1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 #include "fsmap.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ext4.h> 57 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ratelimit_state ext4_mount_msg_ratelimit; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 76 const char *dev_name, void *data); 77 static inline int ext2_feature_set_ok(struct super_block *sb); 78 static inline int ext3_feature_set_ok(struct super_block *sb); 79 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 80 static void ext4_destroy_lazyinit_thread(void); 81 static void ext4_unregister_li_request(struct super_block *sb); 82 static void ext4_clear_request_list(void); 83 static struct inode *ext4_get_journal_inode(struct super_block *sb, 84 unsigned int journal_inum); 85 86 /* 87 * Lock ordering 88 * 89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 90 * i_mmap_rwsem (inode->i_mmap_rwsem)! 91 * 92 * page fault path: 93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 94 * page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_sem 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * i_mmap_rwsem (w) -> page lock 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * transaction start -> i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 110 * transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (sb_rdonly(sb)) 409 return; 410 411 if (!test_opt(sb, ERRORS_CONT)) { 412 journal_t *journal = EXT4_SB(sb)->s_journal; 413 414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 415 if (journal) 416 jbd2_journal_abort(journal, -EIO); 417 } 418 if (test_opt(sb, ERRORS_RO)) { 419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 420 /* 421 * Make sure updated value of ->s_mount_flags will be visible 422 * before ->s_flags update 423 */ 424 smp_wmb(); 425 sb->s_flags |= SB_RDONLY; 426 } 427 if (test_opt(sb, ERRORS_PANIC)) { 428 if (EXT4_SB(sb)->s_journal && 429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 430 return; 431 panic("EXT4-fs (device %s): panic forced after error\n", 432 sb->s_id); 433 } 434 } 435 436 #define ext4_error_ratelimit(sb) \ 437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 438 "EXT4-fs error") 439 440 void __ext4_error(struct super_block *sb, const char *function, 441 unsigned int line, const char *fmt, ...) 442 { 443 struct va_format vaf; 444 va_list args; 445 446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 447 return; 448 449 if (ext4_error_ratelimit(sb)) { 450 va_start(args, fmt); 451 vaf.fmt = fmt; 452 vaf.va = &args; 453 printk(KERN_CRIT 454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 455 sb->s_id, function, line, current->comm, &vaf); 456 va_end(args); 457 } 458 save_error_info(sb, function, line); 459 ext4_handle_error(sb); 460 } 461 462 void __ext4_error_inode(struct inode *inode, const char *function, 463 unsigned int line, ext4_fsblk_t block, 464 const char *fmt, ...) 465 { 466 va_list args; 467 struct va_format vaf; 468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 469 470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 471 return; 472 473 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 474 es->s_last_error_block = cpu_to_le64(block); 475 if (ext4_error_ratelimit(inode->i_sb)) { 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 481 "inode #%lu: block %llu: comm %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 block, current->comm, &vaf); 484 else 485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 486 "inode #%lu: comm %s: %pV\n", 487 inode->i_sb->s_id, function, line, inode->i_ino, 488 current->comm, &vaf); 489 va_end(args); 490 } 491 save_error_info(inode->i_sb, function, line); 492 ext4_handle_error(inode->i_sb); 493 } 494 495 void __ext4_error_file(struct file *file, const char *function, 496 unsigned int line, ext4_fsblk_t block, 497 const char *fmt, ...) 498 { 499 va_list args; 500 struct va_format vaf; 501 struct ext4_super_block *es; 502 struct inode *inode = file_inode(file); 503 char pathname[80], *path; 504 505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 506 return; 507 508 es = EXT4_SB(inode->i_sb)->s_es; 509 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 510 if (ext4_error_ratelimit(inode->i_sb)) { 511 path = file_path(file, pathname, sizeof(pathname)); 512 if (IS_ERR(path)) 513 path = "(unknown)"; 514 va_start(args, fmt); 515 vaf.fmt = fmt; 516 vaf.va = &args; 517 if (block) 518 printk(KERN_CRIT 519 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 520 "block %llu: comm %s: path %s: %pV\n", 521 inode->i_sb->s_id, function, line, inode->i_ino, 522 block, current->comm, path, &vaf); 523 else 524 printk(KERN_CRIT 525 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 526 "comm %s: path %s: %pV\n", 527 inode->i_sb->s_id, function, line, inode->i_ino, 528 current->comm, path, &vaf); 529 va_end(args); 530 } 531 save_error_info(inode->i_sb, function, line); 532 ext4_handle_error(inode->i_sb); 533 } 534 535 const char *ext4_decode_error(struct super_block *sb, int errno, 536 char nbuf[16]) 537 { 538 char *errstr = NULL; 539 540 switch (errno) { 541 case -EFSCORRUPTED: 542 errstr = "Corrupt filesystem"; 543 break; 544 case -EFSBADCRC: 545 errstr = "Filesystem failed CRC"; 546 break; 547 case -EIO: 548 errstr = "IO failure"; 549 break; 550 case -ENOMEM: 551 errstr = "Out of memory"; 552 break; 553 case -EROFS: 554 if (!sb || (EXT4_SB(sb)->s_journal && 555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 556 errstr = "Journal has aborted"; 557 else 558 errstr = "Readonly filesystem"; 559 break; 560 default: 561 /* If the caller passed in an extra buffer for unknown 562 * errors, textualise them now. Else we just return 563 * NULL. */ 564 if (nbuf) { 565 /* Check for truncated error codes... */ 566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 567 errstr = nbuf; 568 } 569 break; 570 } 571 572 return errstr; 573 } 574 575 /* __ext4_std_error decodes expected errors from journaling functions 576 * automatically and invokes the appropriate error response. */ 577 578 void __ext4_std_error(struct super_block *sb, const char *function, 579 unsigned int line, int errno) 580 { 581 char nbuf[16]; 582 const char *errstr; 583 584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 585 return; 586 587 /* Special case: if the error is EROFS, and we're not already 588 * inside a transaction, then there's really no point in logging 589 * an error. */ 590 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 591 return; 592 593 if (ext4_error_ratelimit(sb)) { 594 errstr = ext4_decode_error(sb, errno, nbuf); 595 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 596 sb->s_id, function, line, errstr); 597 } 598 599 save_error_info(sb, function, line); 600 ext4_handle_error(sb); 601 } 602 603 /* 604 * ext4_abort is a much stronger failure handler than ext4_error. The 605 * abort function may be used to deal with unrecoverable failures such 606 * as journal IO errors or ENOMEM at a critical moment in log management. 607 * 608 * We unconditionally force the filesystem into an ABORT|READONLY state, 609 * unless the error response on the fs has been set to panic in which 610 * case we take the easy way out and panic immediately. 611 */ 612 613 void __ext4_abort(struct super_block *sb, const char *function, 614 unsigned int line, const char *fmt, ...) 615 { 616 struct va_format vaf; 617 va_list args; 618 619 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 620 return; 621 622 save_error_info(sb, function, line); 623 va_start(args, fmt); 624 vaf.fmt = fmt; 625 vaf.va = &args; 626 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 627 sb->s_id, function, line, &vaf); 628 va_end(args); 629 630 if (sb_rdonly(sb) == 0) { 631 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 632 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 633 /* 634 * Make sure updated value of ->s_mount_flags will be visible 635 * before ->s_flags update 636 */ 637 smp_wmb(); 638 sb->s_flags |= SB_RDONLY; 639 if (EXT4_SB(sb)->s_journal) 640 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 641 save_error_info(sb, function, line); 642 } 643 if (test_opt(sb, ERRORS_PANIC)) { 644 if (EXT4_SB(sb)->s_journal && 645 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 646 return; 647 panic("EXT4-fs panic from previous error\n"); 648 } 649 } 650 651 void __ext4_msg(struct super_block *sb, 652 const char *prefix, const char *fmt, ...) 653 { 654 struct va_format vaf; 655 va_list args; 656 657 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 658 return; 659 660 va_start(args, fmt); 661 vaf.fmt = fmt; 662 vaf.va = &args; 663 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 664 va_end(args); 665 } 666 667 #define ext4_warning_ratelimit(sb) \ 668 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 669 "EXT4-fs warning") 670 671 void __ext4_warning(struct super_block *sb, const char *function, 672 unsigned int line, const char *fmt, ...) 673 { 674 struct va_format vaf; 675 va_list args; 676 677 if (!ext4_warning_ratelimit(sb)) 678 return; 679 680 va_start(args, fmt); 681 vaf.fmt = fmt; 682 vaf.va = &args; 683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 684 sb->s_id, function, line, &vaf); 685 va_end(args); 686 } 687 688 void __ext4_warning_inode(const struct inode *inode, const char *function, 689 unsigned int line, const char *fmt, ...) 690 { 691 struct va_format vaf; 692 va_list args; 693 694 if (!ext4_warning_ratelimit(inode->i_sb)) 695 return; 696 697 va_start(args, fmt); 698 vaf.fmt = fmt; 699 vaf.va = &args; 700 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 701 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 702 function, line, inode->i_ino, current->comm, &vaf); 703 va_end(args); 704 } 705 706 void __ext4_grp_locked_error(const char *function, unsigned int line, 707 struct super_block *sb, ext4_group_t grp, 708 unsigned long ino, ext4_fsblk_t block, 709 const char *fmt, ...) 710 __releases(bitlock) 711 __acquires(bitlock) 712 { 713 struct va_format vaf; 714 va_list args; 715 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 716 717 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 718 return; 719 720 es->s_last_error_ino = cpu_to_le32(ino); 721 es->s_last_error_block = cpu_to_le64(block); 722 __save_error_info(sb, function, line); 723 724 if (ext4_error_ratelimit(sb)) { 725 va_start(args, fmt); 726 vaf.fmt = fmt; 727 vaf.va = &args; 728 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 729 sb->s_id, function, line, grp); 730 if (ino) 731 printk(KERN_CONT "inode %lu: ", ino); 732 if (block) 733 printk(KERN_CONT "block %llu:", 734 (unsigned long long) block); 735 printk(KERN_CONT "%pV\n", &vaf); 736 va_end(args); 737 } 738 739 if (test_opt(sb, ERRORS_CONT)) { 740 ext4_commit_super(sb, 0); 741 return; 742 } 743 744 ext4_unlock_group(sb, grp); 745 ext4_handle_error(sb); 746 /* 747 * We only get here in the ERRORS_RO case; relocking the group 748 * may be dangerous, but nothing bad will happen since the 749 * filesystem will have already been marked read/only and the 750 * journal has been aborted. We return 1 as a hint to callers 751 * who might what to use the return value from 752 * ext4_grp_locked_error() to distinguish between the 753 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 754 * aggressively from the ext4 function in question, with a 755 * more appropriate error code. 756 */ 757 ext4_lock_group(sb, grp); 758 return; 759 } 760 761 void ext4_update_dynamic_rev(struct super_block *sb) 762 { 763 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 764 765 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 766 return; 767 768 ext4_warning(sb, 769 "updating to rev %d because of new feature flag, " 770 "running e2fsck is recommended", 771 EXT4_DYNAMIC_REV); 772 773 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 774 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 775 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 776 /* leave es->s_feature_*compat flags alone */ 777 /* es->s_uuid will be set by e2fsck if empty */ 778 779 /* 780 * The rest of the superblock fields should be zero, and if not it 781 * means they are likely already in use, so leave them alone. We 782 * can leave it up to e2fsck to clean up any inconsistencies there. 783 */ 784 } 785 786 /* 787 * Open the external journal device 788 */ 789 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 790 { 791 struct block_device *bdev; 792 char b[BDEVNAME_SIZE]; 793 794 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 795 if (IS_ERR(bdev)) 796 goto fail; 797 return bdev; 798 799 fail: 800 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 801 __bdevname(dev, b), PTR_ERR(bdev)); 802 return NULL; 803 } 804 805 /* 806 * Release the journal device 807 */ 808 static void ext4_blkdev_put(struct block_device *bdev) 809 { 810 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 811 } 812 813 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 814 { 815 struct block_device *bdev; 816 bdev = sbi->journal_bdev; 817 if (bdev) { 818 ext4_blkdev_put(bdev); 819 sbi->journal_bdev = NULL; 820 } 821 } 822 823 static inline struct inode *orphan_list_entry(struct list_head *l) 824 { 825 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 826 } 827 828 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 829 { 830 struct list_head *l; 831 832 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 833 le32_to_cpu(sbi->s_es->s_last_orphan)); 834 835 printk(KERN_ERR "sb_info orphan list:\n"); 836 list_for_each(l, &sbi->s_orphan) { 837 struct inode *inode = orphan_list_entry(l); 838 printk(KERN_ERR " " 839 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 840 inode->i_sb->s_id, inode->i_ino, inode, 841 inode->i_mode, inode->i_nlink, 842 NEXT_ORPHAN(inode)); 843 } 844 } 845 846 #ifdef CONFIG_QUOTA 847 static int ext4_quota_off(struct super_block *sb, int type); 848 849 static inline void ext4_quota_off_umount(struct super_block *sb) 850 { 851 int type; 852 853 /* Use our quota_off function to clear inode flags etc. */ 854 for (type = 0; type < EXT4_MAXQUOTAS; type++) 855 ext4_quota_off(sb, type); 856 } 857 #else 858 static inline void ext4_quota_off_umount(struct super_block *sb) 859 { 860 } 861 #endif 862 863 static void ext4_put_super(struct super_block *sb) 864 { 865 struct ext4_sb_info *sbi = EXT4_SB(sb); 866 struct ext4_super_block *es = sbi->s_es; 867 int aborted = 0; 868 int i, err; 869 870 ext4_unregister_li_request(sb); 871 ext4_quota_off_umount(sb); 872 873 flush_workqueue(sbi->rsv_conversion_wq); 874 destroy_workqueue(sbi->rsv_conversion_wq); 875 876 if (sbi->s_journal) { 877 aborted = is_journal_aborted(sbi->s_journal); 878 err = jbd2_journal_destroy(sbi->s_journal); 879 sbi->s_journal = NULL; 880 if ((err < 0) && !aborted) 881 ext4_abort(sb, "Couldn't clean up the journal"); 882 } 883 884 ext4_unregister_sysfs(sb); 885 ext4_es_unregister_shrinker(sbi); 886 del_timer_sync(&sbi->s_err_report); 887 ext4_release_system_zone(sb); 888 ext4_mb_release(sb); 889 ext4_ext_release(sb); 890 891 if (!sb_rdonly(sb) && !aborted) { 892 ext4_clear_feature_journal_needs_recovery(sb); 893 es->s_state = cpu_to_le16(sbi->s_mount_state); 894 } 895 if (!sb_rdonly(sb)) 896 ext4_commit_super(sb, 1); 897 898 for (i = 0; i < sbi->s_gdb_count; i++) 899 brelse(sbi->s_group_desc[i]); 900 kvfree(sbi->s_group_desc); 901 kvfree(sbi->s_flex_groups); 902 percpu_counter_destroy(&sbi->s_freeclusters_counter); 903 percpu_counter_destroy(&sbi->s_freeinodes_counter); 904 percpu_counter_destroy(&sbi->s_dirs_counter); 905 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 906 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 907 #ifdef CONFIG_QUOTA 908 for (i = 0; i < EXT4_MAXQUOTAS; i++) 909 kfree(sbi->s_qf_names[i]); 910 #endif 911 912 /* Debugging code just in case the in-memory inode orphan list 913 * isn't empty. The on-disk one can be non-empty if we've 914 * detected an error and taken the fs readonly, but the 915 * in-memory list had better be clean by this point. */ 916 if (!list_empty(&sbi->s_orphan)) 917 dump_orphan_list(sb, sbi); 918 J_ASSERT(list_empty(&sbi->s_orphan)); 919 920 sync_blockdev(sb->s_bdev); 921 invalidate_bdev(sb->s_bdev); 922 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 923 /* 924 * Invalidate the journal device's buffers. We don't want them 925 * floating about in memory - the physical journal device may 926 * hotswapped, and it breaks the `ro-after' testing code. 927 */ 928 sync_blockdev(sbi->journal_bdev); 929 invalidate_bdev(sbi->journal_bdev); 930 ext4_blkdev_remove(sbi); 931 } 932 if (sbi->s_ea_inode_cache) { 933 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 934 sbi->s_ea_inode_cache = NULL; 935 } 936 if (sbi->s_ea_block_cache) { 937 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 938 sbi->s_ea_block_cache = NULL; 939 } 940 if (sbi->s_mmp_tsk) 941 kthread_stop(sbi->s_mmp_tsk); 942 brelse(sbi->s_sbh); 943 sb->s_fs_info = NULL; 944 /* 945 * Now that we are completely done shutting down the 946 * superblock, we need to actually destroy the kobject. 947 */ 948 kobject_put(&sbi->s_kobj); 949 wait_for_completion(&sbi->s_kobj_unregister); 950 if (sbi->s_chksum_driver) 951 crypto_free_shash(sbi->s_chksum_driver); 952 kfree(sbi->s_blockgroup_lock); 953 fs_put_dax(sbi->s_daxdev); 954 kfree(sbi); 955 } 956 957 static struct kmem_cache *ext4_inode_cachep; 958 959 /* 960 * Called inside transaction, so use GFP_NOFS 961 */ 962 static struct inode *ext4_alloc_inode(struct super_block *sb) 963 { 964 struct ext4_inode_info *ei; 965 966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 967 if (!ei) 968 return NULL; 969 970 ei->vfs_inode.i_version = 1; 971 spin_lock_init(&ei->i_raw_lock); 972 INIT_LIST_HEAD(&ei->i_prealloc_list); 973 spin_lock_init(&ei->i_prealloc_lock); 974 ext4_es_init_tree(&ei->i_es_tree); 975 rwlock_init(&ei->i_es_lock); 976 INIT_LIST_HEAD(&ei->i_es_list); 977 ei->i_es_all_nr = 0; 978 ei->i_es_shk_nr = 0; 979 ei->i_es_shrink_lblk = 0; 980 ei->i_reserved_data_blocks = 0; 981 ei->i_da_metadata_calc_len = 0; 982 ei->i_da_metadata_calc_last_lblock = 0; 983 spin_lock_init(&(ei->i_block_reservation_lock)); 984 #ifdef CONFIG_QUOTA 985 ei->i_reserved_quota = 0; 986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 987 #endif 988 ei->jinode = NULL; 989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 990 spin_lock_init(&ei->i_completed_io_lock); 991 ei->i_sync_tid = 0; 992 ei->i_datasync_tid = 0; 993 atomic_set(&ei->i_unwritten, 0); 994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 995 return &ei->vfs_inode; 996 } 997 998 static int ext4_drop_inode(struct inode *inode) 999 { 1000 int drop = generic_drop_inode(inode); 1001 1002 trace_ext4_drop_inode(inode, drop); 1003 return drop; 1004 } 1005 1006 static void ext4_i_callback(struct rcu_head *head) 1007 { 1008 struct inode *inode = container_of(head, struct inode, i_rcu); 1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1010 } 1011 1012 static void ext4_destroy_inode(struct inode *inode) 1013 { 1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1015 ext4_msg(inode->i_sb, KERN_ERR, 1016 "Inode %lu (%p): orphan list check failed!", 1017 inode->i_ino, EXT4_I(inode)); 1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1019 EXT4_I(inode), sizeof(struct ext4_inode_info), 1020 true); 1021 dump_stack(); 1022 } 1023 call_rcu(&inode->i_rcu, ext4_i_callback); 1024 } 1025 1026 static void init_once(void *foo) 1027 { 1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1029 1030 INIT_LIST_HEAD(&ei->i_orphan); 1031 init_rwsem(&ei->xattr_sem); 1032 init_rwsem(&ei->i_data_sem); 1033 init_rwsem(&ei->i_mmap_sem); 1034 inode_init_once(&ei->vfs_inode); 1035 } 1036 1037 static int __init init_inodecache(void) 1038 { 1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1040 sizeof(struct ext4_inode_info), 1041 0, (SLAB_RECLAIM_ACCOUNT| 1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1043 init_once); 1044 if (ext4_inode_cachep == NULL) 1045 return -ENOMEM; 1046 return 0; 1047 } 1048 1049 static void destroy_inodecache(void) 1050 { 1051 /* 1052 * Make sure all delayed rcu free inodes are flushed before we 1053 * destroy cache. 1054 */ 1055 rcu_barrier(); 1056 kmem_cache_destroy(ext4_inode_cachep); 1057 } 1058 1059 void ext4_clear_inode(struct inode *inode) 1060 { 1061 invalidate_inode_buffers(inode); 1062 clear_inode(inode); 1063 dquot_drop(inode); 1064 ext4_discard_preallocations(inode); 1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1066 if (EXT4_I(inode)->jinode) { 1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1068 EXT4_I(inode)->jinode); 1069 jbd2_free_inode(EXT4_I(inode)->jinode); 1070 EXT4_I(inode)->jinode = NULL; 1071 } 1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1073 fscrypt_put_encryption_info(inode, NULL); 1074 #endif 1075 } 1076 1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1078 u64 ino, u32 generation) 1079 { 1080 struct inode *inode; 1081 1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1083 return ERR_PTR(-ESTALE); 1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1085 return ERR_PTR(-ESTALE); 1086 1087 /* iget isn't really right if the inode is currently unallocated!! 