1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_sem 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_sem 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, const char *func, 339 unsigned int line) 340 { 341 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 342 343 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 344 if (bdev_read_only(sb->s_bdev)) 345 return; 346 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 347 ext4_update_tstamp(es, s_last_error_time); 348 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 349 es->s_last_error_line = cpu_to_le32(line); 350 if (es->s_last_error_errcode == 0) 351 es->s_last_error_errcode = EXT4_ERR_EFSCORRUPTED; 352 if (!es->s_first_error_time) { 353 es->s_first_error_time = es->s_last_error_time; 354 es->s_first_error_time_hi = es->s_last_error_time_hi; 355 strncpy(es->s_first_error_func, func, 356 sizeof(es->s_first_error_func)); 357 es->s_first_error_line = cpu_to_le32(line); 358 es->s_first_error_ino = es->s_last_error_ino; 359 es->s_first_error_block = es->s_last_error_block; 360 es->s_first_error_errcode = es->s_last_error_errcode; 361 } 362 /* 363 * Start the daily error reporting function if it hasn't been 364 * started already 365 */ 366 if (!es->s_error_count) 367 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 368 le32_add_cpu(&es->s_error_count, 1); 369 } 370 371 static void save_error_info(struct super_block *sb, const char *func, 372 unsigned int line) 373 { 374 __save_error_info(sb, func, line); 375 ext4_commit_super(sb, 1); 376 } 377 378 /* 379 * The del_gendisk() function uninitializes the disk-specific data 380 * structures, including the bdi structure, without telling anyone 381 * else. Once this happens, any attempt to call mark_buffer_dirty() 382 * (for example, by ext4_commit_super), will cause a kernel OOPS. 383 * This is a kludge to prevent these oops until we can put in a proper 384 * hook in del_gendisk() to inform the VFS and file system layers. 385 */ 386 static int block_device_ejected(struct super_block *sb) 387 { 388 struct inode *bd_inode = sb->s_bdev->bd_inode; 389 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 390 391 return bdi->dev == NULL; 392 } 393 394 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 395 { 396 struct super_block *sb = journal->j_private; 397 struct ext4_sb_info *sbi = EXT4_SB(sb); 398 int error = is_journal_aborted(journal); 399 struct ext4_journal_cb_entry *jce; 400 401 BUG_ON(txn->t_state == T_FINISHED); 402 403 ext4_process_freed_data(sb, txn->t_tid); 404 405 spin_lock(&sbi->s_md_lock); 406 while (!list_empty(&txn->t_private_list)) { 407 jce = list_entry(txn->t_private_list.next, 408 struct ext4_journal_cb_entry, jce_list); 409 list_del_init(&jce->jce_list); 410 spin_unlock(&sbi->s_md_lock); 411 jce->jce_func(sb, jce, error); 412 spin_lock(&sbi->s_md_lock); 413 } 414 spin_unlock(&sbi->s_md_lock); 415 } 416 417 static bool system_going_down(void) 418 { 419 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 420 || system_state == SYSTEM_RESTART; 421 } 422 423 /* Deal with the reporting of failure conditions on a filesystem such as 424 * inconsistencies detected or read IO failures. 425 * 426 * On ext2, we can store the error state of the filesystem in the 427 * superblock. That is not possible on ext4, because we may have other 428 * write ordering constraints on the superblock which prevent us from 429 * writing it out straight away; and given that the journal is about to 430 * be aborted, we can't rely on the current, or future, transactions to 431 * write out the superblock safely. 432 * 433 * We'll just use the jbd2_journal_abort() error code to record an error in 434 * the journal instead. On recovery, the journal will complain about 435 * that error until we've noted it down and cleared it. 436 */ 437 438 static void ext4_handle_error(struct super_block *sb) 439 { 440 if (test_opt(sb, WARN_ON_ERROR)) 441 WARN_ON_ONCE(1); 442 443 if (sb_rdonly(sb)) 444 return; 445 446 if (!test_opt(sb, ERRORS_CONT)) { 447 journal_t *journal = EXT4_SB(sb)->s_journal; 448 449 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 450 if (journal) 451 jbd2_journal_abort(journal, -EIO); 452 } 453 /* 454 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 455 * could panic during 'reboot -f' as the underlying device got already 456 * disabled. 457 */ 458 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 459 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 460 /* 461 * Make sure updated value of ->s_mount_flags will be visible 462 * before ->s_flags update 463 */ 464 smp_wmb(); 465 sb->s_flags |= SB_RDONLY; 466 } else if (test_opt(sb, ERRORS_PANIC)) { 467 if (EXT4_SB(sb)->s_journal && 468 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 469 return; 470 panic("EXT4-fs (device %s): panic forced after error\n", 471 sb->s_id); 472 } 473 } 474 475 #define ext4_error_ratelimit(sb) \ 476 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 477 "EXT4-fs error") 478 479 void __ext4_error(struct super_block *sb, const char *function, 480 unsigned int line, const char *fmt, ...) 481 { 482 struct va_format vaf; 483 va_list args; 484 485 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 486 return; 487 488 trace_ext4_error(sb, function, line); 489 if (ext4_error_ratelimit(sb)) { 490 va_start(args, fmt); 491 vaf.fmt = fmt; 492 vaf.va = &args; 493 printk(KERN_CRIT 494 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 495 sb->s_id, function, line, current->comm, &vaf); 496 va_end(args); 497 } 498 save_error_info(sb, function, line); 499 ext4_handle_error(sb); 500 } 501 502 void __ext4_error_inode(struct inode *inode, const char *function, 503 unsigned int line, ext4_fsblk_t block, 504 const char *fmt, ...) 505 { 506 va_list args; 507 struct va_format vaf; 508 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 509 510 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 511 return; 512 513 trace_ext4_error(inode->i_sb, function, line); 514 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 515 es->s_last_error_block = cpu_to_le64(block); 516 if (ext4_error_ratelimit(inode->i_sb)) { 517 va_start(args, fmt); 518 vaf.fmt = fmt; 519 vaf.va = &args; 520 if (block) 521 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 522 "inode #%lu: block %llu: comm %s: %pV\n", 523 inode->i_sb->s_id, function, line, inode->i_ino, 524 block, current->comm, &vaf); 525 else 526 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 527 "inode #%lu: comm %s: %pV\n", 528 inode->i_sb->s_id, function, line, inode->i_ino, 529 current->comm, &vaf); 530 va_end(args); 531 } 532 save_error_info(inode->i_sb, function, line); 533 ext4_handle_error(inode->i_sb); 534 } 535 536 void __ext4_error_file(struct file *file, const char *function, 537 unsigned int line, ext4_fsblk_t block, 538 const char *fmt, ...) 539 { 540 va_list args; 541 struct va_format vaf; 542 struct ext4_super_block *es; 543 struct inode *inode = file_inode(file); 544 char pathname[80], *path; 545 546 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 547 return; 548 549 trace_ext4_error(inode->i_sb, function, line); 550 es = EXT4_SB(inode->i_sb)->s_es; 551 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 552 if (ext4_error_ratelimit(inode->i_sb)) { 553 path = file_path(file, pathname, sizeof(pathname)); 554 if (IS_ERR(path)) 555 path = "(unknown)"; 556 va_start(args, fmt); 557 vaf.fmt = fmt; 558 vaf.va = &args; 559 if (block) 560 printk(KERN_CRIT 561 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 562 "block %llu: comm %s: path %s: %pV\n", 563 inode->i_sb->s_id, function, line, inode->i_ino, 564 block, current->comm, path, &vaf); 565 else 566 printk(KERN_CRIT 567 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 568 "comm %s: path %s: %pV\n", 569 inode->i_sb->s_id, function, line, inode->i_ino, 570 current->comm, path, &vaf); 571 va_end(args); 572 } 573 save_error_info(inode->i_sb, function, line); 574 ext4_handle_error(inode->i_sb); 575 } 576 577 const char *ext4_decode_error(struct super_block *sb, int errno, 578 char nbuf[16]) 579 { 580 char *errstr = NULL; 581 582 switch (errno) { 583 case -EFSCORRUPTED: 584 errstr = "Corrupt filesystem"; 585 break; 586 case -EFSBADCRC: 587 errstr = "Filesystem failed CRC"; 588 break; 589 case -EIO: 590 errstr = "IO failure"; 591 break; 592 case -ENOMEM: 593 errstr = "Out of memory"; 594 break; 595 case -EROFS: 596 if (!sb || (EXT4_SB(sb)->s_journal && 597 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 598 errstr = "Journal has aborted"; 599 else 600 errstr = "Readonly filesystem"; 601 break; 602 default: 603 /* If the caller passed in an extra buffer for unknown 604 * errors, textualise them now. Else we just return 605 * NULL. */ 606 if (nbuf) { 607 /* Check for truncated error codes... */ 608 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 609 errstr = nbuf; 610 } 611 break; 612 } 613 614 return errstr; 615 } 616 617 void ext4_set_errno(struct super_block *sb, int err) 618 { 619 if (err < 0) 620 err = -err; 621 622 switch (err) { 623 case EIO: 624 err = EXT4_ERR_EIO; 625 break; 626 case ENOMEM: 627 err = EXT4_ERR_ENOMEM; 628 break; 629 case EFSBADCRC: 630 err = EXT4_ERR_EFSBADCRC; 631 break; 632 case EFSCORRUPTED: 633 err = EXT4_ERR_EFSCORRUPTED; 634 break; 635 case ENOSPC: 636 err = EXT4_ERR_ENOSPC; 637 break; 638 case ENOKEY: 639 err = EXT4_ERR_ENOKEY; 640 break; 641 case EROFS: 642 err = EXT4_ERR_EROFS; 643 break; 644 case EFBIG: 645 err = EXT4_ERR_EFBIG; 646 break; 647 case EEXIST: 648 err = EXT4_ERR_EEXIST; 649 break; 650 case ERANGE: 651 err = EXT4_ERR_ERANGE; 652 break; 653 case EOVERFLOW: 654 err = EXT4_ERR_EOVERFLOW; 655 break; 656 case EBUSY: 657 err = EXT4_ERR_EBUSY; 658 break; 659 case ENOTDIR: 660 err = EXT4_ERR_ENOTDIR; 661 break; 662 case ENOTEMPTY: 663 err = EXT4_ERR_ENOTEMPTY; 664 break; 665 case ESHUTDOWN: 666 err = EXT4_ERR_ESHUTDOWN; 667 break; 668 case EFAULT: 669 err = EXT4_ERR_EFAULT; 670 break; 671 default: 672 err = EXT4_ERR_UNKNOWN; 673 } 674 EXT4_SB(sb)->s_es->s_last_error_errcode = err; 675 } 676 677 /* __ext4_std_error decodes expected errors from journaling functions 678 * automatically and invokes the appropriate error response. */ 679 680 void __ext4_std_error(struct super_block *sb, const char *function, 681 unsigned int line, int errno) 682 { 683 char nbuf[16]; 684 const char *errstr; 685 686 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 687 return; 688 689 /* Special case: if the error is EROFS, and we're not already 690 * inside a transaction, then there's really no point in logging 691 * an error. */ 692 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 693 return; 694 695 if (ext4_error_ratelimit(sb)) { 696 errstr = ext4_decode_error(sb, errno, nbuf); 697 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 698 sb->s_id, function, line, errstr); 699 } 700 701 ext4_set_errno(sb, -errno); 702 save_error_info(sb, function, line); 703 ext4_handle_error(sb); 704 } 705 706 /* 707 * ext4_abort is a much stronger failure handler than ext4_error. The 708 * abort function may be used to deal with unrecoverable failures such 709 * as journal IO errors or ENOMEM at a critical moment in log management. 710 * 711 * We unconditionally force the filesystem into an ABORT|READONLY state, 712 * unless the error response on the fs has been set to panic in which 713 * case we take the easy way out and panic immediately. 714 */ 715 716 void __ext4_abort(struct super_block *sb, const char *function, 717 unsigned int line, const char *fmt, ...) 718 { 719 struct va_format vaf; 720 va_list args; 721 722 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 723 return; 724 725 save_error_info(sb, function, line); 726 va_start(args, fmt); 727 vaf.fmt = fmt; 728 vaf.va = &args; 729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 730 sb->s_id, function, line, &vaf); 731 va_end(args); 732 733 if (sb_rdonly(sb) == 0) { 734 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 735 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 736 /* 737 * Make sure updated value of ->s_mount_flags will be visible 738 * before ->s_flags update 739 */ 740 smp_wmb(); 741 sb->s_flags |= SB_RDONLY; 742 if (EXT4_SB(sb)->s_journal) 743 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 744 save_error_info(sb, function, line); 745 } 746 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 747 if (EXT4_SB(sb)->s_journal && 748 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 749 return; 750 panic("EXT4-fs panic from previous error\n"); 751 } 752 } 753 754 void __ext4_msg(struct super_block *sb, 755 const char *prefix, const char *fmt, ...) 756 { 757 struct va_format vaf; 758 va_list args; 759 760 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 761 return; 762 763 va_start(args, fmt); 764 vaf.fmt = fmt; 765 vaf.va = &args; 766 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 767 va_end(args); 768 } 769 770 #define ext4_warning_ratelimit(sb) \ 771 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 772 "EXT4-fs warning") 773 774 void __ext4_warning(struct super_block *sb, const char *function, 775 unsigned int line, const char *fmt, ...) 776 { 777 struct va_format vaf; 778 va_list args; 779 780 if (!ext4_warning_ratelimit(sb)) 781 return; 782 783 va_start(args, fmt); 784 vaf.fmt = fmt; 785 vaf.va = &args; 786 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 787 sb->s_id, function, line, &vaf); 788 va_end(args); 789 } 790 791 void __ext4_warning_inode(const struct inode *inode, const char *function, 792 unsigned int line, const char *fmt, ...) 793 { 794 struct va_format vaf; 795 va_list args; 796 797 if (!ext4_warning_ratelimit(inode->i_sb)) 798 return; 799 800 va_start(args, fmt); 801 vaf.fmt = fmt; 802 vaf.va = &args; 803 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 804 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 805 function, line, inode->i_ino, current->comm, &vaf); 806 va_end(args); 807 } 808 809 void __ext4_grp_locked_error(const char *function, unsigned int line, 810 struct super_block *sb, ext4_group_t grp, 811 unsigned long ino, ext4_fsblk_t block, 812 const char *fmt, ...) 813 __releases(bitlock) 814 __acquires(bitlock) 815 { 816 struct va_format vaf; 817 va_list args; 818 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 819 820 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 821 return; 822 823 trace_ext4_error(sb, function, line); 824 es->s_last_error_ino = cpu_to_le32(ino); 825 es->s_last_error_block = cpu_to_le64(block); 826 __save_error_info(sb, function, line); 827 828 if (ext4_error_ratelimit(sb)) { 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 833 sb->s_id, function, line, grp); 834 if (ino) 835 printk(KERN_CONT "inode %lu: ", ino); 836 if (block) 837 printk(KERN_CONT "block %llu:", 838 (unsigned long long) block); 839 printk(KERN_CONT "%pV\n", &vaf); 840 va_end(args); 841 } 842 843 if (test_opt(sb, WARN_ON_ERROR)) 844 WARN_ON_ONCE(1); 845 846 if (test_opt(sb, ERRORS_CONT)) { 847 ext4_commit_super(sb, 0); 848 return; 849 } 850 851 ext4_unlock_group(sb, grp); 852 ext4_commit_super(sb, 1); 853 ext4_handle_error(sb); 854 /* 855 * We only get here in the ERRORS_RO case; relocking the group 856 * may be dangerous, but nothing bad will happen since the 857 * filesystem will have already been marked read/only and the 858 * journal has been aborted. We return 1 as a hint to callers 859 * who might what to use the return value from 860 * ext4_grp_locked_error() to distinguish between the 861 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 862 * aggressively from the ext4 function in question, with a 863 * more appropriate error code. 864 */ 865 ext4_lock_group(sb, grp); 866 return; 867 } 868 869 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 870 ext4_group_t group, 871 unsigned int flags) 872 { 873 struct ext4_sb_info *sbi = EXT4_SB(sb); 874 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 875 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 876 int ret; 877 878 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 879 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 880 &grp->bb_state); 881 if (!ret) 882 percpu_counter_sub(&sbi->s_freeclusters_counter, 883 grp->bb_free); 884 } 885 886 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 887 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 888 &grp->bb_state); 889 if (!ret && gdp) { 890 int count; 891 892 count = ext4_free_inodes_count(sb, gdp); 893 percpu_counter_sub(&sbi->s_freeinodes_counter, 894 count); 895 } 896 } 897 } 898 899 void ext4_update_dynamic_rev(struct super_block *sb) 900 { 901 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 902 903 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 904 return; 905 906 ext4_warning(sb, 907 "updating to rev %d because of new feature flag, " 908 "running e2fsck is recommended", 909 EXT4_DYNAMIC_REV); 910 911 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 912 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 913 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 914 /* leave es->s_feature_*compat flags alone */ 915 /* es->s_uuid will be set by e2fsck if empty */ 916 917 /* 918 * The rest of the superblock fields should be zero, and if not it 919 * means they are likely already in use, so leave them alone. We 920 * can leave it up to e2fsck to clean up any inconsistencies there. 921 */ 922 } 923 924 /* 925 * Open the external journal device 926 */ 927 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 928 { 929 struct block_device *bdev; 930 char b[BDEVNAME_SIZE]; 931 932 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 933 if (IS_ERR(bdev)) 934 goto fail; 935 return bdev; 936 937 fail: 938 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 939 __bdevname(dev, b), PTR_ERR(bdev)); 940 return NULL; 941 } 942 943 /* 944 * Release the journal device 945 */ 946 static void ext4_blkdev_put(struct block_device *bdev) 947 { 948 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 949 } 950 951 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 952 { 953 struct block_device *bdev; 954 bdev = sbi->journal_bdev; 955 if (bdev) { 956 ext4_blkdev_put(bdev); 957 sbi->journal_bdev = NULL; 958 } 959 } 960 961 static inline struct inode *orphan_list_entry(struct list_head *l) 962 { 963 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 964 } 965 966 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 967 { 968 struct list_head *l; 969 970 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 971 le32_to_cpu(sbi->s_es->s_last_orphan)); 972 973 printk(KERN_ERR "sb_info orphan list:\n"); 974 list_for_each(l, &sbi->s_orphan) { 975 struct inode *inode = orphan_list_entry(l); 976 printk(KERN_ERR " " 977 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 978 inode->i_sb->s_id, inode->i_ino, inode, 979 inode->i_mode, inode->i_nlink, 980 NEXT_ORPHAN(inode)); 981 } 982 } 983 984 #ifdef CONFIG_QUOTA 985 static int ext4_quota_off(struct super_block *sb, int type); 986 987 static inline void ext4_quota_off_umount(struct super_block *sb) 988 { 989 int type; 990 991 /* Use our quota_off function to clear inode flags etc. */ 992 for (type = 0; type < EXT4_MAXQUOTAS; type++) 993 ext4_quota_off(sb, type); 994 } 995 996 /* 997 * This is a helper function which is used in the mount/remount 998 * codepaths (which holds s_umount) to fetch the quota file name. 999 */ 1000 static inline char *get_qf_name(struct super_block *sb, 1001 struct ext4_sb_info *sbi, 1002 int type) 1003 { 1004 return rcu_dereference_protected(sbi->s_qf_names[type], 1005 lockdep_is_held(&sb->s_umount)); 1006 } 1007 #else 1008 static inline void ext4_quota_off_umount(struct super_block *sb) 1009 { 1010 } 1011 #endif 1012 1013 static void ext4_put_super(struct super_block *sb) 1014 { 1015 struct ext4_sb_info *sbi = EXT4_SB(sb); 1016 struct ext4_super_block *es = sbi->s_es; 1017 int aborted = 0; 1018 int i, err; 1019 1020 ext4_unregister_li_request(sb); 1021 ext4_quota_off_umount(sb); 1022 1023 destroy_workqueue(sbi->rsv_conversion_wq); 1024 1025 if (sbi->s_journal) { 1026 aborted = is_journal_aborted(sbi->s_journal); 1027 err = jbd2_journal_destroy(sbi->s_journal); 1028 sbi->s_journal = NULL; 1029 if ((err < 0) && !aborted) { 1030 ext4_set_errno(sb, -err); 1031 ext4_abort(sb, "Couldn't clean up the journal"); 1032 } 1033 } 1034 1035 ext4_unregister_sysfs(sb); 1036 ext4_es_unregister_shrinker(sbi); 1037 del_timer_sync(&sbi->s_err_report); 1038 ext4_release_system_zone(sb); 1039 ext4_mb_release(sb); 1040 ext4_ext_release(sb); 1041 1042 if (!sb_rdonly(sb) && !aborted) { 1043 ext4_clear_feature_journal_needs_recovery(sb); 1044 es->s_state = cpu_to_le16(sbi->s_mount_state); 1045 } 1046 if (!sb_rdonly(sb)) 1047 ext4_commit_super(sb, 1); 1048 1049 for (i = 0; i < sbi->s_gdb_count; i++) 1050 brelse(sbi->s_group_desc[i]); 1051 kvfree(sbi->s_group_desc); 1052 kvfree(sbi->s_flex_groups); 1053 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1054 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1055 percpu_counter_destroy(&sbi->s_dirs_counter); 1056 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1057 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 1058 #ifdef CONFIG_QUOTA 1059 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1060 kfree(get_qf_name(sb, sbi, i)); 1061 #endif 1062 1063 /* Debugging code just in case the in-memory inode orphan list 1064 * isn't empty. The on-disk one can be non-empty if we've 1065 * detected an error and taken the fs readonly, but the 1066 * in-memory list had better be clean by this point. */ 1067 if (!list_empty(&sbi->s_orphan)) 1068 dump_orphan_list(sb, sbi); 1069 J_ASSERT(list_empty(&sbi->s_orphan)); 1070 1071 sync_blockdev(sb->s_bdev); 1072 invalidate_bdev(sb->s_bdev); 1073 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1074 /* 1075 * Invalidate the journal device's buffers. We don't want them 1076 * floating about in memory - the physical journal device may 1077 * hotswapped, and it breaks the `ro-after' testing code. 1078 */ 1079 sync_blockdev(sbi->journal_bdev); 1080 invalidate_bdev(sbi->journal_bdev); 1081 ext4_blkdev_remove(sbi); 1082 } 1083 1084 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1085 sbi->s_ea_inode_cache = NULL; 1086 1087 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1088 sbi->s_ea_block_cache = NULL; 1089 1090 if (sbi->s_mmp_tsk) 1091 kthread_stop(sbi->s_mmp_tsk); 1092 brelse(sbi->s_sbh); 1093 sb->s_fs_info = NULL; 1094 /* 1095 * Now that we are completely done shutting down the 1096 * superblock, we need to actually destroy the kobject. 