1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, int error, 339 __u32 ino, __u64 block, 340 const char *func, unsigned int line) 341 { 342 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 343 int err; 344 345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 346 if (bdev_read_only(sb->s_bdev)) 347 return; 348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 349 ext4_update_tstamp(es, s_last_error_time); 350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 351 es->s_last_error_line = cpu_to_le32(line); 352 es->s_last_error_ino = cpu_to_le32(ino); 353 es->s_last_error_block = cpu_to_le64(block); 354 switch (error) { 355 case EIO: 356 err = EXT4_ERR_EIO; 357 break; 358 case ENOMEM: 359 err = EXT4_ERR_ENOMEM; 360 break; 361 case EFSBADCRC: 362 err = EXT4_ERR_EFSBADCRC; 363 break; 364 case 0: 365 case EFSCORRUPTED: 366 err = EXT4_ERR_EFSCORRUPTED; 367 break; 368 case ENOSPC: 369 err = EXT4_ERR_ENOSPC; 370 break; 371 case ENOKEY: 372 err = EXT4_ERR_ENOKEY; 373 break; 374 case EROFS: 375 err = EXT4_ERR_EROFS; 376 break; 377 case EFBIG: 378 err = EXT4_ERR_EFBIG; 379 break; 380 case EEXIST: 381 err = EXT4_ERR_EEXIST; 382 break; 383 case ERANGE: 384 err = EXT4_ERR_ERANGE; 385 break; 386 case EOVERFLOW: 387 err = EXT4_ERR_EOVERFLOW; 388 break; 389 case EBUSY: 390 err = EXT4_ERR_EBUSY; 391 break; 392 case ENOTDIR: 393 err = EXT4_ERR_ENOTDIR; 394 break; 395 case ENOTEMPTY: 396 err = EXT4_ERR_ENOTEMPTY; 397 break; 398 case ESHUTDOWN: 399 err = EXT4_ERR_ESHUTDOWN; 400 break; 401 case EFAULT: 402 err = EXT4_ERR_EFAULT; 403 break; 404 default: 405 err = EXT4_ERR_UNKNOWN; 406 } 407 es->s_last_error_errcode = err; 408 if (!es->s_first_error_time) { 409 es->s_first_error_time = es->s_last_error_time; 410 es->s_first_error_time_hi = es->s_last_error_time_hi; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 es->s_first_error_errcode = es->s_last_error_errcode; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, int error, 428 __u32 ino, __u64 block, 429 const char *func, unsigned int line) 430 { 431 __save_error_info(sb, error, ino, block, func, line); 432 if (!bdev_read_only(sb->s_bdev)) 433 ext4_commit_super(sb, 1); 434 } 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 static bool system_going_down(void) 476 { 477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 478 || system_state == SYSTEM_RESTART; 479 } 480 481 /* Deal with the reporting of failure conditions on a filesystem such as 482 * inconsistencies detected or read IO failures. 483 * 484 * On ext2, we can store the error state of the filesystem in the 485 * superblock. That is not possible on ext4, because we may have other 486 * write ordering constraints on the superblock which prevent us from 487 * writing it out straight away; and given that the journal is about to 488 * be aborted, we can't rely on the current, or future, transactions to 489 * write out the superblock safely. 490 * 491 * We'll just use the jbd2_journal_abort() error code to record an error in 492 * the journal instead. On recovery, the journal will complain about 493 * that error until we've noted it down and cleared it. 494 */ 495 496 static void ext4_handle_error(struct super_block *sb) 497 { 498 if (test_opt(sb, WARN_ON_ERROR)) 499 WARN_ON_ONCE(1); 500 501 if (sb_rdonly(sb)) 502 return; 503 504 if (!test_opt(sb, ERRORS_CONT)) { 505 journal_t *journal = EXT4_SB(sb)->s_journal; 506 507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 508 if (journal) 509 jbd2_journal_abort(journal, -EIO); 510 } 511 /* 512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 513 * could panic during 'reboot -f' as the underlying device got already 514 * disabled. 515 */ 516 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 518 /* 519 * Make sure updated value of ->s_mount_flags will be visible 520 * before ->s_flags update 521 */ 522 smp_wmb(); 523 sb->s_flags |= SB_RDONLY; 524 } else if (test_opt(sb, ERRORS_PANIC)) { 525 if (EXT4_SB(sb)->s_journal && 526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 527 return; 528 panic("EXT4-fs (device %s): panic forced after error\n", 529 sb->s_id); 530 } 531 } 532 533 #define ext4_error_ratelimit(sb) \ 534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 535 "EXT4-fs error") 536 537 void __ext4_error(struct super_block *sb, const char *function, 538 unsigned int line, int error, __u64 block, 539 const char *fmt, ...) 540 { 541 struct va_format vaf; 542 va_list args; 543 544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 545 return; 546 547 trace_ext4_error(sb, function, line); 548 if (ext4_error_ratelimit(sb)) { 549 va_start(args, fmt); 550 vaf.fmt = fmt; 551 vaf.va = &args; 552 printk(KERN_CRIT 553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 554 sb->s_id, function, line, current->comm, &vaf); 555 va_end(args); 556 } 557 save_error_info(sb, error, 0, block, function, line); 558 ext4_handle_error(sb); 559 } 560 561 void __ext4_error_inode(struct inode *inode, const char *function, 562 unsigned int line, ext4_fsblk_t block, int error, 563 const char *fmt, ...) 564 { 565 va_list args; 566 struct va_format vaf; 567 568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 569 return; 570 571 trace_ext4_error(inode->i_sb, function, line); 572 if (ext4_error_ratelimit(inode->i_sb)) { 573 va_start(args, fmt); 574 vaf.fmt = fmt; 575 vaf.va = &args; 576 if (block) 577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 578 "inode #%lu: block %llu: comm %s: %pV\n", 579 inode->i_sb->s_id, function, line, inode->i_ino, 580 block, current->comm, &vaf); 581 else 582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 583 "inode #%lu: comm %s: %pV\n", 584 inode->i_sb->s_id, function, line, inode->i_ino, 585 current->comm, &vaf); 586 va_end(args); 587 } 588 save_error_info(inode->i_sb, error, inode->i_ino, block, 589 function, line); 590 ext4_handle_error(inode->i_sb); 591 } 592 593 void __ext4_error_file(struct file *file, const char *function, 594 unsigned int line, ext4_fsblk_t block, 595 const char *fmt, ...) 596 { 597 va_list args; 598 struct va_format vaf; 599 struct inode *inode = file_inode(file); 600 char pathname[80], *path; 601 602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 603 return; 604 605 trace_ext4_error(inode->i_sb, function, line); 606 if (ext4_error_ratelimit(inode->i_sb)) { 607 path = file_path(file, pathname, sizeof(pathname)); 608 if (IS_ERR(path)) 609 path = "(unknown)"; 610 va_start(args, fmt); 611 vaf.fmt = fmt; 612 vaf.va = &args; 613 if (block) 614 printk(KERN_CRIT 615 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 616 "block %llu: comm %s: path %s: %pV\n", 617 inode->i_sb->s_id, function, line, inode->i_ino, 618 block, current->comm, path, &vaf); 619 else 620 printk(KERN_CRIT 621 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 622 "comm %s: path %s: %pV\n", 623 inode->i_sb->s_id, function, line, inode->i_ino, 624 current->comm, path, &vaf); 625 va_end(args); 626 } 627 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 628 function, line); 629 ext4_handle_error(inode->i_sb); 630 } 631 632 const char *ext4_decode_error(struct super_block *sb, int errno, 633 char nbuf[16]) 634 { 635 char *errstr = NULL; 636 637 switch (errno) { 638 case -EFSCORRUPTED: 639 errstr = "Corrupt filesystem"; 640 break; 641 case -EFSBADCRC: 642 errstr = "Filesystem failed CRC"; 643 break; 644 case -EIO: 645 errstr = "IO failure"; 646 break; 647 case -ENOMEM: 648 errstr = "Out of memory"; 649 break; 650 case -EROFS: 651 if (!sb || (EXT4_SB(sb)->s_journal && 652 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 653 errstr = "Journal has aborted"; 654 else 655 errstr = "Readonly filesystem"; 656 break; 657 default: 658 /* If the caller passed in an extra buffer for unknown 659 * errors, textualise them now. Else we just return 660 * NULL. */ 661 if (nbuf) { 662 /* Check for truncated error codes... */ 663 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 664 errstr = nbuf; 665 } 666 break; 667 } 668 669 return errstr; 670 } 671 672 /* __ext4_std_error decodes expected errors from journaling functions 673 * automatically and invokes the appropriate error response. */ 674 675 void __ext4_std_error(struct super_block *sb, const char *function, 676 unsigned int line, int errno) 677 { 678 char nbuf[16]; 679 const char *errstr; 680 681 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 682 return; 683 684 /* Special case: if the error is EROFS, and we're not already 685 * inside a transaction, then there's really no point in logging 686 * an error. */ 687 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 688 return; 689 690 if (ext4_error_ratelimit(sb)) { 691 errstr = ext4_decode_error(sb, errno, nbuf); 692 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 693 sb->s_id, function, line, errstr); 694 } 695 696 save_error_info(sb, -errno, 0, 0, function, line); 697 ext4_handle_error(sb); 698 } 699 700 /* 701 * ext4_abort is a much stronger failure handler than ext4_error. The 702 * abort function may be used to deal with unrecoverable failures such 703 * as journal IO errors or ENOMEM at a critical moment in log management. 704 * 705 * We unconditionally force the filesystem into an ABORT|READONLY state, 706 * unless the error response on the fs has been set to panic in which 707 * case we take the easy way out and panic immediately. 708 */ 709 710 void __ext4_abort(struct super_block *sb, const char *function, 711 unsigned int line, int error, const char *fmt, ...) 712 { 713 struct va_format vaf; 714 va_list args; 715 716 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 717 return; 718 719 save_error_info(sb, error, 0, 0, function, line); 720 va_start(args, fmt); 721 vaf.fmt = fmt; 722 vaf.va = &args; 723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 724 sb->s_id, function, line, &vaf); 725 va_end(args); 726 727 if (sb_rdonly(sb) == 0) { 728 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 729 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 730 /* 731 * Make sure updated value of ->s_mount_flags will be visible 732 * before ->s_flags update 733 */ 734 smp_wmb(); 735 sb->s_flags |= SB_RDONLY; 736 if (EXT4_SB(sb)->s_journal) 737 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 738 } 739 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 740 if (EXT4_SB(sb)->s_journal && 741 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 742 return; 743 panic("EXT4-fs panic from previous error\n"); 744 } 745 } 746 747 void __ext4_msg(struct super_block *sb, 748 const char *prefix, const char *fmt, ...) 749 { 750 struct va_format vaf; 751 va_list args; 752 753 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 754 return; 755 756 va_start(args, fmt); 757 vaf.fmt = fmt; 758 vaf.va = &args; 759 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 760 va_end(args); 761 } 762 763 #define ext4_warning_ratelimit(sb) \ 764 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 765 "EXT4-fs warning") 766 767 void __ext4_warning(struct super_block *sb, const char *function, 768 unsigned int line, const char *fmt, ...) 769 { 770 struct va_format vaf; 771 va_list args; 772 773 if (!ext4_warning_ratelimit(sb)) 774 return; 775 776 va_start(args, fmt); 777 vaf.fmt = fmt; 778 vaf.va = &args; 779 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 780 sb->s_id, function, line, &vaf); 781 va_end(args); 782 } 783 784 void __ext4_warning_inode(const struct inode *inode, const char *function, 785 unsigned int line, const char *fmt, ...) 786 { 787 struct va_format vaf; 788 va_list args; 789 790 if (!ext4_warning_ratelimit(inode->i_sb)) 791 return; 792 793 va_start(args, fmt); 794 vaf.fmt = fmt; 795 vaf.va = &args; 796 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 797 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 798 function, line, inode->i_ino, current->comm, &vaf); 799 va_end(args); 800 } 801 802 void __ext4_grp_locked_error(const char *function, unsigned int line, 803 struct super_block *sb, ext4_group_t grp, 804 unsigned long ino, ext4_fsblk_t block, 805 const char *fmt, ...) 806 __releases(bitlock) 807 __acquires(bitlock) 808 { 809 struct va_format vaf; 810 va_list args; 811 812 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 813 return; 814 815 trace_ext4_error(sb, function, line); 816 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 817 818 if (ext4_error_ratelimit(sb)) { 819 va_start(args, fmt); 820 vaf.fmt = fmt; 821 vaf.va = &args; 822 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 823 sb->s_id, function, line, grp); 824 if (ino) 825 printk(KERN_CONT "inode %lu: ", ino); 826 if (block) 827 printk(KERN_CONT "block %llu:", 828 (unsigned long long) block); 829 printk(KERN_CONT "%pV\n", &vaf); 830 va_end(args); 831 } 832 833 if (test_opt(sb, WARN_ON_ERROR)) 834 WARN_ON_ONCE(1); 835 836 if (test_opt(sb, ERRORS_CONT)) { 837 ext4_commit_super(sb, 0); 838 return; 839 } 840 841 ext4_unlock_group(sb, grp); 842 ext4_commit_super(sb, 1); 843 ext4_handle_error(sb); 844 /* 845 * We only get here in the ERRORS_RO case; relocking the group 846 * may be dangerous, but nothing bad will happen since the 847 * filesystem will have already been marked read/only and the 848 * journal has been aborted. We return 1 as a hint to callers 849 * who might what to use the return value from 850 * ext4_grp_locked_error() to distinguish between the 851 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 852 * aggressively from the ext4 function in question, with a 853 * more appropriate error code. 854 */ 855 ext4_lock_group(sb, grp); 856 return; 857 } 858 859 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 860 ext4_group_t group, 861 unsigned int flags) 862 { 863 struct ext4_sb_info *sbi = EXT4_SB(sb); 864 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 865 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 866 int ret; 867 868 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 869 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 870 &grp->bb_state); 871 if (!ret) 872 percpu_counter_sub(&sbi->s_freeclusters_counter, 873 grp->bb_free); 874 } 875 876 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 877 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 878 &grp->bb_state); 879 if (!ret && gdp) { 880 int count; 881 882 count = ext4_free_inodes_count(sb, gdp); 883 percpu_counter_sub(&sbi->s_freeinodes_counter, 884 count); 885 } 886 } 887 } 888 889 void ext4_update_dynamic_rev(struct super_block *sb) 890 { 891 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 892 893 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 894 return; 895 896 ext4_warning(sb, 897 "updating to rev %d because of new feature flag, " 898 "running e2fsck is recommended", 899 EXT4_DYNAMIC_REV); 900 901 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 902 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 903 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 904 /* leave es->s_feature_*compat flags alone */ 905 /* es->s_uuid will be set by e2fsck if empty */ 906 907 /* 908 * The rest of the superblock fields should be zero, and if not it 909 * means they are likely already in use, so leave them alone. We 910 * can leave it up to e2fsck to clean up any inconsistencies there. 911 */ 912 } 913 914 /* 915 * Open the external journal device 916 */ 917 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 918 { 919 struct block_device *bdev; 920 921 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 922 if (IS_ERR(bdev)) 923 goto fail; 924 return bdev; 925 926 fail: 927 ext4_msg(sb, KERN_ERR, 928 "failed to open journal device unknown-block(%u,%u) %ld", 929 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 930 return NULL; 931 } 932 933 /* 934 * Release the journal device 935 */ 936 static void ext4_blkdev_put(struct block_device *bdev) 937 { 938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 939 } 940 941 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 942 { 943 struct block_device *bdev; 944 bdev = sbi->journal_bdev; 945 if (bdev) { 946 ext4_blkdev_put(bdev); 947 sbi->journal_bdev = NULL; 948 } 949 } 950 951 static inline struct inode *orphan_list_entry(struct list_head *l) 952 { 953 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 954 } 955 956 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 957 { 958 struct list_head *l; 959 960 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 961 le32_to_cpu(sbi->s_es->s_last_orphan)); 962 963 printk(KERN_ERR "sb_info orphan list:\n"); 964 list_for_each(l, &sbi->s_orphan) { 965 struct inode *inode = orphan_list_entry(l); 966 printk(KERN_ERR " " 967 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 968 inode->i_sb->s_id, inode->i_ino, inode, 969 inode->i_mode, inode->i_nlink, 970 NEXT_ORPHAN(inode)); 971 } 972 } 973 974 #ifdef CONFIG_QUOTA 975 static int ext4_quota_off(struct super_block *sb, int type); 976 977 static inline void ext4_quota_off_umount(struct super_block *sb) 978 { 979 int type; 980 981 /* Use our quota_off function to clear inode flags etc. */ 982 for (type = 0; type < EXT4_MAXQUOTAS; type++) 983 ext4_quota_off(sb, type); 984 } 985 986 /* 987 * This is a helper function which is used in the mount/remount 988 * codepaths (which holds s_umount) to fetch the quota file name. 989 */ 990 static inline char *get_qf_name(struct super_block *sb, 991 struct ext4_sb_info *sbi, 992 int type) 993 { 994 return rcu_dereference_protected(sbi->s_qf_names[type], 995 lockdep_is_held(&sb->s_umount)); 996 } 997 #else 998 static inline void ext4_quota_off_umount(struct super_block *sb) 999 { 1000 } 1001 #endif 1002 1003 static void ext4_put_super(struct super_block *sb) 1004 { 1005 struct ext4_sb_info *sbi = EXT4_SB(sb); 1006 struct ext4_super_block *es = sbi->s_es; 1007 struct buffer_head **group_desc; 1008 struct flex_groups **flex_groups; 1009 int aborted = 0; 1010 int i, err; 1011 1012 ext4_unregister_li_request(sb); 1013 ext4_quota_off_umount(sb); 1014 1015 destroy_workqueue(sbi->rsv_conversion_wq); 1016 1017 /* 1018 * Unregister sysfs before destroying jbd2 journal. 1019 * Since we could still access attr_journal_task attribute via sysfs 1020 * path which could have sbi->s_journal->j_task as NULL 1021 */ 1022 ext4_unregister_sysfs(sb); 1023 1024 if (sbi->s_journal) { 1025 aborted = is_journal_aborted(sbi->s_journal); 1026 err = jbd2_journal_destroy(sbi->s_journal); 1027 sbi->s_journal = NULL; 1028 if ((err < 0) && !aborted) { 1029 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1030 } 1031 } 1032 1033 ext4_es_unregister_shrinker(sbi); 1034 del_timer_sync(&sbi->s_err_report); 1035 ext4_release_system_zone(sb); 1036 ext4_mb_release(sb); 1037 ext4_ext_release(sb); 1038 1039 if (!sb_rdonly(sb) && !aborted) { 1040 ext4_clear_feature_journal_needs_recovery(sb); 1041 es->s_state = cpu_to_le16(sbi->s_mount_state); 1042 } 1043 if (!sb_rdonly(sb)) 1044 ext4_commit_super(sb, 1); 1045 1046 rcu_read_lock(); 1047 group_desc = rcu_dereference(sbi->s_group_desc); 1048 for (i = 0; i < sbi->s_gdb_count; i++) 1049 brelse(group_desc[i]); 1050 kvfree(group_desc); 1051 flex_groups = rcu_dereference(sbi->s_flex_groups); 1052 if (flex_groups) { 1053 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1054 kvfree(flex_groups[i]); 1055 kvfree(flex_groups); 1056 } 1057 rcu_read_unlock(); 1058 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1059 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1060 percpu_counter_destroy(&sbi->s_dirs_counter); 1061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1062 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1063 #ifdef CONFIG_QUOTA 1064 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1065 kfree(get_qf_name(sb, sbi, i)); 1066 #endif 1067 1068 /* Debugging code just in case the in-memory inode orphan list 1069 * isn't empty. The on-disk one can be non-empty if we've 1070 * detected an error and taken the fs readonly, but the 1071 * in-memory list had better be clean by this point. */ 1072 if (!list_empty(&sbi->s_orphan)) 1073 dump_orphan_list(sb, sbi); 1074 J_ASSERT(list_empty(&sbi->s_orphan)); 1075 1076 sync_blockdev(sb->s_bdev); 1077 invalidate_bdev(sb->s_bdev); 1078 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1079 /* 1080 * Invalidate the journal device's buffers. We don't want them 1081 * floating about in memory - the physical journal device may 1082 * hotswapped, and it breaks the `ro-after' testing code. 1083 */ 1084 sync_blockdev(sbi->journal_bdev); 1085 invalidate_bdev(sbi->journal_bdev); 1086 ext4_blkdev_remove(sbi); 1087 } 1088 1089 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1090 sbi->s_ea_inode_cache = NULL; 1091 1092 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1093 sbi->s_ea_block_cache = NULL; 1094 1095 if (sbi->s_mmp_tsk) 1096 kthread_stop(sbi->s_mmp_tsk); 1097 brelse(sbi->s_sbh); 1098 sb->s_fs_info = NULL; 1099 /* 1100 * Now that we are completely done shutting down the 1101 * superblock, we need to actually destroy the kobject. 1102 */ 1103 kobject_put(&sbi->s_kobj); 1104 wait_for_completion(&sbi->s_kobj_unregister); 1105 if (sbi->s_chksum_driver) 1106 crypto_free_shash(sbi->s_chksum_driver); 1107 kfree(sbi->s_blockgroup_lock); 1108 fs_put_dax(sbi->s_daxdev); 1109 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx); 1110 #ifdef CONFIG_UNICODE 1111 utf8_unload(sbi->s_encoding); 1112 #endif 1113 kfree(sbi); 1114 } 1115 1116 static struct kmem_cache *ext4_inode_cachep; 1117 1118 /* 1119 * Called inside transaction, so use GFP_NOFS 1120 */ 1121 static struct inode *ext4_alloc_inode(struct super_block *sb) 1122 { 1123 struct ext4_inode_info *ei; 1124 1125 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1126 if (!ei) 1127 return NULL; 1128 1129 inode_set_iversion(&ei->vfs_inode, 1); 1130 spin_lock_init(&ei->i_raw_lock); 1131 INIT_LIST_HEAD(&ei->i_prealloc_list); 1132 spin_lock_init(&ei->i_prealloc_lock); 1133 ext4_es_init_tree(&ei->i_es_tree); 1134 rwlock_init(&ei->i_es_lock); 1135 INIT_LIST_HEAD(&ei->i_es_list); 1136 ei->i_es_all_nr = 0; 1137 ei->i_es_shk_nr = 0; 1138 ei->i_es_shrink_lblk = 0; 1139 ei->i_reserved_data_blocks = 0; 1140 spin_lock_init(&(ei->i_block_reservation_lock)); 1141 ext4_init_pending_tree(&ei->i_pending_tree); 1142 #ifdef CONFIG_QUOTA 1143 ei->i_reserved_quota = 0; 1144 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1145 #endif 1146 ei->jinode = NULL; 1147 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1148 spin_lock_init(&ei->i_completed_io_lock); 1149 ei->i_sync_tid = 0; 1150 ei->i_datasync_tid = 0; 1151 atomic_set(&ei->i_unwritten, 0); 1152 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1153 return &ei->vfs_inode; 1154 } 1155 1156 static int ext4_drop_inode(struct inode *inode) 1157 { 1158 int drop = generic_drop_inode(inode); 1159 1160 if (!drop) 1161 drop = fscrypt_drop_inode(inode); 1162 1163 trace_ext4_drop_inode(inode, drop); 1164 return drop; 1165 } 1166 1167 static void ext4_free_in_core_inode(struct inode *inode) 1168 { 1169 fscrypt_free_inode(inode); 1170 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1171 } 1172 1173 static void ext4_destroy_inode(struct inode *inode) 1174 { 1175 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1176 ext4_msg(inode->i_sb, KERN_ERR, 1177 "Inode %lu (%p): orphan list check failed!", 1178 inode->i_ino, EXT4_I(inode)); 1179 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1180 EXT4_I(inode), sizeof(struct ext4_inode_info), 1181 true); 1182 dump_stack(); 1183 } 1184 } 1185 1186 static void init_once(void *foo) 1187 { 1188 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1189 1190 INIT_LIST_HEAD(&ei->i_orphan); 1191 init_rwsem(&ei->xattr_sem); 1192 init_rwsem(&ei->i_data_sem); 1193 init_rwsem(&ei->i_mmap_sem); 1194 inode_init_once(&ei->vfs_inode); 1195 } 1196 1197 static int __init init_inodecache(void) 1198 { 1199 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1200 sizeof(struct ext4_inode_info), 0, 1201 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1202 SLAB_ACCOUNT), 1203 offsetof(struct ext4_inode_info, i_data), 1204 sizeof_field(struct ext4_inode_info, i_data), 1205 init_once); 1206 if (ext4_inode_cachep == NULL) 1207 return -ENOMEM; 1208 return 0; 1209 } 1210 1211 static void destroy_inodecache(void) 1212 { 1213 /* 1214 * Make sure all delayed rcu free inodes are flushed before we 1215 * destroy cache. 