1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static const struct fs_parameter_spec ext4_param_specs[]; 97 98 /* 99 * Lock ordering 100 * 101 * page fault path: 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 103 * -> page lock -> i_data_sem (rw) 104 * 105 * buffered write path: 106 * sb_start_write -> i_mutex -> mmap_lock 107 * sb_start_write -> i_mutex -> transaction start -> page lock -> 108 * i_data_sem (rw) 109 * 110 * truncate: 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 112 * page lock 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 114 * i_data_sem (rw) 115 * 116 * direct IO: 117 * sb_start_write -> i_mutex -> mmap_lock 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 119 * 120 * writepages: 121 * transaction start -> page lock(s) -> i_data_sem (rw) 122 */ 123 124 static const struct fs_context_operations ext4_context_ops = { 125 .parse_param = ext4_parse_param, 126 .get_tree = ext4_get_tree, 127 .reconfigure = ext4_reconfigure, 128 .free = ext4_fc_free, 129 }; 130 131 132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 133 static struct file_system_type ext2_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext2", 136 .init_fs_context = ext4_init_fs_context, 137 .parameters = ext4_param_specs, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext2"); 142 MODULE_ALIAS("ext2"); 143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 144 #else 145 #define IS_EXT2_SB(sb) (0) 146 #endif 147 148 149 static struct file_system_type ext3_fs_type = { 150 .owner = THIS_MODULE, 151 .name = "ext3", 152 .init_fs_context = ext4_init_fs_context, 153 .parameters = ext4_param_specs, 154 .kill_sb = kill_block_super, 155 .fs_flags = FS_REQUIRES_DEV, 156 }; 157 MODULE_ALIAS_FS("ext3"); 158 MODULE_ALIAS("ext3"); 159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 160 161 162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 163 bh_end_io_t *end_io) 164 { 165 /* 166 * buffer's verified bit is no longer valid after reading from 167 * disk again due to write out error, clear it to make sure we 168 * recheck the buffer contents. 169 */ 170 clear_buffer_verified(bh); 171 172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 173 get_bh(bh); 174 submit_bh(REQ_OP_READ | op_flags, bh); 175 } 176 177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 178 bh_end_io_t *end_io) 179 { 180 BUG_ON(!buffer_locked(bh)); 181 182 if (ext4_buffer_uptodate(bh)) { 183 unlock_buffer(bh); 184 return; 185 } 186 __ext4_read_bh(bh, op_flags, end_io); 187 } 188 189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 190 { 191 BUG_ON(!buffer_locked(bh)); 192 193 if (ext4_buffer_uptodate(bh)) { 194 unlock_buffer(bh); 195 return 0; 196 } 197 198 __ext4_read_bh(bh, op_flags, end_io); 199 200 wait_on_buffer(bh); 201 if (buffer_uptodate(bh)) 202 return 0; 203 return -EIO; 204 } 205 206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 207 { 208 if (trylock_buffer(bh)) { 209 if (wait) 210 return ext4_read_bh(bh, op_flags, NULL); 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 if (wait) { 215 wait_on_buffer(bh); 216 if (buffer_uptodate(bh)) 217 return 0; 218 return -EIO; 219 } 220 return 0; 221 } 222 223 /* 224 * This works like __bread_gfp() except it uses ERR_PTR for error 225 * returns. Currently with sb_bread it's impossible to distinguish 226 * between ENOMEM and EIO situations (since both result in a NULL 227 * return. 228 */ 229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 230 sector_t block, 231 blk_opf_t op_flags, gfp_t gfp) 232 { 233 struct buffer_head *bh; 234 int ret; 235 236 bh = sb_getblk_gfp(sb, block, gfp); 237 if (bh == NULL) 238 return ERR_PTR(-ENOMEM); 239 if (ext4_buffer_uptodate(bh)) 240 return bh; 241 242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 243 if (ret) { 244 put_bh(bh); 245 return ERR_PTR(ret); 246 } 247 return bh; 248 } 249 250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 251 blk_opf_t op_flags) 252 { 253 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 254 } 255 256 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 257 sector_t block) 258 { 259 return __ext4_sb_bread_gfp(sb, block, 0, 0); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 265 266 if (likely(bh)) { 267 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 268 brelse(bh); 269 } 270 } 271 272 static int ext4_verify_csum_type(struct super_block *sb, 273 struct ext4_super_block *es) 274 { 275 if (!ext4_has_feature_metadata_csum(sb)) 276 return 1; 277 278 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 279 } 280 281 __le32 ext4_superblock_csum(struct super_block *sb, 282 struct ext4_super_block *es) 283 { 284 struct ext4_sb_info *sbi = EXT4_SB(sb); 285 int offset = offsetof(struct ext4_super_block, s_checksum); 286 __u32 csum; 287 288 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 289 290 return cpu_to_le32(csum); 291 } 292 293 static int ext4_superblock_csum_verify(struct super_block *sb, 294 struct ext4_super_block *es) 295 { 296 if (!ext4_has_metadata_csum(sb)) 297 return 1; 298 299 return es->s_checksum == ext4_superblock_csum(sb, es); 300 } 301 302 void ext4_superblock_csum_set(struct super_block *sb) 303 { 304 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 305 306 if (!ext4_has_metadata_csum(sb)) 307 return; 308 309 es->s_checksum = ext4_superblock_csum(sb, es); 310 } 311 312 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 313 struct ext4_group_desc *bg) 314 { 315 return le32_to_cpu(bg->bg_block_bitmap_lo) | 316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 317 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 318 } 319 320 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 321 struct ext4_group_desc *bg) 322 { 323 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 325 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 326 } 327 328 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 329 struct ext4_group_desc *bg) 330 { 331 return le32_to_cpu(bg->bg_inode_table_lo) | 332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 334 } 335 336 __u32 ext4_free_group_clusters(struct super_block *sb, 337 struct ext4_group_desc *bg) 338 { 339 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 341 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 342 } 343 344 __u32 ext4_free_inodes_count(struct super_block *sb, 345 struct ext4_group_desc *bg) 346 { 347 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 349 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 350 } 351 352 __u32 ext4_used_dirs_count(struct super_block *sb, 353 struct ext4_group_desc *bg) 354 { 355 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 357 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 358 } 359 360 __u32 ext4_itable_unused_count(struct super_block *sb, 361 struct ext4_group_desc *bg) 362 { 363 return le16_to_cpu(bg->bg_itable_unused_lo) | 364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 365 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 366 } 367 368 void ext4_block_bitmap_set(struct super_block *sb, 369 struct ext4_group_desc *bg, ext4_fsblk_t blk) 370 { 371 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 373 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 374 } 375 376 void ext4_inode_bitmap_set(struct super_block *sb, 377 struct ext4_group_desc *bg, ext4_fsblk_t blk) 378 { 379 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 381 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 382 } 383 384 void ext4_inode_table_set(struct super_block *sb, 385 struct ext4_group_desc *bg, ext4_fsblk_t blk) 386 { 387 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 389 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 390 } 391 392 void ext4_free_group_clusters_set(struct super_block *sb, 393 struct ext4_group_desc *bg, __u32 count) 394 { 395 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 397 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 398 } 399 400 void ext4_free_inodes_set(struct super_block *sb, 401 struct ext4_group_desc *bg, __u32 count) 402 { 403 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 405 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 406 } 407 408 void ext4_used_dirs_set(struct super_block *sb, 409 struct ext4_group_desc *bg, __u32 count) 410 { 411 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 413 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 414 } 415 416 void ext4_itable_unused_set(struct super_block *sb, 417 struct ext4_group_desc *bg, __u32 count) 418 { 419 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 421 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 422 } 423 424 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 425 { 426 now = clamp_val(now, 0, (1ull << 40) - 1); 427 428 *lo = cpu_to_le32(lower_32_bits(now)); 429 *hi = upper_32_bits(now); 430 } 431 432 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 433 { 434 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 435 } 436 #define ext4_update_tstamp(es, tstamp) \ 437 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 438 ktime_get_real_seconds()) 439 #define ext4_get_tstamp(es, tstamp) \ 440 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 441 442 /* 443 * The del_gendisk() function uninitializes the disk-specific data 444 * structures, including the bdi structure, without telling anyone 445 * else. Once this happens, any attempt to call mark_buffer_dirty() 446 * (for example, by ext4_commit_super), will cause a kernel OOPS. 447 * This is a kludge to prevent these oops until we can put in a proper 448 * hook in del_gendisk() to inform the VFS and file system layers. 449 */ 450 static int block_device_ejected(struct super_block *sb) 451 { 452 struct inode *bd_inode = sb->s_bdev->bd_inode; 453 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 454 455 return bdi->dev == NULL; 456 } 457 458 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 459 { 460 struct super_block *sb = journal->j_private; 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 int error = is_journal_aborted(journal); 463 struct ext4_journal_cb_entry *jce; 464 465 BUG_ON(txn->t_state == T_FINISHED); 466 467 ext4_process_freed_data(sb, txn->t_tid); 468 469 spin_lock(&sbi->s_md_lock); 470 while (!list_empty(&txn->t_private_list)) { 471 jce = list_entry(txn->t_private_list.next, 472 struct ext4_journal_cb_entry, jce_list); 473 list_del_init(&jce->jce_list); 474 spin_unlock(&sbi->s_md_lock); 475 jce->jce_func(sb, jce, error); 476 spin_lock(&sbi->s_md_lock); 477 } 478 spin_unlock(&sbi->s_md_lock); 479 } 480 481 /* 482 * This writepage callback for write_cache_pages() 483 * takes care of a few cases after page cleaning. 484 * 485 * write_cache_pages() already checks for dirty pages 486 * and calls clear_page_dirty_for_io(), which we want, 487 * to write protect the pages. 488 * 489 * However, we may have to redirty a page (see below.) 490 */ 491 static int ext4_journalled_writepage_callback(struct page *page, 492 struct writeback_control *wbc, 493 void *data) 494 { 495 transaction_t *transaction = (transaction_t *) data; 496 struct buffer_head *bh, *head; 497 struct journal_head *jh; 498 499 bh = head = page_buffers(page); 500 do { 501 /* 502 * We have to redirty a page in these cases: 503 * 1) If buffer is dirty, it means the page was dirty because it 504 * contains a buffer that needs checkpointing. So the dirty bit 505 * needs to be preserved so that checkpointing writes the buffer 506 * properly. 507 * 2) If buffer is not part of the committing transaction 508 * (we may have just accidentally come across this buffer because 509 * inode range tracking is not exact) or if the currently running 510 * transaction already contains this buffer as well, dirty bit 511 * needs to be preserved so that the buffer gets writeprotected 512 * properly on running transaction's commit. 513 */ 514 jh = bh2jh(bh); 515 if (buffer_dirty(bh) || 516 (jh && (jh->b_transaction != transaction || 517 jh->b_next_transaction))) { 518 redirty_page_for_writepage(wbc, page); 519 goto out; 520 } 521 } while ((bh = bh->b_this_page) != head); 522 523 out: 524 return AOP_WRITEPAGE_ACTIVATE; 525 } 526 527 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 528 { 529 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 530 struct writeback_control wbc = { 531 .sync_mode = WB_SYNC_ALL, 532 .nr_to_write = LONG_MAX, 533 .range_start = jinode->i_dirty_start, 534 .range_end = jinode->i_dirty_end, 535 }; 536 537 return write_cache_pages(mapping, &wbc, 538 ext4_journalled_writepage_callback, 539 jinode->i_transaction); 540 } 541 542 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 543 { 544 int ret; 545 546 if (ext4_should_journal_data(jinode->i_vfs_inode)) 547 ret = ext4_journalled_submit_inode_data_buffers(jinode); 548 else 549 ret = jbd2_journal_submit_inode_data_buffers(jinode); 550 551 return ret; 552 } 553 554 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 555 { 556 int ret = 0; 557 558 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 559 ret = jbd2_journal_finish_inode_data_buffers(jinode); 560 561 return ret; 562 } 563 564 static bool system_going_down(void) 565 { 566 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 567 || system_state == SYSTEM_RESTART; 568 } 569 570 struct ext4_err_translation { 571 int code; 572 int errno; 573 }; 574 575 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 576 577 static struct ext4_err_translation err_translation[] = { 578 EXT4_ERR_TRANSLATE(EIO), 579 EXT4_ERR_TRANSLATE(ENOMEM), 580 EXT4_ERR_TRANSLATE(EFSBADCRC), 581 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 582 EXT4_ERR_TRANSLATE(ENOSPC), 583 EXT4_ERR_TRANSLATE(ENOKEY), 584 EXT4_ERR_TRANSLATE(EROFS), 585 EXT4_ERR_TRANSLATE(EFBIG), 586 EXT4_ERR_TRANSLATE(EEXIST), 587 EXT4_ERR_TRANSLATE(ERANGE), 588 EXT4_ERR_TRANSLATE(EOVERFLOW), 589 EXT4_ERR_TRANSLATE(EBUSY), 590 EXT4_ERR_TRANSLATE(ENOTDIR), 591 EXT4_ERR_TRANSLATE(ENOTEMPTY), 592 EXT4_ERR_TRANSLATE(ESHUTDOWN), 593 EXT4_ERR_TRANSLATE(EFAULT), 594 }; 595 596 static int ext4_errno_to_code(int errno) 597 { 598 int i; 599 600 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 601 if (err_translation[i].errno == errno) 602 return err_translation[i].code; 603 return EXT4_ERR_UNKNOWN; 604 } 605 606 static void save_error_info(struct super_block *sb, int error, 607 __u32 ino, __u64 block, 608 const char *func, unsigned int line) 609 { 610 struct ext4_sb_info *sbi = EXT4_SB(sb); 611 612 /* We default to EFSCORRUPTED error... */ 613 if (error == 0) 614 error = EFSCORRUPTED; 615 616 spin_lock(&sbi->s_error_lock); 617 sbi->s_add_error_count++; 618 sbi->s_last_error_code = error; 619 sbi->s_last_error_line = line; 620 sbi->s_last_error_ino = ino; 621 sbi->s_last_error_block = block; 622 sbi->s_last_error_func = func; 623 sbi->s_last_error_time = ktime_get_real_seconds(); 624 if (!sbi->s_first_error_time) { 625 sbi->s_first_error_code = error; 626 sbi->s_first_error_line = line; 627 sbi->s_first_error_ino = ino; 628 sbi->s_first_error_block = block; 629 sbi->s_first_error_func = func; 630 sbi->s_first_error_time = sbi->s_last_error_time; 631 } 632 spin_unlock(&sbi->s_error_lock); 633 } 634 635 /* Deal with the reporting of failure conditions on a filesystem such as 636 * inconsistencies detected or read IO failures. 637 * 638 * On ext2, we can store the error state of the filesystem in the 639 * superblock. That is not possible on ext4, because we may have other 640 * write ordering constraints on the superblock which prevent us from 641 * writing it out straight away; and given that the journal is about to 642 * be aborted, we can't rely on the current, or future, transactions to 643 * write out the superblock safely. 644 * 645 * We'll just use the jbd2_journal_abort() error code to record an error in 646 * the journal instead. On recovery, the journal will complain about 647 * that error until we've noted it down and cleared it. 648 * 649 * If force_ro is set, we unconditionally force the filesystem into an 650 * ABORT|READONLY state, unless the error response on the fs has been set to 651 * panic in which case we take the easy way out and panic immediately. This is 652 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 653 * at a critical moment in log management. 654 */ 655 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 656 __u32 ino, __u64 block, 657 const char *func, unsigned int line) 658 { 659 journal_t *journal = EXT4_SB(sb)->s_journal; 660 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 661 662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 663 if (test_opt(sb, WARN_ON_ERROR)) 664 WARN_ON_ONCE(1); 665 666 if (!continue_fs && !sb_rdonly(sb)) { 667 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 668 if (journal) 669 jbd2_journal_abort(journal, -EIO); 670 } 671 672 if (!bdev_read_only(sb->s_bdev)) { 673 save_error_info(sb, error, ino, block, func, line); 674 /* 675 * In case the fs should keep running, we need to writeout 676 * superblock through the journal. Due to lock ordering 677 * constraints, it may not be safe to do it right here so we 678 * defer superblock flushing to a workqueue. 679 */ 680 if (continue_fs && journal) 681 schedule_work(&EXT4_SB(sb)->s_error_work); 682 else 683 ext4_commit_super(sb); 684 } 685 686 /* 687 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 688 * could panic during 'reboot -f' as the underlying device got already 689 * disabled. 690 */ 691 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 692 panic("EXT4-fs (device %s): panic forced after error\n", 693 sb->s_id); 694 } 695 696 if (sb_rdonly(sb) || continue_fs) 697 return; 698 699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 700 /* 701 * Make sure updated value of ->s_mount_flags will be visible before 702 * ->s_flags update 703 */ 704 smp_wmb(); 705 sb->s_flags |= SB_RDONLY; 706 } 707 708 static void flush_stashed_error_work(struct work_struct *work) 709 { 710 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 711 s_error_work); 712 journal_t *journal = sbi->s_journal; 713 handle_t *handle; 714 715 /* 716 * If the journal is still running, we have to write out superblock 717 * through the journal to avoid collisions of other journalled sb 718 * updates. 719 * 720 * We use directly jbd2 functions here to avoid recursing back into 721 * ext4 error handling code during handling of previous errors. 722 */ 723 if (!sb_rdonly(sbi->s_sb) && journal) { 724 struct buffer_head *sbh = sbi->s_sbh; 725 handle = jbd2_journal_start(journal, 1); 726 if (IS_ERR(handle)) 727 goto write_directly; 728 if (jbd2_journal_get_write_access(handle, sbh)) { 729 jbd2_journal_stop(handle); 730 goto write_directly; 731 } 732 ext4_update_super(sbi->s_sb); 733 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 734 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 735 "superblock detected"); 736 clear_buffer_write_io_error(sbh); 737 set_buffer_uptodate(sbh); 738 } 739 740 if (jbd2_journal_dirty_metadata(handle, sbh)) { 741 jbd2_journal_stop(handle); 742 goto write_directly; 743 } 744 jbd2_journal_stop(handle); 745 ext4_notify_error_sysfs(sbi); 746 return; 747 } 748 write_directly: 749 /* 750 * Write through journal failed. Write sb directly to get error info 751 * out and hope for the best. 752 */ 753 ext4_commit_super(sbi->s_sb); 754 ext4_notify_error_sysfs(sbi); 755 } 756 757 #define ext4_error_ratelimit(sb) \ 758 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 759 "EXT4-fs error") 760 761 void __ext4_error(struct super_block *sb, const char *function, 762 unsigned int line, bool force_ro, int error, __u64 block, 763 const char *fmt, ...) 764 { 765 struct va_format vaf; 766 va_list args; 767 768 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 769 return; 770 771 trace_ext4_error(sb, function, line); 772 if (ext4_error_ratelimit(sb)) { 773 va_start(args, fmt); 774 vaf.fmt = fmt; 775 vaf.va = &args; 776 printk(KERN_CRIT 777 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 778 sb->s_id, function, line, current->comm, &vaf); 779 va_end(args); 780 } 781 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 782 783 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 784 } 785 786 void __ext4_error_inode(struct inode *inode, const char *function, 787 unsigned int line, ext4_fsblk_t block, int error, 788 const char *fmt, ...) 789 { 790 va_list args; 791 struct va_format vaf; 792 793 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 794 return; 795 796 trace_ext4_error(inode->i_sb, function, line); 797 if (ext4_error_ratelimit(inode->i_sb)) { 798 va_start(args, fmt); 799 vaf.fmt = fmt; 800 vaf.va = &args; 801 if (block) 802 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 803 "inode #%lu: block %llu: comm %s: %pV\n", 804 inode->i_sb->s_id, function, line, inode->i_ino, 805 block, current->comm, &vaf); 806 else 807 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 808 "inode #%lu: comm %s: %pV\n", 809 inode->i_sb->s_id, function, line, inode->i_ino, 810 current->comm, &vaf); 811 va_end(args); 812 } 813 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 814 815 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 816 function, line); 817 } 818 819 void __ext4_error_file(struct file *file, const char *function, 820 unsigned int line, ext4_fsblk_t block, 821 const char *fmt, ...) 822 { 823 va_list args; 824 struct va_format vaf; 825 struct inode *inode = file_inode(file); 826 char pathname[80], *path; 827 828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 829 return; 830 831 trace_ext4_error(inode->i_sb, function, line); 832 if (ext4_error_ratelimit(inode->i_sb)) { 833 path = file_path(file, pathname, sizeof(pathname)); 834 if (IS_ERR(path)) 835 path = "(unknown)"; 836 va_start(args, fmt); 837 vaf.fmt = fmt; 838 vaf.va = &args; 839 if (block) 840 printk(KERN_CRIT 841 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 842 "block %llu: comm %s: path %s: %pV\n", 843 inode->i_sb->s_id, function, line, inode->i_ino, 844 block, current->comm, path, &vaf); 845 else 846 printk(KERN_CRIT 847 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 848 "comm %s: path %s: %pV\n", 849 inode->i_sb->s_id, function, line, inode->i_ino, 850 current->comm, path, &vaf); 851 va_end(args); 852 } 853 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 854 855 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 856 function, line); 857 } 858 859 const char *ext4_decode_error(struct super_block *sb, int errno, 860 char nbuf[16]) 861 { 862 char *errstr = NULL; 863 864 switch (errno) { 865 case -EFSCORRUPTED: 866 errstr = "Corrupt filesystem"; 867 break; 868 case -EFSBADCRC: 869 errstr = "Filesystem failed CRC"; 870 break; 871 case -EIO: 872 errstr = "IO failure"; 873 break; 874 case -ENOMEM: 875 errstr = "Out of memory"; 876 break; 877 case -EROFS: 878 if (!sb || (EXT4_SB(sb)->s_journal && 879 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 880 errstr = "Journal has aborted"; 881 else 882 errstr = "Readonly filesystem"; 883 break; 884 default: 885 /* If the caller passed in an extra buffer for unknown 886 * errors, textualise them now. Else we just return 887 * NULL. */ 888 if (nbuf) { 889 /* Check for truncated error codes... */ 890 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 891 errstr = nbuf; 892 } 893 break; 894 } 895 896 return errstr; 897 } 898 899 /* __ext4_std_error decodes expected errors from journaling functions 900 * automatically and invokes the appropriate error response. */ 901 902 void __ext4_std_error(struct super_block *sb, const char *function, 903 unsigned int line, int errno) 904 { 905 char nbuf[16]; 906 const char *errstr; 907 908 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 909 return; 910 911 /* Special case: if the error is EROFS, and we're not already 912 * inside a transaction, then there's really no point in logging 913 * an error. */ 914 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 915 return; 916 917 if (ext4_error_ratelimit(sb)) { 918 errstr = ext4_decode_error(sb, errno, nbuf); 919 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 920 sb->s_id, function, line, errstr); 921 } 922 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 923 924 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 925 } 926 927 void __ext4_msg(struct super_block *sb, 928 const char *prefix, const char *fmt, ...) 929 { 930 struct va_format vaf; 931 va_list args; 932 933 if (sb) { 934 atomic_inc(&EXT4_SB(sb)->s_msg_count); 935 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 936 "EXT4-fs")) 937 return; 938 } 939 940 va_start(args, fmt); 941 vaf.fmt = fmt; 942 vaf.va = &args; 943 if (sb) 944 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 945 else 946 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 947 va_end(args); 948 } 949 950 static int ext4_warning_ratelimit(struct super_block *sb) 951 { 952 atomic_inc(&EXT4_SB(sb)->s_warning_count); 953 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 954 "EXT4-fs warning"); 955 } 956 957 void __ext4_warning(struct super_block *sb, const char *function, 958 unsigned int line, const char *fmt, ...) 959 { 960 struct va_format vaf; 961 va_list args; 962 963 if (!ext4_warning_ratelimit(sb)) 964 return; 965 966 va_start(args, fmt); 967 vaf.fmt = fmt; 968 vaf.va = &args; 969 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 970 sb->s_id, function, line, &vaf); 971 va_end(args); 972 } 973 974 void __ext4_warning_inode(const struct inode *inode, const char *function, 975 unsigned int line, const char *fmt, ...) 976 { 977 struct va_format vaf; 978 va_list args; 979 980 if (!ext4_warning_ratelimit(inode->i_sb)) 981 return; 982 983 va_start(args, fmt); 984 vaf.fmt = fmt; 985 vaf.va = &args; 986 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 987 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 988 function, line, inode->i_ino, current->comm, &vaf); 989 va_end(args); 990 } 991 992 void __ext4_grp_locked_error(const char *function, unsigned int line, 993 struct super_block *sb, ext4_group_t grp, 994 unsigned long ino, ext4_fsblk_t block, 995 const char *fmt, ...) 