1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 82 /* 83 * Lock ordering 84 * 85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 86 * i_mmap_rwsem (inode->i_mmap_rwsem)! 87 * 88 * page fault path: 89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 90 * page lock -> i_data_sem (rw) 91 * 92 * buffered write path: 93 * sb_start_write -> i_mutex -> mmap_sem 94 * sb_start_write -> i_mutex -> transaction start -> page lock -> 95 * i_data_sem (rw) 96 * 97 * truncate: 98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 99 * i_mmap_rwsem (w) -> page lock 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * transaction start -> i_data_sem (rw) 102 * 103 * direct IO: 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 106 * transaction start -> i_data_sem (rw) 107 * 108 * writepages: 109 * transaction start -> page lock(s) -> i_data_sem (rw) 110 */ 111 112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 113 static struct file_system_type ext2_fs_type = { 114 .owner = THIS_MODULE, 115 .name = "ext2", 116 .mount = ext4_mount, 117 .kill_sb = kill_block_super, 118 .fs_flags = FS_REQUIRES_DEV, 119 }; 120 MODULE_ALIAS_FS("ext2"); 121 MODULE_ALIAS("ext2"); 122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 123 #else 124 #define IS_EXT2_SB(sb) (0) 125 #endif 126 127 128 static struct file_system_type ext3_fs_type = { 129 .owner = THIS_MODULE, 130 .name = "ext3", 131 .mount = ext4_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("ext3"); 136 MODULE_ALIAS("ext3"); 137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 138 139 static int ext4_verify_csum_type(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!ext4_has_feature_metadata_csum(sb)) 143 return 1; 144 145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 146 } 147 148 static __le32 ext4_superblock_csum(struct super_block *sb, 149 struct ext4_super_block *es) 150 { 151 struct ext4_sb_info *sbi = EXT4_SB(sb); 152 int offset = offsetof(struct ext4_super_block, s_checksum); 153 __u32 csum; 154 155 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 156 157 return cpu_to_le32(csum); 158 } 159 160 static int ext4_superblock_csum_verify(struct super_block *sb, 161 struct ext4_super_block *es) 162 { 163 if (!ext4_has_metadata_csum(sb)) 164 return 1; 165 166 return es->s_checksum == ext4_superblock_csum(sb, es); 167 } 168 169 void ext4_superblock_csum_set(struct super_block *sb) 170 { 171 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 172 173 if (!ext4_has_metadata_csum(sb)) 174 return; 175 176 es->s_checksum = ext4_superblock_csum(sb, es); 177 } 178 179 void *ext4_kvmalloc(size_t size, gfp_t flags) 180 { 181 void *ret; 182 183 ret = kmalloc(size, flags | __GFP_NOWARN); 184 if (!ret) 185 ret = __vmalloc(size, flags, PAGE_KERNEL); 186 return ret; 187 } 188 189 void *ext4_kvzalloc(size_t size, gfp_t flags) 190 { 191 void *ret; 192 193 ret = kzalloc(size, flags | __GFP_NOWARN); 194 if (!ret) 195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 196 return ret; 197 } 198 199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 200 struct ext4_group_desc *bg) 201 { 202 return le32_to_cpu(bg->bg_block_bitmap_lo) | 203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 205 } 206 207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_table_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 221 } 222 223 __u32 ext4_free_group_clusters(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 229 } 230 231 __u32 ext4_free_inodes_count(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_used_dirs_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_itable_unused_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_itable_unused_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 253 } 254 255 void ext4_block_bitmap_set(struct super_block *sb, 256 struct ext4_group_desc *bg, ext4_fsblk_t blk) 257 { 258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 261 } 262 263 void ext4_inode_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_table_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_free_group_clusters_set(struct super_block *sb, 280 struct ext4_group_desc *bg, __u32 count) 281 { 282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 285 } 286 287 void ext4_free_inodes_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_used_dirs_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_itable_unused_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 309 } 310 311 312 static void __save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 316 317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 318 if (bdev_read_only(sb->s_bdev)) 319 return; 320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 321 es->s_last_error_time = cpu_to_le32(get_seconds()); 322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 323 es->s_last_error_line = cpu_to_le32(line); 324 if (!es->s_first_error_time) { 325 es->s_first_error_time = es->s_last_error_time; 326 strncpy(es->s_first_error_func, func, 327 sizeof(es->s_first_error_func)); 328 es->s_first_error_line = cpu_to_le32(line); 329 es->s_first_error_ino = es->s_last_error_ino; 330 es->s_first_error_block = es->s_last_error_block; 331 } 332 /* 333 * Start the daily error reporting function if it hasn't been 334 * started already 335 */ 336 if (!es->s_error_count) 337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 338 le32_add_cpu(&es->s_error_count, 1); 339 } 340 341 static void save_error_info(struct super_block *sb, const char *func, 342 unsigned int line) 343 { 344 __save_error_info(sb, func, line); 345 ext4_commit_super(sb, 1); 346 } 347 348 /* 349 * The del_gendisk() function uninitializes the disk-specific data 350 * structures, including the bdi structure, without telling anyone 351 * else. Once this happens, any attempt to call mark_buffer_dirty() 352 * (for example, by ext4_commit_super), will cause a kernel OOPS. 353 * This is a kludge to prevent these oops until we can put in a proper 354 * hook in del_gendisk() to inform the VFS and file system layers. 355 */ 356 static int block_device_ejected(struct super_block *sb) 357 { 358 struct inode *bd_inode = sb->s_bdev->bd_inode; 359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 360 361 return bdi->dev == NULL; 362 } 363 364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 365 { 366 struct super_block *sb = journal->j_private; 367 struct ext4_sb_info *sbi = EXT4_SB(sb); 368 int error = is_journal_aborted(journal); 369 struct ext4_journal_cb_entry *jce; 370 371 BUG_ON(txn->t_state == T_FINISHED); 372 spin_lock(&sbi->s_md_lock); 373 while (!list_empty(&txn->t_private_list)) { 374 jce = list_entry(txn->t_private_list.next, 375 struct ext4_journal_cb_entry, jce_list); 376 list_del_init(&jce->jce_list); 377 spin_unlock(&sbi->s_md_lock); 378 jce->jce_func(sb, jce, error); 379 spin_lock(&sbi->s_md_lock); 380 } 381 spin_unlock(&sbi->s_md_lock); 382 } 383 384 /* Deal with the reporting of failure conditions on a filesystem such as 385 * inconsistencies detected or read IO failures. 386 * 387 * On ext2, we can store the error state of the filesystem in the 388 * superblock. That is not possible on ext4, because we may have other 389 * write ordering constraints on the superblock which prevent us from 390 * writing it out straight away; and given that the journal is about to 391 * be aborted, we can't rely on the current, or future, transactions to 392 * write out the superblock safely. 393 * 394 * We'll just use the jbd2_journal_abort() error code to record an error in 395 * the journal instead. On recovery, the journal will complain about 396 * that error until we've noted it down and cleared it. 397 */ 398 399 static void ext4_handle_error(struct super_block *sb) 400 { 401 if (sb->s_flags & MS_RDONLY) 402 return; 403 404 if (!test_opt(sb, ERRORS_CONT)) { 405 journal_t *journal = EXT4_SB(sb)->s_journal; 406 407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 408 if (journal) 409 jbd2_journal_abort(journal, -EIO); 410 } 411 if (test_opt(sb, ERRORS_RO)) { 412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 413 /* 414 * Make sure updated value of ->s_mount_flags will be visible 415 * before ->s_flags update 416 */ 417 smp_wmb(); 418 sb->s_flags |= MS_RDONLY; 419 } 420 if (test_opt(sb, ERRORS_PANIC)) { 421 if (EXT4_SB(sb)->s_journal && 422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 423 return; 424 panic("EXT4-fs (device %s): panic forced after error\n", 425 sb->s_id); 426 } 427 } 428 429 #define ext4_error_ratelimit(sb) \ 430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 431 "EXT4-fs error") 432 433 void __ext4_error(struct super_block *sb, const char *function, 434 unsigned int line, const char *fmt, ...) 435 { 436 struct va_format vaf; 437 va_list args; 438 439 if (ext4_error_ratelimit(sb)) { 440 va_start(args, fmt); 441 vaf.fmt = fmt; 442 vaf.va = &args; 443 printk(KERN_CRIT 444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 445 sb->s_id, function, line, current->comm, &vaf); 446 va_end(args); 447 } 448 save_error_info(sb, function, line); 449 ext4_handle_error(sb); 450 } 451 452 void __ext4_error_inode(struct inode *inode, const char *function, 453 unsigned int line, ext4_fsblk_t block, 454 const char *fmt, ...) 455 { 456 va_list args; 457 struct va_format vaf; 458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 459 460 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 461 es->s_last_error_block = cpu_to_le64(block); 462 if (ext4_error_ratelimit(inode->i_sb)) { 463 va_start(args, fmt); 464 vaf.fmt = fmt; 465 vaf.va = &args; 466 if (block) 467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 468 "inode #%lu: block %llu: comm %s: %pV\n", 469 inode->i_sb->s_id, function, line, inode->i_ino, 470 block, current->comm, &vaf); 471 else 472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 473 "inode #%lu: comm %s: %pV\n", 474 inode->i_sb->s_id, function, line, inode->i_ino, 475 current->comm, &vaf); 476 va_end(args); 477 } 478 save_error_info(inode->i_sb, function, line); 479 ext4_handle_error(inode->i_sb); 480 } 481 482 void __ext4_error_file(struct file *file, const char *function, 483 unsigned int line, ext4_fsblk_t block, 484 const char *fmt, ...) 485 { 486 va_list args; 487 struct va_format vaf; 488 struct ext4_super_block *es; 489 struct inode *inode = file_inode(file); 490 char pathname[80], *path; 491 492 es = EXT4_SB(inode->i_sb)->s_es; 493 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 494 if (ext4_error_ratelimit(inode->i_sb)) { 495 path = file_path(file, pathname, sizeof(pathname)); 496 if (IS_ERR(path)) 497 path = "(unknown)"; 498 va_start(args, fmt); 499 vaf.fmt = fmt; 500 vaf.va = &args; 501 if (block) 502 printk(KERN_CRIT 503 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 504 "block %llu: comm %s: path %s: %pV\n", 505 inode->i_sb->s_id, function, line, inode->i_ino, 506 block, current->comm, path, &vaf); 507 else 508 printk(KERN_CRIT 509 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 510 "comm %s: path %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, path, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 const char *ext4_decode_error(struct super_block *sb, int errno, 520 char nbuf[16]) 521 { 522 char *errstr = NULL; 523 524 switch (errno) { 525 case -EFSCORRUPTED: 526 errstr = "Corrupt filesystem"; 527 break; 528 case -EFSBADCRC: 529 errstr = "Filesystem failed CRC"; 530 break; 531 case -EIO: 532 errstr = "IO failure"; 533 break; 534 case -ENOMEM: 535 errstr = "Out of memory"; 536 break; 537 case -EROFS: 538 if (!sb || (EXT4_SB(sb)->s_journal && 539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 540 errstr = "Journal has aborted"; 541 else 542 errstr = "Readonly filesystem"; 543 break; 544 default: 545 /* If the caller passed in an extra buffer for unknown 546 * errors, textualise them now. Else we just return 547 * NULL. */ 548 if (nbuf) { 549 /* Check for truncated error codes... */ 550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 551 errstr = nbuf; 552 } 553 break; 554 } 555 556 return errstr; 557 } 558 559 /* __ext4_std_error decodes expected errors from journaling functions 560 * automatically and invokes the appropriate error response. */ 561 562 void __ext4_std_error(struct super_block *sb, const char *function, 563 unsigned int line, int errno) 564 { 565 char nbuf[16]; 566 const char *errstr; 567 568 /* Special case: if the error is EROFS, and we're not already 569 * inside a transaction, then there's really no point in logging 570 * an error. */ 571 if (errno == -EROFS && journal_current_handle() == NULL && 572 (sb->s_flags & MS_RDONLY)) 573 return; 574 575 if (ext4_error_ratelimit(sb)) { 576 errstr = ext4_decode_error(sb, errno, nbuf); 577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 578 sb->s_id, function, line, errstr); 579 } 580 581 save_error_info(sb, function, line); 582 ext4_handle_error(sb); 583 } 584 585 /* 586 * ext4_abort is a much stronger failure handler than ext4_error. The 587 * abort function may be used to deal with unrecoverable failures such 588 * as journal IO errors or ENOMEM at a critical moment in log management. 589 * 590 * We unconditionally force the filesystem into an ABORT|READONLY state, 591 * unless the error response on the fs has been set to panic in which 592 * case we take the easy way out and panic immediately. 593 */ 594 595 void __ext4_abort(struct super_block *sb, const char *function, 596 unsigned int line, const char *fmt, ...) 597 { 598 va_list args; 599 600 save_error_info(sb, function, line); 601 va_start(args, fmt); 602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 603 function, line); 604 vprintk(fmt, args); 605 printk("\n"); 606 va_end(args); 607 608 if ((sb->s_flags & MS_RDONLY) == 0) { 609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 611 /* 612 * Make sure updated value of ->s_mount_flags will be visible 613 * before ->s_flags update 614 */ 615 smp_wmb(); 616 sb->s_flags |= MS_RDONLY; 617 if (EXT4_SB(sb)->s_journal) 618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 619 save_error_info(sb, function, line); 620 } 621 if (test_opt(sb, ERRORS_PANIC)) { 622 if (EXT4_SB(sb)->s_journal && 623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 624 return; 625 panic("EXT4-fs panic from previous error\n"); 626 } 627 } 628 629 void __ext4_msg(struct super_block *sb, 630 const char *prefix, const char *fmt, ...) 631 { 632 struct va_format vaf; 633 va_list args; 634 635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 636 return; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 642 va_end(args); 643 } 644 645 #define ext4_warning_ratelimit(sb) \ 646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 647 "EXT4-fs warning") 648 649 void __ext4_warning(struct super_block *sb, const char *function, 650 unsigned int line, const char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 if (!ext4_warning_ratelimit(sb)) 656 return; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 662 sb->s_id, function, line, &vaf); 663 va_end(args); 664 } 665 666 void __ext4_warning_inode(const struct inode *inode, const char *function, 667 unsigned int line, const char *fmt, ...) 668 { 669 struct va_format vaf; 670 va_list args; 671 672 if (!ext4_warning_ratelimit(inode->i_sb)) 673 return; 674 675 va_start(args, fmt); 676 vaf.fmt = fmt; 677 vaf.va = &args; 678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 680 function, line, inode->i_ino, current->comm, &vaf); 681 va_end(args); 682 } 683 684 void __ext4_grp_locked_error(const char *function, unsigned int line, 685 struct super_block *sb, ext4_group_t grp, 686 unsigned long ino, ext4_fsblk_t block, 687 const char *fmt, ...) 688 __releases(bitlock) 689 __acquires(bitlock) 690 { 691 struct va_format vaf; 692 va_list args; 693 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 694 695 es->s_last_error_ino = cpu_to_le32(ino); 696 es->s_last_error_block = cpu_to_le64(block); 697 __save_error_info(sb, function, line); 698 699 if (ext4_error_ratelimit(sb)) { 700 va_start(args, fmt); 701 vaf.fmt = fmt; 702 vaf.va = &args; 703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 704 sb->s_id, function, line, grp); 705 if (ino) 706 printk(KERN_CONT "inode %lu: ", ino); 707 if (block) 708 printk(KERN_CONT "block %llu:", 709 (unsigned long long) block); 710 printk(KERN_CONT "%pV\n", &vaf); 711 va_end(args); 712 } 713 714 if (test_opt(sb, ERRORS_CONT)) { 715 ext4_commit_super(sb, 0); 716 return; 717 } 718 719 ext4_unlock_group(sb, grp); 720 ext4_handle_error(sb); 721 /* 722 * We only get here in the ERRORS_RO case; relocking the group 723 * may be dangerous, but nothing bad will happen since the 724 * filesystem will have already been marked read/only and the 725 * journal has been aborted. We return 1 as a hint to callers 726 * who might what to use the return value from 727 * ext4_grp_locked_error() to distinguish between the 728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 729 * aggressively from the ext4 function in question, with a 730 * more appropriate error code. 731 */ 732 ext4_lock_group(sb, grp); 733 return; 734 } 735 736 void ext4_update_dynamic_rev(struct super_block *sb) 737 { 738 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 739 740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 741 return; 742 743 ext4_warning(sb, 744 "updating to rev %d because of new feature flag, " 745 "running e2fsck is recommended", 746 EXT4_DYNAMIC_REV); 747 748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 751 /* leave es->s_feature_*compat flags alone */ 752 /* es->s_uuid will be set by e2fsck if empty */ 753 754 /* 755 * The rest of the superblock fields should be zero, and if not it 756 * means they are likely already in use, so leave them alone. We 757 * can leave it up to e2fsck to clean up any inconsistencies there. 758 */ 759 } 760 761 /* 762 * Open the external journal device 763 */ 764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 765 { 766 struct block_device *bdev; 767 char b[BDEVNAME_SIZE]; 768 769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 770 if (IS_ERR(bdev)) 771 goto fail; 772 return bdev; 773 774 fail: 775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 776 __bdevname(dev, b), PTR_ERR(bdev)); 777 return NULL; 778 } 779 780 /* 781 * Release the journal device 782 */ 783 static void ext4_blkdev_put(struct block_device *bdev) 784 { 785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 786 } 787 788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 789 { 790 struct block_device *bdev; 791 bdev = sbi->journal_bdev; 792 if (bdev) { 793 ext4_blkdev_put(bdev); 794 sbi->journal_bdev = NULL; 795 } 796 } 797 798 static inline struct inode *orphan_list_entry(struct list_head *l) 799 { 800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 801 } 802 803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 804 { 805 struct list_head *l; 806 807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 808 le32_to_cpu(sbi->s_es->s_last_orphan)); 809 810 printk(KERN_ERR "sb_info orphan list:\n"); 811 list_for_each(l, &sbi->s_orphan) { 812 struct inode *inode = orphan_list_entry(l); 813 printk(KERN_ERR " " 814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 815 inode->i_sb->s_id, inode->i_ino, inode, 816 inode->i_mode, inode->i_nlink, 817 NEXT_ORPHAN(inode)); 818 } 819 } 820 821 static void ext4_put_super(struct super_block *sb) 822 { 823 struct ext4_sb_info *sbi = EXT4_SB(sb); 824 struct ext4_super_block *es = sbi->s_es; 825 int i, err; 826 827 ext4_unregister_li_request(sb); 828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 829 830 flush_workqueue(sbi->rsv_conversion_wq); 831 destroy_workqueue(sbi->rsv_conversion_wq); 832 833 if (sbi->s_journal) { 834 err = jbd2_journal_destroy(sbi->s_journal); 835 sbi->s_journal = NULL; 836 if (err < 0) 837 ext4_abort(sb, "Couldn't clean up the journal"); 838 } 839 840 ext4_unregister_sysfs(sb); 841 ext4_es_unregister_shrinker(sbi); 842 del_timer_sync(&sbi->s_err_report); 843 ext4_release_system_zone(sb); 844 ext4_mb_release(sb); 845 ext4_ext_release(sb); 846 847 if (!(sb->s_flags & MS_RDONLY)) { 848 ext4_clear_feature_journal_needs_recovery(sb); 849 es->s_state = cpu_to_le16(sbi->s_mount_state); 850 } 851 if (!(sb->s_flags & MS_RDONLY)) 852 ext4_commit_super(sb, 1); 853 854 for (i = 0; i < sbi->s_gdb_count; i++) 855 brelse(sbi->s_group_desc[i]); 856 kvfree(sbi->s_group_desc); 857 kvfree(sbi->s_flex_groups); 858 percpu_counter_destroy(&sbi->s_freeclusters_counter); 859 percpu_counter_destroy(&sbi->s_freeinodes_counter); 860 percpu_counter_destroy(&sbi->s_dirs_counter); 861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 862 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 863 brelse(sbi->s_sbh); 864 #ifdef CONFIG_QUOTA 865 for (i = 0; i < EXT4_MAXQUOTAS; i++) 866 kfree(sbi->s_qf_names[i]); 867 #endif 868 869 /* Debugging code just in case the in-memory inode orphan list 870 * isn't empty. The on-disk one can be non-empty if we've 871 * detected an error and taken the fs readonly, but the 872 * in-memory list had better be clean by this point. */ 873 if (!list_empty(&sbi->s_orphan)) 874 dump_orphan_list(sb, sbi); 875 J_ASSERT(list_empty(&sbi->s_orphan)); 876 877 sync_blockdev(sb->s_bdev); 878 invalidate_bdev(sb->s_bdev); 879 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 880 /* 881 * Invalidate the journal device's buffers. We don't want them 882 * floating about in memory - the physical journal device may 883 * hotswapped, and it breaks the `ro-after' testing code. 884 */ 885 sync_blockdev(sbi->journal_bdev); 886 invalidate_bdev(sbi->journal_bdev); 887 ext4_blkdev_remove(sbi); 888 } 889 if (sbi->s_mb_cache) { 890 ext4_xattr_destroy_cache(sbi->s_mb_cache); 891 sbi->s_mb_cache = NULL; 892 } 893 if (sbi->s_mmp_tsk) 894 kthread_stop(sbi->s_mmp_tsk); 895 sb->s_fs_info = NULL; 896 /* 897 * Now that we are completely done shutting down the 898 * superblock, we need to actually destroy the kobject. 