1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ | op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 207 { 208 lock_buffer(bh); 209 if (!wait) { 210 ext4_read_bh_nowait(bh, op_flags, NULL); 211 return 0; 212 } 213 return ext4_read_bh(bh, op_flags, NULL); 214 } 215 216 /* 217 * This works like __bread_gfp() except it uses ERR_PTR for error 218 * returns. Currently with sb_bread it's impossible to distinguish 219 * between ENOMEM and EIO situations (since both result in a NULL 220 * return. 221 */ 222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 223 sector_t block, 224 blk_opf_t op_flags, gfp_t gfp) 225 { 226 struct buffer_head *bh; 227 int ret; 228 229 bh = sb_getblk_gfp(sb, block, gfp); 230 if (bh == NULL) 231 return ERR_PTR(-ENOMEM); 232 if (ext4_buffer_uptodate(bh)) 233 return bh; 234 235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 236 if (ret) { 237 put_bh(bh); 238 return ERR_PTR(ret); 239 } 240 return bh; 241 } 242 243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 244 blk_opf_t op_flags) 245 { 246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 247 } 248 249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 250 sector_t block) 251 { 252 return __ext4_sb_bread_gfp(sb, block, 0, 0); 253 } 254 255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 256 { 257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 258 259 if (likely(bh)) { 260 if (trylock_buffer(bh)) 261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 262 brelse(bh); 263 } 264 } 265 266 static int ext4_verify_csum_type(struct super_block *sb, 267 struct ext4_super_block *es) 268 { 269 if (!ext4_has_feature_metadata_csum(sb)) 270 return 1; 271 272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 273 } 274 275 __le32 ext4_superblock_csum(struct super_block *sb, 276 struct ext4_super_block *es) 277 { 278 struct ext4_sb_info *sbi = EXT4_SB(sb); 279 int offset = offsetof(struct ext4_super_block, s_checksum); 280 __u32 csum; 281 282 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 283 284 return cpu_to_le32(csum); 285 } 286 287 static int ext4_superblock_csum_verify(struct super_block *sb, 288 struct ext4_super_block *es) 289 { 290 if (!ext4_has_metadata_csum(sb)) 291 return 1; 292 293 return es->s_checksum == ext4_superblock_csum(sb, es); 294 } 295 296 void ext4_superblock_csum_set(struct super_block *sb) 297 { 298 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 299 300 if (!ext4_has_metadata_csum(sb)) 301 return; 302 303 es->s_checksum = ext4_superblock_csum(sb, es); 304 } 305 306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 307 struct ext4_group_desc *bg) 308 { 309 return le32_to_cpu(bg->bg_block_bitmap_lo) | 310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 312 } 313 314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_table_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 328 } 329 330 __u32 ext4_free_group_clusters(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 336 } 337 338 __u32 ext4_free_inodes_count(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_used_dirs_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_itable_unused_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_itable_unused_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 360 } 361 362 void ext4_block_bitmap_set(struct super_block *sb, 363 struct ext4_group_desc *bg, ext4_fsblk_t blk) 364 { 365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 368 } 369 370 void ext4_inode_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_table_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_free_group_clusters_set(struct super_block *sb, 387 struct ext4_group_desc *bg, __u32 count) 388 { 389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 392 } 393 394 void ext4_free_inodes_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_used_dirs_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_itable_unused_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 416 } 417 418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 419 { 420 now = clamp_val(now, 0, (1ull << 40) - 1); 421 422 *lo = cpu_to_le32(lower_32_bits(now)); 423 *hi = upper_32_bits(now); 424 } 425 426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 427 { 428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 429 } 430 #define ext4_update_tstamp(es, tstamp) \ 431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 432 ktime_get_real_seconds()) 433 #define ext4_get_tstamp(es, tstamp) \ 434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 /* 476 * This writepage callback for write_cache_pages() 477 * takes care of a few cases after page cleaning. 478 * 479 * write_cache_pages() already checks for dirty pages 480 * and calls clear_page_dirty_for_io(), which we want, 481 * to write protect the pages. 482 * 483 * However, we may have to redirty a page (see below.) 484 */ 485 static int ext4_journalled_writepage_callback(struct folio *folio, 486 struct writeback_control *wbc, 487 void *data) 488 { 489 transaction_t *transaction = (transaction_t *) data; 490 struct buffer_head *bh, *head; 491 struct journal_head *jh; 492 493 bh = head = folio_buffers(folio); 494 do { 495 /* 496 * We have to redirty a page in these cases: 497 * 1) If buffer is dirty, it means the page was dirty because it 498 * contains a buffer that needs checkpointing. So the dirty bit 499 * needs to be preserved so that checkpointing writes the buffer 500 * properly. 501 * 2) If buffer is not part of the committing transaction 502 * (we may have just accidentally come across this buffer because 503 * inode range tracking is not exact) or if the currently running 504 * transaction already contains this buffer as well, dirty bit 505 * needs to be preserved so that the buffer gets writeprotected 506 * properly on running transaction's commit. 507 */ 508 jh = bh2jh(bh); 509 if (buffer_dirty(bh) || 510 (jh && (jh->b_transaction != transaction || 511 jh->b_next_transaction))) { 512 folio_redirty_for_writepage(wbc, folio); 513 goto out; 514 } 515 } while ((bh = bh->b_this_page) != head); 516 517 out: 518 return AOP_WRITEPAGE_ACTIVATE; 519 } 520 521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 522 { 523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 524 struct writeback_control wbc = { 525 .sync_mode = WB_SYNC_ALL, 526 .nr_to_write = LONG_MAX, 527 .range_start = jinode->i_dirty_start, 528 .range_end = jinode->i_dirty_end, 529 }; 530 531 return write_cache_pages(mapping, &wbc, 532 ext4_journalled_writepage_callback, 533 jinode->i_transaction); 534 } 535 536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 537 { 538 int ret; 539 540 if (ext4_should_journal_data(jinode->i_vfs_inode)) 541 ret = ext4_journalled_submit_inode_data_buffers(jinode); 542 else 543 ret = ext4_normal_submit_inode_data_buffers(jinode); 544 return ret; 545 } 546 547 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 548 { 549 int ret = 0; 550 551 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 552 ret = jbd2_journal_finish_inode_data_buffers(jinode); 553 554 return ret; 555 } 556 557 static bool system_going_down(void) 558 { 559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 560 || system_state == SYSTEM_RESTART; 561 } 562 563 struct ext4_err_translation { 564 int code; 565 int errno; 566 }; 567 568 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 569 570 static struct ext4_err_translation err_translation[] = { 571 EXT4_ERR_TRANSLATE(EIO), 572 EXT4_ERR_TRANSLATE(ENOMEM), 573 EXT4_ERR_TRANSLATE(EFSBADCRC), 574 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 575 EXT4_ERR_TRANSLATE(ENOSPC), 576 EXT4_ERR_TRANSLATE(ENOKEY), 577 EXT4_ERR_TRANSLATE(EROFS), 578 EXT4_ERR_TRANSLATE(EFBIG), 579 EXT4_ERR_TRANSLATE(EEXIST), 580 EXT4_ERR_TRANSLATE(ERANGE), 581 EXT4_ERR_TRANSLATE(EOVERFLOW), 582 EXT4_ERR_TRANSLATE(EBUSY), 583 EXT4_ERR_TRANSLATE(ENOTDIR), 584 EXT4_ERR_TRANSLATE(ENOTEMPTY), 585 EXT4_ERR_TRANSLATE(ESHUTDOWN), 586 EXT4_ERR_TRANSLATE(EFAULT), 587 }; 588 589 static int ext4_errno_to_code(int errno) 590 { 591 int i; 592 593 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 594 if (err_translation[i].errno == errno) 595 return err_translation[i].code; 596 return EXT4_ERR_UNKNOWN; 597 } 598 599 static void save_error_info(struct super_block *sb, int error, 600 __u32 ino, __u64 block, 601 const char *func, unsigned int line) 602 { 603 struct ext4_sb_info *sbi = EXT4_SB(sb); 604 605 /* We default to EFSCORRUPTED error... */ 606 if (error == 0) 607 error = EFSCORRUPTED; 608 609 spin_lock(&sbi->s_error_lock); 610 sbi->s_add_error_count++; 611 sbi->s_last_error_code = error; 612 sbi->s_last_error_line = line; 613 sbi->s_last_error_ino = ino; 614 sbi->s_last_error_block = block; 615 sbi->s_last_error_func = func; 616 sbi->s_last_error_time = ktime_get_real_seconds(); 617 if (!sbi->s_first_error_time) { 618 sbi->s_first_error_code = error; 619 sbi->s_first_error_line = line; 620 sbi->s_first_error_ino = ino; 621 sbi->s_first_error_block = block; 622 sbi->s_first_error_func = func; 623 sbi->s_first_error_time = sbi->s_last_error_time; 624 } 625 spin_unlock(&sbi->s_error_lock); 626 } 627 628 /* Deal with the reporting of failure conditions on a filesystem such as 629 * inconsistencies detected or read IO failures. 630 * 631 * On ext2, we can store the error state of the filesystem in the 632 * superblock. That is not possible on ext4, because we may have other 633 * write ordering constraints on the superblock which prevent us from 634 * writing it out straight away; and given that the journal is about to 635 * be aborted, we can't rely on the current, or future, transactions to 636 * write out the superblock safely. 637 * 638 * We'll just use the jbd2_journal_abort() error code to record an error in 639 * the journal instead. On recovery, the journal will complain about 640 * that error until we've noted it down and cleared it. 641 * 642 * If force_ro is set, we unconditionally force the filesystem into an 643 * ABORT|READONLY state, unless the error response on the fs has been set to 644 * panic in which case we take the easy way out and panic immediately. This is 645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 646 * at a critical moment in log management. 647 */ 648 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 649 __u32 ino, __u64 block, 650 const char *func, unsigned int line) 651 { 652 journal_t *journal = EXT4_SB(sb)->s_journal; 653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 654 655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 656 if (test_opt(sb, WARN_ON_ERROR)) 657 WARN_ON_ONCE(1); 658 659 if (!continue_fs && !sb_rdonly(sb)) { 660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 661 if (journal) 662 jbd2_journal_abort(journal, -EIO); 663 } 664 665 if (!bdev_read_only(sb->s_bdev)) { 666 save_error_info(sb, error, ino, block, func, line); 667 /* 668 * In case the fs should keep running, we need to writeout 669 * superblock through the journal. Due to lock ordering 670 * constraints, it may not be safe to do it right here so we 671 * defer superblock flushing to a workqueue. 672 */ 673 if (continue_fs && journal) 674 schedule_work(&EXT4_SB(sb)->s_error_work); 675 else 676 ext4_commit_super(sb); 677 } 678 679 /* 680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 681 * could panic during 'reboot -f' as the underlying device got already 682 * disabled. 683 */ 684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 685 panic("EXT4-fs (device %s): panic forced after error\n", 686 sb->s_id); 687 } 688 689 if (sb_rdonly(sb) || continue_fs) 690 return; 691 692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 693 /* 694 * Make sure updated value of ->s_mount_flags will be visible before 695 * ->s_flags update 696 */ 697 smp_wmb(); 698 sb->s_flags |= SB_RDONLY; 699 } 700 701 static void flush_stashed_error_work(struct work_struct *work) 702 { 703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 704 s_error_work); 705 journal_t *journal = sbi->s_journal; 706 handle_t *handle; 707 708 /* 709 * If the journal is still running, we have to write out superblock 710 * through the journal to avoid collisions of other journalled sb 711 * updates. 712 * 713 * We use directly jbd2 functions here to avoid recursing back into 714 * ext4 error handling code during handling of previous errors. 715 */ 716 if (!sb_rdonly(sbi->s_sb) && journal) { 717 struct buffer_head *sbh = sbi->s_sbh; 718 handle = jbd2_journal_start(journal, 1); 719 if (IS_ERR(handle)) 720 goto write_directly; 721 if (jbd2_journal_get_write_access(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 ext4_update_super(sbi->s_sb); 726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 728 "superblock detected"); 729 clear_buffer_write_io_error(sbh); 730 set_buffer_uptodate(sbh); 731 } 732 733 if (jbd2_journal_dirty_metadata(handle, sbh)) { 734 jbd2_journal_stop(handle); 735 goto write_directly; 736 } 737 jbd2_journal_stop(handle); 738 ext4_notify_error_sysfs(sbi); 739 return; 740 } 741 write_directly: 742 /* 743 * Write through journal failed. Write sb directly to get error info 744 * out and hope for the best. 745 */ 746 ext4_commit_super(sbi->s_sb); 747 ext4_notify_error_sysfs(sbi); 748 } 749 750 #define ext4_error_ratelimit(sb) \ 751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 752 "EXT4-fs error") 753 754 void __ext4_error(struct super_block *sb, const char *function, 755 unsigned int line, bool force_ro, int error, __u64 block, 756 const char *fmt, ...) 757 { 758 struct va_format vaf; 759 va_list args; 760 761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 762 return; 763 764 trace_ext4_error(sb, function, line); 765 if (ext4_error_ratelimit(sb)) { 766 va_start(args, fmt); 767 vaf.fmt = fmt; 768 vaf.va = &args; 769 printk(KERN_CRIT 770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 771 sb->s_id, function, line, current->comm, &vaf); 772 va_end(args); 773 } 774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 775 776 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 777 } 778 779 void __ext4_error_inode(struct inode *inode, const char *function, 780 unsigned int line, ext4_fsblk_t block, int error, 781 const char *fmt, ...) 782 { 783 va_list args; 784 struct va_format vaf; 785 786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 787 return; 788 789 trace_ext4_error(inode->i_sb, function, line); 790 if (ext4_error_ratelimit(inode->i_sb)) { 791 va_start(args, fmt); 792 vaf.fmt = fmt; 793 vaf.va = &args; 794 if (block) 795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 796 "inode #%lu: block %llu: comm %s: %pV\n", 797 inode->i_sb->s_id, function, line, inode->i_ino, 798 block, current->comm, &vaf); 799 else 800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 801 "inode #%lu: comm %s: %pV\n", 802 inode->i_sb->s_id, function, line, inode->i_ino, 803 current->comm, &vaf); 804 va_end(args); 805 } 806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 807 808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 809 function, line); 810 } 811 812 void __ext4_error_file(struct file *file, const char *function, 813 unsigned int line, ext4_fsblk_t block, 814 const char *fmt, ...) 815 { 816 va_list args; 817 struct va_format vaf; 818 struct inode *inode = file_inode(file); 819 char pathname[80], *path; 820 821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 822 return; 823 824 trace_ext4_error(inode->i_sb, function, line); 825 if (ext4_error_ratelimit(inode->i_sb)) { 826 path = file_path(file, pathname, sizeof(pathname)); 827 if (IS_ERR(path)) 828 path = "(unknown)"; 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 if (block) 833 printk(KERN_CRIT 834 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 835 "block %llu: comm %s: path %s: %pV\n", 836 inode->i_sb->s_id, function, line, inode->i_ino, 837 block, current->comm, path, &vaf); 838 else 839 printk(KERN_CRIT 840 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 841 "comm %s: path %s: %pV\n", 842 inode->i_sb->s_id, function, line, inode->i_ino, 843 current->comm, path, &vaf); 844 va_end(args); 845 } 846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 847 848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 849 function, line); 850 } 851 852 const char *ext4_decode_error(struct super_block *sb, int errno, 853 char nbuf[16]) 854 { 855 char *errstr = NULL; 856 857 switch (errno) { 858 case -EFSCORRUPTED: 859 errstr = "Corrupt filesystem"; 860 break; 861 case -EFSBADCRC: 862 errstr = "Filesystem failed CRC"; 863 break; 864 case -EIO: 865 errstr = "IO failure"; 866 break; 867 case -ENOMEM: 868 errstr = "Out of memory"; 869 break; 870 case -EROFS: 871 if (!sb || (EXT4_SB(sb)->s_journal && 872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 873 errstr = "Journal has aborted"; 874 else 875 errstr = "Readonly filesystem"; 876 break; 877 default: 878 /* If the caller passed in an extra buffer for unknown 879 * errors, textualise them now. Else we just return 880 * NULL. */ 881 if (nbuf) { 882 /* Check for truncated error codes... */ 883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 884 errstr = nbuf; 885 } 886 break; 887 } 888 889 return errstr; 890 } 891 892 /* __ext4_std_error decodes expected errors from journaling functions 893 * automatically and invokes the appropriate error response. */ 894 895 void __ext4_std_error(struct super_block *sb, const char *function, 896 unsigned int line, int errno) 897 { 898 char nbuf[16]; 899 const char *errstr; 900 901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 902 return; 903 904 /* Special case: if the error is EROFS, and we're not already 905 * inside a transaction, then there's really no point in logging 906 * an error. */ 907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 908 return; 909 910 if (ext4_error_ratelimit(sb)) { 911 errstr = ext4_decode_error(sb, errno, nbuf); 912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 913 sb->s_id, function, line, errstr); 914 } 915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 916 917 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 918 } 919 920 void __ext4_msg(struct super_block *sb, 921 const char *prefix, const char *fmt, ...) 922 { 923 struct va_format vaf; 924 va_list args; 925 926 if (sb) { 927 atomic_inc(&EXT4_SB(sb)->s_msg_count); 928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 929 "EXT4-fs")) 930 return; 931 } 932 933 va_start(args, fmt); 934 vaf.fmt = fmt; 935 vaf.va = &args; 936 if (sb) 937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 938 else 939 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 940 va_end(args); 941 } 942 943 static int ext4_warning_ratelimit(struct super_block *sb) 944 { 945 atomic_inc(&EXT4_SB(sb)->s_warning_count); 946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 947 "EXT4-fs warning"); 948 } 949 950 void __ext4_warning(struct super_block *sb, const char *function, 951 unsigned int line, const char *fmt, ...) 952 { 953 struct va_format vaf; 954 va_list args; 955 956 if (!ext4_warning_ratelimit(sb)) 957 return; 958 959 va_start(args, fmt); 960 vaf.fmt = fmt; 961 vaf.va = &args; 962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 963 sb->s_id, function, line, &vaf); 964 va_end(args); 965 } 966 967 void __ext4_warning_inode(const struct inode *inode, const char *function, 968 unsigned int line, const char *fmt, ...) 969 { 970 struct va_format vaf; 971 va_list args; 972 973 if (!ext4_warning_ratelimit(inode->i_sb)) 974 return; 975 976 va_start(args, fmt); 977 vaf.fmt = fmt; 978 vaf.va = &args; 979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 981 function, line, inode->i_ino, current->comm, &vaf); 982 va_end(args); 983 } 984 985 void __ext4_grp_locked_error(const char *function, unsigned int line, 986 struct super_block *sb, ext4_group_t grp, 987 unsigned long ino, ext4_fsblk_t block, 988 const char *fmt, ...) 989 __releases(bitlock) 990 __acquires(bitlock) 991 { 992 struct va_format vaf; 993 va_list args; 994 995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 996 return; 997 998 trace_ext4_error(sb, function, line); 999 if (ext4_error_ratelimit(sb)) { 1000 va_start(args, fmt); 1001 vaf.fmt = fmt; 1002 vaf.va = &args; 1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1004 sb->s_id, function, line, grp); 1005 if (ino) 1006 printk(KERN_CONT "inode %lu: ", ino); 1007 if (block) 1008 printk(KERN_CONT "block %llu:", 1009 (unsigned long long) block); 1010 printk(KERN_CONT "%pV\n", &vaf); 1011 va_end(args); 1012 } 1013 1014 if (test_opt(sb, ERRORS_CONT)) { 1015 if (test_opt(sb, WARN_ON_ERROR)) 1016 WARN_ON_ONCE(1); 1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1018 if (!bdev_read_only(sb->s_bdev)) { 1019 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1020 line); 1021 schedule_work(&EXT4_SB(sb)->s_error_work); 1022 } 1023 return; 1024 } 1025 ext4_unlock_group(sb, grp); 1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1027 /* 1028 * We only get here in the ERRORS_RO case; relocking the group 1029 * may be dangerous, but nothing bad will happen since the 1030 * filesystem will have already been marked read/only and the 1031 * journal has been aborted. We return 1 as a hint to callers 1032 * who might what to use the return value from 1033 * ext4_grp_locked_error() to distinguish between the 1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1035 * aggressively from the ext4 function in question, with a 1036 * more appropriate error code. 1037 */ 1038 ext4_lock_group(sb, grp); 1039 return; 1040 } 1041 1042 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1043 ext4_group_t group, 1044 unsigned int flags) 1045 { 1046 struct ext4_sb_info *sbi = EXT4_SB(sb); 1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1049 int ret; 1050 1051 if (!grp || !gdp) 1052 return; 1053 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1054 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1055 &grp->bb_state); 1056 if (!ret) 1057 percpu_counter_sub(&sbi->s_freeclusters_counter, 1058 grp->bb_free); 1059 } 1060 1061 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1062 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1063 &grp->bb_state); 1064 if (!ret && gdp) { 1065 int count; 1066 1067 count = ext4_free_inodes_count(sb, gdp); 1068 percpu_counter_sub(&sbi->s_freeinodes_counter, 1069 count); 1070 } 1071 } 1072 } 1073 1074 void ext4_update_dynamic_rev(struct super_block *sb) 1075 { 1076 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1077 1078 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1079 return; 1080 1081 ext4_warning(sb, 1082 "updating to rev %d because of new feature flag, " 1083 "running e2fsck is recommended", 1084 EXT4_DYNAMIC_REV); 1085 1086 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1087 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1088 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1089 /* leave es->s_feature_*compat flags alone */ 1090 /* es->s_uuid will be set by e2fsck if empty */ 1091 1092 /* 1093 * The rest of the superblock fields should be zero, and if not it 1094 * means they are likely already in use, so leave them alone. We 1095 * can leave it up to e2fsck to clean up any inconsistencies there. 1096 */ 1097 } 1098 1099 static void ext4_bdev_mark_dead(struct block_device *bdev) 1100 { 1101 ext4_force_shutdown(bdev->bd_holder, EXT4_GOING_FLAGS_NOLOGFLUSH); 1102 } 1103 1104 static const struct blk_holder_ops ext4_holder_ops = { 1105 .mark_dead = ext4_bdev_mark_dead, 1106 }; 1107 1108 /* 1109 * Open the external journal device 1110 */ 1111 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1112 { 1113 struct block_device *bdev; 1114 1115 bdev = blkdev_get_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb, 1116 &ext4_holder_ops); 1117 if (IS_ERR(bdev)) 1118 goto fail; 1119 return bdev; 1120 1121 fail: 1122 ext4_msg(sb, KERN_ERR, 1123 "failed to open journal device unknown-block(%u,%u) %ld", 1124 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1125 return NULL; 1126 } 1127 1128 /* 1129 * Release the journal device 1130 */ 1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1132 { 1133 struct block_device *bdev; 1134 bdev = sbi->s_journal_bdev; 1135 if (bdev) { 1136 /* 1137 * Invalidate the journal device's buffers. We don't want them 1138 * floating about in memory - the physical journal device may 1139 * hotswapped, and it breaks the `ro-after' testing code. 1140 */ 1141 invalidate_bdev(bdev); 1142 blkdev_put(bdev, sbi->s_sb); 1143 sbi->s_journal_bdev = NULL; 1144 } 1145 } 1146 1147 static inline struct inode *orphan_list_entry(struct list_head *l) 1148 { 1149 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1150 } 1151 1152 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1153 { 1154 struct list_head *l; 1155 1156 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1157 le32_to_cpu(sbi->s_es->s_last_orphan)); 1158 1159 printk(KERN_ERR "sb_info orphan list:\n"); 1160 list_for_each(l, &sbi->s_orphan) { 1161 struct inode *inode = orphan_list_entry(l); 1162 printk(KERN_ERR " " 1163 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1164 inode->i_sb->s_id, inode->i_ino, inode, 1165 inode->i_mode, inode->i_nlink, 1166 NEXT_ORPHAN(inode)); 1167 } 1168 } 1169 1170 #ifdef CONFIG_QUOTA 1171 static int ext4_quota_off(struct super_block *sb, int type); 1172 1173 static inline void ext4_quotas_off(struct super_block *sb, int type) 1174 { 1175 BUG_ON(type > EXT4_MAXQUOTAS); 1176 1177 /* Use our quota_off function to clear inode flags etc. */ 1178 for (type--; type >= 0; type--) 1179 ext4_quota_off(sb, type); 1180 } 1181 1182 /* 1183 * This is a helper function which is used in the mount/remount 1184 * codepaths (which holds s_umount) to fetch the quota file name. 1185 */ 1186 static inline char *get_qf_name(struct super_block *sb, 1187 struct ext4_sb_info *sbi, 1188 int type) 1189 { 1190 return rcu_dereference_protected(sbi->s_qf_names[type], 1191 lockdep_is_held(&sb->s_umount)); 1192 } 1193 #else 1194 static inline void ext4_quotas_off(struct super_block *sb, int type) 1195 { 1196 } 1197 #endif 1198 1199 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1200 { 1201 ext4_fsblk_t block; 1202 int err; 1203 1204 block = ext4_count_free_clusters(sbi->s_sb); 1205 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1206 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1207 GFP_KERNEL); 1208 if (!err) { 1209 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1210 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1211 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1212 GFP_KERNEL); 1213 } 1214 if (!err) 1215 err = percpu_counter_init(&sbi->s_dirs_counter, 1216 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1217 if (!err) 1218 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1219 GFP_KERNEL); 1220 if (!err) 1221 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1222 GFP_KERNEL); 1223 if (!err) 1224 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1225 1226 if (err) 1227 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1228 1229 return err; 1230 } 1231 1232 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1233 { 1234 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1235 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1236 percpu_counter_destroy(&sbi->s_dirs_counter); 1237 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1238 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1239 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1240 } 1241 1242 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1243 { 1244 struct buffer_head **group_desc; 1245 int i; 1246 1247 rcu_read_lock(); 1248 group_desc = rcu_dereference(sbi->s_group_desc); 1249 for (i = 0; i < sbi->s_gdb_count; i++) 1250 brelse(group_desc[i]); 1251 kvfree(group_desc); 1252 rcu_read_unlock(); 1253 } 1254 1255 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1256 { 1257 struct flex_groups **flex_groups; 1258 int i; 1259 1260 rcu_read_lock(); 1261 flex_groups = rcu_dereference(sbi->s_flex_groups); 1262 if (flex_groups) { 1263 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1264 kvfree(flex_groups[i]); 1265 kvfree(flex_groups); 1266 } 1267 rcu_read_unlock(); 1268 } 1269 1270 static void ext4_put_super(struct super_block *sb) 1271 { 1272 struct ext4_sb_info *sbi = EXT4_SB(sb); 1273 struct ext4_super_block *es = sbi->s_es; 1274 int aborted = 0; 1275 int err; 1276 1277 /* 1278 * Unregister sysfs before destroying jbd2 journal. 