1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 static int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!ext4_has_metadata_csum(sb)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147 } 148 149 void ext4_superblock_csum_set(struct super_block *sb) 150 { 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!ext4_has_metadata_csum(sb)) 154 return; 155 156 es->s_checksum = ext4_superblock_csum(sb, es); 157 } 158 159 void *ext4_kvmalloc(size_t size, gfp_t flags) 160 { 161 void *ret; 162 163 ret = kmalloc(size, flags | __GFP_NOWARN); 164 if (!ret) 165 ret = __vmalloc(size, flags, PAGE_KERNEL); 166 return ret; 167 } 168 169 void *ext4_kvzalloc(size_t size, gfp_t flags) 170 { 171 void *ret; 172 173 ret = kzalloc(size, flags | __GFP_NOWARN); 174 if (!ret) 175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 176 return ret; 177 } 178 179 void ext4_kvfree(void *ptr) 180 { 181 if (is_vmalloc_addr(ptr)) 182 vfree(ptr); 183 else 184 kfree(ptr); 185 186 } 187 188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 189 struct ext4_group_desc *bg) 190 { 191 return le32_to_cpu(bg->bg_block_bitmap_lo) | 192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 194 } 195 196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 197 struct ext4_group_desc *bg) 198 { 199 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 202 } 203 204 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 205 struct ext4_group_desc *bg) 206 { 207 return le32_to_cpu(bg->bg_inode_table_lo) | 208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 210 } 211 212 __u32 ext4_free_group_clusters(struct super_block *sb, 213 struct ext4_group_desc *bg) 214 { 215 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 218 } 219 220 __u32 ext4_free_inodes_count(struct super_block *sb, 221 struct ext4_group_desc *bg) 222 { 223 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 226 } 227 228 __u32 ext4_used_dirs_count(struct super_block *sb, 229 struct ext4_group_desc *bg) 230 { 231 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 234 } 235 236 __u32 ext4_itable_unused_count(struct super_block *sb, 237 struct ext4_group_desc *bg) 238 { 239 return le16_to_cpu(bg->bg_itable_unused_lo) | 240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 242 } 243 244 void ext4_block_bitmap_set(struct super_block *sb, 245 struct ext4_group_desc *bg, ext4_fsblk_t blk) 246 { 247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 250 } 251 252 void ext4_inode_bitmap_set(struct super_block *sb, 253 struct ext4_group_desc *bg, ext4_fsblk_t blk) 254 { 255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 258 } 259 260 void ext4_inode_table_set(struct super_block *sb, 261 struct ext4_group_desc *bg, ext4_fsblk_t blk) 262 { 263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 266 } 267 268 void ext4_free_group_clusters_set(struct super_block *sb, 269 struct ext4_group_desc *bg, __u32 count) 270 { 271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 274 } 275 276 void ext4_free_inodes_set(struct super_block *sb, 277 struct ext4_group_desc *bg, __u32 count) 278 { 279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 282 } 283 284 void ext4_used_dirs_set(struct super_block *sb, 285 struct ext4_group_desc *bg, __u32 count) 286 { 287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 290 } 291 292 void ext4_itable_unused_set(struct super_block *sb, 293 struct ext4_group_desc *bg, __u32 count) 294 { 295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 298 } 299 300 301 static void __save_error_info(struct super_block *sb, const char *func, 302 unsigned int line) 303 { 304 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 305 306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 307 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 308 es->s_last_error_time = cpu_to_le32(get_seconds()); 309 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 310 es->s_last_error_line = cpu_to_le32(line); 311 if (!es->s_first_error_time) { 312 es->s_first_error_time = es->s_last_error_time; 313 strncpy(es->s_first_error_func, func, 314 sizeof(es->s_first_error_func)); 315 es->s_first_error_line = cpu_to_le32(line); 316 es->s_first_error_ino = es->s_last_error_ino; 317 es->s_first_error_block = es->s_last_error_block; 318 } 319 /* 320 * Start the daily error reporting function if it hasn't been 321 * started already 322 */ 323 if (!es->s_error_count) 324 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 325 le32_add_cpu(&es->s_error_count, 1); 326 } 327 328 static void save_error_info(struct super_block *sb, const char *func, 329 unsigned int line) 330 { 331 __save_error_info(sb, func, line); 332 ext4_commit_super(sb, 1); 333 } 334 335 /* 336 * The del_gendisk() function uninitializes the disk-specific data 337 * structures, including the bdi structure, without telling anyone 338 * else. Once this happens, any attempt to call mark_buffer_dirty() 339 * (for example, by ext4_commit_super), will cause a kernel OOPS. 340 * This is a kludge to prevent these oops until we can put in a proper 341 * hook in del_gendisk() to inform the VFS and file system layers. 342 */ 343 static int block_device_ejected(struct super_block *sb) 344 { 345 struct inode *bd_inode = sb->s_bdev->bd_inode; 346 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 347 348 return bdi->dev == NULL; 349 } 350 351 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 352 { 353 struct super_block *sb = journal->j_private; 354 struct ext4_sb_info *sbi = EXT4_SB(sb); 355 int error = is_journal_aborted(journal); 356 struct ext4_journal_cb_entry *jce; 357 358 BUG_ON(txn->t_state == T_FINISHED); 359 spin_lock(&sbi->s_md_lock); 360 while (!list_empty(&txn->t_private_list)) { 361 jce = list_entry(txn->t_private_list.next, 362 struct ext4_journal_cb_entry, jce_list); 363 list_del_init(&jce->jce_list); 364 spin_unlock(&sbi->s_md_lock); 365 jce->jce_func(sb, jce, error); 366 spin_lock(&sbi->s_md_lock); 367 } 368 spin_unlock(&sbi->s_md_lock); 369 } 370 371 /* Deal with the reporting of failure conditions on a filesystem such as 372 * inconsistencies detected or read IO failures. 373 * 374 * On ext2, we can store the error state of the filesystem in the 375 * superblock. That is not possible on ext4, because we may have other 376 * write ordering constraints on the superblock which prevent us from 377 * writing it out straight away; and given that the journal is about to 378 * be aborted, we can't rely on the current, or future, transactions to 379 * write out the superblock safely. 380 * 381 * We'll just use the jbd2_journal_abort() error code to record an error in 382 * the journal instead. On recovery, the journal will complain about 383 * that error until we've noted it down and cleared it. 384 */ 385 386 static void ext4_handle_error(struct super_block *sb) 387 { 388 if (sb->s_flags & MS_RDONLY) 389 return; 390 391 if (!test_opt(sb, ERRORS_CONT)) { 392 journal_t *journal = EXT4_SB(sb)->s_journal; 393 394 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 395 if (journal) 396 jbd2_journal_abort(journal, -EIO); 397 } 398 if (test_opt(sb, ERRORS_RO)) { 399 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 400 /* 401 * Make sure updated value of ->s_mount_flags will be visible 402 * before ->s_flags update 403 */ 404 smp_wmb(); 405 sb->s_flags |= MS_RDONLY; 406 } 407 if (test_opt(sb, ERRORS_PANIC)) 408 panic("EXT4-fs (device %s): panic forced after error\n", 409 sb->s_id); 410 } 411 412 #define ext4_error_ratelimit(sb) \ 413 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 414 "EXT4-fs error") 415 416 void __ext4_error(struct super_block *sb, const char *function, 417 unsigned int line, const char *fmt, ...) 418 { 419 struct va_format vaf; 420 va_list args; 421 422 if (ext4_error_ratelimit(sb)) { 423 va_start(args, fmt); 424 vaf.fmt = fmt; 425 vaf.va = &args; 426 printk(KERN_CRIT 427 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 428 sb->s_id, function, line, current->comm, &vaf); 429 va_end(args); 430 } 431 save_error_info(sb, function, line); 432 ext4_handle_error(sb); 433 } 434 435 void __ext4_error_inode(struct inode *inode, const char *function, 436 unsigned int line, ext4_fsblk_t block, 437 const char *fmt, ...) 438 { 439 va_list args; 440 struct va_format vaf; 441 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 442 443 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 444 es->s_last_error_block = cpu_to_le64(block); 445 if (ext4_error_ratelimit(inode->i_sb)) { 446 va_start(args, fmt); 447 vaf.fmt = fmt; 448 vaf.va = &args; 449 if (block) 450 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 451 "inode #%lu: block %llu: comm %s: %pV\n", 452 inode->i_sb->s_id, function, line, inode->i_ino, 453 block, current->comm, &vaf); 454 else 455 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 456 "inode #%lu: comm %s: %pV\n", 457 inode->i_sb->s_id, function, line, inode->i_ino, 458 current->comm, &vaf); 459 va_end(args); 460 } 461 save_error_info(inode->i_sb, function, line); 462 ext4_handle_error(inode->i_sb); 463 } 464 465 void __ext4_error_file(struct file *file, const char *function, 466 unsigned int line, ext4_fsblk_t block, 467 const char *fmt, ...) 468 { 469 va_list args; 470 struct va_format vaf; 471 struct ext4_super_block *es; 472 struct inode *inode = file_inode(file); 473 char pathname[80], *path; 474 475 es = EXT4_SB(inode->i_sb)->s_es; 476 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 477 if (ext4_error_ratelimit(inode->i_sb)) { 478 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 479 if (IS_ERR(path)) 480 path = "(unknown)"; 481 va_start(args, fmt); 482 vaf.fmt = fmt; 483 vaf.va = &args; 484 if (block) 485 printk(KERN_CRIT 486 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 487 "block %llu: comm %s: path %s: %pV\n", 488 inode->i_sb->s_id, function, line, inode->i_ino, 489 block, current->comm, path, &vaf); 490 else 491 printk(KERN_CRIT 492 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 493 "comm %s: path %s: %pV\n", 494 inode->i_sb->s_id, function, line, inode->i_ino, 495 current->comm, path, &vaf); 496 va_end(args); 497 } 498 save_error_info(inode->i_sb, function, line); 499 ext4_handle_error(inode->i_sb); 500 } 501 502 const char *ext4_decode_error(struct super_block *sb, int errno, 503 char nbuf[16]) 504 { 505 char *errstr = NULL; 506 507 switch (errno) { 508 case -EIO: 509 errstr = "IO failure"; 510 break; 511 case -ENOMEM: 512 errstr = "Out of memory"; 513 break; 514 case -EROFS: 515 if (!sb || (EXT4_SB(sb)->s_journal && 516 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 517 errstr = "Journal has aborted"; 518 else 519 errstr = "Readonly filesystem"; 520 break; 521 default: 522 /* If the caller passed in an extra buffer for unknown 523 * errors, textualise them now. Else we just return 524 * NULL. */ 525 if (nbuf) { 526 /* Check for truncated error codes... */ 527 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 528 errstr = nbuf; 529 } 530 break; 531 } 532 533 return errstr; 534 } 535 536 /* __ext4_std_error decodes expected errors from journaling functions 537 * automatically and invokes the appropriate error response. */ 538 539 void __ext4_std_error(struct super_block *sb, const char *function, 540 unsigned int line, int errno) 541 { 542 char nbuf[16]; 543 const char *errstr; 544 545 /* Special case: if the error is EROFS, and we're not already 546 * inside a transaction, then there's really no point in logging 547 * an error. */ 548 if (errno == -EROFS && journal_current_handle() == NULL && 549 (sb->s_flags & MS_RDONLY)) 550 return; 551 552 if (ext4_error_ratelimit(sb)) { 553 errstr = ext4_decode_error(sb, errno, nbuf); 554 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 555 sb->s_id, function, line, errstr); 556 } 557 558 save_error_info(sb, function, line); 559 ext4_handle_error(sb); 560 } 561 562 /* 563 * ext4_abort is a much stronger failure handler than ext4_error. The 564 * abort function may be used to deal with unrecoverable failures such 565 * as journal IO errors or ENOMEM at a critical moment in log management. 566 * 567 * We unconditionally force the filesystem into an ABORT|READONLY state, 568 * unless the error response on the fs has been set to panic in which 569 * case we take the easy way out and panic immediately. 570 */ 571 572 void __ext4_abort(struct super_block *sb, const char *function, 573 unsigned int line, const char *fmt, ...) 574 { 575 va_list args; 576 577 save_error_info(sb, function, line); 578 va_start(args, fmt); 579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 580 function, line); 581 vprintk(fmt, args); 582 printk("\n"); 583 va_end(args); 584 585 if ((sb->s_flags & MS_RDONLY) == 0) { 586 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 587 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 588 /* 589 * Make sure updated value of ->s_mount_flags will be visible 590 * before ->s_flags update 591 */ 592 smp_wmb(); 593 sb->s_flags |= MS_RDONLY; 594 if (EXT4_SB(sb)->s_journal) 595 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 596 save_error_info(sb, function, line); 597 } 598 if (test_opt(sb, ERRORS_PANIC)) 599 panic("EXT4-fs panic from previous error\n"); 600 } 601 602 void __ext4_msg(struct super_block *sb, 603 const char *prefix, const char *fmt, ...) 604 { 605 struct va_format vaf; 606 va_list args; 607 608 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 609 return; 610 611 va_start(args, fmt); 612 vaf.fmt = fmt; 613 vaf.va = &args; 614 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 615 va_end(args); 616 } 617 618 void __ext4_warning(struct super_block *sb, const char *function, 619 unsigned int line, const char *fmt, ...) 620 { 621 struct va_format vaf; 622 va_list args; 623 624 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 625 "EXT4-fs warning")) 626 return; 627 628 va_start(args, fmt); 629 vaf.fmt = fmt; 630 vaf.va = &args; 631 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 632 sb->s_id, function, line, &vaf); 633 va_end(args); 634 } 635 636 void __ext4_grp_locked_error(const char *function, unsigned int line, 637 struct super_block *sb, ext4_group_t grp, 638 unsigned long ino, ext4_fsblk_t block, 639 const char *fmt, ...) 640 __releases(bitlock) 641 __acquires(bitlock) 642 { 643 struct va_format vaf; 644 va_list args; 645 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 646 647 es->s_last_error_ino = cpu_to_le32(ino); 648 es->s_last_error_block = cpu_to_le64(block); 649 __save_error_info(sb, function, line); 650 651 if (ext4_error_ratelimit(sb)) { 652 va_start(args, fmt); 653 vaf.fmt = fmt; 654 vaf.va = &args; 655 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 656 sb->s_id, function, line, grp); 657 if (ino) 658 printk(KERN_CONT "inode %lu: ", ino); 659 if (block) 660 printk(KERN_CONT "block %llu:", 661 (unsigned long long) block); 662 printk(KERN_CONT "%pV\n", &vaf); 663 va_end(args); 664 } 665 666 if (test_opt(sb, ERRORS_CONT)) { 667 ext4_commit_super(sb, 0); 668 return; 669 } 670 671 ext4_unlock_group(sb, grp); 672 ext4_handle_error(sb); 673 /* 674 * We only get here in the ERRORS_RO case; relocking the group 675 * may be dangerous, but nothing bad will happen since the 676 * filesystem will have already been marked read/only and the 677 * journal has been aborted. We return 1 as a hint to callers 678 * who might what to use the return value from 679 * ext4_grp_locked_error() to distinguish between the 680 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 681 * aggressively from the ext4 function in question, with a 682 * more appropriate error code. 683 */ 684 ext4_lock_group(sb, grp); 685 return; 686 } 687 688 void ext4_update_dynamic_rev(struct super_block *sb) 689 { 690 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 691 692 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 693 return; 694 695 ext4_warning(sb, 696 "updating to rev %d because of new feature flag, " 697 "running e2fsck is recommended", 698 EXT4_DYNAMIC_REV); 699 700 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 701 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 702 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 703 /* leave es->s_feature_*compat flags alone */ 704 /* es->s_uuid will be set by e2fsck if empty */ 705 706 /* 707 * The rest of the superblock fields should be zero, and if not it 708 * means they are likely already in use, so leave them alone. We 709 * can leave it up to e2fsck to clean up any inconsistencies there. 710 */ 711 } 712 713 /* 714 * Open the external journal device 715 */ 716 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 717 { 718 struct block_device *bdev; 719 char b[BDEVNAME_SIZE]; 720 721 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 722 if (IS_ERR(bdev)) 723 goto fail; 724 return bdev; 725 726 fail: 727 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 728 __bdevname(dev, b), PTR_ERR(bdev)); 729 return NULL; 730 } 731 732 /* 733 * Release the journal device 734 */ 735 static void ext4_blkdev_put(struct block_device *bdev) 736 { 737 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 738 } 739 740 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 741 { 742 struct block_device *bdev; 743 bdev = sbi->journal_bdev; 744 if (bdev) { 745 ext4_blkdev_put(bdev); 746 sbi->journal_bdev = NULL; 747 } 748 } 749 750 static inline struct inode *orphan_list_entry(struct list_head *l) 751 { 752 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 753 } 754 755 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 756 { 757 struct list_head *l; 758 759 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 760 le32_to_cpu(sbi->s_es->s_last_orphan)); 761 762 printk(KERN_ERR "sb_info orphan list:\n"); 763 list_for_each(l, &sbi->s_orphan) { 764 struct inode *inode = orphan_list_entry(l); 765 printk(KERN_ERR " " 766 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 767 inode->i_sb->s_id, inode->i_ino, inode, 768 inode->i_mode, inode->i_nlink, 769 NEXT_ORPHAN(inode)); 770 } 771 } 772 773 static void ext4_put_super(struct super_block *sb) 774 { 775 struct ext4_sb_info *sbi = EXT4_SB(sb); 776 struct ext4_super_block *es = sbi->s_es; 777 int i, err; 778 779 ext4_unregister_li_request(sb); 780 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 781 782 flush_workqueue(sbi->rsv_conversion_wq); 783 destroy_workqueue(sbi->rsv_conversion_wq); 784 785 if (sbi->s_journal) { 786 err = jbd2_journal_destroy(sbi->s_journal); 787 sbi->s_journal = NULL; 788 if (err < 0) 789 ext4_abort(sb, "Couldn't clean up the journal"); 790 } 791 792 ext4_es_unregister_shrinker(sbi); 793 del_timer_sync(&sbi->s_err_report); 794 ext4_release_system_zone(sb); 795 ext4_mb_release(sb); 796 ext4_ext_release(sb); 797 ext4_xattr_put_super(sb); 798 799 if (!(sb->s_flags & MS_RDONLY)) { 800 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 801 es->s_state = cpu_to_le16(sbi->s_mount_state); 802 } 803 if (!(sb->s_flags & MS_RDONLY)) 804 ext4_commit_super(sb, 1); 805 806 if (sbi->s_proc) { 807 remove_proc_entry("options", sbi->s_proc); 808 remove_proc_entry(sb->s_id, ext4_proc_root); 809 } 810 kobject_del(&sbi->s_kobj); 811 812 for (i = 0; i < sbi->s_gdb_count; i++) 813 brelse(sbi->s_group_desc[i]); 814 ext4_kvfree(sbi->s_group_desc); 815 ext4_kvfree(sbi->s_flex_groups); 816 percpu_counter_destroy(&sbi->s_freeclusters_counter); 817 percpu_counter_destroy(&sbi->s_freeinodes_counter); 818 percpu_counter_destroy(&sbi->s_dirs_counter); 819 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 820 brelse(sbi->s_sbh); 821 #ifdef CONFIG_QUOTA 822 for (i = 0; i < EXT4_MAXQUOTAS; i++) 823 kfree(sbi->s_qf_names[i]); 824 #endif 825 826 /* Debugging code just in case the in-memory inode orphan list 827 * isn't empty. The on-disk one can be non-empty if we've 828 * detected an error and taken the fs readonly, but the 829 * in-memory list had better be clean by this point. */ 830 if (!list_empty(&sbi->s_orphan)) 831 dump_orphan_list(sb, sbi); 832 J_ASSERT(list_empty(&sbi->s_orphan)); 833 834 invalidate_bdev(sb->s_bdev); 835 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 836 /* 837 * Invalidate the journal device's buffers. We don't want them 838 * floating about in memory - the physical journal device may 839 * hotswapped, and it breaks the `ro-after' testing code. 840 */ 841 sync_blockdev(sbi->journal_bdev); 842 invalidate_bdev(sbi->journal_bdev); 843 ext4_blkdev_remove(sbi); 844 } 845 if (sbi->s_mb_cache) { 846 ext4_xattr_destroy_cache(sbi->s_mb_cache); 847 sbi->s_mb_cache = NULL; 848 } 849 if (sbi->s_mmp_tsk) 850 kthread_stop(sbi->s_mmp_tsk); 851 sb->s_fs_info = NULL; 852 /* 853 * Now that we are completely done shutting down the 854 * superblock, we need to actually destroy the kobject. 