1216 */ 1217 rcu_barrier(); 1218 kmem_cache_destroy(ext4_inode_cachep); 1219 } 1220 1221 void ext4_clear_inode(struct inode *inode) 1222 { 1223 invalidate_inode_buffers(inode); 1224 clear_inode(inode); 1225 ext4_discard_preallocations(inode); 1226 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1227 dquot_drop(inode); 1228 if (EXT4_I(inode)->jinode) { 1229 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1230 EXT4_I(inode)->jinode); 1231 jbd2_free_inode(EXT4_I(inode)->jinode); 1232 EXT4_I(inode)->jinode = NULL; 1233 } 1234 fscrypt_put_encryption_info(inode); 1235 fsverity_cleanup_inode(inode); 1236 } 1237 1238 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1239 u64 ino, u32 generation) 1240 { 1241 struct inode *inode; 1242 1243 /* 1244 * Currently we don't know the generation for parent directory, so 1245 * a generation of 0 means "accept any" 1246 */ 1247 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1248 if (IS_ERR(inode)) 1249 return ERR_CAST(inode); 1250 if (generation && inode->i_generation != generation) { 1251 iput(inode); 1252 return ERR_PTR(-ESTALE); 1253 } 1254 1255 return inode; 1256 } 1257 1258 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1259 int fh_len, int fh_type) 1260 { 1261 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1262 ext4_nfs_get_inode); 1263 } 1264 1265 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1266 int fh_len, int fh_type) 1267 { 1268 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1269 ext4_nfs_get_inode); 1270 } 1271 1272 static int ext4_nfs_commit_metadata(struct inode *inode) 1273 { 1274 struct writeback_control wbc = { 1275 .sync_mode = WB_SYNC_ALL 1276 }; 1277 1278 trace_ext4_nfs_commit_metadata(inode); 1279 return ext4_write_inode(inode, &wbc); 1280 } 1281 1282 /* 1283 * Try to release metadata pages (indirect blocks, directories) which are 1284 * mapped via the block device. Since these pages could have journal heads 1285 * which would prevent try_to_free_buffers() from freeing them, we must use 1286 * jbd2 layer's try_to_free_buffers() function to release them. 1287 */ 1288 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1289 gfp_t wait) 1290 { 1291 journal_t *journal = EXT4_SB(sb)->s_journal; 1292 1293 WARN_ON(PageChecked(page)); 1294 if (!page_has_buffers(page)) 1295 return 0; 1296 if (journal) 1297 return jbd2_journal_try_to_free_buffers(journal, page, 1298 wait & ~__GFP_DIRECT_RECLAIM); 1299 return try_to_free_buffers(page); 1300 } 1301 1302 #ifdef CONFIG_FS_ENCRYPTION 1303 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1304 { 1305 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1306 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1307 } 1308 1309 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1310 void *fs_data) 1311 { 1312 handle_t *handle = fs_data; 1313 int res, res2, credits, retries = 0; 1314 1315 /* 1316 * Encrypting the root directory is not allowed because e2fsck expects 1317 * lost+found to exist and be unencrypted, and encrypting the root 1318 * directory would imply encrypting the lost+found directory as well as 1319 * the filename "lost+found" itself. 1320 */ 1321 if (inode->i_ino == EXT4_ROOT_INO) 1322 return -EPERM; 1323 1324 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1325 return -EINVAL; 1326 1327 res = ext4_convert_inline_data(inode); 1328 if (res) 1329 return res; 1330 1331 /* 1332 * If a journal handle was specified, then the encryption context is 1333 * being set on a new inode via inheritance and is part of a larger 1334 * transaction to create the inode. Otherwise the encryption context is 1335 * being set on an existing inode in its own transaction. Only in the 1336 * latter case should the "retry on ENOSPC" logic be used. 1337 */ 1338 1339 if (handle) { 1340 res = ext4_xattr_set_handle(handle, inode, 1341 EXT4_XATTR_INDEX_ENCRYPTION, 1342 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1343 ctx, len, 0); 1344 if (!res) { 1345 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1346 ext4_clear_inode_state(inode, 1347 EXT4_STATE_MAY_INLINE_DATA); 1348 /* 1349 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1350 * S_DAX may be disabled 1351 */ 1352 ext4_set_inode_flags(inode); 1353 } 1354 return res; 1355 } 1356 1357 res = dquot_initialize(inode); 1358 if (res) 1359 return res; 1360 retry: 1361 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1362 &credits); 1363 if (res) 1364 return res; 1365 1366 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1367 if (IS_ERR(handle)) 1368 return PTR_ERR(handle); 1369 1370 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1371 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1372 ctx, len, 0); 1373 if (!res) { 1374 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1375 /* 1376 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1377 * S_DAX may be disabled 1378 */ 1379 ext4_set_inode_flags(inode); 1380 res = ext4_mark_inode_dirty(handle, inode); 1381 if (res) 1382 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1383 } 1384 res2 = ext4_journal_stop(handle); 1385 1386 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1387 goto retry; 1388 if (!res) 1389 res = res2; 1390 return res; 1391 } 1392 1393 static const union fscrypt_context * 1394 ext4_get_dummy_context(struct super_block *sb) 1395 { 1396 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx; 1397 } 1398 1399 static bool ext4_has_stable_inodes(struct super_block *sb) 1400 { 1401 return ext4_has_feature_stable_inodes(sb); 1402 } 1403 1404 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1405 int *ino_bits_ret, int *lblk_bits_ret) 1406 { 1407 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1408 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1409 } 1410 1411 static const struct fscrypt_operations ext4_cryptops = { 1412 .key_prefix = "ext4:", 1413 .get_context = ext4_get_context, 1414 .set_context = ext4_set_context, 1415 .get_dummy_context = ext4_get_dummy_context, 1416 .empty_dir = ext4_empty_dir, 1417 .max_namelen = EXT4_NAME_LEN, 1418 .has_stable_inodes = ext4_has_stable_inodes, 1419 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1420 }; 1421 #endif 1422 1423 #ifdef CONFIG_QUOTA 1424 static const char * const quotatypes[] = INITQFNAMES; 1425 #define QTYPE2NAME(t) (quotatypes[t]) 1426 1427 static int ext4_write_dquot(struct dquot *dquot); 1428 static int ext4_acquire_dquot(struct dquot *dquot); 1429 static int ext4_release_dquot(struct dquot *dquot); 1430 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1431 static int ext4_write_info(struct super_block *sb, int type); 1432 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1433 const struct path *path); 1434 static int ext4_quota_on_mount(struct super_block *sb, int type); 1435 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1436 size_t len, loff_t off); 1437 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1438 const char *data, size_t len, loff_t off); 1439 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1440 unsigned int flags); 1441 static int ext4_enable_quotas(struct super_block *sb); 1442 1443 static struct dquot **ext4_get_dquots(struct inode *inode) 1444 { 1445 return EXT4_I(inode)->i_dquot; 1446 } 1447 1448 static const struct dquot_operations ext4_quota_operations = { 1449 .get_reserved_space = ext4_get_reserved_space, 1450 .write_dquot = ext4_write_dquot, 1451 .acquire_dquot = ext4_acquire_dquot, 1452 .release_dquot = ext4_release_dquot, 1453 .mark_dirty = ext4_mark_dquot_dirty, 1454 .write_info = ext4_write_info, 1455 .alloc_dquot = dquot_alloc, 1456 .destroy_dquot = dquot_destroy, 1457 .get_projid = ext4_get_projid, 1458 .get_inode_usage = ext4_get_inode_usage, 1459 .get_next_id = dquot_get_next_id, 1460 }; 1461 1462 static const struct quotactl_ops ext4_qctl_operations = { 1463 .quota_on = ext4_quota_on, 1464 .quota_off = ext4_quota_off, 1465 .quota_sync = dquot_quota_sync, 1466 .get_state = dquot_get_state, 1467 .set_info = dquot_set_dqinfo, 1468 .get_dqblk = dquot_get_dqblk, 1469 .set_dqblk = dquot_set_dqblk, 1470 .get_nextdqblk = dquot_get_next_dqblk, 1471 }; 1472 #endif 1473 1474 static const struct super_operations ext4_sops = { 1475 .alloc_inode = ext4_alloc_inode, 1476 .free_inode = ext4_free_in_core_inode, 1477 .destroy_inode = ext4_destroy_inode, 1478 .write_inode = ext4_write_inode, 1479 .dirty_inode = ext4_dirty_inode, 1480 .drop_inode = ext4_drop_inode, 1481 .evict_inode = ext4_evict_inode, 1482 .put_super = ext4_put_super, 1483 .sync_fs = ext4_sync_fs, 1484 .freeze_fs = ext4_freeze, 1485 .unfreeze_fs = ext4_unfreeze, 1486 .statfs = ext4_statfs, 1487 .remount_fs = ext4_remount, 1488 .show_options = ext4_show_options, 1489 #ifdef CONFIG_QUOTA 1490 .quota_read = ext4_quota_read, 1491 .quota_write = ext4_quota_write, 1492 .get_dquots = ext4_get_dquots, 1493 #endif 1494 .bdev_try_to_free_page = bdev_try_to_free_page, 1495 }; 1496 1497 static const struct export_operations ext4_export_ops = { 1498 .fh_to_dentry = ext4_fh_to_dentry, 1499 .fh_to_parent = ext4_fh_to_parent, 1500 .get_parent = ext4_get_parent, 1501 .commit_metadata = ext4_nfs_commit_metadata, 1502 }; 1503 1504 enum { 1505 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1506 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1507 Opt_nouid32, Opt_debug, Opt_removed, 1508 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1509 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1510 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1511 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1512 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1513 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1514 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1515 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1516 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1517 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1518 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1519 Opt_nowarn_on_error, Opt_mblk_io_submit, 1520 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1521 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1522 Opt_inode_readahead_blks, Opt_journal_ioprio, 1523 Opt_dioread_nolock, Opt_dioread_lock, 1524 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1525 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1526 }; 1527 1528 static const match_table_t tokens = { 1529 {Opt_bsd_df, "bsddf"}, 1530 {Opt_minix_df, "minixdf"}, 1531 {Opt_grpid, "grpid"}, 1532 {Opt_grpid, "bsdgroups"}, 1533 {Opt_nogrpid, "nogrpid"}, 1534 {Opt_nogrpid, "sysvgroups"}, 1535 {Opt_resgid, "resgid=%u"}, 1536 {Opt_resuid, "resuid=%u"}, 1537 {Opt_sb, "sb=%u"}, 1538 {Opt_err_cont, "errors=continue"}, 1539 {Opt_err_panic, "errors=panic"}, 1540 {Opt_err_ro, "errors=remount-ro"}, 1541 {Opt_nouid32, "nouid32"}, 1542 {Opt_debug, "debug"}, 1543 {Opt_removed, "oldalloc"}, 1544 {Opt_removed, "orlov"}, 1545 {Opt_user_xattr, "user_xattr"}, 1546 {Opt_nouser_xattr, "nouser_xattr"}, 1547 {Opt_acl, "acl"}, 1548 {Opt_noacl, "noacl"}, 1549 {Opt_noload, "norecovery"}, 1550 {Opt_noload, "noload"}, 1551 {Opt_removed, "nobh"}, 1552 {Opt_removed, "bh"}, 1553 {Opt_commit, "commit=%u"}, 1554 {Opt_min_batch_time, "min_batch_time=%u"}, 1555 {Opt_max_batch_time, "max_batch_time=%u"}, 1556 {Opt_journal_dev, "journal_dev=%u"}, 1557 {Opt_journal_path, "journal_path=%s"}, 1558 {Opt_journal_checksum, "journal_checksum"}, 1559 {Opt_nojournal_checksum, "nojournal_checksum"}, 1560 {Opt_journal_async_commit, "journal_async_commit"}, 1561 {Opt_abort, "abort"}, 1562 {Opt_data_journal, "data=journal"}, 1563 {Opt_data_ordered, "data=ordered"}, 1564 {Opt_data_writeback, "data=writeback"}, 1565 {Opt_data_err_abort, "data_err=abort"}, 1566 {Opt_data_err_ignore, "data_err=ignore"}, 1567 {Opt_offusrjquota, "usrjquota="}, 1568 {Opt_usrjquota, "usrjquota=%s"}, 1569 {Opt_offgrpjquota, "grpjquota="}, 1570 {Opt_grpjquota, "grpjquota=%s"}, 1571 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1572 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1573 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1574 {Opt_grpquota, "grpquota"}, 1575 {Opt_noquota, "noquota"}, 1576 {Opt_quota, "quota"}, 1577 {Opt_usrquota, "usrquota"}, 1578 {Opt_prjquota, "prjquota"}, 1579 {Opt_barrier, "barrier=%u"}, 1580 {Opt_barrier, "barrier"}, 1581 {Opt_nobarrier, "nobarrier"}, 1582 {Opt_i_version, "i_version"}, 1583 {Opt_dax, "dax"}, 1584 {Opt_stripe, "stripe=%u"}, 1585 {Opt_delalloc, "delalloc"}, 1586 {Opt_warn_on_error, "warn_on_error"}, 1587 {Opt_nowarn_on_error, "nowarn_on_error"}, 1588 {Opt_lazytime, "lazytime"}, 1589 {Opt_nolazytime, "nolazytime"}, 1590 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1591 {Opt_nodelalloc, "nodelalloc"}, 1592 {Opt_removed, "mblk_io_submit"}, 1593 {Opt_removed, "nomblk_io_submit"}, 1594 {Opt_block_validity, "block_validity"}, 1595 {Opt_noblock_validity, "noblock_validity"}, 1596 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1597 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1598 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1599 {Opt_auto_da_alloc, "auto_da_alloc"}, 1600 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1601 {Opt_dioread_nolock, "dioread_nolock"}, 1602 {Opt_dioread_lock, "nodioread_nolock"}, 1603 {Opt_dioread_lock, "dioread_lock"}, 1604 {Opt_discard, "discard"}, 1605 {Opt_nodiscard, "nodiscard"}, 1606 {Opt_init_itable, "init_itable=%u"}, 1607 {Opt_init_itable, "init_itable"}, 1608 {Opt_noinit_itable, "noinit_itable"}, 1609 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1610 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1611 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1612 {Opt_nombcache, "nombcache"}, 1613 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1614 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1615 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1616 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1617 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1618 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1619 {Opt_err, NULL}, 1620 }; 1621 1622 static ext4_fsblk_t get_sb_block(void **data) 1623 { 1624 ext4_fsblk_t sb_block; 1625 char *options = (char *) *data; 1626 1627 if (!options || strncmp(options, "sb=", 3) != 0) 1628 return 1; /* Default location */ 1629 1630 options += 3; 1631 /* TODO: use simple_strtoll with >32bit ext4 */ 1632 sb_block = simple_strtoul(options, &options, 0); 1633 if (*options && *options != ',') { 1634 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1635 (char *) *data); 1636 return 1; 1637 } 1638 if (*options == ',') 1639 options++; 1640 *data = (void *) options; 1641 1642 return sb_block; 1643 } 1644 1645 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1646 static const char deprecated_msg[] = 1647 "Mount option \"%s\" will be removed by %s\n" 1648 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1649 1650 #ifdef CONFIG_QUOTA 1651 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1652 { 1653 struct ext4_sb_info *sbi = EXT4_SB(sb); 1654 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1655 int ret = -1; 1656 1657 if (sb_any_quota_loaded(sb) && !old_qname) { 1658 ext4_msg(sb, KERN_ERR, 1659 "Cannot change journaled " 1660 "quota options when quota turned on"); 1661 return -1; 1662 } 1663 if (ext4_has_feature_quota(sb)) { 1664 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1665 "ignored when QUOTA feature is enabled"); 1666 return 1; 1667 } 1668 qname = match_strdup(args); 1669 if (!qname) { 1670 ext4_msg(sb, KERN_ERR, 1671 "Not enough memory for storing quotafile name"); 1672 return -1; 1673 } 1674 if (old_qname) { 1675 if (strcmp(old_qname, qname) == 0) 1676 ret = 1; 1677 else 1678 ext4_msg(sb, KERN_ERR, 1679 "%s quota file already specified", 1680 QTYPE2NAME(qtype)); 1681 goto errout; 1682 } 1683 if (strchr(qname, '/')) { 1684 ext4_msg(sb, KERN_ERR, 1685 "quotafile must be on filesystem root"); 1686 goto errout; 1687 } 1688 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1689 set_opt(sb, QUOTA); 1690 return 1; 1691 errout: 1692 kfree(qname); 1693 return ret; 1694 } 1695 1696 static int clear_qf_name(struct super_block *sb, int qtype) 1697 { 1698 1699 struct ext4_sb_info *sbi = EXT4_SB(sb); 1700 char *old_qname = get_qf_name(sb, sbi, qtype); 1701 1702 if (sb_any_quota_loaded(sb) && old_qname) { 1703 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1704 " when quota turned on"); 1705 return -1; 1706 } 1707 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1708 synchronize_rcu(); 1709 kfree(old_qname); 1710 return 1; 1711 } 1712 #endif 1713 1714 #define MOPT_SET 0x0001 1715 #define MOPT_CLEAR 0x0002 1716 #define MOPT_NOSUPPORT 0x0004 1717 #define MOPT_EXPLICIT 0x0008 1718 #define MOPT_CLEAR_ERR 0x0010 1719 #define MOPT_GTE0 0x0020 1720 #ifdef CONFIG_QUOTA 1721 #define MOPT_Q 0 1722 #define MOPT_QFMT 0x0040 1723 #else 1724 #define MOPT_Q MOPT_NOSUPPORT 1725 #define MOPT_QFMT MOPT_NOSUPPORT 1726 #endif 1727 #define MOPT_DATAJ 0x0080 1728 #define MOPT_NO_EXT2 0x0100 1729 #define MOPT_NO_EXT3 0x0200 1730 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1731 #define MOPT_STRING 0x0400 1732 1733 static const struct mount_opts { 1734 int token; 1735 int mount_opt; 1736 int flags; 1737 } ext4_mount_opts[] = { 1738 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1739 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1740 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1741 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1742 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1743 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1744 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1745 MOPT_EXT4_ONLY | MOPT_SET}, 1746 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1747 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1748 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1749 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1750 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1751 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1752 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1753 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1754 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1755 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1756 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1757 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1758 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1759 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1760 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1761 EXT4_MOUNT_JOURNAL_CHECKSUM), 1762 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1763 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1764 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1765 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1766 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1767 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1768 MOPT_NO_EXT2}, 1769 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1770 MOPT_NO_EXT2}, 1771 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1772 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1773 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1774 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1775 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1776 {Opt_commit, 0, MOPT_GTE0}, 1777 {Opt_max_batch_time, 0, MOPT_GTE0}, 1778 {Opt_min_batch_time, 0, MOPT_GTE0}, 1779 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1780 {Opt_init_itable, 0, MOPT_GTE0}, 1781 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1782 {Opt_stripe, 0, MOPT_GTE0}, 1783 {Opt_resuid, 0, MOPT_GTE0}, 1784 {Opt_resgid, 0, MOPT_GTE0}, 1785 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1786 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1787 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1788 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1789 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1790 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1791 MOPT_NO_EXT2 | MOPT_DATAJ}, 1792 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1793 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1794 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1795 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1796 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1797 #else 1798 {Opt_acl, 0, MOPT_NOSUPPORT}, 1799 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1800 #endif 1801 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1802 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1803 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1804 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1805 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1806 MOPT_SET | MOPT_Q}, 1807 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1808 MOPT_SET | MOPT_Q}, 1809 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1810 MOPT_SET | MOPT_Q}, 1811 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1812 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1813 MOPT_CLEAR | MOPT_Q}, 1814 {Opt_usrjquota, 0, MOPT_Q}, 1815 {Opt_grpjquota, 0, MOPT_Q}, 1816 {Opt_offusrjquota, 0, MOPT_Q}, 1817 {Opt_offgrpjquota, 0, MOPT_Q}, 1818 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1819 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1820 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1821 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1822 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1823 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1824 {Opt_err, 0, 0} 1825 }; 1826 1827 #ifdef CONFIG_UNICODE 1828 static const struct ext4_sb_encodings { 1829 __u16 magic; 1830 char *name; 1831 char *version; 1832 } ext4_sb_encoding_map[] = { 1833 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1834 }; 1835 1836 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1837 const struct ext4_sb_encodings **encoding, 1838 __u16 *flags) 1839 { 1840 __u16 magic = le16_to_cpu(es->s_encoding); 1841 int i; 1842 1843 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1844 if (magic == ext4_sb_encoding_map[i].magic) 1845 break; 1846 1847 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1848 return -EINVAL; 1849 1850 *encoding = &ext4_sb_encoding_map[i]; 1851 *flags = le16_to_cpu(es->s_encoding_flags); 1852 1853 return 0; 1854 } 1855 #endif 1856 1857 static int ext4_set_test_dummy_encryption(struct super_block *sb, 1858 const char *opt, 1859 const substring_t *arg, 1860 bool is_remount) 1861 { 1862 #ifdef CONFIG_FS_ENCRYPTION 1863 struct ext4_sb_info *sbi = EXT4_SB(sb); 1864 int err; 1865 1866 /* 1867 * This mount option is just for testing, and it's not worthwhile to 1868 * implement the extra complexity (e.g. RCU protection) that would be 1869 * needed to allow it to be set or changed during remount. We do allow 1870 * it to be specified during remount, but only if there is no change. 