1088 * 1089 * ext4_read_inode will return a bad_inode if the inode had been 1090 * deleted, so we should be safe. 1091 * 1092 * Currently we don't know the generation for parent directory, so 1093 * a generation of 0 means "accept any" 1094 */ 1095 inode = ext4_iget_normal(sb, ino); 1096 if (IS_ERR(inode)) 1097 return ERR_CAST(inode); 1098 if (generation && inode->i_generation != generation) { 1099 iput(inode); 1100 return ERR_PTR(-ESTALE); 1101 } 1102 1103 return inode; 1104 } 1105 1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1107 int fh_len, int fh_type) 1108 { 1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1110 ext4_nfs_get_inode); 1111 } 1112 1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1114 int fh_len, int fh_type) 1115 { 1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1117 ext4_nfs_get_inode); 1118 } 1119 1120 /* 1121 * Try to release metadata pages (indirect blocks, directories) which are 1122 * mapped via the block device. Since these pages could have journal heads 1123 * which would prevent try_to_free_buffers() from freeing them, we must use 1124 * jbd2 layer's try_to_free_buffers() function to release them. 1125 */ 1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1127 gfp_t wait) 1128 { 1129 journal_t *journal = EXT4_SB(sb)->s_journal; 1130 1131 WARN_ON(PageChecked(page)); 1132 if (!page_has_buffers(page)) 1133 return 0; 1134 if (journal) 1135 return jbd2_journal_try_to_free_buffers(journal, page, 1136 wait & ~__GFP_DIRECT_RECLAIM); 1137 return try_to_free_buffers(page); 1138 } 1139 1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1142 { 1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1145 } 1146 1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1148 void *fs_data) 1149 { 1150 handle_t *handle = fs_data; 1151 int res, res2, credits, retries = 0; 1152 1153 /* 1154 * Encrypting the root directory is not allowed because e2fsck expects 1155 * lost+found to exist and be unencrypted, and encrypting the root 1156 * directory would imply encrypting the lost+found directory as well as 1157 * the filename "lost+found" itself. 1158 */ 1159 if (inode->i_ino == EXT4_ROOT_INO) 1160 return -EPERM; 1161 1162 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1163 return -EINVAL; 1164 1165 res = ext4_convert_inline_data(inode); 1166 if (res) 1167 return res; 1168 1169 /* 1170 * If a journal handle was specified, then the encryption context is 1171 * being set on a new inode via inheritance and is part of a larger 1172 * transaction to create the inode. Otherwise the encryption context is 1173 * being set on an existing inode in its own transaction. Only in the 1174 * latter case should the "retry on ENOSPC" logic be used. 1175 */ 1176 1177 if (handle) { 1178 res = ext4_xattr_set_handle(handle, inode, 1179 EXT4_XATTR_INDEX_ENCRYPTION, 1180 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1181 ctx, len, 0); 1182 if (!res) { 1183 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1184 ext4_clear_inode_state(inode, 1185 EXT4_STATE_MAY_INLINE_DATA); 1186 /* 1187 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1188 * S_DAX may be disabled 1189 */ 1190 ext4_set_inode_flags(inode); 1191 } 1192 return res; 1193 } 1194 1195 res = dquot_initialize(inode); 1196 if (res) 1197 return res; 1198 retry: 1199 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1200 &credits); 1201 if (res) 1202 return res; 1203 1204 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1205 if (IS_ERR(handle)) 1206 return PTR_ERR(handle); 1207 1208 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1209 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1210 ctx, len, 0); 1211 if (!res) { 1212 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1213 /* 1214 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1215 * S_DAX may be disabled 1216 */ 1217 ext4_set_inode_flags(inode); 1218 res = ext4_mark_inode_dirty(handle, inode); 1219 if (res) 1220 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1221 } 1222 res2 = ext4_journal_stop(handle); 1223 1224 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1225 goto retry; 1226 if (!res) 1227 res = res2; 1228 return res; 1229 } 1230 1231 static bool ext4_dummy_context(struct inode *inode) 1232 { 1233 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1234 } 1235 1236 static unsigned ext4_max_namelen(struct inode *inode) 1237 { 1238 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1239 EXT4_NAME_LEN; 1240 } 1241 1242 static const struct fscrypt_operations ext4_cryptops = { 1243 .key_prefix = "ext4:", 1244 .get_context = ext4_get_context, 1245 .set_context = ext4_set_context, 1246 .dummy_context = ext4_dummy_context, 1247 .empty_dir = ext4_empty_dir, 1248 .max_namelen = ext4_max_namelen, 1249 }; 1250 #endif 1251 1252 #ifdef CONFIG_QUOTA 1253 static const char * const quotatypes[] = INITQFNAMES; 1254 #define QTYPE2NAME(t) (quotatypes[t]) 1255 1256 static int ext4_write_dquot(struct dquot *dquot); 1257 static int ext4_acquire_dquot(struct dquot *dquot); 1258 static int ext4_release_dquot(struct dquot *dquot); 1259 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1260 static int ext4_write_info(struct super_block *sb, int type); 1261 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1262 const struct path *path); 1263 static int ext4_quota_on_mount(struct super_block *sb, int type); 1264 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1265 size_t len, loff_t off); 1266 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1267 const char *data, size_t len, loff_t off); 1268 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1269 unsigned int flags); 1270 static int ext4_enable_quotas(struct super_block *sb); 1271 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1272 1273 static struct dquot **ext4_get_dquots(struct inode *inode) 1274 { 1275 return EXT4_I(inode)->i_dquot; 1276 } 1277 1278 static const struct dquot_operations ext4_quota_operations = { 1279 .get_reserved_space = ext4_get_reserved_space, 1280 .write_dquot = ext4_write_dquot, 1281 .acquire_dquot = ext4_acquire_dquot, 1282 .release_dquot = ext4_release_dquot, 1283 .mark_dirty = ext4_mark_dquot_dirty, 1284 .write_info = ext4_write_info, 1285 .alloc_dquot = dquot_alloc, 1286 .destroy_dquot = dquot_destroy, 1287 .get_projid = ext4_get_projid, 1288 .get_inode_usage = ext4_get_inode_usage, 1289 .get_next_id = ext4_get_next_id, 1290 }; 1291 1292 static const struct quotactl_ops ext4_qctl_operations = { 1293 .quota_on = ext4_quota_on, 1294 .quota_off = ext4_quota_off, 1295 .quota_sync = dquot_quota_sync, 1296 .get_state = dquot_get_state, 1297 .set_info = dquot_set_dqinfo, 1298 .get_dqblk = dquot_get_dqblk, 1299 .set_dqblk = dquot_set_dqblk, 1300 .get_nextdqblk = dquot_get_next_dqblk, 1301 }; 1302 #endif 1303 1304 static const struct super_operations ext4_sops = { 1305 .alloc_inode = ext4_alloc_inode, 1306 .destroy_inode = ext4_destroy_inode, 1307 .write_inode = ext4_write_inode, 1308 .dirty_inode = ext4_dirty_inode, 1309 .drop_inode = ext4_drop_inode, 1310 .evict_inode = ext4_evict_inode, 1311 .put_super = ext4_put_super, 1312 .sync_fs = ext4_sync_fs, 1313 .freeze_fs = ext4_freeze, 1314 .unfreeze_fs = ext4_unfreeze, 1315 .statfs = ext4_statfs, 1316 .remount_fs = ext4_remount, 1317 .show_options = ext4_show_options, 1318 #ifdef CONFIG_QUOTA 1319 .quota_read = ext4_quota_read, 1320 .quota_write = ext4_quota_write, 1321 .get_dquots = ext4_get_dquots, 1322 #endif 1323 .bdev_try_to_free_page = bdev_try_to_free_page, 1324 }; 1325 1326 static const struct export_operations ext4_export_ops = { 1327 .fh_to_dentry = ext4_fh_to_dentry, 1328 .fh_to_parent = ext4_fh_to_parent, 1329 .get_parent = ext4_get_parent, 1330 }; 1331 1332 enum { 1333 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1334 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1335 Opt_nouid32, Opt_debug, Opt_removed, 1336 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1337 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1338 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1339 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1340 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1341 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1342 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1343 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1344 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1345 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1346 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1347 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1348 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1349 Opt_inode_readahead_blks, Opt_journal_ioprio, 1350 Opt_dioread_nolock, Opt_dioread_lock, 1351 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1352 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1353 }; 1354 1355 static const match_table_t tokens = { 1356 {Opt_bsd_df, "bsddf"}, 1357 {Opt_minix_df, "minixdf"}, 1358 {Opt_grpid, "grpid"}, 1359 {Opt_grpid, "bsdgroups"}, 1360 {Opt_nogrpid, "nogrpid"}, 1361 {Opt_nogrpid, "sysvgroups"}, 1362 {Opt_resgid, "resgid=%u"}, 1363 {Opt_resuid, "resuid=%u"}, 1364 {Opt_sb, "sb=%u"}, 1365 {Opt_err_cont, "errors=continue"}, 1366 {Opt_err_panic, "errors=panic"}, 1367 {Opt_err_ro, "errors=remount-ro"}, 1368 {Opt_nouid32, "nouid32"}, 1369 {Opt_debug, "debug"}, 1370 {Opt_removed, "oldalloc"}, 1371 {Opt_removed, "orlov"}, 1372 {Opt_user_xattr, "user_xattr"}, 1373 {Opt_nouser_xattr, "nouser_xattr"}, 1374 {Opt_acl, "acl"}, 1375 {Opt_noacl, "noacl"}, 1376 {Opt_noload, "norecovery"}, 1377 {Opt_noload, "noload"}, 1378 {Opt_removed, "nobh"}, 1379 {Opt_removed, "bh"}, 1380 {Opt_commit, "commit=%u"}, 1381 {Opt_min_batch_time, "min_batch_time=%u"}, 1382 {Opt_max_batch_time, "max_batch_time=%u"}, 1383 {Opt_journal_dev, "journal_dev=%u"}, 1384 {Opt_journal_path, "journal_path=%s"}, 1385 {Opt_journal_checksum, "journal_checksum"}, 1386 {Opt_nojournal_checksum, "nojournal_checksum"}, 1387 {Opt_journal_async_commit, "journal_async_commit"}, 1388 {Opt_abort, "abort"}, 1389 {Opt_data_journal, "data=journal"}, 1390 {Opt_data_ordered, "data=ordered"}, 1391 {Opt_data_writeback, "data=writeback"}, 1392 {Opt_data_err_abort, "data_err=abort"}, 1393 {Opt_data_err_ignore, "data_err=ignore"}, 1394 {Opt_offusrjquota, "usrjquota="}, 1395 {Opt_usrjquota, "usrjquota=%s"}, 1396 {Opt_offgrpjquota, "grpjquota="}, 1397 {Opt_grpjquota, "grpjquota=%s"}, 1398 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1399 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1400 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1401 {Opt_grpquota, "grpquota"}, 1402 {Opt_noquota, "noquota"}, 1403 {Opt_quota, "quota"}, 1404 {Opt_usrquota, "usrquota"}, 1405 {Opt_prjquota, "prjquota"}, 1406 {Opt_barrier, "barrier=%u"}, 1407 {Opt_barrier, "barrier"}, 1408 {Opt_nobarrier, "nobarrier"}, 1409 {Opt_i_version, "i_version"}, 1410 {Opt_dax, "dax"}, 1411 {Opt_stripe, "stripe=%u"}, 1412 {Opt_delalloc, "delalloc"}, 1413 {Opt_lazytime, "lazytime"}, 1414 {Opt_nolazytime, "nolazytime"}, 1415 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1416 {Opt_nodelalloc, "nodelalloc"}, 1417 {Opt_removed, "mblk_io_submit"}, 1418 {Opt_removed, "nomblk_io_submit"}, 1419 {Opt_block_validity, "block_validity"}, 1420 {Opt_noblock_validity, "noblock_validity"}, 1421 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1422 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1423 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1424 {Opt_auto_da_alloc, "auto_da_alloc"}, 1425 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1426 {Opt_dioread_nolock, "dioread_nolock"}, 1427 {Opt_dioread_lock, "dioread_lock"}, 1428 {Opt_discard, "discard"}, 1429 {Opt_nodiscard, "nodiscard"}, 1430 {Opt_init_itable, "init_itable=%u"}, 1431 {Opt_init_itable, "init_itable"}, 1432 {Opt_noinit_itable, "noinit_itable"}, 1433 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1434 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1435 {Opt_nombcache, "nombcache"}, 1436 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1437 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1438 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1439 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1440 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1441 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1442 {Opt_err, NULL}, 1443 }; 1444 1445 static ext4_fsblk_t get_sb_block(void **data) 1446 { 1447 ext4_fsblk_t sb_block; 1448 char *options = (char *) *data; 1449 1450 if (!options || strncmp(options, "sb=", 3) != 0) 1451 return 1; /* Default location */ 1452 1453 options += 3; 1454 /* TODO: use simple_strtoll with >32bit ext4 */ 1455 sb_block = simple_strtoul(options, &options, 0); 1456 if (*options && *options != ',') { 1457 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1458 (char *) *data); 1459 return 1; 1460 } 1461 if (*options == ',') 1462 options++; 1463 *data = (void *) options; 1464 1465 return sb_block; 1466 } 1467 1468 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1469 static const char deprecated_msg[] = 1470 "Mount option \"%s\" will be removed by %s\n" 1471 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1472 1473 #ifdef CONFIG_QUOTA 1474 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1475 { 1476 struct ext4_sb_info *sbi = EXT4_SB(sb); 1477 char *qname; 1478 int ret = -1; 1479 1480 if (sb_any_quota_loaded(sb) && 1481 !sbi->s_qf_names[qtype]) { 1482 ext4_msg(sb, KERN_ERR, 1483 "Cannot change journaled " 1484 "quota options when quota turned on"); 1485 return -1; 1486 } 1487 if (ext4_has_feature_quota(sb)) { 1488 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1489 "ignored when QUOTA feature is enabled"); 1490 return 1; 1491 } 1492 qname = match_strdup(args); 1493 if (!qname) { 1494 ext4_msg(sb, KERN_ERR, 1495 "Not enough memory for storing quotafile name"); 1496 return -1; 1497 } 1498 if (sbi->s_qf_names[qtype]) { 1499 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1500 ret = 1; 1501 else 1502 ext4_msg(sb, KERN_ERR, 1503 "%s quota file already specified", 1504 QTYPE2NAME(qtype)); 1505 goto errout; 1506 } 1507 if (strchr(qname, '/')) { 1508 ext4_msg(sb, KERN_ERR, 1509 "quotafile must be on filesystem root"); 1510 goto errout; 1511 } 1512 sbi->s_qf_names[qtype] = qname; 1513 set_opt(sb, QUOTA); 1514 return 1; 1515 errout: 1516 kfree(qname); 1517 return ret; 1518 } 1519 1520 static int clear_qf_name(struct super_block *sb, int qtype) 1521 { 1522 1523 struct ext4_sb_info *sbi = EXT4_SB(sb); 1524 1525 if (sb_any_quota_loaded(sb) && 1526 sbi->s_qf_names[qtype]) { 1527 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1528 " when quota turned on"); 1529 return -1; 1530 } 1531 kfree(sbi->s_qf_names[qtype]); 1532 sbi->s_qf_names[qtype] = NULL; 1533 return 1; 1534 } 1535 #endif 1536 1537 #define MOPT_SET 0x0001 1538 #define MOPT_CLEAR 0x0002 1539 #define MOPT_NOSUPPORT 0x0004 1540 #define MOPT_EXPLICIT 0x0008 1541 #define MOPT_CLEAR_ERR 0x0010 1542 #define MOPT_GTE0 0x0020 1543 #ifdef CONFIG_QUOTA 1544 #define MOPT_Q 0 1545 #define MOPT_QFMT 0x0040 1546 #else 1547 #define MOPT_Q MOPT_NOSUPPORT 1548 #define MOPT_QFMT MOPT_NOSUPPORT 1549 #endif 1550 #define MOPT_DATAJ 0x0080 1551 #define MOPT_NO_EXT2 0x0100 1552 #define MOPT_NO_EXT3 0x0200 1553 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1554 #define MOPT_STRING 0x0400 1555 1556 static const struct mount_opts { 1557 int token; 1558 int mount_opt; 1559 int flags; 1560 } ext4_mount_opts[] = { 1561 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1562 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1563 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1564 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1565 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1566 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1567 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1568 MOPT_EXT4_ONLY | MOPT_SET}, 1569 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1570 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1571 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1572 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1573 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1574 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1575 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1576 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1577 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1578 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1579 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1580 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1581 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1582 EXT4_MOUNT_JOURNAL_CHECKSUM), 1583 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1584 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1585 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1586 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1587 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1588 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1589 MOPT_NO_EXT2}, 1590 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1591 MOPT_NO_EXT2}, 1592 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1593 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1594 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1595 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1596 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1597 {Opt_commit, 0, MOPT_GTE0}, 1598 {Opt_max_batch_time, 0, MOPT_GTE0}, 1599 {Opt_min_batch_time, 0, MOPT_GTE0}, 1600 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1601 {Opt_init_itable, 0, MOPT_GTE0}, 1602 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1603 {Opt_stripe, 0, MOPT_GTE0}, 1604 {Opt_resuid, 0, MOPT_GTE0}, 1605 {Opt_resgid, 0, MOPT_GTE0}, 1606 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1607 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1608 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1609 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1610 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1611 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1612 MOPT_NO_EXT2 | MOPT_DATAJ}, 1613 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1614 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1615 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1616 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1617 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1618 #else 1619 {Opt_acl, 0, MOPT_NOSUPPORT}, 1620 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1621 #endif 1622 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1623 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1624 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1625 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1626 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1627 MOPT_SET | MOPT_Q}, 1628 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1629 MOPT_SET | MOPT_Q}, 1630 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1631 MOPT_SET | MOPT_Q}, 1632 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1633 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1634 MOPT_CLEAR | MOPT_Q}, 1635 {Opt_usrjquota, 0, MOPT_Q}, 1636 {Opt_grpjquota, 0, MOPT_Q}, 1637 {Opt_offusrjquota, 0, MOPT_Q}, 1638 {Opt_offgrpjquota, 0, MOPT_Q}, 1639 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1640 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1641 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1642 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1643 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1644 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1645 {Opt_err, 0, 0} 1646 }; 1647 1648 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1649 substring_t *args, unsigned long *journal_devnum, 1650 unsigned int *journal_ioprio, int is_remount) 1651 { 1652 struct ext4_sb_info *sbi = EXT4_SB(sb); 1653 const struct mount_opts *m; 1654 kuid_t uid; 1655 kgid_t gid; 1656 int arg = 0; 1657 1658 #ifdef CONFIG_QUOTA 1659 if (token == Opt_usrjquota) 1660 return set_qf_name(sb, USRQUOTA, &args[0]); 1661 else if (token == Opt_grpjquota) 1662 return set_qf_name(sb, GRPQUOTA, &args[0]); 1663 else if (token == Opt_offusrjquota) 1664 return clear_qf_name(sb, USRQUOTA); 1665 else if (token == Opt_offgrpjquota) 1666 return clear_qf_name(sb, GRPQUOTA); 1667 #endif 1668 switch (token) { 1669 case Opt_noacl: 1670 case Opt_nouser_xattr: 1671 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1672 break; 1673 case Opt_sb: 1674 return 1; /* handled by get_sb_block() */ 1675 case Opt_removed: 1676 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1677 return 1; 1678 case Opt_abort: 1679 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1680 return 1; 1681 case Opt_i_version: 1682 sb->s_flags |= SB_I_VERSION; 1683 return 1; 1684 case Opt_lazytime: 1685 sb->s_flags |= SB_LAZYTIME; 1686 return 1; 1687 case Opt_nolazytime: 1688 sb->s_flags &= ~SB_LAZYTIME; 1689 return 1; 1690 } 1691 1692 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1693 if (token == m->token) 1694 break; 1695 1696 if (m->token == Opt_err) { 1697 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1698 "or missing value", opt); 1699 return -1; 1700 } 1701 1702 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1703 ext4_msg(sb, KERN_ERR, 1704 "Mount option \"%s\" incompatible with ext2", opt); 1705 return -1; 1706 } 1707 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1708 ext4_msg(sb, KERN_ERR, 1709 "Mount option \"%s\" incompatible with ext3", opt); 1710 return -1; 1711 } 1712 1713 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1714 return -1; 1715 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1716 return -1; 1717 if (m->flags & MOPT_EXPLICIT) { 1718 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1719 set_opt2(sb, EXPLICIT_DELALLOC); 1720 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1721 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1722 } else 1723 return -1; 1724 } 1725 if (m->flags & MOPT_CLEAR_ERR) 1726 clear_opt(sb, ERRORS_MASK); 1727 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1728 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1729 "options when quota turned on"); 1730 return -1; 1731 } 1732 1733 if (m->flags & MOPT_NOSUPPORT) { 1734 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1735 } else if (token == Opt_commit) { 1736 if (arg == 0) 1737 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1738 sbi->s_commit_interval = HZ * arg; 1739 } else if (token == Opt_debug_want_extra_isize) { 1740 sbi->s_want_extra_isize = arg; 1741 } else if (token == Opt_max_batch_time) { 1742 sbi->s_max_batch_time = arg; 1743 } else if (token == Opt_min_batch_time) { 1744 sbi->s_min_batch_time = arg; 1745 } else if (token == Opt_inode_readahead_blks) { 1746 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1747 ext4_msg(sb, KERN_ERR, 1748 "EXT4-fs: inode_readahead_blks must be " 1749 "0 or a power of 2 smaller than 2^31"); 1750 return -1; 1751 } 1752 sbi->s_inode_readahead_blks = arg; 1753 } else if (token == Opt_init_itable) { 1754 set_opt(sb, INIT_INODE_TABLE); 1755 if (!args->from) 1756 arg = EXT4_DEF_LI_WAIT_MULT; 1757 sbi->s_li_wait_mult = arg; 1758 } else if (token == Opt_max_dir_size_kb) { 1759 sbi->s_max_dir_size_kb = arg; 1760 } else if (token == Opt_stripe) { 1761 sbi->s_stripe = arg; 1762 } else if (token == Opt_resuid) { 1763 uid = make_kuid(current_user_ns(), arg); 1764 if (!uid_valid(uid)) { 1765 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1766 return -1; 1767 } 1768 sbi->s_resuid = uid; 1769 } else if (token == Opt_resgid) { 1770 gid = make_kgid(current_user_ns(), arg); 1771 if (!gid_valid(gid)) { 1772 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1773 return -1; 1774 } 1775 sbi->s_resgid = gid; 1776 } else if (token == Opt_journal_dev) { 1777 if (is_remount) { 1778 ext4_msg(sb, KERN_ERR, 1779 "Cannot specify journal on remount"); 1780 return -1; 1781 } 1782 *journal_devnum = arg; 1783 } else if (token == Opt_journal_path) { 1784 char *journal_path; 1785 struct inode *journal_inode; 1786 struct path path; 1787 int error; 1788 1789 if (is_remount) { 1790 ext4_msg(sb, KERN_ERR, 1791 "Cannot specify journal on remount"); 1792 return -1; 1793 } 1794 journal_path = match_strdup(&args[0]); 1795 if (!journal_path) { 1796 ext4_msg(sb, KERN_ERR, "error: could not dup " 1797 "journal device string"); 1798 return -1; 1799 } 1800 1801 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1802 if (error) { 1803 ext4_msg(sb, KERN_ERR, "error: could not find " 1804 "journal device path: error %d", error); 1805 kfree(journal_path); 1806 return -1; 1807 } 1808 1809 journal_inode = d_inode(path.dentry); 1810 if (!S_ISBLK(journal_inode->i_mode)) { 1811 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1812 "is not a block device", journal_path); 1813 path_put(&path); 1814 kfree(journal_path); 1815 return -1; 1816 } 1817 1818 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1819 path_put(&path); 1820 kfree(journal_path); 1821 } else if (token == Opt_journal_ioprio) { 1822 if (arg > 7) { 1823 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1824 " (must be 0-7)"); 1825 return -1; 1826 } 1827 *journal_ioprio = 1828 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1829 } else if (token == Opt_test_dummy_encryption) { 1830 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1831 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1832 ext4_msg(sb, KERN_WARNING, 1833 "Test dummy encryption mode enabled"); 1834 #else 1835 ext4_msg(sb, KERN_WARNING, 1836 "Test dummy encryption mount option ignored"); 1837 #endif 1838 } else if (m->flags & MOPT_DATAJ) { 1839 if (is_remount) { 1840 if (!sbi->s_journal) 1841 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1842 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1843 ext4_msg(sb, KERN_ERR, 1844 "Cannot change data mode on remount"); 1845 return -1; 1846 } 1847 } else { 1848 clear_opt(sb, DATA_FLAGS); 1849 sbi->s_mount_opt |= m->mount_opt; 1850 } 1851 #ifdef CONFIG_QUOTA 1852 } else if (m->flags & MOPT_QFMT) { 1853 if (sb_any_quota_loaded(sb) && 1854 sbi->s_jquota_fmt != m->mount_opt) { 1855 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1856 "quota options when quota turned on"); 1857 return -1; 1858 } 1859 if (ext4_has_feature_quota(sb)) { 1860 ext4_msg(sb, KERN_INFO, 1861 "Quota format mount options ignored " 1862 "when QUOTA feature is enabled"); 1863 return 1; 1864 } 1865 sbi->s_jquota_fmt = m->mount_opt; 1866 #endif 1867 } else if (token == Opt_dax) { 1868 #ifdef CONFIG_FS_DAX 1869 ext4_msg(sb, KERN_WARNING, 1870 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1871 sbi->s_mount_opt |= m->mount_opt; 1872 #else 1873 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1874 return -1; 1875 #endif 1876 } else if (token == Opt_data_err_abort) { 1877 sbi->s_mount_opt |= m->mount_opt; 1878 } else if (token == Opt_data_err_ignore) { 1879 sbi->s_mount_opt &= ~m->mount_opt; 1880 } else { 1881 if (!args->from) 1882 arg = 1; 1883 if (m->flags & MOPT_CLEAR) 1884 arg = !arg; 1885 else if (unlikely(!(m->flags & MOPT_SET))) { 1886 ext4_msg(sb, KERN_WARNING, 1887 "buggy handling of option %s", opt); 1888 WARN_ON(1); 1889 return -1; 1890 } 1891 if (arg != 0) 1892 sbi->s_mount_opt |= m->mount_opt; 1893 else 1894 sbi->s_mount_opt &= ~m->mount_opt; 1895 } 1896 return 1; 1897 } 1898 1899 static int parse_options(char *options, struct super_block *sb, 1900 unsigned long *journal_devnum, 1901 unsigned int *journal_ioprio, 1902 int is_remount) 1903 { 1904 struct ext4_sb_info *sbi = EXT4_SB(sb); 1905 char *p; 1906 substring_t args[MAX_OPT_ARGS]; 1907 int token; 1908 1909 if (!options) 1910 return 1; 1911 1912 while ((p = strsep(&options, ",")) != NULL) { 1913 if (!*p) 1914 continue; 1915 /* 1916 * Initialize args struct so we know whether arg was 1917 * found; some options take optional arguments. 1918 */ 1919 args[0].to = args[0].from = NULL; 1920 token = match_token(p, tokens, args); 1921 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1922 journal_ioprio, is_remount) < 0) 1923 return 0; 1924 } 1925 #ifdef CONFIG_QUOTA 1926 /* 1927 * We do the test below only for project quotas. 'usrquota' and 1928 * 'grpquota' mount options are allowed even without quota feature 1929 * to support legacy quotas in quota files. 1930 */ 1931 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1932 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1933 "Cannot enable project quota enforcement."); 1934 return 0; 1935 } 1936 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1937 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1938 clear_opt(sb, USRQUOTA); 1939 1940 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1941 clear_opt(sb, GRPQUOTA); 1942 1943 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1944 ext4_msg(sb, KERN_ERR, "old and new quota " 1945 "format mixing"); 1946 return 0; 1947 } 1948 1949 if (!sbi->s_jquota_fmt) { 1950 ext4_msg(sb, KERN_ERR, "journaled quota format " 1951 "not specified"); 1952 return 0; 1953 } 1954 } 1955 #endif 1956 if (test_opt(sb, DIOREAD_NOLOCK)) { 1957 int blocksize = 1958 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1959 1960 if (blocksize < PAGE_SIZE) { 1961 ext4_msg(sb, KERN_ERR, "can't mount with " 1962 "dioread_nolock if block size != PAGE_SIZE"); 1963 return 0; 1964 } 1965 } 1966 return 1; 1967 } 1968 1969 static inline void ext4_show_quota_options(struct seq_file *seq, 1970 struct super_block *sb) 1971 { 1972 #if defined(CONFIG_QUOTA) 1973 struct ext4_sb_info *sbi = EXT4_SB(sb); 1974 1975 if (sbi->s_jquota_fmt) { 1976 char *fmtname = ""; 1977 1978 switch (sbi->s_jquota_fmt) { 1979 case QFMT_VFS_OLD: 1980 fmtname = "vfsold"; 1981 break; 1982 case QFMT_VFS_V0: 1983 fmtname = "vfsv0"; 1984 break; 1985 case QFMT_VFS_V1: 1986 fmtname = "vfsv1"; 1987 break; 1988 } 1989 seq_printf(seq, ",jqfmt=%s", fmtname); 1990 } 1991 1992 if (sbi->s_qf_names[USRQUOTA]) 1993 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1994 1995 if (sbi->s_qf_names[GRPQUOTA]) 1996 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1997 #endif 1998 } 1999 2000 static const char *token2str(int token) 2001 { 2002 const struct match_token *t; 2003 2004 for (t = tokens; t->token != Opt_err; t++) 2005 if (t->token == token && !strchr(t->pattern, '=')) 2006 break; 2007 return t->pattern; 2008 } 2009 2010 /* 2011 * Show an option if 2012 * - it's set to a non-default value OR 2013 * - if the per-sb default is different from the global default 2014 */ 2015 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2016 int nodefs) 2017 { 2018 struct ext4_sb_info *sbi = EXT4_SB(sb); 2019 struct ext4_super_block *es = sbi->s_es; 2020 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 2021 const struct mount_opts *m; 2022 char sep = nodefs ? '\n' : ','; 2023 2024 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2025 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2026 2027 if (sbi->s_sb_block != 1) 2028 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2029 2030 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2031 int want_set = m->flags & MOPT_SET; 2032 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2033 (m->flags & MOPT_CLEAR_ERR)) 2034 continue; 2035 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2036 continue; /* skip if same as the default */ 2037 if ((want_set && 2038 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2039 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2040 continue; /* select Opt_noFoo vs Opt_Foo */ 2041 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2042 } 2043 2044 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2045 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2046 SEQ_OPTS_PRINT("resuid=%u", 2047 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2048 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2049 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2050 SEQ_OPTS_PRINT("resgid=%u", 2051 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2052 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2053 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2054 SEQ_OPTS_PUTS("errors=remount-ro"); 2055 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2056 SEQ_OPTS_PUTS("errors=continue"); 2057 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2058 SEQ_OPTS_PUTS("errors=panic"); 2059 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2060 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2061 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2062 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2063 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2064 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2065 if (sb->s_flags & SB_I_VERSION) 2066 SEQ_OPTS_PUTS("i_version"); 2067 if (nodefs || sbi->s_stripe) 2068 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2069 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2070 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2071 SEQ_OPTS_PUTS("data=journal"); 2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2073 SEQ_OPTS_PUTS("data=ordered"); 2074 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2075 SEQ_OPTS_PUTS("data=writeback"); 2076 } 2077 if (nodefs || 2078 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2079 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2080 sbi->s_inode_readahead_blks); 2081 2082 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2083 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2084 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2085 if (nodefs || sbi->s_max_dir_size_kb) 2086 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2087 if (test_opt(sb, DATA_ERR_ABORT)) 2088 SEQ_OPTS_PUTS("data_err=abort"); 2089 2090 ext4_show_quota_options(seq, sb); 2091 return 0; 2092 } 2093 2094 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2095 { 2096 return _ext4_show_options(seq, root->d_sb, 0); 2097 } 2098 2099 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2100 { 2101 struct super_block *sb = seq->private; 2102 int rc; 2103 2104 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2105 rc = _ext4_show_options(seq, sb, 1); 2106 seq_puts(seq, "\n"); 2107 return rc; 2108 } 2109 2110 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2111 int read_only) 2112 { 2113 struct ext4_sb_info *sbi = EXT4_SB(sb); 2114 int res = 0; 2115 2116 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2117 ext4_msg(sb, KERN_ERR, "revision level too high, " 2118 "forcing read-only mode"); 2119 res = SB_RDONLY; 2120 } 2121 if (read_only) 2122 goto done; 2123 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2124 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2125 "running e2fsck is recommended"); 2126 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2127 ext4_msg(sb, KERN_WARNING, 2128 "warning: mounting fs with errors, " 2129 "running e2fsck is recommended"); 2130 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2131 le16_to_cpu(es->s_mnt_count) >= 2132 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2133 ext4_msg(sb, KERN_WARNING, 2134 "warning: maximal mount count reached, " 2135 "running e2fsck is recommended"); 2136 else if (le32_to_cpu(es->s_checkinterval) && 2137 (le32_to_cpu(es->s_lastcheck) + 2138 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2139 ext4_msg(sb, KERN_WARNING, 2140 "warning: checktime reached, " 2141 "running e2fsck is recommended"); 2142 if (!sbi->s_journal) 2143 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2144 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2145 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2146 le16_add_cpu(&es->s_mnt_count, 1); 2147 es->s_mtime = cpu_to_le32(get_seconds()); 2148 ext4_update_dynamic_rev(sb); 2149 if (sbi->s_journal) 2150 ext4_set_feature_journal_needs_recovery(sb); 2151 2152 ext4_commit_super(sb, 1); 2153 done: 2154 if (test_opt(sb, DEBUG)) 2155 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2156 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2157 sb->s_blocksize, 2158 sbi->s_groups_count, 2159 EXT4_BLOCKS_PER_GROUP(sb), 2160 EXT4_INODES_PER_GROUP(sb), 2161 sbi->s_mount_opt, sbi->s_mount_opt2); 2162 2163 cleancache_init_fs(sb); 2164 return res; 2165 } 2166 2167 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2168 { 2169 struct ext4_sb_info *sbi = EXT4_SB(sb); 2170 struct flex_groups *new_groups; 2171 int size; 2172 2173 if (!sbi->s_log_groups_per_flex) 2174 return 0; 2175 2176 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2177 if (size <= sbi->s_flex_groups_allocated) 2178 return 0; 2179 2180 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2181 new_groups = kvzalloc(size, GFP_KERNEL); 2182 if (!new_groups) { 2183 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2184 size / (int) sizeof(struct flex_groups)); 2185 return -ENOMEM; 2186 } 2187 2188 if (sbi->s_flex_groups) { 2189 memcpy(new_groups, sbi->s_flex_groups, 2190 (sbi->s_flex_groups_allocated * 2191 sizeof(struct flex_groups))); 2192 kvfree(sbi->s_flex_groups); 2193 } 2194 sbi->s_flex_groups = new_groups; 2195 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2196 return 0; 2197 } 2198 2199 static int ext4_fill_flex_info(struct super_block *sb) 2200 { 2201 struct ext4_sb_info *sbi = EXT4_SB(sb); 2202 struct ext4_group_desc *gdp = NULL; 2203 ext4_group_t flex_group; 2204 int i, err; 2205 2206 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2207 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2208 sbi->s_log_groups_per_flex = 0; 2209 return 1; 2210 } 2211 2212 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2213 if (err) 2214 goto failed; 2215 2216 for (i = 0; i < sbi->s_groups_count; i++) { 2217 gdp = ext4_get_group_desc(sb, i, NULL); 2218 2219 flex_group = ext4_flex_group(sbi, i); 2220 atomic_add(ext4_free_inodes_count(sb, gdp), 2221 &sbi->s_flex_groups[flex_group].free_inodes); 2222 atomic64_add(ext4_free_group_clusters(sb, gdp), 2223 &sbi->s_flex_groups[flex_group].free_clusters); 2224 atomic_add(ext4_used_dirs_count(sb, gdp), 2225 &sbi->s_flex_groups[flex_group].used_dirs); 2226 } 2227 2228 return 1; 2229 failed: 2230 return 0; 2231 } 2232 2233 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2234 struct ext4_group_desc *gdp) 2235 { 2236 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2237 __u16 crc = 0; 2238 __le32 le_group = cpu_to_le32(block_group); 2239 struct ext4_sb_info *sbi = EXT4_SB(sb); 2240 2241 if (ext4_has_metadata_csum(sbi->s_sb)) { 2242 /* Use new metadata_csum algorithm */ 2243 __u32 csum32; 2244 __u16 dummy_csum = 0; 2245 2246 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2247 sizeof(le_group)); 2248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2249 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2250 sizeof(dummy_csum)); 2251 offset += sizeof(dummy_csum); 2252 if (offset < sbi->s_desc_size) 2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2254 sbi->s_desc_size - offset); 2255 2256 crc = csum32 & 0xFFFF; 2257 goto out; 2258 } 2259 2260 /* old crc16 code */ 2261 if (!ext4_has_feature_gdt_csum(sb)) 2262 return 0; 2263 2264 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2265 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2266 crc = crc16(crc, (__u8 *)gdp, offset); 2267 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2268 /* for checksum of struct ext4_group_desc do the rest...*/ 2269 if (ext4_has_feature_64bit(sb) && 2270 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2271 crc = crc16(crc, (__u8 *)gdp + offset, 2272 le16_to_cpu(sbi->s_es->s_desc_size) - 2273 offset); 2274 2275 out: 2276 return cpu_to_le16(crc); 2277 } 2278 2279 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2280 struct ext4_group_desc *gdp) 2281 { 2282 if (ext4_has_group_desc_csum(sb) && 2283 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2284 return 0; 2285 2286 return 1; 2287 } 2288 2289 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2290 struct ext4_group_desc *gdp) 2291 { 2292 if (!ext4_has_group_desc_csum(sb)) 2293 return; 2294 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2295 } 2296 2297 /* Called at mount-time, super-block is locked */ 2298 static int ext4_check_descriptors(struct super_block *sb, 2299 ext4_fsblk_t sb_block, 2300 ext4_group_t *first_not_zeroed) 2301 { 2302 struct ext4_sb_info *sbi = EXT4_SB(sb); 2303 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2304 ext4_fsblk_t last_block; 2305 ext4_fsblk_t block_bitmap; 2306 ext4_fsblk_t inode_bitmap; 2307 ext4_fsblk_t inode_table; 2308 int flexbg_flag = 0; 2309 ext4_group_t i, grp = sbi->s_groups_count; 2310 2311 if (ext4_has_feature_flex_bg(sb)) 2312 flexbg_flag = 1; 2313 2314 ext4_debug("Checking group descriptors"); 2315 2316 for (i = 0; i < sbi->s_groups_count; i++) { 2317 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2318 2319 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2320 last_block = ext4_blocks_count(sbi->s_es) - 1; 2321 else 2322 last_block = first_block + 2323 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2324 2325 if ((grp == sbi->s_groups_count) && 2326 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2327 grp = i; 2328 2329 block_bitmap = ext4_block_bitmap(sb, gdp); 2330 if (block_bitmap == sb_block) { 2331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2332 "Block bitmap for group %u overlaps " 2333 "superblock", i); 2334 } 2335 if (block_bitmap < first_block || block_bitmap > last_block) { 2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2337 "Block bitmap for group %u not in group " 2338 "(block %llu)!", i, block_bitmap); 2339 return 0; 2340 } 2341 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2342 if (inode_bitmap == sb_block) { 2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2344 "Inode bitmap for group %u overlaps " 2345 "superblock", i); 2346 } 2347 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2349 "Inode bitmap for group %u not in group " 2350 "(block %llu)!", i, inode_bitmap); 2351 return 0; 2352 } 2353 inode_table = ext4_inode_table(sb, gdp); 2354 if (inode_table == sb_block) { 2355 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2356 "Inode table for group %u overlaps " 2357 "superblock", i); 2358 } 2359 if (inode_table < first_block || 2360 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2361 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2362 "Inode table for group %u not in group " 2363 "(block %llu)!", i, inode_table); 2364 return 0; 2365 } 2366 ext4_lock_group(sb, i); 2367 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2368 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2369 "Checksum for group %u failed (%u!=%u)", 2370 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2371 gdp)), le16_to_cpu(gdp->bg_checksum)); 2372 if (!sb_rdonly(sb)) { 2373 ext4_unlock_group(sb, i); 2374 return 0; 2375 } 2376 } 2377 ext4_unlock_group(sb, i); 2378 if (!flexbg_flag) 2379 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2380 } 2381 if (NULL != first_not_zeroed) 2382 *first_not_zeroed = grp; 2383 return 1; 2384 } 2385 2386 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2387 * the superblock) which were deleted from all directories, but held open by 2388 * a process at the time of a crash. We walk the list and try to delete these 2389 * inodes at recovery time (only with a read-write filesystem). 2390 * 2391 * In order to keep the orphan inode chain consistent during traversal (in 2392 * case of crash during recovery), we link each inode into the superblock 2393 * orphan list_head and handle it the same way as an inode deletion during 2394 * normal operation (which journals the operations for us). 