1279 * Since we could still access attr_journal_task attribute via sysfs 1280 * path which could have sbi->s_journal->j_task as NULL 1281 * Unregister sysfs before flush sbi->s_error_work. 1282 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1283 * read metadata verify failed then will queue error work. 1284 * flush_stashed_error_work will call start_this_handle may trigger 1285 * BUG_ON. 1286 */ 1287 ext4_unregister_sysfs(sb); 1288 1289 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1290 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1291 &sb->s_uuid); 1292 1293 ext4_unregister_li_request(sb); 1294 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1295 1296 flush_work(&sbi->s_error_work); 1297 destroy_workqueue(sbi->rsv_conversion_wq); 1298 ext4_release_orphan_info(sb); 1299 1300 if (sbi->s_journal) { 1301 aborted = is_journal_aborted(sbi->s_journal); 1302 err = jbd2_journal_destroy(sbi->s_journal); 1303 sbi->s_journal = NULL; 1304 if ((err < 0) && !aborted) { 1305 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1306 } 1307 } 1308 1309 ext4_es_unregister_shrinker(sbi); 1310 timer_shutdown_sync(&sbi->s_err_report); 1311 ext4_release_system_zone(sb); 1312 ext4_mb_release(sb); 1313 ext4_ext_release(sb); 1314 1315 if (!sb_rdonly(sb) && !aborted) { 1316 ext4_clear_feature_journal_needs_recovery(sb); 1317 ext4_clear_feature_orphan_present(sb); 1318 es->s_state = cpu_to_le16(sbi->s_mount_state); 1319 } 1320 if (!sb_rdonly(sb)) 1321 ext4_commit_super(sb); 1322 1323 ext4_group_desc_free(sbi); 1324 ext4_flex_groups_free(sbi); 1325 ext4_percpu_param_destroy(sbi); 1326 #ifdef CONFIG_QUOTA 1327 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1328 kfree(get_qf_name(sb, sbi, i)); 1329 #endif 1330 1331 /* Debugging code just in case the in-memory inode orphan list 1332 * isn't empty. The on-disk one can be non-empty if we've 1333 * detected an error and taken the fs readonly, but the 1334 * in-memory list had better be clean by this point. */ 1335 if (!list_empty(&sbi->s_orphan)) 1336 dump_orphan_list(sb, sbi); 1337 ASSERT(list_empty(&sbi->s_orphan)); 1338 1339 sync_blockdev(sb->s_bdev); 1340 invalidate_bdev(sb->s_bdev); 1341 if (sbi->s_journal_bdev) { 1342 sync_blockdev(sbi->s_journal_bdev); 1343 ext4_blkdev_remove(sbi); 1344 } 1345 1346 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1347 sbi->s_ea_inode_cache = NULL; 1348 1349 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1350 sbi->s_ea_block_cache = NULL; 1351 1352 ext4_stop_mmpd(sbi); 1353 1354 brelse(sbi->s_sbh); 1355 sb->s_fs_info = NULL; 1356 /* 1357 * Now that we are completely done shutting down the 1358 * superblock, we need to actually destroy the kobject. 1359 */ 1360 kobject_put(&sbi->s_kobj); 1361 wait_for_completion(&sbi->s_kobj_unregister); 1362 if (sbi->s_chksum_driver) 1363 crypto_free_shash(sbi->s_chksum_driver); 1364 kfree(sbi->s_blockgroup_lock); 1365 fs_put_dax(sbi->s_daxdev, NULL); 1366 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1367 #if IS_ENABLED(CONFIG_UNICODE) 1368 utf8_unload(sb->s_encoding); 1369 #endif 1370 kfree(sbi); 1371 } 1372 1373 static struct kmem_cache *ext4_inode_cachep; 1374 1375 /* 1376 * Called inside transaction, so use GFP_NOFS 1377 */ 1378 static struct inode *ext4_alloc_inode(struct super_block *sb) 1379 { 1380 struct ext4_inode_info *ei; 1381 1382 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1383 if (!ei) 1384 return NULL; 1385 1386 inode_set_iversion(&ei->vfs_inode, 1); 1387 ei->i_flags = 0; 1388 spin_lock_init(&ei->i_raw_lock); 1389 ei->i_prealloc_node = RB_ROOT; 1390 atomic_set(&ei->i_prealloc_active, 0); 1391 rwlock_init(&ei->i_prealloc_lock); 1392 ext4_es_init_tree(&ei->i_es_tree); 1393 rwlock_init(&ei->i_es_lock); 1394 INIT_LIST_HEAD(&ei->i_es_list); 1395 ei->i_es_all_nr = 0; 1396 ei->i_es_shk_nr = 0; 1397 ei->i_es_shrink_lblk = 0; 1398 ei->i_reserved_data_blocks = 0; 1399 spin_lock_init(&(ei->i_block_reservation_lock)); 1400 ext4_init_pending_tree(&ei->i_pending_tree); 1401 #ifdef CONFIG_QUOTA 1402 ei->i_reserved_quota = 0; 1403 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1404 #endif 1405 ei->jinode = NULL; 1406 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1407 spin_lock_init(&ei->i_completed_io_lock); 1408 ei->i_sync_tid = 0; 1409 ei->i_datasync_tid = 0; 1410 atomic_set(&ei->i_unwritten, 0); 1411 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1412 ext4_fc_init_inode(&ei->vfs_inode); 1413 mutex_init(&ei->i_fc_lock); 1414 return &ei->vfs_inode; 1415 } 1416 1417 static int ext4_drop_inode(struct inode *inode) 1418 { 1419 int drop = generic_drop_inode(inode); 1420 1421 if (!drop) 1422 drop = fscrypt_drop_inode(inode); 1423 1424 trace_ext4_drop_inode(inode, drop); 1425 return drop; 1426 } 1427 1428 static void ext4_free_in_core_inode(struct inode *inode) 1429 { 1430 fscrypt_free_inode(inode); 1431 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1432 pr_warn("%s: inode %ld still in fc list", 1433 __func__, inode->i_ino); 1434 } 1435 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1436 } 1437 1438 static void ext4_destroy_inode(struct inode *inode) 1439 { 1440 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1441 ext4_msg(inode->i_sb, KERN_ERR, 1442 "Inode %lu (%p): orphan list check failed!", 1443 inode->i_ino, EXT4_I(inode)); 1444 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1445 EXT4_I(inode), sizeof(struct ext4_inode_info), 1446 true); 1447 dump_stack(); 1448 } 1449 1450 if (EXT4_I(inode)->i_reserved_data_blocks) 1451 ext4_msg(inode->i_sb, KERN_ERR, 1452 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1453 inode->i_ino, EXT4_I(inode), 1454 EXT4_I(inode)->i_reserved_data_blocks); 1455 } 1456 1457 static void ext4_shutdown(struct super_block *sb) 1458 { 1459 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1460 } 1461 1462 static void init_once(void *foo) 1463 { 1464 struct ext4_inode_info *ei = foo; 1465 1466 INIT_LIST_HEAD(&ei->i_orphan); 1467 init_rwsem(&ei->xattr_sem); 1468 init_rwsem(&ei->i_data_sem); 1469 inode_init_once(&ei->vfs_inode); 1470 ext4_fc_init_inode(&ei->vfs_inode); 1471 } 1472 1473 static int __init init_inodecache(void) 1474 { 1475 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1476 sizeof(struct ext4_inode_info), 0, 1477 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1478 SLAB_ACCOUNT), 1479 offsetof(struct ext4_inode_info, i_data), 1480 sizeof_field(struct ext4_inode_info, i_data), 1481 init_once); 1482 if (ext4_inode_cachep == NULL) 1483 return -ENOMEM; 1484 return 0; 1485 } 1486 1487 static void destroy_inodecache(void) 1488 { 1489 /* 1490 * Make sure all delayed rcu free inodes are flushed before we 1491 * destroy cache. 1492 */ 1493 rcu_barrier(); 1494 kmem_cache_destroy(ext4_inode_cachep); 1495 } 1496 1497 void ext4_clear_inode(struct inode *inode) 1498 { 1499 ext4_fc_del(inode); 1500 invalidate_inode_buffers(inode); 1501 clear_inode(inode); 1502 ext4_discard_preallocations(inode, 0); 1503 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1504 dquot_drop(inode); 1505 if (EXT4_I(inode)->jinode) { 1506 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1507 EXT4_I(inode)->jinode); 1508 jbd2_free_inode(EXT4_I(inode)->jinode); 1509 EXT4_I(inode)->jinode = NULL; 1510 } 1511 fscrypt_put_encryption_info(inode); 1512 fsverity_cleanup_inode(inode); 1513 } 1514 1515 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1516 u64 ino, u32 generation) 1517 { 1518 struct inode *inode; 1519 1520 /* 1521 * Currently we don't know the generation for parent directory, so 1522 * a generation of 0 means "accept any" 1523 */ 1524 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1525 if (IS_ERR(inode)) 1526 return ERR_CAST(inode); 1527 if (generation && inode->i_generation != generation) { 1528 iput(inode); 1529 return ERR_PTR(-ESTALE); 1530 } 1531 1532 return inode; 1533 } 1534 1535 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1536 int fh_len, int fh_type) 1537 { 1538 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1539 ext4_nfs_get_inode); 1540 } 1541 1542 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1543 int fh_len, int fh_type) 1544 { 1545 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1546 ext4_nfs_get_inode); 1547 } 1548 1549 static int ext4_nfs_commit_metadata(struct inode *inode) 1550 { 1551 struct writeback_control wbc = { 1552 .sync_mode = WB_SYNC_ALL 1553 }; 1554 1555 trace_ext4_nfs_commit_metadata(inode); 1556 return ext4_write_inode(inode, &wbc); 1557 } 1558 1559 #ifdef CONFIG_QUOTA 1560 static const char * const quotatypes[] = INITQFNAMES; 1561 #define QTYPE2NAME(t) (quotatypes[t]) 1562 1563 static int ext4_write_dquot(struct dquot *dquot); 1564 static int ext4_acquire_dquot(struct dquot *dquot); 1565 static int ext4_release_dquot(struct dquot *dquot); 1566 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1567 static int ext4_write_info(struct super_block *sb, int type); 1568 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1569 const struct path *path); 1570 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1571 size_t len, loff_t off); 1572 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1573 const char *data, size_t len, loff_t off); 1574 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1575 unsigned int flags); 1576 1577 static struct dquot **ext4_get_dquots(struct inode *inode) 1578 { 1579 return EXT4_I(inode)->i_dquot; 1580 } 1581 1582 static const struct dquot_operations ext4_quota_operations = { 1583 .get_reserved_space = ext4_get_reserved_space, 1584 .write_dquot = ext4_write_dquot, 1585 .acquire_dquot = ext4_acquire_dquot, 1586 .release_dquot = ext4_release_dquot, 1587 .mark_dirty = ext4_mark_dquot_dirty, 1588 .write_info = ext4_write_info, 1589 .alloc_dquot = dquot_alloc, 1590 .destroy_dquot = dquot_destroy, 1591 .get_projid = ext4_get_projid, 1592 .get_inode_usage = ext4_get_inode_usage, 1593 .get_next_id = dquot_get_next_id, 1594 }; 1595 1596 static const struct quotactl_ops ext4_qctl_operations = { 1597 .quota_on = ext4_quota_on, 1598 .quota_off = ext4_quota_off, 1599 .quota_sync = dquot_quota_sync, 1600 .get_state = dquot_get_state, 1601 .set_info = dquot_set_dqinfo, 1602 .get_dqblk = dquot_get_dqblk, 1603 .set_dqblk = dquot_set_dqblk, 1604 .get_nextdqblk = dquot_get_next_dqblk, 1605 }; 1606 #endif 1607 1608 static const struct super_operations ext4_sops = { 1609 .alloc_inode = ext4_alloc_inode, 1610 .free_inode = ext4_free_in_core_inode, 1611 .destroy_inode = ext4_destroy_inode, 1612 .write_inode = ext4_write_inode, 1613 .dirty_inode = ext4_dirty_inode, 1614 .drop_inode = ext4_drop_inode, 1615 .evict_inode = ext4_evict_inode, 1616 .put_super = ext4_put_super, 1617 .sync_fs = ext4_sync_fs, 1618 .freeze_fs = ext4_freeze, 1619 .unfreeze_fs = ext4_unfreeze, 1620 .statfs = ext4_statfs, 1621 .show_options = ext4_show_options, 1622 .shutdown = ext4_shutdown, 1623 #ifdef CONFIG_QUOTA 1624 .quota_read = ext4_quota_read, 1625 .quota_write = ext4_quota_write, 1626 .get_dquots = ext4_get_dquots, 1627 #endif 1628 }; 1629 1630 static const struct export_operations ext4_export_ops = { 1631 .fh_to_dentry = ext4_fh_to_dentry, 1632 .fh_to_parent = ext4_fh_to_parent, 1633 .get_parent = ext4_get_parent, 1634 .commit_metadata = ext4_nfs_commit_metadata, 1635 }; 1636 1637 enum { 1638 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1639 Opt_resgid, Opt_resuid, Opt_sb, 1640 Opt_nouid32, Opt_debug, Opt_removed, 1641 Opt_user_xattr, Opt_acl, 1642 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1643 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1644 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1645 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1646 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1647 Opt_inlinecrypt, 1648 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1649 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1650 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1651 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1652 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1653 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1654 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1655 Opt_inode_readahead_blks, Opt_journal_ioprio, 1656 Opt_dioread_nolock, Opt_dioread_lock, 1657 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1658 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1659 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1660 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1661 #ifdef CONFIG_EXT4_DEBUG 1662 Opt_fc_debug_max_replay, Opt_fc_debug_force 1663 #endif 1664 }; 1665 1666 static const struct constant_table ext4_param_errors[] = { 1667 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1668 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1669 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1670 {} 1671 }; 1672 1673 static const struct constant_table ext4_param_data[] = { 1674 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1675 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1676 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1677 {} 1678 }; 1679 1680 static const struct constant_table ext4_param_data_err[] = { 1681 {"abort", Opt_data_err_abort}, 1682 {"ignore", Opt_data_err_ignore}, 1683 {} 1684 }; 1685 1686 static const struct constant_table ext4_param_jqfmt[] = { 1687 {"vfsold", QFMT_VFS_OLD}, 1688 {"vfsv0", QFMT_VFS_V0}, 1689 {"vfsv1", QFMT_VFS_V1}, 1690 {} 1691 }; 1692 1693 static const struct constant_table ext4_param_dax[] = { 1694 {"always", Opt_dax_always}, 1695 {"inode", Opt_dax_inode}, 1696 {"never", Opt_dax_never}, 1697 {} 1698 }; 1699 1700 /* String parameter that allows empty argument */ 1701 #define fsparam_string_empty(NAME, OPT) \ 1702 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1703 1704 /* 1705 * Mount option specification 1706 * We don't use fsparam_flag_no because of the way we set the 1707 * options and the way we show them in _ext4_show_options(). To 1708 * keep the changes to a minimum, let's keep the negative options 1709 * separate for now. 1710 */ 1711 static const struct fs_parameter_spec ext4_param_specs[] = { 1712 fsparam_flag ("bsddf", Opt_bsd_df), 1713 fsparam_flag ("minixdf", Opt_minix_df), 1714 fsparam_flag ("grpid", Opt_grpid), 1715 fsparam_flag ("bsdgroups", Opt_grpid), 1716 fsparam_flag ("nogrpid", Opt_nogrpid), 1717 fsparam_flag ("sysvgroups", Opt_nogrpid), 1718 fsparam_u32 ("resgid", Opt_resgid), 1719 fsparam_u32 ("resuid", Opt_resuid), 1720 fsparam_u32 ("sb", Opt_sb), 1721 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1722 fsparam_flag ("nouid32", Opt_nouid32), 1723 fsparam_flag ("debug", Opt_debug), 1724 fsparam_flag ("oldalloc", Opt_removed), 1725 fsparam_flag ("orlov", Opt_removed), 1726 fsparam_flag ("user_xattr", Opt_user_xattr), 1727 fsparam_flag ("acl", Opt_acl), 1728 fsparam_flag ("norecovery", Opt_noload), 1729 fsparam_flag ("noload", Opt_noload), 1730 fsparam_flag ("bh", Opt_removed), 1731 fsparam_flag ("nobh", Opt_removed), 1732 fsparam_u32 ("commit", Opt_commit), 1733 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1734 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1735 fsparam_u32 ("journal_dev", Opt_journal_dev), 1736 fsparam_bdev ("journal_path", Opt_journal_path), 1737 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1738 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1739 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1740 fsparam_flag ("abort", Opt_abort), 1741 fsparam_enum ("data", Opt_data, ext4_param_data), 1742 fsparam_enum ("data_err", Opt_data_err, 1743 ext4_param_data_err), 1744 fsparam_string_empty 1745 ("usrjquota", Opt_usrjquota), 1746 fsparam_string_empty 1747 ("grpjquota", Opt_grpjquota), 1748 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1749 fsparam_flag ("grpquota", Opt_grpquota), 1750 fsparam_flag ("quota", Opt_quota), 1751 fsparam_flag ("noquota", Opt_noquota), 1752 fsparam_flag ("usrquota", Opt_usrquota), 1753 fsparam_flag ("prjquota", Opt_prjquota), 1754 fsparam_flag ("barrier", Opt_barrier), 1755 fsparam_u32 ("barrier", Opt_barrier), 1756 fsparam_flag ("nobarrier", Opt_nobarrier), 1757 fsparam_flag ("i_version", Opt_removed), 1758 fsparam_flag ("dax", Opt_dax), 1759 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1760 fsparam_u32 ("stripe", Opt_stripe), 1761 fsparam_flag ("delalloc", Opt_delalloc), 1762 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1763 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1764 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1765 fsparam_u32 ("debug_want_extra_isize", 1766 Opt_debug_want_extra_isize), 1767 fsparam_flag ("mblk_io_submit", Opt_removed), 1768 fsparam_flag ("nomblk_io_submit", Opt_removed), 1769 fsparam_flag ("block_validity", Opt_block_validity), 1770 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1771 fsparam_u32 ("inode_readahead_blks", 1772 Opt_inode_readahead_blks), 1773 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1774 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1775 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1776 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1777 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1778 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1779 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1780 fsparam_flag ("discard", Opt_discard), 1781 fsparam_flag ("nodiscard", Opt_nodiscard), 1782 fsparam_u32 ("init_itable", Opt_init_itable), 1783 fsparam_flag ("init_itable", Opt_init_itable), 1784 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1785 #ifdef CONFIG_EXT4_DEBUG 1786 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1787 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1788 #endif 1789 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1790 fsparam_flag ("test_dummy_encryption", 1791 Opt_test_dummy_encryption), 1792 fsparam_string ("test_dummy_encryption", 1793 Opt_test_dummy_encryption), 1794 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1795 fsparam_flag ("nombcache", Opt_nombcache), 1796 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1797 fsparam_flag ("prefetch_block_bitmaps", 1798 Opt_removed), 1799 fsparam_flag ("no_prefetch_block_bitmaps", 1800 Opt_no_prefetch_block_bitmaps), 1801 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1802 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1803 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1804 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1805 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1806 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1807 {} 1808 }; 1809 1810 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1811 1812 #define MOPT_SET 0x0001 1813 #define MOPT_CLEAR 0x0002 1814 #define MOPT_NOSUPPORT 0x0004 1815 #define MOPT_EXPLICIT 0x0008 1816 #ifdef CONFIG_QUOTA 1817 #define MOPT_Q 0 1818 #define MOPT_QFMT 0x0010 1819 #else 1820 #define MOPT_Q MOPT_NOSUPPORT 1821 #define MOPT_QFMT MOPT_NOSUPPORT 1822 #endif 1823 #define MOPT_NO_EXT2 0x0020 1824 #define MOPT_NO_EXT3 0x0040 1825 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1826 #define MOPT_SKIP 0x0080 1827 #define MOPT_2 0x0100 1828 1829 static const struct mount_opts { 1830 int token; 1831 int mount_opt; 1832 int flags; 1833 } ext4_mount_opts[] = { 1834 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1835 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1836 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1837 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1838 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1839 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1840 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1841 MOPT_EXT4_ONLY | MOPT_SET}, 1842 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1843 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1844 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1845 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1846 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1847 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1848 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1849 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1850 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1851 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1852 {Opt_commit, 0, MOPT_NO_EXT2}, 1853 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1854 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1855 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1856 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1857 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1858 EXT4_MOUNT_JOURNAL_CHECKSUM), 1859 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1860 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1861 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1862 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1863 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1864 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1865 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1866 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1867 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1868 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1869 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1870 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1871 {Opt_data, 0, MOPT_NO_EXT2}, 1872 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1873 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1874 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1875 #else 1876 {Opt_acl, 0, MOPT_NOSUPPORT}, 1877 #endif 1878 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1879 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1880 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1881 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1882 MOPT_SET | MOPT_Q}, 1883 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1884 MOPT_SET | MOPT_Q}, 1885 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1886 MOPT_SET | MOPT_Q}, 1887 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1888 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1889 MOPT_CLEAR | MOPT_Q}, 1890 {Opt_usrjquota, 0, MOPT_Q}, 1891 {Opt_grpjquota, 0, MOPT_Q}, 1892 {Opt_jqfmt, 0, MOPT_QFMT}, 1893 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1894 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1895 MOPT_SET}, 1896 #ifdef CONFIG_EXT4_DEBUG 1897 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1898 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1899 #endif 1900 {Opt_err, 0, 0} 1901 }; 1902 1903 #if IS_ENABLED(CONFIG_UNICODE) 1904 static const struct ext4_sb_encodings { 1905 __u16 magic; 1906 char *name; 1907 unsigned int version; 1908 } ext4_sb_encoding_map[] = { 1909 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1910 }; 1911 1912 static const struct ext4_sb_encodings * 1913 ext4_sb_read_encoding(const struct ext4_super_block *es) 1914 { 1915 __u16 magic = le16_to_cpu(es->s_encoding); 1916 int i; 1917 1918 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1919 if (magic == ext4_sb_encoding_map[i].magic) 1920 return &ext4_sb_encoding_map[i]; 1921 1922 return NULL; 1923 } 1924 #endif 1925 1926 #define EXT4_SPEC_JQUOTA (1 << 0) 1927 #define EXT4_SPEC_JQFMT (1 << 1) 1928 #define EXT4_SPEC_DATAJ (1 << 2) 1929 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1930 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1931 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1932 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1933 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1934 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1935 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1936 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1937 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1938 #define EXT4_SPEC_s_stripe (1 << 13) 1939 #define EXT4_SPEC_s_resuid (1 << 14) 1940 #define EXT4_SPEC_s_resgid (1 << 15) 1941 #define EXT4_SPEC_s_commit_interval (1 << 16) 1942 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1943 #define EXT4_SPEC_s_sb_block (1 << 18) 1944 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1945 1946 struct ext4_fs_context { 1947 char *s_qf_names[EXT4_MAXQUOTAS]; 1948 struct fscrypt_dummy_policy dummy_enc_policy; 1949 int s_jquota_fmt; /* Format of quota to use */ 1950 #ifdef CONFIG_EXT4_DEBUG 1951 int s_fc_debug_max_replay; 1952 #endif 1953 unsigned short qname_spec; 1954 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1955 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1956 unsigned long journal_devnum; 1957 unsigned long s_commit_interval; 1958 unsigned long s_stripe; 1959 unsigned int s_inode_readahead_blks; 1960 unsigned int s_want_extra_isize; 1961 unsigned int s_li_wait_mult; 1962 unsigned int s_max_dir_size_kb; 1963 unsigned int journal_ioprio; 1964 unsigned int vals_s_mount_opt; 1965 unsigned int mask_s_mount_opt; 1966 unsigned int vals_s_mount_opt2; 1967 unsigned int mask_s_mount_opt2; 1968 unsigned long vals_s_mount_flags; 1969 unsigned long mask_s_mount_flags; 1970 unsigned int opt_flags; /* MOPT flags */ 1971 unsigned int spec; 1972 u32 s_max_batch_time; 1973 u32 s_min_batch_time; 1974 kuid_t s_resuid; 1975 kgid_t s_resgid; 1976 ext4_fsblk_t s_sb_block; 1977 }; 1978 1979 static void ext4_fc_free(struct fs_context *fc) 1980 { 1981 struct ext4_fs_context *ctx = fc->fs_private; 1982 int i; 1983 1984 if (!ctx) 1985 return; 1986 1987 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1988 kfree(ctx->s_qf_names[i]); 1989 1990 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1991 kfree(ctx); 1992 } 1993 1994 int ext4_init_fs_context(struct fs_context *fc) 1995 { 1996 struct ext4_fs_context *ctx; 1997 1998 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1999 if (!ctx) 2000 return -ENOMEM; 2001 2002 fc->fs_private = ctx; 2003 fc->ops = &ext4_context_ops; 2004 2005 return 0; 2006 } 2007 2008 #ifdef CONFIG_QUOTA 2009 /* 2010 * Note the name of the specified quota file. 2011 */ 2012 static int note_qf_name(struct fs_context *fc, int qtype, 2013 struct fs_parameter *param) 2014 { 2015 struct ext4_fs_context *ctx = fc->fs_private; 2016 char *qname; 2017 2018 if (param->size < 1) { 2019 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2020 return -EINVAL; 2021 } 2022 if (strchr(param->string, '/')) { 2023 ext4_msg(NULL, KERN_ERR, 2024 "quotafile must be on filesystem root"); 2025 return -EINVAL; 2026 } 2027 if (ctx->s_qf_names[qtype]) { 2028 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2029 ext4_msg(NULL, KERN_ERR, 2030 "%s quota file already specified", 2031 QTYPE2NAME(qtype)); 2032 return -EINVAL; 2033 } 2034 return 0; 2035 } 2036 2037 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2038 if (!qname) { 2039 ext4_msg(NULL, KERN_ERR, 2040 "Not enough memory for storing quotafile name"); 2041 return -ENOMEM; 2042 } 2043 ctx->s_qf_names[qtype] = qname; 2044 ctx->qname_spec |= 1 << qtype; 2045 ctx->spec |= EXT4_SPEC_JQUOTA; 2046 return 0; 2047 } 2048 2049 /* 2050 * Clear the name of the specified quota file. 2051 */ 2052 static int unnote_qf_name(struct fs_context *fc, int qtype) 2053 { 2054 struct ext4_fs_context *ctx = fc->fs_private; 2055 2056 if (ctx->s_qf_names[qtype]) 2057 kfree(ctx->s_qf_names[qtype]); 2058 2059 ctx->s_qf_names[qtype] = NULL; 2060 ctx->qname_spec |= 1 << qtype; 2061 ctx->spec |= EXT4_SPEC_JQUOTA; 2062 return 0; 2063 } 2064 #endif 2065 2066 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2067 struct ext4_fs_context *ctx) 2068 { 2069 int err; 2070 2071 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2072 ext4_msg(NULL, KERN_WARNING, 2073 "test_dummy_encryption option not supported"); 2074 return -EINVAL; 2075 } 2076 err = fscrypt_parse_test_dummy_encryption(param, 2077 &ctx->dummy_enc_policy); 2078 if (err == -EINVAL) { 2079 ext4_msg(NULL, KERN_WARNING, 2080 "Value of option \"%s\" is unrecognized", param->key); 2081 } else if (err == -EEXIST) { 2082 ext4_msg(NULL, KERN_WARNING, 2083 "Conflicting test_dummy_encryption options"); 2084 return -EINVAL; 2085 } 2086 return err; 2087 } 2088 2089 #define EXT4_SET_CTX(name) \ 2090 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2091 unsigned long flag) \ 2092 { \ 2093 ctx->mask_s_##name |= flag; \ 2094 ctx->vals_s_##name |= flag; \ 2095 } 2096 2097 #define EXT4_CLEAR_CTX(name) \ 2098 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2099 unsigned long flag) \ 2100 { \ 2101 ctx->mask_s_##name |= flag; \ 2102 ctx->vals_s_##name &= ~flag; \ 2103 } 2104 2105 #define EXT4_TEST_CTX(name) \ 2106 static inline unsigned long \ 2107 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2108 { \ 2109 return (ctx->vals_s_##name & flag); \ 2110 } 2111 2112 EXT4_SET_CTX(flags); /* set only */ 2113 EXT4_SET_CTX(mount_opt); 2114 EXT4_CLEAR_CTX(mount_opt); 2115 EXT4_TEST_CTX(mount_opt); 2116 EXT4_SET_CTX(mount_opt2); 2117 EXT4_CLEAR_CTX(mount_opt2); 2118 EXT4_TEST_CTX(mount_opt2); 2119 2120 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2121 { 2122 set_bit(bit, &ctx->mask_s_mount_flags); 2123 set_bit(bit, &ctx->vals_s_mount_flags); 2124 } 2125 2126 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2127 { 2128 struct ext4_fs_context *ctx = fc->fs_private; 2129 struct fs_parse_result result; 2130 const struct mount_opts *m; 2131 int is_remount; 2132 kuid_t uid; 2133 kgid_t gid; 2134 int token; 2135 2136 token = fs_parse(fc, ext4_param_specs, param, &result); 2137 if (token < 0) 2138 return token; 2139 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2140 2141 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2142 if (token == m->token) 2143 break; 2144 2145 ctx->opt_flags |= m->flags; 2146 2147 if (m->flags & MOPT_EXPLICIT) { 2148 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2149 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2150 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2151 ctx_set_mount_opt2(ctx, 2152 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2153 } else 2154 return -EINVAL; 2155 } 2156 2157 if (m->flags & MOPT_NOSUPPORT) { 2158 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2159 param->key); 2160 return 0; 2161 } 2162 2163 switch (token) { 2164 #ifdef CONFIG_QUOTA 2165 case Opt_usrjquota: 2166 if (!