1871 */ 1872 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) { 1873 ext4_msg(sb, KERN_WARNING, 1874 "Can't set test_dummy_encryption on remount"); 1875 return -1; 1876 } 1877 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx); 1878 if (err) { 1879 if (err == -EEXIST) 1880 ext4_msg(sb, KERN_WARNING, 1881 "Can't change test_dummy_encryption on remount"); 1882 else if (err == -EINVAL) 1883 ext4_msg(sb, KERN_WARNING, 1884 "Value of option \"%s\" is unrecognized", opt); 1885 else 1886 ext4_msg(sb, KERN_WARNING, 1887 "Error processing option \"%s\" [%d]", 1888 opt, err); 1889 return -1; 1890 } 1891 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 1892 #else 1893 ext4_msg(sb, KERN_WARNING, 1894 "Test dummy encryption mount option ignored"); 1895 #endif 1896 return 1; 1897 } 1898 1899 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1900 substring_t *args, unsigned long *journal_devnum, 1901 unsigned int *journal_ioprio, int is_remount) 1902 { 1903 struct ext4_sb_info *sbi = EXT4_SB(sb); 1904 const struct mount_opts *m; 1905 kuid_t uid; 1906 kgid_t gid; 1907 int arg = 0; 1908 1909 #ifdef CONFIG_QUOTA 1910 if (token == Opt_usrjquota) 1911 return set_qf_name(sb, USRQUOTA, &args[0]); 1912 else if (token == Opt_grpjquota) 1913 return set_qf_name(sb, GRPQUOTA, &args[0]); 1914 else if (token == Opt_offusrjquota) 1915 return clear_qf_name(sb, USRQUOTA); 1916 else if (token == Opt_offgrpjquota) 1917 return clear_qf_name(sb, GRPQUOTA); 1918 #endif 1919 switch (token) { 1920 case Opt_noacl: 1921 case Opt_nouser_xattr: 1922 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1923 break; 1924 case Opt_sb: 1925 return 1; /* handled by get_sb_block() */ 1926 case Opt_removed: 1927 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1928 return 1; 1929 case Opt_abort: 1930 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1931 return 1; 1932 case Opt_i_version: 1933 sb->s_flags |= SB_I_VERSION; 1934 return 1; 1935 case Opt_lazytime: 1936 sb->s_flags |= SB_LAZYTIME; 1937 return 1; 1938 case Opt_nolazytime: 1939 sb->s_flags &= ~SB_LAZYTIME; 1940 return 1; 1941 } 1942 1943 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1944 if (token == m->token) 1945 break; 1946 1947 if (m->token == Opt_err) { 1948 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1949 "or missing value", opt); 1950 return -1; 1951 } 1952 1953 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1954 ext4_msg(sb, KERN_ERR, 1955 "Mount option \"%s\" incompatible with ext2", opt); 1956 return -1; 1957 } 1958 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1959 ext4_msg(sb, KERN_ERR, 1960 "Mount option \"%s\" incompatible with ext3", opt); 1961 return -1; 1962 } 1963 1964 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1965 return -1; 1966 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1967 return -1; 1968 if (m->flags & MOPT_EXPLICIT) { 1969 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1970 set_opt2(sb, EXPLICIT_DELALLOC); 1971 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1972 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1973 } else 1974 return -1; 1975 } 1976 if (m->flags & MOPT_CLEAR_ERR) 1977 clear_opt(sb, ERRORS_MASK); 1978 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1979 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1980 "options when quota turned on"); 1981 return -1; 1982 } 1983 1984 if (m->flags & MOPT_NOSUPPORT) { 1985 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1986 } else if (token == Opt_commit) { 1987 if (arg == 0) 1988 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1989 else if (arg > INT_MAX / HZ) { 1990 ext4_msg(sb, KERN_ERR, 1991 "Invalid commit interval %d, " 1992 "must be smaller than %d", 1993 arg, INT_MAX / HZ); 1994 return -1; 1995 } 1996 sbi->s_commit_interval = HZ * arg; 1997 } else if (token == Opt_debug_want_extra_isize) { 1998 if ((arg & 1) || 1999 (arg < 4) || 2000 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2001 ext4_msg(sb, KERN_ERR, 2002 "Invalid want_extra_isize %d", arg); 2003 return -1; 2004 } 2005 sbi->s_want_extra_isize = arg; 2006 } else if (token == Opt_max_batch_time) { 2007 sbi->s_max_batch_time = arg; 2008 } else if (token == Opt_min_batch_time) { 2009 sbi->s_min_batch_time = arg; 2010 } else if (token == Opt_inode_readahead_blks) { 2011 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2012 ext4_msg(sb, KERN_ERR, 2013 "EXT4-fs: inode_readahead_blks must be " 2014 "0 or a power of 2 smaller than 2^31"); 2015 return -1; 2016 } 2017 sbi->s_inode_readahead_blks = arg; 2018 } else if (token == Opt_init_itable) { 2019 set_opt(sb, INIT_INODE_TABLE); 2020 if (!args->from) 2021 arg = EXT4_DEF_LI_WAIT_MULT; 2022 sbi->s_li_wait_mult = arg; 2023 } else if (token == Opt_max_dir_size_kb) { 2024 sbi->s_max_dir_size_kb = arg; 2025 } else if (token == Opt_stripe) { 2026 sbi->s_stripe = arg; 2027 } else if (token == Opt_resuid) { 2028 uid = make_kuid(current_user_ns(), arg); 2029 if (!uid_valid(uid)) { 2030 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2031 return -1; 2032 } 2033 sbi->s_resuid = uid; 2034 } else if (token == Opt_resgid) { 2035 gid = make_kgid(current_user_ns(), arg); 2036 if (!gid_valid(gid)) { 2037 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2038 return -1; 2039 } 2040 sbi->s_resgid = gid; 2041 } else if (token == Opt_journal_dev) { 2042 if (is_remount) { 2043 ext4_msg(sb, KERN_ERR, 2044 "Cannot specify journal on remount"); 2045 return -1; 2046 } 2047 *journal_devnum = arg; 2048 } else if (token == Opt_journal_path) { 2049 char *journal_path; 2050 struct inode *journal_inode; 2051 struct path path; 2052 int error; 2053 2054 if (is_remount) { 2055 ext4_msg(sb, KERN_ERR, 2056 "Cannot specify journal on remount"); 2057 return -1; 2058 } 2059 journal_path = match_strdup(&args[0]); 2060 if (!journal_path) { 2061 ext4_msg(sb, KERN_ERR, "error: could not dup " 2062 "journal device string"); 2063 return -1; 2064 } 2065 2066 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2067 if (error) { 2068 ext4_msg(sb, KERN_ERR, "error: could not find " 2069 "journal device path: error %d", error); 2070 kfree(journal_path); 2071 return -1; 2072 } 2073 2074 journal_inode = d_inode(path.dentry); 2075 if (!S_ISBLK(journal_inode->i_mode)) { 2076 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2077 "is not a block device", journal_path); 2078 path_put(&path); 2079 kfree(journal_path); 2080 return -1; 2081 } 2082 2083 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2084 path_put(&path); 2085 kfree(journal_path); 2086 } else if (token == Opt_journal_ioprio) { 2087 if (arg > 7) { 2088 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2089 " (must be 0-7)"); 2090 return -1; 2091 } 2092 *journal_ioprio = 2093 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2094 } else if (token == Opt_test_dummy_encryption) { 2095 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2096 is_remount); 2097 } else if (m->flags & MOPT_DATAJ) { 2098 if (is_remount) { 2099 if (!sbi->s_journal) 2100 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2101 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2102 ext4_msg(sb, KERN_ERR, 2103 "Cannot change data mode on remount"); 2104 return -1; 2105 } 2106 } else { 2107 clear_opt(sb, DATA_FLAGS); 2108 sbi->s_mount_opt |= m->mount_opt; 2109 } 2110 #ifdef CONFIG_QUOTA 2111 } else if (m->flags & MOPT_QFMT) { 2112 if (sb_any_quota_loaded(sb) && 2113 sbi->s_jquota_fmt != m->mount_opt) { 2114 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2115 "quota options when quota turned on"); 2116 return -1; 2117 } 2118 if (ext4_has_feature_quota(sb)) { 2119 ext4_msg(sb, KERN_INFO, 2120 "Quota format mount options ignored " 2121 "when QUOTA feature is enabled"); 2122 return 1; 2123 } 2124 sbi->s_jquota_fmt = m->mount_opt; 2125 #endif 2126 } else if (token == Opt_dax) { 2127 #ifdef CONFIG_FS_DAX 2128 ext4_msg(sb, KERN_WARNING, 2129 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2130 sbi->s_mount_opt |= m->mount_opt; 2131 #else 2132 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2133 return -1; 2134 #endif 2135 } else if (token == Opt_data_err_abort) { 2136 sbi->s_mount_opt |= m->mount_opt; 2137 } else if (token == Opt_data_err_ignore) { 2138 sbi->s_mount_opt &= ~m->mount_opt; 2139 } else { 2140 if (!args->from) 2141 arg = 1; 2142 if (m->flags & MOPT_CLEAR) 2143 arg = !arg; 2144 else if (unlikely(!(m->flags & MOPT_SET))) { 2145 ext4_msg(sb, KERN_WARNING, 2146 "buggy handling of option %s", opt); 2147 WARN_ON(1); 2148 return -1; 2149 } 2150 if (arg != 0) 2151 sbi->s_mount_opt |= m->mount_opt; 2152 else 2153 sbi->s_mount_opt &= ~m->mount_opt; 2154 } 2155 return 1; 2156 } 2157 2158 static int parse_options(char *options, struct super_block *sb, 2159 unsigned long *journal_devnum, 2160 unsigned int *journal_ioprio, 2161 int is_remount) 2162 { 2163 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2164 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2165 substring_t args[MAX_OPT_ARGS]; 2166 int token; 2167 2168 if (!options) 2169 return 1; 2170 2171 while ((p = strsep(&options, ",")) != NULL) { 2172 if (!*p) 2173 continue; 2174 /* 2175 * Initialize args struct so we know whether arg was 2176 * found; some options take optional arguments. 2177 */ 2178 args[0].to = args[0].from = NULL; 2179 token = match_token(p, tokens, args); 2180 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2181 journal_ioprio, is_remount) < 0) 2182 return 0; 2183 } 2184 #ifdef CONFIG_QUOTA 2185 /* 2186 * We do the test below only for project quotas. 'usrquota' and 2187 * 'grpquota' mount options are allowed even without quota feature 2188 * to support legacy quotas in quota files. 2189 */ 2190 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2191 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2192 "Cannot enable project quota enforcement."); 2193 return 0; 2194 } 2195 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2196 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2197 if (usr_qf_name || grp_qf_name) { 2198 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2199 clear_opt(sb, USRQUOTA); 2200 2201 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2202 clear_opt(sb, GRPQUOTA); 2203 2204 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2205 ext4_msg(sb, KERN_ERR, "old and new quota " 2206 "format mixing"); 2207 return 0; 2208 } 2209 2210 if (!sbi->s_jquota_fmt) { 2211 ext4_msg(sb, KERN_ERR, "journaled quota format " 2212 "not specified"); 2213 return 0; 2214 } 2215 } 2216 #endif 2217 if (test_opt(sb, DIOREAD_NOLOCK)) { 2218 int blocksize = 2219 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2220 if (blocksize < PAGE_SIZE) 2221 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2222 "experimental mount option 'dioread_nolock' " 2223 "for blocksize < PAGE_SIZE"); 2224 } 2225 return 1; 2226 } 2227 2228 static inline void ext4_show_quota_options(struct seq_file *seq, 2229 struct super_block *sb) 2230 { 2231 #if defined(CONFIG_QUOTA) 2232 struct ext4_sb_info *sbi = EXT4_SB(sb); 2233 char *usr_qf_name, *grp_qf_name; 2234 2235 if (sbi->s_jquota_fmt) { 2236 char *fmtname = ""; 2237 2238 switch (sbi->s_jquota_fmt) { 2239 case QFMT_VFS_OLD: 2240 fmtname = "vfsold"; 2241 break; 2242 case QFMT_VFS_V0: 2243 fmtname = "vfsv0"; 2244 break; 2245 case QFMT_VFS_V1: 2246 fmtname = "vfsv1"; 2247 break; 2248 } 2249 seq_printf(seq, ",jqfmt=%s", fmtname); 2250 } 2251 2252 rcu_read_lock(); 2253 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2254 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2255 if (usr_qf_name) 2256 seq_show_option(seq, "usrjquota", usr_qf_name); 2257 if (grp_qf_name) 2258 seq_show_option(seq, "grpjquota", grp_qf_name); 2259 rcu_read_unlock(); 2260 #endif 2261 } 2262 2263 static const char *token2str(int token) 2264 { 2265 const struct match_token *t; 2266 2267 for (t = tokens; t->token != Opt_err; t++) 2268 if (t->token == token && !strchr(t->pattern, '=')) 2269 break; 2270 return t->pattern; 2271 } 2272 2273 /* 2274 * Show an option if 2275 * - it's set to a non-default value OR 2276 * - if the per-sb default is different from the global default 2277 */ 2278 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2279 int nodefs) 2280 { 2281 struct ext4_sb_info *sbi = EXT4_SB(sb); 2282 struct ext4_super_block *es = sbi->s_es; 2283 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2284 const struct mount_opts *m; 2285 char sep = nodefs ? '\n' : ','; 2286 2287 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2288 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2289 2290 if (sbi->s_sb_block != 1) 2291 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2292 2293 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2294 int want_set = m->flags & MOPT_SET; 2295 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2296 (m->flags & MOPT_CLEAR_ERR)) 2297 continue; 2298 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2299 continue; /* skip if same as the default */ 2300 if ((want_set && 2301 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2302 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2303 continue; /* select Opt_noFoo vs Opt_Foo */ 2304 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2305 } 2306 2307 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2308 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2309 SEQ_OPTS_PRINT("resuid=%u", 2310 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2311 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2312 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2313 SEQ_OPTS_PRINT("resgid=%u", 2314 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2315 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2316 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2317 SEQ_OPTS_PUTS("errors=remount-ro"); 2318 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2319 SEQ_OPTS_PUTS("errors=continue"); 2320 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2321 SEQ_OPTS_PUTS("errors=panic"); 2322 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2323 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2324 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2325 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2326 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2327 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2328 if (sb->s_flags & SB_I_VERSION) 2329 SEQ_OPTS_PUTS("i_version"); 2330 if (nodefs || sbi->s_stripe) 2331 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2332 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2333 (sbi->s_mount_opt ^ def_mount_opt)) { 2334 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2335 SEQ_OPTS_PUTS("data=journal"); 2336 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2337 SEQ_OPTS_PUTS("data=ordered"); 2338 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2339 SEQ_OPTS_PUTS("data=writeback"); 2340 } 2341 if (nodefs || 2342 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2343 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2344 sbi->s_inode_readahead_blks); 2345 2346 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2347 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2348 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2349 if (nodefs || sbi->s_max_dir_size_kb) 2350 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2351 if (test_opt(sb, DATA_ERR_ABORT)) 2352 SEQ_OPTS_PUTS("data_err=abort"); 2353 2354 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2355 2356 ext4_show_quota_options(seq, sb); 2357 return 0; 2358 } 2359 2360 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2361 { 2362 return _ext4_show_options(seq, root->d_sb, 0); 2363 } 2364 2365 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2366 { 2367 struct super_block *sb = seq->private; 2368 int rc; 2369 2370 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2371 rc = _ext4_show_options(seq, sb, 1); 2372 seq_puts(seq, "\n"); 2373 return rc; 2374 } 2375 2376 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2377 int read_only) 2378 { 2379 struct ext4_sb_info *sbi = EXT4_SB(sb); 2380 int err = 0; 2381 2382 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2383 ext4_msg(sb, KERN_ERR, "revision level too high, " 2384 "forcing read-only mode"); 2385 err = -EROFS; 2386 } 2387 if (read_only) 2388 goto done; 2389 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2390 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2391 "running e2fsck is recommended"); 2392 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2393 ext4_msg(sb, KERN_WARNING, 2394 "warning: mounting fs with errors, " 2395 "running e2fsck is recommended"); 2396 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2397 le16_to_cpu(es->s_mnt_count) >= 2398 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2399 ext4_msg(sb, KERN_WARNING, 2400 "warning: maximal mount count reached, " 2401 "running e2fsck is recommended"); 2402 else if (le32_to_cpu(es->s_checkinterval) && 2403 (ext4_get_tstamp(es, s_lastcheck) + 2404 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2405 ext4_msg(sb, KERN_WARNING, 2406 "warning: checktime reached, " 2407 "running e2fsck is recommended"); 2408 if (!sbi->s_journal) 2409 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2410 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2411 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2412 le16_add_cpu(&es->s_mnt_count, 1); 2413 ext4_update_tstamp(es, s_mtime); 2414 if (sbi->s_journal) 2415 ext4_set_feature_journal_needs_recovery(sb); 2416 2417 err = ext4_commit_super(sb, 1); 2418 done: 2419 if (test_opt(sb, DEBUG)) 2420 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2421 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2422 sb->s_blocksize, 2423 sbi->s_groups_count, 2424 EXT4_BLOCKS_PER_GROUP(sb), 2425 EXT4_INODES_PER_GROUP(sb), 2426 sbi->s_mount_opt, sbi->s_mount_opt2); 2427 2428 cleancache_init_fs(sb); 2429 return err; 2430 } 2431 2432 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2433 { 2434 struct ext4_sb_info *sbi = EXT4_SB(sb); 2435 struct flex_groups **old_groups, **new_groups; 2436 int size, i, j; 2437 2438 if (!sbi->s_log_groups_per_flex) 2439 return 0; 2440 2441 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2442 if (size <= sbi->s_flex_groups_allocated) 2443 return 0; 2444 2445 new_groups = kvzalloc(roundup_pow_of_two(size * 2446 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2447 if (!new_groups) { 2448 ext4_msg(sb, KERN_ERR, 2449 "not enough memory for %d flex group pointers", size); 2450 return -ENOMEM; 2451 } 2452 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2453 new_groups[i] = kvzalloc(roundup_pow_of_two( 2454 sizeof(struct flex_groups)), 2455 GFP_KERNEL); 2456 if (!new_groups[i]) { 2457 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2458 kvfree(new_groups[j]); 2459 kvfree(new_groups); 2460 ext4_msg(sb, KERN_ERR, 2461 "not enough memory for %d flex groups", size); 2462 return -ENOMEM; 2463 } 2464 } 2465 rcu_read_lock(); 2466 old_groups = rcu_dereference(sbi->s_flex_groups); 2467 if (old_groups) 2468 memcpy(new_groups, old_groups, 2469 (sbi->s_flex_groups_allocated * 2470 sizeof(struct flex_groups *))); 2471 rcu_read_unlock(); 2472 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2473 sbi->s_flex_groups_allocated = size; 2474 if (old_groups) 2475 ext4_kvfree_array_rcu(old_groups); 2476 return 0; 2477 } 2478 2479 static int ext4_fill_flex_info(struct super_block *sb) 2480 { 2481 struct ext4_sb_info *sbi = EXT4_SB(sb); 2482 struct ext4_group_desc *gdp = NULL; 2483 struct flex_groups *fg; 2484 ext4_group_t flex_group; 2485 int i, err; 2486 2487 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2488 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2489 sbi->s_log_groups_per_flex = 0; 2490 return 1; 2491 } 2492 2493 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2494 if (err) 2495 goto failed; 2496 2497 for (i = 0; i < sbi->s_groups_count; i++) { 2498 gdp = ext4_get_group_desc(sb, i, NULL); 2499 2500 flex_group = ext4_flex_group(sbi, i); 2501 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2502 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2503 atomic64_add(ext4_free_group_clusters(sb, gdp), 2504 &fg->free_clusters); 2505 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2506 } 2507 2508 return 1; 2509 failed: 2510 return 0; 2511 } 2512 2513 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2514 struct ext4_group_desc *gdp) 2515 { 2516 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2517 __u16 crc = 0; 2518 __le32 le_group = cpu_to_le32(block_group); 2519 struct ext4_sb_info *sbi = EXT4_SB(sb); 2520 2521 if (ext4_has_metadata_csum(sbi->s_sb)) { 2522 /* Use new metadata_csum algorithm */ 2523 __u32 csum32; 2524 __u16 dummy_csum = 0; 2525 2526 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2527 sizeof(le_group)); 2528 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2529 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2530 sizeof(dummy_csum)); 2531 offset += sizeof(dummy_csum); 2532 if (offset < sbi->s_desc_size) 2533 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2534 sbi->s_desc_size - offset); 2535 2536 crc = csum32 & 0xFFFF; 2537 goto out; 2538 } 2539 2540 /* old crc16 code */ 2541 if (!ext4_has_feature_gdt_csum(sb)) 2542 return 0; 2543 2544 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2545 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2546 crc = crc16(crc, (__u8 *)gdp, offset); 2547 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2548 /* for checksum of struct ext4_group_desc do the rest...