855 */ 856 kobject_put(&sbi->s_kobj); 857 wait_for_completion(&sbi->s_kobj_unregister); 858 if (sbi->s_chksum_driver) 859 crypto_free_shash(sbi->s_chksum_driver); 860 kfree(sbi->s_blockgroup_lock); 861 kfree(sbi); 862 } 863 864 static struct kmem_cache *ext4_inode_cachep; 865 866 /* 867 * Called inside transaction, so use GFP_NOFS 868 */ 869 static struct inode *ext4_alloc_inode(struct super_block *sb) 870 { 871 struct ext4_inode_info *ei; 872 873 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 874 if (!ei) 875 return NULL; 876 877 ei->vfs_inode.i_version = 1; 878 spin_lock_init(&ei->i_raw_lock); 879 INIT_LIST_HEAD(&ei->i_prealloc_list); 880 spin_lock_init(&ei->i_prealloc_lock); 881 ext4_es_init_tree(&ei->i_es_tree); 882 rwlock_init(&ei->i_es_lock); 883 INIT_LIST_HEAD(&ei->i_es_lru); 884 ei->i_es_all_nr = 0; 885 ei->i_es_lru_nr = 0; 886 ei->i_touch_when = 0; 887 ei->i_reserved_data_blocks = 0; 888 ei->i_reserved_meta_blocks = 0; 889 ei->i_allocated_meta_blocks = 0; 890 ei->i_da_metadata_calc_len = 0; 891 ei->i_da_metadata_calc_last_lblock = 0; 892 spin_lock_init(&(ei->i_block_reservation_lock)); 893 #ifdef CONFIG_QUOTA 894 ei->i_reserved_quota = 0; 895 #endif 896 ei->jinode = NULL; 897 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 898 spin_lock_init(&ei->i_completed_io_lock); 899 ei->i_sync_tid = 0; 900 ei->i_datasync_tid = 0; 901 atomic_set(&ei->i_ioend_count, 0); 902 atomic_set(&ei->i_unwritten, 0); 903 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 904 905 return &ei->vfs_inode; 906 } 907 908 static int ext4_drop_inode(struct inode *inode) 909 { 910 int drop = generic_drop_inode(inode); 911 912 trace_ext4_drop_inode(inode, drop); 913 return drop; 914 } 915 916 static void ext4_i_callback(struct rcu_head *head) 917 { 918 struct inode *inode = container_of(head, struct inode, i_rcu); 919 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 920 } 921 922 static void ext4_destroy_inode(struct inode *inode) 923 { 924 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 925 ext4_msg(inode->i_sb, KERN_ERR, 926 "Inode %lu (%p): orphan list check failed!", 927 inode->i_ino, EXT4_I(inode)); 928 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 929 EXT4_I(inode), sizeof(struct ext4_inode_info), 930 true); 931 dump_stack(); 932 } 933 call_rcu(&inode->i_rcu, ext4_i_callback); 934 } 935 936 static void init_once(void *foo) 937 { 938 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 939 940 INIT_LIST_HEAD(&ei->i_orphan); 941 init_rwsem(&ei->xattr_sem); 942 init_rwsem(&ei->i_data_sem); 943 inode_init_once(&ei->vfs_inode); 944 } 945 946 static int __init init_inodecache(void) 947 { 948 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 949 sizeof(struct ext4_inode_info), 950 0, (SLAB_RECLAIM_ACCOUNT| 951 SLAB_MEM_SPREAD), 952 init_once); 953 if (ext4_inode_cachep == NULL) 954 return -ENOMEM; 955 return 0; 956 } 957 958 static void destroy_inodecache(void) 959 { 960 /* 961 * Make sure all delayed rcu free inodes are flushed before we 962 * destroy cache. 963 */ 964 rcu_barrier(); 965 kmem_cache_destroy(ext4_inode_cachep); 966 } 967 968 void ext4_clear_inode(struct inode *inode) 969 { 970 invalidate_inode_buffers(inode); 971 clear_inode(inode); 972 dquot_drop(inode); 973 ext4_discard_preallocations(inode); 974 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 975 ext4_es_lru_del(inode); 976 if (EXT4_I(inode)->jinode) { 977 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 978 EXT4_I(inode)->jinode); 979 jbd2_free_inode(EXT4_I(inode)->jinode); 980 EXT4_I(inode)->jinode = NULL; 981 } 982 } 983 984 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 985 u64 ino, u32 generation) 986 { 987 struct inode *inode; 988 989 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 990 return ERR_PTR(-ESTALE); 991 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 992 return ERR_PTR(-ESTALE); 993 994 /* iget isn't really right if the inode is currently unallocated!! 995 * 996 * ext4_read_inode will return a bad_inode if the inode had been 997 * deleted, so we should be safe. 998 * 999 * Currently we don't know the generation for parent directory, so 1000 * a generation of 0 means "accept any" 1001 */ 1002 inode = ext4_iget_normal(sb, ino); 1003 if (IS_ERR(inode)) 1004 return ERR_CAST(inode); 1005 if (generation && inode->i_generation != generation) { 1006 iput(inode); 1007 return ERR_PTR(-ESTALE); 1008 } 1009 1010 return inode; 1011 } 1012 1013 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1014 int fh_len, int fh_type) 1015 { 1016 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1017 ext4_nfs_get_inode); 1018 } 1019 1020 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1021 int fh_len, int fh_type) 1022 { 1023 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1024 ext4_nfs_get_inode); 1025 } 1026 1027 /* 1028 * Try to release metadata pages (indirect blocks, directories) which are 1029 * mapped via the block device. Since these pages could have journal heads 1030 * which would prevent try_to_free_buffers() from freeing them, we must use 1031 * jbd2 layer's try_to_free_buffers() function to release them. 1032 */ 1033 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1034 gfp_t wait) 1035 { 1036 journal_t *journal = EXT4_SB(sb)->s_journal; 1037 1038 WARN_ON(PageChecked(page)); 1039 if (!page_has_buffers(page)) 1040 return 0; 1041 if (journal) 1042 return jbd2_journal_try_to_free_buffers(journal, page, 1043 wait & ~__GFP_WAIT); 1044 return try_to_free_buffers(page); 1045 } 1046 1047 #ifdef CONFIG_QUOTA 1048 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1049 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1050 1051 static int ext4_write_dquot(struct dquot *dquot); 1052 static int ext4_acquire_dquot(struct dquot *dquot); 1053 static int ext4_release_dquot(struct dquot *dquot); 1054 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1055 static int ext4_write_info(struct super_block *sb, int type); 1056 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1057 struct path *path); 1058 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1059 int format_id); 1060 static int ext4_quota_off(struct super_block *sb, int type); 1061 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1062 static int ext4_quota_on_mount(struct super_block *sb, int type); 1063 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1064 size_t len, loff_t off); 1065 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1066 const char *data, size_t len, loff_t off); 1067 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1068 unsigned int flags); 1069 static int ext4_enable_quotas(struct super_block *sb); 1070 1071 static const struct dquot_operations ext4_quota_operations = { 1072 .get_reserved_space = ext4_get_reserved_space, 1073 .write_dquot = ext4_write_dquot, 1074 .acquire_dquot = ext4_acquire_dquot, 1075 .release_dquot = ext4_release_dquot, 1076 .mark_dirty = ext4_mark_dquot_dirty, 1077 .write_info = ext4_write_info, 1078 .alloc_dquot = dquot_alloc, 1079 .destroy_dquot = dquot_destroy, 1080 }; 1081 1082 static const struct quotactl_ops ext4_qctl_operations = { 1083 .quota_on = ext4_quota_on, 1084 .quota_off = ext4_quota_off, 1085 .quota_sync = dquot_quota_sync, 1086 .get_info = dquot_get_dqinfo, 1087 .set_info = dquot_set_dqinfo, 1088 .get_dqblk = dquot_get_dqblk, 1089 .set_dqblk = dquot_set_dqblk 1090 }; 1091 1092 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1093 .quota_on_meta = ext4_quota_on_sysfile, 1094 .quota_off = ext4_quota_off_sysfile, 1095 .quota_sync = dquot_quota_sync, 1096 .get_info = dquot_get_dqinfo, 1097 .set_info = dquot_set_dqinfo, 1098 .get_dqblk = dquot_get_dqblk, 1099 .set_dqblk = dquot_set_dqblk 1100 }; 1101 #endif 1102 1103 static const struct super_operations ext4_sops = { 1104 .alloc_inode = ext4_alloc_inode, 1105 .destroy_inode = ext4_destroy_inode, 1106 .write_inode = ext4_write_inode, 1107 .dirty_inode = ext4_dirty_inode, 1108 .drop_inode = ext4_drop_inode, 1109 .evict_inode = ext4_evict_inode, 1110 .put_super = ext4_put_super, 1111 .sync_fs = ext4_sync_fs, 1112 .freeze_fs = ext4_freeze, 1113 .unfreeze_fs = ext4_unfreeze, 1114 .statfs = ext4_statfs, 1115 .remount_fs = ext4_remount, 1116 .show_options = ext4_show_options, 1117 #ifdef CONFIG_QUOTA 1118 .quota_read = ext4_quota_read, 1119 .quota_write = ext4_quota_write, 1120 #endif 1121 .bdev_try_to_free_page = bdev_try_to_free_page, 1122 }; 1123 1124 static const struct export_operations ext4_export_ops = { 1125 .fh_to_dentry = ext4_fh_to_dentry, 1126 .fh_to_parent = ext4_fh_to_parent, 1127 .get_parent = ext4_get_parent, 1128 }; 1129 1130 enum { 1131 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1132 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1133 Opt_nouid32, Opt_debug, Opt_removed, 1134 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1135 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1136 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1137 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1138 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1139 Opt_data_err_abort, Opt_data_err_ignore, 1140 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1141 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1142 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1143 Opt_usrquota, Opt_grpquota, Opt_i_version, 1144 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1145 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1146 Opt_inode_readahead_blks, Opt_journal_ioprio, 1147 Opt_dioread_nolock, Opt_dioread_lock, 1148 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1149 Opt_max_dir_size_kb, 1150 }; 1151 1152 static const match_table_t tokens = { 1153 {Opt_bsd_df, "bsddf"}, 1154 {Opt_minix_df, "minixdf"}, 1155 {Opt_grpid, "grpid"}, 1156 {Opt_grpid, "bsdgroups"}, 1157 {Opt_nogrpid, "nogrpid"}, 1158 {Opt_nogrpid, "sysvgroups"}, 1159 {Opt_resgid, "resgid=%u"}, 1160 {Opt_resuid, "resuid=%u"}, 1161 {Opt_sb, "sb=%u"}, 1162 {Opt_err_cont, "errors=continue"}, 1163 {Opt_err_panic, "errors=panic"}, 1164 {Opt_err_ro, "errors=remount-ro"}, 1165 {Opt_nouid32, "nouid32"}, 1166 {Opt_debug, "debug"}, 1167 {Opt_removed, "oldalloc"}, 1168 {Opt_removed, "orlov"}, 1169 {Opt_user_xattr, "user_xattr"}, 1170 {Opt_nouser_xattr, "nouser_xattr"}, 1171 {Opt_acl, "acl"}, 1172 {Opt_noacl, "noacl"}, 1173 {Opt_noload, "norecovery"}, 1174 {Opt_noload, "noload"}, 1175 {Opt_removed, "nobh"}, 1176 {Opt_removed, "bh"}, 1177 {Opt_commit, "commit=%u"}, 1178 {Opt_min_batch_time, "min_batch_time=%u"}, 1179 {Opt_max_batch_time, "max_batch_time=%u"}, 1180 {Opt_journal_dev, "journal_dev=%u"}, 1181 {Opt_journal_path, "journal_path=%s"}, 1182 {Opt_journal_checksum, "journal_checksum"}, 1183 {Opt_journal_async_commit, "journal_async_commit"}, 1184 {Opt_abort, "abort"}, 1185 {Opt_data_journal, "data=journal"}, 1186 {Opt_data_ordered, "data=ordered"}, 1187 {Opt_data_writeback, "data=writeback"}, 1188 {Opt_data_err_abort, "data_err=abort"}, 1189 {Opt_data_err_ignore, "data_err=ignore"}, 1190 {Opt_offusrjquota, "usrjquota="}, 1191 {Opt_usrjquota, "usrjquota=%s"}, 1192 {Opt_offgrpjquota, "grpjquota="}, 1193 {Opt_grpjquota, "grpjquota=%s"}, 1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1197 {Opt_grpquota, "grpquota"}, 1198 {Opt_noquota, "noquota"}, 1199 {Opt_quota, "quota"}, 1200 {Opt_usrquota, "usrquota"}, 1201 {Opt_barrier, "barrier=%u"}, 1202 {Opt_barrier, "barrier"}, 1203 {Opt_nobarrier, "nobarrier"}, 1204 {Opt_i_version, "i_version"}, 1205 {Opt_stripe, "stripe=%u"}, 1206 {Opt_delalloc, "delalloc"}, 1207 {Opt_nodelalloc, "nodelalloc"}, 1208 {Opt_removed, "mblk_io_submit"}, 1209 {Opt_removed, "nomblk_io_submit"}, 1210 {Opt_block_validity, "block_validity"}, 1211 {Opt_noblock_validity, "noblock_validity"}, 1212 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1213 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1214 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1215 {Opt_auto_da_alloc, "auto_da_alloc"}, 1216 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1217 {Opt_dioread_nolock, "dioread_nolock"}, 1218 {Opt_dioread_lock, "dioread_lock"}, 1219 {Opt_discard, "discard"}, 1220 {Opt_nodiscard, "nodiscard"}, 1221 {Opt_init_itable, "init_itable=%u"}, 1222 {Opt_init_itable, "init_itable"}, 1223 {Opt_noinit_itable, "noinit_itable"}, 1224 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1225 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1226 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1227 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1228 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1229 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1230 {Opt_err, NULL}, 1231 }; 1232 1233 static ext4_fsblk_t get_sb_block(void **data) 1234 { 1235 ext4_fsblk_t sb_block; 1236 char *options = (char *) *data; 1237 1238 if (!options || strncmp(options, "sb=", 3) != 0) 1239 return 1; /* Default location */ 1240 1241 options += 3; 1242 /* TODO: use simple_strtoll with >32bit ext4 */ 1243 sb_block = simple_strtoul(options, &options, 0); 1244 if (*options && *options != ',') { 1245 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1246 (char *) *data); 1247 return 1; 1248 } 1249 if (*options == ',') 1250 options++; 1251 *data = (void *) options; 1252 1253 return sb_block; 1254 } 1255 1256 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1257 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1258 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1259 1260 #ifdef CONFIG_QUOTA 1261 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1262 { 1263 struct ext4_sb_info *sbi = EXT4_SB(sb); 1264 char *qname; 1265 int ret = -1; 1266 1267 if (sb_any_quota_loaded(sb) && 1268 !sbi->s_qf_names[qtype]) { 1269 ext4_msg(sb, KERN_ERR, 1270 "Cannot change journaled " 1271 "quota options when quota turned on"); 1272 return -1; 1273 } 1274 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1275 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1276 "when QUOTA feature is enabled"); 1277 return -1; 1278 } 1279 qname = match_strdup(args); 1280 if (!qname) { 1281 ext4_msg(sb, KERN_ERR, 1282 "Not enough memory for storing quotafile name"); 1283 return -1; 1284 } 1285 if (sbi->s_qf_names[qtype]) { 1286 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1287 ret = 1; 1288 else 1289 ext4_msg(sb, KERN_ERR, 1290 "%s quota file already specified", 1291 QTYPE2NAME(qtype)); 1292 goto errout; 1293 } 1294 if (strchr(qname, '/')) { 1295 ext4_msg(sb, KERN_ERR, 1296 "quotafile must be on filesystem root"); 1297 goto errout; 1298 } 1299 sbi->s_qf_names[qtype] = qname; 1300 set_opt(sb, QUOTA); 1301 return 1; 1302 errout: 1303 kfree(qname); 1304 return ret; 1305 } 1306 1307 static int clear_qf_name(struct super_block *sb, int qtype) 1308 { 1309 1310 struct ext4_sb_info *sbi = EXT4_SB(sb); 1311 1312 if (sb_any_quota_loaded(sb) && 1313 sbi->s_qf_names[qtype]) { 1314 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1315 " when quota turned on"); 1316 return -1; 1317 } 1318 kfree(sbi->s_qf_names[qtype]); 1319 sbi->s_qf_names[qtype] = NULL; 1320 return 1; 1321 } 1322 #endif 1323 1324 #define MOPT_SET 0x0001 1325 #define MOPT_CLEAR 0x0002 1326 #define MOPT_NOSUPPORT 0x0004 1327 #define MOPT_EXPLICIT 0x0008 1328 #define MOPT_CLEAR_ERR 0x0010 1329 #define MOPT_GTE0 0x0020 1330 #ifdef CONFIG_QUOTA 1331 #define MOPT_Q 0 1332 #define MOPT_QFMT 0x0040 1333 #else 1334 #define MOPT_Q MOPT_NOSUPPORT 1335 #define MOPT_QFMT MOPT_NOSUPPORT 1336 #endif 1337 #define MOPT_DATAJ 0x0080 1338 #define MOPT_NO_EXT2 0x0100 1339 #define MOPT_NO_EXT3 0x0200 1340 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1341 #define MOPT_STRING 0x0400 1342 1343 static const struct mount_opts { 1344 int token; 1345 int mount_opt; 1346 int flags; 1347 } ext4_mount_opts[] = { 1348 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1349 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1350 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1351 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1352 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1353 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1354 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1355 MOPT_EXT4_ONLY | MOPT_SET}, 1356 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1357 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1358 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1359 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1360 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1361 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1362 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1363 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1364 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1365 MOPT_EXT4_ONLY | MOPT_SET}, 1366 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1367 EXT4_MOUNT_JOURNAL_CHECKSUM), 1368 MOPT_EXT4_ONLY | MOPT_SET}, 1369 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1370 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1371 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1372 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1373 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1374 MOPT_NO_EXT2 | MOPT_SET}, 1375 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1376 MOPT_NO_EXT2 | MOPT_CLEAR}, 1377 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1378 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1379 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1380 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1381 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1382 {Opt_commit, 0, MOPT_GTE0}, 1383 {Opt_max_batch_time, 0, MOPT_GTE0}, 1384 {Opt_min_batch_time, 0, MOPT_GTE0}, 1385 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1386 {Opt_init_itable, 0, MOPT_GTE0}, 1387 {Opt_stripe, 0, MOPT_GTE0}, 1388 {Opt_resuid, 0, MOPT_GTE0}, 1389 {Opt_resgid, 0, MOPT_GTE0}, 1390 {Opt_journal_dev, 0, MOPT_GTE0}, 1391 {Opt_journal_path, 0, MOPT_STRING}, 1392 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1393 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1394 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1395 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1396 MOPT_NO_EXT2 | MOPT_DATAJ}, 1397 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1398 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1399 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1400 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1401 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1402 #else 1403 {Opt_acl, 0, MOPT_NOSUPPORT}, 1404 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1405 #endif 1406 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1407 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1408 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1409 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1410 MOPT_SET | MOPT_Q}, 1411 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1412 MOPT_SET | MOPT_Q}, 1413 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1414 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1415 {Opt_usrjquota, 0, MOPT_Q}, 1416 {Opt_grpjquota, 0, MOPT_Q}, 1417 {Opt_offusrjquota, 0, MOPT_Q}, 1418 {Opt_offgrpjquota, 0, MOPT_Q}, 1419 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1420 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1421 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1422 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1423 {Opt_err, 0, 0} 1424 }; 1425 1426 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1427 substring_t *args, unsigned long *journal_devnum, 1428 unsigned int *journal_ioprio, int is_remount) 1429 { 1430 struct ext4_sb_info *sbi = EXT4_SB(sb); 1431 const struct mount_opts *m; 1432 kuid_t uid; 1433 kgid_t gid; 1434 int arg = 0; 1435 1436 #ifdef CONFIG_QUOTA 1437 if (token == Opt_usrjquota) 1438 return set_qf_name(sb, USRQUOTA, &args[0]); 1439 else if (token == Opt_grpjquota) 1440 return set_qf_name(sb, GRPQUOTA, &args[0]); 1441 else if (token == Opt_offusrjquota) 1442 return clear_qf_name(sb, USRQUOTA); 1443 else if (token == Opt_offgrpjquota) 1444 return clear_qf_name(sb, GRPQUOTA); 1445 #endif 1446 switch (token) { 1447 case Opt_noacl: 1448 case Opt_nouser_xattr: 1449 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1450 break; 1451 case Opt_sb: 1452 return 1; /* handled by get_sb_block() */ 1453 case Opt_removed: 1454 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1455 return 1; 1456 case Opt_abort: 1457 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1458 return 1; 1459 case Opt_i_version: 1460 sb->s_flags |= MS_I_VERSION; 1461 return 1; 1462 } 1463 1464 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1465 if (token == m->token) 1466 break; 1467 1468 if (m->token == Opt_err) { 1469 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1470 "or missing value", opt); 1471 return -1; 1472 } 1473 1474 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1475 ext4_msg(sb, KERN_ERR, 1476 "Mount option \"%s\" incompatible with ext2", opt); 1477 return -1; 1478 } 1479 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1480 ext4_msg(sb, KERN_ERR, 1481 "Mount option \"%s\" incompatible with ext3", opt); 1482 return -1; 1483 } 1484 1485 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1486 return -1; 1487 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1488 return -1; 1489 if (m->flags & MOPT_EXPLICIT) 1490 set_opt2(sb, EXPLICIT_DELALLOC); 1491 if (m->flags & MOPT_CLEAR_ERR) 1492 clear_opt(sb, ERRORS_MASK); 1493 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1494 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1495 "options when quota turned on"); 1496 return -1; 1497 } 1498 1499 if (m->flags & MOPT_NOSUPPORT) { 1500 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1501 } else if (token == Opt_commit) { 1502 if (arg == 0) 1503 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1504 sbi->s_commit_interval = HZ * arg; 1505 } else if (token == Opt_max_batch_time) { 1506 sbi->s_max_batch_time = arg; 1507 } else if (token == Opt_min_batch_time) { 1508 sbi->s_min_batch_time = arg; 1509 } else if (token == Opt_inode_readahead_blks) { 1510 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1511 ext4_msg(sb, KERN_ERR, 1512 "EXT4-fs: inode_readahead_blks must be " 1513 "0 or a power of 2 smaller than 2^31"); 1514 return -1; 1515 } 1516 sbi->s_inode_readahead_blks = arg; 1517 } else if (token == Opt_init_itable) { 1518 set_opt(sb, INIT_INODE_TABLE); 1519 if (!args->from) 1520 arg = EXT4_DEF_LI_WAIT_MULT; 1521 sbi->s_li_wait_mult = arg; 1522 } else if (token == Opt_max_dir_size_kb) { 1523 sbi->s_max_dir_size_kb = arg; 1524 } else if (token == Opt_stripe) { 1525 sbi->s_stripe = arg; 1526 } else if (token == Opt_resuid) { 1527 uid = make_kuid(current_user_ns(), arg); 1528 if (!uid_valid(uid)) { 1529 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1530 return -1; 1531 } 1532 sbi->s_resuid = uid; 1533 } else if (token == Opt_resgid) { 1534 gid = make_kgid(current_user_ns(), arg); 1535 if (!gid_valid(gid)) { 1536 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1537 return -1; 1538 } 1539 sbi->s_resgid = gid; 1540 } else if (token == Opt_journal_dev) { 1541 if (is_remount) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Cannot specify journal on remount"); 1544 return -1; 1545 } 1546 *journal_devnum = arg; 1547 } else if (token == Opt_journal_path) { 1548 char *journal_path; 1549 struct inode *journal_inode; 1550 struct path path; 1551 int error; 1552 1553 if (is_remount) { 1554 ext4_msg(sb, KERN_ERR, 1555 "Cannot specify journal on remount"); 1556 return -1; 1557 } 1558 journal_path = match_strdup(&args[0]); 1559 if (!journal_path) { 1560 ext4_msg(sb, KERN_ERR, "error: could not dup " 1561 "journal device string"); 1562 return -1; 1563 } 1564 1565 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1566 if (error) { 1567 ext4_msg(sb, KERN_ERR, "error: could not find " 1568 "journal device path: error %d", error); 1569 kfree(journal_path); 1570 return -1; 1571 } 1572 1573 journal_inode = path.dentry->d_inode; 1574 if (!S_ISBLK(journal_inode->i_mode)) { 1575 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1576 "is not a block device", journal_path); 1577 path_put(&path); 1578 kfree(journal_path); 1579 return -1; 1580 } 1581 1582 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1583 path_put(&path); 1584 kfree(journal_path); 1585 } else if (token == Opt_journal_ioprio) { 1586 if (arg > 7) { 1587 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1588 " (must be 0-7)"); 1589 return -1; 1590 } 1591 *journal_ioprio = 1592 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1593 } else if (m->flags & MOPT_DATAJ) { 1594 if (is_remount) { 1595 if (!sbi->s_journal) 1596 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1597 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1598 ext4_msg(sb, KERN_ERR, 1599 "Cannot change data mode on remount"); 1600 return -1; 1601 } 1602 } else { 1603 clear_opt(sb, DATA_FLAGS); 1604 sbi->s_mount_opt |= m->mount_opt; 1605 } 1606 #ifdef CONFIG_QUOTA 1607 } else if (m->flags & MOPT_QFMT) { 1608 if (sb_any_quota_loaded(sb) && 1609 sbi->s_jquota_fmt != m->mount_opt) { 1610 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1611 "quota options when quota turned on"); 1612 return -1; 1613 } 1614 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1615 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1616 ext4_msg(sb, KERN_ERR, 1617 "Cannot set journaled quota options " 1618 "when QUOTA feature is enabled"); 1619 return -1; 1620 } 1621 sbi->s_jquota_fmt = m->mount_opt; 1622 #endif 1623 } else { 1624 if (!args->from) 1625 arg = 1; 1626 if (m->flags & MOPT_CLEAR) 1627 arg = !arg; 1628 else if (unlikely(!(m->flags & MOPT_SET))) { 1629 ext4_msg(sb, KERN_WARNING, 1630 "buggy handling of option %s", opt); 1631 WARN_ON(1); 1632 return -1; 1633 } 1634 if (arg != 0) 1635 sbi->s_mount_opt |= m->mount_opt; 1636 else 1637 sbi->s_mount_opt &= ~m->mount_opt; 1638 } 1639 return 1; 1640 } 1641 1642 static int parse_options(char *options, struct super_block *sb, 1643 unsigned long *journal_devnum, 1644 unsigned int *journal_ioprio, 1645 int is_remount) 1646 { 1647 struct ext4_sb_info *sbi = EXT4_SB(sb); 1648 char *p; 1649 substring_t args[MAX_OPT_ARGS]; 1650 int token; 1651 1652 if (!options) 1653 return 1; 1654 1655 while ((p = strsep(&options, ",")) != NULL) { 1656 if (!*p) 1657 continue; 1658 /* 1659 * Initialize args struct so we know whether arg was 1660 * found; some options take optional arguments. 1661 */ 1662 args[0].to = args[0].from = NULL; 1663 token = match_token(p, tokens, args); 1664 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1665 journal_ioprio, is_remount) < 0) 1666 return 0; 1667 } 1668 #ifdef CONFIG_QUOTA 1669 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1670 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1671 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1672 "feature is enabled"); 1673 return 0; 1674 } 1675 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1676 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1677 clear_opt(sb, USRQUOTA); 1678 1679 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1680 clear_opt(sb, GRPQUOTA); 1681 1682 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1683 ext4_msg(sb, KERN_ERR, "old and new quota " 1684 "format mixing"); 1685 return 0; 1686 } 1687 1688 if (!sbi->s_jquota_fmt) { 1689 ext4_msg(sb, KERN_ERR, "journaled quota format " 1690 "not specified"); 1691 return 0; 1692 } 1693 } 1694 #endif 1695 if (test_opt(sb, DIOREAD_NOLOCK)) { 1696 int blocksize = 1697 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1698 1699 if (blocksize < PAGE_CACHE_SIZE) { 1700 ext4_msg(sb, KERN_ERR, "can't mount with " 1701 "dioread_nolock if block size != PAGE_SIZE"); 1702 return 0; 1703 } 1704 } 1705 return 1; 1706 } 1707 1708 static inline void ext4_show_quota_options(struct seq_file *seq, 1709 struct super_block *sb) 1710 { 1711 #if defined(CONFIG_QUOTA) 1712 struct ext4_sb_info *sbi = EXT4_SB(sb); 1713 1714 if (sbi->s_jquota_fmt) { 1715 char *fmtname = ""; 1716 1717 switch (sbi->s_jquota_fmt) { 1718 case QFMT_VFS_OLD: 1719 fmtname = "vfsold"; 1720 break; 1721 case QFMT_VFS_V0: 1722 fmtname = "vfsv0"; 1723 break; 1724 case QFMT_VFS_V1: 1725 fmtname = "vfsv1"; 1726 break; 1727 } 1728 seq_printf(seq, ",jqfmt=%s", fmtname); 1729 } 1730 1731 if (sbi->s_qf_names[USRQUOTA]) 1732 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1733 1734 if (sbi->s_qf_names[GRPQUOTA]) 1735 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1736 #endif 1737 } 1738 1739 static const char *token2str(int token) 1740 { 1741 const struct match_token *t; 1742 1743 for (t = tokens; t->token != Opt_err; t++) 1744 if (t->token == token && !strchr(t->pattern, '=')) 1745 break; 1746 return t->pattern; 1747 } 1748 1749 /* 1750 * Show an option if 1751 * - it's set to a non-default value OR 1752 * - if the per-sb default is different from the global default 1753 */ 1754 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1755 int nodefs) 1756 { 1757 struct ext4_sb_info *sbi = EXT4_SB(sb); 1758 struct ext4_super_block *es = sbi->s_es; 1759 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1760 const struct mount_opts *m; 1761 char sep = nodefs ? '\n' : ','; 1762 1763 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1764 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1765 1766 if (sbi->s_sb_block != 1) 1767 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1768 1769 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1770 int want_set = m->flags & MOPT_SET; 1771 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1772 (m->flags & MOPT_CLEAR_ERR)) 1773 continue; 1774 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1775 continue; /* skip if same as the default */ 1776 if ((want_set && 1777 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1778 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1779 continue; /* select Opt_noFoo vs Opt_Foo */ 1780 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1781 } 1782 1783 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1784 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1785 SEQ_OPTS_PRINT("resuid=%u", 1786 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1787 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1788 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1789 SEQ_OPTS_PRINT("resgid=%u", 1790 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1791 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1792 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1793 SEQ_OPTS_PUTS("errors=remount-ro"); 1794 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1795 SEQ_OPTS_PUTS("errors=continue"); 1796 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1797 SEQ_OPTS_PUTS("errors=panic"); 1798 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1799 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1800 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1801 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1802 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1803 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1804 if (sb->s_flags & MS_I_VERSION) 1805 SEQ_OPTS_PUTS("i_version"); 1806 if (nodefs || sbi->s_stripe) 1807 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1808 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1809 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1810 SEQ_OPTS_PUTS("data=journal"); 1811 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1812 SEQ_OPTS_PUTS("data=ordered"); 1813 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1814 SEQ_OPTS_PUTS("data=writeback"); 1815 } 1816 if (nodefs || 1817 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1818 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1819 sbi->s_inode_readahead_blks); 1820 1821 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1822 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1823 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1824 if (nodefs || sbi->s_max_dir_size_kb) 1825 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1826 1827 ext4_show_quota_options(seq, sb); 1828 return 0; 1829 } 1830 1831 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1832 { 1833 return _ext4_show_options(seq, root->d_sb, 0); 1834 } 1835 1836 static int options_seq_show(struct seq_file *seq, void *offset) 1837 { 1838 struct super_block *sb = seq->private; 1839 int rc; 1840 1841 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1842 rc = _ext4_show_options(seq, sb, 1); 1843 seq_puts(seq, "\n"); 1844 return rc; 1845 } 1846 1847 static int options_open_fs(struct inode *inode, struct file *file) 1848 { 1849 return single_open(file, options_seq_show, PDE_DATA(inode)); 1850 } 1851 1852 static const struct file_operations ext4_seq_options_fops = { 1853 .owner = THIS_MODULE, 1854 .open = options_open_fs, 1855 .read = seq_read, 1856 .llseek = seq_lseek, 1857 .release = single_release, 1858 }; 1859 1860 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1861 int read_only) 1862 { 1863 struct ext4_sb_info *sbi = EXT4_SB(sb); 1864 int res = 0; 1865 1866 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1867 ext4_msg(sb, KERN_ERR, "revision level too high, " 1868 "forcing read-only mode"); 1869 res = MS_RDONLY; 1870 } 1871 if (read_only) 1872 goto done; 1873 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1874 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1875 "running e2fsck is recommended"); 1876 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1877 ext4_msg(sb, KERN_WARNING, 1878 "warning: mounting fs with errors, " 1879 "running e2fsck is recommended"); 1880 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1881 le16_to_cpu(es->s_mnt_count) >= 1882 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1883 ext4_msg(sb, KERN_WARNING, 1884 "warning: maximal mount count reached, " 1885 "running e2fsck is recommended"); 1886 else if (le32_to_cpu(es->s_checkinterval) && 1887 (le32_to_cpu(es->s_lastcheck) + 1888 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1889 ext4_msg(sb, KERN_WARNING, 1890 "warning: checktime reached, " 1891 "running e2fsck is recommended"); 1892 if (!sbi->s_journal) 1893 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1894 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1895 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1896 le16_add_cpu(&es->s_mnt_count, 1); 1897 es->s_mtime = cpu_to_le32(get_seconds()); 1898 ext4_update_dynamic_rev(sb); 1899 if (sbi->s_journal) 1900 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1901 1902 ext4_commit_super(sb, 1); 1903 done: 1904 if (test_opt(sb, DEBUG)) 1905 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1906 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1907 sb->s_blocksize, 1908 sbi->s_groups_count, 1909 EXT4_BLOCKS_PER_GROUP(sb), 1910 EXT4_INODES_PER_GROUP(sb), 1911 sbi->s_mount_opt, sbi->s_mount_opt2); 1912 1913 cleancache_init_fs(sb); 1914 return res; 1915 } 1916 1917 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1918 { 1919 struct ext4_sb_info *sbi = EXT4_SB(sb); 1920 struct flex_groups *new_groups; 1921 int size; 1922 1923 if (!sbi->s_log_groups_per_flex) 1924 return 0; 1925 1926 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1927 if (size <= sbi->s_flex_groups_allocated) 1928 return 0; 1929 1930 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1931 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1932 if (!new_groups) { 1933 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1934 size / (int) sizeof(struct flex_groups)); 1935 return -ENOMEM; 1936 } 1937 1938 if (sbi->s_flex_groups) { 1939 memcpy(new_groups, sbi->s_flex_groups, 1940 (sbi->s_flex_groups_allocated * 1941 sizeof(struct flex_groups))); 1942 ext4_kvfree(sbi->s_flex_groups); 1943 } 1944 sbi->s_flex_groups = new_groups; 1945 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1946 return 0; 1947 } 1948 1949 static int ext4_fill_flex_info(struct super_block *sb) 1950 { 1951 struct ext4_sb_info *sbi = EXT4_SB(sb); 1952 struct ext4_group_desc *gdp = NULL; 1953 ext4_group_t flex_group; 1954 int i, err; 1955 1956 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1957 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1958 sbi->s_log_groups_per_flex = 0; 1959 return 1; 1960 } 1961 1962 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1963 if (err) 1964 goto failed; 1965 1966 for (i = 0; i < sbi->s_groups_count; i++) { 1967 gdp = ext4_get_group_desc(sb, i, NULL); 1968 1969 flex_group = ext4_flex_group(sbi, i); 1970 atomic_add(ext4_free_inodes_count(sb, gdp), 1971 &sbi->s_flex_groups[flex_group].free_inodes); 1972 atomic64_add(ext4_free_group_clusters(sb, gdp), 1973 &sbi->s_flex_groups[flex_group].free_clusters); 1974 atomic_add(ext4_used_dirs_count(sb, gdp), 1975 &sbi->s_flex_groups[flex_group].used_dirs); 1976 } 1977 1978 return 1; 1979 failed: 1980 return 0; 1981 } 1982 1983 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1984 struct ext4_group_desc *gdp) 1985 { 1986 int offset; 1987 __u16 crc = 0; 1988 __le32 le_group = cpu_to_le32(block_group); 1989 1990 if (ext4_has_metadata_csum(sbi->s_sb)) { 1991 /* Use new metadata_csum algorithm */ 1992 __le16 save_csum; 1993 __u32 csum32; 1994 1995 save_csum = gdp->bg_checksum; 1996 gdp->bg_checksum = 0; 1997 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1998 sizeof(le_group)); 1999 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2000 sbi->s_desc_size); 2001 gdp->bg_checksum = save_csum; 2002 2003 crc = csum32 & 0xFFFF; 2004 goto out; 2005 } 2006 2007 /* old crc16 code */ 2008 if (!(sbi->s_es->s_feature_ro_compat & 2009 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM))) 2010 return 0; 2011 2012 offset = offsetof(struct ext4_group_desc, bg_checksum); 2013 2014 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2015 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2016 crc = crc16(crc, (__u8 *)gdp, offset); 2017 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2018 /* for checksum of struct ext4_group_desc do the rest...*/ 2019 if ((sbi->s_es->s_feature_incompat & 2020 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2021 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2022 crc = crc16(crc, (__u8 *)gdp + offset, 2023 le16_to_cpu(sbi->s_es->s_desc_size) - 2024 offset); 2025 2026 out: 2027 return cpu_to_le16(crc); 2028 } 2029 2030 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2031 struct ext4_group_desc *gdp) 2032 { 2033 if (ext4_has_group_desc_csum(sb) && 2034 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2035 block_group, gdp))) 2036 return 0; 2037 2038 return 1; 2039 } 2040 2041 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2042 struct ext4_group_desc *gdp) 2043 { 2044 if (!ext4_has_group_desc_csum(sb)) 2045 return; 2046 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2047 } 2048 2049 /* Called at mount-time, super-block is locked */ 2050 static int ext4_check_descriptors(struct super_block *sb, 2051 ext4_group_t *first_not_zeroed) 2052 { 2053 struct ext4_sb_info *sbi = EXT4_SB(sb); 2054 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2055 ext4_fsblk_t last_block; 2056 ext4_fsblk_t block_bitmap; 2057 ext4_fsblk_t inode_bitmap; 2058 ext4_fsblk_t inode_table; 2059 int flexbg_flag = 0; 2060 ext4_group_t i, grp = sbi->s_groups_count; 2061 2062 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2063 flexbg_flag = 1; 2064 2065 ext4_debug("Checking group descriptors"); 2066 2067 for (i = 0; i < sbi->s_groups_count; i++) { 2068 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2069 2070 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2071 last_block = ext4_blocks_count(sbi->s_es) - 1; 2072 else 2073 last_block = first_block + 2074 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2075 2076 if ((grp == sbi->s_groups_count) && 2077 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2078 grp = i; 2079 2080 block_bitmap = ext4_block_bitmap(sb, gdp); 2081 if (block_bitmap < first_block || block_bitmap > last_block) { 2082 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2083 "Block bitmap for group %u not in group " 2084 "(block %llu)!", i, block_bitmap); 2085 return 0; 2086 } 2087 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2088 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2089 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2090 "Inode bitmap for group %u not in group " 2091 "(block %llu)!", i, inode_bitmap); 2092 return 0; 2093 } 2094 inode_table = ext4_inode_table(sb, gdp); 2095 if (inode_table < first_block || 2096 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2097 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2098 "Inode table for group %u not in group " 2099 "(block %llu)!", i, inode_table); 2100 return 0; 2101 } 2102 ext4_lock_group(sb, i); 2103 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2104 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2105 "Checksum for group %u failed (%u!=%u)", 2106 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2107 gdp)), le16_to_cpu(gdp->bg_checksum)); 2108 if (!(sb->s_flags & MS_RDONLY)) { 2109 ext4_unlock_group(sb, i); 2110 return 0; 2111 } 2112 } 2113 ext4_unlock_group(sb, i); 2114 if (!flexbg_flag) 2115 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2116 } 2117 if (NULL != first_not_zeroed) 2118 *first_not_zeroed = grp; 2119 return 1; 2120 } 2121 2122 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2123 * the superblock) which were deleted from all directories, but held open by 2124 * a process at the time of a crash. We walk the list and try to delete these 2125 * inodes at recovery time (only with a read-write filesystem). 2126 * 2127 * In order to keep the orphan inode chain consistent during traversal (in 2128 * case of crash during recovery), we link each inode into the superblock 2129 * orphan list_head and handle it the same way as an inode deletion during 2130 * normal operation (which journals the operations for us). 2131 * 2132 * We only do an iget() and an iput() on each inode, which is very safe if we 2133 * accidentally point at an in-use or already deleted inode. The worst that 2134 * can happen in this case is that we get a "bit already cleared" message from 2135 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2136 * e2fsck was run on this filesystem, and it must have already done the orphan 2137 * inode cleanup for us, so we can safely abort without any further action. 2138 */ 2139 static void ext4_orphan_cleanup(struct super_block *sb, 2140 struct ext4_super_block *es) 2141 { 2142 unsigned int s_flags = sb->s_flags; 2143 int nr_orphans = 0, nr_truncates = 0; 2144 #ifdef CONFIG_QUOTA 2145 int i; 2146 #endif 2147 if (!es->s_last_orphan) { 2148 jbd_debug(4, "no orphan inodes to clean up\n"); 2149 return; 2150 } 2151 2152 if (bdev_read_only(sb->s_bdev)) { 2153 ext4_msg(sb, KERN_ERR, "write access " 2154 "unavailable, skipping orphan cleanup"); 2155 return; 2156 } 2157 2158 /* Check if feature set would not allow a r/w mount */ 2159 if (!ext4_feature_set_ok(sb, 0)) { 2160 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2161 "unknown ROCOMPAT features"); 2162 return; 2163 } 2164 2165 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2166 /* don't clear list on RO mount w/ errors */ 2167 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2168 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2169 "clearing orphan list.