*param->string) 2167 return unnote_qf_name(fc, USRQUOTA); 2168 else 2169 return note_qf_name(fc, USRQUOTA, param); 2170 case Opt_grpjquota: 2171 if (!*param->string) 2172 return unnote_qf_name(fc, GRPQUOTA); 2173 else 2174 return note_qf_name(fc, GRPQUOTA, param); 2175 #endif 2176 case Opt_sb: 2177 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2178 ext4_msg(NULL, KERN_WARNING, 2179 "Ignoring %s option on remount", param->key); 2180 } else { 2181 ctx->s_sb_block = result.uint_32; 2182 ctx->spec |= EXT4_SPEC_s_sb_block; 2183 } 2184 return 0; 2185 case Opt_removed: 2186 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2187 param->key); 2188 return 0; 2189 case Opt_abort: 2190 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2191 return 0; 2192 case Opt_inlinecrypt: 2193 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2194 ctx_set_flags(ctx, SB_INLINECRYPT); 2195 #else 2196 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2197 #endif 2198 return 0; 2199 case Opt_errors: 2200 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2201 ctx_set_mount_opt(ctx, result.uint_32); 2202 return 0; 2203 #ifdef CONFIG_QUOTA 2204 case Opt_jqfmt: 2205 ctx->s_jquota_fmt = result.uint_32; 2206 ctx->spec |= EXT4_SPEC_JQFMT; 2207 return 0; 2208 #endif 2209 case Opt_data: 2210 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2211 ctx_set_mount_opt(ctx, result.uint_32); 2212 ctx->spec |= EXT4_SPEC_DATAJ; 2213 return 0; 2214 case Opt_commit: 2215 if (result.uint_32 == 0) 2216 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2217 else if (result.uint_32 > INT_MAX / HZ) { 2218 ext4_msg(NULL, KERN_ERR, 2219 "Invalid commit interval %d, " 2220 "must be smaller than %d", 2221 result.uint_32, INT_MAX / HZ); 2222 return -EINVAL; 2223 } 2224 ctx->s_commit_interval = HZ * result.uint_32; 2225 ctx->spec |= EXT4_SPEC_s_commit_interval; 2226 return 0; 2227 case Opt_debug_want_extra_isize: 2228 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2229 ext4_msg(NULL, KERN_ERR, 2230 "Invalid want_extra_isize %d", result.uint_32); 2231 return -EINVAL; 2232 } 2233 ctx->s_want_extra_isize = result.uint_32; 2234 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2235 return 0; 2236 case Opt_max_batch_time: 2237 ctx->s_max_batch_time = result.uint_32; 2238 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2239 return 0; 2240 case Opt_min_batch_time: 2241 ctx->s_min_batch_time = result.uint_32; 2242 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2243 return 0; 2244 case Opt_inode_readahead_blks: 2245 if (result.uint_32 && 2246 (result.uint_32 > (1 << 30) || 2247 !is_power_of_2(result.uint_32))) { 2248 ext4_msg(NULL, KERN_ERR, 2249 "EXT4-fs: inode_readahead_blks must be " 2250 "0 or a power of 2 smaller than 2^31"); 2251 return -EINVAL; 2252 } 2253 ctx->s_inode_readahead_blks = result.uint_32; 2254 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2255 return 0; 2256 case Opt_init_itable: 2257 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2258 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2259 if (param->type == fs_value_is_string) 2260 ctx->s_li_wait_mult = result.uint_32; 2261 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2262 return 0; 2263 case Opt_max_dir_size_kb: 2264 ctx->s_max_dir_size_kb = result.uint_32; 2265 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2266 return 0; 2267 #ifdef CONFIG_EXT4_DEBUG 2268 case Opt_fc_debug_max_replay: 2269 ctx->s_fc_debug_max_replay = result.uint_32; 2270 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2271 return 0; 2272 #endif 2273 case Opt_stripe: 2274 ctx->s_stripe = result.uint_32; 2275 ctx->spec |= EXT4_SPEC_s_stripe; 2276 return 0; 2277 case Opt_resuid: 2278 uid = make_kuid(current_user_ns(), result.uint_32); 2279 if (!uid_valid(uid)) { 2280 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2281 result.uint_32); 2282 return -EINVAL; 2283 } 2284 ctx->s_resuid = uid; 2285 ctx->spec |= EXT4_SPEC_s_resuid; 2286 return 0; 2287 case Opt_resgid: 2288 gid = make_kgid(current_user_ns(), result.uint_32); 2289 if (!gid_valid(gid)) { 2290 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2291 result.uint_32); 2292 return -EINVAL; 2293 } 2294 ctx->s_resgid = gid; 2295 ctx->spec |= EXT4_SPEC_s_resgid; 2296 return 0; 2297 case Opt_journal_dev: 2298 if (is_remount) { 2299 ext4_msg(NULL, KERN_ERR, 2300 "Cannot specify journal on remount"); 2301 return -EINVAL; 2302 } 2303 ctx->journal_devnum = result.uint_32; 2304 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2305 return 0; 2306 case Opt_journal_path: 2307 { 2308 struct inode *journal_inode; 2309 struct path path; 2310 int error; 2311 2312 if (is_remount) { 2313 ext4_msg(NULL, KERN_ERR, 2314 "Cannot specify journal on remount"); 2315 return -EINVAL; 2316 } 2317 2318 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2319 if (error) { 2320 ext4_msg(NULL, KERN_ERR, "error: could not find " 2321 "journal device path"); 2322 return -EINVAL; 2323 } 2324 2325 journal_inode = d_inode(path.dentry); 2326 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2327 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2328 path_put(&path); 2329 return 0; 2330 } 2331 case Opt_journal_ioprio: 2332 if (result.uint_32 > 7) { 2333 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2334 " (must be 0-7)"); 2335 return -EINVAL; 2336 } 2337 ctx->journal_ioprio = 2338 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2339 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2340 return 0; 2341 case Opt_test_dummy_encryption: 2342 return ext4_parse_test_dummy_encryption(param, ctx); 2343 case Opt_dax: 2344 case Opt_dax_type: 2345 #ifdef CONFIG_FS_DAX 2346 { 2347 int type = (token == Opt_dax) ? 2348 Opt_dax : result.uint_32; 2349 2350 switch (type) { 2351 case Opt_dax: 2352 case Opt_dax_always: 2353 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2354 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2355 break; 2356 case Opt_dax_never: 2357 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2358 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2359 break; 2360 case Opt_dax_inode: 2361 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2362 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2363 /* Strictly for printing options */ 2364 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2365 break; 2366 } 2367 return 0; 2368 } 2369 #else 2370 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2371 return -EINVAL; 2372 #endif 2373 case Opt_data_err: 2374 if (result.uint_32 == Opt_data_err_abort) 2375 ctx_set_mount_opt(ctx, m->mount_opt); 2376 else if (result.uint_32 == Opt_data_err_ignore) 2377 ctx_clear_mount_opt(ctx, m->mount_opt); 2378 return 0; 2379 case Opt_mb_optimize_scan: 2380 if (result.int_32 == 1) { 2381 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2382 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2383 } else if (result.int_32 == 0) { 2384 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2385 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2386 } else { 2387 ext4_msg(NULL, KERN_WARNING, 2388 "mb_optimize_scan should be set to 0 or 1."); 2389 return -EINVAL; 2390 } 2391 return 0; 2392 } 2393 2394 /* 2395 * At this point we should only be getting options requiring MOPT_SET, 2396 * or MOPT_CLEAR. Anything else is a bug 2397 */ 2398 if (m->token == Opt_err) { 2399 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2400 param->key); 2401 WARN_ON(1); 2402 return -EINVAL; 2403 } 2404 2405 else { 2406 unsigned int set = 0; 2407 2408 if ((param->type == fs_value_is_flag) || 2409 result.uint_32 > 0) 2410 set = 1; 2411 2412 if (m->flags & MOPT_CLEAR) 2413 set = !set; 2414 else if (unlikely(!(m->flags & MOPT_SET))) { 2415 ext4_msg(NULL, KERN_WARNING, 2416 "buggy handling of option %s", 2417 param->key); 2418 WARN_ON(1); 2419 return -EINVAL; 2420 } 2421 if (m->flags & MOPT_2) { 2422 if (set != 0) 2423 ctx_set_mount_opt2(ctx, m->mount_opt); 2424 else 2425 ctx_clear_mount_opt2(ctx, m->mount_opt); 2426 } else { 2427 if (set != 0) 2428 ctx_set_mount_opt(ctx, m->mount_opt); 2429 else 2430 ctx_clear_mount_opt(ctx, m->mount_opt); 2431 } 2432 } 2433 2434 return 0; 2435 } 2436 2437 static int parse_options(struct fs_context *fc, char *options) 2438 { 2439 struct fs_parameter param; 2440 int ret; 2441 char *key; 2442 2443 if (!options) 2444 return 0; 2445 2446 while ((key = strsep(&options, ",")) != NULL) { 2447 if (*key) { 2448 size_t v_len = 0; 2449 char *value = strchr(key, '='); 2450 2451 param.type = fs_value_is_flag; 2452 param.string = NULL; 2453 2454 if (value) { 2455 if (value == key) 2456 continue; 2457 2458 *value++ = 0; 2459 v_len = strlen(value); 2460 param.string = kmemdup_nul(value, v_len, 2461 GFP_KERNEL); 2462 if (!param.string) 2463 return -ENOMEM; 2464 param.type = fs_value_is_string; 2465 } 2466 2467 param.key = key; 2468 param.size = v_len; 2469 2470 ret = ext4_parse_param(fc, ¶m); 2471 if (param.string) 2472 kfree(param.string); 2473 if (ret < 0) 2474 return ret; 2475 } 2476 } 2477 2478 ret = ext4_validate_options(fc); 2479 if (ret < 0) 2480 return ret; 2481 2482 return 0; 2483 } 2484 2485 static int parse_apply_sb_mount_options(struct super_block *sb, 2486 struct ext4_fs_context *m_ctx) 2487 { 2488 struct ext4_sb_info *sbi = EXT4_SB(sb); 2489 char *s_mount_opts = NULL; 2490 struct ext4_fs_context *s_ctx = NULL; 2491 struct fs_context *fc = NULL; 2492 int ret = -ENOMEM; 2493 2494 if (!sbi->s_es->s_mount_opts[0]) 2495 return 0; 2496 2497 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2498 sizeof(sbi->s_es->s_mount_opts), 2499 GFP_KERNEL); 2500 if (!s_mount_opts) 2501 return ret; 2502 2503 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2504 if (!fc) 2505 goto out_free; 2506 2507 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2508 if (!s_ctx) 2509 goto out_free; 2510 2511 fc->fs_private = s_ctx; 2512 fc->s_fs_info = sbi; 2513 2514 ret = parse_options(fc, s_mount_opts); 2515 if (ret < 0) 2516 goto parse_failed; 2517 2518 ret = ext4_check_opt_consistency(fc, sb); 2519 if (ret < 0) { 2520 parse_failed: 2521 ext4_msg(sb, KERN_WARNING, 2522 "failed to parse options in superblock: %s", 2523 s_mount_opts); 2524 ret = 0; 2525 goto out_free; 2526 } 2527 2528 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2529 m_ctx->journal_devnum = s_ctx->journal_devnum; 2530 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2531 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2532 2533 ext4_apply_options(fc, sb); 2534 ret = 0; 2535 2536 out_free: 2537 if (fc) { 2538 ext4_fc_free(fc); 2539 kfree(fc); 2540 } 2541 kfree(s_mount_opts); 2542 return ret; 2543 } 2544 2545 static void ext4_apply_quota_options(struct fs_context *fc, 2546 struct super_block *sb) 2547 { 2548 #ifdef CONFIG_QUOTA 2549 bool quota_feature = ext4_has_feature_quota(sb); 2550 struct ext4_fs_context *ctx = fc->fs_private; 2551 struct ext4_sb_info *sbi = EXT4_SB(sb); 2552 char *qname; 2553 int i; 2554 2555 if (quota_feature) 2556 return; 2557 2558 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2559 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2560 if (!(ctx->qname_spec & (1 << i))) 2561 continue; 2562 2563 qname = ctx->s_qf_names[i]; /* May be NULL */ 2564 if (qname) 2565 set_opt(sb, QUOTA); 2566 ctx->s_qf_names[i] = NULL; 2567 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2568 lockdep_is_held(&sb->s_umount)); 2569 if (qname) 2570 kfree_rcu_mightsleep(qname); 2571 } 2572 } 2573 2574 if (ctx->spec & EXT4_SPEC_JQFMT) 2575 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2576 #endif 2577 } 2578 2579 /* 2580 * Check quota settings consistency. 2581 */ 2582 static int ext4_check_quota_consistency(struct fs_context *fc, 2583 struct super_block *sb) 2584 { 2585 #ifdef CONFIG_QUOTA 2586 struct ext4_fs_context *ctx = fc->fs_private; 2587 struct ext4_sb_info *sbi = EXT4_SB(sb); 2588 bool quota_feature = ext4_has_feature_quota(sb); 2589 bool quota_loaded = sb_any_quota_loaded(sb); 2590 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2591 int quota_flags, i; 2592 2593 /* 2594 * We do the test below only for project quotas. 'usrquota' and 2595 * 'grpquota' mount options are allowed even without quota feature 2596 * to support legacy quotas in quota files. 2597 */ 2598 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2599 !ext4_has_feature_project(sb)) { 2600 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2601 "Cannot enable project quota enforcement."); 2602 return -EINVAL; 2603 } 2604 2605 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2606 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2607 if (quota_loaded && 2608 ctx->mask_s_mount_opt & quota_flags && 2609 !ctx_test_mount_opt(ctx, quota_flags)) 2610 goto err_quota_change; 2611 2612 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2613 2614 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2615 if (!(ctx->qname_spec & (1 << i))) 2616 continue; 2617 2618 if (quota_loaded && 2619 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2620 goto err_jquota_change; 2621 2622 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2623 strcmp(get_qf_name(sb, sbi, i), 2624 ctx->s_qf_names[i]) != 0) 2625 goto err_jquota_specified; 2626 } 2627 2628 if (quota_feature) { 2629 ext4_msg(NULL, KERN_INFO, 2630 "Journaled quota options ignored when " 2631 "QUOTA feature is enabled"); 2632 return 0; 2633 } 2634 } 2635 2636 if (ctx->spec & EXT4_SPEC_JQFMT) { 2637 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2638 goto err_jquota_change; 2639 if (quota_feature) { 2640 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2641 "ignored when QUOTA feature is enabled"); 2642 return 0; 2643 } 2644 } 2645 2646 /* Make sure we don't mix old and new quota format */ 2647 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2648 ctx->s_qf_names[USRQUOTA]); 2649 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2650 ctx->s_qf_names[GRPQUOTA]); 2651 2652 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2653 test_opt(sb, USRQUOTA)); 2654 2655 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2656 test_opt(sb, GRPQUOTA)); 2657 2658 if (usr_qf_name) { 2659 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2660 usrquota = false; 2661 } 2662 if (grp_qf_name) { 2663 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2664 grpquota = false; 2665 } 2666 2667 if (usr_qf_name || grp_qf_name) { 2668 if (usrquota || grpquota) { 2669 ext4_msg(NULL, KERN_ERR, "old and new quota " 2670 "format mixing"); 2671 return -EINVAL; 2672 } 2673 2674 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2675 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2676 "not specified"); 2677 return -EINVAL; 2678 } 2679 } 2680 2681 return 0; 2682 2683 err_quota_change: 2684 ext4_msg(NULL, KERN_ERR, 2685 "Cannot change quota options when quota turned on"); 2686 return -EINVAL; 2687 err_jquota_change: 2688 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2689 "options when quota turned on"); 2690 return -EINVAL; 2691 err_jquota_specified: 2692 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2693 QTYPE2NAME(i)); 2694 return -EINVAL; 2695 #else 2696 return 0; 2697 #endif 2698 } 2699 2700 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2701 struct super_block *sb) 2702 { 2703 const struct ext4_fs_context *ctx = fc->fs_private; 2704 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2705 2706 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2707 return 0; 2708 2709 if (!ext4_has_feature_encrypt(sb)) { 2710 ext4_msg(NULL, KERN_WARNING, 2711 "test_dummy_encryption requires encrypt feature"); 2712 return -EINVAL; 2713 } 2714 /* 2715 * This mount option is just for testing, and it's not worthwhile to 2716 * implement the extra complexity (e.g. RCU protection) that would be 2717 * needed to allow it to be set or changed during remount. We do allow 2718 * it to be specified during remount, but only if there is no change. 2719 */ 2720 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2721 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2722 &ctx->dummy_enc_policy)) 2723 return 0; 2724 ext4_msg(NULL, KERN_WARNING, 2725 "Can't set or change test_dummy_encryption on remount"); 2726 return -EINVAL; 2727 } 2728 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2729 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2730 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2731 &ctx->dummy_enc_policy)) 2732 return 0; 2733 ext4_msg(NULL, KERN_WARNING, 2734 "Conflicting test_dummy_encryption options"); 2735 return -EINVAL; 2736 } 2737 return 0; 2738 } 2739 2740 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2741 struct super_block *sb) 2742 { 2743 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2744 /* if already set, it was already verified to be the same */ 2745 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2746 return; 2747 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2748 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2749 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2750 } 2751 2752 static int ext4_check_opt_consistency(struct fs_context *fc, 2753 struct super_block *sb) 2754 { 2755 struct ext4_fs_context *ctx = fc->fs_private; 2756 struct ext4_sb_info *sbi = fc->s_fs_info; 2757 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2758 int err; 2759 2760 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2761 ext4_msg(NULL, KERN_ERR, 2762 "Mount option(s) incompatible with ext2"); 2763 return -EINVAL; 2764 } 2765 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2766 ext4_msg(NULL, KERN_ERR, 2767 "Mount option(s) incompatible with ext3"); 2768 return -EINVAL; 2769 } 2770 2771 if (ctx->s_want_extra_isize > 2772 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2773 ext4_msg(NULL, KERN_ERR, 2774 "Invalid want_extra_isize %d", 2775 ctx->s_want_extra_isize); 2776 return -EINVAL; 2777 } 2778 2779 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2780 int blocksize = 2781 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2782 if (blocksize < PAGE_SIZE) 2783 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2784 "experimental mount option 'dioread_nolock' " 2785 "for blocksize < PAGE_SIZE"); 2786 } 2787 2788 err = ext4_check_test_dummy_encryption(fc, sb); 2789 if (err) 2790 return err; 2791 2792 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2793 if (!sbi->s_journal) { 2794 ext4_msg(NULL, KERN_WARNING, 2795 "Remounting file system with no journal " 2796 "so ignoring journalled data option"); 2797 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2798 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2799 test_opt(sb, DATA_FLAGS)) { 2800 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2801 "on remount"); 2802 return -EINVAL; 2803 } 2804 } 2805 2806 if (is_remount) { 2807 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2808 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2809 ext4_msg(NULL, KERN_ERR, "can't mount with " 2810 "both data=journal and dax"); 2811 return -EINVAL; 2812 } 2813 2814 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2815 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2816 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2817 fail_dax_change_remount: 2818 ext4_msg(NULL, KERN_ERR, "can't change " 2819 "dax mount option while remounting"); 2820 return -EINVAL; 2821 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2822 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2823 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2824 goto fail_dax_change_remount; 2825 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2826 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2827 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2828 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2829 goto fail_dax_change_remount; 2830 } 2831 } 2832 2833 return ext4_check_quota_consistency(fc, sb); 2834 } 2835 2836 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2837 { 2838 struct ext4_fs_context *ctx = fc->fs_private; 2839 struct ext4_sb_info *sbi = fc->s_fs_info; 2840 2841 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2842 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2843 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2844 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2845 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2846 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2847 sb->s_flags &= ~ctx->mask_s_flags; 2848 sb->s_flags |= ctx->vals_s_flags; 2849 2850 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2851 APPLY(s_commit_interval); 2852 APPLY(s_stripe); 2853 APPLY(s_max_batch_time); 2854 APPLY(s_min_batch_time); 2855 APPLY(s_want_extra_isize); 2856 APPLY(s_inode_readahead_blks); 2857 APPLY(s_max_dir_size_kb); 2858 APPLY(s_li_wait_mult); 2859 APPLY(s_resgid); 2860 APPLY(s_resuid); 2861 2862 #ifdef CONFIG_EXT4_DEBUG 2863 APPLY(s_fc_debug_max_replay); 2864 #endif 2865 2866 ext4_apply_quota_options(fc, sb); 2867 ext4_apply_test_dummy_encryption(ctx, sb); 2868 } 2869 2870 2871 static int ext4_validate_options(struct fs_context *fc) 2872 { 2873 #ifdef CONFIG_QUOTA 2874 struct ext4_fs_context *ctx = fc->fs_private; 2875 char *usr_qf_name, *grp_qf_name; 2876 2877 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2878 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2879 2880 if (usr_qf_name || grp_qf_name) { 2881 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2882 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2883 2884 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2885 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2886 2887 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2888 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2889 ext4_msg(NULL, KERN_ERR, "old and new quota " 2890 "format mixing"); 2891 return -EINVAL; 2892 } 2893 } 2894 #endif 2895 return 1; 2896 } 2897 2898 static inline void ext4_show_quota_options(struct seq_file *seq, 2899 struct super_block *sb) 2900 { 2901 #if defined(CONFIG_QUOTA) 2902 struct ext4_sb_info *sbi = EXT4_SB(sb); 2903 char *usr_qf_name, *grp_qf_name; 2904 2905 if (sbi->s_jquota_fmt) { 2906 char *fmtname = ""; 2907 2908 switch (sbi->s_jquota_fmt) { 2909 case QFMT_VFS_OLD: 2910 fmtname = "vfsold"; 2911 break; 2912 case QFMT_VFS_V0: 2913 fmtname = "vfsv0"; 2914 break; 2915 case QFMT_VFS_V1: 2916 fmtname = "vfsv1"; 2917 break; 2918 } 2919 seq_printf(seq, ",jqfmt=%s", fmtname); 2920 } 2921 2922 rcu_read_lock(); 2923 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2924 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2925 if (usr_qf_name) 2926 seq_show_option(seq, "usrjquota", usr_qf_name); 2927 if (grp_qf_name) 2928 seq_show_option(seq, "grpjquota", grp_qf_name); 2929 rcu_read_unlock(); 2930 #endif 2931 } 2932 2933 static const char *token2str(int token) 2934 { 2935 const struct fs_parameter_spec *spec; 2936 2937 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2938 if (spec->opt == token && !spec->type) 2939 break; 2940 return spec->name; 2941 } 2942 2943 /* 2944 * Show an option if 2945 * - it's set to a non-default value OR 2946 * - if the per-sb default is different from the global default 2947 */ 2948 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2949 int nodefs) 2950 { 2951 struct ext4_sb_info *sbi = EXT4_SB(sb); 2952 struct ext4_super_block *es = sbi->s_es; 2953 int def_errors; 2954 const