1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 static int ext4_mballoc_ready; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 87 88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 89 static struct file_system_type ext2_fs_type = { 90 .owner = THIS_MODULE, 91 .name = "ext2", 92 .mount = ext4_mount, 93 .kill_sb = kill_block_super, 94 .fs_flags = FS_REQUIRES_DEV, 95 }; 96 MODULE_ALIAS_FS("ext2"); 97 MODULE_ALIAS("ext2"); 98 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 99 #else 100 #define IS_EXT2_SB(sb) (0) 101 #endif 102 103 104 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 105 static struct file_system_type ext3_fs_type = { 106 .owner = THIS_MODULE, 107 .name = "ext3", 108 .mount = ext4_mount, 109 .kill_sb = kill_block_super, 110 .fs_flags = FS_REQUIRES_DEV, 111 }; 112 MODULE_ALIAS_FS("ext3"); 113 MODULE_ALIAS("ext3"); 114 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 115 #else 116 #define IS_EXT3_SB(sb) (0) 117 #endif 118 119 static int ext4_verify_csum_type(struct super_block *sb, 120 struct ext4_super_block *es) 121 { 122 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 123 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 124 return 1; 125 126 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 127 } 128 129 static __le32 ext4_superblock_csum(struct super_block *sb, 130 struct ext4_super_block *es) 131 { 132 struct ext4_sb_info *sbi = EXT4_SB(sb); 133 int offset = offsetof(struct ext4_super_block, s_checksum); 134 __u32 csum; 135 136 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 137 138 return cpu_to_le32(csum); 139 } 140 141 static int ext4_superblock_csum_verify(struct super_block *sb, 142 struct ext4_super_block *es) 143 { 144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 145 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 146 return 1; 147 148 return es->s_checksum == ext4_superblock_csum(sb, es); 149 } 150 151 void ext4_superblock_csum_set(struct super_block *sb) 152 { 153 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 154 155 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 156 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 157 return; 158 159 es->s_checksum = ext4_superblock_csum(sb, es); 160 } 161 162 void *ext4_kvmalloc(size_t size, gfp_t flags) 163 { 164 void *ret; 165 166 ret = kmalloc(size, flags | __GFP_NOWARN); 167 if (!ret) 168 ret = __vmalloc(size, flags, PAGE_KERNEL); 169 return ret; 170 } 171 172 void *ext4_kvzalloc(size_t size, gfp_t flags) 173 { 174 void *ret; 175 176 ret = kzalloc(size, flags | __GFP_NOWARN); 177 if (!ret) 178 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 179 return ret; 180 } 181 182 void ext4_kvfree(void *ptr) 183 { 184 if (is_vmalloc_addr(ptr)) 185 vfree(ptr); 186 else 187 kfree(ptr); 188 189 } 190 191 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 192 struct ext4_group_desc *bg) 193 { 194 return le32_to_cpu(bg->bg_block_bitmap_lo) | 195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 196 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 197 } 198 199 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 200 struct ext4_group_desc *bg) 201 { 202 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 204 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 205 } 206 207 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_inode_table_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 213 } 214 215 __u32 ext4_free_group_clusters(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 221 } 222 223 __u32 ext4_free_inodes_count(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 229 } 230 231 __u32 ext4_used_dirs_count(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_itable_unused_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_itable_unused_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 245 } 246 247 void ext4_block_bitmap_set(struct super_block *sb, 248 struct ext4_group_desc *bg, ext4_fsblk_t blk) 249 { 250 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 252 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 253 } 254 255 void ext4_inode_bitmap_set(struct super_block *sb, 256 struct ext4_group_desc *bg, ext4_fsblk_t blk) 257 { 258 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 260 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 261 } 262 263 void ext4_inode_table_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_free_group_clusters_set(struct super_block *sb, 272 struct ext4_group_desc *bg, __u32 count) 273 { 274 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 277 } 278 279 void ext4_free_inodes_set(struct super_block *sb, 280 struct ext4_group_desc *bg, __u32 count) 281 { 282 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 285 } 286 287 void ext4_used_dirs_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_itable_unused_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 301 } 302 303 304 static void __save_error_info(struct super_block *sb, const char *func, 305 unsigned int line) 306 { 307 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 308 309 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 310 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 311 es->s_last_error_time = cpu_to_le32(get_seconds()); 312 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 313 es->s_last_error_line = cpu_to_le32(line); 314 if (!es->s_first_error_time) { 315 es->s_first_error_time = es->s_last_error_time; 316 strncpy(es->s_first_error_func, func, 317 sizeof(es->s_first_error_func)); 318 es->s_first_error_line = cpu_to_le32(line); 319 es->s_first_error_ino = es->s_last_error_ino; 320 es->s_first_error_block = es->s_last_error_block; 321 } 322 /* 323 * Start the daily error reporting function if it hasn't been 324 * started already 325 */ 326 if (!es->s_error_count) 327 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 328 le32_add_cpu(&es->s_error_count, 1); 329 } 330 331 static void save_error_info(struct super_block *sb, const char *func, 332 unsigned int line) 333 { 334 __save_error_info(sb, func, line); 335 ext4_commit_super(sb, 1); 336 } 337 338 /* 339 * The del_gendisk() function uninitializes the disk-specific data 340 * structures, including the bdi structure, without telling anyone 341 * else. Once this happens, any attempt to call mark_buffer_dirty() 342 * (for example, by ext4_commit_super), will cause a kernel OOPS. 343 * This is a kludge to prevent these oops until we can put in a proper 344 * hook in del_gendisk() to inform the VFS and file system layers. 345 */ 346 static int block_device_ejected(struct super_block *sb) 347 { 348 struct inode *bd_inode = sb->s_bdev->bd_inode; 349 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 350 351 return bdi->dev == NULL; 352 } 353 354 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 355 { 356 struct super_block *sb = journal->j_private; 357 struct ext4_sb_info *sbi = EXT4_SB(sb); 358 int error = is_journal_aborted(journal); 359 struct ext4_journal_cb_entry *jce; 360 361 BUG_ON(txn->t_state == T_FINISHED); 362 spin_lock(&sbi->s_md_lock); 363 while (!list_empty(&txn->t_private_list)) { 364 jce = list_entry(txn->t_private_list.next, 365 struct ext4_journal_cb_entry, jce_list); 366 list_del_init(&jce->jce_list); 367 spin_unlock(&sbi->s_md_lock); 368 jce->jce_func(sb, jce, error); 369 spin_lock(&sbi->s_md_lock); 370 } 371 spin_unlock(&sbi->s_md_lock); 372 } 373 374 /* Deal with the reporting of failure conditions on a filesystem such as 375 * inconsistencies detected or read IO failures. 376 * 377 * On ext2, we can store the error state of the filesystem in the 378 * superblock. That is not possible on ext4, because we may have other 379 * write ordering constraints on the superblock which prevent us from 380 * writing it out straight away; and given that the journal is about to 381 * be aborted, we can't rely on the current, or future, transactions to 382 * write out the superblock safely. 383 * 384 * We'll just use the jbd2_journal_abort() error code to record an error in 385 * the journal instead. On recovery, the journal will complain about 386 * that error until we've noted it down and cleared it. 387 */ 388 389 static void ext4_handle_error(struct super_block *sb) 390 { 391 if (sb->s_flags & MS_RDONLY) 392 return; 393 394 if (!test_opt(sb, ERRORS_CONT)) { 395 journal_t *journal = EXT4_SB(sb)->s_journal; 396 397 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 398 if (journal) 399 jbd2_journal_abort(journal, -EIO); 400 } 401 if (test_opt(sb, ERRORS_RO)) { 402 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 403 /* 404 * Make sure updated value of ->s_mount_flags will be visible 405 * before ->s_flags update 406 */ 407 smp_wmb(); 408 sb->s_flags |= MS_RDONLY; 409 } 410 if (test_opt(sb, ERRORS_PANIC)) 411 panic("EXT4-fs (device %s): panic forced after error\n", 412 sb->s_id); 413 } 414 415 #define ext4_error_ratelimit(sb) \ 416 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 417 "EXT4-fs error") 418 419 void __ext4_error(struct super_block *sb, const char *function, 420 unsigned int line, const char *fmt, ...) 421 { 422 struct va_format vaf; 423 va_list args; 424 425 if (ext4_error_ratelimit(sb)) { 426 va_start(args, fmt); 427 vaf.fmt = fmt; 428 vaf.va = &args; 429 printk(KERN_CRIT 430 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 431 sb->s_id, function, line, current->comm, &vaf); 432 va_end(args); 433 } 434 save_error_info(sb, function, line); 435 ext4_handle_error(sb); 436 } 437 438 void __ext4_error_inode(struct inode *inode, const char *function, 439 unsigned int line, ext4_fsblk_t block, 440 const char *fmt, ...) 441 { 442 va_list args; 443 struct va_format vaf; 444 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 445 446 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 447 es->s_last_error_block = cpu_to_le64(block); 448 if (ext4_error_ratelimit(inode->i_sb)) { 449 va_start(args, fmt); 450 vaf.fmt = fmt; 451 vaf.va = &args; 452 if (block) 453 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 454 "inode #%lu: block %llu: comm %s: %pV\n", 455 inode->i_sb->s_id, function, line, inode->i_ino, 456 block, current->comm, &vaf); 457 else 458 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 459 "inode #%lu: comm %s: %pV\n", 460 inode->i_sb->s_id, function, line, inode->i_ino, 461 current->comm, &vaf); 462 va_end(args); 463 } 464 save_error_info(inode->i_sb, function, line); 465 ext4_handle_error(inode->i_sb); 466 } 467 468 void __ext4_error_file(struct file *file, const char *function, 469 unsigned int line, ext4_fsblk_t block, 470 const char *fmt, ...) 471 { 472 va_list args; 473 struct va_format vaf; 474 struct ext4_super_block *es; 475 struct inode *inode = file_inode(file); 476 char pathname[80], *path; 477 478 es = EXT4_SB(inode->i_sb)->s_es; 479 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 480 if (ext4_error_ratelimit(inode->i_sb)) { 481 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 482 if (IS_ERR(path)) 483 path = "(unknown)"; 484 va_start(args, fmt); 485 vaf.fmt = fmt; 486 vaf.va = &args; 487 if (block) 488 printk(KERN_CRIT 489 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 490 "block %llu: comm %s: path %s: %pV\n", 491 inode->i_sb->s_id, function, line, inode->i_ino, 492 block, current->comm, path, &vaf); 493 else 494 printk(KERN_CRIT 495 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 496 "comm %s: path %s: %pV\n", 497 inode->i_sb->s_id, function, line, inode->i_ino, 498 current->comm, path, &vaf); 499 va_end(args); 500 } 501 save_error_info(inode->i_sb, function, line); 502 ext4_handle_error(inode->i_sb); 503 } 504 505 const char *ext4_decode_error(struct super_block *sb, int errno, 506 char nbuf[16]) 507 { 508 char *errstr = NULL; 509 510 switch (errno) { 511 case -EIO: 512 errstr = "IO failure"; 513 break; 514 case -ENOMEM: 515 errstr = "Out of memory"; 516 break; 517 case -EROFS: 518 if (!sb || (EXT4_SB(sb)->s_journal && 519 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 520 errstr = "Journal has aborted"; 521 else 522 errstr = "Readonly filesystem"; 523 break; 524 default: 525 /* If the caller passed in an extra buffer for unknown 526 * errors, textualise them now. Else we just return 527 * NULL. */ 528 if (nbuf) { 529 /* Check for truncated error codes... */ 530 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 531 errstr = nbuf; 532 } 533 break; 534 } 535 536 return errstr; 537 } 538 539 /* __ext4_std_error decodes expected errors from journaling functions 540 * automatically and invokes the appropriate error response. */ 541 542 void __ext4_std_error(struct super_block *sb, const char *function, 543 unsigned int line, int errno) 544 { 545 char nbuf[16]; 546 const char *errstr; 547 548 /* Special case: if the error is EROFS, and we're not already 549 * inside a transaction, then there's really no point in logging 550 * an error. */ 551 if (errno == -EROFS && journal_current_handle() == NULL && 552 (sb->s_flags & MS_RDONLY)) 553 return; 554 555 if (ext4_error_ratelimit(sb)) { 556 errstr = ext4_decode_error(sb, errno, nbuf); 557 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 558 sb->s_id, function, line, errstr); 559 } 560 561 save_error_info(sb, function, line); 562 ext4_handle_error(sb); 563 } 564 565 /* 566 * ext4_abort is a much stronger failure handler than ext4_error. The 567 * abort function may be used to deal with unrecoverable failures such 568 * as journal IO errors or ENOMEM at a critical moment in log management. 569 * 570 * We unconditionally force the filesystem into an ABORT|READONLY state, 571 * unless the error response on the fs has been set to panic in which 572 * case we take the easy way out and panic immediately. 573 */ 574 575 void __ext4_abort(struct super_block *sb, const char *function, 576 unsigned int line, const char *fmt, ...) 577 { 578 va_list args; 579 580 save_error_info(sb, function, line); 581 va_start(args, fmt); 582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 583 function, line); 584 vprintk(fmt, args); 585 printk("\n"); 586 va_end(args); 587 588 if ((sb->s_flags & MS_RDONLY) == 0) { 589 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 590 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 591 /* 592 * Make sure updated value of ->s_mount_flags will be visible 593 * before ->s_flags update 594 */ 595 smp_wmb(); 596 sb->s_flags |= MS_RDONLY; 597 if (EXT4_SB(sb)->s_journal) 598 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 599 save_error_info(sb, function, line); 600 } 601 if (test_opt(sb, ERRORS_PANIC)) 602 panic("EXT4-fs panic from previous error\n"); 603 } 604 605 void __ext4_msg(struct super_block *sb, 606 const char *prefix, const char *fmt, ...) 607 { 608 struct va_format vaf; 609 va_list args; 610 611 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 612 return; 613 614 va_start(args, fmt); 615 vaf.fmt = fmt; 616 vaf.va = &args; 617 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 618 va_end(args); 619 } 620 621 void __ext4_warning(struct super_block *sb, const char *function, 622 unsigned int line, const char *fmt, ...) 623 { 624 struct va_format vaf; 625 va_list args; 626 627 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 628 "EXT4-fs warning")) 629 return; 630 631 va_start(args, fmt); 632 vaf.fmt = fmt; 633 vaf.va = &args; 634 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 635 sb->s_id, function, line, &vaf); 636 va_end(args); 637 } 638 639 void __ext4_grp_locked_error(const char *function, unsigned int line, 640 struct super_block *sb, ext4_group_t grp, 641 unsigned long ino, ext4_fsblk_t block, 642 const char *fmt, ...) 643 __releases(bitlock) 644 __acquires(bitlock) 645 { 646 struct va_format vaf; 647 va_list args; 648 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 649 650 es->s_last_error_ino = cpu_to_le32(ino); 651 es->s_last_error_block = cpu_to_le64(block); 652 __save_error_info(sb, function, line); 653 654 if (ext4_error_ratelimit(sb)) { 655 va_start(args, fmt); 656 vaf.fmt = fmt; 657 vaf.va = &args; 658 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 659 sb->s_id, function, line, grp); 660 if (ino) 661 printk(KERN_CONT "inode %lu: ", ino); 662 if (block) 663 printk(KERN_CONT "block %llu:", 664 (unsigned long long) block); 665 printk(KERN_CONT "%pV\n", &vaf); 666 va_end(args); 667 } 668 669 if (test_opt(sb, ERRORS_CONT)) { 670 ext4_commit_super(sb, 0); 671 return; 672 } 673 674 ext4_unlock_group(sb, grp); 675 ext4_handle_error(sb); 676 /* 677 * We only get here in the ERRORS_RO case; relocking the group 678 * may be dangerous, but nothing bad will happen since the 679 * filesystem will have already been marked read/only and the 680 * journal has been aborted. We return 1 as a hint to callers 681 * who might what to use the return value from 682 * ext4_grp_locked_error() to distinguish between the 683 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 684 * aggressively from the ext4 function in question, with a 685 * more appropriate error code. 686 */ 687 ext4_lock_group(sb, grp); 688 return; 689 } 690 691 void ext4_update_dynamic_rev(struct super_block *sb) 692 { 693 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 694 695 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 696 return; 697 698 ext4_warning(sb, 699 "updating to rev %d because of new feature flag, " 700 "running e2fsck is recommended", 701 EXT4_DYNAMIC_REV); 702 703 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 704 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 705 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 706 /* leave es->s_feature_*compat flags alone */ 707 /* es->s_uuid will be set by e2fsck if empty */ 708 709 /* 710 * The rest of the superblock fields should be zero, and if not it 711 * means they are likely already in use, so leave them alone. We 712 * can leave it up to e2fsck to clean up any inconsistencies there. 713 */ 714 } 715 716 /* 717 * Open the external journal device 718 */ 719 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 720 { 721 struct block_device *bdev; 722 char b[BDEVNAME_SIZE]; 723 724 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 725 if (IS_ERR(bdev)) 726 goto fail; 727 return bdev; 728 729 fail: 730 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 731 __bdevname(dev, b), PTR_ERR(bdev)); 732 return NULL; 733 } 734 735 /* 736 * Release the journal device 737 */ 738 static void ext4_blkdev_put(struct block_device *bdev) 739 { 740 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 741 } 742 743 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 744 { 745 struct block_device *bdev; 746 bdev = sbi->journal_bdev; 747 if (bdev) { 748 ext4_blkdev_put(bdev); 749 sbi->journal_bdev = NULL; 750 } 751 } 752 753 static inline struct inode *orphan_list_entry(struct list_head *l) 754 { 755 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 756 } 757 758 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 759 { 760 struct list_head *l; 761 762 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 763 le32_to_cpu(sbi->s_es->s_last_orphan)); 764 765 printk(KERN_ERR "sb_info orphan list:\n"); 766 list_for_each(l, &sbi->s_orphan) { 767 struct inode *inode = orphan_list_entry(l); 768 printk(KERN_ERR " " 769 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 770 inode->i_sb->s_id, inode->i_ino, inode, 771 inode->i_mode, inode->i_nlink, 772 NEXT_ORPHAN(inode)); 773 } 774 } 775 776 static void ext4_put_super(struct super_block *sb) 777 { 778 struct ext4_sb_info *sbi = EXT4_SB(sb); 779 struct ext4_super_block *es = sbi->s_es; 780 int i, err; 781 782 ext4_unregister_li_request(sb); 783 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 784 785 flush_workqueue(sbi->rsv_conversion_wq); 786 destroy_workqueue(sbi->rsv_conversion_wq); 787 788 if (sbi->s_journal) { 789 err = jbd2_journal_destroy(sbi->s_journal); 790 sbi->s_journal = NULL; 791 if (err < 0) 792 ext4_abort(sb, "Couldn't clean up the journal"); 793 } 794 795 ext4_es_unregister_shrinker(sbi); 796 del_timer_sync(&sbi->s_err_report); 797 ext4_release_system_zone(sb); 798 ext4_mb_release(sb); 799 ext4_ext_release(sb); 800 ext4_xattr_put_super(sb); 801 802 if (!(sb->s_flags & MS_RDONLY)) { 803 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 804 es->s_state = cpu_to_le16(sbi->s_mount_state); 805 } 806 if (!(sb->s_flags & MS_RDONLY)) 807 ext4_commit_super(sb, 1); 808 809 if (sbi->s_proc) { 810 remove_proc_entry("options", sbi->s_proc); 811 remove_proc_entry(sb->s_id, ext4_proc_root); 812 } 813 kobject_del(&sbi->s_kobj); 814 815 for (i = 0; i < sbi->s_gdb_count; i++) 816 brelse(sbi->s_group_desc[i]); 817 ext4_kvfree(sbi->s_group_desc); 818 ext4_kvfree(sbi->s_flex_groups); 819 percpu_counter_destroy(&sbi->s_freeclusters_counter); 820 percpu_counter_destroy(&sbi->s_freeinodes_counter); 821 percpu_counter_destroy(&sbi->s_dirs_counter); 822 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 823 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 824 brelse(sbi->s_sbh); 825 #ifdef CONFIG_QUOTA 826 for (i = 0; i < MAXQUOTAS; i++) 827 kfree(sbi->s_qf_names[i]); 828 #endif 829 830 /* Debugging code just in case the in-memory inode orphan list 831 * isn't empty. The on-disk one can be non-empty if we've 832 * detected an error and taken the fs readonly, but the 833 * in-memory list had better be clean by this point. */ 834 if (!list_empty(&sbi->s_orphan)) 835 dump_orphan_list(sb, sbi); 836 J_ASSERT(list_empty(&sbi->s_orphan)); 837 838 invalidate_bdev(sb->s_bdev); 839 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 840 /* 841 * Invalidate the journal device's buffers. We don't want them 842 * floating about in memory - the physical journal device may 843 * hotswapped, and it breaks the `ro-after' testing code. 844 */ 845 sync_blockdev(sbi->journal_bdev); 846 invalidate_bdev(sbi->journal_bdev); 847 ext4_blkdev_remove(sbi); 848 } 849 if (sbi->s_mb_cache) { 850 ext4_xattr_destroy_cache(sbi->s_mb_cache); 851 sbi->s_mb_cache = NULL; 852 } 853 if (sbi->s_mmp_tsk) 854 kthread_stop(sbi->s_mmp_tsk); 855 sb->s_fs_info = NULL; 856 /* 857 * Now that we are completely done shutting down the 858 * superblock, we need to actually destroy the kobject. 