*/ 2549 if (ext4_has_feature_64bit(sb) && 2550 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2551 crc = crc16(crc, (__u8 *)gdp + offset, 2552 le16_to_cpu(sbi->s_es->s_desc_size) - 2553 offset); 2554 2555 out: 2556 return cpu_to_le16(crc); 2557 } 2558 2559 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2560 struct ext4_group_desc *gdp) 2561 { 2562 if (ext4_has_group_desc_csum(sb) && 2563 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2564 return 0; 2565 2566 return 1; 2567 } 2568 2569 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2570 struct ext4_group_desc *gdp) 2571 { 2572 if (!ext4_has_group_desc_csum(sb)) 2573 return; 2574 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2575 } 2576 2577 /* Called at mount-time, super-block is locked */ 2578 static int ext4_check_descriptors(struct super_block *sb, 2579 ext4_fsblk_t sb_block, 2580 ext4_group_t *first_not_zeroed) 2581 { 2582 struct ext4_sb_info *sbi = EXT4_SB(sb); 2583 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2584 ext4_fsblk_t last_block; 2585 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2586 ext4_fsblk_t block_bitmap; 2587 ext4_fsblk_t inode_bitmap; 2588 ext4_fsblk_t inode_table; 2589 int flexbg_flag = 0; 2590 ext4_group_t i, grp = sbi->s_groups_count; 2591 2592 if (ext4_has_feature_flex_bg(sb)) 2593 flexbg_flag = 1; 2594 2595 ext4_debug("Checking group descriptors"); 2596 2597 for (i = 0; i < sbi->s_groups_count; i++) { 2598 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2599 2600 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2601 last_block = ext4_blocks_count(sbi->s_es) - 1; 2602 else 2603 last_block = first_block + 2604 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2605 2606 if ((grp == sbi->s_groups_count) && 2607 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2608 grp = i; 2609 2610 block_bitmap = ext4_block_bitmap(sb, gdp); 2611 if (block_bitmap == sb_block) { 2612 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2613 "Block bitmap for group %u overlaps " 2614 "superblock", i); 2615 if (!sb_rdonly(sb)) 2616 return 0; 2617 } 2618 if (block_bitmap >= sb_block + 1 && 2619 block_bitmap <= last_bg_block) { 2620 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2621 "Block bitmap for group %u overlaps " 2622 "block group descriptors", i); 2623 if (!sb_rdonly(sb)) 2624 return 0; 2625 } 2626 if (block_bitmap < first_block || block_bitmap > last_block) { 2627 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2628 "Block bitmap for group %u not in group " 2629 "(block %llu)!", i, block_bitmap); 2630 return 0; 2631 } 2632 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2633 if (inode_bitmap == sb_block) { 2634 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2635 "Inode bitmap for group %u overlaps " 2636 "superblock", i); 2637 if (!sb_rdonly(sb)) 2638 return 0; 2639 } 2640 if (inode_bitmap >= sb_block + 1 && 2641 inode_bitmap <= last_bg_block) { 2642 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2643 "Inode bitmap for group %u overlaps " 2644 "block group descriptors", i); 2645 if (!sb_rdonly(sb)) 2646 return 0; 2647 } 2648 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2649 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2650 "Inode bitmap for group %u not in group " 2651 "(block %llu)!", i, inode_bitmap); 2652 return 0; 2653 } 2654 inode_table = ext4_inode_table(sb, gdp); 2655 if (inode_table == sb_block) { 2656 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2657 "Inode table for group %u overlaps " 2658 "superblock", i); 2659 if (!sb_rdonly(sb)) 2660 return 0; 2661 } 2662 if (inode_table >= sb_block + 1 && 2663 inode_table <= last_bg_block) { 2664 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2665 "Inode table for group %u overlaps " 2666 "block group descriptors", i); 2667 if (!sb_rdonly(sb)) 2668 return 0; 2669 } 2670 if (inode_table < first_block || 2671 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2672 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2673 "Inode table for group %u not in group " 2674 "(block %llu)!", i, inode_table); 2675 return 0; 2676 } 2677 ext4_lock_group(sb, i); 2678 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2679 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2680 "Checksum for group %u failed (%u!=%u)", 2681 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2682 gdp)), le16_to_cpu(gdp->bg_checksum)); 2683 if (!sb_rdonly(sb)) { 2684 ext4_unlock_group(sb, i); 2685 return 0; 2686 } 2687 } 2688 ext4_unlock_group(sb, i); 2689 if (!flexbg_flag) 2690 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2691 } 2692 if (NULL != first_not_zeroed) 2693 *first_not_zeroed = grp; 2694 return 1; 2695 } 2696 2697 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2698 * the superblock) which were deleted from all directories, but held open by 2699 * a process at the time of a crash. We walk the list and try to delete these 2700 * inodes at recovery time (only with a read-write filesystem). 2701 * 2702 * In order to keep the orphan inode chain consistent during traversal (in 2703 * case of crash during recovery), we link each inode into the superblock 2704 * orphan list_head and handle it the same way as an inode deletion during 2705 * normal operation (which journals the operations for us). 2706 * 2707 * We only do an iget() and an iput() on each inode, which is very safe if we 2708 * accidentally point at an in-use or already deleted inode. The worst that 2709 * can happen in this case is that we get a "bit already cleared" message from 2710 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2711 * e2fsck was run on this filesystem, and it must have already done the orphan 2712 * inode cleanup for us, so we can safely abort without any further action. 2713 */ 2714 static void ext4_orphan_cleanup(struct super_block *sb, 2715 struct ext4_super_block *es) 2716 { 2717 unsigned int s_flags = sb->s_flags; 2718 int ret, nr_orphans = 0, nr_truncates = 0; 2719 #ifdef CONFIG_QUOTA 2720 int quota_update = 0; 2721 int i; 2722 #endif 2723 if (!es->s_last_orphan) { 2724 jbd_debug(4, "no orphan inodes to clean up\n"); 2725 return; 2726 } 2727 2728 if (bdev_read_only(sb->s_bdev)) { 2729 ext4_msg(sb, KERN_ERR, "write access " 2730 "unavailable, skipping orphan cleanup"); 2731 return; 2732 } 2733 2734 /* Check if feature set would not allow a r/w mount */ 2735 if (!ext4_feature_set_ok(sb, 0)) { 2736 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2737 "unknown ROCOMPAT features"); 2738 return; 2739 } 2740 2741 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2742 /* don't clear list on RO mount w/ errors */ 2743 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2744 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2745 "clearing orphan list.\n"); 2746 es->s_last_orphan = 0; 2747 } 2748 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2749 return; 2750 } 2751 2752 if (s_flags & SB_RDONLY) { 2753 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2754 sb->s_flags &= ~SB_RDONLY; 2755 } 2756 #ifdef CONFIG_QUOTA 2757 /* Needed for iput() to work correctly and not trash data */ 2758 sb->s_flags |= SB_ACTIVE; 2759 2760 /* 2761 * Turn on quotas which were not enabled for read-only mounts if 2762 * filesystem has quota feature, so that they are updated correctly. 2763 */ 2764 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2765 int ret = ext4_enable_quotas(sb); 2766 2767 if (!ret) 2768 quota_update = 1; 2769 else 2770 ext4_msg(sb, KERN_ERR, 2771 "Cannot turn on quotas: error %d", ret); 2772 } 2773 2774 /* Turn on journaled quotas used for old sytle */ 2775 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2776 if (EXT4_SB(sb)->s_qf_names[i]) { 2777 int ret = ext4_quota_on_mount(sb, i); 2778 2779 if (!ret) 2780 quota_update = 1; 2781 else 2782 ext4_msg(sb, KERN_ERR, 2783 "Cannot turn on journaled " 2784 "quota: type %d: error %d", i, ret); 2785 } 2786 } 2787 #endif 2788 2789 while (es->s_last_orphan) { 2790 struct inode *inode; 2791 2792 /* 2793 * We may have encountered an error during cleanup; if 2794 * so, skip the rest. 2795 */ 2796 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2797 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2798 es->s_last_orphan = 0; 2799 break; 2800 } 2801 2802 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2803 if (IS_ERR(inode)) { 2804 es->s_last_orphan = 0; 2805 break; 2806 } 2807 2808 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2809 dquot_initialize(inode); 2810 if (inode->i_nlink) { 2811 if (test_opt(sb, DEBUG)) 2812 ext4_msg(sb, KERN_DEBUG, 2813 "%s: truncating inode %lu to %lld bytes", 2814 __func__, inode->i_ino, inode->i_size); 2815 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2816 inode->i_ino, inode->i_size); 2817 inode_lock(inode); 2818 truncate_inode_pages(inode->i_mapping, inode->i_size); 2819 ret = ext4_truncate(inode); 2820 if (ret) 2821 ext4_std_error(inode->i_sb, ret); 2822 inode_unlock(inode); 2823 nr_truncates++; 2824 } else { 2825 if (test_opt(sb, DEBUG)) 2826 ext4_msg(sb, KERN_DEBUG, 2827 "%s: deleting unreferenced inode %lu", 2828 __func__, inode->i_ino); 2829 jbd_debug(2, "deleting unreferenced inode %lu\n", 2830 inode->i_ino); 2831 nr_orphans++; 2832 } 2833 iput(inode); /* The delete magic happens here! */ 2834 } 2835 2836 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2837 2838 if (nr_orphans) 2839 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2840 PLURAL(nr_orphans)); 2841 if (nr_truncates) 2842 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2843 PLURAL(nr_truncates)); 2844 #ifdef CONFIG_QUOTA 2845 /* Turn off quotas if they were enabled for orphan cleanup */ 2846 if (quota_update) { 2847 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2848 if (sb_dqopt(sb)->files[i]) 2849 dquot_quota_off(sb, i); 2850 } 2851 } 2852 #endif 2853 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2854 } 2855 2856 /* 2857 * Maximal extent format file size. 2858 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2859 * extent format containers, within a sector_t, and within i_blocks 2860 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2861 * so that won't be a limiting factor. 2862 * 2863 * However there is other limiting factor. We do store extents in the form 2864 * of starting block and length, hence the resulting length of the extent 2865 * covering maximum file size must fit into on-disk format containers as 2866 * well. Given that length is always by 1 unit bigger than max unit (because 2867 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2868 * 2869 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2870 */ 2871 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2872 { 2873 loff_t res; 2874 loff_t upper_limit = MAX_LFS_FILESIZE; 2875 2876 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2877 2878 if (!has_huge_files) { 2879 upper_limit = (1LL << 32) - 1; 2880 2881 /* total blocks in file system block size */ 2882 upper_limit >>= (blkbits - 9); 2883 upper_limit <<= blkbits; 2884 } 2885 2886 /* 2887 * 32-bit extent-start container, ee_block. We lower the maxbytes 2888 * by one fs block, so ee_len can cover the extent of maximum file 2889 * size 2890 */ 2891 res = (1LL << 32) - 1; 2892 res <<= blkbits; 2893 2894 /* Sanity check against vm- & vfs- imposed limits */ 2895 if (res > upper_limit) 2896 res = upper_limit; 2897 2898 return res; 2899 } 2900 2901 /* 2902 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2903 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2904 * We need to be 1 filesystem block less than the 2^48 sector limit. 2905 */ 2906 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2907 { 2908 loff_t res = EXT4_NDIR_BLOCKS; 2909 int meta_blocks; 2910 loff_t upper_limit; 2911 /* This is calculated to be the largest file size for a dense, block 2912 * mapped file such that the file's total number of 512-byte sectors, 2913 * including data and all indirect blocks, does not exceed (2^48 - 1). 2914 * 2915 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2916 * number of 512-byte sectors of the file. 2917 */ 2918 2919 if (!has_huge_files) { 2920 /* 2921 * !has_huge_files or implies that the inode i_block field 2922 * represents total file blocks in 2^32 512-byte sectors == 2923 * size of vfs inode i_blocks * 8 2924 */ 2925 upper_limit = (1LL << 32) - 1; 2926 2927 /* total blocks in file system block size */ 2928 upper_limit >>= (bits - 9); 2929 2930 } else { 2931 /* 2932 * We use 48 bit ext4_inode i_blocks 2933 * With EXT4_HUGE_FILE_FL set the i_blocks 2934 * represent total number of blocks in 2935 * file system block size 2936 */ 2937 upper_limit = (1LL << 48) - 1; 2938 2939 } 2940 2941 /* indirect blocks */ 2942 meta_blocks = 1; 2943 /* double indirect blocks */ 2944 meta_blocks += 1 + (1LL << (bits-2)); 2945 /* tripple indirect blocks */ 2946 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2947 2948 upper_limit -= meta_blocks; 2949 upper_limit <<= bits; 2950 2951 res += 1LL << (bits-2); 2952 res += 1LL << (2*(bits-2)); 2953 res += 1LL << (3*(bits-2)); 2954 res <<= bits; 2955 if (res > upper_limit) 2956 res = upper_limit; 2957 2958 if (res > MAX_LFS_FILESIZE) 2959 res = MAX_LFS_FILESIZE; 2960 2961 return res; 2962 } 2963 2964 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2965 ext4_fsblk_t logical_sb_block, int nr) 2966 { 2967 struct ext4_sb_info *sbi = EXT4_SB(sb); 2968 ext4_group_t bg, first_meta_bg; 2969 int has_super = 0; 2970 2971 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2972 2973 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2974 return logical_sb_block + nr + 1; 2975 bg = sbi->s_desc_per_block * nr; 2976 if (ext4_bg_has_super(sb, bg)) 2977 has_super = 1; 2978 2979 /* 2980 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2981 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2982 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2983 * compensate. 2984 */ 2985 if (sb->s_blocksize == 1024 && nr == 0 && 2986 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2987 has_super++; 2988 2989 return (has_super + ext4_group_first_block_no(sb, bg)); 2990 } 2991 2992 /** 2993 * ext4_get_stripe_size: Get the stripe size. 2994 * @sbi: In memory super block info 2995 * 2996 * If we have specified it via mount option, then 2997 * use the mount option value. If the value specified at mount time is 2998 * greater than the blocks per group use the super block value. 2999 * If the super block value is greater than blocks per group return 0. 3000 * Allocator needs it be less than blocks per group. 3001 * 3002 */ 3003 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3004 { 3005 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3006 unsigned long stripe_width = 3007 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3008 int ret; 3009 3010 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3011 ret = sbi->s_stripe; 3012 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3013 ret = stripe_width; 3014 else if (stride && stride <= sbi->s_blocks_per_group) 3015 ret = stride; 3016 else 3017 ret = 0; 3018 3019 /* 3020 * If the stripe width is 1, this makes no sense and 3021 * we set it to 0 to turn off stripe handling code. 3022 */ 3023 if (ret <= 1) 3024 ret = 0; 3025 3026 return ret; 3027 } 3028 3029 /* 3030 * Check whether this filesystem can be mounted based on 3031 * the features present and the RDONLY/RDWR mount requested. 3032 * Returns 1 if this filesystem can be mounted as requested, 3033 * 0 if it cannot be. 3034 */ 3035 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3036 { 3037 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3038 ext4_msg(sb, KERN_ERR, 3039 "Couldn't mount because of " 3040 "unsupported optional features (%x)", 3041 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3042 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3043 return 0; 3044 } 3045 3046 #ifndef CONFIG_UNICODE 3047 if (ext4_has_feature_casefold(sb)) { 3048 ext4_msg(sb, KERN_ERR, 3049 "Filesystem with casefold feature cannot be " 3050 "mounted without CONFIG_UNICODE"); 3051 return 0; 3052 } 3053 #endif 3054 3055 if (readonly) 3056 return 1; 3057 3058 if (ext4_has_feature_readonly(sb)) { 3059 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3060 sb->s_flags |= SB_RDONLY; 3061 return 1; 3062 } 3063 3064 /* Check that feature set is OK for a read-write mount */ 3065 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3066 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3067 "unsupported optional features (%x)", 3068 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3069 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3070 return 0; 3071 } 3072 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3073 ext4_msg(sb, KERN_ERR, 3074 "Can't support bigalloc feature without " 3075 "extents feature\n"); 3076 return 0; 3077 } 3078 3079 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3080 if (!readonly && (ext4_has_feature_quota(sb) || 3081 ext4_has_feature_project(sb))) { 3082 ext4_msg(sb, KERN_ERR, 3083 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3084 return 0; 3085 } 3086 #endif /* CONFIG_QUOTA */ 3087 return 1; 3088 } 3089 3090 /* 3091 * This function is called once a day if we have errors logged 3092 * on the file system 3093 */ 3094 static void print_daily_error_info(struct timer_list *t) 3095 { 3096 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3097 struct super_block *sb = sbi->s_sb; 3098 struct ext4_super_block *es = sbi->s_es; 3099 3100 if (es->s_error_count) 3101 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3102 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3103 le32_to_cpu(es->s_error_count)); 3104 if (es->s_first_error_time) { 3105 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3106 sb->s_id, 3107 ext4_get_tstamp(es, s_first_error_time), 3108 (int) sizeof(es->s_first_error_func), 3109 es->s_first_error_func, 3110 le32_to_cpu(es->s_first_error_line)); 3111 if (es->s_first_error_ino) 3112 printk(KERN_CONT ": inode %u", 3113 le32_to_cpu(es->s_first_error_ino)); 3114 if (es->s_first_error_block) 3115 printk(KERN_CONT ": block %llu", (unsigned long long) 3116 le64_to_cpu(es->s_first_error_block)); 3117 printk(KERN_CONT "\n"); 3118 } 3119 if (es->s_last_error_time) { 3120 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3121 sb->s_id, 3122 ext4_get_tstamp(es, s_last_error_time), 3123 (int) sizeof(es->s_last_error_func), 3124 es->s_last_error_func, 3125 le32_to_cpu(es->s_last_error_line)); 3126 if (es->s_last_error_ino) 3127 printk(KERN_CONT ": inode %u", 3128 le32_to_cpu(es->s_last_error_ino)); 3129 if (es->s_last_error_block) 3130 printk(KERN_CONT ": block %llu", (unsigned long long) 3131 le64_to_cpu(es->s_last_error_block)); 3132 printk(KERN_CONT "\n"); 3133 } 3134 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3135 } 3136 3137 /* Find next suitable group and run ext4_init_inode_table */ 3138 static int ext4_run_li_request(struct ext4_li_request *elr) 3139 { 3140 struct ext4_group_desc *gdp = NULL; 3141 ext4_group_t group, ngroups; 3142 struct super_block *sb; 3143 unsigned long timeout = 0; 3144 int ret = 0; 3145 3146 sb = elr->lr_super; 3147 ngroups = EXT4_SB(sb)->s_groups_count; 3148 3149 for (group = elr->lr_next_group; group < ngroups; group++) { 3150 gdp = ext4_get_group_desc(sb, group, NULL); 3151 if (!gdp) { 3152 ret = 1; 3153 break; 3154 } 3155 3156 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3157 break; 3158 } 3159 3160 if (group >= ngroups) 3161 ret = 1; 3162 3163 if (!ret) { 3164 timeout = jiffies; 3165 ret = ext4_init_inode_table(sb, group, 3166 elr->lr_timeout ? 0 : 1); 3167 if (elr->lr_timeout == 0) { 3168 timeout = (jiffies - timeout) * 3169 elr->lr_sbi->s_li_wait_mult; 3170 elr->lr_timeout = timeout; 3171 } 3172 elr->lr_next_sched = jiffies + elr->lr_timeout; 3173 elr->lr_next_group = group + 1; 3174 } 3175 return ret; 3176 } 3177 3178 /* 3179 * Remove lr_request from the list_request and free the 3180 * request structure. Should be called with li_list_mtx held 3181 */ 3182 static void ext4_remove_li_request(struct ext4_li_request *elr) 3183 { 3184 struct ext4_sb_info *sbi; 3185 3186 if (!elr) 3187 return; 3188 3189 sbi = elr->lr_sbi; 3190 3191 list_del(&elr->lr_request); 3192 sbi->s_li_request = NULL; 3193 kfree(elr); 3194 } 3195 3196 static void ext4_unregister_li_request(struct super_block *sb) 3197 { 3198 mutex_lock(&ext4_li_mtx); 3199 if (!ext4_li_info) { 3200 mutex_unlock(&ext4_li_mtx); 3201 return; 3202 } 3203 3204 mutex_lock(&ext4_li_info->li_list_mtx); 3205 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3206 mutex_unlock(&ext4_li_info->li_list_mtx); 3207 mutex_unlock(&ext4_li_mtx); 3208 } 3209 3210 static struct task_struct *ext4_lazyinit_task; 3211 3212 /* 3213 * This is the function where ext4lazyinit thread lives. It walks 3214 * through the request list searching for next scheduled filesystem. 3215 * When such a fs is found, run the lazy initialization request 3216 * (ext4_rn_li_request) and keep track of the time spend in this 3217 * function. Based on that time we compute next schedule time of 3218 * the request. When walking through the list is complete, compute 3219 * next waking time and put itself into sleep. 3220 */ 3221 static int ext4_lazyinit_thread(void *arg) 3222 { 3223 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3224 struct list_head *pos, *n; 3225 struct ext4_li_request *elr; 3226 unsigned long next_wakeup, cur; 3227 3228 BUG_ON(NULL == eli); 3229 3230 cont_thread: 3231 while (true) { 3232 next_wakeup = MAX_JIFFY_OFFSET; 3233 3234 mutex_lock(&eli->li_list_mtx); 3235 if (list_empty(&eli->li_request_list)) { 3236 mutex_unlock(&eli->li_list_mtx); 3237 goto exit_thread; 3238 } 3239 list_for_each_safe(pos, n, &eli->li_request_list) { 3240 int err = 0; 3241 int progress = 0; 3242 elr = list_entry(pos, struct ext4_li_request, 3243 lr_request); 3244 3245 if (time_before(jiffies, elr->lr_next_sched)) { 3246 if (time_before(elr->lr_next_sched, next_wakeup)) 3247 next_wakeup = elr->lr_next_sched; 3248 continue; 3249 } 3250 if (down_read_trylock(&elr->lr_super->s_umount)) { 3251 if (sb_start_write_trylock(elr->lr_super)) { 3252 progress = 1; 3253 /* 3254 * We hold sb->s_umount, sb can not 3255 * be removed from the list, it is 3256 * now safe to drop li_list_mtx 3257 */ 3258 mutex_unlock(&eli->li_list_mtx); 3259 err = ext4_run_li_request(elr); 3260 sb_end_write(elr->lr_super); 3261 mutex_lock(&eli->li_list_mtx); 3262 n = pos->next; 3263 } 3264 up_read((&elr->lr_super->s_umount)); 3265 } 3266 /* error, remove the lazy_init job */ 3267 if (err) { 3268 ext4_remove_li_request(elr); 3269 continue; 3270 } 3271 if (!progress) { 3272 elr->lr_next_sched = jiffies + 3273 (prandom_u32() 3274 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3275 } 3276 if (time_before(elr->lr_next_sched, next_wakeup)) 3277 next_wakeup = elr->lr_next_sched; 3278 } 3279 mutex_unlock(&eli->li_list_mtx); 3280 3281 try_to_freeze(); 3282 3283 cur = jiffies; 3284 if ((time_after_eq(cur, next_wakeup)) || 3285 (MAX_JIFFY_OFFSET == next_wakeup)) { 3286 cond_resched(); 3287 continue; 3288 } 3289 3290 schedule_timeout_interruptible(next_wakeup - cur); 3291 3292 if (kthread_should_stop()) { 3293 ext4_clear_request_list(); 3294 goto exit_thread; 3295 } 3296 } 3297 3298 exit_thread: 3299 /* 3300 * It looks like the request list is empty, but we need 3301 * to check it under the li_list_mtx lock, to prevent any 3302 * additions into it, and of course we should lock ext4_li_mtx 3303 * to atomically free the list and ext4_li_info, because at 3304 * this point another ext4 filesystem could be registering 3305 * new one. 3306 */ 3307 mutex_lock(&ext4_li_mtx); 3308 mutex_lock(&eli->li_list_mtx); 3309 if (!list_empty(&eli->li_request_list)) { 3310 mutex_unlock(&eli->li_list_mtx); 3311 mutex_unlock(&ext4_li_mtx); 3312 goto cont_thread; 3313 } 3314 mutex_unlock(&eli->li_list_mtx); 3315 kfree(ext4_li_info); 3316 ext4_li_info = NULL; 3317 mutex_unlock(&ext4_li_mtx); 3318 3319 return 0; 3320 } 3321 3322 static void ext4_clear_request_list(void) 3323 { 3324 struct list_head *pos, *n; 3325 struct ext4_li_request *elr; 3326 3327 mutex_lock(&ext4_li_info->li_list_mtx); 3328 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3329 elr = list_entry(pos, struct ext4_li_request, 3330 lr_request); 3331 ext4_remove_li_request(elr); 3332 } 3333 mutex_unlock(&ext4_li_info->li_list_mtx); 3334 } 3335 3336 static int ext4_run_lazyinit_thread(void) 3337 { 3338 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3339 ext4_li_info, "ext4lazyinit"); 3340 if (IS_ERR(ext4_lazyinit_task)) { 3341 int err = PTR_ERR(ext4_lazyinit_task); 3342 ext4_clear_request_list(); 3343 kfree(ext4_li_info); 3344 ext4_li_info = NULL; 3345 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3346 "initialization thread\n", 3347 err); 3348 return err; 3349 } 3350 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3351 return 0; 3352 } 3353 3354 /* 3355 * Check whether it make sense to run itable init. thread or not. 3356 * If there is at least one uninitialized inode table, return 3357 * corresponding group number, else the loop goes through all 3358 * groups and return total number of groups. 