struct mount_opts *m; 2955 char sep = nodefs ? '\n' : ','; 2956 2957 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2958 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2959 2960 if (sbi->s_sb_block != 1) 2961 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2962 2963 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2964 int want_set = m->flags & MOPT_SET; 2965 int opt_2 = m->flags & MOPT_2; 2966 unsigned int mount_opt, def_mount_opt; 2967 2968 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2969 m->flags & MOPT_SKIP) 2970 continue; 2971 2972 if (opt_2) { 2973 mount_opt = sbi->s_mount_opt2; 2974 def_mount_opt = sbi->s_def_mount_opt2; 2975 } else { 2976 mount_opt = sbi->s_mount_opt; 2977 def_mount_opt = sbi->s_def_mount_opt; 2978 } 2979 /* skip if same as the default */ 2980 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2981 continue; 2982 /* select Opt_noFoo vs Opt_Foo */ 2983 if ((want_set && 2984 (mount_opt & m->mount_opt) != m->mount_opt) || 2985 (!want_set && (mount_opt & m->mount_opt))) 2986 continue; 2987 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2988 } 2989 2990 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2991 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2992 SEQ_OPTS_PRINT("resuid=%u", 2993 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2994 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2995 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2996 SEQ_OPTS_PRINT("resgid=%u", 2997 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2998 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2999 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 3000 SEQ_OPTS_PUTS("errors=remount-ro"); 3001 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 3002 SEQ_OPTS_PUTS("errors=continue"); 3003 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 3004 SEQ_OPTS_PUTS("errors=panic"); 3005 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 3006 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 3007 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 3008 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 3009 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 3010 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 3011 if (nodefs || sbi->s_stripe) 3012 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 3013 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 3014 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3015 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3016 SEQ_OPTS_PUTS("data=journal"); 3017 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3018 SEQ_OPTS_PUTS("data=ordered"); 3019 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 3020 SEQ_OPTS_PUTS("data=writeback"); 3021 } 3022 if (nodefs || 3023 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 3024 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 3025 sbi->s_inode_readahead_blks); 3026 3027 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3028 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3029 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3030 if (nodefs || sbi->s_max_dir_size_kb) 3031 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3032 if (test_opt(sb, DATA_ERR_ABORT)) 3033 SEQ_OPTS_PUTS("data_err=abort"); 3034 3035 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3036 3037 if (sb->s_flags & SB_INLINECRYPT) 3038 SEQ_OPTS_PUTS("inlinecrypt"); 3039 3040 if (test_opt(sb, DAX_ALWAYS)) { 3041 if (IS_EXT2_SB(sb)) 3042 SEQ_OPTS_PUTS("dax"); 3043 else 3044 SEQ_OPTS_PUTS("dax=always"); 3045 } else if (test_opt2(sb, DAX_NEVER)) { 3046 SEQ_OPTS_PUTS("dax=never"); 3047 } else if (test_opt2(sb, DAX_INODE)) { 3048 SEQ_OPTS_PUTS("dax=inode"); 3049 } 3050 3051 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3052 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3053 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3054 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3055 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3056 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3057 } 3058 3059 ext4_show_quota_options(seq, sb); 3060 return 0; 3061 } 3062 3063 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3064 { 3065 return _ext4_show_options(seq, root->d_sb, 0); 3066 } 3067 3068 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3069 { 3070 struct super_block *sb = seq->private; 3071 int rc; 3072 3073 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3074 rc = _ext4_show_options(seq, sb, 1); 3075 seq_puts(seq, "\n"); 3076 return rc; 3077 } 3078 3079 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3080 int read_only) 3081 { 3082 struct ext4_sb_info *sbi = EXT4_SB(sb); 3083 int err = 0; 3084 3085 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3086 ext4_msg(sb, KERN_ERR, "revision level too high, " 3087 "forcing read-only mode"); 3088 err = -EROFS; 3089 goto done; 3090 } 3091 if (read_only) 3092 goto done; 3093 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3094 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3095 "running e2fsck is recommended"); 3096 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3097 ext4_msg(sb, KERN_WARNING, 3098 "warning: mounting fs with errors, " 3099 "running e2fsck is recommended"); 3100 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3101 le16_to_cpu(es->s_mnt_count) >= 3102 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3103 ext4_msg(sb, KERN_WARNING, 3104 "warning: maximal mount count reached, " 3105 "running e2fsck is recommended"); 3106 else if (le32_to_cpu(es->s_checkinterval) && 3107 (ext4_get_tstamp(es, s_lastcheck) + 3108 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3109 ext4_msg(sb, KERN_WARNING, 3110 "warning: checktime reached, " 3111 "running e2fsck is recommended"); 3112 if (!sbi->s_journal) 3113 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3114 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3115 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3116 le16_add_cpu(&es->s_mnt_count, 1); 3117 ext4_update_tstamp(es, s_mtime); 3118 if (sbi->s_journal) { 3119 ext4_set_feature_journal_needs_recovery(sb); 3120 if (ext4_has_feature_orphan_file(sb)) 3121 ext4_set_feature_orphan_present(sb); 3122 } 3123 3124 err = ext4_commit_super(sb); 3125 done: 3126 if (test_opt(sb, DEBUG)) 3127 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3128 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3129 sb->s_blocksize, 3130 sbi->s_groups_count, 3131 EXT4_BLOCKS_PER_GROUP(sb), 3132 EXT4_INODES_PER_GROUP(sb), 3133 sbi->s_mount_opt, sbi->s_mount_opt2); 3134 return err; 3135 } 3136 3137 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3138 { 3139 struct ext4_sb_info *sbi = EXT4_SB(sb); 3140 struct flex_groups **old_groups, **new_groups; 3141 int size, i, j; 3142 3143 if (!sbi->s_log_groups_per_flex) 3144 return 0; 3145 3146 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3147 if (size <= sbi->s_flex_groups_allocated) 3148 return 0; 3149 3150 new_groups = kvzalloc(roundup_pow_of_two(size * 3151 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3152 if (!new_groups) { 3153 ext4_msg(sb, KERN_ERR, 3154 "not enough memory for %d flex group pointers", size); 3155 return -ENOMEM; 3156 } 3157 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3158 new_groups[i] = kvzalloc(roundup_pow_of_two( 3159 sizeof(struct flex_groups)), 3160 GFP_KERNEL); 3161 if (!new_groups[i]) { 3162 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3163 kvfree(new_groups[j]); 3164 kvfree(new_groups); 3165 ext4_msg(sb, KERN_ERR, 3166 "not enough memory for %d flex groups", size); 3167 return -ENOMEM; 3168 } 3169 } 3170 rcu_read_lock(); 3171 old_groups = rcu_dereference(sbi->s_flex_groups); 3172 if (old_groups) 3173 memcpy(new_groups, old_groups, 3174 (sbi->s_flex_groups_allocated * 3175 sizeof(struct flex_groups *))); 3176 rcu_read_unlock(); 3177 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3178 sbi->s_flex_groups_allocated = size; 3179 if (old_groups) 3180 ext4_kvfree_array_rcu(old_groups); 3181 return 0; 3182 } 3183 3184 static int ext4_fill_flex_info(struct super_block *sb) 3185 { 3186 struct ext4_sb_info *sbi = EXT4_SB(sb); 3187 struct ext4_group_desc *gdp = NULL; 3188 struct flex_groups *fg; 3189 ext4_group_t flex_group; 3190 int i, err; 3191 3192 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3193 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3194 sbi->s_log_groups_per_flex = 0; 3195 return 1; 3196 } 3197 3198 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3199 if (err) 3200 goto failed; 3201 3202 for (i = 0; i < sbi->s_groups_count; i++) { 3203 gdp = ext4_get_group_desc(sb, i, NULL); 3204 3205 flex_group = ext4_flex_group(sbi, i); 3206 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3207 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3208 atomic64_add(ext4_free_group_clusters(sb, gdp), 3209 &fg->free_clusters); 3210 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3211 } 3212 3213 return 1; 3214 failed: 3215 return 0; 3216 } 3217 3218 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3219 struct ext4_group_desc *gdp) 3220 { 3221 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3222 __u16 crc = 0; 3223 __le32 le_group = cpu_to_le32(block_group); 3224 struct ext4_sb_info *sbi = EXT4_SB(sb); 3225 3226 if (ext4_has_metadata_csum(sbi->s_sb)) { 3227 /* Use new metadata_csum algorithm */ 3228 __u32 csum32; 3229 __u16 dummy_csum = 0; 3230 3231 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3232 sizeof(le_group)); 3233 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3234 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3235 sizeof(dummy_csum)); 3236 offset += sizeof(dummy_csum); 3237 if (offset < sbi->s_desc_size) 3238 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3239 sbi->s_desc_size - offset); 3240 3241 crc = csum32 & 0xFFFF; 3242 goto out; 3243 } 3244 3245 /* old crc16 code */ 3246 if (!ext4_has_feature_gdt_csum(sb)) 3247 return 0; 3248 3249 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3250 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3251 crc = crc16(crc, (__u8 *)gdp, offset); 3252 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3253 /* for checksum of struct ext4_group_desc do the rest...*/ 3254 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3255 crc = crc16(crc, (__u8 *)gdp + offset, 3256 sbi->s_desc_size - offset); 3257 3258 out: 3259 return cpu_to_le16(crc); 3260 } 3261 3262 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3263 struct ext4_group_desc *gdp) 3264 { 3265 if (ext4_has_group_desc_csum(sb) && 3266 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3267 return 0; 3268 3269 return 1; 3270 } 3271 3272 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3273 struct ext4_group_desc *gdp) 3274 { 3275 if (!ext4_has_group_desc_csum(sb)) 3276 return; 3277 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3278 } 3279 3280 /* Called at mount-time, super-block is locked */ 3281 static int ext4_check_descriptors(struct super_block *sb, 3282 ext4_fsblk_t sb_block, 3283 ext4_group_t *first_not_zeroed) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(sb); 3286 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3287 ext4_fsblk_t last_block; 3288 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3289 ext4_fsblk_t block_bitmap; 3290 ext4_fsblk_t inode_bitmap; 3291 ext4_fsblk_t inode_table; 3292 int flexbg_flag = 0; 3293 ext4_group_t i, grp = sbi->s_groups_count; 3294 3295 if (ext4_has_feature_flex_bg(sb)) 3296 flexbg_flag = 1; 3297 3298 ext4_debug("Checking group descriptors"); 3299 3300 for (i = 0; i < sbi->s_groups_count; i++) { 3301 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3302 3303 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3304 last_block = ext4_blocks_count(sbi->s_es) - 1; 3305 else 3306 last_block = first_block + 3307 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3308 3309 if ((grp == sbi->s_groups_count) && 3310 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3311 grp = i; 3312 3313 block_bitmap = ext4_block_bitmap(sb, gdp); 3314 if (block_bitmap == sb_block) { 3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3316 "Block bitmap for group %u overlaps " 3317 "superblock", i); 3318 if (!sb_rdonly(sb)) 3319 return 0; 3320 } 3321 if (block_bitmap >= sb_block + 1 && 3322 block_bitmap <= last_bg_block) { 3323 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3324 "Block bitmap for group %u overlaps " 3325 "block group descriptors", i); 3326 if (!sb_rdonly(sb)) 3327 return 0; 3328 } 3329 if (block_bitmap < first_block || block_bitmap > last_block) { 3330 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3331 "Block bitmap for group %u not in group " 3332 "(block %llu)!", i, block_bitmap); 3333 return 0; 3334 } 3335 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3336 if (inode_bitmap == sb_block) { 3337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3338 "Inode bitmap for group %u overlaps " 3339 "superblock", i); 3340 if (!sb_rdonly(sb)) 3341 return 0; 3342 } 3343 if (inode_bitmap >= sb_block + 1 && 3344 inode_bitmap <= last_bg_block) { 3345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3346 "Inode bitmap for group %u overlaps " 3347 "block group descriptors", i); 3348 if (!sb_rdonly(sb)) 3349 return 0; 3350 } 3351 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3353 "Inode bitmap for group %u not in group " 3354 "(block %llu)!", i, inode_bitmap); 3355 return 0; 3356 } 3357 inode_table = ext4_inode_table(sb, gdp); 3358 if (inode_table == sb_block) { 3359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3360 "Inode table for group %u overlaps " 3361 "superblock", i); 3362 if (!sb_rdonly(sb)) 3363 return 0; 3364 } 3365 if (inode_table >= sb_block + 1 && 3366 inode_table <= last_bg_block) { 3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3368 "Inode table for group %u overlaps " 3369 "block group descriptors", i); 3370 if (!sb_rdonly(sb)) 3371 return 0; 3372 } 3373 if (inode_table < first_block || 3374 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3375 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3376 "Inode table for group %u not in group " 3377 "(block %llu)!", i, inode_table); 3378 return 0; 3379 } 3380 ext4_lock_group(sb, i); 3381 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3382 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3383 "Checksum for group %u failed (%u!=%u)", 3384 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3385 gdp)), le16_to_cpu(gdp->bg_checksum)); 3386 if (!sb_rdonly(sb)) { 3387 ext4_unlock_group(sb, i); 3388 return 0; 3389 } 3390 } 3391 ext4_unlock_group(sb, i); 3392 if (!flexbg_flag) 3393 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3394 } 3395 if (NULL != first_not_zeroed) 3396 *first_not_zeroed = grp; 3397 return 1; 3398 } 3399 3400 /* 3401 * Maximal extent format file size. 3402 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3403 * extent format containers, within a sector_t, and within i_blocks 3404 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3405 * so that won't be a limiting factor. 3406 * 3407 * However there is other limiting factor. We do store extents in the form 3408 * of starting block and length, hence the resulting length of the extent 3409 * covering maximum file size must fit into on-disk format containers as 3410 * well. Given that length is always by 1 unit bigger than max unit (because 3411 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3412 * 3413 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3414 */ 3415 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3416 { 3417 loff_t res; 3418 loff_t upper_limit = MAX_LFS_FILESIZE; 3419 3420 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3421 3422 if (!has_huge_files) { 3423 upper_limit = (1LL << 32) - 1; 3424 3425 /* total blocks in file system block size */ 3426 upper_limit >>= (blkbits - 9); 3427 upper_limit <<= blkbits; 3428 } 3429 3430 /* 3431 * 32-bit extent-start container, ee_block. We lower the maxbytes 3432 * by one fs block, so ee_len can cover the extent of maximum file 3433 * size 3434 */ 3435 res = (1LL << 32) - 1; 3436 res <<= blkbits; 3437 3438 /* Sanity check against vm- & vfs- imposed limits */ 3439 if (res > upper_limit) 3440 res = upper_limit; 3441 3442 return res; 3443 } 3444 3445 /* 3446 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3447 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3448 * We need to be 1 filesystem block less than the 2^48 sector limit. 3449 */ 3450 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3451 { 3452 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3453 int meta_blocks; 3454 unsigned int ppb = 1 << (bits - 2); 3455 3456 /* 3457 * This is calculated to be the largest file size for a dense, block 3458 * mapped file such that the file's total number of 512-byte sectors, 3459 * including data and all indirect blocks, does not exceed (2^48 - 1). 3460 * 3461 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3462 * number of 512-byte sectors of the file. 3463 */ 3464 if (!has_huge_files) { 3465 /* 3466 * !has_huge_files or implies that the inode i_block field 3467 * represents total file blocks in 2^32 512-byte sectors == 3468 * size of vfs inode i_blocks * 8 3469 */ 3470 upper_limit = (1LL << 32) - 1; 3471 3472 /* total blocks in file system block size */ 3473 upper_limit >>= (bits - 9); 3474 3475 } else { 3476 /* 3477 * We use 48 bit ext4_inode i_blocks 3478 * With EXT4_HUGE_FILE_FL set the i_blocks 3479 * represent total number of blocks in 3480 * file system block size 3481 */ 3482 upper_limit = (1LL << 48) - 1; 3483 3484 } 3485 3486 /* Compute how many blocks we can address by block tree */ 3487 res += ppb; 3488 res += ppb * ppb; 3489 res += ((loff_t)ppb) * ppb * ppb; 3490 /* Compute how many metadata blocks are needed */ 3491 meta_blocks = 1; 3492 meta_blocks += 1 + ppb; 3493 meta_blocks += 1 + ppb + ppb * ppb; 3494 /* Does block tree limit file size? */ 3495 if (res + meta_blocks <= upper_limit) 3496 goto check_lfs; 3497 3498 res = upper_limit; 3499 /* How many metadata blocks are needed for addressing upper_limit? */ 3500 upper_limit -= EXT4_NDIR_BLOCKS; 3501 /* indirect blocks */ 3502 meta_blocks = 1; 3503 upper_limit -= ppb; 3504 /* double indirect blocks */ 3505 if (upper_limit < ppb * ppb) { 3506 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3507 res -= meta_blocks; 3508 goto check_lfs; 3509 } 3510 meta_blocks += 1 + ppb; 3511 upper_limit -= ppb * ppb; 3512 /* tripple indirect blocks for the rest */ 3513 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3514 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3515 res -= meta_blocks; 3516 check_lfs: 3517 res <<= bits; 3518 if (res > MAX_LFS_FILESIZE) 3519 res = MAX_LFS_FILESIZE; 3520 3521 return res; 3522 } 3523 3524 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3525 ext4_fsblk_t logical_sb_block, int nr) 3526 { 3527 struct ext4_sb_info *sbi = EXT4_SB(sb); 3528 ext4_group_t bg, first_meta_bg; 3529 int has_super = 0; 3530 3531 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3532 3533 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3534 return logical_sb_block + nr + 1; 3535 bg = sbi->s_desc_per_block * nr; 3536 if (ext4_bg_has_super(sb, bg)) 3537 has_super = 1; 3538 3539 /* 3540 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3541 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3542 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3543 * compensate. 3544 */ 3545 if (sb->s_blocksize == 1024 && nr == 0 && 3546 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3547 has_super++; 3548 3549 return (has_super + ext4_group_first_block_no(sb, bg)); 3550 } 3551 3552 /** 3553 * ext4_get_stripe_size: Get the stripe size. 3554 * @sbi: In memory super block info 3555 * 3556 * If we have specified it via mount option, then 3557 * use the mount option value. If the value specified at mount time is 3558 * greater than the blocks per group use the super block value. 3559 * If the super block value is greater than blocks per group return 0. 3560 * Allocator needs it be less than blocks per group. 3561 * 3562 */ 3563 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3564 { 3565 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3566 unsigned long stripe_width = 3567 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3568 int ret; 3569 3570 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3571 ret = sbi->s_stripe; 3572 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3573 ret = stripe_width; 3574 else if (stride && stride <= sbi->s_blocks_per_group) 3575 ret = stride; 3576 else 3577 ret = 0; 3578 3579 /* 3580 * If the stripe width is 1, this makes no sense and 3581 * we set it to 0 to turn off stripe handling code. 3582 */ 3583 if (ret <= 1) 3584 ret = 0; 3585 3586 return ret; 3587 } 3588 3589 /* 3590 * Check whether this filesystem can be mounted based on 3591 * the features present and the RDONLY/RDWR mount requested. 3592 * Returns 1 if this filesystem can be mounted as requested, 3593 * 0 if it cannot be. 3594 */ 3595 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3596 { 3597 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3598 ext4_msg(sb, KERN_ERR, 3599 "Couldn't mount because of " 3600 "unsupported optional features (%x)", 3601 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3602 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3603 return 0; 3604 } 3605 3606 #if !IS_ENABLED(CONFIG_UNICODE) 3607 if (ext4_has_feature_casefold(sb)) { 3608 ext4_msg(sb, KERN_ERR, 3609 "Filesystem with casefold feature cannot be " 3610 "mounted without CONFIG_UNICODE"); 3611 return 0; 3612 } 3613 #endif 3614 3615 if (readonly) 3616 return 1; 3617 3618 if (ext4_has_feature_readonly(sb)) { 3619 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3620 sb->s_flags |= SB_RDONLY; 3621 return 1; 3622 } 3623 3624 /* Check that feature set is OK for a read-write mount */ 3625 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3626 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3627 "unsupported optional features (%x)", 3628 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3629 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3630 return 0; 3631 } 3632 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3633 ext4_msg(sb, KERN_ERR, 3634 "Can't support bigalloc feature without " 3635 "extents feature\n"); 3636 return 0; 3637 } 3638 3639 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3640 if (!readonly && (ext4_has_feature_quota(sb) || 3641 ext4_has_feature_project(sb))) { 3642 ext4_msg(sb, KERN_ERR, 3643 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3644 return 0; 3645 } 3646 #endif /* CONFIG_QUOTA */ 3647 return 1; 3648 } 3649 3650 /* 3651 * This function is called once a day if we have errors logged 3652 * on the file system 3653 */ 3654 static void print_daily_error_info(struct timer_list *t) 3655 { 3656 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3657 struct super_block *sb = sbi->s_sb; 3658 struct ext4_super_block *es = sbi->s_es; 3659 3660 if (es->s_error_count) 3661 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3662 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3663 le32_to_cpu(es->s_error_count)); 3664 if (es->s_first_error_time) { 3665 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3666 sb->s_id, 3667 ext4_get_tstamp(es, s_first_error_time), 3668 (int) sizeof(es->s_first_error_func), 3669 es->s_first_error_func, 3670 le32_to_cpu(es->s_first_error_line)); 3671 if (es->s_first_error_ino) 3672 printk(KERN_CONT ": inode %u", 3673 le32_to_cpu(es->s_first_error_ino)); 3674 if (es->s_first_error_block) 3675 printk(KERN_CONT ": block %llu", (unsigned long long) 3676 le64_to_cpu(es->s_first_error_block)); 3677 printk(KERN_CONT "\n"); 3678 } 3679 if (es->s_last_error_time) { 3680 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3681 sb->s_id, 3682 ext4_get_tstamp(es, s_last_error_time), 3683 (int) sizeof(es->s_last_error_func), 3684 es->s_last_error_func, 3685 le32_to_cpu(es->s_last_error_line)); 3686 if (es->s_last_error_ino) 3687 printk(KERN_CONT ": inode %u", 3688 le32_to_cpu(es->s_last_error_ino)); 3689 if (es->s_last_error_block) 3690 printk(KERN_CONT ": block %llu", (unsigned long long) 3691 le64_to_cpu(es->s_last_error_block)); 3692 printk(KERN_CONT "\n"); 3693 } 3694 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3695 } 3696 3697 /* Find next suitable group and run ext4_init_inode_table */ 3698 static int ext4_run_li_request(struct ext4_li_request *elr) 3699 { 3700 struct ext4_group_desc *gdp = NULL; 3701 struct super_block *sb = elr->lr_super; 3702 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3703 ext4_group_t group = elr->lr_next_group; 3704 unsigned int prefetch_ios = 0; 3705 int ret = 0; 3706 int nr = EXT4_SB(sb)->s_mb_prefetch; 3707 u64 start_time; 3708 3709 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3710 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3711 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3712 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3713 if (group >= elr->lr_next_group) { 3714 ret = 1; 3715 if (elr->lr_first_not_zeroed != ngroups && 3716 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3717 elr->lr_next_group = elr->lr_first_not_zeroed; 3718 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3719 ret = 0; 3720 } 3721 } 3722 return ret; 3723 } 3724 3725 for (; group < ngroups; group++) { 3726 gdp = ext4_get_group_desc(sb, group, NULL); 3727 if (!gdp) { 3728 ret = 1; 3729 break; 3730 } 3731 3732 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3733 break; 3734 } 3735 3736 if (group >= ngroups) 3737 ret = 1; 3738 3739 if (!ret) { 3740 start_time = ktime_get_real_ns(); 3741 ret = ext4_init_inode_table(sb, group, 3742 elr->lr_timeout ? 0 : 1); 3743 trace_ext4_lazy_itable_init(sb, group); 3744 if (elr->lr_timeout == 0) { 3745 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3746 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3747 } 3748 elr->lr_next_sched = jiffies + elr->lr_timeout; 3749 elr->lr_next_group = group + 1; 3750 } 3751 return ret; 3752 } 3753 3754 /* 3755 * Remove lr_request from the list_request and free the 3756 * request structure. Should be called with li_list_mtx held 3757 */ 3758 static void ext4_remove_li_request(struct ext4_li_request *elr) 3759 { 3760 if (!elr) 3761 return; 3762 3763 list_del(&elr->lr_request); 3764 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3765 kfree(elr); 3766 } 3767 3768 static void ext4_unregister_li_request(struct super_block *sb) 3769 { 3770 mutex_lock(&ext4_li_mtx); 3771 if (!ext4_li_info) { 3772 mutex_unlock(&ext4_li_mtx); 3773 return; 3774 } 3775 3776 mutex_lock(&ext4_li_info->li_list_mtx); 3777 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3778 mutex_unlock(&ext4_li_info->li_list_mtx); 3779 mutex_unlock(&ext4_li_mtx); 3780 } 3781 3782 static struct task_struct *ext4_lazyinit_task; 3783 3784 /* 3785 * This is the function where ext4lazyinit thread lives. It walks 3786 * through the request list searching for next scheduled filesystem. 3787 * When such a fs is found, run the lazy initialization request 3788 * (ext4_rn_li_request) and keep track of the time spend in this 3789 * function. Based on that time we compute next schedule time of 3790 * the request. When walking through the list is complete, compute 3791 * next waking time and put itself into sleep. 