1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 82 /* 83 * Lock ordering 84 * 85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 86 * i_mmap_rwsem (inode->i_mmap_rwsem)! 87 * 88 * page fault path: 89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 90 * page lock -> i_data_sem (rw) 91 * 92 * buffered write path: 93 * sb_start_write -> i_mutex -> mmap_sem 94 * sb_start_write -> i_mutex -> transaction start -> page lock -> 95 * i_data_sem (rw) 96 * 97 * truncate: 98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 99 * i_mmap_rwsem (w) -> page lock 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * transaction start -> i_data_sem (rw) 102 * 103 * direct IO: 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 106 * transaction start -> i_data_sem (rw) 107 * 108 * writepages: 109 * transaction start -> page lock(s) -> i_data_sem (rw) 110 */ 111 112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 113 static struct file_system_type ext2_fs_type = { 114 .owner = THIS_MODULE, 115 .name = "ext2", 116 .mount = ext4_mount, 117 .kill_sb = kill_block_super, 118 .fs_flags = FS_REQUIRES_DEV, 119 }; 120 MODULE_ALIAS_FS("ext2"); 121 MODULE_ALIAS("ext2"); 122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 123 #else 124 #define IS_EXT2_SB(sb) (0) 125 #endif 126 127 128 static struct file_system_type ext3_fs_type = { 129 .owner = THIS_MODULE, 130 .name = "ext3", 131 .mount = ext4_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("ext3"); 136 MODULE_ALIAS("ext3"); 137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 138 139 static int ext4_verify_csum_type(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!ext4_has_feature_metadata_csum(sb)) 143 return 1; 144 145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 146 } 147 148 static __le32 ext4_superblock_csum(struct super_block *sb, 149 struct ext4_super_block *es) 150 { 151 struct ext4_sb_info *sbi = EXT4_SB(sb); 152 int offset = offsetof(struct ext4_super_block, s_checksum); 153 __u32 csum; 154 155 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 156 157 return cpu_to_le32(csum); 158 } 159 160 static int ext4_superblock_csum_verify(struct super_block *sb, 161 struct ext4_super_block *es) 162 { 163 if (!ext4_has_metadata_csum(sb)) 164 return 1; 165 166 return es->s_checksum == ext4_superblock_csum(sb, es); 167 } 168 169 void ext4_superblock_csum_set(struct super_block *sb) 170 { 171 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 172 173 if (!ext4_has_metadata_csum(sb)) 174 return; 175 176 es->s_checksum = ext4_superblock_csum(sb, es); 177 } 178 179 void *ext4_kvmalloc(size_t size, gfp_t flags) 180 { 181 void *ret; 182 183 ret = kmalloc(size, flags | __GFP_NOWARN); 184 if (!ret) 185 ret = __vmalloc(size, flags, PAGE_KERNEL); 186 return ret; 187 } 188 189 void *ext4_kvzalloc(size_t size, gfp_t flags) 190 { 191 void *ret; 192 193 ret = kzalloc(size, flags | __GFP_NOWARN); 194 if (!ret) 195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 196 return ret; 197 } 198 199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 200 struct ext4_group_desc *bg) 201 { 202 return le32_to_cpu(bg->bg_block_bitmap_lo) | 203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 205 } 206 207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_table_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 221 } 222 223 __u32 ext4_free_group_clusters(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 229 } 230 231 __u32 ext4_free_inodes_count(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_used_dirs_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_itable_unused_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_itable_unused_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 253 } 254 255 void ext4_block_bitmap_set(struct super_block *sb, 256 struct ext4_group_desc *bg, ext4_fsblk_t blk) 257 { 258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 261 } 262 263 void ext4_inode_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_table_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_free_group_clusters_set(struct super_block *sb, 280 struct ext4_group_desc *bg, __u32 count) 281 { 282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 285 } 286 287 void ext4_free_inodes_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_used_dirs_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_itable_unused_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 309 } 310 311 312 static void __save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 316 317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 318 if (bdev_read_only(sb->s_bdev)) 319 return; 320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 321 es->s_last_error_time = cpu_to_le32(get_seconds()); 322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 323 es->s_last_error_line = cpu_to_le32(line); 324 if (!es->s_first_error_time) { 325 es->s_first_error_time = es->s_last_error_time; 326 strncpy(es->s_first_error_func, func, 327 sizeof(es->s_first_error_func)); 328 es->s_first_error_line = cpu_to_le32(line); 329 es->s_first_error_ino = es->s_last_error_ino; 330 es->s_first_error_block = es->s_last_error_block; 331 } 332 /* 333 * Start the daily error reporting function if it hasn't been 334 * started already 335 */ 336 if (!es->s_error_count) 337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 338 le32_add_cpu(&es->s_error_count, 1); 339 } 340 341 static void save_error_info(struct super_block *sb, const char *func, 342 unsigned int line) 343 { 344 __save_error_info(sb, func, line); 345 ext4_commit_super(sb, 1); 346 } 347 348 /* 349 * The del_gendisk() function uninitializes the disk-specific data 350 * structures, including the bdi structure, without telling anyone 351 * else. Once this happens, any attempt to call mark_buffer_dirty() 352 * (for example, by ext4_commit_super), will cause a kernel OOPS. 353 * This is a kludge to prevent these oops until we can put in a proper 354 * hook in del_gendisk() to inform the VFS and file system layers. 355 */ 356 static int block_device_ejected(struct super_block *sb) 357 { 358 struct inode *bd_inode = sb->s_bdev->bd_inode; 359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 360 361 return bdi->dev == NULL; 362 } 363 364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 365 { 366 struct super_block *sb = journal->j_private; 367 struct ext4_sb_info *sbi = EXT4_SB(sb); 368 int error = is_journal_aborted(journal); 369 struct ext4_journal_cb_entry *jce; 370 371 BUG_ON(txn->t_state == T_FINISHED); 372 spin_lock(&sbi->s_md_lock); 373 while (!list_empty(&txn->t_private_list)) { 374 jce = list_entry(txn->t_private_list.next, 375 struct ext4_journal_cb_entry, jce_list); 376 list_del_init(&jce->jce_list); 377 spin_unlock(&sbi->s_md_lock); 378 jce->jce_func(sb, jce, error); 379 spin_lock(&sbi->s_md_lock); 380 } 381 spin_unlock(&sbi->s_md_lock); 382 } 383 384 /* Deal with the reporting of failure conditions on a filesystem such as 385 * inconsistencies detected or read IO failures. 386 * 387 * On ext2, we can store the error state of the filesystem in the 388 * superblock. That is not possible on ext4, because we may have other 389 * write ordering constraints on the superblock which prevent us from 390 * writing it out straight away; and given that the journal is about to 391 * be aborted, we can't rely on the current, or future, transactions to 392 * write out the superblock safely. 393 * 394 * We'll just use the jbd2_journal_abort() error code to record an error in 395 * the journal instead. On recovery, the journal will complain about 396 * that error until we've noted it down and cleared it. 397 */ 398 399 static void ext4_handle_error(struct super_block *sb) 400 { 401 if (sb->s_flags & MS_RDONLY) 402 return; 403 404 if (!test_opt(sb, ERRORS_CONT)) { 405 journal_t *journal = EXT4_SB(sb)->s_journal; 406 407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 408 if (journal) 409 jbd2_journal_abort(journal, -EIO); 410 } 411 if (test_opt(sb, ERRORS_RO)) { 412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 413 /* 414 * Make sure updated value of ->s_mount_flags will be visible 415 * before ->s_flags update 416 */ 417 smp_wmb(); 418 sb->s_flags |= MS_RDONLY; 419 } 420 if (test_opt(sb, ERRORS_PANIC)) { 421 if (EXT4_SB(sb)->s_journal && 422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 423 return; 424 panic("EXT4-fs (device %s): panic forced after error\n", 425 sb->s_id); 426 } 427 } 428 429 #define ext4_error_ratelimit(sb) \ 430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 431 "EXT4-fs error") 432 433 void __ext4_error(struct super_block *sb, const char *function, 434 unsigned int line, const char *fmt, ...) 435 { 436 struct va_format vaf; 437 va_list args; 438 439 if (ext4_error_ratelimit(sb)) { 440 va_start(args, fmt); 441 vaf.fmt = fmt; 442 vaf.va = &args; 443 printk(KERN_CRIT 444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 445 sb->s_id, function, line, current->comm, &vaf); 446 va_end(args); 447 } 448 save_error_info(sb, function, line); 449 ext4_handle_error(sb); 450 } 451 452 void __ext4_error_inode(struct inode *inode, const char *function, 453 unsigned int line, ext4_fsblk_t block, 454 const char *fmt, ...) 455 { 456 va_list args; 457 struct va_format vaf; 458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 459 460 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 461 es->s_last_error_block = cpu_to_le64(block); 462 if (ext4_error_ratelimit(inode->i_sb)) { 463 va_start(args, fmt); 464 vaf.fmt = fmt; 465 vaf.va = &args; 466 if (block) 467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 468 "inode #%lu: block %llu: comm %s: %pV\n", 469 inode->i_sb->s_id, function, line, inode->i_ino, 470 block, current->comm, &vaf); 471 else 472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 473 "inode #%lu: comm %s: %pV\n", 474 inode->i_sb->s_id, function, line, inode->i_ino, 475 current->comm, &vaf); 476 va_end(args); 477 } 478 save_error_info(inode->i_sb, function, line); 479 ext4_handle_error(inode->i_sb); 480 } 481 482 void __ext4_error_file(struct file *file, const char *function, 483 unsigned int line, ext4_fsblk_t block, 484 const char *fmt, ...) 485 { 486 va_list args; 487 struct va_format vaf; 488 struct ext4_super_block *es; 489 struct inode *inode = file_inode(file); 490 char pathname[80], *path; 491 492 es = EXT4_SB(inode->i_sb)->s_es; 493 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 494 if (ext4_error_ratelimit(inode->i_sb)) { 495 path = file_path(file, pathname, sizeof(pathname)); 496 if (IS_ERR(path)) 497 path = "(unknown)"; 498 va_start(args, fmt); 499 vaf.fmt = fmt; 500 vaf.va = &args; 501 if (block) 502 printk(KERN_CRIT 503 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 504 "block %llu: comm %s: path %s: %pV\n", 505 inode->i_sb->s_id, function, line, inode->i_ino, 506 block, current->comm, path, &vaf); 507 else 508 printk(KERN_CRIT 509 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 510 "comm %s: path %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, path, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 const char *ext4_decode_error(struct super_block *sb, int errno, 520 char nbuf[16]) 521 { 522 char *errstr = NULL; 523 524 switch (errno) { 525 case -EFSCORRUPTED: 526 errstr = "Corrupt filesystem"; 527 break; 528 case -EFSBADCRC: 529 errstr = "Filesystem failed CRC"; 530 break; 531 case -EIO: 532 errstr = "IO failure"; 533 break; 534 case -ENOMEM: 535 errstr = "Out of memory"; 536 break; 537 case -EROFS: 538 if (!sb || (EXT4_SB(sb)->s_journal && 539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 540 errstr = "Journal has aborted"; 541 else 542 errstr = "Readonly filesystem"; 543 break; 544 default: 545 /* If the caller passed in an extra buffer for unknown 546 * errors, textualise them now. Else we just return 547 * NULL. */ 548 if (nbuf) { 549 /* Check for truncated error codes... */ 550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 551 errstr = nbuf; 552 } 553 break; 554 } 555 556 return errstr; 557 } 558 559 /* __ext4_std_error decodes expected errors from journaling functions 560 * automatically and invokes the appropriate error response. */ 561 562 void __ext4_std_error(struct super_block *sb, const char *function, 563 unsigned int line, int errno) 564 { 565 char nbuf[16]; 566 const char *errstr; 567 568 /* Special case: if the error is EROFS, and we're not already 569 * inside a transaction, then there's really no point in logging 570 * an error. */ 571 if (errno == -EROFS && journal_current_handle() == NULL && 572 (sb->s_flags & MS_RDONLY)) 573 return; 574 575 if (ext4_error_ratelimit(sb)) { 576 errstr = ext4_decode_error(sb, errno, nbuf); 577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 578 sb->s_id, function, line, errstr); 579 } 580 581 save_error_info(sb, function, line); 582 ext4_handle_error(sb); 583 } 584 585 /* 586 * ext4_abort is a much stronger failure handler than ext4_error. The 587 * abort function may be used to deal with unrecoverable failures such 588 * as journal IO errors or ENOMEM at a critical moment in log management. 589 * 590 * We unconditionally force the filesystem into an ABORT|READONLY state, 591 * unless the error response on the fs has been set to panic in which 592 * case we take the easy way out and panic immediately. 593 */ 594 595 void __ext4_abort(struct super_block *sb, const char *function, 596 unsigned int line, const char *fmt, ...) 597 { 598 va_list args; 599 600 save_error_info(sb, function, line); 601 va_start(args, fmt); 602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 603 function, line); 604 vprintk(fmt, args); 605 printk("\n"); 606 va_end(args); 607 608 if ((sb->s_flags & MS_RDONLY) == 0) { 609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 611 /* 612 * Make sure updated value of ->s_mount_flags will be visible 613 * before ->s_flags update 614 */ 615 smp_wmb(); 616 sb->s_flags |= MS_RDONLY; 617 if (EXT4_SB(sb)->s_journal) 618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 619 save_error_info(sb, function, line); 620 } 621 if (test_opt(sb, ERRORS_PANIC)) { 622 if (EXT4_SB(sb)->s_journal && 623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 624 return; 625 panic("EXT4-fs panic from previous error\n"); 626 } 627 } 628 629 void __ext4_msg(struct super_block *sb, 630 const char *prefix, const char *fmt, ...) 631 { 632 struct va_format vaf; 633 va_list args; 634 635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 636 return; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 642 va_end(args); 643 } 644 645 #define ext4_warning_ratelimit(sb) \ 646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 647 "EXT4-fs warning") 648 649 void __ext4_warning(struct super_block *sb, const char *function, 650 unsigned int line, const char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 if (!ext4_warning_ratelimit(sb)) 656 return; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 662 sb->s_id, function, line, &vaf); 663 va_end(args); 664 } 665 666 void __ext4_warning_inode(const struct inode *inode, const char *function, 667 unsigned int line, const char *fmt, ...) 668 { 669 struct va_format vaf; 670 va_list args; 671 672 if (!ext4_warning_ratelimit(inode->i_sb)) 673 return; 674 675 va_start(args, fmt); 676 vaf.fmt = fmt; 677 vaf.va = &args; 678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 680 function, line, inode->i_ino, current->comm, &vaf); 681 va_end(args); 682 } 683 684 void __ext4_grp_locked_error(const char *function, unsigned int line, 685 struct super_block *sb, ext4_group_t grp, 686 unsigned long ino, ext4_fsblk_t block, 687 const char *fmt, ...) 688 __releases(bitlock) 689 __acquires(bitlock) 690 { 691 struct va_format vaf; 692 va_list args; 693 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 694 695 es->s_last_error_ino = cpu_to_le32(ino); 696 es->s_last_error_block = cpu_to_le64(block); 697 __save_error_info(sb, function, line); 698 699 if (ext4_error_ratelimit(sb)) { 700 va_start(args, fmt); 701 vaf.fmt = fmt; 702 vaf.va = &args; 703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 704 sb->s_id, function, line, grp); 705 if (ino) 706 printk(KERN_CONT "inode %lu: ", ino); 707 if (block) 708 printk(KERN_CONT "block %llu:", 709 (unsigned long long) block); 710 printk(KERN_CONT "%pV\n", &vaf); 711 va_end(args); 712 } 713 714 if (test_opt(sb, ERRORS_CONT)) { 715 ext4_commit_super(sb, 0); 716 return; 717 } 718 719 ext4_unlock_group(sb, grp); 720 ext4_handle_error(sb); 721 /* 722 * We only get here in the ERRORS_RO case; relocking the group 723 * may be dangerous, but nothing bad will happen since the 724 * filesystem will have already been marked read/only and the 725 * journal has been aborted. We return 1 as a hint to callers 726 * who might what to use the return value from 727 * ext4_grp_locked_error() to distinguish between the 728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 729 * aggressively from the ext4 function in question, with a 730 * more appropriate error code. 731 */ 732 ext4_lock_group(sb, grp); 733 return; 734 } 735 736 void ext4_update_dynamic_rev(struct super_block *sb) 737 { 738 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 739 740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 741 return; 742 743 ext4_warning(sb, 744 "updating to rev %d because of new feature flag, " 745 "running e2fsck is recommended", 746 EXT4_DYNAMIC_REV); 747 748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 751 /* leave es->s_feature_*compat flags alone */ 752 /* es->s_uuid will be set by e2fsck if empty */ 753 754 /* 755 * The rest of the superblock fields should be zero, and if not it 756 * means they are likely already in use, so leave them alone. We 757 * can leave it up to e2fsck to clean up any inconsistencies there. 758 */ 759 } 760 761 /* 762 * Open the external journal device 763 */ 764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 765 { 766 struct block_device *bdev; 767 char b[BDEVNAME_SIZE]; 768 769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 770 if (IS_ERR(bdev)) 771 goto fail; 772 return bdev; 773 774 fail: 775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 776 __bdevname(dev, b), PTR_ERR(bdev)); 777 return NULL; 778 } 779 780 /* 781 * Release the journal device 782 */ 783 static void ext4_blkdev_put(struct block_device *bdev) 784 { 785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 786 } 787 788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 789 { 790 struct block_device *bdev; 791 bdev = sbi->journal_bdev; 792 if (bdev) { 793 ext4_blkdev_put(bdev); 794 sbi->journal_bdev = NULL; 795 } 796 } 797 798 static inline struct inode *orphan_list_entry(struct list_head *l) 799 { 800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 801 } 802 803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 804 { 805 struct list_head *l; 806 807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 808 le32_to_cpu(sbi->s_es->s_last_orphan)); 809 810 printk(KERN_ERR "sb_info orphan list:\n"); 811 list_for_each(l, &sbi->s_orphan) { 812 struct inode *inode = orphan_list_entry(l); 813 printk(KERN_ERR " " 814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 815 inode->i_sb->s_id, inode->i_ino, inode, 816 inode->i_mode, inode->i_nlink, 817 NEXT_ORPHAN(inode)); 818 } 819 } 820 821 static void ext4_put_super(struct super_block *sb) 822 { 823 struct ext4_sb_info *sbi = EXT4_SB(sb); 824 struct ext4_super_block *es = sbi->s_es; 825 int i, err; 826 827 ext4_unregister_li_request(sb); 828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 829 830 flush_workqueue(sbi->rsv_conversion_wq); 831 destroy_workqueue(sbi->rsv_conversion_wq); 832 833 if (sbi->s_journal) { 834 err = jbd2_journal_destroy(sbi->s_journal); 835 sbi->s_journal = NULL; 836 if (err < 0) 837 ext4_abort(sb, "Couldn't clean up the journal"); 838 } 839 840 ext4_unregister_sysfs(sb); 841 ext4_es_unregister_shrinker(sbi); 842 del_timer_sync(&sbi->s_err_report); 843 ext4_release_system_zone(sb); 844 ext4_mb_release(sb); 845 ext4_ext_release(sb); 846 847 if (!(sb->s_flags & MS_RDONLY)) { 848 ext4_clear_feature_journal_needs_recovery(sb); 849 es->s_state = cpu_to_le16(sbi->s_mount_state); 850 } 851 if (!