\n"); 2170 es->s_last_orphan = 0; 2171 } 2172 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2173 return; 2174 } 2175 2176 if (s_flags & MS_RDONLY) { 2177 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2178 sb->s_flags &= ~MS_RDONLY; 2179 } 2180 #ifdef CONFIG_QUOTA 2181 /* Needed for iput() to work correctly and not trash data */ 2182 sb->s_flags |= MS_ACTIVE; 2183 /* Turn on quotas so that they are updated correctly */ 2184 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2185 if (EXT4_SB(sb)->s_qf_names[i]) { 2186 int ret = ext4_quota_on_mount(sb, i); 2187 if (ret < 0) 2188 ext4_msg(sb, KERN_ERR, 2189 "Cannot turn on journaled " 2190 "quota: error %d", ret); 2191 } 2192 } 2193 #endif 2194 2195 while (es->s_last_orphan) { 2196 struct inode *inode; 2197 2198 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2199 if (IS_ERR(inode)) { 2200 es->s_last_orphan = 0; 2201 break; 2202 } 2203 2204 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2205 dquot_initialize(inode); 2206 if (inode->i_nlink) { 2207 if (test_opt(sb, DEBUG)) 2208 ext4_msg(sb, KERN_DEBUG, 2209 "%s: truncating inode %lu to %lld bytes", 2210 __func__, inode->i_ino, inode->i_size); 2211 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2212 inode->i_ino, inode->i_size); 2213 mutex_lock(&inode->i_mutex); 2214 truncate_inode_pages(inode->i_mapping, inode->i_size); 2215 ext4_truncate(inode); 2216 mutex_unlock(&inode->i_mutex); 2217 nr_truncates++; 2218 } else { 2219 if (test_opt(sb, DEBUG)) 2220 ext4_msg(sb, KERN_DEBUG, 2221 "%s: deleting unreferenced inode %lu", 2222 __func__, inode->i_ino); 2223 jbd_debug(2, "deleting unreferenced inode %lu\n", 2224 inode->i_ino); 2225 nr_orphans++; 2226 } 2227 iput(inode); /* The delete magic happens here! */ 2228 } 2229 2230 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2231 2232 if (nr_orphans) 2233 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2234 PLURAL(nr_orphans)); 2235 if (nr_truncates) 2236 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2237 PLURAL(nr_truncates)); 2238 #ifdef CONFIG_QUOTA 2239 /* Turn quotas off */ 2240 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2241 if (sb_dqopt(sb)->files[i]) 2242 dquot_quota_off(sb, i); 2243 } 2244 #endif 2245 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2246 } 2247 2248 /* 2249 * Maximal extent format file size. 2250 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2251 * extent format containers, within a sector_t, and within i_blocks 2252 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2253 * so that won't be a limiting factor. 2254 * 2255 * However there is other limiting factor. We do store extents in the form 2256 * of starting block and length, hence the resulting length of the extent 2257 * covering maximum file size must fit into on-disk format containers as 2258 * well. Given that length is always by 1 unit bigger than max unit (because 2259 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2260 * 2261 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2262 */ 2263 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2264 { 2265 loff_t res; 2266 loff_t upper_limit = MAX_LFS_FILESIZE; 2267 2268 /* small i_blocks in vfs inode? */ 2269 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2270 /* 2271 * CONFIG_LBDAF is not enabled implies the inode 2272 * i_block represent total blocks in 512 bytes 2273 * 32 == size of vfs inode i_blocks * 8 2274 */ 2275 upper_limit = (1LL << 32) - 1; 2276 2277 /* total blocks in file system block size */ 2278 upper_limit >>= (blkbits - 9); 2279 upper_limit <<= blkbits; 2280 } 2281 2282 /* 2283 * 32-bit extent-start container, ee_block. We lower the maxbytes 2284 * by one fs block, so ee_len can cover the extent of maximum file 2285 * size 2286 */ 2287 res = (1LL << 32) - 1; 2288 res <<= blkbits; 2289 2290 /* Sanity check against vm- & vfs- imposed limits */ 2291 if (res > upper_limit) 2292 res = upper_limit; 2293 2294 return res; 2295 } 2296 2297 /* 2298 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2299 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2300 * We need to be 1 filesystem block less than the 2^48 sector limit. 2301 */ 2302 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2303 { 2304 loff_t res = EXT4_NDIR_BLOCKS; 2305 int meta_blocks; 2306 loff_t upper_limit; 2307 /* This is calculated to be the largest file size for a dense, block 2308 * mapped file such that the file's total number of 512-byte sectors, 2309 * including data and all indirect blocks, does not exceed (2^48 - 1). 2310 * 2311 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2312 * number of 512-byte sectors of the file. 2313 */ 2314 2315 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2316 /* 2317 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2318 * the inode i_block field represents total file blocks in 2319 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2320 */ 2321 upper_limit = (1LL << 32) - 1; 2322 2323 /* total blocks in file system block size */ 2324 upper_limit >>= (bits - 9); 2325 2326 } else { 2327 /* 2328 * We use 48 bit ext4_inode i_blocks 2329 * With EXT4_HUGE_FILE_FL set the i_blocks 2330 * represent total number of blocks in 2331 * file system block size 2332 */ 2333 upper_limit = (1LL << 48) - 1; 2334 2335 } 2336 2337 /* indirect blocks */ 2338 meta_blocks = 1; 2339 /* double indirect blocks */ 2340 meta_blocks += 1 + (1LL << (bits-2)); 2341 /* tripple indirect blocks */ 2342 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2343 2344 upper_limit -= meta_blocks; 2345 upper_limit <<= bits; 2346 2347 res += 1LL << (bits-2); 2348 res += 1LL << (2*(bits-2)); 2349 res += 1LL << (3*(bits-2)); 2350 res <<= bits; 2351 if (res > upper_limit) 2352 res = upper_limit; 2353 2354 if (res > MAX_LFS_FILESIZE) 2355 res = MAX_LFS_FILESIZE; 2356 2357 return res; 2358 } 2359 2360 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2361 ext4_fsblk_t logical_sb_block, int nr) 2362 { 2363 struct ext4_sb_info *sbi = EXT4_SB(sb); 2364 ext4_group_t bg, first_meta_bg; 2365 int has_super = 0; 2366 2367 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2368 2369 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2370 nr < first_meta_bg) 2371 return logical_sb_block + nr + 1; 2372 bg = sbi->s_desc_per_block * nr; 2373 if (ext4_bg_has_super(sb, bg)) 2374 has_super = 1; 2375 2376 /* 2377 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2378 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2379 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2380 * compensate. 2381 */ 2382 if (sb->s_blocksize == 1024 && nr == 0 && 2383 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2384 has_super++; 2385 2386 return (has_super + ext4_group_first_block_no(sb, bg)); 2387 } 2388 2389 /** 2390 * ext4_get_stripe_size: Get the stripe size. 2391 * @sbi: In memory super block info 2392 * 2393 * If we have specified it via mount option, then 2394 * use the mount option value. If the value specified at mount time is 2395 * greater than the blocks per group use the super block value. 2396 * If the super block value is greater than blocks per group return 0. 2397 * Allocator needs it be less than blocks per group. 2398 * 2399 */ 2400 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2401 { 2402 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2403 unsigned long stripe_width = 2404 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2405 int ret; 2406 2407 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2408 ret = sbi->s_stripe; 2409 else if (stripe_width <= sbi->s_blocks_per_group) 2410 ret = stripe_width; 2411 else if (stride <= sbi->s_blocks_per_group) 2412 ret = stride; 2413 else 2414 ret = 0; 2415 2416 /* 2417 * If the stripe width is 1, this makes no sense and 2418 * we set it to 0 to turn off stripe handling code. 2419 */ 2420 if (ret <= 1) 2421 ret = 0; 2422 2423 return ret; 2424 } 2425 2426 /* sysfs supprt */ 2427 2428 struct ext4_attr { 2429 struct attribute attr; 2430 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2431 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2432 const char *, size_t); 2433 union { 2434 int offset; 2435 int deprecated_val; 2436 } u; 2437 }; 2438 2439 static int parse_strtoull(const char *buf, 2440 unsigned long long max, unsigned long long *value) 2441 { 2442 int ret; 2443 2444 ret = kstrtoull(skip_spaces(buf), 0, value); 2445 if (!ret && *value > max) 2446 ret = -EINVAL; 2447 return ret; 2448 } 2449 2450 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2451 struct ext4_sb_info *sbi, 2452 char *buf) 2453 { 2454 return snprintf(buf, PAGE_SIZE, "%llu\n", 2455 (s64) EXT4_C2B(sbi, 2456 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2457 } 2458 2459 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2460 struct ext4_sb_info *sbi, char *buf) 2461 { 2462 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2463 2464 if (!sb->s_bdev->bd_part) 2465 return snprintf(buf, PAGE_SIZE, "0\n"); 2466 return snprintf(buf, PAGE_SIZE, "%lu\n", 2467 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2468 sbi->s_sectors_written_start) >> 1); 2469 } 2470 2471 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2472 struct ext4_sb_info *sbi, char *buf) 2473 { 2474 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2475 2476 if (!sb->s_bdev->bd_part) 2477 return snprintf(buf, PAGE_SIZE, "0\n"); 2478 return snprintf(buf, PAGE_SIZE, "%llu\n", 2479 (unsigned long long)(sbi->s_kbytes_written + 2480 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2481 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2482 } 2483 2484 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2485 struct ext4_sb_info *sbi, 2486 const char *buf, size_t count) 2487 { 2488 unsigned long t; 2489 int ret; 2490 2491 ret = kstrtoul(skip_spaces(buf), 0, &t); 2492 if (ret) 2493 return ret; 2494 2495 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2496 return -EINVAL; 2497 2498 sbi->s_inode_readahead_blks = t; 2499 return count; 2500 } 2501 2502 static ssize_t sbi_ui_show(struct ext4_attr *a, 2503 struct ext4_sb_info *sbi, char *buf) 2504 { 2505 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2506 2507 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2508 } 2509 2510 static ssize_t sbi_ui_store(struct ext4_attr *a, 2511 struct ext4_sb_info *sbi, 2512 const char *buf, size_t count) 2513 { 2514 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2515 unsigned long t; 2516 int ret; 2517 2518 ret = kstrtoul(skip_spaces(buf), 0, &t); 2519 if (ret) 2520 return ret; 2521 *ui = t; 2522 return count; 2523 } 2524 2525 static ssize_t es_ui_show(struct ext4_attr *a, 2526 struct ext4_sb_info *sbi, char *buf) 2527 { 2528 2529 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) + 2530 a->u.offset); 2531 2532 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2533 } 2534 2535 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2536 struct ext4_sb_info *sbi, char *buf) 2537 { 2538 return snprintf(buf, PAGE_SIZE, "%llu\n", 2539 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2540 } 2541 2542 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2543 struct ext4_sb_info *sbi, 2544 const char *buf, size_t count) 2545 { 2546 unsigned long long val; 2547 int ret; 2548 2549 if (parse_strtoull(buf, -1ULL, &val)) 2550 return -EINVAL; 2551 ret = ext4_reserve_clusters(sbi, val); 2552 2553 return ret ? ret : count; 2554 } 2555 2556 static ssize_t trigger_test_error(struct ext4_attr *a, 2557 struct ext4_sb_info *sbi, 2558 const char *buf, size_t count) 2559 { 2560 int len = count; 2561 2562 if (!capable(CAP_SYS_ADMIN)) 2563 return -EPERM; 2564 2565 if (len && buf[len-1] == '\n') 2566 len--; 2567 2568 if (len) 2569 ext4_error(sbi->s_sb, "%.*s", len, buf); 2570 return count; 2571 } 2572 2573 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2574 struct ext4_sb_info *sbi, char *buf) 2575 { 2576 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2577 } 2578 2579 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2580 static struct ext4_attr ext4_attr_##_name = { \ 2581 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2582 .show = _show, \ 2583 .store = _store, \ 2584 .u = { \ 2585 .offset = offsetof(struct ext4_sb_info, _elname),\ 2586 }, \ 2587 } 2588 2589 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \ 2590 static struct ext4_attr ext4_attr_##_name = { \ 2591 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2592 .show = _show, \ 2593 .store = _store, \ 2594 .u = { \ 2595 .offset = offsetof(struct ext4_super_block, _elname), \ 2596 }, \ 2597 } 2598 2599 #define EXT4_ATTR(name, mode, show, store) \ 2600 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2601 2602 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2603 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2604 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2605 2606 #define EXT4_RO_ATTR_ES_UI(name, elname) \ 2607 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname) 2608 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2609 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2610 2611 #define ATTR_LIST(name) &ext4_attr_##name.attr 2612 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2613 static struct ext4_attr ext4_attr_##_name = { \ 2614 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2615 .show = sbi_deprecated_show, \ 2616 .u = { \ 2617 .deprecated_val = _val, \ 2618 }, \ 2619 } 2620 2621 EXT4_RO_ATTR(delayed_allocation_blocks); 2622 EXT4_RO_ATTR(session_write_kbytes); 2623 EXT4_RO_ATTR(lifetime_write_kbytes); 2624 EXT4_RW_ATTR(reserved_clusters); 2625 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2626 inode_readahead_blks_store, s_inode_readahead_blks); 2627 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2628 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2629 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2630 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2631 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2632 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2633 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2634 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2635 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2636 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2637 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2638 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2639 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2640 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2641 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2642 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2643 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count); 2644 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time); 2645 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time); 2646 2647 static struct attribute *ext4_attrs[] = { 2648 ATTR_LIST(delayed_allocation_blocks), 2649 ATTR_LIST(session_write_kbytes), 2650 ATTR_LIST(lifetime_write_kbytes), 2651 ATTR_LIST(reserved_clusters), 2652 ATTR_LIST(inode_readahead_blks), 2653 ATTR_LIST(inode_goal), 2654 ATTR_LIST(mb_stats), 2655 ATTR_LIST(mb_max_to_scan), 2656 ATTR_LIST(mb_min_to_scan), 2657 ATTR_LIST(mb_order2_req), 2658 ATTR_LIST(mb_stream_req), 2659 ATTR_LIST(mb_group_prealloc), 2660 ATTR_LIST(max_writeback_mb_bump), 2661 ATTR_LIST(extent_max_zeroout_kb), 2662 ATTR_LIST(trigger_fs_error), 2663 ATTR_LIST(err_ratelimit_interval_ms), 2664 ATTR_LIST(err_ratelimit_burst), 2665 ATTR_LIST(warning_ratelimit_interval_ms), 2666 ATTR_LIST(warning_ratelimit_burst), 2667 ATTR_LIST(msg_ratelimit_interval_ms), 2668 ATTR_LIST(msg_ratelimit_burst), 2669 ATTR_LIST(errors_count), 2670 ATTR_LIST(first_error_time), 2671 ATTR_LIST(last_error_time), 2672 NULL, 2673 }; 2674 2675 /* Features this copy of ext4 supports */ 2676 EXT4_INFO_ATTR(lazy_itable_init); 2677 EXT4_INFO_ATTR(batched_discard); 2678 EXT4_INFO_ATTR(meta_bg_resize); 2679 2680 static struct attribute *ext4_feat_attrs[] = { 2681 ATTR_LIST(lazy_itable_init), 2682 ATTR_LIST(batched_discard), 2683 ATTR_LIST(meta_bg_resize), 2684 NULL, 2685 }; 2686 2687 static ssize_t ext4_attr_show(struct kobject *kobj, 2688 struct attribute *attr, char *buf) 2689 { 2690 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2691 s_kobj); 2692 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2693 2694 return a->show ? a->show(a, sbi, buf) : 0; 2695 } 2696 2697 static ssize_t ext4_attr_store(struct kobject *kobj, 2698 struct attribute *attr, 2699 const char *buf, size_t len) 2700 { 2701 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2702 s_kobj); 2703 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2704 2705 return a->store ? a->store(a, sbi, buf, len) : 0; 2706 } 2707 2708 static void ext4_sb_release(struct kobject *kobj) 2709 { 2710 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2711 s_kobj); 2712 complete(&sbi->s_kobj_unregister); 2713 } 2714 2715 static const struct sysfs_ops ext4_attr_ops = { 2716 .show = ext4_attr_show, 2717 .store = ext4_attr_store, 2718 }; 2719 2720 static struct kobj_type ext4_ktype = { 2721 .default_attrs = ext4_attrs, 2722 .sysfs_ops = &ext4_attr_ops, 2723 .release = ext4_sb_release, 2724 }; 2725 2726 static void ext4_feat_release(struct kobject *kobj) 2727 { 2728 complete(&ext4_feat->f_kobj_unregister); 2729 } 2730 2731 static ssize_t ext4_feat_show(struct kobject *kobj, 2732 struct attribute *attr, char *buf) 2733 { 2734 return snprintf(buf, PAGE_SIZE, "supported\n"); 2735 } 2736 2737 /* 2738 * We can not use ext4_attr_show/store because it relies on the kobject 2739 * being embedded in the ext4_sb_info structure which is definitely not 2740 * true in this case. 2741 */ 2742 static const struct sysfs_ops ext4_feat_ops = { 2743 .show = ext4_feat_show, 2744 .store = NULL, 2745 }; 2746 2747 static struct kobj_type ext4_feat_ktype = { 2748 .default_attrs = ext4_feat_attrs, 2749 .sysfs_ops = &ext4_feat_ops, 2750 .release = ext4_feat_release, 2751 }; 2752 2753 /* 2754 * Check whether this filesystem can be mounted based on 2755 * the features present and the RDONLY/RDWR mount requested. 2756 * Returns 1 if this filesystem can be mounted as requested, 2757 * 0 if it cannot be. 2758 */ 2759 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2760 { 2761 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2762 ext4_msg(sb, KERN_ERR, 2763 "Couldn't mount because of " 2764 "unsupported optional features (%x)", 2765 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2766 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2767 return 0; 2768 } 2769 2770 if (readonly) 2771 return 1; 2772 2773 /* Check that feature set is OK for a read-write mount */ 2774 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2775 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2776 "unsupported optional features (%x)", 2777 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2778 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2779 return 0; 2780 } 2781 /* 2782 * Large file size enabled file system can only be mounted 2783 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2784 */ 2785 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2786 if (sizeof(blkcnt_t) < sizeof(u64)) { 2787 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2788 "cannot be mounted RDWR without " 2789 "CONFIG_LBDAF"); 2790 return 0; 2791 } 2792 } 2793 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2794 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2795 ext4_msg(sb, KERN_ERR, 2796 "Can't support bigalloc feature without " 2797 "extents feature\n"); 2798 return 0; 2799 } 2800 2801 #ifndef CONFIG_QUOTA 2802 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2803 !readonly) { 2804 ext4_msg(sb, KERN_ERR, 2805 "Filesystem with quota feature cannot be mounted RDWR " 2806 "without CONFIG_QUOTA"); 2807 return 0; 2808 } 2809 #endif /* CONFIG_QUOTA */ 2810 return 1; 2811 } 2812 2813 /* 2814 * This function is called once a day if we have errors logged 2815 * on the file system 2816 */ 2817 static void print_daily_error_info(unsigned long arg) 2818 { 2819 struct super_block *sb = (struct super_block *) arg; 2820 struct ext4_sb_info *sbi; 2821 struct ext4_super_block *es; 2822 2823 sbi = EXT4_SB(sb); 2824 es = sbi->s_es; 2825 2826 if (es->s_error_count) 2827 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2828 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2829 le32_to_cpu(es->s_error_count)); 2830 if (es->s_first_error_time) { 2831 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2832 sb->s_id, le32_to_cpu(es->s_first_error_time), 2833 (int) sizeof(es->s_first_error_func), 2834 es->s_first_error_func, 2835 le32_to_cpu(es->s_first_error_line)); 2836 if (es->s_first_error_ino) 2837 printk(": inode %u", 2838 le32_to_cpu(es->s_first_error_ino)); 2839 if (es->s_first_error_block) 2840 printk(": block %llu", (unsigned long long) 2841 le64_to_cpu(es->s_first_error_block)); 2842 printk("\n"); 2843 } 2844 if (es->s_last_error_time) { 2845 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2846 sb->s_id, le32_to_cpu(es->s_last_error_time), 2847 (int) sizeof(es->s_last_error_func), 2848 es->s_last_error_func, 2849 le32_to_cpu(es->s_last_error_line)); 2850 if (es->s_last_error_ino) 2851 printk(": inode %u", 2852 le32_to_cpu(es->s_last_error_ino)); 2853 if (es->s_last_error_block) 2854 printk(": block %llu", (unsigned long long) 2855 le64_to_cpu(es->s_last_error_block)); 2856 printk("\n"); 2857 } 2858 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2859 } 2860 2861 /* Find next suitable group and run ext4_init_inode_table */ 2862 static int ext4_run_li_request(struct ext4_li_request *elr) 2863 { 2864 struct ext4_group_desc *gdp = NULL; 2865 ext4_group_t group, ngroups; 2866 struct super_block *sb; 2867 unsigned long timeout = 0; 2868 int ret = 0; 2869 2870 sb = elr->lr_super; 2871 ngroups = EXT4_SB(sb)->s_groups_count; 2872 2873 sb_start_write(sb); 2874 for (group = elr->lr_next_group; group < ngroups; group++) { 2875 gdp = ext4_get_group_desc(sb, group, NULL); 2876 if (!gdp) { 2877 ret = 1; 2878 break; 2879 } 2880 2881 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2882 break; 2883 } 2884 2885 if (group >= ngroups) 2886 ret = 1; 2887 2888 if (!ret) { 2889 timeout = jiffies; 2890 ret = ext4_init_inode_table(sb, group, 2891 elr->lr_timeout ? 