996 __releases(bitlock) 997 __acquires(bitlock) 998 { 999 struct va_format vaf; 1000 va_list args; 1001 1002 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 1003 return; 1004 1005 trace_ext4_error(sb, function, line); 1006 if (ext4_error_ratelimit(sb)) { 1007 va_start(args, fmt); 1008 vaf.fmt = fmt; 1009 vaf.va = &args; 1010 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1011 sb->s_id, function, line, grp); 1012 if (ino) 1013 printk(KERN_CONT "inode %lu: ", ino); 1014 if (block) 1015 printk(KERN_CONT "block %llu:", 1016 (unsigned long long) block); 1017 printk(KERN_CONT "%pV\n", &vaf); 1018 va_end(args); 1019 } 1020 1021 if (test_opt(sb, ERRORS_CONT)) { 1022 if (test_opt(sb, WARN_ON_ERROR)) 1023 WARN_ON_ONCE(1); 1024 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1025 if (!bdev_read_only(sb->s_bdev)) { 1026 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1027 line); 1028 schedule_work(&EXT4_SB(sb)->s_error_work); 1029 } 1030 return; 1031 } 1032 ext4_unlock_group(sb, grp); 1033 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1034 /* 1035 * We only get here in the ERRORS_RO case; relocking the group 1036 * may be dangerous, but nothing bad will happen since the 1037 * filesystem will have already been marked read/only and the 1038 * journal has been aborted. We return 1 as a hint to callers 1039 * who might what to use the return value from 1040 * ext4_grp_locked_error() to distinguish between the 1041 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1042 * aggressively from the ext4 function in question, with a 1043 * more appropriate error code. 1044 */ 1045 ext4_lock_group(sb, grp); 1046 return; 1047 } 1048 1049 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1050 ext4_group_t group, 1051 unsigned int flags) 1052 { 1053 struct ext4_sb_info *sbi = EXT4_SB(sb); 1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1055 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1056 int ret; 1057 1058 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1059 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1060 &grp->bb_state); 1061 if (!ret) 1062 percpu_counter_sub(&sbi->s_freeclusters_counter, 1063 grp->bb_free); 1064 } 1065 1066 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1067 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1068 &grp->bb_state); 1069 if (!ret && gdp) { 1070 int count; 1071 1072 count = ext4_free_inodes_count(sb, gdp); 1073 percpu_counter_sub(&sbi->s_freeinodes_counter, 1074 count); 1075 } 1076 } 1077 } 1078 1079 void ext4_update_dynamic_rev(struct super_block *sb) 1080 { 1081 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1082 1083 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1084 return; 1085 1086 ext4_warning(sb, 1087 "updating to rev %d because of new feature flag, " 1088 "running e2fsck is recommended", 1089 EXT4_DYNAMIC_REV); 1090 1091 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1092 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1093 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1094 /* leave es->s_feature_*compat flags alone */ 1095 /* es->s_uuid will be set by e2fsck if empty */ 1096 1097 /* 1098 * The rest of the superblock fields should be zero, and if not it 1099 * means they are likely already in use, so leave them alone. We 1100 * can leave it up to e2fsck to clean up any inconsistencies there. 1101 */ 1102 } 1103 1104 /* 1105 * Open the external journal device 1106 */ 1107 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1108 { 1109 struct block_device *bdev; 1110 1111 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1112 if (IS_ERR(bdev)) 1113 goto fail; 1114 return bdev; 1115 1116 fail: 1117 ext4_msg(sb, KERN_ERR, 1118 "failed to open journal device unknown-block(%u,%u) %ld", 1119 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1120 return NULL; 1121 } 1122 1123 /* 1124 * Release the journal device 1125 */ 1126 static void ext4_blkdev_put(struct block_device *bdev) 1127 { 1128 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1129 } 1130 1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1132 { 1133 struct block_device *bdev; 1134 bdev = sbi->s_journal_bdev; 1135 if (bdev) { 1136 ext4_blkdev_put(bdev); 1137 sbi->s_journal_bdev = NULL; 1138 } 1139 } 1140 1141 static inline struct inode *orphan_list_entry(struct list_head *l) 1142 { 1143 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1144 } 1145 1146 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1147 { 1148 struct list_head *l; 1149 1150 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1151 le32_to_cpu(sbi->s_es->s_last_orphan)); 1152 1153 printk(KERN_ERR "sb_info orphan list:\n"); 1154 list_for_each(l, &sbi->s_orphan) { 1155 struct inode *inode = orphan_list_entry(l); 1156 printk(KERN_ERR " " 1157 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1158 inode->i_sb->s_id, inode->i_ino, inode, 1159 inode->i_mode, inode->i_nlink, 1160 NEXT_ORPHAN(inode)); 1161 } 1162 } 1163 1164 #ifdef CONFIG_QUOTA 1165 static int ext4_quota_off(struct super_block *sb, int type); 1166 1167 static inline void ext4_quota_off_umount(struct super_block *sb) 1168 { 1169 int type; 1170 1171 /* Use our quota_off function to clear inode flags etc. */ 1172 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1173 ext4_quota_off(sb, type); 1174 } 1175 1176 /* 1177 * This is a helper function which is used in the mount/remount 1178 * codepaths (which holds s_umount) to fetch the quota file name. 1179 */ 1180 static inline char *get_qf_name(struct super_block *sb, 1181 struct ext4_sb_info *sbi, 1182 int type) 1183 { 1184 return rcu_dereference_protected(sbi->s_qf_names[type], 1185 lockdep_is_held(&sb->s_umount)); 1186 } 1187 #else 1188 static inline void ext4_quota_off_umount(struct super_block *sb) 1189 { 1190 } 1191 #endif 1192 1193 static void ext4_put_super(struct super_block *sb) 1194 { 1195 struct ext4_sb_info *sbi = EXT4_SB(sb); 1196 struct ext4_super_block *es = sbi->s_es; 1197 struct buffer_head **group_desc; 1198 struct flex_groups **flex_groups; 1199 int aborted = 0; 1200 int i, err; 1201 1202 /* 1203 * Unregister sysfs before destroying jbd2 journal. 1204 * Since we could still access attr_journal_task attribute via sysfs 1205 * path which could have sbi->s_journal->j_task as NULL 1206 * Unregister sysfs before flush sbi->s_error_work. 1207 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1208 * read metadata verify failed then will queue error work. 1209 * flush_stashed_error_work will call start_this_handle may trigger 1210 * BUG_ON. 1211 */ 1212 ext4_unregister_sysfs(sb); 1213 1214 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1215 ext4_msg(sb, KERN_INFO, "unmounting filesystem."); 1216 1217 ext4_unregister_li_request(sb); 1218 ext4_quota_off_umount(sb); 1219 1220 flush_work(&sbi->s_error_work); 1221 destroy_workqueue(sbi->rsv_conversion_wq); 1222 ext4_release_orphan_info(sb); 1223 1224 if (sbi->s_journal) { 1225 aborted = is_journal_aborted(sbi->s_journal); 1226 err = jbd2_journal_destroy(sbi->s_journal); 1227 sbi->s_journal = NULL; 1228 if ((err < 0) && !aborted) { 1229 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1230 } 1231 } 1232 1233 ext4_es_unregister_shrinker(sbi); 1234 del_timer_sync(&sbi->s_err_report); 1235 ext4_release_system_zone(sb); 1236 ext4_mb_release(sb); 1237 ext4_ext_release(sb); 1238 1239 if (!sb_rdonly(sb) && !aborted) { 1240 ext4_clear_feature_journal_needs_recovery(sb); 1241 ext4_clear_feature_orphan_present(sb); 1242 es->s_state = cpu_to_le16(sbi->s_mount_state); 1243 } 1244 if (!sb_rdonly(sb)) 1245 ext4_commit_super(sb); 1246 1247 rcu_read_lock(); 1248 group_desc = rcu_dereference(sbi->s_group_desc); 1249 for (i = 0; i < sbi->s_gdb_count; i++) 1250 brelse(group_desc[i]); 1251 kvfree(group_desc); 1252 flex_groups = rcu_dereference(sbi->s_flex_groups); 1253 if (flex_groups) { 1254 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1255 kvfree(flex_groups[i]); 1256 kvfree(flex_groups); 1257 } 1258 rcu_read_unlock(); 1259 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1260 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1261 percpu_counter_destroy(&sbi->s_dirs_counter); 1262 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1263 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1264 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1265 #ifdef CONFIG_QUOTA 1266 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1267 kfree(get_qf_name(sb, sbi, i)); 1268 #endif 1269 1270 /* Debugging code just in case the in-memory inode orphan list 1271 * isn't empty. The on-disk one can be non-empty if we've 1272 * detected an error and taken the fs readonly, but the 1273 * in-memory list had better be clean by this point. */ 1274 if (!list_empty(&sbi->s_orphan)) 1275 dump_orphan_list(sb, sbi); 1276 ASSERT(list_empty(&sbi->s_orphan)); 1277 1278 sync_blockdev(sb->s_bdev); 1279 invalidate_bdev(sb->s_bdev); 1280 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1281 /* 1282 * Invalidate the journal device's buffers. We don't want them 1283 * floating about in memory - the physical journal device may 1284 * hotswapped, and it breaks the `ro-after' testing code. 1285 */ 1286 sync_blockdev(sbi->s_journal_bdev); 1287 invalidate_bdev(sbi->s_journal_bdev); 1288 ext4_blkdev_remove(sbi); 1289 } 1290 1291 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1292 sbi->s_ea_inode_cache = NULL; 1293 1294 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1295 sbi->s_ea_block_cache = NULL; 1296 1297 ext4_stop_mmpd(sbi); 1298 1299 brelse(sbi->s_sbh); 1300 sb->s_fs_info = NULL; 1301 /* 1302 * Now that we are completely done shutting down the 1303 * superblock, we need to actually destroy the kobject. 1304 */ 1305 kobject_put(&sbi->s_kobj); 1306 wait_for_completion(&sbi->s_kobj_unregister); 1307 if (sbi->s_chksum_driver) 1308 crypto_free_shash(sbi->s_chksum_driver); 1309 kfree(sbi->s_blockgroup_lock); 1310 fs_put_dax(sbi->s_daxdev, NULL); 1311 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1312 #if IS_ENABLED(CONFIG_UNICODE) 1313 utf8_unload(sb->s_encoding); 1314 #endif 1315 kfree(sbi); 1316 } 1317 1318 static struct kmem_cache *ext4_inode_cachep; 1319 1320 /* 1321 * Called inside transaction, so use GFP_NOFS 1322 */ 1323 static struct inode *ext4_alloc_inode(struct super_block *sb) 1324 { 1325 struct ext4_inode_info *ei; 1326 1327 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1328 if (!ei) 1329 return NULL; 1330 1331 inode_set_iversion(&ei->vfs_inode, 1); 1332 spin_lock_init(&ei->i_raw_lock); 1333 INIT_LIST_HEAD(&ei->i_prealloc_list); 1334 atomic_set(&ei->i_prealloc_active, 0); 1335 spin_lock_init(&ei->i_prealloc_lock); 1336 ext4_es_init_tree(&ei->i_es_tree); 1337 rwlock_init(&ei->i_es_lock); 1338 INIT_LIST_HEAD(&ei->i_es_list); 1339 ei->i_es_all_nr = 0; 1340 ei->i_es_shk_nr = 0; 1341 ei->i_es_shrink_lblk = 0; 1342 ei->i_reserved_data_blocks = 0; 1343 spin_lock_init(&(ei->i_block_reservation_lock)); 1344 ext4_init_pending_tree(&ei->i_pending_tree); 1345 #ifdef CONFIG_QUOTA 1346 ei->i_reserved_quota = 0; 1347 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1348 #endif 1349 ei->jinode = NULL; 1350 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1351 spin_lock_init(&ei->i_completed_io_lock); 1352 ei->i_sync_tid = 0; 1353 ei->i_datasync_tid = 0; 1354 atomic_set(&ei->i_unwritten, 0); 1355 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1356 ext4_fc_init_inode(&ei->vfs_inode); 1357 mutex_init(&ei->i_fc_lock); 1358 return &ei->vfs_inode; 1359 } 1360 1361 static int ext4_drop_inode(struct inode *inode) 1362 { 1363 int drop = generic_drop_inode(inode); 1364 1365 if (!drop) 1366 drop = fscrypt_drop_inode(inode); 1367 1368 trace_ext4_drop_inode(inode, drop); 1369 return drop; 1370 } 1371 1372 static void ext4_free_in_core_inode(struct inode *inode) 1373 { 1374 fscrypt_free_inode(inode); 1375 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1376 pr_warn("%s: inode %ld still in fc list", 1377 __func__, inode->i_ino); 1378 } 1379 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1380 } 1381 1382 static void ext4_destroy_inode(struct inode *inode) 1383 { 1384 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1385 ext4_msg(inode->i_sb, KERN_ERR, 1386 "Inode %lu (%p): orphan list check failed!", 1387 inode->i_ino, EXT4_I(inode)); 1388 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1389 EXT4_I(inode), sizeof(struct ext4_inode_info), 1390 true); 1391 dump_stack(); 1392 } 1393 1394 if (EXT4_I(inode)->i_reserved_data_blocks) 1395 ext4_msg(inode->i_sb, KERN_ERR, 1396 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1397 inode->i_ino, EXT4_I(inode), 1398 EXT4_I(inode)->i_reserved_data_blocks); 1399 } 1400 1401 static void init_once(void *foo) 1402 { 1403 struct ext4_inode_info *ei = foo; 1404 1405 INIT_LIST_HEAD(&ei->i_orphan); 1406 init_rwsem(&ei->xattr_sem); 1407 init_rwsem(&ei->i_data_sem); 1408 inode_init_once(&ei->vfs_inode); 1409 ext4_fc_init_inode(&ei->vfs_inode); 1410 } 1411 1412 static int __init init_inodecache(void) 1413 { 1414 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1415 sizeof(struct ext4_inode_info), 0, 1416 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1417 SLAB_ACCOUNT), 1418 offsetof(struct ext4_inode_info, i_data), 1419 sizeof_field(struct ext4_inode_info, i_data), 1420 init_once); 1421 if (ext4_inode_cachep == NULL) 1422 return -ENOMEM; 1423 return 0; 1424 } 1425 1426 static void destroy_inodecache(void) 1427 { 1428 /* 1429 * Make sure all delayed rcu free inodes are flushed before we 1430 * destroy cache. 1431 */ 1432 rcu_barrier(); 1433 kmem_cache_destroy(ext4_inode_cachep); 1434 } 1435 1436 void ext4_clear_inode(struct inode *inode) 1437 { 1438 ext4_fc_del(inode); 1439 invalidate_inode_buffers(inode); 1440 clear_inode(inode); 1441 ext4_discard_preallocations(inode, 0); 1442 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1443 dquot_drop(inode); 1444 if (EXT4_I(inode)->jinode) { 1445 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1446 EXT4_I(inode)->jinode); 1447 jbd2_free_inode(EXT4_I(inode)->jinode); 1448 EXT4_I(inode)->jinode = NULL; 1449 } 1450 fscrypt_put_encryption_info(inode); 1451 fsverity_cleanup_inode(inode); 1452 } 1453 1454 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1455 u64 ino, u32 generation) 1456 { 1457 struct inode *inode; 1458 1459 /* 1460 * Currently we don't know the generation for parent directory, so 1461 * a generation of 0 means "accept any" 1462 */ 1463 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1464 if (IS_ERR(inode)) 1465 return ERR_CAST(inode); 1466 if (generation && inode->i_generation != generation) { 1467 iput(inode); 1468 return ERR_PTR(-ESTALE); 1469 } 1470 1471 return inode; 1472 } 1473 1474 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1475 int fh_len, int fh_type) 1476 { 1477 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1478 ext4_nfs_get_inode); 1479 } 1480 1481 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1482 int fh_len, int fh_type) 1483 { 1484 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1485 ext4_nfs_get_inode); 1486 } 1487 1488 static int ext4_nfs_commit_metadata(struct inode *inode) 1489 { 1490 struct writeback_control wbc = { 1491 .sync_mode = WB_SYNC_ALL 1492 }; 1493 1494 trace_ext4_nfs_commit_metadata(inode); 1495 return ext4_write_inode(inode, &wbc); 1496 } 1497 1498 #ifdef CONFIG_QUOTA 1499 static const char * const quotatypes[] = INITQFNAMES; 1500 #define QTYPE2NAME(t) (quotatypes[t]) 1501 1502 static int ext4_write_dquot(struct dquot *dquot); 1503 static int ext4_acquire_dquot(struct dquot *dquot); 1504 static int ext4_release_dquot(struct dquot *dquot); 1505 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1506 static int ext4_write_info(struct super_block *sb, int type); 1507 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1508 const struct path *path); 1509 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1510 size_t len, loff_t off); 1511 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1512 const char *data, size_t len, loff_t off); 1513 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1514 unsigned int flags); 1515 1516 static struct dquot **ext4_get_dquots(struct inode *inode) 1517 { 1518 return EXT4_I(inode)->i_dquot; 1519 } 1520 1521 static const struct dquot_operations ext4_quota_operations = { 1522 .get_reserved_space = ext4_get_reserved_space, 1523 .write_dquot = ext4_write_dquot, 1524 .acquire_dquot = ext4_acquire_dquot, 1525 .release_dquot = ext4_release_dquot, 1526 .mark_dirty = ext4_mark_dquot_dirty, 1527 .write_info = ext4_write_info, 1528 .alloc_dquot = dquot_alloc, 1529 .destroy_dquot = dquot_destroy, 1530 .get_projid = ext4_get_projid, 1531 .get_inode_usage = ext4_get_inode_usage, 1532 .get_next_id = dquot_get_next_id, 1533 }; 1534 1535 static const struct quotactl_ops ext4_qctl_operations = { 1536 .quota_on = ext4_quota_on, 1537 .quota_off = ext4_quota_off, 1538 .quota_sync = dquot_quota_sync, 1539 .get_state = dquot_get_state, 1540 .set_info = dquot_set_dqinfo, 1541 .get_dqblk = dquot_get_dqblk, 1542 .set_dqblk = dquot_set_dqblk, 1543 .get_nextdqblk = dquot_get_next_dqblk, 1544 }; 1545 #endif 1546 1547 static const struct super_operations ext4_sops = { 1548 .alloc_inode = ext4_alloc_inode, 1549 .free_inode = ext4_free_in_core_inode, 1550 .destroy_inode = ext4_destroy_inode, 1551 .write_inode = ext4_write_inode, 1552 .dirty_inode = ext4_dirty_inode, 1553 .drop_inode = ext4_drop_inode, 1554 .evict_inode = ext4_evict_inode, 1555 .put_super = ext4_put_super, 1556 .sync_fs = ext4_sync_fs, 1557 .freeze_fs = ext4_freeze, 1558 .unfreeze_fs = ext4_unfreeze, 1559 .statfs = ext4_statfs, 1560 .show_options = ext4_show_options, 1561 #ifdef CONFIG_QUOTA 1562 .quota_read = ext4_quota_read, 1563 .quota_write = ext4_quota_write, 1564 .get_dquots = ext4_get_dquots, 1565 #endif 1566 }; 1567 1568 static const struct export_operations ext4_export_ops = { 1569 .fh_to_dentry = ext4_fh_to_dentry, 1570 .fh_to_parent = ext4_fh_to_parent, 1571 .get_parent = ext4_get_parent, 1572 .commit_metadata = ext4_nfs_commit_metadata, 1573 }; 1574 1575 enum { 1576 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1577 Opt_resgid, Opt_resuid, Opt_sb, 1578 Opt_nouid32, Opt_debug, Opt_removed, 1579 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1580 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1581 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1582 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1583 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1584 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1585 Opt_inlinecrypt, 1586 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1587 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1588 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1589 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1590 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1591 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1592 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1593 Opt_inode_readahead_blks, Opt_journal_ioprio, 1594 Opt_dioread_nolock, Opt_dioread_lock, 1595 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1596 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1597 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1598 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1599 #ifdef CONFIG_EXT4_DEBUG 1600 Opt_fc_debug_max_replay, Opt_fc_debug_force 1601 #endif 1602 }; 1603 1604 static const struct constant_table ext4_param_errors[] = { 1605 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1606 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1607 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1608 {} 1609 }; 1610 1611 static const struct constant_table ext4_param_data[] = { 1612 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1613 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1614 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1615 {} 1616 }; 1617 1618 static const struct constant_table ext4_param_data_err[] = { 1619 {"abort", Opt_data_err_abort}, 1620 {"ignore", Opt_data_err_ignore}, 1621 {} 1622 }; 1623 1624 static const struct constant_table ext4_param_jqfmt[] = { 1625 {"vfsold", QFMT_VFS_OLD}, 1626 {"vfsv0", QFMT_VFS_V0}, 1627 {"vfsv1", QFMT_VFS_V1}, 1628 {} 1629 }; 1630 1631 static const struct constant_table ext4_param_dax[] = { 1632 {"always", Opt_dax_always}, 1633 {"inode", Opt_dax_inode}, 1634 {"never", Opt_dax_never}, 1635 {} 1636 }; 1637 1638 /* String parameter that allows empty argument */ 1639 #define fsparam_string_empty(NAME, OPT) \ 1640 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) 1641 1642 /* 1643 * Mount option specification 1644 * We don't use fsparam_flag_no because of the way we set the 1645 * options and the way we show them in _ext4_show_options(). To 1646 * keep the changes to a minimum, let's keep the negative options 1647 * separate for now. 1648 */ 1649 static const struct fs_parameter_spec ext4_param_specs[] = { 1650 fsparam_flag ("bsddf", Opt_bsd_df), 1651 fsparam_flag ("minixdf", Opt_minix_df), 1652 fsparam_flag ("grpid", Opt_grpid), 1653 fsparam_flag ("bsdgroups", Opt_grpid), 1654 fsparam_flag ("nogrpid", Opt_nogrpid), 1655 fsparam_flag ("sysvgroups", Opt_nogrpid), 1656 fsparam_u32 ("resgid", Opt_resgid), 1657 fsparam_u32 ("resuid", Opt_resuid), 1658 fsparam_u32 ("sb", Opt_sb), 1659 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1660 fsparam_flag ("nouid32", Opt_nouid32), 1661 fsparam_flag ("debug", Opt_debug), 1662 fsparam_flag ("oldalloc", Opt_removed), 1663 fsparam_flag ("orlov", Opt_removed), 1664 fsparam_flag ("user_xattr", Opt_user_xattr), 1665 fsparam_flag ("nouser_xattr", Opt_nouser_xattr), 1666 fsparam_flag ("acl", Opt_acl), 1667 fsparam_flag ("noacl", Opt_noacl), 1668 fsparam_flag ("norecovery", Opt_noload), 1669 fsparam_flag ("noload", Opt_noload), 1670 fsparam_flag ("bh", Opt_removed), 1671 fsparam_flag ("nobh", Opt_removed), 1672 fsparam_u32 ("commit", Opt_commit), 1673 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1674 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1675 fsparam_u32 ("journal_dev", Opt_journal_dev), 1676 fsparam_bdev ("journal_path", Opt_journal_path), 1677 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1678 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1679 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1680 fsparam_flag ("abort", Opt_abort), 1681 fsparam_enum ("data", Opt_data, ext4_param_data), 1682 fsparam_enum ("data_err", Opt_data_err, 1683 ext4_param_data_err), 1684 fsparam_string_empty 1685 ("usrjquota", Opt_usrjquota), 1686 fsparam_string_empty 1687 ("grpjquota", Opt_grpjquota), 1688 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1689 fsparam_flag ("grpquota", Opt_grpquota), 1690 fsparam_flag ("quota", Opt_quota), 1691 fsparam_flag ("noquota", Opt_noquota), 1692 fsparam_flag ("usrquota", Opt_usrquota), 1693 fsparam_flag ("prjquota", Opt_prjquota), 1694 fsparam_flag ("barrier", Opt_barrier), 1695 fsparam_u32 ("barrier", Opt_barrier), 1696 fsparam_flag ("nobarrier", Opt_nobarrier), 1697 fsparam_flag ("i_version", Opt_i_version), 1698 fsparam_flag ("dax", Opt_dax), 1699 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1700 fsparam_u32 ("stripe", Opt_stripe), 1701 fsparam_flag ("delalloc", Opt_delalloc), 1702 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1703 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1704 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1705 fsparam_u32 ("debug_want_extra_isize", 1706 Opt_debug_want_extra_isize), 1707 fsparam_flag ("mblk_io_submit", Opt_removed), 1708 fsparam_flag ("nomblk_io_submit", Opt_removed), 1709 fsparam_flag ("block_validity", Opt_block_validity), 1710 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1711 fsparam_u32 ("inode_readahead_blks", 1712 Opt_inode_readahead_blks), 1713 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1714 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1715 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1716 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1717 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1718 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1719 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1720 fsparam_flag ("discard", Opt_discard), 1721 fsparam_flag ("nodiscard", Opt_nodiscard), 1722 fsparam_u32 ("init_itable", Opt_init_itable), 1723 fsparam_flag ("init_itable", Opt_init_itable), 1724 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1725 #ifdef CONFIG_EXT4_DEBUG 1726 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1727 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1728 #endif 1729 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1730 fsparam_flag ("test_dummy_encryption", 1731 Opt_test_dummy_encryption), 1732 fsparam_string ("test_dummy_encryption", 1733 Opt_test_dummy_encryption), 1734 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1735 fsparam_flag ("nombcache", Opt_nombcache), 1736 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1737 fsparam_flag ("prefetch_block_bitmaps", 1738 Opt_removed), 1739 fsparam_flag ("no_prefetch_block_bitmaps", 1740 Opt_no_prefetch_block_bitmaps), 1741 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1742 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1743 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1744 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1745 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1746 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1747 {} 1748 }; 1749 1750 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1751 1752 static const char deprecated_msg[] = 1753 "Mount option \"%s\" will be removed by %s\n" 1754 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1755 1756 #define MOPT_SET 0x0001 1757 #define MOPT_CLEAR 0x0002 1758 #define MOPT_NOSUPPORT 0x0004 1759 #define MOPT_EXPLICIT 0x0008 1760 #ifdef CONFIG_QUOTA 1761 #define MOPT_Q 0 1762 #define MOPT_QFMT 0x0010 1763 #else 1764 #define MOPT_Q MOPT_NOSUPPORT 1765 #define MOPT_QFMT MOPT_NOSUPPORT 1766 #endif 1767 #define MOPT_NO_EXT2 0x0020 1768 #define MOPT_NO_EXT3 0x0040 1769 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1770 #define MOPT_SKIP 0x0080 1771 #define MOPT_2 0x0100 1772 1773 static const struct mount_opts { 1774 int token; 1775 int mount_opt; 1776 int flags; 1777 } ext4_mount_opts[] = { 1778 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1779 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1780 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1781 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1782 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1783 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1784 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1785 MOPT_EXT4_ONLY | MOPT_SET}, 1786 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1787 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1788 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1789 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1790 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1791 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1792 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1793 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1794 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1795 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1796 {Opt_commit, 0, MOPT_NO_EXT2}, 1797 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1798 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1799 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1800 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1801 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1802 EXT4_MOUNT_JOURNAL_CHECKSUM), 1803 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1804 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1805 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1806 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1807 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1808 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1809 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1810 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1811 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1812 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1813 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1814 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1815 {Opt_data, 0, MOPT_NO_EXT2}, 1816 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1817 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1818 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1819 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1820 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1821 #else 1822 {Opt_acl, 0, MOPT_NOSUPPORT}, 1823 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1824 #endif 1825 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1826 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1827 