899 */ 900 kobject_put(&sbi->s_kobj); 901 wait_for_completion(&sbi->s_kobj_unregister); 902 if (sbi->s_chksum_driver) 903 crypto_free_shash(sbi->s_chksum_driver); 904 kfree(sbi->s_blockgroup_lock); 905 kfree(sbi); 906 } 907 908 static struct kmem_cache *ext4_inode_cachep; 909 910 /* 911 * Called inside transaction, so use GFP_NOFS 912 */ 913 static struct inode *ext4_alloc_inode(struct super_block *sb) 914 { 915 struct ext4_inode_info *ei; 916 917 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 918 if (!ei) 919 return NULL; 920 921 ei->vfs_inode.i_version = 1; 922 spin_lock_init(&ei->i_raw_lock); 923 INIT_LIST_HEAD(&ei->i_prealloc_list); 924 spin_lock_init(&ei->i_prealloc_lock); 925 ext4_es_init_tree(&ei->i_es_tree); 926 rwlock_init(&ei->i_es_lock); 927 INIT_LIST_HEAD(&ei->i_es_list); 928 ei->i_es_all_nr = 0; 929 ei->i_es_shk_nr = 0; 930 ei->i_es_shrink_lblk = 0; 931 ei->i_reserved_data_blocks = 0; 932 ei->i_reserved_meta_blocks = 0; 933 ei->i_allocated_meta_blocks = 0; 934 ei->i_da_metadata_calc_len = 0; 935 ei->i_da_metadata_calc_last_lblock = 0; 936 spin_lock_init(&(ei->i_block_reservation_lock)); 937 #ifdef CONFIG_QUOTA 938 ei->i_reserved_quota = 0; 939 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 940 #endif 941 ei->jinode = NULL; 942 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 943 spin_lock_init(&ei->i_completed_io_lock); 944 ei->i_sync_tid = 0; 945 ei->i_datasync_tid = 0; 946 atomic_set(&ei->i_unwritten, 0); 947 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 948 return &ei->vfs_inode; 949 } 950 951 static int ext4_drop_inode(struct inode *inode) 952 { 953 int drop = generic_drop_inode(inode); 954 955 trace_ext4_drop_inode(inode, drop); 956 return drop; 957 } 958 959 static void ext4_i_callback(struct rcu_head *head) 960 { 961 struct inode *inode = container_of(head, struct inode, i_rcu); 962 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 963 } 964 965 static void ext4_destroy_inode(struct inode *inode) 966 { 967 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 968 ext4_msg(inode->i_sb, KERN_ERR, 969 "Inode %lu (%p): orphan list check failed!", 970 inode->i_ino, EXT4_I(inode)); 971 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 972 EXT4_I(inode), sizeof(struct ext4_inode_info), 973 true); 974 dump_stack(); 975 } 976 call_rcu(&inode->i_rcu, ext4_i_callback); 977 } 978 979 static void init_once(void *foo) 980 { 981 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 982 983 INIT_LIST_HEAD(&ei->i_orphan); 984 init_rwsem(&ei->xattr_sem); 985 init_rwsem(&ei->i_data_sem); 986 init_rwsem(&ei->i_mmap_sem); 987 inode_init_once(&ei->vfs_inode); 988 } 989 990 static int __init init_inodecache(void) 991 { 992 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 993 sizeof(struct ext4_inode_info), 994 0, (SLAB_RECLAIM_ACCOUNT| 995 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 996 init_once); 997 if (ext4_inode_cachep == NULL) 998 return -ENOMEM; 999 return 0; 1000 } 1001 1002 static void destroy_inodecache(void) 1003 { 1004 /* 1005 * Make sure all delayed rcu free inodes are flushed before we 1006 * destroy cache. 1007 */ 1008 rcu_barrier(); 1009 kmem_cache_destroy(ext4_inode_cachep); 1010 } 1011 1012 void ext4_clear_inode(struct inode *inode) 1013 { 1014 invalidate_inode_buffers(inode); 1015 clear_inode(inode); 1016 dquot_drop(inode); 1017 ext4_discard_preallocations(inode); 1018 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1019 if (EXT4_I(inode)->jinode) { 1020 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1021 EXT4_I(inode)->jinode); 1022 jbd2_free_inode(EXT4_I(inode)->jinode); 1023 EXT4_I(inode)->jinode = NULL; 1024 } 1025 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1026 fscrypt_put_encryption_info(inode, NULL); 1027 #endif 1028 } 1029 1030 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1031 u64 ino, u32 generation) 1032 { 1033 struct inode *inode; 1034 1035 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1036 return ERR_PTR(-ESTALE); 1037 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1038 return ERR_PTR(-ESTALE); 1039 1040 /* iget isn't really right if the inode is currently unallocated!! 1041 * 1042 * ext4_read_inode will return a bad_inode if the inode had been 1043 * deleted, so we should be safe. 1044 * 1045 * Currently we don't know the generation for parent directory, so 1046 * a generation of 0 means "accept any" 1047 */ 1048 inode = ext4_iget_normal(sb, ino); 1049 if (IS_ERR(inode)) 1050 return ERR_CAST(inode); 1051 if (generation && inode->i_generation != generation) { 1052 iput(inode); 1053 return ERR_PTR(-ESTALE); 1054 } 1055 1056 return inode; 1057 } 1058 1059 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1060 int fh_len, int fh_type) 1061 { 1062 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1063 ext4_nfs_get_inode); 1064 } 1065 1066 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1067 int fh_len, int fh_type) 1068 { 1069 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1070 ext4_nfs_get_inode); 1071 } 1072 1073 /* 1074 * Try to release metadata pages (indirect blocks, directories) which are 1075 * mapped via the block device. Since these pages could have journal heads 1076 * which would prevent try_to_free_buffers() from freeing them, we must use 1077 * jbd2 layer's try_to_free_buffers() function to release them. 1078 */ 1079 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1080 gfp_t wait) 1081 { 1082 journal_t *journal = EXT4_SB(sb)->s_journal; 1083 1084 WARN_ON(PageChecked(page)); 1085 if (!page_has_buffers(page)) 1086 return 0; 1087 if (journal) 1088 return jbd2_journal_try_to_free_buffers(journal, page, 1089 wait & ~__GFP_DIRECT_RECLAIM); 1090 return try_to_free_buffers(page); 1091 } 1092 1093 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1094 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1095 { 1096 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1097 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1098 } 1099 1100 static int ext4_key_prefix(struct inode *inode, u8 **key) 1101 { 1102 *key = EXT4_SB(inode->i_sb)->key_prefix; 1103 return EXT4_SB(inode->i_sb)->key_prefix_size; 1104 } 1105 1106 static int ext4_prepare_context(struct inode *inode) 1107 { 1108 return ext4_convert_inline_data(inode); 1109 } 1110 1111 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1112 void *fs_data) 1113 { 1114 handle_t *handle; 1115 int res, res2; 1116 1117 /* fs_data is null when internally used. */ 1118 if (fs_data) { 1119 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1120 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, 1121 len, 0); 1122 if (!res) { 1123 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1124 ext4_clear_inode_state(inode, 1125 EXT4_STATE_MAY_INLINE_DATA); 1126 } 1127 return res; 1128 } 1129 1130 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1131 ext4_jbd2_credits_xattr(inode)); 1132 if (IS_ERR(handle)) 1133 return PTR_ERR(handle); 1134 1135 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1136 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, 1137 len, 0); 1138 if (!res) { 1139 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1140 res = ext4_mark_inode_dirty(handle, inode); 1141 if (res) 1142 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1143 } 1144 res2 = ext4_journal_stop(handle); 1145 if (!res) 1146 res = res2; 1147 return res; 1148 } 1149 1150 static int ext4_dummy_context(struct inode *inode) 1151 { 1152 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1153 } 1154 1155 static unsigned ext4_max_namelen(struct inode *inode) 1156 { 1157 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1158 EXT4_NAME_LEN; 1159 } 1160 1161 static struct fscrypt_operations ext4_cryptops = { 1162 .get_context = ext4_get_context, 1163 .key_prefix = ext4_key_prefix, 1164 .prepare_context = ext4_prepare_context, 1165 .set_context = ext4_set_context, 1166 .dummy_context = ext4_dummy_context, 1167 .is_encrypted = ext4_encrypted_inode, 1168 .empty_dir = ext4_empty_dir, 1169 .max_namelen = ext4_max_namelen, 1170 }; 1171 #else 1172 static struct fscrypt_operations ext4_cryptops = { 1173 .is_encrypted = ext4_encrypted_inode, 1174 }; 1175 #endif 1176 1177 #ifdef CONFIG_QUOTA 1178 static char *quotatypes[] = INITQFNAMES; 1179 #define QTYPE2NAME(t) (quotatypes[t]) 1180 1181 static int ext4_write_dquot(struct dquot *dquot); 1182 static int ext4_acquire_dquot(struct dquot *dquot); 1183 static int ext4_release_dquot(struct dquot *dquot); 1184 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1185 static int ext4_write_info(struct super_block *sb, int type); 1186 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1187 struct path *path); 1188 static int ext4_quota_off(struct super_block *sb, int type); 1189 static int ext4_quota_on_mount(struct super_block *sb, int type); 1190 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1191 size_t len, loff_t off); 1192 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1193 const char *data, size_t len, loff_t off); 1194 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1195 unsigned int flags); 1196 static int ext4_enable_quotas(struct super_block *sb); 1197 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1198 1199 static struct dquot **ext4_get_dquots(struct inode *inode) 1200 { 1201 return EXT4_I(inode)->i_dquot; 1202 } 1203 1204 static const struct dquot_operations ext4_quota_operations = { 1205 .get_reserved_space = ext4_get_reserved_space, 1206 .write_dquot = ext4_write_dquot, 1207 .acquire_dquot = ext4_acquire_dquot, 1208 .release_dquot = ext4_release_dquot, 1209 .mark_dirty = ext4_mark_dquot_dirty, 1210 .write_info = ext4_write_info, 1211 .alloc_dquot = dquot_alloc, 1212 .destroy_dquot = dquot_destroy, 1213 .get_projid = ext4_get_projid, 1214 .get_next_id = ext4_get_next_id, 1215 }; 1216 1217 static const struct quotactl_ops ext4_qctl_operations = { 1218 .quota_on = ext4_quota_on, 1219 .quota_off = ext4_quota_off, 1220 .quota_sync = dquot_quota_sync, 1221 .get_state = dquot_get_state, 1222 .set_info = dquot_set_dqinfo, 1223 .get_dqblk = dquot_get_dqblk, 1224 .set_dqblk = dquot_set_dqblk, 1225 .get_nextdqblk = dquot_get_next_dqblk, 1226 }; 1227 #endif 1228 1229 static const struct super_operations ext4_sops = { 1230 .alloc_inode = ext4_alloc_inode, 1231 .destroy_inode = ext4_destroy_inode, 1232 .write_inode = ext4_write_inode, 1233 .dirty_inode = ext4_dirty_inode, 1234 .drop_inode = ext4_drop_inode, 1235 .evict_inode = ext4_evict_inode, 1236 .put_super = ext4_put_super, 1237 .sync_fs = ext4_sync_fs, 1238 .freeze_fs = ext4_freeze, 1239 .unfreeze_fs = ext4_unfreeze, 1240 .statfs = ext4_statfs, 1241 .remount_fs = ext4_remount, 1242 .show_options = ext4_show_options, 1243 #ifdef CONFIG_QUOTA 1244 .quota_read = ext4_quota_read, 1245 .quota_write = ext4_quota_write, 1246 .get_dquots = ext4_get_dquots, 1247 #endif 1248 .bdev_try_to_free_page = bdev_try_to_free_page, 1249 }; 1250 1251 static const struct export_operations ext4_export_ops = { 1252 .fh_to_dentry = ext4_fh_to_dentry, 1253 .fh_to_parent = ext4_fh_to_parent, 1254 .get_parent = ext4_get_parent, 1255 }; 1256 1257 enum { 1258 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1259 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1260 Opt_nouid32, Opt_debug, Opt_removed, 1261 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1262 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1263 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1264 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1265 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1266 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1267 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1268 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1269 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1270 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1271 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1272 Opt_lazytime, Opt_nolazytime, 1273 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1274 Opt_inode_readahead_blks, Opt_journal_ioprio, 1275 Opt_dioread_nolock, Opt_dioread_lock, 1276 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1277 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1278 }; 1279 1280 static const match_table_t tokens = { 1281 {Opt_bsd_df, "bsddf"}, 1282 {Opt_minix_df, "minixdf"}, 1283 {Opt_grpid, "grpid"}, 1284 {Opt_grpid, "bsdgroups"}, 1285 {Opt_nogrpid, "nogrpid"}, 1286 {Opt_nogrpid, "sysvgroups"}, 1287 {Opt_resgid, "resgid=%u"}, 1288 {Opt_resuid, "resuid=%u"}, 1289 {Opt_sb, "sb=%u"}, 1290 {Opt_err_cont, "errors=continue"}, 1291 {Opt_err_panic, "errors=panic"}, 1292 {Opt_err_ro, "errors=remount-ro"}, 1293 {Opt_nouid32, "nouid32"}, 1294 {Opt_debug, "debug"}, 1295 {Opt_removed, "oldalloc"}, 1296 {Opt_removed, "orlov"}, 1297 {Opt_user_xattr, "user_xattr"}, 1298 {Opt_nouser_xattr, "nouser_xattr"}, 1299 {Opt_acl, "acl"}, 1300 {Opt_noacl, "noacl"}, 1301 {Opt_noload, "norecovery"}, 1302 {Opt_noload, "noload"}, 1303 {Opt_removed, "nobh"}, 1304 {Opt_removed, "bh"}, 1305 {Opt_commit, "commit=%u"}, 1306 {Opt_min_batch_time, "min_batch_time=%u"}, 1307 {Opt_max_batch_time, "max_batch_time=%u"}, 1308 {Opt_journal_dev, "journal_dev=%u"}, 1309 {Opt_journal_path, "journal_path=%s"}, 1310 {Opt_journal_checksum, "journal_checksum"}, 1311 {Opt_nojournal_checksum, "nojournal_checksum"}, 1312 {Opt_journal_async_commit, "journal_async_commit"}, 1313 {Opt_abort, "abort"}, 1314 {Opt_data_journal, "data=journal"}, 1315 {Opt_data_ordered, "data=ordered"}, 1316 {Opt_data_writeback, "data=writeback"}, 1317 {Opt_data_err_abort, "data_err=abort"}, 1318 {Opt_data_err_ignore, "data_err=ignore"}, 1319 {Opt_offusrjquota, "usrjquota="}, 1320 {Opt_usrjquota, "usrjquota=%s"}, 1321 {Opt_offgrpjquota, "grpjquota="}, 1322 {Opt_grpjquota, "grpjquota=%s"}, 1323 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1324 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1325 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1326 {Opt_grpquota, "grpquota"}, 1327 {Opt_noquota, "noquota"}, 1328 {Opt_quota, "quota"}, 1329 {Opt_usrquota, "usrquota"}, 1330 {Opt_barrier, "barrier=%u"}, 1331 {Opt_barrier, "barrier"}, 1332 {Opt_nobarrier, "nobarrier"}, 1333 {Opt_i_version, "i_version"}, 1334 {Opt_dax, "dax"}, 1335 {Opt_stripe, "stripe=%u"}, 1336 {Opt_delalloc, "delalloc"}, 1337 {Opt_lazytime, "lazytime"}, 1338 {Opt_nolazytime, "nolazytime"}, 1339 {Opt_nodelalloc, "nodelalloc"}, 1340 {Opt_removed, "mblk_io_submit"}, 1341 {Opt_removed, "nomblk_io_submit"}, 1342 {Opt_block_validity, "block_validity"}, 1343 {Opt_noblock_validity, "noblock_validity"}, 1344 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1345 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1346 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1347 {Opt_auto_da_alloc, "auto_da_alloc"}, 1348 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1349 {Opt_dioread_nolock, "dioread_nolock"}, 1350 {Opt_dioread_lock, "dioread_lock"}, 1351 {Opt_discard, "discard"}, 1352 {Opt_nodiscard, "nodiscard"}, 1353 {Opt_init_itable, "init_itable=%u"}, 1354 {Opt_init_itable, "init_itable"}, 1355 {Opt_noinit_itable, "noinit_itable"}, 1356 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1357 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1358 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1359 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1360 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1361 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1362 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1363 {Opt_err, NULL}, 1364 }; 1365 1366 static ext4_fsblk_t get_sb_block(void **data) 1367 { 1368 ext4_fsblk_t sb_block; 1369 char *options = (char *) *data; 1370 1371 if (!options || strncmp(options, "sb=", 3) != 0) 1372 return 1; /* Default location */ 1373 1374 options += 3; 1375 /* TODO: use simple_strtoll with >32bit ext4 */ 1376 sb_block = simple_strtoul(options, &options, 0); 1377 if (*options && *options != ',') { 1378 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1379 (char *) *data); 1380 return 1; 1381 } 1382 if (*options == ',') 1383 options++; 1384 *data = (void *) options; 1385 1386 return sb_block; 1387 } 1388 1389 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1390 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1391 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1392 1393 #ifdef CONFIG_QUOTA 1394 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1395 { 1396 struct ext4_sb_info *sbi = EXT4_SB(sb); 1397 char *qname; 1398 int ret = -1; 1399 1400 if (sb_any_quota_loaded(sb) && 1401 !sbi->s_qf_names[qtype]) { 1402 ext4_msg(sb, KERN_ERR, 1403 "Cannot change journaled " 1404 "quota options when quota turned on"); 1405 return -1; 1406 } 1407 if (ext4_has_feature_quota(sb)) { 1408 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1409 "ignored when QUOTA feature is enabled"); 1410 return 1; 1411 } 1412 qname = match_strdup(args); 1413 if (!qname) { 1414 ext4_msg(sb, KERN_ERR, 1415 "Not enough memory for storing quotafile name"); 1416 return -1; 1417 } 1418 if (sbi->s_qf_names[qtype]) { 1419 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1420 ret = 1; 1421 else 1422 ext4_msg(sb, KERN_ERR, 1423 "%s quota file already specified", 1424 QTYPE2NAME(qtype)); 1425 goto errout; 1426 } 1427 if (strchr(qname, '/')) { 1428 ext4_msg(sb, KERN_ERR, 1429 "quotafile must be on filesystem root"); 1430 goto errout; 1431 } 1432 sbi->s_qf_names[qtype] = qname; 1433 set_opt(sb, QUOTA); 1434 return 1; 1435 errout: 1436 kfree(qname); 1437 return ret; 1438 } 1439 1440 static int clear_qf_name(struct super_block *sb, int qtype) 1441 { 1442 1443 struct ext4_sb_info *sbi = EXT4_SB(sb); 1444 1445 if (sb_any_quota_loaded(sb) && 1446 sbi->s_qf_names[qtype]) { 1447 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1448 " when quota turned on"); 1449 return -1; 1450 } 1451 kfree(sbi->s_qf_names[qtype]); 1452 sbi->s_qf_names[qtype] = NULL; 1453 return 1; 1454 } 1455 #endif 1456 1457 #define MOPT_SET 0x0001 1458 #define MOPT_CLEAR 0x0002 1459 #define MOPT_NOSUPPORT 0x0004 1460 #define MOPT_EXPLICIT 0x0008 1461 #define MOPT_CLEAR_ERR 0x0010 1462 #define MOPT_GTE0 0x0020 1463 #ifdef CONFIG_QUOTA 1464 #define MOPT_Q 0 1465 #define MOPT_QFMT 0x0040 1466 #else 1467 #define MOPT_Q MOPT_NOSUPPORT 1468 #define MOPT_QFMT MOPT_NOSUPPORT 1469 #endif 1470 #define MOPT_DATAJ 0x0080 1471 #define MOPT_NO_EXT2 0x0100 1472 #define MOPT_NO_EXT3 0x0200 1473 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1474 #define MOPT_STRING 0x0400 1475 1476 static const struct mount_opts { 1477 int token; 1478 int mount_opt; 1479 int flags; 1480 } ext4_mount_opts[] = { 1481 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1482 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1483 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1484 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1485 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1486 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1487 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1488 MOPT_EXT4_ONLY | MOPT_SET}, 1489 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1490 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1491 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1492 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1493 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1494 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1495 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1496 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1497 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1498 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1499 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1500 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1501 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1502 EXT4_MOUNT_JOURNAL_CHECKSUM), 1503 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1504 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1505 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1506 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1507 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1508 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1509 MOPT_NO_EXT2}, 1510 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1511 MOPT_NO_EXT2}, 1512 