3792 */ 3793 static int ext4_lazyinit_thread(void *arg) 3794 { 3795 struct ext4_lazy_init *eli = arg; 3796 struct list_head *pos, *n; 3797 struct ext4_li_request *elr; 3798 unsigned long next_wakeup, cur; 3799 3800 BUG_ON(NULL == eli); 3801 set_freezable(); 3802 3803 cont_thread: 3804 while (true) { 3805 next_wakeup = MAX_JIFFY_OFFSET; 3806 3807 mutex_lock(&eli->li_list_mtx); 3808 if (list_empty(&eli->li_request_list)) { 3809 mutex_unlock(&eli->li_list_mtx); 3810 goto exit_thread; 3811 } 3812 list_for_each_safe(pos, n, &eli->li_request_list) { 3813 int err = 0; 3814 int progress = 0; 3815 elr = list_entry(pos, struct ext4_li_request, 3816 lr_request); 3817 3818 if (time_before(jiffies, elr->lr_next_sched)) { 3819 if (time_before(elr->lr_next_sched, next_wakeup)) 3820 next_wakeup = elr->lr_next_sched; 3821 continue; 3822 } 3823 if (down_read_trylock(&elr->lr_super->s_umount)) { 3824 if (sb_start_write_trylock(elr->lr_super)) { 3825 progress = 1; 3826 /* 3827 * We hold sb->s_umount, sb can not 3828 * be removed from the list, it is 3829 * now safe to drop li_list_mtx 3830 */ 3831 mutex_unlock(&eli->li_list_mtx); 3832 err = ext4_run_li_request(elr); 3833 sb_end_write(elr->lr_super); 3834 mutex_lock(&eli->li_list_mtx); 3835 n = pos->next; 3836 } 3837 up_read((&elr->lr_super->s_umount)); 3838 } 3839 /* error, remove the lazy_init job */ 3840 if (err) { 3841 ext4_remove_li_request(elr); 3842 continue; 3843 } 3844 if (!progress) { 3845 elr->lr_next_sched = jiffies + 3846 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3847 } 3848 if (time_before(elr->lr_next_sched, next_wakeup)) 3849 next_wakeup = elr->lr_next_sched; 3850 } 3851 mutex_unlock(&eli->li_list_mtx); 3852 3853 try_to_freeze(); 3854 3855 cur = jiffies; 3856 if ((time_after_eq(cur, next_wakeup)) || 3857 (MAX_JIFFY_OFFSET == next_wakeup)) { 3858 cond_resched(); 3859 continue; 3860 } 3861 3862 schedule_timeout_interruptible(next_wakeup - cur); 3863 3864 if (kthread_should_stop()) { 3865 ext4_clear_request_list(); 3866 goto exit_thread; 3867 } 3868 } 3869 3870 exit_thread: 3871 /* 3872 * It looks like the request list is empty, but we need 3873 * to check it under the li_list_mtx lock, to prevent any 3874 * additions into it, and of course we should lock ext4_li_mtx 3875 * to atomically free the list and ext4_li_info, because at 3876 * this point another ext4 filesystem could be registering 3877 * new one. 3878 */ 3879 mutex_lock(&ext4_li_mtx); 3880 mutex_lock(&eli->li_list_mtx); 3881 if (!list_empty(&eli->li_request_list)) { 3882 mutex_unlock(&eli->li_list_mtx); 3883 mutex_unlock(&ext4_li_mtx); 3884 goto cont_thread; 3885 } 3886 mutex_unlock(&eli->li_list_mtx); 3887 kfree(ext4_li_info); 3888 ext4_li_info = NULL; 3889 mutex_unlock(&ext4_li_mtx); 3890 3891 return 0; 3892 } 3893 3894 static void ext4_clear_request_list(void) 3895 { 3896 struct list_head *pos, *n; 3897 struct ext4_li_request *elr; 3898 3899 mutex_lock(&ext4_li_info->li_list_mtx); 3900 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3901 elr = list_entry(pos, struct ext4_li_request, 3902 lr_request); 3903 ext4_remove_li_request(elr); 3904 } 3905 mutex_unlock(&ext4_li_info->li_list_mtx); 3906 } 3907 3908 static int ext4_run_lazyinit_thread(void) 3909 { 3910 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3911 ext4_li_info, "ext4lazyinit"); 3912 if (IS_ERR(ext4_lazyinit_task)) { 3913 int err = PTR_ERR(ext4_lazyinit_task); 3914 ext4_clear_request_list(); 3915 kfree(ext4_li_info); 3916 ext4_li_info = NULL; 3917 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3918 "initialization thread\n", 3919 err); 3920 return err; 3921 } 3922 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3923 return 0; 3924 } 3925 3926 /* 3927 * Check whether it make sense to run itable init. thread or not. 3928 * If there is at least one uninitialized inode table, return 3929 * corresponding group number, else the loop goes through all 3930 * groups and return total number of groups. 3931 */ 3932 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3933 { 3934 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3935 struct ext4_group_desc *gdp = NULL; 3936 3937 if (!ext4_has_group_desc_csum(sb)) 3938 return ngroups; 3939 3940 for (group = 0; group < ngroups; group++) { 3941 gdp = ext4_get_group_desc(sb, group, NULL); 3942 if (!gdp) 3943 continue; 3944 3945 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3946 break; 3947 } 3948 3949 return group; 3950 } 3951 3952 static int ext4_li_info_new(void) 3953 { 3954 struct ext4_lazy_init *eli = NULL; 3955 3956 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3957 if (!eli) 3958 return -ENOMEM; 3959 3960 INIT_LIST_HEAD(&eli->li_request_list); 3961 mutex_init(&eli->li_list_mtx); 3962 3963 eli->li_state |= EXT4_LAZYINIT_QUIT; 3964 3965 ext4_li_info = eli; 3966 3967 return 0; 3968 } 3969 3970 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3971 ext4_group_t start) 3972 { 3973 struct ext4_li_request *elr; 3974 3975 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3976 if (!elr) 3977 return NULL; 3978 3979 elr->lr_super = sb; 3980 elr->lr_first_not_zeroed = start; 3981 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3982 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3983 elr->lr_next_group = start; 3984 } else { 3985 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3986 } 3987 3988 /* 3989 * Randomize first schedule time of the request to 3990 * spread the inode table initialization requests 3991 * better. 3992 */ 3993 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3994 return elr; 3995 } 3996 3997 int ext4_register_li_request(struct super_block *sb, 3998 ext4_group_t first_not_zeroed) 3999 { 4000 struct ext4_sb_info *sbi = EXT4_SB(sb); 4001 struct ext4_li_request *elr = NULL; 4002 ext4_group_t ngroups = sbi->s_groups_count; 4003 int ret = 0; 4004 4005 mutex_lock(&ext4_li_mtx); 4006 if (sbi->s_li_request != NULL) { 4007 /* 4008 * Reset timeout so it can be computed again, because 4009 * s_li_wait_mult might have changed. 4010 */ 4011 sbi->s_li_request->lr_timeout = 0; 4012 goto out; 4013 } 4014 4015 if (sb_rdonly(sb) || 4016 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 4017 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 4018 goto out; 4019 4020 elr = ext4_li_request_new(sb, first_not_zeroed); 4021 if (!elr) { 4022 ret = -ENOMEM; 4023 goto out; 4024 } 4025 4026 if (NULL == ext4_li_info) { 4027 ret = ext4_li_info_new(); 4028 if (ret) 4029 goto out; 4030 } 4031 4032 mutex_lock(&ext4_li_info->li_list_mtx); 4033 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4034 mutex_unlock(&ext4_li_info->li_list_mtx); 4035 4036 sbi->s_li_request = elr; 4037 /* 4038 * set elr to NULL here since it has been inserted to 4039 * the request_list and the removal and free of it is 4040 * handled by ext4_clear_request_list from now on. 4041 */ 4042 elr = NULL; 4043 4044 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4045 ret = ext4_run_lazyinit_thread(); 4046 if (ret) 4047 goto out; 4048 } 4049 out: 4050 mutex_unlock(&ext4_li_mtx); 4051 if (ret) 4052 kfree(elr); 4053 return ret; 4054 } 4055 4056 /* 4057 * We do not need to lock anything since this is called on 4058 * module unload. 4059 */ 4060 static void ext4_destroy_lazyinit_thread(void) 4061 { 4062 /* 4063 * If thread exited earlier 4064 * there's nothing to be done. 4065 */ 4066 if (!ext4_li_info || !ext4_lazyinit_task) 4067 return; 4068 4069 kthread_stop(ext4_lazyinit_task); 4070 } 4071 4072 static int set_journal_csum_feature_set(struct super_block *sb) 4073 { 4074 int ret = 1; 4075 int compat, incompat; 4076 struct ext4_sb_info *sbi = EXT4_SB(sb); 4077 4078 if (ext4_has_metadata_csum(sb)) { 4079 /* journal checksum v3 */ 4080 compat = 0; 4081 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4082 } else { 4083 /* journal checksum v1 */ 4084 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4085 incompat = 0; 4086 } 4087 4088 jbd2_journal_clear_features(sbi->s_journal, 4089 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4090 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4091 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4092 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4093 ret = jbd2_journal_set_features(sbi->s_journal, 4094 compat, 0, 4095 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4096 incompat); 4097 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4098 ret = jbd2_journal_set_features(sbi->s_journal, 4099 compat, 0, 4100 incompat); 4101 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4102 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4103 } else { 4104 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4105 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4106 } 4107 4108 return ret; 4109 } 4110 4111 /* 4112 * Note: calculating the overhead so we can be compatible with 4113 * historical BSD practice is quite difficult in the face of 4114 * clusters/bigalloc. This is because multiple metadata blocks from 4115 * different block group can end up in the same allocation cluster. 4116 * Calculating the exact overhead in the face of clustered allocation 4117 * requires either O(all block bitmaps) in memory or O(number of block 4118 * groups**2) in time. We will still calculate the superblock for 4119 * older file systems --- and if we come across with a bigalloc file 4120 * system with zero in s_overhead_clusters the estimate will be close to 4121 * correct especially for very large cluster sizes --- but for newer 4122 * file systems, it's better to calculate this figure once at mkfs 4123 * time, and store it in the superblock. If the superblock value is 4124 * present (even for non-bigalloc file systems), we will use it. 4125 */ 4126 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4127 char *buf) 4128 { 4129 struct ext4_sb_info *sbi = EXT4_SB(sb); 4130 struct ext4_group_desc *gdp; 4131 ext4_fsblk_t first_block, last_block, b; 4132 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4133 int s, j, count = 0; 4134 int has_super = ext4_bg_has_super(sb, grp); 4135 4136 if (!ext4_has_feature_bigalloc(sb)) 4137 return (has_super + ext4_bg_num_gdb(sb, grp) + 4138 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4139 sbi->s_itb_per_group + 2); 4140 4141 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4142 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4143 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4144 for (i = 0; i < ngroups; i++) { 4145 gdp = ext4_get_group_desc(sb, i, NULL); 4146 b = ext4_block_bitmap(sb, gdp); 4147 if (b >= first_block && b <= last_block) { 4148 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4149 count++; 4150 } 4151 b = ext4_inode_bitmap(sb, gdp); 4152 if (b >= first_block && b <= last_block) { 4153 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4154 count++; 4155 } 4156 b = ext4_inode_table(sb, gdp); 4157 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4158 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4159 int c = EXT4_B2C(sbi, b - first_block); 4160 ext4_set_bit(c, buf); 4161 count++; 4162 } 4163 if (i != grp) 4164 continue; 4165 s = 0; 4166 if (ext4_bg_has_super(sb, grp)) { 4167 ext4_set_bit(s++, buf); 4168 count++; 4169 } 4170 j = ext4_bg_num_gdb(sb, grp); 4171 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4172 ext4_error(sb, "Invalid number of block group " 4173 "descriptor blocks: %d", j); 4174 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4175 } 4176 count += j; 4177 for (; j > 0; j--) 4178 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4179 } 4180 if (!count) 4181 return 0; 4182 return EXT4_CLUSTERS_PER_GROUP(sb) - 4183 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4184 } 4185 4186 /* 4187 * Compute the overhead and stash it in sbi->s_overhead 4188 */ 4189 int ext4_calculate_overhead(struct super_block *sb) 4190 { 4191 struct ext4_sb_info *sbi = EXT4_SB(sb); 4192 struct ext4_super_block *es = sbi->s_es; 4193 struct inode *j_inode; 4194 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4195 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4196 ext4_fsblk_t overhead = 0; 4197 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4198 4199 if (!buf) 4200 return -ENOMEM; 4201 4202 /* 4203 * Compute the overhead (FS structures). This is constant 4204 * for a given filesystem unless the number of block groups 4205 * changes so we cache the previous value until it does. 4206 */ 4207 4208 /* 4209 * All of the blocks before first_data_block are overhead 4210 */ 4211 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4212 4213 /* 4214 * Add the overhead found in each block group 4215 */ 4216 for (i = 0; i < ngroups; i++) { 4217 int blks; 4218 4219 blks = count_overhead(sb, i, buf); 4220 overhead += blks; 4221 if (blks) 4222 memset(buf, 0, PAGE_SIZE); 4223 cond_resched(); 4224 } 4225 4226 /* 4227 * Add the internal journal blocks whether the journal has been 4228 * loaded or not 4229 */ 4230 if (sbi->s_journal && !sbi->s_journal_bdev) 4231 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4232 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4233 /* j_inum for internal journal is non-zero */ 4234 j_inode = ext4_get_journal_inode(sb, j_inum); 4235 if (j_inode) { 4236 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4237 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4238 iput(j_inode); 4239 } else { 4240 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4241 } 4242 } 4243 sbi->s_overhead = overhead; 4244 smp_wmb(); 4245 free_page((unsigned long) buf); 4246 return 0; 4247 } 4248 4249 static void ext4_set_resv_clusters(struct super_block *sb) 4250 { 4251 ext4_fsblk_t resv_clusters; 4252 struct ext4_sb_info *sbi = EXT4_SB(sb); 4253 4254 /* 4255 * There's no need to reserve anything when we aren't using extents. 4256 * The space estimates are exact, there are no unwritten extents, 4257 * hole punching doesn't need new metadata... This is needed especially 4258 * to keep ext2/3 backward compatibility. 4259 */ 4260 if (!ext4_has_feature_extents(sb)) 4261 return; 4262 /* 4263 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4264 * This should cover the situations where we can not afford to run 4265 * out of space like for example punch hole, or converting 4266 * unwritten extents in delalloc path. In most cases such 4267 * allocation would require 1, or 2 blocks, higher numbers are 4268 * very rare. 4269 */ 4270 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4271 sbi->s_cluster_bits); 4272 4273 do_div(resv_clusters, 50); 4274 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4275 4276 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4277 } 4278 4279 static const char *ext4_quota_mode(struct super_block *sb) 4280 { 4281 #ifdef CONFIG_QUOTA 4282 if (!ext4_quota_capable(sb)) 4283 return "none"; 4284 4285 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4286 return "journalled"; 4287 else 4288 return "writeback"; 4289 #else 4290 return "disabled"; 4291 #endif 4292 } 4293 4294 static void ext4_setup_csum_trigger(struct super_block *sb, 4295 enum ext4_journal_trigger_type type, 4296 void (*trigger)( 4297 struct jbd2_buffer_trigger_type *type, 4298 struct buffer_head *bh, 4299 void *mapped_data, 4300 size_t size)) 4301 { 4302 struct ext4_sb_info *sbi = EXT4_SB(sb); 4303 4304 sbi->s_journal_triggers[type].sb = sb; 4305 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4306 } 4307 4308 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4309 { 4310 if (!sbi) 4311 return; 4312 4313 kfree(sbi->s_blockgroup_lock); 4314 fs_put_dax(sbi->s_daxdev, NULL); 4315 kfree(sbi); 4316 } 4317 4318 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4319 { 4320 struct ext4_sb_info *sbi; 4321 4322 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4323 if (!sbi) 4324 return NULL; 4325 4326 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4327 NULL, NULL); 4328 4329 sbi->s_blockgroup_lock = 4330 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4331 4332 if (!sbi->s_blockgroup_lock) 4333 goto err_out; 4334 4335 sb->s_fs_info = sbi; 4336 sbi->s_sb = sb; 4337 return sbi; 4338 err_out: 4339 fs_put_dax(sbi->s_daxdev, NULL); 4340 kfree(sbi); 4341 return NULL; 4342 } 4343 4344 static void ext4_set_def_opts(struct super_block *sb, 4345 struct ext4_super_block *es) 4346 { 4347 unsigned long def_mount_opts; 4348 4349 /* Set defaults before we parse the mount options */ 4350 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4351 set_opt(sb, INIT_INODE_TABLE); 4352 if (def_mount_opts & EXT4_DEFM_DEBUG) 4353 set_opt(sb, DEBUG); 4354 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4355 set_opt(sb, GRPID); 4356 if (def_mount_opts & EXT4_DEFM_UID16) 4357 set_opt(sb, NO_UID32); 4358 /* xattr user namespace & acls are now defaulted on */ 4359 set_opt(sb, XATTR_USER); 4360 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4361 set_opt(sb, POSIX_ACL); 4362 #endif 4363 if (ext4_has_feature_fast_commit(sb)) 4364 set_opt2(sb, JOURNAL_FAST_COMMIT); 4365 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4366 if (ext4_has_metadata_csum(sb)) 4367 set_opt(sb, JOURNAL_CHECKSUM); 4368 4369 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4370 set_opt(sb, JOURNAL_DATA); 4371 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4372 set_opt(sb, ORDERED_DATA); 4373 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4374 set_opt(sb, WRITEBACK_DATA); 4375 4376 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4377 set_opt(sb, ERRORS_PANIC); 4378 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4379 set_opt(sb, ERRORS_CONT); 4380 else 4381 set_opt(sb, ERRORS_RO); 4382 /* block_validity enabled by default; disable with noblock_validity */ 4383 set_opt(sb, BLOCK_VALIDITY); 4384 if (def_mount_opts & EXT4_DEFM_DISCARD) 4385 set_opt(sb, DISCARD); 4386 4387 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4388 set_opt(sb, BARRIER); 4389 4390 /* 4391 * enable delayed allocation by default 4392 * Use -o nodelalloc to turn it off 4393 */ 4394 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4395 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4396 set_opt(sb, DELALLOC); 4397 4398 if (sb->s_blocksize == PAGE_SIZE) 4399 set_opt(sb, DIOREAD_NOLOCK); 4400 } 4401 4402 static int ext4_handle_clustersize(struct super_block *sb) 4403 { 4404 struct ext4_sb_info *sbi = EXT4_SB(sb); 4405 struct ext4_super_block *es = sbi->s_es; 4406 int clustersize; 4407 4408 /* Handle clustersize */ 4409 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4410 if (ext4_has_feature_bigalloc(sb)) { 4411 if (clustersize < sb->s_blocksize) { 4412 ext4_msg(sb, KERN_ERR, 4413 "cluster size (%d) smaller than " 4414 "block size (%lu)", clustersize, sb->s_blocksize); 4415 return -EINVAL; 4416 } 4417 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4418 le32_to_cpu(es->s_log_block_size); 4419 sbi->s_clusters_per_group = 4420 le32_to_cpu(es->s_clusters_per_group); 4421 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4422 ext4_msg(sb, KERN_ERR, 4423 "#clusters per group too big: %lu", 4424 sbi->s_clusters_per_group); 4425 return -EINVAL; 4426 } 4427 if (sbi->s_blocks_per_group != 4428 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4429 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4430 "clusters per group (%lu) inconsistent", 4431 sbi->s_blocks_per_group, 4432 sbi->s_clusters_per_group); 4433 return -EINVAL; 4434 } 4435 } else { 4436 if (clustersize != sb->s_blocksize) { 4437 ext4_msg(sb, KERN_ERR, 4438 "fragment/cluster size (%d) != " 4439 "block size (%lu)", clustersize, sb->s_blocksize); 4440 return -EINVAL; 4441 } 4442 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4443 ext4_msg(sb, KERN_ERR, 4444 "#blocks per group too big: %lu", 4445 sbi->s_blocks_per_group); 4446 return -EINVAL; 4447 } 4448 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4449 sbi->s_cluster_bits = 0; 4450 } 4451 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4452 4453 /* Do we have standard group size of clustersize * 8 blocks ? */ 4454 if (sbi->s_blocks_per_group == clustersize << 3) 4455 set_opt2(sb, STD_GROUP_SIZE); 4456 4457 return 0; 4458 } 4459 4460 static void ext4_fast_commit_init(struct super_block *sb) 4461 { 4462 struct ext4_sb_info *sbi = EXT4_SB(sb); 4463 4464 /* Initialize fast commit stuff */ 4465 atomic_set(&sbi->s_fc_subtid, 0); 4466 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4467 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4468 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4469 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4470 sbi->s_fc_bytes = 0; 4471 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4472 sbi->s_fc_ineligible_tid = 0; 4473 spin_lock_init(&sbi->s_fc_lock); 4474 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4475 sbi->s_fc_replay_state.fc_regions = NULL; 4476 sbi->s_fc_replay_state.fc_regions_size = 0; 4477 sbi->s_fc_replay_state.fc_regions_used = 0; 4478 sbi->s_fc_replay_state.fc_regions_valid = 0; 4479 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4480 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4481 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4482 } 4483 4484 static int ext4_inode_info_init(struct super_block *sb, 4485 struct ext4_super_block *es) 4486 { 4487 struct ext4_sb_info *sbi = EXT4_SB(sb); 4488 4489 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4490 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4491 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4492 } else { 4493 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4494 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4495 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4496 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4497 sbi->s_first_ino); 4498 return -EINVAL; 4499 } 4500 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4501 (!is_power_of_2(sbi->s_inode_size)) || 4502 (sbi->s_inode_size > sb->s_blocksize)) { 4503 ext4_msg(sb, KERN_ERR, 4504 "unsupported inode size: %d", 4505 sbi->s_inode_size); 4506 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4507 return -EINVAL; 4508 } 4509 /* 4510 * i_atime_extra is the last extra field available for 4511 * [acm]times in struct ext4_inode. Checking for that 4512 * field should suffice to ensure we have extra space 4513 * for all three. 4514 */ 4515 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4516 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4517 sb->s_time_gran = 1; 4518 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4519 } else { 4520 sb->s_time_gran = NSEC_PER_SEC; 4521 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4522 } 4523 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4524 } 4525 4526 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4527 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4528 EXT4_GOOD_OLD_INODE_SIZE; 4529 if (ext4_has_feature_extra_isize(sb)) { 4530 unsigned v, max = (sbi->s_inode_size - 4531 EXT4_GOOD_OLD_INODE_SIZE); 4532 4533 v = le16_to_cpu(es->s_want_extra_isize); 4534 if (v > max) { 4535 ext4_msg(sb, KERN_ERR, 4536 "bad s_want_extra_isize: %d", v); 4537 return -EINVAL; 4538 } 4539 if (sbi->s_want_extra_isize < v) 4540 sbi->s_want_extra_isize = v; 4541 4542 v = le16_to_cpu(es->s_min_extra_isize); 4543 if (v > max) { 4544 ext4_msg(sb, KERN_ERR, 4545 "bad s_min_extra_isize: %d", v); 4546 return -EINVAL; 4547 } 4548 if (sbi->s_want_extra_isize < v) 4549 sbi->s_want_extra_isize = v; 4550 } 4551 } 4552 4553 return 0; 4554 } 4555 4556 #if IS_ENABLED(CONFIG_UNICODE) 4557 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4558 { 4559 const struct ext4_sb_encodings *encoding_info; 4560 struct unicode_map *encoding; 4561 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4562 4563 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4564 return 0; 4565 4566 encoding_info = ext4_sb_read_encoding(es); 4567 if (!encoding_info) { 4568 ext4_msg(sb, KERN_ERR, 4569 "Encoding requested by superblock is unknown"); 4570 return -EINVAL; 4571 } 4572 4573 encoding = utf8_load(encoding_info->version); 4574 if (IS_ERR(encoding)) { 4575 ext4_msg(sb, KERN_ERR, 4576 "can't mount with superblock charset: %s-%u.%u.%u " 4577 "not supported by the kernel. flags: 0x%x.", 4578 encoding_info->name, 4579 unicode_major(encoding_info->version), 4580 unicode_minor(encoding_info->version), 4581 unicode_rev(encoding_info->version), 4582 encoding_flags); 4583 return -EINVAL; 4584 } 4585 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4586 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4587 unicode_major(encoding_info->version), 4588 unicode_minor(encoding_info->version), 4589 unicode_rev(encoding_info->version), 4590 encoding_flags); 4591 4592 sb->s_encoding = encoding; 4593 sb->s_encoding_flags = encoding_flags; 4594 4595 return 0; 4596 } 4597 #else 4598 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4599 { 4600 return 0; 4601 } 4602 #endif 4603 4604 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4605 { 4606 struct ext4_sb_info *sbi = EXT4_SB(sb); 4607 4608 /* Warn if metadata_csum and gdt_csum are both set. */ 4609 if (ext4_has_feature_metadata_csum(sb) && 4610 ext4_has_feature_gdt_csum(sb)) 4611 ext4_warning(sb, "metadata_csum and uninit_bg are " 4612 "redundant flags; please run fsck."); 4613 4614 /* Check for a known checksum algorithm */ 4615 if (!ext4_verify_csum_type(sb, es)) { 4616 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4617 "unknown checksum algorithm."); 4618 return -EINVAL; 4619 } 4620 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4621 ext4_orphan_file_block_trigger); 4622 4623 /* Load the checksum driver */ 4624 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4625 if (IS_ERR(sbi->s_chksum_driver)) { 4626 int ret = PTR_ERR(sbi->s_chksum_driver); 4627 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4628 sbi->s_chksum_driver = NULL; 4629 return ret; 4630 } 4631 4632 /* Check superblock checksum */ 4633 if (!ext4_superblock_csum_verify(sb, es)) { 4634 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4635 "invalid superblock checksum. Run e2fsck?"); 4636 return -EFSBADCRC; 4637 } 4638 4639 /* Precompute checksum seed for all metadata */ 4640 if (ext4_has_feature_csum_seed(sb)) 4641 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4642 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4643 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4644 sizeof(es->s_uuid)); 4645 return 0; 4646 } 4647 4648 static int ext4_check_feature_compatibility(struct super_block *sb, 4649 struct ext4_super_block *es, 4650 int silent) 4651 { 4652 struct ext4_sb_info *sbi = EXT4_SB(sb); 4653 4654 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4655 (ext4_has_compat_features(sb) || 4656 ext4_has_ro_compat_features(sb) || 4657 ext4_has_incompat_features(sb))) 4658 ext4_msg(sb, KERN_WARNING, 4659 "feature flags set on rev 0 fs, " 4660 "running e2fsck is recommended"); 4661 4662 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4663 set_opt2(sb, HURD_COMPAT); 4664 if (ext4_has_feature_64bit(sb)) { 4665 ext4_msg(sb, KERN_ERR, 4666 "The Hurd can't support 64-bit file systems"); 4667 return -EINVAL; 4668 } 4669 4670 /* 4671 * ea_inode feature uses l_i_version field which is not 4672 * available in HURD_COMPAT mode. 4673 */ 4674 if (ext4_has_feature_ea_inode(sb)) { 4675 ext4_msg(sb, KERN_ERR, 4676 "ea_inode feature is not supported for Hurd"); 4677 return -EINVAL; 4678 } 4679 } 4680 4681 if (IS_EXT2_SB(sb)) { 4682 if (ext2_feature_set_ok(sb)) 4683 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4684 "using the ext4 subsystem"); 4685 else { 4686 /* 4687 * If we're probing be silent, if this looks like 4688 * it's actually an ext[34] filesystem. 