(sb->s_flags & MS_RDONLY)) 852 ext4_commit_super(sb, 1); 853 854 for (i = 0; i < sbi->s_gdb_count; i++) 855 brelse(sbi->s_group_desc[i]); 856 kvfree(sbi->s_group_desc); 857 kvfree(sbi->s_flex_groups); 858 percpu_counter_destroy(&sbi->s_freeclusters_counter); 859 percpu_counter_destroy(&sbi->s_freeinodes_counter); 860 percpu_counter_destroy(&sbi->s_dirs_counter); 861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 862 brelse(sbi->s_sbh); 863 #ifdef CONFIG_QUOTA 864 for (i = 0; i < EXT4_MAXQUOTAS; i++) 865 kfree(sbi->s_qf_names[i]); 866 #endif 867 868 /* Debugging code just in case the in-memory inode orphan list 869 * isn't empty. The on-disk one can be non-empty if we've 870 * detected an error and taken the fs readonly, but the 871 * in-memory list had better be clean by this point. */ 872 if (!list_empty(&sbi->s_orphan)) 873 dump_orphan_list(sb, sbi); 874 J_ASSERT(list_empty(&sbi->s_orphan)); 875 876 sync_blockdev(sb->s_bdev); 877 invalidate_bdev(sb->s_bdev); 878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 879 /* 880 * Invalidate the journal device's buffers. We don't want them 881 * floating about in memory - the physical journal device may 882 * hotswapped, and it breaks the `ro-after' testing code. 883 */ 884 sync_blockdev(sbi->journal_bdev); 885 invalidate_bdev(sbi->journal_bdev); 886 ext4_blkdev_remove(sbi); 887 } 888 if (sbi->s_mb_cache) { 889 ext4_xattr_destroy_cache(sbi->s_mb_cache); 890 sbi->s_mb_cache = NULL; 891 } 892 if (sbi->s_mmp_tsk) 893 kthread_stop(sbi->s_mmp_tsk); 894 sb->s_fs_info = NULL; 895 /* 896 * Now that we are completely done shutting down the 897 * superblock, we need to actually destroy the kobject. 898 */ 899 kobject_put(&sbi->s_kobj); 900 wait_for_completion(&sbi->s_kobj_unregister); 901 if (sbi->s_chksum_driver) 902 crypto_free_shash(sbi->s_chksum_driver); 903 kfree(sbi->s_blockgroup_lock); 904 kfree(sbi); 905 } 906 907 static struct kmem_cache *ext4_inode_cachep; 908 909 /* 910 * Called inside transaction, so use GFP_NOFS 911 */ 912 static struct inode *ext4_alloc_inode(struct super_block *sb) 913 { 914 struct ext4_inode_info *ei; 915 916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 917 if (!ei) 918 return NULL; 919 920 ei->vfs_inode.i_version = 1; 921 spin_lock_init(&ei->i_raw_lock); 922 INIT_LIST_HEAD(&ei->i_prealloc_list); 923 spin_lock_init(&ei->i_prealloc_lock); 924 ext4_es_init_tree(&ei->i_es_tree); 925 rwlock_init(&ei->i_es_lock); 926 INIT_LIST_HEAD(&ei->i_es_list); 927 ei->i_es_all_nr = 0; 928 ei->i_es_shk_nr = 0; 929 ei->i_es_shrink_lblk = 0; 930 ei->i_reserved_data_blocks = 0; 931 ei->i_reserved_meta_blocks = 0; 932 ei->i_allocated_meta_blocks = 0; 933 ei->i_da_metadata_calc_len = 0; 934 ei->i_da_metadata_calc_last_lblock = 0; 935 spin_lock_init(&(ei->i_block_reservation_lock)); 936 #ifdef CONFIG_QUOTA 937 ei->i_reserved_quota = 0; 938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 939 #endif 940 ei->jinode = NULL; 941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 942 spin_lock_init(&ei->i_completed_io_lock); 943 ei->i_sync_tid = 0; 944 ei->i_datasync_tid = 0; 945 atomic_set(&ei->i_unwritten, 0); 946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 947 #ifdef CONFIG_EXT4_FS_ENCRYPTION 948 ei->i_crypt_info = NULL; 949 #endif 950 return &ei->vfs_inode; 951 } 952 953 static int ext4_drop_inode(struct inode *inode) 954 { 955 int drop = generic_drop_inode(inode); 956 957 trace_ext4_drop_inode(inode, drop); 958 return drop; 959 } 960 961 static void ext4_i_callback(struct rcu_head *head) 962 { 963 struct inode *inode = container_of(head, struct inode, i_rcu); 964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 965 } 966 967 static void ext4_destroy_inode(struct inode *inode) 968 { 969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 970 ext4_msg(inode->i_sb, KERN_ERR, 971 "Inode %lu (%p): orphan list check failed!", 972 inode->i_ino, EXT4_I(inode)); 973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 974 EXT4_I(inode), sizeof(struct ext4_inode_info), 975 true); 976 dump_stack(); 977 } 978 call_rcu(&inode->i_rcu, ext4_i_callback); 979 } 980 981 static void init_once(void *foo) 982 { 983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 984 985 INIT_LIST_HEAD(&ei->i_orphan); 986 init_rwsem(&ei->xattr_sem); 987 init_rwsem(&ei->i_data_sem); 988 init_rwsem(&ei->i_mmap_sem); 989 inode_init_once(&ei->vfs_inode); 990 } 991 992 static int __init init_inodecache(void) 993 { 994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 995 sizeof(struct ext4_inode_info), 996 0, (SLAB_RECLAIM_ACCOUNT| 997 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 998 init_once); 999 if (ext4_inode_cachep == NULL) 1000 return -ENOMEM; 1001 return 0; 1002 } 1003 1004 static void destroy_inodecache(void) 1005 { 1006 /* 1007 * Make sure all delayed rcu free inodes are flushed before we 1008 * destroy cache. 1009 */ 1010 rcu_barrier(); 1011 kmem_cache_destroy(ext4_inode_cachep); 1012 } 1013 1014 void ext4_clear_inode(struct inode *inode) 1015 { 1016 invalidate_inode_buffers(inode); 1017 clear_inode(inode); 1018 dquot_drop(inode); 1019 ext4_discard_preallocations(inode); 1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1021 if (EXT4_I(inode)->jinode) { 1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1023 EXT4_I(inode)->jinode); 1024 jbd2_free_inode(EXT4_I(inode)->jinode); 1025 EXT4_I(inode)->jinode = NULL; 1026 } 1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1028 if (EXT4_I(inode)->i_crypt_info) 1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 1030 #endif 1031 } 1032 1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1034 u64 ino, u32 generation) 1035 { 1036 struct inode *inode; 1037 1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1039 return ERR_PTR(-ESTALE); 1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1041 return ERR_PTR(-ESTALE); 1042 1043 /* iget isn't really right if the inode is currently unallocated!! 1044 * 1045 * ext4_read_inode will return a bad_inode if the inode had been 1046 * deleted, so we should be safe. 1047 * 1048 * Currently we don't know the generation for parent directory, so 1049 * a generation of 0 means "accept any" 1050 */ 1051 inode = ext4_iget_normal(sb, ino); 1052 if (IS_ERR(inode)) 1053 return ERR_CAST(inode); 1054 if (generation && inode->i_generation != generation) { 1055 iput(inode); 1056 return ERR_PTR(-ESTALE); 1057 } 1058 1059 return inode; 1060 } 1061 1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1063 int fh_len, int fh_type) 1064 { 1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1066 ext4_nfs_get_inode); 1067 } 1068 1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1070 int fh_len, int fh_type) 1071 { 1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1073 ext4_nfs_get_inode); 1074 } 1075 1076 /* 1077 * Try to release metadata pages (indirect blocks, directories) which are 1078 * mapped via the block device. Since these pages could have journal heads 1079 * which would prevent try_to_free_buffers() from freeing them, we must use 1080 * jbd2 layer's try_to_free_buffers() function to release them. 1081 */ 1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1083 gfp_t wait) 1084 { 1085 journal_t *journal = EXT4_SB(sb)->s_journal; 1086 1087 WARN_ON(PageChecked(page)); 1088 if (!page_has_buffers(page)) 1089 return 0; 1090 if (journal) 1091 return jbd2_journal_try_to_free_buffers(journal, page, 1092 wait & ~__GFP_DIRECT_RECLAIM); 1093 return try_to_free_buffers(page); 1094 } 1095 1096 #ifdef CONFIG_QUOTA 1097 static char *quotatypes[] = INITQFNAMES; 1098 #define QTYPE2NAME(t) (quotatypes[t]) 1099 1100 static int ext4_write_dquot(struct dquot *dquot); 1101 static int ext4_acquire_dquot(struct dquot *dquot); 1102 static int ext4_release_dquot(struct dquot *dquot); 1103 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1104 static int ext4_write_info(struct super_block *sb, int type); 1105 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1106 struct path *path); 1107 static int ext4_quota_off(struct super_block *sb, int type); 1108 static int ext4_quota_on_mount(struct super_block *sb, int type); 1109 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1110 size_t len, loff_t off); 1111 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1112 const char *data, size_t len, loff_t off); 1113 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1114 unsigned int flags); 1115 static int ext4_enable_quotas(struct super_block *sb); 1116 1117 static struct dquot **ext4_get_dquots(struct inode *inode) 1118 { 1119 return EXT4_I(inode)->i_dquot; 1120 } 1121 1122 static const struct dquot_operations ext4_quota_operations = { 1123 .get_reserved_space = ext4_get_reserved_space, 1124 .write_dquot = ext4_write_dquot, 1125 .acquire_dquot = ext4_acquire_dquot, 1126 .release_dquot = ext4_release_dquot, 1127 .mark_dirty = ext4_mark_dquot_dirty, 1128 .write_info = ext4_write_info, 1129 .alloc_dquot = dquot_alloc, 1130 .destroy_dquot = dquot_destroy, 1131 .get_projid = ext4_get_projid, 1132 .get_next_id = dquot_get_next_id, 1133 }; 1134 1135 static const struct quotactl_ops ext4_qctl_operations = { 1136 .quota_on = ext4_quota_on, 1137 .quota_off = ext4_quota_off, 1138 .quota_sync = dquot_quota_sync, 1139 .get_state = dquot_get_state, 1140 .set_info = dquot_set_dqinfo, 1141 .get_dqblk = dquot_get_dqblk, 1142 .set_dqblk = dquot_set_dqblk, 1143 .get_nextdqblk = dquot_get_next_dqblk, 1144 }; 1145 #endif 1146 1147 static const struct super_operations ext4_sops = { 1148 .alloc_inode = ext4_alloc_inode, 1149 .destroy_inode = ext4_destroy_inode, 1150 .write_inode = ext4_write_inode, 1151 .dirty_inode = ext4_dirty_inode, 1152 .drop_inode = ext4_drop_inode, 1153 .evict_inode = ext4_evict_inode, 1154 .put_super = ext4_put_super, 1155 .sync_fs = ext4_sync_fs, 1156 .freeze_fs = ext4_freeze, 1157 .unfreeze_fs = ext4_unfreeze, 1158 .statfs = ext4_statfs, 1159 .remount_fs = ext4_remount, 1160 .show_options = ext4_show_options, 1161 #ifdef CONFIG_QUOTA 1162 .quota_read = ext4_quota_read, 1163 .quota_write = ext4_quota_write, 1164 .get_dquots = ext4_get_dquots, 1165 #endif 1166 .bdev_try_to_free_page = bdev_try_to_free_page, 1167 }; 1168 1169 static const struct export_operations ext4_export_ops = { 1170 .fh_to_dentry = ext4_fh_to_dentry, 1171 .fh_to_parent = ext4_fh_to_parent, 1172 .get_parent = ext4_get_parent, 1173 }; 1174 1175 enum { 1176 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1177 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1178 Opt_nouid32, Opt_debug, Opt_removed, 1179 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1180 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1181 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1182 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1183 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1184 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1185 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1186 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1187 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1188 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1189 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1190 Opt_lazytime, Opt_nolazytime, 1191 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1192 Opt_inode_readahead_blks, Opt_journal_ioprio, 1193 Opt_dioread_nolock, Opt_dioread_lock, 1194 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1195 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1196 }; 1197 1198 static const match_table_t tokens = { 1199 {Opt_bsd_df, "bsddf"}, 1200 {Opt_minix_df, "minixdf"}, 1201 {Opt_grpid, "grpid"}, 1202 {Opt_grpid, "bsdgroups"}, 1203 {Opt_nogrpid, "nogrpid"}, 1204 {Opt_nogrpid, "sysvgroups"}, 1205 {Opt_resgid, "resgid=%u"}, 1206 {Opt_resuid, "resuid=%u"}, 1207 {Opt_sb, "sb=%u"}, 1208 {Opt_err_cont, "errors=continue"}, 1209 {Opt_err_panic, "errors=panic"}, 1210 {Opt_err_ro, "errors=remount-ro"}, 1211 {Opt_nouid32, "nouid32"}, 1212 {Opt_debug, "debug"}, 1213 {Opt_removed, "oldalloc"}, 1214 {Opt_removed, "orlov"}, 1215 {Opt_user_xattr, "user_xattr"}, 1216 {Opt_nouser_xattr, "nouser_xattr"}, 1217 {Opt_acl, "acl"}, 1218 {Opt_noacl, "noacl"}, 1219 {Opt_noload, "norecovery"}, 1220 {Opt_noload, "noload"}, 1221 {Opt_removed, "nobh"}, 1222 {Opt_removed, "bh"}, 1223 {Opt_commit, "commit=%u"}, 1224 {Opt_min_batch_time, "min_batch_time=%u"}, 1225 {Opt_max_batch_time, "max_batch_time=%u"}, 1226 {Opt_journal_dev, "journal_dev=%u"}, 1227 {Opt_journal_path, "journal_path=%s"}, 1228 {Opt_journal_checksum, "journal_checksum"}, 1229 {Opt_nojournal_checksum, "nojournal_checksum"}, 1230 {Opt_journal_async_commit, "journal_async_commit"}, 1231 {Opt_abort, "abort"}, 1232 {Opt_data_journal, "data=journal"}, 1233 {Opt_data_ordered, "data=ordered"}, 1234 {Opt_data_writeback, "data=writeback"}, 1235 {Opt_data_err_abort, "data_err=abort"}, 1236 {Opt_data_err_ignore, "data_err=ignore"}, 1237 {Opt_offusrjquota, "usrjquota="}, 1238 {Opt_usrjquota, "usrjquota=%s"}, 1239 {Opt_offgrpjquota, "grpjquota="}, 1240 {Opt_grpjquota, "grpjquota=%s"}, 1241 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1242 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1243 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1244 {Opt_grpquota, "grpquota"}, 1245 {Opt_noquota, "noquota"}, 1246 {Opt_quota, "quota"}, 1247 {Opt_usrquota, "usrquota"}, 1248 {Opt_barrier, "barrier=%u"}, 1249 {Opt_barrier, "barrier"}, 1250 {Opt_nobarrier, "nobarrier"}, 1251 {Opt_i_version, "i_version"}, 1252 {Opt_dax, "dax"}, 1253 {Opt_stripe, "stripe=%u"}, 1254 {Opt_delalloc, "delalloc"}, 1255 {Opt_lazytime, "lazytime"}, 1256 {Opt_nolazytime, "nolazytime"}, 1257 {Opt_nodelalloc, "nodelalloc"}, 1258 {Opt_removed, "mblk_io_submit"}, 1259 {Opt_removed, "nomblk_io_submit"}, 1260 {Opt_block_validity, "block_validity"}, 1261 {Opt_noblock_validity, "noblock_validity"}, 1262 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1263 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1264 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1265 {Opt_auto_da_alloc, "auto_da_alloc"}, 1266 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1267 {Opt_dioread_nolock, "dioread_nolock"}, 1268 {Opt_dioread_lock, "dioread_lock"}, 1269 {Opt_discard, "discard"}, 1270 {Opt_nodiscard, "nodiscard"}, 1271 {Opt_init_itable, "init_itable=%u"}, 1272 {Opt_init_itable, "init_itable"}, 1273 {Opt_noinit_itable, "noinit_itable"}, 1274 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1275 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1276 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1277 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1278 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1279 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1280 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1281 {Opt_err, NULL}, 1282 }; 1283 1284 static ext4_fsblk_t get_sb_block(void **data) 1285 { 1286 ext4_fsblk_t sb_block; 1287 char *options = (char *) *data; 1288 1289 if (!options || strncmp(options, "sb=", 3) != 0) 1290 return 1; /* Default location */ 1291 1292 options += 3; 1293 /* TODO: use simple_strtoll with >32bit ext4 */ 1294 sb_block = simple_strtoul(options, &options, 0); 1295 if (*options && *options != ',') { 1296 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1297 (char *) *data); 1298 return 1; 1299 } 1300 if (*options == ',') 1301 options++; 1302 *data = (void *) options; 1303 1304 return sb_block; 1305 } 1306 1307 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1308 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1309 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1310 1311 #ifdef CONFIG_QUOTA 1312 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1313 { 1314 struct ext4_sb_info *sbi = EXT4_SB(sb); 1315 char *qname; 1316 int ret = -1; 1317 1318 if (sb_any_quota_loaded(sb) && 1319 !sbi->s_qf_names[qtype]) { 1320 ext4_msg(sb, KERN_ERR, 1321 "Cannot change journaled " 1322 "quota options when quota turned on"); 1323 return -1; 1324 } 1325 if (ext4_has_feature_quota(sb)) { 1326 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1327 "when QUOTA feature is enabled"); 1328 return -1; 1329 } 1330 qname = match_strdup(args); 1331 if (!qname) { 1332 ext4_msg(sb, KERN_ERR, 1333 "Not enough memory for storing quotafile name"); 1334 return -1; 1335 } 1336 if (sbi->s_qf_names[qtype]) { 1337 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1338 ret = 1; 1339 else 1340 ext4_msg(sb, KERN_ERR, 1341 "%s quota file already specified", 1342 QTYPE2NAME(qtype)); 1343 goto errout; 1344 } 1345 if (strchr(qname, '/')) { 1346 ext4_msg(sb, KERN_ERR, 1347 "quotafile must be on filesystem root"); 1348 goto errout; 1349 } 1350 sbi->s_qf_names[qtype] = qname; 1351 set_opt(sb, QUOTA); 1352 return 1; 1353 errout: 1354 kfree(qname); 1355 return ret; 1356 } 1357 1358 static int clear_qf_name(struct super_block *sb, int qtype) 1359 { 1360 1361 struct ext4_sb_info *sbi = EXT4_SB(sb); 1362 1363 if (sb_any_quota_loaded(sb) && 1364 sbi->s_qf_names[qtype]) { 1365 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1366 " when quota turned on"); 1367 return -1; 1368 } 1369 kfree(sbi->s_qf_names[qtype]); 1370 sbi->s_qf_names[qtype] = NULL; 1371 return 1; 1372 } 1373 #endif 1374 1375 #define MOPT_SET 0x0001 1376 #define MOPT_CLEAR 0x0002 1377 #define MOPT_NOSUPPORT 0x0004 1378 #define MOPT_EXPLICIT 0x0008 1379 #define MOPT_CLEAR_ERR 0x0010 1380 #define MOPT_GTE0 0x0020 1381 #ifdef CONFIG_QUOTA 1382 #define MOPT_Q 0 1383 #define MOPT_QFMT 0x0040 1384 #else 1385 #define MOPT_Q MOPT_NOSUPPORT 1386 #define MOPT_QFMT MOPT_NOSUPPORT 1387 #endif 1388 #define MOPT_DATAJ 0x0080 1389 #define MOPT_NO_EXT2 0x0100 1390 #define MOPT_NO_EXT3 0x0200 1391 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1392 #define MOPT_STRING 0x0400 1393 1394 static const struct mount_opts { 1395 int token; 1396 int mount_opt; 1397 int flags; 1398 } ext4_mount_opts[] = { 1399 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1400 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1401 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1402 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1403 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1404 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1405 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1406 MOPT_EXT4_ONLY | MOPT_SET}, 1407 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1408 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1409 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1410 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1411 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1412 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1413 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1414 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1415 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1416 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1417 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1418 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1419 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1420 EXT4_MOUNT_JOURNAL_CHECKSUM), 1421 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1422 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1423 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1424 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1425 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1426 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1427 MOPT_NO_EXT2}, 1428 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1429 MOPT_NO_EXT2}, 1430 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1431 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1432 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1433 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1434 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1435 {Opt_commit, 0, MOPT_GTE0}, 1436 {Opt_max_batch_time, 0, MOPT_GTE0}, 1437 {Opt_min_batch_time, 0, MOPT_GTE0}, 1438 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1439 {Opt_init_itable, 0, MOPT_GTE0}, 1440 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1441 {Opt_stripe, 0, MOPT_GTE0}, 1442 {Opt_resuid, 0, MOPT_GTE0}, 1443 {Opt_resgid, 0, MOPT_GTE0}, 1444 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1445 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1446 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1447 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1448 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1449 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1450 MOPT_NO_EXT2 | MOPT_DATAJ}, 1451 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1452 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1453 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1454 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1455 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1456 #else 1457 {Opt_acl, 0, MOPT_NOSUPPORT}, 1458 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1459 #endif 1460 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1461 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1462 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1463 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1464 MOPT_SET | MOPT_Q}, 1465 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1466 MOPT_SET | MOPT_Q}, 1467 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1468 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1469 {Opt_usrjquota, 0, MOPT_Q}, 1470 {Opt_grpjquota, 0, MOPT_Q}, 1471 {Opt_offusrjquota, 0, MOPT_Q}, 1472 {Opt_offgrpjquota, 0, MOPT_Q}, 1473 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1474 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1475 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1476 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1477 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1478 {Opt_err, 0, 0} 1479 }; 1480 1481 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1482 substring_t *args, unsigned long *journal_devnum, 1483 unsigned int *journal_ioprio, int is_remount) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(sb); 1486 const struct mount_opts *m; 1487 kuid_t uid; 1488 kgid_t gid; 1489 int arg = 0; 1490 1491 #ifdef CONFIG_QUOTA 1492 if (token == Opt_usrjquota) 1493 return set_qf_name(sb, USRQUOTA, &args[0]); 1494 else if (token == Opt_grpjquota) 1495 return set_qf_name(sb, GRPQUOTA, &args[0]); 1496 else if (token == Opt_offusrjquota) 1497 return clear_qf_name(sb, USRQUOTA); 1498 else if (token == Opt_offgrpjquota) 1499 return clear_qf_name(sb, GRPQUOTA); 1500 #endif 1501 switch (token) { 1502 case Opt_noacl: 1503 case Opt_nouser_xattr: 1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1505 break; 1506 case Opt_sb: 1507 return 1; /* handled by get_sb_block() */ 1508 case Opt_removed: 1509 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1510 return 1; 1511 case Opt_abort: 1512 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1513 return 1; 1514 case Opt_i_version: 1515 sb->s_flags |= MS_I_VERSION; 1516 return 1; 1517 case Opt_lazytime: 1518 sb->s_flags |= MS_LAZYTIME; 1519 return 1; 1520 case Opt_nolazytime: 1521 sb->s_flags &= ~MS_LAZYTIME; 1522 return 1; 1523 } 1524 1525 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1526 if (token == m->token) 1527 break; 1528 1529 if (m->token == Opt_err) { 1530 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1531 "or missing value", opt); 1532 return -1; 1533 } 1534 1535 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1536 ext4_msg(sb, KERN_ERR, 1537 "Mount option \"%s\" incompatible with ext2", opt); 1538 return -1; 1539 } 1540 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1541 ext4_msg(sb, KERN_ERR, 1542 "Mount option \"%s\" incompatible with ext3", opt); 1543 return -1; 1544 } 1545 1546 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1547 return -1; 1548 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1549 return -1; 1550 if (m->flags & MOPT_EXPLICIT) { 1551 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1552 set_opt2(sb, EXPLICIT_DELALLOC); 1553 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1554 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1555 } else 1556 return -1; 1557 } 1558 if (m->flags & MOPT_CLEAR_ERR) 1559 clear_opt(sb, ERRORS_MASK); 1560 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1561 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1562 "options when quota turned on"); 1563 return -1; 1564 } 1565 1566 if (m->flags & MOPT_NOSUPPORT) { 1567 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1568 } else if (token == Opt_commit) { 1569 if (arg == 0) 1570 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1571 sbi->s_commit_interval = HZ * arg; 1572 } else if (token == Opt_max_batch_time) { 1573 sbi->s_max_batch_time = arg; 1574 } else if (token == Opt_min_batch_time) { 1575 sbi->s_min_batch_time = arg; 1576 } else if (token == Opt_inode_readahead_blks) { 1577 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1578 ext4_msg(sb, KERN_ERR, 1579 "EXT4-fs: inode_readahead_blks must be " 1580 "0 or a power of 2 smaller than 2^31"); 1581 return -1; 1582 } 1583 sbi->s_inode_readahead_blks = arg; 1584 } else if (token == Opt_init_itable) { 1585 set_opt(sb, INIT_INODE_TABLE); 1586 if (!args->from) 1587 arg = EXT4_DEF_LI_WAIT_MULT; 1588 sbi->s_li_wait_mult = arg; 1589 } else if (token == Opt_max_dir_size_kb) { 1590 sbi->s_max_dir_size_kb = arg; 1591 } else if (token == Opt_stripe) { 1592 sbi->s_stripe = arg; 1593 } else if (token == Opt_resuid) { 1594 uid = make_kuid(current_user_ns(), arg); 1595 if (!uid_valid(uid)) { 1596 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1597 return -1; 1598 } 1599 sbi->s_resuid = uid; 1600 } else if (token == Opt_resgid) { 1601 gid = make_kgid(current_user_ns(), arg); 1602 if (!gid_valid(gid)) { 1603 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1604 return -1; 1605 } 1606 sbi->s_resgid = gid; 1607 } else if (token == Opt_journal_dev) { 1608 if (is_remount) { 1609 ext4_msg(sb, KERN_ERR, 1610 "Cannot specify journal on remount"); 1611 return -1; 1612 } 1613 *journal_devnum = arg; 1614 } else if (token == Opt_journal_path) { 1615 char *journal_path; 1616 struct inode *journal_inode; 1617 struct path path; 1618 int error; 1619 1620 if (is_remount) { 1621 ext4_msg(sb, KERN_ERR, 1622 "Cannot specify journal on remount"); 1623 return -1; 1624 } 1625 journal_path = match_strdup(&args[0]); 1626 if (!journal_path) { 1627 ext4_msg(sb, KERN_ERR, "error: could not dup " 1628 "journal device string"); 1629 return -1; 1630 } 1631 1632 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1633 if (error) { 1634 ext4_msg(sb, KERN_ERR, "error: could not find " 1635 "journal device path: error %d", error); 1636 kfree(journal_path); 1637 return -1; 1638 } 1639 1640 journal_inode = d_inode(path.dentry); 1641 if (!S_ISBLK(journal_inode->i_mode)) { 1642 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1643 "is not a block device", journal_path); 1644 path_put(&path); 1645 kfree(journal_path); 1646 return -1; 1647 } 1648 1649 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1650 path_put(&path); 1651 kfree(journal_path); 1652 } else if (token == Opt_journal_ioprio) { 1653 if (arg > 7) { 1654 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1655 " (must be 0-7)"); 1656 return -1; 1657 } 1658 *journal_ioprio = 1659 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1660 } else if (token == Opt_test_dummy_encryption) { 1661 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1662 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1663 ext4_msg(sb, KERN_WARNING, 1664 "Test dummy encryption mode enabled"); 1665 #else 1666 ext4_msg(sb, KERN_WARNING, 1667 "Test dummy encryption mount option ignored"); 1668 #endif 1669 } else if (m->flags & MOPT_DATAJ) { 1670 if (is_remount) { 1671 if (!sbi->s_journal) 1672 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1673 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1674 ext4_msg(sb, KERN_ERR, 1675 "Cannot change data mode on remount"); 1676 return -1; 1677 } 1678 } else { 1679 clear_opt(sb, DATA_FLAGS); 1680 sbi->s_mount_opt |= m->mount_opt; 1681 } 1682 #ifdef CONFIG_QUOTA 1683 } else if (m->flags & MOPT_QFMT) { 1684 if (sb_any_quota_loaded(sb) && 1685 sbi->s_jquota_fmt != m->mount_opt) { 1686 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1687 "quota options when quota turned on"); 1688 return -1; 1689 } 1690 if (ext4_has_feature_quota(sb)) { 1691 ext4_msg(sb, KERN_ERR, 1692 "Cannot set journaled quota options " 1693 "when QUOTA feature is enabled"); 1694 return -1; 1695 } 1696 sbi->s_jquota_fmt = m->mount_opt; 1697 #endif 1698 } else if (token == Opt_dax) { 1699 #ifdef CONFIG_FS_DAX 1700 ext4_msg(sb, KERN_WARNING, 1701 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1702 sbi->s_mount_opt |= m->mount_opt; 1703 #else 1704 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1705 return -1; 1706 #endif 1707 } else if (token == Opt_data_err_abort) { 1708 sbi->s_mount_opt |= m->mount_opt; 1709 } else if (token == Opt_data_err_ignore) { 1710 sbi->s_mount_opt &= ~m->mount_opt; 1711 } else { 1712 if (!args->from) 1713 arg = 1; 1714 if (m->flags & MOPT_CLEAR) 1715 arg = !arg; 1716 else if (unlikely(!(m->flags & MOPT_SET))) { 1717 ext4_msg(sb, KERN_WARNING, 1718 "buggy handling of option %s", opt); 1719 WARN_ON(1); 1720 return -1; 1721 } 1722 if (arg != 0) 1723 sbi->s_mount_opt |= m->mount_opt; 1724 else 1725 sbi->s_mount_opt &= ~m->mount_opt; 1726 } 1727 return 1; 1728 } 1729 1730 static int parse_options(char *options, struct super_block *sb, 1731 unsigned long *journal_devnum, 1732 unsigned int *journal_ioprio, 1733 int is_remount) 1734 { 1735 struct ext4_sb_info *sbi = EXT4_SB(sb); 1736 char *p; 1737 substring_t args[MAX_OPT_ARGS]; 1738 int token; 1739 1740 if (!options) 1741 return 1; 1742 1743 while ((p = strsep(&options, ",")) != NULL) { 1744 if (!*p) 1745 continue; 1746 /* 1747 * Initialize args struct so we know whether arg was 1748 * found; some options take optional arguments. 1749 */ 1750 args[0].to = args[0].from = NULL; 1751 token = match_token(p, tokens, args); 1752 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1753 journal_ioprio, is_remount) < 0) 1754 return 0; 1755 } 1756 #ifdef CONFIG_QUOTA 1757 if (ext4_has_feature_quota(sb) && 1758 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1759 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1760 "feature is enabled"); 1761 return 0; 1762 } 1763 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1764 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1765 clear_opt(sb, USRQUOTA); 1766 1767 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1768 clear_opt(sb, GRPQUOTA); 1769 1770 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1771 ext4_msg(sb, KERN_ERR, "old and new quota " 1772 "format mixing"); 1773 return 0; 1774 } 1775 1776 if (!sbi->s_jquota_fmt) { 1777 ext4_msg(sb, KERN_ERR, "journaled quota format " 1778 "not specified"); 1779 return 0; 1780 } 1781 } 1782 #endif 1783 if (test_opt(sb, DIOREAD_NOLOCK)) { 1784 int blocksize = 1785 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1786 1787 if (blocksize < PAGE_CACHE_SIZE) { 1788 ext4_msg(sb, KERN_ERR, "can't mount with " 1789 "dioread_nolock if block size != PAGE_SIZE"); 1790 return 0; 1791 } 1792 } 1793 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1794 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1795 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1796 "in data=ordered mode"); 1797 return 0; 1798 } 1799 return 1; 1800 } 1801 1802 static inline void ext4_show_quota_options(struct seq_file *seq, 1803 struct super_block *sb) 1804 { 1805 #if defined(CONFIG_QUOTA) 1806 struct ext4_sb_info *sbi = EXT4_SB(sb); 1807 1808 if (sbi->s_jquota_fmt) { 1809 char *fmtname = ""; 1810 1811 switch (sbi->s_jquota_fmt) { 1812 case QFMT_VFS_OLD: 1813 fmtname = "vfsold"; 1814 break; 1815 case QFMT_VFS_V0: 1816 fmtname = "vfsv0"; 1817 break; 1818 case QFMT_VFS_V1: 1819 fmtname = "vfsv1"; 1820 break; 1821 } 1822 seq_printf(seq, ",jqfmt=%s", fmtname); 1823 } 1824 1825 if (sbi->s_qf_names[USRQUOTA]) 1826 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1827 1828 if (sbi->s_qf_names[GRPQUOTA]) 1829 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1830 #endif 1831 } 1832 1833 static const char *token2str(int token) 1834 { 1835 const struct match_token *t; 1836 1837 for (t = tokens; t->token != Opt_err; t++) 1838 if (t->token == token && !strchr(t->pattern, '=')) 1839 break; 1840 return t->pattern; 1841 } 1842 1843 /* 1844 * Show an option if 1845 * - it's set to a non-default value OR 1846 * - if the per-sb default is different from the global default 1847 */ 1848 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1849 int nodefs) 1850 { 1851 struct ext4_sb_info *sbi = EXT4_SB(sb); 1852 struct ext4_super_block *es = sbi->s_es; 1853 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1854 const struct mount_opts *m; 1855 char sep = nodefs ? '\n' : ','; 1856 1857 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1858 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1859 1860 if (sbi->s_sb_block != 1) 1861 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1862 1863 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1864 int want_set = m->flags & MOPT_SET; 1865 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1866 (m->flags & MOPT_CLEAR_ERR)) 1867 continue; 1868 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1869 continue; /* skip if same as the default */ 1870 if ((want_set && 1871 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1872 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1873 continue; /* select Opt_noFoo vs Opt_Foo */ 1874 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1875 } 1876 1877 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1878 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1879 SEQ_OPTS_PRINT("resuid=%u", 1880 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1881 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1882 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1883 SEQ_OPTS_PRINT("resgid=%u", 1884 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1885 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1886 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1887 SEQ_OPTS_PUTS("errors=remount-ro"); 1888 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1889 SEQ_OPTS_PUTS("errors=continue"); 1890 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1891 SEQ_OPTS_PUTS("errors=panic"); 1892 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1893 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1894 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1895 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1896 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1897 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1898 if (sb->s_flags & MS_I_VERSION) 1899 SEQ_OPTS_PUTS("i_version"); 1900 if (nodefs || sbi->s_stripe) 1901 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1902 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1903 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1904 SEQ_OPTS_PUTS("data=journal"); 1905 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1906 SEQ_OPTS_PUTS("data=ordered"); 1907 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1908 SEQ_OPTS_PUTS("data=writeback"); 1909 } 1910 if (nodefs || 1911 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1912 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1913 sbi->s_inode_readahead_blks); 1914 1915 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1916 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1917 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1918 if (nodefs || sbi->s_max_dir_size_kb) 1919 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1920 if (test_opt(sb, DATA_ERR_ABORT)) 1921 SEQ_OPTS_PUTS("data_err=abort"); 1922 1923 ext4_show_quota_options(seq, sb); 1924 return 0; 1925 } 1926 1927 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1928 { 1929 return _ext4_show_options(seq, root->d_sb, 0); 1930 } 1931 1932 int ext4_seq_options_show(struct seq_file *seq, void *offset) 1933 { 1934 struct super_block *sb = seq->private; 1935 int rc; 1936 1937 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1938 rc = _ext4_show_options(seq, sb, 1); 1939 seq_puts(seq, "\n"); 1940 return rc; 1941 } 1942 1943 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1944 int read_only) 1945 { 1946 struct ext4_sb_info *sbi = EXT4_SB(sb); 1947 int res = 0; 1948 1949 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1950 ext4_msg(sb, KERN_ERR, "revision level too high, " 1951 "forcing read-only mode"); 1952 res = MS_RDONLY; 1953 } 1954 if (read_only) 1955 goto done; 1956 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1957 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1958 "running e2fsck is recommended"); 1959 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1960 ext4_msg(sb, KERN_WARNING, 1961 "warning: mounting fs with errors, " 1962 "running e2fsck is recommended"); 1963 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1964 le16_to_cpu(es->s_mnt_count) >= 1965 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1966 ext4_msg(sb, KERN_WARNING, 1967 "warning: maximal mount count reached, " 1968 "running e2fsck is recommended"); 1969 else if (le32_to_cpu(es->s_checkinterval) && 1970 (le32_to_cpu(es->s_lastcheck) + 1971 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1972 ext4_msg(sb, KERN_WARNING, 1973 "warning: checktime reached, " 1974 "running e2fsck is recommended"); 1975 if (!sbi->s_journal) 1976 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1977 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1978 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1979 le16_add_cpu(&es->s_mnt_count, 1); 1980 es->s_mtime = cpu_to_le32(get_seconds()); 1981 ext4_update_dynamic_rev(sb); 1982 if (sbi->s_journal) 1983 ext4_set_feature_journal_needs_recovery(sb); 1984 1985 ext4_commit_super(sb, 1); 1986 done: 1987 if (test_opt(sb, DEBUG)) 1988 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1989 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1990 sb->s_blocksize, 1991 sbi->s_groups_count, 1992 EXT4_BLOCKS_PER_GROUP(sb), 1993 EXT4_INODES_PER_GROUP(sb), 1994 sbi->s_mount_opt, sbi->s_mount_opt2); 1995 1996 cleancache_init_fs(sb); 1997 return res; 1998 } 1999 2000 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2001 { 2002 struct ext4_sb_info *sbi = EXT4_SB(sb); 2003 struct flex_groups *new_groups; 2004 int size; 2005 2006 if (!sbi->s_log_groups_per_flex) 2007 return 0; 2008 2009 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2010 if (size <= sbi->s_flex_groups_allocated) 2011 return 0; 2012 2013 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2014 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2015 if (!new_groups) { 2016 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2017 size / (int) sizeof(struct flex_groups)); 2018 return -ENOMEM; 2019 } 2020 2021 if (sbi->s_flex_groups) { 2022 memcpy(new_groups, sbi->s_flex_groups, 2023 (sbi->s_flex_groups_allocated * 2024 sizeof(struct flex_groups))); 2025 kvfree(sbi->s_flex_groups); 2026 } 2027 sbi->s_flex_groups = new_groups; 2028 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2029 return 0; 2030 } 2031 2032 static int ext4_fill_flex_info(struct super_block *sb) 2033 { 2034 struct ext4_sb_info *sbi = EXT4_SB(sb); 2035 struct ext4_group_desc *gdp = NULL; 2036 ext4_group_t flex_group; 2037 int i, err; 2038 2039 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2040 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2041 sbi->s_log_groups_per_flex = 0; 2042 return 1; 2043 } 2044 2045 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2046 if (err) 2047 goto failed; 2048 2049 for (i = 0; i < sbi->s_groups_count; i++) { 2050 gdp = ext4_get_group_desc(sb, i, NULL); 2051 2052 flex_group = ext4_flex_group(sbi, i); 2053 atomic_add(ext4_free_inodes_count(sb, gdp), 2054 &sbi->s_flex_groups[flex_group].free_inodes); 2055 atomic64_add(ext4_free_group_clusters(sb, gdp), 2056 &sbi->s_flex_groups[flex_group].free_clusters); 2057 atomic_add(ext4_used_dirs_count(sb, gdp), 2058 &sbi->s_flex_groups[flex_group].used_dirs); 2059 } 2060 2061 return 1; 2062 failed: 2063 return 0; 2064 } 2065 2066 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2067 struct ext4_group_desc *gdp) 2068 { 2069 int offset; 2070 __u16 crc = 0; 2071 __le32 le_group = cpu_to_le32(block_group); 2072 struct ext4_sb_info *sbi = EXT4_SB(sb); 2073 2074 if (ext4_has_metadata_csum(sbi->s_sb)) { 2075 /* Use new metadata_csum algorithm */ 2076 __le16 save_csum; 2077 __u32 csum32; 2078 2079 save_csum = gdp->bg_checksum; 2080 gdp->bg_checksum = 0; 2081 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2082 sizeof(le_group)); 2083 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2084 sbi->s_desc_size); 2085 gdp->bg_checksum = save_csum; 2086 2087 crc = csum32 & 0xFFFF; 2088 goto out; 2089 } 2090 2091 /* old crc16 code */ 2092 if (!ext4_has_feature_gdt_csum(sb)) 2093 return 0; 2094 2095 offset = offsetof(struct ext4_group_desc, bg_checksum); 2096 2097 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2098 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2099 crc = crc16(crc, (__u8 *)gdp, offset); 2100 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2101 /* for checksum of struct ext4_group_desc do the rest...