2395 * 2396 * We only do an iget() and an iput() on each inode, which is very safe if we 2397 * accidentally point at an in-use or already deleted inode. The worst that 2398 * can happen in this case is that we get a "bit already cleared" message from 2399 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2400 * e2fsck was run on this filesystem, and it must have already done the orphan 2401 * inode cleanup for us, so we can safely abort without any further action. 2402 */ 2403 static void ext4_orphan_cleanup(struct super_block *sb, 2404 struct ext4_super_block *es) 2405 { 2406 unsigned int s_flags = sb->s_flags; 2407 int ret, nr_orphans = 0, nr_truncates = 0; 2408 #ifdef CONFIG_QUOTA 2409 int quota_update = 0; 2410 int i; 2411 #endif 2412 if (!es->s_last_orphan) { 2413 jbd_debug(4, "no orphan inodes to clean up\n"); 2414 return; 2415 } 2416 2417 if (bdev_read_only(sb->s_bdev)) { 2418 ext4_msg(sb, KERN_ERR, "write access " 2419 "unavailable, skipping orphan cleanup"); 2420 return; 2421 } 2422 2423 /* Check if feature set would not allow a r/w mount */ 2424 if (!ext4_feature_set_ok(sb, 0)) { 2425 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2426 "unknown ROCOMPAT features"); 2427 return; 2428 } 2429 2430 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2431 /* don't clear list on RO mount w/ errors */ 2432 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2433 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2434 "clearing orphan list.\n"); 2435 es->s_last_orphan = 0; 2436 } 2437 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2438 return; 2439 } 2440 2441 if (s_flags & SB_RDONLY) { 2442 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2443 sb->s_flags &= ~SB_RDONLY; 2444 } 2445 #ifdef CONFIG_QUOTA 2446 /* Needed for iput() to work correctly and not trash data */ 2447 sb->s_flags |= SB_ACTIVE; 2448 2449 /* 2450 * Turn on quotas which were not enabled for read-only mounts if 2451 * filesystem has quota feature, so that they are updated correctly. 2452 */ 2453 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2454 int ret = ext4_enable_quotas(sb); 2455 2456 if (!ret) 2457 quota_update = 1; 2458 else 2459 ext4_msg(sb, KERN_ERR, 2460 "Cannot turn on quotas: error %d", ret); 2461 } 2462 2463 /* Turn on journaled quotas used for old sytle */ 2464 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2465 if (EXT4_SB(sb)->s_qf_names[i]) { 2466 int ret = ext4_quota_on_mount(sb, i); 2467 2468 if (!ret) 2469 quota_update = 1; 2470 else 2471 ext4_msg(sb, KERN_ERR, 2472 "Cannot turn on journaled " 2473 "quota: type %d: error %d", i, ret); 2474 } 2475 } 2476 #endif 2477 2478 while (es->s_last_orphan) { 2479 struct inode *inode; 2480 2481 /* 2482 * We may have encountered an error during cleanup; if 2483 * so, skip the rest. 2484 */ 2485 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2486 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2487 es->s_last_orphan = 0; 2488 break; 2489 } 2490 2491 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2492 if (IS_ERR(inode)) { 2493 es->s_last_orphan = 0; 2494 break; 2495 } 2496 2497 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2498 dquot_initialize(inode); 2499 if (inode->i_nlink) { 2500 if (test_opt(sb, DEBUG)) 2501 ext4_msg(sb, KERN_DEBUG, 2502 "%s: truncating inode %lu to %lld bytes", 2503 __func__, inode->i_ino, inode->i_size); 2504 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2505 inode->i_ino, inode->i_size); 2506 inode_lock(inode); 2507 truncate_inode_pages(inode->i_mapping, inode->i_size); 2508 ret = ext4_truncate(inode); 2509 if (ret) 2510 ext4_std_error(inode->i_sb, ret); 2511 inode_unlock(inode); 2512 nr_truncates++; 2513 } else { 2514 if (test_opt(sb, DEBUG)) 2515 ext4_msg(sb, KERN_DEBUG, 2516 "%s: deleting unreferenced inode %lu", 2517 __func__, inode->i_ino); 2518 jbd_debug(2, "deleting unreferenced inode %lu\n", 2519 inode->i_ino); 2520 nr_orphans++; 2521 } 2522 iput(inode); /* The delete magic happens here! */ 2523 } 2524 2525 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2526 2527 if (nr_orphans) 2528 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2529 PLURAL(nr_orphans)); 2530 if (nr_truncates) 2531 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2532 PLURAL(nr_truncates)); 2533 #ifdef CONFIG_QUOTA 2534 /* Turn off quotas if they were enabled for orphan cleanup */ 2535 if (quota_update) { 2536 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2537 if (sb_dqopt(sb)->files[i]) 2538 dquot_quota_off(sb, i); 2539 } 2540 } 2541 #endif 2542 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2543 } 2544 2545 /* 2546 * Maximal extent format file size. 2547 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2548 * extent format containers, within a sector_t, and within i_blocks 2549 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2550 * so that won't be a limiting factor. 2551 * 2552 * However there is other limiting factor. We do store extents in the form 2553 * of starting block and length, hence the resulting length of the extent 2554 * covering maximum file size must fit into on-disk format containers as 2555 * well. Given that length is always by 1 unit bigger than max unit (because 2556 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2557 * 2558 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2559 */ 2560 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2561 { 2562 loff_t res; 2563 loff_t upper_limit = MAX_LFS_FILESIZE; 2564 2565 /* small i_blocks in vfs inode? */ 2566 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2567 /* 2568 * CONFIG_LBDAF is not enabled implies the inode 2569 * i_block represent total blocks in 512 bytes 2570 * 32 == size of vfs inode i_blocks * 8 2571 */ 2572 upper_limit = (1LL << 32) - 1; 2573 2574 /* total blocks in file system block size */ 2575 upper_limit >>= (blkbits - 9); 2576 upper_limit <<= blkbits; 2577 } 2578 2579 /* 2580 * 32-bit extent-start container, ee_block. We lower the maxbytes 2581 * by one fs block, so ee_len can cover the extent of maximum file 2582 * size 2583 */ 2584 res = (1LL << 32) - 1; 2585 res <<= blkbits; 2586 2587 /* Sanity check against vm- & vfs- imposed limits */ 2588 if (res > upper_limit) 2589 res = upper_limit; 2590 2591 return res; 2592 } 2593 2594 /* 2595 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2596 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2597 * We need to be 1 filesystem block less than the 2^48 sector limit. 2598 */ 2599 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2600 { 2601 loff_t res = EXT4_NDIR_BLOCKS; 2602 int meta_blocks; 2603 loff_t upper_limit; 2604 /* This is calculated to be the largest file size for a dense, block 2605 * mapped file such that the file's total number of 512-byte sectors, 2606 * including data and all indirect blocks, does not exceed (2^48 - 1). 2607 * 2608 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2609 * number of 512-byte sectors of the file. 2610 */ 2611 2612 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2613 /* 2614 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2615 * the inode i_block field represents total file blocks in 2616 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2617 */ 2618 upper_limit = (1LL << 32) - 1; 2619 2620 /* total blocks in file system block size */ 2621 upper_limit >>= (bits - 9); 2622 2623 } else { 2624 /* 2625 * We use 48 bit ext4_inode i_blocks 2626 * With EXT4_HUGE_FILE_FL set the i_blocks 2627 * represent total number of blocks in 2628 * file system block size 2629 */ 2630 upper_limit = (1LL << 48) - 1; 2631 2632 } 2633 2634 /* indirect blocks */ 2635 meta_blocks = 1; 2636 /* double indirect blocks */ 2637 meta_blocks += 1 + (1LL << (bits-2)); 2638 /* tripple indirect blocks */ 2639 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2640 2641 upper_limit -= meta_blocks; 2642 upper_limit <<= bits; 2643 2644 res += 1LL << (bits-2); 2645 res += 1LL << (2*(bits-2)); 2646 res += 1LL << (3*(bits-2)); 2647 res <<= bits; 2648 if (res > upper_limit) 2649 res = upper_limit; 2650 2651 if (res > MAX_LFS_FILESIZE) 2652 res = MAX_LFS_FILESIZE; 2653 2654 return res; 2655 } 2656 2657 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2658 ext4_fsblk_t logical_sb_block, int nr) 2659 { 2660 struct ext4_sb_info *sbi = EXT4_SB(sb); 2661 ext4_group_t bg, first_meta_bg; 2662 int has_super = 0; 2663 2664 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2665 2666 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2667 return logical_sb_block + nr + 1; 2668 bg = sbi->s_desc_per_block * nr; 2669 if (ext4_bg_has_super(sb, bg)) 2670 has_super = 1; 2671 2672 /* 2673 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2674 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2675 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2676 * compensate. 2677 */ 2678 if (sb->s_blocksize == 1024 && nr == 0 && 2679 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2680 has_super++; 2681 2682 return (has_super + ext4_group_first_block_no(sb, bg)); 2683 } 2684 2685 /** 2686 * ext4_get_stripe_size: Get the stripe size. 2687 * @sbi: In memory super block info 2688 * 2689 * If we have specified it via mount option, then 2690 * use the mount option value. If the value specified at mount time is 2691 * greater than the blocks per group use the super block value. 2692 * If the super block value is greater than blocks per group return 0. 2693 * Allocator needs it be less than blocks per group. 2694 * 2695 */ 2696 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2697 { 2698 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2699 unsigned long stripe_width = 2700 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2701 int ret; 2702 2703 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2704 ret = sbi->s_stripe; 2705 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2706 ret = stripe_width; 2707 else if (stride && stride <= sbi->s_blocks_per_group) 2708 ret = stride; 2709 else 2710 ret = 0; 2711 2712 /* 2713 * If the stripe width is 1, this makes no sense and 2714 * we set it to 0 to turn off stripe handling code. 2715 */ 2716 if (ret <= 1) 2717 ret = 0; 2718 2719 return ret; 2720 } 2721 2722 /* 2723 * Check whether this filesystem can be mounted based on 2724 * the features present and the RDONLY/RDWR mount requested. 2725 * Returns 1 if this filesystem can be mounted as requested, 2726 * 0 if it cannot be. 2727 */ 2728 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2729 { 2730 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2731 ext4_msg(sb, KERN_ERR, 2732 "Couldn't mount because of " 2733 "unsupported optional features (%x)", 2734 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2735 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2736 return 0; 2737 } 2738 2739 if (readonly) 2740 return 1; 2741 2742 if (ext4_has_feature_readonly(sb)) { 2743 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2744 sb->s_flags |= SB_RDONLY; 2745 return 1; 2746 } 2747 2748 /* Check that feature set is OK for a read-write mount */ 2749 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2750 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2751 "unsupported optional features (%x)", 2752 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2753 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2754 return 0; 2755 } 2756 /* 2757 * Large file size enabled file system can only be mounted 2758 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2759 */ 2760 if (ext4_has_feature_huge_file(sb)) { 2761 if (sizeof(blkcnt_t) < sizeof(u64)) { 2762 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2763 "cannot be mounted RDWR without " 2764 "CONFIG_LBDAF"); 2765 return 0; 2766 } 2767 } 2768 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2769 ext4_msg(sb, KERN_ERR, 2770 "Can't support bigalloc feature without " 2771 "extents feature\n"); 2772 return 0; 2773 } 2774 2775 #ifndef CONFIG_QUOTA 2776 if (ext4_has_feature_quota(sb) && !readonly) { 2777 ext4_msg(sb, KERN_ERR, 2778 "Filesystem with quota feature cannot be mounted RDWR " 2779 "without CONFIG_QUOTA"); 2780 return 0; 2781 } 2782 if (ext4_has_feature_project(sb) && !readonly) { 2783 ext4_msg(sb, KERN_ERR, 2784 "Filesystem with project quota feature cannot be mounted RDWR " 2785 "without CONFIG_QUOTA"); 2786 return 0; 2787 } 2788 #endif /* CONFIG_QUOTA */ 2789 return 1; 2790 } 2791 2792 /* 2793 * This function is called once a day if we have errors logged 2794 * on the file system 2795 */ 2796 static void print_daily_error_info(struct timer_list *t) 2797 { 2798 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2799 struct super_block *sb = sbi->s_sb; 2800 struct ext4_super_block *es = sbi->s_es; 2801 2802 if (es->s_error_count) 2803 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2804 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2805 le32_to_cpu(es->s_error_count)); 2806 if (es->s_first_error_time) { 2807 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2808 sb->s_id, le32_to_cpu(es->s_first_error_time), 2809 (int) sizeof(es->s_first_error_func), 2810 es->s_first_error_func, 2811 le32_to_cpu(es->s_first_error_line)); 2812 if (es->s_first_error_ino) 2813 printk(KERN_CONT ": inode %u", 2814 le32_to_cpu(es->s_first_error_ino)); 2815 if (es->s_first_error_block) 2816 printk(KERN_CONT ": block %llu", (unsigned long long) 2817 le64_to_cpu(es->s_first_error_block)); 2818 printk(KERN_CONT "\n"); 2819 } 2820 if (es->s_last_error_time) { 2821 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2822 sb->s_id, le32_to_cpu(es->s_last_error_time), 2823 (int) sizeof(es->s_last_error_func), 2824 es->s_last_error_func, 2825 le32_to_cpu(es->s_last_error_line)); 2826 if (es->s_last_error_ino) 2827 printk(KERN_CONT ": inode %u", 2828 le32_to_cpu(es->s_last_error_ino)); 2829 if (es->s_last_error_block) 2830 printk(KERN_CONT ": block %llu", (unsigned long long) 2831 le64_to_cpu(es->s_last_error_block)); 2832 printk(KERN_CONT "\n"); 2833 } 2834 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2835 } 2836 2837 /* Find next suitable group and run ext4_init_inode_table */ 2838 static int ext4_run_li_request(struct ext4_li_request *elr) 2839 { 2840 struct ext4_group_desc *gdp = NULL; 2841 ext4_group_t group, ngroups; 2842 struct super_block *sb; 2843 unsigned long timeout = 0; 2844 int ret = 0; 2845 2846 sb = elr->lr_super; 2847 ngroups = EXT4_SB(sb)->s_groups_count; 2848 2849 for (group = elr->lr_next_group; group < ngroups; group++) { 2850 gdp = ext4_get_group_desc(sb, group, NULL); 2851 if (!gdp) { 2852 ret = 1; 2853 break; 2854 } 2855 2856 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2857 break; 2858 } 2859 2860 if (group >= ngroups) 2861 ret = 1; 2862 2863 if (!ret) { 2864 timeout = jiffies; 2865 ret = ext4_init_inode_table(sb, group, 2866 elr->lr_timeout ? 0 : 1); 2867 if (elr->lr_timeout == 0) { 2868 timeout = (jiffies - timeout) * 2869 elr->lr_sbi->s_li_wait_mult; 2870 elr->lr_timeout = timeout; 2871 } 2872 elr->lr_next_sched = jiffies + elr->lr_timeout; 2873 elr->lr_next_group = group + 1; 2874 } 2875 return ret; 2876 } 2877 2878 /* 2879 * Remove lr_request from the list_request and free the 2880 * request structure. Should be called with li_list_mtx held 2881 */ 2882 static void ext4_remove_li_request(struct ext4_li_request *elr) 2883 { 2884 struct ext4_sb_info *sbi; 2885 2886 if (!elr) 2887 return; 2888 2889 sbi = elr->lr_sbi; 2890 2891 list_del(&elr->lr_request); 2892 sbi->s_li_request = NULL; 2893 kfree(elr); 2894 } 2895 2896 static void ext4_unregister_li_request(struct super_block *sb) 2897 { 2898 mutex_lock(&ext4_li_mtx); 2899 if (!ext4_li_info) { 2900 mutex_unlock(&ext4_li_mtx); 2901 return; 2902 } 2903 2904 mutex_lock(&ext4_li_info->li_list_mtx); 2905 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2906 mutex_unlock(&ext4_li_info->li_list_mtx); 2907 mutex_unlock(&ext4_li_mtx); 2908 } 2909 2910 static struct task_struct *ext4_lazyinit_task; 2911 2912 /* 2913 * This is the function where ext4lazyinit thread lives. It walks 2914 * through the request list searching for next scheduled filesystem. 2915 * When such a fs is found, run the lazy initialization request 2916 * (ext4_rn_li_request) and keep track of the time spend in this 2917 * function. Based on that time we compute next schedule time of 2918 * the request. When walking through the list is complete, compute 2919 * next waking time and put itself into sleep. 2920 */ 2921 static int ext4_lazyinit_thread(void *arg) 2922 { 2923 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2924 struct list_head *pos, *n; 2925 struct ext4_li_request *elr; 2926 unsigned long next_wakeup, cur; 2927 2928 BUG_ON(NULL == eli); 2929 2930 cont_thread: 2931 while (true) { 2932 next_wakeup = MAX_JIFFY_OFFSET; 2933 2934 mutex_lock(&eli->li_list_mtx); 2935 if (list_empty(&eli->li_request_list)) { 2936 mutex_unlock(&eli->li_list_mtx); 2937 goto exit_thread; 2938 } 2939 list_for_each_safe(pos, n, &eli->li_request_list) { 2940 int err = 0; 2941 int progress = 0; 2942 elr = list_entry(pos, struct ext4_li_request, 2943 lr_request); 2944 2945 if (time_before(jiffies, elr->lr_next_sched)) { 2946 if (time_before(elr->lr_next_sched, next_wakeup)) 2947 next_wakeup = elr->lr_next_sched; 2948 continue; 2949 } 2950 if (down_read_trylock(&elr->lr_super->s_umount)) { 2951 if (sb_start_write_trylock(elr->lr_super)) { 2952 progress = 1; 2953 /* 2954 * We hold sb->s_umount, sb can not 2955 * be removed from the list, it is 2956 * now safe to drop li_list_mtx 2957 */ 2958 mutex_unlock(&eli->li_list_mtx); 2959 err = ext4_run_li_request(elr); 2960 sb_end_write(elr->lr_super); 2961 mutex_lock(&eli->li_list_mtx); 2962 n = pos->next; 2963 } 2964 up_read((&elr->lr_super->s_umount)); 2965 } 2966 /* error, remove the lazy_init job */ 2967 if (err) { 2968 ext4_remove_li_request(elr); 2969 continue; 2970 } 2971 if (!progress) { 2972 elr->lr_next_sched = jiffies + 2973 (prandom_u32() 2974 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2975 } 2976 if (time_before(elr->lr_next_sched, next_wakeup)) 2977 next_wakeup = elr->lr_next_sched; 2978 } 2979 mutex_unlock(&eli->li_list_mtx); 2980 2981 try_to_freeze(); 2982 2983 cur = jiffies; 2984 if ((time_after_eq(cur, next_wakeup)) || 2985 (MAX_JIFFY_OFFSET == next_wakeup)) { 2986 cond_resched(); 2987 continue; 2988 } 2989 2990 schedule_timeout_interruptible(next_wakeup - cur); 2991 2992 if (kthread_should_stop()) { 2993 ext4_clear_request_list(); 2994 goto exit_thread; 2995 } 2996 } 2997 2998 exit_thread: 2999 /* 3000 * It looks like the request list is empty, but we need 3001 * to check it under the li_list_mtx lock, to prevent any 3002 * additions into it, and of course we should lock ext4_li_mtx 3003 * to atomically free the list and ext4_li_info, because at 3004 * this point another ext4 filesystem could be registering 3005 * new one. 3006 */ 3007 mutex_lock(&ext4_li_mtx); 3008 mutex_lock(&eli->li_list_mtx); 3009 if (!list_empty(&eli->li_request_list)) { 3010 mutex_unlock(&eli->li_list_mtx); 3011 mutex_unlock(&ext4_li_mtx); 3012 goto cont_thread; 3013 } 3014 mutex_unlock(&eli->li_list_mtx); 3015 kfree(ext4_li_info); 3016 ext4_li_info = NULL; 3017 mutex_unlock(&ext4_li_mtx); 3018 3019 return 0; 3020 } 3021 3022 static void ext4_clear_request_list(void) 3023 { 3024 struct list_head *pos, *n; 3025 struct ext4_li_request *elr; 3026 3027 mutex_lock(&ext4_li_info->li_list_mtx); 3028 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3029 elr = list_entry(pos, struct ext4_li_request, 3030 lr_request); 3031 ext4_remove_li_request(elr); 3032 } 3033 mutex_unlock(&ext4_li_info->li_list_mtx); 3034 } 3035 3036 static int ext4_run_lazyinit_thread(void) 3037 { 3038 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3039 ext4_li_info, "ext4lazyinit"); 3040 if (IS_ERR(ext4_lazyinit_task)) { 3041 int err = PTR_ERR(ext4_lazyinit_task); 3042 ext4_clear_request_list(); 3043 kfree(ext4_li_info); 3044 ext4_li_info = NULL; 3045 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3046 "initialization thread\n", 3047 err); 3048 return err; 3049 } 3050 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3051 return 0; 3052 } 3053 3054 /* 3055 * Check whether it make sense to run itable init. thread or not. 3056 * If there is at least one uninitialized inode table, return 3057 * corresponding group number, else the loop goes through all 3058 * groups and return total number of groups. 3059 */ 3060 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3061 { 3062 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3063 struct ext4_group_desc *gdp = NULL; 3064 3065 for (group = 0; group < ngroups; group++) { 3066 gdp = ext4_get_group_desc(sb, group, NULL); 3067 if (!gdp) 3068 continue; 3069 3070 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3071 break; 3072 } 3073 3074 return group; 3075 } 3076 3077 static int ext4_li_info_new(void) 3078 { 3079 struct ext4_lazy_init *eli = NULL; 3080 3081 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3082 if (!eli) 3083 return -ENOMEM; 3084 3085 INIT_LIST_HEAD(&eli->li_request_list); 3086 mutex_init(&eli->li_list_mtx); 3087 3088 eli->li_state |= EXT4_LAZYINIT_QUIT; 3089 3090 ext4_li_info = eli; 3091 3092 return 0; 3093 } 3094 3095 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3096 ext4_group_t start) 3097 { 3098 struct ext4_sb_info *sbi = EXT4_SB(sb); 3099 struct ext4_li_request *elr; 3100 3101 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3102 if (!elr) 3103 return NULL; 3104 3105 elr->lr_super = sb; 3106 elr->lr_sbi = sbi; 3107 elr->lr_next_group = start; 3108 3109 /* 3110 * Randomize first schedule time of the request to 3111 * spread the inode table initialization requests 3112 * better. 