4689 */ 4690 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4691 return -EINVAL; 4692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4693 "to feature incompatibilities"); 4694 return -EINVAL; 4695 } 4696 } 4697 4698 if (IS_EXT3_SB(sb)) { 4699 if (ext3_feature_set_ok(sb)) 4700 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4701 "using the ext4 subsystem"); 4702 else { 4703 /* 4704 * If we're probing be silent, if this looks like 4705 * it's actually an ext4 filesystem. 4706 */ 4707 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4708 return -EINVAL; 4709 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4710 "to feature incompatibilities"); 4711 return -EINVAL; 4712 } 4713 } 4714 4715 /* 4716 * Check feature flags regardless of the revision level, since we 4717 * previously didn't change the revision level when setting the flags, 4718 * so there is a chance incompat flags are set on a rev 0 filesystem. 4719 */ 4720 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4721 return -EINVAL; 4722 4723 if (sbi->s_daxdev) { 4724 if (sb->s_blocksize == PAGE_SIZE) 4725 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4726 else 4727 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4728 } 4729 4730 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4731 if (ext4_has_feature_inline_data(sb)) { 4732 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4733 " that may contain inline data"); 4734 return -EINVAL; 4735 } 4736 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4737 ext4_msg(sb, KERN_ERR, 4738 "DAX unsupported by block device."); 4739 return -EINVAL; 4740 } 4741 } 4742 4743 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4744 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4745 es->s_encryption_level); 4746 return -EINVAL; 4747 } 4748 4749 return 0; 4750 } 4751 4752 static int ext4_check_geometry(struct super_block *sb, 4753 struct ext4_super_block *es) 4754 { 4755 struct ext4_sb_info *sbi = EXT4_SB(sb); 4756 __u64 blocks_count; 4757 int err; 4758 4759 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4760 ext4_msg(sb, KERN_ERR, 4761 "Number of reserved GDT blocks insanely large: %d", 4762 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4763 return -EINVAL; 4764 } 4765 /* 4766 * Test whether we have more sectors than will fit in sector_t, 4767 * and whether the max offset is addressable by the page cache. 4768 */ 4769 err = generic_check_addressable(sb->s_blocksize_bits, 4770 ext4_blocks_count(es)); 4771 if (err) { 4772 ext4_msg(sb, KERN_ERR, "filesystem" 4773 " too large to mount safely on this system"); 4774 return err; 4775 } 4776 4777 /* check blocks count against device size */ 4778 blocks_count = sb_bdev_nr_blocks(sb); 4779 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4780 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4781 "exceeds size of device (%llu blocks)", 4782 ext4_blocks_count(es), blocks_count); 4783 return -EINVAL; 4784 } 4785 4786 /* 4787 * It makes no sense for the first data block to be beyond the end 4788 * of the filesystem. 4789 */ 4790 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4791 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4792 "block %u is beyond end of filesystem (%llu)", 4793 le32_to_cpu(es->s_first_data_block), 4794 ext4_blocks_count(es)); 4795 return -EINVAL; 4796 } 4797 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4798 (sbi->s_cluster_ratio == 1)) { 4799 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4800 "block is 0 with a 1k block and cluster size"); 4801 return -EINVAL; 4802 } 4803 4804 blocks_count = (ext4_blocks_count(es) - 4805 le32_to_cpu(es->s_first_data_block) + 4806 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4807 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4808 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4809 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4810 "(block count %llu, first data block %u, " 4811 "blocks per group %lu)", blocks_count, 4812 ext4_blocks_count(es), 4813 le32_to_cpu(es->s_first_data_block), 4814 EXT4_BLOCKS_PER_GROUP(sb)); 4815 return -EINVAL; 4816 } 4817 sbi->s_groups_count = blocks_count; 4818 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4819 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4820 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4821 le32_to_cpu(es->s_inodes_count)) { 4822 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4823 le32_to_cpu(es->s_inodes_count), 4824 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4825 return -EINVAL; 4826 } 4827 4828 return 0; 4829 } 4830 4831 static int ext4_group_desc_init(struct super_block *sb, 4832 struct ext4_super_block *es, 4833 ext4_fsblk_t logical_sb_block, 4834 ext4_group_t *first_not_zeroed) 4835 { 4836 struct ext4_sb_info *sbi = EXT4_SB(sb); 4837 unsigned int db_count; 4838 ext4_fsblk_t block; 4839 int i; 4840 4841 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4842 EXT4_DESC_PER_BLOCK(sb); 4843 if (ext4_has_feature_meta_bg(sb)) { 4844 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4845 ext4_msg(sb, KERN_WARNING, 4846 "first meta block group too large: %u " 4847 "(group descriptor block count %u)", 4848 le32_to_cpu(es->s_first_meta_bg), db_count); 4849 return -EINVAL; 4850 } 4851 } 4852 rcu_assign_pointer(sbi->s_group_desc, 4853 kvmalloc_array(db_count, 4854 sizeof(struct buffer_head *), 4855 GFP_KERNEL)); 4856 if (sbi->s_group_desc == NULL) { 4857 ext4_msg(sb, KERN_ERR, "not enough memory"); 4858 return -ENOMEM; 4859 } 4860 4861 bgl_lock_init(sbi->s_blockgroup_lock); 4862 4863 /* Pre-read the descriptors into the buffer cache */ 4864 for (i = 0; i < db_count; i++) { 4865 block = descriptor_loc(sb, logical_sb_block, i); 4866 ext4_sb_breadahead_unmovable(sb, block); 4867 } 4868 4869 for (i = 0; i < db_count; i++) { 4870 struct buffer_head *bh; 4871 4872 block = descriptor_loc(sb, logical_sb_block, i); 4873 bh = ext4_sb_bread_unmovable(sb, block); 4874 if (IS_ERR(bh)) { 4875 ext4_msg(sb, KERN_ERR, 4876 "can't read group descriptor %d", i); 4877 sbi->s_gdb_count = i; 4878 return PTR_ERR(bh); 4879 } 4880 rcu_read_lock(); 4881 rcu_dereference(sbi->s_group_desc)[i] = bh; 4882 rcu_read_unlock(); 4883 } 4884 sbi->s_gdb_count = db_count; 4885 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4886 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4887 return -EFSCORRUPTED; 4888 } 4889 4890 return 0; 4891 } 4892 4893 static int ext4_load_and_init_journal(struct super_block *sb, 4894 struct ext4_super_block *es, 4895 struct ext4_fs_context *ctx) 4896 { 4897 struct ext4_sb_info *sbi = EXT4_SB(sb); 4898 int err; 4899 4900 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4901 if (err) 4902 return err; 4903 4904 if (ext4_has_feature_64bit(sb) && 4905 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4906 JBD2_FEATURE_INCOMPAT_64BIT)) { 4907 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4908 goto out; 4909 } 4910 4911 if (!set_journal_csum_feature_set(sb)) { 4912 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4913 "feature set"); 4914 goto out; 4915 } 4916 4917 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4918 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4919 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4920 ext4_msg(sb, KERN_ERR, 4921 "Failed to set fast commit journal feature"); 4922 goto out; 4923 } 4924 4925 /* We have now updated the journal if required, so we can 4926 * validate the data journaling mode. */ 4927 switch (test_opt(sb, DATA_FLAGS)) { 4928 case 0: 4929 /* No mode set, assume a default based on the journal 4930 * capabilities: ORDERED_DATA if the journal can 4931 * cope, else JOURNAL_DATA 4932 */ 4933 if (jbd2_journal_check_available_features 4934 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4935 set_opt(sb, ORDERED_DATA); 4936 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4937 } else { 4938 set_opt(sb, JOURNAL_DATA); 4939 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4940 } 4941 break; 4942 4943 case EXT4_MOUNT_ORDERED_DATA: 4944 case EXT4_MOUNT_WRITEBACK_DATA: 4945 if (!jbd2_journal_check_available_features 4946 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4947 ext4_msg(sb, KERN_ERR, "Journal does not support " 4948 "requested data journaling mode"); 4949 goto out; 4950 } 4951 break; 4952 default: 4953 break; 4954 } 4955 4956 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4957 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4958 ext4_msg(sb, KERN_ERR, "can't mount with " 4959 "journal_async_commit in data=ordered mode"); 4960 goto out; 4961 } 4962 4963 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4964 4965 sbi->s_journal->j_submit_inode_data_buffers = 4966 ext4_journal_submit_inode_data_buffers; 4967 sbi->s_journal->j_finish_inode_data_buffers = 4968 ext4_journal_finish_inode_data_buffers; 4969 4970 return 0; 4971 4972 out: 4973 /* flush s_error_work before journal destroy. */ 4974 flush_work(&sbi->s_error_work); 4975 jbd2_journal_destroy(sbi->s_journal); 4976 sbi->s_journal = NULL; 4977 return -EINVAL; 4978 } 4979 4980 static int ext4_check_journal_data_mode(struct super_block *sb) 4981 { 4982 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4983 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4984 "data=journal disables delayed allocation, " 4985 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4986 /* can't mount with both data=journal and dioread_nolock. */ 4987 clear_opt(sb, DIOREAD_NOLOCK); 4988 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4989 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4990 ext4_msg(sb, KERN_ERR, "can't mount with " 4991 "both data=journal and delalloc"); 4992 return -EINVAL; 4993 } 4994 if (test_opt(sb, DAX_ALWAYS)) { 4995 ext4_msg(sb, KERN_ERR, "can't mount with " 4996 "both data=journal and dax"); 4997 return -EINVAL; 4998 } 4999 if (ext4_has_feature_encrypt(sb)) { 5000 ext4_msg(sb, KERN_WARNING, 5001 "encrypted files will use data=ordered " 5002 "instead of data journaling mode"); 5003 } 5004 if (test_opt(sb, DELALLOC)) 5005 clear_opt(sb, DELALLOC); 5006 } else { 5007 sb->s_iflags |= SB_I_CGROUPWB; 5008 } 5009 5010 return 0; 5011 } 5012 5013 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 5014 int silent) 5015 { 5016 struct ext4_sb_info *sbi = EXT4_SB(sb); 5017 struct ext4_super_block *es; 5018 ext4_fsblk_t logical_sb_block; 5019 unsigned long offset = 0; 5020 struct buffer_head *bh; 5021 int ret = -EINVAL; 5022 int blocksize; 5023 5024 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 5025 if (!blocksize) { 5026 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 5027 return -EINVAL; 5028 } 5029 5030 /* 5031 * The ext4 superblock will not be buffer aligned for other than 1kB 5032 * block sizes. We need to calculate the offset from buffer start. 5033 */ 5034 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5035 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5036 offset = do_div(logical_sb_block, blocksize); 5037 } else { 5038 logical_sb_block = sbi->s_sb_block; 5039 } 5040 5041 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5042 if (IS_ERR(bh)) { 5043 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5044 return PTR_ERR(bh); 5045 } 5046 /* 5047 * Note: s_es must be initialized as soon as possible because 5048 * some ext4 macro-instructions depend on its value 5049 */ 5050 es = (struct ext4_super_block *) (bh->b_data + offset); 5051 sbi->s_es = es; 5052 sb->s_magic = le16_to_cpu(es->s_magic); 5053 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5054 if (!silent) 5055 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5056 goto out; 5057 } 5058 5059 if (le32_to_cpu(es->s_log_block_size) > 5060 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5061 ext4_msg(sb, KERN_ERR, 5062 "Invalid log block size: %u", 5063 le32_to_cpu(es->s_log_block_size)); 5064 goto out; 5065 } 5066 if (le32_to_cpu(es->s_log_cluster_size) > 5067 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5068 ext4_msg(sb, KERN_ERR, 5069 "Invalid log cluster size: %u", 5070 le32_to_cpu(es->s_log_cluster_size)); 5071 goto out; 5072 } 5073 5074 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5075 5076 /* 5077 * If the default block size is not the same as the real block size, 5078 * we need to reload it. 5079 */ 5080 if (sb->s_blocksize == blocksize) { 5081 *lsb = logical_sb_block; 5082 sbi->s_sbh = bh; 5083 return 0; 5084 } 5085 5086 /* 5087 * bh must be released before kill_bdev(), otherwise 5088 * it won't be freed and its page also. kill_bdev() 5089 * is called by sb_set_blocksize(). 5090 */ 5091 brelse(bh); 5092 /* Validate the filesystem blocksize */ 5093 if (!sb_set_blocksize(sb, blocksize)) { 5094 ext4_msg(sb, KERN_ERR, "bad block size %d", 5095 blocksize); 5096 bh = NULL; 5097 goto out; 5098 } 5099 5100 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5101 offset = do_div(logical_sb_block, blocksize); 5102 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5103 if (IS_ERR(bh)) { 5104 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5105 ret = PTR_ERR(bh); 5106 bh = NULL; 5107 goto out; 5108 } 5109 es = (struct ext4_super_block *)(bh->b_data + offset); 5110 sbi->s_es = es; 5111 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5112 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5113 goto out; 5114 } 5115 *lsb = logical_sb_block; 5116 sbi->s_sbh = bh; 5117 return 0; 5118 out: 5119 brelse(bh); 5120 return ret; 5121 } 5122 5123 static void ext4_hash_info_init(struct super_block *sb) 5124 { 5125 struct ext4_sb_info *sbi = EXT4_SB(sb); 5126 struct ext4_super_block *es = sbi->s_es; 5127 unsigned int i; 5128 5129 for (i = 0; i < 4; i++) 5130 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5131 5132 sbi->s_def_hash_version = es->s_def_hash_version; 5133 if (ext4_has_feature_dir_index(sb)) { 5134 i = le32_to_cpu(es->s_flags); 5135 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5136 sbi->s_hash_unsigned = 3; 5137 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5138 #ifdef __CHAR_UNSIGNED__ 5139 if (!sb_rdonly(sb)) 5140 es->s_flags |= 5141 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5142 sbi->s_hash_unsigned = 3; 5143 #else 5144 if (!sb_rdonly(sb)) 5145 es->s_flags |= 5146 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5147 #endif 5148 } 5149 } 5150 } 5151 5152 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5153 { 5154 struct ext4_sb_info *sbi = EXT4_SB(sb); 5155 struct ext4_super_block *es = sbi->s_es; 5156 int has_huge_files; 5157 5158 has_huge_files = ext4_has_feature_huge_file(sb); 5159 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5160 has_huge_files); 5161 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5162 5163 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5164 if (ext4_has_feature_64bit(sb)) { 5165 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5166 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5167 !is_power_of_2(sbi->s_desc_size)) { 5168 ext4_msg(sb, KERN_ERR, 5169 "unsupported descriptor size %lu", 5170 sbi->s_desc_size); 5171 return -EINVAL; 5172 } 5173 } else 5174 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5175 5176 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5177 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5178 5179 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5180 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5181 if (!silent) 5182 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5183 return -EINVAL; 5184 } 5185 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5186 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5187 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5188 sbi->s_inodes_per_group); 5189 return -EINVAL; 5190 } 5191 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5192 sbi->s_inodes_per_block; 5193 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5194 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5195 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5196 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5197 5198 return 0; 5199 } 5200 5201 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5202 { 5203 struct ext4_super_block *es = NULL; 5204 struct ext4_sb_info *sbi = EXT4_SB(sb); 5205 ext4_fsblk_t logical_sb_block; 5206 struct inode *root; 5207 int needs_recovery; 5208 int err; 5209 ext4_group_t first_not_zeroed; 5210 struct ext4_fs_context *ctx = fc->fs_private; 5211 int silent = fc->sb_flags & SB_SILENT; 5212 5213 /* Set defaults for the variables that will be set during parsing */ 5214 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5215 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5216 5217 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5218 sbi->s_sectors_written_start = 5219 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5220 5221 err = ext4_load_super(sb, &logical_sb_block, silent); 5222 if (err) 5223 goto out_fail; 5224 5225 es = sbi->s_es; 5226 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5227 5228 err = ext4_init_metadata_csum(sb, es); 5229 if (err) 5230 goto failed_mount; 5231 5232 ext4_set_def_opts(sb, es); 5233 5234 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5235 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5236 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5237 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5238 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5239 5240 /* 5241 * set default s_li_wait_mult for lazyinit, for the case there is 5242 * no mount option specified. 5243 */ 5244 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5245 5246 err = ext4_inode_info_init(sb, es); 5247 if (err) 5248 goto failed_mount; 5249 5250 err = parse_apply_sb_mount_options(sb, ctx); 5251 if (err < 0) 5252 goto failed_mount; 5253 5254 sbi->s_def_mount_opt = sbi->s_mount_opt; 5255 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5256 5257 err = ext4_check_opt_consistency(fc, sb); 5258 if (err < 0) 5259 goto failed_mount; 5260 5261 ext4_apply_options(fc, sb); 5262 5263 err = ext4_encoding_init(sb, es); 5264 if (err) 5265 goto failed_mount; 5266 5267 err = ext4_check_journal_data_mode(sb); 5268 if (err) 5269 goto failed_mount; 5270 5271 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5272 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5273 5274 /* i_version is always enabled now */ 5275 sb->s_flags |= SB_I_VERSION; 5276 5277 err = ext4_check_feature_compatibility(sb, es, silent); 5278 if (err) 5279 goto failed_mount; 5280 5281 err = ext4_block_group_meta_init(sb, silent); 5282 if (err) 5283 goto failed_mount; 5284 5285 ext4_hash_info_init(sb); 5286 5287 err = ext4_handle_clustersize(sb); 5288 if (err) 5289 goto failed_mount; 5290 5291 err = ext4_check_geometry(sb, es); 5292 if (err) 5293 goto failed_mount; 5294 5295 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5296 spin_lock_init(&sbi->s_error_lock); 5297 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5298 5299 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5300 if (err) 5301 goto failed_mount3; 5302 5303 err = ext4_es_register_shrinker(sbi); 5304 if (err) 5305 goto failed_mount3; 5306 5307 sbi->s_stripe = ext4_get_stripe_size(sbi); 5308 /* 5309 * It's hard to get stripe aligned blocks if stripe is not aligned with 5310 * cluster, just disable stripe and alert user to simpfy code and avoid 5311 * stripe aligned allocation which will rarely successes. 5312 */ 5313 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 && 5314 sbi->s_stripe % sbi->s_cluster_ratio != 0) { 5315 ext4_msg(sb, KERN_WARNING, 5316 "stripe (%lu) is not aligned with cluster size (%u), " 5317 "stripe is disabled", 5318 sbi->s_stripe, sbi->s_cluster_ratio); 5319 sbi->s_stripe = 0; 5320 } 5321 sbi->s_extent_max_zeroout_kb = 32; 5322 5323 /* 5324 * set up enough so that it can read an inode 5325 */ 5326 sb->s_op = &ext4_sops; 5327 sb->s_export_op = &ext4_export_ops; 5328 sb->s_xattr = ext4_xattr_handlers; 5329 #ifdef CONFIG_FS_ENCRYPTION 5330 sb->s_cop = &ext4_cryptops; 5331 #endif 5332 #ifdef CONFIG_FS_VERITY 5333 sb->s_vop = &ext4_verityops; 5334 #endif 5335 #ifdef CONFIG_QUOTA 5336 sb->dq_op = &ext4_quota_operations; 5337 if (ext4_has_feature_quota(sb)) 5338 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5339 else 5340 sb->s_qcop = &ext4_qctl_operations; 5341 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5342 #endif 5343 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5344 5345 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5346 mutex_init(&sbi->s_orphan_lock); 5347 5348 ext4_fast_commit_init(sb); 5349 5350 sb->s_root = NULL; 5351 5352 needs_recovery = (es->s_last_orphan != 0 || 5353 ext4_has_feature_orphan_present(sb) || 5354 ext4_has_feature_journal_needs_recovery(sb)); 5355 5356 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5357 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5358 if (err) 5359 goto failed_mount3a; 5360 } 5361 5362 err = -EINVAL; 5363 /* 5364 * The first inode we look at is the journal inode. Don't try 5365 * root first: it may be modified in the journal! 5366 */ 5367 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5368 err = ext4_load_and_init_journal(sb, es, ctx); 5369 if (err) 5370 goto failed_mount3a; 5371 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5372 ext4_has_feature_journal_needs_recovery(sb)) { 5373 ext4_msg(sb, KERN_ERR, "required journal recovery " 5374 "suppressed and not mounted read-only"); 5375 goto failed_mount3a; 5376 } else { 5377 /* Nojournal mode, all journal mount options are illegal */ 5378 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5379 ext4_msg(sb, KERN_ERR, "can't mount with " 5380 "journal_async_commit, fs mounted w/o journal"); 5381 goto failed_mount3a; 5382 } 5383 5384 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5385 ext4_msg(sb, KERN_ERR, "can't mount with " 5386 "journal_checksum, fs mounted w/o journal"); 5387 goto failed_mount3a; 5388 } 5389 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5390 ext4_msg(sb, KERN_ERR, "can't mount with " 5391 "commit=%lu, fs mounted w/o journal", 5392 sbi->s_commit_interval / HZ); 5393 goto failed_mount3a; 5394 } 5395 if (EXT4_MOUNT_DATA_FLAGS & 5396 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5397 ext4_msg(sb, KERN_ERR, "can't mount with " 5398 "data=, fs mounted w/o journal"); 5399 goto failed_mount3a; 5400 } 5401 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5402 clear_opt(sb, JOURNAL_CHECKSUM); 5403 clear_opt(sb, DATA_FLAGS); 5404 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5405 sbi->s_journal = NULL; 5406 needs_recovery = 0; 5407 } 5408 5409 if (!test_opt(sb, NO_MBCACHE)) { 5410 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5411 if (!sbi->s_ea_block_cache) { 5412 ext4_msg(sb, KERN_ERR, 5413 "Failed to create ea_block_cache"); 5414 err = -EINVAL; 5415 goto failed_mount_wq; 5416 } 5417 5418 if (ext4_has_feature_ea_inode(sb)) { 5419 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5420 if (!sbi->s_ea_inode_cache) { 5421 ext4_msg(sb, KERN_ERR, 5422 "Failed to create ea_inode_cache"); 5423 err = -EINVAL; 5424 goto failed_mount_wq; 5425 } 5426 } 5427 } 5428 5429 /* 5430 * Get the # of file system overhead blocks from the 5431 * superblock if present. 5432 */ 5433 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5434 /* ignore the precalculated value if it is ridiculous */ 5435 if (sbi->s_overhead > ext4_blocks_count(es)) 5436 sbi->s_overhead = 0; 5437 /* 5438 * If the bigalloc feature is not enabled recalculating the 5439 * overhead doesn't take long, so we might as well just redo 5440 * it to make sure we are using the correct value. 5441 */ 5442 if (!ext4_has_feature_bigalloc(sb)) 5443 sbi->s_overhead = 0; 5444 if (sbi->s_overhead == 0) { 5445 err = ext4_calculate_overhead(sb); 5446 if (err) 5447 goto failed_mount_wq; 5448 } 5449 5450 /* 5451 * The maximum number of concurrent works can be high and 5452 * concurrency isn't really necessary. Limit it to 1. 5453 */ 5454 EXT4_SB(sb)->rsv_conversion_wq = 5455 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5456 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5457 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5458 err = -ENOMEM; 5459 goto failed_mount4; 5460 } 5461 5462 /* 5463 * The jbd2_journal_load will have done any necessary log recovery, 5464 * so we can safely mount the rest of the filesystem now. 5465 */ 5466 5467 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5468 if (IS_ERR(root)) { 5469 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5470 err = PTR_ERR(root); 5471 root = NULL; 5472 goto failed_mount4; 5473 } 5474 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5475 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5476 iput(root); 5477 err = -EFSCORRUPTED; 5478 goto failed_mount4; 5479 } 5480 5481 sb->s_root = d_make_root(root); 5482 if (!sb->s_root) { 5483 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5484 err = -ENOMEM; 5485 goto failed_mount4; 5486 } 5487 5488 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5489 if (err == -EROFS) { 5490 sb->s_flags |= SB_RDONLY; 5491 } else if (err) 5492 goto failed_mount4a; 5493 5494 ext4_set_resv_clusters(sb); 5495 5496 if (test_opt(sb, BLOCK_VALIDITY)) { 5497 err = ext4_setup_system_zone(sb); 5498 if (err) { 5499 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5500 "zone (%d)", err); 5501 goto failed_mount4a; 5502 } 5503 } 5504 ext4_fc_replay_cleanup(sb); 5505 5506 ext4_ext_init(sb); 5507 5508 /* 5509 * Enable optimize_scan if number of groups is > threshold. This can be 5510 * turned off by passing "mb_optimize_scan=0". This can also be 5511 * turned on forcefully by passing "mb_optimize_scan=1". 5512 */ 5513 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5514 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5515 set_opt2(sb, MB_OPTIMIZE_SCAN); 5516 else 5517 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5518 } 5519 5520 err = ext4_mb_init(sb); 5521 if (err) { 5522 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5523 err); 5524 goto failed_mount5; 5525 } 5526 5527 /* 5528 * We can only set up the journal commit callback once 5529 * mballoc is initialized 5530 */ 5531 if (sbi->s_journal) 5532 sbi->s_journal->j_commit_callback = 5533 ext4_journal_commit_callback; 5534 5535 err = ext4_percpu_param_init(sbi); 5536 if (err) 5537 goto failed_mount6; 5538 5539 if (ext4_has_feature_flex_bg(sb)) 5540 if (!ext4_fill_flex_info(sb)) { 5541 ext4_msg(sb, KERN_ERR, 5542 "unable to initialize " 5543 "flex_bg meta info!"); 5544 err = -ENOMEM; 5545 goto failed_mount6; 5546 } 5547 5548 err = ext4_register_li_request(sb, first_not_zeroed); 5549 if (err) 5550 goto failed_mount6; 5551 5552 err = ext4_register_sysfs(sb); 5553 if (err) 5554 goto failed_mount7; 5555 5556 err = ext4_init_orphan_info(sb); 5557 if (err) 5558 goto failed_mount8; 5559 #ifdef CONFIG_QUOTA 5560 /* Enable quota usage during mount. */ 5561 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5562 err = ext4_enable_quotas(sb); 5563 if (err) 5564 goto failed_mount9; 5565 } 5566 #endif /* CONFIG_QUOTA */ 5567 5568 /* 5569 * Save the original bdev mapping's wb_err value which could be 5570 * used to detect the metadata async write error. 