859 */ 860 kobject_put(&sbi->s_kobj); 861 wait_for_completion(&sbi->s_kobj_unregister); 862 if (sbi->s_chksum_driver) 863 crypto_free_shash(sbi->s_chksum_driver); 864 kfree(sbi->s_blockgroup_lock); 865 kfree(sbi); 866 } 867 868 static struct kmem_cache *ext4_inode_cachep; 869 870 /* 871 * Called inside transaction, so use GFP_NOFS 872 */ 873 static struct inode *ext4_alloc_inode(struct super_block *sb) 874 { 875 struct ext4_inode_info *ei; 876 877 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 878 if (!ei) 879 return NULL; 880 881 ei->vfs_inode.i_version = 1; 882 spin_lock_init(&ei->i_raw_lock); 883 INIT_LIST_HEAD(&ei->i_prealloc_list); 884 spin_lock_init(&ei->i_prealloc_lock); 885 ext4_es_init_tree(&ei->i_es_tree); 886 rwlock_init(&ei->i_es_lock); 887 INIT_LIST_HEAD(&ei->i_es_lru); 888 ei->i_es_lru_nr = 0; 889 ei->i_touch_when = 0; 890 ei->i_reserved_data_blocks = 0; 891 ei->i_reserved_meta_blocks = 0; 892 ei->i_allocated_meta_blocks = 0; 893 ei->i_da_metadata_calc_len = 0; 894 ei->i_da_metadata_calc_last_lblock = 0; 895 spin_lock_init(&(ei->i_block_reservation_lock)); 896 #ifdef CONFIG_QUOTA 897 ei->i_reserved_quota = 0; 898 #endif 899 ei->jinode = NULL; 900 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 901 spin_lock_init(&ei->i_completed_io_lock); 902 ei->i_sync_tid = 0; 903 ei->i_datasync_tid = 0; 904 atomic_set(&ei->i_ioend_count, 0); 905 atomic_set(&ei->i_unwritten, 0); 906 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 907 908 return &ei->vfs_inode; 909 } 910 911 static int ext4_drop_inode(struct inode *inode) 912 { 913 int drop = generic_drop_inode(inode); 914 915 trace_ext4_drop_inode(inode, drop); 916 return drop; 917 } 918 919 static void ext4_i_callback(struct rcu_head *head) 920 { 921 struct inode *inode = container_of(head, struct inode, i_rcu); 922 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 923 } 924 925 static void ext4_destroy_inode(struct inode *inode) 926 { 927 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 928 ext4_msg(inode->i_sb, KERN_ERR, 929 "Inode %lu (%p): orphan list check failed!", 930 inode->i_ino, EXT4_I(inode)); 931 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 932 EXT4_I(inode), sizeof(struct ext4_inode_info), 933 true); 934 dump_stack(); 935 } 936 call_rcu(&inode->i_rcu, ext4_i_callback); 937 } 938 939 static void init_once(void *foo) 940 { 941 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 942 943 INIT_LIST_HEAD(&ei->i_orphan); 944 init_rwsem(&ei->xattr_sem); 945 init_rwsem(&ei->i_data_sem); 946 inode_init_once(&ei->vfs_inode); 947 } 948 949 static int __init init_inodecache(void) 950 { 951 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 952 sizeof(struct ext4_inode_info), 953 0, (SLAB_RECLAIM_ACCOUNT| 954 SLAB_MEM_SPREAD), 955 init_once); 956 if (ext4_inode_cachep == NULL) 957 return -ENOMEM; 958 return 0; 959 } 960 961 static void destroy_inodecache(void) 962 { 963 /* 964 * Make sure all delayed rcu free inodes are flushed before we 965 * destroy cache. 966 */ 967 rcu_barrier(); 968 kmem_cache_destroy(ext4_inode_cachep); 969 } 970 971 void ext4_clear_inode(struct inode *inode) 972 { 973 invalidate_inode_buffers(inode); 974 clear_inode(inode); 975 dquot_drop(inode); 976 ext4_discard_preallocations(inode); 977 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 978 ext4_es_lru_del(inode); 979 if (EXT4_I(inode)->jinode) { 980 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 981 EXT4_I(inode)->jinode); 982 jbd2_free_inode(EXT4_I(inode)->jinode); 983 EXT4_I(inode)->jinode = NULL; 984 } 985 } 986 987 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 988 u64 ino, u32 generation) 989 { 990 struct inode *inode; 991 992 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 993 return ERR_PTR(-ESTALE); 994 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 995 return ERR_PTR(-ESTALE); 996 997 /* iget isn't really right if the inode is currently unallocated!! 998 * 999 * ext4_read_inode will return a bad_inode if the inode had been 1000 * deleted, so we should be safe. 1001 * 1002 * Currently we don't know the generation for parent directory, so 1003 * a generation of 0 means "accept any" 1004 */ 1005 inode = ext4_iget(sb, ino); 1006 if (IS_ERR(inode)) 1007 return ERR_CAST(inode); 1008 if (generation && inode->i_generation != generation) { 1009 iput(inode); 1010 return ERR_PTR(-ESTALE); 1011 } 1012 1013 return inode; 1014 } 1015 1016 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1017 int fh_len, int fh_type) 1018 { 1019 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1020 ext4_nfs_get_inode); 1021 } 1022 1023 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1024 int fh_len, int fh_type) 1025 { 1026 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1027 ext4_nfs_get_inode); 1028 } 1029 1030 /* 1031 * Try to release metadata pages (indirect blocks, directories) which are 1032 * mapped via the block device. Since these pages could have journal heads 1033 * which would prevent try_to_free_buffers() from freeing them, we must use 1034 * jbd2 layer's try_to_free_buffers() function to release them. 1035 */ 1036 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1037 gfp_t wait) 1038 { 1039 journal_t *journal = EXT4_SB(sb)->s_journal; 1040 1041 WARN_ON(PageChecked(page)); 1042 if (!page_has_buffers(page)) 1043 return 0; 1044 if (journal) 1045 return jbd2_journal_try_to_free_buffers(journal, page, 1046 wait & ~__GFP_WAIT); 1047 return try_to_free_buffers(page); 1048 } 1049 1050 #ifdef CONFIG_QUOTA 1051 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1052 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1053 1054 static int ext4_write_dquot(struct dquot *dquot); 1055 static int ext4_acquire_dquot(struct dquot *dquot); 1056 static int ext4_release_dquot(struct dquot *dquot); 1057 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1058 static int ext4_write_info(struct super_block *sb, int type); 1059 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1060 struct path *path); 1061 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1062 int format_id); 1063 static int ext4_quota_off(struct super_block *sb, int type); 1064 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1065 static int ext4_quota_on_mount(struct super_block *sb, int type); 1066 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1067 size_t len, loff_t off); 1068 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1069 const char *data, size_t len, loff_t off); 1070 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1071 unsigned int flags); 1072 static int ext4_enable_quotas(struct super_block *sb); 1073 1074 static const struct dquot_operations ext4_quota_operations = { 1075 .get_reserved_space = ext4_get_reserved_space, 1076 .write_dquot = ext4_write_dquot, 1077 .acquire_dquot = ext4_acquire_dquot, 1078 .release_dquot = ext4_release_dquot, 1079 .mark_dirty = ext4_mark_dquot_dirty, 1080 .write_info = ext4_write_info, 1081 .alloc_dquot = dquot_alloc, 1082 .destroy_dquot = dquot_destroy, 1083 }; 1084 1085 static const struct quotactl_ops ext4_qctl_operations = { 1086 .quota_on = ext4_quota_on, 1087 .quota_off = ext4_quota_off, 1088 .quota_sync = dquot_quota_sync, 1089 .get_info = dquot_get_dqinfo, 1090 .set_info = dquot_set_dqinfo, 1091 .get_dqblk = dquot_get_dqblk, 1092 .set_dqblk = dquot_set_dqblk 1093 }; 1094 1095 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1096 .quota_on_meta = ext4_quota_on_sysfile, 1097 .quota_off = ext4_quota_off_sysfile, 1098 .quota_sync = dquot_quota_sync, 1099 .get_info = dquot_get_dqinfo, 1100 .set_info = dquot_set_dqinfo, 1101 .get_dqblk = dquot_get_dqblk, 1102 .set_dqblk = dquot_set_dqblk 1103 }; 1104 #endif 1105 1106 static const struct super_operations ext4_sops = { 1107 .alloc_inode = ext4_alloc_inode, 1108 .destroy_inode = ext4_destroy_inode, 1109 .write_inode = ext4_write_inode, 1110 .dirty_inode = ext4_dirty_inode, 1111 .drop_inode = ext4_drop_inode, 1112 .evict_inode = ext4_evict_inode, 1113 .put_super = ext4_put_super, 1114 .sync_fs = ext4_sync_fs, 1115 .freeze_fs = ext4_freeze, 1116 .unfreeze_fs = ext4_unfreeze, 1117 .statfs = ext4_statfs, 1118 .remount_fs = ext4_remount, 1119 .show_options = ext4_show_options, 1120 #ifdef CONFIG_QUOTA 1121 .quota_read = ext4_quota_read, 1122 .quota_write = ext4_quota_write, 1123 #endif 1124 .bdev_try_to_free_page = bdev_try_to_free_page, 1125 }; 1126 1127 static const struct super_operations ext4_nojournal_sops = { 1128 .alloc_inode = ext4_alloc_inode, 1129 .destroy_inode = ext4_destroy_inode, 1130 .write_inode = ext4_write_inode, 1131 .dirty_inode = ext4_dirty_inode, 1132 .drop_inode = ext4_drop_inode, 1133 .evict_inode = ext4_evict_inode, 1134 .sync_fs = ext4_sync_fs_nojournal, 1135 .put_super = ext4_put_super, 1136 .statfs = ext4_statfs, 1137 .remount_fs = ext4_remount, 1138 .show_options = ext4_show_options, 1139 #ifdef CONFIG_QUOTA 1140 .quota_read = ext4_quota_read, 1141 .quota_write = ext4_quota_write, 1142 #endif 1143 .bdev_try_to_free_page = bdev_try_to_free_page, 1144 }; 1145 1146 static const struct export_operations ext4_export_ops = { 1147 .fh_to_dentry = ext4_fh_to_dentry, 1148 .fh_to_parent = ext4_fh_to_parent, 1149 .get_parent = ext4_get_parent, 1150 }; 1151 1152 enum { 1153 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1154 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1155 Opt_nouid32, Opt_debug, Opt_removed, 1156 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1157 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1158 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1159 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1160 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1161 Opt_data_err_abort, Opt_data_err_ignore, 1162 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1163 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1164 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1165 Opt_usrquota, Opt_grpquota, Opt_i_version, 1166 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1167 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1168 Opt_inode_readahead_blks, Opt_journal_ioprio, 1169 Opt_dioread_nolock, Opt_dioread_lock, 1170 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1171 Opt_max_dir_size_kb, 1172 }; 1173 1174 static const match_table_t tokens = { 1175 {Opt_bsd_df, "bsddf"}, 1176 {Opt_minix_df, "minixdf"}, 1177 {Opt_grpid, "grpid"}, 1178 {Opt_grpid, "bsdgroups"}, 1179 {Opt_nogrpid, "nogrpid"}, 1180 {Opt_nogrpid, "sysvgroups"}, 1181 {Opt_resgid, "resgid=%u"}, 1182 {Opt_resuid, "resuid=%u"}, 1183 {Opt_sb, "sb=%u"}, 1184 {Opt_err_cont, "errors=continue"}, 1185 {Opt_err_panic, "errors=panic"}, 1186 {Opt_err_ro, "errors=remount-ro"}, 1187 {Opt_nouid32, "nouid32"}, 1188 {Opt_debug, "debug"}, 1189 {Opt_removed, "oldalloc"}, 1190 {Opt_removed, "orlov"}, 1191 {Opt_user_xattr, "user_xattr"}, 1192 {Opt_nouser_xattr, "nouser_xattr"}, 1193 {Opt_acl, "acl"}, 1194 {Opt_noacl, "noacl"}, 1195 {Opt_noload, "norecovery"}, 1196 {Opt_noload, "noload"}, 1197 {Opt_removed, "nobh"}, 1198 {Opt_removed, "bh"}, 1199 {Opt_commit, "commit=%u"}, 1200 {Opt_min_batch_time, "min_batch_time=%u"}, 1201 {Opt_max_batch_time, "max_batch_time=%u"}, 1202 {Opt_journal_dev, "journal_dev=%u"}, 1203 {Opt_journal_path, "journal_path=%s"}, 1204 {Opt_journal_checksum, "journal_checksum"}, 1205 {Opt_journal_async_commit, "journal_async_commit"}, 1206 {Opt_abort, "abort"}, 1207 {Opt_data_journal, "data=journal"}, 1208 {Opt_data_ordered, "data=ordered"}, 1209 {Opt_data_writeback, "data=writeback"}, 1210 {Opt_data_err_abort, "data_err=abort"}, 1211 {Opt_data_err_ignore, "data_err=ignore"}, 1212 {Opt_offusrjquota, "usrjquota="}, 1213 {Opt_usrjquota, "usrjquota=%s"}, 1214 {Opt_offgrpjquota, "grpjquota="}, 1215 {Opt_grpjquota, "grpjquota=%s"}, 1216 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1217 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1218 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1219 {Opt_grpquota, "grpquota"}, 1220 {Opt_noquota, "noquota"}, 1221 {Opt_quota, "quota"}, 1222 {Opt_usrquota, "usrquota"}, 1223 {Opt_barrier, "barrier=%u"}, 1224 {Opt_barrier, "barrier"}, 1225 {Opt_nobarrier, "nobarrier"}, 1226 {Opt_i_version, "i_version"}, 1227 {Opt_stripe, "stripe=%u"}, 1228 {Opt_delalloc, "delalloc"}, 1229 {Opt_nodelalloc, "nodelalloc"}, 1230 {Opt_removed, "mblk_io_submit"}, 1231 {Opt_removed, "nomblk_io_submit"}, 1232 {Opt_block_validity, "block_validity"}, 1233 {Opt_noblock_validity, "noblock_validity"}, 1234 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1235 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1236 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1237 {Opt_auto_da_alloc, "auto_da_alloc"}, 1238 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1239 {Opt_dioread_nolock, "dioread_nolock"}, 1240 {Opt_dioread_lock, "dioread_lock"}, 1241 {Opt_discard, "discard"}, 1242 {Opt_nodiscard, "nodiscard"}, 1243 {Opt_init_itable, "init_itable=%u"}, 1244 {Opt_init_itable, "init_itable"}, 1245 {Opt_noinit_itable, "noinit_itable"}, 1246 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1247 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1248 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1249 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1250 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1251 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1252 {Opt_err, NULL}, 1253 }; 1254 1255 static ext4_fsblk_t get_sb_block(void **data) 1256 { 1257 ext4_fsblk_t sb_block; 1258 char *options = (char *) *data; 1259 1260 if (!options || strncmp(options, "sb=", 3) != 0) 1261 return 1; /* Default location */ 1262 1263 options += 3; 1264 /* TODO: use simple_strtoll with >32bit ext4 */ 1265 sb_block = simple_strtoul(options, &options, 0); 1266 if (*options && *options != ',') { 1267 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1268 (char *) *data); 1269 return 1; 1270 } 1271 if (*options == ',') 1272 options++; 1273 *data = (void *) options; 1274 1275 return sb_block; 1276 } 1277 1278 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1279 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1280 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1281 1282 #ifdef CONFIG_QUOTA 1283 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1284 { 1285 struct ext4_sb_info *sbi = EXT4_SB(sb); 1286 char *qname; 1287 int ret = -1; 1288 1289 if (sb_any_quota_loaded(sb) && 1290 !sbi->s_qf_names[qtype]) { 1291 ext4_msg(sb, KERN_ERR, 1292 "Cannot change journaled " 1293 "quota options when quota turned on"); 1294 return -1; 1295 } 1296 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1297 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1298 "when QUOTA feature is enabled"); 1299 return -1; 1300 } 1301 qname = match_strdup(args); 1302 if (!qname) { 1303 ext4_msg(sb, KERN_ERR, 1304 "Not enough memory for storing quotafile name"); 1305 return -1; 1306 } 1307 if (sbi->s_qf_names[qtype]) { 1308 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1309 ret = 1; 1310 else 1311 ext4_msg(sb, KERN_ERR, 1312 "%s quota file already specified", 1313 QTYPE2NAME(qtype)); 1314 goto errout; 1315 } 1316 if (strchr(qname, '/')) { 1317 ext4_msg(sb, KERN_ERR, 1318 "quotafile must be on filesystem root"); 1319 goto errout; 1320 } 1321 sbi->s_qf_names[qtype] = qname; 1322 set_opt(sb, QUOTA); 1323 return 1; 1324 errout: 1325 kfree(qname); 1326 return ret; 1327 } 1328 1329 static int clear_qf_name(struct super_block *sb, int qtype) 1330 { 1331 1332 struct ext4_sb_info *sbi = EXT4_SB(sb); 1333 1334 if (sb_any_quota_loaded(sb) && 1335 sbi->s_qf_names[qtype]) { 1336 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1337 " when quota turned on"); 1338 return -1; 1339 } 1340 kfree(sbi->s_qf_names[qtype]); 1341 sbi->s_qf_names[qtype] = NULL; 1342 return 1; 1343 } 1344 #endif 1345 1346 #define MOPT_SET 0x0001 1347 #define MOPT_CLEAR 0x0002 1348 #define MOPT_NOSUPPORT 0x0004 1349 #define MOPT_EXPLICIT 0x0008 1350 #define MOPT_CLEAR_ERR 0x0010 1351 #define MOPT_GTE0 0x0020 1352 #ifdef CONFIG_QUOTA 1353 #define MOPT_Q 0 1354 #define MOPT_QFMT 0x0040 1355 #else 1356 #define MOPT_Q MOPT_NOSUPPORT 1357 #define MOPT_QFMT MOPT_NOSUPPORT 1358 #endif 1359 #define MOPT_DATAJ 0x0080 1360 #define MOPT_NO_EXT2 0x0100 1361 #define MOPT_NO_EXT3 0x0200 1362 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1363 #define MOPT_STRING 0x0400 1364 1365 static const struct mount_opts { 1366 int token; 1367 int mount_opt; 1368 int flags; 1369 } ext4_mount_opts[] = { 1370 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1371 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1372 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1373 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1374 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1375 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1376 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1377 MOPT_EXT4_ONLY | MOPT_SET}, 1378 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1379 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1380 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1381 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1382 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1383 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1384 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1385 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1386 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1387 MOPT_EXT4_ONLY | MOPT_SET}, 1388 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1389 EXT4_MOUNT_JOURNAL_CHECKSUM), 1390 MOPT_EXT4_ONLY | MOPT_SET}, 1391 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1392 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1393 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1394 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1395 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1396 MOPT_NO_EXT2 | MOPT_SET}, 1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1398 MOPT_NO_EXT2 | MOPT_CLEAR}, 1399 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1400 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1401 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1402 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1403 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1404 {Opt_commit, 0, MOPT_GTE0}, 1405 {Opt_max_batch_time, 0, MOPT_GTE0}, 1406 {Opt_min_batch_time, 0, MOPT_GTE0}, 1407 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1408 {Opt_init_itable, 0, MOPT_GTE0}, 1409 {Opt_stripe, 0, MOPT_GTE0}, 1410 {Opt_resuid, 0, MOPT_GTE0}, 1411 {Opt_resgid, 0, MOPT_GTE0}, 1412 {Opt_journal_dev, 0, MOPT_GTE0}, 1413 {Opt_journal_path, 0, MOPT_STRING}, 1414 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1415 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1416 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1417 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1418 MOPT_NO_EXT2 | MOPT_DATAJ}, 1419 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1420 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1421 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1422 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1423 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1424 #else 1425 {Opt_acl, 0, MOPT_NOSUPPORT}, 1426 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1427 #endif 1428 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1429 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1430 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1431 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1432 MOPT_SET | MOPT_Q}, 1433 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1434 MOPT_SET | MOPT_Q}, 1435 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1436 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1437 {Opt_usrjquota, 0, MOPT_Q}, 1438 {Opt_grpjquota, 0, MOPT_Q}, 1439 {Opt_offusrjquota, 0, MOPT_Q}, 1440 {Opt_offgrpjquota, 0, MOPT_Q}, 1441 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1442 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1443 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1444 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1445 {Opt_err, 0, 0} 1446 }; 1447 1448 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1449 substring_t *args, unsigned long *journal_devnum, 1450 unsigned int *journal_ioprio, int is_remount) 1451 { 1452 struct ext4_sb_info *sbi = EXT4_SB(sb); 1453 const struct mount_opts *m; 1454 kuid_t uid; 1455 kgid_t gid; 1456 int arg = 0; 1457 1458 #ifdef CONFIG_QUOTA 1459 if (token == Opt_usrjquota) 1460 return set_qf_name(sb, USRQUOTA, &args[0]); 1461 else if (token == Opt_grpjquota) 1462 return set_qf_name(sb, GRPQUOTA, &args[0]); 1463 else if (token == Opt_offusrjquota) 1464 return clear_qf_name(sb, USRQUOTA); 1465 else