1097 */ 1098 kobject_put(&sbi->s_kobj); 1099 wait_for_completion(&sbi->s_kobj_unregister); 1100 if (sbi->s_chksum_driver) 1101 crypto_free_shash(sbi->s_chksum_driver); 1102 kfree(sbi->s_blockgroup_lock); 1103 fs_put_dax(sbi->s_daxdev); 1104 #ifdef CONFIG_UNICODE 1105 utf8_unload(sbi->s_encoding); 1106 #endif 1107 kfree(sbi); 1108 } 1109 1110 static struct kmem_cache *ext4_inode_cachep; 1111 1112 /* 1113 * Called inside transaction, so use GFP_NOFS 1114 */ 1115 static struct inode *ext4_alloc_inode(struct super_block *sb) 1116 { 1117 struct ext4_inode_info *ei; 1118 1119 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1120 if (!ei) 1121 return NULL; 1122 1123 inode_set_iversion(&ei->vfs_inode, 1); 1124 spin_lock_init(&ei->i_raw_lock); 1125 INIT_LIST_HEAD(&ei->i_prealloc_list); 1126 spin_lock_init(&ei->i_prealloc_lock); 1127 ext4_es_init_tree(&ei->i_es_tree); 1128 rwlock_init(&ei->i_es_lock); 1129 INIT_LIST_HEAD(&ei->i_es_list); 1130 ei->i_es_all_nr = 0; 1131 ei->i_es_shk_nr = 0; 1132 ei->i_es_shrink_lblk = 0; 1133 ei->i_reserved_data_blocks = 0; 1134 spin_lock_init(&(ei->i_block_reservation_lock)); 1135 ext4_init_pending_tree(&ei->i_pending_tree); 1136 #ifdef CONFIG_QUOTA 1137 ei->i_reserved_quota = 0; 1138 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1139 #endif 1140 ei->jinode = NULL; 1141 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1142 spin_lock_init(&ei->i_completed_io_lock); 1143 ei->i_sync_tid = 0; 1144 ei->i_datasync_tid = 0; 1145 atomic_set(&ei->i_unwritten, 0); 1146 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1147 return &ei->vfs_inode; 1148 } 1149 1150 static int ext4_drop_inode(struct inode *inode) 1151 { 1152 int drop = generic_drop_inode(inode); 1153 1154 if (!drop) 1155 drop = fscrypt_drop_inode(inode); 1156 1157 trace_ext4_drop_inode(inode, drop); 1158 return drop; 1159 } 1160 1161 static void ext4_free_in_core_inode(struct inode *inode) 1162 { 1163 fscrypt_free_inode(inode); 1164 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1165 } 1166 1167 static void ext4_destroy_inode(struct inode *inode) 1168 { 1169 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1170 ext4_msg(inode->i_sb, KERN_ERR, 1171 "Inode %lu (%p): orphan list check failed!", 1172 inode->i_ino, EXT4_I(inode)); 1173 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1174 EXT4_I(inode), sizeof(struct ext4_inode_info), 1175 true); 1176 dump_stack(); 1177 } 1178 } 1179 1180 static void init_once(void *foo) 1181 { 1182 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1183 1184 INIT_LIST_HEAD(&ei->i_orphan); 1185 init_rwsem(&ei->xattr_sem); 1186 init_rwsem(&ei->i_data_sem); 1187 init_rwsem(&ei->i_mmap_sem); 1188 inode_init_once(&ei->vfs_inode); 1189 } 1190 1191 static int __init init_inodecache(void) 1192 { 1193 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1194 sizeof(struct ext4_inode_info), 0, 1195 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1196 SLAB_ACCOUNT), 1197 offsetof(struct ext4_inode_info, i_data), 1198 sizeof_field(struct ext4_inode_info, i_data), 1199 init_once); 1200 if (ext4_inode_cachep == NULL) 1201 return -ENOMEM; 1202 return 0; 1203 } 1204 1205 static void destroy_inodecache(void) 1206 { 1207 /* 1208 * Make sure all delayed rcu free inodes are flushed before we 1209 * destroy cache. 1210 */ 1211 rcu_barrier(); 1212 kmem_cache_destroy(ext4_inode_cachep); 1213 } 1214 1215 void ext4_clear_inode(struct inode *inode) 1216 { 1217 invalidate_inode_buffers(inode); 1218 clear_inode(inode); 1219 ext4_discard_preallocations(inode); 1220 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1221 dquot_drop(inode); 1222 if (EXT4_I(inode)->jinode) { 1223 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1224 EXT4_I(inode)->jinode); 1225 jbd2_free_inode(EXT4_I(inode)->jinode); 1226 EXT4_I(inode)->jinode = NULL; 1227 } 1228 fscrypt_put_encryption_info(inode); 1229 fsverity_cleanup_inode(inode); 1230 } 1231 1232 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1233 u64 ino, u32 generation) 1234 { 1235 struct inode *inode; 1236 1237 /* 1238 * Currently we don't know the generation for parent directory, so 1239 * a generation of 0 means "accept any" 1240 */ 1241 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1242 if (IS_ERR(inode)) 1243 return ERR_CAST(inode); 1244 if (generation && inode->i_generation != generation) { 1245 iput(inode); 1246 return ERR_PTR(-ESTALE); 1247 } 1248 1249 return inode; 1250 } 1251 1252 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1253 int fh_len, int fh_type) 1254 { 1255 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1256 ext4_nfs_get_inode); 1257 } 1258 1259 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1260 int fh_len, int fh_type) 1261 { 1262 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1263 ext4_nfs_get_inode); 1264 } 1265 1266 static int ext4_nfs_commit_metadata(struct inode *inode) 1267 { 1268 struct writeback_control wbc = { 1269 .sync_mode = WB_SYNC_ALL 1270 }; 1271 1272 trace_ext4_nfs_commit_metadata(inode); 1273 return ext4_write_inode(inode, &wbc); 1274 } 1275 1276 /* 1277 * Try to release metadata pages (indirect blocks, directories) which are 1278 * mapped via the block device. Since these pages could have journal heads 1279 * which would prevent try_to_free_buffers() from freeing them, we must use 1280 * jbd2 layer's try_to_free_buffers() function to release them. 1281 */ 1282 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1283 gfp_t wait) 1284 { 1285 journal_t *journal = EXT4_SB(sb)->s_journal; 1286 1287 WARN_ON(PageChecked(page)); 1288 if (!page_has_buffers(page)) 1289 return 0; 1290 if (journal) 1291 return jbd2_journal_try_to_free_buffers(journal, page, 1292 wait & ~__GFP_DIRECT_RECLAIM); 1293 return try_to_free_buffers(page); 1294 } 1295 1296 #ifdef CONFIG_FS_ENCRYPTION 1297 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1298 { 1299 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1300 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1301 } 1302 1303 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1304 void *fs_data) 1305 { 1306 handle_t *handle = fs_data; 1307 int res, res2, credits, retries = 0; 1308 1309 /* 1310 * Encrypting the root directory is not allowed because e2fsck expects 1311 * lost+found to exist and be unencrypted, and encrypting the root 1312 * directory would imply encrypting the lost+found directory as well as 1313 * the filename "lost+found" itself. 1314 */ 1315 if (inode->i_ino == EXT4_ROOT_INO) 1316 return -EPERM; 1317 1318 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1319 return -EINVAL; 1320 1321 res = ext4_convert_inline_data(inode); 1322 if (res) 1323 return res; 1324 1325 /* 1326 * If a journal handle was specified, then the encryption context is 1327 * being set on a new inode via inheritance and is part of a larger 1328 * transaction to create the inode. Otherwise the encryption context is 1329 * being set on an existing inode in its own transaction. Only in the 1330 * latter case should the "retry on ENOSPC" logic be used. 1331 */ 1332 1333 if (handle) { 1334 res = ext4_xattr_set_handle(handle, inode, 1335 EXT4_XATTR_INDEX_ENCRYPTION, 1336 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1337 ctx, len, 0); 1338 if (!res) { 1339 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1340 ext4_clear_inode_state(inode, 1341 EXT4_STATE_MAY_INLINE_DATA); 1342 /* 1343 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1344 * S_DAX may be disabled 1345 */ 1346 ext4_set_inode_flags(inode); 1347 } 1348 return res; 1349 } 1350 1351 res = dquot_initialize(inode); 1352 if (res) 1353 return res; 1354 retry: 1355 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1356 &credits); 1357 if (res) 1358 return res; 1359 1360 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1361 if (IS_ERR(handle)) 1362 return PTR_ERR(handle); 1363 1364 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1365 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1366 ctx, len, 0); 1367 if (!res) { 1368 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1369 /* 1370 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1371 * S_DAX may be disabled 1372 */ 1373 ext4_set_inode_flags(inode); 1374 res = ext4_mark_inode_dirty(handle, inode); 1375 if (res) 1376 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1377 } 1378 res2 = ext4_journal_stop(handle); 1379 1380 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1381 goto retry; 1382 if (!res) 1383 res = res2; 1384 return res; 1385 } 1386 1387 static bool ext4_dummy_context(struct inode *inode) 1388 { 1389 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1390 } 1391 1392 static bool ext4_has_stable_inodes(struct super_block *sb) 1393 { 1394 return ext4_has_feature_stable_inodes(sb); 1395 } 1396 1397 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1398 int *ino_bits_ret, int *lblk_bits_ret) 1399 { 1400 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1401 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1402 } 1403 1404 static const struct fscrypt_operations ext4_cryptops = { 1405 .key_prefix = "ext4:", 1406 .get_context = ext4_get_context, 1407 .set_context = ext4_set_context, 1408 .dummy_context = ext4_dummy_context, 1409 .empty_dir = ext4_empty_dir, 1410 .max_namelen = EXT4_NAME_LEN, 1411 .has_stable_inodes = ext4_has_stable_inodes, 1412 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1413 }; 1414 #endif 1415 1416 #ifdef CONFIG_QUOTA 1417 static const char * const quotatypes[] = INITQFNAMES; 1418 #define QTYPE2NAME(t) (quotatypes[t]) 1419 1420 static int ext4_write_dquot(struct dquot *dquot); 1421 static int ext4_acquire_dquot(struct dquot *dquot); 1422 static int ext4_release_dquot(struct dquot *dquot); 1423 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1424 static int ext4_write_info(struct super_block *sb, int type); 1425 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1426 const struct path *path); 1427 static int ext4_quota_on_mount(struct super_block *sb, int type); 1428 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1429 size_t len, loff_t off); 1430 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1431 const char *data, size_t len, loff_t off); 1432 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1433 unsigned int flags); 1434 static int ext4_enable_quotas(struct super_block *sb); 1435 1436 static struct dquot **ext4_get_dquots(struct inode *inode) 1437 { 1438 return EXT4_I(inode)->i_dquot; 1439 } 1440 1441 static const struct dquot_operations ext4_quota_operations = { 1442 .get_reserved_space = ext4_get_reserved_space, 1443 .write_dquot = ext4_write_dquot, 1444 .acquire_dquot = ext4_acquire_dquot, 1445 .release_dquot = ext4_release_dquot, 1446 .mark_dirty = ext4_mark_dquot_dirty, 1447 .write_info = ext4_write_info, 1448 .alloc_dquot = dquot_alloc, 1449 .destroy_dquot = dquot_destroy, 1450 .get_projid = ext4_get_projid, 1451 .get_inode_usage = ext4_get_inode_usage, 1452 .get_next_id = dquot_get_next_id, 1453 }; 1454 1455 static const struct quotactl_ops ext4_qctl_operations = { 1456 .quota_on = ext4_quota_on, 1457 .quota_off = ext4_quota_off, 1458 .quota_sync = dquot_quota_sync, 1459 .get_state = dquot_get_state, 1460 .set_info = dquot_set_dqinfo, 1461 .get_dqblk = dquot_get_dqblk, 1462 .set_dqblk = dquot_set_dqblk, 1463 .get_nextdqblk = dquot_get_next_dqblk, 1464 }; 1465 #endif 1466 1467 static const struct super_operations ext4_sops = { 1468 .alloc_inode = ext4_alloc_inode, 1469 .free_inode = ext4_free_in_core_inode, 1470 .destroy_inode = ext4_destroy_inode, 1471 .write_inode = ext4_write_inode, 1472 .dirty_inode = ext4_dirty_inode, 1473 .drop_inode = ext4_drop_inode, 1474 .evict_inode = ext4_evict_inode, 1475 .put_super = ext4_put_super, 1476 .sync_fs = ext4_sync_fs, 1477 .freeze_fs = ext4_freeze, 1478 .unfreeze_fs = ext4_unfreeze, 1479 .statfs = ext4_statfs, 1480 .remount_fs = ext4_remount, 1481 .show_options = ext4_show_options, 1482 #ifdef CONFIG_QUOTA 1483 .quota_read = ext4_quota_read, 1484 .quota_write = ext4_quota_write, 1485 .get_dquots = ext4_get_dquots, 1486 #endif 1487 .bdev_try_to_free_page = bdev_try_to_free_page, 1488 }; 1489 1490 static const struct export_operations ext4_export_ops = { 1491 .fh_to_dentry = ext4_fh_to_dentry, 1492 .fh_to_parent = ext4_fh_to_parent, 1493 .get_parent = ext4_get_parent, 1494 .commit_metadata = ext4_nfs_commit_metadata, 1495 }; 1496 1497 enum { 1498 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1499 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1500 Opt_nouid32, Opt_debug, Opt_removed, 1501 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1502 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1503 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1504 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1505 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1506 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1507 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1508 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1509 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1510 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1511 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1512 Opt_nowarn_on_error, Opt_mblk_io_submit, 1513 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1514 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1515 Opt_inode_readahead_blks, Opt_journal_ioprio, 1516 Opt_dioread_nolock, Opt_dioread_lock, 1517 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1518 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1519 }; 1520 1521 static const match_table_t tokens = { 1522 {Opt_bsd_df, "bsddf"}, 1523 {Opt_minix_df, "minixdf"}, 1524 {Opt_grpid, "grpid"}, 1525 {Opt_grpid, "bsdgroups"}, 1526 {Opt_nogrpid, "nogrpid"}, 1527 {Opt_nogrpid, "sysvgroups"}, 1528 {Opt_resgid, "resgid=%u"}, 1529 {Opt_resuid, "resuid=%u"}, 1530 {Opt_sb, "sb=%u"}, 1531 {Opt_err_cont, "errors=continue"}, 1532 {Opt_err_panic, "errors=panic"}, 1533 {Opt_err_ro, "errors=remount-ro"}, 1534 {Opt_nouid32, "nouid32"}, 1535 {Opt_debug, "debug"}, 1536 {Opt_removed, "oldalloc"}, 1537 {Opt_removed, "orlov"}, 1538 {Opt_user_xattr, "user_xattr"}, 1539 {Opt_nouser_xattr, "nouser_xattr"}, 1540 {Opt_acl, "acl"}, 1541 {Opt_noacl, "noacl"}, 1542 {Opt_noload, "norecovery"}, 1543 {Opt_noload, "noload"}, 1544 {Opt_removed, "nobh"}, 1545 {Opt_removed, "bh"}, 1546 {Opt_commit, "commit=%u"}, 1547 {Opt_min_batch_time, "min_batch_time=%u"}, 1548 {Opt_max_batch_time, "max_batch_time=%u"}, 1549 {Opt_journal_dev, "journal_dev=%u"}, 1550 {Opt_journal_path, "journal_path=%s"}, 1551 {Opt_journal_checksum, "journal_checksum"}, 1552 {Opt_nojournal_checksum, "nojournal_checksum"}, 1553 {Opt_journal_async_commit, "journal_async_commit"}, 1554 {Opt_abort, "abort"}, 1555 {Opt_data_journal, "data=journal"}, 1556 {Opt_data_ordered, "data=ordered"}, 1557 {Opt_data_writeback, "data=writeback"}, 1558 {Opt_data_err_abort, "data_err=abort"}, 1559 {Opt_data_err_ignore, "data_err=ignore"}, 1560 {Opt_offusrjquota, "usrjquota="}, 1561 {Opt_usrjquota, "usrjquota=%s"}, 1562 {Opt_offgrpjquota, "grpjquota="}, 1563 {Opt_grpjquota, "grpjquota=%s"}, 1564 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1565 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1566 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1567 {Opt_grpquota, "grpquota"}, 1568 {Opt_noquota, "noquota"}, 1569 {Opt_quota, "quota"}, 1570 {Opt_usrquota, "usrquota"}, 1571 {Opt_prjquota, "prjquota"}, 1572 {Opt_barrier, "barrier=%u"}, 1573 {Opt_barrier, "barrier"}, 1574 {Opt_nobarrier, "nobarrier"}, 1575 {Opt_i_version, "i_version"}, 1576 {Opt_dax, "dax"}, 1577 {Opt_stripe, "stripe=%u"}, 1578 {Opt_delalloc, "delalloc"}, 1579 {Opt_warn_on_error, "warn_on_error"}, 1580 {Opt_nowarn_on_error, "nowarn_on_error"}, 1581 {Opt_lazytime, "lazytime"}, 1582 {Opt_nolazytime, "nolazytime"}, 1583 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1584 {Opt_nodelalloc, "nodelalloc"}, 1585 {Opt_removed, "mblk_io_submit"}, 1586 {Opt_removed, "nomblk_io_submit"}, 1587 {Opt_block_validity, "block_validity"}, 1588 {Opt_noblock_validity, "noblock_validity"}, 1589 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1590 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1591 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1592 {Opt_auto_da_alloc, "auto_da_alloc"}, 1593 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1594 {Opt_dioread_nolock, "dioread_nolock"}, 1595 {Opt_dioread_lock, "nodioread_nolock"}, 1596 {Opt_dioread_lock, "dioread_lock"}, 1597 {Opt_discard, "discard"}, 1598 {Opt_nodiscard, "nodiscard"}, 1599 {Opt_init_itable, "init_itable=%u"}, 1600 {Opt_init_itable, "init_itable"}, 1601 {Opt_noinit_itable, "noinit_itable"}, 1602 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1603 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1604 {Opt_nombcache, "nombcache"}, 1605 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1606 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1607 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1608 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1609 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1610 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1611 {Opt_err, NULL}, 1612 }; 1613 1614 static ext4_fsblk_t get_sb_block(void **data) 1615 { 1616 ext4_fsblk_t sb_block; 1617 char *options = (char *) *data; 1618 1619 if (!options || strncmp(options, "sb=", 3) != 0) 1620 return 1; /* Default location */ 1621 1622 options += 3; 1623 /* TODO: use simple_strtoll with >32bit ext4 */ 1624 sb_block = simple_strtoul(options, &options, 0); 1625 if (*options && *options != ',') { 1626 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1627 (char *) *data); 1628 return 1; 1629 } 1630 if (*options == ',') 1631 options++; 1632 *data = (void *) options; 1633 1634 return sb_block; 1635 } 1636 1637 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1638 static const char deprecated_msg[] = 1639 "Mount option \"%s\" will be removed by %s\n" 1640 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1641 1642 #ifdef CONFIG_QUOTA 1643 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1644 { 1645 struct ext4_sb_info *sbi = EXT4_SB(sb); 1646 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1647 int ret = -1; 1648 1649 if (sb_any_quota_loaded(sb) && !old_qname) { 1650 ext4_msg(sb, KERN_ERR, 1651 "Cannot change journaled " 1652 "quota options when quota turned on"); 1653 return -1; 1654 } 1655 if (ext4_has_feature_quota(sb)) { 1656 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1657 "ignored when QUOTA feature is enabled"); 1658 return 1; 1659 } 1660 qname = match_strdup(args); 1661 if (!qname) { 1662 ext4_msg(sb, KERN_ERR, 1663 "Not enough memory for storing quotafile name"); 1664 return -1; 1665 } 1666 if (old_qname) { 1667 if (strcmp(old_qname, qname) == 0) 1668 ret = 1; 1669 else 1670 ext4_msg(sb, KERN_ERR, 1671 "%s quota file already specified", 1672 QTYPE2NAME(qtype)); 1673 goto errout; 1674 } 1675 if (strchr(qname, '/')) { 1676 ext4_msg(sb, KERN_ERR, 1677 "quotafile must be on filesystem root"); 1678 goto errout; 1679 } 1680 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1681 set_opt(sb, QUOTA); 1682 return 1; 1683 errout: 1684 kfree(qname); 1685 return ret; 1686 } 1687 1688 static int clear_qf_name(struct super_block *sb, int qtype) 1689 { 1690 1691 struct ext4_sb_info *sbi = EXT4_SB(sb); 1692 char *old_qname = get_qf_name(sb, sbi, qtype); 1693 1694 if (sb_any_quota_loaded(sb) && old_qname) { 1695 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1696 " when quota turned on"); 1697 return -1; 1698 } 1699 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1700 synchronize_rcu(); 1701 kfree(old_qname); 1702 return 1; 1703 } 1704 #endif 1705 1706 #define MOPT_SET 0x0001 1707 #define MOPT_CLEAR 0x0002 1708 #define MOPT_NOSUPPORT 0x0004 1709 #define MOPT_EXPLICIT 0x0008 1710 #define MOPT_CLEAR_ERR 0x0010 1711 #define MOPT_GTE0 0x0020 1712 #ifdef CONFIG_QUOTA 1713 #define MOPT_Q 0 1714 #define MOPT_QFMT 0x0040 1715 #else 1716 #define MOPT_Q MOPT_NOSUPPORT 1717 #define MOPT_QFMT MOPT_NOSUPPORT 1718 #endif 1719 #define MOPT_DATAJ 0x0080 1720 #define MOPT_NO_EXT2 0x0100 1721 #define MOPT_NO_EXT3 0x0200 1722 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1723 #define MOPT_STRING 0x0400 1724 1725 static const struct mount_opts { 1726 int token; 1727 int mount_opt; 1728 int flags; 1729 } ext4_mount_opts[] = { 1730 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1731 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1732 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1733 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1734 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1735 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1736 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1737 MOPT_EXT4_ONLY | MOPT_SET}, 1738 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1739 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1740 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1741 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1742 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1743 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1744 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1745 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1746 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1747 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1748 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1749 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1750 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1751 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1752 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1753 EXT4_MOUNT_JOURNAL_CHECKSUM), 1754 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1755 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1756 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1757 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1758 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1759 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1760 MOPT_NO_EXT2}, 1761 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1762 MOPT_NO_EXT2}, 1763 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1764 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1765 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1766 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1767 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1768 {Opt_commit, 0, MOPT_GTE0}, 1769 {Opt_max_batch_time, 0, MOPT_GTE0}, 1770 {Opt_min_batch_time, 0, MOPT_GTE0}, 1771 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1772 {Opt_init_itable, 0, MOPT_GTE0}, 1773 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1774 {Opt_stripe, 0, MOPT_GTE0}, 1775 {Opt_resuid, 0, MOPT_GTE0}, 1776 {Opt_resgid, 0, MOPT_GTE0}, 1777 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1778 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1779 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1780 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1781 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1782 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1783 MOPT_NO_EXT2 | MOPT_DATAJ}, 1784 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1785 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1786 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1787 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1788 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1789 #else 1790 {Opt_acl, 0, MOPT_NOSUPPORT}, 1791 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1792 #endif 1793 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1794 