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1513 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1514 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1515 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1516 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1517 {Opt_commit, 0, MOPT_GTE0}, 1518 {Opt_max_batch_time, 0, MOPT_GTE0}, 1519 {Opt_min_batch_time, 0, MOPT_GTE0}, 1520 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1521 {Opt_init_itable, 0, MOPT_GTE0}, 1522 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1523 {Opt_stripe, 0, MOPT_GTE0}, 1524 {Opt_resuid, 0, MOPT_GTE0}, 1525 {Opt_resgid, 0, MOPT_GTE0}, 1526 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1527 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1528 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1529 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1530 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1531 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1532 MOPT_NO_EXT2 | MOPT_DATAJ}, 1533 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1534 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1535 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1536 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1537 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1538 #else 1539 {Opt_acl, 0, MOPT_NOSUPPORT}, 1540 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1541 #endif 1542 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1543 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1544 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1545 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1546 MOPT_SET | MOPT_Q}, 1547 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1548 MOPT_SET | MOPT_Q}, 1549 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1550 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1551 {Opt_usrjquota, 0, MOPT_Q}, 1552 {Opt_grpjquota, 0, MOPT_Q}, 1553 {Opt_offusrjquota, 0, MOPT_Q}, 1554 {Opt_offgrpjquota, 0, MOPT_Q}, 1555 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1556 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1557 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1558 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1559 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1560 {Opt_err, 0, 0} 1561 }; 1562 1563 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1564 substring_t *args, unsigned long *journal_devnum, 1565 unsigned int *journal_ioprio, int is_remount) 1566 { 1567 struct ext4_sb_info *sbi = EXT4_SB(sb); 1568 const struct mount_opts *m; 1569 kuid_t uid; 1570 kgid_t gid; 1571 int arg = 0; 1572 1573 #ifdef CONFIG_QUOTA 1574 if (token == Opt_usrjquota) 1575 return set_qf_name(sb, USRQUOTA, &args[0]); 1576 else if (token == Opt_grpjquota) 1577 return set_qf_name(sb, GRPQUOTA, &args[0]); 1578 else if (token == Opt_offusrjquota) 1579 return clear_qf_name(sb, USRQUOTA); 1580 else if (token == Opt_offgrpjquota) 1581 return clear_qf_name(sb, GRPQUOTA); 1582 #endif 1583 switch (token) { 1584 case Opt_noacl: 1585 case Opt_nouser_xattr: 1586 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1587 break; 1588 case Opt_sb: 1589 return 1; /* handled by get_sb_block() */ 1590 case Opt_removed: 1591 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1592 return 1; 1593 case Opt_abort: 1594 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1595 return 1; 1596 case Opt_i_version: 1597 sb->s_flags |= MS_I_VERSION; 1598 return 1; 1599 case Opt_lazytime: 1600 sb->s_flags |= MS_LAZYTIME; 1601 return 1; 1602 case Opt_nolazytime: 1603 sb->s_flags &= ~MS_LAZYTIME; 1604 return 1; 1605 } 1606 1607 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1608 if (token == m->token) 1609 break; 1610 1611 if (m->token == Opt_err) { 1612 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1613 "or missing value", opt); 1614 return -1; 1615 } 1616 1617 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1618 ext4_msg(sb, KERN_ERR, 1619 "Mount option \"%s\" incompatible with ext2", opt); 1620 return -1; 1621 } 1622 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1623 ext4_msg(sb, KERN_ERR, 1624 "Mount option \"%s\" incompatible with ext3", opt); 1625 return -1; 1626 } 1627 1628 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1629 return -1; 1630 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1631 return -1; 1632 if (m->flags & MOPT_EXPLICIT) { 1633 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1634 set_opt2(sb, EXPLICIT_DELALLOC); 1635 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1636 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1637 } else 1638 return -1; 1639 } 1640 if (m->flags & MOPT_CLEAR_ERR) 1641 clear_opt(sb, ERRORS_MASK); 1642 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1643 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1644 "options when quota turned on"); 1645 return -1; 1646 } 1647 1648 if (m->flags & MOPT_NOSUPPORT) { 1649 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1650 } else if (token == Opt_commit) { 1651 if (arg == 0) 1652 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1653 sbi->s_commit_interval = HZ * arg; 1654 } else if (token == Opt_max_batch_time) { 1655 sbi->s_max_batch_time = arg; 1656 } else if (token == Opt_min_batch_time) { 1657 sbi->s_min_batch_time = arg; 1658 } else if (token == Opt_inode_readahead_blks) { 1659 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1660 ext4_msg(sb, KERN_ERR, 1661 "EXT4-fs: inode_readahead_blks must be " 1662 "0 or a power of 2 smaller than 2^31"); 1663 return -1; 1664 } 1665 sbi->s_inode_readahead_blks = arg; 1666 } else if (token == Opt_init_itable) { 1667 set_opt(sb, INIT_INODE_TABLE); 1668 if (!args->from) 1669 arg = EXT4_DEF_LI_WAIT_MULT; 1670 sbi->s_li_wait_mult = arg; 1671 } else if (token == Opt_max_dir_size_kb) { 1672 sbi->s_max_dir_size_kb = arg; 1673 } else if (token == Opt_stripe) { 1674 sbi->s_stripe = arg; 1675 } else if (token == Opt_resuid) { 1676 uid = make_kuid(current_user_ns(), arg); 1677 if (!uid_valid(uid)) { 1678 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1679 return -1; 1680 } 1681 sbi->s_resuid = uid; 1682 } else if (token == Opt_resgid) { 1683 gid = make_kgid(current_user_ns(), arg); 1684 if (!gid_valid(gid)) { 1685 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1686 return -1; 1687 } 1688 sbi->s_resgid = gid; 1689 } else if (token == Opt_journal_dev) { 1690 if (is_remount) { 1691 ext4_msg(sb, KERN_ERR, 1692 "Cannot specify journal on remount"); 1693 return -1; 1694 } 1695 *journal_devnum = arg; 1696 } else if (token == Opt_journal_path) { 1697 char *journal_path; 1698 struct inode *journal_inode; 1699 struct path path; 1700 int error; 1701 1702 if (is_remount) { 1703 ext4_msg(sb, KERN_ERR, 1704 "Cannot specify journal on remount"); 1705 return -1; 1706 } 1707 journal_path = match_strdup(&args[0]); 1708 if (!journal_path) { 1709 ext4_msg(sb, KERN_ERR, "error: could not dup " 1710 "journal device string"); 1711 return -1; 1712 } 1713 1714 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1715 if (error) { 1716 ext4_msg(sb, KERN_ERR, "error: could not find " 1717 "journal device path: error %d", error); 1718 kfree(journal_path); 1719 return -1; 1720 } 1721 1722 journal_inode = d_inode(path.dentry); 1723 if (!S_ISBLK(journal_inode->i_mode)) { 1724 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1725 "is not a block device", journal_path); 1726 path_put(&path); 1727 kfree(journal_path); 1728 return -1; 1729 } 1730 1731 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1732 path_put(&path); 1733 kfree(journal_path); 1734 } else if (token == Opt_journal_ioprio) { 1735 if (arg > 7) { 1736 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1737 " (must be 0-7)"); 1738 return -1; 1739 } 1740 *journal_ioprio = 1741 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1742 } else if (token == Opt_test_dummy_encryption) { 1743 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1744 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1745 ext4_msg(sb, KERN_WARNING, 1746 "Test dummy encryption mode enabled"); 1747 #else 1748 ext4_msg(sb, KERN_WARNING, 1749 "Test dummy encryption mount option ignored"); 1750 #endif 1751 } else if (m->flags & MOPT_DATAJ) { 1752 if (is_remount) { 1753 if (!sbi->s_journal) 1754 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1755 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1756 ext4_msg(sb, KERN_ERR, 1757 "Cannot change data mode on remount"); 1758 return -1; 1759 } 1760 } else { 1761 clear_opt(sb, DATA_FLAGS); 1762 sbi->s_mount_opt |= m->mount_opt; 1763 } 1764 #ifdef CONFIG_QUOTA 1765 } else if (m->flags & MOPT_QFMT) { 1766 if (sb_any_quota_loaded(sb) && 1767 sbi->s_jquota_fmt != m->mount_opt) { 1768 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1769 "quota options when quota turned on"); 1770 return -1; 1771 } 1772 if (ext4_has_feature_quota(sb)) { 1773 ext4_msg(sb, KERN_INFO, 1774 "Quota format mount options ignored " 1775 "when QUOTA feature is enabled"); 1776 return 1; 1777 } 1778 sbi->s_jquota_fmt = m->mount_opt; 1779 #endif 1780 } else if (token == Opt_dax) { 1781 #ifdef CONFIG_FS_DAX 1782 ext4_msg(sb, KERN_WARNING, 1783 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1784 sbi->s_mount_opt |= m->mount_opt; 1785 #else 1786 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1787 return -1; 1788 #endif 1789 } else if (token == Opt_data_err_abort) { 1790 sbi->s_mount_opt |= m->mount_opt; 1791 } else if (token == Opt_data_err_ignore) { 1792 sbi->s_mount_opt &= ~m->mount_opt; 1793 } else { 1794 if (!args->from) 1795 arg = 1; 1796 if (m->flags & MOPT_CLEAR) 1797 arg = !arg; 1798 else if (unlikely(!(m->flags & MOPT_SET))) { 1799 ext4_msg(sb, KERN_WARNING, 1800 "buggy handling of option %s", opt); 1801 WARN_ON(1); 1802 return -1; 1803 } 1804 if (arg != 0) 1805 sbi->s_mount_opt |= m->mount_opt; 1806 else 1807 sbi->s_mount_opt &= ~m->mount_opt; 1808 } 1809 return 1; 1810 } 1811 1812 static int parse_options(char *options, struct super_block *sb, 1813 unsigned long *journal_devnum, 1814 unsigned int *journal_ioprio, 1815 int is_remount) 1816 { 1817 struct ext4_sb_info *sbi = EXT4_SB(sb); 1818 char *p; 1819 substring_t args[MAX_OPT_ARGS]; 1820 int token; 1821 1822 if (!options) 1823 return 1; 1824 1825 while ((p = strsep(&options, ",")) != NULL) { 1826 if (!*p) 1827 continue; 1828 /* 1829 * Initialize args struct so we know whether arg was 1830 * found; some options take optional arguments. 1831 */ 1832 args[0].to = args[0].from = NULL; 1833 token = match_token(p, tokens, args); 1834 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1835 journal_ioprio, is_remount) < 0) 1836 return 0; 1837 } 1838 #ifdef CONFIG_QUOTA 1839 if (ext4_has_feature_quota(sb) && 1840 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1841 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota " 1842 "mount options ignored."); 1843 clear_opt(sb, USRQUOTA); 1844 clear_opt(sb, GRPQUOTA); 1845 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1846 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1847 clear_opt(sb, USRQUOTA); 1848 1849 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1850 clear_opt(sb, GRPQUOTA); 1851 1852 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1853 ext4_msg(sb, KERN_ERR, "old and new quota " 1854 "format mixing"); 1855 return 0; 1856 } 1857 1858 if (!sbi->s_jquota_fmt) { 1859 ext4_msg(sb, KERN_ERR, "journaled quota format " 1860 "not specified"); 1861 return 0; 1862 } 1863 } 1864 #endif 1865 if (test_opt(sb, DIOREAD_NOLOCK)) { 1866 int blocksize = 1867 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1868 1869 if (blocksize < PAGE_SIZE) { 1870 ext4_msg(sb, KERN_ERR, "can't mount with " 1871 "dioread_nolock if block size != PAGE_SIZE"); 1872 return 0; 1873 } 1874 } 1875 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1876 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1877 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1878 "in data=ordered mode"); 1879 return 0; 1880 } 1881 return 1; 1882 } 1883 1884 static inline void ext4_show_quota_options(struct seq_file *seq, 1885 struct super_block *sb) 1886 { 1887 #if defined(CONFIG_QUOTA) 1888 struct ext4_sb_info *sbi = EXT4_SB(sb); 1889 1890 if (sbi->s_jquota_fmt) { 1891 char *fmtname = ""; 1892 1893 switch (sbi->s_jquota_fmt) { 1894 case QFMT_VFS_OLD: 1895 fmtname = "vfsold"; 1896 break; 1897 case QFMT_VFS_V0: 1898 fmtname = "vfsv0"; 1899 break; 1900 case QFMT_VFS_V1: 1901 fmtname = "vfsv1"; 1902 break; 1903 } 1904 seq_printf(seq, ",jqfmt=%s", fmtname); 1905 } 1906 1907 if (sbi->s_qf_names[USRQUOTA]) 1908 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1909 1910 if (sbi->s_qf_names[GRPQUOTA]) 1911 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1912 #endif 1913 } 1914 1915 static const char *token2str(int token) 1916 { 1917 const struct match_token *t; 1918 1919 for (t = tokens; t->token != Opt_err; t++) 1920 if (t->token == token && !strchr(t->pattern, '=')) 1921 break; 1922 return t->pattern; 1923 } 1924 1925 /* 1926 * Show an option if 1927 * - it's set to a non-default value OR 1928 * - if the per-sb default is different from the global default 1929 */ 1930 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1931 int nodefs) 1932 { 1933 struct ext4_sb_info *sbi = EXT4_SB(sb); 1934 struct ext4_super_block *es = sbi->s_es; 1935 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1936 const struct mount_opts *m; 1937 char sep = nodefs ? '\n' : ','; 1938 1939 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1940 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1941 1942 if (sbi->s_sb_block != 1) 1943 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1944 1945 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1946 int want_set = m->flags & MOPT_SET; 1947 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1948 (m->flags & MOPT_CLEAR_ERR)) 1949 continue; 1950 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1951 continue; /* skip if same as the default */ 1952 if ((want_set && 1953 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1954 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1955 continue; /* select Opt_noFoo vs Opt_Foo */ 1956 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1957 } 1958 1959 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1960 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1961 SEQ_OPTS_PRINT("resuid=%u", 1962 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1963 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1964 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1965 SEQ_OPTS_PRINT("resgid=%u", 1966 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1967 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1968 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1969 SEQ_OPTS_PUTS("errors=remount-ro"); 1970 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1971 SEQ_OPTS_PUTS("errors=continue"); 1972 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1973 SEQ_OPTS_PUTS("errors=panic"); 1974 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1975 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1976 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1977 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1978 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1979 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1980 if (sb->s_flags & MS_I_VERSION) 1981 SEQ_OPTS_PUTS("i_version"); 1982 if (nodefs || sbi->s_stripe) 1983 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1984 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1985 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1986 SEQ_OPTS_PUTS("data=journal"); 1987 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1988 SEQ_OPTS_PUTS("data=ordered"); 1989 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1990 SEQ_OPTS_PUTS("data=writeback"); 1991 } 1992 if (nodefs || 1993 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1994 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1995 sbi->s_inode_readahead_blks); 1996 1997 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1998 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1999 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2000 if (nodefs || sbi->s_max_dir_size_kb) 2001 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2002 if (test_opt(sb, DATA_ERR_ABORT)) 2003 SEQ_OPTS_PUTS("data_err=abort"); 2004 2005 ext4_show_quota_options(seq, sb); 2006 return 0; 2007 } 2008 2009 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2010 { 2011 return _ext4_show_options(seq, root->d_sb, 0); 2012 } 2013 2014 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2015 { 2016 struct super_block *sb = seq->private; 2017 int rc; 2018 2019 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2020 rc = _ext4_show_options(seq, sb, 1); 2021 seq_puts(seq, "\n"); 2022 return rc; 2023 } 2024 2025 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2026 int read_only) 2027 { 2028 struct ext4_sb_info *sbi = EXT4_SB(sb); 2029 int res = 0; 2030 2031 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2032 ext4_msg(sb, KERN_ERR, "revision level too high, " 2033 "forcing read-only mode"); 2034 res = MS_RDONLY; 2035 } 2036 if (read_only) 2037 goto done; 2038 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2039 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2040 "running e2fsck is recommended"); 2041 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2042 ext4_msg(sb, KERN_WARNING, 2043 "warning: mounting fs with errors, " 2044 "running e2fsck is recommended"); 2045 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2046 le16_to_cpu(es->s_mnt_count) >= 2047 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2048 ext4_msg(sb, KERN_WARNING, 2049 "warning: maximal mount count reached, " 2050 "running e2fsck is recommended"); 2051 else if (le32_to_cpu(es->s_checkinterval) && 2052 (le32_to_cpu(es->s_lastcheck) + 2053 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2054 ext4_msg(sb, KERN_WARNING, 2055 "warning: checktime reached, " 2056 "running e2fsck is recommended"); 2057 if (!sbi->s_journal) 2058 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2059 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2060 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2061 le16_add_cpu(&es->s_mnt_count, 1); 2062 es->s_mtime = cpu_to_le32(get_seconds()); 2063 ext4_update_dynamic_rev(sb); 2064 if (sbi->s_journal) 2065 ext4_set_feature_journal_needs_recovery(sb); 2066 2067 ext4_commit_super(sb, 1); 2068 done: 2069 if (test_opt(sb, DEBUG)) 2070 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2071 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2072 sb->s_blocksize, 2073 sbi->s_groups_count, 2074 EXT4_BLOCKS_PER_GROUP(sb), 2075 EXT4_INODES_PER_GROUP(sb), 2076 sbi->s_mount_opt, sbi->s_mount_opt2); 2077 2078 cleancache_init_fs(sb); 2079 return res; 2080 } 2081 2082 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2083 { 2084 struct ext4_sb_info *sbi = EXT4_SB(sb); 2085 struct flex_groups *new_groups; 2086 int size; 2087 2088 if (!sbi->s_log_groups_per_flex) 2089 return 0; 2090 2091 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2092 if (size <= sbi->s_flex_groups_allocated) 2093 return 0; 2094 2095 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2096 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2097 if (!new_groups) { 2098 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2099 size / (int) sizeof(struct flex_groups)); 2100 return -ENOMEM; 2101 } 2102 2103 if (sbi->s_flex_groups) { 2104 memcpy(new_groups, sbi->s_flex_groups, 2105 (sbi->s_flex_groups_allocated * 2106 sizeof(struct flex_groups))); 2107 kvfree(sbi->s_flex_groups); 2108 } 2109 sbi->s_flex_groups = new_groups; 2110 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2111 return 0; 2112 } 2113 2114 static int ext4_fill_flex_info(struct super_block *sb) 2115 { 2116 struct ext4_sb_info *sbi = EXT4_SB(sb); 2117 struct ext4_group_desc *gdp = NULL; 2118 ext4_group_t flex_group; 2119 int i, err; 2120 2121 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2122 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2123 sbi->s_log_groups_per_flex = 0; 2124 return 1; 2125 } 2126 2127 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2128 if (err) 2129 goto failed; 2130 2131 for (i = 0; i < sbi->s_groups_count; i++) { 2132 gdp = ext4_get_group_desc(sb, i, NULL); 2133 2134 flex_group = ext4_flex_group(sbi, i); 2135 atomic_add(ext4_free_inodes_count(sb, gdp), 2136 &sbi->s_flex_groups[flex_group].free_inodes); 2137 atomic64_add(ext4_free_group_clusters(sb, gdp), 2138 &sbi->s_flex_groups[flex_group].free_clusters); 2139 atomic_add(ext4_used_dirs_count(sb, gdp), 2140 &sbi->s_flex_groups[flex_group].used_dirs); 2141 } 2142 2143 return 1; 2144 failed: 2145 return 0; 2146 } 2147 2148 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2149 struct ext4_group_desc *gdp) 2150 { 2151 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2152 __u16 crc = 0; 2153 __le32 le_group = cpu_to_le32(block_group); 2154 struct ext4_sb_info *sbi = EXT4_SB(sb); 2155 2156 if (ext4_has_metadata_csum(sbi->s_sb)) { 2157 /* Use new metadata_csum algorithm */ 2158 __u32 csum32; 2159 __u16 dummy_csum = 0; 2160 2161 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2162 sizeof(le_group)); 2163 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2165 sizeof(dummy_csum)); 2166 offset += sizeof(dummy_csum); 2167 if (offset < sbi->s_desc_size) 2168 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2169 sbi->s_desc_size - offset); 2170 2171 crc = csum32 & 0xFFFF; 2172 goto out; 2173 } 2174 2175 /* old crc16 code */ 2176 if (!ext4_has_feature_gdt_csum(sb)) 2177 return 0; 2178 2179 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2180 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2181 crc = crc16(crc, (__u8 *)gdp, offset); 2182 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2183 /* for checksum of struct ext4_group_desc do the rest...