if (token == Opt_offgrpjquota) 1466 return clear_qf_name(sb, GRPQUOTA); 1467 #endif 1468 switch (token) { 1469 case Opt_noacl: 1470 case Opt_nouser_xattr: 1471 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1472 break; 1473 case Opt_sb: 1474 return 1; /* handled by get_sb_block() */ 1475 case Opt_removed: 1476 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1477 return 1; 1478 case Opt_abort: 1479 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1480 return 1; 1481 case Opt_i_version: 1482 sb->s_flags |= MS_I_VERSION; 1483 return 1; 1484 } 1485 1486 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1487 if (token == m->token) 1488 break; 1489 1490 if (m->token == Opt_err) { 1491 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1492 "or missing value", opt); 1493 return -1; 1494 } 1495 1496 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1497 ext4_msg(sb, KERN_ERR, 1498 "Mount option \"%s\" incompatible with ext2", opt); 1499 return -1; 1500 } 1501 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1502 ext4_msg(sb, KERN_ERR, 1503 "Mount option \"%s\" incompatible with ext3", opt); 1504 return -1; 1505 } 1506 1507 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1508 return -1; 1509 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1510 return -1; 1511 if (m->flags & MOPT_EXPLICIT) 1512 set_opt2(sb, EXPLICIT_DELALLOC); 1513 if (m->flags & MOPT_CLEAR_ERR) 1514 clear_opt(sb, ERRORS_MASK); 1515 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1516 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1517 "options when quota turned on"); 1518 return -1; 1519 } 1520 1521 if (m->flags & MOPT_NOSUPPORT) { 1522 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1523 } else if (token == Opt_commit) { 1524 if (arg == 0) 1525 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1526 sbi->s_commit_interval = HZ * arg; 1527 } else if (token == Opt_max_batch_time) { 1528 if (arg == 0) 1529 arg = EXT4_DEF_MAX_BATCH_TIME; 1530 sbi->s_max_batch_time = arg; 1531 } else if (token == Opt_min_batch_time) { 1532 sbi->s_min_batch_time = arg; 1533 } else if (token == Opt_inode_readahead_blks) { 1534 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1535 ext4_msg(sb, KERN_ERR, 1536 "EXT4-fs: inode_readahead_blks must be " 1537 "0 or a power of 2 smaller than 2^31"); 1538 return -1; 1539 } 1540 sbi->s_inode_readahead_blks = arg; 1541 } else if (token == Opt_init_itable) { 1542 set_opt(sb, INIT_INODE_TABLE); 1543 if (!args->from) 1544 arg = EXT4_DEF_LI_WAIT_MULT; 1545 sbi->s_li_wait_mult = arg; 1546 } else if (token == Opt_max_dir_size_kb) { 1547 sbi->s_max_dir_size_kb = arg; 1548 } else if (token == Opt_stripe) { 1549 sbi->s_stripe = arg; 1550 } else if (token == Opt_resuid) { 1551 uid = make_kuid(current_user_ns(), arg); 1552 if (!uid_valid(uid)) { 1553 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1554 return -1; 1555 } 1556 sbi->s_resuid = uid; 1557 } else if (token == Opt_resgid) { 1558 gid = make_kgid(current_user_ns(), arg); 1559 if (!gid_valid(gid)) { 1560 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1561 return -1; 1562 } 1563 sbi->s_resgid = gid; 1564 } else if (token == Opt_journal_dev) { 1565 if (is_remount) { 1566 ext4_msg(sb, KERN_ERR, 1567 "Cannot specify journal on remount"); 1568 return -1; 1569 } 1570 *journal_devnum = arg; 1571 } else if (token == Opt_journal_path) { 1572 char *journal_path; 1573 struct inode *journal_inode; 1574 struct path path; 1575 int error; 1576 1577 if (is_remount) { 1578 ext4_msg(sb, KERN_ERR, 1579 "Cannot specify journal on remount"); 1580 return -1; 1581 } 1582 journal_path = match_strdup(&args[0]); 1583 if (!journal_path) { 1584 ext4_msg(sb, KERN_ERR, "error: could not dup " 1585 "journal device string"); 1586 return -1; 1587 } 1588 1589 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1590 if (error) { 1591 ext4_msg(sb, KERN_ERR, "error: could not find " 1592 "journal device path: error %d", error); 1593 kfree(journal_path); 1594 return -1; 1595 } 1596 1597 journal_inode = path.dentry->d_inode; 1598 if (!S_ISBLK(journal_inode->i_mode)) { 1599 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1600 "is not a block device", journal_path); 1601 path_put(&path); 1602 kfree(journal_path); 1603 return -1; 1604 } 1605 1606 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1607 path_put(&path); 1608 kfree(journal_path); 1609 } else if (token == Opt_journal_ioprio) { 1610 if (arg > 7) { 1611 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1612 " (must be 0-7)"); 1613 return -1; 1614 } 1615 *journal_ioprio = 1616 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1617 } else if (m->flags & MOPT_DATAJ) { 1618 if (is_remount) { 1619 if (!sbi->s_journal) 1620 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1621 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1622 ext4_msg(sb, KERN_ERR, 1623 "Cannot change data mode on remount"); 1624 return -1; 1625 } 1626 } else { 1627 clear_opt(sb, DATA_FLAGS); 1628 sbi->s_mount_opt |= m->mount_opt; 1629 } 1630 #ifdef CONFIG_QUOTA 1631 } else if (m->flags & MOPT_QFMT) { 1632 if (sb_any_quota_loaded(sb) && 1633 sbi->s_jquota_fmt != m->mount_opt) { 1634 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1635 "quota options when quota turned on"); 1636 return -1; 1637 } 1638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1639 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1640 ext4_msg(sb, KERN_ERR, 1641 "Cannot set journaled quota options " 1642 "when QUOTA feature is enabled"); 1643 return -1; 1644 } 1645 sbi->s_jquota_fmt = m->mount_opt; 1646 #endif 1647 } else { 1648 if (!args->from) 1649 arg = 1; 1650 if (m->flags & MOPT_CLEAR) 1651 arg = !arg; 1652 else if (unlikely(!(m->flags & MOPT_SET))) { 1653 ext4_msg(sb, KERN_WARNING, 1654 "buggy handling of option %s", opt); 1655 WARN_ON(1); 1656 return -1; 1657 } 1658 if (arg != 0) 1659 sbi->s_mount_opt |= m->mount_opt; 1660 else 1661 sbi->s_mount_opt &= ~m->mount_opt; 1662 } 1663 return 1; 1664 } 1665 1666 static int parse_options(char *options, struct super_block *sb, 1667 unsigned long *journal_devnum, 1668 unsigned int *journal_ioprio, 1669 int is_remount) 1670 { 1671 struct ext4_sb_info *sbi = EXT4_SB(sb); 1672 char *p; 1673 substring_t args[MAX_OPT_ARGS]; 1674 int token; 1675 1676 if (!options) 1677 return 1; 1678 1679 while ((p = strsep(&options, ",")) != NULL) { 1680 if (!*p) 1681 continue; 1682 /* 1683 * Initialize args struct so we know whether arg was 1684 * found; some options take optional arguments. 1685 */ 1686 args[0].to = args[0].from = NULL; 1687 token = match_token(p, tokens, args); 1688 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1689 journal_ioprio, is_remount) < 0) 1690 return 0; 1691 } 1692 #ifdef CONFIG_QUOTA 1693 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1694 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1695 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1696 "feature is enabled"); 1697 return 0; 1698 } 1699 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1700 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1701 clear_opt(sb, USRQUOTA); 1702 1703 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1704 clear_opt(sb, GRPQUOTA); 1705 1706 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1707 ext4_msg(sb, KERN_ERR, "old and new quota " 1708 "format mixing"); 1709 return 0; 1710 } 1711 1712 if (!sbi->s_jquota_fmt) { 1713 ext4_msg(sb, KERN_ERR, "journaled quota format " 1714 "not specified"); 1715 return 0; 1716 } 1717 } else { 1718 if (sbi->s_jquota_fmt) { 1719 ext4_msg(sb, KERN_ERR, "journaled quota format " 1720 "specified with no journaling " 1721 "enabled"); 1722 return 0; 1723 } 1724 } 1725 #endif 1726 if (test_opt(sb, DIOREAD_NOLOCK)) { 1727 int blocksize = 1728 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1729 1730 if (blocksize < PAGE_CACHE_SIZE) { 1731 ext4_msg(sb, KERN_ERR, "can't mount with " 1732 "dioread_nolock if block size != PAGE_SIZE"); 1733 return 0; 1734 } 1735 } 1736 return 1; 1737 } 1738 1739 static inline void ext4_show_quota_options(struct seq_file *seq, 1740 struct super_block *sb) 1741 { 1742 #if defined(CONFIG_QUOTA) 1743 struct ext4_sb_info *sbi = EXT4_SB(sb); 1744 1745 if (sbi->s_jquota_fmt) { 1746 char *fmtname = ""; 1747 1748 switch (sbi->s_jquota_fmt) { 1749 case QFMT_VFS_OLD: 1750 fmtname = "vfsold"; 1751 break; 1752 case QFMT_VFS_V0: 1753 fmtname = "vfsv0"; 1754 break; 1755 case QFMT_VFS_V1: 1756 fmtname = "vfsv1"; 1757 break; 1758 } 1759 seq_printf(seq, ",jqfmt=%s", fmtname); 1760 } 1761 1762 if (sbi->s_qf_names[USRQUOTA]) 1763 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1764 1765 if (sbi->s_qf_names[GRPQUOTA]) 1766 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1767 #endif 1768 } 1769 1770 static const char *token2str(int token) 1771 { 1772 const struct match_token *t; 1773 1774 for (t = tokens; t->token != Opt_err; t++) 1775 if (t->token == token && !strchr(t->pattern, '=')) 1776 break; 1777 return t->pattern; 1778 } 1779 1780 /* 1781 * Show an option if 1782 * - it's set to a non-default value OR 1783 * - if the per-sb default is different from the global default 1784 */ 1785 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1786 int nodefs) 1787 { 1788 struct ext4_sb_info *sbi = EXT4_SB(sb); 1789 struct ext4_super_block *es = sbi->s_es; 1790 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1791 const struct mount_opts *m; 1792 char sep = nodefs ? '\n' : ','; 1793 1794 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1795 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1796 1797 if (sbi->s_sb_block != 1) 1798 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1799 1800 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1801 int want_set = m->flags & MOPT_SET; 1802 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1803 (m->flags & MOPT_CLEAR_ERR)) 1804 continue; 1805 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1806 continue; /* skip if same as the default */ 1807 if ((want_set && 1808 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1809 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1810 continue; /* select Opt_noFoo vs Opt_Foo */ 1811 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1812 } 1813 1814 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1815 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1816 SEQ_OPTS_PRINT("resuid=%u", 1817 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1818 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1819 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1820 SEQ_OPTS_PRINT("resgid=%u", 1821 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1822 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1823 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1824 SEQ_OPTS_PUTS("errors=remount-ro"); 1825 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1826 SEQ_OPTS_PUTS("errors=continue"); 1827 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1828 SEQ_OPTS_PUTS("errors=panic"); 1829 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1830 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1831 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1832 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1833 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1834 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1835 if (sb->s_flags & MS_I_VERSION) 1836 SEQ_OPTS_PUTS("i_version"); 1837 if (nodefs || sbi->s_stripe) 1838 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1839 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1840 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1841 SEQ_OPTS_PUTS("data=journal"); 1842 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1843 SEQ_OPTS_PUTS("data=ordered"); 1844 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1845 SEQ_OPTS_PUTS("data=writeback"); 1846 } 1847 if (nodefs || 1848 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1849 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1850 sbi->s_inode_readahead_blks); 1851 1852 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1853 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1854 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1855 if (nodefs || sbi->s_max_dir_size_kb) 1856 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1857 1858 ext4_show_quota_options(seq, sb); 1859 return 0; 1860 } 1861 1862 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1863 { 1864 return _ext4_show_options(seq, root->d_sb, 0); 1865 } 1866 1867 static int options_seq_show(struct seq_file *seq, void *offset) 1868 { 1869 struct super_block *sb = seq->private; 1870 int rc; 1871 1872 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1873 rc = _ext4_show_options(seq, sb, 1); 1874 seq_puts(seq, "\n"); 1875 return rc; 1876 } 1877 1878 static int options_open_fs(struct inode *inode, struct file *file) 1879 { 1880 return single_open(file, options_seq_show, PDE_DATA(inode)); 1881 } 1882 1883 static const struct file_operations ext4_seq_options_fops = { 1884 .owner = THIS_MODULE, 1885 .open = options_open_fs, 1886 .read = seq_read, 1887 .llseek = seq_lseek, 1888 .release = single_release, 1889 }; 1890 1891 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1892 int read_only) 1893 { 1894 struct ext4_sb_info *sbi = EXT4_SB(sb); 1895 int res = 0; 1896 1897 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1898 ext4_msg(sb, KERN_ERR, "revision level too high, " 1899 "forcing read-only mode"); 1900 res = MS_RDONLY; 1901 } 1902 if (read_only) 1903 goto done; 1904 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1905 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1906 "running e2fsck is recommended"); 1907 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1908 ext4_msg(sb, KERN_WARNING, 1909 "warning: mounting fs with errors, " 1910 "running e2fsck is recommended"); 1911 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1912 le16_to_cpu(es->s_mnt_count) >= 1913 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1914 ext4_msg(sb, KERN_WARNING, 1915 "warning: maximal mount count reached, " 1916 "running e2fsck is recommended"); 1917 else if (le32_to_cpu(es->s_checkinterval) && 1918 (le32_to_cpu(es->s_lastcheck) + 1919 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1920 ext4_msg(sb, KERN_WARNING, 1921 "warning: checktime reached, " 1922 "running e2fsck is recommended"); 1923 if (!sbi->s_journal) 1924 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1925 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1926 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1927 le16_add_cpu(&es->s_mnt_count, 1); 1928 es->s_mtime = cpu_to_le32(get_seconds()); 1929 ext4_update_dynamic_rev(sb); 1930 if (sbi->s_journal) 1931 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1932 1933 ext4_commit_super(sb, 1); 1934 done: 1935 if (test_opt(sb, DEBUG)) 1936 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1937 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1938 sb->s_blocksize, 1939 sbi->s_groups_count, 1940 EXT4_BLOCKS_PER_GROUP(sb), 1941 EXT4_INODES_PER_GROUP(sb), 1942 sbi->s_mount_opt, sbi->s_mount_opt2); 1943 1944 cleancache_init_fs(sb); 1945 return res; 1946 } 1947 1948 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1949 { 1950 struct ext4_sb_info *sbi = EXT4_SB(sb); 1951 struct flex_groups *new_groups; 1952 int size; 1953 1954 if (!sbi->s_log_groups_per_flex) 1955 return 0; 1956 1957 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1958 if (size <= sbi->s_flex_groups_allocated) 1959 return 0; 1960 1961 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1962 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1963 if (!new_groups) { 1964 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1965 size / (int) sizeof(struct flex_groups)); 1966 return -ENOMEM; 1967 } 1968 1969 if (sbi->s_flex_groups) { 1970 memcpy(new_groups, sbi->s_flex_groups, 1971 (sbi->s_flex_groups_allocated * 1972 sizeof(struct flex_groups))); 1973 ext4_kvfree(sbi->s_flex_groups); 1974 } 1975 sbi->s_flex_groups = new_groups; 1976 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1977 return 0; 1978 } 1979 1980 static int ext4_fill_flex_info(struct super_block *sb) 1981 { 1982 struct ext4_sb_info *sbi = EXT4_SB(sb); 1983 struct ext4_group_desc *gdp = NULL; 1984 ext4_group_t flex_group; 1985 int i, err; 1986 1987 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1988 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1989 sbi->s_log_groups_per_flex = 0; 1990 return 1; 1991 } 1992 1993 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1994 if (err) 1995 goto failed; 1996 1997 for (i = 0; i < sbi->s_groups_count; i++) { 1998 gdp = ext4_get_group_desc(sb, i, NULL); 1999 2000 flex_group = ext4_flex_group(sbi, i); 2001 atomic_add(ext4_free_inodes_count(sb, gdp), 2002 &sbi->s_flex_groups[flex_group].free_inodes); 2003 atomic64_add(ext4_free_group_clusters(sb, gdp), 2004 &sbi->s_flex_groups[flex_group].free_clusters); 2005 atomic_add(ext4_used_dirs_count(sb, gdp), 2006 &sbi->s_flex_groups[flex_group].used_dirs); 2007 } 2008 2009 return 1; 2010 failed: 2011 return 0; 2012 } 2013 2014 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 2015 struct ext4_group_desc *gdp) 2016 { 2017 int offset; 2018 __u16 crc = 0; 2019 __le32 le_group = cpu_to_le32(block_group); 2020 2021 if ((sbi->s_es->s_feature_ro_compat & 2022 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 2023 /* Use new metadata_csum algorithm */ 2024 __le16 save_csum; 2025 __u32 csum32; 2026 2027 save_csum = gdp->bg_checksum; 2028 gdp->bg_checksum = 0; 2029 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2030 sizeof(le_group)); 2031 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2032 sbi->s_desc_size); 2033 gdp->bg_checksum = save_csum; 2034 2035 crc = csum32 & 0xFFFF; 2036 goto out; 2037 } 2038 2039 /* old crc16 code */ 2040 offset = offsetof(struct ext4_group_desc, bg_checksum); 2041 2042 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2043 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2044 crc = crc16(crc, (__u8 *)gdp, offset); 2045 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2046 /* for checksum of struct ext4_group_desc do the rest...*/ 2047 if ((sbi->s_es->s_feature_incompat & 2048 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2049 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2050 crc = crc16(crc, (__u8 *)gdp + offset, 2051 le16_to_cpu(sbi->s_es->s_desc_size) - 2052 offset); 2053 2054 out: 2055 return cpu_to_le16(crc); 2056 } 2057 2058 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2059 struct ext4_group_desc *gdp) 2060 { 2061 if (ext4_has_group_desc_csum(sb) && 2062 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2063 block_group, gdp))) 2064 return 0; 2065 2066 return 1; 2067 } 2068 2069 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2070 struct ext4_group_desc *gdp) 2071 { 2072 if (!ext4_has_group_desc_csum(sb)) 2073 return; 2074 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2075 } 2076 2077 /* Called at mount-time, super-block is locked */ 2078 static int ext4_check_descriptors(struct super_block *sb, 2079 ext4_group_t *first_not_zeroed) 2080 { 2081 struct ext4_sb_info *sbi = EXT4_SB(sb); 2082 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2083 ext4_fsblk_t last_block; 2084 ext4_fsblk_t block_bitmap; 2085 ext4_fsblk_t inode_bitmap; 2086 ext4_fsblk_t inode_table; 2087 int flexbg_flag = 0; 2088 ext4_group_t i, grp = sbi->s_groups_count; 2089 2090 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2091 flexbg_flag = 1; 2092 2093 ext4_debug("Checking group descriptors"); 2094 2095 for (i = 0; i < sbi->s_groups_count; i++) { 2096 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2097 2098 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2099 last_block = ext4_blocks_count(sbi->s_es) - 1; 2100 else 2101 last_block = first_block + 2102 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2103 2104 if ((grp == sbi->s_groups_count) && 2105 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2106 grp = i; 2107 2108 block_bitmap = ext4_block_bitmap(sb, gdp); 2109 if (block_bitmap < first_block || block_bitmap > last_block) { 2110 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2111 "Block bitmap for group %u not in group " 2112 "(block %llu)!", i, block_bitmap); 2113 return 0; 2114 } 2115 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2116 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2117 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2118 "Inode bitmap for group %u not in group " 2119 "(block %llu)!", i, inode_bitmap); 2120 return 0; 2121 } 2122 inode_table = ext4_inode_table(sb, gdp); 2123 if (inode_table < first_block || 2124 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2125 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2126 "Inode table for group %u not in group " 2127 "(block %llu)!", i, inode_table); 2128 return 0; 2129 } 2130 ext4_lock_group(sb, i); 2131 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2132 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2133 "Checksum for group %u failed (%u!=%u)", 2134 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2135 gdp)), le16_to_cpu(gdp->bg_checksum)); 2136 if (!