0 : 1); 2892 if (elr->lr_timeout == 0) { 2893 timeout = (jiffies - timeout) * 2894 elr->lr_sbi->s_li_wait_mult; 2895 elr->lr_timeout = timeout; 2896 } 2897 elr->lr_next_sched = jiffies + elr->lr_timeout; 2898 elr->lr_next_group = group + 1; 2899 } 2900 sb_end_write(sb); 2901 2902 return ret; 2903 } 2904 2905 /* 2906 * Remove lr_request from the list_request and free the 2907 * request structure. Should be called with li_list_mtx held 2908 */ 2909 static void ext4_remove_li_request(struct ext4_li_request *elr) 2910 { 2911 struct ext4_sb_info *sbi; 2912 2913 if (!elr) 2914 return; 2915 2916 sbi = elr->lr_sbi; 2917 2918 list_del(&elr->lr_request); 2919 sbi->s_li_request = NULL; 2920 kfree(elr); 2921 } 2922 2923 static void ext4_unregister_li_request(struct super_block *sb) 2924 { 2925 mutex_lock(&ext4_li_mtx); 2926 if (!ext4_li_info) { 2927 mutex_unlock(&ext4_li_mtx); 2928 return; 2929 } 2930 2931 mutex_lock(&ext4_li_info->li_list_mtx); 2932 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2933 mutex_unlock(&ext4_li_info->li_list_mtx); 2934 mutex_unlock(&ext4_li_mtx); 2935 } 2936 2937 static struct task_struct *ext4_lazyinit_task; 2938 2939 /* 2940 * This is the function where ext4lazyinit thread lives. It walks 2941 * through the request list searching for next scheduled filesystem. 2942 * When such a fs is found, run the lazy initialization request 2943 * (ext4_rn_li_request) and keep track of the time spend in this 2944 * function. Based on that time we compute next schedule time of 2945 * the request. When walking through the list is complete, compute 2946 * next waking time and put itself into sleep. 2947 */ 2948 static int ext4_lazyinit_thread(void *arg) 2949 { 2950 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2951 struct list_head *pos, *n; 2952 struct ext4_li_request *elr; 2953 unsigned long next_wakeup, cur; 2954 2955 BUG_ON(NULL == eli); 2956 2957 cont_thread: 2958 while (true) { 2959 next_wakeup = MAX_JIFFY_OFFSET; 2960 2961 mutex_lock(&eli->li_list_mtx); 2962 if (list_empty(&eli->li_request_list)) { 2963 mutex_unlock(&eli->li_list_mtx); 2964 goto exit_thread; 2965 } 2966 2967 list_for_each_safe(pos, n, &eli->li_request_list) { 2968 elr = list_entry(pos, struct ext4_li_request, 2969 lr_request); 2970 2971 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2972 if (ext4_run_li_request(elr) != 0) { 2973 /* error, remove the lazy_init job */ 2974 ext4_remove_li_request(elr); 2975 continue; 2976 } 2977 } 2978 2979 if (time_before(elr->lr_next_sched, next_wakeup)) 2980 next_wakeup = elr->lr_next_sched; 2981 } 2982 mutex_unlock(&eli->li_list_mtx); 2983 2984 try_to_freeze(); 2985 2986 cur = jiffies; 2987 if ((time_after_eq(cur, next_wakeup)) || 2988 (MAX_JIFFY_OFFSET == next_wakeup)) { 2989 cond_resched(); 2990 continue; 2991 } 2992 2993 schedule_timeout_interruptible(next_wakeup - cur); 2994 2995 if (kthread_should_stop()) { 2996 ext4_clear_request_list(); 2997 goto exit_thread; 2998 } 2999 } 3000 3001 exit_thread: 3002 /* 3003 * It looks like the request list is empty, but we need 3004 * to check it under the li_list_mtx lock, to prevent any 3005 * additions into it, and of course we should lock ext4_li_mtx 3006 * to atomically free the list and ext4_li_info, because at 3007 * this point another ext4 filesystem could be registering 3008 * new one. 3009 */ 3010 mutex_lock(&ext4_li_mtx); 3011 mutex_lock(&eli->li_list_mtx); 3012 if (!list_empty(&eli->li_request_list)) { 3013 mutex_unlock(&eli->li_list_mtx); 3014 mutex_unlock(&ext4_li_mtx); 3015 goto cont_thread; 3016 } 3017 mutex_unlock(&eli->li_list_mtx); 3018 kfree(ext4_li_info); 3019 ext4_li_info = NULL; 3020 mutex_unlock(&ext4_li_mtx); 3021 3022 return 0; 3023 } 3024 3025 static void ext4_clear_request_list(void) 3026 { 3027 struct list_head *pos, *n; 3028 struct ext4_li_request *elr; 3029 3030 mutex_lock(&ext4_li_info->li_list_mtx); 3031 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3032 elr = list_entry(pos, struct ext4_li_request, 3033 lr_request); 3034 ext4_remove_li_request(elr); 3035 } 3036 mutex_unlock(&ext4_li_info->li_list_mtx); 3037 } 3038 3039 static int ext4_run_lazyinit_thread(void) 3040 { 3041 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3042 ext4_li_info, "ext4lazyinit"); 3043 if (IS_ERR(ext4_lazyinit_task)) { 3044 int err = PTR_ERR(ext4_lazyinit_task); 3045 ext4_clear_request_list(); 3046 kfree(ext4_li_info); 3047 ext4_li_info = NULL; 3048 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3049 "initialization thread\n", 3050 err); 3051 return err; 3052 } 3053 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3054 return 0; 3055 } 3056 3057 /* 3058 * Check whether it make sense to run itable init. thread or not. 3059 * If there is at least one uninitialized inode table, return 3060 * corresponding group number, else the loop goes through all 3061 * groups and return total number of groups. 3062 */ 3063 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3064 { 3065 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3066 struct ext4_group_desc *gdp = NULL; 3067 3068 for (group = 0; group < ngroups; group++) { 3069 gdp = ext4_get_group_desc(sb, group, NULL); 3070 if (!gdp) 3071 continue; 3072 3073 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3074 break; 3075 } 3076 3077 return group; 3078 } 3079 3080 static int ext4_li_info_new(void) 3081 { 3082 struct ext4_lazy_init *eli = NULL; 3083 3084 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3085 if (!eli) 3086 return -ENOMEM; 3087 3088 INIT_LIST_HEAD(&eli->li_request_list); 3089 mutex_init(&eli->li_list_mtx); 3090 3091 eli->li_state |= EXT4_LAZYINIT_QUIT; 3092 3093 ext4_li_info = eli; 3094 3095 return 0; 3096 } 3097 3098 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3099 ext4_group_t start) 3100 { 3101 struct ext4_sb_info *sbi = EXT4_SB(sb); 3102 struct ext4_li_request *elr; 3103 3104 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3105 if (!elr) 3106 return NULL; 3107 3108 elr->lr_super = sb; 3109 elr->lr_sbi = sbi; 3110 elr->lr_next_group = start; 3111 3112 /* 3113 * Randomize first schedule time of the request to 3114 * spread the inode table initialization requests 3115 * better. 3116 */ 3117 elr->lr_next_sched = jiffies + (prandom_u32() % 3118 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3119 return elr; 3120 } 3121 3122 int ext4_register_li_request(struct super_block *sb, 3123 ext4_group_t first_not_zeroed) 3124 { 3125 struct ext4_sb_info *sbi = EXT4_SB(sb); 3126 struct ext4_li_request *elr = NULL; 3127 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3128 int ret = 0; 3129 3130 mutex_lock(&ext4_li_mtx); 3131 if (sbi->s_li_request != NULL) { 3132 /* 3133 * Reset timeout so it can be computed again, because 3134 * s_li_wait_mult might have changed. 3135 */ 3136 sbi->s_li_request->lr_timeout = 0; 3137 goto out; 3138 } 3139 3140 if (first_not_zeroed == ngroups || 3141 (sb->s_flags & MS_RDONLY) || 3142 !test_opt(sb, INIT_INODE_TABLE)) 3143 goto out; 3144 3145 elr = ext4_li_request_new(sb, first_not_zeroed); 3146 if (!elr) { 3147 ret = -ENOMEM; 3148 goto out; 3149 } 3150 3151 if (NULL == ext4_li_info) { 3152 ret = ext4_li_info_new(); 3153 if (ret) 3154 goto out; 3155 } 3156 3157 mutex_lock(&ext4_li_info->li_list_mtx); 3158 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3159 mutex_unlock(&ext4_li_info->li_list_mtx); 3160 3161 sbi->s_li_request = elr; 3162 /* 3163 * set elr to NULL here since it has been inserted to 3164 * the request_list and the removal and free of it is 3165 * handled by ext4_clear_request_list from now on. 3166 */ 3167 elr = NULL; 3168 3169 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3170 ret = ext4_run_lazyinit_thread(); 3171 if (ret) 3172 goto out; 3173 } 3174 out: 3175 mutex_unlock(&ext4_li_mtx); 3176 if (ret) 3177 kfree(elr); 3178 return ret; 3179 } 3180 3181 /* 3182 * We do not need to lock anything since this is called on 3183 * module unload. 3184 */ 3185 static void ext4_destroy_lazyinit_thread(void) 3186 { 3187 /* 3188 * If thread exited earlier 3189 * there's nothing to be done. 3190 */ 3191 if (!ext4_li_info || !ext4_lazyinit_task) 3192 return; 3193 3194 kthread_stop(ext4_lazyinit_task); 3195 } 3196 3197 static int set_journal_csum_feature_set(struct super_block *sb) 3198 { 3199 int ret = 1; 3200 int compat, incompat; 3201 struct ext4_sb_info *sbi = EXT4_SB(sb); 3202 3203 if (ext4_has_metadata_csum(sb)) { 3204 /* journal checksum v3 */ 3205 compat = 0; 3206 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3207 } else { 3208 /* journal checksum v1 */ 3209 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3210 incompat = 0; 3211 } 3212 3213 jbd2_journal_clear_features(sbi->s_journal, 3214 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3215 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3216 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3217 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3218 ret = jbd2_journal_set_features(sbi->s_journal, 3219 compat, 0, 3220 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3221 incompat); 3222 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3223 ret = jbd2_journal_set_features(sbi->s_journal, 3224 compat, 0, 3225 incompat); 3226 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3228 } else { 3229 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3230 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3231 } 3232 3233 return ret; 3234 } 3235 3236 /* 3237 * Note: calculating the overhead so we can be compatible with 3238 * historical BSD practice is quite difficult in the face of 3239 * clusters/bigalloc. This is because multiple metadata blocks from 3240 * different block group can end up in the same allocation cluster. 3241 * Calculating the exact overhead in the face of clustered allocation 3242 * requires either O(all block bitmaps) in memory or O(number of block 3243 * groups**2) in time. We will still calculate the superblock for 3244 * older file systems --- and if we come across with a bigalloc file 3245 * system with zero in s_overhead_clusters the estimate will be close to 3246 * correct especially for very large cluster sizes --- but for newer 3247 * file systems, it's better to calculate this figure once at mkfs 3248 * time, and store it in the superblock. If the superblock value is 3249 * present (even for non-bigalloc file systems), we will use it. 3250 */ 3251 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3252 char *buf) 3253 { 3254 struct ext4_sb_info *sbi = EXT4_SB(sb); 3255 struct ext4_group_desc *gdp; 3256 ext4_fsblk_t first_block, last_block, b; 3257 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3258 int s, j, count = 0; 3259 3260 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3261 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3262 sbi->s_itb_per_group + 2); 3263 3264 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3265 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3266 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3267 for (i = 0; i < ngroups; i++) { 3268 gdp = ext4_get_group_desc(sb, i, NULL); 3269 b = ext4_block_bitmap(sb, gdp); 3270 if (b >= first_block && b <= last_block) { 3271 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3272 count++; 3273 } 3274 b = ext4_inode_bitmap(sb, gdp); 3275 if (b >= first_block && b <= last_block) { 3276 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3277 count++; 3278 } 3279 b = ext4_inode_table(sb, gdp); 3280 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3281 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3282 int c = EXT4_B2C(sbi, b - first_block); 3283 ext4_set_bit(c, buf); 3284 count++; 3285 } 3286 if (i != grp) 3287 continue; 3288 s = 0; 3289 if (ext4_bg_has_super(sb, grp)) { 3290 ext4_set_bit(s++, buf); 3291 count++; 3292 } 3293 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3294 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3295 count++; 3296 } 3297 } 3298 if (!count) 3299 return 0; 3300 return EXT4_CLUSTERS_PER_GROUP(sb) - 3301 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3302 } 3303 3304 /* 3305 * Compute the overhead and stash it in sbi->s_overhead 3306 */ 3307 int ext4_calculate_overhead(struct super_block *sb) 3308 { 3309 struct ext4_sb_info *sbi = EXT4_SB(sb); 3310 struct ext4_super_block *es = sbi->s_es; 3311 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3312 ext4_fsblk_t overhead = 0; 3313 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3314 3315 if (!buf) 3316 return -ENOMEM; 3317 3318 /* 3319 * Compute the overhead (FS structures). This is constant 3320 * for a given filesystem unless the number of block groups 3321 * changes so we cache the previous value until it does. 3322 */ 3323 3324 /* 3325 * All of the blocks before first_data_block are overhead 3326 */ 3327 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3328 3329 /* 3330 * Add the overhead found in each block group 3331 */ 3332 for (i = 0; i < ngroups; i++) { 3333 int blks; 3334 3335 blks = count_overhead(sb, i, buf); 3336 overhead += blks; 3337 if (blks) 3338 memset(buf, 0, PAGE_SIZE); 3339 cond_resched(); 3340 } 3341 /* Add the journal blocks as well */ 3342 if (sbi->s_journal) 3343 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3344 3345 sbi->s_overhead = overhead; 3346 smp_wmb(); 3347 free_page((unsigned long) buf); 3348 return 0; 3349 } 3350 3351 3352 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3353 { 3354 ext4_fsblk_t resv_clusters; 3355 3356 /* 3357 * There's no need to reserve anything when we aren't using extents. 3358 * The space estimates are exact, there are no unwritten extents, 3359 * hole punching doesn't need new metadata... This is needed especially 3360 * to keep ext2/3 backward compatibility. 3361 */ 3362 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3363 return 0; 3364 /* 3365 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3366 * This should cover the situations where we can not afford to run 3367 * out of space like for example punch hole, or converting 3368 * unwritten extents in delalloc path. In most cases such 3369 * allocation would require 1, or 2 blocks, higher numbers are 3370 * very rare. 3371 */ 3372 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3373 EXT4_SB(sb)->s_cluster_bits; 3374 3375 do_div(resv_clusters, 50); 3376 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3377 3378 return resv_clusters; 3379 } 3380 3381 3382 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3383 { 3384 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3385 sbi->s_cluster_bits; 3386 3387 if (count >= clusters) 3388 return -EINVAL; 3389 3390 atomic64_set(&sbi->s_resv_clusters, count); 3391 return 0; 3392 } 3393 3394 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3395 { 3396 char *orig_data = kstrdup(data, GFP_KERNEL); 3397 struct buffer_head *bh; 3398 struct ext4_super_block *es = NULL; 3399 struct ext4_sb_info *sbi; 3400 ext4_fsblk_t block; 3401 ext4_fsblk_t sb_block = get_sb_block(&data); 3402 ext4_fsblk_t logical_sb_block; 3403 unsigned long offset = 0; 3404 unsigned long journal_devnum = 0; 3405 unsigned long def_mount_opts; 3406 struct inode *root; 3407 char *cp; 3408 const char *descr; 3409 int ret = -ENOMEM; 3410 int blocksize, clustersize; 3411 unsigned int db_count; 3412 unsigned int i; 3413 int needs_recovery, has_huge_files, has_bigalloc; 3414 __u64 blocks_count; 3415 int err = 0; 3416 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3417 ext4_group_t first_not_zeroed; 3418 3419 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3420 if (!sbi) 3421 goto out_free_orig; 3422 3423 sbi->s_blockgroup_lock = 3424 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3425 if (!sbi->s_blockgroup_lock) { 3426 kfree(sbi); 3427 goto out_free_orig; 3428 } 3429 sb->s_fs_info = sbi; 3430 sbi->s_sb = sb; 3431 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3432 sbi->s_sb_block = sb_block; 3433 if (sb->s_bdev->bd_part) 3434 sbi->s_sectors_written_start = 3435 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3436 3437 /* Cleanup superblock name */ 3438 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3439 *cp = '!'; 3440 3441 /* -EINVAL is default */ 3442 ret = -EINVAL; 3443 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3444 if (!blocksize) { 3445 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3446 goto out_fail; 3447 } 3448 3449 /* 3450 * The ext4 superblock will not be buffer aligned for other than 1kB 3451 * block sizes. We need to calculate the offset from buffer start. 3452 */ 3453 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3454 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3455 offset = do_div(logical_sb_block, blocksize); 3456 } else { 3457 logical_sb_block = sb_block; 3458 } 3459 3460 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3461 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3462 goto out_fail; 3463 } 3464 /* 3465 * Note: s_es must be initialized as soon as possible because 3466 * some ext4 macro-instructions depend on its value 3467 */ 3468 es = (struct ext4_super_block *) (bh->b_data + offset); 3469 sbi->s_es = es; 3470 sb->s_magic = le16_to_cpu(es->s_magic); 3471 if (sb->s_magic != EXT4_SUPER_MAGIC) 3472 goto cantfind_ext4; 3473 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3474 3475 /* Warn if metadata_csum and gdt_csum are both set. */ 3476 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3477 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3478 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3479 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3480 "redundant flags; please run fsck."); 3481 3482 /* Check for a known checksum algorithm */ 3483 if (!ext4_verify_csum_type(sb, es)) { 3484 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3485 "unknown checksum algorithm."); 3486 silent = 1; 3487 goto cantfind_ext4; 3488 } 3489 3490 /* Load the checksum driver */ 3491 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3492 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3493 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3494 if (IS_ERR(sbi->s_chksum_driver)) { 3495 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3496 ret = PTR_ERR(sbi->s_chksum_driver); 3497 sbi->s_chksum_driver = NULL; 3498 goto failed_mount; 3499 } 3500 } 3501 3502 /* Check superblock checksum */ 3503 if (!ext4_superblock_csum_verify(sb, es)) { 3504 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3505 "invalid superblock checksum. Run e2fsck?"); 3506 silent = 1; 3507 goto cantfind_ext4; 3508 } 3509 3510 /* Precompute checksum seed for all metadata */ 3511 if (ext4_has_metadata_csum(sb)) 3512 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3513 sizeof(es->s_uuid)); 3514 3515 /* Set defaults before we parse the mount options */ 3516 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3517 set_opt(sb, INIT_INODE_TABLE); 3518 if (def_mount_opts & EXT4_DEFM_DEBUG) 3519 set_opt(sb, DEBUG); 3520 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3521 set_opt(sb, GRPID); 3522 if (def_mount_opts & EXT4_DEFM_UID16) 3523 set_opt(sb, NO_UID32); 3524 /* xattr user namespace & acls are now defaulted on */ 3525 set_opt(sb, XATTR_USER); 3526 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3527 set_opt(sb, POSIX_ACL); 3528 #endif 3529 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3530 if (ext4_has_metadata_csum(sb)) 3531 set_opt(sb, JOURNAL_CHECKSUM); 3532 3533 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3534 set_opt(sb, JOURNAL_DATA); 3535 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3536 set_opt(sb, ORDERED_DATA); 3537 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3538 set_opt(sb, WRITEBACK_DATA); 3539 3540 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3541 set_opt(sb, ERRORS_PANIC); 3542 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3543 set_opt(sb, ERRORS_CONT); 3544 else 3545 set_opt(sb, ERRORS_RO); 3546 /* block_validity enabled by default; disable with noblock_validity */ 3547 set_opt(sb, BLOCK_VALIDITY); 3548 if (def_mount_opts & EXT4_DEFM_DISCARD) 3549 set_opt(sb, DISCARD); 3550 3551 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3552 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3553 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3554 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3555 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3556 3557 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3558 set_opt(sb, BARRIER); 3559 3560 /* 3561 * enable delayed allocation by default 3562 * Use -o nodelalloc to turn it off 3563 */ 3564 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3565 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3566 set_opt(sb, DELALLOC); 3567 3568 /* 3569 * set default s_li_wait_mult for lazyinit, for the case there is 3570 * no mount option specified. 