3113 */ 3114 elr->lr_next_sched = jiffies + (prandom_u32() % 3115 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3116 return elr; 3117 } 3118 3119 int ext4_register_li_request(struct super_block *sb, 3120 ext4_group_t first_not_zeroed) 3121 { 3122 struct ext4_sb_info *sbi = EXT4_SB(sb); 3123 struct ext4_li_request *elr = NULL; 3124 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3125 int ret = 0; 3126 3127 mutex_lock(&ext4_li_mtx); 3128 if (sbi->s_li_request != NULL) { 3129 /* 3130 * Reset timeout so it can be computed again, because 3131 * s_li_wait_mult might have changed. 3132 */ 3133 sbi->s_li_request->lr_timeout = 0; 3134 goto out; 3135 } 3136 3137 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3138 !test_opt(sb, INIT_INODE_TABLE)) 3139 goto out; 3140 3141 elr = ext4_li_request_new(sb, first_not_zeroed); 3142 if (!elr) { 3143 ret = -ENOMEM; 3144 goto out; 3145 } 3146 3147 if (NULL == ext4_li_info) { 3148 ret = ext4_li_info_new(); 3149 if (ret) 3150 goto out; 3151 } 3152 3153 mutex_lock(&ext4_li_info->li_list_mtx); 3154 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3155 mutex_unlock(&ext4_li_info->li_list_mtx); 3156 3157 sbi->s_li_request = elr; 3158 /* 3159 * set elr to NULL here since it has been inserted to 3160 * the request_list and the removal and free of it is 3161 * handled by ext4_clear_request_list from now on. 3162 */ 3163 elr = NULL; 3164 3165 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3166 ret = ext4_run_lazyinit_thread(); 3167 if (ret) 3168 goto out; 3169 } 3170 out: 3171 mutex_unlock(&ext4_li_mtx); 3172 if (ret) 3173 kfree(elr); 3174 return ret; 3175 } 3176 3177 /* 3178 * We do not need to lock anything since this is called on 3179 * module unload. 3180 */ 3181 static void ext4_destroy_lazyinit_thread(void) 3182 { 3183 /* 3184 * If thread exited earlier 3185 * there's nothing to be done. 3186 */ 3187 if (!ext4_li_info || !ext4_lazyinit_task) 3188 return; 3189 3190 kthread_stop(ext4_lazyinit_task); 3191 } 3192 3193 static int set_journal_csum_feature_set(struct super_block *sb) 3194 { 3195 int ret = 1; 3196 int compat, incompat; 3197 struct ext4_sb_info *sbi = EXT4_SB(sb); 3198 3199 if (ext4_has_metadata_csum(sb)) { 3200 /* journal checksum v3 */ 3201 compat = 0; 3202 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3203 } else { 3204 /* journal checksum v1 */ 3205 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3206 incompat = 0; 3207 } 3208 3209 jbd2_journal_clear_features(sbi->s_journal, 3210 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3211 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3212 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3213 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3214 ret = jbd2_journal_set_features(sbi->s_journal, 3215 compat, 0, 3216 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3217 incompat); 3218 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3219 ret = jbd2_journal_set_features(sbi->s_journal, 3220 compat, 0, 3221 incompat); 3222 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3223 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3224 } else { 3225 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3226 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3227 } 3228 3229 return ret; 3230 } 3231 3232 /* 3233 * Note: calculating the overhead so we can be compatible with 3234 * historical BSD practice is quite difficult in the face of 3235 * clusters/bigalloc. This is because multiple metadata blocks from 3236 * different block group can end up in the same allocation cluster. 3237 * Calculating the exact overhead in the face of clustered allocation 3238 * requires either O(all block bitmaps) in memory or O(number of block 3239 * groups**2) in time. We will still calculate the superblock for 3240 * older file systems --- and if we come across with a bigalloc file 3241 * system with zero in s_overhead_clusters the estimate will be close to 3242 * correct especially for very large cluster sizes --- but for newer 3243 * file systems, it's better to calculate this figure once at mkfs 3244 * time, and store it in the superblock. If the superblock value is 3245 * present (even for non-bigalloc file systems), we will use it. 3246 */ 3247 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3248 char *buf) 3249 { 3250 struct ext4_sb_info *sbi = EXT4_SB(sb); 3251 struct ext4_group_desc *gdp; 3252 ext4_fsblk_t first_block, last_block, b; 3253 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3254 int s, j, count = 0; 3255 3256 if (!ext4_has_feature_bigalloc(sb)) 3257 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3258 sbi->s_itb_per_group + 2); 3259 3260 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3261 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3262 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3263 for (i = 0; i < ngroups; i++) { 3264 gdp = ext4_get_group_desc(sb, i, NULL); 3265 b = ext4_block_bitmap(sb, gdp); 3266 if (b >= first_block && b <= last_block) { 3267 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3268 count++; 3269 } 3270 b = ext4_inode_bitmap(sb, gdp); 3271 if (b >= first_block && b <= last_block) { 3272 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3273 count++; 3274 } 3275 b = ext4_inode_table(sb, gdp); 3276 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3277 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3278 int c = EXT4_B2C(sbi, b - first_block); 3279 ext4_set_bit(c, buf); 3280 count++; 3281 } 3282 if (i != grp) 3283 continue; 3284 s = 0; 3285 if (ext4_bg_has_super(sb, grp)) { 3286 ext4_set_bit(s++, buf); 3287 count++; 3288 } 3289 j = ext4_bg_num_gdb(sb, grp); 3290 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3291 ext4_error(sb, "Invalid number of block group " 3292 "descriptor blocks: %d", j); 3293 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3294 } 3295 count += j; 3296 for (; j > 0; j--) 3297 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3298 } 3299 if (!count) 3300 return 0; 3301 return EXT4_CLUSTERS_PER_GROUP(sb) - 3302 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3303 } 3304 3305 /* 3306 * Compute the overhead and stash it in sbi->s_overhead 3307 */ 3308 int ext4_calculate_overhead(struct super_block *sb) 3309 { 3310 struct ext4_sb_info *sbi = EXT4_SB(sb); 3311 struct ext4_super_block *es = sbi->s_es; 3312 struct inode *j_inode; 3313 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3314 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3315 ext4_fsblk_t overhead = 0; 3316 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3317 3318 if (!buf) 3319 return -ENOMEM; 3320 3321 /* 3322 * Compute the overhead (FS structures). This is constant 3323 * for a given filesystem unless the number of block groups 3324 * changes so we cache the previous value until it does. 3325 */ 3326 3327 /* 3328 * All of the blocks before first_data_block are overhead 3329 */ 3330 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3331 3332 /* 3333 * Add the overhead found in each block group 3334 */ 3335 for (i = 0; i < ngroups; i++) { 3336 int blks; 3337 3338 blks = count_overhead(sb, i, buf); 3339 overhead += blks; 3340 if (blks) 3341 memset(buf, 0, PAGE_SIZE); 3342 cond_resched(); 3343 } 3344 3345 /* 3346 * Add the internal journal blocks whether the journal has been 3347 * loaded or not 3348 */ 3349 if (sbi->s_journal && !sbi->journal_bdev) 3350 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3351 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3352 j_inode = ext4_get_journal_inode(sb, j_inum); 3353 if (j_inode) { 3354 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3355 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3356 iput(j_inode); 3357 } else { 3358 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3359 } 3360 } 3361 sbi->s_overhead = overhead; 3362 smp_wmb(); 3363 free_page((unsigned long) buf); 3364 return 0; 3365 } 3366 3367 static void ext4_set_resv_clusters(struct super_block *sb) 3368 { 3369 ext4_fsblk_t resv_clusters; 3370 struct ext4_sb_info *sbi = EXT4_SB(sb); 3371 3372 /* 3373 * There's no need to reserve anything when we aren't using extents. 3374 * The space estimates are exact, there are no unwritten extents, 3375 * hole punching doesn't need new metadata... This is needed especially 3376 * to keep ext2/3 backward compatibility. 3377 */ 3378 if (!ext4_has_feature_extents(sb)) 3379 return; 3380 /* 3381 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3382 * This should cover the situations where we can not afford to run 3383 * out of space like for example punch hole, or converting 3384 * unwritten extents in delalloc path. In most cases such 3385 * allocation would require 1, or 2 blocks, higher numbers are 3386 * very rare. 3387 */ 3388 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3389 sbi->s_cluster_bits); 3390 3391 do_div(resv_clusters, 50); 3392 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3393 3394 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3395 } 3396 3397 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3398 { 3399 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3400 char *orig_data = kstrdup(data, GFP_KERNEL); 3401 struct buffer_head *bh; 3402 struct ext4_super_block *es = NULL; 3403 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3404 ext4_fsblk_t block; 3405 ext4_fsblk_t sb_block = get_sb_block(&data); 3406 ext4_fsblk_t logical_sb_block; 3407 unsigned long offset = 0; 3408 unsigned long journal_devnum = 0; 3409 unsigned long def_mount_opts; 3410 struct inode *root; 3411 const char *descr; 3412 int ret = -ENOMEM; 3413 int blocksize, clustersize; 3414 unsigned int db_count; 3415 unsigned int i; 3416 int needs_recovery, has_huge_files, has_bigalloc; 3417 __u64 blocks_count; 3418 int err = 0; 3419 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3420 ext4_group_t first_not_zeroed; 3421 3422 if ((data && !orig_data) || !sbi) 3423 goto out_free_base; 3424 3425 sbi->s_daxdev = dax_dev; 3426 sbi->s_blockgroup_lock = 3427 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3428 if (!sbi->s_blockgroup_lock) 3429 goto out_free_base; 3430 3431 sb->s_fs_info = sbi; 3432 sbi->s_sb = sb; 3433 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3434 sbi->s_sb_block = sb_block; 3435 if (sb->s_bdev->bd_part) 3436 sbi->s_sectors_written_start = 3437 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3438 3439 /* Cleanup superblock name */ 3440 strreplace(sb->s_id, '/', '!'); 3441 3442 /* -EINVAL is default */ 3443 ret = -EINVAL; 3444 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3445 if (!blocksize) { 3446 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3447 goto out_fail; 3448 } 3449 3450 /* 3451 * The ext4 superblock will not be buffer aligned for other than 1kB 3452 * block sizes. We need to calculate the offset from buffer start. 3453 */ 3454 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3455 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3456 offset = do_div(logical_sb_block, blocksize); 3457 } else { 3458 logical_sb_block = sb_block; 3459 } 3460 3461 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3462 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3463 goto out_fail; 3464 } 3465 /* 3466 * Note: s_es must be initialized as soon as possible because 3467 * some ext4 macro-instructions depend on its value 3468 */ 3469 es = (struct ext4_super_block *) (bh->b_data + offset); 3470 sbi->s_es = es; 3471 sb->s_magic = le16_to_cpu(es->s_magic); 3472 if (sb->s_magic != EXT4_SUPER_MAGIC) 3473 goto cantfind_ext4; 3474 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3475 3476 /* Warn if metadata_csum and gdt_csum are both set. */ 3477 if (ext4_has_feature_metadata_csum(sb) && 3478 ext4_has_feature_gdt_csum(sb)) 3479 ext4_warning(sb, "metadata_csum and uninit_bg are " 3480 "redundant flags; please run fsck."); 3481 3482 /* Check for a known checksum algorithm */ 3483 if (!ext4_verify_csum_type(sb, es)) { 3484 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3485 "unknown checksum algorithm."); 3486 silent = 1; 3487 goto cantfind_ext4; 3488 } 3489 3490 /* Load the checksum driver */ 3491 if (ext4_has_feature_metadata_csum(sb) || 3492 ext4_has_feature_ea_inode(sb)) { 3493 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3494 if (IS_ERR(sbi->s_chksum_driver)) { 3495 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3496 ret = PTR_ERR(sbi->s_chksum_driver); 3497 sbi->s_chksum_driver = NULL; 3498 goto failed_mount; 3499 } 3500 } 3501 3502 /* Check superblock checksum */ 3503 if (!ext4_superblock_csum_verify(sb, es)) { 3504 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3505 "invalid superblock checksum. Run e2fsck?"); 3506 silent = 1; 3507 ret = -EFSBADCRC; 3508 goto cantfind_ext4; 3509 } 3510 3511 /* Precompute checksum seed for all metadata */ 3512 if (ext4_has_feature_csum_seed(sb)) 3513 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3514 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3515 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3516 sizeof(es->s_uuid)); 3517 3518 /* Set defaults before we parse the mount options */ 3519 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3520 set_opt(sb, INIT_INODE_TABLE); 3521 if (def_mount_opts & EXT4_DEFM_DEBUG) 3522 set_opt(sb, DEBUG); 3523 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3524 set_opt(sb, GRPID); 3525 if (def_mount_opts & EXT4_DEFM_UID16) 3526 set_opt(sb, NO_UID32); 3527 /* xattr user namespace & acls are now defaulted on */ 3528 set_opt(sb, XATTR_USER); 3529 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3530 set_opt(sb, POSIX_ACL); 3531 #endif 3532 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3533 if (ext4_has_metadata_csum(sb)) 3534 set_opt(sb, JOURNAL_CHECKSUM); 3535 3536 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3537 set_opt(sb, JOURNAL_DATA); 3538 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3539 set_opt(sb, ORDERED_DATA); 3540 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3541 set_opt(sb, WRITEBACK_DATA); 3542 3543 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3544 set_opt(sb, ERRORS_PANIC); 3545 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3546 set_opt(sb, ERRORS_CONT); 3547 else 3548 set_opt(sb, ERRORS_RO); 3549 /* block_validity enabled by default; disable with noblock_validity */ 3550 set_opt(sb, BLOCK_VALIDITY); 3551 if (def_mount_opts & EXT4_DEFM_DISCARD) 3552 set_opt(sb, DISCARD); 3553 3554 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3555 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3556 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3557 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3558 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3559 3560 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3561 set_opt(sb, BARRIER); 3562 3563 /* 3564 * enable delayed allocation by default 3565 * Use -o nodelalloc to turn it off 3566 */ 3567 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3568 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3569 set_opt(sb, DELALLOC); 3570 3571 /* 3572 * set default s_li_wait_mult for lazyinit, for the case there is 3573 * no mount option specified. 3574 */ 3575 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3576 3577 if (sbi->s_es->s_mount_opts[0]) { 3578 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3579 sizeof(sbi->s_es->s_mount_opts), 3580 GFP_KERNEL); 3581 if (!s_mount_opts) 3582 goto failed_mount; 3583 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3584 &journal_ioprio, 0)) { 3585 ext4_msg(sb, KERN_WARNING, 3586 "failed to parse options in superblock: %s", 3587 s_mount_opts); 3588 } 3589 kfree(s_mount_opts); 3590 } 3591 sbi->s_def_mount_opt = sbi->s_mount_opt; 3592 if (!parse_options((char *) data, sb, &journal_devnum, 3593 &journal_ioprio, 0)) 3594 goto failed_mount; 3595 3596 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3597 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3598 "with data=journal disables delayed " 3599 "allocation and O_DIRECT support!\n"); 3600 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3601 ext4_msg(sb, KERN_ERR, "can't mount with " 3602 "both data=journal and delalloc"); 3603 goto failed_mount; 3604 } 3605 if (test_opt(sb, DIOREAD_NOLOCK)) { 3606 ext4_msg(sb, KERN_ERR, "can't mount with " 3607 "both data=journal and dioread_nolock"); 3608 goto failed_mount; 3609 } 3610 if (test_opt(sb, DAX)) { 3611 ext4_msg(sb, KERN_ERR, "can't mount with " 3612 "both data=journal and dax"); 3613 goto failed_mount; 3614 } 3615 if (ext4_has_feature_encrypt(sb)) { 3616 ext4_msg(sb, KERN_WARNING, 3617 "encrypted files will use data=ordered " 3618 "instead of data journaling mode"); 3619 } 3620 if (test_opt(sb, DELALLOC)) 3621 clear_opt(sb, DELALLOC); 3622 } else { 3623 sb->s_iflags |= SB_I_CGROUPWB; 3624 } 3625 3626 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3627 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3628 3629 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3630 (ext4_has_compat_features(sb) || 3631 ext4_has_ro_compat_features(sb) || 3632 ext4_has_incompat_features(sb))) 3633 ext4_msg(sb, KERN_WARNING, 3634 "feature flags set on rev 0 fs, " 3635 "running e2fsck is recommended"); 3636 3637 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3638 set_opt2(sb, HURD_COMPAT); 3639 if (ext4_has_feature_64bit(sb)) { 3640 ext4_msg(sb, KERN_ERR, 3641 "The Hurd can't support 64-bit file systems"); 3642 goto failed_mount; 3643 } 3644 3645 /* 3646 * ea_inode feature uses l_i_version field which is not 3647 * available in HURD_COMPAT mode. 3648 */ 3649 if (ext4_has_feature_ea_inode(sb)) { 3650 ext4_msg(sb, KERN_ERR, 3651 "ea_inode feature is not supported for Hurd"); 3652 goto failed_mount; 3653 } 3654 } 3655 3656 if (IS_EXT2_SB(sb)) { 3657 if (ext2_feature_set_ok(sb)) 3658 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3659 "using the ext4 subsystem"); 3660 else { 3661 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3662 "to feature incompatibilities"); 3663 goto failed_mount; 3664 } 3665 } 3666 3667 if (IS_EXT3_SB(sb)) { 3668 if (ext3_feature_set_ok(sb)) 3669 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3670 "using the ext4 subsystem"); 3671 else { 3672 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3673 "to feature incompatibilities"); 3674 goto failed_mount; 3675 } 3676 } 3677 3678 /* 3679 * Check feature flags regardless of the revision level, since we 3680 * previously didn't change the revision level when setting the flags, 3681 * so there is a chance incompat flags are set on a rev 0 filesystem. 