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1828 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1829 MOPT_SET | MOPT_Q}, 1830 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1831 MOPT_SET | MOPT_Q}, 1832 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1833 MOPT_SET | MOPT_Q}, 1834 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1835 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1836 MOPT_CLEAR | MOPT_Q}, 1837 {Opt_usrjquota, 0, MOPT_Q}, 1838 {Opt_grpjquota, 0, MOPT_Q}, 1839 {Opt_jqfmt, 0, MOPT_QFMT}, 1840 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1841 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1842 MOPT_SET}, 1843 #ifdef CONFIG_EXT4_DEBUG 1844 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1845 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1846 #endif 1847 {Opt_err, 0, 0} 1848 }; 1849 1850 #if IS_ENABLED(CONFIG_UNICODE) 1851 static const struct ext4_sb_encodings { 1852 __u16 magic; 1853 char *name; 1854 unsigned int version; 1855 } ext4_sb_encoding_map[] = { 1856 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1857 }; 1858 1859 static const struct ext4_sb_encodings * 1860 ext4_sb_read_encoding(const struct ext4_super_block *es) 1861 { 1862 __u16 magic = le16_to_cpu(es->s_encoding); 1863 int i; 1864 1865 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1866 if (magic == ext4_sb_encoding_map[i].magic) 1867 return &ext4_sb_encoding_map[i]; 1868 1869 return NULL; 1870 } 1871 #endif 1872 1873 #define EXT4_SPEC_JQUOTA (1 << 0) 1874 #define EXT4_SPEC_JQFMT (1 << 1) 1875 #define EXT4_SPEC_DATAJ (1 << 2) 1876 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1877 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1878 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1879 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1880 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1881 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1882 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1883 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1884 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1885 #define EXT4_SPEC_s_stripe (1 << 13) 1886 #define EXT4_SPEC_s_resuid (1 << 14) 1887 #define EXT4_SPEC_s_resgid (1 << 15) 1888 #define EXT4_SPEC_s_commit_interval (1 << 16) 1889 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1890 #define EXT4_SPEC_s_sb_block (1 << 18) 1891 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1892 1893 struct ext4_fs_context { 1894 char *s_qf_names[EXT4_MAXQUOTAS]; 1895 struct fscrypt_dummy_policy dummy_enc_policy; 1896 int s_jquota_fmt; /* Format of quota to use */ 1897 #ifdef CONFIG_EXT4_DEBUG 1898 int s_fc_debug_max_replay; 1899 #endif 1900 unsigned short qname_spec; 1901 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1902 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1903 unsigned long journal_devnum; 1904 unsigned long s_commit_interval; 1905 unsigned long s_stripe; 1906 unsigned int s_inode_readahead_blks; 1907 unsigned int s_want_extra_isize; 1908 unsigned int s_li_wait_mult; 1909 unsigned int s_max_dir_size_kb; 1910 unsigned int journal_ioprio; 1911 unsigned int vals_s_mount_opt; 1912 unsigned int mask_s_mount_opt; 1913 unsigned int vals_s_mount_opt2; 1914 unsigned int mask_s_mount_opt2; 1915 unsigned long vals_s_mount_flags; 1916 unsigned long mask_s_mount_flags; 1917 unsigned int opt_flags; /* MOPT flags */ 1918 unsigned int spec; 1919 u32 s_max_batch_time; 1920 u32 s_min_batch_time; 1921 kuid_t s_resuid; 1922 kgid_t s_resgid; 1923 ext4_fsblk_t s_sb_block; 1924 }; 1925 1926 static void ext4_fc_free(struct fs_context *fc) 1927 { 1928 struct ext4_fs_context *ctx = fc->fs_private; 1929 int i; 1930 1931 if (!ctx) 1932 return; 1933 1934 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1935 kfree(ctx->s_qf_names[i]); 1936 1937 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 1938 kfree(ctx); 1939 } 1940 1941 int ext4_init_fs_context(struct fs_context *fc) 1942 { 1943 struct ext4_fs_context *ctx; 1944 1945 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 1946 if (!ctx) 1947 return -ENOMEM; 1948 1949 fc->fs_private = ctx; 1950 fc->ops = &ext4_context_ops; 1951 1952 return 0; 1953 } 1954 1955 #ifdef CONFIG_QUOTA 1956 /* 1957 * Note the name of the specified quota file. 1958 */ 1959 static int note_qf_name(struct fs_context *fc, int qtype, 1960 struct fs_parameter *param) 1961 { 1962 struct ext4_fs_context *ctx = fc->fs_private; 1963 char *qname; 1964 1965 if (param->size < 1) { 1966 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 1967 return -EINVAL; 1968 } 1969 if (strchr(param->string, '/')) { 1970 ext4_msg(NULL, KERN_ERR, 1971 "quotafile must be on filesystem root"); 1972 return -EINVAL; 1973 } 1974 if (ctx->s_qf_names[qtype]) { 1975 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 1976 ext4_msg(NULL, KERN_ERR, 1977 "%s quota file already specified", 1978 QTYPE2NAME(qtype)); 1979 return -EINVAL; 1980 } 1981 return 0; 1982 } 1983 1984 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 1985 if (!qname) { 1986 ext4_msg(NULL, KERN_ERR, 1987 "Not enough memory for storing quotafile name"); 1988 return -ENOMEM; 1989 } 1990 ctx->s_qf_names[qtype] = qname; 1991 ctx->qname_spec |= 1 << qtype; 1992 ctx->spec |= EXT4_SPEC_JQUOTA; 1993 return 0; 1994 } 1995 1996 /* 1997 * Clear the name of the specified quota file. 1998 */ 1999 static int unnote_qf_name(struct fs_context *fc, int qtype) 2000 { 2001 struct ext4_fs_context *ctx = fc->fs_private; 2002 2003 if (ctx->s_qf_names[qtype]) 2004 kfree(ctx->s_qf_names[qtype]); 2005 2006 ctx->s_qf_names[qtype] = NULL; 2007 ctx->qname_spec |= 1 << qtype; 2008 ctx->spec |= EXT4_SPEC_JQUOTA; 2009 return 0; 2010 } 2011 #endif 2012 2013 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2014 struct ext4_fs_context *ctx) 2015 { 2016 int err; 2017 2018 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2019 ext4_msg(NULL, KERN_WARNING, 2020 "test_dummy_encryption option not supported"); 2021 return -EINVAL; 2022 } 2023 err = fscrypt_parse_test_dummy_encryption(param, 2024 &ctx->dummy_enc_policy); 2025 if (err == -EINVAL) { 2026 ext4_msg(NULL, KERN_WARNING, 2027 "Value of option \"%s\" is unrecognized", param->key); 2028 } else if (err == -EEXIST) { 2029 ext4_msg(NULL, KERN_WARNING, 2030 "Conflicting test_dummy_encryption options"); 2031 return -EINVAL; 2032 } 2033 return err; 2034 } 2035 2036 #define EXT4_SET_CTX(name) \ 2037 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2038 unsigned long flag) \ 2039 { \ 2040 ctx->mask_s_##name |= flag; \ 2041 ctx->vals_s_##name |= flag; \ 2042 } 2043 2044 #define EXT4_CLEAR_CTX(name) \ 2045 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2046 unsigned long flag) \ 2047 { \ 2048 ctx->mask_s_##name |= flag; \ 2049 ctx->vals_s_##name &= ~flag; \ 2050 } 2051 2052 #define EXT4_TEST_CTX(name) \ 2053 static inline unsigned long \ 2054 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2055 { \ 2056 return (ctx->vals_s_##name & flag); \ 2057 } 2058 2059 EXT4_SET_CTX(flags); /* set only */ 2060 EXT4_SET_CTX(mount_opt); 2061 EXT4_CLEAR_CTX(mount_opt); 2062 EXT4_TEST_CTX(mount_opt); 2063 EXT4_SET_CTX(mount_opt2); 2064 EXT4_CLEAR_CTX(mount_opt2); 2065 EXT4_TEST_CTX(mount_opt2); 2066 2067 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) 2068 { 2069 set_bit(bit, &ctx->mask_s_mount_flags); 2070 set_bit(bit, &ctx->vals_s_mount_flags); 2071 } 2072 2073 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2074 { 2075 struct ext4_fs_context *ctx = fc->fs_private; 2076 struct fs_parse_result result; 2077 const struct mount_opts *m; 2078 int is_remount; 2079 kuid_t uid; 2080 kgid_t gid; 2081 int token; 2082 2083 token = fs_parse(fc, ext4_param_specs, param, &result); 2084 if (token < 0) 2085 return token; 2086 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2087 2088 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2089 if (token == m->token) 2090 break; 2091 2092 ctx->opt_flags |= m->flags; 2093 2094 if (m->flags & MOPT_EXPLICIT) { 2095 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2096 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2097 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2098 ctx_set_mount_opt2(ctx, 2099 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2100 } else 2101 return -EINVAL; 2102 } 2103 2104 if (m->flags & MOPT_NOSUPPORT) { 2105 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2106 param->key); 2107 return 0; 2108 } 2109 2110 switch (token) { 2111 #ifdef CONFIG_QUOTA 2112 case Opt_usrjquota: 2113 if (!*param->string) 2114 return unnote_qf_name(fc, USRQUOTA); 2115 else 2116 return note_qf_name(fc, USRQUOTA, param); 2117 case Opt_grpjquota: 2118 if (!*param->string) 2119 return unnote_qf_name(fc, GRPQUOTA); 2120 else 2121 return note_qf_name(fc, GRPQUOTA, param); 2122 #endif 2123 case Opt_noacl: 2124 case Opt_nouser_xattr: 2125 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5"); 2126 break; 2127 case Opt_sb: 2128 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2129 ext4_msg(NULL, KERN_WARNING, 2130 "Ignoring %s option on remount", param->key); 2131 } else { 2132 ctx->s_sb_block = result.uint_32; 2133 ctx->spec |= EXT4_SPEC_s_sb_block; 2134 } 2135 return 0; 2136 case Opt_removed: 2137 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2138 param->key); 2139 return 0; 2140 case Opt_abort: 2141 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); 2142 return 0; 2143 case Opt_i_version: 2144 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20"); 2145 ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n"); 2146 ctx_set_flags(ctx, SB_I_VERSION); 2147 return 0; 2148 case Opt_inlinecrypt: 2149 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2150 ctx_set_flags(ctx, SB_INLINECRYPT); 2151 #else 2152 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2153 #endif 2154 return 0; 2155 case Opt_errors: 2156 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2157 ctx_set_mount_opt(ctx, result.uint_32); 2158 return 0; 2159 #ifdef CONFIG_QUOTA 2160 case Opt_jqfmt: 2161 ctx->s_jquota_fmt = result.uint_32; 2162 ctx->spec |= EXT4_SPEC_JQFMT; 2163 return 0; 2164 #endif 2165 case Opt_data: 2166 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2167 ctx_set_mount_opt(ctx, result.uint_32); 2168 ctx->spec |= EXT4_SPEC_DATAJ; 2169 return 0; 2170 case Opt_commit: 2171 if (result.uint_32 == 0) 2172 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE; 2173 else if (result.uint_32 > INT_MAX / HZ) { 2174 ext4_msg(NULL, KERN_ERR, 2175 "Invalid commit interval %d, " 2176 "must be smaller than %d", 2177 result.uint_32, INT_MAX / HZ); 2178 return -EINVAL; 2179 } 2180 ctx->s_commit_interval = HZ * result.uint_32; 2181 ctx->spec |= EXT4_SPEC_s_commit_interval; 2182 return 0; 2183 case Opt_debug_want_extra_isize: 2184 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2185 ext4_msg(NULL, KERN_ERR, 2186 "Invalid want_extra_isize %d", result.uint_32); 2187 return -EINVAL; 2188 } 2189 ctx->s_want_extra_isize = result.uint_32; 2190 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2191 return 0; 2192 case Opt_max_batch_time: 2193 ctx->s_max_batch_time = result.uint_32; 2194 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2195 return 0; 2196 case Opt_min_batch_time: 2197 ctx->s_min_batch_time = result.uint_32; 2198 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2199 return 0; 2200 case Opt_inode_readahead_blks: 2201 if (result.uint_32 && 2202 (result.uint_32 > (1 << 30) || 2203 !is_power_of_2(result.uint_32))) { 2204 ext4_msg(NULL, KERN_ERR, 2205 "EXT4-fs: inode_readahead_blks must be " 2206 "0 or a power of 2 smaller than 2^31"); 2207 return -EINVAL; 2208 } 2209 ctx->s_inode_readahead_blks = result.uint_32; 2210 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2211 return 0; 2212 case Opt_init_itable: 2213 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2214 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2215 if (param->type == fs_value_is_string) 2216 ctx->s_li_wait_mult = result.uint_32; 2217 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2218 return 0; 2219 case Opt_max_dir_size_kb: 2220 ctx->s_max_dir_size_kb = result.uint_32; 2221 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2222 return 0; 2223 #ifdef CONFIG_EXT4_DEBUG 2224 case Opt_fc_debug_max_replay: 2225 ctx->s_fc_debug_max_replay = result.uint_32; 2226 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2227 return 0; 2228 #endif 2229 case Opt_stripe: 2230 ctx->s_stripe = result.uint_32; 2231 ctx->spec |= EXT4_SPEC_s_stripe; 2232 return 0; 2233 case Opt_resuid: 2234 uid = make_kuid(current_user_ns(), result.uint_32); 2235 if (!uid_valid(uid)) { 2236 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", 2237 result.uint_32); 2238 return -EINVAL; 2239 } 2240 ctx->s_resuid = uid; 2241 ctx->spec |= EXT4_SPEC_s_resuid; 2242 return 0; 2243 case Opt_resgid: 2244 gid = make_kgid(current_user_ns(), result.uint_32); 2245 if (!gid_valid(gid)) { 2246 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", 2247 result.uint_32); 2248 return -EINVAL; 2249 } 2250 ctx->s_resgid = gid; 2251 ctx->spec |= EXT4_SPEC_s_resgid; 2252 return 0; 2253 case Opt_journal_dev: 2254 if (is_remount) { 2255 ext4_msg(NULL, KERN_ERR, 2256 "Cannot specify journal on remount"); 2257 return -EINVAL; 2258 } 2259 ctx->journal_devnum = result.uint_32; 2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2261 return 0; 2262 case Opt_journal_path: 2263 { 2264 struct inode *journal_inode; 2265 struct path path; 2266 int error; 2267 2268 if (is_remount) { 2269 ext4_msg(NULL, KERN_ERR, 2270 "Cannot specify journal on remount"); 2271 return -EINVAL; 2272 } 2273 2274 error = fs_lookup_param(fc, param, 1, &path); 2275 if (error) { 2276 ext4_msg(NULL, KERN_ERR, "error: could not find " 2277 "journal device path"); 2278 return -EINVAL; 2279 } 2280 2281 journal_inode = d_inode(path.dentry); 2282 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2283 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2284 path_put(&path); 2285 return 0; 2286 } 2287 case Opt_journal_ioprio: 2288 if (result.uint_32 > 7) { 2289 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2290 " (must be 0-7)"); 2291 return -EINVAL; 2292 } 2293 ctx->journal_ioprio = 2294 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2295 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2296 return 0; 2297 case Opt_test_dummy_encryption: 2298 return ext4_parse_test_dummy_encryption(param, ctx); 2299 case Opt_dax: 2300 case Opt_dax_type: 2301 #ifdef CONFIG_FS_DAX 2302 { 2303 int type = (token == Opt_dax) ? 2304 Opt_dax : result.uint_32; 2305 2306 switch (type) { 2307 case Opt_dax: 2308 case Opt_dax_always: 2309 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2310 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2311 break; 2312 case Opt_dax_never: 2313 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2314 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2315 break; 2316 case Opt_dax_inode: 2317 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2318 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2319 /* Strictly for printing options */ 2320 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2321 break; 2322 } 2323 return 0; 2324 } 2325 #else 2326 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2327 return -EINVAL; 2328 #endif 2329 case Opt_data_err: 2330 if (result.uint_32 == Opt_data_err_abort) 2331 ctx_set_mount_opt(ctx, m->mount_opt); 2332 else if (result.uint_32 == Opt_data_err_ignore) 2333 ctx_clear_mount_opt(ctx, m->mount_opt); 2334 return 0; 2335 case Opt_mb_optimize_scan: 2336 if (result.int_32 == 1) { 2337 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2338 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2339 } else if (result.int_32 == 0) { 2340 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2341 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2342 } else { 2343 ext4_msg(NULL, KERN_WARNING, 2344 "mb_optimize_scan should be set to 0 or 1."); 2345 return -EINVAL; 2346 } 2347 return 0; 2348 } 2349 2350 /* 2351 * At this point we should only be getting options requiring MOPT_SET, 2352 * or MOPT_CLEAR. Anything else is a bug 2353 */ 2354 if (m->token == Opt_err) { 2355 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2356 param->key); 2357 WARN_ON(1); 2358 return -EINVAL; 2359 } 2360 2361 else { 2362 unsigned int set = 0; 2363 2364 if ((param->type == fs_value_is_flag) || 2365 result.uint_32 > 0) 2366 set = 1; 2367 2368 if (m->flags & MOPT_CLEAR) 2369 set = !set; 2370 else if (unlikely(!(m->flags & MOPT_SET))) { 2371 ext4_msg(NULL, KERN_WARNING, 2372 "buggy handling of option %s", 2373 param->key); 2374 WARN_ON(1); 2375 return -EINVAL; 2376 } 2377 if (m->flags & MOPT_2) { 2378 if (set != 0) 2379 ctx_set_mount_opt2(ctx, m->mount_opt); 2380 else 2381 ctx_clear_mount_opt2(ctx, m->mount_opt); 2382 } else { 2383 if (set != 0) 2384 ctx_set_mount_opt(ctx, m->mount_opt); 2385 else 2386 ctx_clear_mount_opt(ctx, m->mount_opt); 2387 } 2388 } 2389 2390 return 0; 2391 } 2392 2393 static int parse_options(struct fs_context *fc, char *options) 2394 { 2395 struct fs_parameter param; 2396 int ret; 2397 char *key; 2398 2399 if (!options) 2400 return 0; 2401 2402 while ((key = strsep(&options, ",")) != NULL) { 2403 if (*key) { 2404 size_t v_len = 0; 2405 char *value = strchr(key, '='); 2406 2407 param.type = fs_value_is_flag; 2408 param.string = NULL; 2409 2410 if (value) { 2411 if (value == key) 2412 continue; 2413 2414 *value++ = 0; 2415 v_len = strlen(value); 2416 param.string = kmemdup_nul(value, v_len, 2417 GFP_KERNEL); 2418 if (!param.string) 2419 return -ENOMEM; 2420 param.type = fs_value_is_string; 2421 } 2422 2423 param.key = key; 2424 param.size = v_len; 2425 2426 ret = ext4_parse_param(fc, ¶m); 2427 if (param.string) 2428 kfree(param.string); 2429 if (ret < 0) 2430 return ret; 2431 } 2432 } 2433 2434 ret = ext4_validate_options(fc); 2435 if (ret < 0) 2436 return ret; 2437 2438 return 0; 2439 } 2440 2441 static int parse_apply_sb_mount_options(struct super_block *sb, 2442 struct ext4_fs_context *m_ctx) 2443 { 2444 struct ext4_sb_info *sbi = EXT4_SB(sb); 2445 char *s_mount_opts = NULL; 2446 struct ext4_fs_context *s_ctx = NULL; 2447 struct fs_context *fc = NULL; 2448 int ret = -ENOMEM; 2449 2450 if (!sbi->s_es->s_mount_opts[0]) 2451 return 0; 2452 2453 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2454 sizeof(sbi->s_es->s_mount_opts), 2455 GFP_KERNEL); 2456 if (!s_mount_opts) 2457 return ret; 2458 2459 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2460 if (!fc) 2461 goto out_free; 2462 2463 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2464 if (!s_ctx) 2465 goto out_free; 2466 2467 fc->fs_private = s_ctx; 2468 fc->s_fs_info = sbi; 2469 2470 ret = parse_options(fc, s_mount_opts); 2471 if (ret < 0) 2472 goto parse_failed; 2473 2474 ret = ext4_check_opt_consistency(fc, sb); 2475 if (ret < 0) { 2476 parse_failed: 2477 ext4_msg(sb, KERN_WARNING, 2478 "failed to parse options in superblock: %s", 2479 s_mount_opts); 2480 ret = 0; 2481 goto out_free; 2482 } 2483 2484 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2485 m_ctx->journal_devnum = s_ctx->journal_devnum; 2486 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2487 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2488 2489 ext4_apply_options(fc, sb); 2490 ret = 0; 2491 2492 out_free: 2493 if (fc) { 2494 ext4_fc_free(fc); 2495 kfree(fc); 2496 } 2497 kfree(s_mount_opts); 2498 return ret; 2499 } 2500 2501 static void ext4_apply_quota_options(struct fs_context *fc, 2502 struct super_block *sb) 2503 { 2504 #ifdef CONFIG_QUOTA 2505 bool quota_feature = ext4_has_feature_quota(sb); 2506 struct ext4_fs_context *ctx = fc->fs_private; 2507 struct ext4_sb_info *sbi = EXT4_SB(sb); 2508 char *qname; 2509 int i; 2510 2511 if (quota_feature) 2512 return; 2513 2514 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2515 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2516 if (!(ctx->qname_spec & (1 << i))) 2517 continue; 2518 2519 qname = ctx->s_qf_names[i]; /* May be NULL */ 2520 if (qname) 2521 set_opt(sb, QUOTA); 2522 ctx->s_qf_names[i] = NULL; 2523 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2524 lockdep_is_held(&sb->s_umount)); 2525 if (qname) 2526 kfree_rcu(qname); 2527 } 2528 } 2529 2530 if (ctx->spec & EXT4_SPEC_JQFMT) 2531 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2532 #endif 2533 } 2534 2535 /* 2536 * Check quota settings consistency. 2537 */ 2538 static int ext4_check_quota_consistency(struct fs_context *fc, 2539 struct super_block *sb) 2540 { 2541 #ifdef CONFIG_QUOTA 2542 struct ext4_fs_context *ctx = fc->fs_private; 2543 struct ext4_sb_info *sbi = EXT4_SB(sb); 2544 bool quota_feature = ext4_has_feature_quota(sb); 2545 bool quota_loaded = sb_any_quota_loaded(sb); 2546 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2547 int quota_flags, i; 2548 2549 /* 2550 * We do the test below only for project quotas. 'usrquota' and 2551 * 'grpquota' mount options are allowed even without quota feature 2552 * to support legacy quotas in quota files. 2553 */ 2554 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2555 !ext4_has_feature_project(sb)) { 2556 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2557 "Cannot enable project quota enforcement."); 2558 return -EINVAL; 2559 } 2560 2561 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2562 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2563 if (quota_loaded && 2564 ctx->mask_s_mount_opt & quota_flags && 2565 !ctx_test_mount_opt(ctx, quota_flags)) 2566 goto err_quota_change; 2567 2568 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2569 2570 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2571 if (!(ctx->qname_spec & (1 << i))) 2572 continue; 2573 2574 if (quota_loaded && 2575 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2576 goto err_jquota_change; 2577 2578 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2579 strcmp(get_qf_name(sb, sbi, i), 2580 ctx->s_qf_names[i]) != 0) 2581 goto err_jquota_specified; 2582 } 2583 2584 if (quota_feature) { 2585 ext4_msg(NULL, KERN_INFO, 2586 "Journaled quota options ignored when " 2587 "QUOTA feature is enabled"); 2588 return 0; 2589 } 2590 } 2591 2592 if (ctx->spec & EXT4_SPEC_JQFMT) { 2593 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2594 goto err_jquota_change; 2595 if (quota_feature) { 2596 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2597 "ignored when QUOTA feature is enabled"); 2598 return 0; 2599 } 2600 } 2601 2602 /* Make sure we don't mix old and new quota format */ 2603 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2604 ctx->s_qf_names[USRQUOTA]); 2605 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2606 ctx->s_qf_names[GRPQUOTA]); 2607 2608 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2609 test_opt(sb, USRQUOTA)); 2610 2611 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2612 test_opt(sb, GRPQUOTA)); 2613 2614 if (usr_qf_name) { 2615 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2616 usrquota = false; 2617 } 2618 if (grp_qf_name) { 2619 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2620 grpquota = false; 2621 } 2622 2623 if (usr_qf_name || grp_qf_name) { 2624 if (usrquota || grpquota) { 2625 ext4_msg(NULL, KERN_ERR, "old and new quota " 2626 "format mixing"); 2627 return -EINVAL; 2628 } 2629 2630 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2631 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2632 "not specified"); 2633 return -EINVAL; 2634 } 2635 } 2636 2637 return 0; 2638 2639 err_quota_change: 2640 ext4_msg(NULL, KERN_ERR, 2641 "Cannot change quota options when quota turned on"); 2642 return -EINVAL; 2643 err_jquota_change: 2644 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2645 "options when quota turned on"); 2646 return -EINVAL; 2647 err_jquota_specified: 2648 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2649 QTYPE2NAME(i)); 2650 return -EINVAL; 2651 #else 2652 return 0; 2653 #endif 2654 } 2655 2656 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2657 struct super_block *sb) 2658 { 2659 const struct ext4_fs_context *ctx = fc->fs_private; 2660 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2661 int err; 2662 2663 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2664 return 0; 2665 2666 if (!ext4_has_feature_encrypt(sb)) { 2667 ext4_msg(NULL, KERN_WARNING, 2668 "test_dummy_encryption requires encrypt feature"); 2669 return -EINVAL; 2670 } 2671 /* 2672 * This mount option is just for testing, and it's not worthwhile to 2673 * implement the extra complexity (e.g. RCU protection) that would be 2674 * needed to allow it to be set or changed during remount. We do allow 2675 * it to be specified during remount, but only if there is no change. 