*/ 2184 if (ext4_has_feature_64bit(sb) && 2185 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2186 crc = crc16(crc, (__u8 *)gdp + offset, 2187 le16_to_cpu(sbi->s_es->s_desc_size) - 2188 offset); 2189 2190 out: 2191 return cpu_to_le16(crc); 2192 } 2193 2194 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2195 struct ext4_group_desc *gdp) 2196 { 2197 if (ext4_has_group_desc_csum(sb) && 2198 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2199 return 0; 2200 2201 return 1; 2202 } 2203 2204 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2205 struct ext4_group_desc *gdp) 2206 { 2207 if (!ext4_has_group_desc_csum(sb)) 2208 return; 2209 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2210 } 2211 2212 /* Called at mount-time, super-block is locked */ 2213 static int ext4_check_descriptors(struct super_block *sb, 2214 ext4_group_t *first_not_zeroed) 2215 { 2216 struct ext4_sb_info *sbi = EXT4_SB(sb); 2217 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2218 ext4_fsblk_t last_block; 2219 ext4_fsblk_t block_bitmap; 2220 ext4_fsblk_t inode_bitmap; 2221 ext4_fsblk_t inode_table; 2222 int flexbg_flag = 0; 2223 ext4_group_t i, grp = sbi->s_groups_count; 2224 2225 if (ext4_has_feature_flex_bg(sb)) 2226 flexbg_flag = 1; 2227 2228 ext4_debug("Checking group descriptors"); 2229 2230 for (i = 0; i < sbi->s_groups_count; i++) { 2231 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2232 2233 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2234 last_block = ext4_blocks_count(sbi->s_es) - 1; 2235 else 2236 last_block = first_block + 2237 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2238 2239 if ((grp == sbi->s_groups_count) && 2240 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2241 grp = i; 2242 2243 block_bitmap = ext4_block_bitmap(sb, gdp); 2244 if (block_bitmap < first_block || block_bitmap > last_block) { 2245 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2246 "Block bitmap for group %u not in group " 2247 "(block %llu)!", i, block_bitmap); 2248 return 0; 2249 } 2250 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2251 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2252 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2253 "Inode bitmap for group %u not in group " 2254 "(block %llu)!", i, inode_bitmap); 2255 return 0; 2256 } 2257 inode_table = ext4_inode_table(sb, gdp); 2258 if (inode_table < first_block || 2259 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2260 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2261 "Inode table for group %u not in group " 2262 "(block %llu)!", i, inode_table); 2263 return 0; 2264 } 2265 ext4_lock_group(sb, i); 2266 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2267 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2268 "Checksum for group %u failed (%u!=%u)", 2269 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2270 gdp)), le16_to_cpu(gdp->bg_checksum)); 2271 if (!(sb->s_flags & MS_RDONLY)) { 2272 ext4_unlock_group(sb, i); 2273 return 0; 2274 } 2275 } 2276 ext4_unlock_group(sb, i); 2277 if (!flexbg_flag) 2278 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2279 } 2280 if (NULL != first_not_zeroed) 2281 *first_not_zeroed = grp; 2282 return 1; 2283 } 2284 2285 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2286 * the superblock) which were deleted from all directories, but held open by 2287 * a process at the time of a crash. We walk the list and try to delete these 2288 * inodes at recovery time (only with a read-write filesystem). 2289 * 2290 * In order to keep the orphan inode chain consistent during traversal (in 2291 * case of crash during recovery), we link each inode into the superblock 2292 * orphan list_head and handle it the same way as an inode deletion during 2293 * normal operation (which journals the operations for us). 2294 * 2295 * We only do an iget() and an iput() on each inode, which is very safe if we 2296 * accidentally point at an in-use or already deleted inode. The worst that 2297 * can happen in this case is that we get a "bit already cleared" message from 2298 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2299 * e2fsck was run on this filesystem, and it must have already done the orphan 2300 * inode cleanup for us, so we can safely abort without any further action. 2301 */ 2302 static void ext4_orphan_cleanup(struct super_block *sb, 2303 struct ext4_super_block *es) 2304 { 2305 unsigned int s_flags = sb->s_flags; 2306 int nr_orphans = 0, nr_truncates = 0; 2307 #ifdef CONFIG_QUOTA 2308 int i; 2309 #endif 2310 if (!es->s_last_orphan) { 2311 jbd_debug(4, "no orphan inodes to clean up\n"); 2312 return; 2313 } 2314 2315 if (bdev_read_only(sb->s_bdev)) { 2316 ext4_msg(sb, KERN_ERR, "write access " 2317 "unavailable, skipping orphan cleanup"); 2318 return; 2319 } 2320 2321 /* Check if feature set would not allow a r/w mount */ 2322 if (!ext4_feature_set_ok(sb, 0)) { 2323 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2324 "unknown ROCOMPAT features"); 2325 return; 2326 } 2327 2328 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2329 /* don't clear list on RO mount w/ errors */ 2330 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2331 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2332 "clearing orphan list.\n"); 2333 es->s_last_orphan = 0; 2334 } 2335 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2336 return; 2337 } 2338 2339 if (s_flags & MS_RDONLY) { 2340 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2341 sb->s_flags &= ~MS_RDONLY; 2342 } 2343 #ifdef CONFIG_QUOTA 2344 /* Needed for iput() to work correctly and not trash data */ 2345 sb->s_flags |= MS_ACTIVE; 2346 /* Turn on quotas so that they are updated correctly */ 2347 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2348 if (EXT4_SB(sb)->s_qf_names[i]) { 2349 int ret = ext4_quota_on_mount(sb, i); 2350 if (ret < 0) 2351 ext4_msg(sb, KERN_ERR, 2352 "Cannot turn on journaled " 2353 "quota: error %d", ret); 2354 } 2355 } 2356 #endif 2357 2358 while (es->s_last_orphan) { 2359 struct inode *inode; 2360 2361 /* 2362 * We may have encountered an error during cleanup; if 2363 * so, skip the rest. 2364 */ 2365 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2366 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2367 es->s_last_orphan = 0; 2368 break; 2369 } 2370 2371 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2372 if (IS_ERR(inode)) { 2373 es->s_last_orphan = 0; 2374 break; 2375 } 2376 2377 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2378 dquot_initialize(inode); 2379 if (inode->i_nlink) { 2380 if (test_opt(sb, DEBUG)) 2381 ext4_msg(sb, KERN_DEBUG, 2382 "%s: truncating inode %lu to %lld bytes", 2383 __func__, inode->i_ino, inode->i_size); 2384 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2385 inode->i_ino, inode->i_size); 2386 inode_lock(inode); 2387 truncate_inode_pages(inode->i_mapping, inode->i_size); 2388 ext4_truncate(inode); 2389 inode_unlock(inode); 2390 nr_truncates++; 2391 } else { 2392 if (test_opt(sb, DEBUG)) 2393 ext4_msg(sb, KERN_DEBUG, 2394 "%s: deleting unreferenced inode %lu", 2395 __func__, inode->i_ino); 2396 jbd_debug(2, "deleting unreferenced inode %lu\n", 2397 inode->i_ino); 2398 nr_orphans++; 2399 } 2400 iput(inode); /* The delete magic happens here! */ 2401 } 2402 2403 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2404 2405 if (nr_orphans) 2406 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2407 PLURAL(nr_orphans)); 2408 if (nr_truncates) 2409 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2410 PLURAL(nr_truncates)); 2411 #ifdef CONFIG_QUOTA 2412 /* Turn quotas off */ 2413 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2414 if (sb_dqopt(sb)->files[i]) 2415 dquot_quota_off(sb, i); 2416 } 2417 #endif 2418 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2419 } 2420 2421 /* 2422 * Maximal extent format file size. 2423 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2424 * extent format containers, within a sector_t, and within i_blocks 2425 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2426 * so that won't be a limiting factor. 2427 * 2428 * However there is other limiting factor. We do store extents in the form 2429 * of starting block and length, hence the resulting length of the extent 2430 * covering maximum file size must fit into on-disk format containers as 2431 * well. Given that length is always by 1 unit bigger than max unit (because 2432 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2433 * 2434 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2435 */ 2436 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2437 { 2438 loff_t res; 2439 loff_t upper_limit = MAX_LFS_FILESIZE; 2440 2441 /* small i_blocks in vfs inode? */ 2442 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2443 /* 2444 * CONFIG_LBDAF is not enabled implies the inode 2445 * i_block represent total blocks in 512 bytes 2446 * 32 == size of vfs inode i_blocks * 8 2447 */ 2448 upper_limit = (1LL << 32) - 1; 2449 2450 /* total blocks in file system block size */ 2451 upper_limit >>= (blkbits - 9); 2452 upper_limit <<= blkbits; 2453 } 2454 2455 /* 2456 * 32-bit extent-start container, ee_block. We lower the maxbytes 2457 * by one fs block, so ee_len can cover the extent of maximum file 2458 * size 2459 */ 2460 res = (1LL << 32) - 1; 2461 res <<= blkbits; 2462 2463 /* Sanity check against vm- & vfs- imposed limits */ 2464 if (res > upper_limit) 2465 res = upper_limit; 2466 2467 return res; 2468 } 2469 2470 /* 2471 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2472 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2473 * We need to be 1 filesystem block less than the 2^48 sector limit. 2474 */ 2475 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2476 { 2477 loff_t res = EXT4_NDIR_BLOCKS; 2478 int meta_blocks; 2479 loff_t upper_limit; 2480 /* This is calculated to be the largest file size for a dense, block 2481 * mapped file such that the file's total number of 512-byte sectors, 2482 * including data and all indirect blocks, does not exceed (2^48 - 1). 2483 * 2484 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2485 * number of 512-byte sectors of the file. 2486 */ 2487 2488 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2489 /* 2490 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2491 * the inode i_block field represents total file blocks in 2492 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2493 */ 2494 upper_limit = (1LL << 32) - 1; 2495 2496 /* total blocks in file system block size */ 2497 upper_limit >>= (bits - 9); 2498 2499 } else { 2500 /* 2501 * We use 48 bit ext4_inode i_blocks 2502 * With EXT4_HUGE_FILE_FL set the i_blocks 2503 * represent total number of blocks in 2504 * file system block size 2505 */ 2506 upper_limit = (1LL << 48) - 1; 2507 2508 } 2509 2510 /* indirect blocks */ 2511 meta_blocks = 1; 2512 /* double indirect blocks */ 2513 meta_blocks += 1 + (1LL << (bits-2)); 2514 /* tripple indirect blocks */ 2515 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2516 2517 upper_limit -= meta_blocks; 2518 upper_limit <<= bits; 2519 2520 res += 1LL << (bits-2); 2521 res += 1LL << (2*(bits-2)); 2522 res += 1LL << (3*(bits-2)); 2523 res <<= bits; 2524 if (res > upper_limit) 2525 res = upper_limit; 2526 2527 if (res > MAX_LFS_FILESIZE) 2528 res = MAX_LFS_FILESIZE; 2529 2530 return res; 2531 } 2532 2533 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2534 ext4_fsblk_t logical_sb_block, int nr) 2535 { 2536 struct ext4_sb_info *sbi = EXT4_SB(sb); 2537 ext4_group_t bg, first_meta_bg; 2538 int has_super = 0; 2539 2540 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2541 2542 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2543 return logical_sb_block + nr + 1; 2544 bg = sbi->s_desc_per_block * nr; 2545 if (ext4_bg_has_super(sb, bg)) 2546 has_super = 1; 2547 2548 /* 2549 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2550 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2551 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2552 * compensate. 2553 */ 2554 if (sb->s_blocksize == 1024 && nr == 0 && 2555 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2556 has_super++; 2557 2558 return (has_super + ext4_group_first_block_no(sb, bg)); 2559 } 2560 2561 /** 2562 * ext4_get_stripe_size: Get the stripe size. 2563 * @sbi: In memory super block info 2564 * 2565 * If we have specified it via mount option, then 2566 * use the mount option value. If the value specified at mount time is 2567 * greater than the blocks per group use the super block value. 2568 * If the super block value is greater than blocks per group return 0. 2569 * Allocator needs it be less than blocks per group. 2570 * 2571 */ 2572 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2573 { 2574 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2575 unsigned long stripe_width = 2576 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2577 int ret; 2578 2579 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2580 ret = sbi->s_stripe; 2581 else if (stripe_width <= sbi->s_blocks_per_group) 2582 ret = stripe_width; 2583 else if (stride <= sbi->s_blocks_per_group) 2584 ret = stride; 2585 else 2586 ret = 0; 2587 2588 /* 2589 * If the stripe width is 1, this makes no sense and 2590 * we set it to 0 to turn off stripe handling code. 2591 */ 2592 if (ret <= 1) 2593 ret = 0; 2594 2595 return ret; 2596 } 2597 2598 /* 2599 * Check whether this filesystem can be mounted based on 2600 * the features present and the RDONLY/RDWR mount requested. 2601 * Returns 1 if this filesystem can be mounted as requested, 2602 * 0 if it cannot be. 2603 */ 2604 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2605 { 2606 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2607 ext4_msg(sb, KERN_ERR, 2608 "Couldn't mount because of " 2609 "unsupported optional features (%x)", 2610 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2611 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2612 return 0; 2613 } 2614 2615 if (readonly) 2616 return 1; 2617 2618 if (ext4_has_feature_readonly(sb)) { 2619 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2620 sb->s_flags |= MS_RDONLY; 2621 return 1; 2622 } 2623 2624 /* Check that feature set is OK for a read-write mount */ 2625 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2626 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2627 "unsupported optional features (%x)", 2628 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2629 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2630 return 0; 2631 } 2632 /* 2633 * Large file size enabled file system can only be mounted 2634 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2635 */ 2636 if (ext4_has_feature_huge_file(sb)) { 2637 if (sizeof(blkcnt_t) < sizeof(u64)) { 2638 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2639 "cannot be mounted RDWR without " 2640 "CONFIG_LBDAF"); 2641 return 0; 2642 } 2643 } 2644 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2645 ext4_msg(sb, KERN_ERR, 2646 "Can't support bigalloc feature without " 2647 "extents feature\n"); 2648 return 0; 2649 } 2650 2651 #ifndef CONFIG_QUOTA 2652 if (ext4_has_feature_quota(sb) && !readonly) { 2653 ext4_msg(sb, KERN_ERR, 2654 "Filesystem with quota feature cannot be mounted RDWR " 2655 "without CONFIG_QUOTA"); 2656 return 0; 2657 } 2658 if (ext4_has_feature_project(sb) && !readonly) { 2659 ext4_msg(sb, KERN_ERR, 2660 "Filesystem with project quota feature cannot be mounted RDWR " 2661 "without CONFIG_QUOTA"); 2662 return 0; 2663 } 2664 #endif /* CONFIG_QUOTA */ 2665 return 1; 2666 } 2667 2668 /* 2669 * This function is called once a day if we have errors logged 2670 * on the file system 2671 */ 2672 static void print_daily_error_info(unsigned long arg) 2673 { 2674 struct super_block *sb = (struct super_block *) arg; 2675 struct ext4_sb_info *sbi; 2676 struct ext4_super_block *es; 2677 2678 sbi = EXT4_SB(sb); 2679 es = sbi->s_es; 2680 2681 if (es->s_error_count) 2682 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2683 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2684 le32_to_cpu(es->s_error_count)); 2685 if (es->s_first_error_time) { 2686 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2687 sb->s_id, le32_to_cpu(es->s_first_error_time), 2688 (int) sizeof(es->s_first_error_func), 2689 es->s_first_error_func, 2690 le32_to_cpu(es->s_first_error_line)); 2691 if (es->s_first_error_ino) 2692 printk(": inode %u", 2693 le32_to_cpu(es->s_first_error_ino)); 2694 if (es->s_first_error_block) 2695 printk(": block %llu", (unsigned long long) 2696 le64_to_cpu(es->s_first_error_block)); 2697 printk("\n"); 2698 } 2699 if (es->s_last_error_time) { 2700 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2701 sb->s_id, le32_to_cpu(es->s_last_error_time), 2702 (int) sizeof(es->s_last_error_func), 2703 es->s_last_error_func, 2704 le32_to_cpu(es->s_last_error_line)); 2705 if (es->s_last_error_ino) 2706 printk(": inode %u", 2707 le32_to_cpu(es->s_last_error_ino)); 2708 if (es->s_last_error_block) 2709 printk(": block %llu", (unsigned long long) 2710 le64_to_cpu(es->s_last_error_block)); 2711 printk("\n"); 2712 } 2713 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2714 } 2715 2716 /* Find next suitable group and run ext4_init_inode_table */ 2717 static int ext4_run_li_request(struct ext4_li_request *elr) 2718 { 2719 struct ext4_group_desc *gdp = NULL; 2720 ext4_group_t group, ngroups; 2721 struct super_block *sb; 2722 unsigned long timeout = 0; 2723 int ret = 0; 2724 2725 sb = elr->lr_super; 2726 ngroups = EXT4_SB(sb)->s_groups_count; 2727 2728 sb_start_write(sb); 2729 for (group = elr->lr_next_group; group < ngroups; group++) { 2730 gdp = ext4_get_group_desc(sb, group, NULL); 2731 if (!gdp) { 2732 ret = 1; 2733 break; 2734 } 2735 2736 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2737 break; 2738 } 2739 2740 if (group >= ngroups) 2741 ret = 1; 2742 2743 if (!ret) { 2744 timeout = jiffies; 2745 ret = ext4_init_inode_table(sb, group, 2746 elr->lr_timeout ? 0 : 1); 2747 if (elr->lr_timeout == 0) { 2748 timeout = (jiffies - timeout) * 2749 elr->lr_sbi->s_li_wait_mult; 2750 elr->lr_timeout = timeout; 2751 } 2752 elr->lr_next_sched = jiffies + elr->lr_timeout; 2753 elr->lr_next_group = group + 1; 2754 } 2755 sb_end_write(sb); 2756 2757 return ret; 2758 } 2759 2760 /* 2761 * Remove lr_request from the list_request and free the 2762 * request structure. Should be called with li_list_mtx held 2763 */ 2764 static void ext4_remove_li_request(struct ext4_li_request *elr) 2765 { 2766 struct ext4_sb_info *sbi; 2767 2768 if (!elr) 2769 return; 2770 2771 sbi = elr->lr_sbi; 2772 2773 list_del(&elr->lr_request); 2774 sbi->s_li_request = NULL; 2775 kfree(elr); 2776 } 2777 2778 static void ext4_unregister_li_request(struct super_block *sb) 2779 { 2780 mutex_lock(&ext4_li_mtx); 2781 if (!ext4_li_info) { 2782 mutex_unlock(&ext4_li_mtx); 2783 return; 2784 } 2785 2786 mutex_lock(&ext4_li_info->li_list_mtx); 2787 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2788 mutex_unlock(&ext4_li_info->li_list_mtx); 2789 mutex_unlock(&ext4_li_mtx); 2790 } 2791 2792 static struct task_struct *ext4_lazyinit_task; 2793 2794 /* 2795 * This is the function where ext4lazyinit thread lives. It walks 2796 * through the request list searching for next scheduled filesystem. 2797 * When such a fs is found, run the lazy initialization request 2798 * (ext4_rn_li_request) and keep track of the time spend in this 2799 * function. Based on that time we compute next schedule time of 2800 * the request. When walking through the list is complete, compute 2801 * next waking time and put itself into sleep. 