*/ 2102 if (ext4_has_feature_64bit(sb) && 2103 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2104 crc = crc16(crc, (__u8 *)gdp + offset, 2105 le16_to_cpu(sbi->s_es->s_desc_size) - 2106 offset); 2107 2108 out: 2109 return cpu_to_le16(crc); 2110 } 2111 2112 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2113 struct ext4_group_desc *gdp) 2114 { 2115 if (ext4_has_group_desc_csum(sb) && 2116 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2117 return 0; 2118 2119 return 1; 2120 } 2121 2122 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2123 struct ext4_group_desc *gdp) 2124 { 2125 if (!ext4_has_group_desc_csum(sb)) 2126 return; 2127 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2128 } 2129 2130 /* Called at mount-time, super-block is locked */ 2131 static int ext4_check_descriptors(struct super_block *sb, 2132 ext4_group_t *first_not_zeroed) 2133 { 2134 struct ext4_sb_info *sbi = EXT4_SB(sb); 2135 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2136 ext4_fsblk_t last_block; 2137 ext4_fsblk_t block_bitmap; 2138 ext4_fsblk_t inode_bitmap; 2139 ext4_fsblk_t inode_table; 2140 int flexbg_flag = 0; 2141 ext4_group_t i, grp = sbi->s_groups_count; 2142 2143 if (ext4_has_feature_flex_bg(sb)) 2144 flexbg_flag = 1; 2145 2146 ext4_debug("Checking group descriptors"); 2147 2148 for (i = 0; i < sbi->s_groups_count; i++) { 2149 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2150 2151 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2152 last_block = ext4_blocks_count(sbi->s_es) - 1; 2153 else 2154 last_block = first_block + 2155 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2156 2157 if ((grp == sbi->s_groups_count) && 2158 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2159 grp = i; 2160 2161 block_bitmap = ext4_block_bitmap(sb, gdp); 2162 if (block_bitmap < first_block || block_bitmap > last_block) { 2163 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2164 "Block bitmap for group %u not in group " 2165 "(block %llu)!", i, block_bitmap); 2166 return 0; 2167 } 2168 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2169 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2170 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2171 "Inode bitmap for group %u not in group " 2172 "(block %llu)!", i, inode_bitmap); 2173 return 0; 2174 } 2175 inode_table = ext4_inode_table(sb, gdp); 2176 if (inode_table < first_block || 2177 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2178 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2179 "Inode table for group %u not in group " 2180 "(block %llu)!", i, inode_table); 2181 return 0; 2182 } 2183 ext4_lock_group(sb, i); 2184 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2185 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2186 "Checksum for group %u failed (%u!=%u)", 2187 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2188 gdp)), le16_to_cpu(gdp->bg_checksum)); 2189 if (!(sb->s_flags & MS_RDONLY)) { 2190 ext4_unlock_group(sb, i); 2191 return 0; 2192 } 2193 } 2194 ext4_unlock_group(sb, i); 2195 if (!flexbg_flag) 2196 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2197 } 2198 if (NULL != first_not_zeroed) 2199 *first_not_zeroed = grp; 2200 return 1; 2201 } 2202 2203 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2204 * the superblock) which were deleted from all directories, but held open by 2205 * a process at the time of a crash. We walk the list and try to delete these 2206 * inodes at recovery time (only with a read-write filesystem). 2207 * 2208 * In order to keep the orphan inode chain consistent during traversal (in 2209 * case of crash during recovery), we link each inode into the superblock 2210 * orphan list_head and handle it the same way as an inode deletion during 2211 * normal operation (which journals the operations for us). 2212 * 2213 * We only do an iget() and an iput() on each inode, which is very safe if we 2214 * accidentally point at an in-use or already deleted inode. The worst that 2215 * can happen in this case is that we get a "bit already cleared" message from 2216 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2217 * e2fsck was run on this filesystem, and it must have already done the orphan 2218 * inode cleanup for us, so we can safely abort without any further action. 2219 */ 2220 static void ext4_orphan_cleanup(struct super_block *sb, 2221 struct ext4_super_block *es) 2222 { 2223 unsigned int s_flags = sb->s_flags; 2224 int nr_orphans = 0, nr_truncates = 0; 2225 #ifdef CONFIG_QUOTA 2226 int i; 2227 #endif 2228 if (!es->s_last_orphan) { 2229 jbd_debug(4, "no orphan inodes to clean up\n"); 2230 return; 2231 } 2232 2233 if (bdev_read_only(sb->s_bdev)) { 2234 ext4_msg(sb, KERN_ERR, "write access " 2235 "unavailable, skipping orphan cleanup"); 2236 return; 2237 } 2238 2239 /* Check if feature set would not allow a r/w mount */ 2240 if (!ext4_feature_set_ok(sb, 0)) { 2241 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2242 "unknown ROCOMPAT features"); 2243 return; 2244 } 2245 2246 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2247 /* don't clear list on RO mount w/ errors */ 2248 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2249 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2250 "clearing orphan list.\n"); 2251 es->s_last_orphan = 0; 2252 } 2253 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2254 return; 2255 } 2256 2257 if (s_flags & MS_RDONLY) { 2258 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2259 sb->s_flags &= ~MS_RDONLY; 2260 } 2261 #ifdef CONFIG_QUOTA 2262 /* Needed for iput() to work correctly and not trash data */ 2263 sb->s_flags |= MS_ACTIVE; 2264 /* Turn on quotas so that they are updated correctly */ 2265 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2266 if (EXT4_SB(sb)->s_qf_names[i]) { 2267 int ret = ext4_quota_on_mount(sb, i); 2268 if (ret < 0) 2269 ext4_msg(sb, KERN_ERR, 2270 "Cannot turn on journaled " 2271 "quota: error %d", ret); 2272 } 2273 } 2274 #endif 2275 2276 while (es->s_last_orphan) { 2277 struct inode *inode; 2278 2279 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2280 if (IS_ERR(inode)) { 2281 es->s_last_orphan = 0; 2282 break; 2283 } 2284 2285 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2286 dquot_initialize(inode); 2287 if (inode->i_nlink) { 2288 if (test_opt(sb, DEBUG)) 2289 ext4_msg(sb, KERN_DEBUG, 2290 "%s: truncating inode %lu to %lld bytes", 2291 __func__, inode->i_ino, inode->i_size); 2292 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2293 inode->i_ino, inode->i_size); 2294 inode_lock(inode); 2295 truncate_inode_pages(inode->i_mapping, inode->i_size); 2296 ext4_truncate(inode); 2297 inode_unlock(inode); 2298 nr_truncates++; 2299 } else { 2300 if (test_opt(sb, DEBUG)) 2301 ext4_msg(sb, KERN_DEBUG, 2302 "%s: deleting unreferenced inode %lu", 2303 __func__, inode->i_ino); 2304 jbd_debug(2, "deleting unreferenced inode %lu\n", 2305 inode->i_ino); 2306 nr_orphans++; 2307 } 2308 iput(inode); /* The delete magic happens here! */ 2309 } 2310 2311 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2312 2313 if (nr_orphans) 2314 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2315 PLURAL(nr_orphans)); 2316 if (nr_truncates) 2317 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2318 PLURAL(nr_truncates)); 2319 #ifdef CONFIG_QUOTA 2320 /* Turn quotas off */ 2321 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2322 if (sb_dqopt(sb)->files[i]) 2323 dquot_quota_off(sb, i); 2324 } 2325 #endif 2326 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2327 } 2328 2329 /* 2330 * Maximal extent format file size. 2331 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2332 * extent format containers, within a sector_t, and within i_blocks 2333 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2334 * so that won't be a limiting factor. 2335 * 2336 * However there is other limiting factor. We do store extents in the form 2337 * of starting block and length, hence the resulting length of the extent 2338 * covering maximum file size must fit into on-disk format containers as 2339 * well. Given that length is always by 1 unit bigger than max unit (because 2340 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2341 * 2342 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2343 */ 2344 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2345 { 2346 loff_t res; 2347 loff_t upper_limit = MAX_LFS_FILESIZE; 2348 2349 /* small i_blocks in vfs inode? */ 2350 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2351 /* 2352 * CONFIG_LBDAF is not enabled implies the inode 2353 * i_block represent total blocks in 512 bytes 2354 * 32 == size of vfs inode i_blocks * 8 2355 */ 2356 upper_limit = (1LL << 32) - 1; 2357 2358 /* total blocks in file system block size */ 2359 upper_limit >>= (blkbits - 9); 2360 upper_limit <<= blkbits; 2361 } 2362 2363 /* 2364 * 32-bit extent-start container, ee_block. We lower the maxbytes 2365 * by one fs block, so ee_len can cover the extent of maximum file 2366 * size 2367 */ 2368 res = (1LL << 32) - 1; 2369 res <<= blkbits; 2370 2371 /* Sanity check against vm- & vfs- imposed limits */ 2372 if (res > upper_limit) 2373 res = upper_limit; 2374 2375 return res; 2376 } 2377 2378 /* 2379 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2381 * We need to be 1 filesystem block less than the 2^48 sector limit. 2382 */ 2383 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2384 { 2385 loff_t res = EXT4_NDIR_BLOCKS; 2386 int meta_blocks; 2387 loff_t upper_limit; 2388 /* This is calculated to be the largest file size for a dense, block 2389 * mapped file such that the file's total number of 512-byte sectors, 2390 * including data and all indirect blocks, does not exceed (2^48 - 1). 2391 * 2392 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2393 * number of 512-byte sectors of the file. 2394 */ 2395 2396 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2397 /* 2398 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2399 * the inode i_block field represents total file blocks in 2400 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2401 */ 2402 upper_limit = (1LL << 32) - 1; 2403 2404 /* total blocks in file system block size */ 2405 upper_limit >>= (bits - 9); 2406 2407 } else { 2408 /* 2409 * We use 48 bit ext4_inode i_blocks 2410 * With EXT4_HUGE_FILE_FL set the i_blocks 2411 * represent total number of blocks in 2412 * file system block size 2413 */ 2414 upper_limit = (1LL << 48) - 1; 2415 2416 } 2417 2418 /* indirect blocks */ 2419 meta_blocks = 1; 2420 /* double indirect blocks */ 2421 meta_blocks += 1 + (1LL << (bits-2)); 2422 /* tripple indirect blocks */ 2423 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2424 2425 upper_limit -= meta_blocks; 2426 upper_limit <<= bits; 2427 2428 res += 1LL << (bits-2); 2429 res += 1LL << (2*(bits-2)); 2430 res += 1LL << (3*(bits-2)); 2431 res <<= bits; 2432 if (res > upper_limit) 2433 res = upper_limit; 2434 2435 if (res > MAX_LFS_FILESIZE) 2436 res = MAX_LFS_FILESIZE; 2437 2438 return res; 2439 } 2440 2441 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2442 ext4_fsblk_t logical_sb_block, int nr) 2443 { 2444 struct ext4_sb_info *sbi = EXT4_SB(sb); 2445 ext4_group_t bg, first_meta_bg; 2446 int has_super = 0; 2447 2448 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2449 2450 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2451 return logical_sb_block + nr + 1; 2452 bg = sbi->s_desc_per_block * nr; 2453 if (ext4_bg_has_super(sb, bg)) 2454 has_super = 1; 2455 2456 /* 2457 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2458 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2459 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2460 * compensate. 2461 */ 2462 if (sb->s_blocksize == 1024 && nr == 0 && 2463 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2464 has_super++; 2465 2466 return (has_super + ext4_group_first_block_no(sb, bg)); 2467 } 2468 2469 /** 2470 * ext4_get_stripe_size: Get the stripe size. 2471 * @sbi: In memory super block info 2472 * 2473 * If we have specified it via mount option, then 2474 * use the mount option value. If the value specified at mount time is 2475 * greater than the blocks per group use the super block value. 2476 * If the super block value is greater than blocks per group return 0. 2477 * Allocator needs it be less than blocks per group. 2478 * 2479 */ 2480 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2481 { 2482 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2483 unsigned long stripe_width = 2484 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2485 int ret; 2486 2487 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2488 ret = sbi->s_stripe; 2489 else if (stripe_width <= sbi->s_blocks_per_group) 2490 ret = stripe_width; 2491 else if (stride <= sbi->s_blocks_per_group) 2492 ret = stride; 2493 else 2494 ret = 0; 2495 2496 /* 2497 * If the stripe width is 1, this makes no sense and 2498 * we set it to 0 to turn off stripe handling code. 2499 */ 2500 if (ret <= 1) 2501 ret = 0; 2502 2503 return ret; 2504 } 2505 2506 /* 2507 * Check whether this filesystem can be mounted based on 2508 * the features present and the RDONLY/RDWR mount requested. 2509 * Returns 1 if this filesystem can be mounted as requested, 2510 * 0 if it cannot be. 2511 */ 2512 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2513 { 2514 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2515 ext4_msg(sb, KERN_ERR, 2516 "Couldn't mount because of " 2517 "unsupported optional features (%x)", 2518 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2519 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2520 return 0; 2521 } 2522 2523 if (readonly) 2524 return 1; 2525 2526 if (ext4_has_feature_readonly(sb)) { 2527 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2528 sb->s_flags |= MS_RDONLY; 2529 return 1; 2530 } 2531 2532 /* Check that feature set is OK for a read-write mount */ 2533 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2534 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2535 "unsupported optional features (%x)", 2536 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2537 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2538 return 0; 2539 } 2540 /* 2541 * Large file size enabled file system can only be mounted 2542 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2543 */ 2544 if (ext4_has_feature_huge_file(sb)) { 2545 if (sizeof(blkcnt_t) < sizeof(u64)) { 2546 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2547 "cannot be mounted RDWR without " 2548 "CONFIG_LBDAF"); 2549 return 0; 2550 } 2551 } 2552 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2553 ext4_msg(sb, KERN_ERR, 2554 "Can't support bigalloc feature without " 2555 "extents feature\n"); 2556 return 0; 2557 } 2558 2559 #ifndef CONFIG_QUOTA 2560 if (ext4_has_feature_quota(sb) && !readonly) { 2561 ext4_msg(sb, KERN_ERR, 2562 "Filesystem with quota feature cannot be mounted RDWR " 2563 "without CONFIG_QUOTA"); 2564 return 0; 2565 } 2566 if (ext4_has_feature_project(sb) && !readonly) { 2567 ext4_msg(sb, KERN_ERR, 2568 "Filesystem with project quota feature cannot be mounted RDWR " 2569 "without CONFIG_QUOTA"); 2570 return 0; 2571 } 2572 #endif /* CONFIG_QUOTA */ 2573 return 1; 2574 } 2575 2576 /* 2577 * This function is called once a day if we have errors logged 2578 * on the file system 2579 */ 2580 static void print_daily_error_info(unsigned long arg) 2581 { 2582 struct super_block *sb = (struct super_block *) arg; 2583 struct ext4_sb_info *sbi; 2584 struct ext4_super_block *es; 2585 2586 sbi = EXT4_SB(sb); 2587 es = sbi->s_es; 2588 2589 if (es->s_error_count) 2590 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2591 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2592 le32_to_cpu(es->s_error_count)); 2593 if (es->s_first_error_time) { 2594 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2595 sb->s_id, le32_to_cpu(es->s_first_error_time), 2596 (int) sizeof(es->s_first_error_func), 2597 es->s_first_error_func, 2598 le32_to_cpu(es->s_first_error_line)); 2599 if (es->s_first_error_ino) 2600 printk(": inode %u", 2601 le32_to_cpu(es->s_first_error_ino)); 2602 if (es->s_first_error_block) 2603 printk(": block %llu", (unsigned long long) 2604 le64_to_cpu(es->s_first_error_block)); 2605 printk("\n"); 2606 } 2607 if (es->s_last_error_time) { 2608 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2609 sb->s_id, le32_to_cpu(es->s_last_error_time), 2610 (int) sizeof(es->s_last_error_func), 2611 es->s_last_error_func, 2612 le32_to_cpu(es->s_last_error_line)); 2613 if (es->s_last_error_ino) 2614 printk(": inode %u", 2615 le32_to_cpu(es->s_last_error_ino)); 2616 if (es->s_last_error_block) 2617 printk(": block %llu", (unsigned long long) 2618 le64_to_cpu(es->s_last_error_block)); 2619 printk("\n"); 2620 } 2621 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2622 } 2623 2624 /* Find next suitable group and run ext4_init_inode_table */ 2625 static int ext4_run_li_request(struct ext4_li_request *elr) 2626 { 2627 struct ext4_group_desc *gdp = NULL; 2628 ext4_group_t group, ngroups; 2629 struct super_block *sb; 2630 unsigned long timeout = 0; 2631 int ret = 0; 2632 2633 sb = elr->lr_super; 2634 ngroups = EXT4_SB(sb)->s_groups_count; 2635 2636 sb_start_write(sb); 2637 for (group = elr->lr_next_group; group < ngroups; group++) { 2638 gdp = ext4_get_group_desc(sb, group, NULL); 2639 if (!gdp) { 2640 ret = 1; 2641 break; 2642 } 2643 2644 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2645 break; 2646 } 2647 2648 if (group >= ngroups) 2649 ret = 1; 2650 2651 if (!ret) { 2652 timeout = jiffies; 2653 ret = ext4_init_inode_table(sb, group, 2654 elr->lr_timeout ? 0 : 1); 2655 if (elr->lr_timeout == 0) { 2656 timeout = (jiffies - timeout) * 2657 elr->lr_sbi->s_li_wait_mult; 2658 elr->lr_timeout = timeout; 2659 } 2660 elr->lr_next_sched = jiffies + elr->lr_timeout; 2661 elr->lr_next_group = group + 1; 2662 } 2663 sb_end_write(sb); 2664 2665 return ret; 2666 } 2667 2668 /* 2669 * Remove lr_request from the list_request and free the 2670 * request structure. Should be called with li_list_mtx held 2671 */ 2672 static void ext4_remove_li_request(struct ext4_li_request *elr) 2673 { 2674 struct ext4_sb_info *sbi; 2675 2676 if (!elr) 2677 return; 2678 2679 sbi = elr->lr_sbi; 2680 2681 list_del(&elr->lr_request); 2682 sbi->s_li_request = NULL; 2683 kfree(elr); 2684 } 2685 2686 static void ext4_unregister_li_request(struct super_block *sb) 2687 { 2688 mutex_lock(&ext4_li_mtx); 2689 if (!ext4_li_info) { 2690 mutex_unlock(&ext4_li_mtx); 2691 return; 2692 } 2693 2694 mutex_lock(&ext4_li_info->li_list_mtx); 2695 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2696 mutex_unlock(&ext4_li_info->li_list_mtx); 2697 mutex_unlock(&ext4_li_mtx); 2698 } 2699 2700 static struct task_struct *ext4_lazyinit_task; 2701 2702 /* 2703 * This is the function where ext4lazyinit thread lives. It walks 2704 * through the request list searching for next scheduled filesystem. 2705 * When such a fs is found, run the lazy initialization request 2706 * (ext4_rn_li_request) and keep track of the time spend in this 2707 * function. Based on that time we compute next schedule time of 2708 * the request. When walking through the list is complete, compute 2709 * next waking time and put itself into sleep. 