5571 */ 5572 spin_lock_init(&sbi->s_bdev_wb_lock); 5573 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5574 &sbi->s_bdev_wb_err); 5575 sb->s_bdev->bd_super = sb; 5576 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5577 ext4_orphan_cleanup(sb, es); 5578 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5579 /* 5580 * Update the checksum after updating free space/inode counters and 5581 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5582 * checksum in the buffer cache until it is written out and 5583 * e2fsprogs programs trying to open a file system immediately 5584 * after it is mounted can fail. 5585 */ 5586 ext4_superblock_csum_set(sb); 5587 if (needs_recovery) { 5588 ext4_msg(sb, KERN_INFO, "recovery complete"); 5589 err = ext4_mark_recovery_complete(sb, es); 5590 if (err) 5591 goto failed_mount10; 5592 } 5593 5594 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5595 ext4_msg(sb, KERN_WARNING, 5596 "mounting with \"discard\" option, but the device does not support discard"); 5597 5598 if (es->s_error_count) 5599 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5600 5601 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5602 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5603 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5604 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5605 atomic_set(&sbi->s_warning_count, 0); 5606 atomic_set(&sbi->s_msg_count, 0); 5607 5608 return 0; 5609 5610 failed_mount10: 5611 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5612 failed_mount9: __maybe_unused 5613 ext4_release_orphan_info(sb); 5614 failed_mount8: 5615 ext4_unregister_sysfs(sb); 5616 kobject_put(&sbi->s_kobj); 5617 failed_mount7: 5618 ext4_unregister_li_request(sb); 5619 failed_mount6: 5620 ext4_mb_release(sb); 5621 ext4_flex_groups_free(sbi); 5622 ext4_percpu_param_destroy(sbi); 5623 failed_mount5: 5624 ext4_ext_release(sb); 5625 ext4_release_system_zone(sb); 5626 failed_mount4a: 5627 dput(sb->s_root); 5628 sb->s_root = NULL; 5629 failed_mount4: 5630 ext4_msg(sb, KERN_ERR, "mount failed"); 5631 if (EXT4_SB(sb)->rsv_conversion_wq) 5632 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5633 failed_mount_wq: 5634 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5635 sbi->s_ea_inode_cache = NULL; 5636 5637 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5638 sbi->s_ea_block_cache = NULL; 5639 5640 if (sbi->s_journal) { 5641 /* flush s_error_work before journal destroy. */ 5642 flush_work(&sbi->s_error_work); 5643 jbd2_journal_destroy(sbi->s_journal); 5644 sbi->s_journal = NULL; 5645 } 5646 failed_mount3a: 5647 ext4_es_unregister_shrinker(sbi); 5648 failed_mount3: 5649 /* flush s_error_work before sbi destroy */ 5650 flush_work(&sbi->s_error_work); 5651 del_timer_sync(&sbi->s_err_report); 5652 ext4_stop_mmpd(sbi); 5653 ext4_group_desc_free(sbi); 5654 failed_mount: 5655 if (sbi->s_chksum_driver) 5656 crypto_free_shash(sbi->s_chksum_driver); 5657 5658 #if IS_ENABLED(CONFIG_UNICODE) 5659 utf8_unload(sb->s_encoding); 5660 #endif 5661 5662 #ifdef CONFIG_QUOTA 5663 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5664 kfree(get_qf_name(sb, sbi, i)); 5665 #endif 5666 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5667 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5668 brelse(sbi->s_sbh); 5669 ext4_blkdev_remove(sbi); 5670 out_fail: 5671 invalidate_bdev(sb->s_bdev); 5672 sb->s_fs_info = NULL; 5673 return err; 5674 } 5675 5676 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5677 { 5678 struct ext4_fs_context *ctx = fc->fs_private; 5679 struct ext4_sb_info *sbi; 5680 const char *descr; 5681 int ret; 5682 5683 sbi = ext4_alloc_sbi(sb); 5684 if (!sbi) 5685 return -ENOMEM; 5686 5687 fc->s_fs_info = sbi; 5688 5689 /* Cleanup superblock name */ 5690 strreplace(sb->s_id, '/', '!'); 5691 5692 sbi->s_sb_block = 1; /* Default super block location */ 5693 if (ctx->spec & EXT4_SPEC_s_sb_block) 5694 sbi->s_sb_block = ctx->s_sb_block; 5695 5696 ret = __ext4_fill_super(fc, sb); 5697 if (ret < 0) 5698 goto free_sbi; 5699 5700 if (sbi->s_journal) { 5701 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5702 descr = " journalled data mode"; 5703 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5704 descr = " ordered data mode"; 5705 else 5706 descr = " writeback data mode"; 5707 } else 5708 descr = "out journal"; 5709 5710 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5711 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5712 "Quota mode: %s.", &sb->s_uuid, 5713 sb_rdonly(sb) ? "ro" : "r/w", descr, 5714 ext4_quota_mode(sb)); 5715 5716 /* Update the s_overhead_clusters if necessary */ 5717 ext4_update_overhead(sb, false); 5718 return 0; 5719 5720 free_sbi: 5721 ext4_free_sbi(sbi); 5722 fc->s_fs_info = NULL; 5723 return ret; 5724 } 5725 5726 static int ext4_get_tree(struct fs_context *fc) 5727 { 5728 return get_tree_bdev(fc, ext4_fill_super); 5729 } 5730 5731 /* 5732 * Setup any per-fs journal parameters now. We'll do this both on 5733 * initial mount, once the journal has been initialised but before we've 5734 * done any recovery; and again on any subsequent remount. 5735 */ 5736 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5737 { 5738 struct ext4_sb_info *sbi = EXT4_SB(sb); 5739 5740 journal->j_commit_interval = sbi->s_commit_interval; 5741 journal->j_min_batch_time = sbi->s_min_batch_time; 5742 journal->j_max_batch_time = sbi->s_max_batch_time; 5743 ext4_fc_init(sb, journal); 5744 5745 write_lock(&journal->j_state_lock); 5746 if (test_opt(sb, BARRIER)) 5747 journal->j_flags |= JBD2_BARRIER; 5748 else 5749 journal->j_flags &= ~JBD2_BARRIER; 5750 if (test_opt(sb, DATA_ERR_ABORT)) 5751 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5752 else 5753 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5754 /* 5755 * Always enable journal cycle record option, letting the journal 5756 * records log transactions continuously between each mount. 5757 */ 5758 journal->j_flags |= JBD2_CYCLE_RECORD; 5759 write_unlock(&journal->j_state_lock); 5760 } 5761 5762 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5763 unsigned int journal_inum) 5764 { 5765 struct inode *journal_inode; 5766 5767 /* 5768 * Test for the existence of a valid inode on disk. Bad things 5769 * happen if we iget() an unused inode, as the subsequent iput() 5770 * will try to delete it. 5771 */ 5772 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5773 if (IS_ERR(journal_inode)) { 5774 ext4_msg(sb, KERN_ERR, "no journal found"); 5775 return NULL; 5776 } 5777 if (!journal_inode->i_nlink) { 5778 make_bad_inode(journal_inode); 5779 iput(journal_inode); 5780 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5781 return NULL; 5782 } 5783 5784 ext4_debug("Journal inode found at %p: %lld bytes\n", 5785 journal_inode, journal_inode->i_size); 5786 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5787 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5788 iput(journal_inode); 5789 return NULL; 5790 } 5791 return journal_inode; 5792 } 5793 5794 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5795 { 5796 struct ext4_map_blocks map; 5797 int ret; 5798 5799 if (journal->j_inode == NULL) 5800 return 0; 5801 5802 map.m_lblk = *block; 5803 map.m_len = 1; 5804 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5805 if (ret <= 0) { 5806 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5807 "journal bmap failed: block %llu ret %d\n", 5808 *block, ret); 5809 jbd2_journal_abort(journal, ret ? ret : -EIO); 5810 return ret; 5811 } 5812 *block = map.m_pblk; 5813 return 0; 5814 } 5815 5816 static journal_t *ext4_get_journal(struct super_block *sb, 5817 unsigned int journal_inum) 5818 { 5819 struct inode *journal_inode; 5820 journal_t *journal; 5821 5822 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5823 return NULL; 5824 5825 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5826 if (!journal_inode) 5827 return NULL; 5828 5829 journal = jbd2_journal_init_inode(journal_inode); 5830 if (!journal) { 5831 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5832 iput(journal_inode); 5833 return NULL; 5834 } 5835 journal->j_private = sb; 5836 journal->j_bmap = ext4_journal_bmap; 5837 ext4_init_journal_params(sb, journal); 5838 return journal; 5839 } 5840 5841 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5842 dev_t j_dev) 5843 { 5844 struct buffer_head *bh; 5845 journal_t *journal; 5846 ext4_fsblk_t start; 5847 ext4_fsblk_t len; 5848 int hblock, blocksize; 5849 ext4_fsblk_t sb_block; 5850 unsigned long offset; 5851 struct ext4_super_block *es; 5852 struct block_device *bdev; 5853 5854 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5855 return NULL; 5856 5857 bdev = ext4_blkdev_get(j_dev, sb); 5858 if (bdev == NULL) 5859 return NULL; 5860 5861 blocksize = sb->s_blocksize; 5862 hblock = bdev_logical_block_size(bdev); 5863 if (blocksize < hblock) { 5864 ext4_msg(sb, KERN_ERR, 5865 "blocksize too small for journal device"); 5866 goto out_bdev; 5867 } 5868 5869 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5870 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5871 set_blocksize(bdev, blocksize); 5872 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5873 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5874 "external journal"); 5875 goto out_bdev; 5876 } 5877 5878 es = (struct ext4_super_block *) (bh->b_data + offset); 5879 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5880 !(le32_to_cpu(es->s_feature_incompat) & 5881 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5882 ext4_msg(sb, KERN_ERR, "external journal has " 5883 "bad superblock"); 5884 brelse(bh); 5885 goto out_bdev; 5886 } 5887 5888 if ((le32_to_cpu(es->s_feature_ro_compat) & 5889 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5890 es->s_checksum != ext4_superblock_csum(sb, es)) { 5891 ext4_msg(sb, KERN_ERR, "external journal has " 5892 "corrupt superblock"); 5893 brelse(bh); 5894 goto out_bdev; 5895 } 5896 5897 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5898 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5899 brelse(bh); 5900 goto out_bdev; 5901 } 5902 5903 len = ext4_blocks_count(es); 5904 start = sb_block + 1; 5905 brelse(bh); /* we're done with the superblock */ 5906 5907 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5908 start, len, blocksize); 5909 if (!journal) { 5910 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5911 goto out_bdev; 5912 } 5913 journal->j_private = sb; 5914 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5915 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5916 goto out_journal; 5917 } 5918 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5919 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5920 "user (unsupported) - %d", 5921 be32_to_cpu(journal->j_superblock->s_nr_users)); 5922 goto out_journal; 5923 } 5924 EXT4_SB(sb)->s_journal_bdev = bdev; 5925 ext4_init_journal_params(sb, journal); 5926 return journal; 5927 5928 out_journal: 5929 jbd2_journal_destroy(journal); 5930 out_bdev: 5931 blkdev_put(bdev, sb); 5932 return NULL; 5933 } 5934 5935 static int ext4_load_journal(struct super_block *sb, 5936 struct ext4_super_block *es, 5937 unsigned long journal_devnum) 5938 { 5939 journal_t *journal; 5940 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5941 dev_t journal_dev; 5942 int err = 0; 5943 int really_read_only; 5944 int journal_dev_ro; 5945 5946 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5947 return -EFSCORRUPTED; 5948 5949 if (journal_devnum && 5950 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5951 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5952 "numbers have changed"); 5953 journal_dev = new_decode_dev(journal_devnum); 5954 } else 5955 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5956 5957 if (journal_inum && journal_dev) { 5958 ext4_msg(sb, KERN_ERR, 5959 "filesystem has both journal inode and journal device!"); 5960 return -EINVAL; 5961 } 5962 5963 if (journal_inum) { 5964 journal = ext4_get_journal(sb, journal_inum); 5965 if (!journal) 5966 return -EINVAL; 5967 } else { 5968 journal = ext4_get_dev_journal(sb, journal_dev); 5969 if (!journal) 5970 return -EINVAL; 5971 } 5972 5973 journal_dev_ro = bdev_read_only(journal->j_dev); 5974 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5975 5976 if (journal_dev_ro && !sb_rdonly(sb)) { 5977 ext4_msg(sb, KERN_ERR, 5978 "journal device read-only, try mounting with '-o ro'"); 5979 err = -EROFS; 5980 goto err_out; 5981 } 5982 5983 /* 5984 * Are we loading a blank journal or performing recovery after a 5985 * crash? For recovery, we need to check in advance whether we 5986 * can get read-write access to the device. 5987 */ 5988 if (ext4_has_feature_journal_needs_recovery(sb)) { 5989 if (sb_rdonly(sb)) { 5990 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5991 "required on readonly filesystem"); 5992 if (really_read_only) { 5993 ext4_msg(sb, KERN_ERR, "write access " 5994 "unavailable, cannot proceed " 5995 "(try mounting with noload)"); 5996 err = -EROFS; 5997 goto err_out; 5998 } 5999 ext4_msg(sb, KERN_INFO, "write access will " 6000 "be enabled during recovery"); 6001 } 6002 } 6003 6004 if (!(journal->j_flags & JBD2_BARRIER)) 6005 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6006 6007 if (!ext4_has_feature_journal_needs_recovery(sb)) 6008 err = jbd2_journal_wipe(journal, !really_read_only); 6009 if (!err) { 6010 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6011 __le16 orig_state; 6012 bool changed = false; 6013 6014 if (save) 6015 memcpy(save, ((char *) es) + 6016 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6017 err = jbd2_journal_load(journal); 6018 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6019 save, EXT4_S_ERR_LEN)) { 6020 memcpy(((char *) es) + EXT4_S_ERR_START, 6021 save, EXT4_S_ERR_LEN); 6022 changed = true; 6023 } 6024 kfree(save); 6025 orig_state = es->s_state; 6026 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6027 EXT4_ERROR_FS); 6028 if (orig_state != es->s_state) 6029 changed = true; 6030 /* Write out restored error information to the superblock */ 6031 if (changed && !really_read_only) { 6032 int err2; 6033 err2 = ext4_commit_super(sb); 6034 err = err ? : err2; 6035 } 6036 } 6037 6038 if (err) { 6039 ext4_msg(sb, KERN_ERR, "error loading journal"); 6040 goto err_out; 6041 } 6042 6043 EXT4_SB(sb)->s_journal = journal; 6044 err = ext4_clear_journal_err(sb, es); 6045 if (err) { 6046 EXT4_SB(sb)->s_journal = NULL; 6047 jbd2_journal_destroy(journal); 6048 return err; 6049 } 6050 6051 if (!really_read_only && journal_devnum && 6052 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6053 es->s_journal_dev = cpu_to_le32(journal_devnum); 6054 ext4_commit_super(sb); 6055 } 6056 if (!really_read_only && journal_inum && 6057 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6058 es->s_journal_inum = cpu_to_le32(journal_inum); 6059 ext4_commit_super(sb); 6060 } 6061 6062 return 0; 6063 6064 err_out: 6065 jbd2_journal_destroy(journal); 6066 return err; 6067 } 6068 6069 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6070 static void ext4_update_super(struct super_block *sb) 6071 { 6072 struct ext4_sb_info *sbi = EXT4_SB(sb); 6073 struct ext4_super_block *es = sbi->s_es; 6074 struct buffer_head *sbh = sbi->s_sbh; 6075 6076 lock_buffer(sbh); 6077 /* 6078 * If the file system is mounted read-only, don't update the 6079 * superblock write time. This avoids updating the superblock 6080 * write time when we are mounting the root file system 6081 * read/only but we need to replay the journal; at that point, 6082 * for people who are east of GMT and who make their clock 6083 * tick in localtime for Windows bug-for-bug compatibility, 6084 * the clock is set in the future, and this will cause e2fsck 6085 * to complain and force a full file system check. 6086 */ 6087 if (!(sb->s_flags & SB_RDONLY)) 6088 ext4_update_tstamp(es, s_wtime); 6089 es->s_kbytes_written = 6090 cpu_to_le64(sbi->s_kbytes_written + 6091 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6092 sbi->s_sectors_written_start) >> 1)); 6093 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6094 ext4_free_blocks_count_set(es, 6095 EXT4_C2B(sbi, percpu_counter_sum_positive( 6096 &sbi->s_freeclusters_counter))); 6097 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6098 es->s_free_inodes_count = 6099 cpu_to_le32(percpu_counter_sum_positive( 6100 &sbi->s_freeinodes_counter)); 6101 /* Copy error information to the on-disk superblock */ 6102 spin_lock(&sbi->s_error_lock); 6103 if (sbi->s_add_error_count > 0) { 6104 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6105 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6106 __ext4_update_tstamp(&es->s_first_error_time, 6107 &es->s_first_error_time_hi, 6108 sbi->s_first_error_time); 6109 strncpy(es->s_first_error_func, sbi->s_first_error_func, 6110 sizeof(es->s_first_error_func)); 6111 es->s_first_error_line = 6112 cpu_to_le32(sbi->s_first_error_line); 6113 es->s_first_error_ino = 6114 cpu_to_le32(sbi->s_first_error_ino); 6115 es->s_first_error_block = 6116 cpu_to_le64(sbi->s_first_error_block); 6117 es->s_first_error_errcode = 6118 ext4_errno_to_code(sbi->s_first_error_code); 6119 } 6120 __ext4_update_tstamp(&es->s_last_error_time, 6121 &es->s_last_error_time_hi, 6122 sbi->s_last_error_time); 6123 strncpy(es->s_last_error_func, sbi->s_last_error_func, 6124 sizeof(es->s_last_error_func)); 6125 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6126 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6127 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6128 es->s_last_error_errcode = 6129 ext4_errno_to_code(sbi->s_last_error_code); 6130 /* 6131 * Start the daily error reporting function if it hasn't been 6132 * started already 6133 */ 6134 if (!es->s_error_count) 6135 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6136 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6137 sbi->s_add_error_count = 0; 6138 } 6139 spin_unlock(&sbi->s_error_lock); 6140 6141 ext4_superblock_csum_set(sb); 6142 unlock_buffer(sbh); 6143 } 6144 6145 static int ext4_commit_super(struct super_block *sb) 6146 { 6147 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6148 6149 if (!sbh) 6150 return -EINVAL; 6151 if (block_device_ejected(sb)) 6152 return -ENODEV; 6153 6154 ext4_update_super(sb); 6155 6156 lock_buffer(sbh); 6157 /* Buffer got discarded which means block device got invalidated */ 6158 if (!buffer_mapped(sbh)) { 6159 unlock_buffer(sbh); 6160 return -EIO; 6161 } 6162 6163 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6164 /* 6165 * Oh, dear. A previous attempt to write the 6166 * superblock failed. This could happen because the 6167 * USB device was yanked out. Or it could happen to 6168 * be a transient write error and maybe the block will 6169 * be remapped. Nothing we can do but to retry the 6170 * write and hope for the best. 6171 */ 6172 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6173 "superblock detected"); 6174 clear_buffer_write_io_error(sbh); 6175 set_buffer_uptodate(sbh); 6176 } 6177 get_bh(sbh); 6178 /* Clear potential dirty bit if it was journalled update */ 6179 clear_buffer_dirty(sbh); 6180 sbh->b_end_io = end_buffer_write_sync; 6181 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6182 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6183 wait_on_buffer(sbh); 6184 if (buffer_write_io_error(sbh)) { 6185 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6186 "superblock"); 6187 clear_buffer_write_io_error(sbh); 6188 set_buffer_uptodate(sbh); 6189 return -EIO; 6190 } 6191 return 0; 6192 } 6193 6194 /* 6195 * Have we just finished recovery? If so, and if we are mounting (or 6196 * remounting) the filesystem readonly, then we will end up with a 6197 * consistent fs on disk. Record that fact. 6198 */ 6199 static int ext4_mark_recovery_complete(struct super_block *sb, 6200 struct ext4_super_block *es) 6201 { 6202 int err; 6203 journal_t *journal = EXT4_SB(sb)->s_journal; 6204 6205 if (!ext4_has_feature_journal(sb)) { 6206 if (journal != NULL) { 6207 ext4_error(sb, "Journal got removed while the fs was " 6208 "mounted!"); 6209 return -EFSCORRUPTED; 6210 } 6211 return 0; 6212 } 6213 jbd2_journal_lock_updates(journal); 6214 err = jbd2_journal_flush(journal, 0); 6215 if (err < 0) 6216 goto out; 6217 6218 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6219 ext4_has_feature_orphan_present(sb))) { 6220 if (!ext4_orphan_file_empty(sb)) { 6221 ext4_error(sb, "Orphan file not empty on read-only fs."); 6222 err = -EFSCORRUPTED; 6223 goto out; 6224 } 6225 ext4_clear_feature_journal_needs_recovery(sb); 6226 ext4_clear_feature_orphan_present(sb); 6227 ext4_commit_super(sb); 6228 } 6229 out: 6230 jbd2_journal_unlock_updates(journal); 6231 return err; 6232 } 6233 6234 /* 6235 * If we are mounting (or read-write remounting) a filesystem whose journal 6236 * has recorded an error from a previous lifetime, move that error to the 6237 * main filesystem now. 6238 */ 6239 static int ext4_clear_journal_err(struct super_block *sb, 6240 struct ext4_super_block *es) 6241 { 6242 journal_t *journal; 6243 int j_errno; 6244 const char *errstr; 6245 6246 if (!ext4_has_feature_journal(sb)) { 6247 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6248 return -EFSCORRUPTED; 6249 } 6250 6251 journal = EXT4_SB(sb)->s_journal; 6252 6253 /* 6254 * Now check for any error status which may have been recorded in the 6255 * journal by a prior ext4_error() or ext4_abort() 6256 */ 6257 6258 j_errno = jbd2_journal_errno(journal); 6259 if (j_errno) { 6260 char nbuf[16]; 6261 6262 errstr = ext4_decode_error(sb, j_errno, nbuf); 6263 ext4_warning(sb, "Filesystem error recorded " 6264 "from previous mount: %s", errstr); 6265 6266 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6267 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6268 j_errno = ext4_commit_super(sb); 6269 if (j_errno) 6270 return j_errno; 6271 ext4_warning(sb, "Marked fs in need of filesystem check."); 6272 6273 jbd2_journal_clear_err(journal); 6274 jbd2_journal_update_sb_errno(journal); 6275 } 6276 return 0; 6277 } 6278 6279 /* 6280 * Force the running and committing transactions to commit, 6281 * and wait on the commit. 6282 */ 6283 int ext4_force_commit(struct super_block *sb) 6284 { 6285 journal_t *journal; 6286 6287 if (sb_rdonly(sb)) 6288 return 0; 6289 6290 journal = EXT4_SB(sb)->s_journal; 6291 return ext4_journal_force_commit(journal); 6292 } 6293 6294 static int ext4_sync_fs(struct super_block *sb, int wait) 6295 { 6296 int ret = 0; 6297 tid_t target; 6298 bool needs_barrier = false; 6299 struct ext4_sb_info *sbi = EXT4_SB(sb); 6300 6301 if (unlikely(ext4_forced_shutdown(sbi))) 6302 return 0; 6303 6304 trace_ext4_sync_fs(sb, wait); 6305 flush_workqueue(sbi->rsv_conversion_wq); 6306 /* 6307 * Writeback quota in non-journalled quota case - journalled quota has 6308 * no dirty dquots 6309 */ 6310 dquot_writeback_dquots(sb, -1); 6311 /* 6312 * Data writeback is possible w/o journal transaction, so barrier must 6313 * being sent at the end of the function. But we can skip it if 6314 * transaction_commit will do it for us. 6315 */ 6316 if (sbi->s_journal) { 6317 target = jbd2_get_latest_transaction(sbi->s_journal); 6318 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6319 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6320 needs_barrier = true; 6321 6322 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6323 if (wait) 6324 ret = jbd2_log_wait_commit(sbi->s_journal, 6325 target); 6326 } 6327 } else if (wait && test_opt(sb, BARRIER)) 6328 needs_barrier = true; 6329 if (needs_barrier) { 6330 int err; 6331 err = blkdev_issue_flush(sb->s_bdev); 6332 if (!ret) 6333 ret = err; 6334 } 6335 6336 return ret; 6337 } 6338 6339 /* 6340 * LVM calls this function before a (read-only) snapshot is created. This 6341 * gives us a chance to flush the journal completely and mark the fs clean. 6342 * 6343 * Note that only this function cannot bring a filesystem to be in a clean 6344 * state independently. It relies on upper layer to stop all data & metadata 6345 * modifications. 6346 */ 6347 static int ext4_freeze(struct super_block *sb) 6348 { 6349 int error = 0; 6350 journal_t *journal; 6351 6352 if (sb_rdonly(sb)) 6353 return 0; 6354 6355 journal = EXT4_SB(sb)->s_journal; 6356 6357 if (journal) { 6358 /* Now we set up the journal barrier. */ 6359 jbd2_journal_lock_updates(journal); 6360 6361 /* 6362 * Don't clear the needs_recovery flag if we failed to 6363 * flush the journal. 