2802 */ 2803 static int ext4_lazyinit_thread(void *arg) 2804 { 2805 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2806 struct list_head *pos, *n; 2807 struct ext4_li_request *elr; 2808 unsigned long next_wakeup, cur; 2809 2810 BUG_ON(NULL == eli); 2811 2812 cont_thread: 2813 while (true) { 2814 next_wakeup = MAX_JIFFY_OFFSET; 2815 2816 mutex_lock(&eli->li_list_mtx); 2817 if (list_empty(&eli->li_request_list)) { 2818 mutex_unlock(&eli->li_list_mtx); 2819 goto exit_thread; 2820 } 2821 2822 list_for_each_safe(pos, n, &eli->li_request_list) { 2823 elr = list_entry(pos, struct ext4_li_request, 2824 lr_request); 2825 2826 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2827 if (ext4_run_li_request(elr) != 0) { 2828 /* error, remove the lazy_init job */ 2829 ext4_remove_li_request(elr); 2830 continue; 2831 } 2832 } 2833 2834 if (time_before(elr->lr_next_sched, next_wakeup)) 2835 next_wakeup = elr->lr_next_sched; 2836 } 2837 mutex_unlock(&eli->li_list_mtx); 2838 2839 try_to_freeze(); 2840 2841 cur = jiffies; 2842 if ((time_after_eq(cur, next_wakeup)) || 2843 (MAX_JIFFY_OFFSET == next_wakeup)) { 2844 cond_resched(); 2845 continue; 2846 } 2847 2848 schedule_timeout_interruptible(next_wakeup - cur); 2849 2850 if (kthread_should_stop()) { 2851 ext4_clear_request_list(); 2852 goto exit_thread; 2853 } 2854 } 2855 2856 exit_thread: 2857 /* 2858 * It looks like the request list is empty, but we need 2859 * to check it under the li_list_mtx lock, to prevent any 2860 * additions into it, and of course we should lock ext4_li_mtx 2861 * to atomically free the list and ext4_li_info, because at 2862 * this point another ext4 filesystem could be registering 2863 * new one. 2864 */ 2865 mutex_lock(&ext4_li_mtx); 2866 mutex_lock(&eli->li_list_mtx); 2867 if (!list_empty(&eli->li_request_list)) { 2868 mutex_unlock(&eli->li_list_mtx); 2869 mutex_unlock(&ext4_li_mtx); 2870 goto cont_thread; 2871 } 2872 mutex_unlock(&eli->li_list_mtx); 2873 kfree(ext4_li_info); 2874 ext4_li_info = NULL; 2875 mutex_unlock(&ext4_li_mtx); 2876 2877 return 0; 2878 } 2879 2880 static void ext4_clear_request_list(void) 2881 { 2882 struct list_head *pos, *n; 2883 struct ext4_li_request *elr; 2884 2885 mutex_lock(&ext4_li_info->li_list_mtx); 2886 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2887 elr = list_entry(pos, struct ext4_li_request, 2888 lr_request); 2889 ext4_remove_li_request(elr); 2890 } 2891 mutex_unlock(&ext4_li_info->li_list_mtx); 2892 } 2893 2894 static int ext4_run_lazyinit_thread(void) 2895 { 2896 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2897 ext4_li_info, "ext4lazyinit"); 2898 if (IS_ERR(ext4_lazyinit_task)) { 2899 int err = PTR_ERR(ext4_lazyinit_task); 2900 ext4_clear_request_list(); 2901 kfree(ext4_li_info); 2902 ext4_li_info = NULL; 2903 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2904 "initialization thread\n", 2905 err); 2906 return err; 2907 } 2908 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2909 return 0; 2910 } 2911 2912 /* 2913 * Check whether it make sense to run itable init. thread or not. 2914 * If there is at least one uninitialized inode table, return 2915 * corresponding group number, else the loop goes through all 2916 * groups and return total number of groups. 2917 */ 2918 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2919 { 2920 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2921 struct ext4_group_desc *gdp = NULL; 2922 2923 for (group = 0; group < ngroups; group++) { 2924 gdp = ext4_get_group_desc(sb, group, NULL); 2925 if (!gdp) 2926 continue; 2927 2928 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2929 break; 2930 } 2931 2932 return group; 2933 } 2934 2935 static int ext4_li_info_new(void) 2936 { 2937 struct ext4_lazy_init *eli = NULL; 2938 2939 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2940 if (!eli) 2941 return -ENOMEM; 2942 2943 INIT_LIST_HEAD(&eli->li_request_list); 2944 mutex_init(&eli->li_list_mtx); 2945 2946 eli->li_state |= EXT4_LAZYINIT_QUIT; 2947 2948 ext4_li_info = eli; 2949 2950 return 0; 2951 } 2952 2953 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2954 ext4_group_t start) 2955 { 2956 struct ext4_sb_info *sbi = EXT4_SB(sb); 2957 struct ext4_li_request *elr; 2958 2959 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2960 if (!elr) 2961 return NULL; 2962 2963 elr->lr_super = sb; 2964 elr->lr_sbi = sbi; 2965 elr->lr_next_group = start; 2966 2967 /* 2968 * Randomize first schedule time of the request to 2969 * spread the inode table initialization requests 2970 * better. 2971 */ 2972 elr->lr_next_sched = jiffies + (prandom_u32() % 2973 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2974 return elr; 2975 } 2976 2977 int ext4_register_li_request(struct super_block *sb, 2978 ext4_group_t first_not_zeroed) 2979 { 2980 struct ext4_sb_info *sbi = EXT4_SB(sb); 2981 struct ext4_li_request *elr = NULL; 2982 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2983 int ret = 0; 2984 2985 mutex_lock(&ext4_li_mtx); 2986 if (sbi->s_li_request != NULL) { 2987 /* 2988 * Reset timeout so it can be computed again, because 2989 * s_li_wait_mult might have changed. 2990 */ 2991 sbi->s_li_request->lr_timeout = 0; 2992 goto out; 2993 } 2994 2995 if (first_not_zeroed == ngroups || 2996 (sb->s_flags & MS_RDONLY) || 2997 !test_opt(sb, INIT_INODE_TABLE)) 2998 goto out; 2999 3000 elr = ext4_li_request_new(sb, first_not_zeroed); 3001 if (!elr) { 3002 ret = -ENOMEM; 3003 goto out; 3004 } 3005 3006 if (NULL == ext4_li_info) { 3007 ret = ext4_li_info_new(); 3008 if (ret) 3009 goto out; 3010 } 3011 3012 mutex_lock(&ext4_li_info->li_list_mtx); 3013 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3014 mutex_unlock(&ext4_li_info->li_list_mtx); 3015 3016 sbi->s_li_request = elr; 3017 /* 3018 * set elr to NULL here since it has been inserted to 3019 * the request_list and the removal and free of it is 3020 * handled by ext4_clear_request_list from now on. 3021 */ 3022 elr = NULL; 3023 3024 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3025 ret = ext4_run_lazyinit_thread(); 3026 if (ret) 3027 goto out; 3028 } 3029 out: 3030 mutex_unlock(&ext4_li_mtx); 3031 if (ret) 3032 kfree(elr); 3033 return ret; 3034 } 3035 3036 /* 3037 * We do not need to lock anything since this is called on 3038 * module unload. 3039 */ 3040 static void ext4_destroy_lazyinit_thread(void) 3041 { 3042 /* 3043 * If thread exited earlier 3044 * there's nothing to be done. 3045 */ 3046 if (!ext4_li_info || !ext4_lazyinit_task) 3047 return; 3048 3049 kthread_stop(ext4_lazyinit_task); 3050 } 3051 3052 static int set_journal_csum_feature_set(struct super_block *sb) 3053 { 3054 int ret = 1; 3055 int compat, incompat; 3056 struct ext4_sb_info *sbi = EXT4_SB(sb); 3057 3058 if (ext4_has_metadata_csum(sb)) { 3059 /* journal checksum v3 */ 3060 compat = 0; 3061 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3062 } else { 3063 /* journal checksum v1 */ 3064 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3065 incompat = 0; 3066 } 3067 3068 jbd2_journal_clear_features(sbi->s_journal, 3069 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3070 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3071 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3072 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3073 ret = jbd2_journal_set_features(sbi->s_journal, 3074 compat, 0, 3075 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3076 incompat); 3077 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3078 ret = jbd2_journal_set_features(sbi->s_journal, 3079 compat, 0, 3080 incompat); 3081 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3082 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3083 } else { 3084 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3085 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3086 } 3087 3088 return ret; 3089 } 3090 3091 /* 3092 * Note: calculating the overhead so we can be compatible with 3093 * historical BSD practice is quite difficult in the face of 3094 * clusters/bigalloc. This is because multiple metadata blocks from 3095 * different block group can end up in the same allocation cluster. 3096 * Calculating the exact overhead in the face of clustered allocation 3097 * requires either O(all block bitmaps) in memory or O(number of block 3098 * groups**2) in time. We will still calculate the superblock for 3099 * older file systems --- and if we come across with a bigalloc file 3100 * system with zero in s_overhead_clusters the estimate will be close to 3101 * correct especially for very large cluster sizes --- but for newer 3102 * file systems, it's better to calculate this figure once at mkfs 3103 * time, and store it in the superblock. If the superblock value is 3104 * present (even for non-bigalloc file systems), we will use it. 3105 */ 3106 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3107 char *buf) 3108 { 3109 struct ext4_sb_info *sbi = EXT4_SB(sb); 3110 struct ext4_group_desc *gdp; 3111 ext4_fsblk_t first_block, last_block, b; 3112 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3113 int s, j, count = 0; 3114 3115 if (!ext4_has_feature_bigalloc(sb)) 3116 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3117 sbi->s_itb_per_group + 2); 3118 3119 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3120 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3121 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3122 for (i = 0; i < ngroups; i++) { 3123 gdp = ext4_get_group_desc(sb, i, NULL); 3124 b = ext4_block_bitmap(sb, gdp); 3125 if (b >= first_block && b <= last_block) { 3126 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3127 count++; 3128 } 3129 b = ext4_inode_bitmap(sb, gdp); 3130 if (b >= first_block && b <= last_block) { 3131 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3132 count++; 3133 } 3134 b = ext4_inode_table(sb, gdp); 3135 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3136 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3137 int c = EXT4_B2C(sbi, b - first_block); 3138 ext4_set_bit(c, buf); 3139 count++; 3140 } 3141 if (i != grp) 3142 continue; 3143 s = 0; 3144 if (ext4_bg_has_super(sb, grp)) { 3145 ext4_set_bit(s++, buf); 3146 count++; 3147 } 3148 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3149 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3150 count++; 3151 } 3152 } 3153 if (!count) 3154 return 0; 3155 return EXT4_CLUSTERS_PER_GROUP(sb) - 3156 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3157 } 3158 3159 /* 3160 * Compute the overhead and stash it in sbi->s_overhead 3161 */ 3162 int ext4_calculate_overhead(struct super_block *sb) 3163 { 3164 struct ext4_sb_info *sbi = EXT4_SB(sb); 3165 struct ext4_super_block *es = sbi->s_es; 3166 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3167 ext4_fsblk_t overhead = 0; 3168 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3169 3170 if (!buf) 3171 return -ENOMEM; 3172 3173 /* 3174 * Compute the overhead (FS structures). This is constant 3175 * for a given filesystem unless the number of block groups 3176 * changes so we cache the previous value until it does. 3177 */ 3178 3179 /* 3180 * All of the blocks before first_data_block are overhead 3181 */ 3182 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3183 3184 /* 3185 * Add the overhead found in each block group 3186 */ 3187 for (i = 0; i < ngroups; i++) { 3188 int blks; 3189 3190 blks = count_overhead(sb, i, buf); 3191 overhead += blks; 3192 if (blks) 3193 memset(buf, 0, PAGE_SIZE); 3194 cond_resched(); 3195 } 3196 /* Add the internal journal blocks as well */ 3197 if (sbi->s_journal && !sbi->journal_bdev) 3198 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3199 3200 sbi->s_overhead = overhead; 3201 smp_wmb(); 3202 free_page((unsigned long) buf); 3203 return 0; 3204 } 3205 3206 static void ext4_set_resv_clusters(struct super_block *sb) 3207 { 3208 ext4_fsblk_t resv_clusters; 3209 struct ext4_sb_info *sbi = EXT4_SB(sb); 3210 3211 /* 3212 * There's no need to reserve anything when we aren't using extents. 3213 * The space estimates are exact, there are no unwritten extents, 3214 * hole punching doesn't need new metadata... This is needed especially 3215 * to keep ext2/3 backward compatibility. 3216 */ 3217 if (!ext4_has_feature_extents(sb)) 3218 return; 3219 /* 3220 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3221 * This should cover the situations where we can not afford to run 3222 * out of space like for example punch hole, or converting 3223 * unwritten extents in delalloc path. In most cases such 3224 * allocation would require 1, or 2 blocks, higher numbers are 3225 * very rare. 3226 */ 3227 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3228 sbi->s_cluster_bits); 3229 3230 do_div(resv_clusters, 50); 3231 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3232 3233 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3234 } 3235 3236 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3237 { 3238 char *orig_data = kstrdup(data, GFP_KERNEL); 3239 struct buffer_head *bh; 3240 struct ext4_super_block *es = NULL; 3241 struct ext4_sb_info *sbi; 3242 ext4_fsblk_t block; 3243 ext4_fsblk_t sb_block = get_sb_block(&data); 3244 ext4_fsblk_t logical_sb_block; 3245 unsigned long offset = 0; 3246 unsigned long journal_devnum = 0; 3247 unsigned long def_mount_opts; 3248 struct inode *root; 3249 const char *descr; 3250 int ret = -ENOMEM; 3251 int blocksize, clustersize; 3252 unsigned int db_count; 3253 unsigned int i; 3254 int needs_recovery, has_huge_files, has_bigalloc; 3255 __u64 blocks_count; 3256 int err = 0; 3257 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3258 ext4_group_t first_not_zeroed; 3259 3260 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3261 if (!sbi) 3262 goto out_free_orig; 3263 3264 sbi->s_blockgroup_lock = 3265 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3266 if (!sbi->s_blockgroup_lock) { 3267 kfree(sbi); 3268 goto out_free_orig; 3269 } 3270 sb->s_fs_info = sbi; 3271 sbi->s_sb = sb; 3272 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3273 sbi->s_sb_block = sb_block; 3274 if (sb->s_bdev->bd_part) 3275 sbi->s_sectors_written_start = 3276 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3277 3278 /* Cleanup superblock name */ 3279 strreplace(sb->s_id, '/', '!'); 3280 3281 /* -EINVAL is default */ 3282 ret = -EINVAL; 3283 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3284 if (!blocksize) { 3285 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3286 goto out_fail; 3287 } 3288 3289 /* 3290 * The ext4 superblock will not be buffer aligned for other than 1kB 3291 * block sizes. We need to calculate the offset from buffer start. 3292 */ 3293 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3294 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3295 offset = do_div(logical_sb_block, blocksize); 3296 } else { 3297 logical_sb_block = sb_block; 3298 } 3299 3300 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3301 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3302 goto out_fail; 3303 } 3304 /* 3305 * Note: s_es must be initialized as soon as possible because 3306 * some ext4 macro-instructions depend on its value 3307 */ 3308 es = (struct ext4_super_block *) (bh->b_data + offset); 3309 sbi->s_es = es; 3310 sb->s_magic = le16_to_cpu(es->s_magic); 3311 if (sb->s_magic != EXT4_SUPER_MAGIC) 3312 goto cantfind_ext4; 3313 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3314 3315 /* Warn if metadata_csum and gdt_csum are both set. */ 3316 if (ext4_has_feature_metadata_csum(sb) && 3317 ext4_has_feature_gdt_csum(sb)) 3318 ext4_warning(sb, "metadata_csum and uninit_bg are " 3319 "redundant flags; please run fsck."); 3320 3321 /* Check for a known checksum algorithm */ 3322 if (!ext4_verify_csum_type(sb, es)) { 3323 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3324 "unknown checksum algorithm."); 3325 silent = 1; 3326 goto cantfind_ext4; 3327 } 3328 3329 /* Load the checksum driver */ 3330 if (ext4_has_feature_metadata_csum(sb)) { 3331 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3332 if (IS_ERR(sbi->s_chksum_driver)) { 3333 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3334 ret = PTR_ERR(sbi->s_chksum_driver); 3335 sbi->s_chksum_driver = NULL; 3336 goto failed_mount; 3337 } 3338 } 3339 3340 /* Check superblock checksum */ 3341 if (!ext4_superblock_csum_verify(sb, es)) { 3342 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3343 "invalid superblock checksum. Run e2fsck?"); 3344 silent = 1; 3345 ret = -EFSBADCRC; 3346 goto cantfind_ext4; 3347 } 3348 3349 /* Precompute checksum seed for all metadata */ 3350 if (ext4_has_feature_csum_seed(sb)) 3351 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3352 else if (ext4_has_metadata_csum(sb)) 3353 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3354 sizeof(es->s_uuid)); 3355 3356 /* Set defaults before we parse the mount options */ 3357 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3358 set_opt(sb, INIT_INODE_TABLE); 3359 if (def_mount_opts & EXT4_DEFM_DEBUG) 3360 set_opt(sb, DEBUG); 3361 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3362 set_opt(sb, GRPID); 3363 if (def_mount_opts & EXT4_DEFM_UID16) 3364 set_opt(sb, NO_UID32); 3365 /* xattr user namespace & acls are now defaulted on */ 3366 set_opt(sb, XATTR_USER); 3367 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3368 set_opt(sb, POSIX_ACL); 3369 #endif 3370 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3371 if (ext4_has_metadata_csum(sb)) 3372 set_opt(sb, JOURNAL_CHECKSUM); 3373 3374 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3375 set_opt(sb, JOURNAL_DATA); 3376 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3377 set_opt(sb, ORDERED_DATA); 3378 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3379 set_opt(sb, WRITEBACK_DATA); 3380 3381 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3382 set_opt(sb, ERRORS_PANIC); 3383 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3384 set_opt(sb, ERRORS_CONT); 3385 else 3386 set_opt(sb, ERRORS_RO); 3387 /* block_validity enabled by default; disable with noblock_validity */ 3388 set_opt(sb, BLOCK_VALIDITY); 3389 if (def_mount_opts & EXT4_DEFM_DISCARD) 3390 set_opt(sb, DISCARD); 3391 3392 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3393 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3394 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3395 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3396 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3397 3398 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3399 set_opt(sb, BARRIER); 3400 3401 /* 3402 * enable delayed allocation by default 3403 * Use -o nodelalloc to turn it off 3404 */ 3405 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3406 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3407 set_opt(sb, DELALLOC); 3408 3409 /* 3410 * set default s_li_wait_mult for lazyinit, for the case there is 3411 * no mount option specified. 3412 */ 3413 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3414 3415 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3416 &journal_devnum, &journal_ioprio, 0)) { 3417 ext4_msg(sb, KERN_WARNING, 3418 "failed to parse options in superblock: %s", 3419 sbi->s_es->s_mount_opts); 3420 } 3421 sbi->s_def_mount_opt = sbi->s_mount_opt; 3422 if (!parse_options((char *) data, sb, &journal_devnum, 3423 &journal_ioprio, 0)) 3424 goto failed_mount; 3425 3426 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3427 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3428 "with data=journal disables delayed " 3429 "allocation and O_DIRECT support!\n"); 3430 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3431 ext4_msg(sb, KERN_ERR, "can't mount with " 3432 "both data=journal and delalloc"); 3433 goto failed_mount; 3434 } 3435 if (test_opt(sb, DIOREAD_NOLOCK)) { 3436 ext4_msg(sb, KERN_ERR, "can't mount with " 3437 "both data=journal and dioread_nolock"); 3438 goto failed_mount; 3439 } 3440 if (test_opt(sb, DAX)) { 3441 ext4_msg(sb, KERN_ERR, "can't mount with " 3442 "both data=journal and dax"); 3443 goto failed_mount; 3444 } 3445 if (test_opt(sb, DELALLOC)) 3446 clear_opt(sb, DELALLOC); 3447 } else { 3448 sb->s_iflags |= SB_I_CGROUPWB; 3449 } 3450 3451 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3452 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3453 3454 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3455 (ext4_has_compat_features(sb) || 3456 ext4_has_ro_compat_features(sb) || 3457 ext4_has_incompat_features(sb))) 3458 ext4_msg(sb, KERN_WARNING, 3459 "feature flags set on rev 0 fs, " 3460 "running e2fsck is recommended"); 3461 3462 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3463 set_opt2(sb, HURD_COMPAT); 3464 if (ext4_has_feature_64bit(sb)) { 3465 ext4_msg(sb, KERN_ERR, 3466 "The Hurd can't support 64-bit file systems"); 3467 goto failed_mount; 3468 } 3469 } 3470 3471 if (IS_EXT2_SB(sb)) { 3472 if (ext2_feature_set_ok(sb)) 3473 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3474 "using the ext4 subsystem"); 3475 else { 3476 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3477 "to feature incompatibilities"); 3478 goto failed_mount; 3479 } 3480 } 3481 3482 if (IS_EXT3_SB(sb)) { 3483 if (ext3_feature_set_ok(sb)) 3484 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3485 "using the ext4 subsystem"); 3486 else { 3487 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3488 "to feature incompatibilities"); 3489 goto failed_mount; 3490 } 3491 } 3492 3493 /* 3494 * Check feature flags regardless of the revision level, since we 3495 * previously didn't change the revision level when setting the flags, 3496 * so there is a chance incompat flags are set on a rev 0 filesystem. 