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1795 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1796 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1797 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1798 MOPT_SET | MOPT_Q}, 1799 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1800 MOPT_SET | MOPT_Q}, 1801 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1802 MOPT_SET | MOPT_Q}, 1803 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1804 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1805 MOPT_CLEAR | MOPT_Q}, 1806 {Opt_usrjquota, 0, MOPT_Q}, 1807 {Opt_grpjquota, 0, MOPT_Q}, 1808 {Opt_offusrjquota, 0, MOPT_Q}, 1809 {Opt_offgrpjquota, 0, MOPT_Q}, 1810 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1811 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1812 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1813 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1814 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1815 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1816 {Opt_err, 0, 0} 1817 }; 1818 1819 #ifdef CONFIG_UNICODE 1820 static const struct ext4_sb_encodings { 1821 __u16 magic; 1822 char *name; 1823 char *version; 1824 } ext4_sb_encoding_map[] = { 1825 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1826 }; 1827 1828 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1829 const struct ext4_sb_encodings **encoding, 1830 __u16 *flags) 1831 { 1832 __u16 magic = le16_to_cpu(es->s_encoding); 1833 int i; 1834 1835 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1836 if (magic == ext4_sb_encoding_map[i].magic) 1837 break; 1838 1839 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1840 return -EINVAL; 1841 1842 *encoding = &ext4_sb_encoding_map[i]; 1843 *flags = le16_to_cpu(es->s_encoding_flags); 1844 1845 return 0; 1846 } 1847 #endif 1848 1849 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1850 substring_t *args, unsigned long *journal_devnum, 1851 unsigned int *journal_ioprio, int is_remount) 1852 { 1853 struct ext4_sb_info *sbi = EXT4_SB(sb); 1854 const struct mount_opts *m; 1855 kuid_t uid; 1856 kgid_t gid; 1857 int arg = 0; 1858 1859 #ifdef CONFIG_QUOTA 1860 if (token == Opt_usrjquota) 1861 return set_qf_name(sb, USRQUOTA, &args[0]); 1862 else if (token == Opt_grpjquota) 1863 return set_qf_name(sb, GRPQUOTA, &args[0]); 1864 else if (token == Opt_offusrjquota) 1865 return clear_qf_name(sb, USRQUOTA); 1866 else if (token == Opt_offgrpjquota) 1867 return clear_qf_name(sb, GRPQUOTA); 1868 #endif 1869 switch (token) { 1870 case Opt_noacl: 1871 case Opt_nouser_xattr: 1872 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1873 break; 1874 case Opt_sb: 1875 return 1; /* handled by get_sb_block() */ 1876 case Opt_removed: 1877 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1878 return 1; 1879 case Opt_abort: 1880 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1881 return 1; 1882 case Opt_i_version: 1883 sb->s_flags |= SB_I_VERSION; 1884 return 1; 1885 case Opt_lazytime: 1886 sb->s_flags |= SB_LAZYTIME; 1887 return 1; 1888 case Opt_nolazytime: 1889 sb->s_flags &= ~SB_LAZYTIME; 1890 return 1; 1891 } 1892 1893 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1894 if (token == m->token) 1895 break; 1896 1897 if (m->token == Opt_err) { 1898 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1899 "or missing value", opt); 1900 return -1; 1901 } 1902 1903 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1904 ext4_msg(sb, KERN_ERR, 1905 "Mount option \"%s\" incompatible with ext2", opt); 1906 return -1; 1907 } 1908 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1909 ext4_msg(sb, KERN_ERR, 1910 "Mount option \"%s\" incompatible with ext3", opt); 1911 return -1; 1912 } 1913 1914 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1915 return -1; 1916 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1917 return -1; 1918 if (m->flags & MOPT_EXPLICIT) { 1919 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1920 set_opt2(sb, EXPLICIT_DELALLOC); 1921 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1922 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1923 } else 1924 return -1; 1925 } 1926 if (m->flags & MOPT_CLEAR_ERR) 1927 clear_opt(sb, ERRORS_MASK); 1928 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1929 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1930 "options when quota turned on"); 1931 return -1; 1932 } 1933 1934 if (m->flags & MOPT_NOSUPPORT) { 1935 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1936 } else if (token == Opt_commit) { 1937 if (arg == 0) 1938 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1939 else if (arg > INT_MAX / HZ) { 1940 ext4_msg(sb, KERN_ERR, 1941 "Invalid commit interval %d, " 1942 "must be smaller than %d", 1943 arg, INT_MAX / HZ); 1944 return -1; 1945 } 1946 sbi->s_commit_interval = HZ * arg; 1947 } else if (token == Opt_debug_want_extra_isize) { 1948 if ((arg & 1) || 1949 (arg < 4) || 1950 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 1951 ext4_msg(sb, KERN_ERR, 1952 "Invalid want_extra_isize %d", arg); 1953 return -1; 1954 } 1955 sbi->s_want_extra_isize = arg; 1956 } else if (token == Opt_max_batch_time) { 1957 sbi->s_max_batch_time = arg; 1958 } else if (token == Opt_min_batch_time) { 1959 sbi->s_min_batch_time = arg; 1960 } else if (token == Opt_inode_readahead_blks) { 1961 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1962 ext4_msg(sb, KERN_ERR, 1963 "EXT4-fs: inode_readahead_blks must be " 1964 "0 or a power of 2 smaller than 2^31"); 1965 return -1; 1966 } 1967 sbi->s_inode_readahead_blks = arg; 1968 } else if (token == Opt_init_itable) { 1969 set_opt(sb, INIT_INODE_TABLE); 1970 if (!args->from) 1971 arg = EXT4_DEF_LI_WAIT_MULT; 1972 sbi->s_li_wait_mult = arg; 1973 } else if (token == Opt_max_dir_size_kb) { 1974 sbi->s_max_dir_size_kb = arg; 1975 } else if (token == Opt_stripe) { 1976 sbi->s_stripe = arg; 1977 } else if (token == Opt_resuid) { 1978 uid = make_kuid(current_user_ns(), arg); 1979 if (!uid_valid(uid)) { 1980 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1981 return -1; 1982 } 1983 sbi->s_resuid = uid; 1984 } else if (token == Opt_resgid) { 1985 gid = make_kgid(current_user_ns(), arg); 1986 if (!gid_valid(gid)) { 1987 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1988 return -1; 1989 } 1990 sbi->s_resgid = gid; 1991 } else if (token == Opt_journal_dev) { 1992 if (is_remount) { 1993 ext4_msg(sb, KERN_ERR, 1994 "Cannot specify journal on remount"); 1995 return -1; 1996 } 1997 *journal_devnum = arg; 1998 } else if (token == Opt_journal_path) { 1999 char *journal_path; 2000 struct inode *journal_inode; 2001 struct path path; 2002 int error; 2003 2004 if (is_remount) { 2005 ext4_msg(sb, KERN_ERR, 2006 "Cannot specify journal on remount"); 2007 return -1; 2008 } 2009 journal_path = match_strdup(&args[0]); 2010 if (!journal_path) { 2011 ext4_msg(sb, KERN_ERR, "error: could not dup " 2012 "journal device string"); 2013 return -1; 2014 } 2015 2016 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2017 if (error) { 2018 ext4_msg(sb, KERN_ERR, "error: could not find " 2019 "journal device path: error %d", error); 2020 kfree(journal_path); 2021 return -1; 2022 } 2023 2024 journal_inode = d_inode(path.dentry); 2025 if (!S_ISBLK(journal_inode->i_mode)) { 2026 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2027 "is not a block device", journal_path); 2028 path_put(&path); 2029 kfree(journal_path); 2030 return -1; 2031 } 2032 2033 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2034 path_put(&path); 2035 kfree(journal_path); 2036 } else if (token == Opt_journal_ioprio) { 2037 if (arg > 7) { 2038 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2039 " (must be 0-7)"); 2040 return -1; 2041 } 2042 *journal_ioprio = 2043 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2044 } else if (token == Opt_test_dummy_encryption) { 2045 #ifdef CONFIG_FS_ENCRYPTION 2046 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 2047 ext4_msg(sb, KERN_WARNING, 2048 "Test dummy encryption mode enabled"); 2049 #else 2050 ext4_msg(sb, KERN_WARNING, 2051 "Test dummy encryption mount option ignored"); 2052 #endif 2053 } else if (m->flags & MOPT_DATAJ) { 2054 if (is_remount) { 2055 if (!sbi->s_journal) 2056 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2057 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2058 ext4_msg(sb, KERN_ERR, 2059 "Cannot change data mode on remount"); 2060 return -1; 2061 } 2062 } else { 2063 clear_opt(sb, DATA_FLAGS); 2064 sbi->s_mount_opt |= m->mount_opt; 2065 } 2066 #ifdef CONFIG_QUOTA 2067 } else if (m->flags & MOPT_QFMT) { 2068 if (sb_any_quota_loaded(sb) && 2069 sbi->s_jquota_fmt != m->mount_opt) { 2070 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2071 "quota options when quota turned on"); 2072 return -1; 2073 } 2074 if (ext4_has_feature_quota(sb)) { 2075 ext4_msg(sb, KERN_INFO, 2076 "Quota format mount options ignored " 2077 "when QUOTA feature is enabled"); 2078 return 1; 2079 } 2080 sbi->s_jquota_fmt = m->mount_opt; 2081 #endif 2082 } else if (token == Opt_dax) { 2083 #ifdef CONFIG_FS_DAX 2084 ext4_msg(sb, KERN_WARNING, 2085 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2086 sbi->s_mount_opt |= m->mount_opt; 2087 #else 2088 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2089 return -1; 2090 #endif 2091 } else if (token == Opt_data_err_abort) { 2092 sbi->s_mount_opt |= m->mount_opt; 2093 } else if (token == Opt_data_err_ignore) { 2094 sbi->s_mount_opt &= ~m->mount_opt; 2095 } else { 2096 if (!args->from) 2097 arg = 1; 2098 if (m->flags & MOPT_CLEAR) 2099 arg = !arg; 2100 else if (unlikely(!(m->flags & MOPT_SET))) { 2101 ext4_msg(sb, KERN_WARNING, 2102 "buggy handling of option %s", opt); 2103 WARN_ON(1); 2104 return -1; 2105 } 2106 if (arg != 0) 2107 sbi->s_mount_opt |= m->mount_opt; 2108 else 2109 sbi->s_mount_opt &= ~m->mount_opt; 2110 } 2111 return 1; 2112 } 2113 2114 static int parse_options(char *options, struct super_block *sb, 2115 unsigned long *journal_devnum, 2116 unsigned int *journal_ioprio, 2117 int is_remount) 2118 { 2119 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2120 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2121 substring_t args[MAX_OPT_ARGS]; 2122 int token; 2123 2124 if (!options) 2125 return 1; 2126 2127 while ((p = strsep(&options, ",")) != NULL) { 2128 if (!*p) 2129 continue; 2130 /* 2131 * Initialize args struct so we know whether arg was 2132 * found; some options take optional arguments. 2133 */ 2134 args[0].to = args[0].from = NULL; 2135 token = match_token(p, tokens, args); 2136 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2137 journal_ioprio, is_remount) < 0) 2138 return 0; 2139 } 2140 #ifdef CONFIG_QUOTA 2141 /* 2142 * We do the test below only for project quotas. 'usrquota' and 2143 * 'grpquota' mount options are allowed even without quota feature 2144 * to support legacy quotas in quota files. 2145 */ 2146 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2147 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2148 "Cannot enable project quota enforcement."); 2149 return 0; 2150 } 2151 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2152 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2153 if (usr_qf_name || grp_qf_name) { 2154 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2155 clear_opt(sb, USRQUOTA); 2156 2157 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2158 clear_opt(sb, GRPQUOTA); 2159 2160 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2161 ext4_msg(sb, KERN_ERR, "old and new quota " 2162 "format mixing"); 2163 return 0; 2164 } 2165 2166 if (!sbi->s_jquota_fmt) { 2167 ext4_msg(sb, KERN_ERR, "journaled quota format " 2168 "not specified"); 2169 return 0; 2170 } 2171 } 2172 #endif 2173 return 1; 2174 } 2175 2176 static inline void ext4_show_quota_options(struct seq_file *seq, 2177 struct super_block *sb) 2178 { 2179 #if defined(CONFIG_QUOTA) 2180 struct ext4_sb_info *sbi = EXT4_SB(sb); 2181 char *usr_qf_name, *grp_qf_name; 2182 2183 if (sbi->s_jquota_fmt) { 2184 char *fmtname = ""; 2185 2186 switch (sbi->s_jquota_fmt) { 2187 case QFMT_VFS_OLD: 2188 fmtname = "vfsold"; 2189 break; 2190 case QFMT_VFS_V0: 2191 fmtname = "vfsv0"; 2192 break; 2193 case QFMT_VFS_V1: 2194 fmtname = "vfsv1"; 2195 break; 2196 } 2197 seq_printf(seq, ",jqfmt=%s", fmtname); 2198 } 2199 2200 rcu_read_lock(); 2201 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2202 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2203 if (usr_qf_name) 2204 seq_show_option(seq, "usrjquota", usr_qf_name); 2205 if (grp_qf_name) 2206 seq_show_option(seq, "grpjquota", grp_qf_name); 2207 rcu_read_unlock(); 2208 #endif 2209 } 2210 2211 static const char *token2str(int token) 2212 { 2213 const struct match_token *t; 2214 2215 for (t = tokens; t->token != Opt_err; t++) 2216 if (t->token == token && !strchr(t->pattern, '=')) 2217 break; 2218 return t->pattern; 2219 } 2220 2221 /* 2222 * Show an option if 2223 * - it's set to a non-default value OR 2224 * - if the per-sb default is different from the global default 2225 */ 2226 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2227 int nodefs) 2228 { 2229 struct ext4_sb_info *sbi = EXT4_SB(sb); 2230 struct ext4_super_block *es = sbi->s_es; 2231 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2232 const struct mount_opts *m; 2233 char sep = nodefs ? '\n' : ','; 2234 2235 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2236 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2237 2238 if (sbi->s_sb_block != 1) 2239 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2240 2241 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2242 int want_set = m->flags & MOPT_SET; 2243 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2244 (m->flags & MOPT_CLEAR_ERR)) 2245 continue; 2246 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2247 continue; /* skip if same as the default */ 2248 if ((want_set && 2249 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2250 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2251 continue; /* select Opt_noFoo vs Opt_Foo */ 2252 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2253 } 2254 2255 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2256 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2257 SEQ_OPTS_PRINT("resuid=%u", 2258 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2259 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2260 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2261 SEQ_OPTS_PRINT("resgid=%u", 2262 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2263 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2264 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2265 SEQ_OPTS_PUTS("errors=remount-ro"); 2266 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2267 SEQ_OPTS_PUTS("errors=continue"); 2268 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2269 SEQ_OPTS_PUTS("errors=panic"); 2270 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2271 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2272 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2273 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2274 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2275 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2276 if (sb->s_flags & SB_I_VERSION) 2277 SEQ_OPTS_PUTS("i_version"); 2278 if (nodefs || sbi->s_stripe) 2279 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2280 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2281 (sbi->s_mount_opt ^ def_mount_opt)) { 2282 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2283 SEQ_OPTS_PUTS("data=journal"); 2284 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2285 SEQ_OPTS_PUTS("data=ordered"); 2286 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2287 SEQ_OPTS_PUTS("data=writeback"); 2288 } 2289 if (nodefs || 2290 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2291 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2292 sbi->s_inode_readahead_blks); 2293 2294 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2295 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2296 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2297 if (nodefs || sbi->s_max_dir_size_kb) 2298 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2299 if (test_opt(sb, DATA_ERR_ABORT)) 2300 SEQ_OPTS_PUTS("data_err=abort"); 2301 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2302 SEQ_OPTS_PUTS("test_dummy_encryption"); 2303 2304 ext4_show_quota_options(seq, sb); 2305 return 0; 2306 } 2307 2308 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2309 { 2310 return _ext4_show_options(seq, root->d_sb, 0); 2311 } 2312 2313 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2314 { 2315 struct super_block *sb = seq->private; 2316 int rc; 2317 2318 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2319 rc = _ext4_show_options(seq, sb, 1); 2320 seq_puts(seq, "\n"); 2321 return rc; 2322 } 2323 2324 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2325 int read_only) 2326 { 2327 struct ext4_sb_info *sbi = EXT4_SB(sb); 2328 int err = 0; 2329 2330 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2331 ext4_msg(sb, KERN_ERR, "revision level too high, " 2332 "forcing read-only mode"); 2333 err = -EROFS; 2334 } 2335 if (read_only) 2336 goto done; 2337 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2338 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2339 "running e2fsck is recommended"); 2340 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2341 ext4_msg(sb, KERN_WARNING, 2342 "warning: mounting fs with errors, " 2343 "running e2fsck is recommended"); 2344 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2345 le16_to_cpu(es->s_mnt_count) >= 2346 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2347 ext4_msg(sb, KERN_WARNING, 2348 "warning: maximal mount count reached, " 2349 "running e2fsck is recommended"); 2350 else if (le32_to_cpu(es->s_checkinterval) && 2351 (ext4_get_tstamp(es, s_lastcheck) + 2352 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2353 ext4_msg(sb, KERN_WARNING, 2354 "warning: checktime reached, " 2355 "running e2fsck is recommended"); 2356 if (!sbi->s_journal) 2357 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2358 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2359 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2360 le16_add_cpu(&es->s_mnt_count, 1); 2361 ext4_update_tstamp(es, s_mtime); 2362 if (sbi->s_journal) 2363 ext4_set_feature_journal_needs_recovery(sb); 2364 2365 err = ext4_commit_super(sb, 1); 2366 done: 2367 if (test_opt(sb, DEBUG)) 2368 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2369 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2370 sb->s_blocksize, 2371 sbi->s_groups_count, 2372 EXT4_BLOCKS_PER_GROUP(sb), 2373 EXT4_INODES_PER_GROUP(sb), 2374 sbi->s_mount_opt, sbi->s_mount_opt2); 2375 2376 cleancache_init_fs(sb); 2377 return err; 2378 } 2379 2380 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2381 { 2382 struct ext4_sb_info *sbi = EXT4_SB(sb); 2383 struct flex_groups *new_groups; 2384 int size; 2385 2386 if (!sbi->s_log_groups_per_flex) 2387 return 0; 2388 2389 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2390 if (size <= sbi->s_flex_groups_allocated) 2391 return 0; 2392 2393 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2394 new_groups = kvzalloc(size, GFP_KERNEL); 2395 if (!new_groups) { 2396 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2397 size / (int) sizeof(struct flex_groups)); 2398 return -ENOMEM; 2399 } 2400 2401 if (sbi->s_flex_groups) { 2402 memcpy(new_groups, sbi->s_flex_groups, 2403 (sbi->s_flex_groups_allocated * 2404 sizeof(struct flex_groups))); 2405 kvfree(sbi->s_flex_groups); 2406 } 2407 sbi->s_flex_groups = new_groups; 2408 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2409 return 0; 2410 } 2411 2412 static int ext4_fill_flex_info(struct super_block *sb) 2413 { 2414 struct ext4_sb_info *sbi = EXT4_SB(sb); 2415 struct ext4_group_desc *gdp = NULL; 2416 ext4_group_t flex_group; 2417 int i, err; 2418 2419 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2420 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2421 sbi->s_log_groups_per_flex = 0; 2422 return 1; 2423 } 2424 2425 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2426 if (err) 2427 goto failed; 2428 2429 for (i = 0; i < sbi->s_groups_count; i++) { 2430 gdp = ext4_get_group_desc(sb, i, NULL); 2431 2432 flex_group = ext4_flex_group(sbi, i); 2433 atomic_add(ext4_free_inodes_count(sb, gdp), 2434 &sbi->s_flex_groups[flex_group].free_inodes); 2435 atomic64_add(ext4_free_group_clusters(sb, gdp), 2436 &sbi->s_flex_groups[flex_group].free_clusters); 2437 atomic_add(ext4_used_dirs_count(sb, gdp), 2438 &sbi->s_flex_groups[flex_group].used_dirs); 2439 } 2440 2441 return 1; 2442 failed: 2443 return 0; 2444 } 2445 2446 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2447 struct ext4_group_desc *gdp) 2448 { 2449 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2450 __u16 crc = 0; 2451 __le32 le_group = cpu_to_le32(block_group); 2452 struct ext4_sb_info *sbi = EXT4_SB(sb); 2453 2454 if (ext4_has_metadata_csum(sbi->s_sb)) { 2455 /* Use new metadata_csum algorithm */ 2456 __u32 csum32; 2457 __u16 dummy_csum = 0; 2458 2459 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2460 sizeof(le_group)); 2461 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2462 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2463 sizeof(dummy_csum)); 2464 offset += sizeof(dummy_csum); 2465 if (offset < sbi->s_desc_size) 2466 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2467 sbi->s_desc_size - offset); 2468 2469 crc = csum32 & 0xFFFF; 2470 goto out; 2471 } 2472 2473 /* old crc16 code */ 2474 if (!ext4_has_feature_gdt_csum(sb)) 2475 return 0; 2476 2477 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2478 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2479 crc = crc16(crc, (__u8 *)gdp, offset); 2480 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2481 /* for checksum of struct ext4_group_desc do the rest...