3682 */ 3683 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3684 goto failed_mount; 3685 3686 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3687 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3688 blocksize > EXT4_MAX_BLOCK_SIZE) { 3689 ext4_msg(sb, KERN_ERR, 3690 "Unsupported filesystem blocksize %d (%d log_block_size)", 3691 blocksize, le32_to_cpu(es->s_log_block_size)); 3692 goto failed_mount; 3693 } 3694 if (le32_to_cpu(es->s_log_block_size) > 3695 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3696 ext4_msg(sb, KERN_ERR, 3697 "Invalid log block size: %u", 3698 le32_to_cpu(es->s_log_block_size)); 3699 goto failed_mount; 3700 } 3701 3702 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3703 ext4_msg(sb, KERN_ERR, 3704 "Number of reserved GDT blocks insanely large: %d", 3705 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3706 goto failed_mount; 3707 } 3708 3709 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3710 if (ext4_has_feature_inline_data(sb)) { 3711 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3712 " that may contain inline data"); 3713 goto failed_mount; 3714 } 3715 err = bdev_dax_supported(sb, blocksize); 3716 if (err) 3717 goto failed_mount; 3718 } 3719 3720 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3721 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3722 es->s_encryption_level); 3723 goto failed_mount; 3724 } 3725 3726 if (sb->s_blocksize != blocksize) { 3727 /* Validate the filesystem blocksize */ 3728 if (!sb_set_blocksize(sb, blocksize)) { 3729 ext4_msg(sb, KERN_ERR, "bad block size %d", 3730 blocksize); 3731 goto failed_mount; 3732 } 3733 3734 brelse(bh); 3735 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3736 offset = do_div(logical_sb_block, blocksize); 3737 bh = sb_bread_unmovable(sb, logical_sb_block); 3738 if (!bh) { 3739 ext4_msg(sb, KERN_ERR, 3740 "Can't read superblock on 2nd try"); 3741 goto failed_mount; 3742 } 3743 es = (struct ext4_super_block *)(bh->b_data + offset); 3744 sbi->s_es = es; 3745 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3746 ext4_msg(sb, KERN_ERR, 3747 "Magic mismatch, very weird!"); 3748 goto failed_mount; 3749 } 3750 } 3751 3752 has_huge_files = ext4_has_feature_huge_file(sb); 3753 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3754 has_huge_files); 3755 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3756 3757 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3758 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3759 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3760 } else { 3761 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3762 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3763 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3764 (!is_power_of_2(sbi->s_inode_size)) || 3765 (sbi->s_inode_size > blocksize)) { 3766 ext4_msg(sb, KERN_ERR, 3767 "unsupported inode size: %d", 3768 sbi->s_inode_size); 3769 goto failed_mount; 3770 } 3771 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3772 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3773 } 3774 3775 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3776 if (ext4_has_feature_64bit(sb)) { 3777 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3778 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3779 !is_power_of_2(sbi->s_desc_size)) { 3780 ext4_msg(sb, KERN_ERR, 3781 "unsupported descriptor size %lu", 3782 sbi->s_desc_size); 3783 goto failed_mount; 3784 } 3785 } else 3786 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3787 3788 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3789 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3790 3791 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3792 if (sbi->s_inodes_per_block == 0) 3793 goto cantfind_ext4; 3794 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3795 sbi->s_inodes_per_group > blocksize * 8) { 3796 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3797 sbi->s_blocks_per_group); 3798 goto failed_mount; 3799 } 3800 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3801 sbi->s_inodes_per_block; 3802 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3803 sbi->s_sbh = bh; 3804 sbi->s_mount_state = le16_to_cpu(es->s_state); 3805 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3806 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3807 3808 for (i = 0; i < 4; i++) 3809 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3810 sbi->s_def_hash_version = es->s_def_hash_version; 3811 if (ext4_has_feature_dir_index(sb)) { 3812 i = le32_to_cpu(es->s_flags); 3813 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3814 sbi->s_hash_unsigned = 3; 3815 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3816 #ifdef __CHAR_UNSIGNED__ 3817 if (!sb_rdonly(sb)) 3818 es->s_flags |= 3819 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3820 sbi->s_hash_unsigned = 3; 3821 #else 3822 if (!sb_rdonly(sb)) 3823 es->s_flags |= 3824 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3825 #endif 3826 } 3827 } 3828 3829 /* Handle clustersize */ 3830 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3831 has_bigalloc = ext4_has_feature_bigalloc(sb); 3832 if (has_bigalloc) { 3833 if (clustersize < blocksize) { 3834 ext4_msg(sb, KERN_ERR, 3835 "cluster size (%d) smaller than " 3836 "block size (%d)", clustersize, blocksize); 3837 goto failed_mount; 3838 } 3839 if (le32_to_cpu(es->s_log_cluster_size) > 3840 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3841 ext4_msg(sb, KERN_ERR, 3842 "Invalid log cluster size: %u", 3843 le32_to_cpu(es->s_log_cluster_size)); 3844 goto failed_mount; 3845 } 3846 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3847 le32_to_cpu(es->s_log_block_size); 3848 sbi->s_clusters_per_group = 3849 le32_to_cpu(es->s_clusters_per_group); 3850 if (sbi->s_clusters_per_group > blocksize * 8) { 3851 ext4_msg(sb, KERN_ERR, 3852 "#clusters per group too big: %lu", 3853 sbi->s_clusters_per_group); 3854 goto failed_mount; 3855 } 3856 if (sbi->s_blocks_per_group != 3857 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3858 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3859 "clusters per group (%lu) inconsistent", 3860 sbi->s_blocks_per_group, 3861 sbi->s_clusters_per_group); 3862 goto failed_mount; 3863 } 3864 } else { 3865 if (clustersize != blocksize) { 3866 ext4_warning(sb, "fragment/cluster size (%d) != " 3867 "block size (%d)", clustersize, 3868 blocksize); 3869 clustersize = blocksize; 3870 } 3871 if (sbi->s_blocks_per_group > blocksize * 8) { 3872 ext4_msg(sb, KERN_ERR, 3873 "#blocks per group too big: %lu", 3874 sbi->s_blocks_per_group); 3875 goto failed_mount; 3876 } 3877 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3878 sbi->s_cluster_bits = 0; 3879 } 3880 sbi->s_cluster_ratio = clustersize / blocksize; 3881 3882 /* Do we have standard group size of clustersize * 8 blocks ? */ 3883 if (sbi->s_blocks_per_group == clustersize << 3) 3884 set_opt2(sb, STD_GROUP_SIZE); 3885 3886 /* 3887 * Test whether we have more sectors than will fit in sector_t, 3888 * and whether the max offset is addressable by the page cache. 3889 */ 3890 err = generic_check_addressable(sb->s_blocksize_bits, 3891 ext4_blocks_count(es)); 3892 if (err) { 3893 ext4_msg(sb, KERN_ERR, "filesystem" 3894 " too large to mount safely on this system"); 3895 if (sizeof(sector_t) < 8) 3896 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3897 goto failed_mount; 3898 } 3899 3900 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3901 goto cantfind_ext4; 3902 3903 /* check blocks count against device size */ 3904 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3905 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3906 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3907 "exceeds size of device (%llu blocks)", 3908 ext4_blocks_count(es), blocks_count); 3909 goto failed_mount; 3910 } 3911 3912 /* 3913 * It makes no sense for the first data block to be beyond the end 3914 * of the filesystem. 3915 */ 3916 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3917 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3918 "block %u is beyond end of filesystem (%llu)", 3919 le32_to_cpu(es->s_first_data_block), 3920 ext4_blocks_count(es)); 3921 goto failed_mount; 3922 } 3923 blocks_count = (ext4_blocks_count(es) - 3924 le32_to_cpu(es->s_first_data_block) + 3925 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3926 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3927 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3928 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3929 "(block count %llu, first data block %u, " 3930 "blocks per group %lu)", sbi->s_groups_count, 3931 ext4_blocks_count(es), 3932 le32_to_cpu(es->s_first_data_block), 3933 EXT4_BLOCKS_PER_GROUP(sb)); 3934 goto failed_mount; 3935 } 3936 sbi->s_groups_count = blocks_count; 3937 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3938 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3939 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3940 EXT4_DESC_PER_BLOCK(sb); 3941 if (ext4_has_feature_meta_bg(sb)) { 3942 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3943 ext4_msg(sb, KERN_WARNING, 3944 "first meta block group too large: %u " 3945 "(group descriptor block count %u)", 3946 le32_to_cpu(es->s_first_meta_bg), db_count); 3947 goto failed_mount; 3948 } 3949 } 3950 sbi->s_group_desc = kvmalloc(db_count * 3951 sizeof(struct buffer_head *), 3952 GFP_KERNEL); 3953 if (sbi->s_group_desc == NULL) { 3954 ext4_msg(sb, KERN_ERR, "not enough memory"); 3955 ret = -ENOMEM; 3956 goto failed_mount; 3957 } 3958 3959 bgl_lock_init(sbi->s_blockgroup_lock); 3960 3961 /* Pre-read the descriptors into the buffer cache */ 3962 for (i = 0; i < db_count; i++) { 3963 block = descriptor_loc(sb, logical_sb_block, i); 3964 sb_breadahead(sb, block); 3965 } 3966 3967 for (i = 0; i < db_count; i++) { 3968 block = descriptor_loc(sb, logical_sb_block, i); 3969 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3970 if (!sbi->s_group_desc[i]) { 3971 ext4_msg(sb, KERN_ERR, 3972 "can't read group descriptor %d", i); 3973 db_count = i; 3974 goto failed_mount2; 3975 } 3976 } 3977 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3978 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3979 ret = -EFSCORRUPTED; 3980 goto failed_mount2; 3981 } 3982 3983 sbi->s_gdb_count = db_count; 3984 3985 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 3986 3987 /* Register extent status tree shrinker */ 3988 if (ext4_es_register_shrinker(sbi)) 3989 goto failed_mount3; 3990 3991 sbi->s_stripe = ext4_get_stripe_size(sbi); 3992 sbi->s_extent_max_zeroout_kb = 32; 3993 3994 /* 3995 * set up enough so that it can read an inode 3996 */ 3997 sb->s_op = &ext4_sops; 3998 sb->s_export_op = &ext4_export_ops; 3999 sb->s_xattr = ext4_xattr_handlers; 4000 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4001 sb->s_cop = &ext4_cryptops; 4002 #endif 4003 #ifdef CONFIG_QUOTA 4004 sb->dq_op = &ext4_quota_operations; 4005 if (ext4_has_feature_quota(sb)) 4006 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4007 else 4008 sb->s_qcop = &ext4_qctl_operations; 4009 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4010 #endif 4011 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4012 4013 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4014 mutex_init(&sbi->s_orphan_lock); 4015 4016 sb->s_root = NULL; 4017 4018 needs_recovery = (es->s_last_orphan != 0 || 4019 ext4_has_feature_journal_needs_recovery(sb)); 4020 4021 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4022 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4023 goto failed_mount3a; 4024 4025 /* 4026 * The first inode we look at is the journal inode. Don't try 4027 * root first: it may be modified in the journal! 4028 */ 4029 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4030 err = ext4_load_journal(sb, es, journal_devnum); 4031 if (err) 4032 goto failed_mount3a; 4033 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4034 ext4_has_feature_journal_needs_recovery(sb)) { 4035 ext4_msg(sb, KERN_ERR, "required journal recovery " 4036 "suppressed and not mounted read-only"); 4037 goto failed_mount_wq; 4038 } else { 4039 /* Nojournal mode, all journal mount options are illegal */ 4040 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4041 ext4_msg(sb, KERN_ERR, "can't mount with " 4042 "journal_checksum, fs mounted w/o journal"); 4043 goto failed_mount_wq; 4044 } 4045 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4046 ext4_msg(sb, KERN_ERR, "can't mount with " 4047 "journal_async_commit, fs mounted w/o journal"); 4048 goto failed_mount_wq; 4049 } 4050 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4051 ext4_msg(sb, KERN_ERR, "can't mount with " 4052 "commit=%lu, fs mounted w/o journal", 4053 sbi->s_commit_interval / HZ); 4054 goto failed_mount_wq; 4055 } 4056 if (EXT4_MOUNT_DATA_FLAGS & 4057 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4058 ext4_msg(sb, KERN_ERR, "can't mount with " 4059 "data=, fs mounted w/o journal"); 4060 goto failed_mount_wq; 4061 } 4062 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4063 clear_opt(sb, JOURNAL_CHECKSUM); 4064 clear_opt(sb, DATA_FLAGS); 4065 sbi->s_journal = NULL; 4066 needs_recovery = 0; 4067 goto no_journal; 4068 } 4069 4070 if (ext4_has_feature_64bit(sb) && 4071 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4072 JBD2_FEATURE_INCOMPAT_64BIT)) { 4073 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4074 goto failed_mount_wq; 4075 } 4076 4077 if (!set_journal_csum_feature_set(sb)) { 4078 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4079 "feature set"); 4080 goto failed_mount_wq; 4081 } 4082 4083 /* We have now updated the journal if required, so we can 4084 * validate the data journaling mode. */ 4085 switch (test_opt(sb, DATA_FLAGS)) { 4086 case 0: 4087 /* No mode set, assume a default based on the journal 4088 * capabilities: ORDERED_DATA if the journal can 4089 * cope, else JOURNAL_DATA 4090 */ 4091 if (jbd2_journal_check_available_features 4092 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4093 set_opt(sb, ORDERED_DATA); 4094 else 4095 set_opt(sb, JOURNAL_DATA); 4096 break; 4097 4098 case EXT4_MOUNT_ORDERED_DATA: 4099 case EXT4_MOUNT_WRITEBACK_DATA: 4100 if (!jbd2_journal_check_available_features 4101 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4102 ext4_msg(sb, KERN_ERR, "Journal does not support " 4103 "requested data journaling mode"); 4104 goto failed_mount_wq; 4105 } 4106 default: 4107 break; 4108 } 4109 4110 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4111 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4112 ext4_msg(sb, KERN_ERR, "can't mount with " 4113 "journal_async_commit in data=ordered mode"); 4114 goto failed_mount_wq; 4115 } 4116 4117 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4118 4119 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4120 4121 no_journal: 4122 if (!test_opt(sb, NO_MBCACHE)) { 4123 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4124 if (!sbi->s_ea_block_cache) { 4125 ext4_msg(sb, KERN_ERR, 4126 "Failed to create ea_block_cache"); 4127 goto failed_mount_wq; 4128 } 4129 4130 if (ext4_has_feature_ea_inode(sb)) { 4131 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4132 if (!sbi->s_ea_inode_cache) { 4133 ext4_msg(sb, KERN_ERR, 4134 "Failed to create ea_inode_cache"); 4135 goto failed_mount_wq; 4136 } 4137 } 4138 } 4139 4140 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4141 (blocksize != PAGE_SIZE)) { 4142 ext4_msg(sb, KERN_ERR, 4143 "Unsupported blocksize for fs encryption"); 4144 goto failed_mount_wq; 4145 } 4146 4147 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4148 !ext4_has_feature_encrypt(sb)) { 4149 ext4_set_feature_encrypt(sb); 4150 ext4_commit_super(sb, 1); 4151 } 4152 4153 /* 4154 * Get the # of file system overhead blocks from the 4155 * superblock if present. 4156 */ 4157 if (es->s_overhead_clusters) 4158 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4159 else { 4160 err = ext4_calculate_overhead(sb); 4161 if (err) 4162 goto failed_mount_wq; 4163 } 4164 4165 /* 4166 * The maximum number of concurrent works can be high and 4167 * concurrency isn't really necessary. Limit it to 1. 4168 */ 4169 EXT4_SB(sb)->rsv_conversion_wq = 4170 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4171 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4172 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4173 ret = -ENOMEM; 4174 goto failed_mount4; 4175 } 4176 4177 /* 4178 * The jbd2_journal_load will have done any necessary log recovery, 4179 * so we can safely mount the rest of the filesystem now. 4180 */ 4181 4182 root = ext4_iget(sb, EXT4_ROOT_INO); 4183 if (IS_ERR(root)) { 4184 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4185 ret = PTR_ERR(root); 4186 root = NULL; 4187 goto failed_mount4; 4188 } 4189 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4190 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4191 iput(root); 4192 goto failed_mount4; 4193 } 4194 sb->s_root = d_make_root(root); 4195 if (!sb->s_root) { 4196 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4197 ret = -ENOMEM; 4198 goto failed_mount4; 4199 } 4200 4201 if (ext4_setup_super(sb, es, sb_rdonly(sb))) 4202 sb->s_flags |= SB_RDONLY; 4203 4204 /* determine the minimum size of new large inodes, if present */ 4205 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4206 sbi->s_want_extra_isize == 0) { 4207 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4208 EXT4_GOOD_OLD_INODE_SIZE; 4209 if (ext4_has_feature_extra_isize(sb)) { 4210 if (sbi->s_want_extra_isize < 4211 le16_to_cpu(es->s_want_extra_isize)) 4212 sbi->s_want_extra_isize = 4213 le16_to_cpu(es->s_want_extra_isize); 4214 if (sbi->s_want_extra_isize < 4215 le16_to_cpu(es->s_min_extra_isize)) 4216 sbi->s_want_extra_isize = 4217 le16_to_cpu(es->s_min_extra_isize); 4218 } 4219 } 4220 /* Check if enough inode space is available */ 4221 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4222 sbi->s_inode_size) { 4223 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4224 EXT4_GOOD_OLD_INODE_SIZE; 4225 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4226 "available"); 4227 } 4228 4229 ext4_set_resv_clusters(sb); 4230 4231 err = ext4_setup_system_zone(sb); 4232 if (err) { 4233 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4234 "zone (%d)", err); 4235 goto failed_mount4a; 4236 } 4237 4238 ext4_ext_init(sb); 4239 err = ext4_mb_init(sb); 4240 if (err) { 4241 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4242 err); 4243 goto failed_mount5; 4244 } 4245 4246 block = ext4_count_free_clusters(sb); 4247 ext4_free_blocks_count_set(sbi->s_es, 4248 EXT4_C2B(sbi, block)); 4249 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4250 GFP_KERNEL); 4251 if (!err) { 4252 unsigned long freei = ext4_count_free_inodes(sb); 4253 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4254 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4255 GFP_KERNEL); 4256 } 4257 if (!err) 4258 err = percpu_counter_init(&sbi->s_dirs_counter, 4259 ext4_count_dirs(sb), GFP_KERNEL); 4260 if (!err) 4261 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4262 GFP_KERNEL); 4263 if (!err) 4264 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4265 4266 if (err) { 4267 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4268 goto failed_mount6; 4269 } 4270 4271 if (ext4_has_feature_flex_bg(sb)) 4272 if (!ext4_fill_flex_info(sb)) { 4273 ext4_msg(sb, KERN_ERR, 4274 "unable to initialize " 4275 "flex_bg meta info!"); 4276 goto failed_mount6; 4277 } 4278 4279 err = ext4_register_li_request(sb, first_not_zeroed); 4280 if (err) 4281 goto failed_mount6; 4282 4283 err = ext4_register_sysfs(sb); 4284 if (err) 4285 goto failed_mount7; 4286 4287 #ifdef CONFIG_QUOTA 4288 /* Enable quota usage during mount. */ 4289 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4290 err = ext4_enable_quotas(sb); 4291 if (err) 4292 goto failed_mount8; 4293 } 4294 #endif /* CONFIG_QUOTA */ 4295 4296 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4297 ext4_orphan_cleanup(sb, es); 4298 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4299 if (needs_recovery) { 4300 ext4_msg(sb, KERN_INFO, "recovery complete"); 4301 ext4_mark_recovery_complete(sb, es); 4302 } 4303 if (EXT4_SB(sb)->s_journal) { 4304 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4305 descr = " journalled data mode"; 4306 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4307 descr = " ordered data mode"; 4308 else 4309 descr = " writeback data mode"; 4310 } else 4311 descr = "out journal"; 4312 4313 if (test_opt(sb, DISCARD)) { 4314 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4315 if (!blk_queue_discard(q)) 4316 ext4_msg(sb, KERN_WARNING, 4317 "mounting with \"discard\" option, but " 4318 "the device does not support discard"); 4319 } 4320 4321 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4322 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4323 "Opts: %.*s%s%s", descr, 4324 (int) sizeof(sbi->s_es->s_mount_opts), 4325 sbi->s_es->s_mount_opts, 4326 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4327 4328 if (es->s_error_count) 4329 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4330 4331 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4332 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4333 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4334 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4335 4336 kfree(orig_data); 4337 return 0; 4338 4339 cantfind_ext4: 4340 if (!silent) 4341 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4342 goto failed_mount; 4343 4344 #ifdef CONFIG_QUOTA 4345 failed_mount8: 4346 ext4_unregister_sysfs(sb); 4347 #endif 4348 failed_mount7: 4349 ext4_unregister_li_request(sb); 4350 failed_mount6: 4351 ext4_mb_release(sb); 4352 if (sbi->s_flex_groups) 4353 kvfree(sbi->s_flex_groups); 4354 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4355 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4356 percpu_counter_destroy(&sbi->s_dirs_counter); 4357 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4358 failed_mount5: 4359 ext4_ext_release(sb); 4360 ext4_release_system_zone(sb); 4361 failed_mount4a: 4362 dput(sb->s_root); 4363 sb->s_root = NULL; 4364 failed_mount4: 4365 ext4_msg(sb, KERN_ERR, "mount failed"); 4366 if (EXT4_SB(sb)->rsv_conversion_wq) 4367 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4368 failed_mount_wq: 4369 if (sbi->s_ea_inode_cache) { 4370 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4371 sbi->s_ea_inode_cache = NULL; 4372 } 4373 if (sbi->s_ea_block_cache) { 4374 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4375 sbi->s_ea_block_cache = NULL; 4376 } 4377 if (sbi->s_journal) { 4378 jbd2_journal_destroy(sbi->s_journal); 4379 sbi->s_journal = NULL; 4380 } 4381 failed_mount3a: 4382 ext4_es_unregister_shrinker(sbi); 4383 failed_mount3: 4384 del_timer_sync(&sbi->s_err_report); 4385 if (sbi->s_mmp_tsk) 4386 kthread_stop(sbi->s_mmp_tsk); 4387 failed_mount2: 4388 for (i = 0; i < db_count; i++) 4389 brelse(sbi->s_group_desc[i]); 4390 kvfree(sbi->s_group_desc); 4391 failed_mount: 4392 if (sbi->s_chksum_driver) 4393 crypto_free_shash(sbi->s_chksum_driver); 4394 #ifdef CONFIG_QUOTA 4395 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4396 kfree(sbi->s_qf_names[i]); 4397 #endif 4398 ext4_blkdev_remove(sbi); 4399 brelse(bh); 4400 out_fail: 4401 sb->s_fs_info = NULL; 4402 kfree(sbi->s_blockgroup_lock); 4403 out_free_base: 4404 kfree(sbi); 4405 kfree(orig_data); 4406 fs_put_dax(dax_dev); 4407 return err ? err : ret; 4408 } 4409 4410 /* 4411 * Setup any per-fs journal parameters now. We'll do this both on 4412 * initial mount, once the journal has been initialised but before we've 4413 * done any recovery; and again on any subsequent remount. 