3359 */ 3360 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3361 { 3362 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3363 struct ext4_group_desc *gdp = NULL; 3364 3365 if (!ext4_has_group_desc_csum(sb)) 3366 return ngroups; 3367 3368 for (group = 0; group < ngroups; group++) { 3369 gdp = ext4_get_group_desc(sb, group, NULL); 3370 if (!gdp) 3371 continue; 3372 3373 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3374 break; 3375 } 3376 3377 return group; 3378 } 3379 3380 static int ext4_li_info_new(void) 3381 { 3382 struct ext4_lazy_init *eli = NULL; 3383 3384 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3385 if (!eli) 3386 return -ENOMEM; 3387 3388 INIT_LIST_HEAD(&eli->li_request_list); 3389 mutex_init(&eli->li_list_mtx); 3390 3391 eli->li_state |= EXT4_LAZYINIT_QUIT; 3392 3393 ext4_li_info = eli; 3394 3395 return 0; 3396 } 3397 3398 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3399 ext4_group_t start) 3400 { 3401 struct ext4_sb_info *sbi = EXT4_SB(sb); 3402 struct ext4_li_request *elr; 3403 3404 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3405 if (!elr) 3406 return NULL; 3407 3408 elr->lr_super = sb; 3409 elr->lr_sbi = sbi; 3410 elr->lr_next_group = start; 3411 3412 /* 3413 * Randomize first schedule time of the request to 3414 * spread the inode table initialization requests 3415 * better. 3416 */ 3417 elr->lr_next_sched = jiffies + (prandom_u32() % 3418 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3419 return elr; 3420 } 3421 3422 int ext4_register_li_request(struct super_block *sb, 3423 ext4_group_t first_not_zeroed) 3424 { 3425 struct ext4_sb_info *sbi = EXT4_SB(sb); 3426 struct ext4_li_request *elr = NULL; 3427 ext4_group_t ngroups = sbi->s_groups_count; 3428 int ret = 0; 3429 3430 mutex_lock(&ext4_li_mtx); 3431 if (sbi->s_li_request != NULL) { 3432 /* 3433 * Reset timeout so it can be computed again, because 3434 * s_li_wait_mult might have changed. 3435 */ 3436 sbi->s_li_request->lr_timeout = 0; 3437 goto out; 3438 } 3439 3440 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3441 !test_opt(sb, INIT_INODE_TABLE)) 3442 goto out; 3443 3444 elr = ext4_li_request_new(sb, first_not_zeroed); 3445 if (!elr) { 3446 ret = -ENOMEM; 3447 goto out; 3448 } 3449 3450 if (NULL == ext4_li_info) { 3451 ret = ext4_li_info_new(); 3452 if (ret) 3453 goto out; 3454 } 3455 3456 mutex_lock(&ext4_li_info->li_list_mtx); 3457 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3458 mutex_unlock(&ext4_li_info->li_list_mtx); 3459 3460 sbi->s_li_request = elr; 3461 /* 3462 * set elr to NULL here since it has been inserted to 3463 * the request_list and the removal and free of it is 3464 * handled by ext4_clear_request_list from now on. 3465 */ 3466 elr = NULL; 3467 3468 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3469 ret = ext4_run_lazyinit_thread(); 3470 if (ret) 3471 goto out; 3472 } 3473 out: 3474 mutex_unlock(&ext4_li_mtx); 3475 if (ret) 3476 kfree(elr); 3477 return ret; 3478 } 3479 3480 /* 3481 * We do not need to lock anything since this is called on 3482 * module unload. 3483 */ 3484 static void ext4_destroy_lazyinit_thread(void) 3485 { 3486 /* 3487 * If thread exited earlier 3488 * there's nothing to be done. 3489 */ 3490 if (!ext4_li_info || !ext4_lazyinit_task) 3491 return; 3492 3493 kthread_stop(ext4_lazyinit_task); 3494 } 3495 3496 static int set_journal_csum_feature_set(struct super_block *sb) 3497 { 3498 int ret = 1; 3499 int compat, incompat; 3500 struct ext4_sb_info *sbi = EXT4_SB(sb); 3501 3502 if (ext4_has_metadata_csum(sb)) { 3503 /* journal checksum v3 */ 3504 compat = 0; 3505 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3506 } else { 3507 /* journal checksum v1 */ 3508 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3509 incompat = 0; 3510 } 3511 3512 jbd2_journal_clear_features(sbi->s_journal, 3513 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3514 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3515 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3516 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3517 ret = jbd2_journal_set_features(sbi->s_journal, 3518 compat, 0, 3519 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3520 incompat); 3521 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3522 ret = jbd2_journal_set_features(sbi->s_journal, 3523 compat, 0, 3524 incompat); 3525 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3526 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3527 } else { 3528 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3529 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3530 } 3531 3532 return ret; 3533 } 3534 3535 /* 3536 * Note: calculating the overhead so we can be compatible with 3537 * historical BSD practice is quite difficult in the face of 3538 * clusters/bigalloc. This is because multiple metadata blocks from 3539 * different block group can end up in the same allocation cluster. 3540 * Calculating the exact overhead in the face of clustered allocation 3541 * requires either O(all block bitmaps) in memory or O(number of block 3542 * groups**2) in time. We will still calculate the superblock for 3543 * older file systems --- and if we come across with a bigalloc file 3544 * system with zero in s_overhead_clusters the estimate will be close to 3545 * correct especially for very large cluster sizes --- but for newer 3546 * file systems, it's better to calculate this figure once at mkfs 3547 * time, and store it in the superblock. If the superblock value is 3548 * present (even for non-bigalloc file systems), we will use it. 3549 */ 3550 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3551 char *buf) 3552 { 3553 struct ext4_sb_info *sbi = EXT4_SB(sb); 3554 struct ext4_group_desc *gdp; 3555 ext4_fsblk_t first_block, last_block, b; 3556 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3557 int s, j, count = 0; 3558 3559 if (!ext4_has_feature_bigalloc(sb)) 3560 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3561 sbi->s_itb_per_group + 2); 3562 3563 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3564 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3565 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3566 for (i = 0; i < ngroups; i++) { 3567 gdp = ext4_get_group_desc(sb, i, NULL); 3568 b = ext4_block_bitmap(sb, gdp); 3569 if (b >= first_block && b <= last_block) { 3570 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3571 count++; 3572 } 3573 b = ext4_inode_bitmap(sb, gdp); 3574 if (b >= first_block && b <= last_block) { 3575 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3576 count++; 3577 } 3578 b = ext4_inode_table(sb, gdp); 3579 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3580 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3581 int c = EXT4_B2C(sbi, b - first_block); 3582 ext4_set_bit(c, buf); 3583 count++; 3584 } 3585 if (i != grp) 3586 continue; 3587 s = 0; 3588 if (ext4_bg_has_super(sb, grp)) { 3589 ext4_set_bit(s++, buf); 3590 count++; 3591 } 3592 j = ext4_bg_num_gdb(sb, grp); 3593 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3594 ext4_error(sb, "Invalid number of block group " 3595 "descriptor blocks: %d", j); 3596 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3597 } 3598 count += j; 3599 for (; j > 0; j--) 3600 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3601 } 3602 if (!count) 3603 return 0; 3604 return EXT4_CLUSTERS_PER_GROUP(sb) - 3605 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3606 } 3607 3608 /* 3609 * Compute the overhead and stash it in sbi->s_overhead 3610 */ 3611 int ext4_calculate_overhead(struct super_block *sb) 3612 { 3613 struct ext4_sb_info *sbi = EXT4_SB(sb); 3614 struct ext4_super_block *es = sbi->s_es; 3615 struct inode *j_inode; 3616 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3617 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3618 ext4_fsblk_t overhead = 0; 3619 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3620 3621 if (!buf) 3622 return -ENOMEM; 3623 3624 /* 3625 * Compute the overhead (FS structures). This is constant 3626 * for a given filesystem unless the number of block groups 3627 * changes so we cache the previous value until it does. 3628 */ 3629 3630 /* 3631 * All of the blocks before first_data_block are overhead 3632 */ 3633 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3634 3635 /* 3636 * Add the overhead found in each block group 3637 */ 3638 for (i = 0; i < ngroups; i++) { 3639 int blks; 3640 3641 blks = count_overhead(sb, i, buf); 3642 overhead += blks; 3643 if (blks) 3644 memset(buf, 0, PAGE_SIZE); 3645 cond_resched(); 3646 } 3647 3648 /* 3649 * Add the internal journal blocks whether the journal has been 3650 * loaded or not 3651 */ 3652 if (sbi->s_journal && !sbi->journal_bdev) 3653 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3654 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3655 /* j_inum for internal journal is non-zero */ 3656 j_inode = ext4_get_journal_inode(sb, j_inum); 3657 if (j_inode) { 3658 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3659 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3660 iput(j_inode); 3661 } else { 3662 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3663 } 3664 } 3665 sbi->s_overhead = overhead; 3666 smp_wmb(); 3667 free_page((unsigned long) buf); 3668 return 0; 3669 } 3670 3671 static void ext4_set_resv_clusters(struct super_block *sb) 3672 { 3673 ext4_fsblk_t resv_clusters; 3674 struct ext4_sb_info *sbi = EXT4_SB(sb); 3675 3676 /* 3677 * There's no need to reserve anything when we aren't using extents. 3678 * The space estimates are exact, there are no unwritten extents, 3679 * hole punching doesn't need new metadata... This is needed especially 3680 * to keep ext2/3 backward compatibility. 3681 */ 3682 if (!ext4_has_feature_extents(sb)) 3683 return; 3684 /* 3685 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3686 * This should cover the situations where we can not afford to run 3687 * out of space like for example punch hole, or converting 3688 * unwritten extents in delalloc path. In most cases such 3689 * allocation would require 1, or 2 blocks, higher numbers are 3690 * very rare. 3691 */ 3692 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3693 sbi->s_cluster_bits); 3694 3695 do_div(resv_clusters, 50); 3696 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3697 3698 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3699 } 3700 3701 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3702 { 3703 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3704 char *orig_data = kstrdup(data, GFP_KERNEL); 3705 struct buffer_head *bh, **group_desc; 3706 struct ext4_super_block *es = NULL; 3707 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3708 struct flex_groups **flex_groups; 3709 ext4_fsblk_t block; 3710 ext4_fsblk_t sb_block = get_sb_block(&data); 3711 ext4_fsblk_t logical_sb_block; 3712 unsigned long offset = 0; 3713 unsigned long journal_devnum = 0; 3714 unsigned long def_mount_opts; 3715 struct inode *root; 3716 const char *descr; 3717 int ret = -ENOMEM; 3718 int blocksize, clustersize; 3719 unsigned int db_count; 3720 unsigned int i; 3721 int needs_recovery, has_huge_files; 3722 __u64 blocks_count; 3723 int err = 0; 3724 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3725 ext4_group_t first_not_zeroed; 3726 3727 if ((data && !orig_data) || !sbi) 3728 goto out_free_base; 3729 3730 sbi->s_daxdev = dax_dev; 3731 sbi->s_blockgroup_lock = 3732 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3733 if (!sbi->s_blockgroup_lock) 3734 goto out_free_base; 3735 3736 sb->s_fs_info = sbi; 3737 sbi->s_sb = sb; 3738 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3739 sbi->s_sb_block = sb_block; 3740 if (sb->s_bdev->bd_part) 3741 sbi->s_sectors_written_start = 3742 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3743 3744 /* Cleanup superblock name */ 3745 strreplace(sb->s_id, '/', '!'); 3746 3747 /* -EINVAL is default */ 3748 ret = -EINVAL; 3749 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3750 if (!blocksize) { 3751 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3752 goto out_fail; 3753 } 3754 3755 /* 3756 * The ext4 superblock will not be buffer aligned for other than 1kB 3757 * block sizes. We need to calculate the offset from buffer start. 3758 */ 3759 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3760 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3761 offset = do_div(logical_sb_block, blocksize); 3762 } else { 3763 logical_sb_block = sb_block; 3764 } 3765 3766 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3767 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3768 goto out_fail; 3769 } 3770 /* 3771 * Note: s_es must be initialized as soon as possible because 3772 * some ext4 macro-instructions depend on its value 3773 */ 3774 es = (struct ext4_super_block *) (bh->b_data + offset); 3775 sbi->s_es = es; 3776 sb->s_magic = le16_to_cpu(es->s_magic); 3777 if (sb->s_magic != EXT4_SUPER_MAGIC) 3778 goto cantfind_ext4; 3779 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3780 3781 /* Warn if metadata_csum and gdt_csum are both set. */ 3782 if (ext4_has_feature_metadata_csum(sb) && 3783 ext4_has_feature_gdt_csum(sb)) 3784 ext4_warning(sb, "metadata_csum and uninit_bg are " 3785 "redundant flags; please run fsck."); 3786 3787 /* Check for a known checksum algorithm */ 3788 if (!ext4_verify_csum_type(sb, es)) { 3789 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3790 "unknown checksum algorithm."); 3791 silent = 1; 3792 goto cantfind_ext4; 3793 } 3794 3795 /* Load the checksum driver */ 3796 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3797 if (IS_ERR(sbi->s_chksum_driver)) { 3798 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3799 ret = PTR_ERR(sbi->s_chksum_driver); 3800 sbi->s_chksum_driver = NULL; 3801 goto failed_mount; 3802 } 3803 3804 /* Check superblock checksum */ 3805 if (!ext4_superblock_csum_verify(sb, es)) { 3806 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3807 "invalid superblock checksum. Run e2fsck?"); 3808 silent = 1; 3809 ret = -EFSBADCRC; 3810 goto cantfind_ext4; 3811 } 3812 3813 /* Precompute checksum seed for all metadata */ 3814 if (ext4_has_feature_csum_seed(sb)) 3815 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3816 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3817 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3818 sizeof(es->s_uuid)); 3819 3820 /* Set defaults before we parse the mount options */ 3821 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3822 set_opt(sb, INIT_INODE_TABLE); 3823 if (def_mount_opts & EXT4_DEFM_DEBUG) 3824 set_opt(sb, DEBUG); 3825 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3826 set_opt(sb, GRPID); 3827 if (def_mount_opts & EXT4_DEFM_UID16) 3828 set_opt(sb, NO_UID32); 3829 /* xattr user namespace & acls are now defaulted on */ 3830 set_opt(sb, XATTR_USER); 3831 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3832 set_opt(sb, POSIX_ACL); 3833 #endif 3834 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3835 if (ext4_has_metadata_csum(sb)) 3836 set_opt(sb, JOURNAL_CHECKSUM); 3837 3838 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3839 set_opt(sb, JOURNAL_DATA); 3840 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3841 set_opt(sb, ORDERED_DATA); 3842 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3843 set_opt(sb, WRITEBACK_DATA); 3844 3845 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3846 set_opt(sb, ERRORS_PANIC); 3847 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3848 set_opt(sb, ERRORS_CONT); 3849 else 3850 set_opt(sb, ERRORS_RO); 3851 /* block_validity enabled by default; disable with noblock_validity */ 3852 set_opt(sb, BLOCK_VALIDITY); 3853 if (def_mount_opts & EXT4_DEFM_DISCARD) 3854 set_opt(sb, DISCARD); 3855 3856 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3857 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3858 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3859 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3860 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3861 3862 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3863 set_opt(sb, BARRIER); 3864 3865 /* 3866 * enable delayed allocation by default 3867 * Use -o nodelalloc to turn it off 3868 */ 3869 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3870 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3871 set_opt(sb, DELALLOC); 3872 3873 /* 3874 * set default s_li_wait_mult for lazyinit, for the case there is 3875 * no mount option specified. 3876 */ 3877 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3878 3879 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3880 3881 if (blocksize == PAGE_SIZE) 3882 set_opt(sb, DIOREAD_NOLOCK); 3883 3884 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3885 blocksize > EXT4_MAX_BLOCK_SIZE) { 3886 ext4_msg(sb, KERN_ERR, 3887 "Unsupported filesystem blocksize %d (%d log_block_size)", 3888 blocksize, le32_to_cpu(es->s_log_block_size)); 3889 goto failed_mount; 3890 } 3891 3892 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3893 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3894 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3895 } else { 3896 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3897 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3898 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3899 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3900 sbi->s_first_ino); 3901 goto failed_mount; 3902 } 3903 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3904 (!is_power_of_2(sbi->s_inode_size)) || 3905 (sbi->s_inode_size > blocksize)) { 3906 ext4_msg(sb, KERN_ERR, 3907 "unsupported inode size: %d", 3908 sbi->s_inode_size); 3909 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3910 goto failed_mount; 3911 } 3912 /* 3913 * i_atime_extra is the last extra field available for 3914 * [acm]times in struct ext4_inode. Checking for that 3915 * field should suffice to ensure we have extra space 3916 * for all three. 3917 */ 3918 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3919 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3920 sb->s_time_gran = 1; 3921 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3922 } else { 3923 sb->s_time_gran = NSEC_PER_SEC; 3924 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3925 } 3926 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3927 } 3928 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3929 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3930 EXT4_GOOD_OLD_INODE_SIZE; 3931 if (ext4_has_feature_extra_isize(sb)) { 3932 unsigned v, max = (sbi->s_inode_size - 3933 EXT4_GOOD_OLD_INODE_SIZE); 3934 3935 v = le16_to_cpu(es->s_want_extra_isize); 3936 if (v > max) { 3937 ext4_msg(sb, KERN_ERR, 3938 "bad s_want_extra_isize: %d", v); 3939 goto failed_mount; 3940 } 3941 if (sbi->s_want_extra_isize < v) 3942 sbi->s_want_extra_isize = v; 3943 3944 v = le16_to_cpu(es->s_min_extra_isize); 3945 if (v > max) { 3946 ext4_msg(sb, KERN_ERR, 3947 "bad s_min_extra_isize: %d", v); 3948 goto failed_mount; 3949 } 3950 if (sbi->s_want_extra_isize < v) 3951 sbi->s_want_extra_isize = v; 3952 } 3953 } 3954 3955 if (sbi->s_es->s_mount_opts[0]) { 3956 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3957 sizeof(sbi->s_es->s_mount_opts), 3958 GFP_KERNEL); 3959 if (!s_mount_opts) 3960 goto failed_mount; 3961 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3962 &journal_ioprio, 0)) { 3963 ext4_msg(sb, KERN_WARNING, 3964 "failed to parse options in superblock: %s", 3965 s_mount_opts); 3966 } 3967 kfree(s_mount_opts); 3968 } 3969 sbi->s_def_mount_opt = sbi->s_mount_opt; 3970 if (!parse_options((char *) data, sb, &journal_devnum, 3971 &journal_ioprio, 0)) 3972 goto failed_mount; 3973 3974 #ifdef CONFIG_UNICODE 3975 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 3976 const struct ext4_sb_encodings *encoding_info; 3977 struct unicode_map *encoding; 3978 __u16 encoding_flags; 3979 3980 if (ext4_has_feature_encrypt(sb)) { 3981 ext4_msg(sb, KERN_ERR, 3982 "Can't mount with encoding and encryption"); 3983 goto failed_mount; 3984 } 3985 3986 if (ext4_sb_read_encoding(es, &encoding_info, 3987 &encoding_flags)) { 3988 ext4_msg(sb, KERN_ERR, 3989 "Encoding requested by superblock is unknown"); 3990 goto failed_mount; 3991 } 3992 3993 encoding = utf8_load(encoding_info->version); 3994 if (IS_ERR(encoding)) { 3995 ext4_msg(sb, KERN_ERR, 3996 "can't mount with superblock charset: %s-%s " 3997 "not supported by the kernel. flags: 0x%x.", 3998 encoding_info->name, encoding_info->version, 3999 encoding_flags); 4000 goto failed_mount; 4001 } 4002 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4003 "%s-%s with flags 0x%hx", encoding_info->name, 4004 encoding_info->version?:"\b", encoding_flags); 4005 4006 sbi->s_encoding = encoding; 4007 sbi->s_encoding_flags = encoding_flags; 4008 } 4009 #endif 4010 4011 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4012 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 4013 /* can't mount with both data=journal and dioread_nolock. */ 4014 clear_opt(sb, DIOREAD_NOLOCK); 4015 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4016 ext4_msg(sb, KERN_ERR, "can't mount with " 4017 "both data=journal and delalloc"); 4018 goto failed_mount; 4019 } 4020 if (test_opt(sb, DAX)) { 4021 ext4_msg(sb, KERN_ERR, "can't mount with " 4022 "both data=journal and dax"); 4023 goto failed_mount; 4024 } 4025 if (ext4_has_feature_encrypt(sb)) { 4026 ext4_msg(sb, KERN_WARNING, 4027 "encrypted files will use data=ordered " 4028 "instead of data journaling mode"); 4029 } 4030 if (test_opt(sb, DELALLOC)) 4031 clear_opt(sb, DELALLOC); 4032 } else { 4033 sb->s_iflags |= SB_I_CGROUPWB; 4034 } 4035 4036 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4037 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4038 4039 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4040 (ext4_has_compat_features(sb) || 4041 ext4_has_ro_compat_features(sb) || 4042 ext4_has_incompat_features(sb))) 4043 ext4_msg(sb, KERN_WARNING, 4044 "feature flags set on rev 0 fs, " 4045 "running e2fsck is recommended"); 4046 4047 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4048 set_opt2(sb, HURD_COMPAT); 4049 if (ext4_has_feature_64bit(sb)) { 4050 ext4_msg(sb, KERN_ERR, 4051 "The Hurd can't support 64-bit file systems"); 4052 goto failed_mount; 4053 } 4054 4055 /* 4056 * ea_inode feature uses l_i_version field which is not 4057 * available in HURD_COMPAT mode. 4058 */ 4059 if (ext4_has_feature_ea_inode(sb)) { 4060 ext4_msg(sb, KERN_ERR, 4061 "ea_inode feature is not supported for Hurd"); 4062 goto failed_mount; 4063 } 4064 } 4065 4066 if (IS_EXT2_SB(sb)) { 4067 if (ext2_feature_set_ok(sb)) 4068 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4069 "using the ext4 subsystem"); 4070 else { 4071 /* 4072 * If we're probing be silent, if this looks like 4073 * it's actually an ext[34] filesystem. 