*/ 2482 if (ext4_has_feature_64bit(sb) && 2483 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2484 crc = crc16(crc, (__u8 *)gdp + offset, 2485 le16_to_cpu(sbi->s_es->s_desc_size) - 2486 offset); 2487 2488 out: 2489 return cpu_to_le16(crc); 2490 } 2491 2492 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2493 struct ext4_group_desc *gdp) 2494 { 2495 if (ext4_has_group_desc_csum(sb) && 2496 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2497 return 0; 2498 2499 return 1; 2500 } 2501 2502 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2503 struct ext4_group_desc *gdp) 2504 { 2505 if (!ext4_has_group_desc_csum(sb)) 2506 return; 2507 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2508 } 2509 2510 /* Called at mount-time, super-block is locked */ 2511 static int ext4_check_descriptors(struct super_block *sb, 2512 ext4_fsblk_t sb_block, 2513 ext4_group_t *first_not_zeroed) 2514 { 2515 struct ext4_sb_info *sbi = EXT4_SB(sb); 2516 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2517 ext4_fsblk_t last_block; 2518 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2519 ext4_fsblk_t block_bitmap; 2520 ext4_fsblk_t inode_bitmap; 2521 ext4_fsblk_t inode_table; 2522 int flexbg_flag = 0; 2523 ext4_group_t i, grp = sbi->s_groups_count; 2524 2525 if (ext4_has_feature_flex_bg(sb)) 2526 flexbg_flag = 1; 2527 2528 ext4_debug("Checking group descriptors"); 2529 2530 for (i = 0; i < sbi->s_groups_count; i++) { 2531 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2532 2533 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2534 last_block = ext4_blocks_count(sbi->s_es) - 1; 2535 else 2536 last_block = first_block + 2537 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2538 2539 if ((grp == sbi->s_groups_count) && 2540 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2541 grp = i; 2542 2543 block_bitmap = ext4_block_bitmap(sb, gdp); 2544 if (block_bitmap == sb_block) { 2545 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2546 "Block bitmap for group %u overlaps " 2547 "superblock", i); 2548 if (!sb_rdonly(sb)) 2549 return 0; 2550 } 2551 if (block_bitmap >= sb_block + 1 && 2552 block_bitmap <= last_bg_block) { 2553 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2554 "Block bitmap for group %u overlaps " 2555 "block group descriptors", i); 2556 if (!sb_rdonly(sb)) 2557 return 0; 2558 } 2559 if (block_bitmap < first_block || block_bitmap > last_block) { 2560 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2561 "Block bitmap for group %u not in group " 2562 "(block %llu)!", i, block_bitmap); 2563 return 0; 2564 } 2565 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2566 if (inode_bitmap == sb_block) { 2567 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2568 "Inode bitmap for group %u overlaps " 2569 "superblock", i); 2570 if (!sb_rdonly(sb)) 2571 return 0; 2572 } 2573 if (inode_bitmap >= sb_block + 1 && 2574 inode_bitmap <= last_bg_block) { 2575 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2576 "Inode bitmap for group %u overlaps " 2577 "block group descriptors", i); 2578 if (!sb_rdonly(sb)) 2579 return 0; 2580 } 2581 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2582 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2583 "Inode bitmap for group %u not in group " 2584 "(block %llu)!", i, inode_bitmap); 2585 return 0; 2586 } 2587 inode_table = ext4_inode_table(sb, gdp); 2588 if (inode_table == sb_block) { 2589 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2590 "Inode table for group %u overlaps " 2591 "superblock", i); 2592 if (!sb_rdonly(sb)) 2593 return 0; 2594 } 2595 if (inode_table >= sb_block + 1 && 2596 inode_table <= last_bg_block) { 2597 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2598 "Inode table for group %u overlaps " 2599 "block group descriptors", i); 2600 if (!sb_rdonly(sb)) 2601 return 0; 2602 } 2603 if (inode_table < first_block || 2604 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2605 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2606 "Inode table for group %u not in group " 2607 "(block %llu)!", i, inode_table); 2608 return 0; 2609 } 2610 ext4_lock_group(sb, i); 2611 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2612 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2613 "Checksum for group %u failed (%u!=%u)", 2614 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2615 gdp)), le16_to_cpu(gdp->bg_checksum)); 2616 if (!sb_rdonly(sb)) { 2617 ext4_unlock_group(sb, i); 2618 return 0; 2619 } 2620 } 2621 ext4_unlock_group(sb, i); 2622 if (!flexbg_flag) 2623 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2624 } 2625 if (NULL != first_not_zeroed) 2626 *first_not_zeroed = grp; 2627 return 1; 2628 } 2629 2630 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2631 * the superblock) which were deleted from all directories, but held open by 2632 * a process at the time of a crash. We walk the list and try to delete these 2633 * inodes at recovery time (only with a read-write filesystem). 2634 * 2635 * In order to keep the orphan inode chain consistent during traversal (in 2636 * case of crash during recovery), we link each inode into the superblock 2637 * orphan list_head and handle it the same way as an inode deletion during 2638 * normal operation (which journals the operations for us). 2639 * 2640 * We only do an iget() and an iput() on each inode, which is very safe if we 2641 * accidentally point at an in-use or already deleted inode. The worst that 2642 * can happen in this case is that we get a "bit already cleared" message from 2643 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2644 * e2fsck was run on this filesystem, and it must have already done the orphan 2645 * inode cleanup for us, so we can safely abort without any further action. 2646 */ 2647 static void ext4_orphan_cleanup(struct super_block *sb, 2648 struct ext4_super_block *es) 2649 { 2650 unsigned int s_flags = sb->s_flags; 2651 int ret, nr_orphans = 0, nr_truncates = 0; 2652 #ifdef CONFIG_QUOTA 2653 int quota_update = 0; 2654 int i; 2655 #endif 2656 if (!es->s_last_orphan) { 2657 jbd_debug(4, "no orphan inodes to clean up\n"); 2658 return; 2659 } 2660 2661 if (bdev_read_only(sb->s_bdev)) { 2662 ext4_msg(sb, KERN_ERR, "write access " 2663 "unavailable, skipping orphan cleanup"); 2664 return; 2665 } 2666 2667 /* Check if feature set would not allow a r/w mount */ 2668 if (!ext4_feature_set_ok(sb, 0)) { 2669 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2670 "unknown ROCOMPAT features"); 2671 return; 2672 } 2673 2674 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2675 /* don't clear list on RO mount w/ errors */ 2676 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2677 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2678 "clearing orphan list.\n"); 2679 es->s_last_orphan = 0; 2680 } 2681 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2682 return; 2683 } 2684 2685 if (s_flags & SB_RDONLY) { 2686 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2687 sb->s_flags &= ~SB_RDONLY; 2688 } 2689 #ifdef CONFIG_QUOTA 2690 /* Needed for iput() to work correctly and not trash data */ 2691 sb->s_flags |= SB_ACTIVE; 2692 2693 /* 2694 * Turn on quotas which were not enabled for read-only mounts if 2695 * filesystem has quota feature, so that they are updated correctly. 2696 */ 2697 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2698 int ret = ext4_enable_quotas(sb); 2699 2700 if (!ret) 2701 quota_update = 1; 2702 else 2703 ext4_msg(sb, KERN_ERR, 2704 "Cannot turn on quotas: error %d", ret); 2705 } 2706 2707 /* Turn on journaled quotas used for old sytle */ 2708 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2709 if (EXT4_SB(sb)->s_qf_names[i]) { 2710 int ret = ext4_quota_on_mount(sb, i); 2711 2712 if (!ret) 2713 quota_update = 1; 2714 else 2715 ext4_msg(sb, KERN_ERR, 2716 "Cannot turn on journaled " 2717 "quota: type %d: error %d", i, ret); 2718 } 2719 } 2720 #endif 2721 2722 while (es->s_last_orphan) { 2723 struct inode *inode; 2724 2725 /* 2726 * We may have encountered an error during cleanup; if 2727 * so, skip the rest. 2728 */ 2729 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2730 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2731 es->s_last_orphan = 0; 2732 break; 2733 } 2734 2735 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2736 if (IS_ERR(inode)) { 2737 es->s_last_orphan = 0; 2738 break; 2739 } 2740 2741 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2742 dquot_initialize(inode); 2743 if (inode->i_nlink) { 2744 if (test_opt(sb, DEBUG)) 2745 ext4_msg(sb, KERN_DEBUG, 2746 "%s: truncating inode %lu to %lld bytes", 2747 __func__, inode->i_ino, inode->i_size); 2748 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2749 inode->i_ino, inode->i_size); 2750 inode_lock(inode); 2751 truncate_inode_pages(inode->i_mapping, inode->i_size); 2752 ret = ext4_truncate(inode); 2753 if (ret) 2754 ext4_std_error(inode->i_sb, ret); 2755 inode_unlock(inode); 2756 nr_truncates++; 2757 } else { 2758 if (test_opt(sb, DEBUG)) 2759 ext4_msg(sb, KERN_DEBUG, 2760 "%s: deleting unreferenced inode %lu", 2761 __func__, inode->i_ino); 2762 jbd_debug(2, "deleting unreferenced inode %lu\n", 2763 inode->i_ino); 2764 nr_orphans++; 2765 } 2766 iput(inode); /* The delete magic happens here! */ 2767 } 2768 2769 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2770 2771 if (nr_orphans) 2772 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2773 PLURAL(nr_orphans)); 2774 if (nr_truncates) 2775 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2776 PLURAL(nr_truncates)); 2777 #ifdef CONFIG_QUOTA 2778 /* Turn off quotas if they were enabled for orphan cleanup */ 2779 if (quota_update) { 2780 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2781 if (sb_dqopt(sb)->files[i]) 2782 dquot_quota_off(sb, i); 2783 } 2784 } 2785 #endif 2786 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2787 } 2788 2789 /* 2790 * Maximal extent format file size. 2791 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2792 * extent format containers, within a sector_t, and within i_blocks 2793 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2794 * so that won't be a limiting factor. 2795 * 2796 * However there is other limiting factor. We do store extents in the form 2797 * of starting block and length, hence the resulting length of the extent 2798 * covering maximum file size must fit into on-disk format containers as 2799 * well. Given that length is always by 1 unit bigger than max unit (because 2800 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2801 * 2802 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2803 */ 2804 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2805 { 2806 loff_t res; 2807 loff_t upper_limit = MAX_LFS_FILESIZE; 2808 2809 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2810 2811 if (!has_huge_files) { 2812 upper_limit = (1LL << 32) - 1; 2813 2814 /* total blocks in file system block size */ 2815 upper_limit >>= (blkbits - 9); 2816 upper_limit <<= blkbits; 2817 } 2818 2819 /* 2820 * 32-bit extent-start container, ee_block. We lower the maxbytes 2821 * by one fs block, so ee_len can cover the extent of maximum file 2822 * size 2823 */ 2824 res = (1LL << 32) - 1; 2825 res <<= blkbits; 2826 2827 /* Sanity check against vm- & vfs- imposed limits */ 2828 if (res > upper_limit) 2829 res = upper_limit; 2830 2831 return res; 2832 } 2833 2834 /* 2835 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2836 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2837 * We need to be 1 filesystem block less than the 2^48 sector limit. 2838 */ 2839 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2840 { 2841 loff_t res = EXT4_NDIR_BLOCKS; 2842 int meta_blocks; 2843 loff_t upper_limit; 2844 /* This is calculated to be the largest file size for a dense, block 2845 * mapped file such that the file's total number of 512-byte sectors, 2846 * including data and all indirect blocks, does not exceed (2^48 - 1). 2847 * 2848 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2849 * number of 512-byte sectors of the file. 2850 */ 2851 2852 if (!has_huge_files) { 2853 /* 2854 * !has_huge_files or implies that the inode i_block field 2855 * represents total file blocks in 2^32 512-byte sectors == 2856 * size of vfs inode i_blocks * 8 2857 */ 2858 upper_limit = (1LL << 32) - 1; 2859 2860 /* total blocks in file system block size */ 2861 upper_limit >>= (bits - 9); 2862 2863 } else { 2864 /* 2865 * We use 48 bit ext4_inode i_blocks 2866 * With EXT4_HUGE_FILE_FL set the i_blocks 2867 * represent total number of blocks in 2868 * file system block size 2869 */ 2870 upper_limit = (1LL << 48) - 1; 2871 2872 } 2873 2874 /* indirect blocks */ 2875 meta_blocks = 1; 2876 /* double indirect blocks */ 2877 meta_blocks += 1 + (1LL << (bits-2)); 2878 /* tripple indirect blocks */ 2879 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2880 2881 upper_limit -= meta_blocks; 2882 upper_limit <<= bits; 2883 2884 res += 1LL << (bits-2); 2885 res += 1LL << (2*(bits-2)); 2886 res += 1LL << (3*(bits-2)); 2887 res <<= bits; 2888 if (res > upper_limit) 2889 res = upper_limit; 2890 2891 if (res > MAX_LFS_FILESIZE) 2892 res = MAX_LFS_FILESIZE; 2893 2894 return res; 2895 } 2896 2897 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2898 ext4_fsblk_t logical_sb_block, int nr) 2899 { 2900 struct ext4_sb_info *sbi = EXT4_SB(sb); 2901 ext4_group_t bg, first_meta_bg; 2902 int has_super = 0; 2903 2904 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2905 2906 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2907 return logical_sb_block + nr + 1; 2908 bg = sbi->s_desc_per_block * nr; 2909 if (ext4_bg_has_super(sb, bg)) 2910 has_super = 1; 2911 2912 /* 2913 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2914 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2915 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2916 * compensate. 2917 */ 2918 if (sb->s_blocksize == 1024 && nr == 0 && 2919 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2920 has_super++; 2921 2922 return (has_super + ext4_group_first_block_no(sb, bg)); 2923 } 2924 2925 /** 2926 * ext4_get_stripe_size: Get the stripe size. 2927 * @sbi: In memory super block info 2928 * 2929 * If we have specified it via mount option, then 2930 * use the mount option value. If the value specified at mount time is 2931 * greater than the blocks per group use the super block value. 2932 * If the super block value is greater than blocks per group return 0. 2933 * Allocator needs it be less than blocks per group. 2934 * 2935 */ 2936 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2937 { 2938 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2939 unsigned long stripe_width = 2940 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2941 int ret; 2942 2943 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2944 ret = sbi->s_stripe; 2945 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2946 ret = stripe_width; 2947 else if (stride && stride <= sbi->s_blocks_per_group) 2948 ret = stride; 2949 else 2950 ret = 0; 2951 2952 /* 2953 * If the stripe width is 1, this makes no sense and 2954 * we set it to 0 to turn off stripe handling code. 2955 */ 2956 if (ret <= 1) 2957 ret = 0; 2958 2959 return ret; 2960 } 2961 2962 /* 2963 * Check whether this filesystem can be mounted based on 2964 * the features present and the RDONLY/RDWR mount requested. 2965 * Returns 1 if this filesystem can be mounted as requested, 2966 * 0 if it cannot be. 2967 */ 2968 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2969 { 2970 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2971 ext4_msg(sb, KERN_ERR, 2972 "Couldn't mount because of " 2973 "unsupported optional features (%x)", 2974 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2975 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2976 return 0; 2977 } 2978 2979 #ifndef CONFIG_UNICODE 2980 if (ext4_has_feature_casefold(sb)) { 2981 ext4_msg(sb, KERN_ERR, 2982 "Filesystem with casefold feature cannot be " 2983 "mounted without CONFIG_UNICODE"); 2984 return 0; 2985 } 2986 #endif 2987 2988 if (readonly) 2989 return 1; 2990 2991 if (ext4_has_feature_readonly(sb)) { 2992 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2993 sb->s_flags |= SB_RDONLY; 2994 return 1; 2995 } 2996 2997 /* Check that feature set is OK for a read-write mount */ 2998 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2999 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3000 "unsupported optional features (%x)", 3001 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3002 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3003 return 0; 3004 } 3005 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3006 ext4_msg(sb, KERN_ERR, 3007 "Can't support bigalloc feature without " 3008 "extents feature\n"); 3009 return 0; 3010 } 3011 3012 #ifndef CONFIG_QUOTA 3013 if (ext4_has_feature_quota(sb) && !readonly) { 3014 ext4_msg(sb, KERN_ERR, 3015 "Filesystem with quota feature cannot be mounted RDWR " 3016 "without CONFIG_QUOTA"); 3017 return 0; 3018 } 3019 if (ext4_has_feature_project(sb) && !readonly) { 3020 ext4_msg(sb, KERN_ERR, 3021 "Filesystem with project quota feature cannot be mounted RDWR " 3022 "without CONFIG_QUOTA"); 3023 return 0; 3024 } 3025 #endif /* CONFIG_QUOTA */ 3026 return 1; 3027 } 3028 3029 /* 3030 * This function is called once a day if we have errors logged 3031 * on the file system 3032 */ 3033 static void print_daily_error_info(struct timer_list *t) 3034 { 3035 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3036 struct super_block *sb = sbi->s_sb; 3037 struct ext4_super_block *es = sbi->s_es; 3038 3039 if (es->s_error_count) 3040 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3041 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3042 le32_to_cpu(es->s_error_count)); 3043 if (es->s_first_error_time) { 3044 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3045 sb->s_id, 3046 ext4_get_tstamp(es, s_first_error_time), 3047 (int) sizeof(es->s_first_error_func), 3048 es->s_first_error_func, 3049 le32_to_cpu(es->s_first_error_line)); 3050 if (es->s_first_error_ino) 3051 printk(KERN_CONT ": inode %u", 3052 le32_to_cpu(es->s_first_error_ino)); 3053 if (es->s_first_error_block) 3054 printk(KERN_CONT ": block %llu", (unsigned long long) 3055 le64_to_cpu(es->s_first_error_block)); 3056 printk(KERN_CONT "\n"); 3057 } 3058 if (es->s_last_error_time) { 3059 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3060 sb->s_id, 3061 ext4_get_tstamp(es, s_last_error_time), 3062 (int) sizeof(es->s_last_error_func), 3063 es->s_last_error_func, 3064 le32_to_cpu(es->s_last_error_line)); 3065 if (es->s_last_error_ino) 3066 printk(KERN_CONT ": inode %u", 3067 le32_to_cpu(es->s_last_error_ino)); 3068 if (es->s_last_error_block) 3069 printk(KERN_CONT ": block %llu", (unsigned long long) 3070 le64_to_cpu(es->s_last_error_block)); 3071 printk(KERN_CONT "\n"); 3072 } 3073 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3074 } 3075 3076 /* Find next suitable group and run ext4_init_inode_table */ 3077 static int ext4_run_li_request(struct ext4_li_request *elr) 3078 { 3079 struct ext4_group_desc *gdp = NULL; 3080 ext4_group_t group, ngroups; 3081 struct super_block *sb; 3082 unsigned long timeout = 0; 3083 int ret = 0; 3084 3085 sb = elr->lr_super; 3086 ngroups = EXT4_SB(sb)->s_groups_count; 3087 3088 for (group = elr->lr_next_group; group < ngroups; group++) { 3089 gdp = ext4_get_group_desc(sb, group, NULL); 3090 if (!gdp) { 3091 ret = 1; 3092 break; 3093 } 3094 3095 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3096 break; 3097 } 3098 3099 if (group >= ngroups) 3100 ret = 1; 3101 3102 if (!ret) { 3103 timeout = jiffies; 3104 ret = ext4_init_inode_table(sb, group, 3105 elr->lr_timeout ? 0 : 1); 3106 if (elr->lr_timeout == 0) { 3107 timeout = (jiffies - timeout) * 3108 elr->lr_sbi->s_li_wait_mult; 3109 elr->lr_timeout = timeout; 3110 } 3111 elr->lr_next_sched = jiffies + elr->lr_timeout; 3112 elr->lr_next_group = group + 1; 3113 } 3114 return ret; 3115 } 3116 3117 /* 3118 * Remove lr_request from the list_request and free the 3119 * request structure. Should be called with li_list_mtx held 3120 */ 3121 static void ext4_remove_li_request(struct ext4_li_request *elr) 3122 { 3123 struct ext4_sb_info *sbi; 3124 3125 if (!elr) 3126 return; 3127 3128 sbi = elr->lr_sbi; 3129 3130 list_del(&elr->lr_request); 3131 sbi->s_li_request = NULL; 3132 kfree(elr); 3133 } 3134 3135 static void ext4_unregister_li_request(struct super_block *sb) 3136 { 3137 mutex_lock(&ext4_li_mtx); 3138 if (!ext4_li_info) { 3139 mutex_unlock(&ext4_li_mtx); 3140 return; 3141 } 3142 3143 mutex_lock(&ext4_li_info->li_list_mtx); 3144 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3145 mutex_unlock(&ext4_li_info->li_list_mtx); 3146 mutex_unlock(&ext4_li_mtx); 3147 } 3148 3149 static struct task_struct *ext4_lazyinit_task; 3150 3151 /* 3152 * This is the function where ext4lazyinit thread lives. It walks 3153 * through the request list searching for next scheduled filesystem. 3154 * When such a fs is found, run the lazy initialization request 3155 * (ext4_rn_li_request) and keep track of the time spend in this 3156 * function. Based on that time we compute next schedule time of 3157 * the request. When walking through the list is complete, compute 3158 * next waking time and put itself into sleep. 3159 */ 3160 static int ext4_lazyinit_thread(void *arg) 3161 { 3162 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3163 struct list_head *pos, *n; 3164 struct ext4_li_request *elr; 3165 unsigned long next_wakeup, cur; 3166 3167 BUG_ON(NULL == eli); 3168 3169 cont_thread: 3170 while (true) { 3171 next_wakeup = MAX_JIFFY_OFFSET; 3172 3173 mutex_lock(&eli->li_list_mtx); 3174 if (list_empty(&eli->li_request_list)) { 3175 mutex_unlock(&eli->li_list_mtx); 3176 goto exit_thread; 3177 } 3178 list_for_each_safe(pos, n, &eli->li_request_list) { 3179 int err = 0; 3180 int progress = 0; 3181 elr = list_entry(pos, struct ext4_li_request, 3182 lr_request); 3183 3184 if (time_before(jiffies, elr->lr_next_sched)) { 3185 if (time_before(elr->lr_next_sched, next_wakeup)) 3186 next_wakeup = elr->lr_next_sched; 3187 continue; 3188 } 3189 if (down_read_trylock(&elr->lr_super->s_umount)) { 3190 if (sb_start_write_trylock(elr->lr_super)) { 3191 progress = 1; 3192 /* 3193 * We hold sb->s_umount, sb can not 3194 * be removed from the list, it is 3195 * now safe to drop li_list_mtx 3196 */ 3197 mutex_unlock(&eli->li_list_mtx); 3198 err = ext4_run_li_request(elr); 3199 sb_end_write(elr->lr_super); 3200 mutex_lock(&eli->li_list_mtx); 3201 n = pos->next; 3202 } 3203 up_read((&elr->lr_super->s_umount)); 3204 } 3205 /* error, remove the lazy_init job */ 3206 if (err) { 3207 ext4_remove_li_request(elr); 3208 continue; 3209 } 3210 if (!progress) { 3211 elr->lr_next_sched = jiffies + 3212 (prandom_u32() 3213 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3214 } 3215 if (time_before(elr->lr_next_sched, next_wakeup)) 3216 next_wakeup = elr->lr_next_sched; 3217 } 3218 mutex_unlock(&eli->li_list_mtx); 3219 3220 try_to_freeze(); 3221 3222 cur = jiffies; 3223 if ((time_after_eq(cur, next_wakeup)) || 3224 (MAX_JIFFY_OFFSET == next_wakeup)) { 3225 cond_resched(); 3226 continue; 3227 } 3228 3229 schedule_timeout_interruptible(next_wakeup - cur); 3230 3231 if (kthread_should_stop()) { 3232 ext4_clear_request_list(); 3233 goto exit_thread; 3234 } 3235 } 3236 3237 exit_thread: 3238 /* 3239 * It looks like the request list is empty, but we need 3240 * to check it under the li_list_mtx lock, to prevent any 3241 * additions into it, and of course we should lock ext4_li_mtx 3242 * to atomically free the list and ext4_li_info, because at 3243 * this point another ext4 filesystem could be registering 3244 * new one. 3245 */ 3246 mutex_lock(&ext4_li_mtx); 3247 mutex_lock(&eli->li_list_mtx); 3248 if (!list_empty(&eli->li_request_list)) { 3249 mutex_unlock(&eli->li_list_mtx); 3250 mutex_unlock(&ext4_li_mtx); 3251 goto cont_thread; 3252 } 3253 mutex_unlock(&eli->li_list_mtx); 3254 kfree(ext4_li_info); 3255 ext4_li_info = NULL; 3256 mutex_unlock(&ext4_li_mtx); 3257 3258 return 0; 3259 } 3260 3261 static void ext4_clear_request_list(void) 3262 { 3263 struct list_head *pos, *n; 3264 struct ext4_li_request *elr; 3265 3266 mutex_lock(&ext4_li_info->li_list_mtx); 3267 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3268 elr = list_entry(pos, struct ext4_li_request, 3269 lr_request); 3270 ext4_remove_li_request(elr); 3271 } 3272 mutex_unlock(&ext4_li_info->li_list_mtx); 3273 } 3274 3275 static int ext4_run_lazyinit_thread(void) 3276 { 3277 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3278 ext4_li_info, "ext4lazyinit"); 3279 if (IS_ERR(ext4_lazyinit_task)) { 3280 int err = PTR_ERR(ext4_lazyinit_task); 3281 ext4_clear_request_list(); 3282 kfree(ext4_li_info); 3283 ext4_li_info = NULL; 3284 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3285 "initialization thread\n", 3286 err); 3287 return err; 3288 } 3289 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3290 return 0; 3291 } 3292 3293 /* 3294 * Check whether it make sense to run itable init. thread or not. 3295 * If there is at least one uninitialized inode table, return 3296 * corresponding group number, else the loop goes through all 3297 * groups and return total number of groups. 