2676 */ 2677 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2678 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2679 &ctx->dummy_enc_policy)) 2680 return 0; 2681 ext4_msg(NULL, KERN_WARNING, 2682 "Can't set or change test_dummy_encryption on remount"); 2683 return -EINVAL; 2684 } 2685 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2686 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2687 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2688 &ctx->dummy_enc_policy)) 2689 return 0; 2690 ext4_msg(NULL, KERN_WARNING, 2691 "Conflicting test_dummy_encryption options"); 2692 return -EINVAL; 2693 } 2694 /* 2695 * fscrypt_add_test_dummy_key() technically changes the super_block, so 2696 * technically it should be delayed until ext4_apply_options() like the 2697 * other changes. But since we never get here for remounts (see above), 2698 * and this is the last chance to report errors, we do it here. 2699 */ 2700 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy); 2701 if (err) 2702 ext4_msg(NULL, KERN_WARNING, 2703 "Error adding test dummy encryption key [%d]", err); 2704 return err; 2705 } 2706 2707 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2708 struct super_block *sb) 2709 { 2710 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2711 /* if already set, it was already verified to be the same */ 2712 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2713 return; 2714 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2715 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2716 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2717 } 2718 2719 static int ext4_check_opt_consistency(struct fs_context *fc, 2720 struct super_block *sb) 2721 { 2722 struct ext4_fs_context *ctx = fc->fs_private; 2723 struct ext4_sb_info *sbi = fc->s_fs_info; 2724 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2725 int err; 2726 2727 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2728 ext4_msg(NULL, KERN_ERR, 2729 "Mount option(s) incompatible with ext2"); 2730 return -EINVAL; 2731 } 2732 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2733 ext4_msg(NULL, KERN_ERR, 2734 "Mount option(s) incompatible with ext3"); 2735 return -EINVAL; 2736 } 2737 2738 if (ctx->s_want_extra_isize > 2739 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2740 ext4_msg(NULL, KERN_ERR, 2741 "Invalid want_extra_isize %d", 2742 ctx->s_want_extra_isize); 2743 return -EINVAL; 2744 } 2745 2746 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { 2747 int blocksize = 2748 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2749 if (blocksize < PAGE_SIZE) 2750 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " 2751 "experimental mount option 'dioread_nolock' " 2752 "for blocksize < PAGE_SIZE"); 2753 } 2754 2755 err = ext4_check_test_dummy_encryption(fc, sb); 2756 if (err) 2757 return err; 2758 2759 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2760 if (!sbi->s_journal) { 2761 ext4_msg(NULL, KERN_WARNING, 2762 "Remounting file system with no journal " 2763 "so ignoring journalled data option"); 2764 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2765 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2766 test_opt(sb, DATA_FLAGS)) { 2767 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2768 "on remount"); 2769 return -EINVAL; 2770 } 2771 } 2772 2773 if (is_remount) { 2774 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2775 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2776 ext4_msg(NULL, KERN_ERR, "can't mount with " 2777 "both data=journal and dax"); 2778 return -EINVAL; 2779 } 2780 2781 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2782 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2783 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2784 fail_dax_change_remount: 2785 ext4_msg(NULL, KERN_ERR, "can't change " 2786 "dax mount option while remounting"); 2787 return -EINVAL; 2788 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2789 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2790 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2791 goto fail_dax_change_remount; 2792 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2793 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2794 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2795 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2796 goto fail_dax_change_remount; 2797 } 2798 } 2799 2800 return ext4_check_quota_consistency(fc, sb); 2801 } 2802 2803 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2804 { 2805 struct ext4_fs_context *ctx = fc->fs_private; 2806 struct ext4_sb_info *sbi = fc->s_fs_info; 2807 2808 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2809 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2810 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2811 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2812 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; 2813 sbi->s_mount_flags |= ctx->vals_s_mount_flags; 2814 sb->s_flags &= ~ctx->mask_s_flags; 2815 sb->s_flags |= ctx->vals_s_flags; 2816 2817 /* 2818 * i_version differs from common mount option iversion so we have 2819 * to let vfs know that it was set, otherwise it would get cleared 2820 * on remount 2821 */ 2822 if (ctx->mask_s_flags & SB_I_VERSION) 2823 fc->sb_flags |= SB_I_VERSION; 2824 2825 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2826 APPLY(s_commit_interval); 2827 APPLY(s_stripe); 2828 APPLY(s_max_batch_time); 2829 APPLY(s_min_batch_time); 2830 APPLY(s_want_extra_isize); 2831 APPLY(s_inode_readahead_blks); 2832 APPLY(s_max_dir_size_kb); 2833 APPLY(s_li_wait_mult); 2834 APPLY(s_resgid); 2835 APPLY(s_resuid); 2836 2837 #ifdef CONFIG_EXT4_DEBUG 2838 APPLY(s_fc_debug_max_replay); 2839 #endif 2840 2841 ext4_apply_quota_options(fc, sb); 2842 ext4_apply_test_dummy_encryption(ctx, sb); 2843 } 2844 2845 2846 static int ext4_validate_options(struct fs_context *fc) 2847 { 2848 #ifdef CONFIG_QUOTA 2849 struct ext4_fs_context *ctx = fc->fs_private; 2850 char *usr_qf_name, *grp_qf_name; 2851 2852 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2853 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2854 2855 if (usr_qf_name || grp_qf_name) { 2856 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2857 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2858 2859 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2860 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2861 2862 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2863 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2864 ext4_msg(NULL, KERN_ERR, "old and new quota " 2865 "format mixing"); 2866 return -EINVAL; 2867 } 2868 } 2869 #endif 2870 return 1; 2871 } 2872 2873 static inline void ext4_show_quota_options(struct seq_file *seq, 2874 struct super_block *sb) 2875 { 2876 #if defined(CONFIG_QUOTA) 2877 struct ext4_sb_info *sbi = EXT4_SB(sb); 2878 char *usr_qf_name, *grp_qf_name; 2879 2880 if (sbi->s_jquota_fmt) { 2881 char *fmtname = ""; 2882 2883 switch (sbi->s_jquota_fmt) { 2884 case QFMT_VFS_OLD: 2885 fmtname = "vfsold"; 2886 break; 2887 case QFMT_VFS_V0: 2888 fmtname = "vfsv0"; 2889 break; 2890 case QFMT_VFS_V1: 2891 fmtname = "vfsv1"; 2892 break; 2893 } 2894 seq_printf(seq, ",jqfmt=%s", fmtname); 2895 } 2896 2897 rcu_read_lock(); 2898 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2899 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2900 if (usr_qf_name) 2901 seq_show_option(seq, "usrjquota", usr_qf_name); 2902 if (grp_qf_name) 2903 seq_show_option(seq, "grpjquota", grp_qf_name); 2904 rcu_read_unlock(); 2905 #endif 2906 } 2907 2908 static const char *token2str(int token) 2909 { 2910 const struct fs_parameter_spec *spec; 2911 2912 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2913 if (spec->opt == token && !spec->type) 2914 break; 2915 return spec->name; 2916 } 2917 2918 /* 2919 * Show an option if 2920 * - it's set to a non-default value OR 2921 * - if the per-sb default is different from the global default 2922 */ 2923 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2924 int nodefs) 2925 { 2926 struct ext4_sb_info *sbi = EXT4_SB(sb); 2927 struct ext4_super_block *es = sbi->s_es; 2928 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2929 const struct mount_opts *m; 2930 char sep = nodefs ? '\n' : ','; 2931 2932 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2933 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2934 2935 if (sbi->s_sb_block != 1) 2936 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2937 2938 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2939 int want_set = m->flags & MOPT_SET; 2940 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2941 m->flags & MOPT_SKIP) 2942 continue; 2943 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2944 continue; /* skip if same as the default */ 2945 if ((want_set && 2946 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2947 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2948 continue; /* select Opt_noFoo vs Opt_Foo */ 2949 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2950 } 2951 2952 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2953 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2954 SEQ_OPTS_PRINT("resuid=%u", 2955 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2956 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2957 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2958 SEQ_OPTS_PRINT("resgid=%u", 2959 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2960 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2961 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2962 SEQ_OPTS_PUTS("errors=remount-ro"); 2963 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2964 SEQ_OPTS_PUTS("errors=continue"); 2965 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2966 SEQ_OPTS_PUTS("errors=panic"); 2967 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2968 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2969 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2970 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2971 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2972 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2973 if (sb->s_flags & SB_I_VERSION) 2974 SEQ_OPTS_PUTS("i_version"); 2975 if (nodefs || sbi->s_stripe) 2976 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2977 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2978 (sbi->s_mount_opt ^ def_mount_opt)) { 2979 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2980 SEQ_OPTS_PUTS("data=journal"); 2981 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2982 SEQ_OPTS_PUTS("data=ordered"); 2983 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2984 SEQ_OPTS_PUTS("data=writeback"); 2985 } 2986 if (nodefs || 2987 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2988 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2989 sbi->s_inode_readahead_blks); 2990 2991 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2992 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2993 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2994 if (nodefs || sbi->s_max_dir_size_kb) 2995 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2996 if (test_opt(sb, DATA_ERR_ABORT)) 2997 SEQ_OPTS_PUTS("data_err=abort"); 2998 2999 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3000 3001 if (sb->s_flags & SB_INLINECRYPT) 3002 SEQ_OPTS_PUTS("inlinecrypt"); 3003 3004 if (test_opt(sb, DAX_ALWAYS)) { 3005 if (IS_EXT2_SB(sb)) 3006 SEQ_OPTS_PUTS("dax"); 3007 else 3008 SEQ_OPTS_PUTS("dax=always"); 3009 } else if (test_opt2(sb, DAX_NEVER)) { 3010 SEQ_OPTS_PUTS("dax=never"); 3011 } else if (test_opt2(sb, DAX_INODE)) { 3012 SEQ_OPTS_PUTS("dax=inode"); 3013 } 3014 3015 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3016 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3017 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3018 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3019 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3020 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3021 } 3022 3023 ext4_show_quota_options(seq, sb); 3024 return 0; 3025 } 3026 3027 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3028 { 3029 return _ext4_show_options(seq, root->d_sb, 0); 3030 } 3031 3032 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3033 { 3034 struct super_block *sb = seq->private; 3035 int rc; 3036 3037 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3038 rc = _ext4_show_options(seq, sb, 1); 3039 seq_puts(seq, "\n"); 3040 return rc; 3041 } 3042 3043 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3044 int read_only) 3045 { 3046 struct ext4_sb_info *sbi = EXT4_SB(sb); 3047 int err = 0; 3048 3049 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3050 ext4_msg(sb, KERN_ERR, "revision level too high, " 3051 "forcing read-only mode"); 3052 err = -EROFS; 3053 goto done; 3054 } 3055 if (read_only) 3056 goto done; 3057 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3058 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3059 "running e2fsck is recommended"); 3060 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3061 ext4_msg(sb, KERN_WARNING, 3062 "warning: mounting fs with errors, " 3063 "running e2fsck is recommended"); 3064 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3065 le16_to_cpu(es->s_mnt_count) >= 3066 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3067 ext4_msg(sb, KERN_WARNING, 3068 "warning: maximal mount count reached, " 3069 "running e2fsck is recommended"); 3070 else if (le32_to_cpu(es->s_checkinterval) && 3071 (ext4_get_tstamp(es, s_lastcheck) + 3072 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3073 ext4_msg(sb, KERN_WARNING, 3074 "warning: checktime reached, " 3075 "running e2fsck is recommended"); 3076 if (!sbi->s_journal) 3077 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3078 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3079 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3080 le16_add_cpu(&es->s_mnt_count, 1); 3081 ext4_update_tstamp(es, s_mtime); 3082 if (sbi->s_journal) { 3083 ext4_set_feature_journal_needs_recovery(sb); 3084 if (ext4_has_feature_orphan_file(sb)) 3085 ext4_set_feature_orphan_present(sb); 3086 } 3087 3088 err = ext4_commit_super(sb); 3089 done: 3090 if (test_opt(sb, DEBUG)) 3091 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3092 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3093 sb->s_blocksize, 3094 sbi->s_groups_count, 3095 EXT4_BLOCKS_PER_GROUP(sb), 3096 EXT4_INODES_PER_GROUP(sb), 3097 sbi->s_mount_opt, sbi->s_mount_opt2); 3098 return err; 3099 } 3100 3101 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3102 { 3103 struct ext4_sb_info *sbi = EXT4_SB(sb); 3104 struct flex_groups **old_groups, **new_groups; 3105 int size, i, j; 3106 3107 if (!sbi->s_log_groups_per_flex) 3108 return 0; 3109 3110 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3111 if (size <= sbi->s_flex_groups_allocated) 3112 return 0; 3113 3114 new_groups = kvzalloc(roundup_pow_of_two(size * 3115 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3116 if (!new_groups) { 3117 ext4_msg(sb, KERN_ERR, 3118 "not enough memory for %d flex group pointers", size); 3119 return -ENOMEM; 3120 } 3121 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3122 new_groups[i] = kvzalloc(roundup_pow_of_two( 3123 sizeof(struct flex_groups)), 3124 GFP_KERNEL); 3125 if (!new_groups[i]) { 3126 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3127 kvfree(new_groups[j]); 3128 kvfree(new_groups); 3129 ext4_msg(sb, KERN_ERR, 3130 "not enough memory for %d flex groups", size); 3131 return -ENOMEM; 3132 } 3133 } 3134 rcu_read_lock(); 3135 old_groups = rcu_dereference(sbi->s_flex_groups); 3136 if (old_groups) 3137 memcpy(new_groups, old_groups, 3138 (sbi->s_flex_groups_allocated * 3139 sizeof(struct flex_groups *))); 3140 rcu_read_unlock(); 3141 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3142 sbi->s_flex_groups_allocated = size; 3143 if (old_groups) 3144 ext4_kvfree_array_rcu(old_groups); 3145 return 0; 3146 } 3147 3148 static int ext4_fill_flex_info(struct super_block *sb) 3149 { 3150 struct ext4_sb_info *sbi = EXT4_SB(sb); 3151 struct ext4_group_desc *gdp = NULL; 3152 struct flex_groups *fg; 3153 ext4_group_t flex_group; 3154 int i, err; 3155 3156 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3157 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3158 sbi->s_log_groups_per_flex = 0; 3159 return 1; 3160 } 3161 3162 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3163 if (err) 3164 goto failed; 3165 3166 for (i = 0; i < sbi->s_groups_count; i++) { 3167 gdp = ext4_get_group_desc(sb, i, NULL); 3168 3169 flex_group = ext4_flex_group(sbi, i); 3170 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3171 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3172 atomic64_add(ext4_free_group_clusters(sb, gdp), 3173 &fg->free_clusters); 3174 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3175 } 3176 3177 return 1; 3178 failed: 3179 return 0; 3180 } 3181 3182 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3183 struct ext4_group_desc *gdp) 3184 { 3185 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3186 __u16 crc = 0; 3187 __le32 le_group = cpu_to_le32(block_group); 3188 struct ext4_sb_info *sbi = EXT4_SB(sb); 3189 3190 if (ext4_has_metadata_csum(sbi->s_sb)) { 3191 /* Use new metadata_csum algorithm */ 3192 __u32 csum32; 3193 __u16 dummy_csum = 0; 3194 3195 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3196 sizeof(le_group)); 3197 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3198 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3199 sizeof(dummy_csum)); 3200 offset += sizeof(dummy_csum); 3201 if (offset < sbi->s_desc_size) 3202 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3203 sbi->s_desc_size - offset); 3204 3205 crc = csum32 & 0xFFFF; 3206 goto out; 3207 } 3208 3209 /* old crc16 code */ 3210 if (!ext4_has_feature_gdt_csum(sb)) 3211 return 0; 3212 3213 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3214 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3215 crc = crc16(crc, (__u8 *)gdp, offset); 3216 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3217 /* for checksum of struct ext4_group_desc do the rest...*/ 3218 if (ext4_has_feature_64bit(sb) && 3219 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 3220 crc = crc16(crc, (__u8 *)gdp + offset, 3221 le16_to_cpu(sbi->s_es->s_desc_size) - 3222 offset); 3223 3224 out: 3225 return cpu_to_le16(crc); 3226 } 3227 3228 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3229 struct ext4_group_desc *gdp) 3230 { 3231 if (ext4_has_group_desc_csum(sb) && 3232 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3233 return 0; 3234 3235 return 1; 3236 } 3237 3238 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3239 struct ext4_group_desc *gdp) 3240 { 3241 if (!ext4_has_group_desc_csum(sb)) 3242 return; 3243 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3244 } 3245 3246 /* Called at mount-time, super-block is locked */ 3247 static int ext4_check_descriptors(struct super_block *sb, 3248 ext4_fsblk_t sb_block, 3249 ext4_group_t *first_not_zeroed) 3250 { 3251 struct ext4_sb_info *sbi = EXT4_SB(sb); 3252 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3253 ext4_fsblk_t last_block; 3254 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3255 ext4_fsblk_t block_bitmap; 3256 ext4_fsblk_t inode_bitmap; 3257 ext4_fsblk_t inode_table; 3258 int flexbg_flag = 0; 3259 ext4_group_t i, grp = sbi->s_groups_count; 3260 3261 if (ext4_has_feature_flex_bg(sb)) 3262 flexbg_flag = 1; 3263 3264 ext4_debug("Checking group descriptors"); 3265 3266 for (i = 0; i < sbi->s_groups_count; i++) { 3267 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3268 3269 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3270 last_block = ext4_blocks_count(sbi->s_es) - 1; 3271 else 3272 last_block = first_block + 3273 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3274 3275 if ((grp == sbi->s_groups_count) && 3276 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3277 grp = i; 3278 3279 block_bitmap = ext4_block_bitmap(sb, gdp); 3280 if (block_bitmap == sb_block) { 3281 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3282 "Block bitmap for group %u overlaps " 3283 "superblock", i); 3284 if (!sb_rdonly(sb)) 3285 return 0; 3286 } 3287 if (block_bitmap >= sb_block + 1 && 3288 block_bitmap <= last_bg_block) { 3289 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3290 "Block bitmap for group %u overlaps " 3291 "block group descriptors", i); 3292 if (!sb_rdonly(sb)) 3293 return 0; 3294 } 3295 if (block_bitmap < first_block || block_bitmap > last_block) { 3296 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3297 "Block bitmap for group %u not in group " 3298 "(block %llu)!", i, block_bitmap); 3299 return 0; 3300 } 3301 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3302 if (inode_bitmap == sb_block) { 3303 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3304 "Inode bitmap for group %u overlaps " 3305 "superblock", i); 3306 if (!sb_rdonly(sb)) 3307 return 0; 3308 } 3309 if (inode_bitmap >= sb_block + 1 && 3310 inode_bitmap <= last_bg_block) { 3311 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3312 "Inode bitmap for group %u overlaps " 3313 "block group descriptors", i); 3314 if (!sb_rdonly(sb)) 3315 return 0; 3316 } 3317 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3318 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3319 "Inode bitmap for group %u not in group " 3320 "(block %llu)!", i, inode_bitmap); 3321 return 0; 3322 } 3323 inode_table = ext4_inode_table(sb, gdp); 3324 if (inode_table == sb_block) { 3325 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3326 "Inode table for group %u overlaps " 3327 "superblock", i); 3328 if (!sb_rdonly(sb)) 3329 return 0; 3330 } 3331 if (inode_table >= sb_block + 1 && 3332 inode_table <= last_bg_block) { 3333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3334 "Inode table for group %u overlaps " 3335 "block group descriptors", i); 3336 if (!sb_rdonly(sb)) 3337 return 0; 3338 } 3339 if (inode_table < first_block || 3340 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3342 "Inode table for group %u not in group " 3343 "(block %llu)!", i, inode_table); 3344 return 0; 3345 } 3346 ext4_lock_group(sb, i); 3347 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3349 "Checksum for group %u failed (%u!=%u)", 3350 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3351 gdp)), le16_to_cpu(gdp->bg_checksum)); 3352 if (!sb_rdonly(sb)) { 3353 ext4_unlock_group(sb, i); 3354 return 0; 3355 } 3356 } 3357 ext4_unlock_group(sb, i); 3358 if (!flexbg_flag) 3359 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3360 } 3361 if (NULL != first_not_zeroed) 3362 *first_not_zeroed = grp; 3363 return 1; 3364 } 3365 3366 /* 3367 * Maximal extent format file size. 3368 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3369 * extent format containers, within a sector_t, and within i_blocks 3370 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3371 * so that won't be a limiting factor. 3372 * 3373 * However there is other limiting factor. We do store extents in the form 3374 * of starting block and length, hence the resulting length of the extent 3375 * covering maximum file size must fit into on-disk format containers as 3376 * well. Given that length is always by 1 unit bigger than max unit (because 3377 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3378 * 3379 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3380 */ 3381 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3382 { 3383 loff_t res; 3384 loff_t upper_limit = MAX_LFS_FILESIZE; 3385 3386 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3387 3388 if (!has_huge_files) { 3389 upper_limit = (1LL << 32) - 1; 3390 3391 /* total blocks in file system block size */ 3392 upper_limit >>= (blkbits - 9); 3393 upper_limit <<= blkbits; 3394 } 3395 3396 /* 3397 * 32-bit extent-start container, ee_block. We lower the maxbytes 3398 * by one fs block, so ee_len can cover the extent of maximum file 3399 * size 3400 */ 3401 res = (1LL << 32) - 1; 3402 res <<= blkbits; 3403 3404 /* Sanity check against vm- & vfs- imposed limits */ 3405 if (res > upper_limit) 3406 res = upper_limit; 3407 3408 return res; 3409 } 3410 3411 /* 3412 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3413 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3414 * We need to be 1 filesystem block less than the 2^48 sector limit. 3415 */ 3416 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3417 { 3418 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3419 int meta_blocks; 3420 unsigned int ppb = 1 << (bits - 2); 3421 3422 /* 3423 * This is calculated to be the largest file size for a dense, block 3424 * mapped file such that the file's total number of 512-byte sectors, 3425 * including data and all indirect blocks, does not exceed (2^48 - 1). 3426 * 3427 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3428 * number of 512-byte sectors of the file. 3429 */ 3430 if (!has_huge_files) { 3431 /* 3432 * !has_huge_files or implies that the inode i_block field 3433 * represents total file blocks in 2^32 512-byte sectors == 3434 * size of vfs inode i_blocks * 8 3435 */ 3436 upper_limit = (1LL << 32) - 1; 3437 3438 /* total blocks in file system block size */ 3439 upper_limit >>= (bits - 9); 3440 3441 } else { 3442 /* 3443 * We use 48 bit ext4_inode i_blocks 3444 * With EXT4_HUGE_FILE_FL set the i_blocks 3445 * represent total number of blocks in 3446 * file system block size 3447 */ 3448 upper_limit = (1LL << 48) - 1; 3449 3450 } 3451 3452 /* Compute how many blocks we can address by block tree */ 3453 res += ppb; 3454 res += ppb * ppb; 3455 res += ((loff_t)ppb) * ppb * ppb; 3456 /* Compute how many metadata blocks are needed */ 3457 meta_blocks = 1; 3458 meta_blocks += 1 + ppb; 3459 meta_blocks += 1 + ppb + ppb * ppb; 3460 /* Does block tree limit file size? */ 3461 if (res + meta_blocks <= upper_limit) 3462 goto check_lfs; 3463 3464 res = upper_limit; 3465 /* How many metadata blocks are needed for addressing upper_limit? */ 3466 upper_limit -= EXT4_NDIR_BLOCKS; 3467 /* indirect blocks */ 3468 meta_blocks = 1; 3469 upper_limit -= ppb; 3470 /* double indirect blocks */ 3471 if (upper_limit < ppb * ppb) { 3472 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3473 res -= meta_blocks; 3474 goto check_lfs; 3475 } 3476 meta_blocks += 1 + ppb; 3477 upper_limit -= ppb * ppb; 3478 /* tripple indirect blocks for the rest */ 3479 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3480 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3481 res -= meta_blocks; 3482 check_lfs: 3483 res <<= bits; 3484 if (res > MAX_LFS_FILESIZE) 3485 res = MAX_LFS_FILESIZE; 3486 3487 return res; 3488 } 3489 3490 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3491 ext4_fsblk_t logical_sb_block, int nr) 3492 { 3493 struct ext4_sb_info *sbi = EXT4_SB(sb); 3494 ext4_group_t bg, first_meta_bg; 3495 int has_super = 0; 3496 3497 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3498 3499 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3500 return logical_sb_block + nr + 1; 3501 bg = sbi->s_desc_per_block * nr; 3502 if (ext4_bg_has_super(sb, bg)) 3503 has_super = 1; 3504 3505 /* 3506 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3507 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3508 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3509 * compensate. 3510 */ 3511 if (sb->s_blocksize == 1024 && nr == 0 && 3512 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3513 has_super++; 3514 3515 return (has_super + ext4_group_first_block_no(sb, bg)); 3516 } 3517 3518 /** 3519 * ext4_get_stripe_size: Get the stripe size. 3520 * @sbi: In memory super block info 3521 * 3522 * If we have specified it via mount option, then 3523 * use the mount option value. If the value specified at mount time is 3524 * greater than the blocks per group use the super block value. 3525 * If the super block value is greater than blocks per group return 0. 3526 * Allocator needs it be less than blocks per group. 3527 * 3528 */ 3529 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3530 { 3531 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3532 unsigned long stripe_width = 3533 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3534 int ret; 3535 3536 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3537 ret = sbi->s_stripe; 3538 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3539 ret = stripe_width; 3540 else if (stride && stride <= sbi->s_blocks_per_group) 3541 ret = stride; 3542 else 3543 ret = 0; 3544 3545 /* 3546 * If the stripe width is 1, this makes no sense and 3547 * we set it to 0 to turn off stripe handling code. 3548 */ 3549 if (ret <= 1) 3550 ret = 0; 3551 3552 return ret; 3553 } 3554 3555 /* 3556 * Check whether this filesystem can be mounted based on 3557 * the features present and the RDONLY/RDWR mount requested. 