2710 */ 2711 static int ext4_lazyinit_thread(void *arg) 2712 { 2713 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2714 struct list_head *pos, *n; 2715 struct ext4_li_request *elr; 2716 unsigned long next_wakeup, cur; 2717 2718 BUG_ON(NULL == eli); 2719 2720 cont_thread: 2721 while (true) { 2722 next_wakeup = MAX_JIFFY_OFFSET; 2723 2724 mutex_lock(&eli->li_list_mtx); 2725 if (list_empty(&eli->li_request_list)) { 2726 mutex_unlock(&eli->li_list_mtx); 2727 goto exit_thread; 2728 } 2729 2730 list_for_each_safe(pos, n, &eli->li_request_list) { 2731 elr = list_entry(pos, struct ext4_li_request, 2732 lr_request); 2733 2734 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2735 if (ext4_run_li_request(elr) != 0) { 2736 /* error, remove the lazy_init job */ 2737 ext4_remove_li_request(elr); 2738 continue; 2739 } 2740 } 2741 2742 if (time_before(elr->lr_next_sched, next_wakeup)) 2743 next_wakeup = elr->lr_next_sched; 2744 } 2745 mutex_unlock(&eli->li_list_mtx); 2746 2747 try_to_freeze(); 2748 2749 cur = jiffies; 2750 if ((time_after_eq(cur, next_wakeup)) || 2751 (MAX_JIFFY_OFFSET == next_wakeup)) { 2752 cond_resched(); 2753 continue; 2754 } 2755 2756 schedule_timeout_interruptible(next_wakeup - cur); 2757 2758 if (kthread_should_stop()) { 2759 ext4_clear_request_list(); 2760 goto exit_thread; 2761 } 2762 } 2763 2764 exit_thread: 2765 /* 2766 * It looks like the request list is empty, but we need 2767 * to check it under the li_list_mtx lock, to prevent any 2768 * additions into it, and of course we should lock ext4_li_mtx 2769 * to atomically free the list and ext4_li_info, because at 2770 * this point another ext4 filesystem could be registering 2771 * new one. 2772 */ 2773 mutex_lock(&ext4_li_mtx); 2774 mutex_lock(&eli->li_list_mtx); 2775 if (!list_empty(&eli->li_request_list)) { 2776 mutex_unlock(&eli->li_list_mtx); 2777 mutex_unlock(&ext4_li_mtx); 2778 goto cont_thread; 2779 } 2780 mutex_unlock(&eli->li_list_mtx); 2781 kfree(ext4_li_info); 2782 ext4_li_info = NULL; 2783 mutex_unlock(&ext4_li_mtx); 2784 2785 return 0; 2786 } 2787 2788 static void ext4_clear_request_list(void) 2789 { 2790 struct list_head *pos, *n; 2791 struct ext4_li_request *elr; 2792 2793 mutex_lock(&ext4_li_info->li_list_mtx); 2794 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2795 elr = list_entry(pos, struct ext4_li_request, 2796 lr_request); 2797 ext4_remove_li_request(elr); 2798 } 2799 mutex_unlock(&ext4_li_info->li_list_mtx); 2800 } 2801 2802 static int ext4_run_lazyinit_thread(void) 2803 { 2804 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2805 ext4_li_info, "ext4lazyinit"); 2806 if (IS_ERR(ext4_lazyinit_task)) { 2807 int err = PTR_ERR(ext4_lazyinit_task); 2808 ext4_clear_request_list(); 2809 kfree(ext4_li_info); 2810 ext4_li_info = NULL; 2811 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2812 "initialization thread\n", 2813 err); 2814 return err; 2815 } 2816 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2817 return 0; 2818 } 2819 2820 /* 2821 * Check whether it make sense to run itable init. thread or not. 2822 * If there is at least one uninitialized inode table, return 2823 * corresponding group number, else the loop goes through all 2824 * groups and return total number of groups. 2825 */ 2826 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2827 { 2828 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2829 struct ext4_group_desc *gdp = NULL; 2830 2831 for (group = 0; group < ngroups; group++) { 2832 gdp = ext4_get_group_desc(sb, group, NULL); 2833 if (!gdp) 2834 continue; 2835 2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2837 break; 2838 } 2839 2840 return group; 2841 } 2842 2843 static int ext4_li_info_new(void) 2844 { 2845 struct ext4_lazy_init *eli = NULL; 2846 2847 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2848 if (!eli) 2849 return -ENOMEM; 2850 2851 INIT_LIST_HEAD(&eli->li_request_list); 2852 mutex_init(&eli->li_list_mtx); 2853 2854 eli->li_state |= EXT4_LAZYINIT_QUIT; 2855 2856 ext4_li_info = eli; 2857 2858 return 0; 2859 } 2860 2861 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2862 ext4_group_t start) 2863 { 2864 struct ext4_sb_info *sbi = EXT4_SB(sb); 2865 struct ext4_li_request *elr; 2866 2867 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2868 if (!elr) 2869 return NULL; 2870 2871 elr->lr_super = sb; 2872 elr->lr_sbi = sbi; 2873 elr->lr_next_group = start; 2874 2875 /* 2876 * Randomize first schedule time of the request to 2877 * spread the inode table initialization requests 2878 * better. 2879 */ 2880 elr->lr_next_sched = jiffies + (prandom_u32() % 2881 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2882 return elr; 2883 } 2884 2885 int ext4_register_li_request(struct super_block *sb, 2886 ext4_group_t first_not_zeroed) 2887 { 2888 struct ext4_sb_info *sbi = EXT4_SB(sb); 2889 struct ext4_li_request *elr = NULL; 2890 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2891 int ret = 0; 2892 2893 mutex_lock(&ext4_li_mtx); 2894 if (sbi->s_li_request != NULL) { 2895 /* 2896 * Reset timeout so it can be computed again, because 2897 * s_li_wait_mult might have changed. 2898 */ 2899 sbi->s_li_request->lr_timeout = 0; 2900 goto out; 2901 } 2902 2903 if (first_not_zeroed == ngroups || 2904 (sb->s_flags & MS_RDONLY) || 2905 !test_opt(sb, INIT_INODE_TABLE)) 2906 goto out; 2907 2908 elr = ext4_li_request_new(sb, first_not_zeroed); 2909 if (!elr) { 2910 ret = -ENOMEM; 2911 goto out; 2912 } 2913 2914 if (NULL == ext4_li_info) { 2915 ret = ext4_li_info_new(); 2916 if (ret) 2917 goto out; 2918 } 2919 2920 mutex_lock(&ext4_li_info->li_list_mtx); 2921 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2922 mutex_unlock(&ext4_li_info->li_list_mtx); 2923 2924 sbi->s_li_request = elr; 2925 /* 2926 * set elr to NULL here since it has been inserted to 2927 * the request_list and the removal and free of it is 2928 * handled by ext4_clear_request_list from now on. 2929 */ 2930 elr = NULL; 2931 2932 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2933 ret = ext4_run_lazyinit_thread(); 2934 if (ret) 2935 goto out; 2936 } 2937 out: 2938 mutex_unlock(&ext4_li_mtx); 2939 if (ret) 2940 kfree(elr); 2941 return ret; 2942 } 2943 2944 /* 2945 * We do not need to lock anything since this is called on 2946 * module unload. 2947 */ 2948 static void ext4_destroy_lazyinit_thread(void) 2949 { 2950 /* 2951 * If thread exited earlier 2952 * there's nothing to be done. 2953 */ 2954 if (!ext4_li_info || !ext4_lazyinit_task) 2955 return; 2956 2957 kthread_stop(ext4_lazyinit_task); 2958 } 2959 2960 static int set_journal_csum_feature_set(struct super_block *sb) 2961 { 2962 int ret = 1; 2963 int compat, incompat; 2964 struct ext4_sb_info *sbi = EXT4_SB(sb); 2965 2966 if (ext4_has_metadata_csum(sb)) { 2967 /* journal checksum v3 */ 2968 compat = 0; 2969 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 2970 } else { 2971 /* journal checksum v1 */ 2972 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 2973 incompat = 0; 2974 } 2975 2976 jbd2_journal_clear_features(sbi->s_journal, 2977 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2978 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 2979 JBD2_FEATURE_INCOMPAT_CSUM_V2); 2980 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2981 ret = jbd2_journal_set_features(sbi->s_journal, 2982 compat, 0, 2983 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 2984 incompat); 2985 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2986 ret = jbd2_journal_set_features(sbi->s_journal, 2987 compat, 0, 2988 incompat); 2989 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2990 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2991 } else { 2992 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2993 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2994 } 2995 2996 return ret; 2997 } 2998 2999 /* 3000 * Note: calculating the overhead so we can be compatible with 3001 * historical BSD practice is quite difficult in the face of 3002 * clusters/bigalloc. This is because multiple metadata blocks from 3003 * different block group can end up in the same allocation cluster. 3004 * Calculating the exact overhead in the face of clustered allocation 3005 * requires either O(all block bitmaps) in memory or O(number of block 3006 * groups**2) in time. We will still calculate the superblock for 3007 * older file systems --- and if we come across with a bigalloc file 3008 * system with zero in s_overhead_clusters the estimate will be close to 3009 * correct especially for very large cluster sizes --- but for newer 3010 * file systems, it's better to calculate this figure once at mkfs 3011 * time, and store it in the superblock. If the superblock value is 3012 * present (even for non-bigalloc file systems), we will use it. 3013 */ 3014 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3015 char *buf) 3016 { 3017 struct ext4_sb_info *sbi = EXT4_SB(sb); 3018 struct ext4_group_desc *gdp; 3019 ext4_fsblk_t first_block, last_block, b; 3020 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3021 int s, j, count = 0; 3022 3023 if (!ext4_has_feature_bigalloc(sb)) 3024 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3025 sbi->s_itb_per_group + 2); 3026 3027 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3028 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3029 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3030 for (i = 0; i < ngroups; i++) { 3031 gdp = ext4_get_group_desc(sb, i, NULL); 3032 b = ext4_block_bitmap(sb, gdp); 3033 if (b >= first_block && b <= last_block) { 3034 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3035 count++; 3036 } 3037 b = ext4_inode_bitmap(sb, gdp); 3038 if (b >= first_block && b <= last_block) { 3039 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3040 count++; 3041 } 3042 b = ext4_inode_table(sb, gdp); 3043 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3044 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3045 int c = EXT4_B2C(sbi, b - first_block); 3046 ext4_set_bit(c, buf); 3047 count++; 3048 } 3049 if (i != grp) 3050 continue; 3051 s = 0; 3052 if (ext4_bg_has_super(sb, grp)) { 3053 ext4_set_bit(s++, buf); 3054 count++; 3055 } 3056 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3057 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3058 count++; 3059 } 3060 } 3061 if (!count) 3062 return 0; 3063 return EXT4_CLUSTERS_PER_GROUP(sb) - 3064 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3065 } 3066 3067 /* 3068 * Compute the overhead and stash it in sbi->s_overhead 3069 */ 3070 int ext4_calculate_overhead(struct super_block *sb) 3071 { 3072 struct ext4_sb_info *sbi = EXT4_SB(sb); 3073 struct ext4_super_block *es = sbi->s_es; 3074 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3075 ext4_fsblk_t overhead = 0; 3076 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3077 3078 if (!buf) 3079 return -ENOMEM; 3080 3081 /* 3082 * Compute the overhead (FS structures). This is constant 3083 * for a given filesystem unless the number of block groups 3084 * changes so we cache the previous value until it does. 3085 */ 3086 3087 /* 3088 * All of the blocks before first_data_block are overhead 3089 */ 3090 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3091 3092 /* 3093 * Add the overhead found in each block group 3094 */ 3095 for (i = 0; i < ngroups; i++) { 3096 int blks; 3097 3098 blks = count_overhead(sb, i, buf); 3099 overhead += blks; 3100 if (blks) 3101 memset(buf, 0, PAGE_SIZE); 3102 cond_resched(); 3103 } 3104 /* Add the internal journal blocks as well */ 3105 if (sbi->s_journal && !sbi->journal_bdev) 3106 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3107 3108 sbi->s_overhead = overhead; 3109 smp_wmb(); 3110 free_page((unsigned long) buf); 3111 return 0; 3112 } 3113 3114 static void ext4_set_resv_clusters(struct super_block *sb) 3115 { 3116 ext4_fsblk_t resv_clusters; 3117 struct ext4_sb_info *sbi = EXT4_SB(sb); 3118 3119 /* 3120 * There's no need to reserve anything when we aren't using extents. 3121 * The space estimates are exact, there are no unwritten extents, 3122 * hole punching doesn't need new metadata... This is needed especially 3123 * to keep ext2/3 backward compatibility. 3124 */ 3125 if (!ext4_has_feature_extents(sb)) 3126 return; 3127 /* 3128 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3129 * This should cover the situations where we can not afford to run 3130 * out of space like for example punch hole, or converting 3131 * unwritten extents in delalloc path. In most cases such 3132 * allocation would require 1, or 2 blocks, higher numbers are 3133 * very rare. 3134 */ 3135 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3136 sbi->s_cluster_bits); 3137 3138 do_div(resv_clusters, 50); 3139 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3140 3141 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3142 } 3143 3144 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3145 { 3146 char *orig_data = kstrdup(data, GFP_KERNEL); 3147 struct buffer_head *bh; 3148 struct ext4_super_block *es = NULL; 3149 struct ext4_sb_info *sbi; 3150 ext4_fsblk_t block; 3151 ext4_fsblk_t sb_block = get_sb_block(&data); 3152 ext4_fsblk_t logical_sb_block; 3153 unsigned long offset = 0; 3154 unsigned long journal_devnum = 0; 3155 unsigned long def_mount_opts; 3156 struct inode *root; 3157 const char *descr; 3158 int ret = -ENOMEM; 3159 int blocksize, clustersize; 3160 unsigned int db_count; 3161 unsigned int i; 3162 int needs_recovery, has_huge_files, has_bigalloc; 3163 __u64 blocks_count; 3164 int err = 0; 3165 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3166 ext4_group_t first_not_zeroed; 3167 3168 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3169 if (!sbi) 3170 goto out_free_orig; 3171 3172 sbi->s_blockgroup_lock = 3173 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3174 if (!sbi->s_blockgroup_lock) { 3175 kfree(sbi); 3176 goto out_free_orig; 3177 } 3178 sb->s_fs_info = sbi; 3179 sbi->s_sb = sb; 3180 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3181 sbi->s_sb_block = sb_block; 3182 if (sb->s_bdev->bd_part) 3183 sbi->s_sectors_written_start = 3184 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3185 3186 /* Cleanup superblock name */ 3187 strreplace(sb->s_id, '/', '!'); 3188 3189 /* -EINVAL is default */ 3190 ret = -EINVAL; 3191 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3192 if (!blocksize) { 3193 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3194 goto out_fail; 3195 } 3196 3197 /* 3198 * The ext4 superblock will not be buffer aligned for other than 1kB 3199 * block sizes. We need to calculate the offset from buffer start. 3200 */ 3201 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3202 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3203 offset = do_div(logical_sb_block, blocksize); 3204 } else { 3205 logical_sb_block = sb_block; 3206 } 3207 3208 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3209 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3210 goto out_fail; 3211 } 3212 /* 3213 * Note: s_es must be initialized as soon as possible because 3214 * some ext4 macro-instructions depend on its value 3215 */ 3216 es = (struct ext4_super_block *) (bh->b_data + offset); 3217 sbi->s_es = es; 3218 sb->s_magic = le16_to_cpu(es->s_magic); 3219 if (sb->s_magic != EXT4_SUPER_MAGIC) 3220 goto cantfind_ext4; 3221 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3222 3223 /* Warn if metadata_csum and gdt_csum are both set. */ 3224 if (ext4_has_feature_metadata_csum(sb) && 3225 ext4_has_feature_gdt_csum(sb)) 3226 ext4_warning(sb, "metadata_csum and uninit_bg are " 3227 "redundant flags; please run fsck."); 3228 3229 /* Check for a known checksum algorithm */ 3230 if (!ext4_verify_csum_type(sb, es)) { 3231 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3232 "unknown checksum algorithm."); 3233 silent = 1; 3234 goto cantfind_ext4; 3235 } 3236 3237 /* Load the checksum driver */ 3238 if (ext4_has_feature_metadata_csum(sb)) { 3239 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3240 if (IS_ERR(sbi->s_chksum_driver)) { 3241 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3242 ret = PTR_ERR(sbi->s_chksum_driver); 3243 sbi->s_chksum_driver = NULL; 3244 goto failed_mount; 3245 } 3246 } 3247 3248 /* Check superblock checksum */ 3249 if (!ext4_superblock_csum_verify(sb, es)) { 3250 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3251 "invalid superblock checksum. Run e2fsck?"); 3252 silent = 1; 3253 ret = -EFSBADCRC; 3254 goto cantfind_ext4; 3255 } 3256 3257 /* Precompute checksum seed for all metadata */ 3258 if (ext4_has_feature_csum_seed(sb)) 3259 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3260 else if (ext4_has_metadata_csum(sb)) 3261 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3262 sizeof(es->s_uuid)); 3263 3264 /* Set defaults before we parse the mount options */ 3265 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3266 set_opt(sb, INIT_INODE_TABLE); 3267 if (def_mount_opts & EXT4_DEFM_DEBUG) 3268 set_opt(sb, DEBUG); 3269 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3270 set_opt(sb, GRPID); 3271 if (def_mount_opts & EXT4_DEFM_UID16) 3272 set_opt(sb, NO_UID32); 3273 /* xattr user namespace & acls are now defaulted on */ 3274 set_opt(sb, XATTR_USER); 3275 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3276 set_opt(sb, POSIX_ACL); 3277 #endif 3278 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3279 if (ext4_has_metadata_csum(sb)) 3280 set_opt(sb, JOURNAL_CHECKSUM); 3281 3282 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3283 set_opt(sb, JOURNAL_DATA); 3284 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3285 set_opt(sb, ORDERED_DATA); 3286 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3287 set_opt(sb, WRITEBACK_DATA); 3288 3289 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3290 set_opt(sb, ERRORS_PANIC); 3291 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3292 set_opt(sb, ERRORS_CONT); 3293 else 3294 set_opt(sb, ERRORS_RO); 3295 /* block_validity enabled by default; disable with noblock_validity */ 3296 set_opt(sb, BLOCK_VALIDITY); 3297 if (def_mount_opts & EXT4_DEFM_DISCARD) 3298 set_opt(sb, DISCARD); 3299 3300 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3301 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3302 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3303 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3304 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3305 3306 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3307 set_opt(sb, BARRIER); 3308 3309 /* 3310 * enable delayed allocation by default 3311 * Use -o nodelalloc to turn it off 3312 */ 3313 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3314 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3315 set_opt(sb, DELALLOC); 3316 3317 /* 3318 * set default s_li_wait_mult for lazyinit, for the case there is 3319 * no mount option specified. 3320 */ 3321 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3322 3323 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3324 &journal_devnum, &journal_ioprio, 0)) { 3325 ext4_msg(sb, KERN_WARNING, 3326 "failed to parse options in superblock: %s", 3327 sbi->s_es->s_mount_opts); 3328 } 3329 sbi->s_def_mount_opt = sbi->s_mount_opt; 3330 if (!parse_options((char *) data, sb, &journal_devnum, 3331 &journal_ioprio, 0)) 3332 goto failed_mount; 3333 3334 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3335 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3336 "with data=journal disables delayed " 3337 "allocation and O_DIRECT support!\n"); 3338 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3339 ext4_msg(sb, KERN_ERR, "can't mount with " 3340 "both data=journal and delalloc"); 3341 goto failed_mount; 3342 } 3343 if (test_opt(sb, DIOREAD_NOLOCK)) { 3344 ext4_msg(sb, KERN_ERR, "can't mount with " 3345 "both data=journal and dioread_nolock"); 3346 goto failed_mount; 3347 } 3348 if (test_opt(sb, DAX)) { 3349 ext4_msg(sb, KERN_ERR, "can't mount with " 3350 "both data=journal and dax"); 3351 goto failed_mount; 3352 } 3353 if (test_opt(sb, DELALLOC)) 3354 clear_opt(sb, DELALLOC); 3355 } else { 3356 sb->s_iflags |= SB_I_CGROUPWB; 3357 } 3358 3359 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3360 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3361 3362 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3363 (ext4_has_compat_features(sb) || 3364 ext4_has_ro_compat_features(sb) || 3365 ext4_has_incompat_features(sb))) 3366 ext4_msg(sb, KERN_WARNING, 3367 "feature flags set on rev 0 fs, " 3368 "running e2fsck is recommended"); 3369 3370 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3371 set_opt2(sb, HURD_COMPAT); 3372 if (ext4_has_feature_64bit(sb)) { 3373 ext4_msg(sb, KERN_ERR, 3374 "The Hurd can't support 64-bit file systems"); 3375 goto failed_mount; 3376 } 3377 } 3378 3379 if (IS_EXT2_SB(sb)) { 3380 if (ext2_feature_set_ok(sb)) 3381 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3382 "using the ext4 subsystem"); 3383 else { 3384 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3385 "to feature incompatibilities"); 3386 goto failed_mount; 3387 } 3388 } 3389 3390 if (IS_EXT3_SB(sb)) { 3391 if (ext3_feature_set_ok(sb)) 3392 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3393 "using the ext4 subsystem"); 3394 else { 3395 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3396 "to feature incompatibilities"); 3397 goto failed_mount; 3398 } 3399 } 3400 3401 /* 3402 * Check feature flags regardless of the revision level, since we 3403 * previously didn't change the revision level when setting the flags, 3404 * so there is a chance incompat flags are set on a rev 0 filesystem. 