3298 */ 3299 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3300 { 3301 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3302 struct ext4_group_desc *gdp = NULL; 3303 3304 if (!ext4_has_group_desc_csum(sb)) 3305 return ngroups; 3306 3307 for (group = 0; group < ngroups; group++) { 3308 gdp = ext4_get_group_desc(sb, group, NULL); 3309 if (!gdp) 3310 continue; 3311 3312 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3313 break; 3314 } 3315 3316 return group; 3317 } 3318 3319 static int ext4_li_info_new(void) 3320 { 3321 struct ext4_lazy_init *eli = NULL; 3322 3323 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3324 if (!eli) 3325 return -ENOMEM; 3326 3327 INIT_LIST_HEAD(&eli->li_request_list); 3328 mutex_init(&eli->li_list_mtx); 3329 3330 eli->li_state |= EXT4_LAZYINIT_QUIT; 3331 3332 ext4_li_info = eli; 3333 3334 return 0; 3335 } 3336 3337 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3338 ext4_group_t start) 3339 { 3340 struct ext4_sb_info *sbi = EXT4_SB(sb); 3341 struct ext4_li_request *elr; 3342 3343 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3344 if (!elr) 3345 return NULL; 3346 3347 elr->lr_super = sb; 3348 elr->lr_sbi = sbi; 3349 elr->lr_next_group = start; 3350 3351 /* 3352 * Randomize first schedule time of the request to 3353 * spread the inode table initialization requests 3354 * better. 3355 */ 3356 elr->lr_next_sched = jiffies + (prandom_u32() % 3357 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3358 return elr; 3359 } 3360 3361 int ext4_register_li_request(struct super_block *sb, 3362 ext4_group_t first_not_zeroed) 3363 { 3364 struct ext4_sb_info *sbi = EXT4_SB(sb); 3365 struct ext4_li_request *elr = NULL; 3366 ext4_group_t ngroups = sbi->s_groups_count; 3367 int ret = 0; 3368 3369 mutex_lock(&ext4_li_mtx); 3370 if (sbi->s_li_request != NULL) { 3371 /* 3372 * Reset timeout so it can be computed again, because 3373 * s_li_wait_mult might have changed. 3374 */ 3375 sbi->s_li_request->lr_timeout = 0; 3376 goto out; 3377 } 3378 3379 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3380 !test_opt(sb, INIT_INODE_TABLE)) 3381 goto out; 3382 3383 elr = ext4_li_request_new(sb, first_not_zeroed); 3384 if (!elr) { 3385 ret = -ENOMEM; 3386 goto out; 3387 } 3388 3389 if (NULL == ext4_li_info) { 3390 ret = ext4_li_info_new(); 3391 if (ret) 3392 goto out; 3393 } 3394 3395 mutex_lock(&ext4_li_info->li_list_mtx); 3396 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3397 mutex_unlock(&ext4_li_info->li_list_mtx); 3398 3399 sbi->s_li_request = elr; 3400 /* 3401 * set elr to NULL here since it has been inserted to 3402 * the request_list and the removal and free of it is 3403 * handled by ext4_clear_request_list from now on. 3404 */ 3405 elr = NULL; 3406 3407 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3408 ret = ext4_run_lazyinit_thread(); 3409 if (ret) 3410 goto out; 3411 } 3412 out: 3413 mutex_unlock(&ext4_li_mtx); 3414 if (ret) 3415 kfree(elr); 3416 return ret; 3417 } 3418 3419 /* 3420 * We do not need to lock anything since this is called on 3421 * module unload. 3422 */ 3423 static void ext4_destroy_lazyinit_thread(void) 3424 { 3425 /* 3426 * If thread exited earlier 3427 * there's nothing to be done. 3428 */ 3429 if (!ext4_li_info || !ext4_lazyinit_task) 3430 return; 3431 3432 kthread_stop(ext4_lazyinit_task); 3433 } 3434 3435 static int set_journal_csum_feature_set(struct super_block *sb) 3436 { 3437 int ret = 1; 3438 int compat, incompat; 3439 struct ext4_sb_info *sbi = EXT4_SB(sb); 3440 3441 if (ext4_has_metadata_csum(sb)) { 3442 /* journal checksum v3 */ 3443 compat = 0; 3444 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3445 } else { 3446 /* journal checksum v1 */ 3447 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3448 incompat = 0; 3449 } 3450 3451 jbd2_journal_clear_features(sbi->s_journal, 3452 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3453 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3454 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3455 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3456 ret = jbd2_journal_set_features(sbi->s_journal, 3457 compat, 0, 3458 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3459 incompat); 3460 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3461 ret = jbd2_journal_set_features(sbi->s_journal, 3462 compat, 0, 3463 incompat); 3464 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3465 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3466 } else { 3467 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3468 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3469 } 3470 3471 return ret; 3472 } 3473 3474 /* 3475 * Note: calculating the overhead so we can be compatible with 3476 * historical BSD practice is quite difficult in the face of 3477 * clusters/bigalloc. This is because multiple metadata blocks from 3478 * different block group can end up in the same allocation cluster. 3479 * Calculating the exact overhead in the face of clustered allocation 3480 * requires either O(all block bitmaps) in memory or O(number of block 3481 * groups**2) in time. We will still calculate the superblock for 3482 * older file systems --- and if we come across with a bigalloc file 3483 * system with zero in s_overhead_clusters the estimate will be close to 3484 * correct especially for very large cluster sizes --- but for newer 3485 * file systems, it's better to calculate this figure once at mkfs 3486 * time, and store it in the superblock. If the superblock value is 3487 * present (even for non-bigalloc file systems), we will use it. 3488 */ 3489 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3490 char *buf) 3491 { 3492 struct ext4_sb_info *sbi = EXT4_SB(sb); 3493 struct ext4_group_desc *gdp; 3494 ext4_fsblk_t first_block, last_block, b; 3495 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3496 int s, j, count = 0; 3497 3498 if (!ext4_has_feature_bigalloc(sb)) 3499 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3500 sbi->s_itb_per_group + 2); 3501 3502 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3503 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3504 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3505 for (i = 0; i < ngroups; i++) { 3506 gdp = ext4_get_group_desc(sb, i, NULL); 3507 b = ext4_block_bitmap(sb, gdp); 3508 if (b >= first_block && b <= last_block) { 3509 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3510 count++; 3511 } 3512 b = ext4_inode_bitmap(sb, gdp); 3513 if (b >= first_block && b <= last_block) { 3514 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3515 count++; 3516 } 3517 b = ext4_inode_table(sb, gdp); 3518 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3519 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3520 int c = EXT4_B2C(sbi, b - first_block); 3521 ext4_set_bit(c, buf); 3522 count++; 3523 } 3524 if (i != grp) 3525 continue; 3526 s = 0; 3527 if (ext4_bg_has_super(sb, grp)) { 3528 ext4_set_bit(s++, buf); 3529 count++; 3530 } 3531 j = ext4_bg_num_gdb(sb, grp); 3532 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3533 ext4_error(sb, "Invalid number of block group " 3534 "descriptor blocks: %d", j); 3535 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3536 } 3537 count += j; 3538 for (; j > 0; j--) 3539 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3540 } 3541 if (!count) 3542 return 0; 3543 return EXT4_CLUSTERS_PER_GROUP(sb) - 3544 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3545 } 3546 3547 /* 3548 * Compute the overhead and stash it in sbi->s_overhead 3549 */ 3550 int ext4_calculate_overhead(struct super_block *sb) 3551 { 3552 struct ext4_sb_info *sbi = EXT4_SB(sb); 3553 struct ext4_super_block *es = sbi->s_es; 3554 struct inode *j_inode; 3555 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3556 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3557 ext4_fsblk_t overhead = 0; 3558 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3559 3560 if (!buf) 3561 return -ENOMEM; 3562 3563 /* 3564 * Compute the overhead (FS structures). This is constant 3565 * for a given filesystem unless the number of block groups 3566 * changes so we cache the previous value until it does. 3567 */ 3568 3569 /* 3570 * All of the blocks before first_data_block are overhead 3571 */ 3572 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3573 3574 /* 3575 * Add the overhead found in each block group 3576 */ 3577 for (i = 0; i < ngroups; i++) { 3578 int blks; 3579 3580 blks = count_overhead(sb, i, buf); 3581 overhead += blks; 3582 if (blks) 3583 memset(buf, 0, PAGE_SIZE); 3584 cond_resched(); 3585 } 3586 3587 /* 3588 * Add the internal journal blocks whether the journal has been 3589 * loaded or not 3590 */ 3591 if (sbi->s_journal && !sbi->journal_bdev) 3592 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3593 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3594 j_inode = ext4_get_journal_inode(sb, j_inum); 3595 if (j_inode) { 3596 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3597 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3598 iput(j_inode); 3599 } else { 3600 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3601 } 3602 } 3603 sbi->s_overhead = overhead; 3604 smp_wmb(); 3605 free_page((unsigned long) buf); 3606 return 0; 3607 } 3608 3609 static void ext4_set_resv_clusters(struct super_block *sb) 3610 { 3611 ext4_fsblk_t resv_clusters; 3612 struct ext4_sb_info *sbi = EXT4_SB(sb); 3613 3614 /* 3615 * There's no need to reserve anything when we aren't using extents. 3616 * The space estimates are exact, there are no unwritten extents, 3617 * hole punching doesn't need new metadata... This is needed especially 3618 * to keep ext2/3 backward compatibility. 3619 */ 3620 if (!ext4_has_feature_extents(sb)) 3621 return; 3622 /* 3623 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3624 * This should cover the situations where we can not afford to run 3625 * out of space like for example punch hole, or converting 3626 * unwritten extents in delalloc path. In most cases such 3627 * allocation would require 1, or 2 blocks, higher numbers are 3628 * very rare. 3629 */ 3630 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3631 sbi->s_cluster_bits); 3632 3633 do_div(resv_clusters, 50); 3634 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3635 3636 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3637 } 3638 3639 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3640 { 3641 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3642 char *orig_data = kstrdup(data, GFP_KERNEL); 3643 struct buffer_head *bh; 3644 struct ext4_super_block *es = NULL; 3645 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3646 ext4_fsblk_t block; 3647 ext4_fsblk_t sb_block = get_sb_block(&data); 3648 ext4_fsblk_t logical_sb_block; 3649 unsigned long offset = 0; 3650 unsigned long journal_devnum = 0; 3651 unsigned long def_mount_opts; 3652 struct inode *root; 3653 const char *descr; 3654 int ret = -ENOMEM; 3655 int blocksize, clustersize; 3656 unsigned int db_count; 3657 unsigned int i; 3658 int needs_recovery, has_huge_files, has_bigalloc; 3659 __u64 blocks_count; 3660 int err = 0; 3661 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3662 ext4_group_t first_not_zeroed; 3663 3664 if ((data && !orig_data) || !sbi) 3665 goto out_free_base; 3666 3667 sbi->s_daxdev = dax_dev; 3668 sbi->s_blockgroup_lock = 3669 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3670 if (!sbi->s_blockgroup_lock) 3671 goto out_free_base; 3672 3673 sb->s_fs_info = sbi; 3674 sbi->s_sb = sb; 3675 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3676 sbi->s_sb_block = sb_block; 3677 if (sb->s_bdev->bd_part) 3678 sbi->s_sectors_written_start = 3679 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3680 3681 /* Cleanup superblock name */ 3682 strreplace(sb->s_id, '/', '!'); 3683 3684 /* -EINVAL is default */ 3685 ret = -EINVAL; 3686 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3687 if (!blocksize) { 3688 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3689 goto out_fail; 3690 } 3691 3692 /* 3693 * The ext4 superblock will not be buffer aligned for other than 1kB 3694 * block sizes. We need to calculate the offset from buffer start. 3695 */ 3696 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3697 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3698 offset = do_div(logical_sb_block, blocksize); 3699 } else { 3700 logical_sb_block = sb_block; 3701 } 3702 3703 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3704 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3705 goto out_fail; 3706 } 3707 /* 3708 * Note: s_es must be initialized as soon as possible because 3709 * some ext4 macro-instructions depend on its value 3710 */ 3711 es = (struct ext4_super_block *) (bh->b_data + offset); 3712 sbi->s_es = es; 3713 sb->s_magic = le16_to_cpu(es->s_magic); 3714 if (sb->s_magic != EXT4_SUPER_MAGIC) 3715 goto cantfind_ext4; 3716 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3717 3718 /* Warn if metadata_csum and gdt_csum are both set. */ 3719 if (ext4_has_feature_metadata_csum(sb) && 3720 ext4_has_feature_gdt_csum(sb)) 3721 ext4_warning(sb, "metadata_csum and uninit_bg are " 3722 "redundant flags; please run fsck."); 3723 3724 /* Check for a known checksum algorithm */ 3725 if (!ext4_verify_csum_type(sb, es)) { 3726 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3727 "unknown checksum algorithm."); 3728 silent = 1; 3729 goto cantfind_ext4; 3730 } 3731 3732 /* Load the checksum driver */ 3733 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3734 if (IS_ERR(sbi->s_chksum_driver)) { 3735 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3736 ret = PTR_ERR(sbi->s_chksum_driver); 3737 sbi->s_chksum_driver = NULL; 3738 goto failed_mount; 3739 } 3740 3741 /* Check superblock checksum */ 3742 if (!ext4_superblock_csum_verify(sb, es)) { 3743 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3744 "invalid superblock checksum. Run e2fsck?"); 3745 silent = 1; 3746 ret = -EFSBADCRC; 3747 goto cantfind_ext4; 3748 } 3749 3750 /* Precompute checksum seed for all metadata */ 3751 if (ext4_has_feature_csum_seed(sb)) 3752 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3753 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3754 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3755 sizeof(es->s_uuid)); 3756 3757 /* Set defaults before we parse the mount options */ 3758 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3759 set_opt(sb, INIT_INODE_TABLE); 3760 if (def_mount_opts & EXT4_DEFM_DEBUG) 3761 set_opt(sb, DEBUG); 3762 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3763 set_opt(sb, GRPID); 3764 if (def_mount_opts & EXT4_DEFM_UID16) 3765 set_opt(sb, NO_UID32); 3766 /* xattr user namespace & acls are now defaulted on */ 3767 set_opt(sb, XATTR_USER); 3768 set_opt(sb, DIOREAD_NOLOCK); 3769 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3770 set_opt(sb, POSIX_ACL); 3771 #endif 3772 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3773 if (ext4_has_metadata_csum(sb)) 3774 set_opt(sb, JOURNAL_CHECKSUM); 3775 3776 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3777 set_opt(sb, JOURNAL_DATA); 3778 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3779 set_opt(sb, ORDERED_DATA); 3780 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3781 set_opt(sb, WRITEBACK_DATA); 3782 3783 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3784 set_opt(sb, ERRORS_PANIC); 3785 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3786 set_opt(sb, ERRORS_CONT); 3787 else 3788 set_opt(sb, ERRORS_RO); 3789 /* block_validity enabled by default; disable with noblock_validity */ 3790 set_opt(sb, BLOCK_VALIDITY); 3791 if (def_mount_opts & EXT4_DEFM_DISCARD) 3792 set_opt(sb, DISCARD); 3793 3794 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3795 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3796 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3797 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3798 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3799 3800 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3801 set_opt(sb, BARRIER); 3802 3803 /* 3804 * enable delayed allocation by default 3805 * Use -o nodelalloc to turn it off 3806 */ 3807 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3808 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3809 set_opt(sb, DELALLOC); 3810 3811 /* 3812 * set default s_li_wait_mult for lazyinit, for the case there is 3813 * no mount option specified. 3814 */ 3815 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3816 3817 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3818 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3819 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3820 } else { 3821 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3822 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3823 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3824 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3825 sbi->s_first_ino); 3826 goto failed_mount; 3827 } 3828 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3829 (!is_power_of_2(sbi->s_inode_size)) || 3830 (sbi->s_inode_size > blocksize)) { 3831 ext4_msg(sb, KERN_ERR, 3832 "unsupported inode size: %d", 3833 sbi->s_inode_size); 3834 goto failed_mount; 3835 } 3836 /* 3837 * i_atime_extra is the last extra field available for 3838 * [acm]times in struct ext4_inode. Checking for that 3839 * field should suffice to ensure we have extra space 3840 * for all three. 3841 */ 3842 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3843 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3844 sb->s_time_gran = 1; 3845 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3846 } else { 3847 sb->s_time_gran = NSEC_PER_SEC; 3848 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3849 } 3850 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3851 } 3852 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3853 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3854 EXT4_GOOD_OLD_INODE_SIZE; 3855 if (ext4_has_feature_extra_isize(sb)) { 3856 unsigned v, max = (sbi->s_inode_size - 3857 EXT4_GOOD_OLD_INODE_SIZE); 3858 3859 v = le16_to_cpu(es->s_want_extra_isize); 3860 if (v > max) { 3861 ext4_msg(sb, KERN_ERR, 3862 "bad s_want_extra_isize: %d", v); 3863 goto failed_mount; 3864 } 3865 if (sbi->s_want_extra_isize < v) 3866 sbi->s_want_extra_isize = v; 3867 3868 v = le16_to_cpu(es->s_min_extra_isize); 3869 if (v > max) { 3870 ext4_msg(sb, KERN_ERR, 3871 "bad s_min_extra_isize: %d", v); 3872 goto failed_mount; 3873 } 3874 if (sbi->s_want_extra_isize < v) 3875 sbi->s_want_extra_isize = v; 3876 } 3877 } 3878 3879 if (sbi->s_es->s_mount_opts[0]) { 3880 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3881 sizeof(sbi->s_es->s_mount_opts), 3882 GFP_KERNEL); 3883 if (!s_mount_opts) 3884 goto failed_mount; 3885 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3886 &journal_ioprio, 0)) { 3887 ext4_msg(sb, KERN_WARNING, 3888 "failed to parse options in superblock: %s", 3889 s_mount_opts); 3890 } 3891 kfree(s_mount_opts); 3892 } 3893 sbi->s_def_mount_opt = sbi->s_mount_opt; 3894 if (!parse_options((char *) data, sb, &journal_devnum, 3895 &journal_ioprio, 0)) 3896 goto failed_mount; 3897 3898 #ifdef CONFIG_UNICODE 3899 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 3900 const struct ext4_sb_encodings *encoding_info; 3901 struct unicode_map *encoding; 3902 __u16 encoding_flags; 3903 3904 if (ext4_has_feature_encrypt(sb)) { 3905 ext4_msg(sb, KERN_ERR, 3906 "Can't mount with encoding and encryption"); 3907 goto failed_mount; 3908 } 3909 3910 if (ext4_sb_read_encoding(es, &encoding_info, 3911 &encoding_flags)) { 3912 ext4_msg(sb, KERN_ERR, 3913 "Encoding requested by superblock is unknown"); 3914 goto failed_mount; 3915 } 3916 3917 encoding = utf8_load(encoding_info->version); 3918 if (IS_ERR(encoding)) { 3919 ext4_msg(sb, KERN_ERR, 3920 "can't mount with superblock charset: %s-%s " 3921 "not supported by the kernel. flags: 0x%x.", 3922 encoding_info->name, encoding_info->version, 3923 encoding_flags); 3924 goto failed_mount; 3925 } 3926 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 3927 "%s-%s with flags 0x%hx", encoding_info->name, 3928 encoding_info->version?:"\b", encoding_flags); 3929 3930 sbi->s_encoding = encoding; 3931 sbi->s_encoding_flags = encoding_flags; 3932 } 3933 #endif 3934 3935 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3936 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 3937 clear_opt(sb, DIOREAD_NOLOCK); 3938 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3939 ext4_msg(sb, KERN_ERR, "can't mount with " 3940 "both data=journal and delalloc"); 3941 goto failed_mount; 3942 } 3943 if (test_opt(sb, DIOREAD_NOLOCK)) { 3944 ext4_msg(sb, KERN_ERR, "can't mount with " 3945 "both data=journal and dioread_nolock"); 3946 goto failed_mount; 3947 } 3948 if (test_opt(sb, DAX)) { 3949 ext4_msg(sb, KERN_ERR, "can't mount with " 3950 "both data=journal and dax"); 3951 goto failed_mount; 3952 } 3953 if (ext4_has_feature_encrypt(sb)) { 3954 ext4_msg(sb, KERN_WARNING, 3955 "encrypted files will use data=ordered " 3956 "instead of data journaling mode"); 3957 } 3958 if (test_opt(sb, DELALLOC)) 3959 clear_opt(sb, DELALLOC); 3960 } else { 3961 sb->s_iflags |= SB_I_CGROUPWB; 3962 } 3963 3964 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3965 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3966 3967 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3968 (ext4_has_compat_features(sb) || 3969 ext4_has_ro_compat_features(sb) || 3970 ext4_has_incompat_features(sb))) 3971 ext4_msg(sb, KERN_WARNING, 3972 "feature flags set on rev 0 fs, " 3973 "running e2fsck is recommended"); 3974 3975 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3976 set_opt2(sb, HURD_COMPAT); 3977 if (ext4_has_feature_64bit(sb)) { 3978 ext4_msg(sb, KERN_ERR, 3979 "The Hurd can't support 64-bit file systems"); 3980 goto failed_mount; 3981 } 3982 3983 /* 3984 * ea_inode feature uses l_i_version field which is not 3985 * available in HURD_COMPAT mode. 3986 */ 3987 if (ext4_has_feature_ea_inode(sb)) { 3988 ext4_msg(sb, KERN_ERR, 3989 "ea_inode feature is not supported for Hurd"); 3990 goto failed_mount; 3991 } 3992 } 3993 3994 if (IS_EXT2_SB(sb)) { 3995 if (ext2_feature_set_ok(sb)) 3996 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3997 "using the ext4 subsystem"); 3998 else { 3999 /* 4000 * If we're probing be silent, if this looks like 4001 * it's actually an ext[34] filesystem. 