3558 * Returns 1 if this filesystem can be mounted as requested, 3559 * 0 if it cannot be. 3560 */ 3561 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3562 { 3563 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3564 ext4_msg(sb, KERN_ERR, 3565 "Couldn't mount because of " 3566 "unsupported optional features (%x)", 3567 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3568 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3569 return 0; 3570 } 3571 3572 #if !IS_ENABLED(CONFIG_UNICODE) 3573 if (ext4_has_feature_casefold(sb)) { 3574 ext4_msg(sb, KERN_ERR, 3575 "Filesystem with casefold feature cannot be " 3576 "mounted without CONFIG_UNICODE"); 3577 return 0; 3578 } 3579 #endif 3580 3581 if (readonly) 3582 return 1; 3583 3584 if (ext4_has_feature_readonly(sb)) { 3585 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3586 sb->s_flags |= SB_RDONLY; 3587 return 1; 3588 } 3589 3590 /* Check that feature set is OK for a read-write mount */ 3591 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3592 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3593 "unsupported optional features (%x)", 3594 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3595 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3596 return 0; 3597 } 3598 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3599 ext4_msg(sb, KERN_ERR, 3600 "Can't support bigalloc feature without " 3601 "extents feature\n"); 3602 return 0; 3603 } 3604 3605 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3606 if (!readonly && (ext4_has_feature_quota(sb) || 3607 ext4_has_feature_project(sb))) { 3608 ext4_msg(sb, KERN_ERR, 3609 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3610 return 0; 3611 } 3612 #endif /* CONFIG_QUOTA */ 3613 return 1; 3614 } 3615 3616 /* 3617 * This function is called once a day if we have errors logged 3618 * on the file system 3619 */ 3620 static void print_daily_error_info(struct timer_list *t) 3621 { 3622 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3623 struct super_block *sb = sbi->s_sb; 3624 struct ext4_super_block *es = sbi->s_es; 3625 3626 if (es->s_error_count) 3627 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3628 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3629 le32_to_cpu(es->s_error_count)); 3630 if (es->s_first_error_time) { 3631 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3632 sb->s_id, 3633 ext4_get_tstamp(es, s_first_error_time), 3634 (int) sizeof(es->s_first_error_func), 3635 es->s_first_error_func, 3636 le32_to_cpu(es->s_first_error_line)); 3637 if (es->s_first_error_ino) 3638 printk(KERN_CONT ": inode %u", 3639 le32_to_cpu(es->s_first_error_ino)); 3640 if (es->s_first_error_block) 3641 printk(KERN_CONT ": block %llu", (unsigned long long) 3642 le64_to_cpu(es->s_first_error_block)); 3643 printk(KERN_CONT "\n"); 3644 } 3645 if (es->s_last_error_time) { 3646 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3647 sb->s_id, 3648 ext4_get_tstamp(es, s_last_error_time), 3649 (int) sizeof(es->s_last_error_func), 3650 es->s_last_error_func, 3651 le32_to_cpu(es->s_last_error_line)); 3652 if (es->s_last_error_ino) 3653 printk(KERN_CONT ": inode %u", 3654 le32_to_cpu(es->s_last_error_ino)); 3655 if (es->s_last_error_block) 3656 printk(KERN_CONT ": block %llu", (unsigned long long) 3657 le64_to_cpu(es->s_last_error_block)); 3658 printk(KERN_CONT "\n"); 3659 } 3660 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3661 } 3662 3663 /* Find next suitable group and run ext4_init_inode_table */ 3664 static int ext4_run_li_request(struct ext4_li_request *elr) 3665 { 3666 struct ext4_group_desc *gdp = NULL; 3667 struct super_block *sb = elr->lr_super; 3668 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3669 ext4_group_t group = elr->lr_next_group; 3670 unsigned int prefetch_ios = 0; 3671 int ret = 0; 3672 u64 start_time; 3673 3674 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3675 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3676 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3677 if (prefetch_ios) 3678 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3679 prefetch_ios); 3680 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3681 prefetch_ios); 3682 if (group >= elr->lr_next_group) { 3683 ret = 1; 3684 if (elr->lr_first_not_zeroed != ngroups && 3685 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3686 elr->lr_next_group = elr->lr_first_not_zeroed; 3687 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3688 ret = 0; 3689 } 3690 } 3691 return ret; 3692 } 3693 3694 for (; group < ngroups; group++) { 3695 gdp = ext4_get_group_desc(sb, group, NULL); 3696 if (!gdp) { 3697 ret = 1; 3698 break; 3699 } 3700 3701 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3702 break; 3703 } 3704 3705 if (group >= ngroups) 3706 ret = 1; 3707 3708 if (!ret) { 3709 start_time = ktime_get_real_ns(); 3710 ret = ext4_init_inode_table(sb, group, 3711 elr->lr_timeout ? 0 : 1); 3712 trace_ext4_lazy_itable_init(sb, group); 3713 if (elr->lr_timeout == 0) { 3714 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3715 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3716 } 3717 elr->lr_next_sched = jiffies + elr->lr_timeout; 3718 elr->lr_next_group = group + 1; 3719 } 3720 return ret; 3721 } 3722 3723 /* 3724 * Remove lr_request from the list_request and free the 3725 * request structure. Should be called with li_list_mtx held 3726 */ 3727 static void ext4_remove_li_request(struct ext4_li_request *elr) 3728 { 3729 if (!elr) 3730 return; 3731 3732 list_del(&elr->lr_request); 3733 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3734 kfree(elr); 3735 } 3736 3737 static void ext4_unregister_li_request(struct super_block *sb) 3738 { 3739 mutex_lock(&ext4_li_mtx); 3740 if (!ext4_li_info) { 3741 mutex_unlock(&ext4_li_mtx); 3742 return; 3743 } 3744 3745 mutex_lock(&ext4_li_info->li_list_mtx); 3746 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3747 mutex_unlock(&ext4_li_info->li_list_mtx); 3748 mutex_unlock(&ext4_li_mtx); 3749 } 3750 3751 static struct task_struct *ext4_lazyinit_task; 3752 3753 /* 3754 * This is the function where ext4lazyinit thread lives. It walks 3755 * through the request list searching for next scheduled filesystem. 3756 * When such a fs is found, run the lazy initialization request 3757 * (ext4_rn_li_request) and keep track of the time spend in this 3758 * function. Based on that time we compute next schedule time of 3759 * the request. When walking through the list is complete, compute 3760 * next waking time and put itself into sleep. 3761 */ 3762 static int ext4_lazyinit_thread(void *arg) 3763 { 3764 struct ext4_lazy_init *eli = arg; 3765 struct list_head *pos, *n; 3766 struct ext4_li_request *elr; 3767 unsigned long next_wakeup, cur; 3768 3769 BUG_ON(NULL == eli); 3770 3771 cont_thread: 3772 while (true) { 3773 next_wakeup = MAX_JIFFY_OFFSET; 3774 3775 mutex_lock(&eli->li_list_mtx); 3776 if (list_empty(&eli->li_request_list)) { 3777 mutex_unlock(&eli->li_list_mtx); 3778 goto exit_thread; 3779 } 3780 list_for_each_safe(pos, n, &eli->li_request_list) { 3781 int err = 0; 3782 int progress = 0; 3783 elr = list_entry(pos, struct ext4_li_request, 3784 lr_request); 3785 3786 if (time_before(jiffies, elr->lr_next_sched)) { 3787 if (time_before(elr->lr_next_sched, next_wakeup)) 3788 next_wakeup = elr->lr_next_sched; 3789 continue; 3790 } 3791 if (down_read_trylock(&elr->lr_super->s_umount)) { 3792 if (sb_start_write_trylock(elr->lr_super)) { 3793 progress = 1; 3794 /* 3795 * We hold sb->s_umount, sb can not 3796 * be removed from the list, it is 3797 * now safe to drop li_list_mtx 3798 */ 3799 mutex_unlock(&eli->li_list_mtx); 3800 err = ext4_run_li_request(elr); 3801 sb_end_write(elr->lr_super); 3802 mutex_lock(&eli->li_list_mtx); 3803 n = pos->next; 3804 } 3805 up_read((&elr->lr_super->s_umount)); 3806 } 3807 /* error, remove the lazy_init job */ 3808 if (err) { 3809 ext4_remove_li_request(elr); 3810 continue; 3811 } 3812 if (!progress) { 3813 elr->lr_next_sched = jiffies + 3814 (prandom_u32() 3815 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3816 } 3817 if (time_before(elr->lr_next_sched, next_wakeup)) 3818 next_wakeup = elr->lr_next_sched; 3819 } 3820 mutex_unlock(&eli->li_list_mtx); 3821 3822 try_to_freeze(); 3823 3824 cur = jiffies; 3825 if ((time_after_eq(cur, next_wakeup)) || 3826 (MAX_JIFFY_OFFSET == next_wakeup)) { 3827 cond_resched(); 3828 continue; 3829 } 3830 3831 schedule_timeout_interruptible(next_wakeup - cur); 3832 3833 if (kthread_should_stop()) { 3834 ext4_clear_request_list(); 3835 goto exit_thread; 3836 } 3837 } 3838 3839 exit_thread: 3840 /* 3841 * It looks like the request list is empty, but we need 3842 * to check it under the li_list_mtx lock, to prevent any 3843 * additions into it, and of course we should lock ext4_li_mtx 3844 * to atomically free the list and ext4_li_info, because at 3845 * this point another ext4 filesystem could be registering 3846 * new one. 3847 */ 3848 mutex_lock(&ext4_li_mtx); 3849 mutex_lock(&eli->li_list_mtx); 3850 if (!list_empty(&eli->li_request_list)) { 3851 mutex_unlock(&eli->li_list_mtx); 3852 mutex_unlock(&ext4_li_mtx); 3853 goto cont_thread; 3854 } 3855 mutex_unlock(&eli->li_list_mtx); 3856 kfree(ext4_li_info); 3857 ext4_li_info = NULL; 3858 mutex_unlock(&ext4_li_mtx); 3859 3860 return 0; 3861 } 3862 3863 static void ext4_clear_request_list(void) 3864 { 3865 struct list_head *pos, *n; 3866 struct ext4_li_request *elr; 3867 3868 mutex_lock(&ext4_li_info->li_list_mtx); 3869 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3870 elr = list_entry(pos, struct ext4_li_request, 3871 lr_request); 3872 ext4_remove_li_request(elr); 3873 } 3874 mutex_unlock(&ext4_li_info->li_list_mtx); 3875 } 3876 3877 static int ext4_run_lazyinit_thread(void) 3878 { 3879 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3880 ext4_li_info, "ext4lazyinit"); 3881 if (IS_ERR(ext4_lazyinit_task)) { 3882 int err = PTR_ERR(ext4_lazyinit_task); 3883 ext4_clear_request_list(); 3884 kfree(ext4_li_info); 3885 ext4_li_info = NULL; 3886 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3887 "initialization thread\n", 3888 err); 3889 return err; 3890 } 3891 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3892 return 0; 3893 } 3894 3895 /* 3896 * Check whether it make sense to run itable init. thread or not. 3897 * If there is at least one uninitialized inode table, return 3898 * corresponding group number, else the loop goes through all 3899 * groups and return total number of groups. 3900 */ 3901 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3902 { 3903 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3904 struct ext4_group_desc *gdp = NULL; 3905 3906 if (!ext4_has_group_desc_csum(sb)) 3907 return ngroups; 3908 3909 for (group = 0; group < ngroups; group++) { 3910 gdp = ext4_get_group_desc(sb, group, NULL); 3911 if (!gdp) 3912 continue; 3913 3914 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3915 break; 3916 } 3917 3918 return group; 3919 } 3920 3921 static int ext4_li_info_new(void) 3922 { 3923 struct ext4_lazy_init *eli = NULL; 3924 3925 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3926 if (!eli) 3927 return -ENOMEM; 3928 3929 INIT_LIST_HEAD(&eli->li_request_list); 3930 mutex_init(&eli->li_list_mtx); 3931 3932 eli->li_state |= EXT4_LAZYINIT_QUIT; 3933 3934 ext4_li_info = eli; 3935 3936 return 0; 3937 } 3938 3939 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3940 ext4_group_t start) 3941 { 3942 struct ext4_li_request *elr; 3943 3944 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3945 if (!elr) 3946 return NULL; 3947 3948 elr->lr_super = sb; 3949 elr->lr_first_not_zeroed = start; 3950 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3951 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3952 elr->lr_next_group = start; 3953 } else { 3954 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3955 } 3956 3957 /* 3958 * Randomize first schedule time of the request to 3959 * spread the inode table initialization requests 3960 * better. 3961 */ 3962 elr->lr_next_sched = jiffies + (prandom_u32() % 3963 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3964 return elr; 3965 } 3966 3967 int ext4_register_li_request(struct super_block *sb, 3968 ext4_group_t first_not_zeroed) 3969 { 3970 struct ext4_sb_info *sbi = EXT4_SB(sb); 3971 struct ext4_li_request *elr = NULL; 3972 ext4_group_t ngroups = sbi->s_groups_count; 3973 int ret = 0; 3974 3975 mutex_lock(&ext4_li_mtx); 3976 if (sbi->s_li_request != NULL) { 3977 /* 3978 * Reset timeout so it can be computed again, because 3979 * s_li_wait_mult might have changed. 3980 */ 3981 sbi->s_li_request->lr_timeout = 0; 3982 goto out; 3983 } 3984 3985 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3986 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3987 !test_opt(sb, INIT_INODE_TABLE))) 3988 goto out; 3989 3990 elr = ext4_li_request_new(sb, first_not_zeroed); 3991 if (!elr) { 3992 ret = -ENOMEM; 3993 goto out; 3994 } 3995 3996 if (NULL == ext4_li_info) { 3997 ret = ext4_li_info_new(); 3998 if (ret) 3999 goto out; 4000 } 4001 4002 mutex_lock(&ext4_li_info->li_list_mtx); 4003 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4004 mutex_unlock(&ext4_li_info->li_list_mtx); 4005 4006 sbi->s_li_request = elr; 4007 /* 4008 * set elr to NULL here since it has been inserted to 4009 * the request_list and the removal and free of it is 4010 * handled by ext4_clear_request_list from now on. 4011 */ 4012 elr = NULL; 4013 4014 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4015 ret = ext4_run_lazyinit_thread(); 4016 if (ret) 4017 goto out; 4018 } 4019 out: 4020 mutex_unlock(&ext4_li_mtx); 4021 if (ret) 4022 kfree(elr); 4023 return ret; 4024 } 4025 4026 /* 4027 * We do not need to lock anything since this is called on 4028 * module unload. 4029 */ 4030 static void ext4_destroy_lazyinit_thread(void) 4031 { 4032 /* 4033 * If thread exited earlier 4034 * there's nothing to be done. 4035 */ 4036 if (!ext4_li_info || !ext4_lazyinit_task) 4037 return; 4038 4039 kthread_stop(ext4_lazyinit_task); 4040 } 4041 4042 static int set_journal_csum_feature_set(struct super_block *sb) 4043 { 4044 int ret = 1; 4045 int compat, incompat; 4046 struct ext4_sb_info *sbi = EXT4_SB(sb); 4047 4048 if (ext4_has_metadata_csum(sb)) { 4049 /* journal checksum v3 */ 4050 compat = 0; 4051 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4052 } else { 4053 /* journal checksum v1 */ 4054 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4055 incompat = 0; 4056 } 4057 4058 jbd2_journal_clear_features(sbi->s_journal, 4059 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4060 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4061 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4062 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4063 ret = jbd2_journal_set_features(sbi->s_journal, 4064 compat, 0, 4065 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4066 incompat); 4067 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4068 ret = jbd2_journal_set_features(sbi->s_journal, 4069 compat, 0, 4070 incompat); 4071 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4072 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4073 } else { 4074 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4075 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4076 } 4077 4078 return ret; 4079 } 4080 4081 /* 4082 * Note: calculating the overhead so we can be compatible with 4083 * historical BSD practice is quite difficult in the face of 4084 * clusters/bigalloc. This is because multiple metadata blocks from 4085 * different block group can end up in the same allocation cluster. 4086 * Calculating the exact overhead in the face of clustered allocation 4087 * requires either O(all block bitmaps) in memory or O(number of block 4088 * groups**2) in time. We will still calculate the superblock for 4089 * older file systems --- and if we come across with a bigalloc file 4090 * system with zero in s_overhead_clusters the estimate will be close to 4091 * correct especially for very large cluster sizes --- but for newer 4092 * file systems, it's better to calculate this figure once at mkfs 4093 * time, and store it in the superblock. If the superblock value is 4094 * present (even for non-bigalloc file systems), we will use it. 4095 */ 4096 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4097 char *buf) 4098 { 4099 struct ext4_sb_info *sbi = EXT4_SB(sb); 4100 struct ext4_group_desc *gdp; 4101 ext4_fsblk_t first_block, last_block, b; 4102 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4103 int s, j, count = 0; 4104 int has_super = ext4_bg_has_super(sb, grp); 4105 4106 if (!ext4_has_feature_bigalloc(sb)) 4107 return (has_super + ext4_bg_num_gdb(sb, grp) + 4108 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4109 sbi->s_itb_per_group + 2); 4110 4111 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4112 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4113 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4114 for (i = 0; i < ngroups; i++) { 4115 gdp = ext4_get_group_desc(sb, i, NULL); 4116 b = ext4_block_bitmap(sb, gdp); 4117 if (b >= first_block && b <= last_block) { 4118 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4119 count++; 4120 } 4121 b = ext4_inode_bitmap(sb, gdp); 4122 if (b >= first_block && b <= last_block) { 4123 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4124 count++; 4125 } 4126 b = ext4_inode_table(sb, gdp); 4127 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4128 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4129 int c = EXT4_B2C(sbi, b - first_block); 4130 ext4_set_bit(c, buf); 4131 count++; 4132 } 4133 if (i != grp) 4134 continue; 4135 s = 0; 4136 if (ext4_bg_has_super(sb, grp)) { 4137 ext4_set_bit(s++, buf); 4138 count++; 4139 } 4140 j = ext4_bg_num_gdb(sb, grp); 4141 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4142 ext4_error(sb, "Invalid number of block group " 4143 "descriptor blocks: %d", j); 4144 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4145 } 4146 count += j; 4147 for (; j > 0; j--) 4148 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4149 } 4150 if (!count) 4151 return 0; 4152 return EXT4_CLUSTERS_PER_GROUP(sb) - 4153 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4154 } 4155 4156 /* 4157 * Compute the overhead and stash it in sbi->s_overhead 4158 */ 4159 int ext4_calculate_overhead(struct super_block *sb) 4160 { 4161 struct ext4_sb_info *sbi = EXT4_SB(sb); 4162 struct ext4_super_block *es = sbi->s_es; 4163 struct inode *j_inode; 4164 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4165 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4166 ext4_fsblk_t overhead = 0; 4167 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4168 4169 if (!buf) 4170 return -ENOMEM; 4171 4172 /* 4173 * Compute the overhead (FS structures). This is constant 4174 * for a given filesystem unless the number of block groups 4175 * changes so we cache the previous value until it does. 4176 */ 4177 4178 /* 4179 * All of the blocks before first_data_block are overhead 4180 */ 4181 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4182 4183 /* 4184 * Add the overhead found in each block group 4185 */ 4186 for (i = 0; i < ngroups; i++) { 4187 int blks; 4188 4189 blks = count_overhead(sb, i, buf); 4190 overhead += blks; 4191 if (blks) 4192 memset(buf, 0, PAGE_SIZE); 4193 cond_resched(); 4194 } 4195 4196 /* 4197 * Add the internal journal blocks whether the journal has been 4198 * loaded or not 4199 */ 4200 if (sbi->s_journal && !sbi->s_journal_bdev) 4201 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4202 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4203 /* j_inum for internal journal is non-zero */ 4204 j_inode = ext4_get_journal_inode(sb, j_inum); 4205 if (j_inode) { 4206 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4207 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4208 iput(j_inode); 4209 } else { 4210 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4211 } 4212 } 4213 sbi->s_overhead = overhead; 4214 smp_wmb(); 4215 free_page((unsigned long) buf); 4216 return 0; 4217 } 4218 4219 static void ext4_set_resv_clusters(struct super_block *sb) 4220 { 4221 ext4_fsblk_t resv_clusters; 4222 struct ext4_sb_info *sbi = EXT4_SB(sb); 4223 4224 /* 4225 * There's no need to reserve anything when we aren't using extents. 4226 * The space estimates are exact, there are no unwritten extents, 4227 * hole punching doesn't need new metadata... This is needed especially 4228 * to keep ext2/3 backward compatibility. 4229 */ 4230 if (!ext4_has_feature_extents(sb)) 4231 return; 4232 /* 4233 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4234 * This should cover the situations where we can not afford to run 4235 * out of space like for example punch hole, or converting 4236 * unwritten extents in delalloc path. In most cases such 4237 * allocation would require 1, or 2 blocks, higher numbers are 4238 * very rare. 4239 */ 4240 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4241 sbi->s_cluster_bits); 4242 4243 do_div(resv_clusters, 50); 4244 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4245 4246 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4247 } 4248 4249 static const char *ext4_quota_mode(struct super_block *sb) 4250 { 4251 #ifdef CONFIG_QUOTA 4252 if (!ext4_quota_capable(sb)) 4253 return "none"; 4254 4255 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4256 return "journalled"; 4257 else 4258 return "writeback"; 4259 #else 4260 return "disabled"; 4261 #endif 4262 } 4263 4264 static void ext4_setup_csum_trigger(struct super_block *sb, 4265 enum ext4_journal_trigger_type type, 4266 void (*trigger)( 4267 struct jbd2_buffer_trigger_type *type, 4268 struct buffer_head *bh, 4269 void *mapped_data, 4270 size_t size)) 4271 { 4272 struct ext4_sb_info *sbi = EXT4_SB(sb); 4273 4274 sbi->s_journal_triggers[type].sb = sb; 4275 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4276 } 4277 4278 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4279 { 4280 if (!sbi) 4281 return; 4282 4283 kfree(sbi->s_blockgroup_lock); 4284 fs_put_dax(sbi->s_daxdev, NULL); 4285 kfree(sbi); 4286 } 4287 4288 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4289 { 4290 struct ext4_sb_info *sbi; 4291 4292 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4293 if (!sbi) 4294 return NULL; 4295 4296 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4297 NULL, NULL); 4298 4299 sbi->s_blockgroup_lock = 4300 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4301 4302 if (!sbi->s_blockgroup_lock) 4303 goto err_out; 4304 4305 sb->s_fs_info = sbi; 4306 sbi->s_sb = sb; 4307 return sbi; 4308 err_out: 4309 fs_put_dax(sbi->s_daxdev, NULL); 4310 kfree(sbi); 4311 return NULL; 4312 } 4313 4314 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 4315 { 4316 struct buffer_head *bh, **group_desc; 4317 struct ext4_super_block *es = NULL; 4318 struct ext4_sb_info *sbi = EXT4_SB(sb); 4319 struct flex_groups **flex_groups; 4320 ext4_fsblk_t block; 4321 ext4_fsblk_t logical_sb_block; 4322 unsigned long offset = 0; 4323 unsigned long def_mount_opts; 4324 struct inode *root; 4325 int ret = -ENOMEM; 4326 int blocksize, clustersize; 4327 unsigned int db_count; 4328 unsigned int i; 4329 int needs_recovery, has_huge_files; 4330 __u64 blocks_count; 4331 int err = 0; 4332 ext4_group_t first_not_zeroed; 4333 struct ext4_fs_context *ctx = fc->fs_private; 4334 int silent = fc->sb_flags & SB_SILENT; 4335 4336 /* Set defaults for the variables that will be set during parsing */ 4337 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 4338 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4339 4340 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4341 sbi->s_sectors_written_start = 4342 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4343 4344 /* -EINVAL is default */ 4345 ret = -EINVAL; 4346 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4347 if (!blocksize) { 4348 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4349 goto out_fail; 4350 } 4351 4352 /* 4353 * The ext4 superblock will not be buffer aligned for other than 1kB 4354 * block sizes. We need to calculate the offset from buffer start. 4355 */ 4356 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4357 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4358 offset = do_div(logical_sb_block, blocksize); 4359 } else { 4360 logical_sb_block = sbi->s_sb_block; 4361 } 4362 4363 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4364 if (IS_ERR(bh)) { 4365 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4366 ret = PTR_ERR(bh); 4367 goto out_fail; 4368 } 4369 /* 4370 * Note: s_es must be initialized as soon as possible because 4371 * some ext4 macro-instructions depend on its value 4372 */ 4373 es = (struct ext4_super_block *) (bh->b_data + offset); 4374 sbi->s_es = es; 4375 sb->s_magic = le16_to_cpu(es->s_magic); 4376 if (sb->s_magic != EXT4_SUPER_MAGIC) 4377 goto cantfind_ext4; 4378 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4379 4380 /* Warn if metadata_csum and gdt_csum are both set. */ 4381 if (ext4_has_feature_metadata_csum(sb) && 4382 ext4_has_feature_gdt_csum(sb)) 4383 ext4_warning(sb, "metadata_csum and uninit_bg are " 4384 "redundant flags; please run fsck."); 4385 4386 /* Check for a known checksum algorithm */ 4387 if (!ext4_verify_csum_type(sb, es)) { 4388 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4389 "unknown checksum algorithm."); 4390 silent = 1; 4391 goto cantfind_ext4; 4392 } 4393 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4394 ext4_orphan_file_block_trigger); 4395 4396 /* Load the checksum driver */ 4397 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4398 if (IS_ERR(sbi->s_chksum_driver)) { 4399 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4400 ret = PTR_ERR(sbi->s_chksum_driver); 4401 sbi->s_chksum_driver = NULL; 4402 goto failed_mount; 4403 } 4404 4405 /* Check superblock checksum */ 4406 if (!ext4_superblock_csum_verify(sb, es)) { 4407 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4408 "invalid superblock checksum. Run e2fsck?"); 4409 silent = 1; 4410 ret = -EFSBADCRC; 4411 goto cantfind_ext4; 4412 } 4413 4414 /* Precompute checksum seed for all metadata */ 4415 if (ext4_has_feature_csum_seed(sb)) 4416 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4417 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4418 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4419 sizeof(es->s_uuid)); 4420 4421 /* Set defaults before we parse the mount options */ 4422 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4423 set_opt(sb, INIT_INODE_TABLE); 4424 if (def_mount_opts & EXT4_DEFM_DEBUG) 4425 set_opt(sb, DEBUG); 4426 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4427 set_opt(sb, GRPID); 4428 if (def_mount_opts & EXT4_DEFM_UID16) 4429 set_opt(sb, NO_UID32); 4430 /* xattr user namespace & acls are now defaulted on */ 4431 set_opt(sb, XATTR_USER); 4432 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4433 set_opt(sb, POSIX_ACL); 4434 #endif 4435 if (ext4_has_feature_fast_commit(sb)) 4436 set_opt2(sb, JOURNAL_FAST_COMMIT); 4437 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4438 if (ext4_has_metadata_csum(sb)) 4439 set_opt(sb, JOURNAL_CHECKSUM); 4440 4441 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4442 set_opt(sb, JOURNAL_DATA); 4443 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4444 set_opt(sb, ORDERED_DATA); 4445 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4446 set_opt(sb, WRITEBACK_DATA); 4447 4448 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4449 set_opt(sb, ERRORS_PANIC); 4450 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4451 set_opt(sb, ERRORS_CONT); 4452 else 4453 set_opt(sb, ERRORS_RO); 4454 /* block_validity enabled by default; disable with noblock_validity */ 4455 set_opt(sb, BLOCK_VALIDITY); 4456 if (def_mount_opts & EXT4_DEFM_DISCARD) 4457 set_opt(sb, DISCARD); 4458 4459 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4460 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4461 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4462 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4463 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4464 4465 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4466 set_opt(sb, BARRIER); 4467 4468 /* 4469 * enable delayed allocation by default 4470 * Use -o nodelalloc to turn it off 4471 */ 4472 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4473 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4474 set_opt(sb, DELALLOC); 4475 4476 /* 4477 * set default s_li_wait_mult for lazyinit, for the case there is 4478 * no mount option specified. 