotas */ 3891 err = ext4_jbd2_file_inode(handle, inode); 3892 mark_buffer_dirty(bh); 3893 } 3894 brelse(bh); 3895 if (err) 3896 goto out; 3897 offset = 0; 3898 towrite -= tocopy; 3899 data += tocopy; 3900 blk++; 3901 } 3902 out: 3903 if (len == towrite) { 3904 mutex_unlock(&inode->i_mutex); 3905 return err; 3906 } 3907 if (inode->i_size < off+len-towrite) { 3908 i_size_write(inode, off+len-towrite); 3909 EXT4_I(inode)->i_disksize = inode->i_size; 3910 } 3911 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3912 ext4_mark_inode_dirty(handle, inode); 3913 mutex_unlock(&inode->i_mutex); 3914 return len - towrite; 3915 } 3916 3917 #endif 3918 3919 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3920 const char *dev_name, void *data, struct vfsmount *mnt) 3921 { 3922 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3923 } 3924 3925 static struct file_system_type ext4_fs_type = { 3926 .owner = THIS_MODULE, 3927 .name = "ext4", 3928 .get_sb = ext4_get_sb, 3929 .kill_sb = kill_block_super, 3930 .fs_flags = FS_REQUIRES_DEV, 3931 }; 3932 3933 #ifdef CONFIG_EXT4DEV_COMPAT 3934 static int ext4dev_get_sb(struct file_system_type *fs_type, int flags, 3935 const char *dev_name, void *data,struct vfsmount *mnt) 3936 { 3937 printk(KERN_WARNING "EXT4-fs (%s): Update your userspace programs " 3938 "to mount using ext4\n", dev_name); 3939 printk(KERN_WARNING "EXT4-fs (%s): ext4dev backwards compatibility " 3940 "will go away by 2.6.31\n", dev_name); 3941 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3942 } 3943 3944 static struct file_system_type ext4dev_fs_type = { 3945 .owner = THIS_MODULE, 3946 .name = "ext4dev", 3947 .get_sb = ext4dev_get_sb, 3948 .kill_sb = kill_block_super, 3949 .fs_flags = FS_REQUIRES_DEV, 3950 }; 3951 MODULE_ALIAS("ext4dev"); 3952 #endif 3953 3954 static int __init init_ext4_fs(void) 3955 { 3956 int err; 3957 3958 err = init_ext4_system_zone(); 3959 if (err) 3960 return err; 3961 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 3962 if (!ext4_kset) 3963 goto out4; 3964 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3965 err = init_ext4_mballoc(); 3966 if (err) 3967 goto out3; 3968 3969 err = init_ext4_xattr(); 3970 if (err) 3971 goto out2; 3972 err = init_inodecache(); 3973 if (err) 3974 goto out1; 3975 err = register_filesystem(&ext4_fs_type); 3976 if (err) 3977 goto out; 3978 #ifdef CONFIG_EXT4DEV_COMPAT 3979 err = register_filesystem(&ext4dev_fs_type); 3980 if (err) { 3981 unregister_filesystem(&ext4_fs_type); 3982 goto out; 3983 } 3984 #endif 3985 return 0; 3986 out: 3987 destroy_inodecache(); 3988 out1: 3989 exit_ext4_xattr(); 3990 out2: 3991 exit_ext4_mballoc(); 3992 out3: 3993 remove_proc_entry("fs/ext4", NULL); 3994 kset_unregister(ext4_kset); 3995 out4: 3996 exit_ext4_system_zone(); 3997 return err; 3998 } 3999 4000 static void __exit exit_ext4_fs(void) 4001 { 4002 unregister_filesystem(&ext4_fs_type); 4003 #ifdef CONFIG_EXT4DEV_COMPAT 4004 unregister_filesystem(&ext4dev_fs_type); 4005 #endif 4006 destroy_inodecache(); 4007 exit_ext4_xattr(); 4008 exit_ext4_mballoc(); 4009 remove_proc_entry("fs/ext4", NULL); 4010 kset_unregister(ext4_kset); 4011 exit_ext4_system_zone(); 4012 } 4013 4014 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4015 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4016 MODULE_LICENSE("GPL"); 4017 module_init(init_ext4_fs) 4018 module_exit(exit_ext4_fs) 4019