4002 */ 4003 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4004 goto failed_mount; 4005 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4006 "to feature incompatibilities"); 4007 goto failed_mount; 4008 } 4009 } 4010 4011 if (IS_EXT3_SB(sb)) { 4012 if (ext3_feature_set_ok(sb)) 4013 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4014 "using the ext4 subsystem"); 4015 else { 4016 /* 4017 * If we're probing be silent, if this looks like 4018 * it's actually an ext4 filesystem. 4019 */ 4020 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4021 goto failed_mount; 4022 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4023 "to feature incompatibilities"); 4024 goto failed_mount; 4025 } 4026 } 4027 4028 /* 4029 * Check feature flags regardless of the revision level, since we 4030 * previously didn't change the revision level when setting the flags, 4031 * so there is a chance incompat flags are set on a rev 0 filesystem. 4032 */ 4033 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4034 goto failed_mount; 4035 4036 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4037 if (blocksize < EXT4_MIN_BLOCK_SIZE || 4038 blocksize > EXT4_MAX_BLOCK_SIZE) { 4039 ext4_msg(sb, KERN_ERR, 4040 "Unsupported filesystem blocksize %d (%d log_block_size)", 4041 blocksize, le32_to_cpu(es->s_log_block_size)); 4042 goto failed_mount; 4043 } 4044 if (le32_to_cpu(es->s_log_block_size) > 4045 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4046 ext4_msg(sb, KERN_ERR, 4047 "Invalid log block size: %u", 4048 le32_to_cpu(es->s_log_block_size)); 4049 goto failed_mount; 4050 } 4051 if (le32_to_cpu(es->s_log_cluster_size) > 4052 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4053 ext4_msg(sb, KERN_ERR, 4054 "Invalid log cluster size: %u", 4055 le32_to_cpu(es->s_log_cluster_size)); 4056 goto failed_mount; 4057 } 4058 4059 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4060 ext4_msg(sb, KERN_ERR, 4061 "Number of reserved GDT blocks insanely large: %d", 4062 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4063 goto failed_mount; 4064 } 4065 4066 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 4067 if (ext4_has_feature_inline_data(sb)) { 4068 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4069 " that may contain inline data"); 4070 goto failed_mount; 4071 } 4072 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 4073 ext4_msg(sb, KERN_ERR, 4074 "DAX unsupported by block device."); 4075 goto failed_mount; 4076 } 4077 } 4078 4079 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4080 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4081 es->s_encryption_level); 4082 goto failed_mount; 4083 } 4084 4085 if (sb->s_blocksize != blocksize) { 4086 /* Validate the filesystem blocksize */ 4087 if (!sb_set_blocksize(sb, blocksize)) { 4088 ext4_msg(sb, KERN_ERR, "bad block size %d", 4089 blocksize); 4090 goto failed_mount; 4091 } 4092 4093 brelse(bh); 4094 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4095 offset = do_div(logical_sb_block, blocksize); 4096 bh = sb_bread_unmovable(sb, logical_sb_block); 4097 if (!bh) { 4098 ext4_msg(sb, KERN_ERR, 4099 "Can't read superblock on 2nd try"); 4100 goto failed_mount; 4101 } 4102 es = (struct ext4_super_block *)(bh->b_data + offset); 4103 sbi->s_es = es; 4104 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4105 ext4_msg(sb, KERN_ERR, 4106 "Magic mismatch, very weird!"); 4107 goto failed_mount; 4108 } 4109 } 4110 4111 has_huge_files = ext4_has_feature_huge_file(sb); 4112 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4113 has_huge_files); 4114 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4115 4116 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4117 if (ext4_has_feature_64bit(sb)) { 4118 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4119 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4120 !is_power_of_2(sbi->s_desc_size)) { 4121 ext4_msg(sb, KERN_ERR, 4122 "unsupported descriptor size %lu", 4123 sbi->s_desc_size); 4124 goto failed_mount; 4125 } 4126 } else 4127 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4128 4129 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4130 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4131 4132 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4133 if (sbi->s_inodes_per_block == 0) 4134 goto cantfind_ext4; 4135 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4136 sbi->s_inodes_per_group > blocksize * 8) { 4137 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4138 sbi->s_blocks_per_group); 4139 goto failed_mount; 4140 } 4141 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4142 sbi->s_inodes_per_block; 4143 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4144 sbi->s_sbh = bh; 4145 sbi->s_mount_state = le16_to_cpu(es->s_state); 4146 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4147 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4148 4149 for (i = 0; i < 4; i++) 4150 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4151 sbi->s_def_hash_version = es->s_def_hash_version; 4152 if (ext4_has_feature_dir_index(sb)) { 4153 i = le32_to_cpu(es->s_flags); 4154 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4155 sbi->s_hash_unsigned = 3; 4156 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4157 #ifdef __CHAR_UNSIGNED__ 4158 if (!sb_rdonly(sb)) 4159 es->s_flags |= 4160 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4161 sbi->s_hash_unsigned = 3; 4162 #else 4163 if (!sb_rdonly(sb)) 4164 es->s_flags |= 4165 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4166 #endif 4167 } 4168 } 4169 4170 /* Handle clustersize */ 4171 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4172 has_bigalloc = ext4_has_feature_bigalloc(sb); 4173 if (has_bigalloc) { 4174 if (clustersize < blocksize) { 4175 ext4_msg(sb, KERN_ERR, 4176 "cluster size (%d) smaller than " 4177 "block size (%d)", clustersize, blocksize); 4178 goto failed_mount; 4179 } 4180 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4181 le32_to_cpu(es->s_log_block_size); 4182 sbi->s_clusters_per_group = 4183 le32_to_cpu(es->s_clusters_per_group); 4184 if (sbi->s_clusters_per_group > blocksize * 8) { 4185 ext4_msg(sb, KERN_ERR, 4186 "#clusters per group too big: %lu", 4187 sbi->s_clusters_per_group); 4188 goto failed_mount; 4189 } 4190 if (sbi->s_blocks_per_group != 4191 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4192 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4193 "clusters per group (%lu) inconsistent", 4194 sbi->s_blocks_per_group, 4195 sbi->s_clusters_per_group); 4196 goto failed_mount; 4197 } 4198 } else { 4199 if (clustersize != blocksize) { 4200 ext4_msg(sb, KERN_ERR, 4201 "fragment/cluster size (%d) != " 4202 "block size (%d)", clustersize, blocksize); 4203 goto failed_mount; 4204 } 4205 if (sbi->s_blocks_per_group > blocksize * 8) { 4206 ext4_msg(sb, KERN_ERR, 4207 "#blocks per group too big: %lu", 4208 sbi->s_blocks_per_group); 4209 goto failed_mount; 4210 } 4211 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4212 sbi->s_cluster_bits = 0; 4213 } 4214 sbi->s_cluster_ratio = clustersize / blocksize; 4215 4216 /* Do we have standard group size of clustersize * 8 blocks ? */ 4217 if (sbi->s_blocks_per_group == clustersize << 3) 4218 set_opt2(sb, STD_GROUP_SIZE); 4219 4220 /* 4221 * Test whether we have more sectors than will fit in sector_t, 4222 * and whether the max offset is addressable by the page cache. 4223 */ 4224 err = generic_check_addressable(sb->s_blocksize_bits, 4225 ext4_blocks_count(es)); 4226 if (err) { 4227 ext4_msg(sb, KERN_ERR, "filesystem" 4228 " too large to mount safely on this system"); 4229 goto failed_mount; 4230 } 4231 4232 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4233 goto cantfind_ext4; 4234 4235 /* check blocks count against device size */ 4236 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4237 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4238 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4239 "exceeds size of device (%llu blocks)", 4240 ext4_blocks_count(es), blocks_count); 4241 goto failed_mount; 4242 } 4243 4244 /* 4245 * It makes no sense for the first data block to be beyond the end 4246 * of the filesystem. 4247 */ 4248 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4249 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4250 "block %u is beyond end of filesystem (%llu)", 4251 le32_to_cpu(es->s_first_data_block), 4252 ext4_blocks_count(es)); 4253 goto failed_mount; 4254 } 4255 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4256 (sbi->s_cluster_ratio == 1)) { 4257 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4258 "block is 0 with a 1k block and cluster size"); 4259 goto failed_mount; 4260 } 4261 4262 blocks_count = (ext4_blocks_count(es) - 4263 le32_to_cpu(es->s_first_data_block) + 4264 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4265 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4266 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4267 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4268 "(block count %llu, first data block %u, " 4269 "blocks per group %lu)", sbi->s_groups_count, 4270 ext4_blocks_count(es), 4271 le32_to_cpu(es->s_first_data_block), 4272 EXT4_BLOCKS_PER_GROUP(sb)); 4273 goto failed_mount; 4274 } 4275 sbi->s_groups_count = blocks_count; 4276 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4277 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4278 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4279 le32_to_cpu(es->s_inodes_count)) { 4280 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4281 le32_to_cpu(es->s_inodes_count), 4282 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4283 ret = -EINVAL; 4284 goto failed_mount; 4285 } 4286 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4287 EXT4_DESC_PER_BLOCK(sb); 4288 if (ext4_has_feature_meta_bg(sb)) { 4289 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4290 ext4_msg(sb, KERN_WARNING, 4291 "first meta block group too large: %u " 4292 "(group descriptor block count %u)", 4293 le32_to_cpu(es->s_first_meta_bg), db_count); 4294 goto failed_mount; 4295 } 4296 } 4297 sbi->s_group_desc = kvmalloc_array(db_count, 4298 sizeof(struct buffer_head *), 4299 GFP_KERNEL); 4300 if (sbi->s_group_desc == NULL) { 4301 ext4_msg(sb, KERN_ERR, "not enough memory"); 4302 ret = -ENOMEM; 4303 goto failed_mount; 4304 } 4305 4306 bgl_lock_init(sbi->s_blockgroup_lock); 4307 4308 /* Pre-read the descriptors into the buffer cache */ 4309 for (i = 0; i < db_count; i++) { 4310 block = descriptor_loc(sb, logical_sb_block, i); 4311 sb_breadahead(sb, block); 4312 } 4313 4314 for (i = 0; i < db_count; i++) { 4315 block = descriptor_loc(sb, logical_sb_block, i); 4316 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4317 if (!sbi->s_group_desc[i]) { 4318 ext4_msg(sb, KERN_ERR, 4319 "can't read group descriptor %d", i); 4320 db_count = i; 4321 goto failed_mount2; 4322 } 4323 } 4324 sbi->s_gdb_count = db_count; 4325 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4326 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4327 ret = -EFSCORRUPTED; 4328 goto failed_mount2; 4329 } 4330 4331 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4332 4333 /* Register extent status tree shrinker */ 4334 if (ext4_es_register_shrinker(sbi)) 4335 goto failed_mount3; 4336 4337 sbi->s_stripe = ext4_get_stripe_size(sbi); 4338 sbi->s_extent_max_zeroout_kb = 32; 4339 4340 /* 4341 * set up enough so that it can read an inode 4342 */ 4343 sb->s_op = &ext4_sops; 4344 sb->s_export_op = &ext4_export_ops; 4345 sb->s_xattr = ext4_xattr_handlers; 4346 #ifdef CONFIG_FS_ENCRYPTION 4347 sb->s_cop = &ext4_cryptops; 4348 #endif 4349 #ifdef CONFIG_FS_VERITY 4350 sb->s_vop = &ext4_verityops; 4351 #endif 4352 #ifdef CONFIG_QUOTA 4353 sb->dq_op = &ext4_quota_operations; 4354 if (ext4_has_feature_quota(sb)) 4355 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4356 else 4357 sb->s_qcop = &ext4_qctl_operations; 4358 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4359 #endif 4360 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4361 4362 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4363 mutex_init(&sbi->s_orphan_lock); 4364 4365 sb->s_root = NULL; 4366 4367 needs_recovery = (es->s_last_orphan != 0 || 4368 ext4_has_feature_journal_needs_recovery(sb)); 4369 4370 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4371 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4372 goto failed_mount3a; 4373 4374 /* 4375 * The first inode we look at is the journal inode. Don't try 4376 * root first: it may be modified in the journal! 4377 */ 4378 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4379 err = ext4_load_journal(sb, es, journal_devnum); 4380 if (err) 4381 goto failed_mount3a; 4382 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4383 ext4_has_feature_journal_needs_recovery(sb)) { 4384 ext4_msg(sb, KERN_ERR, "required journal recovery " 4385 "suppressed and not mounted read-only"); 4386 goto failed_mount_wq; 4387 } else { 4388 /* Nojournal mode, all journal mount options are illegal */ 4389 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4390 ext4_msg(sb, KERN_ERR, "can't mount with " 4391 "journal_checksum, fs mounted w/o journal"); 4392 goto failed_mount_wq; 4393 } 4394 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4395 ext4_msg(sb, KERN_ERR, "can't mount with " 4396 "journal_async_commit, fs mounted w/o journal"); 4397 goto failed_mount_wq; 4398 } 4399 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4400 ext4_msg(sb, KERN_ERR, "can't mount with " 4401 "commit=%lu, fs mounted w/o journal", 4402 sbi->s_commit_interval / HZ); 4403 goto failed_mount_wq; 4404 } 4405 if (EXT4_MOUNT_DATA_FLAGS & 4406 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4407 ext4_msg(sb, KERN_ERR, "can't mount with " 4408 "data=, fs mounted w/o journal"); 4409 goto failed_mount_wq; 4410 } 4411 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4412 clear_opt(sb, JOURNAL_CHECKSUM); 4413 clear_opt(sb, DATA_FLAGS); 4414 sbi->s_journal = NULL; 4415 needs_recovery = 0; 4416 goto no_journal; 4417 } 4418 4419 if (ext4_has_feature_64bit(sb) && 4420 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4421 JBD2_FEATURE_INCOMPAT_64BIT)) { 4422 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4423 goto failed_mount_wq; 4424 } 4425 4426 if (!set_journal_csum_feature_set(sb)) { 4427 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4428 "feature set"); 4429 goto failed_mount_wq; 4430 } 4431 4432 /* We have now updated the journal if required, so we can 4433 * validate the data journaling mode. */ 4434 switch (test_opt(sb, DATA_FLAGS)) { 4435 case 0: 4436 /* No mode set, assume a default based on the journal 4437 * capabilities: ORDERED_DATA if the journal can 4438 * cope, else JOURNAL_DATA 4439 */ 4440 if (jbd2_journal_check_available_features 4441 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4442 set_opt(sb, ORDERED_DATA); 4443 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4444 } else { 4445 set_opt(sb, JOURNAL_DATA); 4446 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4447 } 4448 break; 4449 4450 case EXT4_MOUNT_ORDERED_DATA: 4451 case EXT4_MOUNT_WRITEBACK_DATA: 4452 if (!jbd2_journal_check_available_features 4453 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4454 ext4_msg(sb, KERN_ERR, "Journal does not support " 4455 "requested data journaling mode"); 4456 goto failed_mount_wq; 4457 } 4458 default: 4459 break; 4460 } 4461 4462 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4463 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4464 ext4_msg(sb, KERN_ERR, "can't mount with " 4465 "journal_async_commit in data=ordered mode"); 4466 goto failed_mount_wq; 4467 } 4468 4469 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4470 4471 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4472 4473 no_journal: 4474 if (!test_opt(sb, NO_MBCACHE)) { 4475 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4476 if (!sbi->s_ea_block_cache) { 4477 ext4_msg(sb, KERN_ERR, 4478 "Failed to create ea_block_cache"); 4479 goto failed_mount_wq; 4480 } 4481 4482 if (ext4_has_feature_ea_inode(sb)) { 4483 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4484 if (!sbi->s_ea_inode_cache) { 4485 ext4_msg(sb, KERN_ERR, 4486 "Failed to create ea_inode_cache"); 4487 goto failed_mount_wq; 4488 } 4489 } 4490 } 4491 4492 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4493 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4494 goto failed_mount_wq; 4495 } 4496 4497 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4498 !ext4_has_feature_encrypt(sb)) { 4499 ext4_set_feature_encrypt(sb); 4500 ext4_commit_super(sb, 1); 4501 } 4502 4503 /* 4504 * Get the # of file system overhead blocks from the 4505 * superblock if present. 4506 */ 4507 if (es->s_overhead_clusters) 4508 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4509 else { 4510 err = ext4_calculate_overhead(sb); 4511 if (err) 4512 goto failed_mount_wq; 4513 } 4514 4515 /* 4516 * The maximum number of concurrent works can be high and 4517 * concurrency isn't really necessary. Limit it to 1. 4518 */ 4519 EXT4_SB(sb)->rsv_conversion_wq = 4520 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4521 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4522 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4523 ret = -ENOMEM; 4524 goto failed_mount4; 4525 } 4526 4527 /* 4528 * The jbd2_journal_load will have done any necessary log recovery, 4529 * so we can safely mount the rest of the filesystem now. 4530 */ 4531 4532 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4533 if (IS_ERR(root)) { 4534 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4535 ret = PTR_ERR(root); 4536 root = NULL; 4537 goto failed_mount4; 4538 } 4539 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4540 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4541 iput(root); 4542 goto failed_mount4; 4543 } 4544 4545 #ifdef CONFIG_UNICODE 4546 if (sbi->s_encoding) 4547 sb->s_d_op = &ext4_dentry_ops; 4548 #endif 4549 4550 sb->s_root = d_make_root(root); 4551 if (!sb->s_root) { 4552 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4553 ret = -ENOMEM; 4554 goto failed_mount4; 4555 } 4556 4557 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4558 if (ret == -EROFS) { 4559 sb->s_flags |= SB_RDONLY; 4560 ret = 0; 4561 } else if (ret) 4562 goto failed_mount4a; 4563 4564 ext4_set_resv_clusters(sb); 4565 4566 err = ext4_setup_system_zone(sb); 4567 if (err) { 4568 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4569 "zone (%d)", err); 4570 goto failed_mount4a; 4571 } 4572 4573 ext4_ext_init(sb); 4574 err = ext4_mb_init(sb); 4575 if (err) { 4576 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4577 err); 4578 goto failed_mount5; 4579 } 4580 4581 block = ext4_count_free_clusters(sb); 4582 ext4_free_blocks_count_set(sbi->s_es, 4583 EXT4_C2B(sbi, block)); 4584 ext4_superblock_csum_set(sb); 4585 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4586 GFP_KERNEL); 4587 if (!err) { 4588 unsigned long freei = ext4_count_free_inodes(sb); 4589 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4590 ext4_superblock_csum_set(sb); 4591 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4592 GFP_KERNEL); 4593 } 4594 if (!err) 4595 err = percpu_counter_init(&sbi->s_dirs_counter, 4596 ext4_count_dirs(sb), GFP_KERNEL); 4597 if (!err) 4598 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4599 GFP_KERNEL); 4600 if (!err) 4601 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4602 4603 if (err) { 4604 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4605 goto failed_mount6; 4606 } 4607 4608 if (ext4_has_feature_flex_bg(sb)) 4609 if (!ext4_fill_flex_info(sb)) { 4610 ext4_msg(sb, KERN_ERR, 4611 "unable to initialize " 4612 "flex_bg meta info!"); 4613 goto failed_mount6; 4614 } 4615 4616 err = ext4_register_li_request(sb, first_not_zeroed); 4617 if (err) 4618 goto failed_mount6; 4619 4620 err = ext4_register_sysfs(sb); 4621 if (err) 4622 goto failed_mount7; 4623 4624 #ifdef CONFIG_QUOTA 4625 /* Enable quota usage during mount. */ 4626 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4627 err = ext4_enable_quotas(sb); 4628 if (err) 4629 goto failed_mount8; 4630 } 4631 #endif /* CONFIG_QUOTA */ 4632 4633 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4634 ext4_orphan_cleanup(sb, es); 4635 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4636 if (needs_recovery) { 4637 ext4_msg(sb, KERN_INFO, "recovery complete"); 4638 ext4_mark_recovery_complete(sb, es); 4639 } 4640 if (EXT4_SB(sb)->s_journal) { 4641 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4642 descr = " journalled data mode"; 4643 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4644 descr = " ordered data mode"; 4645 else 4646 descr = " writeback data mode"; 4647 } else 4648 descr = "out journal"; 4649 4650 if (test_opt(sb, DISCARD)) { 4651 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4652 if (!blk_queue_discard(q)) 4653 ext4_msg(sb, KERN_WARNING, 4654 "mounting with \"discard\" option, but " 4655 "the device does not support discard"); 4656 } 4657 4658 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4659 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4660 "Opts: %.