4479 */ 4480 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4481 4482 if (le32_to_cpu(es->s_log_block_size) > 4483 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4484 ext4_msg(sb, KERN_ERR, 4485 "Invalid log block size: %u", 4486 le32_to_cpu(es->s_log_block_size)); 4487 goto failed_mount; 4488 } 4489 if (le32_to_cpu(es->s_log_cluster_size) > 4490 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4491 ext4_msg(sb, KERN_ERR, 4492 "Invalid log cluster size: %u", 4493 le32_to_cpu(es->s_log_cluster_size)); 4494 goto failed_mount; 4495 } 4496 4497 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4498 4499 if (blocksize == PAGE_SIZE) 4500 set_opt(sb, DIOREAD_NOLOCK); 4501 4502 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4503 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4504 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4505 } else { 4506 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4507 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4508 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4509 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4510 sbi->s_first_ino); 4511 goto failed_mount; 4512 } 4513 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4514 (!is_power_of_2(sbi->s_inode_size)) || 4515 (sbi->s_inode_size > blocksize)) { 4516 ext4_msg(sb, KERN_ERR, 4517 "unsupported inode size: %d", 4518 sbi->s_inode_size); 4519 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4520 goto failed_mount; 4521 } 4522 /* 4523 * i_atime_extra is the last extra field available for 4524 * [acm]times in struct ext4_inode. Checking for that 4525 * field should suffice to ensure we have extra space 4526 * for all three. 4527 */ 4528 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4529 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4530 sb->s_time_gran = 1; 4531 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4532 } else { 4533 sb->s_time_gran = NSEC_PER_SEC; 4534 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4535 } 4536 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4537 } 4538 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4539 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4540 EXT4_GOOD_OLD_INODE_SIZE; 4541 if (ext4_has_feature_extra_isize(sb)) { 4542 unsigned v, max = (sbi->s_inode_size - 4543 EXT4_GOOD_OLD_INODE_SIZE); 4544 4545 v = le16_to_cpu(es->s_want_extra_isize); 4546 if (v > max) { 4547 ext4_msg(sb, KERN_ERR, 4548 "bad s_want_extra_isize: %d", v); 4549 goto failed_mount; 4550 } 4551 if (sbi->s_want_extra_isize < v) 4552 sbi->s_want_extra_isize = v; 4553 4554 v = le16_to_cpu(es->s_min_extra_isize); 4555 if (v > max) { 4556 ext4_msg(sb, KERN_ERR, 4557 "bad s_min_extra_isize: %d", v); 4558 goto failed_mount; 4559 } 4560 if (sbi->s_want_extra_isize < v) 4561 sbi->s_want_extra_isize = v; 4562 } 4563 } 4564 4565 err = parse_apply_sb_mount_options(sb, ctx); 4566 if (err < 0) 4567 goto failed_mount; 4568 4569 sbi->s_def_mount_opt = sbi->s_mount_opt; 4570 4571 err = ext4_check_opt_consistency(fc, sb); 4572 if (err < 0) 4573 goto failed_mount; 4574 4575 ext4_apply_options(fc, sb); 4576 4577 #if IS_ENABLED(CONFIG_UNICODE) 4578 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4579 const struct ext4_sb_encodings *encoding_info; 4580 struct unicode_map *encoding; 4581 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4582 4583 encoding_info = ext4_sb_read_encoding(es); 4584 if (!encoding_info) { 4585 ext4_msg(sb, KERN_ERR, 4586 "Encoding requested by superblock is unknown"); 4587 goto failed_mount; 4588 } 4589 4590 encoding = utf8_load(encoding_info->version); 4591 if (IS_ERR(encoding)) { 4592 ext4_msg(sb, KERN_ERR, 4593 "can't mount with superblock charset: %s-%u.%u.%u " 4594 "not supported by the kernel. flags: 0x%x.", 4595 encoding_info->name, 4596 unicode_major(encoding_info->version), 4597 unicode_minor(encoding_info->version), 4598 unicode_rev(encoding_info->version), 4599 encoding_flags); 4600 goto failed_mount; 4601 } 4602 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4603 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4604 unicode_major(encoding_info->version), 4605 unicode_minor(encoding_info->version), 4606 unicode_rev(encoding_info->version), 4607 encoding_flags); 4608 4609 sb->s_encoding = encoding; 4610 sb->s_encoding_flags = encoding_flags; 4611 } 4612 #endif 4613 4614 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4615 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4616 /* can't mount with both data=journal and dioread_nolock. */ 4617 clear_opt(sb, DIOREAD_NOLOCK); 4618 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4619 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4620 ext4_msg(sb, KERN_ERR, "can't mount with " 4621 "both data=journal and delalloc"); 4622 goto failed_mount; 4623 } 4624 if (test_opt(sb, DAX_ALWAYS)) { 4625 ext4_msg(sb, KERN_ERR, "can't mount with " 4626 "both data=journal and dax"); 4627 goto failed_mount; 4628 } 4629 if (ext4_has_feature_encrypt(sb)) { 4630 ext4_msg(sb, KERN_WARNING, 4631 "encrypted files will use data=ordered " 4632 "instead of data journaling mode"); 4633 } 4634 if (test_opt(sb, DELALLOC)) 4635 clear_opt(sb, DELALLOC); 4636 } else { 4637 sb->s_iflags |= SB_I_CGROUPWB; 4638 } 4639 4640 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4641 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4642 4643 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4644 (ext4_has_compat_features(sb) || 4645 ext4_has_ro_compat_features(sb) || 4646 ext4_has_incompat_features(sb))) 4647 ext4_msg(sb, KERN_WARNING, 4648 "feature flags set on rev 0 fs, " 4649 "running e2fsck is recommended"); 4650 4651 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4652 set_opt2(sb, HURD_COMPAT); 4653 if (ext4_has_feature_64bit(sb)) { 4654 ext4_msg(sb, KERN_ERR, 4655 "The Hurd can't support 64-bit file systems"); 4656 goto failed_mount; 4657 } 4658 4659 /* 4660 * ea_inode feature uses l_i_version field which is not 4661 * available in HURD_COMPAT mode. 4662 */ 4663 if (ext4_has_feature_ea_inode(sb)) { 4664 ext4_msg(sb, KERN_ERR, 4665 "ea_inode feature is not supported for Hurd"); 4666 goto failed_mount; 4667 } 4668 } 4669 4670 if (IS_EXT2_SB(sb)) { 4671 if (ext2_feature_set_ok(sb)) 4672 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4673 "using the ext4 subsystem"); 4674 else { 4675 /* 4676 * If we're probing be silent, if this looks like 4677 * it's actually an ext[34] filesystem. 4678 */ 4679 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4680 goto failed_mount; 4681 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4682 "to feature incompatibilities"); 4683 goto failed_mount; 4684 } 4685 } 4686 4687 if (IS_EXT3_SB(sb)) { 4688 if (ext3_feature_set_ok(sb)) 4689 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4690 "using the ext4 subsystem"); 4691 else { 4692 /* 4693 * If we're probing be silent, if this looks like 4694 * it's actually an ext4 filesystem. 4695 */ 4696 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4697 goto failed_mount; 4698 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4699 "to feature incompatibilities"); 4700 goto failed_mount; 4701 } 4702 } 4703 4704 /* 4705 * Check feature flags regardless of the revision level, since we 4706 * previously didn't change the revision level when setting the flags, 4707 * so there is a chance incompat flags are set on a rev 0 filesystem. 4708 */ 4709 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4710 goto failed_mount; 4711 4712 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4713 ext4_msg(sb, KERN_ERR, 4714 "Number of reserved GDT blocks insanely large: %d", 4715 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4716 goto failed_mount; 4717 } 4718 4719 if (sbi->s_daxdev) { 4720 if (blocksize == PAGE_SIZE) 4721 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4722 else 4723 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4724 } 4725 4726 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4727 if (ext4_has_feature_inline_data(sb)) { 4728 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4729 " that may contain inline data"); 4730 goto failed_mount; 4731 } 4732 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4733 ext4_msg(sb, KERN_ERR, 4734 "DAX unsupported by block device."); 4735 goto failed_mount; 4736 } 4737 } 4738 4739 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4740 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4741 es->s_encryption_level); 4742 goto failed_mount; 4743 } 4744 4745 if (sb->s_blocksize != blocksize) { 4746 /* 4747 * bh must be released before kill_bdev(), otherwise 4748 * it won't be freed and its page also. kill_bdev() 4749 * is called by sb_set_blocksize(). 4750 */ 4751 brelse(bh); 4752 /* Validate the filesystem blocksize */ 4753 if (!sb_set_blocksize(sb, blocksize)) { 4754 ext4_msg(sb, KERN_ERR, "bad block size %d", 4755 blocksize); 4756 bh = NULL; 4757 goto failed_mount; 4758 } 4759 4760 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 4761 offset = do_div(logical_sb_block, blocksize); 4762 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4763 if (IS_ERR(bh)) { 4764 ext4_msg(sb, KERN_ERR, 4765 "Can't read superblock on 2nd try"); 4766 ret = PTR_ERR(bh); 4767 bh = NULL; 4768 goto failed_mount; 4769 } 4770 es = (struct ext4_super_block *)(bh->b_data + offset); 4771 sbi->s_es = es; 4772 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4773 ext4_msg(sb, KERN_ERR, 4774 "Magic mismatch, very weird!"); 4775 goto failed_mount; 4776 } 4777 } 4778 4779 has_huge_files = ext4_has_feature_huge_file(sb); 4780 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4781 has_huge_files); 4782 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4783 4784 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4785 if (ext4_has_feature_64bit(sb)) { 4786 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4787 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4788 !is_power_of_2(sbi->s_desc_size)) { 4789 ext4_msg(sb, KERN_ERR, 4790 "unsupported descriptor size %lu", 4791 sbi->s_desc_size); 4792 goto failed_mount; 4793 } 4794 } else 4795 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4796 4797 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4798 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4799 4800 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4801 if (sbi->s_inodes_per_block == 0) 4802 goto cantfind_ext4; 4803 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4804 sbi->s_inodes_per_group > blocksize * 8) { 4805 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4806 sbi->s_inodes_per_group); 4807 goto failed_mount; 4808 } 4809 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4810 sbi->s_inodes_per_block; 4811 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4812 sbi->s_sbh = bh; 4813 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 4814 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4815 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4816 4817 for (i = 0; i < 4; i++) 4818 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4819 sbi->s_def_hash_version = es->s_def_hash_version; 4820 if (ext4_has_feature_dir_index(sb)) { 4821 i = le32_to_cpu(es->s_flags); 4822 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4823 sbi->s_hash_unsigned = 3; 4824 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4825 #ifdef __CHAR_UNSIGNED__ 4826 if (!sb_rdonly(sb)) 4827 es->s_flags |= 4828 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4829 sbi->s_hash_unsigned = 3; 4830 #else 4831 if (!sb_rdonly(sb)) 4832 es->s_flags |= 4833 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4834 #endif 4835 } 4836 } 4837 4838 /* Handle clustersize */ 4839 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4840 if (ext4_has_feature_bigalloc(sb)) { 4841 if (clustersize < blocksize) { 4842 ext4_msg(sb, KERN_ERR, 4843 "cluster size (%d) smaller than " 4844 "block size (%d)", clustersize, blocksize); 4845 goto failed_mount; 4846 } 4847 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4848 le32_to_cpu(es->s_log_block_size); 4849 sbi->s_clusters_per_group = 4850 le32_to_cpu(es->s_clusters_per_group); 4851 if (sbi->s_clusters_per_group > blocksize * 8) { 4852 ext4_msg(sb, KERN_ERR, 4853 "#clusters per group too big: %lu", 4854 sbi->s_clusters_per_group); 4855 goto failed_mount; 4856 } 4857 if (sbi->s_blocks_per_group != 4858 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4859 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4860 "clusters per group (%lu) inconsistent", 4861 sbi->s_blocks_per_group, 4862 sbi->s_clusters_per_group); 4863 goto failed_mount; 4864 } 4865 } else { 4866 if (clustersize != blocksize) { 4867 ext4_msg(sb, KERN_ERR, 4868 "fragment/cluster size (%d) != " 4869 "block size (%d)", clustersize, blocksize); 4870 goto failed_mount; 4871 } 4872 if (sbi->s_blocks_per_group > blocksize * 8) { 4873 ext4_msg(sb, KERN_ERR, 4874 "#blocks per group too big: %lu", 4875 sbi->s_blocks_per_group); 4876 goto failed_mount; 4877 } 4878 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4879 sbi->s_cluster_bits = 0; 4880 } 4881 sbi->s_cluster_ratio = clustersize / blocksize; 4882 4883 /* Do we have standard group size of clustersize * 8 blocks ? */ 4884 if (sbi->s_blocks_per_group == clustersize << 3) 4885 set_opt2(sb, STD_GROUP_SIZE); 4886 4887 /* 4888 * Test whether we have more sectors than will fit in sector_t, 4889 * and whether the max offset is addressable by the page cache. 4890 */ 4891 err = generic_check_addressable(sb->s_blocksize_bits, 4892 ext4_blocks_count(es)); 4893 if (err) { 4894 ext4_msg(sb, KERN_ERR, "filesystem" 4895 " too large to mount safely on this system"); 4896 goto failed_mount; 4897 } 4898 4899 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4900 goto cantfind_ext4; 4901 4902 /* check blocks count against device size */ 4903 blocks_count = sb_bdev_nr_blocks(sb); 4904 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4905 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4906 "exceeds size of device (%llu blocks)", 4907 ext4_blocks_count(es), blocks_count); 4908 goto failed_mount; 4909 } 4910 4911 /* 4912 * It makes no sense for the first data block to be beyond the end 4913 * of the filesystem. 4914 */ 4915 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4916 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4917 "block %u is beyond end of filesystem (%llu)", 4918 le32_to_cpu(es->s_first_data_block), 4919 ext4_blocks_count(es)); 4920 goto failed_mount; 4921 } 4922 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4923 (sbi->s_cluster_ratio == 1)) { 4924 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4925 "block is 0 with a 1k block and cluster size"); 4926 goto failed_mount; 4927 } 4928 4929 blocks_count = (ext4_blocks_count(es) - 4930 le32_to_cpu(es->s_first_data_block) + 4931 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4932 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4933 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4934 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4935 "(block count %llu, first data block %u, " 4936 "blocks per group %lu)", blocks_count, 4937 ext4_blocks_count(es), 4938 le32_to_cpu(es->s_first_data_block), 4939 EXT4_BLOCKS_PER_GROUP(sb)); 4940 goto failed_mount; 4941 } 4942 sbi->s_groups_count = blocks_count; 4943 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4944 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4945 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4946 le32_to_cpu(es->s_inodes_count)) { 4947 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4948 le32_to_cpu(es->s_inodes_count), 4949 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4950 ret = -EINVAL; 4951 goto failed_mount; 4952 } 4953 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4954 EXT4_DESC_PER_BLOCK(sb); 4955 if (ext4_has_feature_meta_bg(sb)) { 4956 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4957 ext4_msg(sb, KERN_WARNING, 4958 "first meta block group too large: %u " 4959 "(group descriptor block count %u)", 4960 le32_to_cpu(es->s_first_meta_bg), db_count); 4961 goto failed_mount; 4962 } 4963 } 4964 rcu_assign_pointer(sbi->s_group_desc, 4965 kvmalloc_array(db_count, 4966 sizeof(struct buffer_head *), 4967 GFP_KERNEL)); 4968 if (sbi->s_group_desc == NULL) { 4969 ext4_msg(sb, KERN_ERR, "not enough memory"); 4970 ret = -ENOMEM; 4971 goto failed_mount; 4972 } 4973 4974 bgl_lock_init(sbi->s_blockgroup_lock); 4975 4976 /* Pre-read the descriptors into the buffer cache */ 4977 for (i = 0; i < db_count; i++) { 4978 block = descriptor_loc(sb, logical_sb_block, i); 4979 ext4_sb_breadahead_unmovable(sb, block); 4980 } 4981 4982 for (i = 0; i < db_count; i++) { 4983 struct buffer_head *bh; 4984 4985 block = descriptor_loc(sb, logical_sb_block, i); 4986 bh = ext4_sb_bread_unmovable(sb, block); 4987 if (IS_ERR(bh)) { 4988 ext4_msg(sb, KERN_ERR, 4989 "can't read group descriptor %d", i); 4990 db_count = i; 4991 ret = PTR_ERR(bh); 4992 goto failed_mount2; 4993 } 4994 rcu_read_lock(); 4995 rcu_dereference(sbi->s_group_desc)[i] = bh; 4996 rcu_read_unlock(); 4997 } 4998 sbi->s_gdb_count = db_count; 4999 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 5000 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 5001 ret = -EFSCORRUPTED; 5002 goto failed_mount2; 5003 } 5004 5005 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5006 spin_lock_init(&sbi->s_error_lock); 5007 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 5008 5009 /* Register extent status tree shrinker */ 5010 if (ext4_es_register_shrinker(sbi)) 5011 goto failed_mount3; 5012 5013 sbi->s_stripe = ext4_get_stripe_size(sbi); 5014 sbi->s_extent_max_zeroout_kb = 32; 5015 5016 /* 5017 * set up enough so that it can read an inode 5018 */ 5019 sb->s_op = &ext4_sops; 5020 sb->s_export_op = &ext4_export_ops; 5021 sb->s_xattr = ext4_xattr_handlers; 5022 #ifdef CONFIG_FS_ENCRYPTION 5023 sb->s_cop = &ext4_cryptops; 5024 #endif 5025 #ifdef CONFIG_FS_VERITY 5026 sb->s_vop = &ext4_verityops; 5027 #endif 5028 #ifdef CONFIG_QUOTA 5029 sb->dq_op = &ext4_quota_operations; 5030 if (ext4_has_feature_quota(sb)) 5031 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5032 else 5033 sb->s_qcop = &ext4_qctl_operations; 5034 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5035 #endif 5036 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 5037 5038 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5039 mutex_init(&sbi->s_orphan_lock); 5040 5041 /* Initialize fast commit stuff */ 5042 atomic_set(&sbi->s_fc_subtid, 0); 5043 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 5044 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 5045 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 5046 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 5047 sbi->s_fc_bytes = 0; 5048 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 5049 sbi->s_fc_ineligible_tid = 0; 5050 spin_lock_init(&sbi->s_fc_lock); 5051 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 5052 sbi->s_fc_replay_state.fc_regions = NULL; 5053 sbi->s_fc_replay_state.fc_regions_size = 0; 5054 sbi->s_fc_replay_state.fc_regions_used = 0; 5055 sbi->s_fc_replay_state.fc_regions_valid = 0; 5056 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 5057 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 5058 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 5059 5060 sb->s_root = NULL; 5061 5062 needs_recovery = (es->s_last_orphan != 0 || 5063 ext4_has_feature_orphan_present(sb) || 5064 ext4_has_feature_journal_needs_recovery(sb)); 5065 5066 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 5067 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 5068 goto failed_mount3a; 5069 5070 /* 5071 * The first inode we look at is the journal inode. Don't try 5072 * root first: it may be modified in the journal! 5073 */ 5074 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5075 err = ext4_load_journal(sb, es, ctx->journal_devnum); 5076 if (err) 5077 goto failed_mount3a; 5078 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5079 ext4_has_feature_journal_needs_recovery(sb)) { 5080 ext4_msg(sb, KERN_ERR, "required journal recovery " 5081 "suppressed and not mounted read-only"); 5082 goto failed_mount_wq; 5083 } else { 5084 /* Nojournal mode, all journal mount options are illegal */ 5085 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5086 ext4_msg(sb, KERN_ERR, "can't mount with " 5087 "journal_checksum, fs mounted w/o journal"); 5088 goto failed_mount_wq; 5089 } 5090 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5091 ext4_msg(sb, KERN_ERR, "can't mount with " 5092 "journal_async_commit, fs mounted w/o journal"); 5093 goto failed_mount_wq; 5094 } 5095 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5096 ext4_msg(sb, KERN_ERR, "can't mount with " 5097 "commit=%lu, fs mounted w/o journal", 5098 sbi->s_commit_interval / HZ); 5099 goto failed_mount_wq; 5100 } 5101 if (EXT4_MOUNT_DATA_FLAGS & 5102 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5103 ext4_msg(sb, KERN_ERR, "can't mount with " 5104 "data=, fs mounted w/o journal"); 5105 goto failed_mount_wq; 5106 } 5107 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5108 clear_opt(sb, JOURNAL_CHECKSUM); 5109 clear_opt(sb, DATA_FLAGS); 5110 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5111 sbi->s_journal = NULL; 5112 needs_recovery = 0; 5113 goto no_journal; 5114 } 5115 5116 if (ext4_has_feature_64bit(sb) && 5117 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 5118 JBD2_FEATURE_INCOMPAT_64BIT)) { 5119 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 5120 goto failed_mount_wq; 5121 } 5122 5123 if (!set_journal_csum_feature_set(sb)) { 5124 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 5125 "feature set"); 5126 goto failed_mount_wq; 5127 } 5128 5129 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 5130 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 5131 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 5132 ext4_msg(sb, KERN_ERR, 5133 "Failed to set fast commit journal feature"); 5134 goto failed_mount_wq; 5135 } 5136 5137 /* We have now updated the journal if required, so we can 5138 * validate the data journaling mode. */ 5139 switch (test_opt(sb, DATA_FLAGS)) { 5140 case 0: 5141 /* No mode set, assume a default based on the journal 5142 * capabilities: ORDERED_DATA if the journal can 5143 * cope, else JOURNAL_DATA 5144 */ 5145 if (jbd2_journal_check_available_features 5146 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 5147 set_opt(sb, ORDERED_DATA); 5148 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 5149 } else { 5150 set_opt(sb, JOURNAL_DATA); 5151 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 5152 } 5153 break; 5154 5155 case EXT4_MOUNT_ORDERED_DATA: 5156 case EXT4_MOUNT_WRITEBACK_DATA: 5157 if (!jbd2_journal_check_available_features 5158 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 5159 ext4_msg(sb, KERN_ERR, "Journal does not support " 5160 "requested data journaling mode"); 5161 goto failed_mount_wq; 5162 } 5163 break; 5164 default: 5165 break; 5166 } 5167 5168 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 5169 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5170 ext4_msg(sb, KERN_ERR, "can't mount with " 5171 "journal_async_commit in data=ordered mode"); 5172 goto failed_mount_wq; 5173 } 5174 5175 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 5176 5177 sbi->s_journal->j_submit_inode_data_buffers = 5178 ext4_journal_submit_inode_data_buffers; 5179 sbi->s_journal->j_finish_inode_data_buffers = 5180 ext4_journal_finish_inode_data_buffers; 5181 5182 no_journal: 5183 if (!test_opt(sb, NO_MBCACHE)) { 5184 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5185 if (!sbi->s_ea_block_cache) { 5186 ext4_msg(sb, KERN_ERR, 5187 "Failed to create ea_block_cache"); 5188 goto failed_mount_wq; 5189 } 5190 5191 if (ext4_has_feature_ea_inode(sb)) { 5192 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5193 if (!sbi->s_ea_inode_cache) { 5194 ext4_msg(sb, KERN_ERR, 5195 "Failed to create ea_inode_cache"); 5196 goto failed_mount_wq; 5197 } 5198 } 5199 } 5200 5201 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 5202 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 5203 goto failed_mount_wq; 5204 } 5205 5206 /* 5207 * Get the # of file system overhead blocks from the 5208 * superblock if present. 5209 */ 5210 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5211 /* ignore the precalculated value if it is ridiculous */ 5212 if (sbi->s_overhead > ext4_blocks_count(es)) 5213 sbi->s_overhead = 0; 5214 /* 5215 * If the bigalloc feature is not enabled recalculating the 5216 * overhead doesn't take long, so we might as well just redo 5217 * it to make sure we are using the correct value. 5218 */ 5219 if (!ext4_has_feature_bigalloc(sb)) 5220 sbi->s_overhead = 0; 5221 if (sbi->s_overhead == 0) { 5222 err = ext4_calculate_overhead(sb); 5223 if (err) 5224 goto failed_mount_wq; 5225 } 5226 5227 /* 5228 * The maximum number of concurrent works can be high and 5229 * concurrency isn't really necessary. Limit it to 1. 5230 */ 5231 EXT4_SB(sb)->rsv_conversion_wq = 5232 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5233 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5234 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5235 ret = -ENOMEM; 5236 goto failed_mount4; 5237 } 5238 5239 /* 5240 * The jbd2_journal_load will have done any necessary log recovery, 5241 * so we can safely mount the rest of the filesystem now. 5242 */ 5243 5244 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5245 if (IS_ERR(root)) { 5246 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5247 ret = PTR_ERR(root); 5248 root = NULL; 5249 goto failed_mount4; 5250 } 5251 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5252 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5253 iput(root); 5254 goto failed_mount4; 5255 } 5256 5257 sb->s_root = d_make_root(root); 5258 if (!sb->s_root) { 5259 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5260 ret = -ENOMEM; 5261 goto failed_mount4; 5262 } 5263 5264 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 5265 if (ret == -EROFS) { 5266 sb->s_flags |= SB_RDONLY; 5267 ret = 0; 5268 } else if (ret) 5269 goto failed_mount4a; 5270 5271 ext4_set_resv_clusters(sb); 5272 5273 if (test_opt(sb, BLOCK_VALIDITY)) { 5274 err = ext4_setup_system_zone(sb); 5275 if (err) { 5276 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5277 "zone (%d)", err); 5278 goto failed_mount4a; 5279 } 5280 } 5281 ext4_fc_replay_cleanup(sb); 5282 5283 ext4_ext_init(sb); 5284 5285 /* 5286 * Enable optimize_scan if number of groups is > threshold. This can be 5287 * turned off by passing "mb_optimize_scan=0". This can also be 5288 * turned on forcefully by passing "mb_optimize_scan=1". 