(sb->s_flags & MS_RDONLY)) { 2137 ext4_unlock_group(sb, i); 2138 return 0; 2139 } 2140 } 2141 ext4_unlock_group(sb, i); 2142 if (!flexbg_flag) 2143 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2144 } 2145 if (NULL != first_not_zeroed) 2146 *first_not_zeroed = grp; 2147 2148 ext4_free_blocks_count_set(sbi->s_es, 2149 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2150 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2151 return 1; 2152 } 2153 2154 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2155 * the superblock) which were deleted from all directories, but held open by 2156 * a process at the time of a crash. We walk the list and try to delete these 2157 * inodes at recovery time (only with a read-write filesystem). 2158 * 2159 * In order to keep the orphan inode chain consistent during traversal (in 2160 * case of crash during recovery), we link each inode into the superblock 2161 * orphan list_head and handle it the same way as an inode deletion during 2162 * normal operation (which journals the operations for us). 2163 * 2164 * We only do an iget() and an iput() on each inode, which is very safe if we 2165 * accidentally point at an in-use or already deleted inode. The worst that 2166 * can happen in this case is that we get a "bit already cleared" message from 2167 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2168 * e2fsck was run on this filesystem, and it must have already done the orphan 2169 * inode cleanup for us, so we can safely abort without any further action. 2170 */ 2171 static void ext4_orphan_cleanup(struct super_block *sb, 2172 struct ext4_super_block *es) 2173 { 2174 unsigned int s_flags = sb->s_flags; 2175 int nr_orphans = 0, nr_truncates = 0; 2176 #ifdef CONFIG_QUOTA 2177 int i; 2178 #endif 2179 if (!es->s_last_orphan) { 2180 jbd_debug(4, "no orphan inodes to clean up\n"); 2181 return; 2182 } 2183 2184 if (bdev_read_only(sb->s_bdev)) { 2185 ext4_msg(sb, KERN_ERR, "write access " 2186 "unavailable, skipping orphan cleanup"); 2187 return; 2188 } 2189 2190 /* Check if feature set would not allow a r/w mount */ 2191 if (!ext4_feature_set_ok(sb, 0)) { 2192 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2193 "unknown ROCOMPAT features"); 2194 return; 2195 } 2196 2197 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2198 /* don't clear list on RO mount w/ errors */ 2199 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2200 jbd_debug(1, "Errors on filesystem, " 2201 "clearing orphan list.\n"); 2202 es->s_last_orphan = 0; 2203 } 2204 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2205 return; 2206 } 2207 2208 if (s_flags & MS_RDONLY) { 2209 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2210 sb->s_flags &= ~MS_RDONLY; 2211 } 2212 #ifdef CONFIG_QUOTA 2213 /* Needed for iput() to work correctly and not trash data */ 2214 sb->s_flags |= MS_ACTIVE; 2215 /* Turn on quotas so that they are updated correctly */ 2216 for (i = 0; i < MAXQUOTAS; i++) { 2217 if (EXT4_SB(sb)->s_qf_names[i]) { 2218 int ret = ext4_quota_on_mount(sb, i); 2219 if (ret < 0) 2220 ext4_msg(sb, KERN_ERR, 2221 "Cannot turn on journaled " 2222 "quota: error %d", ret); 2223 } 2224 } 2225 #endif 2226 2227 while (es->s_last_orphan) { 2228 struct inode *inode; 2229 2230 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2231 if (IS_ERR(inode)) { 2232 es->s_last_orphan = 0; 2233 break; 2234 } 2235 2236 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2237 dquot_initialize(inode); 2238 if (inode->i_nlink) { 2239 if (test_opt(sb, DEBUG)) 2240 ext4_msg(sb, KERN_DEBUG, 2241 "%s: truncating inode %lu to %lld bytes", 2242 __func__, inode->i_ino, inode->i_size); 2243 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2244 inode->i_ino, inode->i_size); 2245 mutex_lock(&inode->i_mutex); 2246 truncate_inode_pages(inode->i_mapping, inode->i_size); 2247 ext4_truncate(inode); 2248 mutex_unlock(&inode->i_mutex); 2249 nr_truncates++; 2250 } else { 2251 if (test_opt(sb, DEBUG)) 2252 ext4_msg(sb, KERN_DEBUG, 2253 "%s: deleting unreferenced inode %lu", 2254 __func__, inode->i_ino); 2255 jbd_debug(2, "deleting unreferenced inode %lu\n", 2256 inode->i_ino); 2257 nr_orphans++; 2258 } 2259 iput(inode); /* The delete magic happens here! */ 2260 } 2261 2262 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2263 2264 if (nr_orphans) 2265 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2266 PLURAL(nr_orphans)); 2267 if (nr_truncates) 2268 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2269 PLURAL(nr_truncates)); 2270 #ifdef CONFIG_QUOTA 2271 /* Turn quotas off */ 2272 for (i = 0; i < MAXQUOTAS; i++) { 2273 if (sb_dqopt(sb)->files[i]) 2274 dquot_quota_off(sb, i); 2275 } 2276 #endif 2277 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2278 } 2279 2280 /* 2281 * Maximal extent format file size. 2282 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2283 * extent format containers, within a sector_t, and within i_blocks 2284 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2285 * so that won't be a limiting factor. 2286 * 2287 * However there is other limiting factor. We do store extents in the form 2288 * of starting block and length, hence the resulting length of the extent 2289 * covering maximum file size must fit into on-disk format containers as 2290 * well. Given that length is always by 1 unit bigger than max unit (because 2291 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2292 * 2293 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2294 */ 2295 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2296 { 2297 loff_t res; 2298 loff_t upper_limit = MAX_LFS_FILESIZE; 2299 2300 /* small i_blocks in vfs inode? */ 2301 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2302 /* 2303 * CONFIG_LBDAF is not enabled implies the inode 2304 * i_block represent total blocks in 512 bytes 2305 * 32 == size of vfs inode i_blocks * 8 2306 */ 2307 upper_limit = (1LL << 32) - 1; 2308 2309 /* total blocks in file system block size */ 2310 upper_limit >>= (blkbits - 9); 2311 upper_limit <<= blkbits; 2312 } 2313 2314 /* 2315 * 32-bit extent-start container, ee_block. We lower the maxbytes 2316 * by one fs block, so ee_len can cover the extent of maximum file 2317 * size 2318 */ 2319 res = (1LL << 32) - 1; 2320 res <<= blkbits; 2321 2322 /* Sanity check against vm- & vfs- imposed limits */ 2323 if (res > upper_limit) 2324 res = upper_limit; 2325 2326 return res; 2327 } 2328 2329 /* 2330 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2331 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2332 * We need to be 1 filesystem block less than the 2^48 sector limit. 2333 */ 2334 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2335 { 2336 loff_t res = EXT4_NDIR_BLOCKS; 2337 int meta_blocks; 2338 loff_t upper_limit; 2339 /* This is calculated to be the largest file size for a dense, block 2340 * mapped file such that the file's total number of 512-byte sectors, 2341 * including data and all indirect blocks, does not exceed (2^48 - 1). 2342 * 2343 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2344 * number of 512-byte sectors of the file. 2345 */ 2346 2347 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2348 /* 2349 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2350 * the inode i_block field represents total file blocks in 2351 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2352 */ 2353 upper_limit = (1LL << 32) - 1; 2354 2355 /* total blocks in file system block size */ 2356 upper_limit >>= (bits - 9); 2357 2358 } else { 2359 /* 2360 * We use 48 bit ext4_inode i_blocks 2361 * With EXT4_HUGE_FILE_FL set the i_blocks 2362 * represent total number of blocks in 2363 * file system block size 2364 */ 2365 upper_limit = (1LL << 48) - 1; 2366 2367 } 2368 2369 /* indirect blocks */ 2370 meta_blocks = 1; 2371 /* double indirect blocks */ 2372 meta_blocks += 1 + (1LL << (bits-2)); 2373 /* tripple indirect blocks */ 2374 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2375 2376 upper_limit -= meta_blocks; 2377 upper_limit <<= bits; 2378 2379 res += 1LL << (bits-2); 2380 res += 1LL << (2*(bits-2)); 2381 res += 1LL << (3*(bits-2)); 2382 res <<= bits; 2383 if (res > upper_limit) 2384 res = upper_limit; 2385 2386 if (res > MAX_LFS_FILESIZE) 2387 res = MAX_LFS_FILESIZE; 2388 2389 return res; 2390 } 2391 2392 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2393 ext4_fsblk_t logical_sb_block, int nr) 2394 { 2395 struct ext4_sb_info *sbi = EXT4_SB(sb); 2396 ext4_group_t bg, first_meta_bg; 2397 int has_super = 0; 2398 2399 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2400 2401 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2402 nr < first_meta_bg) 2403 return logical_sb_block + nr + 1; 2404 bg = sbi->s_desc_per_block * nr; 2405 if (ext4_bg_has_super(sb, bg)) 2406 has_super = 1; 2407 2408 /* 2409 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2410 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2411 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2412 * compensate. 2413 */ 2414 if (sb->s_blocksize == 1024 && nr == 0 && 2415 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2416 has_super++; 2417 2418 return (has_super + ext4_group_first_block_no(sb, bg)); 2419 } 2420 2421 /** 2422 * ext4_get_stripe_size: Get the stripe size. 2423 * @sbi: In memory super block info 2424 * 2425 * If we have specified it via mount option, then 2426 * use the mount option value. If the value specified at mount time is 2427 * greater than the blocks per group use the super block value. 2428 * If the super block value is greater than blocks per group return 0. 2429 * Allocator needs it be less than blocks per group. 2430 * 2431 */ 2432 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2433 { 2434 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2435 unsigned long stripe_width = 2436 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2437 int ret; 2438 2439 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2440 ret = sbi->s_stripe; 2441 else if (stripe_width <= sbi->s_blocks_per_group) 2442 ret = stripe_width; 2443 else if (stride <= sbi->s_blocks_per_group) 2444 ret = stride; 2445 else 2446 ret = 0; 2447 2448 /* 2449 * If the stripe width is 1, this makes no sense and 2450 * we set it to 0 to turn off stripe handling code. 2451 */ 2452 if (ret <= 1) 2453 ret = 0; 2454 2455 return ret; 2456 } 2457 2458 /* sysfs supprt */ 2459 2460 struct ext4_attr { 2461 struct attribute attr; 2462 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2463 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2464 const char *, size_t); 2465 union { 2466 int offset; 2467 int deprecated_val; 2468 } u; 2469 }; 2470 2471 static int parse_strtoull(const char *buf, 2472 unsigned long long max, unsigned long long *value) 2473 { 2474 int ret; 2475 2476 ret = kstrtoull(skip_spaces(buf), 0, value); 2477 if (!ret && *value > max) 2478 ret = -EINVAL; 2479 return ret; 2480 } 2481 2482 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2483 struct ext4_sb_info *sbi, 2484 char *buf) 2485 { 2486 return snprintf(buf, PAGE_SIZE, "%llu\n", 2487 (s64) EXT4_C2B(sbi, 2488 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2489 } 2490 2491 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2492 struct ext4_sb_info *sbi, char *buf) 2493 { 2494 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2495 2496 if (!sb->s_bdev->bd_part) 2497 return snprintf(buf, PAGE_SIZE, "0\n"); 2498 return snprintf(buf, PAGE_SIZE, "%lu\n", 2499 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2500 sbi->s_sectors_written_start) >> 1); 2501 } 2502 2503 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2504 struct ext4_sb_info *sbi, char *buf) 2505 { 2506 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2507 2508 if (!sb->s_bdev->bd_part) 2509 return snprintf(buf, PAGE_SIZE, "0\n"); 2510 return snprintf(buf, PAGE_SIZE, "%llu\n", 2511 (unsigned long long)(sbi->s_kbytes_written + 2512 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2513 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2514 } 2515 2516 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2517 struct ext4_sb_info *sbi, 2518 const char *buf, size_t count) 2519 { 2520 unsigned long t; 2521 int ret; 2522 2523 ret = kstrtoul(skip_spaces(buf), 0, &t); 2524 if (ret) 2525 return ret; 2526 2527 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2528 return -EINVAL; 2529 2530 sbi->s_inode_readahead_blks = t; 2531 return count; 2532 } 2533 2534 static ssize_t sbi_ui_show(struct ext4_attr *a, 2535 struct ext4_sb_info *sbi, char *buf) 2536 { 2537 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2538 2539 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2540 } 2541 2542 static ssize_t sbi_ui_store(struct ext4_attr *a, 2543 struct ext4_sb_info *sbi, 2544 const char *buf, size_t count) 2545 { 2546 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2547 unsigned long t; 2548 int ret; 2549 2550 ret = kstrtoul(skip_spaces(buf), 0, &t); 2551 if (ret) 2552 return ret; 2553 *ui = t; 2554 return count; 2555 } 2556 2557 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2558 struct ext4_sb_info *sbi, char *buf) 2559 { 2560 return snprintf(buf, PAGE_SIZE, "%llu\n", 2561 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2562 } 2563 2564 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2565 struct ext4_sb_info *sbi, 2566 const char *buf, size_t count) 2567 { 2568 unsigned long long val; 2569 int ret; 2570 2571 if (parse_strtoull(buf, -1ULL, &val)) 2572 return -EINVAL; 2573 ret = ext4_reserve_clusters(sbi, val); 2574 2575 return ret ? ret : count; 2576 } 2577 2578 static ssize_t trigger_test_error(struct ext4_attr *a, 2579 struct ext4_sb_info *sbi, 2580 const char *buf, size_t count) 2581 { 2582 int len = count; 2583 2584 if (!capable(CAP_SYS_ADMIN)) 2585 return -EPERM; 2586 2587 if (len && buf[len-1] == '\n') 2588 len--; 2589 2590 if (len) 2591 ext4_error(sbi->s_sb, "%.*s", len, buf); 2592 return count; 2593 } 2594 2595 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2596 struct ext4_sb_info *sbi, char *buf) 2597 { 2598 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2599 } 2600 2601 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2602 static struct ext4_attr ext4_attr_##_name = { \ 2603 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2604 .show = _show, \ 2605 .store = _store, \ 2606 .u = { \ 2607 .offset = offsetof(struct ext4_sb_info, _elname),\ 2608 }, \ 2609 } 2610 #define EXT4_ATTR(name, mode, show, store) \ 2611 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2612 2613 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2614 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2615 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2616 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2617 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2618 #define ATTR_LIST(name) &ext4_attr_##name.attr 2619 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2620 static struct ext4_attr ext4_attr_##_name = { \ 2621 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2622 .show = sbi_deprecated_show, \ 2623 .u = { \ 2624 .deprecated_val = _val, \ 2625 }, \ 2626 } 2627 2628 EXT4_RO_ATTR(delayed_allocation_blocks); 2629 EXT4_RO_ATTR(session_write_kbytes); 2630 EXT4_RO_ATTR(lifetime_write_kbytes); 2631 EXT4_RW_ATTR(reserved_clusters); 2632 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2633 inode_readahead_blks_store, s_inode_readahead_blks); 2634 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2635 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2636 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2637 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2638 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2639 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2640 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2641 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2642 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2643 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2644 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval); 2645 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst); 2646 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval); 2647 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst); 2648 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval); 2649 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst); 2650 2651 static struct attribute *ext4_attrs[] = { 2652 ATTR_LIST(delayed_allocation_blocks), 2653 ATTR_LIST(session_write_kbytes), 2654 ATTR_LIST(lifetime_write_kbytes), 2655 ATTR_LIST(reserved_clusters), 2656 ATTR_LIST(inode_readahead_blks), 2657 ATTR_LIST(inode_goal), 2658 ATTR_LIST(mb_stats), 2659 ATTR_LIST(mb_max_to_scan), 2660 ATTR_LIST(mb_min_to_scan), 2661 ATTR_LIST(mb_order2_req), 2662 ATTR_LIST(mb_stream_req), 2663 ATTR_LIST(mb_group_prealloc), 2664 ATTR_LIST(max_writeback_mb_bump), 2665 ATTR_LIST(extent_max_zeroout_kb), 2666 ATTR_LIST(trigger_fs_error), 2667 ATTR_LIST(err_ratelimit_interval_ms), 2668 ATTR_LIST(err_ratelimit_burst), 2669 ATTR_LIST(warning_ratelimit_interval_ms), 2670 ATTR_LIST(warning_ratelimit_burst), 2671 ATTR_LIST(msg_ratelimit_interval_ms), 2672 ATTR_LIST(msg_ratelimit_burst), 2673 NULL, 2674 }; 2675 2676 /* Features this copy of ext4 supports */ 2677 EXT4_INFO_ATTR(lazy_itable_init); 2678 EXT4_INFO_ATTR(batched_discard); 2679 EXT4_INFO_ATTR(meta_bg_resize); 2680 2681 static struct attribute *ext4_feat_attrs[] = { 2682 ATTR_LIST(lazy_itable_init), 2683 ATTR_LIST(batched_discard), 2684 ATTR_LIST(meta_bg_resize), 2685 NULL, 2686 }; 2687 2688 static ssize_t ext4_attr_show(struct kobject *kobj, 2689 struct attribute *attr, char *buf) 2690 { 2691 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2692 s_kobj); 2693 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2694 2695 return a->show ? a->show(a, sbi, buf) : 0; 2696 } 2697 2698 static ssize_t ext4_attr_store(struct kobject *kobj, 2699 struct attribute *attr, 2700 const char *buf, size_t len) 2701 { 2702 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2703 s_kobj); 2704 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2705 2706 return a->store ? a->store(a, sbi, buf, len) : 0; 2707 } 2708 2709 static void ext4_sb_release(struct kobject *kobj) 2710 { 2711 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2712 s_kobj); 2713 complete(&sbi->s_kobj_unregister); 2714 } 2715 2716 static const struct sysfs_ops ext4_attr_ops = { 2717 .show = ext4_attr_show, 2718 .store = ext4_attr_store, 2719 }; 2720 2721 static struct kobj_type ext4_ktype = { 2722 .default_attrs = ext4_attrs, 2723 .sysfs_ops = &ext4_attr_ops, 2724 .release = ext4_sb_release, 2725 }; 2726 2727 static void ext4_feat_release(struct kobject *kobj) 2728 { 2729 complete(&ext4_feat->f_kobj_unregister); 2730 } 2731 2732 static struct kobj_type ext4_feat_ktype = { 2733 .default_attrs = ext4_feat_attrs, 2734 .sysfs_ops = &ext4_attr_ops, 2735 .release = ext4_feat_release, 2736 }; 2737 2738 /* 2739 * Check whether this filesystem can be mounted based on 2740 * the features present and the RDONLY/RDWR mount requested. 2741 * Returns 1 if this filesystem can be mounted as requested, 2742 * 0 if it cannot be. 2743 */ 2744 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2745 { 2746 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2747 ext4_msg(sb, KERN_ERR, 2748 "Couldn't mount because of " 2749 "unsupported optional features (%x)", 2750 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2751 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2752 return 0; 2753 } 2754 2755 if (readonly) 2756 return 1; 2757 2758 /* Check that feature set is OK for a read-write mount */ 2759 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2760 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2761 "unsupported optional features (%x)", 2762 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2763 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2764 return 0; 2765 } 2766 /* 2767 * Large file size enabled file system can only be mounted 2768 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2769 */ 2770 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2771 if (sizeof(blkcnt_t) < sizeof(u64)) { 2772 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2773 "cannot be mounted RDWR without " 2774 "CONFIG_LBDAF"); 2775 return 0; 2776 } 2777 } 2778 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2779 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2780 ext4_msg(sb, KERN_ERR, 2781 "Can't support bigalloc feature without " 2782 "extents feature\n"); 2783 return 0; 2784 } 2785 2786 #ifndef CONFIG_QUOTA 2787 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2788 !readonly) { 2789 ext4_msg(sb, KERN_ERR, 2790 "Filesystem with quota feature cannot be mounted RDWR " 2791 "without CONFIG_QUOTA"); 2792 return 0; 2793 } 2794 #endif /* CONFIG_QUOTA */ 2795 return 1; 2796 } 2797 2798 /* 2799 * This function is called once a day if we have errors logged 2800 * on the file system 2801 */ 2802 static void print_daily_error_info(unsigned long arg) 2803 { 2804 struct super_block *sb = (struct super_block *) arg; 2805 struct ext4_sb_info *sbi; 2806 struct ext4_super_block *es; 2807 2808 sbi = EXT4_SB(sb); 2809 es = sbi->s_es; 2810 2811 if (es->s_error_count) 2812 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2813 le32_to_cpu(es->s_error_count)); 2814 if (es->s_first_error_time) { 2815 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2816 sb->s_id, le32_to_cpu(es->s_first_error_time), 2817 (int) sizeof(es->s_first_error_func), 2818 es->s_first_error_func, 2819 le32_to_cpu(es->s_first_error_line)); 2820 if (es->s_first_error_ino) 2821 printk(": inode %u", 2822 le32_to_cpu(es->s_first_error_ino)); 2823 if (es->s_first_error_block) 2824 printk(": block %llu", (unsigned long long) 2825 le64_to_cpu(es->s_first_error_block)); 2826 printk("\n"); 2827 } 2828 if (es->s_last_error_time) { 2829 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2830 sb->s_id, le32_to_cpu(es->s_last_error_time), 2831 (int) sizeof(es->s_last_error_func), 2832 es->s_last_error_func, 2833 le32_to_cpu(es->s_last_error_line)); 2834 if (es->s_last_error_ino) 2835 printk(": inode %u", 2836 le32_to_cpu(es->s_last_error_ino)); 2837 if (es->s_last_error_block) 2838 printk(": block %llu", (unsigned long long) 2839 le64_to_cpu(es->s_last_error_block)); 2840 printk("\n"); 2841 } 2842 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2843 } 2844 2845 /* Find next suitable group and run ext4_init_inode_table */ 2846 static int ext4_run_li_request(struct ext4_li_request *elr) 2847 { 2848 struct ext4_group_desc *gdp = NULL; 2849 ext4_group_t group, ngroups; 2850 struct super_block *sb; 2851 unsigned long timeout = 0; 2852 int ret = 0; 2853 2854 sb = elr->lr_super; 2855 ngroups = EXT4_SB(sb)->s_groups_count; 2856 2857 sb_start_write(sb); 2858 for (group = elr->lr_next_group; group < ngroups; group++) { 2859 gdp = ext4_get_group_desc(sb, group, NULL); 2860 if (!gdp) { 2861 ret = 1; 2862 break; 2863 } 2864 2865 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2866 break; 2867 } 2868 2869 if (group >= ngroups) 2870 ret = 1; 2871 2872 if (!ret) { 2873 timeout = jiffies; 2874 ret = ext4_init_inode_table(sb, group, 2875 elr->lr_timeout ? 