4074 */ 4075 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4076 goto failed_mount; 4077 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4078 "to feature incompatibilities"); 4079 goto failed_mount; 4080 } 4081 } 4082 4083 if (IS_EXT3_SB(sb)) { 4084 if (ext3_feature_set_ok(sb)) 4085 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4086 "using the ext4 subsystem"); 4087 else { 4088 /* 4089 * If we're probing be silent, if this looks like 4090 * it's actually an ext4 filesystem. 4091 */ 4092 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4093 goto failed_mount; 4094 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4095 "to feature incompatibilities"); 4096 goto failed_mount; 4097 } 4098 } 4099 4100 /* 4101 * Check feature flags regardless of the revision level, since we 4102 * previously didn't change the revision level when setting the flags, 4103 * so there is a chance incompat flags are set on a rev 0 filesystem. 4104 */ 4105 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4106 goto failed_mount; 4107 4108 if (le32_to_cpu(es->s_log_block_size) > 4109 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4110 ext4_msg(sb, KERN_ERR, 4111 "Invalid log block size: %u", 4112 le32_to_cpu(es->s_log_block_size)); 4113 goto failed_mount; 4114 } 4115 if (le32_to_cpu(es->s_log_cluster_size) > 4116 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4117 ext4_msg(sb, KERN_ERR, 4118 "Invalid log cluster size: %u", 4119 le32_to_cpu(es->s_log_cluster_size)); 4120 goto failed_mount; 4121 } 4122 4123 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4124 ext4_msg(sb, KERN_ERR, 4125 "Number of reserved GDT blocks insanely large: %d", 4126 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4127 goto failed_mount; 4128 } 4129 4130 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 4131 if (ext4_has_feature_inline_data(sb)) { 4132 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4133 " that may contain inline data"); 4134 goto failed_mount; 4135 } 4136 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 4137 ext4_msg(sb, KERN_ERR, 4138 "DAX unsupported by block device."); 4139 goto failed_mount; 4140 } 4141 } 4142 4143 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4144 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4145 es->s_encryption_level); 4146 goto failed_mount; 4147 } 4148 4149 if (sb->s_blocksize != blocksize) { 4150 /* Validate the filesystem blocksize */ 4151 if (!sb_set_blocksize(sb, blocksize)) { 4152 ext4_msg(sb, KERN_ERR, "bad block size %d", 4153 blocksize); 4154 goto failed_mount; 4155 } 4156 4157 brelse(bh); 4158 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4159 offset = do_div(logical_sb_block, blocksize); 4160 bh = sb_bread_unmovable(sb, logical_sb_block); 4161 if (!bh) { 4162 ext4_msg(sb, KERN_ERR, 4163 "Can't read superblock on 2nd try"); 4164 goto failed_mount; 4165 } 4166 es = (struct ext4_super_block *)(bh->b_data + offset); 4167 sbi->s_es = es; 4168 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4169 ext4_msg(sb, KERN_ERR, 4170 "Magic mismatch, very weird!"); 4171 goto failed_mount; 4172 } 4173 } 4174 4175 has_huge_files = ext4_has_feature_huge_file(sb); 4176 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4177 has_huge_files); 4178 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4179 4180 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4181 if (ext4_has_feature_64bit(sb)) { 4182 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4183 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4184 !is_power_of_2(sbi->s_desc_size)) { 4185 ext4_msg(sb, KERN_ERR, 4186 "unsupported descriptor size %lu", 4187 sbi->s_desc_size); 4188 goto failed_mount; 4189 } 4190 } else 4191 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4192 4193 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4194 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4195 4196 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4197 if (sbi->s_inodes_per_block == 0) 4198 goto cantfind_ext4; 4199 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4200 sbi->s_inodes_per_group > blocksize * 8) { 4201 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4202 sbi->s_inodes_per_group); 4203 goto failed_mount; 4204 } 4205 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4206 sbi->s_inodes_per_block; 4207 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4208 sbi->s_sbh = bh; 4209 sbi->s_mount_state = le16_to_cpu(es->s_state); 4210 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4211 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4212 4213 for (i = 0; i < 4; i++) 4214 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4215 sbi->s_def_hash_version = es->s_def_hash_version; 4216 if (ext4_has_feature_dir_index(sb)) { 4217 i = le32_to_cpu(es->s_flags); 4218 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4219 sbi->s_hash_unsigned = 3; 4220 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4221 #ifdef __CHAR_UNSIGNED__ 4222 if (!sb_rdonly(sb)) 4223 es->s_flags |= 4224 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4225 sbi->s_hash_unsigned = 3; 4226 #else 4227 if (!sb_rdonly(sb)) 4228 es->s_flags |= 4229 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4230 #endif 4231 } 4232 } 4233 4234 /* Handle clustersize */ 4235 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4236 if (ext4_has_feature_bigalloc(sb)) { 4237 if (clustersize < blocksize) { 4238 ext4_msg(sb, KERN_ERR, 4239 "cluster size (%d) smaller than " 4240 "block size (%d)", clustersize, blocksize); 4241 goto failed_mount; 4242 } 4243 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4244 le32_to_cpu(es->s_log_block_size); 4245 sbi->s_clusters_per_group = 4246 le32_to_cpu(es->s_clusters_per_group); 4247 if (sbi->s_clusters_per_group > blocksize * 8) { 4248 ext4_msg(sb, KERN_ERR, 4249 "#clusters per group too big: %lu", 4250 sbi->s_clusters_per_group); 4251 goto failed_mount; 4252 } 4253 if (sbi->s_blocks_per_group != 4254 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4255 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4256 "clusters per group (%lu) inconsistent", 4257 sbi->s_blocks_per_group, 4258 sbi->s_clusters_per_group); 4259 goto failed_mount; 4260 } 4261 } else { 4262 if (clustersize != blocksize) { 4263 ext4_msg(sb, KERN_ERR, 4264 "fragment/cluster size (%d) != " 4265 "block size (%d)", clustersize, blocksize); 4266 goto failed_mount; 4267 } 4268 if (sbi->s_blocks_per_group > blocksize * 8) { 4269 ext4_msg(sb, KERN_ERR, 4270 "#blocks per group too big: %lu", 4271 sbi->s_blocks_per_group); 4272 goto failed_mount; 4273 } 4274 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4275 sbi->s_cluster_bits = 0; 4276 } 4277 sbi->s_cluster_ratio = clustersize / blocksize; 4278 4279 /* Do we have standard group size of clustersize * 8 blocks ? */ 4280 if (sbi->s_blocks_per_group == clustersize << 3) 4281 set_opt2(sb, STD_GROUP_SIZE); 4282 4283 /* 4284 * Test whether we have more sectors than will fit in sector_t, 4285 * and whether the max offset is addressable by the page cache. 4286 */ 4287 err = generic_check_addressable(sb->s_blocksize_bits, 4288 ext4_blocks_count(es)); 4289 if (err) { 4290 ext4_msg(sb, KERN_ERR, "filesystem" 4291 " too large to mount safely on this system"); 4292 goto failed_mount; 4293 } 4294 4295 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4296 goto cantfind_ext4; 4297 4298 /* check blocks count against device size */ 4299 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4300 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4301 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4302 "exceeds size of device (%llu blocks)", 4303 ext4_blocks_count(es), blocks_count); 4304 goto failed_mount; 4305 } 4306 4307 /* 4308 * It makes no sense for the first data block to be beyond the end 4309 * of the filesystem. 4310 */ 4311 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4312 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4313 "block %u is beyond end of filesystem (%llu)", 4314 le32_to_cpu(es->s_first_data_block), 4315 ext4_blocks_count(es)); 4316 goto failed_mount; 4317 } 4318 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4319 (sbi->s_cluster_ratio == 1)) { 4320 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4321 "block is 0 with a 1k block and cluster size"); 4322 goto failed_mount; 4323 } 4324 4325 blocks_count = (ext4_blocks_count(es) - 4326 le32_to_cpu(es->s_first_data_block) + 4327 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4328 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4329 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4330 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4331 "(block count %llu, first data block %u, " 4332 "blocks per group %lu)", blocks_count, 4333 ext4_blocks_count(es), 4334 le32_to_cpu(es->s_first_data_block), 4335 EXT4_BLOCKS_PER_GROUP(sb)); 4336 goto failed_mount; 4337 } 4338 sbi->s_groups_count = blocks_count; 4339 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4340 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4341 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4342 le32_to_cpu(es->s_inodes_count)) { 4343 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4344 le32_to_cpu(es->s_inodes_count), 4345 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4346 ret = -EINVAL; 4347 goto failed_mount; 4348 } 4349 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4350 EXT4_DESC_PER_BLOCK(sb); 4351 if (ext4_has_feature_meta_bg(sb)) { 4352 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4353 ext4_msg(sb, KERN_WARNING, 4354 "first meta block group too large: %u " 4355 "(group descriptor block count %u)", 4356 le32_to_cpu(es->s_first_meta_bg), db_count); 4357 goto failed_mount; 4358 } 4359 } 4360 rcu_assign_pointer(sbi->s_group_desc, 4361 kvmalloc_array(db_count, 4362 sizeof(struct buffer_head *), 4363 GFP_KERNEL)); 4364 if (sbi->s_group_desc == NULL) { 4365 ext4_msg(sb, KERN_ERR, "not enough memory"); 4366 ret = -ENOMEM; 4367 goto failed_mount; 4368 } 4369 4370 bgl_lock_init(sbi->s_blockgroup_lock); 4371 4372 /* Pre-read the descriptors into the buffer cache */ 4373 for (i = 0; i < db_count; i++) { 4374 block = descriptor_loc(sb, logical_sb_block, i); 4375 sb_breadahead_unmovable(sb, block); 4376 } 4377 4378 for (i = 0; i < db_count; i++) { 4379 struct buffer_head *bh; 4380 4381 block = descriptor_loc(sb, logical_sb_block, i); 4382 bh = sb_bread_unmovable(sb, block); 4383 if (!bh) { 4384 ext4_msg(sb, KERN_ERR, 4385 "can't read group descriptor %d", i); 4386 db_count = i; 4387 goto failed_mount2; 4388 } 4389 rcu_read_lock(); 4390 rcu_dereference(sbi->s_group_desc)[i] = bh; 4391 rcu_read_unlock(); 4392 } 4393 sbi->s_gdb_count = db_count; 4394 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4395 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4396 ret = -EFSCORRUPTED; 4397 goto failed_mount2; 4398 } 4399 4400 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4401 4402 /* Register extent status tree shrinker */ 4403 if (ext4_es_register_shrinker(sbi)) 4404 goto failed_mount3; 4405 4406 sbi->s_stripe = ext4_get_stripe_size(sbi); 4407 sbi->s_extent_max_zeroout_kb = 32; 4408 4409 /* 4410 * set up enough so that it can read an inode 4411 */ 4412 sb->s_op = &ext4_sops; 4413 sb->s_export_op = &ext4_export_ops; 4414 sb->s_xattr = ext4_xattr_handlers; 4415 #ifdef CONFIG_FS_ENCRYPTION 4416 sb->s_cop = &ext4_cryptops; 4417 #endif 4418 #ifdef CONFIG_FS_VERITY 4419 sb->s_vop = &ext4_verityops; 4420 #endif 4421 #ifdef CONFIG_QUOTA 4422 sb->dq_op = &ext4_quota_operations; 4423 if (ext4_has_feature_quota(sb)) 4424 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4425 else 4426 sb->s_qcop = &ext4_qctl_operations; 4427 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4428 #endif 4429 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4430 4431 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4432 mutex_init(&sbi->s_orphan_lock); 4433 4434 sb->s_root = NULL; 4435 4436 needs_recovery = (es->s_last_orphan != 0 || 4437 ext4_has_feature_journal_needs_recovery(sb)); 4438 4439 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4440 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4441 goto failed_mount3a; 4442 4443 /* 4444 * The first inode we look at is the journal inode. Don't try 4445 * root first: it may be modified in the journal! 4446 */ 4447 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4448 err = ext4_load_journal(sb, es, journal_devnum); 4449 if (err) 4450 goto failed_mount3a; 4451 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4452 ext4_has_feature_journal_needs_recovery(sb)) { 4453 ext4_msg(sb, KERN_ERR, "required journal recovery " 4454 "suppressed and not mounted read-only"); 4455 goto failed_mount_wq; 4456 } else { 4457 /* Nojournal mode, all journal mount options are illegal */ 4458 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4459 ext4_msg(sb, KERN_ERR, "can't mount with " 4460 "journal_checksum, fs mounted w/o journal"); 4461 goto failed_mount_wq; 4462 } 4463 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4464 ext4_msg(sb, KERN_ERR, "can't mount with " 4465 "journal_async_commit, fs mounted w/o journal"); 4466 goto failed_mount_wq; 4467 } 4468 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4469 ext4_msg(sb, KERN_ERR, "can't mount with " 4470 "commit=%lu, fs mounted w/o journal", 4471 sbi->s_commit_interval / HZ); 4472 goto failed_mount_wq; 4473 } 4474 if (EXT4_MOUNT_DATA_FLAGS & 4475 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4476 ext4_msg(sb, KERN_ERR, "can't mount with " 4477 "data=, fs mounted w/o journal"); 4478 goto failed_mount_wq; 4479 } 4480 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4481 clear_opt(sb, JOURNAL_CHECKSUM); 4482 clear_opt(sb, DATA_FLAGS); 4483 sbi->s_journal = NULL; 4484 needs_recovery = 0; 4485 goto no_journal; 4486 } 4487 4488 if (ext4_has_feature_64bit(sb) && 4489 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4490 JBD2_FEATURE_INCOMPAT_64BIT)) { 4491 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4492 goto failed_mount_wq; 4493 } 4494 4495 if (!set_journal_csum_feature_set(sb)) { 4496 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4497 "feature set"); 4498 goto failed_mount_wq; 4499 } 4500 4501 /* We have now updated the journal if required, so we can 4502 * validate the data journaling mode. */ 4503 switch (test_opt(sb, DATA_FLAGS)) { 4504 case 0: 4505 /* No mode set, assume a default based on the journal 4506 * capabilities: ORDERED_DATA if the journal can 4507 * cope, else JOURNAL_DATA 4508 */ 4509 if (jbd2_journal_check_available_features 4510 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4511 set_opt(sb, ORDERED_DATA); 4512 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4513 } else { 4514 set_opt(sb, JOURNAL_DATA); 4515 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4516 } 4517 break; 4518 4519 case EXT4_MOUNT_ORDERED_DATA: 4520 case EXT4_MOUNT_WRITEBACK_DATA: 4521 if (!jbd2_journal_check_available_features 4522 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4523 ext4_msg(sb, KERN_ERR, "Journal does not support " 4524 "requested data journaling mode"); 4525 goto failed_mount_wq; 4526 } 4527 default: 4528 break; 4529 } 4530 4531 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4532 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4533 ext4_msg(sb, KERN_ERR, "can't mount with " 4534 "journal_async_commit in data=ordered mode"); 4535 goto failed_mount_wq; 4536 } 4537 4538 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4539 4540 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4541 4542 no_journal: 4543 if (!test_opt(sb, NO_MBCACHE)) { 4544 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4545 if (!sbi->s_ea_block_cache) { 4546 ext4_msg(sb, KERN_ERR, 4547 "Failed to create ea_block_cache"); 4548 goto failed_mount_wq; 4549 } 4550 4551 if (ext4_has_feature_ea_inode(sb)) { 4552 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4553 if (!sbi->s_ea_inode_cache) { 4554 ext4_msg(sb, KERN_ERR, 4555 "Failed to create ea_inode_cache"); 4556 goto failed_mount_wq; 4557 } 4558 } 4559 } 4560 4561 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4562 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4563 goto failed_mount_wq; 4564 } 4565 4566 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4567 !ext4_has_feature_encrypt(sb)) { 4568 ext4_set_feature_encrypt(sb); 4569 ext4_commit_super(sb, 1); 4570 } 4571 4572 /* 4573 * Get the # of file system overhead blocks from the 4574 * superblock if present. 4575 */ 4576 if (es->s_overhead_clusters) 4577 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4578 else { 4579 err = ext4_calculate_overhead(sb); 4580 if (err) 4581 goto failed_mount_wq; 4582 } 4583 4584 /* 4585 * The maximum number of concurrent works can be high and 4586 * concurrency isn't really necessary. Limit it to 1. 4587 */ 4588 EXT4_SB(sb)->rsv_conversion_wq = 4589 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4590 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4591 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4592 ret = -ENOMEM; 4593 goto failed_mount4; 4594 } 4595 4596 /* 4597 * The jbd2_journal_load will have done any necessary log recovery, 4598 * so we can safely mount the rest of the filesystem now. 4599 */ 4600 4601 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4602 if (IS_ERR(root)) { 4603 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4604 ret = PTR_ERR(root); 4605 root = NULL; 4606 goto failed_mount4; 4607 } 4608 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4609 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4610 iput(root); 4611 goto failed_mount4; 4612 } 4613 4614 #ifdef CONFIG_UNICODE 4615 if (sbi->s_encoding) 4616 sb->s_d_op = &ext4_dentry_ops; 4617 #endif 4618 4619 sb->s_root = d_make_root(root); 4620 if (!sb->s_root) { 4621 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4622 ret = -ENOMEM; 4623 goto failed_mount4; 4624 } 4625 4626 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4627 if (ret == -EROFS) { 4628 sb->s_flags |= SB_RDONLY; 4629 ret = 0; 4630 } else if (ret) 4631 goto failed_mount4a; 4632 4633 ext4_set_resv_clusters(sb); 4634 4635 err = ext4_setup_system_zone(sb); 4636 if (err) { 4637 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4638 "zone (%d)", err); 4639 goto failed_mount4a; 4640 } 4641 4642 ext4_ext_init(sb); 4643 err = ext4_mb_init(sb); 4644 if (err) { 4645 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4646 err); 4647 goto failed_mount5; 4648 } 4649 4650 block = ext4_count_free_clusters(sb); 4651 ext4_free_blocks_count_set(sbi->s_es, 4652 EXT4_C2B(sbi, block)); 4653 ext4_superblock_csum_set(sb); 4654 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4655 GFP_KERNEL); 4656 if (!err) { 4657 unsigned long freei = ext4_count_free_inodes(sb); 4658 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4659 ext4_superblock_csum_set(sb); 4660 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4661 GFP_KERNEL); 4662 } 4663 if (!err) 4664 err = percpu_counter_init(&sbi->s_dirs_counter, 4665 ext4_count_dirs(sb), GFP_KERNEL); 4666 if (!err) 4667 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4668 GFP_KERNEL); 4669 if (!err) 4670 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4671 4672 if (err) { 4673 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4674 goto failed_mount6; 4675 } 4676 4677 if (ext4_has_feature_flex_bg(sb)) 4678 if (!ext4_fill_flex_info(sb)) { 4679 ext4_msg(sb, KERN_ERR, 4680 "unable to initialize " 4681 "flex_bg meta info!"); 4682 goto failed_mount6; 4683 } 4684 4685 err = ext4_register_li_request(sb, first_not_zeroed); 4686 if (err) 4687 goto failed_mount6; 4688 4689 err = ext4_register_sysfs(sb); 4690 if (err) 4691 goto failed_mount7; 4692 4693 #ifdef CONFIG_QUOTA 4694 /* Enable quota usage during mount. */ 4695 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4696 err = ext4_enable_quotas(sb); 4697 if (err) 4698 goto failed_mount8; 4699 } 4700 #endif /* CONFIG_QUOTA */ 4701 4702 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4703 ext4_orphan_cleanup(sb, es); 4704 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4705 if (needs_recovery) { 4706 ext4_msg(sb, KERN_INFO, "recovery complete"); 4707 ext4_mark_recovery_complete(sb, es); 4708 } 4709 if (EXT4_SB(sb)->s_journal) { 4710 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4711 descr = " journalled data mode"; 4712 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4713 descr = " ordered data mode"; 4714 else 4715 descr = " writeback data mode"; 4716 } else 4717 descr = "out journal"; 4718 4719 if (test_opt(sb, DISCARD)) { 4720 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4721 if (!blk_queue_discard(q)) 4722 ext4_msg(sb, KERN_WARNING, 4723 "mounting with \"discard\" option, but " 4724 "the device does not support discard"); 4725 } 4726 4727 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4728 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4729 "Opts: %.