6364 */ 6365 error = jbd2_journal_flush(journal, 0); 6366 if (error < 0) 6367 goto out; 6368 6369 /* Journal blocked and flushed, clear needs_recovery flag. */ 6370 ext4_clear_feature_journal_needs_recovery(sb); 6371 if (ext4_orphan_file_empty(sb)) 6372 ext4_clear_feature_orphan_present(sb); 6373 } 6374 6375 error = ext4_commit_super(sb); 6376 out: 6377 if (journal) 6378 /* we rely on upper layer to stop further updates */ 6379 jbd2_journal_unlock_updates(journal); 6380 return error; 6381 } 6382 6383 /* 6384 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6385 * flag here, even though the filesystem is not technically dirty yet. 6386 */ 6387 static int ext4_unfreeze(struct super_block *sb) 6388 { 6389 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6390 return 0; 6391 6392 if (EXT4_SB(sb)->s_journal) { 6393 /* Reset the needs_recovery flag before the fs is unlocked. */ 6394 ext4_set_feature_journal_needs_recovery(sb); 6395 if (ext4_has_feature_orphan_file(sb)) 6396 ext4_set_feature_orphan_present(sb); 6397 } 6398 6399 ext4_commit_super(sb); 6400 return 0; 6401 } 6402 6403 /* 6404 * Structure to save mount options for ext4_remount's benefit 6405 */ 6406 struct ext4_mount_options { 6407 unsigned long s_mount_opt; 6408 unsigned long s_mount_opt2; 6409 kuid_t s_resuid; 6410 kgid_t s_resgid; 6411 unsigned long s_commit_interval; 6412 u32 s_min_batch_time, s_max_batch_time; 6413 #ifdef CONFIG_QUOTA 6414 int s_jquota_fmt; 6415 char *s_qf_names[EXT4_MAXQUOTAS]; 6416 #endif 6417 }; 6418 6419 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6420 { 6421 struct ext4_fs_context *ctx = fc->fs_private; 6422 struct ext4_super_block *es; 6423 struct ext4_sb_info *sbi = EXT4_SB(sb); 6424 unsigned long old_sb_flags; 6425 struct ext4_mount_options old_opts; 6426 ext4_group_t g; 6427 int err = 0; 6428 #ifdef CONFIG_QUOTA 6429 int enable_quota = 0; 6430 int i, j; 6431 char *to_free[EXT4_MAXQUOTAS]; 6432 #endif 6433 6434 6435 /* Store the original options */ 6436 old_sb_flags = sb->s_flags; 6437 old_opts.s_mount_opt = sbi->s_mount_opt; 6438 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6439 old_opts.s_resuid = sbi->s_resuid; 6440 old_opts.s_resgid = sbi->s_resgid; 6441 old_opts.s_commit_interval = sbi->s_commit_interval; 6442 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6443 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6444 #ifdef CONFIG_QUOTA 6445 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6446 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6447 if (sbi->s_qf_names[i]) { 6448 char *qf_name = get_qf_name(sb, sbi, i); 6449 6450 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6451 if (!old_opts.s_qf_names[i]) { 6452 for (j = 0; j < i; j++) 6453 kfree(old_opts.s_qf_names[j]); 6454 return -ENOMEM; 6455 } 6456 } else 6457 old_opts.s_qf_names[i] = NULL; 6458 #endif 6459 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6460 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6461 ctx->journal_ioprio = 6462 sbi->s_journal->j_task->io_context->ioprio; 6463 else 6464 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6465 6466 } 6467 6468 ext4_apply_options(fc, sb); 6469 6470 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6471 test_opt(sb, JOURNAL_CHECKSUM)) { 6472 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6473 "during remount not supported; ignoring"); 6474 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6475 } 6476 6477 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6478 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6479 ext4_msg(sb, KERN_ERR, "can't mount with " 6480 "both data=journal and delalloc"); 6481 err = -EINVAL; 6482 goto restore_opts; 6483 } 6484 if (test_opt(sb, DIOREAD_NOLOCK)) { 6485 ext4_msg(sb, KERN_ERR, "can't mount with " 6486 "both data=journal and dioread_nolock"); 6487 err = -EINVAL; 6488 goto restore_opts; 6489 } 6490 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6491 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6492 ext4_msg(sb, KERN_ERR, "can't mount with " 6493 "journal_async_commit in data=ordered mode"); 6494 err = -EINVAL; 6495 goto restore_opts; 6496 } 6497 } 6498 6499 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6500 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6501 err = -EINVAL; 6502 goto restore_opts; 6503 } 6504 6505 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6506 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6507 6508 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6509 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6510 6511 es = sbi->s_es; 6512 6513 if (sbi->s_journal) { 6514 ext4_init_journal_params(sb, sbi->s_journal); 6515 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6516 } 6517 6518 /* Flush outstanding errors before changing fs state */ 6519 flush_work(&sbi->s_error_work); 6520 6521 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6522 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6523 err = -EROFS; 6524 goto restore_opts; 6525 } 6526 6527 if (fc->sb_flags & SB_RDONLY) { 6528 err = sync_filesystem(sb); 6529 if (err < 0) 6530 goto restore_opts; 6531 err = dquot_suspend(sb, -1); 6532 if (err < 0) 6533 goto restore_opts; 6534 6535 /* 6536 * First of all, the unconditional stuff we have to do 6537 * to disable replay of the journal when we next remount 6538 */ 6539 sb->s_flags |= SB_RDONLY; 6540 6541 /* 6542 * OK, test if we are remounting a valid rw partition 6543 * readonly, and if so set the rdonly flag and then 6544 * mark the partition as valid again. 6545 */ 6546 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6547 (sbi->s_mount_state & EXT4_VALID_FS)) 6548 es->s_state = cpu_to_le16(sbi->s_mount_state); 6549 6550 if (sbi->s_journal) { 6551 /* 6552 * We let remount-ro finish even if marking fs 6553 * as clean failed... 6554 */ 6555 ext4_mark_recovery_complete(sb, es); 6556 } 6557 } else { 6558 /* Make sure we can mount this feature set readwrite */ 6559 if (ext4_has_feature_readonly(sb) || 6560 !ext4_feature_set_ok(sb, 0)) { 6561 err = -EROFS; 6562 goto restore_opts; 6563 } 6564 /* 6565 * Make sure the group descriptor checksums 6566 * are sane. If they aren't, refuse to remount r/w. 6567 */ 6568 for (g = 0; g < sbi->s_groups_count; g++) { 6569 struct ext4_group_desc *gdp = 6570 ext4_get_group_desc(sb, g, NULL); 6571 6572 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6573 ext4_msg(sb, KERN_ERR, 6574 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6575 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6576 le16_to_cpu(gdp->bg_checksum)); 6577 err = -EFSBADCRC; 6578 goto restore_opts; 6579 } 6580 } 6581 6582 /* 6583 * If we have an unprocessed orphan list hanging 6584 * around from a previously readonly bdev mount, 6585 * require a full umount/remount for now. 6586 */ 6587 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6588 ext4_msg(sb, KERN_WARNING, "Couldn't " 6589 "remount RDWR because of unprocessed " 6590 "orphan inode list. Please " 6591 "umount/remount instead"); 6592 err = -EINVAL; 6593 goto restore_opts; 6594 } 6595 6596 /* 6597 * Mounting a RDONLY partition read-write, so reread 6598 * and store the current valid flag. (It may have 6599 * been changed by e2fsck since we originally mounted 6600 * the partition.) 6601 */ 6602 if (sbi->s_journal) { 6603 err = ext4_clear_journal_err(sb, es); 6604 if (err) 6605 goto restore_opts; 6606 } 6607 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6608 ~EXT4_FC_REPLAY); 6609 6610 err = ext4_setup_super(sb, es, 0); 6611 if (err) 6612 goto restore_opts; 6613 6614 sb->s_flags &= ~SB_RDONLY; 6615 if (ext4_has_feature_mmp(sb)) { 6616 err = ext4_multi_mount_protect(sb, 6617 le64_to_cpu(es->s_mmp_block)); 6618 if (err) 6619 goto restore_opts; 6620 } 6621 #ifdef CONFIG_QUOTA 6622 enable_quota = 1; 6623 #endif 6624 } 6625 } 6626 6627 /* 6628 * Handle creation of system zone data early because it can fail. 6629 * Releasing of existing data is done when we are sure remount will 6630 * succeed. 6631 */ 6632 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6633 err = ext4_setup_system_zone(sb); 6634 if (err) 6635 goto restore_opts; 6636 } 6637 6638 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6639 err = ext4_commit_super(sb); 6640 if (err) 6641 goto restore_opts; 6642 } 6643 6644 #ifdef CONFIG_QUOTA 6645 if (enable_quota) { 6646 if (sb_any_quota_suspended(sb)) 6647 dquot_resume(sb, -1); 6648 else if (ext4_has_feature_quota(sb)) { 6649 err = ext4_enable_quotas(sb); 6650 if (err) 6651 goto restore_opts; 6652 } 6653 } 6654 /* Release old quota file names */ 6655 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6656 kfree(old_opts.s_qf_names[i]); 6657 #endif 6658 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6659 ext4_release_system_zone(sb); 6660 6661 /* 6662 * Reinitialize lazy itable initialization thread based on 6663 * current settings 6664 */ 6665 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6666 ext4_unregister_li_request(sb); 6667 else { 6668 ext4_group_t first_not_zeroed; 6669 first_not_zeroed = ext4_has_uninit_itable(sb); 6670 ext4_register_li_request(sb, first_not_zeroed); 6671 } 6672 6673 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6674 ext4_stop_mmpd(sbi); 6675 6676 return 0; 6677 6678 restore_opts: 6679 /* 6680 * If there was a failing r/w to ro transition, we may need to 6681 * re-enable quota 6682 */ 6683 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) && 6684 sb_any_quota_suspended(sb)) 6685 dquot_resume(sb, -1); 6686 sb->s_flags = old_sb_flags; 6687 sbi->s_mount_opt = old_opts.s_mount_opt; 6688 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6689 sbi->s_resuid = old_opts.s_resuid; 6690 sbi->s_resgid = old_opts.s_resgid; 6691 sbi->s_commit_interval = old_opts.s_commit_interval; 6692 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6693 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6694 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6695 ext4_release_system_zone(sb); 6696 #ifdef CONFIG_QUOTA 6697 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6698 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6699 to_free[i] = get_qf_name(sb, sbi, i); 6700 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6701 } 6702 synchronize_rcu(); 6703 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6704 kfree(to_free[i]); 6705 #endif 6706 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6707 ext4_stop_mmpd(sbi); 6708 return err; 6709 } 6710 6711 static int ext4_reconfigure(struct fs_context *fc) 6712 { 6713 struct super_block *sb = fc->root->d_sb; 6714 int ret; 6715 6716 fc->s_fs_info = EXT4_SB(sb); 6717 6718 ret = ext4_check_opt_consistency(fc, sb); 6719 if (ret < 0) 6720 return ret; 6721 6722 ret = __ext4_remount(fc, sb); 6723 if (ret < 0) 6724 return ret; 6725 6726 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6727 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6728 ext4_quota_mode(sb)); 6729 6730 return 0; 6731 } 6732 6733 #ifdef CONFIG_QUOTA 6734 static int ext4_statfs_project(struct super_block *sb, 6735 kprojid_t projid, struct kstatfs *buf) 6736 { 6737 struct kqid qid; 6738 struct dquot *dquot; 6739 u64 limit; 6740 u64 curblock; 6741 6742 qid = make_kqid_projid(projid); 6743 dquot = dqget(sb, qid); 6744 if (IS_ERR(dquot)) 6745 return PTR_ERR(dquot); 6746 spin_lock(&dquot->dq_dqb_lock); 6747 6748 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6749 dquot->dq_dqb.dqb_bhardlimit); 6750 limit >>= sb->s_blocksize_bits; 6751 6752 if (limit && buf->f_blocks > limit) { 6753 curblock = (dquot->dq_dqb.dqb_curspace + 6754 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6755 buf->f_blocks = limit; 6756 buf->f_bfree = buf->f_bavail = 6757 (buf->f_blocks > curblock) ? 6758 (buf->f_blocks - curblock) : 0; 6759 } 6760 6761 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6762 dquot->dq_dqb.dqb_ihardlimit); 6763 if (limit && buf->f_files > limit) { 6764 buf->f_files = limit; 6765 buf->f_ffree = 6766 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6767 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6768 } 6769 6770 spin_unlock(&dquot->dq_dqb_lock); 6771 dqput(dquot); 6772 return 0; 6773 } 6774 #endif 6775 6776 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6777 { 6778 struct super_block *sb = dentry->d_sb; 6779 struct ext4_sb_info *sbi = EXT4_SB(sb); 6780 struct ext4_super_block *es = sbi->s_es; 6781 ext4_fsblk_t overhead = 0, resv_blocks; 6782 s64 bfree; 6783 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6784 6785 if (!test_opt(sb, MINIX_DF)) 6786 overhead = sbi->s_overhead; 6787 6788 buf->f_type = EXT4_SUPER_MAGIC; 6789 buf->f_bsize = sb->s_blocksize; 6790 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6791 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6792 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6793 /* prevent underflow in case that few free space is available */ 6794 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6795 buf->f_bavail = buf->f_bfree - 6796 (ext4_r_blocks_count(es) + resv_blocks); 6797 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6798 buf->f_bavail = 0; 6799 buf->f_files = le32_to_cpu(es->s_inodes_count); 6800 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6801 buf->f_namelen = EXT4_NAME_LEN; 6802 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6803 6804 #ifdef CONFIG_QUOTA 6805 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6806 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6807 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6808 #endif 6809 return 0; 6810 } 6811 6812 6813 #ifdef CONFIG_QUOTA 6814 6815 /* 6816 * Helper functions so that transaction is started before we acquire dqio_sem 6817 * to keep correct lock ordering of transaction > dqio_sem 6818 */ 6819 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6820 { 6821 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6822 } 6823 6824 static int ext4_write_dquot(struct dquot *dquot) 6825 { 6826 int ret, err; 6827 handle_t *handle; 6828 struct inode *inode; 6829 6830 inode = dquot_to_inode(dquot); 6831 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6832 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6833 if (IS_ERR(handle)) 6834 return PTR_ERR(handle); 6835 ret = dquot_commit(dquot); 6836 err = ext4_journal_stop(handle); 6837 if (!ret) 6838 ret = err; 6839 return ret; 6840 } 6841 6842 static int ext4_acquire_dquot(struct dquot *dquot) 6843 { 6844 int ret, err; 6845 handle_t *handle; 6846 6847 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6848 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6849 if (IS_ERR(handle)) 6850 return PTR_ERR(handle); 6851 ret = dquot_acquire(dquot); 6852 err = ext4_journal_stop(handle); 6853 if (!ret) 6854 ret = err; 6855 return ret; 6856 } 6857 6858 static int ext4_release_dquot(struct dquot *dquot) 6859 { 6860 int ret, err; 6861 handle_t *handle; 6862 6863 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6864 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6865 if (IS_ERR(handle)) { 6866 /* Release dquot anyway to avoid endless cycle in dqput() */ 6867 dquot_release(dquot); 6868 return PTR_ERR(handle); 6869 } 6870 ret = dquot_release(dquot); 6871 err = ext4_journal_stop(handle); 6872 if (!ret) 6873 ret = err; 6874 return ret; 6875 } 6876 6877 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6878 { 6879 struct super_block *sb = dquot->dq_sb; 6880 6881 if (ext4_is_quota_journalled(sb)) { 6882 dquot_mark_dquot_dirty(dquot); 6883 return ext4_write_dquot(dquot); 6884 } else { 6885 return dquot_mark_dquot_dirty(dquot); 6886 } 6887 } 6888 6889 static int ext4_write_info(struct super_block *sb, int type) 6890 { 6891 int ret, err; 6892 handle_t *handle; 6893 6894 /* Data block + inode block */ 6895 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6896 if (IS_ERR(handle)) 6897 return PTR_ERR(handle); 6898 ret = dquot_commit_info(sb, type); 6899 err = ext4_journal_stop(handle); 6900 if (!ret) 6901 ret = err; 6902 return ret; 6903 } 6904 6905 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6906 { 6907 struct ext4_inode_info *ei = EXT4_I(inode); 6908 6909 /* The first argument of lockdep_set_subclass has to be 6910 * *exactly* the same as the argument to init_rwsem() --- in 6911 * this case, in init_once() --- or lockdep gets unhappy 6912 * because the name of the lock is set using the 6913 * stringification of the argument to init_rwsem(). 6914 */ 6915 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6916 lockdep_set_subclass(&ei->i_data_sem, subclass); 6917 } 6918 6919 /* 6920 * Standard function to be called on quota_on 6921 */ 6922 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6923 const struct path *path) 6924 { 6925 int err; 6926 6927 if (!test_opt(sb, QUOTA)) 6928 return -EINVAL; 6929 6930 /* Quotafile not on the same filesystem? */ 6931 if (path->dentry->d_sb != sb) 6932 return -EXDEV; 6933 6934 /* Quota already enabled for this file? */ 6935 if (IS_NOQUOTA(d_inode(path->dentry))) 6936 return -EBUSY; 6937 6938 /* Journaling quota? */ 6939 if (EXT4_SB(sb)->s_qf_names[type]) { 6940 /* Quotafile not in fs root? */ 6941 if (path->dentry->d_parent != sb->s_root) 6942 ext4_msg(sb, KERN_WARNING, 6943 "Quota file not on filesystem root. " 6944 "Journaled quota will not work"); 6945 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6946 } else { 6947 /* 6948 * Clear the flag just in case mount options changed since 6949 * last time. 6950 */ 6951 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6952 } 6953 6954 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6955 err = dquot_quota_on(sb, type, format_id, path); 6956 if (!err) { 6957 struct inode *inode = d_inode(path->dentry); 6958 handle_t *handle; 6959 6960 /* 6961 * Set inode flags to prevent userspace from messing with quota 6962 * files. If this fails, we return success anyway since quotas 6963 * are already enabled and this is not a hard failure. 6964 */ 6965 inode_lock(inode); 6966 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6967 if (IS_ERR(handle)) 6968 goto unlock_inode; 6969 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6970 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6971 S_NOATIME | S_IMMUTABLE); 6972 err = ext4_mark_inode_dirty(handle, inode); 6973 ext4_journal_stop(handle); 6974 unlock_inode: 6975 inode_unlock(inode); 6976 if (err) 6977 dquot_quota_off(sb, type); 6978 } 6979 if (err) 6980 lockdep_set_quota_inode(path->dentry->d_inode, 6981 I_DATA_SEM_NORMAL); 6982 return err; 6983 } 6984 6985 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 6986 { 6987 switch (type) { 6988 case USRQUOTA: 6989 return qf_inum == EXT4_USR_QUOTA_INO; 6990 case GRPQUOTA: 6991 return qf_inum == EXT4_GRP_QUOTA_INO; 6992 case PRJQUOTA: 6993 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 6994 default: 6995 BUG(); 6996 } 6997 } 6998 6999 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7000 unsigned int flags) 7001 { 7002 int err; 7003 struct inode *qf_inode; 7004 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7005 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7006 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7007 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7008 }; 7009 7010 BUG_ON(!ext4_has_feature_quota(sb)); 7011 7012 if (!qf_inums[type]) 7013 return -EPERM; 7014 7015 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7016 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7017 qf_inums[type], type); 7018 return -EUCLEAN; 7019 } 7020 7021 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7022 if (IS_ERR(qf_inode)) { 7023 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7024 qf_inums[type], type); 7025 return PTR_ERR(qf_inode); 7026 } 7027 7028 /* Don't account quota for quota files to avoid recursion */ 7029 qf_inode->i_flags |= S_NOQUOTA; 7030 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7031 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7032 if (err) 7033 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7034 iput(qf_inode); 7035 7036 return err; 7037 } 7038 7039 /* Enable usage tracking for all quota types. */ 7040 int ext4_enable_quotas(struct super_block *sb) 7041 { 7042 int type, err = 0; 7043 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7044 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7045 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7046 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7047 }; 7048 bool quota_mopt[EXT4_MAXQUOTAS] = { 7049 test_opt(sb, USRQUOTA), 7050 test_opt(sb, GRPQUOTA), 7051 test_opt(sb, PRJQUOTA), 7052 }; 7053 7054 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7055 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7056 if (qf_inums[type]) { 7057 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7058 DQUOT_USAGE_ENABLED | 7059 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7060 if (err) { 7061 ext4_warning(sb, 7062 "Failed to enable quota tracking " 7063 "(type=%d, err=%d, ino=%lu). " 7064 "Please run e2fsck to fix.", type, 7065 err, qf_inums[type]); 7066 7067 ext4_quotas_off(sb, type); 7068 return err; 7069 } 7070 } 7071 } 7072 return 0; 7073 } 7074 7075 static int ext4_quota_off(struct super_block *sb, int type) 7076 { 7077 struct inode *inode = sb_dqopt(sb)->files[type]; 7078 handle_t *handle; 7079 int err; 7080 7081 /* Force all delayed allocation blocks to be allocated. 7082 * Caller already holds s_umount sem */ 7083 if (test_opt(sb, DELALLOC)) 7084 sync_filesystem(sb); 7085 7086 if (!inode || !igrab(inode)) 7087 goto out; 7088 7089 err = dquot_quota_off(sb, type); 7090 if (err || ext4_has_feature_quota(sb)) 7091 goto out_put; 7092 7093 inode_lock(inode); 7094 /* 7095 * Update modification times of quota files when userspace can 7096 * start looking at them. If we fail, we return success anyway since 7097 * this is not a hard failure and quotas are already disabled. 7098 */ 7099 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7100 if (IS_ERR(handle)) { 7101 err = PTR_ERR(handle); 7102 goto out_unlock; 7103 } 7104 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7105 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7106 inode->i_mtime = inode->i_ctime = current_time(inode); 7107 err = ext4_mark_inode_dirty(handle, inode); 7108 ext4_journal_stop(handle); 7109 out_unlock: 7110 inode_unlock(inode); 7111 out_put: 7112 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7113 iput(inode); 7114 return err; 7115 out: 7116 return dquot_quota_off(sb, type); 7117 } 7118 7119 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7120 * acquiring the locks... As quota files are never truncated and quota code 7121 * itself serializes the operations (and no one else should touch the files) 7122 * we don't have to be afraid of races */ 7123 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7124 size_t len, loff_t off) 7125 { 7126 struct inode *inode = sb_dqopt(sb)->files[type]; 7127 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7128 int offset = off & (sb->s_blocksize - 1); 7129 int tocopy; 7130 size_t toread; 7131 struct buffer_head *bh; 7132 loff_t i_size = i_size_read(inode); 7133 7134 if (off > i_size) 7135 return 0; 7136 if (off+len > i_size) 7137 len = i_size-off; 7138 toread = len; 7139 while (toread > 0) { 7140 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7141 bh = ext4_bread(NULL, inode, blk, 0); 7142 if (IS_ERR(bh)) 7143 return PTR_ERR(bh); 7144 if (!bh) /* A hole? */ 7145 memset(data, 0, tocopy); 7146 else 7147 memcpy(data, bh->b_data+offset, tocopy); 7148 brelse(bh); 7149 offset = 0; 7150 toread -= tocopy; 7151 data += tocopy; 7152 blk++; 7153 } 7154 return len; 7155 } 7156 7157 /* Write to quotafile (we know the transaction is already started and has 7158 * enough credits) */ 7159 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7160 const char *data, size_t len, loff_t off) 7161 { 7162 struct inode *inode = sb_dqopt(sb)->files[type]; 7163 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7164 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7165 int retries = 0; 7166 struct buffer_head *bh; 7167 handle_t *handle = journal_current_handle(); 7168 7169 if (!handle) { 7170 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7171 " cancelled because transaction is not started", 7172 (unsigned long long)off, (unsigned long long)len); 7173 return -EIO; 7174 } 7175 /* 7176 * Since we account only one data block in transaction credits, 7177 * then it is impossible to cross a block boundary. 7178 */ 7179 if (sb->s_blocksize - offset < len) { 7180 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7181 " cancelled because not block aligned", 7182 (unsigned long long)off, (unsigned long long)len); 7183 return -EIO; 7184 } 7185 7186 do { 7187 bh = ext4_bread(handle, inode, blk, 7188 EXT4_GET_BLOCKS_CREATE | 7189 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7190 } while (PTR_ERR(bh) == -ENOSPC && 7191 ext4_should_retry_alloc(inode->i_sb, &retries)); 7192 if (IS_ERR(bh)) 7193 return PTR_ERR(bh); 7194 if (!bh) 7195 goto out; 7196 BUFFER_TRACE(bh, "get write access"); 7197 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7198 if (err) { 7199 brelse(bh); 7200 return err; 7201 } 7202 lock_buffer(bh); 7203 memcpy(bh->b_data+offset, data, len); 7204 flush_dcache_page(bh->b_page); 7205 unlock_buffer(bh); 7206 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7207 brelse(bh); 7208 out: 7209 if (inode->i_size < off + len) { 7210 i_size_write(inode, off + len); 7211 EXT4_I(inode)->i_disksize = inode->i_size; 7212 err2 = ext4_mark_inode_dirty(handle, inode); 7213 if (unlikely(err2 && !err)) 7214 err = err2; 7215 } 7216 return err ? err : len; 7217 } 7218 #endif 7219 7220 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7221 static inline void register_as_ext2(void) 7222 { 7223 int err = register_filesystem(&ext2_fs_type); 7224 if (err) 7225 printk(KERN_WARNING 7226 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7227 } 7228 7229 static inline void unregister_as_ext2(void) 7230 { 7231 unregister_filesystem(&ext2_fs_type); 7232 } 7233 7234 static inline int ext2_feature_set_ok(struct super_block *sb) 7235 { 7236 if (ext4_has_unknown_ext2_incompat_features(sb)) 7237 return 0; 7238 if (sb_rdonly(sb)) 7239 return 1; 7240 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7241 return 0; 7242 return 1; 7243 } 7244 #else 7245 static inline void register_as_ext2(void) { } 7246 static inline void unregister_as_ext2(void) { } 7247 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7248 #endif 7249 7250 static inline void register_as_ext3(void) 7251 { 7252 int err = register_filesystem(&ext3_fs_type); 7253 if (err) 7254 printk(KERN_WARNING 7255 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7256 } 7257 7258 static inline void unregister_as_ext3(void) 7259 { 7260 unregister_filesystem(&ext3_fs_type); 7261 } 7262 7263 static inline int ext3_feature_set_ok(struct super_block *sb) 7264 { 7265 if (ext4_has_unknown_ext3_incompat_features(sb)) 7266 return 0; 7267 if (!ext4_has_feature_journal(sb)) 7268 return 0; 7269 if (sb_rdonly(sb)) 7270 return 1; 7271 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7272 return 0; 7273 return 1; 7274 } 7275 7276 static struct file_system_type ext4_fs_type = { 7277 .owner = THIS_MODULE, 7278 .name = "ext4", 7279 .init_fs_context = ext4_init_fs_context, 7280 .parameters = ext4_param_specs, 7281 .kill_sb = kill_block_super, 7282 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7283 }; 7284 MODULE_ALIAS_FS("ext4"); 7285 7286 /* Shared across all ext4 file systems */ 7287 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7288 7289 static int __init ext4_init_fs(void) 7290 { 7291 int i, err; 7292 7293 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7294 ext4_li_info = NULL; 7295 7296 /* Build-time check for flags consistency */ 7297 ext4_check_flag_values(); 7298 7299 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7300 init_waitqueue_head(&ext4__ioend_wq[i]); 7301 7302 err = ext4_init_es(); 7303 if (err) 7304 return err; 7305 7306 err = ext4_init_pending(); 7307 if (err) 7308 goto out7; 7309 7310 err = ext4_init_post_read_processing(); 7311 if (err) 7312 goto out6; 7313 7314 err = ext4_init_pageio(); 7315 if (err) 7316 goto out5; 7317 7318 err = ext4_init_system_zone(); 7319 if (err) 7320 goto out4; 7321 7322 err = ext4_init_sysfs(); 7323 if (err) 7324 goto out3; 7325 7326 err = ext4_init_mballoc(); 7327 if (err) 7328 goto out2; 7329 err = init_inodecache(); 7330 if (err) 7331 goto out1; 7332 7333 err = ext4_fc_init_dentry_cache(); 7334 if (err) 7335 goto out05; 7336 7337 register_as_ext3(); 7338 register_as_ext2(); 7339 err = register_filesystem(&ext4_fs_type); 7340 if (err) 7341 goto out; 7342 7343 return 0; 7344 out: 7345 unregister_as_ext2(); 7346 unregister_as_ext3(); 7347 ext4_fc_destroy_dentry_cache(); 7348 out05: 7349 destroy_inodecache(); 7350 out1: 7351 ext4_exit_mballoc(); 7352 out2: 7353 ext4_exit_sysfs(); 7354 out3: 7355 ext4_exit_system_zone(); 7356 out4: 7357 ext4_exit_pageio(); 7358 out5: 7359 ext4_exit_post_read_processing(); 7360 out6: 7361 ext4_exit_pending(); 7362 out7: 7363 ext4_exit_es(); 7364 7365 return err; 7366 } 7367 7368 static void __exit ext4_exit_fs(void) 7369 { 7370 ext4_destroy_lazyinit_thread(); 7371 unregister_as_ext2(); 7372 unregister_as_ext3(); 7373 unregister_filesystem(&ext4_fs_type); 7374 ext4_fc_destroy_dentry_cache(); 7375 destroy_inodecache(); 7376 ext4_exit_mballoc(); 7377 ext4_exit_sysfs(); 7378 ext4_exit_system_zone(); 7379 ext4_exit_pageio(); 7380 ext4_exit_post_read_processing(); 7381 ext4_exit_es(); 7382 ext4_exit_pending(); 7383 } 7384 7385 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7386 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7387 MODULE_LICENSE("GPL"); 7388 MODULE_SOFTDEP("pre: crc32c"); 7389 module_init(ext4_init_fs) 7390 module_exit(ext4_exit_fs) 7391