3497 */ 3498 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3499 goto failed_mount; 3500 3501 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3502 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3503 blocksize > EXT4_MAX_BLOCK_SIZE) { 3504 ext4_msg(sb, KERN_ERR, 3505 "Unsupported filesystem blocksize %d", blocksize); 3506 goto failed_mount; 3507 } 3508 3509 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3510 ext4_msg(sb, KERN_ERR, 3511 "Number of reserved GDT blocks insanely large: %d", 3512 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3513 goto failed_mount; 3514 } 3515 3516 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3517 err = bdev_dax_supported(sb, blocksize); 3518 if (err) 3519 goto failed_mount; 3520 } 3521 3522 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3523 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3524 es->s_encryption_level); 3525 goto failed_mount; 3526 } 3527 3528 if (sb->s_blocksize != blocksize) { 3529 /* Validate the filesystem blocksize */ 3530 if (!sb_set_blocksize(sb, blocksize)) { 3531 ext4_msg(sb, KERN_ERR, "bad block size %d", 3532 blocksize); 3533 goto failed_mount; 3534 } 3535 3536 brelse(bh); 3537 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3538 offset = do_div(logical_sb_block, blocksize); 3539 bh = sb_bread_unmovable(sb, logical_sb_block); 3540 if (!bh) { 3541 ext4_msg(sb, KERN_ERR, 3542 "Can't read superblock on 2nd try"); 3543 goto failed_mount; 3544 } 3545 es = (struct ext4_super_block *)(bh->b_data + offset); 3546 sbi->s_es = es; 3547 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3548 ext4_msg(sb, KERN_ERR, 3549 "Magic mismatch, very weird!"); 3550 goto failed_mount; 3551 } 3552 } 3553 3554 has_huge_files = ext4_has_feature_huge_file(sb); 3555 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3556 has_huge_files); 3557 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3558 3559 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3560 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3561 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3562 } else { 3563 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3564 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3565 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3566 (!is_power_of_2(sbi->s_inode_size)) || 3567 (sbi->s_inode_size > blocksize)) { 3568 ext4_msg(sb, KERN_ERR, 3569 "unsupported inode size: %d", 3570 sbi->s_inode_size); 3571 goto failed_mount; 3572 } 3573 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3574 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3575 } 3576 3577 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3578 if (ext4_has_feature_64bit(sb)) { 3579 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3580 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3581 !is_power_of_2(sbi->s_desc_size)) { 3582 ext4_msg(sb, KERN_ERR, 3583 "unsupported descriptor size %lu", 3584 sbi->s_desc_size); 3585 goto failed_mount; 3586 } 3587 } else 3588 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3589 3590 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3591 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3592 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3593 goto cantfind_ext4; 3594 3595 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3596 if (sbi->s_inodes_per_block == 0) 3597 goto cantfind_ext4; 3598 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3599 sbi->s_inodes_per_block; 3600 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3601 sbi->s_sbh = bh; 3602 sbi->s_mount_state = le16_to_cpu(es->s_state); 3603 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3604 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3605 3606 for (i = 0; i < 4; i++) 3607 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3608 sbi->s_def_hash_version = es->s_def_hash_version; 3609 if (ext4_has_feature_dir_index(sb)) { 3610 i = le32_to_cpu(es->s_flags); 3611 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3612 sbi->s_hash_unsigned = 3; 3613 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3614 #ifdef __CHAR_UNSIGNED__ 3615 if (!(sb->s_flags & MS_RDONLY)) 3616 es->s_flags |= 3617 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3618 sbi->s_hash_unsigned = 3; 3619 #else 3620 if (!(sb->s_flags & MS_RDONLY)) 3621 es->s_flags |= 3622 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3623 #endif 3624 } 3625 } 3626 3627 /* Handle clustersize */ 3628 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3629 has_bigalloc = ext4_has_feature_bigalloc(sb); 3630 if (has_bigalloc) { 3631 if (clustersize < blocksize) { 3632 ext4_msg(sb, KERN_ERR, 3633 "cluster size (%d) smaller than " 3634 "block size (%d)", clustersize, blocksize); 3635 goto failed_mount; 3636 } 3637 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3638 le32_to_cpu(es->s_log_block_size); 3639 sbi->s_clusters_per_group = 3640 le32_to_cpu(es->s_clusters_per_group); 3641 if (sbi->s_clusters_per_group > blocksize * 8) { 3642 ext4_msg(sb, KERN_ERR, 3643 "#clusters per group too big: %lu", 3644 sbi->s_clusters_per_group); 3645 goto failed_mount; 3646 } 3647 if (sbi->s_blocks_per_group != 3648 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3649 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3650 "clusters per group (%lu) inconsistent", 3651 sbi->s_blocks_per_group, 3652 sbi->s_clusters_per_group); 3653 goto failed_mount; 3654 } 3655 } else { 3656 if (clustersize != blocksize) { 3657 ext4_warning(sb, "fragment/cluster size (%d) != " 3658 "block size (%d)", clustersize, 3659 blocksize); 3660 clustersize = blocksize; 3661 } 3662 if (sbi->s_blocks_per_group > blocksize * 8) { 3663 ext4_msg(sb, KERN_ERR, 3664 "#blocks per group too big: %lu", 3665 sbi->s_blocks_per_group); 3666 goto failed_mount; 3667 } 3668 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3669 sbi->s_cluster_bits = 0; 3670 } 3671 sbi->s_cluster_ratio = clustersize / blocksize; 3672 3673 if (sbi->s_inodes_per_group > blocksize * 8) { 3674 ext4_msg(sb, KERN_ERR, 3675 "#inodes per group too big: %lu", 3676 sbi->s_inodes_per_group); 3677 goto failed_mount; 3678 } 3679 3680 /* Do we have standard group size of clustersize * 8 blocks ? */ 3681 if (sbi->s_blocks_per_group == clustersize << 3) 3682 set_opt2(sb, STD_GROUP_SIZE); 3683 3684 /* 3685 * Test whether we have more sectors than will fit in sector_t, 3686 * and whether the max offset is addressable by the page cache. 3687 */ 3688 err = generic_check_addressable(sb->s_blocksize_bits, 3689 ext4_blocks_count(es)); 3690 if (err) { 3691 ext4_msg(sb, KERN_ERR, "filesystem" 3692 " too large to mount safely on this system"); 3693 if (sizeof(sector_t) < 8) 3694 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3695 goto failed_mount; 3696 } 3697 3698 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3699 goto cantfind_ext4; 3700 3701 /* check blocks count against device size */ 3702 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3703 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3704 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3705 "exceeds size of device (%llu blocks)", 3706 ext4_blocks_count(es), blocks_count); 3707 goto failed_mount; 3708 } 3709 3710 /* 3711 * It makes no sense for the first data block to be beyond the end 3712 * of the filesystem. 3713 */ 3714 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3715 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3716 "block %u is beyond end of filesystem (%llu)", 3717 le32_to_cpu(es->s_first_data_block), 3718 ext4_blocks_count(es)); 3719 goto failed_mount; 3720 } 3721 blocks_count = (ext4_blocks_count(es) - 3722 le32_to_cpu(es->s_first_data_block) + 3723 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3724 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3725 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3726 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3727 "(block count %llu, first data block %u, " 3728 "blocks per group %lu)", sbi->s_groups_count, 3729 ext4_blocks_count(es), 3730 le32_to_cpu(es->s_first_data_block), 3731 EXT4_BLOCKS_PER_GROUP(sb)); 3732 goto failed_mount; 3733 } 3734 sbi->s_groups_count = blocks_count; 3735 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3736 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3737 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3738 EXT4_DESC_PER_BLOCK(sb); 3739 sbi->s_group_desc = ext4_kvmalloc(db_count * 3740 sizeof(struct buffer_head *), 3741 GFP_KERNEL); 3742 if (sbi->s_group_desc == NULL) { 3743 ext4_msg(sb, KERN_ERR, "not enough memory"); 3744 ret = -ENOMEM; 3745 goto failed_mount; 3746 } 3747 3748 bgl_lock_init(sbi->s_blockgroup_lock); 3749 3750 for (i = 0; i < db_count; i++) { 3751 block = descriptor_loc(sb, logical_sb_block, i); 3752 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3753 if (!sbi->s_group_desc[i]) { 3754 ext4_msg(sb, KERN_ERR, 3755 "can't read group descriptor %d", i); 3756 db_count = i; 3757 goto failed_mount2; 3758 } 3759 } 3760 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3761 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3762 ret = -EFSCORRUPTED; 3763 goto failed_mount2; 3764 } 3765 3766 sbi->s_gdb_count = db_count; 3767 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3768 spin_lock_init(&sbi->s_next_gen_lock); 3769 3770 setup_timer(&sbi->s_err_report, print_daily_error_info, 3771 (unsigned long) sb); 3772 3773 /* Register extent status tree shrinker */ 3774 if (ext4_es_register_shrinker(sbi)) 3775 goto failed_mount3; 3776 3777 sbi->s_stripe = ext4_get_stripe_size(sbi); 3778 sbi->s_extent_max_zeroout_kb = 32; 3779 3780 /* 3781 * set up enough so that it can read an inode 3782 */ 3783 sb->s_op = &ext4_sops; 3784 sb->s_export_op = &ext4_export_ops; 3785 sb->s_xattr = ext4_xattr_handlers; 3786 sb->s_cop = &ext4_cryptops; 3787 #ifdef CONFIG_QUOTA 3788 sb->dq_op = &ext4_quota_operations; 3789 if (ext4_has_feature_quota(sb)) 3790 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3791 else 3792 sb->s_qcop = &ext4_qctl_operations; 3793 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3794 #endif 3795 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3796 3797 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3798 mutex_init(&sbi->s_orphan_lock); 3799 3800 sb->s_root = NULL; 3801 3802 needs_recovery = (es->s_last_orphan != 0 || 3803 ext4_has_feature_journal_needs_recovery(sb)); 3804 3805 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3806 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3807 goto failed_mount3a; 3808 3809 /* 3810 * The first inode we look at is the journal inode. Don't try 3811 * root first: it may be modified in the journal! 3812 */ 3813 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3814 if (ext4_load_journal(sb, es, journal_devnum)) 3815 goto failed_mount3a; 3816 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3817 ext4_has_feature_journal_needs_recovery(sb)) { 3818 ext4_msg(sb, KERN_ERR, "required journal recovery " 3819 "suppressed and not mounted read-only"); 3820 goto failed_mount_wq; 3821 } else { 3822 /* Nojournal mode, all journal mount options are illegal */ 3823 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3824 ext4_msg(sb, KERN_ERR, "can't mount with " 3825 "journal_checksum, fs mounted w/o journal"); 3826 goto failed_mount_wq; 3827 } 3828 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3829 ext4_msg(sb, KERN_ERR, "can't mount with " 3830 "journal_async_commit, fs mounted w/o journal"); 3831 goto failed_mount_wq; 3832 } 3833 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3834 ext4_msg(sb, KERN_ERR, "can't mount with " 3835 "commit=%lu, fs mounted w/o journal", 3836 sbi->s_commit_interval / HZ); 3837 goto failed_mount_wq; 3838 } 3839 if (EXT4_MOUNT_DATA_FLAGS & 3840 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3841 ext4_msg(sb, KERN_ERR, "can't mount with " 3842 "data=, fs mounted w/o journal"); 3843 goto failed_mount_wq; 3844 } 3845 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3846 clear_opt(sb, JOURNAL_CHECKSUM); 3847 clear_opt(sb, DATA_FLAGS); 3848 sbi->s_journal = NULL; 3849 needs_recovery = 0; 3850 goto no_journal; 3851 } 3852 3853 if (ext4_has_feature_64bit(sb) && 3854 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3855 JBD2_FEATURE_INCOMPAT_64BIT)) { 3856 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3857 goto failed_mount_wq; 3858 } 3859 3860 if (!set_journal_csum_feature_set(sb)) { 3861 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3862 "feature set"); 3863 goto failed_mount_wq; 3864 } 3865 3866 /* We have now updated the journal if required, so we can 3867 * validate the data journaling mode. */ 3868 switch (test_opt(sb, DATA_FLAGS)) { 3869 case 0: 3870 /* No mode set, assume a default based on the journal 3871 * capabilities: ORDERED_DATA if the journal can 3872 * cope, else JOURNAL_DATA 3873 */ 3874 if (jbd2_journal_check_available_features 3875 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3876 set_opt(sb, ORDERED_DATA); 3877 else 3878 set_opt(sb, JOURNAL_DATA); 3879 break; 3880 3881 case EXT4_MOUNT_ORDERED_DATA: 3882 case EXT4_MOUNT_WRITEBACK_DATA: 3883 if (!jbd2_journal_check_available_features 3884 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3885 ext4_msg(sb, KERN_ERR, "Journal does not support " 3886 "requested data journaling mode"); 3887 goto failed_mount_wq; 3888 } 3889 default: 3890 break; 3891 } 3892 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3893 3894 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3895 3896 no_journal: 3897 sbi->s_mb_cache = ext4_xattr_create_cache(); 3898 if (!sbi->s_mb_cache) { 3899 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3900 goto failed_mount_wq; 3901 } 3902 3903 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3904 (blocksize != PAGE_SIZE)) { 3905 ext4_msg(sb, KERN_ERR, 3906 "Unsupported blocksize for fs encryption"); 3907 goto failed_mount_wq; 3908 } 3909 3910 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3911 !ext4_has_feature_encrypt(sb)) { 3912 ext4_set_feature_encrypt(sb); 3913 ext4_commit_super(sb, 1); 3914 } 3915 3916 /* 3917 * Get the # of file system overhead blocks from the 3918 * superblock if present. 3919 */ 3920 if (es->s_overhead_clusters) 3921 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3922 else { 3923 err = ext4_calculate_overhead(sb); 3924 if (err) 3925 goto failed_mount_wq; 3926 } 3927 3928 /* 3929 * The maximum number of concurrent works can be high and 3930 * concurrency isn't really necessary. Limit it to 1. 3931 */ 3932 EXT4_SB(sb)->rsv_conversion_wq = 3933 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3934 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3935 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3936 ret = -ENOMEM; 3937 goto failed_mount4; 3938 } 3939 3940 /* 3941 * The jbd2_journal_load will have done any necessary log recovery, 3942 * so we can safely mount the rest of the filesystem now. 3943 */ 3944 3945 root = ext4_iget(sb, EXT4_ROOT_INO); 3946 if (IS_ERR(root)) { 3947 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3948 ret = PTR_ERR(root); 3949 root = NULL; 3950 goto failed_mount4; 3951 } 3952 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3953 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3954 iput(root); 3955 goto failed_mount4; 3956 } 3957 sb->s_root = d_make_root(root); 3958 if (!sb->s_root) { 3959 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3960 ret = -ENOMEM; 3961 goto failed_mount4; 3962 } 3963 3964 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3965 sb->s_flags |= MS_RDONLY; 3966 3967 /* determine the minimum size of new large inodes, if present */ 3968 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3969 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3970 EXT4_GOOD_OLD_INODE_SIZE; 3971 if (ext4_has_feature_extra_isize(sb)) { 3972 if (sbi->s_want_extra_isize < 3973 le16_to_cpu(es->s_want_extra_isize)) 3974 sbi->s_want_extra_isize = 3975 le16_to_cpu(es->s_want_extra_isize); 3976 if (sbi->s_want_extra_isize < 3977 le16_to_cpu(es->s_min_extra_isize)) 3978 sbi->s_want_extra_isize = 3979 le16_to_cpu(es->s_min_extra_isize); 3980 } 3981 } 3982 /* Check if enough inode space is available */ 3983 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3984 sbi->s_inode_size) { 3985 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3986 EXT4_GOOD_OLD_INODE_SIZE; 3987 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3988 "available"); 3989 } 3990 3991 ext4_set_resv_clusters(sb); 3992 3993 err = ext4_setup_system_zone(sb); 3994 if (err) { 3995 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3996 "zone (%d)", err); 3997 goto failed_mount4a; 3998 } 3999 4000 ext4_ext_init(sb); 4001 err = ext4_mb_init(sb); 4002 if (err) { 4003 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4004 err); 4005 goto failed_mount5; 4006 } 4007 4008 block = ext4_count_free_clusters(sb); 4009 ext4_free_blocks_count_set(sbi->s_es, 4010 EXT4_C2B(sbi, block)); 4011 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4012 GFP_KERNEL); 4013 if (!err) { 4014 unsigned long freei = ext4_count_free_inodes(sb); 4015 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4016 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4017 GFP_KERNEL); 4018 } 4019 if (!err) 4020 err = percpu_counter_init(&sbi->s_dirs_counter, 4021 ext4_count_dirs(sb), GFP_KERNEL); 4022 if (!err) 4023 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4024 GFP_KERNEL); 4025 if (!err) 4026 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4027 4028 if (err) { 4029 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4030 goto failed_mount6; 4031 } 4032 4033 if (ext4_has_feature_flex_bg(sb)) 4034 if (!ext4_fill_flex_info(sb)) { 4035 ext4_msg(sb, KERN_ERR, 4036 "unable to initialize " 4037 "flex_bg meta info!"); 4038 goto failed_mount6; 4039 } 4040 4041 err = ext4_register_li_request(sb, first_not_zeroed); 4042 if (err) 4043 goto failed_mount6; 4044 4045 err = ext4_register_sysfs(sb); 4046 if (err) 4047 goto failed_mount7; 4048 4049 #ifdef CONFIG_QUOTA 4050 /* Enable quota usage during mount. */ 4051 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4052 err = ext4_enable_quotas(sb); 4053 if (err) 4054 goto failed_mount8; 4055 } 4056 #endif /* CONFIG_QUOTA */ 4057 4058 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4059 ext4_orphan_cleanup(sb, es); 4060 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4061 if (needs_recovery) { 4062 ext4_msg(sb, KERN_INFO, "recovery complete"); 4063 ext4_mark_recovery_complete(sb, es); 4064 } 4065 if (EXT4_SB(sb)->s_journal) { 4066 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4067 descr = " journalled data mode"; 4068 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4069 descr = " ordered data mode"; 4070 else 4071 descr = " writeback data mode"; 4072 } else 4073 descr = "out journal"; 4074 4075 if (test_opt(sb, DISCARD)) { 4076 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4077 if (!blk_queue_discard(q)) 4078 ext4_msg(sb, KERN_WARNING, 4079 "mounting with \"discard\" option, but " 4080 "the device does not support discard"); 4081 } 4082 4083 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4084 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4085 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4086 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4087 4088 if (es->s_error_count) 4089 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4090 4091 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4092 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4093 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4094 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4095 4096 kfree(orig_data); 4097 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4098 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX, 4099 EXT4_KEY_DESC_PREFIX_SIZE); 4100 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE; 4101 #endif 4102 return 0; 4103 4104 cantfind_ext4: 4105 if (!silent) 4106 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4107 goto failed_mount; 4108 4109 #ifdef CONFIG_QUOTA 4110 failed_mount8: 4111 ext4_unregister_sysfs(sb); 4112 #endif 4113 failed_mount7: 4114 ext4_unregister_li_request(sb); 4115 failed_mount6: 4116 ext4_mb_release(sb); 4117 if (sbi->s_flex_groups) 4118 kvfree(sbi->s_flex_groups); 4119 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4120 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4121 percpu_counter_destroy(&sbi->s_dirs_counter); 4122 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4123 failed_mount5: 4124 ext4_ext_release(sb); 4125 ext4_release_system_zone(sb); 4126 failed_mount4a: 4127 dput(sb->s_root); 4128 sb->s_root = NULL; 4129 failed_mount4: 4130 ext4_msg(sb, KERN_ERR, "mount failed"); 4131 if (EXT4_SB(sb)->rsv_conversion_wq) 4132 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4133 failed_mount_wq: 4134 if (sbi->s_mb_cache) { 4135 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4136 sbi->s_mb_cache = NULL; 4137 } 4138 if (sbi->s_journal) { 4139 jbd2_journal_destroy(sbi->s_journal); 4140 sbi->s_journal = NULL; 4141 } 4142 failed_mount3a: 4143 ext4_es_unregister_shrinker(sbi); 4144 failed_mount3: 4145 del_timer_sync(&sbi->s_err_report); 4146 if (sbi->s_mmp_tsk) 4147 kthread_stop(sbi->s_mmp_tsk); 4148 failed_mount2: 4149 for (i = 0; i < db_count; i++) 4150 brelse(sbi->s_group_desc[i]); 4151 kvfree(sbi->s_group_desc); 4152 failed_mount: 4153 if (sbi->s_chksum_driver) 4154 crypto_free_shash(sbi->s_chksum_driver); 4155 #ifdef CONFIG_QUOTA 4156 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4157 kfree(sbi->s_qf_names[i]); 4158 #endif 4159 ext4_blkdev_remove(sbi); 4160 brelse(bh); 4161 out_fail: 4162 sb->s_fs_info = NULL; 4163 kfree(sbi->s_blockgroup_lock); 4164 kfree(sbi); 4165 out_free_orig: 4166 kfree(orig_data); 4167 return err ? err : ret; 4168 } 4169 4170 /* 4171 * Setup any per-fs journal parameters now. We'll do this both on 4172 * initial mount, once the journal has been initialised but before we've 4173 * done any recovery; and again on any subsequent remount. 