3405 */ 3406 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3407 goto failed_mount; 3408 3409 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3410 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3411 blocksize > EXT4_MAX_BLOCK_SIZE) { 3412 ext4_msg(sb, KERN_ERR, 3413 "Unsupported filesystem blocksize %d", blocksize); 3414 goto failed_mount; 3415 } 3416 3417 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3418 if (blocksize != PAGE_SIZE) { 3419 ext4_msg(sb, KERN_ERR, 3420 "error: unsupported blocksize for dax"); 3421 goto failed_mount; 3422 } 3423 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3424 ext4_msg(sb, KERN_ERR, 3425 "error: device does not support dax"); 3426 goto failed_mount; 3427 } 3428 } 3429 3430 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3431 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3432 es->s_encryption_level); 3433 goto failed_mount; 3434 } 3435 3436 if (sb->s_blocksize != blocksize) { 3437 /* Validate the filesystem blocksize */ 3438 if (!sb_set_blocksize(sb, blocksize)) { 3439 ext4_msg(sb, KERN_ERR, "bad block size %d", 3440 blocksize); 3441 goto failed_mount; 3442 } 3443 3444 brelse(bh); 3445 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3446 offset = do_div(logical_sb_block, blocksize); 3447 bh = sb_bread_unmovable(sb, logical_sb_block); 3448 if (!bh) { 3449 ext4_msg(sb, KERN_ERR, 3450 "Can't read superblock on 2nd try"); 3451 goto failed_mount; 3452 } 3453 es = (struct ext4_super_block *)(bh->b_data + offset); 3454 sbi->s_es = es; 3455 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3456 ext4_msg(sb, KERN_ERR, 3457 "Magic mismatch, very weird!"); 3458 goto failed_mount; 3459 } 3460 } 3461 3462 has_huge_files = ext4_has_feature_huge_file(sb); 3463 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3464 has_huge_files); 3465 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3466 3467 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3468 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3469 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3470 } else { 3471 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3472 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3473 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3474 (!is_power_of_2(sbi->s_inode_size)) || 3475 (sbi->s_inode_size > blocksize)) { 3476 ext4_msg(sb, KERN_ERR, 3477 "unsupported inode size: %d", 3478 sbi->s_inode_size); 3479 goto failed_mount; 3480 } 3481 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3482 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3483 } 3484 3485 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3486 if (ext4_has_feature_64bit(sb)) { 3487 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3488 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3489 !is_power_of_2(sbi->s_desc_size)) { 3490 ext4_msg(sb, KERN_ERR, 3491 "unsupported descriptor size %lu", 3492 sbi->s_desc_size); 3493 goto failed_mount; 3494 } 3495 } else 3496 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3497 3498 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3499 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3500 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3501 goto cantfind_ext4; 3502 3503 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3504 if (sbi->s_inodes_per_block == 0) 3505 goto cantfind_ext4; 3506 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3507 sbi->s_inodes_per_block; 3508 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3509 sbi->s_sbh = bh; 3510 sbi->s_mount_state = le16_to_cpu(es->s_state); 3511 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3512 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3513 3514 for (i = 0; i < 4; i++) 3515 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3516 sbi->s_def_hash_version = es->s_def_hash_version; 3517 if (ext4_has_feature_dir_index(sb)) { 3518 i = le32_to_cpu(es->s_flags); 3519 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3520 sbi->s_hash_unsigned = 3; 3521 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3522 #ifdef __CHAR_UNSIGNED__ 3523 if (!(sb->s_flags & MS_RDONLY)) 3524 es->s_flags |= 3525 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3526 sbi->s_hash_unsigned = 3; 3527 #else 3528 if (!(sb->s_flags & MS_RDONLY)) 3529 es->s_flags |= 3530 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3531 #endif 3532 } 3533 } 3534 3535 /* Handle clustersize */ 3536 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3537 has_bigalloc = ext4_has_feature_bigalloc(sb); 3538 if (has_bigalloc) { 3539 if (clustersize < blocksize) { 3540 ext4_msg(sb, KERN_ERR, 3541 "cluster size (%d) smaller than " 3542 "block size (%d)", clustersize, blocksize); 3543 goto failed_mount; 3544 } 3545 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3546 le32_to_cpu(es->s_log_block_size); 3547 sbi->s_clusters_per_group = 3548 le32_to_cpu(es->s_clusters_per_group); 3549 if (sbi->s_clusters_per_group > blocksize * 8) { 3550 ext4_msg(sb, KERN_ERR, 3551 "#clusters per group too big: %lu", 3552 sbi->s_clusters_per_group); 3553 goto failed_mount; 3554 } 3555 if (sbi->s_blocks_per_group != 3556 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3557 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3558 "clusters per group (%lu) inconsistent", 3559 sbi->s_blocks_per_group, 3560 sbi->s_clusters_per_group); 3561 goto failed_mount; 3562 } 3563 } else { 3564 if (clustersize != blocksize) { 3565 ext4_warning(sb, "fragment/cluster size (%d) != " 3566 "block size (%d)", clustersize, 3567 blocksize); 3568 clustersize = blocksize; 3569 } 3570 if (sbi->s_blocks_per_group > blocksize * 8) { 3571 ext4_msg(sb, KERN_ERR, 3572 "#blocks per group too big: %lu", 3573 sbi->s_blocks_per_group); 3574 goto failed_mount; 3575 } 3576 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3577 sbi->s_cluster_bits = 0; 3578 } 3579 sbi->s_cluster_ratio = clustersize / blocksize; 3580 3581 if (sbi->s_inodes_per_group > blocksize * 8) { 3582 ext4_msg(sb, KERN_ERR, 3583 "#inodes per group too big: %lu", 3584 sbi->s_inodes_per_group); 3585 goto failed_mount; 3586 } 3587 3588 /* Do we have standard group size of clustersize * 8 blocks ? */ 3589 if (sbi->s_blocks_per_group == clustersize << 3) 3590 set_opt2(sb, STD_GROUP_SIZE); 3591 3592 /* 3593 * Test whether we have more sectors than will fit in sector_t, 3594 * and whether the max offset is addressable by the page cache. 3595 */ 3596 err = generic_check_addressable(sb->s_blocksize_bits, 3597 ext4_blocks_count(es)); 3598 if (err) { 3599 ext4_msg(sb, KERN_ERR, "filesystem" 3600 " too large to mount safely on this system"); 3601 if (sizeof(sector_t) < 8) 3602 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3603 goto failed_mount; 3604 } 3605 3606 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3607 goto cantfind_ext4; 3608 3609 /* check blocks count against device size */ 3610 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3611 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3612 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3613 "exceeds size of device (%llu blocks)", 3614 ext4_blocks_count(es), blocks_count); 3615 goto failed_mount; 3616 } 3617 3618 /* 3619 * It makes no sense for the first data block to be beyond the end 3620 * of the filesystem. 3621 */ 3622 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3623 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3624 "block %u is beyond end of filesystem (%llu)", 3625 le32_to_cpu(es->s_first_data_block), 3626 ext4_blocks_count(es)); 3627 goto failed_mount; 3628 } 3629 blocks_count = (ext4_blocks_count(es) - 3630 le32_to_cpu(es->s_first_data_block) + 3631 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3632 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3633 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3634 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3635 "(block count %llu, first data block %u, " 3636 "blocks per group %lu)", sbi->s_groups_count, 3637 ext4_blocks_count(es), 3638 le32_to_cpu(es->s_first_data_block), 3639 EXT4_BLOCKS_PER_GROUP(sb)); 3640 goto failed_mount; 3641 } 3642 sbi->s_groups_count = blocks_count; 3643 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3644 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3645 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3646 EXT4_DESC_PER_BLOCK(sb); 3647 sbi->s_group_desc = ext4_kvmalloc(db_count * 3648 sizeof(struct buffer_head *), 3649 GFP_KERNEL); 3650 if (sbi->s_group_desc == NULL) { 3651 ext4_msg(sb, KERN_ERR, "not enough memory"); 3652 ret = -ENOMEM; 3653 goto failed_mount; 3654 } 3655 3656 bgl_lock_init(sbi->s_blockgroup_lock); 3657 3658 for (i = 0; i < db_count; i++) { 3659 block = descriptor_loc(sb, logical_sb_block, i); 3660 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3661 if (!sbi->s_group_desc[i]) { 3662 ext4_msg(sb, KERN_ERR, 3663 "can't read group descriptor %d", i); 3664 db_count = i; 3665 goto failed_mount2; 3666 } 3667 } 3668 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3669 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3670 ret = -EFSCORRUPTED; 3671 goto failed_mount2; 3672 } 3673 3674 sbi->s_gdb_count = db_count; 3675 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3676 spin_lock_init(&sbi->s_next_gen_lock); 3677 3678 setup_timer(&sbi->s_err_report, print_daily_error_info, 3679 (unsigned long) sb); 3680 3681 /* Register extent status tree shrinker */ 3682 if (ext4_es_register_shrinker(sbi)) 3683 goto failed_mount3; 3684 3685 sbi->s_stripe = ext4_get_stripe_size(sbi); 3686 sbi->s_extent_max_zeroout_kb = 32; 3687 3688 /* 3689 * set up enough so that it can read an inode 3690 */ 3691 sb->s_op = &ext4_sops; 3692 sb->s_export_op = &ext4_export_ops; 3693 sb->s_xattr = ext4_xattr_handlers; 3694 #ifdef CONFIG_QUOTA 3695 sb->dq_op = &ext4_quota_operations; 3696 if (ext4_has_feature_quota(sb)) 3697 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3698 else 3699 sb->s_qcop = &ext4_qctl_operations; 3700 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3701 #endif 3702 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3703 3704 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3705 mutex_init(&sbi->s_orphan_lock); 3706 3707 sb->s_root = NULL; 3708 3709 needs_recovery = (es->s_last_orphan != 0 || 3710 ext4_has_feature_journal_needs_recovery(sb)); 3711 3712 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3713 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3714 goto failed_mount3a; 3715 3716 /* 3717 * The first inode we look at is the journal inode. Don't try 3718 * root first: it may be modified in the journal! 3719 */ 3720 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3721 if (ext4_load_journal(sb, es, journal_devnum)) 3722 goto failed_mount3a; 3723 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3724 ext4_has_feature_journal_needs_recovery(sb)) { 3725 ext4_msg(sb, KERN_ERR, "required journal recovery " 3726 "suppressed and not mounted read-only"); 3727 goto failed_mount_wq; 3728 } else { 3729 /* Nojournal mode, all journal mount options are illegal */ 3730 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3731 ext4_msg(sb, KERN_ERR, "can't mount with " 3732 "journal_checksum, fs mounted w/o journal"); 3733 goto failed_mount_wq; 3734 } 3735 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3736 ext4_msg(sb, KERN_ERR, "can't mount with " 3737 "journal_async_commit, fs mounted w/o journal"); 3738 goto failed_mount_wq; 3739 } 3740 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3741 ext4_msg(sb, KERN_ERR, "can't mount with " 3742 "commit=%lu, fs mounted w/o journal", 3743 sbi->s_commit_interval / HZ); 3744 goto failed_mount_wq; 3745 } 3746 if (EXT4_MOUNT_DATA_FLAGS & 3747 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3748 ext4_msg(sb, KERN_ERR, "can't mount with " 3749 "data=, fs mounted w/o journal"); 3750 goto failed_mount_wq; 3751 } 3752 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3753 clear_opt(sb, JOURNAL_CHECKSUM); 3754 clear_opt(sb, DATA_FLAGS); 3755 sbi->s_journal = NULL; 3756 needs_recovery = 0; 3757 goto no_journal; 3758 } 3759 3760 if (ext4_has_feature_64bit(sb) && 3761 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3762 JBD2_FEATURE_INCOMPAT_64BIT)) { 3763 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3764 goto failed_mount_wq; 3765 } 3766 3767 if (!set_journal_csum_feature_set(sb)) { 3768 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3769 "feature set"); 3770 goto failed_mount_wq; 3771 } 3772 3773 /* We have now updated the journal if required, so we can 3774 * validate the data journaling mode. */ 3775 switch (test_opt(sb, DATA_FLAGS)) { 3776 case 0: 3777 /* No mode set, assume a default based on the journal 3778 * capabilities: ORDERED_DATA if the journal can 3779 * cope, else JOURNAL_DATA 3780 */ 3781 if (jbd2_journal_check_available_features 3782 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3783 set_opt(sb, ORDERED_DATA); 3784 else 3785 set_opt(sb, JOURNAL_DATA); 3786 break; 3787 3788 case EXT4_MOUNT_ORDERED_DATA: 3789 case EXT4_MOUNT_WRITEBACK_DATA: 3790 if (!jbd2_journal_check_available_features 3791 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3792 ext4_msg(sb, KERN_ERR, "Journal does not support " 3793 "requested data journaling mode"); 3794 goto failed_mount_wq; 3795 } 3796 default: 3797 break; 3798 } 3799 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3800 3801 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3802 3803 no_journal: 3804 sbi->s_mb_cache = ext4_xattr_create_cache(); 3805 if (!sbi->s_mb_cache) { 3806 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3807 goto failed_mount_wq; 3808 } 3809 3810 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3811 (blocksize != PAGE_CACHE_SIZE)) { 3812 ext4_msg(sb, KERN_ERR, 3813 "Unsupported blocksize for fs encryption"); 3814 goto failed_mount_wq; 3815 } 3816 3817 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3818 !ext4_has_feature_encrypt(sb)) { 3819 ext4_set_feature_encrypt(sb); 3820 ext4_commit_super(sb, 1); 3821 } 3822 3823 /* 3824 * Get the # of file system overhead blocks from the 3825 * superblock if present. 3826 */ 3827 if (es->s_overhead_clusters) 3828 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3829 else { 3830 err = ext4_calculate_overhead(sb); 3831 if (err) 3832 goto failed_mount_wq; 3833 } 3834 3835 /* 3836 * The maximum number of concurrent works can be high and 3837 * concurrency isn't really necessary. Limit it to 1. 3838 */ 3839 EXT4_SB(sb)->rsv_conversion_wq = 3840 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3841 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3842 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3843 ret = -ENOMEM; 3844 goto failed_mount4; 3845 } 3846 3847 /* 3848 * The jbd2_journal_load will have done any necessary log recovery, 3849 * so we can safely mount the rest of the filesystem now. 3850 */ 3851 3852 root = ext4_iget(sb, EXT4_ROOT_INO); 3853 if (IS_ERR(root)) { 3854 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3855 ret = PTR_ERR(root); 3856 root = NULL; 3857 goto failed_mount4; 3858 } 3859 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3860 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3861 iput(root); 3862 goto failed_mount4; 3863 } 3864 sb->s_root = d_make_root(root); 3865 if (!sb->s_root) { 3866 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3867 ret = -ENOMEM; 3868 goto failed_mount4; 3869 } 3870 3871 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3872 sb->s_flags |= MS_RDONLY; 3873 3874 /* determine the minimum size of new large inodes, if present */ 3875 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3876 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3877 EXT4_GOOD_OLD_INODE_SIZE; 3878 if (ext4_has_feature_extra_isize(sb)) { 3879 if (sbi->s_want_extra_isize < 3880 le16_to_cpu(es->s_want_extra_isize)) 3881 sbi->s_want_extra_isize = 3882 le16_to_cpu(es->s_want_extra_isize); 3883 if (sbi->s_want_extra_isize < 3884 le16_to_cpu(es->s_min_extra_isize)) 3885 sbi->s_want_extra_isize = 3886 le16_to_cpu(es->s_min_extra_isize); 3887 } 3888 } 3889 /* Check if enough inode space is available */ 3890 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3891 sbi->s_inode_size) { 3892 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3893 EXT4_GOOD_OLD_INODE_SIZE; 3894 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3895 "available"); 3896 } 3897 3898 ext4_set_resv_clusters(sb); 3899 3900 err = ext4_setup_system_zone(sb); 3901 if (err) { 3902 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3903 "zone (%d)", err); 3904 goto failed_mount4a; 3905 } 3906 3907 ext4_ext_init(sb); 3908 err = ext4_mb_init(sb); 3909 if (err) { 3910 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3911 err); 3912 goto failed_mount5; 3913 } 3914 3915 block = ext4_count_free_clusters(sb); 3916 ext4_free_blocks_count_set(sbi->s_es, 3917 EXT4_C2B(sbi, block)); 3918 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 3919 GFP_KERNEL); 3920 if (!err) { 3921 unsigned long freei = ext4_count_free_inodes(sb); 3922 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 3923 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 3924 GFP_KERNEL); 3925 } 3926 if (!err) 3927 err = percpu_counter_init(&sbi->s_dirs_counter, 3928 ext4_count_dirs(sb), GFP_KERNEL); 3929 if (!err) 3930 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 3931 GFP_KERNEL); 3932 if (err) { 3933 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3934 goto failed_mount6; 3935 } 3936 3937 if (ext4_has_feature_flex_bg(sb)) 3938 if (!ext4_fill_flex_info(sb)) { 3939 ext4_msg(sb, KERN_ERR, 3940 "unable to initialize " 3941 "flex_bg meta info!"); 3942 goto failed_mount6; 3943 } 3944 3945 err = ext4_register_li_request(sb, first_not_zeroed); 3946 if (err) 3947 goto failed_mount6; 3948 3949 err = ext4_register_sysfs(sb); 3950 if (err) 3951 goto failed_mount7; 3952 3953 #ifdef CONFIG_QUOTA 3954 /* Enable quota usage during mount. */ 3955 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 3956 err = ext4_enable_quotas(sb); 3957 if (err) 3958 goto failed_mount8; 3959 } 3960 #endif /* CONFIG_QUOTA */ 3961 3962 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3963 ext4_orphan_cleanup(sb, es); 3964 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3965 if (needs_recovery) { 3966 ext4_msg(sb, KERN_INFO, "recovery complete"); 3967 ext4_mark_recovery_complete(sb, es); 3968 } 3969 if (EXT4_SB(sb)->s_journal) { 3970 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3971 descr = " journalled data mode"; 3972 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3973 descr = " ordered data mode"; 3974 else 3975 descr = " writeback data mode"; 3976 } else 3977 descr = "out journal"; 3978 3979 if (test_opt(sb, DISCARD)) { 3980 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3981 if (!blk_queue_discard(q)) 3982 ext4_msg(sb, KERN_WARNING, 3983 "mounting with \"discard\" option, but " 3984 "the device does not support discard"); 3985 } 3986 3987 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 3988 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3989 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3990 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3991 3992 if (es->s_error_count) 3993 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3994 3995 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 3996 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 3997 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 3998 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 3999 4000 kfree(orig_data); 4001 return 0; 4002 4003 cantfind_ext4: 4004 if (!silent) 4005 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4006 goto failed_mount; 4007 4008 #ifdef CONFIG_QUOTA 4009 failed_mount8: 4010 ext4_unregister_sysfs(sb); 4011 #endif 4012 failed_mount7: 4013 ext4_unregister_li_request(sb); 4014 failed_mount6: 4015 ext4_mb_release(sb); 4016 if (sbi->s_flex_groups) 4017 kvfree(sbi->s_flex_groups); 4018 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4019 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4020 percpu_counter_destroy(&sbi->s_dirs_counter); 4021 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4022 failed_mount5: 4023 ext4_ext_release(sb); 4024 ext4_release_system_zone(sb); 4025 failed_mount4a: 4026 dput(sb->s_root); 4027 sb->s_root = NULL; 4028 failed_mount4: 4029 ext4_msg(sb, KERN_ERR, "mount failed"); 4030 if (EXT4_SB(sb)->rsv_conversion_wq) 4031 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4032 failed_mount_wq: 4033 if (sbi->s_mb_cache) { 4034 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4035 sbi->s_mb_cache = NULL; 4036 } 4037 if (sbi->s_journal) { 4038 jbd2_journal_destroy(sbi->s_journal); 4039 sbi->s_journal = NULL; 4040 } 4041 failed_mount3a: 4042 ext4_es_unregister_shrinker(sbi); 4043 failed_mount3: 4044 del_timer_sync(&sbi->s_err_report); 4045 if (sbi->s_mmp_tsk) 4046 kthread_stop(sbi->s_mmp_tsk); 4047 failed_mount2: 4048 for (i = 0; i < db_count; i++) 4049 brelse(sbi->s_group_desc[i]); 4050 kvfree(sbi->s_group_desc); 4051 failed_mount: 4052 if (sbi->s_chksum_driver) 4053 crypto_free_shash(sbi->s_chksum_driver); 4054 #ifdef CONFIG_QUOTA 4055 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4056 kfree(sbi->s_qf_names[i]); 4057 #endif 4058 ext4_blkdev_remove(sbi); 4059 brelse(bh); 4060 out_fail: 4061 sb->s_fs_info = NULL; 4062 kfree(sbi->s_blockgroup_lock); 4063 kfree(sbi); 4064 out_free_orig: 4065 kfree(orig_data); 4066 return err ? err : ret; 4067 } 4068 4069 /* 4070 * Setup any per-fs journal parameters now. We'll do this both on 4071 * initial mount, once the journal has been initialised but before we've 4072 * done any recovery; and again on any subsequent remount. 