0 : 1); 2876 if (elr->lr_timeout == 0) { 2877 timeout = (jiffies - timeout) * 2878 elr->lr_sbi->s_li_wait_mult; 2879 elr->lr_timeout = timeout; 2880 } 2881 elr->lr_next_sched = jiffies + elr->lr_timeout; 2882 elr->lr_next_group = group + 1; 2883 } 2884 sb_end_write(sb); 2885 2886 return ret; 2887 } 2888 2889 /* 2890 * Remove lr_request from the list_request and free the 2891 * request structure. Should be called with li_list_mtx held 2892 */ 2893 static void ext4_remove_li_request(struct ext4_li_request *elr) 2894 { 2895 struct ext4_sb_info *sbi; 2896 2897 if (!elr) 2898 return; 2899 2900 sbi = elr->lr_sbi; 2901 2902 list_del(&elr->lr_request); 2903 sbi->s_li_request = NULL; 2904 kfree(elr); 2905 } 2906 2907 static void ext4_unregister_li_request(struct super_block *sb) 2908 { 2909 mutex_lock(&ext4_li_mtx); 2910 if (!ext4_li_info) { 2911 mutex_unlock(&ext4_li_mtx); 2912 return; 2913 } 2914 2915 mutex_lock(&ext4_li_info->li_list_mtx); 2916 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2917 mutex_unlock(&ext4_li_info->li_list_mtx); 2918 mutex_unlock(&ext4_li_mtx); 2919 } 2920 2921 static struct task_struct *ext4_lazyinit_task; 2922 2923 /* 2924 * This is the function where ext4lazyinit thread lives. It walks 2925 * through the request list searching for next scheduled filesystem. 2926 * When such a fs is found, run the lazy initialization request 2927 * (ext4_rn_li_request) and keep track of the time spend in this 2928 * function. Based on that time we compute next schedule time of 2929 * the request. When walking through the list is complete, compute 2930 * next waking time and put itself into sleep. 2931 */ 2932 static int ext4_lazyinit_thread(void *arg) 2933 { 2934 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2935 struct list_head *pos, *n; 2936 struct ext4_li_request *elr; 2937 unsigned long next_wakeup, cur; 2938 2939 BUG_ON(NULL == eli); 2940 2941 cont_thread: 2942 while (true) { 2943 next_wakeup = MAX_JIFFY_OFFSET; 2944 2945 mutex_lock(&eli->li_list_mtx); 2946 if (list_empty(&eli->li_request_list)) { 2947 mutex_unlock(&eli->li_list_mtx); 2948 goto exit_thread; 2949 } 2950 2951 list_for_each_safe(pos, n, &eli->li_request_list) { 2952 elr = list_entry(pos, struct ext4_li_request, 2953 lr_request); 2954 2955 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2956 if (ext4_run_li_request(elr) != 0) { 2957 /* error, remove the lazy_init job */ 2958 ext4_remove_li_request(elr); 2959 continue; 2960 } 2961 } 2962 2963 if (time_before(elr->lr_next_sched, next_wakeup)) 2964 next_wakeup = elr->lr_next_sched; 2965 } 2966 mutex_unlock(&eli->li_list_mtx); 2967 2968 try_to_freeze(); 2969 2970 cur = jiffies; 2971 if ((time_after_eq(cur, next_wakeup)) || 2972 (MAX_JIFFY_OFFSET == next_wakeup)) { 2973 cond_resched(); 2974 continue; 2975 } 2976 2977 schedule_timeout_interruptible(next_wakeup - cur); 2978 2979 if (kthread_should_stop()) { 2980 ext4_clear_request_list(); 2981 goto exit_thread; 2982 } 2983 } 2984 2985 exit_thread: 2986 /* 2987 * It looks like the request list is empty, but we need 2988 * to check it under the li_list_mtx lock, to prevent any 2989 * additions into it, and of course we should lock ext4_li_mtx 2990 * to atomically free the list and ext4_li_info, because at 2991 * this point another ext4 filesystem could be registering 2992 * new one. 2993 */ 2994 mutex_lock(&ext4_li_mtx); 2995 mutex_lock(&eli->li_list_mtx); 2996 if (!list_empty(&eli->li_request_list)) { 2997 mutex_unlock(&eli->li_list_mtx); 2998 mutex_unlock(&ext4_li_mtx); 2999 goto cont_thread; 3000 } 3001 mutex_unlock(&eli->li_list_mtx); 3002 kfree(ext4_li_info); 3003 ext4_li_info = NULL; 3004 mutex_unlock(&ext4_li_mtx); 3005 3006 return 0; 3007 } 3008 3009 static void ext4_clear_request_list(void) 3010 { 3011 struct list_head *pos, *n; 3012 struct ext4_li_request *elr; 3013 3014 mutex_lock(&ext4_li_info->li_list_mtx); 3015 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3016 elr = list_entry(pos, struct ext4_li_request, 3017 lr_request); 3018 ext4_remove_li_request(elr); 3019 } 3020 mutex_unlock(&ext4_li_info->li_list_mtx); 3021 } 3022 3023 static int ext4_run_lazyinit_thread(void) 3024 { 3025 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3026 ext4_li_info, "ext4lazyinit"); 3027 if (IS_ERR(ext4_lazyinit_task)) { 3028 int err = PTR_ERR(ext4_lazyinit_task); 3029 ext4_clear_request_list(); 3030 kfree(ext4_li_info); 3031 ext4_li_info = NULL; 3032 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3033 "initialization thread\n", 3034 err); 3035 return err; 3036 } 3037 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3038 return 0; 3039 } 3040 3041 /* 3042 * Check whether it make sense to run itable init. thread or not. 3043 * If there is at least one uninitialized inode table, return 3044 * corresponding group number, else the loop goes through all 3045 * groups and return total number of groups. 3046 */ 3047 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3048 { 3049 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3050 struct ext4_group_desc *gdp = NULL; 3051 3052 for (group = 0; group < ngroups; group++) { 3053 gdp = ext4_get_group_desc(sb, group, NULL); 3054 if (!gdp) 3055 continue; 3056 3057 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3058 break; 3059 } 3060 3061 return group; 3062 } 3063 3064 static int ext4_li_info_new(void) 3065 { 3066 struct ext4_lazy_init *eli = NULL; 3067 3068 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3069 if (!eli) 3070 return -ENOMEM; 3071 3072 INIT_LIST_HEAD(&eli->li_request_list); 3073 mutex_init(&eli->li_list_mtx); 3074 3075 eli->li_state |= EXT4_LAZYINIT_QUIT; 3076 3077 ext4_li_info = eli; 3078 3079 return 0; 3080 } 3081 3082 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3083 ext4_group_t start) 3084 { 3085 struct ext4_sb_info *sbi = EXT4_SB(sb); 3086 struct ext4_li_request *elr; 3087 3088 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3089 if (!elr) 3090 return NULL; 3091 3092 elr->lr_super = sb; 3093 elr->lr_sbi = sbi; 3094 elr->lr_next_group = start; 3095 3096 /* 3097 * Randomize first schedule time of the request to 3098 * spread the inode table initialization requests 3099 * better. 3100 */ 3101 elr->lr_next_sched = jiffies + (prandom_u32() % 3102 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3103 return elr; 3104 } 3105 3106 int ext4_register_li_request(struct super_block *sb, 3107 ext4_group_t first_not_zeroed) 3108 { 3109 struct ext4_sb_info *sbi = EXT4_SB(sb); 3110 struct ext4_li_request *elr = NULL; 3111 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3112 int ret = 0; 3113 3114 mutex_lock(&ext4_li_mtx); 3115 if (sbi->s_li_request != NULL) { 3116 /* 3117 * Reset timeout so it can be computed again, because 3118 * s_li_wait_mult might have changed. 3119 */ 3120 sbi->s_li_request->lr_timeout = 0; 3121 goto out; 3122 } 3123 3124 if (first_not_zeroed == ngroups || 3125 (sb->s_flags & MS_RDONLY) || 3126 !test_opt(sb, INIT_INODE_TABLE)) 3127 goto out; 3128 3129 elr = ext4_li_request_new(sb, first_not_zeroed); 3130 if (!elr) { 3131 ret = -ENOMEM; 3132 goto out; 3133 } 3134 3135 if (NULL == ext4_li_info) { 3136 ret = ext4_li_info_new(); 3137 if (ret) 3138 goto out; 3139 } 3140 3141 mutex_lock(&ext4_li_info->li_list_mtx); 3142 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3143 mutex_unlock(&ext4_li_info->li_list_mtx); 3144 3145 sbi->s_li_request = elr; 3146 /* 3147 * set elr to NULL here since it has been inserted to 3148 * the request_list and the removal and free of it is 3149 * handled by ext4_clear_request_list from now on. 3150 */ 3151 elr = NULL; 3152 3153 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3154 ret = ext4_run_lazyinit_thread(); 3155 if (ret) 3156 goto out; 3157 } 3158 out: 3159 mutex_unlock(&ext4_li_mtx); 3160 if (ret) 3161 kfree(elr); 3162 return ret; 3163 } 3164 3165 /* 3166 * We do not need to lock anything since this is called on 3167 * module unload. 3168 */ 3169 static void ext4_destroy_lazyinit_thread(void) 3170 { 3171 /* 3172 * If thread exited earlier 3173 * there's nothing to be done. 3174 */ 3175 if (!ext4_li_info || !ext4_lazyinit_task) 3176 return; 3177 3178 kthread_stop(ext4_lazyinit_task); 3179 } 3180 3181 static int set_journal_csum_feature_set(struct super_block *sb) 3182 { 3183 int ret = 1; 3184 int compat, incompat; 3185 struct ext4_sb_info *sbi = EXT4_SB(sb); 3186 3187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3188 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3189 /* journal checksum v2 */ 3190 compat = 0; 3191 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3192 } else { 3193 /* journal checksum v1 */ 3194 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3195 incompat = 0; 3196 } 3197 3198 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3199 ret = jbd2_journal_set_features(sbi->s_journal, 3200 compat, 0, 3201 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3202 incompat); 3203 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3204 ret = jbd2_journal_set_features(sbi->s_journal, 3205 compat, 0, 3206 incompat); 3207 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3208 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3209 } else { 3210 jbd2_journal_clear_features(sbi->s_journal, 3211 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3212 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3213 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3214 } 3215 3216 return ret; 3217 } 3218 3219 /* 3220 * Note: calculating the overhead so we can be compatible with 3221 * historical BSD practice is quite difficult in the face of 3222 * clusters/bigalloc. This is because multiple metadata blocks from 3223 * different block group can end up in the same allocation cluster. 3224 * Calculating the exact overhead in the face of clustered allocation 3225 * requires either O(all block bitmaps) in memory or O(number of block 3226 * groups**2) in time. We will still calculate the superblock for 3227 * older file systems --- and if we come across with a bigalloc file 3228 * system with zero in s_overhead_clusters the estimate will be close to 3229 * correct especially for very large cluster sizes --- but for newer 3230 * file systems, it's better to calculate this figure once at mkfs 3231 * time, and store it in the superblock. If the superblock value is 3232 * present (even for non-bigalloc file systems), we will use it. 3233 */ 3234 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3235 char *buf) 3236 { 3237 struct ext4_sb_info *sbi = EXT4_SB(sb); 3238 struct ext4_group_desc *gdp; 3239 ext4_fsblk_t first_block, last_block, b; 3240 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3241 int s, j, count = 0; 3242 3243 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3244 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3245 sbi->s_itb_per_group + 2); 3246 3247 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3248 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3249 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3250 for (i = 0; i < ngroups; i++) { 3251 gdp = ext4_get_group_desc(sb, i, NULL); 3252 b = ext4_block_bitmap(sb, gdp); 3253 if (b >= first_block && b <= last_block) { 3254 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3255 count++; 3256 } 3257 b = ext4_inode_bitmap(sb, gdp); 3258 if (b >= first_block && b <= last_block) { 3259 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3260 count++; 3261 } 3262 b = ext4_inode_table(sb, gdp); 3263 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3264 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3265 int c = EXT4_B2C(sbi, b - first_block); 3266 ext4_set_bit(c, buf); 3267 count++; 3268 } 3269 if (i != grp) 3270 continue; 3271 s = 0; 3272 if (ext4_bg_has_super(sb, grp)) { 3273 ext4_set_bit(s++, buf); 3274 count++; 3275 } 3276 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3277 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3278 count++; 3279 } 3280 } 3281 if (!count) 3282 return 0; 3283 return EXT4_CLUSTERS_PER_GROUP(sb) - 3284 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3285 } 3286 3287 /* 3288 * Compute the overhead and stash it in sbi->s_overhead 3289 */ 3290 int ext4_calculate_overhead(struct super_block *sb) 3291 { 3292 struct ext4_sb_info *sbi = EXT4_SB(sb); 3293 struct ext4_super_block *es = sbi->s_es; 3294 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3295 ext4_fsblk_t overhead = 0; 3296 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3297 3298 if (!buf) 3299 return -ENOMEM; 3300 3301 /* 3302 * Compute the overhead (FS structures). This is constant 3303 * for a given filesystem unless the number of block groups 3304 * changes so we cache the previous value until it does. 3305 */ 3306 3307 /* 3308 * All of the blocks before first_data_block are overhead 3309 */ 3310 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3311 3312 /* 3313 * Add the overhead found in each block group 3314 */ 3315 for (i = 0; i < ngroups; i++) { 3316 int blks; 3317 3318 blks = count_overhead(sb, i, buf); 3319 overhead += blks; 3320 if (blks) 3321 memset(buf, 0, PAGE_SIZE); 3322 cond_resched(); 3323 } 3324 /* Add the journal blocks as well */ 3325 if (sbi->s_journal) 3326 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3327 3328 sbi->s_overhead = overhead; 3329 smp_wmb(); 3330 free_page((unsigned long) buf); 3331 return 0; 3332 } 3333 3334 3335 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb) 3336 { 3337 ext4_fsblk_t resv_clusters; 3338 3339 /* 3340 * There's no need to reserve anything when we aren't using extents. 3341 * The space estimates are exact, there are no unwritten extents, 3342 * hole punching doesn't need new metadata... This is needed especially 3343 * to keep ext2/3 backward compatibility. 3344 */ 3345 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) 3346 return 0; 3347 /* 3348 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3349 * This should cover the situations where we can not afford to run 3350 * out of space like for example punch hole, or converting 3351 * unwritten extents in delalloc path. In most cases such 3352 * allocation would require 1, or 2 blocks, higher numbers are 3353 * very rare. 3354 */ 3355 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >> 3356 EXT4_SB(sb)->s_cluster_bits; 3357 3358 do_div(resv_clusters, 50); 3359 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3360 3361 return resv_clusters; 3362 } 3363 3364 3365 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3366 { 3367 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3368 sbi->s_cluster_bits; 3369 3370 if (count >= clusters) 3371 return -EINVAL; 3372 3373 atomic64_set(&sbi->s_resv_clusters, count); 3374 return 0; 3375 } 3376 3377 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3378 { 3379 char *orig_data = kstrdup(data, GFP_KERNEL); 3380 struct buffer_head *bh; 3381 struct ext4_super_block *es = NULL; 3382 struct ext4_sb_info *sbi; 3383 ext4_fsblk_t block; 3384 ext4_fsblk_t sb_block = get_sb_block(&data); 3385 ext4_fsblk_t logical_sb_block; 3386 unsigned long offset = 0; 3387 unsigned long journal_devnum = 0; 3388 unsigned long def_mount_opts; 3389 struct inode *root; 3390 char *cp; 3391 const char *descr; 3392 int ret = -ENOMEM; 3393 int blocksize, clustersize; 3394 unsigned int db_count; 3395 unsigned int i; 3396 int needs_recovery, has_huge_files, has_bigalloc; 3397 __u64 blocks_count; 3398 int err = 0; 3399 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3400 ext4_group_t first_not_zeroed; 3401 3402 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3403 if (!sbi) 3404 goto out_free_orig; 3405 3406 sbi->s_blockgroup_lock = 3407 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3408 if (!sbi->s_blockgroup_lock) { 3409 kfree(sbi); 3410 goto out_free_orig; 3411 } 3412 sb->s_fs_info = sbi; 3413 sbi->s_sb = sb; 3414 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3415 sbi->s_sb_block = sb_block; 3416 if (sb->s_bdev->bd_part) 3417 sbi->s_sectors_written_start = 3418 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3419 3420 /* Cleanup superblock name */ 3421 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3422 *cp = '!'; 3423 3424 /* -EINVAL is default */ 3425 ret = -EINVAL; 3426 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3427 if (!blocksize) { 3428 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3429 goto out_fail; 3430 } 3431 3432 /* 3433 * The ext4 superblock will not be buffer aligned for other than 1kB 3434 * block sizes. We need to calculate the offset from buffer start. 3435 */ 3436 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3437 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3438 offset = do_div(logical_sb_block, blocksize); 3439 } else { 3440 logical_sb_block = sb_block; 3441 } 3442 3443 if (!(bh = sb_bread(sb, logical_sb_block))) { 3444 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3445 goto out_fail; 3446 } 3447 /* 3448 * Note: s_es must be initialized as soon as possible because 3449 * some ext4 macro-instructions depend on its value 3450 */ 3451 es = (struct ext4_super_block *) (bh->b_data + offset); 3452 sbi->s_es = es; 3453 sb->s_magic = le16_to_cpu(es->s_magic); 3454 if (sb->s_magic != EXT4_SUPER_MAGIC) 3455 goto cantfind_ext4; 3456 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3457 3458 /* Warn if metadata_csum and gdt_csum are both set. */ 3459 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3460 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3461 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3462 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3463 "redundant flags; please run fsck."); 3464 3465 /* Check for a known checksum algorithm */ 3466 if (!ext4_verify_csum_type(sb, es)) { 3467 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3468 "unknown checksum algorithm."); 3469 silent = 1; 3470 goto cantfind_ext4; 3471 } 3472 3473 /* Load the checksum driver */ 3474 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3475 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3476 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3477 if (IS_ERR(sbi->s_chksum_driver)) { 3478 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3479 ret = PTR_ERR(sbi->s_chksum_driver); 3480 sbi->s_chksum_driver = NULL; 3481 goto failed_mount; 3482 } 3483 } 3484 3485 /* Check superblock checksum */ 3486 if (!ext4_superblock_csum_verify(sb, es)) { 3487 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3488 "invalid superblock checksum. Run e2fsck?"); 3489 silent = 1; 3490 goto cantfind_ext4; 3491 } 3492 3493 /* Precompute checksum seed for all metadata */ 3494 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3495 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3496 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3497 sizeof(es->s_uuid)); 3498 3499 /* Set defaults before we parse the mount options */ 3500 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3501 set_opt(sb, INIT_INODE_TABLE); 3502 if (def_mount_opts & EXT4_DEFM_DEBUG) 3503 set_opt(sb, DEBUG); 3504 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3505 set_opt(sb, GRPID); 3506 if (def_mount_opts & EXT4_DEFM_UID16) 3507 set_opt(sb, NO_UID32); 3508 /* xattr user namespace & acls are now defaulted on */ 3509 set_opt(sb, XATTR_USER); 3510 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3511 set_opt(sb, POSIX_ACL); 3512 #endif 3513 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3514 set_opt(sb, JOURNAL_DATA); 3515 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3516 set_opt(sb, ORDERED_DATA); 3517 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3518 set_opt(sb, WRITEBACK_DATA); 3519 3520 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3521 set_opt(sb, ERRORS_PANIC); 3522 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3523 set_opt(sb, ERRORS_CONT); 3524 else 3525 set_opt(sb, ERRORS_RO); 3526 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3527 set_opt(sb, BLOCK_VALIDITY); 3528 if (def_mount_opts & EXT4_DEFM_DISCARD) 3529 set_opt(sb, DISCARD); 3530 3531 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3532 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3533 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3534 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3535 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3536 3537 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3538 set_opt(sb, BARRIER); 3539 3540 /* 3541 * enable delayed allocation by default 3542 * Use -o nodelalloc to turn it off 3543 */ 3544 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3545 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3546 set_opt(sb, DELALLOC); 3547 3548 /* 3549 * set default s_li_wait_mult for lazyinit, for the case there is 3550 * no mount option specified. 