3571 */ 3572 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3573 3574 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3575 &journal_devnum, &journal_ioprio, 0)) { 3576 ext4_msg(sb, KERN_WARNING, 3577 "failed to parse options in superblock: %s", 3578 sbi->s_es->s_mount_opts); 3579 } 3580 sbi->s_def_mount_opt = sbi->s_mount_opt; 3581 if (!parse_options((char *) data, sb, &journal_devnum, 3582 &journal_ioprio, 0)) 3583 goto failed_mount; 3584 3585 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3586 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3587 "with data=journal disables delayed " 3588 "allocation and O_DIRECT support!\n"); 3589 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3590 ext4_msg(sb, KERN_ERR, "can't mount with " 3591 "both data=journal and delalloc"); 3592 goto failed_mount; 3593 } 3594 if (test_opt(sb, DIOREAD_NOLOCK)) { 3595 ext4_msg(sb, KERN_ERR, "can't mount with " 3596 "both data=journal and dioread_nolock"); 3597 goto failed_mount; 3598 } 3599 if (test_opt(sb, DELALLOC)) 3600 clear_opt(sb, DELALLOC); 3601 } 3602 3603 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3604 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3605 3606 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3607 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3608 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3609 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3610 ext4_msg(sb, KERN_WARNING, 3611 "feature flags set on rev 0 fs, " 3612 "running e2fsck is recommended"); 3613 3614 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3615 set_opt2(sb, HURD_COMPAT); 3616 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3617 EXT4_FEATURE_INCOMPAT_64BIT)) { 3618 ext4_msg(sb, KERN_ERR, 3619 "The Hurd can't support 64-bit file systems"); 3620 goto failed_mount; 3621 } 3622 } 3623 3624 if (IS_EXT2_SB(sb)) { 3625 if (ext2_feature_set_ok(sb)) 3626 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3627 "using the ext4 subsystem"); 3628 else { 3629 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3630 "to feature incompatibilities"); 3631 goto failed_mount; 3632 } 3633 } 3634 3635 if (IS_EXT3_SB(sb)) { 3636 if (ext3_feature_set_ok(sb)) 3637 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3638 "using the ext4 subsystem"); 3639 else { 3640 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3641 "to feature incompatibilities"); 3642 goto failed_mount; 3643 } 3644 } 3645 3646 /* 3647 * Check feature flags regardless of the revision level, since we 3648 * previously didn't change the revision level when setting the flags, 3649 * so there is a chance incompat flags are set on a rev 0 filesystem. 3650 */ 3651 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3652 goto failed_mount; 3653 3654 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3655 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3656 blocksize > EXT4_MAX_BLOCK_SIZE) { 3657 ext4_msg(sb, KERN_ERR, 3658 "Unsupported filesystem blocksize %d", blocksize); 3659 goto failed_mount; 3660 } 3661 3662 if (sb->s_blocksize != blocksize) { 3663 /* Validate the filesystem blocksize */ 3664 if (!sb_set_blocksize(sb, blocksize)) { 3665 ext4_msg(sb, KERN_ERR, "bad block size %d", 3666 blocksize); 3667 goto failed_mount; 3668 } 3669 3670 brelse(bh); 3671 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3672 offset = do_div(logical_sb_block, blocksize); 3673 bh = sb_bread_unmovable(sb, logical_sb_block); 3674 if (!bh) { 3675 ext4_msg(sb, KERN_ERR, 3676 "Can't read superblock on 2nd try"); 3677 goto failed_mount; 3678 } 3679 es = (struct ext4_super_block *)(bh->b_data + offset); 3680 sbi->s_es = es; 3681 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3682 ext4_msg(sb, KERN_ERR, 3683 "Magic mismatch, very weird!"); 3684 goto failed_mount; 3685 } 3686 } 3687 3688 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3689 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3690 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3691 has_huge_files); 3692 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3693 3694 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3695 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3696 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3697 } else { 3698 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3699 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3700 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3701 (!is_power_of_2(sbi->s_inode_size)) || 3702 (sbi->s_inode_size > blocksize)) { 3703 ext4_msg(sb, KERN_ERR, 3704 "unsupported inode size: %d", 3705 sbi->s_inode_size); 3706 goto failed_mount; 3707 } 3708 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3709 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3710 } 3711 3712 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3713 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3714 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3715 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3716 !is_power_of_2(sbi->s_desc_size)) { 3717 ext4_msg(sb, KERN_ERR, 3718 "unsupported descriptor size %lu", 3719 sbi->s_desc_size); 3720 goto failed_mount; 3721 } 3722 } else 3723 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3724 3725 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3726 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3727 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3728 goto cantfind_ext4; 3729 3730 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3731 if (sbi->s_inodes_per_block == 0) 3732 goto cantfind_ext4; 3733 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3734 sbi->s_inodes_per_block; 3735 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3736 sbi->s_sbh = bh; 3737 sbi->s_mount_state = le16_to_cpu(es->s_state); 3738 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3739 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3740 3741 for (i = 0; i < 4; i++) 3742 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3743 sbi->s_def_hash_version = es->s_def_hash_version; 3744 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3745 i = le32_to_cpu(es->s_flags); 3746 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3747 sbi->s_hash_unsigned = 3; 3748 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3749 #ifdef __CHAR_UNSIGNED__ 3750 if (!(sb->s_flags & MS_RDONLY)) 3751 es->s_flags |= 3752 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3753 sbi->s_hash_unsigned = 3; 3754 #else 3755 if (!(sb->s_flags & MS_RDONLY)) 3756 es->s_flags |= 3757 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3758 #endif 3759 } 3760 } 3761 3762 /* Handle clustersize */ 3763 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3764 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3765 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3766 if (has_bigalloc) { 3767 if (clustersize < blocksize) { 3768 ext4_msg(sb, KERN_ERR, 3769 "cluster size (%d) smaller than " 3770 "block size (%d)", clustersize, blocksize); 3771 goto failed_mount; 3772 } 3773 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3774 le32_to_cpu(es->s_log_block_size); 3775 sbi->s_clusters_per_group = 3776 le32_to_cpu(es->s_clusters_per_group); 3777 if (sbi->s_clusters_per_group > blocksize * 8) { 3778 ext4_msg(sb, KERN_ERR, 3779 "#clusters per group too big: %lu", 3780 sbi->s_clusters_per_group); 3781 goto failed_mount; 3782 } 3783 if (sbi->s_blocks_per_group != 3784 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3785 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3786 "clusters per group (%lu) inconsistent", 3787 sbi->s_blocks_per_group, 3788 sbi->s_clusters_per_group); 3789 goto failed_mount; 3790 } 3791 } else { 3792 if (clustersize != blocksize) { 3793 ext4_warning(sb, "fragment/cluster size (%d) != " 3794 "block size (%d)", clustersize, 3795 blocksize); 3796 clustersize = blocksize; 3797 } 3798 if (sbi->s_blocks_per_group > blocksize * 8) { 3799 ext4_msg(sb, KERN_ERR, 3800 "#blocks per group too big: %lu", 3801 sbi->s_blocks_per_group); 3802 goto failed_mount; 3803 } 3804 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3805 sbi->s_cluster_bits = 0; 3806 } 3807 sbi->s_cluster_ratio = clustersize / blocksize; 3808 3809 if (sbi->s_inodes_per_group > blocksize * 8) { 3810 ext4_msg(sb, KERN_ERR, 3811 "#inodes per group too big: %lu", 3812 sbi->s_inodes_per_group); 3813 goto failed_mount; 3814 } 3815 3816 /* Do we have standard group size of clustersize * 8 blocks ? */ 3817 if (sbi->s_blocks_per_group == clustersize << 3) 3818 set_opt2(sb, STD_GROUP_SIZE); 3819 3820 /* 3821 * Test whether we have more sectors than will fit in sector_t, 3822 * and whether the max offset is addressable by the page cache. 3823 */ 3824 err = generic_check_addressable(sb->s_blocksize_bits, 3825 ext4_blocks_count(es)); 3826 if (err) { 3827 ext4_msg(sb, KERN_ERR, "filesystem" 3828 " too large to mount safely on this system"); 3829 if (sizeof(sector_t) < 8) 3830 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3831 goto failed_mount; 3832 } 3833 3834 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3835 goto cantfind_ext4; 3836 3837 /* check blocks count against device size */ 3838 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3839 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3840 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3841 "exceeds size of device (%llu blocks)", 3842 ext4_blocks_count(es), blocks_count); 3843 goto failed_mount; 3844 } 3845 3846 /* 3847 * It makes no sense for the first data block to be beyond the end 3848 * of the filesystem. 3849 */ 3850 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3851 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3852 "block %u is beyond end of filesystem (%llu)", 3853 le32_to_cpu(es->s_first_data_block), 3854 ext4_blocks_count(es)); 3855 goto failed_mount; 3856 } 3857 blocks_count = (ext4_blocks_count(es) - 3858 le32_to_cpu(es->s_first_data_block) + 3859 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3860 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3861 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3862 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3863 "(block count %llu, first data block %u, " 3864 "blocks per group %lu)", sbi->s_groups_count, 3865 ext4_blocks_count(es), 3866 le32_to_cpu(es->s_first_data_block), 3867 EXT4_BLOCKS_PER_GROUP(sb)); 3868 goto failed_mount; 3869 } 3870 sbi->s_groups_count = blocks_count; 3871 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3872 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3873 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3874 EXT4_DESC_PER_BLOCK(sb); 3875 sbi->s_group_desc = ext4_kvmalloc(db_count * 3876 sizeof(struct buffer_head *), 3877 GFP_KERNEL); 3878 if (sbi->s_group_desc == NULL) { 3879 ext4_msg(sb, KERN_ERR, "not enough memory"); 3880 ret = -ENOMEM; 3881 goto failed_mount; 3882 } 3883 3884 if (ext4_proc_root) 3885 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3886 3887 if (sbi->s_proc) 3888 proc_create_data("options", S_IRUGO, sbi->s_proc, 3889 &ext4_seq_options_fops, sb); 3890 3891 bgl_lock_init(sbi->s_blockgroup_lock); 3892 3893 for (i = 0; i < db_count; i++) { 3894 block = descriptor_loc(sb, logical_sb_block, i); 3895 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3896 if (!sbi->s_group_desc[i]) { 3897 ext4_msg(sb, KERN_ERR, 3898 "can't read group descriptor %d", i); 3899 db_count = i; 3900 goto failed_mount2; 3901 } 3902 } 3903 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3904 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3905 goto failed_mount2; 3906 } 3907 3908 sbi->s_gdb_count = db_count; 3909 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3910 spin_lock_init(&sbi->s_next_gen_lock); 3911 3912 init_timer(&sbi->s_err_report); 3913 sbi->s_err_report.function = print_daily_error_info; 3914 sbi->s_err_report.data = (unsigned long) sb; 3915 3916 /* Register extent status tree shrinker */ 3917 if (ext4_es_register_shrinker(sbi)) 3918 goto failed_mount3; 3919 3920 sbi->s_stripe = ext4_get_stripe_size(sbi); 3921 sbi->s_extent_max_zeroout_kb = 32; 3922 3923 /* 3924 * set up enough so that it can read an inode 3925 */ 3926 sb->s_op = &ext4_sops; 3927 sb->s_export_op = &ext4_export_ops; 3928 sb->s_xattr = ext4_xattr_handlers; 3929 #ifdef CONFIG_QUOTA 3930 sb->dq_op = &ext4_quota_operations; 3931 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3932 sb->s_qcop = &ext4_qctl_sysfile_operations; 3933 else 3934 sb->s_qcop = &ext4_qctl_operations; 3935 #endif 3936 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3937 3938 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3939 mutex_init(&sbi->s_orphan_lock); 3940 3941 sb->s_root = NULL; 3942 3943 needs_recovery = (es->s_last_orphan != 0 || 3944 EXT4_HAS_INCOMPAT_FEATURE(sb, 3945 EXT4_FEATURE_INCOMPAT_RECOVER)); 3946 3947 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3948 !(sb->s_flags & MS_RDONLY)) 3949 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3950 goto failed_mount3a; 3951 3952 /* 3953 * The first inode we look at is the journal inode. Don't try 3954 * root first: it may be modified in the journal! 3955 */ 3956 if (!test_opt(sb, NOLOAD) && 3957 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3958 if (ext4_load_journal(sb, es, journal_devnum)) 3959 goto failed_mount3a; 3960 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3961 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3962 ext4_msg(sb, KERN_ERR, "required journal recovery " 3963 "suppressed and not mounted read-only"); 3964 goto failed_mount_wq; 3965 } else { 3966 clear_opt(sb, DATA_FLAGS); 3967 sbi->s_journal = NULL; 3968 needs_recovery = 0; 3969 goto no_journal; 3970 } 3971 3972 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3973 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3974 JBD2_FEATURE_INCOMPAT_64BIT)) { 3975 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3976 goto failed_mount_wq; 3977 } 3978 3979 if (!set_journal_csum_feature_set(sb)) { 3980 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3981 "feature set"); 3982 goto failed_mount_wq; 3983 } 3984 3985 /* We have now updated the journal if required, so we can 3986 * validate the data journaling mode. */ 3987 switch (test_opt(sb, DATA_FLAGS)) { 3988 case 0: 3989 /* No mode set, assume a default based on the journal 3990 * capabilities: ORDERED_DATA if the journal can 3991 * cope, else JOURNAL_DATA 3992 */ 3993 if (jbd2_journal_check_available_features 3994 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3995 set_opt(sb, ORDERED_DATA); 3996 else 3997 set_opt(sb, JOURNAL_DATA); 3998 break; 3999 4000 case EXT4_MOUNT_ORDERED_DATA: 4001 case EXT4_MOUNT_WRITEBACK_DATA: 4002 if (!jbd2_journal_check_available_features 4003 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4004 ext4_msg(sb, KERN_ERR, "Journal does not support " 4005 "requested data journaling mode"); 4006 goto failed_mount_wq; 4007 } 4008 default: 4009 break; 4010 } 4011 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4012 4013 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4014 4015 no_journal: 4016 if (ext4_mballoc_ready) { 4017 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4018 if (!sbi->s_mb_cache) { 4019 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4020 goto failed_mount_wq; 4021 } 4022 } 4023 4024 /* 4025 * Get the # of file system overhead blocks from the 4026 * superblock if present. 4027 */ 4028 if (es->s_overhead_clusters) 4029 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4030 else { 4031 err = ext4_calculate_overhead(sb); 4032 if (err) 4033 goto failed_mount_wq; 4034 } 4035 4036 /* 4037 * The maximum number of concurrent works can be high and 4038 * concurrency isn't really necessary. Limit it to 1. 4039 */ 4040 EXT4_SB(sb)->rsv_conversion_wq = 4041 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4042 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4043 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4044 ret = -ENOMEM; 4045 goto failed_mount4; 4046 } 4047 4048 /* 4049 * The jbd2_journal_load will have done any necessary log recovery, 4050 * so we can safely mount the rest of the filesystem now. 4051 */ 4052 4053 root = ext4_iget(sb, EXT4_ROOT_INO); 4054 if (IS_ERR(root)) { 4055 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4056 ret = PTR_ERR(root); 4057 root = NULL; 4058 goto failed_mount4; 4059 } 4060 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4061 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4062 iput(root); 4063 goto failed_mount4; 4064 } 4065 sb->s_root = d_make_root(root); 4066 if (!sb->s_root) { 4067 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4068 ret = -ENOMEM; 4069 goto failed_mount4; 4070 } 4071 4072 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4073 sb->s_flags |= MS_RDONLY; 4074 4075 /* determine the minimum size of new large inodes, if present */ 4076 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4077 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4078 EXT4_GOOD_OLD_INODE_SIZE; 4079 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4080 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4081 if (sbi->s_want_extra_isize < 4082 le16_to_cpu(es->s_want_extra_isize)) 4083 sbi->s_want_extra_isize = 4084 le16_to_cpu(es->s_want_extra_isize); 4085 if (sbi->s_want_extra_isize < 4086 le16_to_cpu(es->s_min_extra_isize)) 4087 sbi->s_want_extra_isize = 4088 le16_to_cpu(es->s_min_extra_isize); 4089 } 4090 } 4091 /* Check if enough inode space is available */ 4092 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4093 sbi->s_inode_size) { 4094 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4095 EXT4_GOOD_OLD_INODE_SIZE; 4096 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4097 "available"); 4098 } 4099 4100 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4101 if (err) { 4102 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4103 "reserved pool", ext4_calculate_resv_clusters(sb)); 4104 goto failed_mount4a; 4105 } 4106 4107 err = ext4_setup_system_zone(sb); 4108 if (err) { 4109 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4110 "zone (%d)", err); 4111 goto failed_mount4a; 4112 } 4113 4114 ext4_ext_init(sb); 4115 err = ext4_mb_init(sb); 4116 if (err) { 4117 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4118 err); 4119 goto failed_mount5; 4120 } 4121 4122 block = ext4_count_free_clusters(sb); 4123 ext4_free_blocks_count_set(sbi->s_es, 4124 EXT4_C2B(sbi, block)); 4125 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4126 GFP_KERNEL); 4127 if (!err) { 4128 unsigned long freei = ext4_count_free_inodes(sb); 4129 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4130 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4131 GFP_KERNEL); 4132 } 4133 if (!err) 4134 err = percpu_counter_init(&sbi->s_dirs_counter, 4135 ext4_count_dirs(sb), GFP_KERNEL); 4136 if (!err) 4137 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4138 GFP_KERNEL); 4139 if (err) { 4140 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4141 goto failed_mount6; 4142 } 4143 4144 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 4145 if (!ext4_fill_flex_info(sb)) { 4146 ext4_msg(sb, KERN_ERR, 4147 "unable to initialize " 4148 "flex_bg meta info!"); 4149 goto failed_mount6; 4150 } 4151 4152 err = ext4_register_li_request(sb, first_not_zeroed); 4153 if (err) 4154 goto failed_mount6; 4155 4156 sbi->s_kobj.kset = ext4_kset; 4157 init_completion(&sbi->s_kobj_unregister); 4158 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4159 "%s", sb->s_id); 4160 if (err) 4161 goto failed_mount7; 4162 4163 #ifdef CONFIG_QUOTA 4164 /* Enable quota usage during mount. */ 4165 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4166 !