4073 */ 4074 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4075 { 4076 struct ext4_sb_info *sbi = EXT4_SB(sb); 4077 4078 journal->j_commit_interval = sbi->s_commit_interval; 4079 journal->j_min_batch_time = sbi->s_min_batch_time; 4080 journal->j_max_batch_time = sbi->s_max_batch_time; 4081 4082 write_lock(&journal->j_state_lock); 4083 if (test_opt(sb, BARRIER)) 4084 journal->j_flags |= JBD2_BARRIER; 4085 else 4086 journal->j_flags &= ~JBD2_BARRIER; 4087 if (test_opt(sb, DATA_ERR_ABORT)) 4088 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4089 else 4090 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4091 write_unlock(&journal->j_state_lock); 4092 } 4093 4094 static journal_t *ext4_get_journal(struct super_block *sb, 4095 unsigned int journal_inum) 4096 { 4097 struct inode *journal_inode; 4098 journal_t *journal; 4099 4100 BUG_ON(!ext4_has_feature_journal(sb)); 4101 4102 /* First, test for the existence of a valid inode on disk. Bad 4103 * things happen if we iget() an unused inode, as the subsequent 4104 * iput() will try to delete it. */ 4105 4106 journal_inode = ext4_iget(sb, journal_inum); 4107 if (IS_ERR(journal_inode)) { 4108 ext4_msg(sb, KERN_ERR, "no journal found"); 4109 return NULL; 4110 } 4111 if (!journal_inode->i_nlink) { 4112 make_bad_inode(journal_inode); 4113 iput(journal_inode); 4114 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4115 return NULL; 4116 } 4117 4118 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4119 journal_inode, journal_inode->i_size); 4120 if (!S_ISREG(journal_inode->i_mode)) { 4121 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4122 iput(journal_inode); 4123 return NULL; 4124 } 4125 4126 journal = jbd2_journal_init_inode(journal_inode); 4127 if (!journal) { 4128 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4129 iput(journal_inode); 4130 return NULL; 4131 } 4132 journal->j_private = sb; 4133 ext4_init_journal_params(sb, journal); 4134 return journal; 4135 } 4136 4137 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4138 dev_t j_dev) 4139 { 4140 struct buffer_head *bh; 4141 journal_t *journal; 4142 ext4_fsblk_t start; 4143 ext4_fsblk_t len; 4144 int hblock, blocksize; 4145 ext4_fsblk_t sb_block; 4146 unsigned long offset; 4147 struct ext4_super_block *es; 4148 struct block_device *bdev; 4149 4150 BUG_ON(!ext4_has_feature_journal(sb)); 4151 4152 bdev = ext4_blkdev_get(j_dev, sb); 4153 if (bdev == NULL) 4154 return NULL; 4155 4156 blocksize = sb->s_blocksize; 4157 hblock = bdev_logical_block_size(bdev); 4158 if (blocksize < hblock) { 4159 ext4_msg(sb, KERN_ERR, 4160 "blocksize too small for journal device"); 4161 goto out_bdev; 4162 } 4163 4164 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4165 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4166 set_blocksize(bdev, blocksize); 4167 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4168 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4169 "external journal"); 4170 goto out_bdev; 4171 } 4172 4173 es = (struct ext4_super_block *) (bh->b_data + offset); 4174 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4175 !(le32_to_cpu(es->s_feature_incompat) & 4176 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4177 ext4_msg(sb, KERN_ERR, "external journal has " 4178 "bad superblock"); 4179 brelse(bh); 4180 goto out_bdev; 4181 } 4182 4183 if ((le32_to_cpu(es->s_feature_ro_compat) & 4184 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4185 es->s_checksum != ext4_superblock_csum(sb, es)) { 4186 ext4_msg(sb, KERN_ERR, "external journal has " 4187 "corrupt superblock"); 4188 brelse(bh); 4189 goto out_bdev; 4190 } 4191 4192 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4193 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4194 brelse(bh); 4195 goto out_bdev; 4196 } 4197 4198 len = ext4_blocks_count(es); 4199 start = sb_block + 1; 4200 brelse(bh); /* we're done with the superblock */ 4201 4202 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4203 start, len, blocksize); 4204 if (!journal) { 4205 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4206 goto out_bdev; 4207 } 4208 journal->j_private = sb; 4209 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4210 wait_on_buffer(journal->j_sb_buffer); 4211 if (!buffer_uptodate(journal->j_sb_buffer)) { 4212 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4213 goto out_journal; 4214 } 4215 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4216 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4217 "user (unsupported) - %d", 4218 be32_to_cpu(journal->j_superblock->s_nr_users)); 4219 goto out_journal; 4220 } 4221 EXT4_SB(sb)->journal_bdev = bdev; 4222 ext4_init_journal_params(sb, journal); 4223 return journal; 4224 4225 out_journal: 4226 jbd2_journal_destroy(journal); 4227 out_bdev: 4228 ext4_blkdev_put(bdev); 4229 return NULL; 4230 } 4231 4232 static int ext4_load_journal(struct super_block *sb, 4233 struct ext4_super_block *es, 4234 unsigned long journal_devnum) 4235 { 4236 journal_t *journal; 4237 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4238 dev_t journal_dev; 4239 int err = 0; 4240 int really_read_only; 4241 4242 BUG_ON(!ext4_has_feature_journal(sb)); 4243 4244 if (journal_devnum && 4245 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4246 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4247 "numbers have changed"); 4248 journal_dev = new_decode_dev(journal_devnum); 4249 } else 4250 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4251 4252 really_read_only = bdev_read_only(sb->s_bdev); 4253 4254 /* 4255 * Are we loading a blank journal or performing recovery after a 4256 * crash? For recovery, we need to check in advance whether we 4257 * can get read-write access to the device. 4258 */ 4259 if (ext4_has_feature_journal_needs_recovery(sb)) { 4260 if (sb->s_flags & MS_RDONLY) { 4261 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4262 "required on readonly filesystem"); 4263 if (really_read_only) { 4264 ext4_msg(sb, KERN_ERR, "write access " 4265 "unavailable, cannot proceed"); 4266 return -EROFS; 4267 } 4268 ext4_msg(sb, KERN_INFO, "write access will " 4269 "be enabled during recovery"); 4270 } 4271 } 4272 4273 if (journal_inum && journal_dev) { 4274 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4275 "and inode journals!"); 4276 return -EINVAL; 4277 } 4278 4279 if (journal_inum) { 4280 if (!(journal = ext4_get_journal(sb, journal_inum))) 4281 return -EINVAL; 4282 } else { 4283 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4284 return -EINVAL; 4285 } 4286 4287 if (!(journal->j_flags & JBD2_BARRIER)) 4288 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4289 4290 if (!ext4_has_feature_journal_needs_recovery(sb)) 4291 err = jbd2_journal_wipe(journal, !really_read_only); 4292 if (!err) { 4293 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4294 if (save) 4295 memcpy(save, ((char *) es) + 4296 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4297 err = jbd2_journal_load(journal); 4298 if (save) 4299 memcpy(((char *) es) + EXT4_S_ERR_START, 4300 save, EXT4_S_ERR_LEN); 4301 kfree(save); 4302 } 4303 4304 if (err) { 4305 ext4_msg(sb, KERN_ERR, "error loading journal"); 4306 jbd2_journal_destroy(journal); 4307 return err; 4308 } 4309 4310 EXT4_SB(sb)->s_journal = journal; 4311 ext4_clear_journal_err(sb, es); 4312 4313 if (!really_read_only && journal_devnum && 4314 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4315 es->s_journal_dev = cpu_to_le32(journal_devnum); 4316 4317 /* Make sure we flush the recovery flag to disk. */ 4318 ext4_commit_super(sb, 1); 4319 } 4320 4321 return 0; 4322 } 4323 4324 static int ext4_commit_super(struct super_block *sb, int sync) 4325 { 4326 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4327 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4328 int error = 0; 4329 4330 if (!sbh || block_device_ejected(sb)) 4331 return error; 4332 if (buffer_write_io_error(sbh)) { 4333 /* 4334 * Oh, dear. A previous attempt to write the 4335 * superblock failed. This could happen because the 4336 * USB device was yanked out. Or it could happen to 4337 * be a transient write error and maybe the block will 4338 * be remapped. Nothing we can do but to retry the 4339 * write and hope for the best. 4340 */ 4341 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4342 "superblock detected"); 4343 clear_buffer_write_io_error(sbh); 4344 set_buffer_uptodate(sbh); 4345 } 4346 /* 4347 * If the file system is mounted read-only, don't update the 4348 * superblock write time. This avoids updating the superblock 4349 * write time when we are mounting the root file system 4350 * read/only but we need to replay the journal; at that point, 4351 * for people who are east of GMT and who make their clock 4352 * tick in localtime for Windows bug-for-bug compatibility, 4353 * the clock is set in the future, and this will cause e2fsck 4354 * to complain and force a full file system check. 4355 */ 4356 if (!(sb->s_flags & MS_RDONLY)) 4357 es->s_wtime = cpu_to_le32(get_seconds()); 4358 if (sb->s_bdev->bd_part) 4359 es->s_kbytes_written = 4360 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4361 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4362 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4363 else 4364 es->s_kbytes_written = 4365 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4366 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4367 ext4_free_blocks_count_set(es, 4368 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4369 &EXT4_SB(sb)->s_freeclusters_counter))); 4370 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4371 es->s_free_inodes_count = 4372 cpu_to_le32(percpu_counter_sum_positive( 4373 &EXT4_SB(sb)->s_freeinodes_counter)); 4374 BUFFER_TRACE(sbh, "marking dirty"); 4375 ext4_superblock_csum_set(sb); 4376 mark_buffer_dirty(sbh); 4377 if (sync) { 4378 error = __sync_dirty_buffer(sbh, 4379 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4380 if (error) 4381 return error; 4382 4383 error = buffer_write_io_error(sbh); 4384 if (error) { 4385 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4386 "superblock"); 4387 clear_buffer_write_io_error(sbh); 4388 set_buffer_uptodate(sbh); 4389 } 4390 } 4391 return error; 4392 } 4393 4394 /* 4395 * Have we just finished recovery? If so, and if we are mounting (or 4396 * remounting) the filesystem readonly, then we will end up with a 4397 * consistent fs on disk. Record that fact. 4398 */ 4399 static void ext4_mark_recovery_complete(struct super_block *sb, 4400 struct ext4_super_block *es) 4401 { 4402 journal_t *journal = EXT4_SB(sb)->s_journal; 4403 4404 if (!ext4_has_feature_journal(sb)) { 4405 BUG_ON(journal != NULL); 4406 return; 4407 } 4408 jbd2_journal_lock_updates(journal); 4409 if (jbd2_journal_flush(journal) < 0) 4410 goto out; 4411 4412 if (ext4_has_feature_journal_needs_recovery(sb) && 4413 sb->s_flags & MS_RDONLY) { 4414 ext4_clear_feature_journal_needs_recovery(sb); 4415 ext4_commit_super(sb, 1); 4416 } 4417 4418 out: 4419 jbd2_journal_unlock_updates(journal); 4420 } 4421 4422 /* 4423 * If we are mounting (or read-write remounting) a filesystem whose journal 4424 * has recorded an error from a previous lifetime, move that error to the 4425 * main filesystem now. 4426 */ 4427 static void ext4_clear_journal_err(struct super_block *sb, 4428 struct ext4_super_block *es) 4429 { 4430 journal_t *journal; 4431 int j_errno; 4432 const char *errstr; 4433 4434 BUG_ON(!ext4_has_feature_journal(sb)); 4435 4436 journal = EXT4_SB(sb)->s_journal; 4437 4438 /* 4439 * Now check for any error status which may have been recorded in the 4440 * journal by a prior ext4_error() or ext4_abort() 4441 */ 4442 4443 j_errno = jbd2_journal_errno(journal); 4444 if (j_errno) { 4445 char nbuf[16]; 4446 4447 errstr = ext4_decode_error(sb, j_errno, nbuf); 4448 ext4_warning(sb, "Filesystem error recorded " 4449 "from previous mount: %s", errstr); 4450 ext4_warning(sb, "Marking fs in need of filesystem check."); 4451 4452 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4453 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4454 ext4_commit_super(sb, 1); 4455 4456 jbd2_journal_clear_err(journal); 4457 jbd2_journal_update_sb_errno(journal); 4458 } 4459 } 4460 4461 /* 4462 * Force the running and committing transactions to commit, 4463 * and wait on the commit. 4464 */ 4465 int ext4_force_commit(struct super_block *sb) 4466 { 4467 journal_t *journal; 4468 4469 if (sb->s_flags & MS_RDONLY) 4470 return 0; 4471 4472 journal = EXT4_SB(sb)->s_journal; 4473 return ext4_journal_force_commit(journal); 4474 } 4475 4476 static int ext4_sync_fs(struct super_block *sb, int wait) 4477 { 4478 int ret = 0; 4479 tid_t target; 4480 bool needs_barrier = false; 4481 struct ext4_sb_info *sbi = EXT4_SB(sb); 4482 4483 trace_ext4_sync_fs(sb, wait); 4484 flush_workqueue(sbi->rsv_conversion_wq); 4485 /* 4486 * Writeback quota in non-journalled quota case - journalled quota has 4487 * no dirty dquots 4488 */ 4489 dquot_writeback_dquots(sb, -1); 4490 /* 4491 * Data writeback is possible w/o journal transaction, so barrier must 4492 * being sent at the end of the function. But we can skip it if 4493 * transaction_commit will do it for us. 4494 */ 4495 if (sbi->s_journal) { 4496 target = jbd2_get_latest_transaction(sbi->s_journal); 4497 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4498 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4499 needs_barrier = true; 4500 4501 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4502 if (wait) 4503 ret = jbd2_log_wait_commit(sbi->s_journal, 4504 target); 4505 } 4506 } else if (wait && test_opt(sb, BARRIER)) 4507 needs_barrier = true; 4508 if (needs_barrier) { 4509 int err; 4510 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4511 if (!ret) 4512 ret = err; 4513 } 4514 4515 return ret; 4516 } 4517 4518 /* 4519 * LVM calls this function before a (read-only) snapshot is created. This 4520 * gives us a chance to flush the journal completely and mark the fs clean. 4521 * 4522 * Note that only this function cannot bring a filesystem to be in a clean 4523 * state independently. It relies on upper layer to stop all data & metadata 4524 * modifications. 4525 */ 4526 static int ext4_freeze(struct super_block *sb) 4527 { 4528 int error = 0; 4529 journal_t *journal; 4530 4531 if (sb->s_flags & MS_RDONLY) 4532 return 0; 4533 4534 journal = EXT4_SB(sb)->s_journal; 4535 4536 if (journal) { 4537 /* Now we set up the journal barrier. */ 4538 jbd2_journal_lock_updates(journal); 4539 4540 /* 4541 * Don't clear the needs_recovery flag if we failed to 4542 * flush the journal. 4543 */ 4544 error = jbd2_journal_flush(journal); 4545 if (error < 0) 4546 goto out; 4547 4548 /* Journal blocked and flushed, clear needs_recovery flag. */ 4549 ext4_clear_feature_journal_needs_recovery(sb); 4550 } 4551 4552 error = ext4_commit_super(sb, 1); 4553 out: 4554 if (journal) 4555 /* we rely on upper layer to stop further updates */ 4556 jbd2_journal_unlock_updates(journal); 4557 return error; 4558 } 4559 4560 /* 4561 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4562 * flag here, even though the filesystem is not technically dirty yet. 4563 */ 4564 static int ext4_unfreeze(struct super_block *sb) 4565 { 4566 if (sb->s_flags & MS_RDONLY) 4567 return 0; 4568 4569 if (EXT4_SB(sb)->s_journal) { 4570 /* Reset the needs_recovery flag before the fs is unlocked. */ 4571 ext4_set_feature_journal_needs_recovery(sb); 4572 } 4573 4574 ext4_commit_super(sb, 1); 4575 return 0; 4576 } 4577 4578 /* 4579 * Structure to save mount options for ext4_remount's benefit 4580 */ 4581 struct ext4_mount_options { 4582 unsigned long s_mount_opt; 4583 unsigned long s_mount_opt2; 4584 kuid_t s_resuid; 4585 kgid_t s_resgid; 4586 unsigned long s_commit_interval; 4587 u32 s_min_batch_time, s_max_batch_time; 4588 #ifdef CONFIG_QUOTA 4589 int s_jquota_fmt; 4590 char *s_qf_names[EXT4_MAXQUOTAS]; 4591 #endif 4592 }; 4593 4594 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4595 { 4596 struct ext4_super_block *es; 4597 struct ext4_sb_info *sbi = EXT4_SB(sb); 4598 unsigned long old_sb_flags; 4599 struct ext4_mount_options old_opts; 4600 int enable_quota = 0; 4601 ext4_group_t g; 4602 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4603 int err = 0; 4604 #ifdef CONFIG_QUOTA 4605 int i, j; 4606 #endif 4607 char *orig_data = kstrdup(data, GFP_KERNEL); 4608 4609 /* Store the original options */ 4610 old_sb_flags = sb->s_flags; 4611 old_opts.s_mount_opt = sbi->s_mount_opt; 4612 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4613 old_opts.s_resuid = sbi->s_resuid; 4614 old_opts.s_resgid = sbi->s_resgid; 4615 old_opts.s_commit_interval = sbi->s_commit_interval; 4616 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4617 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4618 #ifdef CONFIG_QUOTA 4619 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4620 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4621 if (sbi->s_qf_names[i]) { 4622 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4623 GFP_KERNEL); 4624 if (!old_opts.s_qf_names[i]) { 4625 for (j = 0; j < i; j++) 4626 kfree(old_opts.s_qf_names[j]); 4627 kfree(orig_data); 4628 return -ENOMEM; 4629 } 4630 } else 4631 old_opts.s_qf_names[i] = NULL; 4632 #endif 4633 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4634 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4635 4636 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4637 err = -EINVAL; 4638 goto restore_opts; 4639 } 4640 4641 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4642 test_opt(sb, JOURNAL_CHECKSUM)) { 4643 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4644 "during remount not supported; ignoring"); 4645 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4646 } 4647 4648 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4649 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4650 ext4_msg(sb, KERN_ERR, "can't mount with " 4651 "both data=journal and delalloc"); 4652 err = -EINVAL; 4653 goto restore_opts; 4654 } 4655 if (test_opt(sb, DIOREAD_NOLOCK)) { 4656 ext4_msg(sb, KERN_ERR, "can't mount with " 4657 "both data=journal and dioread_nolock"); 4658 err = -EINVAL; 4659 goto restore_opts; 4660 } 4661 if (test_opt(sb, DAX)) { 4662 ext4_msg(sb, KERN_ERR, "can't mount with " 4663 "both data=journal and dax"); 4664 err = -EINVAL; 4665 goto restore_opts; 4666 } 4667 } 4668 4669 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4670 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4671 "dax flag with busy inodes while remounting"); 4672 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4673 } 4674 4675 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4676 ext4_abort(sb, "Abort forced by user"); 4677 4678 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4679 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4680 4681 es = sbi->s_es; 4682 4683 if (sbi->s_journal) { 4684 ext4_init_journal_params(sb, sbi->s_journal); 4685 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4686 } 4687 4688 if (*flags & MS_LAZYTIME) 4689 sb->s_flags |= MS_LAZYTIME; 4690 4691 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4692 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4693 err = -EROFS; 4694 goto restore_opts; 4695 } 4696 4697 if (*flags & MS_RDONLY) { 4698 err = sync_filesystem(sb); 4699 if (err < 0) 4700 goto restore_opts; 4701 err = dquot_suspend(sb, -1); 4702 if (err < 0) 4703 goto restore_opts; 4704 4705 /* 4706 * First of all, the unconditional stuff we have to do 4707 * to disable replay of the journal when we next remount 4708 */ 4709 sb->s_flags |= MS_RDONLY; 4710 4711 /* 4712 * OK, test if we are remounting a valid rw partition 4713 * readonly, and if so set the rdonly flag and then 4714 * mark the partition as valid again. 