*s%s%s", descr, 4661 (int) sizeof(sbi->s_es->s_mount_opts), 4662 sbi->s_es->s_mount_opts, 4663 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4664 4665 if (es->s_error_count) 4666 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4667 4668 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4669 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4670 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4671 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4672 4673 kfree(orig_data); 4674 return 0; 4675 4676 cantfind_ext4: 4677 if (!silent) 4678 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4679 goto failed_mount; 4680 4681 #ifdef CONFIG_QUOTA 4682 failed_mount8: 4683 ext4_unregister_sysfs(sb); 4684 #endif 4685 failed_mount7: 4686 ext4_unregister_li_request(sb); 4687 failed_mount6: 4688 ext4_mb_release(sb); 4689 if (sbi->s_flex_groups) 4690 kvfree(sbi->s_flex_groups); 4691 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4692 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4693 percpu_counter_destroy(&sbi->s_dirs_counter); 4694 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4695 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 4696 failed_mount5: 4697 ext4_ext_release(sb); 4698 ext4_release_system_zone(sb); 4699 failed_mount4a: 4700 dput(sb->s_root); 4701 sb->s_root = NULL; 4702 failed_mount4: 4703 ext4_msg(sb, KERN_ERR, "mount failed"); 4704 if (EXT4_SB(sb)->rsv_conversion_wq) 4705 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4706 failed_mount_wq: 4707 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4708 sbi->s_ea_inode_cache = NULL; 4709 4710 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4711 sbi->s_ea_block_cache = NULL; 4712 4713 if (sbi->s_journal) { 4714 jbd2_journal_destroy(sbi->s_journal); 4715 sbi->s_journal = NULL; 4716 } 4717 failed_mount3a: 4718 ext4_es_unregister_shrinker(sbi); 4719 failed_mount3: 4720 del_timer_sync(&sbi->s_err_report); 4721 if (sbi->s_mmp_tsk) 4722 kthread_stop(sbi->s_mmp_tsk); 4723 failed_mount2: 4724 for (i = 0; i < db_count; i++) 4725 brelse(sbi->s_group_desc[i]); 4726 kvfree(sbi->s_group_desc); 4727 failed_mount: 4728 if (sbi->s_chksum_driver) 4729 crypto_free_shash(sbi->s_chksum_driver); 4730 4731 #ifdef CONFIG_UNICODE 4732 utf8_unload(sbi->s_encoding); 4733 #endif 4734 4735 #ifdef CONFIG_QUOTA 4736 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4737 kfree(get_qf_name(sb, sbi, i)); 4738 #endif 4739 ext4_blkdev_remove(sbi); 4740 brelse(bh); 4741 out_fail: 4742 sb->s_fs_info = NULL; 4743 kfree(sbi->s_blockgroup_lock); 4744 out_free_base: 4745 kfree(sbi); 4746 kfree(orig_data); 4747 fs_put_dax(dax_dev); 4748 return err ? err : ret; 4749 } 4750 4751 /* 4752 * Setup any per-fs journal parameters now. We'll do this both on 4753 * initial mount, once the journal has been initialised but before we've 4754 * done any recovery; and again on any subsequent remount. 4755 */ 4756 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4757 { 4758 struct ext4_sb_info *sbi = EXT4_SB(sb); 4759 4760 journal->j_commit_interval = sbi->s_commit_interval; 4761 journal->j_min_batch_time = sbi->s_min_batch_time; 4762 journal->j_max_batch_time = sbi->s_max_batch_time; 4763 4764 write_lock(&journal->j_state_lock); 4765 if (test_opt(sb, BARRIER)) 4766 journal->j_flags |= JBD2_BARRIER; 4767 else 4768 journal->j_flags &= ~JBD2_BARRIER; 4769 if (test_opt(sb, DATA_ERR_ABORT)) 4770 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4771 else 4772 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4773 write_unlock(&journal->j_state_lock); 4774 } 4775 4776 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4777 unsigned int journal_inum) 4778 { 4779 struct inode *journal_inode; 4780 4781 /* 4782 * Test for the existence of a valid inode on disk. Bad things 4783 * happen if we iget() an unused inode, as the subsequent iput() 4784 * will try to delete it. 4785 */ 4786 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4787 if (IS_ERR(journal_inode)) { 4788 ext4_msg(sb, KERN_ERR, "no journal found"); 4789 return NULL; 4790 } 4791 if (!journal_inode->i_nlink) { 4792 make_bad_inode(journal_inode); 4793 iput(journal_inode); 4794 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4795 return NULL; 4796 } 4797 4798 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4799 journal_inode, journal_inode->i_size); 4800 if (!S_ISREG(journal_inode->i_mode)) { 4801 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4802 iput(journal_inode); 4803 return NULL; 4804 } 4805 return journal_inode; 4806 } 4807 4808 static journal_t *ext4_get_journal(struct super_block *sb, 4809 unsigned int journal_inum) 4810 { 4811 struct inode *journal_inode; 4812 journal_t *journal; 4813 4814 BUG_ON(!ext4_has_feature_journal(sb)); 4815 4816 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4817 if (!journal_inode) 4818 return NULL; 4819 4820 journal = jbd2_journal_init_inode(journal_inode); 4821 if (!journal) { 4822 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4823 iput(journal_inode); 4824 return NULL; 4825 } 4826 journal->j_private = sb; 4827 ext4_init_journal_params(sb, journal); 4828 return journal; 4829 } 4830 4831 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4832 dev_t j_dev) 4833 { 4834 struct buffer_head *bh; 4835 journal_t *journal; 4836 ext4_fsblk_t start; 4837 ext4_fsblk_t len; 4838 int hblock, blocksize; 4839 ext4_fsblk_t sb_block; 4840 unsigned long offset; 4841 struct ext4_super_block *es; 4842 struct block_device *bdev; 4843 4844 BUG_ON(!ext4_has_feature_journal(sb)); 4845 4846 bdev = ext4_blkdev_get(j_dev, sb); 4847 if (bdev == NULL) 4848 return NULL; 4849 4850 blocksize = sb->s_blocksize; 4851 hblock = bdev_logical_block_size(bdev); 4852 if (blocksize < hblock) { 4853 ext4_msg(sb, KERN_ERR, 4854 "blocksize too small for journal device"); 4855 goto out_bdev; 4856 } 4857 4858 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4859 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4860 set_blocksize(bdev, blocksize); 4861 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4862 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4863 "external journal"); 4864 goto out_bdev; 4865 } 4866 4867 es = (struct ext4_super_block *) (bh->b_data + offset); 4868 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4869 !(le32_to_cpu(es->s_feature_incompat) & 4870 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4871 ext4_msg(sb, KERN_ERR, "external journal has " 4872 "bad superblock"); 4873 brelse(bh); 4874 goto out_bdev; 4875 } 4876 4877 if ((le32_to_cpu(es->s_feature_ro_compat) & 4878 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4879 es->s_checksum != ext4_superblock_csum(sb, es)) { 4880 ext4_msg(sb, KERN_ERR, "external journal has " 4881 "corrupt superblock"); 4882 brelse(bh); 4883 goto out_bdev; 4884 } 4885 4886 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4887 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4888 brelse(bh); 4889 goto out_bdev; 4890 } 4891 4892 len = ext4_blocks_count(es); 4893 start = sb_block + 1; 4894 brelse(bh); /* we're done with the superblock */ 4895 4896 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4897 start, len, blocksize); 4898 if (!journal) { 4899 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4900 goto out_bdev; 4901 } 4902 journal->j_private = sb; 4903 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4904 wait_on_buffer(journal->j_sb_buffer); 4905 if (!buffer_uptodate(journal->j_sb_buffer)) { 4906 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4907 goto out_journal; 4908 } 4909 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4910 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4911 "user (unsupported) - %d", 4912 be32_to_cpu(journal->j_superblock->s_nr_users)); 4913 goto out_journal; 4914 } 4915 EXT4_SB(sb)->journal_bdev = bdev; 4916 ext4_init_journal_params(sb, journal); 4917 return journal; 4918 4919 out_journal: 4920 jbd2_journal_destroy(journal); 4921 out_bdev: 4922 ext4_blkdev_put(bdev); 4923 return NULL; 4924 } 4925 4926 static int ext4_load_journal(struct super_block *sb, 4927 struct ext4_super_block *es, 4928 unsigned long journal_devnum) 4929 { 4930 journal_t *journal; 4931 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4932 dev_t journal_dev; 4933 int err = 0; 4934 int really_read_only; 4935 4936 BUG_ON(!ext4_has_feature_journal(sb)); 4937 4938 if (journal_devnum && 4939 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4940 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4941 "numbers have changed"); 4942 journal_dev = new_decode_dev(journal_devnum); 4943 } else 4944 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4945 4946 really_read_only = bdev_read_only(sb->s_bdev); 4947 4948 /* 4949 * Are we loading a blank journal or performing recovery after a 4950 * crash? For recovery, we need to check in advance whether we 4951 * can get read-write access to the device. 4952 */ 4953 if (ext4_has_feature_journal_needs_recovery(sb)) { 4954 if (sb_rdonly(sb)) { 4955 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4956 "required on readonly filesystem"); 4957 if (really_read_only) { 4958 ext4_msg(sb, KERN_ERR, "write access " 4959 "unavailable, cannot proceed " 4960 "(try mounting with noload)"); 4961 return -EROFS; 4962 } 4963 ext4_msg(sb, KERN_INFO, "write access will " 4964 "be enabled during recovery"); 4965 } 4966 } 4967 4968 if (journal_inum && journal_dev) { 4969 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4970 "and inode journals!"); 4971 return -EINVAL; 4972 } 4973 4974 if (journal_inum) { 4975 if (!(journal = ext4_get_journal(sb, journal_inum))) 4976 return -EINVAL; 4977 } else { 4978 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4979 return -EINVAL; 4980 } 4981 4982 if (!(journal->j_flags & JBD2_BARRIER)) 4983 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4984 4985 if (!ext4_has_feature_journal_needs_recovery(sb)) 4986 err = jbd2_journal_wipe(journal, !really_read_only); 4987 if (!err) { 4988 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4989 if (save) 4990 memcpy(save, ((char *) es) + 4991 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4992 err = jbd2_journal_load(journal); 4993 if (save) 4994 memcpy(((char *) es) + EXT4_S_ERR_START, 4995 save, EXT4_S_ERR_LEN); 4996 kfree(save); 4997 } 4998 4999 if (err) { 5000 ext4_msg(sb, KERN_ERR, "error loading journal"); 5001 jbd2_journal_destroy(journal); 5002 return err; 5003 } 5004 5005 EXT4_SB(sb)->s_journal = journal; 5006 ext4_clear_journal_err(sb, es); 5007 5008 if (!really_read_only && journal_devnum && 5009 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5010 es->s_journal_dev = cpu_to_le32(journal_devnum); 5011 5012 /* Make sure we flush the recovery flag to disk. */ 5013 ext4_commit_super(sb, 1); 5014 } 5015 5016 return 0; 5017 } 5018 5019 static int ext4_commit_super(struct super_block *sb, int sync) 5020 { 5021 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5022 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5023 int error = 0; 5024 5025 if (!sbh || block_device_ejected(sb)) 5026 return error; 5027 5028 /* 5029 * The superblock bh should be mapped, but it might not be if the 5030 * device was hot-removed. Not much we can do but fail the I/O. 5031 */ 5032 if (!buffer_mapped(sbh)) 5033 return error; 5034 5035 /* 5036 * If the file system is mounted read-only, don't update the 5037 * superblock write time. This avoids updating the superblock 5038 * write time when we are mounting the root file system 5039 * read/only but we need to replay the journal; at that point, 5040 * for people who are east of GMT and who make their clock 5041 * tick in localtime for Windows bug-for-bug compatibility, 5042 * the clock is set in the future, and this will cause e2fsck 5043 * to complain and force a full file system check. 5044 */ 5045 if (!(sb->s_flags & SB_RDONLY)) 5046 ext4_update_tstamp(es, s_wtime); 5047 if (sb->s_bdev->bd_part) 5048 es->s_kbytes_written = 5049 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5050 ((part_stat_read(sb->s_bdev->bd_part, 5051 sectors[STAT_WRITE]) - 5052 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5053 else 5054 es->s_kbytes_written = 5055 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5056 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5057 ext4_free_blocks_count_set(es, 5058 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5059 &EXT4_SB(sb)->s_freeclusters_counter))); 5060 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5061 es->s_free_inodes_count = 5062 cpu_to_le32(percpu_counter_sum_positive( 5063 &EXT4_SB(sb)->s_freeinodes_counter)); 5064 BUFFER_TRACE(sbh, "marking dirty"); 5065 ext4_superblock_csum_set(sb); 5066 if (sync) 5067 lock_buffer(sbh); 5068 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5069 /* 5070 * Oh, dear. A previous attempt to write the 5071 * superblock failed. This could happen because the 5072 * USB device was yanked out. Or it could happen to 5073 * be a transient write error and maybe the block will 5074 * be remapped. Nothing we can do but to retry the 5075 * write and hope for the best. 5076 */ 5077 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5078 "superblock detected"); 5079 clear_buffer_write_io_error(sbh); 5080 set_buffer_uptodate(sbh); 5081 } 5082 mark_buffer_dirty(sbh); 5083 if (sync) { 5084 unlock_buffer(sbh); 5085 error = __sync_dirty_buffer(sbh, 5086 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5087 if (buffer_write_io_error(sbh)) { 5088 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5089 "superblock"); 5090 clear_buffer_write_io_error(sbh); 5091 set_buffer_uptodate(sbh); 5092 } 5093 } 5094 return error; 5095 } 5096 5097 /* 5098 * Have we just finished recovery? If so, and if we are mounting (or 5099 * remounting) the filesystem readonly, then we will end up with a 5100 * consistent fs on disk. Record that fact. 5101 */ 5102 static void ext4_mark_recovery_complete(struct super_block *sb, 5103 struct ext4_super_block *es) 5104 { 5105 journal_t *journal = EXT4_SB(sb)->s_journal; 5106 5107 if (!ext4_has_feature_journal(sb)) { 5108 BUG_ON(journal != NULL); 5109 return; 5110 } 5111 jbd2_journal_lock_updates(journal); 5112 if (jbd2_journal_flush(journal) < 0) 5113 goto out; 5114 5115 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5116 ext4_clear_feature_journal_needs_recovery(sb); 5117 ext4_commit_super(sb, 1); 5118 } 5119 5120 out: 5121 jbd2_journal_unlock_updates(journal); 5122 } 5123 5124 /* 5125 * If we are mounting (or read-write remounting) a filesystem whose journal 5126 * has recorded an error from a previous lifetime, move that error to the 5127 * main filesystem now. 5128 */ 5129 static void ext4_clear_journal_err(struct super_block *sb, 5130 struct ext4_super_block *es) 5131 { 5132 journal_t *journal; 5133 int j_errno; 5134 const char *errstr; 5135 5136 BUG_ON(!ext4_has_feature_journal(sb)); 5137 5138 journal = EXT4_SB(sb)->s_journal; 5139 5140 /* 5141 * Now check for any error status which may have been recorded in the 5142 * journal by a prior ext4_error() or ext4_abort() 5143 */ 5144 5145 j_errno = jbd2_journal_errno(journal); 5146 if (j_errno) { 5147 char nbuf[16]; 5148 5149 errstr = ext4_decode_error(sb, j_errno, nbuf); 5150 ext4_warning(sb, "Filesystem error recorded " 5151 "from previous mount: %s", errstr); 5152 ext4_warning(sb, "Marking fs in need of filesystem check."); 5153 5154 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5155 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5156 ext4_commit_super(sb, 1); 5157 5158 jbd2_journal_clear_err(journal); 5159 jbd2_journal_update_sb_errno(journal); 5160 } 5161 } 5162 5163 /* 5164 * Force the running and committing transactions to commit, 5165 * and wait on the commit. 5166 */ 5167 int ext4_force_commit(struct super_block *sb) 5168 { 5169 journal_t *journal; 5170 5171 if (sb_rdonly(sb)) 5172 return 0; 5173 5174 journal = EXT4_SB(sb)->s_journal; 5175 return ext4_journal_force_commit(journal); 5176 } 5177 5178 static int ext4_sync_fs(struct super_block *sb, int wait) 5179 { 5180 int ret = 0; 5181 tid_t target; 5182 bool needs_barrier = false; 5183 struct ext4_sb_info *sbi = EXT4_SB(sb); 5184 5185 if (unlikely(ext4_forced_shutdown(sbi))) 5186 return 0; 5187 5188 trace_ext4_sync_fs(sb, wait); 5189 flush_workqueue(sbi->rsv_conversion_wq); 5190 /* 5191 * Writeback quota in non-journalled quota case - journalled quota has 5192 * no dirty dquots 5193 */ 5194 dquot_writeback_dquots(sb, -1); 5195 /* 5196 * Data writeback is possible w/o journal transaction, so barrier must 5197 * being sent at the end of the function. But we can skip it if 5198 * transaction_commit will do it for us. 5199 */ 5200 if (sbi->s_journal) { 5201 target = jbd2_get_latest_transaction(sbi->s_journal); 5202 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5203 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5204 needs_barrier = true; 5205 5206 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5207 if (wait) 5208 ret = jbd2_log_wait_commit(sbi->s_journal, 5209 target); 5210 } 5211 } else if (wait && test_opt(sb, BARRIER)) 5212 needs_barrier = true; 5213 if (needs_barrier) { 5214 int err; 5215 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5216 if (!ret) 5217 ret = err; 5218 } 5219 5220 return ret; 5221 } 5222 5223 /* 5224 * LVM calls this function before a (read-only) snapshot is created. This 5225 * gives us a chance to flush the journal completely and mark the fs clean. 5226 * 5227 * Note that only this function cannot bring a filesystem to be in a clean 5228 * state independently. It relies on upper layer to stop all data & metadata 5229 * modifications. 5230 */ 5231 static int ext4_freeze(struct super_block *sb) 5232 { 5233 int error = 0; 5234 journal_t *journal; 5235 5236 if (sb_rdonly(sb)) 5237 return 0; 5238 5239 journal = EXT4_SB(sb)->s_journal; 5240 5241 if (journal) { 5242 /* Now we set up the journal barrier. */ 5243 jbd2_journal_lock_updates(journal); 5244 5245 /* 5246 * Don't clear the needs_recovery flag if we failed to 5247 * flush the journal. 5248 */ 5249 error = jbd2_journal_flush(journal); 5250 if (error < 0) 5251 goto out; 5252 5253 /* Journal blocked and flushed, clear needs_recovery flag. */ 5254 ext4_clear_feature_journal_needs_recovery(sb); 5255 } 5256 5257 error = ext4_commit_super(sb, 1); 5258 out: 5259 if (journal) 5260 /* we rely on upper layer to stop further updates */ 5261 jbd2_journal_unlock_updates(journal); 5262 return error; 5263 } 5264 5265 /* 5266 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5267 * flag here, even though the filesystem is not technically dirty yet. 5268 */ 5269 static int ext4_unfreeze(struct super_block *sb) 5270 { 5271 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5272 return 0; 5273 5274 if (EXT4_SB(sb)->s_journal) { 5275 /* Reset the needs_recovery flag before the fs is unlocked. */ 5276 ext4_set_feature_journal_needs_recovery(sb); 5277 } 5278 5279 ext4_commit_super(sb, 1); 5280 return 0; 5281 } 5282 5283 /* 5284 * Structure to save mount options for ext4_remount's benefit 5285 */ 5286 struct ext4_mount_options { 5287 unsigned long s_mount_opt; 5288 unsigned long s_mount_opt2; 5289 kuid_t s_resuid; 5290 kgid_t s_resgid; 5291 unsigned long s_commit_interval; 5292 u32 s_min_batch_time, s_max_batch_time; 5293 #ifdef CONFIG_QUOTA 5294 int s_jquota_fmt; 5295 char *s_qf_names[EXT4_MAXQUOTAS]; 5296 #endif 5297 }; 5298 5299 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5300 { 5301 struct ext4_super_block *es; 5302 struct ext4_sb_info *sbi = EXT4_SB(sb); 5303 unsigned long old_sb_flags; 5304 struct ext4_mount_options old_opts; 5305 int enable_quota = 0; 5306 ext4_group_t g; 5307 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5308 int err = 0; 5309 #ifdef CONFIG_QUOTA 5310 int i, j; 5311 char *to_free[EXT4_MAXQUOTAS]; 5312 #endif 5313 char *orig_data = kstrdup(data, GFP_KERNEL); 5314 5315 if (data && !orig_data) 5316 return -ENOMEM; 5317 5318 /* Store the original options */ 5319 old_sb_flags = sb->s_flags; 5320 old_opts.s_mount_opt = sbi->s_mount_opt; 5321 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5322 old_opts.s_resuid = sbi->s_resuid; 5323 old_opts.s_resgid = sbi->s_resgid; 5324 old_opts.s_commit_interval = sbi->s_commit_interval; 5325 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5326 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5327 #ifdef CONFIG_QUOTA 5328 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5329 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5330 if (sbi->s_qf_names[i]) { 5331 char *qf_name = get_qf_name(sb, sbi, i); 5332 5333 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5334 if (!old_opts.s_qf_names[i]) { 5335 for (j = 0; j < i; j++) 5336 kfree(old_opts.s_qf_names[j]); 5337 kfree(orig_data); 5338 return -ENOMEM; 5339 } 5340 } else 5341 old_opts.s_qf_names[i] = NULL; 5342 #endif 5343 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5344 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5345 5346 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5347 err = -EINVAL; 5348 goto restore_opts; 5349 } 5350 5351 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5352 test_opt(sb, JOURNAL_CHECKSUM)) { 5353 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5354 "during remount not supported; ignoring"); 5355 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5356 } 5357 5358 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5359 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5360 ext4_msg(sb, KERN_ERR, "can't mount with " 5361 "both data=journal and delalloc"); 5362 err = -EINVAL; 5363 goto restore_opts; 5364 } 5365 if (test_opt(sb, DIOREAD_NOLOCK)) { 5366 ext4_msg(sb, KERN_ERR, "can't mount with " 5367 "both data=journal and dioread_nolock"); 5368 err = -EINVAL; 5369 goto restore_opts; 5370 } 5371 if (test_opt(sb, DAX)) { 5372 ext4_msg(sb, KERN_ERR, "can't mount with " 5373 "both data=journal and dax"); 5374 err = -EINVAL; 5375 goto restore_opts; 5376 } 5377 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5378 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5379 ext4_msg(sb, KERN_ERR, "can't mount with " 5380 "journal_async_commit in data=ordered mode"); 5381 err = -EINVAL; 5382 goto restore_opts; 5383 } 5384 } 5385 5386 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5387 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5388 err = -EINVAL; 5389 goto restore_opts; 5390 } 5391 5392 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5393 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5394 "dax flag with busy inodes while remounting"); 5395 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5396 } 5397 5398 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5399 ext4_abort(sb, "Abort forced by user"); 5400 5401 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5402 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5403 5404 es = sbi->s_es; 5405 5406 if (sbi->s_journal) { 5407 ext4_init_journal_params(sb, sbi->s_journal); 5408 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5409 } 5410 5411 if (*flags & SB_LAZYTIME) 5412 sb->s_flags |= SB_LAZYTIME; 5413 5414 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5415 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5416 err = -EROFS; 5417 goto restore_opts; 5418 } 5419 5420 if (*flags & SB_RDONLY) { 5421 err = sync_filesystem(sb); 5422 if (err < 0) 5423 goto restore_opts; 5424 err = dquot_suspend(sb, -1); 5425 if (err < 0) 5426 goto restore_opts; 5427 5428 /* 5429 * First of all, the unconditional stuff we have to do 5430 * to disable replay of the journal when we next remount 5431 */ 5432 sb->s_flags |= SB_RDONLY; 5433 5434 /* 5435 * OK, test if we are remounting a valid rw partition 5436 * readonly, and if so set the rdonly flag and then 5437 * mark the partition as valid again. 