4174 */ 4175 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4176 { 4177 struct ext4_sb_info *sbi = EXT4_SB(sb); 4178 4179 journal->j_commit_interval = sbi->s_commit_interval; 4180 journal->j_min_batch_time = sbi->s_min_batch_time; 4181 journal->j_max_batch_time = sbi->s_max_batch_time; 4182 4183 write_lock(&journal->j_state_lock); 4184 if (test_opt(sb, BARRIER)) 4185 journal->j_flags |= JBD2_BARRIER; 4186 else 4187 journal->j_flags &= ~JBD2_BARRIER; 4188 if (test_opt(sb, DATA_ERR_ABORT)) 4189 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4190 else 4191 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4192 write_unlock(&journal->j_state_lock); 4193 } 4194 4195 static journal_t *ext4_get_journal(struct super_block *sb, 4196 unsigned int journal_inum) 4197 { 4198 struct inode *journal_inode; 4199 journal_t *journal; 4200 4201 BUG_ON(!ext4_has_feature_journal(sb)); 4202 4203 /* First, test for the existence of a valid inode on disk. Bad 4204 * things happen if we iget() an unused inode, as the subsequent 4205 * iput() will try to delete it. */ 4206 4207 journal_inode = ext4_iget(sb, journal_inum); 4208 if (IS_ERR(journal_inode)) { 4209 ext4_msg(sb, KERN_ERR, "no journal found"); 4210 return NULL; 4211 } 4212 if (!journal_inode->i_nlink) { 4213 make_bad_inode(journal_inode); 4214 iput(journal_inode); 4215 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4216 return NULL; 4217 } 4218 4219 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4220 journal_inode, journal_inode->i_size); 4221 if (!S_ISREG(journal_inode->i_mode)) { 4222 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4223 iput(journal_inode); 4224 return NULL; 4225 } 4226 4227 journal = jbd2_journal_init_inode(journal_inode); 4228 if (!journal) { 4229 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4230 iput(journal_inode); 4231 return NULL; 4232 } 4233 journal->j_private = sb; 4234 ext4_init_journal_params(sb, journal); 4235 return journal; 4236 } 4237 4238 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4239 dev_t j_dev) 4240 { 4241 struct buffer_head *bh; 4242 journal_t *journal; 4243 ext4_fsblk_t start; 4244 ext4_fsblk_t len; 4245 int hblock, blocksize; 4246 ext4_fsblk_t sb_block; 4247 unsigned long offset; 4248 struct ext4_super_block *es; 4249 struct block_device *bdev; 4250 4251 BUG_ON(!ext4_has_feature_journal(sb)); 4252 4253 bdev = ext4_blkdev_get(j_dev, sb); 4254 if (bdev == NULL) 4255 return NULL; 4256 4257 blocksize = sb->s_blocksize; 4258 hblock = bdev_logical_block_size(bdev); 4259 if (blocksize < hblock) { 4260 ext4_msg(sb, KERN_ERR, 4261 "blocksize too small for journal device"); 4262 goto out_bdev; 4263 } 4264 4265 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4266 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4267 set_blocksize(bdev, blocksize); 4268 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4269 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4270 "external journal"); 4271 goto out_bdev; 4272 } 4273 4274 es = (struct ext4_super_block *) (bh->b_data + offset); 4275 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4276 !(le32_to_cpu(es->s_feature_incompat) & 4277 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4278 ext4_msg(sb, KERN_ERR, "external journal has " 4279 "bad superblock"); 4280 brelse(bh); 4281 goto out_bdev; 4282 } 4283 4284 if ((le32_to_cpu(es->s_feature_ro_compat) & 4285 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4286 es->s_checksum != ext4_superblock_csum(sb, es)) { 4287 ext4_msg(sb, KERN_ERR, "external journal has " 4288 "corrupt superblock"); 4289 brelse(bh); 4290 goto out_bdev; 4291 } 4292 4293 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4294 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4295 brelse(bh); 4296 goto out_bdev; 4297 } 4298 4299 len = ext4_blocks_count(es); 4300 start = sb_block + 1; 4301 brelse(bh); /* we're done with the superblock */ 4302 4303 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4304 start, len, blocksize); 4305 if (!journal) { 4306 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4307 goto out_bdev; 4308 } 4309 journal->j_private = sb; 4310 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4311 wait_on_buffer(journal->j_sb_buffer); 4312 if (!buffer_uptodate(journal->j_sb_buffer)) { 4313 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4314 goto out_journal; 4315 } 4316 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4317 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4318 "user (unsupported) - %d", 4319 be32_to_cpu(journal->j_superblock->s_nr_users)); 4320 goto out_journal; 4321 } 4322 EXT4_SB(sb)->journal_bdev = bdev; 4323 ext4_init_journal_params(sb, journal); 4324 return journal; 4325 4326 out_journal: 4327 jbd2_journal_destroy(journal); 4328 out_bdev: 4329 ext4_blkdev_put(bdev); 4330 return NULL; 4331 } 4332 4333 static int ext4_load_journal(struct super_block *sb, 4334 struct ext4_super_block *es, 4335 unsigned long journal_devnum) 4336 { 4337 journal_t *journal; 4338 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4339 dev_t journal_dev; 4340 int err = 0; 4341 int really_read_only; 4342 4343 BUG_ON(!ext4_has_feature_journal(sb)); 4344 4345 if (journal_devnum && 4346 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4347 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4348 "numbers have changed"); 4349 journal_dev = new_decode_dev(journal_devnum); 4350 } else 4351 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4352 4353 really_read_only = bdev_read_only(sb->s_bdev); 4354 4355 /* 4356 * Are we loading a blank journal or performing recovery after a 4357 * crash? For recovery, we need to check in advance whether we 4358 * can get read-write access to the device. 4359 */ 4360 if (ext4_has_feature_journal_needs_recovery(sb)) { 4361 if (sb->s_flags & MS_RDONLY) { 4362 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4363 "required on readonly filesystem"); 4364 if (really_read_only) { 4365 ext4_msg(sb, KERN_ERR, "write access " 4366 "unavailable, cannot proceed"); 4367 return -EROFS; 4368 } 4369 ext4_msg(sb, KERN_INFO, "write access will " 4370 "be enabled during recovery"); 4371 } 4372 } 4373 4374 if (journal_inum && journal_dev) { 4375 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4376 "and inode journals!"); 4377 return -EINVAL; 4378 } 4379 4380 if (journal_inum) { 4381 if (!(journal = ext4_get_journal(sb, journal_inum))) 4382 return -EINVAL; 4383 } else { 4384 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4385 return -EINVAL; 4386 } 4387 4388 if (!(journal->j_flags & JBD2_BARRIER)) 4389 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4390 4391 if (!ext4_has_feature_journal_needs_recovery(sb)) 4392 err = jbd2_journal_wipe(journal, !really_read_only); 4393 if (!err) { 4394 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4395 if (save) 4396 memcpy(save, ((char *) es) + 4397 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4398 err = jbd2_journal_load(journal); 4399 if (save) 4400 memcpy(((char *) es) + EXT4_S_ERR_START, 4401 save, EXT4_S_ERR_LEN); 4402 kfree(save); 4403 } 4404 4405 if (err) { 4406 ext4_msg(sb, KERN_ERR, "error loading journal"); 4407 jbd2_journal_destroy(journal); 4408 return err; 4409 } 4410 4411 EXT4_SB(sb)->s_journal = journal; 4412 ext4_clear_journal_err(sb, es); 4413 4414 if (!really_read_only && journal_devnum && 4415 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4416 es->s_journal_dev = cpu_to_le32(journal_devnum); 4417 4418 /* Make sure we flush the recovery flag to disk. */ 4419 ext4_commit_super(sb, 1); 4420 } 4421 4422 return 0; 4423 } 4424 4425 static int ext4_commit_super(struct super_block *sb, int sync) 4426 { 4427 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4428 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4429 int error = 0; 4430 4431 if (!sbh || block_device_ejected(sb)) 4432 return error; 4433 /* 4434 * If the file system is mounted read-only, don't update the 4435 * superblock write time. This avoids updating the superblock 4436 * write time when we are mounting the root file system 4437 * read/only but we need to replay the journal; at that point, 4438 * for people who are east of GMT and who make their clock 4439 * tick in localtime for Windows bug-for-bug compatibility, 4440 * the clock is set in the future, and this will cause e2fsck 4441 * to complain and force a full file system check. 4442 */ 4443 if (!(sb->s_flags & MS_RDONLY)) 4444 es->s_wtime = cpu_to_le32(get_seconds()); 4445 if (sb->s_bdev->bd_part) 4446 es->s_kbytes_written = 4447 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4448 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4449 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4450 else 4451 es->s_kbytes_written = 4452 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4453 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4454 ext4_free_blocks_count_set(es, 4455 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4456 &EXT4_SB(sb)->s_freeclusters_counter))); 4457 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4458 es->s_free_inodes_count = 4459 cpu_to_le32(percpu_counter_sum_positive( 4460 &EXT4_SB(sb)->s_freeinodes_counter)); 4461 BUFFER_TRACE(sbh, "marking dirty"); 4462 ext4_superblock_csum_set(sb); 4463 lock_buffer(sbh); 4464 if (buffer_write_io_error(sbh)) { 4465 /* 4466 * Oh, dear. A previous attempt to write the 4467 * superblock failed. This could happen because the 4468 * USB device was yanked out. Or it could happen to 4469 * be a transient write error and maybe the block will 4470 * be remapped. Nothing we can do but to retry the 4471 * write and hope for the best. 4472 */ 4473 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4474 "superblock detected"); 4475 clear_buffer_write_io_error(sbh); 4476 set_buffer_uptodate(sbh); 4477 } 4478 mark_buffer_dirty(sbh); 4479 unlock_buffer(sbh); 4480 if (sync) { 4481 error = __sync_dirty_buffer(sbh, 4482 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4483 if (error) 4484 return error; 4485 4486 error = buffer_write_io_error(sbh); 4487 if (error) { 4488 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4489 "superblock"); 4490 clear_buffer_write_io_error(sbh); 4491 set_buffer_uptodate(sbh); 4492 } 4493 } 4494 return error; 4495 } 4496 4497 /* 4498 * Have we just finished recovery? If so, and if we are mounting (or 4499 * remounting) the filesystem readonly, then we will end up with a 4500 * consistent fs on disk. Record that fact. 4501 */ 4502 static void ext4_mark_recovery_complete(struct super_block *sb, 4503 struct ext4_super_block *es) 4504 { 4505 journal_t *journal = EXT4_SB(sb)->s_journal; 4506 4507 if (!ext4_has_feature_journal(sb)) { 4508 BUG_ON(journal != NULL); 4509 return; 4510 } 4511 jbd2_journal_lock_updates(journal); 4512 if (jbd2_journal_flush(journal) < 0) 4513 goto out; 4514 4515 if (ext4_has_feature_journal_needs_recovery(sb) && 4516 sb->s_flags & MS_RDONLY) { 4517 ext4_clear_feature_journal_needs_recovery(sb); 4518 ext4_commit_super(sb, 1); 4519 } 4520 4521 out: 4522 jbd2_journal_unlock_updates(journal); 4523 } 4524 4525 /* 4526 * If we are mounting (or read-write remounting) a filesystem whose journal 4527 * has recorded an error from a previous lifetime, move that error to the 4528 * main filesystem now. 4529 */ 4530 static void ext4_clear_journal_err(struct super_block *sb, 4531 struct ext4_super_block *es) 4532 { 4533 journal_t *journal; 4534 int j_errno; 4535 const char *errstr; 4536 4537 BUG_ON(!ext4_has_feature_journal(sb)); 4538 4539 journal = EXT4_SB(sb)->s_journal; 4540 4541 /* 4542 * Now check for any error status which may have been recorded in the 4543 * journal by a prior ext4_error() or ext4_abort() 4544 */ 4545 4546 j_errno = jbd2_journal_errno(journal); 4547 if (j_errno) { 4548 char nbuf[16]; 4549 4550 errstr = ext4_decode_error(sb, j_errno, nbuf); 4551 ext4_warning(sb, "Filesystem error recorded " 4552 "from previous mount: %s", errstr); 4553 ext4_warning(sb, "Marking fs in need of filesystem check."); 4554 4555 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4556 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4557 ext4_commit_super(sb, 1); 4558 4559 jbd2_journal_clear_err(journal); 4560 jbd2_journal_update_sb_errno(journal); 4561 } 4562 } 4563 4564 /* 4565 * Force the running and committing transactions to commit, 4566 * and wait on the commit. 4567 */ 4568 int ext4_force_commit(struct super_block *sb) 4569 { 4570 journal_t *journal; 4571 4572 if (sb->s_flags & MS_RDONLY) 4573 return 0; 4574 4575 journal = EXT4_SB(sb)->s_journal; 4576 return ext4_journal_force_commit(journal); 4577 } 4578 4579 static int ext4_sync_fs(struct super_block *sb, int wait) 4580 { 4581 int ret = 0; 4582 tid_t target; 4583 bool needs_barrier = false; 4584 struct ext4_sb_info *sbi = EXT4_SB(sb); 4585 4586 trace_ext4_sync_fs(sb, wait); 4587 flush_workqueue(sbi->rsv_conversion_wq); 4588 /* 4589 * Writeback quota in non-journalled quota case - journalled quota has 4590 * no dirty dquots 4591 */ 4592 dquot_writeback_dquots(sb, -1); 4593 /* 4594 * Data writeback is possible w/o journal transaction, so barrier must 4595 * being sent at the end of the function. But we can skip it if 4596 * transaction_commit will do it for us. 4597 */ 4598 if (sbi->s_journal) { 4599 target = jbd2_get_latest_transaction(sbi->s_journal); 4600 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4601 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4602 needs_barrier = true; 4603 4604 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4605 if (wait) 4606 ret = jbd2_log_wait_commit(sbi->s_journal, 4607 target); 4608 } 4609 } else if (wait && test_opt(sb, BARRIER)) 4610 needs_barrier = true; 4611 if (needs_barrier) { 4612 int err; 4613 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4614 if (!ret) 4615 ret = err; 4616 } 4617 4618 return ret; 4619 } 4620 4621 /* 4622 * LVM calls this function before a (read-only) snapshot is created. This 4623 * gives us a chance to flush the journal completely and mark the fs clean. 4624 * 4625 * Note that only this function cannot bring a filesystem to be in a clean 4626 * state independently. It relies on upper layer to stop all data & metadata 4627 * modifications. 4628 */ 4629 static int ext4_freeze(struct super_block *sb) 4630 { 4631 int error = 0; 4632 journal_t *journal; 4633 4634 if (sb->s_flags & MS_RDONLY) 4635 return 0; 4636 4637 journal = EXT4_SB(sb)->s_journal; 4638 4639 if (journal) { 4640 /* Now we set up the journal barrier. */ 4641 jbd2_journal_lock_updates(journal); 4642 4643 /* 4644 * Don't clear the needs_recovery flag if we failed to 4645 * flush the journal. 4646 */ 4647 error = jbd2_journal_flush(journal); 4648 if (error < 0) 4649 goto out; 4650 4651 /* Journal blocked and flushed, clear needs_recovery flag. */ 4652 ext4_clear_feature_journal_needs_recovery(sb); 4653 } 4654 4655 error = ext4_commit_super(sb, 1); 4656 out: 4657 if (journal) 4658 /* we rely on upper layer to stop further updates */ 4659 jbd2_journal_unlock_updates(journal); 4660 return error; 4661 } 4662 4663 /* 4664 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4665 * flag here, even though the filesystem is not technically dirty yet. 4666 */ 4667 static int ext4_unfreeze(struct super_block *sb) 4668 { 4669 if (sb->s_flags & MS_RDONLY) 4670 return 0; 4671 4672 if (EXT4_SB(sb)->s_journal) { 4673 /* Reset the needs_recovery flag before the fs is unlocked. */ 4674 ext4_set_feature_journal_needs_recovery(sb); 4675 } 4676 4677 ext4_commit_super(sb, 1); 4678 return 0; 4679 } 4680 4681 /* 4682 * Structure to save mount options for ext4_remount's benefit 4683 */ 4684 struct ext4_mount_options { 4685 unsigned long s_mount_opt; 4686 unsigned long s_mount_opt2; 4687 kuid_t s_resuid; 4688 kgid_t s_resgid; 4689 unsigned long s_commit_interval; 4690 u32 s_min_batch_time, s_max_batch_time; 4691 #ifdef CONFIG_QUOTA 4692 int s_jquota_fmt; 4693 char *s_qf_names[EXT4_MAXQUOTAS]; 4694 #endif 4695 }; 4696 4697 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4698 { 4699 struct ext4_super_block *es; 4700 struct ext4_sb_info *sbi = EXT4_SB(sb); 4701 unsigned long old_sb_flags; 4702 struct ext4_mount_options old_opts; 4703 int enable_quota = 0; 4704 ext4_group_t g; 4705 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4706 int err = 0; 4707 #ifdef CONFIG_QUOTA 4708 int i, j; 4709 #endif 4710 char *orig_data = kstrdup(data, GFP_KERNEL); 4711 4712 /* Store the original options */ 4713 old_sb_flags = sb->s_flags; 4714 old_opts.s_mount_opt = sbi->s_mount_opt; 4715 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4716 old_opts.s_resuid = sbi->s_resuid; 4717 old_opts.s_resgid = sbi->s_resgid; 4718 old_opts.s_commit_interval = sbi->s_commit_interval; 4719 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4720 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4721 #ifdef CONFIG_QUOTA 4722 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4723 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4724 if (sbi->s_qf_names[i]) { 4725 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4726 GFP_KERNEL); 4727 if (!old_opts.s_qf_names[i]) { 4728 for (j = 0; j < i; j++) 4729 kfree(old_opts.s_qf_names[j]); 4730 kfree(orig_data); 4731 return -ENOMEM; 4732 } 4733 } else 4734 old_opts.s_qf_names[i] = NULL; 4735 #endif 4736 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4737 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4738 4739 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4740 err = -EINVAL; 4741 goto restore_opts; 4742 } 4743 4744 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4745 test_opt(sb, JOURNAL_CHECKSUM)) { 4746 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4747 "during remount not supported; ignoring"); 4748 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4749 } 4750 4751 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4752 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4753 ext4_msg(sb, KERN_ERR, "can't mount with " 4754 "both data=journal and delalloc"); 4755 err = -EINVAL; 4756 goto restore_opts; 4757 } 4758 if (test_opt(sb, DIOREAD_NOLOCK)) { 4759 ext4_msg(sb, KERN_ERR, "can't mount with " 4760 "both data=journal and dioread_nolock"); 4761 err = -EINVAL; 4762 goto restore_opts; 4763 } 4764 if (test_opt(sb, DAX)) { 4765 ext4_msg(sb, KERN_ERR, "can't mount with " 4766 "both data=journal and dax"); 4767 err = -EINVAL; 4768 goto restore_opts; 4769 } 4770 } 4771 4772 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4773 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4774 "dax flag with busy inodes while remounting"); 4775 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4776 } 4777 4778 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4779 ext4_abort(sb, "Abort forced by user"); 4780 4781 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4782 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4783 4784 es = sbi->s_es; 4785 4786 if (sbi->s_journal) { 4787 ext4_init_journal_params(sb, sbi->s_journal); 4788 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4789 } 4790 4791 if (*flags & MS_LAZYTIME) 4792 sb->s_flags |= MS_LAZYTIME; 4793 4794 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4795 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4796 err = -EROFS; 4797 goto restore_opts; 4798 } 4799 4800 if (*flags & MS_RDONLY) { 4801 err = sync_filesystem(sb); 4802 if (err < 0) 4803 goto restore_opts; 4804 err = dquot_suspend(sb, -1); 4805 if (err < 0) 4806 goto restore_opts; 4807 4808 /* 4809 * First of all, the unconditional stuff we have to do 4810 * to disable replay of the journal when we next remount 4811 */ 4812 sb->s_flags |= MS_RDONLY; 4813 4814 /* 4815 * OK, test if we are remounting a valid rw partition 4816 * readonly, and if so set the rdonly flag and then 4817 * mark the partition as valid again. 