4414 */ 4415 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4416 { 4417 struct ext4_sb_info *sbi = EXT4_SB(sb); 4418 4419 journal->j_commit_interval = sbi->s_commit_interval; 4420 journal->j_min_batch_time = sbi->s_min_batch_time; 4421 journal->j_max_batch_time = sbi->s_max_batch_time; 4422 4423 write_lock(&journal->j_state_lock); 4424 if (test_opt(sb, BARRIER)) 4425 journal->j_flags |= JBD2_BARRIER; 4426 else 4427 journal->j_flags &= ~JBD2_BARRIER; 4428 if (test_opt(sb, DATA_ERR_ABORT)) 4429 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4430 else 4431 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4432 write_unlock(&journal->j_state_lock); 4433 } 4434 4435 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4436 unsigned int journal_inum) 4437 { 4438 struct inode *journal_inode; 4439 4440 /* 4441 * Test for the existence of a valid inode on disk. Bad things 4442 * happen if we iget() an unused inode, as the subsequent iput() 4443 * will try to delete it. 4444 */ 4445 journal_inode = ext4_iget(sb, journal_inum); 4446 if (IS_ERR(journal_inode)) { 4447 ext4_msg(sb, KERN_ERR, "no journal found"); 4448 return NULL; 4449 } 4450 if (!journal_inode->i_nlink) { 4451 make_bad_inode(journal_inode); 4452 iput(journal_inode); 4453 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4454 return NULL; 4455 } 4456 4457 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4458 journal_inode, journal_inode->i_size); 4459 if (!S_ISREG(journal_inode->i_mode)) { 4460 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4461 iput(journal_inode); 4462 return NULL; 4463 } 4464 return journal_inode; 4465 } 4466 4467 static journal_t *ext4_get_journal(struct super_block *sb, 4468 unsigned int journal_inum) 4469 { 4470 struct inode *journal_inode; 4471 journal_t *journal; 4472 4473 BUG_ON(!ext4_has_feature_journal(sb)); 4474 4475 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4476 if (!journal_inode) 4477 return NULL; 4478 4479 journal = jbd2_journal_init_inode(journal_inode); 4480 if (!journal) { 4481 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4482 iput(journal_inode); 4483 return NULL; 4484 } 4485 journal->j_private = sb; 4486 ext4_init_journal_params(sb, journal); 4487 return journal; 4488 } 4489 4490 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4491 dev_t j_dev) 4492 { 4493 struct buffer_head *bh; 4494 journal_t *journal; 4495 ext4_fsblk_t start; 4496 ext4_fsblk_t len; 4497 int hblock, blocksize; 4498 ext4_fsblk_t sb_block; 4499 unsigned long offset; 4500 struct ext4_super_block *es; 4501 struct block_device *bdev; 4502 4503 BUG_ON(!ext4_has_feature_journal(sb)); 4504 4505 bdev = ext4_blkdev_get(j_dev, sb); 4506 if (bdev == NULL) 4507 return NULL; 4508 4509 blocksize = sb->s_blocksize; 4510 hblock = bdev_logical_block_size(bdev); 4511 if (blocksize < hblock) { 4512 ext4_msg(sb, KERN_ERR, 4513 "blocksize too small for journal device"); 4514 goto out_bdev; 4515 } 4516 4517 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4518 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4519 set_blocksize(bdev, blocksize); 4520 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4521 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4522 "external journal"); 4523 goto out_bdev; 4524 } 4525 4526 es = (struct ext4_super_block *) (bh->b_data + offset); 4527 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4528 !(le32_to_cpu(es->s_feature_incompat) & 4529 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4530 ext4_msg(sb, KERN_ERR, "external journal has " 4531 "bad superblock"); 4532 brelse(bh); 4533 goto out_bdev; 4534 } 4535 4536 if ((le32_to_cpu(es->s_feature_ro_compat) & 4537 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4538 es->s_checksum != ext4_superblock_csum(sb, es)) { 4539 ext4_msg(sb, KERN_ERR, "external journal has " 4540 "corrupt superblock"); 4541 brelse(bh); 4542 goto out_bdev; 4543 } 4544 4545 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4546 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4547 brelse(bh); 4548 goto out_bdev; 4549 } 4550 4551 len = ext4_blocks_count(es); 4552 start = sb_block + 1; 4553 brelse(bh); /* we're done with the superblock */ 4554 4555 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4556 start, len, blocksize); 4557 if (!journal) { 4558 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4559 goto out_bdev; 4560 } 4561 journal->j_private = sb; 4562 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4563 wait_on_buffer(journal->j_sb_buffer); 4564 if (!buffer_uptodate(journal->j_sb_buffer)) { 4565 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4566 goto out_journal; 4567 } 4568 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4569 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4570 "user (unsupported) - %d", 4571 be32_to_cpu(journal->j_superblock->s_nr_users)); 4572 goto out_journal; 4573 } 4574 EXT4_SB(sb)->journal_bdev = bdev; 4575 ext4_init_journal_params(sb, journal); 4576 return journal; 4577 4578 out_journal: 4579 jbd2_journal_destroy(journal); 4580 out_bdev: 4581 ext4_blkdev_put(bdev); 4582 return NULL; 4583 } 4584 4585 static int ext4_load_journal(struct super_block *sb, 4586 struct ext4_super_block *es, 4587 unsigned long journal_devnum) 4588 { 4589 journal_t *journal; 4590 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4591 dev_t journal_dev; 4592 int err = 0; 4593 int really_read_only; 4594 4595 BUG_ON(!ext4_has_feature_journal(sb)); 4596 4597 if (journal_devnum && 4598 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4599 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4600 "numbers have changed"); 4601 journal_dev = new_decode_dev(journal_devnum); 4602 } else 4603 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4604 4605 really_read_only = bdev_read_only(sb->s_bdev); 4606 4607 /* 4608 * Are we loading a blank journal or performing recovery after a 4609 * crash? For recovery, we need to check in advance whether we 4610 * can get read-write access to the device. 4611 */ 4612 if (ext4_has_feature_journal_needs_recovery(sb)) { 4613 if (sb_rdonly(sb)) { 4614 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4615 "required on readonly filesystem"); 4616 if (really_read_only) { 4617 ext4_msg(sb, KERN_ERR, "write access " 4618 "unavailable, cannot proceed " 4619 "(try mounting with noload)"); 4620 return -EROFS; 4621 } 4622 ext4_msg(sb, KERN_INFO, "write access will " 4623 "be enabled during recovery"); 4624 } 4625 } 4626 4627 if (journal_inum && journal_dev) { 4628 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4629 "and inode journals!"); 4630 return -EINVAL; 4631 } 4632 4633 if (journal_inum) { 4634 if (!(journal = ext4_get_journal(sb, journal_inum))) 4635 return -EINVAL; 4636 } else { 4637 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4638 return -EINVAL; 4639 } 4640 4641 if (!(journal->j_flags & JBD2_BARRIER)) 4642 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4643 4644 if (!ext4_has_feature_journal_needs_recovery(sb)) 4645 err = jbd2_journal_wipe(journal, !really_read_only); 4646 if (!err) { 4647 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4648 if (save) 4649 memcpy(save, ((char *) es) + 4650 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4651 err = jbd2_journal_load(journal); 4652 if (save) 4653 memcpy(((char *) es) + EXT4_S_ERR_START, 4654 save, EXT4_S_ERR_LEN); 4655 kfree(save); 4656 } 4657 4658 if (err) { 4659 ext4_msg(sb, KERN_ERR, "error loading journal"); 4660 jbd2_journal_destroy(journal); 4661 return err; 4662 } 4663 4664 EXT4_SB(sb)->s_journal = journal; 4665 ext4_clear_journal_err(sb, es); 4666 4667 if (!really_read_only && journal_devnum && 4668 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4669 es->s_journal_dev = cpu_to_le32(journal_devnum); 4670 4671 /* Make sure we flush the recovery flag to disk. */ 4672 ext4_commit_super(sb, 1); 4673 } 4674 4675 return 0; 4676 } 4677 4678 static int ext4_commit_super(struct super_block *sb, int sync) 4679 { 4680 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4681 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4682 int error = 0; 4683 4684 if (!sbh || block_device_ejected(sb)) 4685 return error; 4686 /* 4687 * If the file system is mounted read-only, don't update the 4688 * superblock write time. This avoids updating the superblock 4689 * write time when we are mounting the root file system 4690 * read/only but we need to replay the journal; at that point, 4691 * for people who are east of GMT and who make their clock 4692 * tick in localtime for Windows bug-for-bug compatibility, 4693 * the clock is set in the future, and this will cause e2fsck 4694 * to complain and force a full file system check. 4695 */ 4696 if (!(sb->s_flags & SB_RDONLY)) 4697 es->s_wtime = cpu_to_le32(get_seconds()); 4698 if (sb->s_bdev->bd_part) 4699 es->s_kbytes_written = 4700 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4701 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4702 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4703 else 4704 es->s_kbytes_written = 4705 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4706 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4707 ext4_free_blocks_count_set(es, 4708 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4709 &EXT4_SB(sb)->s_freeclusters_counter))); 4710 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4711 es->s_free_inodes_count = 4712 cpu_to_le32(percpu_counter_sum_positive( 4713 &EXT4_SB(sb)->s_freeinodes_counter)); 4714 BUFFER_TRACE(sbh, "marking dirty"); 4715 ext4_superblock_csum_set(sb); 4716 if (sync) 4717 lock_buffer(sbh); 4718 if (buffer_write_io_error(sbh)) { 4719 /* 4720 * Oh, dear. A previous attempt to write the 4721 * superblock failed. This could happen because the 4722 * USB device was yanked out. Or it could happen to 4723 * be a transient write error and maybe the block will 4724 * be remapped. Nothing we can do but to retry the 4725 * write and hope for the best. 4726 */ 4727 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4728 "superblock detected"); 4729 clear_buffer_write_io_error(sbh); 4730 set_buffer_uptodate(sbh); 4731 } 4732 mark_buffer_dirty(sbh); 4733 if (sync) { 4734 unlock_buffer(sbh); 4735 error = __sync_dirty_buffer(sbh, 4736 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4737 if (error) 4738 return error; 4739 4740 error = buffer_write_io_error(sbh); 4741 if (error) { 4742 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4743 "superblock"); 4744 clear_buffer_write_io_error(sbh); 4745 set_buffer_uptodate(sbh); 4746 } 4747 } 4748 return error; 4749 } 4750 4751 /* 4752 * Have we just finished recovery? If so, and if we are mounting (or 4753 * remounting) the filesystem readonly, then we will end up with a 4754 * consistent fs on disk. Record that fact. 4755 */ 4756 static void ext4_mark_recovery_complete(struct super_block *sb, 4757 struct ext4_super_block *es) 4758 { 4759 journal_t *journal = EXT4_SB(sb)->s_journal; 4760 4761 if (!ext4_has_feature_journal(sb)) { 4762 BUG_ON(journal != NULL); 4763 return; 4764 } 4765 jbd2_journal_lock_updates(journal); 4766 if (jbd2_journal_flush(journal) < 0) 4767 goto out; 4768 4769 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4770 ext4_clear_feature_journal_needs_recovery(sb); 4771 ext4_commit_super(sb, 1); 4772 } 4773 4774 out: 4775 jbd2_journal_unlock_updates(journal); 4776 } 4777 4778 /* 4779 * If we are mounting (or read-write remounting) a filesystem whose journal 4780 * has recorded an error from a previous lifetime, move that error to the 4781 * main filesystem now. 4782 */ 4783 static void ext4_clear_journal_err(struct super_block *sb, 4784 struct ext4_super_block *es) 4785 { 4786 journal_t *journal; 4787 int j_errno; 4788 const char *errstr; 4789 4790 BUG_ON(!ext4_has_feature_journal(sb)); 4791 4792 journal = EXT4_SB(sb)->s_journal; 4793 4794 /* 4795 * Now check for any error status which may have been recorded in the 4796 * journal by a prior ext4_error() or ext4_abort() 4797 */ 4798 4799 j_errno = jbd2_journal_errno(journal); 4800 if (j_errno) { 4801 char nbuf[16]; 4802 4803 errstr = ext4_decode_error(sb, j_errno, nbuf); 4804 ext4_warning(sb, "Filesystem error recorded " 4805 "from previous mount: %s", errstr); 4806 ext4_warning(sb, "Marking fs in need of filesystem check."); 4807 4808 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4809 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4810 ext4_commit_super(sb, 1); 4811 4812 jbd2_journal_clear_err(journal); 4813 jbd2_journal_update_sb_errno(journal); 4814 } 4815 } 4816 4817 /* 4818 * Force the running and committing transactions to commit, 4819 * and wait on the commit. 4820 */ 4821 int ext4_force_commit(struct super_block *sb) 4822 { 4823 journal_t *journal; 4824 4825 if (sb_rdonly(sb)) 4826 return 0; 4827 4828 journal = EXT4_SB(sb)->s_journal; 4829 return ext4_journal_force_commit(journal); 4830 } 4831 4832 static int ext4_sync_fs(struct super_block *sb, int wait) 4833 { 4834 int ret = 0; 4835 tid_t target; 4836 bool needs_barrier = false; 4837 struct ext4_sb_info *sbi = EXT4_SB(sb); 4838 4839 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4840 return 0; 4841 4842 trace_ext4_sync_fs(sb, wait); 4843 flush_workqueue(sbi->rsv_conversion_wq); 4844 /* 4845 * Writeback quota in non-journalled quota case - journalled quota has 4846 * no dirty dquots 4847 */ 4848 dquot_writeback_dquots(sb, -1); 4849 /* 4850 * Data writeback is possible w/o journal transaction, so barrier must 4851 * being sent at the end of the function. But we can skip it if 4852 * transaction_commit will do it for us. 4853 */ 4854 if (sbi->s_journal) { 4855 target = jbd2_get_latest_transaction(sbi->s_journal); 4856 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4857 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4858 needs_barrier = true; 4859 4860 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4861 if (wait) 4862 ret = jbd2_log_wait_commit(sbi->s_journal, 4863 target); 4864 } 4865 } else if (wait && test_opt(sb, BARRIER)) 4866 needs_barrier = true; 4867 if (needs_barrier) { 4868 int err; 4869 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4870 if (!ret) 4871 ret = err; 4872 } 4873 4874 return ret; 4875 } 4876 4877 /* 4878 * LVM calls this function before a (read-only) snapshot is created. This 4879 * gives us a chance to flush the journal completely and mark the fs clean. 4880 * 4881 * Note that only this function cannot bring a filesystem to be in a clean 4882 * state independently. It relies on upper layer to stop all data & metadata 4883 * modifications. 4884 */ 4885 static int ext4_freeze(struct super_block *sb) 4886 { 4887 int error = 0; 4888 journal_t *journal; 4889 4890 if (sb_rdonly(sb)) 4891 return 0; 4892 4893 journal = EXT4_SB(sb)->s_journal; 4894 4895 if (journal) { 4896 /* Now we set up the journal barrier. */ 4897 jbd2_journal_lock_updates(journal); 4898 4899 /* 4900 * Don't clear the needs_recovery flag if we failed to 4901 * flush the journal. 4902 */ 4903 error = jbd2_journal_flush(journal); 4904 if (error < 0) 4905 goto out; 4906 4907 /* Journal blocked and flushed, clear needs_recovery flag. */ 4908 ext4_clear_feature_journal_needs_recovery(sb); 4909 } 4910 4911 error = ext4_commit_super(sb, 1); 4912 out: 4913 if (journal) 4914 /* we rely on upper layer to stop further updates */ 4915 jbd2_journal_unlock_updates(journal); 4916 return error; 4917 } 4918 4919 /* 4920 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4921 * flag here, even though the filesystem is not technically dirty yet. 4922 */ 4923 static int ext4_unfreeze(struct super_block *sb) 4924 { 4925 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 4926 return 0; 4927 4928 if (EXT4_SB(sb)->s_journal) { 4929 /* Reset the needs_recovery flag before the fs is unlocked. */ 4930 ext4_set_feature_journal_needs_recovery(sb); 4931 } 4932 4933 ext4_commit_super(sb, 1); 4934 return 0; 4935 } 4936 4937 /* 4938 * Structure to save mount options for ext4_remount's benefit 4939 */ 4940 struct ext4_mount_options { 4941 unsigned long s_mount_opt; 4942 unsigned long s_mount_opt2; 4943 kuid_t s_resuid; 4944 kgid_t s_resgid; 4945 unsigned long s_commit_interval; 4946 u32 s_min_batch_time, s_max_batch_time; 4947 #ifdef CONFIG_QUOTA 4948 int s_jquota_fmt; 4949 char *s_qf_names[EXT4_MAXQUOTAS]; 4950 #endif 4951 }; 4952 4953 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4954 { 4955 struct ext4_super_block *es; 4956 struct ext4_sb_info *sbi = EXT4_SB(sb); 4957 unsigned long old_sb_flags; 4958 struct ext4_mount_options old_opts; 4959 int enable_quota = 0; 4960 ext4_group_t g; 4961 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4962 int err = 0; 4963 #ifdef CONFIG_QUOTA 4964 int i, j; 4965 #endif 4966 char *orig_data = kstrdup(data, GFP_KERNEL); 4967 4968 /* Store the original options */ 4969 old_sb_flags = sb->s_flags; 4970 old_opts.s_mount_opt = sbi->s_mount_opt; 4971 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4972 old_opts.s_resuid = sbi->s_resuid; 4973 old_opts.s_resgid = sbi->s_resgid; 4974 old_opts.s_commit_interval = sbi->s_commit_interval; 4975 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4976 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4977 #ifdef CONFIG_QUOTA 4978 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4979 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4980 if (sbi->s_qf_names[i]) { 4981 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4982 GFP_KERNEL); 4983 if (!old_opts.s_qf_names[i]) { 4984 for (j = 0; j < i; j++) 4985 kfree(old_opts.s_qf_names[j]); 4986 kfree(orig_data); 4987 return -ENOMEM; 4988 } 4989 } else 4990 old_opts.s_qf_names[i] = NULL; 4991 #endif 4992 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4993 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4994 4995 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4996 err = -EINVAL; 4997 goto restore_opts; 4998 } 4999 5000 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5001 test_opt(sb, JOURNAL_CHECKSUM)) { 5002 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5003 "during remount not supported; ignoring"); 5004 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5005 } 5006 5007 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5008 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5009 ext4_msg(sb, KERN_ERR, "can't mount with " 5010 "both data=journal and delalloc"); 5011 err = -EINVAL; 5012 goto restore_opts; 5013 } 5014 if (test_opt(sb, DIOREAD_NOLOCK)) { 5015 ext4_msg(sb, KERN_ERR, "can't mount with " 5016 "both data=journal and dioread_nolock"); 5017 err = -EINVAL; 5018 goto restore_opts; 5019 } 5020 if (test_opt(sb, DAX)) { 5021 ext4_msg(sb, KERN_ERR, "can't mount with " 5022 "both data=journal and dax"); 5023 err = -EINVAL; 5024 goto restore_opts; 5025 } 5026 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5027 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5028 ext4_msg(sb, KERN_ERR, "can't mount with " 5029 "journal_async_commit in data=ordered mode"); 5030 err = -EINVAL; 5031 goto restore_opts; 5032 } 5033 } 5034 5035 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5036 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5037 err = -EINVAL; 5038 goto restore_opts; 5039 } 5040 5041 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5042 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5043 "dax flag with busy inodes while remounting"); 5044 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5045 } 5046 5047 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5048 ext4_abort(sb, "Abort forced by user"); 5049 5050 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5051 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5052 5053 es = sbi->s_es; 5054 5055 if (sbi->s_journal) { 5056 ext4_init_journal_params(sb, sbi->s_journal); 5057 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5058 } 5059 5060 if (*flags & SB_LAZYTIME) 5061 sb->s_flags |= SB_LAZYTIME; 5062 5063 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5064 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5065 err = -EROFS; 5066 goto restore_opts; 5067 } 5068 5069 if (*flags & SB_RDONLY) { 5070 err = sync_filesystem(sb); 5071 if (err < 0) 5072 goto restore_opts; 5073 err = dquot_suspend(sb, -1); 5074 if (err < 0) 5075 goto restore_opts; 5076 5077 /* 5078 * First of all, the unconditional stuff we have to do 5079 * to disable replay of the journal when we next remount 5080 */ 5081 sb->s_flags |= SB_RDONLY; 5082 5083 /* 5084 * OK, test if we are remounting a valid rw partition 5085 * readonly, and if so set the rdonly flag and then 5086 * mark the partition as valid again. 5087 */ 5088 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5089 (sbi->s_mount_state & EXT4_VALID_FS)) 5090 es->s_state = cpu_to_le16(sbi->s_mount_state); 5091 5092 if (sbi->s_journal) 5093 ext4_mark_recovery_complete(sb, es); 5094 } else { 5095 /* Make sure we can mount this feature set readwrite */ 5096 if (ext4_has_feature_readonly(sb) || 5097 !ext4_feature_set_ok(sb, 0)) { 5098 err = -EROFS; 5099 goto restore_opts; 5100 } 5101 /* 5102 * Make sure the group descriptor checksums 5103 * are sane. If they aren't, refuse to remount r/w. 5104 */ 5105 for (g = 0; g < sbi->s_groups_count; g++) { 5106 struct ext4_group_desc *gdp = 5107 ext4_get_group_desc(sb, g, NULL); 5108 5109 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5110 ext4_msg(sb, KERN_ERR, 5111 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5112 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5113 le16_to_cpu(gdp->bg_checksum)); 5114 err = -EFSBADCRC; 5115 goto restore_opts; 5116 } 5117 } 5118 5119 /* 5120 * If we have an unprocessed orphan list hanging 5121 * around from a previously readonly bdev mount, 5122 * require a full umount/remount for now. 5123 */ 5124 if (es->s_last_orphan) { 5125 ext4_msg(sb, KERN_WARNING, "Couldn't " 5126 "remount RDWR because of unprocessed " 5127 "orphan inode list. Please " 5128 "umount/remount instead"); 5129 err = -EINVAL; 5130 goto restore_opts; 5131 } 5132 5133 /* 5134 * Mounting a RDONLY partition read-write, so reread 5135 * and store the current valid flag. (It may have 5136 * been changed by e2fsck since we originally mounted 5137 * the partition.) 