(sb->s_flags & MS_RDONLY)) { 4167 err = ext4_enable_quotas(sb); 4168 if (err) 4169 goto failed_mount8; 4170 } 4171 #endif /* CONFIG_QUOTA */ 4172 4173 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4174 ext4_orphan_cleanup(sb, es); 4175 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4176 if (needs_recovery) { 4177 ext4_msg(sb, KERN_INFO, "recovery complete"); 4178 ext4_mark_recovery_complete(sb, es); 4179 } 4180 if (EXT4_SB(sb)->s_journal) { 4181 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4182 descr = " journalled data mode"; 4183 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4184 descr = " ordered data mode"; 4185 else 4186 descr = " writeback data mode"; 4187 } else 4188 descr = "out journal"; 4189 4190 if (test_opt(sb, DISCARD)) { 4191 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4192 if (!blk_queue_discard(q)) 4193 ext4_msg(sb, KERN_WARNING, 4194 "mounting with \"discard\" option, but " 4195 "the device does not support discard"); 4196 } 4197 4198 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4199 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4200 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4201 4202 if (es->s_error_count) 4203 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4204 4205 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4206 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4207 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4208 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4209 4210 kfree(orig_data); 4211 return 0; 4212 4213 cantfind_ext4: 4214 if (!silent) 4215 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4216 goto failed_mount; 4217 4218 #ifdef CONFIG_QUOTA 4219 failed_mount8: 4220 kobject_del(&sbi->s_kobj); 4221 #endif 4222 failed_mount7: 4223 ext4_unregister_li_request(sb); 4224 failed_mount6: 4225 ext4_mb_release(sb); 4226 if (sbi->s_flex_groups) 4227 ext4_kvfree(sbi->s_flex_groups); 4228 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4229 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4230 percpu_counter_destroy(&sbi->s_dirs_counter); 4231 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4232 failed_mount5: 4233 ext4_ext_release(sb); 4234 ext4_release_system_zone(sb); 4235 failed_mount4a: 4236 dput(sb->s_root); 4237 sb->s_root = NULL; 4238 failed_mount4: 4239 ext4_msg(sb, KERN_ERR, "mount failed"); 4240 if (EXT4_SB(sb)->rsv_conversion_wq) 4241 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4242 failed_mount_wq: 4243 if (sbi->s_journal) { 4244 jbd2_journal_destroy(sbi->s_journal); 4245 sbi->s_journal = NULL; 4246 } 4247 failed_mount3a: 4248 ext4_es_unregister_shrinker(sbi); 4249 failed_mount3: 4250 del_timer_sync(&sbi->s_err_report); 4251 if (sbi->s_mmp_tsk) 4252 kthread_stop(sbi->s_mmp_tsk); 4253 failed_mount2: 4254 for (i = 0; i < db_count; i++) 4255 brelse(sbi->s_group_desc[i]); 4256 ext4_kvfree(sbi->s_group_desc); 4257 failed_mount: 4258 if (sbi->s_chksum_driver) 4259 crypto_free_shash(sbi->s_chksum_driver); 4260 if (sbi->s_proc) { 4261 remove_proc_entry("options", sbi->s_proc); 4262 remove_proc_entry(sb->s_id, ext4_proc_root); 4263 } 4264 #ifdef CONFIG_QUOTA 4265 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4266 kfree(sbi->s_qf_names[i]); 4267 #endif 4268 ext4_blkdev_remove(sbi); 4269 brelse(bh); 4270 out_fail: 4271 sb->s_fs_info = NULL; 4272 kfree(sbi->s_blockgroup_lock); 4273 kfree(sbi); 4274 out_free_orig: 4275 kfree(orig_data); 4276 return err ? err : ret; 4277 } 4278 4279 /* 4280 * Setup any per-fs journal parameters now. We'll do this both on 4281 * initial mount, once the journal has been initialised but before we've 4282 * done any recovery; and again on any subsequent remount. 4283 */ 4284 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4285 { 4286 struct ext4_sb_info *sbi = EXT4_SB(sb); 4287 4288 journal->j_commit_interval = sbi->s_commit_interval; 4289 journal->j_min_batch_time = sbi->s_min_batch_time; 4290 journal->j_max_batch_time = sbi->s_max_batch_time; 4291 4292 write_lock(&journal->j_state_lock); 4293 if (test_opt(sb, BARRIER)) 4294 journal->j_flags |= JBD2_BARRIER; 4295 else 4296 journal->j_flags &= ~JBD2_BARRIER; 4297 if (test_opt(sb, DATA_ERR_ABORT)) 4298 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4299 else 4300 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4301 write_unlock(&journal->j_state_lock); 4302 } 4303 4304 static journal_t *ext4_get_journal(struct super_block *sb, 4305 unsigned int journal_inum) 4306 { 4307 struct inode *journal_inode; 4308 journal_t *journal; 4309 4310 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4311 4312 /* First, test for the existence of a valid inode on disk. Bad 4313 * things happen if we iget() an unused inode, as the subsequent 4314 * iput() will try to delete it. */ 4315 4316 journal_inode = ext4_iget(sb, journal_inum); 4317 if (IS_ERR(journal_inode)) { 4318 ext4_msg(sb, KERN_ERR, "no journal found"); 4319 return NULL; 4320 } 4321 if (!journal_inode->i_nlink) { 4322 make_bad_inode(journal_inode); 4323 iput(journal_inode); 4324 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4325 return NULL; 4326 } 4327 4328 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4329 journal_inode, journal_inode->i_size); 4330 if (!S_ISREG(journal_inode->i_mode)) { 4331 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4332 iput(journal_inode); 4333 return NULL; 4334 } 4335 4336 journal = jbd2_journal_init_inode(journal_inode); 4337 if (!journal) { 4338 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4339 iput(journal_inode); 4340 return NULL; 4341 } 4342 journal->j_private = sb; 4343 ext4_init_journal_params(sb, journal); 4344 return journal; 4345 } 4346 4347 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4348 dev_t j_dev) 4349 { 4350 struct buffer_head *bh; 4351 journal_t *journal; 4352 ext4_fsblk_t start; 4353 ext4_fsblk_t len; 4354 int hblock, blocksize; 4355 ext4_fsblk_t sb_block; 4356 unsigned long offset; 4357 struct ext4_super_block *es; 4358 struct block_device *bdev; 4359 4360 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4361 4362 bdev = ext4_blkdev_get(j_dev, sb); 4363 if (bdev == NULL) 4364 return NULL; 4365 4366 blocksize = sb->s_blocksize; 4367 hblock = bdev_logical_block_size(bdev); 4368 if (blocksize < hblock) { 4369 ext4_msg(sb, KERN_ERR, 4370 "blocksize too small for journal device"); 4371 goto out_bdev; 4372 } 4373 4374 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4375 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4376 set_blocksize(bdev, blocksize); 4377 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4378 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4379 "external journal"); 4380 goto out_bdev; 4381 } 4382 4383 es = (struct ext4_super_block *) (bh->b_data + offset); 4384 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4385 !(le32_to_cpu(es->s_feature_incompat) & 4386 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4387 ext4_msg(sb, KERN_ERR, "external journal has " 4388 "bad superblock"); 4389 brelse(bh); 4390 goto out_bdev; 4391 } 4392 4393 if ((le32_to_cpu(es->s_feature_ro_compat) & 4394 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4395 es->s_checksum != ext4_superblock_csum(sb, es)) { 4396 ext4_msg(sb, KERN_ERR, "external journal has " 4397 "corrupt superblock"); 4398 brelse(bh); 4399 goto out_bdev; 4400 } 4401 4402 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4403 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4404 brelse(bh); 4405 goto out_bdev; 4406 } 4407 4408 len = ext4_blocks_count(es); 4409 start = sb_block + 1; 4410 brelse(bh); /* we're done with the superblock */ 4411 4412 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4413 start, len, blocksize); 4414 if (!journal) { 4415 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4416 goto out_bdev; 4417 } 4418 journal->j_private = sb; 4419 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4420 wait_on_buffer(journal->j_sb_buffer); 4421 if (!buffer_uptodate(journal->j_sb_buffer)) { 4422 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4423 goto out_journal; 4424 } 4425 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4426 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4427 "user (unsupported) - %d", 4428 be32_to_cpu(journal->j_superblock->s_nr_users)); 4429 goto out_journal; 4430 } 4431 EXT4_SB(sb)->journal_bdev = bdev; 4432 ext4_init_journal_params(sb, journal); 4433 return journal; 4434 4435 out_journal: 4436 jbd2_journal_destroy(journal); 4437 out_bdev: 4438 ext4_blkdev_put(bdev); 4439 return NULL; 4440 } 4441 4442 static int ext4_load_journal(struct super_block *sb, 4443 struct ext4_super_block *es, 4444 unsigned long journal_devnum) 4445 { 4446 journal_t *journal; 4447 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4448 dev_t journal_dev; 4449 int err = 0; 4450 int really_read_only; 4451 4452 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4453 4454 if (journal_devnum && 4455 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4456 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4457 "numbers have changed"); 4458 journal_dev = new_decode_dev(journal_devnum); 4459 } else 4460 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4461 4462 really_read_only = bdev_read_only(sb->s_bdev); 4463 4464 /* 4465 * Are we loading a blank journal or performing recovery after a 4466 * crash? For recovery, we need to check in advance whether we 4467 * can get read-write access to the device. 4468 */ 4469 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4470 if (sb->s_flags & MS_RDONLY) { 4471 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4472 "required on readonly filesystem"); 4473 if (really_read_only) { 4474 ext4_msg(sb, KERN_ERR, "write access " 4475 "unavailable, cannot proceed"); 4476 return -EROFS; 4477 } 4478 ext4_msg(sb, KERN_INFO, "write access will " 4479 "be enabled during recovery"); 4480 } 4481 } 4482 4483 if (journal_inum && journal_dev) { 4484 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4485 "and inode journals!"); 4486 return -EINVAL; 4487 } 4488 4489 if (journal_inum) { 4490 if (!(journal = ext4_get_journal(sb, journal_inum))) 4491 return -EINVAL; 4492 } else { 4493 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4494 return -EINVAL; 4495 } 4496 4497 if (!(journal->j_flags & JBD2_BARRIER)) 4498 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4499 4500 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4501 err = jbd2_journal_wipe(journal, !really_read_only); 4502 if (!err) { 4503 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4504 if (save) 4505 memcpy(save, ((char *) es) + 4506 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4507 err = jbd2_journal_load(journal); 4508 if (save) 4509 memcpy(((char *) es) + EXT4_S_ERR_START, 4510 save, EXT4_S_ERR_LEN); 4511 kfree(save); 4512 } 4513 4514 if (err) { 4515 ext4_msg(sb, KERN_ERR, "error loading journal"); 4516 jbd2_journal_destroy(journal); 4517 return err; 4518 } 4519 4520 EXT4_SB(sb)->s_journal = journal; 4521 ext4_clear_journal_err(sb, es); 4522 4523 if (!really_read_only && journal_devnum && 4524 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4525 es->s_journal_dev = cpu_to_le32(journal_devnum); 4526 4527 /* Make sure we flush the recovery flag to disk. */ 4528 ext4_commit_super(sb, 1); 4529 } 4530 4531 return 0; 4532 } 4533 4534 static int ext4_commit_super(struct super_block *sb, int sync) 4535 { 4536 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4537 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4538 int error = 0; 4539 4540 if (!sbh || block_device_ejected(sb)) 4541 return error; 4542 if (buffer_write_io_error(sbh)) { 4543 /* 4544 * Oh, dear. A previous attempt to write the 4545 * superblock failed. This could happen because the 4546 * USB device was yanked out. Or it could happen to 4547 * be a transient write error and maybe the block will 4548 * be remapped. Nothing we can do but to retry the 4549 * write and hope for the best. 4550 */ 4551 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4552 "superblock detected"); 4553 clear_buffer_write_io_error(sbh); 4554 set_buffer_uptodate(sbh); 4555 } 4556 /* 4557 * If the file system is mounted read-only, don't update the 4558 * superblock write time. This avoids updating the superblock 4559 * write time when we are mounting the root file system 4560 * read/only but we need to replay the journal; at that point, 4561 * for people who are east of GMT and who make their clock 4562 * tick in localtime for Windows bug-for-bug compatibility, 4563 * the clock is set in the future, and this will cause e2fsck 4564 * to complain and force a full file system check. 4565 */ 4566 if (!(sb->s_flags & MS_RDONLY)) 4567 es->s_wtime = cpu_to_le32(get_seconds()); 4568 if (sb->s_bdev->bd_part) 4569 es->s_kbytes_written = 4570 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4571 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4572 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4573 else 4574 es->s_kbytes_written = 4575 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4576 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4577 ext4_free_blocks_count_set(es, 4578 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4579 &EXT4_SB(sb)->s_freeclusters_counter))); 4580 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4581 es->s_free_inodes_count = 4582 cpu_to_le32(percpu_counter_sum_positive( 4583 &EXT4_SB(sb)->s_freeinodes_counter)); 4584 BUFFER_TRACE(sbh, "marking dirty"); 4585 ext4_superblock_csum_set(sb); 4586 mark_buffer_dirty(sbh); 4587 if (sync) { 4588 error = sync_dirty_buffer(sbh); 4589 if (error) 4590 return error; 4591 4592 error = buffer_write_io_error(sbh); 4593 if (error) { 4594 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4595 "superblock"); 4596 clear_buffer_write_io_error(sbh); 4597 set_buffer_uptodate(sbh); 4598 } 4599 } 4600 return error; 4601 } 4602 4603 /* 4604 * Have we just finished recovery? If so, and if we are mounting (or 4605 * remounting) the filesystem readonly, then we will end up with a 4606 * consistent fs on disk. Record that fact. 4607 */ 4608 static void ext4_mark_recovery_complete(struct super_block *sb, 4609 struct ext4_super_block *es) 4610 { 4611 journal_t *journal = EXT4_SB(sb)->s_journal; 4612 4613 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4614 BUG_ON(journal != NULL); 4615 return; 4616 } 4617 jbd2_journal_lock_updates(journal); 4618 if (jbd2_journal_flush(journal) < 0) 4619 goto out; 4620 4621 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4622 sb->s_flags & MS_RDONLY) { 4623 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4624 ext4_commit_super(sb, 1); 4625 } 4626 4627 out: 4628 jbd2_journal_unlock_updates(journal); 4629 } 4630 4631 /* 4632 * If we are mounting (or read-write remounting) a filesystem whose journal 4633 * has recorded an error from a previous lifetime, move that error to the 4634 * main filesystem now. 4635 */ 4636 static void ext4_clear_journal_err(struct super_block *sb, 4637 struct ext4_super_block *es) 4638 { 4639 journal_t *journal; 4640 int j_errno; 4641 const char *errstr; 4642 4643 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4644 4645 journal = EXT4_SB(sb)->s_journal; 4646 4647 /* 4648 * Now check for any error status which may have been recorded in the 4649 * journal by a prior ext4_error() or ext4_abort() 4650 */ 4651 4652 j_errno = jbd2_journal_errno(journal); 4653 if (j_errno) { 4654 char nbuf[16]; 4655 4656 errstr = ext4_decode_error(sb, j_errno, nbuf); 4657 ext4_warning(sb, "Filesystem error recorded " 4658 "from previous mount: %s", errstr); 4659 ext4_warning(sb, "Marking fs in need of filesystem check."); 4660 4661 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4662 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4663 ext4_commit_super(sb, 1); 4664 4665 jbd2_journal_clear_err(journal); 4666 jbd2_journal_update_sb_errno(journal); 4667 } 4668 } 4669 4670 /* 4671 * Force the running and committing transactions to commit, 4672 * and wait on the commit. 4673 */ 4674 int ext4_force_commit(struct super_block *sb) 4675 { 4676 journal_t *journal; 4677 4678 if (sb->s_flags & MS_RDONLY) 4679 return 0; 4680 4681 journal = EXT4_SB(sb)->s_journal; 4682 return ext4_journal_force_commit(journal); 4683 } 4684 4685 static int ext4_sync_fs(struct super_block *sb, int wait) 4686 { 4687 int ret = 0; 4688 tid_t target; 4689 bool needs_barrier = false; 4690 struct ext4_sb_info *sbi = EXT4_SB(sb); 4691 4692 trace_ext4_sync_fs(sb, wait); 4693 flush_workqueue(sbi->rsv_conversion_wq); 4694 /* 4695 * Writeback quota in non-journalled quota case - journalled quota has 4696 * no dirty dquots 4697 */ 4698 dquot_writeback_dquots(sb, -1); 4699 /* 4700 * Data writeback is possible w/o journal transaction, so barrier must 4701 * being sent at the end of the function. But we can skip it if 4702 * transaction_commit will do it for us. 4703 */ 4704 if (sbi->s_journal) { 4705 target = jbd2_get_latest_transaction(sbi->s_journal); 4706 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4707 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4708 needs_barrier = true; 4709 4710 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4711 if (wait) 4712 ret = jbd2_log_wait_commit(sbi->s_journal, 4713 target); 4714 } 4715 } else if (wait && test_opt(sb, BARRIER)) 4716 needs_barrier = true; 4717 if (needs_barrier) { 4718 int err; 4719 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4720 if (!ret) 4721 ret = err; 4722 } 4723 4724 return ret; 4725 } 4726 4727 /* 4728 * LVM calls this function before a (read-only) snapshot is created. This 4729 * gives us a chance to flush the journal completely and mark the fs clean. 4730 * 4731 * Note that only this function cannot bring a filesystem to be in a clean 4732 * state independently. It relies on upper layer to stop all data & metadata 4733 * modifications. 4734 */ 4735 static int ext4_freeze(struct super_block *sb) 4736 { 4737 int error = 0; 4738 journal_t *journal; 4739 4740 if (sb->s_flags & MS_RDONLY) 4741 return 0; 4742 4743 journal = EXT4_SB(sb)->s_journal; 4744 4745 if (journal) { 4746 /* Now we set up the journal barrier. */ 4747 jbd2_journal_lock_updates(journal); 4748 4749 /* 4750 * Don't clear the needs_recovery flag if we failed to 4751 * flush the journal. 4752 */ 4753 error = jbd2_journal_flush(journal); 4754 if (error < 0) 4755 goto out; 4756 } 4757 4758 /* Journal blocked and flushed, clear needs_recovery flag. */ 4759 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4760 error = ext4_commit_super(sb, 1); 4761 out: 4762 if (journal) 4763 /* we rely on upper layer to stop further updates */ 4764 jbd2_journal_unlock_updates(journal); 4765 return error; 4766 } 4767 4768 /* 4769 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4770 * flag here, even though the filesystem is not technically dirty yet. 4771 */ 4772 static int ext4_unfreeze(struct super_block *sb) 4773 { 4774 if (sb->s_flags & MS_RDONLY) 4775 return 0; 4776 4777 /* Reset the needs_recovery flag before the fs is unlocked. */ 4778 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4779 ext4_commit_super(sb, 1); 4780 return 0; 4781 } 4782 4783 /* 4784 * Structure to save mount options for ext4_remount's benefit 4785 */ 4786 struct ext4_mount_options { 4787 unsigned long s_mount_opt; 4788 unsigned long s_mount_opt2; 4789 kuid_t s_resuid; 4790 kgid_t s_resgid; 4791 unsigned long s_commit_interval; 4792 u32 s_min_batch_time, s_max_batch_time; 4793 #ifdef CONFIG_QUOTA 4794 int s_jquota_fmt; 4795 char *s_qf_names[EXT4_MAXQUOTAS]; 4796 #endif 4797 }; 4798 4799 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4800 { 4801 struct ext4_super_block *es; 4802 struct ext4_sb_info *sbi = EXT4_SB(sb); 4803 unsigned long old_sb_flags; 4804 struct ext4_mount_options old_opts; 4805 int enable_quota = 0; 4806 ext4_group_t g; 4807 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4808 int err = 0; 4809 #ifdef CONFIG_QUOTA 4810 int i, j; 4811 #endif 4812 char *orig_data = kstrdup(data, GFP_KERNEL); 4813 4814 /* Store the original options */ 4815 old_sb_flags = sb->s_flags; 4816 old_opts.s_mount_opt = sbi->s_mount_opt; 4817 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4818 old_opts.s_resuid = sbi->s_resuid; 4819 old_opts.s_resgid = sbi->s_resgid; 4820 old_opts.s_commit_interval = sbi->s_commit_interval; 4821 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4822 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4823 #ifdef CONFIG_QUOTA 4824 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4825 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4826 if (sbi->s_qf_names[i]) { 4827 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4828 GFP_KERNEL); 4829 if (!old_opts.s_qf_names[i]) { 4830 for (j = 0; j < i; j++) 4831 kfree(old_opts.s_qf_names[j]); 4832 kfree(orig_data); 4833 return -ENOMEM; 4834 } 4835 } else 4836 old_opts.s_qf_names[i] = NULL; 4837 #endif 4838 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4839 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4840 4841 /* 4842 * Allow the "check" option to be passed as a remount option. 4843 */ 4844 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4845 err = -EINVAL; 4846 goto restore_opts; 4847 } 4848 4849 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4850 test_opt(sb, JOURNAL_CHECKSUM)) { 4851 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4852 "during remount not supported"); 4853 err = -EINVAL; 4854 goto restore_opts; 4855 } 4856 4857 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4858 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4859 ext4_msg(sb, KERN_ERR, "can't mount with " 4860 "both data=journal and delalloc"); 4861 err = -EINVAL; 4862 goto restore_opts; 4863 } 4864 if (test_opt(sb, DIOREAD_NOLOCK)) { 4865 ext4_msg(sb, KERN_ERR, "can't mount with " 4866 "both data=journal and dioread_nolock"); 4867 err = -EINVAL; 4868 goto restore_opts; 4869 } 4870 } 4871 4872 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4873 ext4_abort(sb, "Abort forced by user"); 4874 4875 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4876 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4877 4878 es = sbi->s_es; 4879 4880 if (sbi->s_journal) { 4881 ext4_init_journal_params(sb, sbi->s_journal); 4882 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4883 } 4884 4885 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4886 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4887 err = -EROFS; 4888 goto restore_opts; 4889 } 4890 4891 if (*flags & MS_RDONLY) { 4892 err = sync_filesystem(sb); 4893 if (err < 0) 4894 goto restore_opts; 4895 err = dquot_suspend(sb, -1); 4896 if (err < 0) 4897 goto restore_opts; 4898 4899 /* 4900 * First of all, the unconditional stuff we have to do 4901 * to disable replay of the journal when we next remount 4902 */ 4903 sb->s_flags |= MS_RDONLY; 4904 4905 /* 4906 * OK, test if we are remounting a valid rw partition 4907 * readonly, and if so set the rdonly flag and then 4908 * mark the partition as valid again. 