3551 */ 3552 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3553 3554 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3555 &journal_devnum, &journal_ioprio, 0)) { 3556 ext4_msg(sb, KERN_WARNING, 3557 "failed to parse options in superblock: %s", 3558 sbi->s_es->s_mount_opts); 3559 } 3560 sbi->s_def_mount_opt = sbi->s_mount_opt; 3561 if (!parse_options((char *) data, sb, &journal_devnum, 3562 &journal_ioprio, 0)) 3563 goto failed_mount; 3564 3565 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3566 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3567 "with data=journal disables delayed " 3568 "allocation and O_DIRECT support!\n"); 3569 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3570 ext4_msg(sb, KERN_ERR, "can't mount with " 3571 "both data=journal and delalloc"); 3572 goto failed_mount; 3573 } 3574 if (test_opt(sb, DIOREAD_NOLOCK)) { 3575 ext4_msg(sb, KERN_ERR, "can't mount with " 3576 "both data=journal and dioread_nolock"); 3577 goto failed_mount; 3578 } 3579 if (test_opt(sb, DELALLOC)) 3580 clear_opt(sb, DELALLOC); 3581 } 3582 3583 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3584 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3585 3586 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3587 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3588 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3589 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3590 ext4_msg(sb, KERN_WARNING, 3591 "feature flags set on rev 0 fs, " 3592 "running e2fsck is recommended"); 3593 3594 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3595 set_opt2(sb, HURD_COMPAT); 3596 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 3597 EXT4_FEATURE_INCOMPAT_64BIT)) { 3598 ext4_msg(sb, KERN_ERR, 3599 "The Hurd can't support 64-bit file systems"); 3600 goto failed_mount; 3601 } 3602 } 3603 3604 if (IS_EXT2_SB(sb)) { 3605 if (ext2_feature_set_ok(sb)) 3606 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3607 "using the ext4 subsystem"); 3608 else { 3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3610 "to feature incompatibilities"); 3611 goto failed_mount; 3612 } 3613 } 3614 3615 if (IS_EXT3_SB(sb)) { 3616 if (ext3_feature_set_ok(sb)) 3617 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3618 "using the ext4 subsystem"); 3619 else { 3620 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3621 "to feature incompatibilities"); 3622 goto failed_mount; 3623 } 3624 } 3625 3626 /* 3627 * Check feature flags regardless of the revision level, since we 3628 * previously didn't change the revision level when setting the flags, 3629 * so there is a chance incompat flags are set on a rev 0 filesystem. 3630 */ 3631 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3632 goto failed_mount; 3633 3634 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3635 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3636 blocksize > EXT4_MAX_BLOCK_SIZE) { 3637 ext4_msg(sb, KERN_ERR, 3638 "Unsupported filesystem blocksize %d", blocksize); 3639 goto failed_mount; 3640 } 3641 3642 if (sb->s_blocksize != blocksize) { 3643 /* Validate the filesystem blocksize */ 3644 if (!sb_set_blocksize(sb, blocksize)) { 3645 ext4_msg(sb, KERN_ERR, "bad block size %d", 3646 blocksize); 3647 goto failed_mount; 3648 } 3649 3650 brelse(bh); 3651 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3652 offset = do_div(logical_sb_block, blocksize); 3653 bh = sb_bread(sb, logical_sb_block); 3654 if (!bh) { 3655 ext4_msg(sb, KERN_ERR, 3656 "Can't read superblock on 2nd try"); 3657 goto failed_mount; 3658 } 3659 es = (struct ext4_super_block *)(bh->b_data + offset); 3660 sbi->s_es = es; 3661 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3662 ext4_msg(sb, KERN_ERR, 3663 "Magic mismatch, very weird!"); 3664 goto failed_mount; 3665 } 3666 } 3667 3668 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3669 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3670 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3671 has_huge_files); 3672 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3673 3674 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3675 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3676 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3677 } else { 3678 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3679 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3680 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3681 (!is_power_of_2(sbi->s_inode_size)) || 3682 (sbi->s_inode_size > blocksize)) { 3683 ext4_msg(sb, KERN_ERR, 3684 "unsupported inode size: %d", 3685 sbi->s_inode_size); 3686 goto failed_mount; 3687 } 3688 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3689 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3690 } 3691 3692 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3693 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3694 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3695 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3696 !is_power_of_2(sbi->s_desc_size)) { 3697 ext4_msg(sb, KERN_ERR, 3698 "unsupported descriptor size %lu", 3699 sbi->s_desc_size); 3700 goto failed_mount; 3701 } 3702 } else 3703 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3704 3705 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3706 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3707 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3708 goto cantfind_ext4; 3709 3710 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3711 if (sbi->s_inodes_per_block == 0) 3712 goto cantfind_ext4; 3713 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3714 sbi->s_inodes_per_block; 3715 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3716 sbi->s_sbh = bh; 3717 sbi->s_mount_state = le16_to_cpu(es->s_state); 3718 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3719 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3720 3721 for (i = 0; i < 4; i++) 3722 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3723 sbi->s_def_hash_version = es->s_def_hash_version; 3724 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) { 3725 i = le32_to_cpu(es->s_flags); 3726 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3727 sbi->s_hash_unsigned = 3; 3728 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3729 #ifdef __CHAR_UNSIGNED__ 3730 if (!(sb->s_flags & MS_RDONLY)) 3731 es->s_flags |= 3732 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3733 sbi->s_hash_unsigned = 3; 3734 #else 3735 if (!(sb->s_flags & MS_RDONLY)) 3736 es->s_flags |= 3737 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3738 #endif 3739 } 3740 } 3741 3742 /* Handle clustersize */ 3743 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3744 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3745 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3746 if (has_bigalloc) { 3747 if (clustersize < blocksize) { 3748 ext4_msg(sb, KERN_ERR, 3749 "cluster size (%d) smaller than " 3750 "block size (%d)", clustersize, blocksize); 3751 goto failed_mount; 3752 } 3753 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3754 le32_to_cpu(es->s_log_block_size); 3755 sbi->s_clusters_per_group = 3756 le32_to_cpu(es->s_clusters_per_group); 3757 if (sbi->s_clusters_per_group > blocksize * 8) { 3758 ext4_msg(sb, KERN_ERR, 3759 "#clusters per group too big: %lu", 3760 sbi->s_clusters_per_group); 3761 goto failed_mount; 3762 } 3763 if (sbi->s_blocks_per_group != 3764 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3765 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3766 "clusters per group (%lu) inconsistent", 3767 sbi->s_blocks_per_group, 3768 sbi->s_clusters_per_group); 3769 goto failed_mount; 3770 } 3771 } else { 3772 if (clustersize != blocksize) { 3773 ext4_warning(sb, "fragment/cluster size (%d) != " 3774 "block size (%d)", clustersize, 3775 blocksize); 3776 clustersize = blocksize; 3777 } 3778 if (sbi->s_blocks_per_group > blocksize * 8) { 3779 ext4_msg(sb, KERN_ERR, 3780 "#blocks per group too big: %lu", 3781 sbi->s_blocks_per_group); 3782 goto failed_mount; 3783 } 3784 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3785 sbi->s_cluster_bits = 0; 3786 } 3787 sbi->s_cluster_ratio = clustersize / blocksize; 3788 3789 if (sbi->s_inodes_per_group > blocksize * 8) { 3790 ext4_msg(sb, KERN_ERR, 3791 "#inodes per group too big: %lu", 3792 sbi->s_inodes_per_group); 3793 goto failed_mount; 3794 } 3795 3796 /* Do we have standard group size of clustersize * 8 blocks ? */ 3797 if (sbi->s_blocks_per_group == clustersize << 3) 3798 set_opt2(sb, STD_GROUP_SIZE); 3799 3800 /* 3801 * Test whether we have more sectors than will fit in sector_t, 3802 * and whether the max offset is addressable by the page cache. 3803 */ 3804 err = generic_check_addressable(sb->s_blocksize_bits, 3805 ext4_blocks_count(es)); 3806 if (err) { 3807 ext4_msg(sb, KERN_ERR, "filesystem" 3808 " too large to mount safely on this system"); 3809 if (sizeof(sector_t) < 8) 3810 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3811 goto failed_mount; 3812 } 3813 3814 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3815 goto cantfind_ext4; 3816 3817 /* check blocks count against device size */ 3818 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3819 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3820 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3821 "exceeds size of device (%llu blocks)", 3822 ext4_blocks_count(es), blocks_count); 3823 goto failed_mount; 3824 } 3825 3826 /* 3827 * It makes no sense for the first data block to be beyond the end 3828 * of the filesystem. 3829 */ 3830 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3831 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3832 "block %u is beyond end of filesystem (%llu)", 3833 le32_to_cpu(es->s_first_data_block), 3834 ext4_blocks_count(es)); 3835 goto failed_mount; 3836 } 3837 blocks_count = (ext4_blocks_count(es) - 3838 le32_to_cpu(es->s_first_data_block) + 3839 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3840 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3841 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3842 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3843 "(block count %llu, first data block %u, " 3844 "blocks per group %lu)", sbi->s_groups_count, 3845 ext4_blocks_count(es), 3846 le32_to_cpu(es->s_first_data_block), 3847 EXT4_BLOCKS_PER_GROUP(sb)); 3848 goto failed_mount; 3849 } 3850 sbi->s_groups_count = blocks_count; 3851 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3852 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3853 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3854 EXT4_DESC_PER_BLOCK(sb); 3855 sbi->s_group_desc = ext4_kvmalloc(db_count * 3856 sizeof(struct buffer_head *), 3857 GFP_KERNEL); 3858 if (sbi->s_group_desc == NULL) { 3859 ext4_msg(sb, KERN_ERR, "not enough memory"); 3860 ret = -ENOMEM; 3861 goto failed_mount; 3862 } 3863 3864 if (ext4_proc_root) 3865 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3866 3867 if (sbi->s_proc) 3868 proc_create_data("options", S_IRUGO, sbi->s_proc, 3869 &ext4_seq_options_fops, sb); 3870 3871 bgl_lock_init(sbi->s_blockgroup_lock); 3872 3873 for (i = 0; i < db_count; i++) { 3874 block = descriptor_loc(sb, logical_sb_block, i); 3875 sbi->s_group_desc[i] = sb_bread(sb, block); 3876 if (!sbi->s_group_desc[i]) { 3877 ext4_msg(sb, KERN_ERR, 3878 "can't read group descriptor %d", i); 3879 db_count = i; 3880 goto failed_mount2; 3881 } 3882 } 3883 3884 /* 3885 * set up enough so that it can read an inode, 3886 * and create new inode for buddy allocator 3887 */ 3888 sbi->s_gdb_count = db_count; 3889 if (!test_opt(sb, NOLOAD) && 3890 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3891 sb->s_op = &ext4_sops; 3892 else 3893 sb->s_op = &ext4_nojournal_sops; 3894 3895 ext4_ext_init(sb); 3896 err = ext4_mb_init(sb); 3897 if (err) { 3898 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3899 err); 3900 goto failed_mount2; 3901 } 3902 3903 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3904 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3905 goto failed_mount2a; 3906 } 3907 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3908 if (!ext4_fill_flex_info(sb)) { 3909 ext4_msg(sb, KERN_ERR, 3910 "unable to initialize " 3911 "flex_bg meta info!"); 3912 goto failed_mount2a; 3913 } 3914 3915 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3916 spin_lock_init(&sbi->s_next_gen_lock); 3917 3918 init_timer(&sbi->s_err_report); 3919 sbi->s_err_report.function = print_daily_error_info; 3920 sbi->s_err_report.data = (unsigned long) sb; 3921 3922 /* Register extent status tree shrinker */ 3923 ext4_es_register_shrinker(sbi); 3924 3925 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3926 ext4_count_free_clusters(sb)); 3927 if (!err) { 3928 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3929 ext4_count_free_inodes(sb)); 3930 } 3931 if (!err) { 3932 err = percpu_counter_init(&sbi->s_dirs_counter, 3933 ext4_count_dirs(sb)); 3934 } 3935 if (!err) { 3936 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3937 } 3938 if (!err) { 3939 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3940 } 3941 if (err) { 3942 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3943 goto failed_mount3; 3944 } 3945 3946 sbi->s_stripe = ext4_get_stripe_size(sbi); 3947 sbi->s_extent_max_zeroout_kb = 32; 3948 3949 sb->s_export_op = &ext4_export_ops; 3950 sb->s_xattr = ext4_xattr_handlers; 3951 #ifdef CONFIG_QUOTA 3952 sb->dq_op = &ext4_quota_operations; 3953 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3954 sb->s_qcop = &ext4_qctl_sysfile_operations; 3955 else 3956 sb->s_qcop = &ext4_qctl_operations; 3957 #endif 3958 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3959 3960 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3961 mutex_init(&sbi->s_orphan_lock); 3962 3963 sb->s_root = NULL; 3964 3965 needs_recovery = (es->s_last_orphan != 0 || 3966 EXT4_HAS_INCOMPAT_FEATURE(sb, 3967 EXT4_FEATURE_INCOMPAT_RECOVER)); 3968 3969 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3970 !(sb->s_flags & MS_RDONLY)) 3971 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3972 goto failed_mount3; 3973 3974 /* 3975 * The first inode we look at is the journal inode. Don't try 3976 * root first: it may be modified in the journal! 3977 */ 3978 if (!test_opt(sb, NOLOAD) && 3979 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3980 if (ext4_load_journal(sb, es, journal_devnum)) 3981 goto failed_mount3; 3982 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3983 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3984 ext4_msg(sb, KERN_ERR, "required journal recovery " 3985 "suppressed and not mounted read-only"); 3986 goto failed_mount_wq; 3987 } else { 3988 clear_opt(sb, DATA_FLAGS); 3989 sbi->s_journal = NULL; 3990 needs_recovery = 0; 3991 goto no_journal; 3992 } 3993 3994 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3995 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3996 JBD2_FEATURE_INCOMPAT_64BIT)) { 3997 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3998 goto failed_mount_wq; 3999 } 4000 4001 if (!set_journal_csum_feature_set(sb)) { 4002 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4003 "feature set"); 4004 goto failed_mount_wq; 4005 } 4006 4007 /* We have now updated the journal if required, so we can 4008 * validate the data journaling mode. */ 4009 switch (test_opt(sb, DATA_FLAGS)) { 4010 case 0: 4011 /* No mode set, assume a default based on the journal 4012 * capabilities: ORDERED_DATA if the journal can 4013 * cope, else JOURNAL_DATA 4014 */ 4015 if (jbd2_journal_check_available_features 4016 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4017 set_opt(sb, ORDERED_DATA); 4018 else 4019 set_opt(sb, JOURNAL_DATA); 4020 break; 4021 4022 case EXT4_MOUNT_ORDERED_DATA: 4023 case EXT4_MOUNT_WRITEBACK_DATA: 4024 if (!jbd2_journal_check_available_features 4025 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4026 ext4_msg(sb, KERN_ERR, "Journal does not support " 4027 "requested data journaling mode"); 4028 goto failed_mount_wq; 4029 } 4030 default: 4031 break; 4032 } 4033 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4034 4035 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4036 4037 /* 4038 * The journal may have updated the bg summary counts, so we 4039 * need to update the global counters. 4040 */ 4041 percpu_counter_set(&sbi->s_freeclusters_counter, 4042 ext4_count_free_clusters(sb)); 4043 percpu_counter_set(&sbi->s_freeinodes_counter, 4044 ext4_count_free_inodes(sb)); 4045 percpu_counter_set(&sbi->s_dirs_counter, 4046 ext4_count_dirs(sb)); 4047 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 4048 4049 no_journal: 4050 if (ext4_mballoc_ready) { 4051 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 4052 if (!sbi->s_mb_cache) { 4053 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4054 goto failed_mount_wq; 4055 } 4056 } 4057 4058 /* 4059 * Get the # of file system overhead blocks from the 4060 * superblock if present. 4061 */ 4062 if (es->s_overhead_clusters) 4063 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4064 else { 4065 err = ext4_calculate_overhead(sb); 4066 if (err) 4067 goto failed_mount_wq; 4068 } 4069 4070 /* 4071 * The maximum number of concurrent works can be high and 4072 * concurrency isn't really necessary. Limit it to 1. 4073 */ 4074 EXT4_SB(sb)->rsv_conversion_wq = 4075 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4076 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4077 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4078 ret = -ENOMEM; 4079 goto failed_mount4; 4080 } 4081 4082 /* 4083 * The jbd2_journal_load will have done any necessary log recovery, 4084 * so we can safely mount the rest of the filesystem now. 4085 */ 4086 4087 root = ext4_iget(sb, EXT4_ROOT_INO); 4088 if (IS_ERR(root)) { 4089 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4090 ret = PTR_ERR(root); 4091 root = NULL; 4092 goto failed_mount4; 4093 } 4094 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4095 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4096 iput(root); 4097 goto failed_mount4; 4098 } 4099 sb->s_root = d_make_root(root); 4100 if (!sb->s_root) { 4101 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4102 ret = -ENOMEM; 4103 goto failed_mount4; 4104 } 4105 4106 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4107 sb->s_flags |= MS_RDONLY; 4108 4109 /* determine the minimum size of new large inodes, if present */ 4110 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4111 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4112 EXT4_GOOD_OLD_INODE_SIZE; 4113 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4114 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4115 if (sbi->s_want_extra_isize < 4116 le16_to_cpu(es->s_want_extra_isize)) 4117 sbi->s_want_extra_isize = 4118 le16_to_cpu(es->s_want_extra_isize); 4119 if (sbi->s_want_extra_isize < 4120 le16_to_cpu(es->s_min_extra_isize)) 4121 sbi->s_want_extra_isize = 4122 le16_to_cpu(es->s_min_extra_isize); 4123 } 4124 } 4125 /* Check if enough inode space is available */ 4126 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4127 sbi->s_inode_size) { 4128 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4129 EXT4_GOOD_OLD_INODE_SIZE; 4130 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4131 "available"); 4132 } 4133 4134 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb)); 4135 if (err) { 4136 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4137 "reserved pool", ext4_calculate_resv_clusters(sb)); 4138 goto failed_mount5; 4139 } 4140 4141 err = ext4_setup_system_zone(sb); 4142 if (err) { 4143 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4144 "zone (%d)", err); 4145 goto failed_mount5; 4146 } 4147 4148 err = ext4_register_li_request(sb, first_not_zeroed); 4149 if (err) 4150 goto failed_mount6; 4151 4152 sbi->s_kobj.kset = ext4_kset; 4153 init_completion(&sbi->s_kobj_unregister); 4154 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4155 "%s", sb->s_id); 4156 if (err) 4157 goto failed_mount7; 4158 4159 #ifdef CONFIG_QUOTA 4160 /* Enable quota usage during mount. */ 4161 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4162 !