*s%s%s", descr, 4730 (int) sizeof(sbi->s_es->s_mount_opts), 4731 sbi->s_es->s_mount_opts, 4732 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4733 4734 if (es->s_error_count) 4735 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4736 4737 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4738 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4739 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4740 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4741 4742 kfree(orig_data); 4743 return 0; 4744 4745 cantfind_ext4: 4746 if (!silent) 4747 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4748 goto failed_mount; 4749 4750 #ifdef CONFIG_QUOTA 4751 failed_mount8: 4752 ext4_unregister_sysfs(sb); 4753 #endif 4754 failed_mount7: 4755 ext4_unregister_li_request(sb); 4756 failed_mount6: 4757 ext4_mb_release(sb); 4758 rcu_read_lock(); 4759 flex_groups = rcu_dereference(sbi->s_flex_groups); 4760 if (flex_groups) { 4761 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4762 kvfree(flex_groups[i]); 4763 kvfree(flex_groups); 4764 } 4765 rcu_read_unlock(); 4766 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4767 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4768 percpu_counter_destroy(&sbi->s_dirs_counter); 4769 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4770 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4771 failed_mount5: 4772 ext4_ext_release(sb); 4773 ext4_release_system_zone(sb); 4774 failed_mount4a: 4775 dput(sb->s_root); 4776 sb->s_root = NULL; 4777 failed_mount4: 4778 ext4_msg(sb, KERN_ERR, "mount failed"); 4779 if (EXT4_SB(sb)->rsv_conversion_wq) 4780 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4781 failed_mount_wq: 4782 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4783 sbi->s_ea_inode_cache = NULL; 4784 4785 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4786 sbi->s_ea_block_cache = NULL; 4787 4788 if (sbi->s_journal) { 4789 jbd2_journal_destroy(sbi->s_journal); 4790 sbi->s_journal = NULL; 4791 } 4792 failed_mount3a: 4793 ext4_es_unregister_shrinker(sbi); 4794 failed_mount3: 4795 del_timer_sync(&sbi->s_err_report); 4796 if (sbi->s_mmp_tsk) 4797 kthread_stop(sbi->s_mmp_tsk); 4798 failed_mount2: 4799 rcu_read_lock(); 4800 group_desc = rcu_dereference(sbi->s_group_desc); 4801 for (i = 0; i < db_count; i++) 4802 brelse(group_desc[i]); 4803 kvfree(group_desc); 4804 rcu_read_unlock(); 4805 failed_mount: 4806 if (sbi->s_chksum_driver) 4807 crypto_free_shash(sbi->s_chksum_driver); 4808 4809 #ifdef CONFIG_UNICODE 4810 utf8_unload(sbi->s_encoding); 4811 #endif 4812 4813 #ifdef CONFIG_QUOTA 4814 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4815 kfree(get_qf_name(sb, sbi, i)); 4816 #endif 4817 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx); 4818 ext4_blkdev_remove(sbi); 4819 brelse(bh); 4820 out_fail: 4821 sb->s_fs_info = NULL; 4822 kfree(sbi->s_blockgroup_lock); 4823 out_free_base: 4824 kfree(sbi); 4825 kfree(orig_data); 4826 fs_put_dax(dax_dev); 4827 return err ? err : ret; 4828 } 4829 4830 /* 4831 * Setup any per-fs journal parameters now. We'll do this both on 4832 * initial mount, once the journal has been initialised but before we've 4833 * done any recovery; and again on any subsequent remount. 4834 */ 4835 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4836 { 4837 struct ext4_sb_info *sbi = EXT4_SB(sb); 4838 4839 journal->j_commit_interval = sbi->s_commit_interval; 4840 journal->j_min_batch_time = sbi->s_min_batch_time; 4841 journal->j_max_batch_time = sbi->s_max_batch_time; 4842 4843 write_lock(&journal->j_state_lock); 4844 if (test_opt(sb, BARRIER)) 4845 journal->j_flags |= JBD2_BARRIER; 4846 else 4847 journal->j_flags &= ~JBD2_BARRIER; 4848 if (test_opt(sb, DATA_ERR_ABORT)) 4849 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4850 else 4851 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4852 write_unlock(&journal->j_state_lock); 4853 } 4854 4855 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4856 unsigned int journal_inum) 4857 { 4858 struct inode *journal_inode; 4859 4860 /* 4861 * Test for the existence of a valid inode on disk. Bad things 4862 * happen if we iget() an unused inode, as the subsequent iput() 4863 * will try to delete it. 4864 */ 4865 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4866 if (IS_ERR(journal_inode)) { 4867 ext4_msg(sb, KERN_ERR, "no journal found"); 4868 return NULL; 4869 } 4870 if (!journal_inode->i_nlink) { 4871 make_bad_inode(journal_inode); 4872 iput(journal_inode); 4873 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4874 return NULL; 4875 } 4876 4877 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4878 journal_inode, journal_inode->i_size); 4879 if (!S_ISREG(journal_inode->i_mode)) { 4880 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4881 iput(journal_inode); 4882 return NULL; 4883 } 4884 return journal_inode; 4885 } 4886 4887 static journal_t *ext4_get_journal(struct super_block *sb, 4888 unsigned int journal_inum) 4889 { 4890 struct inode *journal_inode; 4891 journal_t *journal; 4892 4893 BUG_ON(!ext4_has_feature_journal(sb)); 4894 4895 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4896 if (!journal_inode) 4897 return NULL; 4898 4899 journal = jbd2_journal_init_inode(journal_inode); 4900 if (!journal) { 4901 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4902 iput(journal_inode); 4903 return NULL; 4904 } 4905 journal->j_private = sb; 4906 ext4_init_journal_params(sb, journal); 4907 return journal; 4908 } 4909 4910 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4911 dev_t j_dev) 4912 { 4913 struct buffer_head *bh; 4914 journal_t *journal; 4915 ext4_fsblk_t start; 4916 ext4_fsblk_t len; 4917 int hblock, blocksize; 4918 ext4_fsblk_t sb_block; 4919 unsigned long offset; 4920 struct ext4_super_block *es; 4921 struct block_device *bdev; 4922 4923 BUG_ON(!ext4_has_feature_journal(sb)); 4924 4925 bdev = ext4_blkdev_get(j_dev, sb); 4926 if (bdev == NULL) 4927 return NULL; 4928 4929 blocksize = sb->s_blocksize; 4930 hblock = bdev_logical_block_size(bdev); 4931 if (blocksize < hblock) { 4932 ext4_msg(sb, KERN_ERR, 4933 "blocksize too small for journal device"); 4934 goto out_bdev; 4935 } 4936 4937 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4938 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4939 set_blocksize(bdev, blocksize); 4940 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4941 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4942 "external journal"); 4943 goto out_bdev; 4944 } 4945 4946 es = (struct ext4_super_block *) (bh->b_data + offset); 4947 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4948 !(le32_to_cpu(es->s_feature_incompat) & 4949 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4950 ext4_msg(sb, KERN_ERR, "external journal has " 4951 "bad superblock"); 4952 brelse(bh); 4953 goto out_bdev; 4954 } 4955 4956 if ((le32_to_cpu(es->s_feature_ro_compat) & 4957 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4958 es->s_checksum != ext4_superblock_csum(sb, es)) { 4959 ext4_msg(sb, KERN_ERR, "external journal has " 4960 "corrupt superblock"); 4961 brelse(bh); 4962 goto out_bdev; 4963 } 4964 4965 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4966 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4967 brelse(bh); 4968 goto out_bdev; 4969 } 4970 4971 len = ext4_blocks_count(es); 4972 start = sb_block + 1; 4973 brelse(bh); /* we're done with the superblock */ 4974 4975 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4976 start, len, blocksize); 4977 if (!journal) { 4978 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4979 goto out_bdev; 4980 } 4981 journal->j_private = sb; 4982 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4983 wait_on_buffer(journal->j_sb_buffer); 4984 if (!buffer_uptodate(journal->j_sb_buffer)) { 4985 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4986 goto out_journal; 4987 } 4988 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4989 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4990 "user (unsupported) - %d", 4991 be32_to_cpu(journal->j_superblock->s_nr_users)); 4992 goto out_journal; 4993 } 4994 EXT4_SB(sb)->journal_bdev = bdev; 4995 ext4_init_journal_params(sb, journal); 4996 return journal; 4997 4998 out_journal: 4999 jbd2_journal_destroy(journal); 5000 out_bdev: 5001 ext4_blkdev_put(bdev); 5002 return NULL; 5003 } 5004 5005 static int ext4_load_journal(struct super_block *sb, 5006 struct ext4_super_block *es, 5007 unsigned long journal_devnum) 5008 { 5009 journal_t *journal; 5010 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5011 dev_t journal_dev; 5012 int err = 0; 5013 int really_read_only; 5014 5015 BUG_ON(!ext4_has_feature_journal(sb)); 5016 5017 if (journal_devnum && 5018 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5019 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5020 "numbers have changed"); 5021 journal_dev = new_decode_dev(journal_devnum); 5022 } else 5023 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5024 5025 really_read_only = bdev_read_only(sb->s_bdev); 5026 5027 /* 5028 * Are we loading a blank journal or performing recovery after a 5029 * crash? For recovery, we need to check in advance whether we 5030 * can get read-write access to the device. 5031 */ 5032 if (ext4_has_feature_journal_needs_recovery(sb)) { 5033 if (sb_rdonly(sb)) { 5034 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5035 "required on readonly filesystem"); 5036 if (really_read_only) { 5037 ext4_msg(sb, KERN_ERR, "write access " 5038 "unavailable, cannot proceed " 5039 "(try mounting with noload)"); 5040 return -EROFS; 5041 } 5042 ext4_msg(sb, KERN_INFO, "write access will " 5043 "be enabled during recovery"); 5044 } 5045 } 5046 5047 if (journal_inum && journal_dev) { 5048 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 5049 "and inode journals!"); 5050 return -EINVAL; 5051 } 5052 5053 if (journal_inum) { 5054 if (!(journal = ext4_get_journal(sb, journal_inum))) 5055 return -EINVAL; 5056 } else { 5057 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 5058 return -EINVAL; 5059 } 5060 5061 if (!(journal->j_flags & JBD2_BARRIER)) 5062 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5063 5064 if (!ext4_has_feature_journal_needs_recovery(sb)) 5065 err = jbd2_journal_wipe(journal, !really_read_only); 5066 if (!err) { 5067 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5068 if (save) 5069 memcpy(save, ((char *) es) + 5070 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5071 err = jbd2_journal_load(journal); 5072 if (save) 5073 memcpy(((char *) es) + EXT4_S_ERR_START, 5074 save, EXT4_S_ERR_LEN); 5075 kfree(save); 5076 } 5077 5078 if (err) { 5079 ext4_msg(sb, KERN_ERR, "error loading journal"); 5080 jbd2_journal_destroy(journal); 5081 return err; 5082 } 5083 5084 EXT4_SB(sb)->s_journal = journal; 5085 ext4_clear_journal_err(sb, es); 5086 5087 if (!really_read_only && journal_devnum && 5088 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5089 es->s_journal_dev = cpu_to_le32(journal_devnum); 5090 5091 /* Make sure we flush the recovery flag to disk. */ 5092 ext4_commit_super(sb, 1); 5093 } 5094 5095 return 0; 5096 } 5097 5098 static int ext4_commit_super(struct super_block *sb, int sync) 5099 { 5100 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5101 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5102 int error = 0; 5103 5104 if (!sbh || block_device_ejected(sb)) 5105 return error; 5106 5107 /* 5108 * The superblock bh should be mapped, but it might not be if the 5109 * device was hot-removed. Not much we can do but fail the I/O. 5110 */ 5111 if (!buffer_mapped(sbh)) 5112 return error; 5113 5114 /* 5115 * If the file system is mounted read-only, don't update the 5116 * superblock write time. This avoids updating the superblock 5117 * write time when we are mounting the root file system 5118 * read/only but we need to replay the journal; at that point, 5119 * for people who are east of GMT and who make their clock 5120 * tick in localtime for Windows bug-for-bug compatibility, 5121 * the clock is set in the future, and this will cause e2fsck 5122 * to complain and force a full file system check. 5123 */ 5124 if (!(sb->s_flags & SB_RDONLY)) 5125 ext4_update_tstamp(es, s_wtime); 5126 if (sb->s_bdev->bd_part) 5127 es->s_kbytes_written = 5128 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5129 ((part_stat_read(sb->s_bdev->bd_part, 5130 sectors[STAT_WRITE]) - 5131 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5132 else 5133 es->s_kbytes_written = 5134 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5135 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5136 ext4_free_blocks_count_set(es, 5137 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5138 &EXT4_SB(sb)->s_freeclusters_counter))); 5139 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5140 es->s_free_inodes_count = 5141 cpu_to_le32(percpu_counter_sum_positive( 5142 &EXT4_SB(sb)->s_freeinodes_counter)); 5143 BUFFER_TRACE(sbh, "marking dirty"); 5144 ext4_superblock_csum_set(sb); 5145 if (sync) 5146 lock_buffer(sbh); 5147 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5148 /* 5149 * Oh, dear. A previous attempt to write the 5150 * superblock failed. This could happen because the 5151 * USB device was yanked out. Or it could happen to 5152 * be a transient write error and maybe the block will 5153 * be remapped. Nothing we can do but to retry the 5154 * write and hope for the best. 5155 */ 5156 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5157 "superblock detected"); 5158 clear_buffer_write_io_error(sbh); 5159 set_buffer_uptodate(sbh); 5160 } 5161 mark_buffer_dirty(sbh); 5162 if (sync) { 5163 unlock_buffer(sbh); 5164 error = __sync_dirty_buffer(sbh, 5165 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5166 if (buffer_write_io_error(sbh)) { 5167 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5168 "superblock"); 5169 clear_buffer_write_io_error(sbh); 5170 set_buffer_uptodate(sbh); 5171 } 5172 } 5173 return error; 5174 } 5175 5176 /* 5177 * Have we just finished recovery? If so, and if we are mounting (or 5178 * remounting) the filesystem readonly, then we will end up with a 5179 * consistent fs on disk. Record that fact. 5180 */ 5181 static void ext4_mark_recovery_complete(struct super_block *sb, 5182 struct ext4_super_block *es) 5183 { 5184 journal_t *journal = EXT4_SB(sb)->s_journal; 5185 5186 if (!ext4_has_feature_journal(sb)) { 5187 BUG_ON(journal != NULL); 5188 return; 5189 } 5190 jbd2_journal_lock_updates(journal); 5191 if (jbd2_journal_flush(journal) < 0) 5192 goto out; 5193 5194 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5195 ext4_clear_feature_journal_needs_recovery(sb); 5196 ext4_commit_super(sb, 1); 5197 } 5198 5199 out: 5200 jbd2_journal_unlock_updates(journal); 5201 } 5202 5203 /* 5204 * If we are mounting (or read-write remounting) a filesystem whose journal 5205 * has recorded an error from a previous lifetime, move that error to the 5206 * main filesystem now. 5207 */ 5208 static void ext4_clear_journal_err(struct super_block *sb, 5209 struct ext4_super_block *es) 5210 { 5211 journal_t *journal; 5212 int j_errno; 5213 const char *errstr; 5214 5215 BUG_ON(!ext4_has_feature_journal(sb)); 5216 5217 journal = EXT4_SB(sb)->s_journal; 5218 5219 /* 5220 * Now check for any error status which may have been recorded in the 5221 * journal by a prior ext4_error() or ext4_abort() 5222 */ 5223 5224 j_errno = jbd2_journal_errno(journal); 5225 if (j_errno) { 5226 char nbuf[16]; 5227 5228 errstr = ext4_decode_error(sb, j_errno, nbuf); 5229 ext4_warning(sb, "Filesystem error recorded " 5230 "from previous mount: %s", errstr); 5231 ext4_warning(sb, "Marking fs in need of filesystem check."); 5232 5233 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5234 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5235 ext4_commit_super(sb, 1); 5236 5237 jbd2_journal_clear_err(journal); 5238 jbd2_journal_update_sb_errno(journal); 5239 } 5240 } 5241 5242 /* 5243 * Force the running and committing transactions to commit, 5244 * and wait on the commit. 5245 */ 5246 int ext4_force_commit(struct super_block *sb) 5247 { 5248 journal_t *journal; 5249 5250 if (sb_rdonly(sb)) 5251 return 0; 5252 5253 journal = EXT4_SB(sb)->s_journal; 5254 return ext4_journal_force_commit(journal); 5255 } 5256 5257 static int ext4_sync_fs(struct super_block *sb, int wait) 5258 { 5259 int ret = 0; 5260 tid_t target; 5261 bool needs_barrier = false; 5262 struct ext4_sb_info *sbi = EXT4_SB(sb); 5263 5264 if (unlikely(ext4_forced_shutdown(sbi))) 5265 return 0; 5266 5267 trace_ext4_sync_fs(sb, wait); 5268 flush_workqueue(sbi->rsv_conversion_wq); 5269 /* 5270 * Writeback quota in non-journalled quota case - journalled quota has 5271 * no dirty dquots 5272 */ 5273 dquot_writeback_dquots(sb, -1); 5274 /* 5275 * Data writeback is possible w/o journal transaction, so barrier must 5276 * being sent at the end of the function. But we can skip it if 5277 * transaction_commit will do it for us. 5278 */ 5279 if (sbi->s_journal) { 5280 target = jbd2_get_latest_transaction(sbi->s_journal); 5281 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5282 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5283 needs_barrier = true; 5284 5285 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5286 if (wait) 5287 ret = jbd2_log_wait_commit(sbi->s_journal, 5288 target); 5289 } 5290 } else if (wait && test_opt(sb, BARRIER)) 5291 needs_barrier = true; 5292 if (needs_barrier) { 5293 int err; 5294 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 5295 if (!ret) 5296 ret = err; 5297 } 5298 5299 return ret; 5300 } 5301 5302 /* 5303 * LVM calls this function before a (read-only) snapshot is created. This 5304 * gives us a chance to flush the journal completely and mark the fs clean. 5305 * 5306 * Note that only this function cannot bring a filesystem to be in a clean 5307 * state independently. It relies on upper layer to stop all data & metadata 5308 * modifications. 5309 */ 5310 static int ext4_freeze(struct super_block *sb) 5311 { 5312 int error = 0; 5313 journal_t *journal; 5314 5315 if (sb_rdonly(sb)) 5316 return 0; 5317 5318 journal = EXT4_SB(sb)->s_journal; 5319 5320 if (journal) { 5321 /* Now we set up the journal barrier. */ 5322 jbd2_journal_lock_updates(journal); 5323 5324 /* 5325 * Don't clear the needs_recovery flag if we failed to 5326 * flush the journal. 5327 */ 5328 error = jbd2_journal_flush(journal); 5329 if (error < 0) 5330 goto out; 5331 5332 /* Journal blocked and flushed, clear needs_recovery flag. */ 5333 ext4_clear_feature_journal_needs_recovery(sb); 5334 } 5335 5336 error = ext4_commit_super(sb, 1); 5337 out: 5338 if (journal) 5339 /* we rely on upper layer to stop further updates */ 5340 jbd2_journal_unlock_updates(journal); 5341 return error; 5342 } 5343 5344 /* 5345 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5346 * flag here, even though the filesystem is not technically dirty yet. 5347 */ 5348 static int ext4_unfreeze(struct super_block *sb) 5349 { 5350 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5351 return 0; 5352 5353 if (EXT4_SB(sb)->s_journal) { 5354 /* Reset the needs_recovery flag before the fs is unlocked. */ 5355 ext4_set_feature_journal_needs_recovery(sb); 5356 } 5357 5358 ext4_commit_super(sb, 1); 5359 return 0; 5360 } 5361 5362 /* 5363 * Structure to save mount options for ext4_remount's benefit 5364 */ 5365 struct ext4_mount_options { 5366 unsigned long s_mount_opt; 5367 unsigned long s_mount_opt2; 5368 kuid_t s_resuid; 5369 kgid_t s_resgid; 5370 unsigned long s_commit_interval; 5371 u32 s_min_batch_time, s_max_batch_time; 5372 #ifdef CONFIG_QUOTA 5373 int s_jquota_fmt; 5374 char *s_qf_names[EXT4_MAXQUOTAS]; 5375 #endif 5376 }; 5377 5378 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5379 { 5380 struct ext4_super_block *es; 5381 struct ext4_sb_info *sbi = EXT4_SB(sb); 5382 unsigned long old_sb_flags; 5383 struct ext4_mount_options old_opts; 5384 int enable_quota = 0; 5385 ext4_group_t g; 5386 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5387 int err = 0; 5388 #ifdef CONFIG_QUOTA 5389 int i, j; 5390 char *to_free[EXT4_MAXQUOTAS]; 5391 #endif 5392 char *orig_data = kstrdup(data, GFP_KERNEL); 5393 5394 if (data && !orig_data) 5395 return -ENOMEM; 5396 5397 /* Store the original options */ 5398 old_sb_flags = sb->s_flags; 5399 old_opts.s_mount_opt = sbi->s_mount_opt; 5400 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5401 old_opts.s_resuid = sbi->s_resuid; 5402 old_opts.s_resgid = sbi->s_resgid; 5403 old_opts.s_commit_interval = sbi->s_commit_interval; 5404 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5405 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5406 #ifdef CONFIG_QUOTA 5407 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5408 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5409 if (sbi->s_qf_names[i]) { 5410 char *qf_name = get_qf_name(sb, sbi, i); 5411 5412 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5413 if (!old_opts.s_qf_names[i]) { 5414 for (j = 0; j < i; j++) 5415 kfree(old_opts.s_qf_names[j]); 5416 kfree(orig_data); 5417 return -ENOMEM; 5418 } 5419 } else 5420 old_opts.s_qf_names[i] = NULL; 5421 #endif 5422 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5423 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5424 5425 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5426 err = -EINVAL; 5427 goto restore_opts; 5428 } 5429 5430 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5431 test_opt(sb, JOURNAL_CHECKSUM)) { 5432 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5433 "during remount not supported; ignoring"); 5434 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5435 } 5436 5437 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5438 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5439 ext4_msg(sb, KERN_ERR, "can't mount with " 5440 "both data=journal and delalloc"); 5441 err = -EINVAL; 5442 goto restore_opts; 5443 } 5444 if (test_opt(sb, DIOREAD_NOLOCK)) { 5445 ext4_msg(sb, KERN_ERR, "can't mount with " 5446 "both data=journal and dioread_nolock"); 5447 err = -EINVAL; 5448 goto restore_opts; 5449 } 5450 if (test_opt(sb, DAX)) { 5451 ext4_msg(sb, KERN_ERR, "can't mount with " 5452 "both data=journal and dax"); 5453 err = -EINVAL; 5454 goto restore_opts; 5455 } 5456 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5457 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5458 ext4_msg(sb, KERN_ERR, "can't mount with " 5459 "journal_async_commit in data=ordered mode"); 5460 err = -EINVAL; 5461 goto restore_opts; 5462 } 5463 } 5464 5465 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5466 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5467 err = -EINVAL; 5468 goto restore_opts; 5469 } 5470 5471 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5472 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5473 "dax flag with busy inodes while remounting"); 5474 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5475 } 5476 5477 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5478 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5479 5480 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5481 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5482 5483 es = sbi->s_es; 5484 5485 if (sbi->s_journal) { 5486 ext4_init_journal_params(sb, sbi->s_journal); 5487 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5488 } 5489 5490 if (*flags & SB_LAZYTIME) 5491 sb->s_flags |= SB_LAZYTIME; 5492 5493 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5494 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5495 err = -EROFS; 5496 goto restore_opts; 5497 } 5498 5499 if (*flags & SB_RDONLY) { 5500 err = sync_filesystem(sb); 5501 if (err < 0) 5502 goto restore_opts; 5503 err = dquot_suspend(sb, -1); 5504 if (err < 0) 5505 goto restore_opts; 5506 5507 /* 5508 * First of all, the unconditional stuff we have to do 5509 * to disable replay of the journal when we next remount 5510 */ 5511 sb->s_flags |= SB_RDONLY; 5512 5513 /* 5514 * OK, test if we are remounting a valid rw partition 5515 * readonly, and if so set the rdonly flag and then 5516 * mark the partition as valid again. 