4818 */ 4819 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4820 (sbi->s_mount_state & EXT4_VALID_FS)) 4821 es->s_state = cpu_to_le16(sbi->s_mount_state); 4822 4823 if (sbi->s_journal) 4824 ext4_mark_recovery_complete(sb, es); 4825 } else { 4826 /* Make sure we can mount this feature set readwrite */ 4827 if (ext4_has_feature_readonly(sb) || 4828 !ext4_feature_set_ok(sb, 0)) { 4829 err = -EROFS; 4830 goto restore_opts; 4831 } 4832 /* 4833 * Make sure the group descriptor checksums 4834 * are sane. If they aren't, refuse to remount r/w. 4835 */ 4836 for (g = 0; g < sbi->s_groups_count; g++) { 4837 struct ext4_group_desc *gdp = 4838 ext4_get_group_desc(sb, g, NULL); 4839 4840 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4841 ext4_msg(sb, KERN_ERR, 4842 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4843 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4844 le16_to_cpu(gdp->bg_checksum)); 4845 err = -EFSBADCRC; 4846 goto restore_opts; 4847 } 4848 } 4849 4850 /* 4851 * If we have an unprocessed orphan list hanging 4852 * around from a previously readonly bdev mount, 4853 * require a full umount/remount for now. 4854 */ 4855 if (es->s_last_orphan) { 4856 ext4_msg(sb, KERN_WARNING, "Couldn't " 4857 "remount RDWR because of unprocessed " 4858 "orphan inode list. Please " 4859 "umount/remount instead"); 4860 err = -EINVAL; 4861 goto restore_opts; 4862 } 4863 4864 /* 4865 * Mounting a RDONLY partition read-write, so reread 4866 * and store the current valid flag. (It may have 4867 * been changed by e2fsck since we originally mounted 4868 * the partition.) 4869 */ 4870 if (sbi->s_journal) 4871 ext4_clear_journal_err(sb, es); 4872 sbi->s_mount_state = le16_to_cpu(es->s_state); 4873 if (!ext4_setup_super(sb, es, 0)) 4874 sb->s_flags &= ~MS_RDONLY; 4875 if (ext4_has_feature_mmp(sb)) 4876 if (ext4_multi_mount_protect(sb, 4877 le64_to_cpu(es->s_mmp_block))) { 4878 err = -EROFS; 4879 goto restore_opts; 4880 } 4881 enable_quota = 1; 4882 } 4883 } 4884 4885 /* 4886 * Reinitialize lazy itable initialization thread based on 4887 * current settings 4888 */ 4889 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4890 ext4_unregister_li_request(sb); 4891 else { 4892 ext4_group_t first_not_zeroed; 4893 first_not_zeroed = ext4_has_uninit_itable(sb); 4894 ext4_register_li_request(sb, first_not_zeroed); 4895 } 4896 4897 ext4_setup_system_zone(sb); 4898 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4899 ext4_commit_super(sb, 1); 4900 4901 #ifdef CONFIG_QUOTA 4902 /* Release old quota file names */ 4903 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4904 kfree(old_opts.s_qf_names[i]); 4905 if (enable_quota) { 4906 if (sb_any_quota_suspended(sb)) 4907 dquot_resume(sb, -1); 4908 else if (ext4_has_feature_quota(sb)) { 4909 err = ext4_enable_quotas(sb); 4910 if (err) 4911 goto restore_opts; 4912 } 4913 } 4914 #endif 4915 4916 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4917 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4918 kfree(orig_data); 4919 return 0; 4920 4921 restore_opts: 4922 sb->s_flags = old_sb_flags; 4923 sbi->s_mount_opt = old_opts.s_mount_opt; 4924 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4925 sbi->s_resuid = old_opts.s_resuid; 4926 sbi->s_resgid = old_opts.s_resgid; 4927 sbi->s_commit_interval = old_opts.s_commit_interval; 4928 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4929 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4930 #ifdef CONFIG_QUOTA 4931 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4932 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4933 kfree(sbi->s_qf_names[i]); 4934 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4935 } 4936 #endif 4937 kfree(orig_data); 4938 return err; 4939 } 4940 4941 #ifdef CONFIG_QUOTA 4942 static int ext4_statfs_project(struct super_block *sb, 4943 kprojid_t projid, struct kstatfs *buf) 4944 { 4945 struct kqid qid; 4946 struct dquot *dquot; 4947 u64 limit; 4948 u64 curblock; 4949 4950 qid = make_kqid_projid(projid); 4951 dquot = dqget(sb, qid); 4952 if (IS_ERR(dquot)) 4953 return PTR_ERR(dquot); 4954 spin_lock(&dq_data_lock); 4955 4956 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 4957 dquot->dq_dqb.dqb_bsoftlimit : 4958 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 4959 if (limit && buf->f_blocks > limit) { 4960 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 4961 buf->f_blocks = limit; 4962 buf->f_bfree = buf->f_bavail = 4963 (buf->f_blocks > curblock) ? 4964 (buf->f_blocks - curblock) : 0; 4965 } 4966 4967 limit = dquot->dq_dqb.dqb_isoftlimit ? 4968 dquot->dq_dqb.dqb_isoftlimit : 4969 dquot->dq_dqb.dqb_ihardlimit; 4970 if (limit && buf->f_files > limit) { 4971 buf->f_files = limit; 4972 buf->f_ffree = 4973 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 4974 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 4975 } 4976 4977 spin_unlock(&dq_data_lock); 4978 dqput(dquot); 4979 return 0; 4980 } 4981 #endif 4982 4983 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4984 { 4985 struct super_block *sb = dentry->d_sb; 4986 struct ext4_sb_info *sbi = EXT4_SB(sb); 4987 struct ext4_super_block *es = sbi->s_es; 4988 ext4_fsblk_t overhead = 0, resv_blocks; 4989 u64 fsid; 4990 s64 bfree; 4991 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4992 4993 if (!test_opt(sb, MINIX_DF)) 4994 overhead = sbi->s_overhead; 4995 4996 buf->f_type = EXT4_SUPER_MAGIC; 4997 buf->f_bsize = sb->s_blocksize; 4998 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4999 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5000 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5001 /* prevent underflow in case that few free space is available */ 5002 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5003 buf->f_bavail = buf->f_bfree - 5004 (ext4_r_blocks_count(es) + resv_blocks); 5005 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5006 buf->f_bavail = 0; 5007 buf->f_files = le32_to_cpu(es->s_inodes_count); 5008 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5009 buf->f_namelen = EXT4_NAME_LEN; 5010 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5011 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5012 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5013 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5014 5015 #ifdef CONFIG_QUOTA 5016 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5017 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5018 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5019 #endif 5020 return 0; 5021 } 5022 5023 /* Helper function for writing quotas on sync - we need to start transaction 5024 * before quota file is locked for write. Otherwise the are possible deadlocks: 5025 * Process 1 Process 2 5026 * ext4_create() quota_sync() 5027 * jbd2_journal_start() write_dquot() 5028 * dquot_initialize() down(dqio_mutex) 5029 * down(dqio_mutex) jbd2_journal_start() 5030 * 5031 */ 5032 5033 #ifdef CONFIG_QUOTA 5034 5035 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5036 { 5037 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5038 } 5039 5040 static int ext4_write_dquot(struct dquot *dquot) 5041 { 5042 int ret, err; 5043 handle_t *handle; 5044 struct inode *inode; 5045 5046 inode = dquot_to_inode(dquot); 5047 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5048 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5049 if (IS_ERR(handle)) 5050 return PTR_ERR(handle); 5051 ret = dquot_commit(dquot); 5052 err = ext4_journal_stop(handle); 5053 if (!ret) 5054 ret = err; 5055 return ret; 5056 } 5057 5058 static int ext4_acquire_dquot(struct dquot *dquot) 5059 { 5060 int ret, err; 5061 handle_t *handle; 5062 5063 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5064 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5065 if (IS_ERR(handle)) 5066 return PTR_ERR(handle); 5067 ret = dquot_acquire(dquot); 5068 err = ext4_journal_stop(handle); 5069 if (!ret) 5070 ret = err; 5071 return ret; 5072 } 5073 5074 static int ext4_release_dquot(struct dquot *dquot) 5075 { 5076 int ret, err; 5077 handle_t *handle; 5078 5079 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5080 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5081 if (IS_ERR(handle)) { 5082 /* Release dquot anyway to avoid endless cycle in dqput() */ 5083 dquot_release(dquot); 5084 return PTR_ERR(handle); 5085 } 5086 ret = dquot_release(dquot); 5087 err = ext4_journal_stop(handle); 5088 if (!ret) 5089 ret = err; 5090 return ret; 5091 } 5092 5093 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5094 { 5095 struct super_block *sb = dquot->dq_sb; 5096 struct ext4_sb_info *sbi = EXT4_SB(sb); 5097 5098 /* Are we journaling quotas? */ 5099 if (ext4_has_feature_quota(sb) || 5100 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5101 dquot_mark_dquot_dirty(dquot); 5102 return ext4_write_dquot(dquot); 5103 } else { 5104 return dquot_mark_dquot_dirty(dquot); 5105 } 5106 } 5107 5108 static int ext4_write_info(struct super_block *sb, int type) 5109 { 5110 int ret, err; 5111 handle_t *handle; 5112 5113 /* Data block + inode block */ 5114 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5115 if (IS_ERR(handle)) 5116 return PTR_ERR(handle); 5117 ret = dquot_commit_info(sb, type); 5118 err = ext4_journal_stop(handle); 5119 if (!ret) 5120 ret = err; 5121 return ret; 5122 } 5123 5124 /* 5125 * Turn on quotas during mount time - we need to find 5126 * the quota file and such... 5127 */ 5128 static int ext4_quota_on_mount(struct super_block *sb, int type) 5129 { 5130 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5131 EXT4_SB(sb)->s_jquota_fmt, type); 5132 } 5133 5134 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5135 { 5136 struct ext4_inode_info *ei = EXT4_I(inode); 5137 5138 /* The first argument of lockdep_set_subclass has to be 5139 * *exactly* the same as the argument to init_rwsem() --- in 5140 * this case, in init_once() --- or lockdep gets unhappy 5141 * because the name of the lock is set using the 5142 * stringification of the argument to init_rwsem(). 5143 */ 5144 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5145 lockdep_set_subclass(&ei->i_data_sem, subclass); 5146 } 5147 5148 /* 5149 * Standard function to be called on quota_on 5150 */ 5151 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5152 struct path *path) 5153 { 5154 int err; 5155 5156 if (!test_opt(sb, QUOTA)) 5157 return -EINVAL; 5158 5159 /* Quotafile not on the same filesystem? */ 5160 if (path->dentry->d_sb != sb) 5161 return -EXDEV; 5162 /* Journaling quota? */ 5163 if (EXT4_SB(sb)->s_qf_names[type]) { 5164 /* Quotafile not in fs root? */ 5165 if (path->dentry->d_parent != sb->s_root) 5166 ext4_msg(sb, KERN_WARNING, 5167 "Quota file not on filesystem root. " 5168 "Journaled quota will not work"); 5169 } 5170 5171 /* 5172 * When we journal data on quota file, we have to flush journal to see 5173 * all updates to the file when we bypass pagecache... 5174 */ 5175 if (EXT4_SB(sb)->s_journal && 5176 ext4_should_journal_data(d_inode(path->dentry))) { 5177 /* 5178 * We don't need to lock updates but journal_flush() could 5179 * otherwise be livelocked... 5180 */ 5181 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5182 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5183 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5184 if (err) 5185 return err; 5186 } 5187 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5188 err = dquot_quota_on(sb, type, format_id, path); 5189 if (err) 5190 lockdep_set_quota_inode(path->dentry->d_inode, 5191 I_DATA_SEM_NORMAL); 5192 return err; 5193 } 5194 5195 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5196 unsigned int flags) 5197 { 5198 int err; 5199 struct inode *qf_inode; 5200 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5201 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5202 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5203 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5204 }; 5205 5206 BUG_ON(!ext4_has_feature_quota(sb)); 5207 5208 if (!qf_inums[type]) 5209 return -EPERM; 5210 5211 qf_inode = ext4_iget(sb, qf_inums[type]); 5212 if (IS_ERR(qf_inode)) { 5213 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5214 return PTR_ERR(qf_inode); 5215 } 5216 5217 /* Don't account quota for quota files to avoid recursion */ 5218 qf_inode->i_flags |= S_NOQUOTA; 5219 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5220 err = dquot_enable(qf_inode, type, format_id, flags); 5221 iput(qf_inode); 5222 if (err) 5223 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5224 5225 return err; 5226 } 5227 5228 /* Enable usage tracking for all quota types. */ 5229 static int ext4_enable_quotas(struct super_block *sb) 5230 { 5231 int type, err = 0; 5232 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5233 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5234 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5235 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5236 }; 5237 5238 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5239 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5240 if (qf_inums[type]) { 5241 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5242 DQUOT_USAGE_ENABLED); 5243 if (err) { 5244 ext4_warning(sb, 5245 "Failed to enable quota tracking " 5246 "(type=%d, err=%d). Please run " 5247 "e2fsck to fix.", type, err); 5248 return err; 5249 } 5250 } 5251 } 5252 return 0; 5253 } 5254 5255 static int ext4_quota_off(struct super_block *sb, int type) 5256 { 5257 struct inode *inode = sb_dqopt(sb)->files[type]; 5258 handle_t *handle; 5259 5260 /* Force all delayed allocation blocks to be allocated. 5261 * Caller already holds s_umount sem */ 5262 if (test_opt(sb, DELALLOC)) 5263 sync_filesystem(sb); 5264 5265 if (!inode) 5266 goto out; 5267 5268 /* Update modification times of quota files when userspace can 5269 * start looking at them */ 5270 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5271 if (IS_ERR(handle)) 5272 goto out; 5273 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5274 ext4_mark_inode_dirty(handle, inode); 5275 ext4_journal_stop(handle); 5276 5277 out: 5278 return dquot_quota_off(sb, type); 5279 } 5280 5281 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5282 * acquiring the locks... As quota files are never truncated and quota code 5283 * itself serializes the operations (and no one else should touch the files) 5284 * we don't have to be afraid of races */ 5285 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5286 size_t len, loff_t off) 5287 { 5288 struct inode *inode = sb_dqopt(sb)->files[type]; 5289 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5290 int offset = off & (sb->s_blocksize - 1); 5291 int tocopy; 5292 size_t toread; 5293 struct buffer_head *bh; 5294 loff_t i_size = i_size_read(inode); 5295 5296 if (off > i_size) 5297 return 0; 5298 if (off+len > i_size) 5299 len = i_size-off; 5300 toread = len; 5301 while (toread > 0) { 5302 tocopy = sb->s_blocksize - offset < toread ? 5303 sb->s_blocksize - offset : toread; 5304 bh = ext4_bread(NULL, inode, blk, 0); 5305 if (IS_ERR(bh)) 5306 return PTR_ERR(bh); 5307 if (!bh) /* A hole? */ 5308 memset(data, 0, tocopy); 5309 else 5310 memcpy(data, bh->b_data+offset, tocopy); 5311 brelse(bh); 5312 offset = 0; 5313 toread -= tocopy; 5314 data += tocopy; 5315 blk++; 5316 } 5317 return len; 5318 } 5319 5320 /* Write to quotafile (we know the transaction is already started and has 5321 * enough credits) */ 5322 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5323 const char *data, size_t len, loff_t off) 5324 { 5325 struct inode *inode = sb_dqopt(sb)->files[type]; 5326 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5327 int err, offset = off & (sb->s_blocksize - 1); 5328 int retries = 0; 5329 struct buffer_head *bh; 5330 handle_t *handle = journal_current_handle(); 5331 5332 if (EXT4_SB(sb)->s_journal && !handle) { 5333 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5334 " cancelled because transaction is not started", 5335 (unsigned long long)off, (unsigned long long)len); 5336 return -EIO; 5337 } 5338 /* 5339 * Since we account only one data block in transaction credits, 5340 * then it is impossible to cross a block boundary. 5341 */ 5342 if (sb->s_blocksize - offset < len) { 5343 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5344 " cancelled because not block aligned", 5345 (unsigned long long)off, (unsigned long long)len); 5346 return -EIO; 5347 } 5348 5349 do { 5350 bh = ext4_bread(handle, inode, blk, 5351 EXT4_GET_BLOCKS_CREATE | 5352 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5353 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5354 ext4_should_retry_alloc(inode->i_sb, &retries)); 5355 if (IS_ERR(bh)) 5356 return PTR_ERR(bh); 5357 if (!bh) 5358 goto out; 5359 BUFFER_TRACE(bh, "get write access"); 5360 err = ext4_journal_get_write_access(handle, bh); 5361 if (err) { 5362 brelse(bh); 5363 return err; 5364 } 5365 lock_buffer(bh); 5366 memcpy(bh->b_data+offset, data, len); 5367 flush_dcache_page(bh->b_page); 5368 unlock_buffer(bh); 5369 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5370 brelse(bh); 5371 out: 5372 if (inode->i_size < off + len) { 5373 i_size_write(inode, off + len); 5374 EXT4_I(inode)->i_disksize = inode->i_size; 5375 ext4_mark_inode_dirty(handle, inode); 5376 } 5377 return len; 5378 } 5379 5380 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5381 { 5382 const struct quota_format_ops *ops; 5383 5384 if (!sb_has_quota_loaded(sb, qid->type)) 5385 return -ESRCH; 5386 ops = sb_dqopt(sb)->ops[qid->type]; 5387 if (!ops || !ops->get_next_id) 5388 return -ENOSYS; 5389 return dquot_get_next_id(sb, qid); 5390 } 5391 #endif 5392 5393 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5394 const char *dev_name, void *data) 5395 { 5396 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5397 } 5398 5399 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5400 static inline void register_as_ext2(void) 5401 { 5402 int err = register_filesystem(&ext2_fs_type); 5403 if (err) 5404 printk(KERN_WARNING 5405 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5406 } 5407 5408 static inline void unregister_as_ext2(void) 5409 { 5410 unregister_filesystem(&ext2_fs_type); 5411 } 5412 5413 static inline int ext2_feature_set_ok(struct super_block *sb) 5414 { 5415 if (ext4_has_unknown_ext2_incompat_features(sb)) 5416 return 0; 5417 if (sb->s_flags & MS_RDONLY) 5418 return 1; 5419 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5420 return 0; 5421 return 1; 5422 } 5423 #else 5424 static inline void register_as_ext2(void) { } 5425 static inline void unregister_as_ext2(void) { } 5426 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5427 #endif 5428 5429 static inline void register_as_ext3(void) 5430 { 5431 int err = register_filesystem(&ext3_fs_type); 5432 if (err) 5433 printk(KERN_WARNING 5434 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5435 } 5436 5437 static inline void unregister_as_ext3(void) 5438 { 5439 unregister_filesystem(&ext3_fs_type); 5440 } 5441 5442 static inline int ext3_feature_set_ok(struct super_block *sb) 5443 { 5444 if (ext4_has_unknown_ext3_incompat_features(sb)) 5445 return 0; 5446 if (!ext4_has_feature_journal(sb)) 5447 return 0; 5448 if (sb->s_flags & MS_RDONLY) 5449 return 1; 5450 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5451 return 0; 5452 return 1; 5453 } 5454 5455 static struct file_system_type ext4_fs_type = { 5456 .owner = THIS_MODULE, 5457 .name = "ext4", 5458 .mount = ext4_mount, 5459 .kill_sb = kill_block_super, 5460 .fs_flags = FS_REQUIRES_DEV, 5461 }; 5462 MODULE_ALIAS_FS("ext4"); 5463 5464 /* Shared across all ext4 file systems */ 5465 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5466 5467 static int __init ext4_init_fs(void) 5468 { 5469 int i, err; 5470 5471 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5472 ext4_li_info = NULL; 5473 mutex_init(&ext4_li_mtx); 5474 5475 /* Build-time check for flags consistency */ 5476 ext4_check_flag_values(); 5477 5478 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5479 init_waitqueue_head(&ext4__ioend_wq[i]); 5480 5481 err = ext4_init_es(); 5482 if (err) 5483 return err; 5484 5485 err = ext4_init_pageio(); 5486 if (err) 5487 goto out5; 5488 5489 err = ext4_init_system_zone(); 5490 if (err) 5491 goto out4; 5492 5493 err = ext4_init_sysfs(); 5494 if (err) 5495 goto out3; 5496 5497 err = ext4_init_mballoc(); 5498 if (err) 5499 goto out2; 5500 err = init_inodecache(); 5501 if (err) 5502 goto out1; 5503 register_as_ext3(); 5504 register_as_ext2(); 5505 err = register_filesystem(&ext4_fs_type); 5506 if (err) 5507 goto out; 5508 5509 return 0; 5510 out: 5511 unregister_as_ext2(); 5512 unregister_as_ext3(); 5513 destroy_inodecache(); 5514 out1: 5515 ext4_exit_mballoc(); 5516 out2: 5517 ext4_exit_sysfs(); 5518 out3: 5519 ext4_exit_system_zone(); 5520 out4: 5521 ext4_exit_pageio(); 5522 out5: 5523 ext4_exit_es(); 5524 5525 return err; 5526 } 5527 5528 static void __exit ext4_exit_fs(void) 5529 { 5530 ext4_destroy_lazyinit_thread(); 5531 unregister_as_ext2(); 5532 unregister_as_ext3(); 5533 unregister_filesystem(&ext4_fs_type); 5534 destroy_inodecache(); 5535 ext4_exit_mballoc(); 5536 ext4_exit_sysfs(); 5537 ext4_exit_system_zone(); 5538 ext4_exit_pageio(); 5539 ext4_exit_es(); 5540 } 5541 5542 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5543 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5544 MODULE_LICENSE("GPL"); 5545 module_init(ext4_init_fs) 5546 module_exit(ext4_exit_fs) 5547