4715 */ 4716 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4717 (sbi->s_mount_state & EXT4_VALID_FS)) 4718 es->s_state = cpu_to_le16(sbi->s_mount_state); 4719 4720 if (sbi->s_journal) 4721 ext4_mark_recovery_complete(sb, es); 4722 } else { 4723 /* Make sure we can mount this feature set readwrite */ 4724 if (ext4_has_feature_readonly(sb) || 4725 !ext4_feature_set_ok(sb, 0)) { 4726 err = -EROFS; 4727 goto restore_opts; 4728 } 4729 /* 4730 * Make sure the group descriptor checksums 4731 * are sane. If they aren't, refuse to remount r/w. 4732 */ 4733 for (g = 0; g < sbi->s_groups_count; g++) { 4734 struct ext4_group_desc *gdp = 4735 ext4_get_group_desc(sb, g, NULL); 4736 4737 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4738 ext4_msg(sb, KERN_ERR, 4739 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4740 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4741 le16_to_cpu(gdp->bg_checksum)); 4742 err = -EFSBADCRC; 4743 goto restore_opts; 4744 } 4745 } 4746 4747 /* 4748 * If we have an unprocessed orphan list hanging 4749 * around from a previously readonly bdev mount, 4750 * require a full umount/remount for now. 4751 */ 4752 if (es->s_last_orphan) { 4753 ext4_msg(sb, KERN_WARNING, "Couldn't " 4754 "remount RDWR because of unprocessed " 4755 "orphan inode list. Please " 4756 "umount/remount instead"); 4757 err = -EINVAL; 4758 goto restore_opts; 4759 } 4760 4761 /* 4762 * Mounting a RDONLY partition read-write, so reread 4763 * and store the current valid flag. (It may have 4764 * been changed by e2fsck since we originally mounted 4765 * the partition.) 4766 */ 4767 if (sbi->s_journal) 4768 ext4_clear_journal_err(sb, es); 4769 sbi->s_mount_state = le16_to_cpu(es->s_state); 4770 if (!ext4_setup_super(sb, es, 0)) 4771 sb->s_flags &= ~MS_RDONLY; 4772 if (ext4_has_feature_mmp(sb)) 4773 if (ext4_multi_mount_protect(sb, 4774 le64_to_cpu(es->s_mmp_block))) { 4775 err = -EROFS; 4776 goto restore_opts; 4777 } 4778 enable_quota = 1; 4779 } 4780 } 4781 4782 /* 4783 * Reinitialize lazy itable initialization thread based on 4784 * current settings 4785 */ 4786 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4787 ext4_unregister_li_request(sb); 4788 else { 4789 ext4_group_t first_not_zeroed; 4790 first_not_zeroed = ext4_has_uninit_itable(sb); 4791 ext4_register_li_request(sb, first_not_zeroed); 4792 } 4793 4794 ext4_setup_system_zone(sb); 4795 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4796 ext4_commit_super(sb, 1); 4797 4798 #ifdef CONFIG_QUOTA 4799 /* Release old quota file names */ 4800 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4801 kfree(old_opts.s_qf_names[i]); 4802 if (enable_quota) { 4803 if (sb_any_quota_suspended(sb)) 4804 dquot_resume(sb, -1); 4805 else if (ext4_has_feature_quota(sb)) { 4806 err = ext4_enable_quotas(sb); 4807 if (err) 4808 goto restore_opts; 4809 } 4810 } 4811 #endif 4812 4813 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4814 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4815 kfree(orig_data); 4816 return 0; 4817 4818 restore_opts: 4819 sb->s_flags = old_sb_flags; 4820 sbi->s_mount_opt = old_opts.s_mount_opt; 4821 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4822 sbi->s_resuid = old_opts.s_resuid; 4823 sbi->s_resgid = old_opts.s_resgid; 4824 sbi->s_commit_interval = old_opts.s_commit_interval; 4825 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4826 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4827 #ifdef CONFIG_QUOTA 4828 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4829 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4830 kfree(sbi->s_qf_names[i]); 4831 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4832 } 4833 #endif 4834 kfree(orig_data); 4835 return err; 4836 } 4837 4838 #ifdef CONFIG_QUOTA 4839 static int ext4_statfs_project(struct super_block *sb, 4840 kprojid_t projid, struct kstatfs *buf) 4841 { 4842 struct kqid qid; 4843 struct dquot *dquot; 4844 u64 limit; 4845 u64 curblock; 4846 4847 qid = make_kqid_projid(projid); 4848 dquot = dqget(sb, qid); 4849 if (IS_ERR(dquot)) 4850 return PTR_ERR(dquot); 4851 spin_lock(&dq_data_lock); 4852 4853 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 4854 dquot->dq_dqb.dqb_bsoftlimit : 4855 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 4856 if (limit && buf->f_blocks > limit) { 4857 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 4858 buf->f_blocks = limit; 4859 buf->f_bfree = buf->f_bavail = 4860 (buf->f_blocks > curblock) ? 4861 (buf->f_blocks - curblock) : 0; 4862 } 4863 4864 limit = dquot->dq_dqb.dqb_isoftlimit ? 4865 dquot->dq_dqb.dqb_isoftlimit : 4866 dquot->dq_dqb.dqb_ihardlimit; 4867 if (limit && buf->f_files > limit) { 4868 buf->f_files = limit; 4869 buf->f_ffree = 4870 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 4871 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 4872 } 4873 4874 spin_unlock(&dq_data_lock); 4875 dqput(dquot); 4876 return 0; 4877 } 4878 #endif 4879 4880 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4881 { 4882 struct super_block *sb = dentry->d_sb; 4883 struct ext4_sb_info *sbi = EXT4_SB(sb); 4884 struct ext4_super_block *es = sbi->s_es; 4885 ext4_fsblk_t overhead = 0, resv_blocks; 4886 u64 fsid; 4887 s64 bfree; 4888 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4889 4890 if (!test_opt(sb, MINIX_DF)) 4891 overhead = sbi->s_overhead; 4892 4893 buf->f_type = EXT4_SUPER_MAGIC; 4894 buf->f_bsize = sb->s_blocksize; 4895 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4896 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4897 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4898 /* prevent underflow in case that few free space is available */ 4899 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4900 buf->f_bavail = buf->f_bfree - 4901 (ext4_r_blocks_count(es) + resv_blocks); 4902 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4903 buf->f_bavail = 0; 4904 buf->f_files = le32_to_cpu(es->s_inodes_count); 4905 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4906 buf->f_namelen = EXT4_NAME_LEN; 4907 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4908 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4909 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4910 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4911 4912 #ifdef CONFIG_QUOTA 4913 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 4914 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 4915 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 4916 #endif 4917 return 0; 4918 } 4919 4920 /* Helper function for writing quotas on sync - we need to start transaction 4921 * before quota file is locked for write. Otherwise the are possible deadlocks: 4922 * Process 1 Process 2 4923 * ext4_create() quota_sync() 4924 * jbd2_journal_start() write_dquot() 4925 * dquot_initialize() down(dqio_mutex) 4926 * down(dqio_mutex) jbd2_journal_start() 4927 * 4928 */ 4929 4930 #ifdef CONFIG_QUOTA 4931 4932 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4933 { 4934 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4935 } 4936 4937 static int ext4_write_dquot(struct dquot *dquot) 4938 { 4939 int ret, err; 4940 handle_t *handle; 4941 struct inode *inode; 4942 4943 inode = dquot_to_inode(dquot); 4944 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4945 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4946 if (IS_ERR(handle)) 4947 return PTR_ERR(handle); 4948 ret = dquot_commit(dquot); 4949 err = ext4_journal_stop(handle); 4950 if (!ret) 4951 ret = err; 4952 return ret; 4953 } 4954 4955 static int ext4_acquire_dquot(struct dquot *dquot) 4956 { 4957 int ret, err; 4958 handle_t *handle; 4959 4960 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4961 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4962 if (IS_ERR(handle)) 4963 return PTR_ERR(handle); 4964 ret = dquot_acquire(dquot); 4965 err = ext4_journal_stop(handle); 4966 if (!ret) 4967 ret = err; 4968 return ret; 4969 } 4970 4971 static int ext4_release_dquot(struct dquot *dquot) 4972 { 4973 int ret, err; 4974 handle_t *handle; 4975 4976 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4977 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4978 if (IS_ERR(handle)) { 4979 /* Release dquot anyway to avoid endless cycle in dqput() */ 4980 dquot_release(dquot); 4981 return PTR_ERR(handle); 4982 } 4983 ret = dquot_release(dquot); 4984 err = ext4_journal_stop(handle); 4985 if (!ret) 4986 ret = err; 4987 return ret; 4988 } 4989 4990 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4991 { 4992 struct super_block *sb = dquot->dq_sb; 4993 struct ext4_sb_info *sbi = EXT4_SB(sb); 4994 4995 /* Are we journaling quotas? */ 4996 if (ext4_has_feature_quota(sb) || 4997 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4998 dquot_mark_dquot_dirty(dquot); 4999 return ext4_write_dquot(dquot); 5000 } else { 5001 return dquot_mark_dquot_dirty(dquot); 5002 } 5003 } 5004 5005 static int ext4_write_info(struct super_block *sb, int type) 5006 { 5007 int ret, err; 5008 handle_t *handle; 5009 5010 /* Data block + inode block */ 5011 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5012 if (IS_ERR(handle)) 5013 return PTR_ERR(handle); 5014 ret = dquot_commit_info(sb, type); 5015 err = ext4_journal_stop(handle); 5016 if (!ret) 5017 ret = err; 5018 return ret; 5019 } 5020 5021 /* 5022 * Turn on quotas during mount time - we need to find 5023 * the quota file and such... 5024 */ 5025 static int ext4_quota_on_mount(struct super_block *sb, int type) 5026 { 5027 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5028 EXT4_SB(sb)->s_jquota_fmt, type); 5029 } 5030 5031 /* 5032 * Standard function to be called on quota_on 5033 */ 5034 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5035 struct path *path) 5036 { 5037 int err; 5038 5039 if (!test_opt(sb, QUOTA)) 5040 return -EINVAL; 5041 5042 /* Quotafile not on the same filesystem? */ 5043 if (path->dentry->d_sb != sb) 5044 return -EXDEV; 5045 /* Journaling quota? */ 5046 if (EXT4_SB(sb)->s_qf_names[type]) { 5047 /* Quotafile not in fs root? */ 5048 if (path->dentry->d_parent != sb->s_root) 5049 ext4_msg(sb, KERN_WARNING, 5050 "Quota file not on filesystem root. " 5051 "Journaled quota will not work"); 5052 } 5053 5054 /* 5055 * When we journal data on quota file, we have to flush journal to see 5056 * all updates to the file when we bypass pagecache... 5057 */ 5058 if (EXT4_SB(sb)->s_journal && 5059 ext4_should_journal_data(d_inode(path->dentry))) { 5060 /* 5061 * We don't need to lock updates but journal_flush() could 5062 * otherwise be livelocked... 5063 */ 5064 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5065 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5066 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5067 if (err) 5068 return err; 5069 } 5070 5071 return dquot_quota_on(sb, type, format_id, path); 5072 } 5073 5074 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5075 unsigned int flags) 5076 { 5077 int err; 5078 struct inode *qf_inode; 5079 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5080 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5081 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5082 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5083 }; 5084 5085 BUG_ON(!ext4_has_feature_quota(sb)); 5086 5087 if (!qf_inums[type]) 5088 return -EPERM; 5089 5090 qf_inode = ext4_iget(sb, qf_inums[type]); 5091 if (IS_ERR(qf_inode)) { 5092 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5093 return PTR_ERR(qf_inode); 5094 } 5095 5096 /* Don't account quota for quota files to avoid recursion */ 5097 qf_inode->i_flags |= S_NOQUOTA; 5098 err = dquot_enable(qf_inode, type, format_id, flags); 5099 iput(qf_inode); 5100 5101 return err; 5102 } 5103 5104 /* Enable usage tracking for all quota types. */ 5105 static int ext4_enable_quotas(struct super_block *sb) 5106 { 5107 int type, err = 0; 5108 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5109 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5110 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5111 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5112 }; 5113 5114 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5115 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5116 if (qf_inums[type]) { 5117 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5118 DQUOT_USAGE_ENABLED); 5119 if (err) { 5120 ext4_warning(sb, 5121 "Failed to enable quota tracking " 5122 "(type=%d, err=%d). Please run " 5123 "e2fsck to fix.", type, err); 5124 return err; 5125 } 5126 } 5127 } 5128 return 0; 5129 } 5130 5131 static int ext4_quota_off(struct super_block *sb, int type) 5132 { 5133 struct inode *inode = sb_dqopt(sb)->files[type]; 5134 handle_t *handle; 5135 5136 /* Force all delayed allocation blocks to be allocated. 5137 * Caller already holds s_umount sem */ 5138 if (test_opt(sb, DELALLOC)) 5139 sync_filesystem(sb); 5140 5141 if (!inode) 5142 goto out; 5143 5144 /* Update modification times of quota files when userspace can 5145 * start looking at them */ 5146 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5147 if (IS_ERR(handle)) 5148 goto out; 5149 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5150 ext4_mark_inode_dirty(handle, inode); 5151 ext4_journal_stop(handle); 5152 5153 out: 5154 return dquot_quota_off(sb, type); 5155 } 5156 5157 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5158 * acquiring the locks... As quota files are never truncated and quota code 5159 * itself serializes the operations (and no one else should touch the files) 5160 * we don't have to be afraid of races */ 5161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5162 size_t len, loff_t off) 5163 { 5164 struct inode *inode = sb_dqopt(sb)->files[type]; 5165 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5166 int offset = off & (sb->s_blocksize - 1); 5167 int tocopy; 5168 size_t toread; 5169 struct buffer_head *bh; 5170 loff_t i_size = i_size_read(inode); 5171 5172 if (off > i_size) 5173 return 0; 5174 if (off+len > i_size) 5175 len = i_size-off; 5176 toread = len; 5177 while (toread > 0) { 5178 tocopy = sb->s_blocksize - offset < toread ? 5179 sb->s_blocksize - offset : toread; 5180 bh = ext4_bread(NULL, inode, blk, 0); 5181 if (IS_ERR(bh)) 5182 return PTR_ERR(bh); 5183 if (!bh) /* A hole? */ 5184 memset(data, 0, tocopy); 5185 else 5186 memcpy(data, bh->b_data+offset, tocopy); 5187 brelse(bh); 5188 offset = 0; 5189 toread -= tocopy; 5190 data += tocopy; 5191 blk++; 5192 } 5193 return len; 5194 } 5195 5196 /* Write to quotafile (we know the transaction is already started and has 5197 * enough credits) */ 5198 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5199 const char *data, size_t len, loff_t off) 5200 { 5201 struct inode *inode = sb_dqopt(sb)->files[type]; 5202 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5203 int err, offset = off & (sb->s_blocksize - 1); 5204 int retries = 0; 5205 struct buffer_head *bh; 5206 handle_t *handle = journal_current_handle(); 5207 5208 if (EXT4_SB(sb)->s_journal && !handle) { 5209 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5210 " cancelled because transaction is not started", 5211 (unsigned long long)off, (unsigned long long)len); 5212 return -EIO; 5213 } 5214 /* 5215 * Since we account only one data block in transaction credits, 5216 * then it is impossible to cross a block boundary. 5217 */ 5218 if (sb->s_blocksize - offset < len) { 5219 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5220 " cancelled because not block aligned", 5221 (unsigned long long)off, (unsigned long long)len); 5222 return -EIO; 5223 } 5224 5225 do { 5226 bh = ext4_bread(handle, inode, blk, 5227 EXT4_GET_BLOCKS_CREATE | 5228 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5229 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5230 ext4_should_retry_alloc(inode->i_sb, &retries)); 5231 if (IS_ERR(bh)) 5232 return PTR_ERR(bh); 5233 if (!bh) 5234 goto out; 5235 BUFFER_TRACE(bh, "get write access"); 5236 err = ext4_journal_get_write_access(handle, bh); 5237 if (err) { 5238 brelse(bh); 5239 return err; 5240 } 5241 lock_buffer(bh); 5242 memcpy(bh->b_data+offset, data, len); 5243 flush_dcache_page(bh->b_page); 5244 unlock_buffer(bh); 5245 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5246 brelse(bh); 5247 out: 5248 if (inode->i_size < off + len) { 5249 i_size_write(inode, off + len); 5250 EXT4_I(inode)->i_disksize = inode->i_size; 5251 ext4_mark_inode_dirty(handle, inode); 5252 } 5253 return len; 5254 } 5255 5256 #endif 5257 5258 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5259 const char *dev_name, void *data) 5260 { 5261 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5262 } 5263 5264 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5265 static inline void register_as_ext2(void) 5266 { 5267 int err = register_filesystem(&ext2_fs_type); 5268 if (err) 5269 printk(KERN_WARNING 5270 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5271 } 5272 5273 static inline void unregister_as_ext2(void) 5274 { 5275 unregister_filesystem(&ext2_fs_type); 5276 } 5277 5278 static inline int ext2_feature_set_ok(struct super_block *sb) 5279 { 5280 if (ext4_has_unknown_ext2_incompat_features(sb)) 5281 return 0; 5282 if (sb->s_flags & MS_RDONLY) 5283 return 1; 5284 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5285 return 0; 5286 return 1; 5287 } 5288 #else 5289 static inline void register_as_ext2(void) { } 5290 static inline void unregister_as_ext2(void) { } 5291 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5292 #endif 5293 5294 static inline void register_as_ext3(void) 5295 { 5296 int err = register_filesystem(&ext3_fs_type); 5297 if (err) 5298 printk(KERN_WARNING 5299 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5300 } 5301 5302 static inline void unregister_as_ext3(void) 5303 { 5304 unregister_filesystem(&ext3_fs_type); 5305 } 5306 5307 static inline int ext3_feature_set_ok(struct super_block *sb) 5308 { 5309 if (ext4_has_unknown_ext3_incompat_features(sb)) 5310 return 0; 5311 if (!ext4_has_feature_journal(sb)) 5312 return 0; 5313 if (sb->s_flags & MS_RDONLY) 5314 return 1; 5315 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5316 return 0; 5317 return 1; 5318 } 5319 5320 static struct file_system_type ext4_fs_type = { 5321 .owner = THIS_MODULE, 5322 .name = "ext4", 5323 .mount = ext4_mount, 5324 .kill_sb = kill_block_super, 5325 .fs_flags = FS_REQUIRES_DEV, 5326 }; 5327 MODULE_ALIAS_FS("ext4"); 5328 5329 /* Shared across all ext4 file systems */ 5330 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5331 5332 static int __init ext4_init_fs(void) 5333 { 5334 int i, err; 5335 5336 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5337 ext4_li_info = NULL; 5338 mutex_init(&ext4_li_mtx); 5339 5340 /* Build-time check for flags consistency */ 5341 ext4_check_flag_values(); 5342 5343 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5344 init_waitqueue_head(&ext4__ioend_wq[i]); 5345 5346 err = ext4_init_es(); 5347 if (err) 5348 return err; 5349 5350 err = ext4_init_pageio(); 5351 if (err) 5352 goto out5; 5353 5354 err = ext4_init_system_zone(); 5355 if (err) 5356 goto out4; 5357 5358 err = ext4_init_sysfs(); 5359 if (err) 5360 goto out3; 5361 5362 err = ext4_init_mballoc(); 5363 if (err) 5364 goto out2; 5365 err = init_inodecache(); 5366 if (err) 5367 goto out1; 5368 register_as_ext3(); 5369 register_as_ext2(); 5370 err = register_filesystem(&ext4_fs_type); 5371 if (err) 5372 goto out; 5373 5374 return 0; 5375 out: 5376 unregister_as_ext2(); 5377 unregister_as_ext3(); 5378 destroy_inodecache(); 5379 out1: 5380 ext4_exit_mballoc(); 5381 out2: 5382 ext4_exit_sysfs(); 5383 out3: 5384 ext4_exit_system_zone(); 5385 out4: 5386 ext4_exit_pageio(); 5387 out5: 5388 ext4_exit_es(); 5389 5390 return err; 5391 } 5392 5393 static void __exit ext4_exit_fs(void) 5394 { 5395 ext4_exit_crypto(); 5396 ext4_destroy_lazyinit_thread(); 5397 unregister_as_ext2(); 5398 unregister_as_ext3(); 5399 unregister_filesystem(&ext4_fs_type); 5400 destroy_inodecache(); 5401 ext4_exit_mballoc(); 5402 ext4_exit_sysfs(); 5403 ext4_exit_system_zone(); 5404 ext4_exit_pageio(); 5405 ext4_exit_es(); 5406 } 5407 5408 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5409 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5410 MODULE_LICENSE("GPL"); 5411 module_init(ext4_init_fs) 5412 module_exit(ext4_exit_fs) 5413