(sb->s_flags & MS_RDONLY)) { 4163 err = ext4_enable_quotas(sb); 4164 if (err) 4165 goto failed_mount8; 4166 } 4167 #endif /* CONFIG_QUOTA */ 4168 4169 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4170 ext4_orphan_cleanup(sb, es); 4171 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4172 if (needs_recovery) { 4173 ext4_msg(sb, KERN_INFO, "recovery complete"); 4174 ext4_mark_recovery_complete(sb, es); 4175 } 4176 if (EXT4_SB(sb)->s_journal) { 4177 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4178 descr = " journalled data mode"; 4179 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4180 descr = " ordered data mode"; 4181 else 4182 descr = " writeback data mode"; 4183 } else 4184 descr = "out journal"; 4185 4186 if (test_opt(sb, DISCARD)) { 4187 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4188 if (!blk_queue_discard(q)) 4189 ext4_msg(sb, KERN_WARNING, 4190 "mounting with \"discard\" option, but " 4191 "the device does not support discard"); 4192 } 4193 4194 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4195 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4196 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4197 4198 if (es->s_error_count) 4199 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4200 4201 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4202 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4203 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4204 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4205 4206 kfree(orig_data); 4207 return 0; 4208 4209 cantfind_ext4: 4210 if (!silent) 4211 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4212 goto failed_mount; 4213 4214 #ifdef CONFIG_QUOTA 4215 failed_mount8: 4216 kobject_del(&sbi->s_kobj); 4217 #endif 4218 failed_mount7: 4219 ext4_unregister_li_request(sb); 4220 failed_mount6: 4221 ext4_release_system_zone(sb); 4222 failed_mount5: 4223 dput(sb->s_root); 4224 sb->s_root = NULL; 4225 failed_mount4: 4226 ext4_msg(sb, KERN_ERR, "mount failed"); 4227 if (EXT4_SB(sb)->rsv_conversion_wq) 4228 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4229 failed_mount_wq: 4230 if (sbi->s_journal) { 4231 jbd2_journal_destroy(sbi->s_journal); 4232 sbi->s_journal = NULL; 4233 } 4234 failed_mount3: 4235 ext4_es_unregister_shrinker(sbi); 4236 del_timer_sync(&sbi->s_err_report); 4237 if (sbi->s_flex_groups) 4238 ext4_kvfree(sbi->s_flex_groups); 4239 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4240 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4241 percpu_counter_destroy(&sbi->s_dirs_counter); 4242 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4243 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4244 if (sbi->s_mmp_tsk) 4245 kthread_stop(sbi->s_mmp_tsk); 4246 failed_mount2a: 4247 ext4_mb_release(sb); 4248 failed_mount2: 4249 for (i = 0; i < db_count; i++) 4250 brelse(sbi->s_group_desc[i]); 4251 ext4_kvfree(sbi->s_group_desc); 4252 failed_mount: 4253 ext4_ext_release(sb); 4254 if (sbi->s_chksum_driver) 4255 crypto_free_shash(sbi->s_chksum_driver); 4256 if (sbi->s_proc) { 4257 remove_proc_entry("options", sbi->s_proc); 4258 remove_proc_entry(sb->s_id, ext4_proc_root); 4259 } 4260 #ifdef CONFIG_QUOTA 4261 for (i = 0; i < MAXQUOTAS; i++) 4262 kfree(sbi->s_qf_names[i]); 4263 #endif 4264 ext4_blkdev_remove(sbi); 4265 brelse(bh); 4266 out_fail: 4267 sb->s_fs_info = NULL; 4268 kfree(sbi->s_blockgroup_lock); 4269 kfree(sbi); 4270 out_free_orig: 4271 kfree(orig_data); 4272 return err ? err : ret; 4273 } 4274 4275 /* 4276 * Setup any per-fs journal parameters now. We'll do this both on 4277 * initial mount, once the journal has been initialised but before we've 4278 * done any recovery; and again on any subsequent remount. 4279 */ 4280 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4281 { 4282 struct ext4_sb_info *sbi = EXT4_SB(sb); 4283 4284 journal->j_commit_interval = sbi->s_commit_interval; 4285 journal->j_min_batch_time = sbi->s_min_batch_time; 4286 journal->j_max_batch_time = sbi->s_max_batch_time; 4287 4288 write_lock(&journal->j_state_lock); 4289 if (test_opt(sb, BARRIER)) 4290 journal->j_flags |= JBD2_BARRIER; 4291 else 4292 journal->j_flags &= ~JBD2_BARRIER; 4293 if (test_opt(sb, DATA_ERR_ABORT)) 4294 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4295 else 4296 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4297 write_unlock(&journal->j_state_lock); 4298 } 4299 4300 static journal_t *ext4_get_journal(struct super_block *sb, 4301 unsigned int journal_inum) 4302 { 4303 struct inode *journal_inode; 4304 journal_t *journal; 4305 4306 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4307 4308 /* First, test for the existence of a valid inode on disk. Bad 4309 * things happen if we iget() an unused inode, as the subsequent 4310 * iput() will try to delete it. */ 4311 4312 journal_inode = ext4_iget(sb, journal_inum); 4313 if (IS_ERR(journal_inode)) { 4314 ext4_msg(sb, KERN_ERR, "no journal found"); 4315 return NULL; 4316 } 4317 if (!journal_inode->i_nlink) { 4318 make_bad_inode(journal_inode); 4319 iput(journal_inode); 4320 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4321 return NULL; 4322 } 4323 4324 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4325 journal_inode, journal_inode->i_size); 4326 if (!S_ISREG(journal_inode->i_mode)) { 4327 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4328 iput(journal_inode); 4329 return NULL; 4330 } 4331 4332 journal = jbd2_journal_init_inode(journal_inode); 4333 if (!journal) { 4334 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4335 iput(journal_inode); 4336 return NULL; 4337 } 4338 journal->j_private = sb; 4339 ext4_init_journal_params(sb, journal); 4340 return journal; 4341 } 4342 4343 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4344 dev_t j_dev) 4345 { 4346 struct buffer_head *bh; 4347 journal_t *journal; 4348 ext4_fsblk_t start; 4349 ext4_fsblk_t len; 4350 int hblock, blocksize; 4351 ext4_fsblk_t sb_block; 4352 unsigned long offset; 4353 struct ext4_super_block *es; 4354 struct block_device *bdev; 4355 4356 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4357 4358 bdev = ext4_blkdev_get(j_dev, sb); 4359 if (bdev == NULL) 4360 return NULL; 4361 4362 blocksize = sb->s_blocksize; 4363 hblock = bdev_logical_block_size(bdev); 4364 if (blocksize < hblock) { 4365 ext4_msg(sb, KERN_ERR, 4366 "blocksize too small for journal device"); 4367 goto out_bdev; 4368 } 4369 4370 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4371 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4372 set_blocksize(bdev, blocksize); 4373 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4374 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4375 "external journal"); 4376 goto out_bdev; 4377 } 4378 4379 es = (struct ext4_super_block *) (bh->b_data + offset); 4380 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4381 !(le32_to_cpu(es->s_feature_incompat) & 4382 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4383 ext4_msg(sb, KERN_ERR, "external journal has " 4384 "bad superblock"); 4385 brelse(bh); 4386 goto out_bdev; 4387 } 4388 4389 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4390 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4391 brelse(bh); 4392 goto out_bdev; 4393 } 4394 4395 len = ext4_blocks_count(es); 4396 start = sb_block + 1; 4397 brelse(bh); /* we're done with the superblock */ 4398 4399 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4400 start, len, blocksize); 4401 if (!journal) { 4402 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4403 goto out_bdev; 4404 } 4405 journal->j_private = sb; 4406 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4407 wait_on_buffer(journal->j_sb_buffer); 4408 if (!buffer_uptodate(journal->j_sb_buffer)) { 4409 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4410 goto out_journal; 4411 } 4412 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4413 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4414 "user (unsupported) - %d", 4415 be32_to_cpu(journal->j_superblock->s_nr_users)); 4416 goto out_journal; 4417 } 4418 EXT4_SB(sb)->journal_bdev = bdev; 4419 ext4_init_journal_params(sb, journal); 4420 return journal; 4421 4422 out_journal: 4423 jbd2_journal_destroy(journal); 4424 out_bdev: 4425 ext4_blkdev_put(bdev); 4426 return NULL; 4427 } 4428 4429 static int ext4_load_journal(struct super_block *sb, 4430 struct ext4_super_block *es, 4431 unsigned long journal_devnum) 4432 { 4433 journal_t *journal; 4434 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4435 dev_t journal_dev; 4436 int err = 0; 4437 int really_read_only; 4438 4439 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4440 4441 if (journal_devnum && 4442 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4443 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4444 "numbers have changed"); 4445 journal_dev = new_decode_dev(journal_devnum); 4446 } else 4447 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4448 4449 really_read_only = bdev_read_only(sb->s_bdev); 4450 4451 /* 4452 * Are we loading a blank journal or performing recovery after a 4453 * crash? For recovery, we need to check in advance whether we 4454 * can get read-write access to the device. 4455 */ 4456 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4457 if (sb->s_flags & MS_RDONLY) { 4458 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4459 "required on readonly filesystem"); 4460 if (really_read_only) { 4461 ext4_msg(sb, KERN_ERR, "write access " 4462 "unavailable, cannot proceed"); 4463 return -EROFS; 4464 } 4465 ext4_msg(sb, KERN_INFO, "write access will " 4466 "be enabled during recovery"); 4467 } 4468 } 4469 4470 if (journal_inum && journal_dev) { 4471 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4472 "and inode journals!"); 4473 return -EINVAL; 4474 } 4475 4476 if (journal_inum) { 4477 if (!(journal = ext4_get_journal(sb, journal_inum))) 4478 return -EINVAL; 4479 } else { 4480 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4481 return -EINVAL; 4482 } 4483 4484 if (!(journal->j_flags & JBD2_BARRIER)) 4485 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4486 4487 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4488 err = jbd2_journal_wipe(journal, !really_read_only); 4489 if (!err) { 4490 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4491 if (save) 4492 memcpy(save, ((char *) es) + 4493 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4494 err = jbd2_journal_load(journal); 4495 if (save) 4496 memcpy(((char *) es) + EXT4_S_ERR_START, 4497 save, EXT4_S_ERR_LEN); 4498 kfree(save); 4499 } 4500 4501 if (err) { 4502 ext4_msg(sb, KERN_ERR, "error loading journal"); 4503 jbd2_journal_destroy(journal); 4504 return err; 4505 } 4506 4507 EXT4_SB(sb)->s_journal = journal; 4508 ext4_clear_journal_err(sb, es); 4509 4510 if (!really_read_only && journal_devnum && 4511 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4512 es->s_journal_dev = cpu_to_le32(journal_devnum); 4513 4514 /* Make sure we flush the recovery flag to disk. */ 4515 ext4_commit_super(sb, 1); 4516 } 4517 4518 return 0; 4519 } 4520 4521 static int ext4_commit_super(struct super_block *sb, int sync) 4522 { 4523 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4524 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4525 int error = 0; 4526 4527 if (!sbh || block_device_ejected(sb)) 4528 return error; 4529 if (buffer_write_io_error(sbh)) { 4530 /* 4531 * Oh, dear. A previous attempt to write the 4532 * superblock failed. This could happen because the 4533 * USB device was yanked out. Or it could happen to 4534 * be a transient write error and maybe the block will 4535 * be remapped. Nothing we can do but to retry the 4536 * write and hope for the best. 4537 */ 4538 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4539 "superblock detected"); 4540 clear_buffer_write_io_error(sbh); 4541 set_buffer_uptodate(sbh); 4542 } 4543 /* 4544 * If the file system is mounted read-only, don't update the 4545 * superblock write time. This avoids updating the superblock 4546 * write time when we are mounting the root file system 4547 * read/only but we need to replay the journal; at that point, 4548 * for people who are east of GMT and who make their clock 4549 * tick in localtime for Windows bug-for-bug compatibility, 4550 * the clock is set in the future, and this will cause e2fsck 4551 * to complain and force a full file system check. 4552 */ 4553 if (!(sb->s_flags & MS_RDONLY)) 4554 es->s_wtime = cpu_to_le32(get_seconds()); 4555 if (sb->s_bdev->bd_part) 4556 es->s_kbytes_written = 4557 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4558 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4559 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4560 else 4561 es->s_kbytes_written = 4562 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4563 ext4_free_blocks_count_set(es, 4564 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4565 &EXT4_SB(sb)->s_freeclusters_counter))); 4566 es->s_free_inodes_count = 4567 cpu_to_le32(percpu_counter_sum_positive( 4568 &EXT4_SB(sb)->s_freeinodes_counter)); 4569 BUFFER_TRACE(sbh, "marking dirty"); 4570 ext4_superblock_csum_set(sb); 4571 mark_buffer_dirty(sbh); 4572 if (sync) { 4573 error = sync_dirty_buffer(sbh); 4574 if (error) 4575 return error; 4576 4577 error = buffer_write_io_error(sbh); 4578 if (error) { 4579 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4580 "superblock"); 4581 clear_buffer_write_io_error(sbh); 4582 set_buffer_uptodate(sbh); 4583 } 4584 } 4585 return error; 4586 } 4587 4588 /* 4589 * Have we just finished recovery? If so, and if we are mounting (or 4590 * remounting) the filesystem readonly, then we will end up with a 4591 * consistent fs on disk. Record that fact. 4592 */ 4593 static void ext4_mark_recovery_complete(struct super_block *sb, 4594 struct ext4_super_block *es) 4595 { 4596 journal_t *journal = EXT4_SB(sb)->s_journal; 4597 4598 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4599 BUG_ON(journal != NULL); 4600 return; 4601 } 4602 jbd2_journal_lock_updates(journal); 4603 if (jbd2_journal_flush(journal) < 0) 4604 goto out; 4605 4606 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4607 sb->s_flags & MS_RDONLY) { 4608 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4609 ext4_commit_super(sb, 1); 4610 } 4611 4612 out: 4613 jbd2_journal_unlock_updates(journal); 4614 } 4615 4616 /* 4617 * If we are mounting (or read-write remounting) a filesystem whose journal 4618 * has recorded an error from a previous lifetime, move that error to the 4619 * main filesystem now. 4620 */ 4621 static void ext4_clear_journal_err(struct super_block *sb, 4622 struct ext4_super_block *es) 4623 { 4624 journal_t *journal; 4625 int j_errno; 4626 const char *errstr; 4627 4628 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4629 4630 journal = EXT4_SB(sb)->s_journal; 4631 4632 /* 4633 * Now check for any error status which may have been recorded in the 4634 * journal by a prior ext4_error() or ext4_abort() 4635 */ 4636 4637 j_errno = jbd2_journal_errno(journal); 4638 if (j_errno) { 4639 char nbuf[16]; 4640 4641 errstr = ext4_decode_error(sb, j_errno, nbuf); 4642 ext4_warning(sb, "Filesystem error recorded " 4643 "from previous mount: %s", errstr); 4644 ext4_warning(sb, "Marking fs in need of filesystem check."); 4645 4646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4647 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4648 ext4_commit_super(sb, 1); 4649 4650 jbd2_journal_clear_err(journal); 4651 jbd2_journal_update_sb_errno(journal); 4652 } 4653 } 4654 4655 /* 4656 * Force the running and committing transactions to commit, 4657 * and wait on the commit. 4658 */ 4659 int ext4_force_commit(struct super_block *sb) 4660 { 4661 journal_t *journal; 4662 4663 if (sb->s_flags & MS_RDONLY) 4664 return 0; 4665 4666 journal = EXT4_SB(sb)->s_journal; 4667 return ext4_journal_force_commit(journal); 4668 } 4669 4670 static int ext4_sync_fs(struct super_block *sb, int wait) 4671 { 4672 int ret = 0; 4673 tid_t target; 4674 bool needs_barrier = false; 4675 struct ext4_sb_info *sbi = EXT4_SB(sb); 4676 4677 trace_ext4_sync_fs(sb, wait); 4678 flush_workqueue(sbi->rsv_conversion_wq); 4679 /* 4680 * Writeback quota in non-journalled quota case - journalled quota has 4681 * no dirty dquots 4682 */ 4683 dquot_writeback_dquots(sb, -1); 4684 /* 4685 * Data writeback is possible w/o journal transaction, so barrier must 4686 * being sent at the end of the function. But we can skip it if 4687 * transaction_commit will do it for us. 4688 */ 4689 target = jbd2_get_latest_transaction(sbi->s_journal); 4690 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4691 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4692 needs_barrier = true; 4693 4694 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4695 if (wait) 4696 ret = jbd2_log_wait_commit(sbi->s_journal, target); 4697 } 4698 if (needs_barrier) { 4699 int err; 4700 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4701 if (!ret) 4702 ret = err; 4703 } 4704 4705 return ret; 4706 } 4707 4708 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait) 4709 { 4710 int ret = 0; 4711 4712 trace_ext4_sync_fs(sb, wait); 4713 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4714 dquot_writeback_dquots(sb, -1); 4715 if (wait && test_opt(sb, BARRIER)) 4716 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4717 4718 return ret; 4719 } 4720 4721 /* 4722 * LVM calls this function before a (read-only) snapshot is created. This 4723 * gives us a chance to flush the journal completely and mark the fs clean. 4724 * 4725 * Note that only this function cannot bring a filesystem to be in a clean 4726 * state independently. It relies on upper layer to stop all data & metadata 4727 * modifications. 4728 */ 4729 static int ext4_freeze(struct super_block *sb) 4730 { 4731 int error = 0; 4732 journal_t *journal; 4733 4734 if (sb->s_flags & MS_RDONLY) 4735 return 0; 4736 4737 journal = EXT4_SB(sb)->s_journal; 4738 4739 /* Now we set up the journal barrier. */ 4740 jbd2_journal_lock_updates(journal); 4741 4742 /* 4743 * Don't clear the needs_recovery flag if we failed to flush 4744 * the journal. 4745 */ 4746 error = jbd2_journal_flush(journal); 4747 if (error < 0) 4748 goto out; 4749 4750 /* Journal blocked and flushed, clear needs_recovery flag. */ 4751 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4752 error = ext4_commit_super(sb, 1); 4753 out: 4754 /* we rely on upper layer to stop further updates */ 4755 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4756 return error; 4757 } 4758 4759 /* 4760 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4761 * flag here, even though the filesystem is not technically dirty yet. 4762 */ 4763 static int ext4_unfreeze(struct super_block *sb) 4764 { 4765 if (sb->s_flags & MS_RDONLY) 4766 return 0; 4767 4768 /* Reset the needs_recovery flag before the fs is unlocked. */ 4769 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4770 ext4_commit_super(sb, 1); 4771 return 0; 4772 } 4773 4774 /* 4775 * Structure to save mount options for ext4_remount's benefit 4776 */ 4777 struct ext4_mount_options { 4778 unsigned long s_mount_opt; 4779 unsigned long s_mount_opt2; 4780 kuid_t s_resuid; 4781 kgid_t s_resgid; 4782 unsigned long s_commit_interval; 4783 u32 s_min_batch_time, s_max_batch_time; 4784 #ifdef CONFIG_QUOTA 4785 int s_jquota_fmt; 4786 char *s_qf_names[MAXQUOTAS]; 4787 #endif 4788 }; 4789 4790 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4791 { 4792 struct ext4_super_block *es; 4793 struct ext4_sb_info *sbi = EXT4_SB(sb); 4794 unsigned long old_sb_flags; 4795 struct ext4_mount_options old_opts; 4796 int enable_quota = 0; 4797 ext4_group_t g; 4798 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4799 int err = 0; 4800 #ifdef CONFIG_QUOTA 4801 int i, j; 4802 #endif 4803 char *orig_data = kstrdup(data, GFP_KERNEL); 4804 4805 /* Store the original options */ 4806 old_sb_flags = sb->s_flags; 4807 old_opts.s_mount_opt = sbi->s_mount_opt; 4808 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4809 old_opts.s_resuid = sbi->s_resuid; 4810 old_opts.s_resgid = sbi->s_resgid; 4811 old_opts.s_commit_interval = sbi->s_commit_interval; 4812 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4813 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4814 #ifdef CONFIG_QUOTA 4815 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4816 for (i = 0; i < MAXQUOTAS; i++) 4817 if (sbi->s_qf_names[i]) { 4818 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4819 GFP_KERNEL); 4820 if (!old_opts.s_qf_names[i]) { 4821 for (j = 0; j < i; j++) 4822 kfree(old_opts.s_qf_names[j]); 4823 kfree(orig_data); 4824 return -ENOMEM; 4825 } 4826 } else 4827 old_opts.s_qf_names[i] = NULL; 4828 #endif 4829 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4830 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4831 4832 /* 4833 * Allow the "check" option to be passed as a remount option. 4834 */ 4835 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4836 err = -EINVAL; 4837 goto restore_opts; 4838 } 4839 4840 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4841 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4842 ext4_msg(sb, KERN_ERR, "can't mount with " 4843 "both data=journal and delalloc"); 4844 err = -EINVAL; 4845 goto restore_opts; 4846 } 4847 if (test_opt(sb, DIOREAD_NOLOCK)) { 4848 ext4_msg(sb, KERN_ERR, "can't mount with " 4849 "both data=journal and dioread_nolock"); 4850 err = -EINVAL; 4851 goto restore_opts; 4852 } 4853 } 4854 4855 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4856 ext4_abort(sb, "Abort forced by user"); 4857 4858 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4859 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4860 4861 es = sbi->s_es; 4862 4863 if (sbi->s_journal) { 4864 ext4_init_journal_params(sb, sbi->s_journal); 4865 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4866 } 4867 4868 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4869 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4870 err = -EROFS; 4871 goto restore_opts; 4872 } 4873 4874 if (*flags & MS_RDONLY) { 4875 err = sync_filesystem(sb); 4876 if (err < 0) 4877 goto restore_opts; 4878 err = dquot_suspend(sb, -1); 4879 if (err < 0) 4880 goto restore_opts; 4881 4882 /* 4883 * First of all, the unconditional stuff we have to do 4884 * to disable replay of the journal when we next remount 4885 */ 4886 sb->s_flags |= MS_RDONLY; 4887 4888 /* 4889 * OK, test if we are remounting a valid rw partition 4890 * readonly, and if so set the rdonly flag and then 4891 * mark the partition as valid again. 