5289 */ 5290 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5291 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5292 set_opt2(sb, MB_OPTIMIZE_SCAN); 5293 else 5294 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5295 } 5296 5297 err = ext4_mb_init(sb); 5298 if (err) { 5299 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5300 err); 5301 goto failed_mount5; 5302 } 5303 5304 /* 5305 * We can only set up the journal commit callback once 5306 * mballoc is initialized 5307 */ 5308 if (sbi->s_journal) 5309 sbi->s_journal->j_commit_callback = 5310 ext4_journal_commit_callback; 5311 5312 block = ext4_count_free_clusters(sb); 5313 ext4_free_blocks_count_set(sbi->s_es, 5314 EXT4_C2B(sbi, block)); 5315 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5316 GFP_KERNEL); 5317 if (!err) { 5318 unsigned long freei = ext4_count_free_inodes(sb); 5319 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5320 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5321 GFP_KERNEL); 5322 } 5323 if (!err) 5324 err = percpu_counter_init(&sbi->s_dirs_counter, 5325 ext4_count_dirs(sb), GFP_KERNEL); 5326 if (!err) 5327 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5328 GFP_KERNEL); 5329 if (!err) 5330 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5331 GFP_KERNEL); 5332 if (!err) 5333 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5334 5335 if (err) { 5336 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5337 goto failed_mount6; 5338 } 5339 5340 if (ext4_has_feature_flex_bg(sb)) 5341 if (!ext4_fill_flex_info(sb)) { 5342 ext4_msg(sb, KERN_ERR, 5343 "unable to initialize " 5344 "flex_bg meta info!"); 5345 ret = -ENOMEM; 5346 goto failed_mount6; 5347 } 5348 5349 err = ext4_register_li_request(sb, first_not_zeroed); 5350 if (err) 5351 goto failed_mount6; 5352 5353 err = ext4_register_sysfs(sb); 5354 if (err) 5355 goto failed_mount7; 5356 5357 err = ext4_init_orphan_info(sb); 5358 if (err) 5359 goto failed_mount8; 5360 #ifdef CONFIG_QUOTA 5361 /* Enable quota usage during mount. */ 5362 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5363 err = ext4_enable_quotas(sb); 5364 if (err) 5365 goto failed_mount9; 5366 } 5367 #endif /* CONFIG_QUOTA */ 5368 5369 /* 5370 * Save the original bdev mapping's wb_err value which could be 5371 * used to detect the metadata async write error. 5372 */ 5373 spin_lock_init(&sbi->s_bdev_wb_lock); 5374 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5375 &sbi->s_bdev_wb_err); 5376 sb->s_bdev->bd_super = sb; 5377 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5378 ext4_orphan_cleanup(sb, es); 5379 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5380 /* 5381 * Update the checksum after updating free space/inode counters and 5382 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5383 * checksum in the buffer cache until it is written out and 5384 * e2fsprogs programs trying to open a file system immediately 5385 * after it is mounted can fail. 5386 */ 5387 ext4_superblock_csum_set(sb); 5388 if (needs_recovery) { 5389 ext4_msg(sb, KERN_INFO, "recovery complete"); 5390 err = ext4_mark_recovery_complete(sb, es); 5391 if (err) 5392 goto failed_mount9; 5393 } 5394 5395 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5396 ext4_msg(sb, KERN_WARNING, 5397 "mounting with \"discard\" option, but the device does not support discard"); 5398 5399 if (es->s_error_count) 5400 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5401 5402 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5403 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5404 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5405 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5406 atomic_set(&sbi->s_warning_count, 0); 5407 atomic_set(&sbi->s_msg_count, 0); 5408 5409 return 0; 5410 5411 cantfind_ext4: 5412 if (!silent) 5413 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5414 goto failed_mount; 5415 5416 failed_mount9: 5417 ext4_release_orphan_info(sb); 5418 failed_mount8: 5419 ext4_unregister_sysfs(sb); 5420 kobject_put(&sbi->s_kobj); 5421 failed_mount7: 5422 ext4_unregister_li_request(sb); 5423 failed_mount6: 5424 ext4_mb_release(sb); 5425 rcu_read_lock(); 5426 flex_groups = rcu_dereference(sbi->s_flex_groups); 5427 if (flex_groups) { 5428 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5429 kvfree(flex_groups[i]); 5430 kvfree(flex_groups); 5431 } 5432 rcu_read_unlock(); 5433 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5434 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5435 percpu_counter_destroy(&sbi->s_dirs_counter); 5436 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5437 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5438 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5439 failed_mount5: 5440 ext4_ext_release(sb); 5441 ext4_release_system_zone(sb); 5442 failed_mount4a: 5443 dput(sb->s_root); 5444 sb->s_root = NULL; 5445 failed_mount4: 5446 ext4_msg(sb, KERN_ERR, "mount failed"); 5447 if (EXT4_SB(sb)->rsv_conversion_wq) 5448 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5449 failed_mount_wq: 5450 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5451 sbi->s_ea_inode_cache = NULL; 5452 5453 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5454 sbi->s_ea_block_cache = NULL; 5455 5456 if (sbi->s_journal) { 5457 /* flush s_error_work before journal destroy. */ 5458 flush_work(&sbi->s_error_work); 5459 jbd2_journal_destroy(sbi->s_journal); 5460 sbi->s_journal = NULL; 5461 } 5462 failed_mount3a: 5463 ext4_es_unregister_shrinker(sbi); 5464 failed_mount3: 5465 /* flush s_error_work before sbi destroy */ 5466 flush_work(&sbi->s_error_work); 5467 del_timer_sync(&sbi->s_err_report); 5468 ext4_stop_mmpd(sbi); 5469 failed_mount2: 5470 rcu_read_lock(); 5471 group_desc = rcu_dereference(sbi->s_group_desc); 5472 for (i = 0; i < db_count; i++) 5473 brelse(group_desc[i]); 5474 kvfree(group_desc); 5475 rcu_read_unlock(); 5476 failed_mount: 5477 if (sbi->s_chksum_driver) 5478 crypto_free_shash(sbi->s_chksum_driver); 5479 5480 #if IS_ENABLED(CONFIG_UNICODE) 5481 utf8_unload(sb->s_encoding); 5482 #endif 5483 5484 #ifdef CONFIG_QUOTA 5485 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5486 kfree(get_qf_name(sb, sbi, i)); 5487 #endif 5488 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5489 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5490 brelse(bh); 5491 ext4_blkdev_remove(sbi); 5492 out_fail: 5493 sb->s_fs_info = NULL; 5494 return err ? err : ret; 5495 } 5496 5497 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5498 { 5499 struct ext4_fs_context *ctx = fc->fs_private; 5500 struct ext4_sb_info *sbi; 5501 const char *descr; 5502 int ret; 5503 5504 sbi = ext4_alloc_sbi(sb); 5505 if (!sbi) 5506 return -ENOMEM; 5507 5508 fc->s_fs_info = sbi; 5509 5510 /* Cleanup superblock name */ 5511 strreplace(sb->s_id, '/', '!'); 5512 5513 sbi->s_sb_block = 1; /* Default super block location */ 5514 if (ctx->spec & EXT4_SPEC_s_sb_block) 5515 sbi->s_sb_block = ctx->s_sb_block; 5516 5517 ret = __ext4_fill_super(fc, sb); 5518 if (ret < 0) 5519 goto free_sbi; 5520 5521 if (sbi->s_journal) { 5522 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5523 descr = " journalled data mode"; 5524 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5525 descr = " ordered data mode"; 5526 else 5527 descr = " writeback data mode"; 5528 } else 5529 descr = "out journal"; 5530 5531 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5532 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5533 "Quota mode: %s.", descr, ext4_quota_mode(sb)); 5534 5535 /* Update the s_overhead_clusters if necessary */ 5536 ext4_update_overhead(sb, false); 5537 return 0; 5538 5539 free_sbi: 5540 ext4_free_sbi(sbi); 5541 fc->s_fs_info = NULL; 5542 return ret; 5543 } 5544 5545 static int ext4_get_tree(struct fs_context *fc) 5546 { 5547 return get_tree_bdev(fc, ext4_fill_super); 5548 } 5549 5550 /* 5551 * Setup any per-fs journal parameters now. We'll do this both on 5552 * initial mount, once the journal has been initialised but before we've 5553 * done any recovery; and again on any subsequent remount. 5554 */ 5555 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5556 { 5557 struct ext4_sb_info *sbi = EXT4_SB(sb); 5558 5559 journal->j_commit_interval = sbi->s_commit_interval; 5560 journal->j_min_batch_time = sbi->s_min_batch_time; 5561 journal->j_max_batch_time = sbi->s_max_batch_time; 5562 ext4_fc_init(sb, journal); 5563 5564 write_lock(&journal->j_state_lock); 5565 if (test_opt(sb, BARRIER)) 5566 journal->j_flags |= JBD2_BARRIER; 5567 else 5568 journal->j_flags &= ~JBD2_BARRIER; 5569 if (test_opt(sb, DATA_ERR_ABORT)) 5570 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5571 else 5572 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5573 write_unlock(&journal->j_state_lock); 5574 } 5575 5576 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5577 unsigned int journal_inum) 5578 { 5579 struct inode *journal_inode; 5580 5581 /* 5582 * Test for the existence of a valid inode on disk. Bad things 5583 * happen if we iget() an unused inode, as the subsequent iput() 5584 * will try to delete it. 5585 */ 5586 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5587 if (IS_ERR(journal_inode)) { 5588 ext4_msg(sb, KERN_ERR, "no journal found"); 5589 return NULL; 5590 } 5591 if (!journal_inode->i_nlink) { 5592 make_bad_inode(journal_inode); 5593 iput(journal_inode); 5594 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5595 return NULL; 5596 } 5597 5598 ext4_debug("Journal inode found at %p: %lld bytes\n", 5599 journal_inode, journal_inode->i_size); 5600 if (!S_ISREG(journal_inode->i_mode)) { 5601 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5602 iput(journal_inode); 5603 return NULL; 5604 } 5605 return journal_inode; 5606 } 5607 5608 static journal_t *ext4_get_journal(struct super_block *sb, 5609 unsigned int journal_inum) 5610 { 5611 struct inode *journal_inode; 5612 journal_t *journal; 5613 5614 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5615 return NULL; 5616 5617 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5618 if (!journal_inode) 5619 return NULL; 5620 5621 journal = jbd2_journal_init_inode(journal_inode); 5622 if (!journal) { 5623 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5624 iput(journal_inode); 5625 return NULL; 5626 } 5627 journal->j_private = sb; 5628 ext4_init_journal_params(sb, journal); 5629 return journal; 5630 } 5631 5632 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5633 dev_t j_dev) 5634 { 5635 struct buffer_head *bh; 5636 journal_t *journal; 5637 ext4_fsblk_t start; 5638 ext4_fsblk_t len; 5639 int hblock, blocksize; 5640 ext4_fsblk_t sb_block; 5641 unsigned long offset; 5642 struct ext4_super_block *es; 5643 struct block_device *bdev; 5644 5645 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5646 return NULL; 5647 5648 bdev = ext4_blkdev_get(j_dev, sb); 5649 if (bdev == NULL) 5650 return NULL; 5651 5652 blocksize = sb->s_blocksize; 5653 hblock = bdev_logical_block_size(bdev); 5654 if (blocksize < hblock) { 5655 ext4_msg(sb, KERN_ERR, 5656 "blocksize too small for journal device"); 5657 goto out_bdev; 5658 } 5659 5660 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5661 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5662 set_blocksize(bdev, blocksize); 5663 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5664 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5665 "external journal"); 5666 goto out_bdev; 5667 } 5668 5669 es = (struct ext4_super_block *) (bh->b_data + offset); 5670 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5671 !(le32_to_cpu(es->s_feature_incompat) & 5672 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5673 ext4_msg(sb, KERN_ERR, "external journal has " 5674 "bad superblock"); 5675 brelse(bh); 5676 goto out_bdev; 5677 } 5678 5679 if ((le32_to_cpu(es->s_feature_ro_compat) & 5680 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5681 es->s_checksum != ext4_superblock_csum(sb, es)) { 5682 ext4_msg(sb, KERN_ERR, "external journal has " 5683 "corrupt superblock"); 5684 brelse(bh); 5685 goto out_bdev; 5686 } 5687 5688 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5689 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5690 brelse(bh); 5691 goto out_bdev; 5692 } 5693 5694 len = ext4_blocks_count(es); 5695 start = sb_block + 1; 5696 brelse(bh); /* we're done with the superblock */ 5697 5698 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5699 start, len, blocksize); 5700 if (!journal) { 5701 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5702 goto out_bdev; 5703 } 5704 journal->j_private = sb; 5705 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5706 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5707 goto out_journal; 5708 } 5709 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5710 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5711 "user (unsupported) - %d", 5712 be32_to_cpu(journal->j_superblock->s_nr_users)); 5713 goto out_journal; 5714 } 5715 EXT4_SB(sb)->s_journal_bdev = bdev; 5716 ext4_init_journal_params(sb, journal); 5717 return journal; 5718 5719 out_journal: 5720 jbd2_journal_destroy(journal); 5721 out_bdev: 5722 ext4_blkdev_put(bdev); 5723 return NULL; 5724 } 5725 5726 static int ext4_load_journal(struct super_block *sb, 5727 struct ext4_super_block *es, 5728 unsigned long journal_devnum) 5729 { 5730 journal_t *journal; 5731 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5732 dev_t journal_dev; 5733 int err = 0; 5734 int really_read_only; 5735 int journal_dev_ro; 5736 5737 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5738 return -EFSCORRUPTED; 5739 5740 if (journal_devnum && 5741 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5742 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5743 "numbers have changed"); 5744 journal_dev = new_decode_dev(journal_devnum); 5745 } else 5746 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5747 5748 if (journal_inum && journal_dev) { 5749 ext4_msg(sb, KERN_ERR, 5750 "filesystem has both journal inode and journal device!"); 5751 return -EINVAL; 5752 } 5753 5754 if (journal_inum) { 5755 journal = ext4_get_journal(sb, journal_inum); 5756 if (!journal) 5757 return -EINVAL; 5758 } else { 5759 journal = ext4_get_dev_journal(sb, journal_dev); 5760 if (!journal) 5761 return -EINVAL; 5762 } 5763 5764 journal_dev_ro = bdev_read_only(journal->j_dev); 5765 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5766 5767 if (journal_dev_ro && !sb_rdonly(sb)) { 5768 ext4_msg(sb, KERN_ERR, 5769 "journal device read-only, try mounting with '-o ro'"); 5770 err = -EROFS; 5771 goto err_out; 5772 } 5773 5774 /* 5775 * Are we loading a blank journal or performing recovery after a 5776 * crash? For recovery, we need to check in advance whether we 5777 * can get read-write access to the device. 5778 */ 5779 if (ext4_has_feature_journal_needs_recovery(sb)) { 5780 if (sb_rdonly(sb)) { 5781 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5782 "required on readonly filesystem"); 5783 if (really_read_only) { 5784 ext4_msg(sb, KERN_ERR, "write access " 5785 "unavailable, cannot proceed " 5786 "(try mounting with noload)"); 5787 err = -EROFS; 5788 goto err_out; 5789 } 5790 ext4_msg(sb, KERN_INFO, "write access will " 5791 "be enabled during recovery"); 5792 } 5793 } 5794 5795 if (!(journal->j_flags & JBD2_BARRIER)) 5796 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5797 5798 if (!ext4_has_feature_journal_needs_recovery(sb)) 5799 err = jbd2_journal_wipe(journal, !really_read_only); 5800 if (!err) { 5801 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5802 if (save) 5803 memcpy(save, ((char *) es) + 5804 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5805 err = jbd2_journal_load(journal); 5806 if (save) 5807 memcpy(((char *) es) + EXT4_S_ERR_START, 5808 save, EXT4_S_ERR_LEN); 5809 kfree(save); 5810 } 5811 5812 if (err) { 5813 ext4_msg(sb, KERN_ERR, "error loading journal"); 5814 goto err_out; 5815 } 5816 5817 EXT4_SB(sb)->s_journal = journal; 5818 err = ext4_clear_journal_err(sb, es); 5819 if (err) { 5820 EXT4_SB(sb)->s_journal = NULL; 5821 jbd2_journal_destroy(journal); 5822 return err; 5823 } 5824 5825 if (!really_read_only && journal_devnum && 5826 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5827 es->s_journal_dev = cpu_to_le32(journal_devnum); 5828 5829 /* Make sure we flush the recovery flag to disk. */ 5830 ext4_commit_super(sb); 5831 } 5832 5833 return 0; 5834 5835 err_out: 5836 jbd2_journal_destroy(journal); 5837 return err; 5838 } 5839 5840 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5841 static void ext4_update_super(struct super_block *sb) 5842 { 5843 struct ext4_sb_info *sbi = EXT4_SB(sb); 5844 struct ext4_super_block *es = sbi->s_es; 5845 struct buffer_head *sbh = sbi->s_sbh; 5846 5847 lock_buffer(sbh); 5848 /* 5849 * If the file system is mounted read-only, don't update the 5850 * superblock write time. This avoids updating the superblock 5851 * write time when we are mounting the root file system 5852 * read/only but we need to replay the journal; at that point, 5853 * for people who are east of GMT and who make their clock 5854 * tick in localtime for Windows bug-for-bug compatibility, 5855 * the clock is set in the future, and this will cause e2fsck 5856 * to complain and force a full file system check. 5857 */ 5858 if (!(sb->s_flags & SB_RDONLY)) 5859 ext4_update_tstamp(es, s_wtime); 5860 es->s_kbytes_written = 5861 cpu_to_le64(sbi->s_kbytes_written + 5862 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5863 sbi->s_sectors_written_start) >> 1)); 5864 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5865 ext4_free_blocks_count_set(es, 5866 EXT4_C2B(sbi, percpu_counter_sum_positive( 5867 &sbi->s_freeclusters_counter))); 5868 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5869 es->s_free_inodes_count = 5870 cpu_to_le32(percpu_counter_sum_positive( 5871 &sbi->s_freeinodes_counter)); 5872 /* Copy error information to the on-disk superblock */ 5873 spin_lock(&sbi->s_error_lock); 5874 if (sbi->s_add_error_count > 0) { 5875 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5876 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5877 __ext4_update_tstamp(&es->s_first_error_time, 5878 &es->s_first_error_time_hi, 5879 sbi->s_first_error_time); 5880 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5881 sizeof(es->s_first_error_func)); 5882 es->s_first_error_line = 5883 cpu_to_le32(sbi->s_first_error_line); 5884 es->s_first_error_ino = 5885 cpu_to_le32(sbi->s_first_error_ino); 5886 es->s_first_error_block = 5887 cpu_to_le64(sbi->s_first_error_block); 5888 es->s_first_error_errcode = 5889 ext4_errno_to_code(sbi->s_first_error_code); 5890 } 5891 __ext4_update_tstamp(&es->s_last_error_time, 5892 &es->s_last_error_time_hi, 5893 sbi->s_last_error_time); 5894 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5895 sizeof(es->s_last_error_func)); 5896 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5897 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5898 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5899 es->s_last_error_errcode = 5900 ext4_errno_to_code(sbi->s_last_error_code); 5901 /* 5902 * Start the daily error reporting function if it hasn't been 5903 * started already 5904 */ 5905 if (!es->s_error_count) 5906 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5907 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5908 sbi->s_add_error_count = 0; 5909 } 5910 spin_unlock(&sbi->s_error_lock); 5911 5912 ext4_superblock_csum_set(sb); 5913 unlock_buffer(sbh); 5914 } 5915 5916 static int ext4_commit_super(struct super_block *sb) 5917 { 5918 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5919 5920 if (!sbh) 5921 return -EINVAL; 5922 if (block_device_ejected(sb)) 5923 return -ENODEV; 5924 5925 ext4_update_super(sb); 5926 5927 lock_buffer(sbh); 5928 /* Buffer got discarded which means block device got invalidated */ 5929 if (!buffer_mapped(sbh)) { 5930 unlock_buffer(sbh); 5931 return -EIO; 5932 } 5933 5934 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5935 /* 5936 * Oh, dear. A previous attempt to write the 5937 * superblock failed. This could happen because the 5938 * USB device was yanked out. Or it could happen to 5939 * be a transient write error and maybe the block will 5940 * be remapped. Nothing we can do but to retry the 5941 * write and hope for the best. 5942 */ 5943 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5944 "superblock detected"); 5945 clear_buffer_write_io_error(sbh); 5946 set_buffer_uptodate(sbh); 5947 } 5948 get_bh(sbh); 5949 /* Clear potential dirty bit if it was journalled update */ 5950 clear_buffer_dirty(sbh); 5951 sbh->b_end_io = end_buffer_write_sync; 5952 submit_bh(REQ_OP_WRITE | REQ_SYNC | 5953 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 5954 wait_on_buffer(sbh); 5955 if (buffer_write_io_error(sbh)) { 5956 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5957 "superblock"); 5958 clear_buffer_write_io_error(sbh); 5959 set_buffer_uptodate(sbh); 5960 return -EIO; 5961 } 5962 return 0; 5963 } 5964 5965 /* 5966 * Have we just finished recovery? If so, and if we are mounting (or 5967 * remounting) the filesystem readonly, then we will end up with a 5968 * consistent fs on disk. Record that fact. 5969 */ 5970 static int ext4_mark_recovery_complete(struct super_block *sb, 5971 struct ext4_super_block *es) 5972 { 5973 int err; 5974 journal_t *journal = EXT4_SB(sb)->s_journal; 5975 5976 if (!ext4_has_feature_journal(sb)) { 5977 if (journal != NULL) { 5978 ext4_error(sb, "Journal got removed while the fs was " 5979 "mounted!"); 5980 return -EFSCORRUPTED; 5981 } 5982 return 0; 5983 } 5984 jbd2_journal_lock_updates(journal); 5985 err = jbd2_journal_flush(journal, 0); 5986 if (err < 0) 5987 goto out; 5988 5989 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5990 ext4_has_feature_orphan_present(sb))) { 5991 if (!ext4_orphan_file_empty(sb)) { 5992 ext4_error(sb, "Orphan file not empty on read-only fs."); 5993 err = -EFSCORRUPTED; 5994 goto out; 5995 } 5996 ext4_clear_feature_journal_needs_recovery(sb); 5997 ext4_clear_feature_orphan_present(sb); 5998 ext4_commit_super(sb); 5999 } 6000 out: 6001 jbd2_journal_unlock_updates(journal); 6002 return err; 6003 } 6004 6005 /* 6006 * If we are mounting (or read-write remounting) a filesystem whose journal 6007 * has recorded an error from a previous lifetime, move that error to the 6008 * main filesystem now. 6009 */ 6010 static int ext4_clear_journal_err(struct super_block *sb, 6011 struct ext4_super_block *es) 6012 { 6013 journal_t *journal; 6014 int j_errno; 6015 const char *errstr; 6016 6017 if (!ext4_has_feature_journal(sb)) { 6018 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6019 return -EFSCORRUPTED; 6020 } 6021 6022 journal = EXT4_SB(sb)->s_journal; 6023 6024 /* 6025 * Now check for any error status which may have been recorded in the 6026 * journal by a prior ext4_error() or ext4_abort() 6027 */ 6028 6029 j_errno = jbd2_journal_errno(journal); 6030 if (j_errno) { 6031 char nbuf[16]; 6032 6033 errstr = ext4_decode_error(sb, j_errno, nbuf); 6034 ext4_warning(sb, "Filesystem error recorded " 6035 "from previous mount: %s", errstr); 6036 ext4_warning(sb, "Marking fs in need of filesystem check."); 6037 6038 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6039 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6040 ext4_commit_super(sb); 6041 6042 jbd2_journal_clear_err(journal); 6043 jbd2_journal_update_sb_errno(journal); 6044 } 6045 return 0; 6046 } 6047 6048 /* 6049 * Force the running and committing transactions to commit, 6050 * and wait on the commit. 6051 */ 6052 int ext4_force_commit(struct super_block *sb) 6053 { 6054 journal_t *journal; 6055 6056 if (sb_rdonly(sb)) 6057 return 0; 6058 6059 journal = EXT4_SB(sb)->s_journal; 6060 return ext4_journal_force_commit(journal); 6061 } 6062 6063 static int ext4_sync_fs(struct super_block *sb, int wait) 6064 { 6065 int ret = 0; 6066 tid_t target; 6067 bool needs_barrier = false; 6068 struct ext4_sb_info *sbi = EXT4_SB(sb); 6069 6070 if (unlikely(ext4_forced_shutdown(sbi))) 6071 return 0; 6072 6073 trace_ext4_sync_fs(sb, wait); 6074 flush_workqueue(sbi->rsv_conversion_wq); 6075 /* 6076 * Writeback quota in non-journalled quota case - journalled quota has 6077 * no dirty dquots 6078 */ 6079 dquot_writeback_dquots(sb, -1); 6080 /* 6081 * Data writeback is possible w/o journal transaction, so barrier must 6082 * being sent at the end of the function. But we can skip it if 6083 * transaction_commit will do it for us. 6084 */ 6085 if (sbi->s_journal) { 6086 target = jbd2_get_latest_transaction(sbi->s_journal); 6087 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6088 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6089 needs_barrier = true; 6090 6091 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6092 if (wait) 6093 ret = jbd2_log_wait_commit(sbi->s_journal, 6094 target); 6095 } 6096 } else if (wait && test_opt(sb, BARRIER)) 6097 needs_barrier = true; 6098 if (needs_barrier) { 6099 int err; 6100 err = blkdev_issue_flush(sb->s_bdev); 6101 if (!ret) 6102 ret = err; 6103 } 6104 6105 return ret; 6106 } 6107 6108 /* 6109 * LVM calls this function before a (read-only) snapshot is created. This 6110 * gives us a chance to flush the journal completely and mark the fs clean. 6111 * 6112 * Note that only this function cannot bring a filesystem to be in a clean 6113 * state independently. It relies on upper layer to stop all data & metadata 6114 * modifications. 6115 */ 6116 static int ext4_freeze(struct super_block *sb) 6117 { 6118 int error = 0; 6119 journal_t *journal; 6120 6121 if (sb_rdonly(sb)) 6122 return 0; 6123 6124 journal = EXT4_SB(sb)->s_journal; 6125 6126 if (journal) { 6127 /* Now we set up the journal barrier. */ 6128 jbd2_journal_lock_updates(journal); 6129 6130 /* 6131 * Don't clear the needs_recovery flag if we failed to 6132 * flush the journal. 