5438 */ 5439 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5440 (sbi->s_mount_state & EXT4_VALID_FS)) 5441 es->s_state = cpu_to_le16(sbi->s_mount_state); 5442 5443 if (sbi->s_journal) 5444 ext4_mark_recovery_complete(sb, es); 5445 if (sbi->s_mmp_tsk) 5446 kthread_stop(sbi->s_mmp_tsk); 5447 } else { 5448 /* Make sure we can mount this feature set readwrite */ 5449 if (ext4_has_feature_readonly(sb) || 5450 !ext4_feature_set_ok(sb, 0)) { 5451 err = -EROFS; 5452 goto restore_opts; 5453 } 5454 /* 5455 * Make sure the group descriptor checksums 5456 * are sane. If they aren't, refuse to remount r/w. 5457 */ 5458 for (g = 0; g < sbi->s_groups_count; g++) { 5459 struct ext4_group_desc *gdp = 5460 ext4_get_group_desc(sb, g, NULL); 5461 5462 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5463 ext4_msg(sb, KERN_ERR, 5464 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5465 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5466 le16_to_cpu(gdp->bg_checksum)); 5467 err = -EFSBADCRC; 5468 goto restore_opts; 5469 } 5470 } 5471 5472 /* 5473 * If we have an unprocessed orphan list hanging 5474 * around from a previously readonly bdev mount, 5475 * require a full umount/remount for now. 5476 */ 5477 if (es->s_last_orphan) { 5478 ext4_msg(sb, KERN_WARNING, "Couldn't " 5479 "remount RDWR because of unprocessed " 5480 "orphan inode list. Please " 5481 "umount/remount instead"); 5482 err = -EINVAL; 5483 goto restore_opts; 5484 } 5485 5486 /* 5487 * Mounting a RDONLY partition read-write, so reread 5488 * and store the current valid flag. (It may have 5489 * been changed by e2fsck since we originally mounted 5490 * the partition.) 5491 */ 5492 if (sbi->s_journal) 5493 ext4_clear_journal_err(sb, es); 5494 sbi->s_mount_state = le16_to_cpu(es->s_state); 5495 5496 err = ext4_setup_super(sb, es, 0); 5497 if (err) 5498 goto restore_opts; 5499 5500 sb->s_flags &= ~SB_RDONLY; 5501 if (ext4_has_feature_mmp(sb)) 5502 if (ext4_multi_mount_protect(sb, 5503 le64_to_cpu(es->s_mmp_block))) { 5504 err = -EROFS; 5505 goto restore_opts; 5506 } 5507 enable_quota = 1; 5508 } 5509 } 5510 5511 /* 5512 * Reinitialize lazy itable initialization thread based on 5513 * current settings 5514 */ 5515 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5516 ext4_unregister_li_request(sb); 5517 else { 5518 ext4_group_t first_not_zeroed; 5519 first_not_zeroed = ext4_has_uninit_itable(sb); 5520 ext4_register_li_request(sb, first_not_zeroed); 5521 } 5522 5523 ext4_setup_system_zone(sb); 5524 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5525 err = ext4_commit_super(sb, 1); 5526 if (err) 5527 goto restore_opts; 5528 } 5529 5530 #ifdef CONFIG_QUOTA 5531 /* Release old quota file names */ 5532 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5533 kfree(old_opts.s_qf_names[i]); 5534 if (enable_quota) { 5535 if (sb_any_quota_suspended(sb)) 5536 dquot_resume(sb, -1); 5537 else if (ext4_has_feature_quota(sb)) { 5538 err = ext4_enable_quotas(sb); 5539 if (err) 5540 goto restore_opts; 5541 } 5542 } 5543 #endif 5544 5545 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5546 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5547 kfree(orig_data); 5548 return 0; 5549 5550 restore_opts: 5551 sb->s_flags = old_sb_flags; 5552 sbi->s_mount_opt = old_opts.s_mount_opt; 5553 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5554 sbi->s_resuid = old_opts.s_resuid; 5555 sbi->s_resgid = old_opts.s_resgid; 5556 sbi->s_commit_interval = old_opts.s_commit_interval; 5557 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5558 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5559 #ifdef CONFIG_QUOTA 5560 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5561 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5562 to_free[i] = get_qf_name(sb, sbi, i); 5563 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5564 } 5565 synchronize_rcu(); 5566 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5567 kfree(to_free[i]); 5568 #endif 5569 kfree(orig_data); 5570 return err; 5571 } 5572 5573 #ifdef CONFIG_QUOTA 5574 static int ext4_statfs_project(struct super_block *sb, 5575 kprojid_t projid, struct kstatfs *buf) 5576 { 5577 struct kqid qid; 5578 struct dquot *dquot; 5579 u64 limit; 5580 u64 curblock; 5581 5582 qid = make_kqid_projid(projid); 5583 dquot = dqget(sb, qid); 5584 if (IS_ERR(dquot)) 5585 return PTR_ERR(dquot); 5586 spin_lock(&dquot->dq_dqb_lock); 5587 5588 limit = 0; 5589 if (dquot->dq_dqb.dqb_bsoftlimit && 5590 (!limit || dquot->dq_dqb.dqb_bsoftlimit < limit)) 5591 limit = dquot->dq_dqb.dqb_bsoftlimit; 5592 if (dquot->dq_dqb.dqb_bhardlimit && 5593 (!limit || dquot->dq_dqb.dqb_bhardlimit < limit)) 5594 limit = dquot->dq_dqb.dqb_bhardlimit; 5595 limit >>= sb->s_blocksize_bits; 5596 5597 if (limit && buf->f_blocks > limit) { 5598 curblock = (dquot->dq_dqb.dqb_curspace + 5599 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5600 buf->f_blocks = limit; 5601 buf->f_bfree = buf->f_bavail = 5602 (buf->f_blocks > curblock) ? 5603 (buf->f_blocks - curblock) : 0; 5604 } 5605 5606 limit = 0; 5607 if (dquot->dq_dqb.dqb_isoftlimit && 5608 (!limit || dquot->dq_dqb.dqb_isoftlimit < limit)) 5609 limit = dquot->dq_dqb.dqb_isoftlimit; 5610 if (dquot->dq_dqb.dqb_ihardlimit && 5611 (!limit || dquot->dq_dqb.dqb_ihardlimit < limit)) 5612 limit = dquot->dq_dqb.dqb_ihardlimit; 5613 5614 if (limit && buf->f_files > limit) { 5615 buf->f_files = limit; 5616 buf->f_ffree = 5617 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5618 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5619 } 5620 5621 spin_unlock(&dquot->dq_dqb_lock); 5622 dqput(dquot); 5623 return 0; 5624 } 5625 #endif 5626 5627 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5628 { 5629 struct super_block *sb = dentry->d_sb; 5630 struct ext4_sb_info *sbi = EXT4_SB(sb); 5631 struct ext4_super_block *es = sbi->s_es; 5632 ext4_fsblk_t overhead = 0, resv_blocks; 5633 u64 fsid; 5634 s64 bfree; 5635 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5636 5637 if (!test_opt(sb, MINIX_DF)) 5638 overhead = sbi->s_overhead; 5639 5640 buf->f_type = EXT4_SUPER_MAGIC; 5641 buf->f_bsize = sb->s_blocksize; 5642 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5643 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5644 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5645 /* prevent underflow in case that few free space is available */ 5646 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5647 buf->f_bavail = buf->f_bfree - 5648 (ext4_r_blocks_count(es) + resv_blocks); 5649 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5650 buf->f_bavail = 0; 5651 buf->f_files = le32_to_cpu(es->s_inodes_count); 5652 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5653 buf->f_namelen = EXT4_NAME_LEN; 5654 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5655 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5656 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5657 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5658 5659 #ifdef CONFIG_QUOTA 5660 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5661 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5662 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5663 #endif 5664 return 0; 5665 } 5666 5667 5668 #ifdef CONFIG_QUOTA 5669 5670 /* 5671 * Helper functions so that transaction is started before we acquire dqio_sem 5672 * to keep correct lock ordering of transaction > dqio_sem 5673 */ 5674 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5675 { 5676 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5677 } 5678 5679 static int ext4_write_dquot(struct dquot *dquot) 5680 { 5681 int ret, err; 5682 handle_t *handle; 5683 struct inode *inode; 5684 5685 inode = dquot_to_inode(dquot); 5686 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5687 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5688 if (IS_ERR(handle)) 5689 return PTR_ERR(handle); 5690 ret = dquot_commit(dquot); 5691 err = ext4_journal_stop(handle); 5692 if (!ret) 5693 ret = err; 5694 return ret; 5695 } 5696 5697 static int ext4_acquire_dquot(struct dquot *dquot) 5698 { 5699 int ret, err; 5700 handle_t *handle; 5701 5702 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5703 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5704 if (IS_ERR(handle)) 5705 return PTR_ERR(handle); 5706 ret = dquot_acquire(dquot); 5707 err = ext4_journal_stop(handle); 5708 if (!ret) 5709 ret = err; 5710 return ret; 5711 } 5712 5713 static int ext4_release_dquot(struct dquot *dquot) 5714 { 5715 int ret, err; 5716 handle_t *handle; 5717 5718 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5719 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5720 if (IS_ERR(handle)) { 5721 /* Release dquot anyway to avoid endless cycle in dqput() */ 5722 dquot_release(dquot); 5723 return PTR_ERR(handle); 5724 } 5725 ret = dquot_release(dquot); 5726 err = ext4_journal_stop(handle); 5727 if (!ret) 5728 ret = err; 5729 return ret; 5730 } 5731 5732 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5733 { 5734 struct super_block *sb = dquot->dq_sb; 5735 struct ext4_sb_info *sbi = EXT4_SB(sb); 5736 5737 /* Are we journaling quotas? */ 5738 if (ext4_has_feature_quota(sb) || 5739 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5740 dquot_mark_dquot_dirty(dquot); 5741 return ext4_write_dquot(dquot); 5742 } else { 5743 return dquot_mark_dquot_dirty(dquot); 5744 } 5745 } 5746 5747 static int ext4_write_info(struct super_block *sb, int type) 5748 { 5749 int ret, err; 5750 handle_t *handle; 5751 5752 /* Data block + inode block */ 5753 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5754 if (IS_ERR(handle)) 5755 return PTR_ERR(handle); 5756 ret = dquot_commit_info(sb, type); 5757 err = ext4_journal_stop(handle); 5758 if (!ret) 5759 ret = err; 5760 return ret; 5761 } 5762 5763 /* 5764 * Turn on quotas during mount time - we need to find 5765 * the quota file and such... 5766 */ 5767 static int ext4_quota_on_mount(struct super_block *sb, int type) 5768 { 5769 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5770 EXT4_SB(sb)->s_jquota_fmt, type); 5771 } 5772 5773 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5774 { 5775 struct ext4_inode_info *ei = EXT4_I(inode); 5776 5777 /* The first argument of lockdep_set_subclass has to be 5778 * *exactly* the same as the argument to init_rwsem() --- in 5779 * this case, in init_once() --- or lockdep gets unhappy 5780 * because the name of the lock is set using the 5781 * stringification of the argument to init_rwsem(). 5782 */ 5783 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5784 lockdep_set_subclass(&ei->i_data_sem, subclass); 5785 } 5786 5787 /* 5788 * Standard function to be called on quota_on 5789 */ 5790 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5791 const struct path *path) 5792 { 5793 int err; 5794 5795 if (!test_opt(sb, QUOTA)) 5796 return -EINVAL; 5797 5798 /* Quotafile not on the same filesystem? */ 5799 if (path->dentry->d_sb != sb) 5800 return -EXDEV; 5801 /* Journaling quota? */ 5802 if (EXT4_SB(sb)->s_qf_names[type]) { 5803 /* Quotafile not in fs root? */ 5804 if (path->dentry->d_parent != sb->s_root) 5805 ext4_msg(sb, KERN_WARNING, 5806 "Quota file not on filesystem root. " 5807 "Journaled quota will not work"); 5808 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5809 } else { 5810 /* 5811 * Clear the flag just in case mount options changed since 5812 * last time. 5813 */ 5814 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5815 } 5816 5817 /* 5818 * When we journal data on quota file, we have to flush journal to see 5819 * all updates to the file when we bypass pagecache... 5820 */ 5821 if (EXT4_SB(sb)->s_journal && 5822 ext4_should_journal_data(d_inode(path->dentry))) { 5823 /* 5824 * We don't need to lock updates but journal_flush() could 5825 * otherwise be livelocked... 5826 */ 5827 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5828 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5829 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5830 if (err) 5831 return err; 5832 } 5833 5834 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5835 err = dquot_quota_on(sb, type, format_id, path); 5836 if (err) { 5837 lockdep_set_quota_inode(path->dentry->d_inode, 5838 I_DATA_SEM_NORMAL); 5839 } else { 5840 struct inode *inode = d_inode(path->dentry); 5841 handle_t *handle; 5842 5843 /* 5844 * Set inode flags to prevent userspace from messing with quota 5845 * files. If this fails, we return success anyway since quotas 5846 * are already enabled and this is not a hard failure. 5847 */ 5848 inode_lock(inode); 5849 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5850 if (IS_ERR(handle)) 5851 goto unlock_inode; 5852 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5853 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5854 S_NOATIME | S_IMMUTABLE); 5855 ext4_mark_inode_dirty(handle, inode); 5856 ext4_journal_stop(handle); 5857 unlock_inode: 5858 inode_unlock(inode); 5859 } 5860 return err; 5861 } 5862 5863 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5864 unsigned int flags) 5865 { 5866 int err; 5867 struct inode *qf_inode; 5868 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5869 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5870 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5871 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5872 }; 5873 5874 BUG_ON(!ext4_has_feature_quota(sb)); 5875 5876 if (!qf_inums[type]) 5877 return -EPERM; 5878 5879 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5880 if (IS_ERR(qf_inode)) { 5881 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5882 return PTR_ERR(qf_inode); 5883 } 5884 5885 /* Don't account quota for quota files to avoid recursion */ 5886 qf_inode->i_flags |= S_NOQUOTA; 5887 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5888 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 5889 if (err) 5890 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5891 iput(qf_inode); 5892 5893 return err; 5894 } 5895 5896 /* Enable usage tracking for all quota types. */ 5897 static int ext4_enable_quotas(struct super_block *sb) 5898 { 5899 int type, err = 0; 5900 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5901 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5902 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5903 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5904 }; 5905 bool quota_mopt[EXT4_MAXQUOTAS] = { 5906 test_opt(sb, USRQUOTA), 5907 test_opt(sb, GRPQUOTA), 5908 test_opt(sb, PRJQUOTA), 5909 }; 5910 5911 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5912 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5913 if (qf_inums[type]) { 5914 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5915 DQUOT_USAGE_ENABLED | 5916 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5917 if (err) { 5918 ext4_warning(sb, 5919 "Failed to enable quota tracking " 5920 "(type=%d, err=%d). Please run " 5921 "e2fsck to fix.", type, err); 5922 for (type--; type >= 0; type--) 5923 dquot_quota_off(sb, type); 5924 5925 return err; 5926 } 5927 } 5928 } 5929 return 0; 5930 } 5931 5932 static int ext4_quota_off(struct super_block *sb, int type) 5933 { 5934 struct inode *inode = sb_dqopt(sb)->files[type]; 5935 handle_t *handle; 5936 int err; 5937 5938 /* Force all delayed allocation blocks to be allocated. 5939 * Caller already holds s_umount sem */ 5940 if (test_opt(sb, DELALLOC)) 5941 sync_filesystem(sb); 5942 5943 if (!inode || !igrab(inode)) 5944 goto out; 5945 5946 err = dquot_quota_off(sb, type); 5947 if (err || ext4_has_feature_quota(sb)) 5948 goto out_put; 5949 5950 inode_lock(inode); 5951 /* 5952 * Update modification times of quota files when userspace can 5953 * start looking at them. If we fail, we return success anyway since 5954 * this is not a hard failure and quotas are already disabled. 5955 */ 5956 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5957 if (IS_ERR(handle)) 5958 goto out_unlock; 5959 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5960 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5961 inode->i_mtime = inode->i_ctime = current_time(inode); 5962 ext4_mark_inode_dirty(handle, inode); 5963 ext4_journal_stop(handle); 5964 out_unlock: 5965 inode_unlock(inode); 5966 out_put: 5967 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5968 iput(inode); 5969 return err; 5970 out: 5971 return dquot_quota_off(sb, type); 5972 } 5973 5974 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5975 * acquiring the locks... As quota files are never truncated and quota code 5976 * itself serializes the operations (and no one else should touch the files) 5977 * we don't have to be afraid of races */ 5978 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5979 size_t len, loff_t off) 5980 { 5981 struct inode *inode = sb_dqopt(sb)->files[type]; 5982 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5983 int offset = off & (sb->s_blocksize - 1); 5984 int tocopy; 5985 size_t toread; 5986 struct buffer_head *bh; 5987 loff_t i_size = i_size_read(inode); 5988 5989 if (off > i_size) 5990 return 0; 5991 if (off+len > i_size) 5992 len = i_size-off; 5993 toread = len; 5994 while (toread > 0) { 5995 tocopy = sb->s_blocksize - offset < toread ? 5996 sb->s_blocksize - offset : toread; 5997 bh = ext4_bread(NULL, inode, blk, 0); 5998 if (IS_ERR(bh)) 5999 return PTR_ERR(bh); 6000 if (!bh) /* A hole? */ 6001 memset(data, 0, tocopy); 6002 else 6003 memcpy(data, bh->b_data+offset, tocopy); 6004 brelse(bh); 6005 offset = 0; 6006 toread -= tocopy; 6007 data += tocopy; 6008 blk++; 6009 } 6010 return len; 6011 } 6012 6013 /* Write to quotafile (we know the transaction is already started and has 6014 * enough credits) */ 6015 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6016 const char *data, size_t len, loff_t off) 6017 { 6018 struct inode *inode = sb_dqopt(sb)->files[type]; 6019 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6020 int err, offset = off & (sb->s_blocksize - 1); 6021 int retries = 0; 6022 struct buffer_head *bh; 6023 handle_t *handle = journal_current_handle(); 6024 6025 if (EXT4_SB(sb)->s_journal && !handle) { 6026 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6027 " cancelled because transaction is not started", 6028 (unsigned long long)off, (unsigned long long)len); 6029 return -EIO; 6030 } 6031 /* 6032 * Since we account only one data block in transaction credits, 6033 * then it is impossible to cross a block boundary. 6034 */ 6035 if (sb->s_blocksize - offset < len) { 6036 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6037 " cancelled because not block aligned", 6038 (unsigned long long)off, (unsigned long long)len); 6039 return -EIO; 6040 } 6041 6042 do { 6043 bh = ext4_bread(handle, inode, blk, 6044 EXT4_GET_BLOCKS_CREATE | 6045 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6046 } while (PTR_ERR(bh) == -ENOSPC && 6047 ext4_should_retry_alloc(inode->i_sb, &retries)); 6048 if (IS_ERR(bh)) 6049 return PTR_ERR(bh); 6050 if (!bh) 6051 goto out; 6052 BUFFER_TRACE(bh, "get write access"); 6053 err = ext4_journal_get_write_access(handle, bh); 6054 if (err) { 6055 brelse(bh); 6056 return err; 6057 } 6058 lock_buffer(bh); 6059 memcpy(bh->b_data+offset, data, len); 6060 flush_dcache_page(bh->b_page); 6061 unlock_buffer(bh); 6062 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6063 brelse(bh); 6064 out: 6065 if (inode->i_size < off + len) { 6066 i_size_write(inode, off + len); 6067 EXT4_I(inode)->i_disksize = inode->i_size; 6068 ext4_mark_inode_dirty(handle, inode); 6069 } 6070 return len; 6071 } 6072 #endif 6073 6074 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6075 const char *dev_name, void *data) 6076 { 6077 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6078 } 6079 6080 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6081 static inline void register_as_ext2(void) 6082 { 6083 int err = register_filesystem(&ext2_fs_type); 6084 if (err) 6085 printk(KERN_WARNING 6086 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6087 } 6088 6089 static inline void unregister_as_ext2(void) 6090 { 6091 unregister_filesystem(&ext2_fs_type); 6092 } 6093 6094 static inline int ext2_feature_set_ok(struct super_block *sb) 6095 { 6096 if (ext4_has_unknown_ext2_incompat_features(sb)) 6097 return 0; 6098 if (sb_rdonly(sb)) 6099 return 1; 6100 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6101 return 0; 6102 return 1; 6103 } 6104 #else 6105 static inline void register_as_ext2(void) { } 6106 static inline void unregister_as_ext2(void) { } 6107 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6108 #endif 6109 6110 static inline void register_as_ext3(void) 6111 { 6112 int err = register_filesystem(&ext3_fs_type); 6113 if (err) 6114 printk(KERN_WARNING 6115 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6116 } 6117 6118 static inline void unregister_as_ext3(void) 6119 { 6120 unregister_filesystem(&ext3_fs_type); 6121 } 6122 6123 static inline int ext3_feature_set_ok(struct super_block *sb) 6124 { 6125 if (ext4_has_unknown_ext3_incompat_features(sb)) 6126 return 0; 6127 if (!ext4_has_feature_journal(sb)) 6128 return 0; 6129 if (sb_rdonly(sb)) 6130 return 1; 6131 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6132 return 0; 6133 return 1; 6134 } 6135 6136 static struct file_system_type ext4_fs_type = { 6137 .owner = THIS_MODULE, 6138 .name = "ext4", 6139 .mount = ext4_mount, 6140 .kill_sb = kill_block_super, 6141 .fs_flags = FS_REQUIRES_DEV, 6142 }; 6143 MODULE_ALIAS_FS("ext4"); 6144 6145 /* Shared across all ext4 file systems */ 6146 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6147 6148 static int __init ext4_init_fs(void) 6149 { 6150 int i, err; 6151 6152 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6153 ext4_li_info = NULL; 6154 mutex_init(&ext4_li_mtx); 6155 6156 /* Build-time check for flags consistency */ 6157 ext4_check_flag_values(); 6158 6159 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6160 init_waitqueue_head(&ext4__ioend_wq[i]); 6161 6162 err = ext4_init_es(); 6163 if (err) 6164 return err; 6165 6166 err = ext4_init_pending(); 6167 if (err) 6168 goto out7; 6169 6170 err = ext4_init_post_read_processing(); 6171 if (err) 6172 goto out6; 6173 6174 err = ext4_init_pageio(); 6175 if (err) 6176 goto out5; 6177 6178 err = ext4_init_system_zone(); 6179 if (err) 6180 goto out4; 6181 6182 err = ext4_init_sysfs(); 6183 if (err) 6184 goto out3; 6185 6186 err = ext4_init_mballoc(); 6187 if (err) 6188 goto out2; 6189 err = init_inodecache(); 6190 if (err) 6191 goto out1; 6192 register_as_ext3(); 6193 register_as_ext2(); 6194 err = register_filesystem(&ext4_fs_type); 6195 if (err) 6196 goto out; 6197 6198 return 0; 6199 out: 6200 unregister_as_ext2(); 6201 unregister_as_ext3(); 6202 destroy_inodecache(); 6203 out1: 6204 ext4_exit_mballoc(); 6205 out2: 6206 ext4_exit_sysfs(); 6207 out3: 6208 ext4_exit_system_zone(); 6209 out4: 6210 ext4_exit_pageio(); 6211 out5: 6212 ext4_exit_post_read_processing(); 6213 out6: 6214 ext4_exit_pending(); 6215 out7: 6216 ext4_exit_es(); 6217 6218 return err; 6219 } 6220 6221 static void __exit ext4_exit_fs(void) 6222 { 6223 ext4_destroy_lazyinit_thread(); 6224 unregister_as_ext2(); 6225 unregister_as_ext3(); 6226 unregister_filesystem(&ext4_fs_type); 6227 destroy_inodecache(); 6228 ext4_exit_mballoc(); 6229 ext4_exit_sysfs(); 6230 ext4_exit_system_zone(); 6231 ext4_exit_pageio(); 6232 ext4_exit_post_read_processing(); 6233 ext4_exit_es(); 6234 ext4_exit_pending(); 6235 } 6236 6237 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6238 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6239 MODULE_LICENSE("GPL"); 6240 MODULE_SOFTDEP("pre: crc32c"); 6241 module_init(ext4_init_fs) 6242 module_exit(ext4_exit_fs) 6243