5517 */ 5518 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5519 (sbi->s_mount_state & EXT4_VALID_FS)) 5520 es->s_state = cpu_to_le16(sbi->s_mount_state); 5521 5522 if (sbi->s_journal) 5523 ext4_mark_recovery_complete(sb, es); 5524 if (sbi->s_mmp_tsk) 5525 kthread_stop(sbi->s_mmp_tsk); 5526 } else { 5527 /* Make sure we can mount this feature set readwrite */ 5528 if (ext4_has_feature_readonly(sb) || 5529 !ext4_feature_set_ok(sb, 0)) { 5530 err = -EROFS; 5531 goto restore_opts; 5532 } 5533 /* 5534 * Make sure the group descriptor checksums 5535 * are sane. If they aren't, refuse to remount r/w. 5536 */ 5537 for (g = 0; g < sbi->s_groups_count; g++) { 5538 struct ext4_group_desc *gdp = 5539 ext4_get_group_desc(sb, g, NULL); 5540 5541 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5542 ext4_msg(sb, KERN_ERR, 5543 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5544 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5545 le16_to_cpu(gdp->bg_checksum)); 5546 err = -EFSBADCRC; 5547 goto restore_opts; 5548 } 5549 } 5550 5551 /* 5552 * If we have an unprocessed orphan list hanging 5553 * around from a previously readonly bdev mount, 5554 * require a full umount/remount for now. 5555 */ 5556 if (es->s_last_orphan) { 5557 ext4_msg(sb, KERN_WARNING, "Couldn't " 5558 "remount RDWR because of unprocessed " 5559 "orphan inode list. Please " 5560 "umount/remount instead"); 5561 err = -EINVAL; 5562 goto restore_opts; 5563 } 5564 5565 /* 5566 * Mounting a RDONLY partition read-write, so reread 5567 * and store the current valid flag. (It may have 5568 * been changed by e2fsck since we originally mounted 5569 * the partition.) 5570 */ 5571 if (sbi->s_journal) 5572 ext4_clear_journal_err(sb, es); 5573 sbi->s_mount_state = le16_to_cpu(es->s_state); 5574 5575 err = ext4_setup_super(sb, es, 0); 5576 if (err) 5577 goto restore_opts; 5578 5579 sb->s_flags &= ~SB_RDONLY; 5580 if (ext4_has_feature_mmp(sb)) 5581 if (ext4_multi_mount_protect(sb, 5582 le64_to_cpu(es->s_mmp_block))) { 5583 err = -EROFS; 5584 goto restore_opts; 5585 } 5586 enable_quota = 1; 5587 } 5588 } 5589 5590 /* 5591 * Reinitialize lazy itable initialization thread based on 5592 * current settings 5593 */ 5594 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5595 ext4_unregister_li_request(sb); 5596 else { 5597 ext4_group_t first_not_zeroed; 5598 first_not_zeroed = ext4_has_uninit_itable(sb); 5599 ext4_register_li_request(sb, first_not_zeroed); 5600 } 5601 5602 ext4_setup_system_zone(sb); 5603 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5604 err = ext4_commit_super(sb, 1); 5605 if (err) 5606 goto restore_opts; 5607 } 5608 5609 #ifdef CONFIG_QUOTA 5610 /* Release old quota file names */ 5611 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5612 kfree(old_opts.s_qf_names[i]); 5613 if (enable_quota) { 5614 if (sb_any_quota_suspended(sb)) 5615 dquot_resume(sb, -1); 5616 else if (ext4_has_feature_quota(sb)) { 5617 err = ext4_enable_quotas(sb); 5618 if (err) 5619 goto restore_opts; 5620 } 5621 } 5622 #endif 5623 5624 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5625 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5626 kfree(orig_data); 5627 return 0; 5628 5629 restore_opts: 5630 sb->s_flags = old_sb_flags; 5631 sbi->s_mount_opt = old_opts.s_mount_opt; 5632 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5633 sbi->s_resuid = old_opts.s_resuid; 5634 sbi->s_resgid = old_opts.s_resgid; 5635 sbi->s_commit_interval = old_opts.s_commit_interval; 5636 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5637 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5638 #ifdef CONFIG_QUOTA 5639 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5640 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5641 to_free[i] = get_qf_name(sb, sbi, i); 5642 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5643 } 5644 synchronize_rcu(); 5645 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5646 kfree(to_free[i]); 5647 #endif 5648 kfree(orig_data); 5649 return err; 5650 } 5651 5652 #ifdef CONFIG_QUOTA 5653 static int ext4_statfs_project(struct super_block *sb, 5654 kprojid_t projid, struct kstatfs *buf) 5655 { 5656 struct kqid qid; 5657 struct dquot *dquot; 5658 u64 limit; 5659 u64 curblock; 5660 5661 qid = make_kqid_projid(projid); 5662 dquot = dqget(sb, qid); 5663 if (IS_ERR(dquot)) 5664 return PTR_ERR(dquot); 5665 spin_lock(&dquot->dq_dqb_lock); 5666 5667 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 5668 dquot->dq_dqb.dqb_bhardlimit); 5669 limit >>= sb->s_blocksize_bits; 5670 5671 if (limit && buf->f_blocks > limit) { 5672 curblock = (dquot->dq_dqb.dqb_curspace + 5673 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5674 buf->f_blocks = limit; 5675 buf->f_bfree = buf->f_bavail = 5676 (buf->f_blocks > curblock) ? 5677 (buf->f_blocks - curblock) : 0; 5678 } 5679 5680 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 5681 dquot->dq_dqb.dqb_ihardlimit); 5682 if (limit && buf->f_files > limit) { 5683 buf->f_files = limit; 5684 buf->f_ffree = 5685 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5686 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5687 } 5688 5689 spin_unlock(&dquot->dq_dqb_lock); 5690 dqput(dquot); 5691 return 0; 5692 } 5693 #endif 5694 5695 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5696 { 5697 struct super_block *sb = dentry->d_sb; 5698 struct ext4_sb_info *sbi = EXT4_SB(sb); 5699 struct ext4_super_block *es = sbi->s_es; 5700 ext4_fsblk_t overhead = 0, resv_blocks; 5701 u64 fsid; 5702 s64 bfree; 5703 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5704 5705 if (!test_opt(sb, MINIX_DF)) 5706 overhead = sbi->s_overhead; 5707 5708 buf->f_type = EXT4_SUPER_MAGIC; 5709 buf->f_bsize = sb->s_blocksize; 5710 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5711 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5712 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5713 /* prevent underflow in case that few free space is available */ 5714 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5715 buf->f_bavail = buf->f_bfree - 5716 (ext4_r_blocks_count(es) + resv_blocks); 5717 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5718 buf->f_bavail = 0; 5719 buf->f_files = le32_to_cpu(es->s_inodes_count); 5720 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5721 buf->f_namelen = EXT4_NAME_LEN; 5722 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5723 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5724 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5725 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5726 5727 #ifdef CONFIG_QUOTA 5728 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5729 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5730 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5731 #endif 5732 return 0; 5733 } 5734 5735 5736 #ifdef CONFIG_QUOTA 5737 5738 /* 5739 * Helper functions so that transaction is started before we acquire dqio_sem 5740 * to keep correct lock ordering of transaction > dqio_sem 5741 */ 5742 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5743 { 5744 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5745 } 5746 5747 static int ext4_write_dquot(struct dquot *dquot) 5748 { 5749 int ret, err; 5750 handle_t *handle; 5751 struct inode *inode; 5752 5753 inode = dquot_to_inode(dquot); 5754 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5755 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5756 if (IS_ERR(handle)) 5757 return PTR_ERR(handle); 5758 ret = dquot_commit(dquot); 5759 err = ext4_journal_stop(handle); 5760 if (!ret) 5761 ret = err; 5762 return ret; 5763 } 5764 5765 static int ext4_acquire_dquot(struct dquot *dquot) 5766 { 5767 int ret, err; 5768 handle_t *handle; 5769 5770 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5771 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5772 if (IS_ERR(handle)) 5773 return PTR_ERR(handle); 5774 ret = dquot_acquire(dquot); 5775 err = ext4_journal_stop(handle); 5776 if (!ret) 5777 ret = err; 5778 return ret; 5779 } 5780 5781 static int ext4_release_dquot(struct dquot *dquot) 5782 { 5783 int ret, err; 5784 handle_t *handle; 5785 5786 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5787 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5788 if (IS_ERR(handle)) { 5789 /* Release dquot anyway to avoid endless cycle in dqput() */ 5790 dquot_release(dquot); 5791 return PTR_ERR(handle); 5792 } 5793 ret = dquot_release(dquot); 5794 err = ext4_journal_stop(handle); 5795 if (!ret) 5796 ret = err; 5797 return ret; 5798 } 5799 5800 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5801 { 5802 struct super_block *sb = dquot->dq_sb; 5803 struct ext4_sb_info *sbi = EXT4_SB(sb); 5804 5805 /* Are we journaling quotas? */ 5806 if (ext4_has_feature_quota(sb) || 5807 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5808 dquot_mark_dquot_dirty(dquot); 5809 return ext4_write_dquot(dquot); 5810 } else { 5811 return dquot_mark_dquot_dirty(dquot); 5812 } 5813 } 5814 5815 static int ext4_write_info(struct super_block *sb, int type) 5816 { 5817 int ret, err; 5818 handle_t *handle; 5819 5820 /* Data block + inode block */ 5821 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5822 if (IS_ERR(handle)) 5823 return PTR_ERR(handle); 5824 ret = dquot_commit_info(sb, type); 5825 err = ext4_journal_stop(handle); 5826 if (!ret) 5827 ret = err; 5828 return ret; 5829 } 5830 5831 /* 5832 * Turn on quotas during mount time - we need to find 5833 * the quota file and such... 5834 */ 5835 static int ext4_quota_on_mount(struct super_block *sb, int type) 5836 { 5837 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5838 EXT4_SB(sb)->s_jquota_fmt, type); 5839 } 5840 5841 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5842 { 5843 struct ext4_inode_info *ei = EXT4_I(inode); 5844 5845 /* The first argument of lockdep_set_subclass has to be 5846 * *exactly* the same as the argument to init_rwsem() --- in 5847 * this case, in init_once() --- or lockdep gets unhappy 5848 * because the name of the lock is set using the 5849 * stringification of the argument to init_rwsem(). 5850 */ 5851 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5852 lockdep_set_subclass(&ei->i_data_sem, subclass); 5853 } 5854 5855 /* 5856 * Standard function to be called on quota_on 5857 */ 5858 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5859 const struct path *path) 5860 { 5861 int err; 5862 5863 if (!test_opt(sb, QUOTA)) 5864 return -EINVAL; 5865 5866 /* Quotafile not on the same filesystem? */ 5867 if (path->dentry->d_sb != sb) 5868 return -EXDEV; 5869 /* Journaling quota? */ 5870 if (EXT4_SB(sb)->s_qf_names[type]) { 5871 /* Quotafile not in fs root? */ 5872 if (path->dentry->d_parent != sb->s_root) 5873 ext4_msg(sb, KERN_WARNING, 5874 "Quota file not on filesystem root. " 5875 "Journaled quota will not work"); 5876 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5877 } else { 5878 /* 5879 * Clear the flag just in case mount options changed since 5880 * last time. 5881 */ 5882 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5883 } 5884 5885 /* 5886 * When we journal data on quota file, we have to flush journal to see 5887 * all updates to the file when we bypass pagecache... 5888 */ 5889 if (EXT4_SB(sb)->s_journal && 5890 ext4_should_journal_data(d_inode(path->dentry))) { 5891 /* 5892 * We don't need to lock updates but journal_flush() could 5893 * otherwise be livelocked... 5894 */ 5895 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5896 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5897 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5898 if (err) 5899 return err; 5900 } 5901 5902 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5903 err = dquot_quota_on(sb, type, format_id, path); 5904 if (err) { 5905 lockdep_set_quota_inode(path->dentry->d_inode, 5906 I_DATA_SEM_NORMAL); 5907 } else { 5908 struct inode *inode = d_inode(path->dentry); 5909 handle_t *handle; 5910 5911 /* 5912 * Set inode flags to prevent userspace from messing with quota 5913 * files. If this fails, we return success anyway since quotas 5914 * are already enabled and this is not a hard failure. 5915 */ 5916 inode_lock(inode); 5917 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5918 if (IS_ERR(handle)) 5919 goto unlock_inode; 5920 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5921 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5922 S_NOATIME | S_IMMUTABLE); 5923 err = ext4_mark_inode_dirty(handle, inode); 5924 ext4_journal_stop(handle); 5925 unlock_inode: 5926 inode_unlock(inode); 5927 } 5928 return err; 5929 } 5930 5931 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5932 unsigned int flags) 5933 { 5934 int err; 5935 struct inode *qf_inode; 5936 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5937 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5938 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5939 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5940 }; 5941 5942 BUG_ON(!ext4_has_feature_quota(sb)); 5943 5944 if (!qf_inums[type]) 5945 return -EPERM; 5946 5947 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5948 if (IS_ERR(qf_inode)) { 5949 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5950 return PTR_ERR(qf_inode); 5951 } 5952 5953 /* Don't account quota for quota files to avoid recursion */ 5954 qf_inode->i_flags |= S_NOQUOTA; 5955 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5956 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 5957 if (err) 5958 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5959 iput(qf_inode); 5960 5961 return err; 5962 } 5963 5964 /* Enable usage tracking for all quota types. */ 5965 static int ext4_enable_quotas(struct super_block *sb) 5966 { 5967 int type, err = 0; 5968 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5969 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5970 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5971 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5972 }; 5973 bool quota_mopt[EXT4_MAXQUOTAS] = { 5974 test_opt(sb, USRQUOTA), 5975 test_opt(sb, GRPQUOTA), 5976 test_opt(sb, PRJQUOTA), 5977 }; 5978 5979 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5980 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5981 if (qf_inums[type]) { 5982 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5983 DQUOT_USAGE_ENABLED | 5984 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5985 if (err) { 5986 ext4_warning(sb, 5987 "Failed to enable quota tracking " 5988 "(type=%d, err=%d). Please run " 5989 "e2fsck to fix.", type, err); 5990 for (type--; type >= 0; type--) 5991 dquot_quota_off(sb, type); 5992 5993 return err; 5994 } 5995 } 5996 } 5997 return 0; 5998 } 5999 6000 static int ext4_quota_off(struct super_block *sb, int type) 6001 { 6002 struct inode *inode = sb_dqopt(sb)->files[type]; 6003 handle_t *handle; 6004 int err; 6005 6006 /* Force all delayed allocation blocks to be allocated. 6007 * Caller already holds s_umount sem */ 6008 if (test_opt(sb, DELALLOC)) 6009 sync_filesystem(sb); 6010 6011 if (!inode || !igrab(inode)) 6012 goto out; 6013 6014 err = dquot_quota_off(sb, type); 6015 if (err || ext4_has_feature_quota(sb)) 6016 goto out_put; 6017 6018 inode_lock(inode); 6019 /* 6020 * Update modification times of quota files when userspace can 6021 * start looking at them. If we fail, we return success anyway since 6022 * this is not a hard failure and quotas are already disabled. 6023 */ 6024 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6025 if (IS_ERR(handle)) { 6026 err = PTR_ERR(handle); 6027 goto out_unlock; 6028 } 6029 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6030 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6031 inode->i_mtime = inode->i_ctime = current_time(inode); 6032 err = ext4_mark_inode_dirty(handle, inode); 6033 ext4_journal_stop(handle); 6034 out_unlock: 6035 inode_unlock(inode); 6036 out_put: 6037 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6038 iput(inode); 6039 return err; 6040 out: 6041 return dquot_quota_off(sb, type); 6042 } 6043 6044 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6045 * acquiring the locks... As quota files are never truncated and quota code 6046 * itself serializes the operations (and no one else should touch the files) 6047 * we don't have to be afraid of races */ 6048 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6049 size_t len, loff_t off) 6050 { 6051 struct inode *inode = sb_dqopt(sb)->files[type]; 6052 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6053 int offset = off & (sb->s_blocksize - 1); 6054 int tocopy; 6055 size_t toread; 6056 struct buffer_head *bh; 6057 loff_t i_size = i_size_read(inode); 6058 6059 if (off > i_size) 6060 return 0; 6061 if (off+len > i_size) 6062 len = i_size-off; 6063 toread = len; 6064 while (toread > 0) { 6065 tocopy = sb->s_blocksize - offset < toread ? 6066 sb->s_blocksize - offset : toread; 6067 bh = ext4_bread(NULL, inode, blk, 0); 6068 if (IS_ERR(bh)) 6069 return PTR_ERR(bh); 6070 if (!bh) /* A hole? */ 6071 memset(data, 0, tocopy); 6072 else 6073 memcpy(data, bh->b_data+offset, tocopy); 6074 brelse(bh); 6075 offset = 0; 6076 toread -= tocopy; 6077 data += tocopy; 6078 blk++; 6079 } 6080 return len; 6081 } 6082 6083 /* Write to quotafile (we know the transaction is already started and has 6084 * enough credits) */ 6085 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6086 const char *data, size_t len, loff_t off) 6087 { 6088 struct inode *inode = sb_dqopt(sb)->files[type]; 6089 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6090 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6091 int retries = 0; 6092 struct buffer_head *bh; 6093 handle_t *handle = journal_current_handle(); 6094 6095 if (EXT4_SB(sb)->s_journal && !handle) { 6096 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6097 " cancelled because transaction is not started", 6098 (unsigned long long)off, (unsigned long long)len); 6099 return -EIO; 6100 } 6101 /* 6102 * Since we account only one data block in transaction credits, 6103 * then it is impossible to cross a block boundary. 6104 */ 6105 if (sb->s_blocksize - offset < len) { 6106 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6107 " cancelled because not block aligned", 6108 (unsigned long long)off, (unsigned long long)len); 6109 return -EIO; 6110 } 6111 6112 do { 6113 bh = ext4_bread(handle, inode, blk, 6114 EXT4_GET_BLOCKS_CREATE | 6115 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6116 } while (PTR_ERR(bh) == -ENOSPC && 6117 ext4_should_retry_alloc(inode->i_sb, &retries)); 6118 if (IS_ERR(bh)) 6119 return PTR_ERR(bh); 6120 if (!bh) 6121 goto out; 6122 BUFFER_TRACE(bh, "get write access"); 6123 err = ext4_journal_get_write_access(handle, bh); 6124 if (err) { 6125 brelse(bh); 6126 return err; 6127 } 6128 lock_buffer(bh); 6129 memcpy(bh->b_data+offset, data, len); 6130 flush_dcache_page(bh->b_page); 6131 unlock_buffer(bh); 6132 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6133 brelse(bh); 6134 out: 6135 if (inode->i_size < off + len) { 6136 i_size_write(inode, off + len); 6137 EXT4_I(inode)->i_disksize = inode->i_size; 6138 err2 = ext4_mark_inode_dirty(handle, inode); 6139 if (unlikely(err2 && !err)) 6140 err = err2; 6141 } 6142 return err ? err : len; 6143 } 6144 #endif 6145 6146 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6147 const char *dev_name, void *data) 6148 { 6149 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6150 } 6151 6152 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6153 static inline void register_as_ext2(void) 6154 { 6155 int err = register_filesystem(&ext2_fs_type); 6156 if (err) 6157 printk(KERN_WARNING 6158 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6159 } 6160 6161 static inline void unregister_as_ext2(void) 6162 { 6163 unregister_filesystem(&ext2_fs_type); 6164 } 6165 6166 static inline int ext2_feature_set_ok(struct super_block *sb) 6167 { 6168 if (ext4_has_unknown_ext2_incompat_features(sb)) 6169 return 0; 6170 if (sb_rdonly(sb)) 6171 return 1; 6172 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6173 return 0; 6174 return 1; 6175 } 6176 #else 6177 static inline void register_as_ext2(void) { } 6178 static inline void unregister_as_ext2(void) { } 6179 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6180 #endif 6181 6182 static inline void register_as_ext3(void) 6183 { 6184 int err = register_filesystem(&ext3_fs_type); 6185 if (err) 6186 printk(KERN_WARNING 6187 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6188 } 6189 6190 static inline void unregister_as_ext3(void) 6191 { 6192 unregister_filesystem(&ext3_fs_type); 6193 } 6194 6195 static inline int ext3_feature_set_ok(struct super_block *sb) 6196 { 6197 if (ext4_has_unknown_ext3_incompat_features(sb)) 6198 return 0; 6199 if (!ext4_has_feature_journal(sb)) 6200 return 0; 6201 if (sb_rdonly(sb)) 6202 return 1; 6203 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6204 return 0; 6205 return 1; 6206 } 6207 6208 static struct file_system_type ext4_fs_type = { 6209 .owner = THIS_MODULE, 6210 .name = "ext4", 6211 .mount = ext4_mount, 6212 .kill_sb = kill_block_super, 6213 .fs_flags = FS_REQUIRES_DEV, 6214 }; 6215 MODULE_ALIAS_FS("ext4"); 6216 6217 /* Shared across all ext4 file systems */ 6218 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6219 6220 static int __init ext4_init_fs(void) 6221 { 6222 int i, err; 6223 6224 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6225 ext4_li_info = NULL; 6226 mutex_init(&ext4_li_mtx); 6227 6228 /* Build-time check for flags consistency */ 6229 ext4_check_flag_values(); 6230 6231 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6232 init_waitqueue_head(&ext4__ioend_wq[i]); 6233 6234 err = ext4_init_es(); 6235 if (err) 6236 return err; 6237 6238 err = ext4_init_pending(); 6239 if (err) 6240 goto out7; 6241 6242 err = ext4_init_post_read_processing(); 6243 if (err) 6244 goto out6; 6245 6246 err = ext4_init_pageio(); 6247 if (err) 6248 goto out5; 6249 6250 err = ext4_init_system_zone(); 6251 if (err) 6252 goto out4; 6253 6254 err = ext4_init_sysfs(); 6255 if (err) 6256 goto out3; 6257 6258 err = ext4_init_mballoc(); 6259 if (err) 6260 goto out2; 6261 err = init_inodecache(); 6262 if (err) 6263 goto out1; 6264 register_as_ext3(); 6265 register_as_ext2(); 6266 err = register_filesystem(&ext4_fs_type); 6267 if (err) 6268 goto out; 6269 6270 return 0; 6271 out: 6272 unregister_as_ext2(); 6273 unregister_as_ext3(); 6274 destroy_inodecache(); 6275 out1: 6276 ext4_exit_mballoc(); 6277 out2: 6278 ext4_exit_sysfs(); 6279 out3: 6280 ext4_exit_system_zone(); 6281 out4: 6282 ext4_exit_pageio(); 6283 out5: 6284 ext4_exit_post_read_processing(); 6285 out6: 6286 ext4_exit_pending(); 6287 out7: 6288 ext4_exit_es(); 6289 6290 return err; 6291 } 6292 6293 static void __exit ext4_exit_fs(void) 6294 { 6295 ext4_destroy_lazyinit_thread(); 6296 unregister_as_ext2(); 6297 unregister_as_ext3(); 6298 unregister_filesystem(&ext4_fs_type); 6299 destroy_inodecache(); 6300 ext4_exit_mballoc(); 6301 ext4_exit_sysfs(); 6302 ext4_exit_system_zone(); 6303 ext4_exit_pageio(); 6304 ext4_exit_post_read_processing(); 6305 ext4_exit_es(); 6306 ext4_exit_pending(); 6307 } 6308 6309 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6310 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6311 MODULE_LICENSE("GPL"); 6312 MODULE_SOFTDEP("pre: crc32c"); 6313 module_init(ext4_init_fs) 6314 module_exit(ext4_exit_fs) 6315