4892 */ 4893 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4894 (sbi->s_mount_state & EXT4_VALID_FS)) 4895 es->s_state = cpu_to_le16(sbi->s_mount_state); 4896 4897 if (sbi->s_journal) 4898 ext4_mark_recovery_complete(sb, es); 4899 } else { 4900 /* Make sure we can mount this feature set readwrite */ 4901 if (!ext4_feature_set_ok(sb, 0)) { 4902 err = -EROFS; 4903 goto restore_opts; 4904 } 4905 /* 4906 * Make sure the group descriptor checksums 4907 * are sane. If they aren't, refuse to remount r/w. 4908 */ 4909 for (g = 0; g < sbi->s_groups_count; g++) { 4910 struct ext4_group_desc *gdp = 4911 ext4_get_group_desc(sb, g, NULL); 4912 4913 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4914 ext4_msg(sb, KERN_ERR, 4915 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4916 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4917 le16_to_cpu(gdp->bg_checksum)); 4918 err = -EINVAL; 4919 goto restore_opts; 4920 } 4921 } 4922 4923 /* 4924 * If we have an unprocessed orphan list hanging 4925 * around from a previously readonly bdev mount, 4926 * require a full umount/remount for now. 4927 */ 4928 if (es->s_last_orphan) { 4929 ext4_msg(sb, KERN_WARNING, "Couldn't " 4930 "remount RDWR because of unprocessed " 4931 "orphan inode list. Please " 4932 "umount/remount instead"); 4933 err = -EINVAL; 4934 goto restore_opts; 4935 } 4936 4937 /* 4938 * Mounting a RDONLY partition read-write, so reread 4939 * and store the current valid flag. (It may have 4940 * been changed by e2fsck since we originally mounted 4941 * the partition.) 4942 */ 4943 if (sbi->s_journal) 4944 ext4_clear_journal_err(sb, es); 4945 sbi->s_mount_state = le16_to_cpu(es->s_state); 4946 if (!ext4_setup_super(sb, es, 0)) 4947 sb->s_flags &= ~MS_RDONLY; 4948 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4949 EXT4_FEATURE_INCOMPAT_MMP)) 4950 if (ext4_multi_mount_protect(sb, 4951 le64_to_cpu(es->s_mmp_block))) { 4952 err = -EROFS; 4953 goto restore_opts; 4954 } 4955 enable_quota = 1; 4956 } 4957 } 4958 4959 /* 4960 * Reinitialize lazy itable initialization thread based on 4961 * current settings 4962 */ 4963 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4964 ext4_unregister_li_request(sb); 4965 else { 4966 ext4_group_t first_not_zeroed; 4967 first_not_zeroed = ext4_has_uninit_itable(sb); 4968 ext4_register_li_request(sb, first_not_zeroed); 4969 } 4970 4971 ext4_setup_system_zone(sb); 4972 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4973 ext4_commit_super(sb, 1); 4974 4975 #ifdef CONFIG_QUOTA 4976 /* Release old quota file names */ 4977 for (i = 0; i < MAXQUOTAS; i++) 4978 kfree(old_opts.s_qf_names[i]); 4979 if (enable_quota) { 4980 if (sb_any_quota_suspended(sb)) 4981 dquot_resume(sb, -1); 4982 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4983 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4984 err = ext4_enable_quotas(sb); 4985 if (err) 4986 goto restore_opts; 4987 } 4988 } 4989 #endif 4990 4991 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4992 kfree(orig_data); 4993 return 0; 4994 4995 restore_opts: 4996 sb->s_flags = old_sb_flags; 4997 sbi->s_mount_opt = old_opts.s_mount_opt; 4998 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4999 sbi->s_resuid = old_opts.s_resuid; 5000 sbi->s_resgid = old_opts.s_resgid; 5001 sbi->s_commit_interval = old_opts.s_commit_interval; 5002 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5003 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5004 #ifdef CONFIG_QUOTA 5005 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5006 for (i = 0; i < MAXQUOTAS; i++) { 5007 kfree(sbi->s_qf_names[i]); 5008 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5009 } 5010 #endif 5011 kfree(orig_data); 5012 return err; 5013 } 5014 5015 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5016 { 5017 struct super_block *sb = dentry->d_sb; 5018 struct ext4_sb_info *sbi = EXT4_SB(sb); 5019 struct ext4_super_block *es = sbi->s_es; 5020 ext4_fsblk_t overhead = 0, resv_blocks; 5021 u64 fsid; 5022 s64 bfree; 5023 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5024 5025 if (!test_opt(sb, MINIX_DF)) 5026 overhead = sbi->s_overhead; 5027 5028 buf->f_type = EXT4_SUPER_MAGIC; 5029 buf->f_bsize = sb->s_blocksize; 5030 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5031 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5032 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5033 /* prevent underflow in case that few free space is available */ 5034 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5035 buf->f_bavail = buf->f_bfree - 5036 (ext4_r_blocks_count(es) + resv_blocks); 5037 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5038 buf->f_bavail = 0; 5039 buf->f_files = le32_to_cpu(es->s_inodes_count); 5040 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5041 buf->f_namelen = EXT4_NAME_LEN; 5042 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5043 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5044 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5045 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5046 5047 return 0; 5048 } 5049 5050 /* Helper function for writing quotas on sync - we need to start transaction 5051 * before quota file is locked for write. Otherwise the are possible deadlocks: 5052 * Process 1 Process 2 5053 * ext4_create() quota_sync() 5054 * jbd2_journal_start() write_dquot() 5055 * dquot_initialize() down(dqio_mutex) 5056 * down(dqio_mutex) jbd2_journal_start() 5057 * 5058 */ 5059 5060 #ifdef CONFIG_QUOTA 5061 5062 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5063 { 5064 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5065 } 5066 5067 static int ext4_write_dquot(struct dquot *dquot) 5068 { 5069 int ret, err; 5070 handle_t *handle; 5071 struct inode *inode; 5072 5073 inode = dquot_to_inode(dquot); 5074 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5075 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5076 if (IS_ERR(handle)) 5077 return PTR_ERR(handle); 5078 ret = dquot_commit(dquot); 5079 err = ext4_journal_stop(handle); 5080 if (!ret) 5081 ret = err; 5082 return ret; 5083 } 5084 5085 static int ext4_acquire_dquot(struct dquot *dquot) 5086 { 5087 int ret, err; 5088 handle_t *handle; 5089 5090 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5091 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5092 if (IS_ERR(handle)) 5093 return PTR_ERR(handle); 5094 ret = dquot_acquire(dquot); 5095 err = ext4_journal_stop(handle); 5096 if (!ret) 5097 ret = err; 5098 return ret; 5099 } 5100 5101 static int ext4_release_dquot(struct dquot *dquot) 5102 { 5103 int ret, err; 5104 handle_t *handle; 5105 5106 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5107 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5108 if (IS_ERR(handle)) { 5109 /* Release dquot anyway to avoid endless cycle in dqput() */ 5110 dquot_release(dquot); 5111 return PTR_ERR(handle); 5112 } 5113 ret = dquot_release(dquot); 5114 err = ext4_journal_stop(handle); 5115 if (!ret) 5116 ret = err; 5117 return ret; 5118 } 5119 5120 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5121 { 5122 struct super_block *sb = dquot->dq_sb; 5123 struct ext4_sb_info *sbi = EXT4_SB(sb); 5124 5125 /* Are we journaling quotas? */ 5126 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5127 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5128 dquot_mark_dquot_dirty(dquot); 5129 return ext4_write_dquot(dquot); 5130 } else { 5131 return dquot_mark_dquot_dirty(dquot); 5132 } 5133 } 5134 5135 static int ext4_write_info(struct super_block *sb, int type) 5136 { 5137 int ret, err; 5138 handle_t *handle; 5139 5140 /* Data block + inode block */ 5141 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5142 if (IS_ERR(handle)) 5143 return PTR_ERR(handle); 5144 ret = dquot_commit_info(sb, type); 5145 err = ext4_journal_stop(handle); 5146 if (!ret) 5147 ret = err; 5148 return ret; 5149 } 5150 5151 /* 5152 * Turn on quotas during mount time - we need to find 5153 * the quota file and such... 5154 */ 5155 static int ext4_quota_on_mount(struct super_block *sb, int type) 5156 { 5157 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5158 EXT4_SB(sb)->s_jquota_fmt, type); 5159 } 5160 5161 /* 5162 * Standard function to be called on quota_on 5163 */ 5164 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5165 struct path *path) 5166 { 5167 int err; 5168 5169 if (!test_opt(sb, QUOTA)) 5170 return -EINVAL; 5171 5172 /* Quotafile not on the same filesystem? */ 5173 if (path->dentry->d_sb != sb) 5174 return -EXDEV; 5175 /* Journaling quota? */ 5176 if (EXT4_SB(sb)->s_qf_names[type]) { 5177 /* Quotafile not in fs root? */ 5178 if (path->dentry->d_parent != sb->s_root) 5179 ext4_msg(sb, KERN_WARNING, 5180 "Quota file not on filesystem root. " 5181 "Journaled quota will not work"); 5182 } 5183 5184 /* 5185 * When we journal data on quota file, we have to flush journal to see 5186 * all updates to the file when we bypass pagecache... 5187 */ 5188 if (EXT4_SB(sb)->s_journal && 5189 ext4_should_journal_data(path->dentry->d_inode)) { 5190 /* 5191 * We don't need to lock updates but journal_flush() could 5192 * otherwise be livelocked... 5193 */ 5194 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5195 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5196 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5197 if (err) 5198 return err; 5199 } 5200 5201 return dquot_quota_on(sb, type, format_id, path); 5202 } 5203 5204 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5205 unsigned int flags) 5206 { 5207 int err; 5208 struct inode *qf_inode; 5209 unsigned long qf_inums[MAXQUOTAS] = { 5210 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5211 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5212 }; 5213 5214 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5215 5216 if (!qf_inums[type]) 5217 return -EPERM; 5218 5219 qf_inode = ext4_iget(sb, qf_inums[type]); 5220 if (IS_ERR(qf_inode)) { 5221 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5222 return PTR_ERR(qf_inode); 5223 } 5224 5225 /* Don't account quota for quota files to avoid recursion */ 5226 qf_inode->i_flags |= S_NOQUOTA; 5227 err = dquot_enable(qf_inode, type, format_id, flags); 5228 iput(qf_inode); 5229 5230 return err; 5231 } 5232 5233 /* Enable usage tracking for all quota types. */ 5234 static int ext4_enable_quotas(struct super_block *sb) 5235 { 5236 int type, err = 0; 5237 unsigned long qf_inums[MAXQUOTAS] = { 5238 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5239 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5240 }; 5241 5242 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5243 for (type = 0; type < MAXQUOTAS; type++) { 5244 if (qf_inums[type]) { 5245 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5246 DQUOT_USAGE_ENABLED); 5247 if (err) { 5248 ext4_warning(sb, 5249 "Failed to enable quota tracking " 5250 "(type=%d, err=%d). Please run " 5251 "e2fsck to fix.", type, err); 5252 return err; 5253 } 5254 } 5255 } 5256 return 0; 5257 } 5258 5259 /* 5260 * quota_on function that is used when QUOTA feature is set. 5261 */ 5262 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5263 int format_id) 5264 { 5265 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5266 return -EINVAL; 5267 5268 /* 5269 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5270 */ 5271 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5272 } 5273 5274 static int ext4_quota_off(struct super_block *sb, int type) 5275 { 5276 struct inode *inode = sb_dqopt(sb)->files[type]; 5277 handle_t *handle; 5278 5279 /* Force all delayed allocation blocks to be allocated. 5280 * Caller already holds s_umount sem */ 5281 if (test_opt(sb, DELALLOC)) 5282 sync_filesystem(sb); 5283 5284 if (!inode) 5285 goto out; 5286 5287 /* Update modification times of quota files when userspace can 5288 * start looking at them */ 5289 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5290 if (IS_ERR(handle)) 5291 goto out; 5292 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5293 ext4_mark_inode_dirty(handle, inode); 5294 ext4_journal_stop(handle); 5295 5296 out: 5297 return dquot_quota_off(sb, type); 5298 } 5299 5300 /* 5301 * quota_off function that is used when QUOTA feature is set. 5302 */ 5303 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5304 { 5305 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5306 return -EINVAL; 5307 5308 /* Disable only the limits. */ 5309 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5310 } 5311 5312 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5313 * acquiring the locks... As quota files are never truncated and quota code 5314 * itself serializes the operations (and no one else should touch the files) 5315 * we don't have to be afraid of races */ 5316 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5317 size_t len, loff_t off) 5318 { 5319 struct inode *inode = sb_dqopt(sb)->files[type]; 5320 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5321 int err = 0; 5322 int offset = off & (sb->s_blocksize - 1); 5323 int tocopy; 5324 size_t toread; 5325 struct buffer_head *bh; 5326 loff_t i_size = i_size_read(inode); 5327 5328 if (off > i_size) 5329 return 0; 5330 if (off+len > i_size) 5331 len = i_size-off; 5332 toread = len; 5333 while (toread > 0) { 5334 tocopy = sb->s_blocksize - offset < toread ? 5335 sb->s_blocksize - offset : toread; 5336 bh = ext4_bread(NULL, inode, blk, 0, &err); 5337 if (err) 5338 return err; 5339 if (!bh) /* A hole? */ 5340 memset(data, 0, tocopy); 5341 else 5342 memcpy(data, bh->b_data+offset, tocopy); 5343 brelse(bh); 5344 offset = 0; 5345 toread -= tocopy; 5346 data += tocopy; 5347 blk++; 5348 } 5349 return len; 5350 } 5351 5352 /* Write to quotafile (we know the transaction is already started and has 5353 * enough credits) */ 5354 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5355 const char *data, size_t len, loff_t off) 5356 { 5357 struct inode *inode = sb_dqopt(sb)->files[type]; 5358 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5359 int err = 0; 5360 int offset = off & (sb->s_blocksize - 1); 5361 struct buffer_head *bh; 5362 handle_t *handle = journal_current_handle(); 5363 5364 if (EXT4_SB(sb)->s_journal && !handle) { 5365 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5366 " cancelled because transaction is not started", 5367 (unsigned long long)off, (unsigned long long)len); 5368 return -EIO; 5369 } 5370 /* 5371 * Since we account only one data block in transaction credits, 5372 * then it is impossible to cross a block boundary. 5373 */ 5374 if (sb->s_blocksize - offset < len) { 5375 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5376 " cancelled because not block aligned", 5377 (unsigned long long)off, (unsigned long long)len); 5378 return -EIO; 5379 } 5380 5381 bh = ext4_bread(handle, inode, blk, 1, &err); 5382 if (!bh) 5383 goto out; 5384 BUFFER_TRACE(bh, "get write access"); 5385 err = ext4_journal_get_write_access(handle, bh); 5386 if (err) { 5387 brelse(bh); 5388 goto out; 5389 } 5390 lock_buffer(bh); 5391 memcpy(bh->b_data+offset, data, len); 5392 flush_dcache_page(bh->b_page); 5393 unlock_buffer(bh); 5394 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5395 brelse(bh); 5396 out: 5397 if (err) 5398 return err; 5399 if (inode->i_size < off + len) { 5400 i_size_write(inode, off + len); 5401 EXT4_I(inode)->i_disksize = inode->i_size; 5402 ext4_mark_inode_dirty(handle, inode); 5403 } 5404 return len; 5405 } 5406 5407 #endif 5408 5409 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5410 const char *dev_name, void *data) 5411 { 5412 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5413 } 5414 5415 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5416 static inline void register_as_ext2(void) 5417 { 5418 int err = register_filesystem(&ext2_fs_type); 5419 if (err) 5420 printk(KERN_WARNING 5421 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5422 } 5423 5424 static inline void unregister_as_ext2(void) 5425 { 5426 unregister_filesystem(&ext2_fs_type); 5427 } 5428 5429 static inline int ext2_feature_set_ok(struct super_block *sb) 5430 { 5431 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5432 return 0; 5433 if (sb->s_flags & MS_RDONLY) 5434 return 1; 5435 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5436 return 0; 5437 return 1; 5438 } 5439 #else 5440 static inline void register_as_ext2(void) { } 5441 static inline void unregister_as_ext2(void) { } 5442 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5443 #endif 5444 5445 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5446 static inline void register_as_ext3(void) 5447 { 5448 int err = register_filesystem(&ext3_fs_type); 5449 if (err) 5450 printk(KERN_WARNING 5451 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5452 } 5453 5454 static inline void unregister_as_ext3(void) 5455 { 5456 unregister_filesystem(&ext3_fs_type); 5457 } 5458 5459 static inline int ext3_feature_set_ok(struct super_block *sb) 5460 { 5461 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5462 return 0; 5463 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5464 return 0; 5465 if (sb->s_flags & MS_RDONLY) 5466 return 1; 5467 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5468 return 0; 5469 return 1; 5470 } 5471 #else 5472 static inline void register_as_ext3(void) { } 5473 static inline void unregister_as_ext3(void) { } 5474 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5475 #endif 5476 5477 static struct file_system_type ext4_fs_type = { 5478 .owner = THIS_MODULE, 5479 .name = "ext4", 5480 .mount = ext4_mount, 5481 .kill_sb = kill_block_super, 5482 .fs_flags = FS_REQUIRES_DEV, 5483 }; 5484 MODULE_ALIAS_FS("ext4"); 5485 5486 static int __init ext4_init_feat_adverts(void) 5487 { 5488 struct ext4_features *ef; 5489 int ret = -ENOMEM; 5490 5491 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5492 if (!ef) 5493 goto out; 5494 5495 ef->f_kobj.kset = ext4_kset; 5496 init_completion(&ef->f_kobj_unregister); 5497 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5498 "features"); 5499 if (ret) { 5500 kfree(ef); 5501 goto out; 5502 } 5503 5504 ext4_feat = ef; 5505 ret = 0; 5506 out: 5507 return ret; 5508 } 5509 5510 static void ext4_exit_feat_adverts(void) 5511 { 5512 kobject_put(&ext4_feat->f_kobj); 5513 wait_for_completion(&ext4_feat->f_kobj_unregister); 5514 kfree(ext4_feat); 5515 } 5516 5517 /* Shared across all ext4 file systems */ 5518 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5519 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5520 5521 static int __init ext4_init_fs(void) 5522 { 5523 int i, err; 5524 5525 ext4_li_info = NULL; 5526 mutex_init(&ext4_li_mtx); 5527 5528 /* Build-time check for flags consistency */ 5529 ext4_check_flag_values(); 5530 5531 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5532 mutex_init(&ext4__aio_mutex[i]); 5533 init_waitqueue_head(&ext4__ioend_wq[i]); 5534 } 5535 5536 err = ext4_init_es(); 5537 if (err) 5538 return err; 5539 5540 err = ext4_init_pageio(); 5541 if (err) 5542 goto out7; 5543 5544 err = ext4_init_system_zone(); 5545 if (err) 5546 goto out6; 5547 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5548 if (!ext4_kset) { 5549 err = -ENOMEM; 5550 goto out5; 5551 } 5552 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5553 5554 err = ext4_init_feat_adverts(); 5555 if (err) 5556 goto out4; 5557 5558 err = ext4_init_mballoc(); 5559 if (err) 5560 goto out2; 5561 else 5562 ext4_mballoc_ready = 1; 5563 err = init_inodecache(); 5564 if (err) 5565 goto out1; 5566 register_as_ext3(); 5567 register_as_ext2(); 5568 err = register_filesystem(&ext4_fs_type); 5569 if (err) 5570 goto out; 5571 5572 return 0; 5573 out: 5574 unregister_as_ext2(); 5575 unregister_as_ext3(); 5576 destroy_inodecache(); 5577 out1: 5578 ext4_mballoc_ready = 0; 5579 ext4_exit_mballoc(); 5580 out2: 5581 ext4_exit_feat_adverts(); 5582 out4: 5583 if (ext4_proc_root) 5584 remove_proc_entry("fs/ext4", NULL); 5585 kset_unregister(ext4_kset); 5586 out5: 5587 ext4_exit_system_zone(); 5588 out6: 5589 ext4_exit_pageio(); 5590 out7: 5591 ext4_exit_es(); 5592 5593 return err; 5594 } 5595 5596 static void __exit ext4_exit_fs(void) 5597 { 5598 ext4_destroy_lazyinit_thread(); 5599 unregister_as_ext2(); 5600 unregister_as_ext3(); 5601 unregister_filesystem(&ext4_fs_type); 5602 destroy_inodecache(); 5603 ext4_exit_mballoc(); 5604 ext4_exit_feat_adverts(); 5605 remove_proc_entry("fs/ext4", NULL); 5606 kset_unregister(ext4_kset); 5607 ext4_exit_system_zone(); 5608 ext4_exit_pageio(); 5609 ext4_exit_es(); 5610 } 5611 5612 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5613 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5614 MODULE_LICENSE("GPL"); 5615 module_init(ext4_init_fs) 5616 module_exit(ext4_exit_fs) 5617