4909 */ 4910 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4911 (sbi->s_mount_state & EXT4_VALID_FS)) 4912 es->s_state = cpu_to_le16(sbi->s_mount_state); 4913 4914 if (sbi->s_journal) 4915 ext4_mark_recovery_complete(sb, es); 4916 } else { 4917 /* Make sure we can mount this feature set readwrite */ 4918 if (!ext4_feature_set_ok(sb, 0)) { 4919 err = -EROFS; 4920 goto restore_opts; 4921 } 4922 /* 4923 * Make sure the group descriptor checksums 4924 * are sane. If they aren't, refuse to remount r/w. 4925 */ 4926 for (g = 0; g < sbi->s_groups_count; g++) { 4927 struct ext4_group_desc *gdp = 4928 ext4_get_group_desc(sb, g, NULL); 4929 4930 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4931 ext4_msg(sb, KERN_ERR, 4932 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4933 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4934 le16_to_cpu(gdp->bg_checksum)); 4935 err = -EINVAL; 4936 goto restore_opts; 4937 } 4938 } 4939 4940 /* 4941 * If we have an unprocessed orphan list hanging 4942 * around from a previously readonly bdev mount, 4943 * require a full umount/remount for now. 4944 */ 4945 if (es->s_last_orphan) { 4946 ext4_msg(sb, KERN_WARNING, "Couldn't " 4947 "remount RDWR because of unprocessed " 4948 "orphan inode list. Please " 4949 "umount/remount instead"); 4950 err = -EINVAL; 4951 goto restore_opts; 4952 } 4953 4954 /* 4955 * Mounting a RDONLY partition read-write, so reread 4956 * and store the current valid flag. (It may have 4957 * been changed by e2fsck since we originally mounted 4958 * the partition.) 4959 */ 4960 if (sbi->s_journal) 4961 ext4_clear_journal_err(sb, es); 4962 sbi->s_mount_state = le16_to_cpu(es->s_state); 4963 if (!ext4_setup_super(sb, es, 0)) 4964 sb->s_flags &= ~MS_RDONLY; 4965 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4966 EXT4_FEATURE_INCOMPAT_MMP)) 4967 if (ext4_multi_mount_protect(sb, 4968 le64_to_cpu(es->s_mmp_block))) { 4969 err = -EROFS; 4970 goto restore_opts; 4971 } 4972 enable_quota = 1; 4973 } 4974 } 4975 4976 /* 4977 * Reinitialize lazy itable initialization thread based on 4978 * current settings 4979 */ 4980 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4981 ext4_unregister_li_request(sb); 4982 else { 4983 ext4_group_t first_not_zeroed; 4984 first_not_zeroed = ext4_has_uninit_itable(sb); 4985 ext4_register_li_request(sb, first_not_zeroed); 4986 } 4987 4988 ext4_setup_system_zone(sb); 4989 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4990 ext4_commit_super(sb, 1); 4991 4992 #ifdef CONFIG_QUOTA 4993 /* Release old quota file names */ 4994 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4995 kfree(old_opts.s_qf_names[i]); 4996 if (enable_quota) { 4997 if (sb_any_quota_suspended(sb)) 4998 dquot_resume(sb, -1); 4999 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 5000 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 5001 err = ext4_enable_quotas(sb); 5002 if (err) 5003 goto restore_opts; 5004 } 5005 } 5006 #endif 5007 5008 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5009 kfree(orig_data); 5010 return 0; 5011 5012 restore_opts: 5013 sb->s_flags = old_sb_flags; 5014 sbi->s_mount_opt = old_opts.s_mount_opt; 5015 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5016 sbi->s_resuid = old_opts.s_resuid; 5017 sbi->s_resgid = old_opts.s_resgid; 5018 sbi->s_commit_interval = old_opts.s_commit_interval; 5019 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5020 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5021 #ifdef CONFIG_QUOTA 5022 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5023 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5024 kfree(sbi->s_qf_names[i]); 5025 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5026 } 5027 #endif 5028 kfree(orig_data); 5029 return err; 5030 } 5031 5032 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5033 { 5034 struct super_block *sb = dentry->d_sb; 5035 struct ext4_sb_info *sbi = EXT4_SB(sb); 5036 struct ext4_super_block *es = sbi->s_es; 5037 ext4_fsblk_t overhead = 0, resv_blocks; 5038 u64 fsid; 5039 s64 bfree; 5040 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5041 5042 if (!test_opt(sb, MINIX_DF)) 5043 overhead = sbi->s_overhead; 5044 5045 buf->f_type = EXT4_SUPER_MAGIC; 5046 buf->f_bsize = sb->s_blocksize; 5047 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5048 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5049 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5050 /* prevent underflow in case that few free space is available */ 5051 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5052 buf->f_bavail = buf->f_bfree - 5053 (ext4_r_blocks_count(es) + resv_blocks); 5054 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5055 buf->f_bavail = 0; 5056 buf->f_files = le32_to_cpu(es->s_inodes_count); 5057 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5058 buf->f_namelen = EXT4_NAME_LEN; 5059 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5060 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5061 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5062 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5063 5064 return 0; 5065 } 5066 5067 /* Helper function for writing quotas on sync - we need to start transaction 5068 * before quota file is locked for write. Otherwise the are possible deadlocks: 5069 * Process 1 Process 2 5070 * ext4_create() quota_sync() 5071 * jbd2_journal_start() write_dquot() 5072 * dquot_initialize() down(dqio_mutex) 5073 * down(dqio_mutex) jbd2_journal_start() 5074 * 5075 */ 5076 5077 #ifdef CONFIG_QUOTA 5078 5079 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5080 { 5081 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5082 } 5083 5084 static int ext4_write_dquot(struct dquot *dquot) 5085 { 5086 int ret, err; 5087 handle_t *handle; 5088 struct inode *inode; 5089 5090 inode = dquot_to_inode(dquot); 5091 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5092 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5093 if (IS_ERR(handle)) 5094 return PTR_ERR(handle); 5095 ret = dquot_commit(dquot); 5096 err = ext4_journal_stop(handle); 5097 if (!ret) 5098 ret = err; 5099 return ret; 5100 } 5101 5102 static int ext4_acquire_dquot(struct dquot *dquot) 5103 { 5104 int ret, err; 5105 handle_t *handle; 5106 5107 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5108 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5109 if (IS_ERR(handle)) 5110 return PTR_ERR(handle); 5111 ret = dquot_acquire(dquot); 5112 err = ext4_journal_stop(handle); 5113 if (!ret) 5114 ret = err; 5115 return ret; 5116 } 5117 5118 static int ext4_release_dquot(struct dquot *dquot) 5119 { 5120 int ret, err; 5121 handle_t *handle; 5122 5123 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5124 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5125 if (IS_ERR(handle)) { 5126 /* Release dquot anyway to avoid endless cycle in dqput() */ 5127 dquot_release(dquot); 5128 return PTR_ERR(handle); 5129 } 5130 ret = dquot_release(dquot); 5131 err = ext4_journal_stop(handle); 5132 if (!ret) 5133 ret = err; 5134 return ret; 5135 } 5136 5137 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5138 { 5139 struct super_block *sb = dquot->dq_sb; 5140 struct ext4_sb_info *sbi = EXT4_SB(sb); 5141 5142 /* Are we journaling quotas? */ 5143 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5144 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5145 dquot_mark_dquot_dirty(dquot); 5146 return ext4_write_dquot(dquot); 5147 } else { 5148 return dquot_mark_dquot_dirty(dquot); 5149 } 5150 } 5151 5152 static int ext4_write_info(struct super_block *sb, int type) 5153 { 5154 int ret, err; 5155 handle_t *handle; 5156 5157 /* Data block + inode block */ 5158 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5159 if (IS_ERR(handle)) 5160 return PTR_ERR(handle); 5161 ret = dquot_commit_info(sb, type); 5162 err = ext4_journal_stop(handle); 5163 if (!ret) 5164 ret = err; 5165 return ret; 5166 } 5167 5168 /* 5169 * Turn on quotas during mount time - we need to find 5170 * the quota file and such... 5171 */ 5172 static int ext4_quota_on_mount(struct super_block *sb, int type) 5173 { 5174 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5175 EXT4_SB(sb)->s_jquota_fmt, type); 5176 } 5177 5178 /* 5179 * Standard function to be called on quota_on 5180 */ 5181 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5182 struct path *path) 5183 { 5184 int err; 5185 5186 if (!test_opt(sb, QUOTA)) 5187 return -EINVAL; 5188 5189 /* Quotafile not on the same filesystem? */ 5190 if (path->dentry->d_sb != sb) 5191 return -EXDEV; 5192 /* Journaling quota? */ 5193 if (EXT4_SB(sb)->s_qf_names[type]) { 5194 /* Quotafile not in fs root? */ 5195 if (path->dentry->d_parent != sb->s_root) 5196 ext4_msg(sb, KERN_WARNING, 5197 "Quota file not on filesystem root. " 5198 "Journaled quota will not work"); 5199 } 5200 5201 /* 5202 * When we journal data on quota file, we have to flush journal to see 5203 * all updates to the file when we bypass pagecache... 5204 */ 5205 if (EXT4_SB(sb)->s_journal && 5206 ext4_should_journal_data(path->dentry->d_inode)) { 5207 /* 5208 * We don't need to lock updates but journal_flush() could 5209 * otherwise be livelocked... 5210 */ 5211 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5212 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5213 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5214 if (err) 5215 return err; 5216 } 5217 5218 return dquot_quota_on(sb, type, format_id, path); 5219 } 5220 5221 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5222 unsigned int flags) 5223 { 5224 int err; 5225 struct inode *qf_inode; 5226 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5227 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5228 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5229 }; 5230 5231 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5232 5233 if (!qf_inums[type]) 5234 return -EPERM; 5235 5236 qf_inode = ext4_iget(sb, qf_inums[type]); 5237 if (IS_ERR(qf_inode)) { 5238 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5239 return PTR_ERR(qf_inode); 5240 } 5241 5242 /* Don't account quota for quota files to avoid recursion */ 5243 qf_inode->i_flags |= S_NOQUOTA; 5244 err = dquot_enable(qf_inode, type, format_id, flags); 5245 iput(qf_inode); 5246 5247 return err; 5248 } 5249 5250 /* Enable usage tracking for all quota types. */ 5251 static int ext4_enable_quotas(struct super_block *sb) 5252 { 5253 int type, err = 0; 5254 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5255 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5256 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5257 }; 5258 5259 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5260 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5261 if (qf_inums[type]) { 5262 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5263 DQUOT_USAGE_ENABLED); 5264 if (err) { 5265 ext4_warning(sb, 5266 "Failed to enable quota tracking " 5267 "(type=%d, err=%d). Please run " 5268 "e2fsck to fix.", type, err); 5269 return err; 5270 } 5271 } 5272 } 5273 return 0; 5274 } 5275 5276 /* 5277 * quota_on function that is used when QUOTA feature is set. 5278 */ 5279 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5280 int format_id) 5281 { 5282 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5283 return -EINVAL; 5284 5285 /* 5286 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5287 */ 5288 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5289 } 5290 5291 static int ext4_quota_off(struct super_block *sb, int type) 5292 { 5293 struct inode *inode = sb_dqopt(sb)->files[type]; 5294 handle_t *handle; 5295 5296 /* Force all delayed allocation blocks to be allocated. 5297 * Caller already holds s_umount sem */ 5298 if (test_opt(sb, DELALLOC)) 5299 sync_filesystem(sb); 5300 5301 if (!inode) 5302 goto out; 5303 5304 /* Update modification times of quota files when userspace can 5305 * start looking at them */ 5306 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5307 if (IS_ERR(handle)) 5308 goto out; 5309 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5310 ext4_mark_inode_dirty(handle, inode); 5311 ext4_journal_stop(handle); 5312 5313 out: 5314 return dquot_quota_off(sb, type); 5315 } 5316 5317 /* 5318 * quota_off function that is used when QUOTA feature is set. 5319 */ 5320 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5321 { 5322 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5323 return -EINVAL; 5324 5325 /* Disable only the limits. */ 5326 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5327 } 5328 5329 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5330 * acquiring the locks... As quota files are never truncated and quota code 5331 * itself serializes the operations (and no one else should touch the files) 5332 * we don't have to be afraid of races */ 5333 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5334 size_t len, loff_t off) 5335 { 5336 struct inode *inode = sb_dqopt(sb)->files[type]; 5337 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5338 int offset = off & (sb->s_blocksize - 1); 5339 int tocopy; 5340 size_t toread; 5341 struct buffer_head *bh; 5342 loff_t i_size = i_size_read(inode); 5343 5344 if (off > i_size) 5345 return 0; 5346 if (off+len > i_size) 5347 len = i_size-off; 5348 toread = len; 5349 while (toread > 0) { 5350 tocopy = sb->s_blocksize - offset < toread ? 5351 sb->s_blocksize - offset : toread; 5352 bh = ext4_bread(NULL, inode, blk, 0); 5353 if (IS_ERR(bh)) 5354 return PTR_ERR(bh); 5355 if (!bh) /* A hole? */ 5356 memset(data, 0, tocopy); 5357 else 5358 memcpy(data, bh->b_data+offset, tocopy); 5359 brelse(bh); 5360 offset = 0; 5361 toread -= tocopy; 5362 data += tocopy; 5363 blk++; 5364 } 5365 return len; 5366 } 5367 5368 /* Write to quotafile (we know the transaction is already started and has 5369 * enough credits) */ 5370 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5371 const char *data, size_t len, loff_t off) 5372 { 5373 struct inode *inode = sb_dqopt(sb)->files[type]; 5374 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5375 int err, offset = off & (sb->s_blocksize - 1); 5376 struct buffer_head *bh; 5377 handle_t *handle = journal_current_handle(); 5378 5379 if (EXT4_SB(sb)->s_journal && !handle) { 5380 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5381 " cancelled because transaction is not started", 5382 (unsigned long long)off, (unsigned long long)len); 5383 return -EIO; 5384 } 5385 /* 5386 * Since we account only one data block in transaction credits, 5387 * then it is impossible to cross a block boundary. 5388 */ 5389 if (sb->s_blocksize - offset < len) { 5390 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5391 " cancelled because not block aligned", 5392 (unsigned long long)off, (unsigned long long)len); 5393 return -EIO; 5394 } 5395 5396 bh = ext4_bread(handle, inode, blk, 1); 5397 if (IS_ERR(bh)) 5398 return PTR_ERR(bh); 5399 if (!bh) 5400 goto out; 5401 BUFFER_TRACE(bh, "get write access"); 5402 err = ext4_journal_get_write_access(handle, bh); 5403 if (err) { 5404 brelse(bh); 5405 return err; 5406 } 5407 lock_buffer(bh); 5408 memcpy(bh->b_data+offset, data, len); 5409 flush_dcache_page(bh->b_page); 5410 unlock_buffer(bh); 5411 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5412 brelse(bh); 5413 out: 5414 if (inode->i_size < off + len) { 5415 i_size_write(inode, off + len); 5416 EXT4_I(inode)->i_disksize = inode->i_size; 5417 ext4_mark_inode_dirty(handle, inode); 5418 } 5419 return len; 5420 } 5421 5422 #endif 5423 5424 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5425 const char *dev_name, void *data) 5426 { 5427 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5428 } 5429 5430 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5431 static inline void register_as_ext2(void) 5432 { 5433 int err = register_filesystem(&ext2_fs_type); 5434 if (err) 5435 printk(KERN_WARNING 5436 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5437 } 5438 5439 static inline void unregister_as_ext2(void) 5440 { 5441 unregister_filesystem(&ext2_fs_type); 5442 } 5443 5444 static inline int ext2_feature_set_ok(struct super_block *sb) 5445 { 5446 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5447 return 0; 5448 if (sb->s_flags & MS_RDONLY) 5449 return 1; 5450 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5451 return 0; 5452 return 1; 5453 } 5454 #else 5455 static inline void register_as_ext2(void) { } 5456 static inline void unregister_as_ext2(void) { } 5457 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5458 #endif 5459 5460 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5461 static inline void register_as_ext3(void) 5462 { 5463 int err = register_filesystem(&ext3_fs_type); 5464 if (err) 5465 printk(KERN_WARNING 5466 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5467 } 5468 5469 static inline void unregister_as_ext3(void) 5470 { 5471 unregister_filesystem(&ext3_fs_type); 5472 } 5473 5474 static inline int ext3_feature_set_ok(struct super_block *sb) 5475 { 5476 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5477 return 0; 5478 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5479 return 0; 5480 if (sb->s_flags & MS_RDONLY) 5481 return 1; 5482 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5483 return 0; 5484 return 1; 5485 } 5486 #else 5487 static inline void register_as_ext3(void) { } 5488 static inline void unregister_as_ext3(void) { } 5489 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5490 #endif 5491 5492 static struct file_system_type ext4_fs_type = { 5493 .owner = THIS_MODULE, 5494 .name = "ext4", 5495 .mount = ext4_mount, 5496 .kill_sb = kill_block_super, 5497 .fs_flags = FS_REQUIRES_DEV, 5498 }; 5499 MODULE_ALIAS_FS("ext4"); 5500 5501 static int __init ext4_init_feat_adverts(void) 5502 { 5503 struct ext4_features *ef; 5504 int ret = -ENOMEM; 5505 5506 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5507 if (!ef) 5508 goto out; 5509 5510 ef->f_kobj.kset = ext4_kset; 5511 init_completion(&ef->f_kobj_unregister); 5512 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5513 "features"); 5514 if (ret) { 5515 kfree(ef); 5516 goto out; 5517 } 5518 5519 ext4_feat = ef; 5520 ret = 0; 5521 out: 5522 return ret; 5523 } 5524 5525 static void ext4_exit_feat_adverts(void) 5526 { 5527 kobject_put(&ext4_feat->f_kobj); 5528 wait_for_completion(&ext4_feat->f_kobj_unregister); 5529 kfree(ext4_feat); 5530 } 5531 5532 /* Shared across all ext4 file systems */ 5533 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5534 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5535 5536 static int __init ext4_init_fs(void) 5537 { 5538 int i, err; 5539 5540 ext4_li_info = NULL; 5541 mutex_init(&ext4_li_mtx); 5542 5543 /* Build-time check for flags consistency */ 5544 ext4_check_flag_values(); 5545 5546 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5547 mutex_init(&ext4__aio_mutex[i]); 5548 init_waitqueue_head(&ext4__ioend_wq[i]); 5549 } 5550 5551 err = ext4_init_es(); 5552 if (err) 5553 return err; 5554 5555 err = ext4_init_pageio(); 5556 if (err) 5557 goto out7; 5558 5559 err = ext4_init_system_zone(); 5560 if (err) 5561 goto out6; 5562 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5563 if (!ext4_kset) { 5564 err = -ENOMEM; 5565 goto out5; 5566 } 5567 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5568 5569 err = ext4_init_feat_adverts(); 5570 if (err) 5571 goto out4; 5572 5573 err = ext4_init_mballoc(); 5574 if (err) 5575 goto out2; 5576 else 5577 ext4_mballoc_ready = 1; 5578 err = init_inodecache(); 5579 if (err) 5580 goto out1; 5581 register_as_ext3(); 5582 register_as_ext2(); 5583 err = register_filesystem(&ext4_fs_type); 5584 if (err) 5585 goto out; 5586 5587 return 0; 5588 out: 5589 unregister_as_ext2(); 5590 unregister_as_ext3(); 5591 destroy_inodecache(); 5592 out1: 5593 ext4_mballoc_ready = 0; 5594 ext4_exit_mballoc(); 5595 out2: 5596 ext4_exit_feat_adverts(); 5597 out4: 5598 if (ext4_proc_root) 5599 remove_proc_entry("fs/ext4", NULL); 5600 kset_unregister(ext4_kset); 5601 out5: 5602 ext4_exit_system_zone(); 5603 out6: 5604 ext4_exit_pageio(); 5605 out7: 5606 ext4_exit_es(); 5607 5608 return err; 5609 } 5610 5611 static void __exit ext4_exit_fs(void) 5612 { 5613 ext4_destroy_lazyinit_thread(); 5614 unregister_as_ext2(); 5615 unregister_as_ext3(); 5616 unregister_filesystem(&ext4_fs_type); 5617 destroy_inodecache(); 5618 ext4_exit_mballoc(); 5619 ext4_exit_feat_adverts(); 5620 remove_proc_entry("fs/ext4", NULL); 5621 kset_unregister(ext4_kset); 5622 ext4_exit_system_zone(); 5623 ext4_exit_pageio(); 5624 ext4_exit_es(); 5625 } 5626 5627 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5628 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5629 MODULE_LICENSE("GPL"); 5630 module_init(ext4_init_fs) 5631 module_exit(ext4_exit_fs) 5632