6133 */ 6134 error = jbd2_journal_flush(journal, 0); 6135 if (error < 0) 6136 goto out; 6137 6138 /* Journal blocked and flushed, clear needs_recovery flag. */ 6139 ext4_clear_feature_journal_needs_recovery(sb); 6140 if (ext4_orphan_file_empty(sb)) 6141 ext4_clear_feature_orphan_present(sb); 6142 } 6143 6144 error = ext4_commit_super(sb); 6145 out: 6146 if (journal) 6147 /* we rely on upper layer to stop further updates */ 6148 jbd2_journal_unlock_updates(journal); 6149 return error; 6150 } 6151 6152 /* 6153 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6154 * flag here, even though the filesystem is not technically dirty yet. 6155 */ 6156 static int ext4_unfreeze(struct super_block *sb) 6157 { 6158 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 6159 return 0; 6160 6161 if (EXT4_SB(sb)->s_journal) { 6162 /* Reset the needs_recovery flag before the fs is unlocked. */ 6163 ext4_set_feature_journal_needs_recovery(sb); 6164 if (ext4_has_feature_orphan_file(sb)) 6165 ext4_set_feature_orphan_present(sb); 6166 } 6167 6168 ext4_commit_super(sb); 6169 return 0; 6170 } 6171 6172 /* 6173 * Structure to save mount options for ext4_remount's benefit 6174 */ 6175 struct ext4_mount_options { 6176 unsigned long s_mount_opt; 6177 unsigned long s_mount_opt2; 6178 kuid_t s_resuid; 6179 kgid_t s_resgid; 6180 unsigned long s_commit_interval; 6181 u32 s_min_batch_time, s_max_batch_time; 6182 #ifdef CONFIG_QUOTA 6183 int s_jquota_fmt; 6184 char *s_qf_names[EXT4_MAXQUOTAS]; 6185 #endif 6186 }; 6187 6188 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6189 { 6190 struct ext4_fs_context *ctx = fc->fs_private; 6191 struct ext4_super_block *es; 6192 struct ext4_sb_info *sbi = EXT4_SB(sb); 6193 unsigned long old_sb_flags; 6194 struct ext4_mount_options old_opts; 6195 ext4_group_t g; 6196 int err = 0; 6197 #ifdef CONFIG_QUOTA 6198 int enable_quota = 0; 6199 int i, j; 6200 char *to_free[EXT4_MAXQUOTAS]; 6201 #endif 6202 6203 6204 /* Store the original options */ 6205 old_sb_flags = sb->s_flags; 6206 old_opts.s_mount_opt = sbi->s_mount_opt; 6207 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6208 old_opts.s_resuid = sbi->s_resuid; 6209 old_opts.s_resgid = sbi->s_resgid; 6210 old_opts.s_commit_interval = sbi->s_commit_interval; 6211 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6212 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6213 #ifdef CONFIG_QUOTA 6214 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6215 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6216 if (sbi->s_qf_names[i]) { 6217 char *qf_name = get_qf_name(sb, sbi, i); 6218 6219 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6220 if (!old_opts.s_qf_names[i]) { 6221 for (j = 0; j < i; j++) 6222 kfree(old_opts.s_qf_names[j]); 6223 return -ENOMEM; 6224 } 6225 } else 6226 old_opts.s_qf_names[i] = NULL; 6227 #endif 6228 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6229 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6230 ctx->journal_ioprio = 6231 sbi->s_journal->j_task->io_context->ioprio; 6232 else 6233 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6234 6235 } 6236 6237 ext4_apply_options(fc, sb); 6238 6239 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6240 test_opt(sb, JOURNAL_CHECKSUM)) { 6241 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6242 "during remount not supported; ignoring"); 6243 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6244 } 6245 6246 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6247 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6248 ext4_msg(sb, KERN_ERR, "can't mount with " 6249 "both data=journal and delalloc"); 6250 err = -EINVAL; 6251 goto restore_opts; 6252 } 6253 if (test_opt(sb, DIOREAD_NOLOCK)) { 6254 ext4_msg(sb, KERN_ERR, "can't mount with " 6255 "both data=journal and dioread_nolock"); 6256 err = -EINVAL; 6257 goto restore_opts; 6258 } 6259 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6260 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6261 ext4_msg(sb, KERN_ERR, "can't mount with " 6262 "journal_async_commit in data=ordered mode"); 6263 err = -EINVAL; 6264 goto restore_opts; 6265 } 6266 } 6267 6268 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6269 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6270 err = -EINVAL; 6271 goto restore_opts; 6272 } 6273 6274 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 6275 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6276 6277 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6278 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6279 6280 es = sbi->s_es; 6281 6282 if (sbi->s_journal) { 6283 ext4_init_journal_params(sb, sbi->s_journal); 6284 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6285 } 6286 6287 /* Flush outstanding errors before changing fs state */ 6288 flush_work(&sbi->s_error_work); 6289 6290 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6291 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 6292 err = -EROFS; 6293 goto restore_opts; 6294 } 6295 6296 if (fc->sb_flags & SB_RDONLY) { 6297 err = sync_filesystem(sb); 6298 if (err < 0) 6299 goto restore_opts; 6300 err = dquot_suspend(sb, -1); 6301 if (err < 0) 6302 goto restore_opts; 6303 6304 /* 6305 * First of all, the unconditional stuff we have to do 6306 * to disable replay of the journal when we next remount 6307 */ 6308 sb->s_flags |= SB_RDONLY; 6309 6310 /* 6311 * OK, test if we are remounting a valid rw partition 6312 * readonly, and if so set the rdonly flag and then 6313 * mark the partition as valid again. 6314 */ 6315 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6316 (sbi->s_mount_state & EXT4_VALID_FS)) 6317 es->s_state = cpu_to_le16(sbi->s_mount_state); 6318 6319 if (sbi->s_journal) { 6320 /* 6321 * We let remount-ro finish even if marking fs 6322 * as clean failed... 6323 */ 6324 ext4_mark_recovery_complete(sb, es); 6325 } 6326 } else { 6327 /* Make sure we can mount this feature set readwrite */ 6328 if (ext4_has_feature_readonly(sb) || 6329 !ext4_feature_set_ok(sb, 0)) { 6330 err = -EROFS; 6331 goto restore_opts; 6332 } 6333 /* 6334 * Make sure the group descriptor checksums 6335 * are sane. If they aren't, refuse to remount r/w. 6336 */ 6337 for (g = 0; g < sbi->s_groups_count; g++) { 6338 struct ext4_group_desc *gdp = 6339 ext4_get_group_desc(sb, g, NULL); 6340 6341 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6342 ext4_msg(sb, KERN_ERR, 6343 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6344 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6345 le16_to_cpu(gdp->bg_checksum)); 6346 err = -EFSBADCRC; 6347 goto restore_opts; 6348 } 6349 } 6350 6351 /* 6352 * If we have an unprocessed orphan list hanging 6353 * around from a previously readonly bdev mount, 6354 * require a full umount/remount for now. 6355 */ 6356 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6357 ext4_msg(sb, KERN_WARNING, "Couldn't " 6358 "remount RDWR because of unprocessed " 6359 "orphan inode list. Please " 6360 "umount/remount instead"); 6361 err = -EINVAL; 6362 goto restore_opts; 6363 } 6364 6365 /* 6366 * Mounting a RDONLY partition read-write, so reread 6367 * and store the current valid flag. (It may have 6368 * been changed by e2fsck since we originally mounted 6369 * the partition.) 6370 */ 6371 if (sbi->s_journal) { 6372 err = ext4_clear_journal_err(sb, es); 6373 if (err) 6374 goto restore_opts; 6375 } 6376 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6377 ~EXT4_FC_REPLAY); 6378 6379 err = ext4_setup_super(sb, es, 0); 6380 if (err) 6381 goto restore_opts; 6382 6383 sb->s_flags &= ~SB_RDONLY; 6384 if (ext4_has_feature_mmp(sb)) 6385 if (ext4_multi_mount_protect(sb, 6386 le64_to_cpu(es->s_mmp_block))) { 6387 err = -EROFS; 6388 goto restore_opts; 6389 } 6390 #ifdef CONFIG_QUOTA 6391 enable_quota = 1; 6392 #endif 6393 } 6394 } 6395 6396 /* 6397 * Reinitialize lazy itable initialization thread based on 6398 * current settings 6399 */ 6400 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6401 ext4_unregister_li_request(sb); 6402 else { 6403 ext4_group_t first_not_zeroed; 6404 first_not_zeroed = ext4_has_uninit_itable(sb); 6405 ext4_register_li_request(sb, first_not_zeroed); 6406 } 6407 6408 /* 6409 * Handle creation of system zone data early because it can fail. 6410 * Releasing of existing data is done when we are sure remount will 6411 * succeed. 6412 */ 6413 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6414 err = ext4_setup_system_zone(sb); 6415 if (err) 6416 goto restore_opts; 6417 } 6418 6419 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6420 err = ext4_commit_super(sb); 6421 if (err) 6422 goto restore_opts; 6423 } 6424 6425 #ifdef CONFIG_QUOTA 6426 /* Release old quota file names */ 6427 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6428 kfree(old_opts.s_qf_names[i]); 6429 if (enable_quota) { 6430 if (sb_any_quota_suspended(sb)) 6431 dquot_resume(sb, -1); 6432 else if (ext4_has_feature_quota(sb)) { 6433 err = ext4_enable_quotas(sb); 6434 if (err) 6435 goto restore_opts; 6436 } 6437 } 6438 #endif 6439 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6440 ext4_release_system_zone(sb); 6441 6442 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6443 ext4_stop_mmpd(sbi); 6444 6445 return 0; 6446 6447 restore_opts: 6448 sb->s_flags = old_sb_flags; 6449 sbi->s_mount_opt = old_opts.s_mount_opt; 6450 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6451 sbi->s_resuid = old_opts.s_resuid; 6452 sbi->s_resgid = old_opts.s_resgid; 6453 sbi->s_commit_interval = old_opts.s_commit_interval; 6454 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6455 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6456 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6457 ext4_release_system_zone(sb); 6458 #ifdef CONFIG_QUOTA 6459 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6460 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6461 to_free[i] = get_qf_name(sb, sbi, i); 6462 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6463 } 6464 synchronize_rcu(); 6465 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6466 kfree(to_free[i]); 6467 #endif 6468 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6469 ext4_stop_mmpd(sbi); 6470 return err; 6471 } 6472 6473 static int ext4_reconfigure(struct fs_context *fc) 6474 { 6475 struct super_block *sb = fc->root->d_sb; 6476 int ret; 6477 6478 fc->s_fs_info = EXT4_SB(sb); 6479 6480 ret = ext4_check_opt_consistency(fc, sb); 6481 if (ret < 0) 6482 return ret; 6483 6484 ret = __ext4_remount(fc, sb); 6485 if (ret < 0) 6486 return ret; 6487 6488 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.", 6489 ext4_quota_mode(sb)); 6490 6491 return 0; 6492 } 6493 6494 #ifdef CONFIG_QUOTA 6495 static int ext4_statfs_project(struct super_block *sb, 6496 kprojid_t projid, struct kstatfs *buf) 6497 { 6498 struct kqid qid; 6499 struct dquot *dquot; 6500 u64 limit; 6501 u64 curblock; 6502 6503 qid = make_kqid_projid(projid); 6504 dquot = dqget(sb, qid); 6505 if (IS_ERR(dquot)) 6506 return PTR_ERR(dquot); 6507 spin_lock(&dquot->dq_dqb_lock); 6508 6509 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6510 dquot->dq_dqb.dqb_bhardlimit); 6511 limit >>= sb->s_blocksize_bits; 6512 6513 if (limit && buf->f_blocks > limit) { 6514 curblock = (dquot->dq_dqb.dqb_curspace + 6515 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6516 buf->f_blocks = limit; 6517 buf->f_bfree = buf->f_bavail = 6518 (buf->f_blocks > curblock) ? 6519 (buf->f_blocks - curblock) : 0; 6520 } 6521 6522 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6523 dquot->dq_dqb.dqb_ihardlimit); 6524 if (limit && buf->f_files > limit) { 6525 buf->f_files = limit; 6526 buf->f_ffree = 6527 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6528 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6529 } 6530 6531 spin_unlock(&dquot->dq_dqb_lock); 6532 dqput(dquot); 6533 return 0; 6534 } 6535 #endif 6536 6537 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6538 { 6539 struct super_block *sb = dentry->d_sb; 6540 struct ext4_sb_info *sbi = EXT4_SB(sb); 6541 struct ext4_super_block *es = sbi->s_es; 6542 ext4_fsblk_t overhead = 0, resv_blocks; 6543 s64 bfree; 6544 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6545 6546 if (!test_opt(sb, MINIX_DF)) 6547 overhead = sbi->s_overhead; 6548 6549 buf->f_type = EXT4_SUPER_MAGIC; 6550 buf->f_bsize = sb->s_blocksize; 6551 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6552 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6553 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6554 /* prevent underflow in case that few free space is available */ 6555 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6556 buf->f_bavail = buf->f_bfree - 6557 (ext4_r_blocks_count(es) + resv_blocks); 6558 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6559 buf->f_bavail = 0; 6560 buf->f_files = le32_to_cpu(es->s_inodes_count); 6561 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6562 buf->f_namelen = EXT4_NAME_LEN; 6563 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6564 6565 #ifdef CONFIG_QUOTA 6566 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6567 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6568 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6569 #endif 6570 return 0; 6571 } 6572 6573 6574 #ifdef CONFIG_QUOTA 6575 6576 /* 6577 * Helper functions so that transaction is started before we acquire dqio_sem 6578 * to keep correct lock ordering of transaction > dqio_sem 6579 */ 6580 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6581 { 6582 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6583 } 6584 6585 static int ext4_write_dquot(struct dquot *dquot) 6586 { 6587 int ret, err; 6588 handle_t *handle; 6589 struct inode *inode; 6590 6591 inode = dquot_to_inode(dquot); 6592 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6593 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6594 if (IS_ERR(handle)) 6595 return PTR_ERR(handle); 6596 ret = dquot_commit(dquot); 6597 err = ext4_journal_stop(handle); 6598 if (!ret) 6599 ret = err; 6600 return ret; 6601 } 6602 6603 static int ext4_acquire_dquot(struct dquot *dquot) 6604 { 6605 int ret, err; 6606 handle_t *handle; 6607 6608 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6609 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6610 if (IS_ERR(handle)) 6611 return PTR_ERR(handle); 6612 ret = dquot_acquire(dquot); 6613 err = ext4_journal_stop(handle); 6614 if (!ret) 6615 ret = err; 6616 return ret; 6617 } 6618 6619 static int ext4_release_dquot(struct dquot *dquot) 6620 { 6621 int ret, err; 6622 handle_t *handle; 6623 6624 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6625 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6626 if (IS_ERR(handle)) { 6627 /* Release dquot anyway to avoid endless cycle in dqput() */ 6628 dquot_release(dquot); 6629 return PTR_ERR(handle); 6630 } 6631 ret = dquot_release(dquot); 6632 err = ext4_journal_stop(handle); 6633 if (!ret) 6634 ret = err; 6635 return ret; 6636 } 6637 6638 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6639 { 6640 struct super_block *sb = dquot->dq_sb; 6641 6642 if (ext4_is_quota_journalled(sb)) { 6643 dquot_mark_dquot_dirty(dquot); 6644 return ext4_write_dquot(dquot); 6645 } else { 6646 return dquot_mark_dquot_dirty(dquot); 6647 } 6648 } 6649 6650 static int ext4_write_info(struct super_block *sb, int type) 6651 { 6652 int ret, err; 6653 handle_t *handle; 6654 6655 /* Data block + inode block */ 6656 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6657 if (IS_ERR(handle)) 6658 return PTR_ERR(handle); 6659 ret = dquot_commit_info(sb, type); 6660 err = ext4_journal_stop(handle); 6661 if (!ret) 6662 ret = err; 6663 return ret; 6664 } 6665 6666 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6667 { 6668 struct ext4_inode_info *ei = EXT4_I(inode); 6669 6670 /* The first argument of lockdep_set_subclass has to be 6671 * *exactly* the same as the argument to init_rwsem() --- in 6672 * this case, in init_once() --- or lockdep gets unhappy 6673 * because the name of the lock is set using the 6674 * stringification of the argument to init_rwsem(). 6675 */ 6676 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6677 lockdep_set_subclass(&ei->i_data_sem, subclass); 6678 } 6679 6680 /* 6681 * Standard function to be called on quota_on 6682 */ 6683 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6684 const struct path *path) 6685 { 6686 int err; 6687 6688 if (!test_opt(sb, QUOTA)) 6689 return -EINVAL; 6690 6691 /* Quotafile not on the same filesystem? */ 6692 if (path->dentry->d_sb != sb) 6693 return -EXDEV; 6694 6695 /* Quota already enabled for this file? */ 6696 if (IS_NOQUOTA(d_inode(path->dentry))) 6697 return -EBUSY; 6698 6699 /* Journaling quota? */ 6700 if (EXT4_SB(sb)->s_qf_names[type]) { 6701 /* Quotafile not in fs root? */ 6702 if (path->dentry->d_parent != sb->s_root) 6703 ext4_msg(sb, KERN_WARNING, 6704 "Quota file not on filesystem root. " 6705 "Journaled quota will not work"); 6706 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6707 } else { 6708 /* 6709 * Clear the flag just in case mount options changed since 6710 * last time. 6711 */ 6712 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6713 } 6714 6715 /* 6716 * When we journal data on quota file, we have to flush journal to see 6717 * all updates to the file when we bypass pagecache... 6718 */ 6719 if (EXT4_SB(sb)->s_journal && 6720 ext4_should_journal_data(d_inode(path->dentry))) { 6721 /* 6722 * We don't need to lock updates but journal_flush() could 6723 * otherwise be livelocked... 6724 */ 6725 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6726 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6727 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6728 if (err) 6729 return err; 6730 } 6731 6732 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6733 err = dquot_quota_on(sb, type, format_id, path); 6734 if (!err) { 6735 struct inode *inode = d_inode(path->dentry); 6736 handle_t *handle; 6737 6738 /* 6739 * Set inode flags to prevent userspace from messing with quota 6740 * files. If this fails, we return success anyway since quotas 6741 * are already enabled and this is not a hard failure. 6742 */ 6743 inode_lock(inode); 6744 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6745 if (IS_ERR(handle)) 6746 goto unlock_inode; 6747 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6748 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6749 S_NOATIME | S_IMMUTABLE); 6750 err = ext4_mark_inode_dirty(handle, inode); 6751 ext4_journal_stop(handle); 6752 unlock_inode: 6753 inode_unlock(inode); 6754 if (err) 6755 dquot_quota_off(sb, type); 6756 } 6757 if (err) 6758 lockdep_set_quota_inode(path->dentry->d_inode, 6759 I_DATA_SEM_NORMAL); 6760 return err; 6761 } 6762 6763 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6764 unsigned int flags) 6765 { 6766 int err; 6767 struct inode *qf_inode; 6768 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6769 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6770 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6771 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6772 }; 6773 6774 BUG_ON(!ext4_has_feature_quota(sb)); 6775 6776 if (!qf_inums[type]) 6777 return -EPERM; 6778 6779 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6780 if (IS_ERR(qf_inode)) { 6781 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6782 return PTR_ERR(qf_inode); 6783 } 6784 6785 /* Don't account quota for quota files to avoid recursion */ 6786 qf_inode->i_flags |= S_NOQUOTA; 6787 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6788 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6789 if (err) 6790 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6791 iput(qf_inode); 6792 6793 return err; 6794 } 6795 6796 /* Enable usage tracking for all quota types. */ 6797 int ext4_enable_quotas(struct super_block *sb) 6798 { 6799 int type, err = 0; 6800 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6801 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6802 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6803 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6804 }; 6805 bool quota_mopt[EXT4_MAXQUOTAS] = { 6806 test_opt(sb, USRQUOTA), 6807 test_opt(sb, GRPQUOTA), 6808 test_opt(sb, PRJQUOTA), 6809 }; 6810 6811 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6812 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6813 if (qf_inums[type]) { 6814 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6815 DQUOT_USAGE_ENABLED | 6816 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6817 if (err) { 6818 ext4_warning(sb, 6819 "Failed to enable quota tracking " 6820 "(type=%d, err=%d). Please run " 6821 "e2fsck to fix.", type, err); 6822 for (type--; type >= 0; type--) { 6823 struct inode *inode; 6824 6825 inode = sb_dqopt(sb)->files[type]; 6826 if (inode) 6827 inode = igrab(inode); 6828 dquot_quota_off(sb, type); 6829 if (inode) { 6830 lockdep_set_quota_inode(inode, 6831 I_DATA_SEM_NORMAL); 6832 iput(inode); 6833 } 6834 } 6835 6836 return err; 6837 } 6838 } 6839 } 6840 return 0; 6841 } 6842 6843 static int ext4_quota_off(struct super_block *sb, int type) 6844 { 6845 struct inode *inode = sb_dqopt(sb)->files[type]; 6846 handle_t *handle; 6847 int err; 6848 6849 /* Force all delayed allocation blocks to be allocated. 6850 * Caller already holds s_umount sem */ 6851 if (test_opt(sb, DELALLOC)) 6852 sync_filesystem(sb); 6853 6854 if (!inode || !igrab(inode)) 6855 goto out; 6856 6857 err = dquot_quota_off(sb, type); 6858 if (err || ext4_has_feature_quota(sb)) 6859 goto out_put; 6860 6861 inode_lock(inode); 6862 /* 6863 * Update modification times of quota files when userspace can 6864 * start looking at them. If we fail, we return success anyway since 6865 * this is not a hard failure and quotas are already disabled. 6866 */ 6867 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6868 if (IS_ERR(handle)) { 6869 err = PTR_ERR(handle); 6870 goto out_unlock; 6871 } 6872 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6873 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6874 inode->i_mtime = inode->i_ctime = current_time(inode); 6875 err = ext4_mark_inode_dirty(handle, inode); 6876 ext4_journal_stop(handle); 6877 out_unlock: 6878 inode_unlock(inode); 6879 out_put: 6880 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6881 iput(inode); 6882 return err; 6883 out: 6884 return dquot_quota_off(sb, type); 6885 } 6886 6887 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6888 * acquiring the locks... As quota files are never truncated and quota code 6889 * itself serializes the operations (and no one else should touch the files) 6890 * we don't have to be afraid of races */ 6891 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6892 size_t len, loff_t off) 6893 { 6894 struct inode *inode = sb_dqopt(sb)->files[type]; 6895 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6896 int offset = off & (sb->s_blocksize - 1); 6897 int tocopy; 6898 size_t toread; 6899 struct buffer_head *bh; 6900 loff_t i_size = i_size_read(inode); 6901 6902 if (off > i_size) 6903 return 0; 6904 if (off+len > i_size) 6905 len = i_size-off; 6906 toread = len; 6907 while (toread > 0) { 6908 tocopy = sb->s_blocksize - offset < toread ? 6909 sb->s_blocksize - offset : toread; 6910 bh = ext4_bread(NULL, inode, blk, 0); 6911 if (IS_ERR(bh)) 6912 return PTR_ERR(bh); 6913 if (!bh) /* A hole? */ 6914 memset(data, 0, tocopy); 6915 else 6916 memcpy(data, bh->b_data+offset, tocopy); 6917 brelse(bh); 6918 offset = 0; 6919 toread -= tocopy; 6920 data += tocopy; 6921 blk++; 6922 } 6923 return len; 6924 } 6925 6926 /* Write to quotafile (we know the transaction is already started and has 6927 * enough credits) */ 6928 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6929 const char *data, size_t len, loff_t off) 6930 { 6931 struct inode *inode = sb_dqopt(sb)->files[type]; 6932 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6933 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6934 int retries = 0; 6935 struct buffer_head *bh; 6936 handle_t *handle = journal_current_handle(); 6937 6938 if (!handle) { 6939 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6940 " cancelled because transaction is not started", 6941 (unsigned long long)off, (unsigned long long)len); 6942 return -EIO; 6943 } 6944 /* 6945 * Since we account only one data block in transaction credits, 6946 * then it is impossible to cross a block boundary. 6947 */ 6948 if (sb->s_blocksize - offset < len) { 6949 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6950 " cancelled because not block aligned", 6951 (unsigned long long)off, (unsigned long long)len); 6952 return -EIO; 6953 } 6954 6955 do { 6956 bh = ext4_bread(handle, inode, blk, 6957 EXT4_GET_BLOCKS_CREATE | 6958 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6959 } while (PTR_ERR(bh) == -ENOSPC && 6960 ext4_should_retry_alloc(inode->i_sb, &retries)); 6961 if (IS_ERR(bh)) 6962 return PTR_ERR(bh); 6963 if (!bh) 6964 goto out; 6965 BUFFER_TRACE(bh, "get write access"); 6966 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6967 if (err) { 6968 brelse(bh); 6969 return err; 6970 } 6971 lock_buffer(bh); 6972 memcpy(bh->b_data+offset, data, len); 6973 flush_dcache_page(bh->b_page); 6974 unlock_buffer(bh); 6975 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6976 brelse(bh); 6977 out: 6978 if (inode->i_size < off + len) { 6979 i_size_write(inode, off + len); 6980 EXT4_I(inode)->i_disksize = inode->i_size; 6981 err2 = ext4_mark_inode_dirty(handle, inode); 6982 if (unlikely(err2 && !err)) 6983 err = err2; 6984 } 6985 return err ? err : len; 6986 } 6987 #endif 6988 6989 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6990 static inline void register_as_ext2(void) 6991 { 6992 int err = register_filesystem(&ext2_fs_type); 6993 if (err) 6994 printk(KERN_WARNING 6995 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6996 } 6997 6998 static inline void unregister_as_ext2(void) 6999 { 7000 unregister_filesystem(&ext2_fs_type); 7001 } 7002 7003 static inline int ext2_feature_set_ok(struct super_block *sb) 7004 { 7005 if (ext4_has_unknown_ext2_incompat_features(sb)) 7006 return 0; 7007 if (sb_rdonly(sb)) 7008 return 1; 7009 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7010 return 0; 7011 return 1; 7012 } 7013 #else 7014 static inline void register_as_ext2(void) { } 7015 static inline void unregister_as_ext2(void) { } 7016 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7017 #endif 7018 7019 static inline void register_as_ext3(void) 7020 { 7021 int err = register_filesystem(&ext3_fs_type); 7022 if (err) 7023 printk(KERN_WARNING 7024 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7025 } 7026 7027 static inline void unregister_as_ext3(void) 7028 { 7029 unregister_filesystem(&ext3_fs_type); 7030 } 7031 7032 static inline int ext3_feature_set_ok(struct super_block *sb) 7033 { 7034 if (ext4_has_unknown_ext3_incompat_features(sb)) 7035 return 0; 7036 if (!ext4_has_feature_journal(sb)) 7037 return 0; 7038 if (sb_rdonly(sb)) 7039 return 1; 7040 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7041 return 0; 7042 return 1; 7043 } 7044 7045 static struct file_system_type ext4_fs_type = { 7046 .owner = THIS_MODULE, 7047 .name = "ext4", 7048 .init_fs_context = ext4_init_fs_context, 7049 .parameters = ext4_param_specs, 7050 .kill_sb = kill_block_super, 7051 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7052 }; 7053 MODULE_ALIAS_FS("ext4"); 7054 7055 /* Shared across all ext4 file systems */ 7056 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7057 7058 static int __init ext4_init_fs(void) 7059 { 7060 int i, err; 7061 7062 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7063 ext4_li_info = NULL; 7064 7065 /* Build-time check for flags consistency */ 7066 ext4_check_flag_values(); 7067 7068 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7069 init_waitqueue_head(&ext4__ioend_wq[i]); 7070 7071 err = ext4_init_es(); 7072 if (err) 7073 return err; 7074 7075 err = ext4_init_pending(); 7076 if (err) 7077 goto out7; 7078 7079 err = ext4_init_post_read_processing(); 7080 if (err) 7081 goto out6; 7082 7083 err = ext4_init_pageio(); 7084 if (err) 7085 goto out5; 7086 7087 err = ext4_init_system_zone(); 7088 if (err) 7089 goto out4; 7090 7091 err = ext4_init_sysfs(); 7092 if (err) 7093 goto out3; 7094 7095 err = ext4_init_mballoc(); 7096 if (err) 7097 goto out2; 7098 err = init_inodecache(); 7099 if (err) 7100 goto out1; 7101 7102 err = ext4_fc_init_dentry_cache(); 7103 if (err) 7104 goto out05; 7105 7106 register_as_ext3(); 7107 register_as_ext2(); 7108 err = register_filesystem(&ext4_fs_type); 7109 if (err) 7110 goto out; 7111 7112 return 0; 7113 out: 7114 unregister_as_ext2(); 7115 unregister_as_ext3(); 7116 ext4_fc_destroy_dentry_cache(); 7117 out05: 7118 destroy_inodecache(); 7119 out1: 7120 ext4_exit_mballoc(); 7121 out2: 7122 ext4_exit_sysfs(); 7123 out3: 7124 ext4_exit_system_zone(); 7125 out4: 7126 ext4_exit_pageio(); 7127 out5: 7128 ext4_exit_post_read_processing(); 7129 out6: 7130 ext4_exit_pending(); 7131 out7: 7132 ext4_exit_es(); 7133 7134 return err; 7135 } 7136 7137 static void __exit ext4_exit_fs(void) 7138 { 7139 ext4_destroy_lazyinit_thread(); 7140 unregister_as_ext2(); 7141 unregister_as_ext3(); 7142 unregister_filesystem(&ext4_fs_type); 7143 ext4_fc_destroy_dentry_cache(); 7144 destroy_inodecache(); 7145 ext4_exit_mballoc(); 7146 ext4_exit_sysfs(); 7147 ext4_exit_system_zone(); 7148 ext4_exit_pageio(); 7149 ext4_exit_post_read_processing(); 7150 ext4_exit_es(); 7151 ext4_exit_pending(); 7152 } 7153 7154 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7155 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7156 MODULE_LICENSE("GPL"); 7157 MODULE_SOFTDEP("pre: crc32c"); 7158 module_init(ext4_init_fs) 7159 module_exit(ext4_exit_fs) 7160