5138 */ 5139 if (sbi->s_journal) 5140 ext4_clear_journal_err(sb, es); 5141 sbi->s_mount_state = le16_to_cpu(es->s_state); 5142 if (!ext4_setup_super(sb, es, 0)) 5143 sb->s_flags &= ~SB_RDONLY; 5144 if (ext4_has_feature_mmp(sb)) 5145 if (ext4_multi_mount_protect(sb, 5146 le64_to_cpu(es->s_mmp_block))) { 5147 err = -EROFS; 5148 goto restore_opts; 5149 } 5150 enable_quota = 1; 5151 } 5152 } 5153 5154 /* 5155 * Reinitialize lazy itable initialization thread based on 5156 * current settings 5157 */ 5158 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5159 ext4_unregister_li_request(sb); 5160 else { 5161 ext4_group_t first_not_zeroed; 5162 first_not_zeroed = ext4_has_uninit_itable(sb); 5163 ext4_register_li_request(sb, first_not_zeroed); 5164 } 5165 5166 ext4_setup_system_zone(sb); 5167 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) 5168 ext4_commit_super(sb, 1); 5169 5170 #ifdef CONFIG_QUOTA 5171 /* Release old quota file names */ 5172 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5173 kfree(old_opts.s_qf_names[i]); 5174 if (enable_quota) { 5175 if (sb_any_quota_suspended(sb)) 5176 dquot_resume(sb, -1); 5177 else if (ext4_has_feature_quota(sb)) { 5178 err = ext4_enable_quotas(sb); 5179 if (err) 5180 goto restore_opts; 5181 } 5182 } 5183 #endif 5184 5185 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5186 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5187 kfree(orig_data); 5188 return 0; 5189 5190 restore_opts: 5191 sb->s_flags = old_sb_flags; 5192 sbi->s_mount_opt = old_opts.s_mount_opt; 5193 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5194 sbi->s_resuid = old_opts.s_resuid; 5195 sbi->s_resgid = old_opts.s_resgid; 5196 sbi->s_commit_interval = old_opts.s_commit_interval; 5197 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5198 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5199 #ifdef CONFIG_QUOTA 5200 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5201 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5202 kfree(sbi->s_qf_names[i]); 5203 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5204 } 5205 #endif 5206 kfree(orig_data); 5207 return err; 5208 } 5209 5210 #ifdef CONFIG_QUOTA 5211 static int ext4_statfs_project(struct super_block *sb, 5212 kprojid_t projid, struct kstatfs *buf) 5213 { 5214 struct kqid qid; 5215 struct dquot *dquot; 5216 u64 limit; 5217 u64 curblock; 5218 5219 qid = make_kqid_projid(projid); 5220 dquot = dqget(sb, qid); 5221 if (IS_ERR(dquot)) 5222 return PTR_ERR(dquot); 5223 spin_lock(&dquot->dq_dqb_lock); 5224 5225 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5226 dquot->dq_dqb.dqb_bsoftlimit : 5227 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5228 if (limit && buf->f_blocks > limit) { 5229 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5230 buf->f_blocks = limit; 5231 buf->f_bfree = buf->f_bavail = 5232 (buf->f_blocks > curblock) ? 5233 (buf->f_blocks - curblock) : 0; 5234 } 5235 5236 limit = dquot->dq_dqb.dqb_isoftlimit ? 5237 dquot->dq_dqb.dqb_isoftlimit : 5238 dquot->dq_dqb.dqb_ihardlimit; 5239 if (limit && buf->f_files > limit) { 5240 buf->f_files = limit; 5241 buf->f_ffree = 5242 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5243 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5244 } 5245 5246 spin_unlock(&dquot->dq_dqb_lock); 5247 dqput(dquot); 5248 return 0; 5249 } 5250 #endif 5251 5252 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5253 { 5254 struct super_block *sb = dentry->d_sb; 5255 struct ext4_sb_info *sbi = EXT4_SB(sb); 5256 struct ext4_super_block *es = sbi->s_es; 5257 ext4_fsblk_t overhead = 0, resv_blocks; 5258 u64 fsid; 5259 s64 bfree; 5260 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5261 5262 if (!test_opt(sb, MINIX_DF)) 5263 overhead = sbi->s_overhead; 5264 5265 buf->f_type = EXT4_SUPER_MAGIC; 5266 buf->f_bsize = sb->s_blocksize; 5267 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5268 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5269 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5270 /* prevent underflow in case that few free space is available */ 5271 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5272 buf->f_bavail = buf->f_bfree - 5273 (ext4_r_blocks_count(es) + resv_blocks); 5274 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5275 buf->f_bavail = 0; 5276 buf->f_files = le32_to_cpu(es->s_inodes_count); 5277 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5278 buf->f_namelen = EXT4_NAME_LEN; 5279 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5280 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5281 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5282 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5283 5284 #ifdef CONFIG_QUOTA 5285 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5286 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5287 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5288 #endif 5289 return 0; 5290 } 5291 5292 5293 #ifdef CONFIG_QUOTA 5294 5295 /* 5296 * Helper functions so that transaction is started before we acquire dqio_sem 5297 * to keep correct lock ordering of transaction > dqio_sem 5298 */ 5299 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5300 { 5301 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5302 } 5303 5304 static int ext4_write_dquot(struct dquot *dquot) 5305 { 5306 int ret, err; 5307 handle_t *handle; 5308 struct inode *inode; 5309 5310 inode = dquot_to_inode(dquot); 5311 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5312 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5313 if (IS_ERR(handle)) 5314 return PTR_ERR(handle); 5315 ret = dquot_commit(dquot); 5316 err = ext4_journal_stop(handle); 5317 if (!ret) 5318 ret = err; 5319 return ret; 5320 } 5321 5322 static int ext4_acquire_dquot(struct dquot *dquot) 5323 { 5324 int ret, err; 5325 handle_t *handle; 5326 5327 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5328 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5329 if (IS_ERR(handle)) 5330 return PTR_ERR(handle); 5331 ret = dquot_acquire(dquot); 5332 err = ext4_journal_stop(handle); 5333 if (!ret) 5334 ret = err; 5335 return ret; 5336 } 5337 5338 static int ext4_release_dquot(struct dquot *dquot) 5339 { 5340 int ret, err; 5341 handle_t *handle; 5342 5343 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5344 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5345 if (IS_ERR(handle)) { 5346 /* Release dquot anyway to avoid endless cycle in dqput() */ 5347 dquot_release(dquot); 5348 return PTR_ERR(handle); 5349 } 5350 ret = dquot_release(dquot); 5351 err = ext4_journal_stop(handle); 5352 if (!ret) 5353 ret = err; 5354 return ret; 5355 } 5356 5357 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5358 { 5359 struct super_block *sb = dquot->dq_sb; 5360 struct ext4_sb_info *sbi = EXT4_SB(sb); 5361 5362 /* Are we journaling quotas? */ 5363 if (ext4_has_feature_quota(sb) || 5364 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5365 dquot_mark_dquot_dirty(dquot); 5366 return ext4_write_dquot(dquot); 5367 } else { 5368 return dquot_mark_dquot_dirty(dquot); 5369 } 5370 } 5371 5372 static int ext4_write_info(struct super_block *sb, int type) 5373 { 5374 int ret, err; 5375 handle_t *handle; 5376 5377 /* Data block + inode block */ 5378 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5379 if (IS_ERR(handle)) 5380 return PTR_ERR(handle); 5381 ret = dquot_commit_info(sb, type); 5382 err = ext4_journal_stop(handle); 5383 if (!ret) 5384 ret = err; 5385 return ret; 5386 } 5387 5388 /* 5389 * Turn on quotas during mount time - we need to find 5390 * the quota file and such... 5391 */ 5392 static int ext4_quota_on_mount(struct super_block *sb, int type) 5393 { 5394 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5395 EXT4_SB(sb)->s_jquota_fmt, type); 5396 } 5397 5398 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5399 { 5400 struct ext4_inode_info *ei = EXT4_I(inode); 5401 5402 /* The first argument of lockdep_set_subclass has to be 5403 * *exactly* the same as the argument to init_rwsem() --- in 5404 * this case, in init_once() --- or lockdep gets unhappy 5405 * because the name of the lock is set using the 5406 * stringification of the argument to init_rwsem(). 5407 */ 5408 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5409 lockdep_set_subclass(&ei->i_data_sem, subclass); 5410 } 5411 5412 /* 5413 * Standard function to be called on quota_on 5414 */ 5415 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5416 const struct path *path) 5417 { 5418 int err; 5419 5420 if (!test_opt(sb, QUOTA)) 5421 return -EINVAL; 5422 5423 /* Quotafile not on the same filesystem? */ 5424 if (path->dentry->d_sb != sb) 5425 return -EXDEV; 5426 /* Journaling quota? */ 5427 if (EXT4_SB(sb)->s_qf_names[type]) { 5428 /* Quotafile not in fs root? */ 5429 if (path->dentry->d_parent != sb->s_root) 5430 ext4_msg(sb, KERN_WARNING, 5431 "Quota file not on filesystem root. " 5432 "Journaled quota will not work"); 5433 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5434 } else { 5435 /* 5436 * Clear the flag just in case mount options changed since 5437 * last time. 5438 */ 5439 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5440 } 5441 5442 /* 5443 * When we journal data on quota file, we have to flush journal to see 5444 * all updates to the file when we bypass pagecache... 5445 */ 5446 if (EXT4_SB(sb)->s_journal && 5447 ext4_should_journal_data(d_inode(path->dentry))) { 5448 /* 5449 * We don't need to lock updates but journal_flush() could 5450 * otherwise be livelocked... 5451 */ 5452 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5453 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5454 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5455 if (err) 5456 return err; 5457 } 5458 5459 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5460 err = dquot_quota_on(sb, type, format_id, path); 5461 if (err) { 5462 lockdep_set_quota_inode(path->dentry->d_inode, 5463 I_DATA_SEM_NORMAL); 5464 } else { 5465 struct inode *inode = d_inode(path->dentry); 5466 handle_t *handle; 5467 5468 /* 5469 * Set inode flags to prevent userspace from messing with quota 5470 * files. If this fails, we return success anyway since quotas 5471 * are already enabled and this is not a hard failure. 5472 */ 5473 inode_lock(inode); 5474 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5475 if (IS_ERR(handle)) 5476 goto unlock_inode; 5477 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5478 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5479 S_NOATIME | S_IMMUTABLE); 5480 ext4_mark_inode_dirty(handle, inode); 5481 ext4_journal_stop(handle); 5482 unlock_inode: 5483 inode_unlock(inode); 5484 } 5485 return err; 5486 } 5487 5488 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5489 unsigned int flags) 5490 { 5491 int err; 5492 struct inode *qf_inode; 5493 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5494 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5495 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5496 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5497 }; 5498 5499 BUG_ON(!ext4_has_feature_quota(sb)); 5500 5501 if (!qf_inums[type]) 5502 return -EPERM; 5503 5504 qf_inode = ext4_iget(sb, qf_inums[type]); 5505 if (IS_ERR(qf_inode)) { 5506 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5507 return PTR_ERR(qf_inode); 5508 } 5509 5510 /* Don't account quota for quota files to avoid recursion */ 5511 qf_inode->i_flags |= S_NOQUOTA; 5512 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5513 err = dquot_enable(qf_inode, type, format_id, flags); 5514 iput(qf_inode); 5515 if (err) 5516 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5517 5518 return err; 5519 } 5520 5521 /* Enable usage tracking for all quota types. */ 5522 static int ext4_enable_quotas(struct super_block *sb) 5523 { 5524 int type, err = 0; 5525 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5526 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5527 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5528 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5529 }; 5530 bool quota_mopt[EXT4_MAXQUOTAS] = { 5531 test_opt(sb, USRQUOTA), 5532 test_opt(sb, GRPQUOTA), 5533 test_opt(sb, PRJQUOTA), 5534 }; 5535 5536 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5537 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5538 if (qf_inums[type]) { 5539 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5540 DQUOT_USAGE_ENABLED | 5541 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5542 if (err) { 5543 for (type--; type >= 0; type--) 5544 dquot_quota_off(sb, type); 5545 5546 ext4_warning(sb, 5547 "Failed to enable quota tracking " 5548 "(type=%d, err=%d). Please run " 5549 "e2fsck to fix.", type, err); 5550 return err; 5551 } 5552 } 5553 } 5554 return 0; 5555 } 5556 5557 static int ext4_quota_off(struct super_block *sb, int type) 5558 { 5559 struct inode *inode = sb_dqopt(sb)->files[type]; 5560 handle_t *handle; 5561 int err; 5562 5563 /* Force all delayed allocation blocks to be allocated. 5564 * Caller already holds s_umount sem */ 5565 if (test_opt(sb, DELALLOC)) 5566 sync_filesystem(sb); 5567 5568 if (!inode || !igrab(inode)) 5569 goto out; 5570 5571 err = dquot_quota_off(sb, type); 5572 if (err || ext4_has_feature_quota(sb)) 5573 goto out_put; 5574 5575 inode_lock(inode); 5576 /* 5577 * Update modification times of quota files when userspace can 5578 * start looking at them. If we fail, we return success anyway since 5579 * this is not a hard failure and quotas are already disabled. 5580 */ 5581 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5582 if (IS_ERR(handle)) 5583 goto out_unlock; 5584 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5585 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5586 inode->i_mtime = inode->i_ctime = current_time(inode); 5587 ext4_mark_inode_dirty(handle, inode); 5588 ext4_journal_stop(handle); 5589 out_unlock: 5590 inode_unlock(inode); 5591 out_put: 5592 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5593 iput(inode); 5594 return err; 5595 out: 5596 return dquot_quota_off(sb, type); 5597 } 5598 5599 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5600 * acquiring the locks... As quota files are never truncated and quota code 5601 * itself serializes the operations (and no one else should touch the files) 5602 * we don't have to be afraid of races */ 5603 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5604 size_t len, loff_t off) 5605 { 5606 struct inode *inode = sb_dqopt(sb)->files[type]; 5607 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5608 int offset = off & (sb->s_blocksize - 1); 5609 int tocopy; 5610 size_t toread; 5611 struct buffer_head *bh; 5612 loff_t i_size = i_size_read(inode); 5613 5614 if (off > i_size) 5615 return 0; 5616 if (off+len > i_size) 5617 len = i_size-off; 5618 toread = len; 5619 while (toread > 0) { 5620 tocopy = sb->s_blocksize - offset < toread ? 5621 sb->s_blocksize - offset : toread; 5622 bh = ext4_bread(NULL, inode, blk, 0); 5623 if (IS_ERR(bh)) 5624 return PTR_ERR(bh); 5625 if (!bh) /* A hole? */ 5626 memset(data, 0, tocopy); 5627 else 5628 memcpy(data, bh->b_data+offset, tocopy); 5629 brelse(bh); 5630 offset = 0; 5631 toread -= tocopy; 5632 data += tocopy; 5633 blk++; 5634 } 5635 return len; 5636 } 5637 5638 /* Write to quotafile (we know the transaction is already started and has 5639 * enough credits) */ 5640 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5641 const char *data, size_t len, loff_t off) 5642 { 5643 struct inode *inode = sb_dqopt(sb)->files[type]; 5644 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5645 int err, offset = off & (sb->s_blocksize - 1); 5646 int retries = 0; 5647 struct buffer_head *bh; 5648 handle_t *handle = journal_current_handle(); 5649 5650 if (EXT4_SB(sb)->s_journal && !handle) { 5651 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5652 " cancelled because transaction is not started", 5653 (unsigned long long)off, (unsigned long long)len); 5654 return -EIO; 5655 } 5656 /* 5657 * Since we account only one data block in transaction credits, 5658 * then it is impossible to cross a block boundary. 5659 */ 5660 if (sb->s_blocksize - offset < len) { 5661 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5662 " cancelled because not block aligned", 5663 (unsigned long long)off, (unsigned long long)len); 5664 return -EIO; 5665 } 5666 5667 do { 5668 bh = ext4_bread(handle, inode, blk, 5669 EXT4_GET_BLOCKS_CREATE | 5670 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5671 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5672 ext4_should_retry_alloc(inode->i_sb, &retries)); 5673 if (IS_ERR(bh)) 5674 return PTR_ERR(bh); 5675 if (!bh) 5676 goto out; 5677 BUFFER_TRACE(bh, "get write access"); 5678 err = ext4_journal_get_write_access(handle, bh); 5679 if (err) { 5680 brelse(bh); 5681 return err; 5682 } 5683 lock_buffer(bh); 5684 memcpy(bh->b_data+offset, data, len); 5685 flush_dcache_page(bh->b_page); 5686 unlock_buffer(bh); 5687 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5688 brelse(bh); 5689 out: 5690 if (inode->i_size < off + len) { 5691 i_size_write(inode, off + len); 5692 EXT4_I(inode)->i_disksize = inode->i_size; 5693 ext4_mark_inode_dirty(handle, inode); 5694 } 5695 return len; 5696 } 5697 5698 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5699 { 5700 const struct quota_format_ops *ops; 5701 5702 if (!sb_has_quota_loaded(sb, qid->type)) 5703 return -ESRCH; 5704 ops = sb_dqopt(sb)->ops[qid->type]; 5705 if (!ops || !ops->get_next_id) 5706 return -ENOSYS; 5707 return dquot_get_next_id(sb, qid); 5708 } 5709 #endif 5710 5711 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5712 const char *dev_name, void *data) 5713 { 5714 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5715 } 5716 5717 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5718 static inline void register_as_ext2(void) 5719 { 5720 int err = register_filesystem(&ext2_fs_type); 5721 if (err) 5722 printk(KERN_WARNING 5723 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5724 } 5725 5726 static inline void unregister_as_ext2(void) 5727 { 5728 unregister_filesystem(&ext2_fs_type); 5729 } 5730 5731 static inline int ext2_feature_set_ok(struct super_block *sb) 5732 { 5733 if (ext4_has_unknown_ext2_incompat_features(sb)) 5734 return 0; 5735 if (sb_rdonly(sb)) 5736 return 1; 5737 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5738 return 0; 5739 return 1; 5740 } 5741 #else 5742 static inline void register_as_ext2(void) { } 5743 static inline void unregister_as_ext2(void) { } 5744 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5745 #endif 5746 5747 static inline void register_as_ext3(void) 5748 { 5749 int err = register_filesystem(&ext3_fs_type); 5750 if (err) 5751 printk(KERN_WARNING 5752 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5753 } 5754 5755 static inline void unregister_as_ext3(void) 5756 { 5757 unregister_filesystem(&ext3_fs_type); 5758 } 5759 5760 static inline int ext3_feature_set_ok(struct super_block *sb) 5761 { 5762 if (ext4_has_unknown_ext3_incompat_features(sb)) 5763 return 0; 5764 if (!ext4_has_feature_journal(sb)) 5765 return 0; 5766 if (sb_rdonly(sb)) 5767 return 1; 5768 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5769 return 0; 5770 return 1; 5771 } 5772 5773 static struct file_system_type ext4_fs_type = { 5774 .owner = THIS_MODULE, 5775 .name = "ext4", 5776 .mount = ext4_mount, 5777 .kill_sb = kill_block_super, 5778 .fs_flags = FS_REQUIRES_DEV, 5779 }; 5780 MODULE_ALIAS_FS("ext4"); 5781 5782 /* Shared across all ext4 file systems */ 5783 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5784 5785 static int __init ext4_init_fs(void) 5786 { 5787 int i, err; 5788 5789 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5790 ext4_li_info = NULL; 5791 mutex_init(&ext4_li_mtx); 5792 5793 /* Build-time check for flags consistency */ 5794 ext4_check_flag_values(); 5795 5796 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5797 init_waitqueue_head(&ext4__ioend_wq[i]); 5798 5799 err = ext4_init_es(); 5800 if (err) 5801 return err; 5802 5803 err = ext4_init_pageio(); 5804 if (err) 5805 goto out5; 5806 5807 err = ext4_init_system_zone(); 5808 if (err) 5809 goto out4; 5810 5811 err = ext4_init_sysfs(); 5812 if (err) 5813 goto out3; 5814 5815 err = ext4_init_mballoc(); 5816 if (err) 5817 goto out2; 5818 err = init_inodecache(); 5819 if (err) 5820 goto out1; 5821 register_as_ext3(); 5822 register_as_ext2(); 5823 err = register_filesystem(&ext4_fs_type); 5824 if (err) 5825 goto out; 5826 5827 return 0; 5828 out: 5829 unregister_as_ext2(); 5830 unregister_as_ext3(); 5831 destroy_inodecache(); 5832 out1: 5833 ext4_exit_mballoc(); 5834 out2: 5835 ext4_exit_sysfs(); 5836 out3: 5837 ext4_exit_system_zone(); 5838 out4: 5839 ext4_exit_pageio(); 5840 out5: 5841 ext4_exit_es(); 5842 5843 return err; 5844 } 5845 5846 static void __exit ext4_exit_fs(void) 5847 { 5848 ext4_destroy_lazyinit_thread(); 5849 unregister_as_ext2(); 5850 unregister_as_ext3(); 5851 unregister_filesystem(&ext4_fs_type); 5852 destroy_inodecache(); 5853 ext4_exit_mballoc(); 5854 ext4_exit_sysfs(); 5855 ext4_exit_system_zone(); 5856 ext4_exit_pageio(); 5857 ext4_exit_es(); 5858 } 5859 5860 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5861 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5862 MODULE_LICENSE("GPL"); 5863 module_init(ext4_init_fs) 5864 module_exit(ext4_exit_fs) 5865